WorldWideScience

Sample records for previously identified genes

  1. Previously unidentified changes in renal cell carcinoma gene expression identified by parametric analysis of microarray data

    International Nuclear Information System (INIS)

    Lenburg, Marc E; Liou, Louis S; Gerry, Norman P; Frampton, Garrett M; Cohen, Herbert T; Christman, Michael F

    2003-01-01

    Renal cell carcinoma is a common malignancy that often presents as a metastatic-disease for which there are no effective treatments. To gain insights into the mechanism of renal cell carcinogenesis, a number of genome-wide expression profiling studies have been performed. Surprisingly, there is very poor agreement among these studies as to which genes are differentially regulated. To better understand this lack of agreement we profiled renal cell tumor gene expression using genome-wide microarrays (45,000 probe sets) and compare our analysis to previous microarray studies. We hybridized total RNA isolated from renal cell tumors and adjacent normal tissue to Affymetrix U133A and U133B arrays. We removed samples with technical defects and removed probesets that failed to exhibit sequence-specific hybridization in any of the samples. We detected differential gene expression in the resulting dataset with parametric methods and identified keywords that are overrepresented in the differentially expressed genes with the Fisher-exact test. We identify 1,234 genes that are more than three-fold changed in renal tumors by t-test, 800 of which have not been previously reported to be altered in renal cell tumors. Of the only 37 genes that have been identified as being differentially expressed in three or more of five previous microarray studies of renal tumor gene expression, our analysis finds 33 of these genes (89%). A key to the sensitivity and power of our analysis is filtering out defective samples and genes that are not reliably detected. The widespread use of sample-wise voting schemes for detecting differential expression that do not control for false positives likely account for the poor overlap among previous studies. Among the many genes we identified using parametric methods that were not previously reported as being differentially expressed in renal cell tumors are several oncogenes and tumor suppressor genes that likely play important roles in renal cell

  2. NIH Researchers Identify OCD Risk Gene

    Science.gov (United States)

    ... News From NIH NIH Researchers Identify OCD Risk Gene Past Issues / Summer 2006 Table of Contents For ... and Alcoholism (NIAAA) have identified a previously unknown gene variant that doubles an individual's risk for obsessive- ...

  3. Expression profiling identifies genes involved in emphysema severity

    Directory of Open Access Journals (Sweden)

    Bowman Rayleen V

    2009-09-01

    Full Text Available Abstract Chronic obstructive pulmonary disease (COPD is a major public health problem. The aim of this study was to identify genes involved in emphysema severity in COPD patients. Gene expression profiling was performed on total RNA extracted from non-tumor lung tissue from 30 smokers with emphysema. Class comparison analysis based on gas transfer measurement was performed to identify differentially expressed genes. Genes were then selected for technical validation by quantitative reverse transcriptase-PCR (qRT-PCR if also represented on microarray platforms used in previously published emphysema studies. Genes technically validated advanced to tests of biological replication by qRT-PCR using an independent test set of 62 lung samples. Class comparison identified 98 differentially expressed genes (p p Gene expression profiling of lung from emphysema patients identified seven candidate genes associated with emphysema severity including COL6A3, SERPINF1, ZNHIT6, NEDD4, CDKN2A, NRN1 and GSTM3.

  4. ENU Mutagenesis in Mice Identifies Candidate Genes For Hypogonadism

    Science.gov (United States)

    Weiss, Jeffrey; Hurley, Lisa A.; Harris, Rebecca M.; Finlayson, Courtney; Tong, Minghan; Fisher, Lisa A.; Moran, Jennifer L.; Beier, David R.; Mason, Christopher; Jameson, J. Larry

    2012-01-01

    Genome-wide mutagenesis was performed in mice to identify candidate genes for male infertility, for which the predominant causes remain idiopathic. Mice were mutagenized using N-ethyl-N-nitrosourea (ENU), bred, and screened for phenotypes associated with the male urogenital system. Fifteen heritable lines were isolated and chromosomal loci were assigned using low density genome-wide SNP arrays. Ten of the fifteen lines were pursued further using higher resolution SNP analysis to narrow the candidate gene regions. Exon sequencing of candidate genes identified mutations in mice with cystic kidneys (Bicc1), cryptorchidism (Rxfp2), restricted germ cell deficiency (Plk4), and severe germ cell deficiency (Prdm9). In two other lines with severe hypogonadism candidate sequencing failed to identify mutations, suggesting defects in genes with previously undocumented roles in gonadal function. These genomic intervals were sequenced in their entirety and a candidate mutation was identified in SnrpE in one of the two lines. The line harboring the SnrpE variant retains substantial spermatogenesis despite small testis size, an unusual phenotype. In addition to the reproductive defects, heritable phenotypes were observed in mice with ataxia (Myo5a), tremors (Pmp22), growth retardation (unknown gene), and hydrocephalus (unknown gene). These results demonstrate that the ENU screen is an effective tool for identifying potential causes of male infertility. PMID:22258617

  5. Analyses of more than 60,000 exomes questions the role of numerous genes previously associated with dilated cardiomyopathy

    DEFF Research Database (Denmark)

    Nouhravesh, Nina; Ahlberg, Gustav; Ghouse, Jonas

    2016-01-01

    BACKGROUND: Hundreds of genetic variants have been described as disease causing in dilated cardiomyopathy (DCM). Some of these associations are now being questioned. We aimed to identify the prevalence of previously DCM associated variants in the Exome Aggregation Consortium (ExAC), in order...... to identify potentially false-positive DCM variants. METHODS: Variants listed as DCM disease-causing variants in the Human Gene Mutation Database were extracted from ExAC. Pathogenicity predictions for these variants were mined from dbNSFP v 2.9 database. RESULTS: Of the 473 DCM variants listed in HGMD, 148...... (31%) were found in ExAC. The expected number of individuals with DCM in ExAC is 25 based on the prevalence in the general population. Yet, 35 variants were found in more than 25 individuals. In 13 genes, we identified all variants previously associated with DCM; four genes contained variants above...

  6. Exome sequencing identifies three novel candidate genes implicated in intellectual disability.

    Directory of Open Access Journals (Sweden)

    Zehra Agha

    Full Text Available Intellectual disability (ID is a major health problem mostly with an unknown etiology. Recently exome sequencing of individuals with ID identified novel genes implicated in the disease. Therefore the purpose of the present study was to identify the genetic cause of ID in one syndromic and two non-syndromic Pakistani families. Whole exome of three ID probands was sequenced. Missense variations in two plausible novel genes implicated in autosomal recessive ID were identified: lysine (K-specific methyltransferase 2B (KMT2B, zinc finger protein 589 (ZNF589, as well as hedgehog acyltransferase (HHAT with a de novo mutation with autosomal dominant mode of inheritance. The KMT2B recessive variant is the first report of recessive Kleefstra syndrome-like phenotype. Identification of plausible causative mutations for two recessive and a dominant type of ID, in genes not previously implicated in disease, underscores the large genetic heterogeneity of ID. These results also support the viewpoint that large number of ID genes converge on limited number of common networks i.e. ZNF589 belongs to KRAB-domain zinc-finger proteins previously implicated in ID, HHAT is predicted to affect sonic hedgehog, which is involved in several disorders with ID, KMT2B associated with syndromic ID fits the epigenetic module underlying the Kleefstra syndromic spectrum. The association of these novel genes in three different Pakistani ID families highlights the importance of screening these genes in more families with similar phenotypes from different populations to confirm the involvement of these genes in pathogenesis of ID.

  7. Exome sequencing of a large family identifies potential candidate genes contributing risk to bipolar disorder.

    Science.gov (United States)

    Zhang, Tianxiao; Hou, Liping; Chen, David T; McMahon, Francis J; Wang, Jen-Chyong; Rice, John P

    2018-03-01

    Bipolar disorder is a mental illness with lifetime prevalence of about 1%. Previous genetic studies have identified multiple chromosomal linkage regions and candidate genes that might be associated with bipolar disorder. The present study aimed to identify potential susceptibility variants for bipolar disorder using 6 related case samples from a four-generation family. A combination of exome sequencing and linkage analysis was performed to identify potential susceptibility variants for bipolar disorder. Our study identified a list of five potential candidate genes for bipolar disorder. Among these five genes, GRID1(Glutamate Receptor Delta-1 Subunit), which was previously reported to be associated with several psychiatric disorders and brain related traits, is particularly interesting. Variants with functional significance in this gene were identified from two cousins in our bipolar disorder pedigree. Our findings suggest a potential role for these genes and the related rare variants in the onset and development of bipolar disorder in this one family. Additional research is needed to replicate these findings and evaluate their patho-biological significance. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The frequency of previously undetectable deletions involving 3' Exons of the PMS2 gene.

    Science.gov (United States)

    Vaughn, Cecily P; Baker, Christine L; Samowitz, Wade S; Swensen, Jeffrey J

    2013-01-01

    Lynch syndrome is characterized by mutations in one of four mismatch repair genes, MLH1, MSH2, MSH6, or PMS2. Clinical mutation analysis of these genes includes sequencing of exonic regions and deletion/duplication analysis. However, detection of deletions and duplications in PMS2 has previously been confined to Exons 1-11 due to gene conversion between PMS2 and the pseudogene PMS2CL in the remaining 3' exons (Exons 12-15). We have recently described an MLPA-based method that permits detection of deletions of PMS2 Exons 12-15; however, the frequency of such deletions has not yet been determined. To address this question, we tested for 3' deletions in 58 samples that were reported to be negative for PMS2 mutations using previously available methods. All samples were from individuals whose tumors exhibited loss of PMS2 immunohistochemical staining without concomitant loss of MLH1 immunostaining. We identified seven samples in this cohort with deletions in the 3' region of PMS2, including three previously reported samples with deletions of Exons 13-15 (two samples) and Exons 14-15. Also detected were deletions of Exons 12-15, Exon 13, and Exon 14 (two samples). Breakpoint analysis of the intragenic deletions suggests they occurred through Alu-mediated recombination. Our results indicate that ∼12% of samples suspected of harboring a PMS2 mutation based on immunohistochemical staining, for which mutations have not yet been identified, would benefit from testing using the new methodology. Copyright © 2012 Wiley Periodicals, Inc.

  9. Genome-Wide Temporal Expression Profiling in Caenorhabditis elegans Identifies a Core Gene Set Related to Long-Term Memory.

    Science.gov (United States)

    Freytag, Virginie; Probst, Sabine; Hadziselimovic, Nils; Boglari, Csaba; Hauser, Yannick; Peter, Fabian; Gabor Fenyves, Bank; Milnik, Annette; Demougin, Philippe; Vukojevic, Vanja; de Quervain, Dominique J-F; Papassotiropoulos, Andreas; Stetak, Attila

    2017-07-12

    The identification of genes related to encoding, storage, and retrieval of memories is a major interest in neuroscience. In the current study, we analyzed the temporal gene expression changes in a neuronal mRNA pool during an olfactory long-term associative memory (LTAM) in Caenorhabditis elegans hermaphrodites. Here, we identified a core set of 712 (538 upregulated and 174 downregulated) genes that follows three distinct temporal peaks demonstrating multiple gene regulation waves in LTAM. Compared with the previously published positive LTAM gene set (Lakhina et al., 2015), 50% of the identified upregulated genes here overlap with the previous dataset, possibly representing stimulus-independent memory-related genes. On the other hand, the remaining genes were not previously identified in positive associative memory and may specifically regulate aversive LTAM. Our results suggest a multistep gene activation process during the formation and retrieval of long-term memory and define general memory-implicated genes as well as conditioning-type-dependent gene sets. SIGNIFICANCE STATEMENT The identification of genes regulating different steps of memory is of major interest in neuroscience. Identification of common memory genes across different learning paradigms and the temporal activation of the genes are poorly studied. Here, we investigated the temporal aspects of Caenorhabditis elegans gene expression changes using aversive olfactory associative long-term memory (LTAM) and identified three major gene activation waves. Like in previous studies, aversive LTAM is also CREB dependent, and CREB activity is necessary immediately after training. Finally, we define a list of memory paradigm-independent core gene sets as well as conditioning-dependent genes. Copyright © 2017 the authors 0270-6474/17/376661-12$15.00/0.

  10. Eight previously unidentified mutations found in the OA1 ocular albinism gene

    Directory of Open Access Journals (Sweden)

    Dufier Jean-Louis

    2006-04-01

    Full Text Available Abstract Background Ocular albinism type 1 (OA1 is an X-linked ocular disorder characterized by a severe reduction in visual acuity, nystagmus, hypopigmentation of the retinal pigmented epithelium, foveal hypoplasia, macromelanosomes in pigmented skin and eye cells, and misrouting of the optical tracts. This disease is primarily caused by mutations in the OA1 gene. Methods The ophthalmologic phenotype of the patients and their family members was characterized. We screened for mutations in the OA1 gene by direct sequencing of the nine PCR-amplified exons, and for genomic deletions by PCR-amplification of large DNA fragments. Results We sequenced the nine exons of the OA1 gene in 72 individuals and found ten different mutations in seven unrelated families and three sporadic cases. The ten mutations include an amino acid substitution and a premature stop codon previously reported by our team, and eight previously unidentified mutations: three amino acid substitutions, a duplication, a deletion, an insertion and two splice-site mutations. The use of a novel Taq polymerase enabled us to amplify large genomic fragments covering the OA1 gene. and to detect very likely six distinct large deletions. Furthermore, we were able to confirm that there was no deletion in twenty one patients where no mutation had been found. Conclusion The identified mutations affect highly conserved amino acids, cause frameshifts or alternative splicing, thus affecting folding of the OA1 G protein coupled receptor, interactions of OA1 with its G protein and/or binding with its ligand.

  11. GTI: a novel algorithm for identifying outlier gene expression profiles from integrated microarray datasets.

    Directory of Open Access Journals (Sweden)

    John Patrick Mpindi

    Full Text Available BACKGROUND: Meta-analysis of gene expression microarray datasets presents significant challenges for statistical analysis. We developed and validated a new bioinformatic method for the identification of genes upregulated in subsets of samples of a given tumour type ('outlier genes', a hallmark of potential oncogenes. METHODOLOGY: A new statistical method (the gene tissue index, GTI was developed by modifying and adapting algorithms originally developed for statistical problems in economics. We compared the potential of the GTI to detect outlier genes in meta-datasets with four previously defined statistical methods, COPA, the OS statistic, the t-test and ORT, using simulated data. We demonstrated that the GTI performed equally well to existing methods in a single study simulation. Next, we evaluated the performance of the GTI in the analysis of combined Affymetrix gene expression data from several published studies covering 392 normal samples of tissue from the central nervous system, 74 astrocytomas, and 353 glioblastomas. According to the results, the GTI was better able than most of the previous methods to identify known oncogenic outlier genes. In addition, the GTI identified 29 novel outlier genes in glioblastomas, including TYMS and CDKN2A. The over-expression of these genes was validated in vivo by immunohistochemical staining data from clinical glioblastoma samples. Immunohistochemical data were available for 65% (19 of 29 of these genes, and 17 of these 19 genes (90% showed a typical outlier staining pattern. Furthermore, raltitrexed, a specific inhibitor of TYMS used in the therapy of tumour types other than glioblastoma, also effectively blocked cell proliferation in glioblastoma cell lines, thus highlighting this outlier gene candidate as a potential therapeutic target. CONCLUSIONS/SIGNIFICANCE: Taken together, these results support the GTI as a novel approach to identify potential oncogene outliers and drug targets. The algorithm is

  12. Gene-based Association Approach Identify Genes Across Stress Traits in Fruit Flies

    DEFF Research Database (Denmark)

    Rohde, Palle Duun; Edwards, Stefan McKinnon; Sarup, Pernille Merete

    Identification of genes explaining variation in quantitative traits or genetic risk factors of human diseases requires both good phenotypic- and genotypic data, but also efficient statistical methods. Genome-wide association studies may reveal association between phenotypic variation and variation...... approach grouping variants accordingly to gene position, thus lowering the number of statistical tests performed and increasing the probability of identifying genes with small to moderate effects. Using this approach we identify numerous genes associated with different types of stresses in Drosophila...... melanogaster, but also identify common genes that affects the stress traits....

  13. A large-scale RNA interference screen identifies genes that regulate autophagy at different stages

    DEFF Research Database (Denmark)

    Guo, Sujuan; Pridham, Kevin J; Virbasius, Ching-Man

    2018-01-01

    Dysregulated autophagy is central to the pathogenesis and therapeutic development of cancer. However, how autophagy is regulated in cancer is not well understood and genes that modulate cancer autophagy are not fully defined. To gain more insights into autophagy regulation in cancer, we performed...... with fluorescence-activated cell sorting, we successfully isolated autophagic K562 cells where we identified 336 short hairpin RNAs. After candidate validation using Cyto-ID fluorescence spectrophotometry, LC3B immunoblotting, and quantitative RT-PCR, 82 genes were identified as autophagy-regulating genes. 20 genes...... have been reported previously and the remaining 62 candidates are novel autophagy mediators. Bioinformatic analyses revealed that most candidate genes were involved in molecular pathways regulating autophagy, rather than directly participating in the autophagy process. Further autophagy flux assays...

  14. Whole-Genome Sequencing of Sordaria macrospora Mutants Identifies Developmental Genes.

    Science.gov (United States)

    Nowrousian, Minou; Teichert, Ines; Masloff, Sandra; Kück, Ulrich

    2012-02-01

    The study of mutants to elucidate gene functions has a long and successful history; however, to discover causative mutations in mutants that were generated by random mutagenesis often takes years of laboratory work and requires previously generated genetic and/or physical markers, or resources like DNA libraries for complementation. Here, we present an alternative method to identify defective genes in developmental mutants of the filamentous fungus Sordaria macrospora through Illumina/Solexa whole-genome sequencing. We sequenced pooled DNA from progeny of crosses of three mutants and the wild type and were able to pinpoint the causative mutations in the mutant strains through bioinformatics analysis. One mutant is a spore color mutant, and the mutated gene encodes a melanin biosynthesis enzyme. The causative mutation is a G to A change in the first base of an intron, leading to a splice defect. The second mutant carries an allelic mutation in the pro41 gene encoding a protein essential for sexual development. In the mutant, we detected a complex pattern of deletion/rearrangements at the pro41 locus. In the third mutant, a point mutation in the stop codon of a transcription factor-encoding gene leads to the production of immature fruiting bodies. For all mutants, transformation with a wild type-copy of the affected gene restored the wild-type phenotype. Our data demonstrate that whole-genome sequencing of mutant strains is a rapid method to identify developmental genes in an organism that can be genetically crossed and where a reference genome sequence is available, even without prior mapping information.

  15. Evaluation of potential regulatory elements identified as DNase I hypersensitive sites in the CFTR gene

    DEFF Research Database (Denmark)

    Phylactides, M.; Rowntree, R.; Nuthall, H.

    2002-01-01

    hypersensitive sites (DHS) within the locus. We previously identified at least 12 clusters of DHS across the CFTR gene and here further evaluate DHS in introns 2,3,10,16,17a, 18, 20 and 21 to assess their functional importance in regulation of CFTR gene expression. Transient transfections of enhancer/reporter...

  16. Sleeping Beauty transposon mutagenesis identifies genes that cooperate with mutant Smad4 in gastric cancer development.

    Science.gov (United States)

    Takeda, Haruna; Rust, Alistair G; Ward, Jerrold M; Yew, Christopher Chin Kuan; Jenkins, Nancy A; Copeland, Neal G

    2016-04-05

    Mutations in SMAD4 predispose to the development of gastrointestinal cancer, which is the third leading cause of cancer-related deaths. To identify genes driving gastric cancer (GC) development, we performed a Sleeping Beauty (SB) transposon mutagenesis screen in the stomach of Smad4(+/-) mutant mice. This screen identified 59 candidate GC trunk drivers and a much larger number of candidate GC progression genes. Strikingly, 22 SB-identified trunk drivers are known or candidate cancer genes, whereas four SB-identified trunk drivers, including PTEN, SMAD4, RNF43, and NF1, are known human GC trunk drivers. Similar to human GC, pathway analyses identified WNT, TGF-β, and PI3K-PTEN signaling, ubiquitin-mediated proteolysis, adherens junctions, and RNA degradation in addition to genes involved in chromatin modification and organization as highly deregulated pathways in GC. Comparative oncogenomic filtering of the complete list of SB-identified genes showed that they are highly enriched for genes mutated in human GC and identified many candidate human GC genes. Finally, by comparing our complete list of SB-identified genes against the list of mutated genes identified in five large-scale human GC sequencing studies, we identified LDL receptor-related protein 1B (LRP1B) as a previously unidentified human candidate GC tumor suppressor gene. In LRP1B, 129 mutations were found in 462 human GC samples sequenced, and LRP1B is one of the top 10 most deleted genes identified in a panel of 3,312 human cancers. SB mutagenesis has, thus, helped to catalog the cooperative molecular mechanisms driving SMAD4-induced GC growth and discover genes with potential clinical importance in human GC.

  17. A gene-trap strategy identifies quiescence-induced genes in ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR G

    and Walsh 1996). The balance between proliferation and ... In three lines, insertion occurred in genes previously implicated in the control of quiescence, i.e. ...... arrest-specific traps fall into different functional classes, such as cytoskeletal ...

  18. Application of biclustering of gene expression data and gene set enrichment analysis methods to identify potentially disease causing nanomaterials

    Directory of Open Access Journals (Sweden)

    Andrew Williams

    2015-12-01

    previously defined, functionally relevant gene sets, the present study also identified two novel genes sets: a gene set associated with pulmonary fibrosis and a gene set associated with ROS, underlining the advantage of using a data-driven approach to identify novel, functionally related gene sets. The results can be used in future gene set enrichment analysis studies involving NMs or as features for clustering and classifying NMs of diverse properties.

  19. A large-scale RNA interference screen identifies genes that regulate autophagy at different stages.

    Science.gov (United States)

    Guo, Sujuan; Pridham, Kevin J; Virbasius, Ching-Man; He, Bin; Zhang, Liqing; Varmark, Hanne; Green, Michael R; Sheng, Zhi

    2018-02-12

    Dysregulated autophagy is central to the pathogenesis and therapeutic development of cancer. However, how autophagy is regulated in cancer is not well understood and genes that modulate cancer autophagy are not fully defined. To gain more insights into autophagy regulation in cancer, we performed a large-scale RNA interference screen in K562 human chronic myeloid leukemia cells using monodansylcadaverine staining, an autophagy-detecting approach equivalent to immunoblotting of the autophagy marker LC3B or fluorescence microscopy of GFP-LC3B. By coupling monodansylcadaverine staining with fluorescence-activated cell sorting, we successfully isolated autophagic K562 cells where we identified 336 short hairpin RNAs. After candidate validation using Cyto-ID fluorescence spectrophotometry, LC3B immunoblotting, and quantitative RT-PCR, 82 genes were identified as autophagy-regulating genes. 20 genes have been reported previously and the remaining 62 candidates are novel autophagy mediators. Bioinformatic analyses revealed that most candidate genes were involved in molecular pathways regulating autophagy, rather than directly participating in the autophagy process. Further autophagy flux assays revealed that 57 autophagy-regulating genes suppressed autophagy initiation, whereas 21 candidates promoted autophagy maturation. Our RNA interference screen identifies identified genes that regulate autophagy at different stages, which helps decode autophagy regulation in cancer and offers novel avenues to develop autophagy-related therapies for cancer.

  20. Identifying Cancer Driver Genes Using Replication-Incompetent Retroviral Vectors

    Directory of Open Access Journals (Sweden)

    Victor M. Bii

    2016-10-01

    Full Text Available Identifying novel genes that drive tumor metastasis and drug resistance has significant potential to improve patient outcomes. High-throughput sequencing approaches have identified cancer genes, but distinguishing driver genes from passengers remains challenging. Insertional mutagenesis screens using replication-incompetent retroviral vectors have emerged as a powerful tool to identify cancer genes. Unlike replicating retroviruses and transposons, replication-incompetent retroviral vectors lack additional mutagenesis events that can complicate the identification of driver mutations from passenger mutations. They can also be used for almost any human cancer due to the broad tropism of the vectors. Replication-incompetent retroviral vectors have the ability to dysregulate nearby cancer genes via several mechanisms including enhancer-mediated activation of gene promoters. The integrated provirus acts as a unique molecular tag for nearby candidate driver genes which can be rapidly identified using well established methods that utilize next generation sequencing and bioinformatics programs. Recently, retroviral vector screens have been used to efficiently identify candidate driver genes in prostate, breast, liver and pancreatic cancers. Validated driver genes can be potential therapeutic targets and biomarkers. In this review, we describe the emergence of retroviral insertional mutagenesis screens using replication-incompetent retroviral vectors as a novel tool to identify cancer driver genes in different cancer types.

  1. Using reporter gene assays to identify cis regulatory differences between humans and chimpanzees.

    Science.gov (United States)

    Chabot, Adrien; Shrit, Ralla A; Blekhman, Ran; Gilad, Yoav

    2007-08-01

    Most phenotypic differences between human and chimpanzee are likely to result from differences in gene regulation, rather than changes to protein-coding regions. To date, however, only a handful of human-chimpanzee nucleotide differences leading to changes in gene regulation have been identified. To hone in on differences in regulatory elements between human and chimpanzee, we focused on 10 genes that were previously found to be differentially expressed between the two species. We then designed reporter gene assays for the putative human and chimpanzee promoters of the 10 genes. Of seven promoters that we found to be active in human liver cell lines, human and chimpanzee promoters had significantly different activity in four cases, three of which recapitulated the gene expression difference seen in the microarray experiment. For these three genes, we were therefore able to demonstrate that a change in cis influences expression differences between humans and chimpanzees. Moreover, using site-directed mutagenesis on one construct, the promoter for the DDA3 gene, we were able to identify three nucleotides that together lead to a cis regulatory difference between the species. High-throughput application of this approach can provide a map of regulatory element differences between humans and our close evolutionary relatives.

  2. Identifying genes that mediate anthracyline toxicity in immune cells

    Directory of Open Access Journals (Sweden)

    Amber eFrick

    2015-04-01

    Full Text Available The role of the immune system in response to chemotherapeutic agents remains elusive. The interpatient variability observed in immune and chemotherapeutic cytotoxic responses is likely, at least in part, due to complex genetic differences. Through the use of a panel of genetically diverse mouse inbred strains, we developed a drug screening platform aimed at identifying genes underlying these chemotherapeutic cytotoxic effects on immune cells. Using genome-wide association studies (GWAS, we identified four genome-wide significant quantitative trait loci (QTL that contributed to the sensitivity of doxorubicin and idarubicin in immune cells. Of particular interest, a locus on chromosome 16 was significantly associated with cell viability following idarubicin administration (p = 5.01x10-8. Within this QTL lies App, which encodes amyloid beta precursor protein. Comparison of dose-response curves verified that T-cells in App knockout mice were more sensitive to idarubicin than those of C57BL/6J control mice (p < 0.05.In conclusion, the cellular screening approach coupled with GWAS led to the identification and subsequent validation of a gene involved in T-cell viability after idarubicin treatment. Previous studies have suggested a role for App in in vitro and in vivo cytotoxicity to anticancer agents; the overexpression of App enhances resistance, while the knockdown of this gene is deleterious to cell viability. Thus, further investigations should include performing mechanistic studies, validating additional genes from the GWAS, including Ppfia1 and Ppfibp1, and ultimately translating the findings to in vivo and human studies.

  3. Next-generation sequencing identifies transportin 3 as the causative gene for LGMD1F.

    Directory of Open Access Journals (Sweden)

    Annalaura Torella

    Full Text Available Limb-girdle muscular dystrophies (LGMD are genetically and clinically heterogeneous conditions. We investigated a large family with autosomal dominant transmission pattern, previously classified as LGMD1F and mapped to chromosome 7q32. Affected members are characterized by muscle weakness affecting earlier the pelvic girdle and the ileopsoas muscles. We sequenced the whole exome of four family members and identified a shared heterozygous frame-shift variant in the Transportin 3 (TNPO3 gene, encoding a member of the importin-β super-family. The TNPO3 gene is mapped within the LGMD1F critical interval and its 923-amino acid human gene product is also expressed in skeletal muscle. In addition, we identified an isolated case of LGMD with a new missense mutation in the same gene. We localized the mutant TNPO3 around the nucleus, but not inside. The involvement of gene related to the nuclear transport suggests a novel disease mechanism leading to muscular dystrophy.

  4. Genome-wide methylation analysis identifies genes silenced in non-seminoma cell lines.

    Science.gov (United States)

    Noor, Dzul Azri Mohamed; Jeyapalan, Jennie N; Alhazmi, Safiah; Carr, Matthew; Squibb, Benjamin; Wallace, Claire; Tan, Christopher; Cusack, Martin; Hughes, Jaime; Reader, Tom; Shipley, Janet; Sheer, Denise; Scotting, Paul J

    2016-01-01

    Silencing of genes by DNA methylation is a common phenomenon in many types of cancer. However, the genome-wide effect of DNA methylation on gene expression has been analysed in relatively few cancers. Germ cell tumours (GCTs) are a complex group of malignancies. They are unique in developing from a pluripotent progenitor cell. Previous analyses have suggested that non-seminomas exhibit much higher levels of DNA methylation than seminomas. The genomic targets that are methylated, the extent to which this results in gene silencing and the identity of the silenced genes most likely to play a role in the tumours' biology have not yet been established. In this study, genome-wide methylation and expression analysis of GCT cell lines was combined with gene expression data from primary tumours to address this question. Genome methylation was analysed using the Illumina infinium HumanMethylome450 bead chip system and gene expression was analysed using Affymetrix GeneChip Human Genome U133 Plus 2.0 arrays. Regulation by methylation was confirmed by demethylation using 5-aza-2-deoxycytidine and reverse transcription-quantitative PCR. Large differences in the level of methylation of the CpG islands of individual genes between tumour cell lines correlated well with differential gene expression. Treatment of non-seminoma cells with 5-aza-2-deoxycytidine verified that methylation of all genes tested played a role in their silencing in yolk sac tumour cells and many of these genes were also differentially expressed in primary tumours. Genes silenced by methylation in the various GCT cell lines were identified. Several pluripotency-associated genes were identified as a major functional group of silenced genes.

  5. Effectively identifying regulatory hotspots while capturing expression heterogeneity in gene expression studies

    Science.gov (United States)

    2014-01-01

    Expression quantitative trait loci (eQTL) mapping is a tool that can systematically identify genetic variation affecting gene expression. eQTL mapping studies have shown that certain genomic locations, referred to as regulatory hotspots, may affect the expression levels of many genes. Recently, studies have shown that various confounding factors may induce spurious regulatory hotspots. Here, we introduce a novel statistical method that effectively eliminates spurious hotspots while retaining genuine hotspots. Applied to simulated and real datasets, we validate that our method achieves greater sensitivity while retaining low false discovery rates compared to previous methods. PMID:24708878

  6. G-NEST: A gene neighborhood scoring tool to identify co-conserved, co-expressed genes

    Science.gov (United States)

    In previous studies, gene neighborhoods--spatial clusters of co-expressed genes in the genome--have been defined using arbitrary rules such as requiring adjacency, a minimum number of genes, a fixed window size, or a minimum expression level. In the current study, we developed a Gene Neighborhood Sc...

  7. Engineering and Functional Characterization of Fusion Genes Identifies Novel Oncogenic Drivers of Cancer. | Office of Cancer Genomics

    Science.gov (United States)

    Oncogenic gene fusions drive many human cancers, but tools to more quickly unravel their functional contributions are needed. Here we describe methodology permitting fusion gene construction for functional evaluation. Using this strategy, we engineered the known fusion oncogenes, BCR-ABL1, EML4-ALK, and ETV6-NTRK3, as well as 20 previously uncharacterized fusion genes identified in TCGA datasets.

  8. Two novel antimicrobial defensins from rice identified by gene coexpression network analyses.

    Science.gov (United States)

    Tantong, Supaluk; Pringsulaka, Onanong; Weerawanich, Kamonwan; Meeprasert, Arthitaya; Rungrotmongkol, Thanyada; Sarnthima, Rakrudee; Roytrakul, Sittiruk; Sirikantaramas, Supaart

    2016-10-01

    Defensins form an antimicrobial peptides (AMP) family, and have been widely studied in various plants because of their considerable inhibitory functions. However, their roles in rice (Oryza sativa L.) have not been characterized, even though rice is one of the most important staple crops that is susceptible to damaging infections. Additionally, a previous study identified 598 rice genes encoding cysteine-rich peptides, suggesting there are several uncharacterized AMPs in rice. We performed in silico gene expression and coexpression network analyses of all genes encoding defensin and defensin-like peptides, and determined that OsDEF7 and OsDEF8 are coexpressed with pathogen-responsive genes. Recombinant OsDEF7 and OsDEF8 could form homodimers. They inhibited the growth of the bacteria Xanthomonas oryzae pv. oryzae, X. oryzae pv. oryzicola, and Erwinia carotovora subsp. atroseptica with minimum inhibitory concentration (MIC) ranging from 0.6 to 63μg/mL. However, these OsDEFs are weakly active against the phytopathogenic fungi Helminthosporium oryzae and Fusarium oxysporum f.sp. cubense. This study describes a useful method for identifying potential plant AMPs with biological activities. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Systems approach identifies an organic nitrogen-responsive gene network that is regulated by the master clock control gene CCA1.

    Science.gov (United States)

    Gutiérrez, Rodrigo A; Stokes, Trevor L; Thum, Karen; Xu, Xiaodong; Obertello, Mariana; Katari, Manpreet S; Tanurdzic, Milos; Dean, Alexis; Nero, Damion C; McClung, C Robertson; Coruzzi, Gloria M

    2008-03-25

    Understanding how nutrients affect gene expression will help us to understand the mechanisms controlling plant growth and development as a function of nutrient availability. Nitrate has been shown to serve as a signal for the control of gene expression in Arabidopsis. There is also evidence, on a gene-by-gene basis, that downstream products of nitrogen (N) assimilation such as glutamate (Glu) or glutamine (Gln) might serve as signals of organic N status that in turn regulate gene expression. To identify genome-wide responses to such organic N signals, Arabidopsis seedlings were transiently treated with ammonium nitrate in the presence or absence of MSX, an inhibitor of glutamine synthetase, resulting in a block of Glu/Gln synthesis. Genes that responded to organic N were identified as those whose response to ammonium nitrate treatment was blocked in the presence of MSX. We showed that some genes previously identified to be regulated by nitrate are under the control of an organic N-metabolite. Using an integrated network model of molecular interactions, we uncovered a subnetwork regulated by organic N that included CCA1 and target genes involved in N-assimilation. We validated some of the predicted interactions and showed that regulation of the master clock control gene CCA1 by Glu or a Glu-derived metabolite in turn regulates the expression of key N-assimilatory genes. Phase response curve analysis shows that distinct N-metabolites can advance or delay the CCA1 phase. Regulation of CCA1 by organic N signals may represent a novel input mechanism for N-nutrients to affect plant circadian clock function.

  10. Gene expression meta-analysis identifies metastatic pathways and transcription factors in breast cancer

    International Nuclear Information System (INIS)

    Thomassen, Mads; Tan, Qihua; Kruse, Torben A

    2008-01-01

    Metastasis is believed to progress in several steps including different pathways but the determination and understanding of these mechanisms is still fragmentary. Microarray analysis of gene expression patterns in breast tumors has been used to predict outcome in recent studies. Besides classification of outcome, these global expression patterns may reflect biological mechanisms involved in metastasis of breast cancer. Our purpose has been to investigate pathways and transcription factors involved in metastasis by use of gene expression data sets. We have analyzed 8 publicly available gene expression data sets. A global approach, 'gene set enrichment analysis' as well as an approach focusing on a subset of significantly differently regulated genes, GenMAPP, has been applied to rank pathway gene sets according to differential regulation in metastasizing tumors compared to non-metastasizing tumors. Meta-analysis has been used to determine overrepresentation of pathways and transcription factors targets, concordant deregulated in metastasizing breast tumors, in several data sets. The major findings are up-regulation of cell cycle pathways and a metabolic shift towards glucose metabolism reflected in several pathways in metastasizing tumors. Growth factor pathways seem to play dual roles; EGF and PDGF pathways are decreased, while VEGF and sex-hormone pathways are increased in tumors that metastasize. Furthermore, migration, proteasome, immune system, angiogenesis, DNA repair and several signal transduction pathways are associated to metastasis. Finally several transcription factors e.g. E2F, NFY, and YY1 are identified as being involved in metastasis. By pathway meta-analysis many biological mechanisms beyond major characteristics such as proliferation are identified. Transcription factor analysis identifies a number of key factors that support central pathways. Several previously proposed treatment targets are identified and several new pathways that may

  11. Identifying potential maternal genes of Bombyx mori using digital gene expression profiling

    Science.gov (United States)

    Xu, Pingzhen

    2018-01-01

    Maternal genes present in mature oocytes play a crucial role in the early development of silkworm. Although maternal genes have been widely studied in many other species, there has been limited research in Bombyx mori. High-throughput next generation sequencing provides a practical method for gene discovery on a genome-wide level. Herein, a transcriptome study was used to identify maternal-related genes from silkworm eggs. Unfertilized eggs from five different stages of early development were used to detect the changing situation of gene expression. The expressed genes showed different patterns over time. Seventy-six maternal genes were annotated according to homology analysis with Drosophila melanogaster. More than half of the differentially expressed maternal genes fell into four expression patterns, while the expression patterns showed a downward trend over time. The functional annotation of these material genes was mainly related to transcription factor activity, growth factor activity, nucleic acid binding, RNA binding, ATP binding, and ion binding. Additionally, twenty-two gene clusters including maternal genes were identified from 18 scaffolds. Altogether, we plotted a profile for the maternal genes of Bombyx mori using a digital gene expression profiling method. This will provide the basis for maternal-specific signature research and improve the understanding of the early development of silkworm. PMID:29462160

  12. A cross-species genetic analysis identifies candidate genes for mouse anxiety and human bipolar disorder

    Directory of Open Access Journals (Sweden)

    David G Ashbrook

    2015-07-01

    Full Text Available Bipolar disorder (BD is a significant neuropsychiatric disorder with a lifetime prevalence of ~1%. To identify genetic variants underlying BD genome-wide association studies (GWAS have been carried out. While many variants of small effect associated with BD have been identified few have yet been confirmed, partly because of the low power of GWAS due to multiple comparisons being made. Complementary mapping studies using murine models have identified genetic variants for behavioral traits linked to BD, often with high power, but these identified regions often contain too many genes for clear identification of candidate genes. In the current study we have aligned human BD GWAS results and mouse linkage studies to help define and evaluate candidate genes linked to BD, seeking to use the power of the mouse mapping with the precision of GWAS. We use quantitative trait mapping for open field test and elevated zero maze data in the largest mammalian model system, the BXD recombinant inbred mouse population, to identify genomic regions associated with these BD-like phenotypes. We then investigate these regions in whole genome data from the Psychiatric Genomics Consortium’s bipolar disorder GWAS to identify candidate genes associated with BD. Finally we establish the biological relevance and pathways of these genes in a comprehensive systems genetics analysis.We identify four genes associated with both mouse anxiety and human BD. While TNR is a novel candidate for BD, we can confirm previously suggested associations with CMYA5, MCTP1 and RXRG. A cross-species, systems genetics analysis shows that MCTP1, RXRG and TNR coexpress with genes linked to psychiatric disorders and identify the striatum as a potential site of action. CMYA5, MCTP1, RXRG and TNR are associated with mouse anxiety and human BD. We hypothesize that MCTP1, RXRG and TNR influence intercellular signaling in the striatum.

  13. Coalitional game theory as a promising approach to identify candidate autism genes.

    Science.gov (United States)

    Gupta, Anika; Sun, Min Woo; Paskov, Kelley Marie; Stockham, Nate Tyler; Jung, Jae-Yoon; Wall, Dennis Paul

    2018-01-01

    Despite mounting evidence for the strong role of genetics in the phenotypic manifestation of Autism Spectrum Disorder (ASD), the specific genes responsible for the variable forms of ASD remain undefined. ASD may be best explained by a combinatorial genetic model with varying epistatic interactions across many small effect mutations. Coalitional or cooperative game theory is a technique that studies the combined effects of groups of players, known as coalitions, seeking to identify players who tend to improve the performance--the relationship to a specific disease phenotype--of any coalition they join. This method has been previously shown to boost biologically informative signal in gene expression data but to-date has not been applied to the search for cooperative mutations among putative ASD genes. We describe our approach to highlight genes relevant to ASD using coalitional game theory on alteration data of 1,965 fully sequenced genomes from 756 multiplex families. Alterations were encoded into binary matrices for ASD (case) and unaffected (control) samples, indicating likely gene-disrupting, inherited mutations in altered genes. To determine individual gene contributions given an ASD phenotype, a "player" metric, referred to as the Shapley value, was calculated for each gene in the case and control cohorts. Sixty seven genes were found to have significantly elevated player scores and likely represent significant contributors to the genetic coordination underlying ASD. Using network and cross-study analysis, we found that these genes are involved in biological pathways known to be affected in the autism cases and that a subset directly interact with several genes known to have strong associations to autism. These findings suggest that coalitional game theory can be applied to large-scale genomic data to identify hidden yet influential players in complex polygenic disorders such as autism.

  14. Case-control study for colorectal cancer genetic susceptibility in EPICOLON: previously identified variants and mucins

    Directory of Open Access Journals (Sweden)

    Moreno Victor

    2011-08-01

    Full Text Available Abstract Background Colorectal cancer (CRC is the second leading cause of cancer death in developed countries. Familial aggregation in CRC is also important outside syndromic forms and, in this case, a polygenic model with several common low-penetrance alleles contributing to CRC genetic predisposition could be hypothesized. Mucins and GALNTs (N-acetylgalactosaminyltransferase are interesting candidates for CRC genetic susceptibility and have not been previously evaluated. We present results for ten genetic variants linked to CRC risk in previous studies (previously identified category and 18 selected variants from the mucin gene family in a case-control association study from the Spanish EPICOLON consortium. Methods CRC cases and matched controls were from EPICOLON, a prospective, multicenter, nationwide Spanish initiative, comprised of two independent stages. Stage 1 corresponded to 515 CRC cases and 515 controls, whereas stage 2 consisted of 901 CRC cases and 909 controls. Also, an independent cohort of 549 CRC cases and 599 controls outside EPICOLON was available for additional replication. Genotyping was performed for ten previously identified SNPs in ADH1C, APC, CCDN1, IL6, IL8, IRS1, MTHFR, PPARG, VDR and ARL11, and 18 selected variants in the mucin gene family. Results None of the 28 SNPs analyzed in our study was found to be associated with CRC risk. Although four SNPs were significant with a P-value ADH1C (OR = 1.63, 95% CI = 1.06-2.50, P-value = 0.02, recessive, rs1800795 in IL6 (OR = 1.62, 95% CI = 1.10-2.37, P-value = 0.01, recessive, rs3803185 in ARL11 (OR = 1.58, 95% CI = 1.17-2.15, P-value = 0.007, codominant, and rs2102302 in GALNTL2 (OR = 1.20, 95% CI = 1.00-1.44, P-value = 0.04, log-additive 0, 1, 2 alleles], only rs3803185 achieved statistical significance in EPICOLON stage 2 (OR = 1.34, 95% CI = 1.06-1.69, P-value = 0.01, recessive. In the joint analysis for both stages, results were only significant for rs3803185 (OR = 1

  15. Case-control study for colorectal cancer genetic susceptibility in EPICOLON: previously identified variants and mucins

    International Nuclear Information System (INIS)

    Abulí, Anna; Morillas, Juan D; Rigau, Joaquim; Latorre, Mercedes; Fernández-Bañares, Fernando; Peña, Elena; Riestra, Sabino; Payá, Artemio; Jover, Rodrigo; Xicola, Rosa M; Llor, Xavier; Fernández-Rozadilla, Ceres; Carvajal-Carmona, Luis; Villanueva, Cristina M; Moreno, Victor; Piqué, Josep M; Carracedo, Angel; Castells, Antoni; Andreu, Montserrat; Ruiz-Ponte, Clara; Castellví-Bel, Sergi; Alonso-Espinaco, Virginia; Muñoz, Jenifer; Gonzalo, Victoria; Bessa, Xavier; González, Dolors; Clofent, Joan; Cubiella, Joaquin

    2011-01-01

    Colorectal cancer (CRC) is the second leading cause of cancer death in developed countries. Familial aggregation in CRC is also important outside syndromic forms and, in this case, a polygenic model with several common low-penetrance alleles contributing to CRC genetic predisposition could be hypothesized. Mucins and GALNTs (N-acetylgalactosaminyltransferase) are interesting candidates for CRC genetic susceptibility and have not been previously evaluated. We present results for ten genetic variants linked to CRC risk in previous studies (previously identified category) and 18 selected variants from the mucin gene family in a case-control association study from the Spanish EPICOLON consortium. CRC cases and matched controls were from EPICOLON, a prospective, multicenter, nationwide Spanish initiative, comprised of two independent stages. Stage 1 corresponded to 515 CRC cases and 515 controls, whereas stage 2 consisted of 901 CRC cases and 909 controls. Also, an independent cohort of 549 CRC cases and 599 controls outside EPICOLON was available for additional replication. Genotyping was performed for ten previously identified SNPs in ADH1C, APC, CCDN1, IL6, IL8, IRS1, MTHFR, PPARG, VDR and ARL11, and 18 selected variants in the mucin gene family. None of the 28 SNPs analyzed in our study was found to be associated with CRC risk. Although four SNPs were significant with a P-value < 0.05 in EPICOLON stage 1 [rs698 in ADH1C (OR = 1.63, 95% CI = 1.06-2.50, P-value = 0.02, recessive), rs1800795 in IL6 (OR = 1.62, 95% CI = 1.10-2.37, P-value = 0.01, recessive), rs3803185 in ARL11 (OR = 1.58, 95% CI = 1.17-2.15, P-value = 0.007, codominant), and rs2102302 in GALNTL2 (OR = 1.20, 95% CI = 1.00-1.44, P-value = 0.04, log-additive 0, 1, 2 alleles], only rs3803185 achieved statistical significance in EPICOLON stage 2 (OR = 1.34, 95% CI = 1.06-1.69, P-value = 0.01, recessive). In the joint analysis for both stages, results were only significant for rs3803185 (OR = 1.12, 95% CI = 1

  16. Identifying key genes in rheumatoid arthritis by weighted gene co-expression network analysis.

    Science.gov (United States)

    Ma, Chunhui; Lv, Qi; Teng, Songsong; Yu, Yinxian; Niu, Kerun; Yi, Chengqin

    2017-08-01

    This study aimed to identify rheumatoid arthritis (RA) related genes based on microarray data using the WGCNA (weighted gene co-expression network analysis) method. Two gene expression profile datasets GSE55235 (10 RA samples and 10 healthy controls) and GSE77298 (16 RA samples and seven healthy controls) were downloaded from Gene Expression Omnibus database. Characteristic genes were identified using metaDE package. WGCNA was used to find disease-related networks based on gene expression correlation coefficients, and module significance was defined as the average gene significance of all genes used to assess the correlation between the module and RA status. Genes in the disease-related gene co-expression network were subject to functional annotation and pathway enrichment analysis using Database for Annotation Visualization and Integrated Discovery. Characteristic genes were also mapped to the Connectivity Map to screen small molecules. A total of 599 characteristic genes were identified. For each dataset, characteristic genes in the green, red and turquoise modules were most closely associated with RA, with gene numbers of 54, 43 and 79, respectively. These genes were enriched in totally enriched in 17 Gene Ontology terms, mainly related to immune response (CD97, FYB, CXCL1, IKBKE, CCR1, etc.), inflammatory response (CD97, CXCL1, C3AR1, CCR1, LYZ, etc.) and homeostasis (C3AR1, CCR1, PLN, CCL19, PPT1, etc.). Two small-molecule drugs sanguinarine and papaverine were predicted to have a therapeutic effect against RA. Genes related to immune response, inflammatory response and homeostasis presumably have critical roles in RA pathogenesis. Sanguinarine and papaverine have a potential therapeutic effect against RA. © 2017 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.

  17. Integrating mean and variance heterogeneities to identify differentially expressed genes.

    Science.gov (United States)

    Ouyang, Weiwei; An, Qiang; Zhao, Jinying; Qin, Huaizhen

    2016-12-06

    In functional genomics studies, tests on mean heterogeneity have been widely employed to identify differentially expressed genes with distinct mean expression levels under different experimental conditions. Variance heterogeneity (aka, the difference between condition-specific variances) of gene expression levels is simply neglected or calibrated for as an impediment. The mean heterogeneity in the expression level of a gene reflects one aspect of its distribution alteration; and variance heterogeneity induced by condition change may reflect another aspect. Change in condition may alter both mean and some higher-order characteristics of the distributions of expression levels of susceptible genes. In this report, we put forth a conception of mean-variance differentially expressed (MVDE) genes, whose expression means and variances are sensitive to the change in experimental condition. We mathematically proved the null independence of existent mean heterogeneity tests and variance heterogeneity tests. Based on the independence, we proposed an integrative mean-variance test (IMVT) to combine gene-wise mean heterogeneity and variance heterogeneity induced by condition change. The IMVT outperformed its competitors under comprehensive simulations of normality and Laplace settings. For moderate samples, the IMVT well controlled type I error rates, and so did existent mean heterogeneity test (i.e., the Welch t test (WT), the moderated Welch t test (MWT)) and the procedure of separate tests on mean and variance heterogeneities (SMVT), but the likelihood ratio test (LRT) severely inflated type I error rates. In presence of variance heterogeneity, the IMVT appeared noticeably more powerful than all the valid mean heterogeneity tests. Application to the gene profiles of peripheral circulating B raised solid evidence of informative variance heterogeneity. After adjusting for background data structure, the IMVT replicated previous discoveries and identified novel experiment

  18. Integration of molecular biology tools for identifying promoters and genes abundantly expressed in flowers of Oncidium Gower Ramsey

    Directory of Open Access Journals (Sweden)

    Tung Shu-Yun

    2011-04-01

    Full Text Available Abstract Background Orchids comprise one of the largest families of flowering plants and generate commercially important flowers. However, model plants, such as Arabidopsis thaliana do not contain all plant genes, and agronomic and horticulturally important genera and species must be individually studied. Results Several molecular biology tools were used to isolate flower-specific gene promoters from Oncidium 'Gower Ramsey' (Onc. GR. A cDNA library of reproductive tissues was used to construct a microarray in order to compare gene expression in flowers and leaves. Five genes were highly expressed in flower tissues, and the subcellular locations of the corresponding proteins were identified using lip transient transformation with fluorescent protein-fusion constructs. BAC clones of the 5 genes, together with 7 previously published flower- and reproductive growth-specific genes in Onc. GR, were identified for cloning of their promoter regions. Interestingly, 3 of the 5 novel flower-abundant genes were putative trypsin inhibitor (TI genes (OnTI1, OnTI2 and OnTI3, which were tandemly duplicated in the same BAC clone. Their promoters were identified using transient GUS reporter gene transformation and stable A. thaliana transformation analyses. Conclusions By combining cDNA microarray, BAC library, and bombardment assay techniques, we successfully identified flower-directed orchid genes and promoters.

  19. Novel mutations in the homogentisate 1,2 dioxygenase gene identified in Jordanian patients with alkaptonuria.

    Science.gov (United States)

    Al-sbou, Mohammed

    2012-06-01

    This study was conducted to identify mutations in the homogentisate 1,2 dioxygenase gene (HGD) in alkaptonuria patients among Jordanian population. Blood samples were collected from four alkaptonuria patients, four carriers, and two healthy volunteers. DNA was isolated from peripheral blood. All 14 exons of the HGD gene were amplified using the polymerase chain reaction (PCR) technique. The PCR products were then purified and analyzed by sequencing. Five mutations were identified in our samples. Four of them were novel C1273A, T1046G, 551-552insG, T533G and had not been previously reported, and one mutation T847C has been described before. The types of mutations identified were two missense mutations, one splice site mutation, one frameshift mutation, and one polymorphism. We present the first molecular study of the HGD gene in Jordanian alkaptonuria patients. This study provides valuable information about the molecular basis of alkaptonuria in Jordanian population.

  20. X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes.

    Science.gov (United States)

    Hu, H; Haas, S A; Chelly, J; Van Esch, H; Raynaud, M; de Brouwer, A P M; Weinert, S; Froyen, G; Frints, S G M; Laumonnier, F; Zemojtel, T; Love, M I; Richard, H; Emde, A-K; Bienek, M; Jensen, C; Hambrock, M; Fischer, U; Langnick, C; Feldkamp, M; Wissink-Lindhout, W; Lebrun, N; Castelnau, L; Rucci, J; Montjean, R; Dorseuil, O; Billuart, P; Stuhlmann, T; Shaw, M; Corbett, M A; Gardner, A; Willis-Owen, S; Tan, C; Friend, K L; Belet, S; van Roozendaal, K E P; Jimenez-Pocquet, M; Moizard, M-P; Ronce, N; Sun, R; O'Keeffe, S; Chenna, R; van Bömmel, A; Göke, J; Hackett, A; Field, M; Christie, L; Boyle, J; Haan, E; Nelson, J; Turner, G; Baynam, G; Gillessen-Kaesbach, G; Müller, U; Steinberger, D; Budny, B; Badura-Stronka, M; Latos-Bieleńska, A; Ousager, L B; Wieacker, P; Rodríguez Criado, G; Bondeson, M-L; Annerén, G; Dufke, A; Cohen, M; Van Maldergem, L; Vincent-Delorme, C; Echenne, B; Simon-Bouy, B; Kleefstra, T; Willemsen, M; Fryns, J-P; Devriendt, K; Ullmann, R; Vingron, M; Wrogemann, K; Wienker, T F; Tzschach, A; van Bokhoven, H; Gecz, J; Jentsch, T J; Chen, W; Ropers, H-H; Kalscheuer, V M

    2016-01-01

    X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of these males were previously tested negative for copy number variations and for mutations in a subset of known XLID genes by Sanger sequencing. In total, 745 X-chromosomal genes were screened. After stringent filtering, a total of 1297 non-recurrent exonic variants remained for prioritization. Co-segregation analysis of potential clinically relevant changes revealed that 80 families (20%) carried pathogenic variants in established XLID genes. In 19 families, we detected likely causative protein truncating and missense variants in 7 novel and validated XLID genes (CLCN4, CNKSR2, FRMPD4, KLHL15, LAS1L, RLIM and USP27X) and potentially deleterious variants in 2 novel candidate XLID genes (CDK16 and TAF1). We show that the CLCN4 and CNKSR2 variants impair protein functions as indicated by electrophysiological studies and altered differentiation of cultured primary neurons from Clcn4(-/-) mice or after mRNA knock-down. The newly identified and candidate XLID proteins belong to pathways and networks with established roles in cognitive function and intellectual disability in particular. We suggest that systematic sequencing of all X-chromosomal genes in a cohort of patients with genetic evidence for X-chromosome locus involvement may resolve up to 58% of Fragile X-negative cases.

  1. Regulatory elements of the floral homeotic gene AGAMOUS identified by phylogenetic footprinting and shadowing.

    Energy Technology Data Exchange (ETDEWEB)

    Hong, R. L., Hamaguchi, L., Busch, M. A., and Weigel, D.

    2003-06-01

    OAK-B135 In Arabidopsis thaliana, cis-regulatory sequences of the floral homeotic gene AGAMOUS (AG) are located in the second intron. This 3 kb intron contains binding sites for two direct activators of AG, LEAFY (LFY) and WUSCHEL (WUS), along with other putative regulatory elements. We have used phylogenetic footprinting and the related technique of phylogenetic shadowing to identify putative cis-regulatory elements in this intron. Among 29 Brassicaceae, several other motifs, but not the LFY and WUS binding sites previously identified, are largely invariant. Using reporter gene analyses, we tested six of these motifs and found that they are all functionally important for activity of AG regulatory sequences in A. thaliana. Although there is little obvious sequence similarity outside the Brassicaceae, the intron from cucumber AG has at least partial activity in A. thaliana. Our studies underscore the value of the comparative approach as a tool that complements gene-by-gene promoter dissection, but also highlight that sequence-based studies alone are insufficient for a complete identification of cis-regulatory sites.

  2. Transcriptomic Analysis Using Olive Varieties and Breeding Progenies Identifies Candidate Genes Involved in Plant Architecture.

    Science.gov (United States)

    González-Plaza, Juan J; Ortiz-Martín, Inmaculada; Muñoz-Mérida, Antonio; García-López, Carmen; Sánchez-Sevilla, José F; Luque, Francisco; Trelles, Oswaldo; Bejarano, Eduardo R; De La Rosa, Raúl; Valpuesta, Victoriano; Beuzón, Carmen R

    2016-01-01

    Plant architecture is a critical trait in fruit crops that can significantly influence yield, pruning, planting density and harvesting. Little is known about how plant architecture is genetically determined in olive, were most of the existing varieties are traditional with an architecture poorly suited for modern growing and harvesting systems. In the present study, we have carried out microarray analysis of meristematic tissue to compare expression profiles of olive varieties displaying differences in architecture, as well as seedlings from their cross pooled on the basis of their sharing architecture-related phenotypes. The microarray used, previously developed by our group has already been applied to identify candidates genes involved in regulating juvenile to adult transition in the shoot apex of seedlings. Varieties with distinct architecture phenotypes and individuals from segregating progenies displaying opposite architecture features were used to link phenotype to expression. Here, we identify 2252 differentially expressed genes (DEGs) associated to differences in plant architecture. Microarray results were validated by quantitative RT-PCR carried out on genes with functional annotation likely related to plant architecture. Twelve of these genes were further analyzed in individual seedlings of the corresponding pool. We also examined Arabidopsis mutants in putative orthologs of these targeted candidate genes, finding altered architecture for most of them. This supports a functional conservation between species and potential biological relevance of the candidate genes identified. This study is the first to identify genes associated to plant architecture in olive, and the results obtained could be of great help in future programs aimed at selecting phenotypes adapted to modern cultivation practices in this species.

  3. Diametrical clustering for identifying anti-correlated gene clusters.

    Science.gov (United States)

    Dhillon, Inderjit S; Marcotte, Edward M; Roshan, Usman

    2003-09-01

    Clustering genes based upon their expression patterns allows us to predict gene function. Most existing clustering algorithms cluster genes together when their expression patterns show high positive correlation. However, it has been observed that genes whose expression patterns are strongly anti-correlated can also be functionally similar. Biologically, this is not unintuitive-genes responding to the same stimuli, regardless of the nature of the response, are more likely to operate in the same pathways. We present a new diametrical clustering algorithm that explicitly identifies anti-correlated clusters of genes. Our algorithm proceeds by iteratively (i). re-partitioning the genes and (ii). computing the dominant singular vector of each gene cluster; each singular vector serving as the prototype of a 'diametric' cluster. We empirically show the effectiveness of the algorithm in identifying diametrical or anti-correlated clusters. Testing the algorithm on yeast cell cycle data, fibroblast gene expression data, and DNA microarray data from yeast mutants reveals that opposed cellular pathways can be discovered with this method. We present systems whose mRNA expression patterns, and likely their functions, oppose the yeast ribosome and proteosome, along with evidence for the inverse transcriptional regulation of a number of cellular systems.

  4. Transcriptome sequencing in pediatric acute lymphoblastic leukemia identifies fusion genes associated with distinct DNA methylation profiles

    Directory of Open Access Journals (Sweden)

    Yanara Marincevic-Zuniga

    2017-08-01

    Full Text Available Abstract Background Structural chromosomal rearrangements that lead to expressed fusion genes are a hallmark of acute lymphoblastic leukemia (ALL. In this study, we performed transcriptome sequencing of 134 primary ALL patient samples to comprehensively detect fusion transcripts. Methods We combined fusion gene detection with genome-wide DNA methylation analysis, gene expression profiling, and targeted sequencing to determine molecular signatures of emerging ALL subtypes. Results We identified 64 unique fusion events distributed among 80 individual patients, of which over 50% have not previously been reported in ALL. Although the majority of the fusion genes were found only in a single patient, we identified several recurrent fusion gene families defined by promiscuous fusion gene partners, such as ETV6, RUNX1, PAX5, and ZNF384, or recurrent fusion genes, such as DUX4-IGH. Our data show that patients harboring these fusion genes displayed characteristic genome-wide DNA methylation and gene expression signatures in addition to distinct patterns in single nucleotide variants and recurrent copy number alterations. Conclusion Our study delineates the fusion gene landscape in pediatric ALL, including both known and novel fusion genes, and highlights fusion gene families with shared molecular etiologies, which may provide additional information for prognosis and therapeutic options in the future.

  5. Gene Network for Identifying the Entropy Changes of Different Modules in Pediatric Sepsis

    Directory of Open Access Journals (Sweden)

    Jing Yang

    2016-12-01

    Full Text Available Background/Aims: Pediatric sepsis is a disease that threatens life of children. The incidence of pediatric sepsis is higher in developing countries due to various reasons, such as insufficient immunization and nutrition, water and air pollution, etc. Exploring the potential genes via different methods is of significance for the prevention and treatment of pediatric sepsis. This study aimed to identify potential genes associated with pediatric sepsis utilizing analysis of gene network and entropy. Methods: The mRNA expression in the blood samples collected from 20 septic children and 30 healthy controls was quantified by using Affymetrix HG-U133A microarray. Two condition-specific protein-protein interaction networks (PINs, one for the healthy control and the other one for the children with sepsis, were deduced by combining the fundamental human PINs with gene expression profiles in the two phenotypes. Subsequently, distinct modules from the two conditional networks were extracted by adopting a maximal clique-merging approach. Delta entropy (ΔS was calculated between sepsis and control modules. Results: Then, key genes displaying changes in gene composition were identified by matching the control and sepsis modules. Two objective modules were obtained, in which ribosomal protein RPL4 and RPL9 as well as TOP2A were probably considered as the key genes differentiating sepsis from healthy controls. Conclusion: According to previous reports and this work, TOP2A is the potential gene therapy target for pediatric sepsis. The relationship between pediatric sepsis and RPL4 and RPL9 needs further investigation.

  6. Loci influencing blood pressure identified using a cardiovascular gene-centric array.

    Science.gov (United States)

    Ganesh, Santhi K; Tragante, Vinicius; Guo, Wei; Guo, Yiran; Lanktree, Matthew B; Smith, Erin N; Johnson, Toby; Castillo, Berta Almoguera; Barnard, John; Baumert, Jens; Chang, Yen-Pei Christy; Elbers, Clara C; Farrall, Martin; Fischer, Mary E; Franceschini, Nora; Gaunt, Tom R; Gho, Johannes M I H; Gieger, Christian; Gong, Yan; Isaacs, Aaron; Kleber, Marcus E; Mateo Leach, Irene; McDonough, Caitrin W; Meijs, Matthijs F L; Mellander, Olle; Molony, Cliona M; Nolte, Ilja M; Padmanabhan, Sandosh; Price, Tom S; Rajagopalan, Ramakrishnan; Shaffer, Jonathan; Shah, Sonia; Shen, Haiqing; Soranzo, Nicole; van der Most, Peter J; Van Iperen, Erik P A; Van Setten, Jessica; Van Setten, Jessic A; Vonk, Judith M; Zhang, Li; Beitelshees, Amber L; Berenson, Gerald S; Bhatt, Deepak L; Boer, Jolanda M A; Boerwinkle, Eric; Burkley, Ben; Burt, Amber; Chakravarti, Aravinda; Chen, Wei; Cooper-Dehoff, Rhonda M; Curtis, Sean P; Dreisbach, Albert; Duggan, David; Ehret, Georg B; Fabsitz, Richard R; Fornage, Myriam; Fox, Ervin; Furlong, Clement E; Gansevoort, Ron T; Hofker, Marten H; Hovingh, G Kees; Kirkland, Susan A; Kottke-Marchant, Kandice; Kutlar, Abdullah; Lacroix, Andrea Z; Langaee, Taimour Y; Li, Yun R; Lin, Honghuang; Liu, Kiang; Maiwald, Steffi; Malik, Rainer; Murugesan, Gurunathan; Newton-Cheh, Christopher; O'Connell, Jeffery R; Onland-Moret, N Charlotte; Ouwehand, Willem H; Palmas, Walter; Penninx, Brenda W; Pepine, Carl J; Pettinger, Mary; Polak, Joseph F; Ramachandran, Vasan S; Ranchalis, Jane; Redline, Susan; Ridker, Paul M; Rose, Lynda M; Scharnag, Hubert; Schork, Nicholas J; Shimbo, Daichi; Shuldiner, Alan R; Srinivasan, Sathanur R; Stolk, Ronald P; Taylor, Herman A; Thorand, Barbara; Trip, Mieke D; van Duijn, Cornelia M; Verschuren, W Monique; Wijmenga, Cisca; Winkelmann, Bernhard R; Wyatt, Sharon; Young, J Hunter; Boehm, Bernhard O; Caulfield, Mark J; Chasman, Daniel I; Davidson, Karina W; Doevendans, Pieter A; Fitzgerald, Garret A; Gums, John G; Hakonarson, Hakon; Hillege, Hans L; Illig, Thomas; Jarvik, Gail P; Johnson, Julie A; Kastelein, John J P; Koenig, Wolfgang; März, Winfried; Mitchell, Braxton D; Murray, Sarah S; Oldehinkel, Albertine J; Rader, Daniel J; Reilly, Muredach P; Reiner, Alex P; Schadt, Eric E; Silverstein, Roy L; Snieder, Harold; Stanton, Alice V; Uitterlinden, André G; van der Harst, Pim; van der Schouw, Yvonne T; Samani, Nilesh J; Johnson, Andrew D; Munroe, Patricia B; de Bakker, Paul I W; Zhu, Xiaofeng; Levy, Daniel; Keating, Brendan J; Asselbergs, Folkert W

    2013-04-15

    Blood pressure (BP) is a heritable determinant of risk for cardiovascular disease (CVD). To investigate genetic associations with systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP) and pulse pressure (PP), we genotyped ∼50 000 single-nucleotide polymorphisms (SNPs) that capture variation in ∼2100 candidate genes for cardiovascular phenotypes in 61 619 individuals of European ancestry from cohort studies in the USA and Europe. We identified novel associations between rs347591 and SBP (chromosome 3p25.3, in an intron of HRH1) and between rs2169137 and DBP (chromosome1q32.1 in an intron of MDM4) and between rs2014408 and SBP (chromosome 11p15 in an intron of SOX6), previously reported to be associated with MAP. We also confirmed 10 previously known loci associated with SBP, DBP, MAP or PP (ADRB1, ATP2B1, SH2B3/ATXN2, CSK, CYP17A1, FURIN, HFE, LSP1, MTHFR, SOX6) at array-wide significance (P < 2.4 × 10(-6)). We then replicated these associations in an independent set of 65 886 individuals of European ancestry. The findings from expression QTL (eQTL) analysis showed associations of SNPs in the MDM4 region with MDM4 expression. We did not find any evidence of association of the two novel SNPs in MDM4 and HRH1 with sequelae of high BP including coronary artery disease (CAD), left ventricular hypertrophy (LVH) or stroke. In summary, we identified two novel loci associated with BP and confirmed multiple previously reported associations. Our findings extend our understanding of genes involved in BP regulation, some of which may eventually provide new targets for therapeutic intervention.

  7. Cross-species global and subset gene expression profiling identifies genes involved in prostate cancer response to selenium

    Directory of Open Access Journals (Sweden)

    Dhir Rajiv

    2004-08-01

    Full Text Available Abstract Background Gene expression technologies have the ability to generate vast amounts of data, yet there often resides only limited resources for subsequent validation studies. This necessitates the ability to perform sorting and prioritization of the output data. Previously described methodologies have used functional pathways or transcriptional regulatory grouping to sort genes for further study. In this paper we demonstrate a comparative genomics based method to leverage data from animal models to prioritize genes for validation. This approach allows one to develop a disease-based focus for the prioritization of gene data, a process that is essential for systems that lack significant functional pathway data yet have defined animal models. This method is made possible through the use of highly controlled spotted cDNA slide production and the use of comparative bioinformatics databases without the use of cross-species slide hybridizations. Results Using gene expression profiling we have demonstrated a similar whole transcriptome gene expression patterns in prostate cancer cells from human and rat prostate cancer cell lines both at baseline expression levels and after treatment with physiologic concentrations of the proposed chemopreventive agent Selenium. Using both the human PC3 and rat PAII prostate cancer cell lines have gone on to identify a subset of one hundred and fifty-four genes that demonstrate a similar level of differential expression to Selenium treatment in both species. Further analysis and data mining for two genes, the Insulin like Growth Factor Binding protein 3, and Retinoic X Receptor alpha, demonstrates an association with prostate cancer, functional pathway links, and protein-protein interactions that make these genes prime candidates for explaining the mechanism of Selenium's chemopreventive effect in prostate cancer. These genes are subsequently validated by western blots showing Selenium based induction and using

  8. Genetic Susceptibility to Vitiligo: GWAS Approaches for Identifying Vitiligo Susceptibility Genes and Loci

    Science.gov (United States)

    Shen, Changbing; Gao, Jing; Sheng, Yujun; Dou, Jinfa; Zhou, Fusheng; Zheng, Xiaodong; Ko, Randy; Tang, Xianfa; Zhu, Caihong; Yin, Xianyong; Sun, Liangdan; Cui, Yong; Zhang, Xuejun

    2016-01-01

    Vitiligo is an autoimmune disease with a strong genetic component, characterized by areas of depigmented skin resulting from loss of epidermal melanocytes. Genetic factors are known to play key roles in vitiligo through discoveries in association studies and family studies. Previously, vitiligo susceptibility genes were mainly revealed through linkage analysis and candidate gene studies. Recently, our understanding of the genetic basis of vitiligo has been rapidly advancing through genome-wide association study (GWAS). More than 40 robust susceptible loci have been identified and confirmed to be associated with vitiligo by using GWAS. Most of these associated genes participate in important pathways involved in the pathogenesis of vitiligo. Many susceptible loci with unknown functions in the pathogenesis of vitiligo have also been identified, indicating that additional molecular mechanisms may contribute to the risk of developing vitiligo. In this review, we summarize the key loci that are of genome-wide significance, which have been shown to influence vitiligo risk. These genetic loci may help build the foundation for genetic diagnosis and personalize treatment for patients with vitiligo in the future. However, substantial additional studies, including gene-targeted and functional studies, are required to confirm the causality of the genetic variants and their biological relevance in the development of vitiligo. PMID:26870082

  9. Genome-wide RNAi screening identifies genes inhibiting the migration of glioblastoma cells.

    Directory of Open Access Journals (Sweden)

    Jian Yang

    Full Text Available Glioblastoma Multiforme (GBM cells are highly invasive, infiltrating into the surrounding normal brain tissue, making it impossible to completely eradicate GBM tumors by surgery or radiation. Increasing evidence also shows that these migratory cells are highly resistant to cytotoxic reagents, but decreasing their migratory capability can re-sensitize them to chemotherapy. These evidences suggest that the migratory cell population may serve as a better therapeutic target for more effective treatment of GBM. In order to understand the regulatory mechanism underlying the motile phenotype, we carried out a genome-wide RNAi screen for genes inhibiting the migration of GBM cells. The screening identified a total of twenty-five primary hits; seven of them were confirmed by secondary screening. Further study showed that three of the genes, FLNA, KHSRP and HCFC1, also functioned in vivo, and knocking them down caused multifocal tumor in a mouse model. Interestingly, two genes, KHSRP and HCFC1, were also found to be correlated with the clinical outcome of GBM patients. These two genes have not been previously associated with cell migration.

  10. Gastric Cancer Associated Genes Identified by an Integrative Analysis of Gene Expression Data

    Directory of Open Access Journals (Sweden)

    Bing Jiang

    2017-01-01

    Full Text Available Gastric cancer is one of the most severe complex diseases with high morbidity and mortality in the world. The molecular mechanisms and risk factors for this disease are still not clear since the cancer heterogeneity caused by different genetic and environmental factors. With more and more expression data accumulated nowadays, we can perform integrative analysis for these data to understand the complexity of gastric cancer and to identify consensus players for the heterogeneous cancer. In the present work, we screened the published gene expression data and analyzed them with integrative tool, combined with pathway and gene ontology enrichment investigation. We identified several consensus differentially expressed genes and these genes were further confirmed with literature mining; at last, two genes, that is, immunoglobulin J chain and C-X-C motif chemokine ligand 17, were screened as novel gastric cancer associated genes. Experimental validation is proposed to further confirm this finding.

  11. Computational modeling identifies key gene regulatory interactions underlying phenobarbital-mediated tumor promotion

    Science.gov (United States)

    Luisier, Raphaëlle; Unterberger, Elif B.; Goodman, Jay I.; Schwarz, Michael; Moggs, Jonathan; Terranova, Rémi; van Nimwegen, Erik

    2014-01-01

    Gene regulatory interactions underlying the early stages of non-genotoxic carcinogenesis are poorly understood. Here, we have identified key candidate regulators of phenobarbital (PB)-mediated mouse liver tumorigenesis, a well-characterized model of non-genotoxic carcinogenesis, by applying a new computational modeling approach to a comprehensive collection of in vivo gene expression studies. We have combined our previously developed motif activity response analysis (MARA), which models gene expression patterns in terms of computationally predicted transcription factor binding sites with singular value decomposition (SVD) of the inferred motif activities, to disentangle the roles that different transcriptional regulators play in specific biological pathways of tumor promotion. Furthermore, transgenic mouse models enabled us to identify which of these regulatory activities was downstream of constitutive androstane receptor and β-catenin signaling, both crucial components of PB-mediated liver tumorigenesis. We propose novel roles for E2F and ZFP161 in PB-mediated hepatocyte proliferation and suggest that PB-mediated suppression of ESR1 activity contributes to the development of a tumor-prone environment. Our study shows that combining MARA with SVD allows for automated identification of independent transcription regulatory programs within a complex in vivo tissue environment and provides novel mechanistic insights into PB-mediated hepatocarcinogenesis. PMID:24464994

  12. A Morpholino-based screen to identify novel genes involved in craniofacial morphogenesis

    Science.gov (United States)

    Melvin, Vida Senkus; Feng, Weiguo; Hernandez-Lagunas, Laura; Artinger, Kristin Bruk; Williams, Trevor

    2014-01-01

    BACKGROUND The regulatory mechanisms underpinning facial development are conserved between diverse species. Therefore, results from model systems provide insight into the genetic causes of human craniofacial defects. Previously, we generated a comprehensive dataset examining gene expression during development and fusion of the mouse facial prominences. Here, we used this resource to identify genes that have dynamic expression patterns in the facial prominences, but for which only limited information exists concerning developmental function. RESULTS This set of ~80 genes was used for a high throughput functional analysis in the zebrafish system using Morpholino gene knockdown technology. This screen revealed three classes of cranial cartilage phenotypes depending upon whether knockdown of the gene affected the neurocranium, viscerocranium, or both. The targeted genes that produced consistent phenotypes encoded proteins linked to transcription (meis1, meis2a, tshz2, vgll4l), signaling (pkdcc, vlk, macc1, wu:fb16h09), and extracellular matrix function (smoc2). The majority of these phenotypes were not altered by reduction of p53 levels, demonstrating that both p53 dependent and independent mechanisms were involved in the craniofacial abnormalities. CONCLUSIONS This Morpholino-based screen highlights new genes involved in development of the zebrafish craniofacial skeleton with wider relevance to formation of the face in other species, particularly mouse and human. PMID:23559552

  13. Identifying Stable Reference Genes for qRT-PCR Normalisation in Gene Expression Studies of Narrow-Leafed Lupin (Lupinus angustifolius L..

    Directory of Open Access Journals (Sweden)

    Candy M Taylor

    Full Text Available Quantitative Reverse Transcription PCR (qRT-PCR is currently one of the most popular, high-throughput and sensitive technologies available for quantifying gene expression. Its accurate application depends heavily upon normalisation of gene-of-interest data with reference genes that are uniformly expressed under experimental conditions. The aim of this study was to provide the first validation of reference genes for Lupinus angustifolius (narrow-leafed lupin, a significant grain legume crop using a selection of seven genes previously trialed as reference genes for the model legume, Medicago truncatula. In a preliminary evaluation, the seven candidate reference genes were assessed on the basis of primer specificity for their respective targeted region, PCR amplification efficiency, and ability to discriminate between cDNA and gDNA. Following this assessment, expression of the three most promising candidates [Ubiquitin C (UBC, Helicase (HEL, and Polypyrimidine tract-binding protein (PTB] was evaluated using the NormFinder and RefFinder statistical algorithms in two narrow-leafed lupin lines, both with and without vernalisation treatment, and across seven organ types (cotyledons, stem, leaves, shoot apical meristem, flowers, pods and roots encompassing three developmental stages. UBC was consistently identified as the most stable candidate and has sufficiently uniform expression that it may be used as a sole reference gene under the experimental conditions tested here. However, as organ type and developmental stage were associated with greater variability in relative expression, it is recommended using UBC and HEL as a pair to achieve optimal normalisation. These results highlight the importance of rigorously assessing candidate reference genes for each species across a diverse range of organs and developmental stages. With emerging technologies, such as RNAseq, and the completion of valuable transcriptome data sets, it is possible that other

  14. High-Throughput Genetic Screens Identify a Large and Diverse Collection of New Sporulation Genes in Bacillus subtilis.

    Science.gov (United States)

    Meeske, Alexander J; Rodrigues, Christopher D A; Brady, Jacqueline; Lim, Hoong Chuin; Bernhardt, Thomas G; Rudner, David Z

    2016-01-01

    The differentiation of the bacterium Bacillus subtilis into a dormant spore is among the most well-characterized developmental pathways in biology. Classical genetic screens performed over the past half century identified scores of factors involved in every step of this morphological process. More recently, transcriptional profiling uncovered additional sporulation-induced genes required for successful spore development. Here, we used transposon-sequencing (Tn-seq) to assess whether there were any sporulation genes left to be discovered. Our screen identified 133 out of the 148 genes with known sporulation defects. Surprisingly, we discovered 24 additional genes that had not been previously implicated in spore formation. To investigate their functions, we used fluorescence microscopy to survey early, middle, and late stages of differentiation of null mutants from the B. subtilis ordered knockout collection. This analysis identified mutants that are delayed in the initiation of sporulation, defective in membrane remodeling, and impaired in spore maturation. Several mutants had novel sporulation phenotypes. We performed in-depth characterization of two new factors that participate in cell-cell signaling pathways during sporulation. One (SpoIIT) functions in the activation of σE in the mother cell; the other (SpoIIIL) is required for σG activity in the forespore. Our analysis also revealed that as many as 36 sporulation-induced genes with no previously reported mutant phenotypes are required for timely spore maturation. Finally, we discovered a large set of transposon insertions that trigger premature initiation of sporulation. Our results highlight the power of Tn-seq for the discovery of new genes and novel pathways in sporulation and, combined with the recently completed null mutant collection, open the door for similar screens in other, less well-characterized processes.

  15. High-Throughput Genetic Screens Identify a Large and Diverse Collection of New Sporulation Genes in Bacillus subtilis

    Science.gov (United States)

    Brady, Jacqueline; Lim, Hoong Chuin; Bernhardt, Thomas G.; Rudner, David Z.

    2016-01-01

    The differentiation of the bacterium Bacillus subtilis into a dormant spore is among the most well-characterized developmental pathways in biology. Classical genetic screens performed over the past half century identified scores of factors involved in every step of this morphological process. More recently, transcriptional profiling uncovered additional sporulation-induced genes required for successful spore development. Here, we used transposon-sequencing (Tn-seq) to assess whether there were any sporulation genes left to be discovered. Our screen identified 133 out of the 148 genes with known sporulation defects. Surprisingly, we discovered 24 additional genes that had not been previously implicated in spore formation. To investigate their functions, we used fluorescence microscopy to survey early, middle, and late stages of differentiation of null mutants from the B. subtilis ordered knockout collection. This analysis identified mutants that are delayed in the initiation of sporulation, defective in membrane remodeling, and impaired in spore maturation. Several mutants had novel sporulation phenotypes. We performed in-depth characterization of two new factors that participate in cell–cell signaling pathways during sporulation. One (SpoIIT) functions in the activation of σE in the mother cell; the other (SpoIIIL) is required for σG activity in the forespore. Our analysis also revealed that as many as 36 sporulation-induced genes with no previously reported mutant phenotypes are required for timely spore maturation. Finally, we discovered a large set of transposon insertions that trigger premature initiation of sporulation. Our results highlight the power of Tn-seq for the discovery of new genes and novel pathways in sporulation and, combined with the recently completed null mutant collection, open the door for similar screens in other, less well-characterized processes. PMID:26735940

  16. Automatically identifying gene/protein terms in MEDLINE abstracts.

    Science.gov (United States)

    Yu, Hong; Hatzivassiloglou, Vasileios; Rzhetsky, Andrey; Wilbur, W John

    2002-01-01

    Natural language processing (NLP) techniques are used to extract information automatically from computer-readable literature. In biology, the identification of terms corresponding to biological substances (e.g., genes and proteins) is a necessary step that precedes the application of other NLP systems that extract biological information (e.g., protein-protein interactions, gene regulation events, and biochemical pathways). We have developed GPmarkup (for "gene/protein-full name mark up"), a software system that automatically identifies gene/protein terms (i.e., symbols or full names) in MEDLINE abstracts. As a part of marking up process, we also generated automatically a knowledge source of paired gene/protein symbols and full names (e.g., LARD for lymphocyte associated receptor of death) from MEDLINE. We found that many of the pairs in our knowledge source do not appear in the current GenBank database. Therefore our methods may also be used for automatic lexicon generation. GPmarkup has 73% recall and 93% precision in identifying and marking up gene/protein terms in MEDLINE abstracts. A random sample of gene/protein symbols and full names and a sample set of marked up abstracts can be viewed at http://www.cpmc.columbia.edu/homepages/yuh9001/GPmarkup/. Contact. hy52@columbia.edu. Voice: 212-939-7028; fax: 212-666-0140.

  17. Identifying key genes associated with acute myocardial infarction.

    Science.gov (United States)

    Cheng, Ming; An, Shoukuan; Li, Junquan

    2017-10-01

    This study aimed to identify key genes associated with acute myocardial infarction (AMI) by reanalyzing microarray data. Three gene expression profile datasets GSE66360, GSE34198, and GSE48060 were downloaded from GEO database. After data preprocessing, genes without heterogeneity across different platforms were subjected to differential expression analysis between the AMI group and the control group using metaDE package. P FI) network. Then, DEGs in each module were subjected to pathway enrichment analysis using DAVID. MiRNAs and transcription factors predicted to regulate target DEGs were identified. Quantitative real-time polymerase chain reaction (RT-PCR) was applied to verify the expression of genes. A total of 913 upregulated genes and 1060 downregulated genes were identified in the AMI group. A FI network consists of 21 modules and DEGs in 12 modules were significantly enriched in pathways. The transcription factor-miRNA-gene network contains 2 transcription factors FOXO3 and MYBL2, and 2 miRNAs hsa-miR-21-5p and hsa-miR-30c-5p. RT-PCR validations showed that expression levels of FOXO3 and MYBL2 were significantly increased in AMI, and expression levels of hsa-miR-21-5p and hsa-miR-30c-5p were obviously decreased in AMI. A total of 41 DEGs, such as SOCS3, VAPA, and COL5A2, are speculated to have roles in the pathogenesis of AMI; 2 transcription factors FOXO3 and MYBL2, and 2 miRNAs hsa-miR-21-5p and hsa-miR-30c-5p may be involved in the regulation of the expression of these DEGs.

  18. Transcriptomic analysis in a Drosophila model identifies previously implicated and novel pathways in the therapeutic mechanism in neuropsychiatric disorders

    Directory of Open Access Journals (Sweden)

    Priyanka eSingh

    2011-03-01

    Full Text Available We have taken advantage of a newly described Drosophila model to gain insights into the potential mechanism of antiepileptic drugs (AEDs, a group of drugs that are widely used in the treatment of several neurological and psychiatric conditions besides epilepsy. In the recently described Drosophila model that is inspired by pentylenetetrazole (PTZ induced kindling epileptogenesis in rodents, chronic PTZ treatment for seven days causes a decreased climbing speed and an altered CNS transcriptome, with the latter mimicking gene expression alterations reported in epileptogenesis. In the model, an increased climbing speed is further observed seven days after withdrawal from chronic PTZ. We used this post-PTZ withdrawal regime to identify potential AED mechanism. In this regime, treatment with each of the five AEDs tested, namely, ethosuximide (ETH, gabapentin (GBP, vigabatrin (VGB, sodium valproate (NaVP and levetiracetam (LEV, resulted in rescuing of the altered climbing behavior. The AEDs also normalized PTZ withdrawal induced transcriptomic perturbation in fly heads; whereas AED untreated flies showed a large number of up- and down-regulated genes which were enriched in several processes including gene expression and cell communication, the AED treated flies showed differential expression of only a small number of genes that did not enrich gene expression and cell communication processes. Gene expression and cell communication related upregulated genes in AED untreated flies overrepresented several pathways - spliceosome, RNA degradation, and ribosome in the former category, and inositol phosphate metabolism, phosphatidylinositol signaling, endocytosis and hedgehog signaling in the latter. Transcriptome remodeling effect of AEDs was overall confirmed by microarray clustering that clearly separated the profiles of AED treated and untreated flies. Besides being consistent with previously implicated pathways, our results provide evidence for a role of

  19. Gene Network Construction from Microarray Data Identifies a Key Network Module and Several Candidate Hub Genes in Age-Associated Spatial Learning Impairment.

    Science.gov (United States)

    Uddin, Raihan; Singh, Shiva M

    2017-01-01

    As humans age many suffer from a decrease in normal brain functions including spatial learning impairments. This study aimed to better understand the molecular mechanisms in age-associated spatial learning impairment (ASLI). We used a mathematical modeling approach implemented in Weighted Gene Co-expression Network Analysis (WGCNA) to create and compare gene network models of young (learning unimpaired) and aged (predominantly learning impaired) brains from a set of exploratory datasets in rats in the context of ASLI. The major goal was to overcome some of the limitations previously observed in the traditional meta- and pathway analysis using these data, and identify novel ASLI related genes and their networks based on co-expression relationship of genes. This analysis identified a set of network modules in the young, each of which is highly enriched with genes functioning in broad but distinct GO functional categories or biological pathways. Interestingly, the analysis pointed to a single module that was highly enriched with genes functioning in "learning and memory" related functions and pathways. Subsequent differential network analysis of this "learning and memory" module in the aged (predominantly learning impaired) rats compared to the young learning unimpaired rats allowed us to identify a set of novel ASLI candidate hub genes. Some of these genes show significant repeatability in networks generated from independent young and aged validation datasets. These hub genes are highly co-expressed with other genes in the network, which not only show differential expression but also differential co-expression and differential connectivity across age and learning impairment. The known function of these hub genes indicate that they play key roles in critical pathways, including kinase and phosphatase signaling, in functions related to various ion channels, and in maintaining neuronal integrity relating to synaptic plasticity and memory formation. Taken together, they

  20. Detection of previously undiagnosed cases of COPD in a high-risk population identified in general practice

    DEFF Research Database (Denmark)

    Løkke, Anders; Ulrik, Charlotte Suppli; Dahl, Ronald

    2012-01-01

    Background and Aim: Under-diagnosis of COPD is a widespread problem. This study aimed to identify previously undiagnosed cases of COPD in a high-risk population identified through general practice. Methods: Participating GPs (n = 241) recruited subjects with no previous diagnosis of lung disease,...

  1. A genome scale RNAi screen identifies GLI1 as a novel gene regulating vorinostat sensitivity.

    Science.gov (United States)

    Falkenberg, K J; Newbold, A; Gould, C M; Luu, J; Trapani, J A; Matthews, G M; Simpson, K J; Johnstone, R W

    2016-07-01

    Vorinostat is an FDA-approved histone deacetylase inhibitor (HDACi) that has proven clinical success in some patients; however, it remains unclear why certain patients remain unresponsive to this agent and other HDACis. Constitutive STAT (signal transducer and activator of transcription) activation, overexpression of prosurvival Bcl-2 proteins and loss of HR23B have been identified as potential biomarkers of HDACi resistance; however, none have yet been used to aid the clinical utility of HDACi. Herein, we aimed to further elucidate vorinostat-resistance mechanisms through a functional genomics screen to identify novel genes that when knocked down by RNA interference (RNAi) sensitized cells to vorinostat-induced apoptosis. A synthetic lethal functional screen using a whole-genome protein-coding RNAi library was used to identify genes that when knocked down cooperated with vorinostat to induce tumor cell apoptosis in otherwise resistant cells. Through iterative screening, we identified 10 vorinostat-resistance candidate genes that sensitized specifically to vorinostat. One of these vorinostat-resistance genes was GLI1, an oncogene not previously known to regulate the activity of HDACi. Treatment of vorinostat-resistant cells with the GLI1 small-molecule inhibitor, GANT61, phenocopied the effect of GLI1 knockdown. The mechanism by which GLI1 loss of function sensitized tumor cells to vorinostat-induced apoptosis is at least in part through interactions with vorinostat to alter gene expression in a manner that favored apoptosis. Upon GLI1 knockdown and vorinostat treatment, BCL2L1 expression was repressed and overexpression of BCL2L1 inhibited GLI1-knockdown-mediated vorinostat sensitization. Taken together, we present the identification and characterization of GLI1 as a new HDACi resistance gene, providing a strong rationale for development of GLI1 inhibitors for clinical use in combination with HDACi therapy.

  2. Evolutionary Analysis Predicts Sensitive Positions of MMP20 and Validates Newly- and Previously-Identified MMP20 Mutations Causing Amelogenesis Imperfecta

    Directory of Open Access Journals (Sweden)

    Barbara Gasse

    2017-06-01

    Full Text Available Amelogenesis imperfecta (AI designates a group of genetic diseases characterized by a large range of enamel disorders causing important social and health problems. These defects can result from mutations in enamel matrix proteins or protease encoding genes. A range of mutations in the enamel cleavage enzyme matrix metalloproteinase-20 gene (MMP20 produce enamel defects of varying severity. To address how various alterations produce a range of AI phenotypes, we performed a targeted analysis to find MMP20 mutations in French patients diagnosed with non-syndromic AI. Genomic DNA was isolated from saliva and MMP20 exons and exon-intron boundaries sequenced. We identified several homozygous or heterozygous mutations, putatively involved in the AI phenotypes. To validate missense mutations and predict sensitive positions in the MMP20 sequence, we evolutionarily compared 75 sequences extracted from the public databases using the Datamonkey webserver. These sequences were representative of mammalian lineages, covering more than 150 million years of evolution. This analysis allowed us to find 324 sensitive positions (out of the 483 MMP20 residues, pinpoint functionally important domains, and build an evolutionary chart of important conserved MMP20 regions. This is an efficient tool to identify new- and previously-identified mutations. We thus identified six functional MMP20 mutations in unrelated families, finding two novel mutated sites. The genotypes and phenotypes of these six mutations are described and compared. To date, 13 MMP20 mutations causing AI have been reported, making these genotypes and associated hypomature enamel phenotypes the most frequent in AI.

  3. Evolutionary Analysis Predicts Sensitive Positions of MMP20 and Validates Newly- and Previously-Identified MMP20 Mutations Causing Amelogenesis Imperfecta.

    Science.gov (United States)

    Gasse, Barbara; Prasad, Megana; Delgado, Sidney; Huckert, Mathilde; Kawczynski, Marzena; Garret-Bernardin, Annelyse; Lopez-Cazaux, Serena; Bailleul-Forestier, Isabelle; Manière, Marie-Cécile; Stoetzel, Corinne; Bloch-Zupan, Agnès; Sire, Jean-Yves

    2017-01-01

    Amelogenesis imperfecta (AI) designates a group of genetic diseases characterized by a large range of enamel disorders causing important social and health problems. These defects can result from mutations in enamel matrix proteins or protease encoding genes. A range of mutations in the enamel cleavage enzyme matrix metalloproteinase-20 gene ( MMP20 ) produce enamel defects of varying severity. To address how various alterations produce a range of AI phenotypes, we performed a targeted analysis to find MMP20 mutations in French patients diagnosed with non-syndromic AI. Genomic DNA was isolated from saliva and MMP20 exons and exon-intron boundaries sequenced. We identified several homozygous or heterozygous mutations, putatively involved in the AI phenotypes. To validate missense mutations and predict sensitive positions in the MMP20 sequence, we evolutionarily compared 75 sequences extracted from the public databases using the Datamonkey webserver. These sequences were representative of mammalian lineages, covering more than 150 million years of evolution. This analysis allowed us to find 324 sensitive positions (out of the 483 MMP20 residues), pinpoint functionally important domains, and build an evolutionary chart of important conserved MMP20 regions. This is an efficient tool to identify new- and previously-identified mutations. We thus identified six functional MMP20 mutations in unrelated families, finding two novel mutated sites. The genotypes and phenotypes of these six mutations are described and compared. To date, 13 MMP20 mutations causing AI have been reported, making these genotypes and associated hypomature enamel phenotypes the most frequent in AI.

  4. Gene expression analysis identifies global gene dosage sensitivity in cancer

    DEFF Research Database (Denmark)

    Fehrmann, Rudolf S. N.; Karjalainen, Juha M.; Krajewska, Malgorzata

    2015-01-01

    Many cancer-associated somatic copy number alterations (SCNAs) are known. Currently, one of the challenges is to identify the molecular downstream effects of these variants. Although several SCNAs are known to change gene expression levels, it is not clear whether each individual SCNA affects gen...

  5. Epidermal growth factor gene is a newly identified candidate gene for gout

    OpenAIRE

    Lin Han; Chunwei Cao; Zhaotong Jia; Shiguo Liu; Zhen Liu; Ruosai Xin; Can Wang; Xinde Li; Wei Ren; Xuefeng Wang; Changgui Li

    2016-01-01

    Chromosome 4q25 has been identified as a genomic region associated with gout. However, the associations of gout with the genes in this region have not yet been confirmed. Here, we performed two-stage analysis to determine whether variations in candidate genes in the 4q25 region are associated with gout in a male Chinese Han population. We first evaluated 96 tag single nucleotide polymorphisms (SNPs) in eight inflammatory/immune pathway- or glucose/lipid metabolism-related genes in the 4q25 re...

  6. Contig Maps and Genomic Sequencing Identify Candidate Genes in the Usher 1C Locus

    Science.gov (United States)

    Higgins, Michael J.; Day, Colleen D.; Smilinich, Nancy J.; Ni, L.; Cooper, Paul R.; Nowak, Norma J.; Davies, Chris; de Jong, Pieter J.; Hejtmancik, Fielding; Evans, Glen A.; Smith, Richard J.H.; Shows, Thomas B.

    1998-01-01

    Usher syndrome 1C (USH1C) is a congenital condition manifesting profound hearing loss, the absence of vestibular function, and eventual retinal degeneration. The USH1C locus has been mapped genetically to a 2- to 3-cM interval in 11p14–15.1 between D11S899 and D11S861. In an effort to identify the USH1C disease gene we have isolated the region between these markers in yeast artificial chromosomes (YACs) using a combination of STS content mapping and Alu–PCR hybridization. The YAC contig is ∼3.5 Mb and has located several other loci within this interval, resulting in the order CEN-LDHA-SAA1-TPH-D11S1310-(D11S1888/KCNC1)-MYOD1-D11S902D11S921-D11S1890-TEL. Subsequent haplotyping and homozygosity analysis refined the location of the disease gene to a 400-kb interval between D11S902 and D11S1890 with all affected individuals being homozygous for the internal marker D11S921. To facilitate gene identification, the critical region has been converted into P1 artificial chromosome (PAC) clones using sequence-tagged sites (STSs) mapped to the YAC contig, Alu–PCR products generated from the YACs, and PAC end probes. A contig of >50 PAC clones has been assembled between D11S1310 and D11S1890, confirming the order of markers used in haplotyping. Three PAC clones representing nearly two-thirds of the USH1C critical region have been sequenced. PowerBLAST analysis identified six clusters of expressed sequence tags (ESTs), two known genes (BIR,SUR1) mapped previously to this region, and a previously characterized but unmapped gene NEFA (DNA binding/EF hand/acidic amino-acid-rich). GRAIL analysis identified 11 CpG islands and 73 exons of excellent quality. These data allowed the construction of a transcription map for the USH1C critical region, consisting of three known genes and six or more novel transcripts. Based on their map location, these loci represent candidate disease loci for USH1C. The NEFA gene was assessed as the USH1C locus by the sequencing of an amplified NEFA

  7. A stratified transcriptomics analysis of polygenic fat and lean mouse adipose tissues identifies novel candidate obesity genes.

    Directory of Open Access Journals (Sweden)

    Nicholas M Morton

    Full Text Available Obesity and metabolic syndrome results from a complex interaction between genetic and environmental factors. In addition to brain-regulated processes, recent genome wide association studies have indicated that genes highly expressed in adipose tissue affect the distribution and function of fat and thus contribute to obesity. Using a stratified transcriptome gene enrichment approach we attempted to identify adipose tissue-specific obesity genes in the unique polygenic Fat (F mouse strain generated by selective breeding over 60 generations for divergent adiposity from a comparator Lean (L strain.To enrich for adipose tissue obesity genes a 'snap-shot' pooled-sample transcriptome comparison of key fat depots and non adipose tissues (muscle, liver, kidney was performed. Known obesity quantitative trait loci (QTL information for the model allowed us to further filter genes for increased likelihood of being causal or secondary for obesity. This successfully identified several genes previously linked to obesity (C1qr1, and Np3r as positional QTL candidate genes elevated specifically in F line adipose tissue. A number of novel obesity candidate genes were also identified (Thbs1, Ppp1r3d, Tmepai, Trp53inp2, Ttc7b, Tuba1a, Fgf13, Fmr that have inferred roles in fat cell function. Quantitative microarray analysis was then applied to the most phenotypically divergent adipose depot after exaggerating F and L strain differences with chronic high fat feeding which revealed a distinct gene expression profile of line, fat depot and diet-responsive inflammatory, angiogenic and metabolic pathways. Selected candidate genes Npr3 and Thbs1, as well as Gys2, a non-QTL gene that otherwise passed our enrichment criteria were characterised, revealing novel functional effects consistent with a contribution to obesity.A focussed candidate gene enrichment strategy in the unique F and L model has identified novel adipose tissue-enriched genes contributing to obesity.

  8. Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes.

    Science.gov (United States)

    Ackermann, Amanda M; Wang, Zhiping; Schug, Jonathan; Naji, Ali; Kaestner, Klaus H

    2016-03-01

    Although glucagon-secreting α-cells and insulin-secreting β-cells have opposing functions in regulating plasma glucose levels, the two cell types share a common developmental origin and exhibit overlapping transcriptomes and epigenomes. Notably, destruction of β-cells can stimulate repopulation via transdifferentiation of α-cells, at least in mice, suggesting plasticity between these cell fates. Furthermore, dysfunction of both α- and β-cells contributes to the pathophysiology of type 1 and type 2 diabetes, and β-cell de-differentiation has been proposed to contribute to type 2 diabetes. Our objective was to delineate the molecular properties that maintain islet cell type specification yet allow for cellular plasticity. We hypothesized that correlating cell type-specific transcriptomes with an atlas of open chromatin will identify novel genes and transcriptional regulatory elements such as enhancers involved in α- and β-cell specification and plasticity. We sorted human α- and β-cells and performed the "Assay for Transposase-Accessible Chromatin with high throughput sequencing" (ATAC-seq) and mRNA-seq, followed by integrative analysis to identify cell type-selective gene regulatory regions. We identified numerous transcripts with either α-cell- or β-cell-selective expression and discovered the cell type-selective open chromatin regions that correlate with these gene activation patterns. We confirmed cell type-selective expression on the protein level for two of the top hits from our screen. The "group specific protein" (GC; or vitamin D binding protein) was restricted to α-cells, while CHODL (chondrolectin) immunoreactivity was only present in β-cells. Furthermore, α-cell- and β-cell-selective ATAC-seq peaks were identified to overlap with known binding sites for islet transcription factors, as well as with single nucleotide polymorphisms (SNPs) previously identified as risk loci for type 2 diabetes. We have determined the genetic landscape of

  9. A Strategy for Identifying Quantitative Trait Genes Using Gene Expression Analysis and Causal Analysis

    Directory of Open Access Journals (Sweden)

    Akira Ishikawa

    2017-11-01

    Full Text Available Large numbers of quantitative trait loci (QTL affecting complex diseases and other quantitative traits have been reported in humans and model animals. However, the genetic architecture of these traits remains elusive due to the difficulty in identifying causal quantitative trait genes (QTGs for common QTL with relatively small phenotypic effects. A traditional strategy based on techniques such as positional cloning does not always enable identification of a single candidate gene for a QTL of interest because it is difficult to narrow down a target genomic interval of the QTL to a very small interval harboring only one gene. A combination of gene expression analysis and statistical causal analysis can greatly reduce the number of candidate genes. This integrated approach provides causal evidence that one of the candidate genes is a putative QTG for the QTL. Using this approach, I have recently succeeded in identifying a single putative QTG for resistance to obesity in mice. Here, I outline the integration approach and discuss its usefulness using my studies as an example.

  10. A Strategy for Identifying Quantitative Trait Genes Using Gene Expression Analysis and Causal Analysis.

    Science.gov (United States)

    Ishikawa, Akira

    2017-11-27

    Large numbers of quantitative trait loci (QTL) affecting complex diseases and other quantitative traits have been reported in humans and model animals. However, the genetic architecture of these traits remains elusive due to the difficulty in identifying causal quantitative trait genes (QTGs) for common QTL with relatively small phenotypic effects. A traditional strategy based on techniques such as positional cloning does not always enable identification of a single candidate gene for a QTL of interest because it is difficult to narrow down a target genomic interval of the QTL to a very small interval harboring only one gene. A combination of gene expression analysis and statistical causal analysis can greatly reduce the number of candidate genes. This integrated approach provides causal evidence that one of the candidate genes is a putative QTG for the QTL. Using this approach, I have recently succeeded in identifying a single putative QTG for resistance to obesity in mice. Here, I outline the integration approach and discuss its usefulness using my studies as an example.

  11. MVisAGe Identifies Concordant and Discordant Genomic Alterations of Driver Genes in Squamous Tumors.

    Science.gov (United States)

    Walter, Vonn; Du, Ying; Danilova, Ludmila; Hayward, Michele C; Hayes, D Neil

    2018-06-15

    Integrated analyses of multiple genomic datatypes are now common in cancer profiling studies. Such data present opportunities for numerous computational experiments, yet analytic pipelines are limited. Tools such as the cBioPortal and Regulome Explorer, although useful, are not easy to access programmatically or to implement locally. Here, we introduce the MVisAGe R package, which allows users to quantify gene-level associations between two genomic datatypes to investigate the effect of genomic alterations (e.g., DNA copy number changes on gene expression). Visualizing Pearson/Spearman correlation coefficients according to the genomic positions of the underlying genes provides a powerful yet novel tool for conducting exploratory analyses. We demonstrate its utility by analyzing three publicly available cancer datasets. Our approach highlights canonical oncogenes in chr11q13 that displayed the strongest associations between expression and copy number, including CCND1 and CTTN , genes not identified by copy number analysis in the primary reports. We demonstrate highly concordant usage of shared oncogenes on chr3q, yet strikingly diverse oncogene usage on chr11q as a function of HPV infection status. Regions of chr19 that display remarkable associations between methylation and gene expression were identified, as were previously unreported miRNA-gene expression associations that may contribute to the epithelial-to-mesenchymal transition. Significance: This study presents an important bioinformatics tool that will enable integrated analyses of multiple genomic datatypes. Cancer Res; 78(12); 3375-85. ©2018 AACR . ©2018 American Association for Cancer Research.

  12. An Efficient Method for Identifying Gene Fusions by Targeted RNA Sequencing from Fresh Frozen and FFPE Samples.

    Directory of Open Access Journals (Sweden)

    Jonathan A Scolnick

    Full Text Available Fusion genes are known to be key drivers of tumor growth in several types of cancer. Traditionally, detecting fusion genes has been a difficult task based on fluorescent in situ hybridization to detect chromosomal abnormalities. More recently, RNA sequencing has enabled an increased pace of fusion gene identification. However, RNA-Seq is inefficient for the identification of fusion genes due to the high number of sequencing reads needed to detect the small number of fusion transcripts present in cells of interest. Here we describe a method, Single Primer Enrichment Technology (SPET, for targeted RNA sequencing that is customizable to any target genes, is simple to use, and efficiently detects gene fusions. Using SPET to target 5701 exons of 401 known cancer fusion genes for sequencing, we were able to identify known and previously unreported gene fusions from both fresh-frozen and formalin-fixed paraffin-embedded (FFPE tissue RNA in both normal tissue and cancer cells.

  13. Development of a new marker system for identifying the complex members of the low-molecular-weight glutenin subunit gene family in bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Zhang, Xiaofei; Liu, Dongcheng; Yang, Wenlong; Liu, Kunfan; Sun, Jiazhu; Guo, Xiaoli; Li, Yiwen; Wang, Daowen; Ling, Hongqing; Zhang, Aimin

    2011-05-01

    Low-molecular-weight glutenin subunits (LMW-GSs) play an important role in determining the bread-making quality of bread wheat. However, LMW-GSs display high polymorphic protein complexes encoded by multiple genes, and elucidating the complex LMW-GS gene family in bread wheat remains challenging. In the present study, using conventional polymerase chain reaction (PCR) with conserved primers and high-resolution capillary electrophoresis, we developed a new molecular marker system for identifying LMW-GS gene family members. Based on sequence alignment of 13 LMW-GS genes previously identified in the Chinese bread wheat variety Xiaoyan 54 and other genes available in GenBank, PCR primers were developed and assigned to conserved sequences spanning the length polymorphism regions of LMW-GS genes. After PCR amplification, 17 DNA fragments in Xiaoyan 54 were detected using capillary electrophoresis. In total, 13 fragments were identical to previously identified LMW-GS genes, and the other 4 were derived from unique LMW-GS genes by sequencing. This marker system was also used to identify LMW-GS genes in Chinese Spring and its group 1 nulli-tetrasomic lines. Among the 17 detected DNA fragments, 4 were located on chromosome 1A, 5 on 1B, and 8 on 1D. The results suggest that this marker system is useful for large-scale identification of LMW-GS genes in bread wheat varieties, and for the selection of desirable LMW-GS genes to improve the bread-making quality in wheat molecular breeding programmes.

  14. Transcriptional profiling identifies differentially expressed genes in developing turkey skeletal muscle

    Directory of Open Access Journals (Sweden)

    Velleman Sandra G

    2011-03-01

    Full Text Available Abstract Background Skeletal muscle growth and development from embryo to adult consists of a series of carefully regulated changes in gene expression. Understanding these developmental changes in agriculturally important species is essential to the production of high quality meat products. For example, consumer demand for lean, inexpensive meat products has driven the turkey industry to unprecedented production through intensive genetic selection. However, achievements of increased body weight and muscle mass have been countered by an increased incidence of myopathies and meat quality defects. In a previous study, we developed and validated a turkey skeletal muscle-specific microarray as a tool for functional genomics studies. The goals of the current study were to utilize this microarray to elucidate functional pathways of genes responsible for key events in turkey skeletal muscle development and to compare differences in gene expression between two genetic lines of turkeys. To achieve these goals, skeletal muscle samples were collected at three critical stages in muscle development: 18d embryo (hyperplasia, 1d post-hatch (shift from myoblast-mediated growth to satellite cell-modulated growth by hypertrophy, and 16wk (market age from two genetic lines: a randombred control line (RBC2 maintained without selection pressure, and a line (F selected from the RBC2 line for increased 16wk body weight. Array hybridizations were performed in two experiments: Experiment 1 directly compared the developmental stages within genetic line, while Experiment 2 directly compared the two lines within each developmental stage. Results A total of 3474 genes were differentially expressed (false discovery rate; FDR Conclusions The current study identified gene pathways and uncovered novel genes important in turkey muscle growth and development. Future experiments will focus further on several of these candidate genes and the expression and mechanism of action of

  15. Cross-species microarray hybridization to identify developmentally regulated genes in the filamentous fungus Sordaria macrospora.

    Science.gov (United States)

    Nowrousian, Minou; Ringelberg, Carol; Dunlap, Jay C; Loros, Jennifer J; Kück, Ulrich

    2005-04-01

    The filamentous fungus Sordaria macrospora forms complex three-dimensional fruiting bodies that protect the developing ascospores and ensure their proper discharge. Several regulatory genes essential for fruiting body development were previously isolated by complementation of the sterile mutants pro1, pro11 and pro22. To establish the genetic relationships between these genes and to identify downstream targets, we have conducted cross-species microarray hybridizations using cDNA arrays derived from the closely related fungus Neurospora crassa and RNA probes prepared from wild-type S. macrospora and the three developmental mutants. Of the 1,420 genes which gave a signal with the probes from all the strains used, 172 (12%) were regulated differently in at least one of the three mutants compared to the wild type, and 17 (1.2%) were regulated differently in all three mutant strains. Microarray data were verified by Northern analysis or quantitative real time PCR. Among the genes that are up- or down-regulated in the mutant strains are genes encoding the pheromone precursors, enzymes involved in melanin biosynthesis and a lectin-like protein. Analysis of gene expression in double mutants revealed a complex network of interaction between the pro gene products.

  16. Protein functional links in Trypanosoma brucei, identified by gene fusion analysis

    Directory of Open Access Journals (Sweden)

    Trimpalis Philip

    2011-07-01

    Full Text Available Abstract Background Domain or gene fusion analysis is a bioinformatics method for detecting gene fusions in one organism by comparing its genome to that of other organisms. The occurrence of gene fusions suggests that the two original genes that participated in the fusion are functionally linked, i.e. their gene products interact either as part of a multi-subunit protein complex, or in a metabolic pathway. Gene fusion analysis has been used to identify protein functional links in prokaryotes as well as in eukaryotic model organisms, such as yeast and Drosophila. Results In this study we have extended this approach to include a number of recently sequenced protists, four of which are pathogenic, to identify fusion linked proteins in Trypanosoma brucei, the causative agent of African sleeping sickness. We have also examined the evolution of the gene fusion events identified, to determine whether they can be attributed to fusion or fission, by looking at the conservation of the fused genes and of the individual component genes across the major eukaryotic and prokaryotic lineages. We find relatively limited occurrence of gene fusions/fissions within the protist lineages examined. Our results point to two trypanosome-specific gene fissions, which have recently been experimentally confirmed, one fusion involving proteins involved in the same metabolic pathway, as well as two novel putative functional links between fusion-linked protein pairs. Conclusions This is the first study of protein functional links in T. brucei identified by gene fusion analysis. We have used strict thresholds and only discuss results which are highly likely to be genuine and which either have already been or can be experimentally verified. We discuss the possible impact of the identification of these novel putative protein-protein interactions, to the development of new trypanosome therapeutic drugs.

  17. Comparative transcriptome analysis of stylar canal cells identifies novel candidate genes implicated in the self-incompatibility response of Citrus clementina

    Directory of Open Access Journals (Sweden)

    Caruso Marco

    2012-02-01

    Full Text Available Abstract Background Reproductive biology in citrus is still poorly understood. Although in recent years several efforts have been made to study pollen-pistil interaction and self-incompatibility, little information is available about the molecular mechanisms regulating these processes. Here we report the identification of candidate genes involved in pollen-pistil interaction and self-incompatibility in clementine (Citrus clementina Hort. ex Tan.. These genes have been identified comparing the transcriptomes of laser-microdissected stylar canal cells (SCC isolated from two genotypes differing for self-incompatibility response ('Comune', a self-incompatible cultivar and 'Monreal', a self- compatible mutation of 'Comune'. Results The transcriptome profiling of SCC indicated that the differential regulation of few specific, mostly uncharacterized transcripts is associated with the breakdown of self-incompatibility in 'Monreal'. Among them, a novel F-box gene showed a drastic up-regulation both in laser microdissected stylar canal cells and in self-pollinated whole styles with stigmas of 'Comune' in concomitance with the arrest of pollen tube growth. Moreover, we identify a non-characterized gene family as closely associated to the self-incompatibility genetic program activated in 'Comune'. Three different aspartic-acid rich (Asp-rich protein genes, located in tandem in the clementine genome, were over-represented in the transcriptome of 'Comune'. These genes are tightly linked to a DELLA gene, previously found to be up-regulated in the self-incompatible genotype during pollen-pistil interaction. Conclusion The highly specific transcriptome survey of the stylar canal cells identified novel genes which have not been previously associated with self-pollen rejection in citrus and in other plant species. Bioinformatic and transcriptional analyses suggested that the mutation leading to self-compatibility in 'Monreal' affected the expression of non

  18. Integration of genome-wide association studies with biological knowledge identifies six novel genes related to kidney function.

    Science.gov (United States)

    Chasman, Daniel I; Fuchsberger, Christian; Pattaro, Cristian; Teumer, Alexander; Böger, Carsten A; Endlich, Karlhans; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Taliun, Daniel; Li, Man; Gao, Xiaoyi; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C; O'Seaghdha, Conall M; Glazer, Nicole; Isaacs, Aaron; Liu, Ching-Ti; Smith, Albert V; O'Connell, Jeffrey R; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Johnson, Andrew D; Gierman, Hinco J; Feitosa, Mary F; Hwang, Shih-Jen; Atkinson, Elizabeth J; Lohman, Kurt; Cornelis, Marilyn C; Johansson, Asa; Tönjes, Anke; Dehghan, Abbas; Lambert, Jean-Charles; Holliday, Elizabeth G; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y; Murgia, Federico; Trompet, Stella; Imboden, Medea; Coassin, Stefan; Pistis, Giorgio; Harris, Tamara B; Launer, Lenore J; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D; Boerwinkle, Eric; Schmidt, Helena; Cavalieri, Margherita; Rao, Madhumathi; Hu, Frank; Demirkan, Ayse; Oostra, Ben A; de Andrade, Mariza; Turner, Stephen T; Ding, Jingzhong; Andrews, Jeanette S; Freedman, Barry I; Giulianini, Franco; Koenig, Wolfgang; Illig, Thomas; Meisinger, Christa; Gieger, Christian; Zgaga, Lina; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H; Wright, Alan F; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G; Rivadeneira, Fernando; Aulchenko, Yurii S; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Stengel, Bénédicte; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Ketkar, Shamika; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Krämer, Bernhard K; Portas, Laura; Ford, Ian; Buckley, Brendan M; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Mitchell, Paul; Ciullo, Marina; Kim, Stuart K; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J Wouter; Probst-Hensch, Nicole M; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; Siscovick, David S; van Duijn, Cornelia M; Borecki, Ingrid B; Kardia, Sharon L R; Liu, Yongmei; Curhan, Gary C; Rudan, Igor; Gyllensten, Ulf; Wilson, James F; Franke, Andre; Pramstaller, Peter P; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline; Hayward, Caroline; Ridker, Paul M; Parsa, Afshin; Bochud, Murielle; Heid, Iris M; Kao, W H Linda; Fox, Caroline S; Köttgen, Anna

    2012-12-15

    In conducting genome-wide association studies (GWAS), analytical approaches leveraging biological information may further understanding of the pathophysiology of clinical traits. To discover novel associations with estimated glomerular filtration rate (eGFR), a measure of kidney function, we developed a strategy for integrating prior biological knowledge into the existing GWAS data for eGFR from the CKDGen Consortium. Our strategy focuses on single nucleotide polymorphism (SNPs) in genes that are connected by functional evidence, determined by literature mining and gene ontology (GO) hierarchies, to genes near previously validated eGFR associations. It then requires association thresholds consistent with multiple testing, and finally evaluates novel candidates by independent replication. Among the samples of European ancestry, we identified a genome-wide significant SNP in FBXL20 (P = 5.6 × 10(-9)) in meta-analysis of all available data, and additional SNPs at the INHBC, LRP2, PLEKHA1, SLC3A2 and SLC7A6 genes meeting multiple-testing corrected significance for replication and overall P-values of 4.5 × 10(-4)-2.2 × 10(-7). Neither the novel PLEKHA1 nor FBXL20 associations, both further supported by association with eGFR among African Americans and with transcript abundance, would have been implicated by eGFR candidate gene approaches. LRP2, encoding the megalin receptor, was identified through connection with the previously known eGFR gene DAB2 and extends understanding of the megalin system in kidney function. These findings highlight integration of existing genome-wide association data with independent biological knowledge to uncover novel candidate eGFR associations, including candidates lacking known connections to kidney-specific pathways. The strategy may also be applicable to other clinical phenotypes, although more testing will be needed to assess its potential for discovery in general.

  19. Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes

    Directory of Open Access Journals (Sweden)

    Amanda M. Ackermann

    2016-03-01

    Conclusions: We have determined the genetic landscape of human α- and β-cells based on chromatin accessibility and transcript levels, which allowed for detection of novel α- and β-cell signature genes not previously known to be expressed in islets. Using fine-mapping of open chromatin, we have identified thousands of potential cis-regulatory elements that operate in an endocrine cell type-specific fashion.

  20. Signature pathways identified from gene expression profiles in the human uterine cervix before and after spontaneous term parturition

    Science.gov (United States)

    HASSAN, Sonia S.; ROMERO, Roberto; TARCA, Adi L.; DRAGHICI, Sorin; PINELES, Beth; BUGRIM, Andrej; KHALEK, Nahla; CAMACHO, Natalia; MITTAL, Pooja; YOON, Bo Hyun; ESPINOZA, Jimmy; KIM, Chong Jai; SOROKIN, Yoram; MALONE, John

    2008-01-01

    Objective This study aimed to discover ‘signature pathways’ characterizing biological processes based on genes differentially expressed in the uterine cervix before and after spontaneous labor. Study Design The cervical transcriptome was previously characterized from biopsies taken before and after term labor. Pathway analysis was used to study the differentially expressed genes based on two gene-to-pathway annotation databases (KEGG and Metacore™). Over-represented and highly impacted pathways and connectivity nodes were identified. Results Fifty-two pathways in the Metacore™ database were significantly enriched in differentially expressed genes. Three of the top 5 pathways were known to be involved in cervical remodeling.Two novel pathways were: plasmin signaling and plasminogen activator urokinase (PLAU) signaling. The same analysis in the KEGG database identified 4 significant pathways, of which impact analysis confirmed. Multiple nodes providing connectivity within the plasmin and PLAU signaling pathways were identified.. Conclusions Three strategies for pathway analysis were consistent in their identification of novel, unexpected as well as expected networks, suggesting that this approach is both valid and effective for the elucidation of biological mechanisms involved in cervical dilation and remodeling. PMID:17826407

  1. Cloning and Expression of Three New Azotobacter vinelandii Genes Closely Related to a Previously Described Gene Family Encoding Mannuronan C-5-Epimerases

    OpenAIRE

    Svanem, Britt Iren Glærum; Skjåk-Bræk, Gudmund; Ertesvåg, Helga; Valla, Svein

    1999-01-01

    The cloning and expression of a family of five modular-type mannuronan C-5-epimerase genes from Azotobacter vinelandii (algE1 to -5) has previously been reported. The corresponding proteins catalyze the Ca2+-dependent polymer-level epimerization of β-d-mannuronic acid to α-l-guluronic acid (G) in the commercially important polysaccharide alginate. Here we report the identification of three additional structurally similar genes, designated algE6, algE7, and algY. All three genes were sequenced...

  2. A genetic screen identifies interferon-α effector genes required to suppress hepatitis C virus replication.

    Science.gov (United States)

    Fusco, Dahlene N; Brisac, Cynthia; John, Sinu P; Huang, Yi-Wen; Chin, Christopher R; Xie, Tiao; Zhao, Hong; Jilg, Nikolaus; Zhang, Leiliang; Chevaliez, Stephane; Wambua, Daniel; Lin, Wenyu; Peng, Lee; Chung, Raymond T; Brass, Abraham L

    2013-06-01

    Hepatitis C virus (HCV) infection is a leading cause of end-stage liver disease. Interferon-α (IFNα) is an important component of anti-HCV therapy; it up-regulates transcription of IFN-stimulated genes, many of which have been investigated for their antiviral effects. However, all of the genes required for the antiviral function of IFNα (IFN effector genes [IEGs]) are not known. IEGs include not only IFN-stimulated genes, but other nontranscriptionally induced genes that are required for the antiviral effect of IFNα. In contrast to candidate approaches based on analyses of messenger RNA (mRNA) expression, identification of IEGs requires a broad functional approach. We performed an unbiased genome-wide small interfering RNA screen to identify IEGs that inhibit HCV. Huh7.5.1 hepatoma cells were transfected with small interfering RNAs incubated with IFNα and then infected with JFH1 HCV. Cells were stained using HCV core antibody, imaged, and analyzed to determine the percent infection. Candidate IEGs detected in the screen were validated and analyzed further. The screen identified 120 previously unreported IEGs. From these, we more fully evaluated the following: asparagine-linked glycosylation 10 homolog (yeast, α-1,2-glucosyltransferase); butyrylcholinesterase; dipeptidyl-peptidase 4 (CD26, adenosine deaminase complexing protein 2); glucokinase (hexokinase 4) regulator; guanylate cyclase 1, soluble, β 3; MYST histone acetyltransferase 1; protein phosphatase 3 (formerly 2B), catalytic subunit, β isoform; peroxisomal proliferator-activated receptor-γ-DBD-interacting protein 1; and solute carrier family 27 (fatty acid transporter), member 2; and demonstrated that they enabled IFNα-mediated suppression of HCV at multiple steps of its life cycle. Expression of these genes had more potent effects against flaviviridae because a subset was required for IFNα to suppress dengue virus but not influenza A virus. In addition, many of the host genes detected in this

  3. Cartilage-selective genes identified in genome-scale analysis of non-cartilage and cartilage gene expression

    Directory of Open Access Journals (Sweden)

    Cohn Zachary A

    2007-06-01

    Full Text Available Abstract Background Cartilage plays a fundamental role in the development of the human skeleton. Early in embryogenesis, mesenchymal cells condense and differentiate into chondrocytes to shape the early skeleton. Subsequently, the cartilage anlagen differentiate to form the growth plates, which are responsible for linear bone growth, and the articular chondrocytes, which facilitate joint function. However, despite the multiplicity of roles of cartilage during human fetal life, surprisingly little is known about its transcriptome. To address this, a whole genome microarray expression profile was generated using RNA isolated from 18–22 week human distal femur fetal cartilage and compared with a database of control normal human tissues aggregated at UCLA, termed Celsius. Results 161 cartilage-selective genes were identified, defined as genes significantly expressed in cartilage with low expression and little variation across a panel of 34 non-cartilage tissues. Among these 161 genes were cartilage-specific genes such as cartilage collagen genes and 25 genes which have been associated with skeletal phenotypes in humans and/or mice. Many of the other cartilage-selective genes do not have established roles in cartilage or are novel, unannotated genes. Quantitative RT-PCR confirmed the unique pattern of gene expression observed by microarray analysis. Conclusion Defining the gene expression pattern for cartilage has identified new genes that may contribute to human skeletogenesis as well as provided further candidate genes for skeletal dysplasias. The data suggest that fetal cartilage is a complex and transcriptionally active tissue and demonstrate that the set of genes selectively expressed in the tissue has been greatly underestimated.

  4. Expression and functional assessment of candidate type 2 diabetes susceptibility genes identify four new genes contributing to human insulin secretion

    Directory of Open Access Journals (Sweden)

    Fatou K. Ndiaye

    2017-06-01

    Full Text Available Objectives: Genome-wide association studies (GWAS have identified >100 loci independently contributing to type 2 diabetes (T2D risk. However, translational implications for precision medicine and for the development of novel treatments have been disappointing, due to poor knowledge of how these loci impact T2D pathophysiology. Here, we aimed to measure the expression of genes located nearby T2D associated signals and to assess their effect on insulin secretion from pancreatic beta cells. Methods: The expression of 104 candidate T2D susceptibility genes was measured in a human multi-tissue panel, through PCR-free expression assay. The effects of the knockdown of beta-cell enriched genes were next investigated on insulin secretion from the human EndoC-βH1 beta-cell line. Finally, we performed RNA-sequencing (RNA-seq so as to assess the pathways affected by the knockdown of the new genes impacting insulin secretion from EndoC-βH1, and we analyzed the expression of the new genes in mouse models with altered pancreatic beta-cell function. Results: We found that the candidate T2D susceptibility genes' expression is significantly enriched in pancreatic beta cells obtained by laser capture microdissection or sorted by flow cytometry and in EndoC-βH1 cells, but not in insulin sensitive tissues. Furthermore, the knockdown of seven T2D-susceptibility genes (CDKN2A, GCK, HNF4A, KCNK16, SLC30A8, TBC1D4, and TCF19 with already known expression and/or function in beta cells changed insulin secretion, supporting our functional approach. We showed first evidence for a role in insulin secretion of four candidate T2D-susceptibility genes (PRC1, SRR, ZFAND3, and ZFAND6 with no previous knowledge of presence and function in beta cells. RNA-seq in EndoC-βH1 cells with decreased expression of PRC1, SRR, ZFAND6, or ZFAND3 identified specific gene networks related to T2D pathophysiology. Finally, a positive correlation between the expression of Ins2 and the

  5. Combined Gene Expression and RNAi Screening to Identify Alkylation Damage Survival Pathways from Fly to Human.

    Science.gov (United States)

    Zanotto-Filho, Alfeu; Dashnamoorthy, Ravi; Loranc, Eva; de Souza, Luis H T; Moreira, José C F; Suresh, Uthra; Chen, Yidong; Bishop, Alexander J R

    2016-01-01

    Alkylating agents are a key component of cancer chemotherapy. Several cellular mechanisms are known to be important for its survival, particularly DNA repair and xenobiotic detoxification, yet genomic screens indicate that additional cellular components may be involved. Elucidating these components has value in either identifying key processes that can be modulated to improve chemotherapeutic efficacy or may be altered in some cancers to confer chemoresistance. We therefore set out to reevaluate our prior Drosophila RNAi screening data by comparison to gene expression arrays in order to determine if we could identify any novel processes in alkylation damage survival. We noted a consistent conservation of alkylation survival pathways across platforms and species when the analysis was conducted on a pathway/process level rather than at an individual gene level. Better results were obtained when combining gene lists from two datasets (RNAi screen plus microarray) prior to analysis. In addition to previously identified DNA damage responses (p53 signaling and Nucleotide Excision Repair), DNA-mRNA-protein metabolism (transcription/translation) and proteasome machinery, we also noted a highly conserved cross-species requirement for NRF2, glutathione (GSH)-mediated drug detoxification and Endoplasmic Reticulum stress (ER stress)/Unfolded Protein Responses (UPR) in cells exposed to alkylation. The requirement for GSH, NRF2 and UPR in alkylation survival was validated by metabolomics, protein studies and functional cell assays. From this we conclude that RNAi/gene expression fusion is a valid strategy to rapidly identify key processes that may be extendable to other contexts beyond damage survival.

  6. Combined Gene Expression and RNAi Screening to Identify Alkylation Damage Survival Pathways from Fly to Human.

    Directory of Open Access Journals (Sweden)

    Alfeu Zanotto-Filho

    Full Text Available Alkylating agents are a key component of cancer chemotherapy. Several cellular mechanisms are known to be important for its survival, particularly DNA repair and xenobiotic detoxification, yet genomic screens indicate that additional cellular components may be involved. Elucidating these components has value in either identifying key processes that can be modulated to improve chemotherapeutic efficacy or may be altered in some cancers to confer chemoresistance. We therefore set out to reevaluate our prior Drosophila RNAi screening data by comparison to gene expression arrays in order to determine if we could identify any novel processes in alkylation damage survival. We noted a consistent conservation of alkylation survival pathways across platforms and species when the analysis was conducted on a pathway/process level rather than at an individual gene level. Better results were obtained when combining gene lists from two datasets (RNAi screen plus microarray prior to analysis. In addition to previously identified DNA damage responses (p53 signaling and Nucleotide Excision Repair, DNA-mRNA-protein metabolism (transcription/translation and proteasome machinery, we also noted a highly conserved cross-species requirement for NRF2, glutathione (GSH-mediated drug detoxification and Endoplasmic Reticulum stress (ER stress/Unfolded Protein Responses (UPR in cells exposed to alkylation. The requirement for GSH, NRF2 and UPR in alkylation survival was validated by metabolomics, protein studies and functional cell assays. From this we conclude that RNAi/gene expression fusion is a valid strategy to rapidly identify key processes that may be extendable to other contexts beyond damage survival.

  7. Identifying molecular subtypes in human colon cancer using gene expression and DNA methylation microarray data.

    Science.gov (United States)

    Ren, Zhonglu; Wang, Wenhui; Li, Jinming

    2016-02-01

    Identifying colon cancer subtypes based on molecular signatures may allow for a more rational, patient-specific approach to therapy in the future. Classifications using gene expression data have been attempted before with little concordance between the different studies carried out. In this study we aimed to uncover subtypes of colon cancer that have distinct biological characteristics and identify a set of novel biomarkers which could best reflect the clinical and/or biological characteristics of each subtype. Clustering analysis and discriminant analysis were utilized to discover the subtypes in two different molecular levels on 153 colon cancer samples from The Cancer Genome Atlas (TCGA) Data Portal. At gene expression level, we identified two major subtypes, ECL1 (expression cluster 1) and ECL2 (expression cluster 2) and a list of signature genes. Due to the heterogeneity of colon cancer, the subtype ECL1 can be further subdivided into three nested subclasses, and HOTAIR were found upregulated in subclass 2. At DNA methylation level, we uncovered three major subtypes, MCL1 (methylation cluster 1), MCL2 (methylation cluster 2) and MCL3 (methylation cluster 3). We found only three subtypes of CpG island methylator phenotype (CIMP) in colon cancer instead of the four subtypes in the previous reports, and we found no sufficient evidence to subdivide MCL3 into two distinct subgroups.

  8. G-NEST: a gene neighborhood scoring tool to identify co-conserved, co-expressed genes

    Directory of Open Access Journals (Sweden)

    Lemay Danielle G

    2012-09-01

    Full Text Available Abstract Background In previous studies, gene neighborhoods—spatial clusters of co-expressed genes in the genome—have been defined using arbitrary rules such as requiring adjacency, a minimum number of genes, a fixed window size, or a minimum expression level. In the current study, we developed a Gene Neighborhood Scoring Tool (G-NEST which combines genomic location, gene expression, and evolutionary sequence conservation data to score putative gene neighborhoods across all possible window sizes simultaneously. Results Using G-NEST on atlases of mouse and human tissue expression data, we found that large neighborhoods of ten or more genes are extremely rare in mammalian genomes. When they do occur, neighborhoods are typically composed of families of related genes. Both the highest scoring and the largest neighborhoods in mammalian genomes are formed by tandem gene duplication. Mammalian gene neighborhoods contain highly and variably expressed genes. Co-localized noisy gene pairs exhibit lower evolutionary conservation of their adjacent genome locations, suggesting that their shared transcriptional background may be disadvantageous. Genes that are essential to mammalian survival and reproduction are less likely to occur in neighborhoods, although neighborhoods are enriched with genes that function in mitosis. We also found that gene orientation and protein-protein interactions are partially responsible for maintenance of gene neighborhoods. Conclusions Our experiments using G-NEST confirm that tandem gene duplication is the primary driver of non-random gene order in mammalian genomes. Non-essentiality, co-functionality, gene orientation, and protein-protein interactions are additional forces that maintain gene neighborhoods, especially those formed by tandem duplicates. We expect G-NEST to be useful for other applications such as the identification of core regulatory modules, common transcriptional backgrounds, and chromatin domains. The

  9. Gene Signature in Sessile Serrated Polyps Identifies Colon Cancer Subtype

    Science.gov (United States)

    Kanth, Priyanka; Bronner, Mary P.; Boucher, Kenneth M.; Burt, Randall W.; Neklason, Deborah W.; Hagedorn, Curt H.; Delker, Don A.

    2016-01-01

    Sessile serrated colon adenoma/polyps (SSA/Ps) are found during routine screening colonoscopy and may account for 20–30% of colon cancers. However, differentiating SSA/Ps from hyperplastic polyps (HP) with little risk of cancer is challenging and complementary molecular markers are needed. Additionally, the molecular mechanisms of colon cancer development from SSA/Ps are poorly understood. RNA sequencing was performed on 21 SSA/Ps, 10 HPs, 10 adenomas, 21 uninvolved colon and 20 control colon specimens. Differential expression and leave-one-out cross validation methods were used to define a unique gene signature of SSA/Ps. Our SSA/P gene signature was evaluated in colon cancer RNA-Seq data from The Cancer Genome Atlas (TCGA) to identify a subtype of colon cancers that may develop from SSA/Ps. A total of 1422 differentially expressed genes were found in SSA/Ps relative to controls. Serrated polyposis syndrome (n=12) and sporadic SSA/Ps (n=9) exhibited almost complete (96%) gene overlap. A 51-gene panel in SSA/P showed similar expression in a subset of TCGA colon cancers with high microsatellite instability (MSI-H). A smaller seven-gene panel showed high sensitivity and specificity in identifying BRAF mutant, CpG island methylator phenotype high (CIMP-H) and MLH1 silenced colon cancers. We describe a unique gene signature in SSA/Ps that identifies a subset of colon cancers likely to develop through the serrated pathway. These gene panels may be utilized for improved differentiation of SSA/Ps from HPs and provide insights into novel molecular pathways altered in colon cancer arising from the serrated pathway. PMID:27026680

  10. Microarray analysis and scale-free gene networks identify candidate regulators in drought-stressed roots of loblolly pine (P. taeda L.

    Directory of Open Access Journals (Sweden)

    Bordeaux John M

    2011-05-01

    Full Text Available Abstract Background Global transcriptional analysis of loblolly pine (Pinus taeda L. is challenging due to limited molecular tools. PtGen2, a 26,496 feature cDNA microarray, was fabricated and used to assess drought-induced gene expression in loblolly pine propagule roots. Statistical analysis of differential expression and weighted gene correlation network analysis were used to identify drought-responsive genes and further characterize the molecular basis of drought tolerance in loblolly pine. Results Microarrays were used to interrogate root cDNA populations obtained from 12 genotype × treatment combinations (four genotypes, three watering regimes. Comparison of drought-stressed roots with roots from the control treatment identified 2445 genes displaying at least a 1.5-fold expression difference (false discovery rate = 0.01. Genes commonly associated with drought response in pine and other plant species, as well as a number of abiotic and biotic stress-related genes, were up-regulated in drought-stressed roots. Only 76 genes were identified as differentially expressed in drought-recovered roots, indicating that the transcript population can return to the pre-drought state within 48 hours. Gene correlation analysis predicts a scale-free network topology and identifies eleven co-expression modules that ranged in size from 34 to 938 members. Network topological parameters identified a number of central nodes (hubs including those with significant homology (E-values ≤ 2 × 10-30 to 9-cis-epoxycarotenoid dioxygenase, zeatin O-glucosyltransferase, and ABA-responsive protein. Identified hubs also include genes that have been associated previously with osmotic stress, phytohormones, enzymes that detoxify reactive oxygen species, and several genes of unknown function. Conclusion PtGen2 was used to evaluate transcriptome responses in loblolly pine and was leveraged to identify 2445 differentially expressed genes responding to severe drought stress in

  11. Microarray analysis and scale-free gene networks identify candidate regulators in drought-stressed roots of loblolly pine (P. taeda L.)

    Science.gov (United States)

    2011-01-01

    Background Global transcriptional analysis of loblolly pine (Pinus taeda L.) is challenging due to limited molecular tools. PtGen2, a 26,496 feature cDNA microarray, was fabricated and used to assess drought-induced gene expression in loblolly pine propagule roots. Statistical analysis of differential expression and weighted gene correlation network analysis were used to identify drought-responsive genes and further characterize the molecular basis of drought tolerance in loblolly pine. Results Microarrays were used to interrogate root cDNA populations obtained from 12 genotype × treatment combinations (four genotypes, three watering regimes). Comparison of drought-stressed roots with roots from the control treatment identified 2445 genes displaying at least a 1.5-fold expression difference (false discovery rate = 0.01). Genes commonly associated with drought response in pine and other plant species, as well as a number of abiotic and biotic stress-related genes, were up-regulated in drought-stressed roots. Only 76 genes were identified as differentially expressed in drought-recovered roots, indicating that the transcript population can return to the pre-drought state within 48 hours. Gene correlation analysis predicts a scale-free network topology and identifies eleven co-expression modules that ranged in size from 34 to 938 members. Network topological parameters identified a number of central nodes (hubs) including those with significant homology (E-values ≤ 2 × 10-30) to 9-cis-epoxycarotenoid dioxygenase, zeatin O-glucosyltransferase, and ABA-responsive protein. Identified hubs also include genes that have been associated previously with osmotic stress, phytohormones, enzymes that detoxify reactive oxygen species, and several genes of unknown function. Conclusion PtGen2 was used to evaluate transcriptome responses in loblolly pine and was leveraged to identify 2445 differentially expressed genes responding to severe drought stress in roots. Many of the

  12. Targeted next generation sequencing identifies functionally deleterious germline mutations in novel genes in early-onset/familial prostate cancer.

    Directory of Open Access Journals (Sweden)

    Paula Paulo

    2018-04-01

    Full Text Available Considering that mutations in known prostate cancer (PrCa predisposition genes, including those responsible for hereditary breast/ovarian cancer and Lynch syndromes, explain less than 5% of early-onset/familial PrCa, we have sequenced 94 genes associated with cancer predisposition using next generation sequencing (NGS in a series of 121 PrCa patients. We found monoallelic truncating/functionally deleterious mutations in seven genes, including ATM and CHEK2, which have previously been associated with PrCa predisposition, and five new candidate PrCa associated genes involved in cancer predisposing recessive disorders, namely RAD51C, FANCD2, FANCI, CEP57 and RECQL4. Furthermore, using in silico pathogenicity prediction of missense variants among 18 genes associated with breast/ovarian cancer and/or Lynch syndrome, followed by KASP genotyping in 710 healthy controls, we identified "likely pathogenic" missense variants in ATM, BRIP1, CHEK2 and TP53. In conclusion, this study has identified putative PrCa predisposing germline mutations in 14.9% of early-onset/familial PrCa patients. Further data will be necessary to confirm the genetic heterogeneity of inherited PrCa predisposition hinted in this study.

  13. Rapid-throughput skeletal phenotyping of 100 knockout mice identifies 9 new genes that determine bone strength.

    Directory of Open Access Journals (Sweden)

    J H Duncan Bassett

    Full Text Available Osteoporosis is a common polygenic disease and global healthcare priority but its genetic basis remains largely unknown. We report a high-throughput multi-parameter phenotype screen to identify functionally significant skeletal phenotypes in mice generated by the Wellcome Trust Sanger Institute Mouse Genetics Project and discover novel genes that may be involved in the pathogenesis of osteoporosis. The integrated use of primary phenotype data with quantitative x-ray microradiography, micro-computed tomography, statistical approaches and biomechanical testing in 100 unselected knockout mouse strains identified nine new genetic determinants of bone mass and strength. These nine new genes include five whose deletion results in low bone mass and four whose deletion results in high bone mass. None of the nine genes have been implicated previously in skeletal disorders and detailed analysis of the biomechanical consequences of their deletion revealed a novel functional classification of bone structure and strength. The organ-specific and disease-focused strategy described in this study can be applied to any biological system or tractable polygenic disease, thus providing a general basis to define gene function in a system-specific manner. Application of the approach to diseases affecting other physiological systems will help to realize the full potential of the International Mouse Phenotyping Consortium.

  14. Rice Transcriptome Analysis to Identify Possible Herbicide Quinclorac Detoxification Genes

    Directory of Open Access Journals (Sweden)

    Wenying eXu

    2015-09-01

    Full Text Available Quinclorac is a highly selective auxin-type herbicide, and is widely used in the effective control of barnyard grass in paddy rice fields, improving the world’s rice yield. The herbicide mode of action of quinclorac has been proposed and hormone interactions affect quinclorac signaling. Because of widespread use, quinclorac may be transported outside rice fields with the drainage waters, leading to soil and water pollution and environmental health problems.In this study, we used 57K Affymetrix rice whole-genome array to identify quinclorac signaling response genes to study the molecular mechanisms of action and detoxification of quinclorac in rice plants. Overall, 637 probe sets were identified with differential expression levels under either 6 or 24 h of quinclorac treatment. Auxin-related genes such as GH3 and OsIAAs responded to quinclorac treatment. Gene Ontology analysis showed that genes of detoxification-related family genes were significantly enriched, including cytochrome P450, GST, UGT, and ABC and drug transporter genes. Moreover, real-time RT-PCR analysis showed that top candidate P450 families such as CYP81, CYP709C and CYP72A genes were universally induced by different herbicides. Some Arabidopsis genes for the same P450 family were up-regulated under quinclorac treatment.We conduct rice whole-genome GeneChip analysis and the first global identification of quinclorac response genes. This work may provide potential markers for detoxification of quinclorac and biomonitors of environmental chemical pollution.

  15. Genetic screens to identify pathogenic gene variants in the common cancer predisposition Lynch syndrome

    DEFF Research Database (Denmark)

    Drost, Mark; Lützen, Anne; van Hees, Sandrine

    2013-01-01

    In many individuals suspected of the common cancer predisposition Lynch syndrome, variants of unclear significance (VUS), rather than an obviously pathogenic mutations, are identified in one of the DNA mismatch repair (MMR) genes. The uncertainty of whether such VUS inactivate MMR, and therefore...... function. When a residue identified as mutated in an individual suspected of Lynch syndrome is listed as critical in such a reverse diagnosis catalog, there is a high probability that the corresponding human VUS is pathogenic. To investigate the applicability of this approach, we have generated....... Nearly half of these critical residues match with VUS previously identified in individuals suspected of Lynch syndrome. This aids in the assignment of pathogenicity to these human VUS and validates the approach described here as a diagnostic tool. In a wider perspective, this work provides a model...

  16. Comparison of genome-wide selection strategies to identify furfural tolerance genes in Escherichia coli.

    Science.gov (United States)

    Glebes, Tirzah Y; Sandoval, Nicholas R; Gillis, Jacob H; Gill, Ryan T

    2015-01-01

    Engineering both feedstock and product tolerance is important for transitioning towards next-generation biofuels derived from renewable sources. Tolerance to chemical inhibitors typically results in complex phenotypes, for which multiple genetic changes must often be made to confer tolerance. Here, we performed a genome-wide search for furfural-tolerant alleles using the TRackable Multiplex Recombineering (TRMR) method (Warner et al. (2010), Nature Biotechnology), which uses chromosomally integrated mutations directed towards increased or decreased expression of virtually every gene in Escherichia coli. We employed various growth selection strategies to assess the role of selection design towards growth enrichments. We also compared genes with increased fitness from our TRMR selection to those from a previously reported genome-wide identification study of furfural tolerance genes using a plasmid-based genomic library approach (Glebes et al. (2014) PLOS ONE). In several cases, growth improvements were observed for the chromosomally integrated promoter/RBS mutations but not for the plasmid-based overexpression constructs. Through this assessment, four novel tolerance genes, ahpC, yhjH, rna, and dicA, were identified and confirmed for their effect on improving growth in the presence of furfural. © 2014 Wiley Periodicals, Inc.

  17. Genome-wide methylation analysis identifies a core set of hypermethylated genes in CIMP-H colorectal cancer.

    Science.gov (United States)

    McInnes, Tyler; Zou, Donghui; Rao, Dasari S; Munro, Francesca M; Phillips, Vicky L; McCall, John L; Black, Michael A; Reeve, Anthony E; Guilford, Parry J

    2017-03-28

    Aberrant DNA methylation profiles are a characteristic of all known cancer types, epitomized by the CpG island methylator phenotype (CIMP) in colorectal cancer (CRC). Hypermethylation has been observed at CpG islands throughout the genome, but it is unclear which factors determine whether an individual island becomes methylated in cancer. DNA methylation in CRC was analysed using the Illumina HumanMethylation450K array. Differentially methylated loci were identified using Significance Analysis of Microarrays (SAM) and the Wilcoxon Signed Rank (WSR) test. Unsupervised hierarchical clustering was used to identify methylation subtypes in CRC. In this study we characterized the DNA methylation profiles of 94 CRC tissues and their matched normal counterparts. Consistent with previous studies, unsupervized hierarchical clustering of genome-wide methylation data identified three subtypes within the tumour samples, designated CIMP-H, CIMP-L and CIMP-N, that showed high, low and very low methylation levels, respectively. Differential methylation between normal and tumour samples was analysed at the individual CpG level, and at the gene level. The distribution of hypermethylation in CIMP-N tumours showed high inter-tumour variability and appeared to be highly stochastic in nature, whereas CIMP-H tumours exhibited consistent hypermethylation at a subset of genes, in addition to a highly variable background of hypermethylated genes. EYA4, TFPI2 and TLX1 were hypermethylated in more than 90% of all tumours examined. One-hundred thirty-two genes were hypermethylated in 100% of CIMP-H tumours studied and these were highly enriched for functions relating to skeletal system development (Bonferroni adjusted p value =2.88E-15), segment specification (adjusted p value =9.62E-11), embryonic development (adjusted p value =1.52E-04), mesoderm development (adjusted p value =1.14E-20), and ectoderm development (adjusted p value =7.94E-16). Our genome-wide characterization of DNA

  18. Association between previously identified loci affecting telomere length and coronary heart disease (CHD in Han Chinese population

    Directory of Open Access Journals (Sweden)

    Ding H

    2014-05-01

    Full Text Available Hui Ding,1 Fen Yan,1 Lin-Lin Zhou,2 Xiu-Hai Ji,3 Xin-Nan Gu,1 Zhi-Wei Tang,1 Ru-Hua Chen11Department of Pulmonary Medicine, The Affiliated Yixing People's Hospital, Jiangsu University, Zhenjiang, Jiangsu Province, 2Department of Cardiology, Affiliated Cixi Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, 3Department of Oncology, Affiliated Taicang Hospital of Traditional Chinese Medicine, Suzhou, Jiangsu Province, People's Republic of ChinaPurpose: To replicate previously confirmed telomere-length loci in a Chinese Han population with coronary heart disease (CHD, and investigate these loci and the possibility of and age at onset of CHD.Patients and methods: 1514 CHD patients and 2470 normal controls were recruited. Medical data including age, sex, body mass index, lipid profiles, history of hypertension, type 2 diabetes mellitus, and dyslipidemia were collected from all the participants. Seven previously identified single-nucleotide polymorphisms (SNPs related to leucocyte telomere length were genotyped, including rs10936599 in TERC, rs2736100 in TERT, rs7675998 in NAF1, rs9420907 in OBFC1, rs8105767 in ZNF208, rs755017 in RTEL1, and rs11125529 in ACYP2.Results: No significant difference in genotype frequencies from the Hardy–Weinberg equilibrium test was noted for all tested SNPs both in the CHD patients and the normal controls. No polymorphism was observed for rs9420907, and AA genotype was noted in both the CHD patients and the controls. Neither the genotype nor the allele frequencies of rs2736100, rs8105767, rs11125529, and rs2967374 were significantly different between the CHD patients and the normal controls. For rs10936599 and rs755017, statistical difference was found for the allele frequency but not genotype. Distributions of genotype and allele were significantly different between the two groups for rs7675998. The odds ratio for carriers of CHD was 2.127 (95% confidence interval: 1.909–2.370 for the A allele of rs

  19. Identifying new susceptibility genes on dopaminergic and serotonergic pathways for the framing effect in decision-making.

    Science.gov (United States)

    Gao, Xiaoxue; Liu, Jinting; Gong, Pingyuan; Wang, Junhui; Fang, Wan; Yan, Hongming; Zhu, Lusha; Zhou, Xiaolin

    2017-09-01

    The framing effect refers the tendency to be risk-averse when options are presented positively but be risk-seeking when the same options are presented negatively during decision-making. This effect has been found to be modulated by the serotonin transporter gene (SLC6A4) and the catechol-o-methyltransferase gene (COMT) polymorphisms, which are on the dopaminergic and serotonergic pathways and which are associated with affective processing. The current study aimed to identify new genetic variations of genes on dopaminergic and serotonergic pathways that may contribute to individual differences in the susceptibility to framing. Using genome-wide association data and the gene-based principal components regression method, we examined genetic variations of 26 genes on the pathways in 1317 Chinese Han participants. Consistent with previous studies, we found that the genetic variations of the SLC6A4 gene and the COMT gene were associated with the framing effect. More importantly, we demonstrated that the genetic variations of the aromatic-L-amino-acid decarboxylase (DDC) gene, which is involved in the synthesis of both dopamine and serotonin, contributed to individual differences in the susceptibility to framing. Our findings shed light on the understanding of the genetic basis of affective decision-making. © The Author (2017). Published by Oxford University Press.

  20. Identifying new susceptibility genes on dopaminergic and serotonergic pathways for the framing effect in decision-making

    Science.gov (United States)

    Gao, Xiaoxue; Liu, Jinting; Gong, Pingyuan; Wang, Junhui; Fang, Wan; Yan, Hongming; Zhu, Lusha

    2017-01-01

    Abstract The framing effect refers the tendency to be risk-averse when options are presented positively but be risk-seeking when the same options are presented negatively during decision-making. This effect has been found to be modulated by the serotonin transporter gene (SLC6A4) and the catechol-o-methyltransferase gene (COMT) polymorphisms, which are on the dopaminergic and serotonergic pathways and which are associated with affective processing. The current study aimed to identify new genetic variations of genes on dopaminergic and serotonergic pathways that may contribute to individual differences in the susceptibility to framing. Using genome-wide association data and the gene-based principal components regression method, we examined genetic variations of 26 genes on the pathways in 1317 Chinese Han participants. Consistent with previous studies, we found that the genetic variations of the SLC6A4 gene and the COMT gene were associated with the framing effect. More importantly, we demonstrated that the genetic variations of the aromatic-L-amino-acid decarboxylase (DDC) gene, which is involved in the synthesis of both dopamine and serotonin, contributed to individual differences in the susceptibility to framing. Our findings shed light on the understanding of the genetic basis of affective decision-making. PMID:28431168

  1. APRIL is a novel clinical chemo-resistance biomarker in colorectal adenocarcinoma identified by gene expression profiling

    International Nuclear Information System (INIS)

    Petty, Russell D; Wang, Weiguang; Gilbert, Fiona; Semple, Scot; Collie-Duguid, Elaina SR; Samuel, Leslie M; Murray, Graeme I; MacDonald, Graham; O'Kelly, Terrence; Loudon, Malcolm; Binnie, Norman; Aly, Emad; McKinlay, Aileen

    2009-01-01

    5-Fluorouracil(5FU) and oral analogues, such as capecitabine, remain one of the most useful agents for the treatment of colorectal adenocarcinoma. Low toxicity and convenience of administration facilitate use, however clinical resistance is a major limitation. Investigation has failed to fully explain the molecular mechanisms of resistance and no clinically useful predictive biomarkers for 5FU resistance have been identified. We investigated the molecular mechanisms of clinical 5FU resistance in colorectal adenocarcinoma patients in a prospective biomarker discovery project utilising gene expression profiling. The aim was to identify novel 5FU resistance mechanisms and qualify these as candidate biomarkers and therapeutic targets. Putative treatment specific gene expression changes were identified in a transcriptomics study of rectal adenocarcinomas, biopsied and profiled before and after pre-operative short-course radiotherapy or 5FU based chemo-radiotherapy, using microarrays. Tumour from untreated controls at diagnosis and resection identified treatment-independent gene expression changes. Candidate 5FU chemo-resistant genes were identified by comparison of gene expression data sets from these clinical specimens with gene expression signatures from our previous studies of colorectal cancer cell lines, where parental and daughter lines resistant to 5FU were compared. A colorectal adenocarcinoma tissue microarray (n = 234, resected tumours) was used as an independent set to qualify candidates thus identified. APRIL/TNFSF13 mRNA was significantly upregulated following 5FU based concurrent chemo-radiotherapy and in 5FU resistant colorectal adenocarcinoma cell lines but not in radiotherapy alone treated colorectal adenocarcinomas. Consistent withAPRIL's known function as an autocrine or paracrine secreted molecule, stromal but not tumour cell protein expression by immunohistochemistry was correlated with poor prognosis (p = 0.019) in the independent set

  2. The Integrative Method Based on the Module-Network for Identifying Driver Genes in Cancer Subtypes

    Directory of Open Access Journals (Sweden)

    Xinguo Lu

    2018-01-01

    Full Text Available With advances in next-generation sequencing(NGS technologies, a large number of multiple types of high-throughput genomics data are available. A great challenge in exploring cancer progression is to identify the driver genes from the variant genes by analyzing and integrating multi-types genomics data. Breast cancer is known as a heterogeneous disease. The identification of subtype-specific driver genes is critical to guide the diagnosis, assessment of prognosis and treatment of breast cancer. We developed an integrated frame based on gene expression profiles and copy number variation (CNV data to identify breast cancer subtype-specific driver genes. In this frame, we employed statistical machine-learning method to select gene subsets and utilized an module-network analysis method to identify potential candidate driver genes. The final subtype-specific driver genes were acquired by paired-wise comparison in subtypes. To validate specificity of the driver genes, the gene expression data of these genes were applied to classify the patient samples with 10-fold cross validation and the enrichment analysis were also conducted on the identified driver genes. The experimental results show that the proposed integrative method can identify the potential driver genes and the classifier with these genes acquired better performance than with genes identified by other methods.

  3. Gene expression patterns combined with network analysis identify hub genes associated with bladder cancer.

    Science.gov (United States)

    Bi, Dongbin; Ning, Hao; Liu, Shuai; Que, Xinxiang; Ding, Kejia

    2015-06-01

    To explore molecular mechanisms of bladder cancer (BC), network strategy was used to find biomarkers for early detection and diagnosis. The differentially expressed genes (DEGs) between bladder carcinoma patients and normal subjects were screened using empirical Bayes method of the linear models for microarray data package. Co-expression networks were constructed by differentially co-expressed genes and links. Regulatory impact factors (RIF) metric was used to identify critical transcription factors (TFs). The protein-protein interaction (PPI) networks were constructed by the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and clusters were obtained through molecular complex detection (MCODE) algorithm. Centralities analyses for complex networks were performed based on degree, stress and betweenness. Enrichment analyses were performed based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Co-expression networks and TFs (based on expression data of global DEGs and DEGs in different stages and grades) were identified. Hub genes of complex networks, such as UBE2C, ACTA2, FABP4, CKS2, FN1 and TOP2A, were also obtained according to analysis of degree. In gene enrichment analyses of global DEGs, cell adhesion, proteinaceous extracellular matrix and extracellular matrix structural constituent were top three GO terms. ECM-receptor interaction, focal adhesion, and cell cycle were significant pathways. Our results provide some potential underlying biomarkers of BC. However, further validation is required and deep studies are needed to elucidate the pathogenesis of BC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. A search engine to identify pathway genes from expression data on multiple organisms

    Directory of Open Access Journals (Sweden)

    Zambon Alexander C

    2007-05-01

    Full Text Available Abstract Background The completion of several genome projects showed that most genes have not yet been characterized, especially in multicellular organisms. Although most genes have unknown functions, a large collection of data is available describing their transcriptional activities under many different experimental conditions. In many cases, the coregulatation of a set of genes across a set of conditions can be used to infer roles for genes of unknown function. Results We developed a search engine, the Multiple-Species Gene Recommender (MSGR, which scans gene expression datasets from multiple organisms to identify genes that participate in a genetic pathway. The MSGR takes a query consisting of a list of genes that function together in a genetic pathway from one of six organisms: Homo sapiens, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae, Arabidopsis thaliana, and Helicobacter pylori. Using a probabilistic method to merge searches, the MSGR identifies genes that are significantly coregulated with the query genes in one or more of those organisms. The MSGR achieves its highest accuracy for many human pathways when searches are combined across species. We describe specific examples in which new genes were identified to be involved in a neuromuscular signaling pathway and a cell-adhesion pathway. Conclusion The search engine can scan large collections of gene expression data for new genes that are significantly coregulated with a pathway of interest. By integrating searches across organisms, the MSGR can identify pathway members whose coregulation is either ancient or newly evolved.

  5. Diversity of reductive dehalogenase genes from environmental samples and enrichment cultures identified with degenerate primer PCR screens.

    Directory of Open Access Journals (Sweden)

    Laura Audrey Hug

    2013-11-01

    Full Text Available Reductive dehalogenases are the critical enzymes for anaerobic organohalide respiration, a microbial metabolic process that has been harnessed for bioremediation efforts to resolve chlorinated solvent contamination in groundwater and is implicated in the global halogen cycle. Reductive dehalogenase sequence diversity is informative for the dechlorination potential of the site or enrichment culture. A suite of degenerate PCR primers targeting a comprehensive curated set of reductive dehalogenase genes was designed and applied to twelve DNA samples extracted from contaminated and pristine sites, as well as six enrichment cultures capable of reducing chlorinated compounds to non-toxic end-products. The amplified gene products from four environmental sites and two enrichment cultures were sequenced using Illumina HiSeq, and the reductive dehalogenase complement of each sample determined. The results indicate that the diversity of the reductive dehalogenase gene family is much deeper than is currently accounted for: one-third of the translated proteins have less than 70% pairwise amino acid identity to database sequences. Approximately 60% of the sequenced reductive dehalogenase genes were broadly distributed, being identified in four or more samples, and often in previously sequenced genomes as well. In contrast, 17% of the sequenced reductive dehalogenases were unique, present in only a single sample and bearing less than 90% pairwise amino acid identity to any previously identified proteins. Many of the broadly distributed reductive dehalogenases are uncharacterized in terms of their substrate specificity, making these intriguing targets for further biochemical experimentation. Finally, comparison of samples from a contaminated site and an enrichment culture derived from the same site eight years prior allowed examination of the effect of the enrichment process.

  6. Gene expression profile identifies potential biomarkers for human intervertebral disc degeneration.

    Science.gov (United States)

    Guo, Wei; Zhang, Bin; Li, Yan; Duan, Hui-Quan; Sun, Chao; Xu, Yun-Qiang; Feng, Shi-Qing

    2017-12-01

    The present study aimed to reveal the potential genes associated with the pathogenesis of intervertebral disc degeneration (IDD) by analyzing microarray data using bioinformatics. Gene expression profiles of two regions of the intervertebral disc were compared between patients with IDD and controls. GSE70362 containing two groups of gene expression profiles, 16 nucleus pulposus (NP) samples from patients with IDD and 8 from controls, and 16 annulus fibrosus (AF) samples from patients with IDD and 8 from controls, was downloaded from the Gene Expression Omnibus database. A total of 93 and 114 differentially expressed genes (DEGs) were identified in NP and AF samples, respectively, using a limma software package for the R programming environment. Gene Ontology (GO) function enrichment analysis was performed to identify the associated biological functions of DEGs in IDD, which indicated that the DEGs may be involved in various processes, including cell adhesion, biological adhesion and extracellular matrix organization. Pathway enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) demonstrated that the identified DEGs were potentially involved in focal adhesion and the p53 signaling pathway. Further analysis revealed that there were 35 common DEGs observed between the two regions (NP and AF), which may be further regulated by 6 clusters of microRNAs (miRNAs) retrieved with WebGestalt. The genes in the DEG‑miRNA regulatory network were annotated using GO function and KEGG pathway enrichment analysis, among which extracellular matrix organization was the most significant disrupted biological process and focal adhesion was the most significant dysregulated pathway. In addition, the result of protein‑protein interaction network modules demonstrated the involvement of inflammatory cytokine interferon signaling in IDD. These findings may not only advance the understanding of the pathogenesis of IDD, but also identify novel potential

  7. Link-based quantitative methods to identify differentially coexpressed genes and gene Pairs

    Directory of Open Access Journals (Sweden)

    Ye Zhi-Qiang

    2011-08-01

    Full Text Available Abstract Background Differential coexpression analysis (DCEA is increasingly used for investigating the global transcriptional mechanisms underlying phenotypic changes. Current DCEA methods mostly adopt a gene connectivity-based strategy to estimate differential coexpression, which is characterized by comparing the numbers of gene neighbors in different coexpression networks. Although it simplifies the calculation, this strategy mixes up the identities of different coexpression neighbors of a gene, and fails to differentiate significant differential coexpression changes from those trivial ones. Especially, the correlation-reversal is easily missed although it probably indicates remarkable biological significance. Results We developed two link-based quantitative methods, DCp and DCe, to identify differentially coexpressed genes and gene pairs (links. Bearing the uniqueness of exploiting the quantitative coexpression change of each gene pair in the coexpression networks, both methods proved to be superior to currently popular methods in simulation studies. Re-mining of a publicly available type 2 diabetes (T2D expression dataset from the perspective of differential coexpression analysis led to additional discoveries than those from differential expression analysis. Conclusions This work pointed out the critical weakness of current popular DCEA methods, and proposed two link-based DCEA algorithms that will make contribution to the development of DCEA and help extend it to a broader spectrum.

  8. ICan: an integrated co-alteration network to identify ovarian cancer-related genes.

    Science.gov (United States)

    Zhou, Yuanshuai; Liu, Yongjing; Li, Kening; Zhang, Rui; Qiu, Fujun; Zhao, Ning; Xu, Yan

    2015-01-01

    Over the last decade, an increasing number of integrative studies on cancer-related genes have been published. Integrative analyses aim to overcome the limitation of a single data type, and provide a more complete view of carcinogenesis. The vast majority of these studies used sample-matched data of gene expression and copy number to investigate the impact of copy number alteration on gene expression, and to predict and prioritize candidate oncogenes and tumor suppressor genes. However, correlations between genes were neglected in these studies. Our work aimed to evaluate the co-alteration of copy number, methylation and expression, allowing us to identify cancer-related genes and essential functional modules in cancer. We built the Integrated Co-alteration network (ICan) based on multi-omics data, and analyzed the network to uncover cancer-related genes. After comparison with random networks, we identified 155 ovarian cancer-related genes, including well-known (TP53, BRCA1, RB1 and PTEN) and also novel cancer-related genes, such as PDPN and EphA2. We compared the results with a conventional method: CNAmet, and obtained a significantly better area under the curve value (ICan: 0.8179, CNAmet: 0.5183). In this paper, we describe a framework to find cancer-related genes based on an Integrated Co-alteration network. Our results proved that ICan could precisely identify candidate cancer genes and provide increased mechanistic understanding of carcinogenesis. This work suggested a new research direction for biological network analyses involving multi-omics data.

  9. A graph-search framework for associating gene identifiers with documents

    Directory of Open Access Journals (Sweden)

    Cohen William W

    2006-10-01

    Full Text Available Abstract Background One step in the model organism database curation process is to find, for each article, the identifier of every gene discussed in the article. We consider a relaxation of this problem suitable for semi-automated systems, in which each article is associated with a ranked list of possible gene identifiers, and experimentally compare methods for solving this geneId ranking problem. In addition to baseline approaches based on combining named entity recognition (NER systems with a "soft dictionary" of gene synonyms, we evaluate a graph-based method which combines the outputs of multiple NER systems, as well as other sources of information, and a learning method for reranking the output of the graph-based method. Results We show that named entity recognition (NER systems with similar F-measure performance can have significantly different performance when used with a soft dictionary for geneId-ranking. The graph-based approach can outperform any of its component NER systems, even without learning, and learning can further improve the performance of the graph-based ranking approach. Conclusion The utility of a named entity recognition (NER system for geneId-finding may not be accurately predicted by its entity-level F1 performance, the most common performance measure. GeneId-ranking systems are best implemented by combining several NER systems. With appropriate combination methods, usefully accurate geneId-ranking systems can be constructed based on easily-available resources, without resorting to problem-specific, engineered components.

  10. Identifying essential genes in bacterial metabolic networks with machine learning methods

    Science.gov (United States)

    2010-01-01

    Background Identifying essential genes in bacteria supports to identify potential drug targets and an understanding of minimal requirements for a synthetic cell. However, experimentally assaying the essentiality of their coding genes is resource intensive and not feasible for all bacterial organisms, in particular if they are infective. Results We developed a machine learning technique to identify essential genes using the experimental data of genome-wide knock-out screens from one bacterial organism to infer essential genes of another related bacterial organism. We used a broad variety of topological features, sequence characteristics and co-expression properties potentially associated with essentiality, such as flux deviations, centrality, codon frequencies of the sequences, co-regulation and phyletic retention. An organism-wise cross-validation on bacterial species yielded reliable results with good accuracies (area under the receiver-operator-curve of 75% - 81%). Finally, it was applied to drug target predictions for Salmonella typhimurium. We compared our predictions to the viability of experimental knock-outs of S. typhimurium and identified 35 enzymes, which are highly relevant to be considered as potential drug targets. Specifically, we detected promising drug targets in the non-mevalonate pathway. Conclusions Using elaborated features characterizing network topology, sequence information and microarray data enables to predict essential genes from a bacterial reference organism to a related query organism without any knowledge about the essentiality of genes of the query organism. In general, such a method is beneficial for inferring drug targets when experimental data about genome-wide knockout screens is not available for the investigated organism. PMID:20438628

  11. Mutational analysis of EGFR and related signaling pathway genes in lung adenocarcinomas identifies a novel somatic kinase domain mutation in FGFR4.

    Directory of Open Access Journals (Sweden)

    Jenifer L Marks

    2007-05-01

    Full Text Available Fifty percent of lung adenocarcinomas harbor somatic mutations in six genes that encode proteins in the EGFR signaling pathway, i.e., EGFR, HER2/ERBB2, HER4/ERBB4, PIK3CA, BRAF, and KRAS. We performed mutational profiling of a large cohort of lung adenocarcinomas to uncover other potential somatic mutations in genes of this signaling pathway that could contribute to lung tumorigenesis.We analyzed genomic DNA from a total of 261 resected, clinically annotated non-small cell lung cancer (NSCLC specimens. The coding sequences of 39 genes were screened for somatic mutations via high-throughput dideoxynucleotide sequencing of PCR-amplified gene products. Mutations were considered to be somatic only if they were found in an independent tumor-derived PCR product but not in matched normal tissue. Sequencing of 9MB of tumor sequence identified 239 putative genetic variants. We further examined 22 variants found in RAS family genes and 135 variants localized to exons encoding the kinase domain of respective proteins. We identified a total of 37 non-synonymous somatic mutations; 36 were found collectively in EGFR, KRAS, BRAF, and PIK3CA. One somatic mutation was a previously unreported mutation in the kinase domain (exon 16 of FGFR4 (Glu681Lys, identified in 1 of 158 tumors. The FGFR4 mutation is analogous to a reported tumor-specific somatic mutation in ERBB2 and is located in the same exon as a previously reported kinase domain mutation in FGFR4 (Pro712Thr in a lung adenocarcinoma cell line.This study is one of the first comprehensive mutational analyses of major genes in a specific signaling pathway in a sizeable cohort of lung adenocarcinomas. Our results suggest the majority of gain-of-function mutations within kinase genes in the EGFR signaling pathway have already been identified. Our findings also implicate FGFR4 in the pathogenesis of a subset of lung adenocarcinomas.

  12. Meta-analysis of Drosophila circadian microarray studies identifies a novel set of rhythmically expressed genes.

    Directory of Open Access Journals (Sweden)

    Kevin P Keegan

    2007-11-01

    Full Text Available Five independent groups have reported microarray studies that identify dozens of rhythmically expressed genes in the fruit fly Drosophila melanogaster. Limited overlap among the lists of discovered genes makes it difficult to determine which, if any, exhibit truly rhythmic patterns of expression. We reanalyzed data from all five reports and found two sources for the observed discrepancies, the use of different expression pattern detection algorithms and underlying variation among the datasets. To improve upon the methods originally employed, we developed a new analysis that involves compilation of all existing data, application of identical transformation and standardization procedures followed by ANOVA-based statistical prescreening, and three separate classes of post hoc analysis: cross-correlation to various cycling waveforms, autocorrelation, and a previously described fast Fourier transform-based technique. Permutation-based statistical tests were used to derive significance measures for all post hoc tests. We find application of our method, most significantly the ANOVA prescreening procedure, significantly reduces the false discovery rate relative to that observed among the results of the original five reports while maintaining desirable statistical power. We identify a set of 81 cycling transcripts previously found in one or more of the original reports as well as a novel set of 133 transcripts not found in any of the original studies. We introduce a novel analysis method that compensates for variability observed among the original five Drosophila circadian array reports. Based on the statistical fidelity of our meta-analysis results, and the results of our initial validation experiments (quantitative RT-PCR, we predict many of our newly found genes to be bona fide cyclers, and suggest that they may lead to new insights into the pathways through which clock mechanisms regulate behavioral rhythms.

  13. Gene expression profiling and candidate gene resequencing identifies pathways and mutations important for malignant transformation caused by leukemogenic fusion genes.

    Science.gov (United States)

    Novak, Rachel L; Harper, David P; Caudell, David; Slape, Christopher; Beachy, Sarah H; Aplan, Peter D

    2012-12-01

    NUP98-HOXD13 (NHD13) and CALM-AF10 (CA10) are oncogenic fusion proteins produced by recurrent chromosomal translocations in patients with acute myeloid leukemia (AML). Transgenic mice that express these fusions develop AML with a long latency and incomplete penetrance, suggesting that collaborating genetic events are required for leukemic transformation. We employed genetic techniques to identify both preleukemic abnormalities in healthy transgenic mice as well as collaborating events leading to leukemic transformation. Candidate gene resequencing revealed that 6 of 27 (22%) CA10 AMLs spontaneously acquired a Ras pathway mutation and 8 of 27 (30%) acquired an Flt3 mutation. Two CA10 AMLs acquired an Flt3 internal-tandem duplication, demonstrating that these mutations can be acquired in murine as well as human AML. Gene expression profiles revealed a marked upregulation of Hox genes, particularly Hoxa5, Hoxa9, and Hoxa10 in both NHD13 and CA10 mice. Furthermore, mir196b, which is embedded within the Hoxa locus, was overexpressed in both CA10 and NHD13 samples. In contrast, the Hox cofactors Meis1 and Pbx3 were differentially expressed; Meis1 was increased in CA10 AMLs but not NHD13 AMLs, whereas Pbx3 was consistently increased in NHD13 but not CA10 AMLs. Silencing of Pbx3 in NHD13 cells led to decreased proliferation, increased apoptosis, and decreased colony formation in vitro, suggesting a previously unexpected role for Pbx3 in leukemic transformation. Published by Elsevier Inc.

  14. Large-scale functional RNAi screen in C. elegans identifies genes that regulate the dysfunction of mutant polyglutamine neurons.

    Science.gov (United States)

    Lejeune, François-Xavier; Mesrob, Lilia; Parmentier, Frédéric; Bicep, Cedric; Vazquez-Manrique, Rafael P; Parker, J Alex; Vert, Jean-Philippe; Tourette, Cendrine; Neri, Christian

    2012-03-13

    A central goal in Huntington's disease (HD) research is to identify and prioritize candidate targets for neuroprotective intervention, which requires genome-scale information on the modifiers of early-stage neuron injury in HD. Here, we performed a large-scale RNA interference screen in C. elegans strains that express N-terminal huntingtin (htt) in touch receptor neurons. These neurons control the response to light touch. Their function is strongly impaired by expanded polyglutamines (128Q) as shown by the nearly complete loss of touch response in adult animals, providing an in vivo model in which to manipulate the early phases of expanded-polyQ neurotoxicity. In total, 6034 genes were examined, revealing 662 gene inactivations that either reduce or aggravate defective touch response in 128Q animals. Several genes were previously implicated in HD or neurodegenerative disease, suggesting that this screen has effectively identified candidate targets for HD. Network-based analysis emphasized a subset of high-confidence modifier genes in pathways of interest in HD including metabolic, neurodevelopmental and pro-survival pathways. Finally, 49 modifiers of 128Q-neuron dysfunction that are dysregulated in the striatum of either R/2 or CHL2 HD mice, or both, were identified. Collectively, these results highlight the relevance to HD pathogenesis, providing novel information on the potential therapeutic targets for neuroprotection in HD. © 2012 Lejeune et al; licensee BioMed Central Ltd.

  15. Gene-Based Genome-Wide Association Analysis in European and Asian Populations Identified Novel Genes for Rheumatoid Arthritis.

    Directory of Open Access Journals (Sweden)

    Hong Zhu

    Full Text Available Rheumatoid arthritis (RA is a complex autoimmune disease. Using a gene-based association research strategy, the present study aims to detect unknown susceptibility to RA and to address the ethnic differences in genetic susceptibility to RA between European and Asian populations.Gene-based association analyses were performed with KGG 2.5 by using publicly available large RA datasets (14,361 RA cases and 43,923 controls of European subjects, 4,873 RA cases and 17,642 controls of Asian Subjects. For the newly identified RA-associated genes, gene set enrichment analyses and protein-protein interactions analyses were carried out with DAVID and STRING version 10.0, respectively. Differential expression verification was conducted using 4 GEO datasets. The expression levels of three selected 'highly verified' genes were measured by ELISA among our in-house RA cases and controls.A total of 221 RA-associated genes were newly identified by gene-based association study, including 71'overlapped', 76 'European-specific' and 74 'Asian-specific' genes. Among them, 105 genes had significant differential expressions between RA patients and health controls at least in one dataset, especially for 20 genes including 11 'overlapped' (ABCF1, FLOT1, HLA-F, IER3, TUBB, ZKSCAN4, BTN3A3, HSP90AB1, CUTA, BRD2, HLA-DMA, 5 'European-specific' (PHTF1, RPS18, BAK1, TNFRSF14, SUOX and 4 'Asian-specific' (RNASET2, HFE, BTN2A2, MAPK13 genes whose differential expressions were significant at least in three datasets. The protein expressions of two selected genes FLOT1 (P value = 1.70E-02 and HLA-DMA (P value = 4.70E-02 in plasma were significantly different in our in-house samples.Our study identified 221 novel RA-associated genes and especially highlighted the importance of 20 candidate genes on RA. The results addressed ethnic genetic background differences for RA susceptibility between European and Asian populations and detected a long list of overlapped or ethnic specific RA

  16. High-resolution linkage analyses to identify genes that influence Varroa sensitive hygiene behavior in honey bees.

    Science.gov (United States)

    Tsuruda, Jennifer M; Harris, Jeffrey W; Bourgeois, Lanie; Danka, Robert G; Hunt, Greg J

    2012-01-01

    Varroa mites (V. destructor) are a major threat to honey bees (Apis melilfera) and beekeeping worldwide and likely lead to colony decline if colonies are not treated. Most treatments involve chemical control of the mites; however, Varroa has evolved resistance to many of these miticides, leaving beekeepers with a limited number of alternatives. A non-chemical control method is highly desirable for numerous reasons including lack of chemical residues and decreased likelihood of resistance. Varroa sensitive hygiene behavior is one of two behaviors identified that are most important for controlling the growth of Varroa populations in bee hives. To identify genes influencing this trait, a study was conducted to map quantitative trait loci (QTL). Individual workers of a backcross family were observed and evaluated for their VSH behavior in a mite-infested observation hive. Bees that uncapped or removed pupae were identified. The genotypes for 1,340 informative single nucleotide polymorphisms were used to construct a high-resolution genetic map and interval mapping was used to analyze the association of the genotypes with the performance of Varroa sensitive hygiene. We identified one major QTL on chromosome 9 (LOD score = 3.21) and a suggestive QTL on chromosome 1 (LOD = 1.95). The QTL confidence interval on chromosome 9 contains the gene 'no receptor potential A' and a dopamine receptor. 'No receptor potential A' is involved in vision and olfaction in Drosophila, and dopamine signaling has been previously shown to be required for aversive olfactory learning in honey bees, which is probably necessary for identifying mites within brood cells. Further studies on these candidate genes may allow for breeding bees with this trait using marker-assisted selection.

  17. Identifying Candidate Reprogramming Genes in Mouse Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Gao, Fang; Li, Jingyu; Zhang, Heng; Yang, Xu; An, Tiezhu

    2017-08-01

    Factor-based induced reprogramming approaches have tremendous potential for human regenerative medicine, but the efficiencies of these approaches are still low. In this study, we analyzed the global transcriptional profiles of mouse induced pluripotent stem cells (miPSCs) and mouse embryonic stem cells (mESCs) from seven different labs and present here the first successful clustering according to cell type, not by lab of origin. We identified 2131 different expression genes (DEs) as candidate pluripotency-associated genes by comparing mESCs/miPSCs with somatic cells and 720 DEs between miPSCs and mESCs. Interestingly, there was a significant overlap between the two DE sets. Therefore, we defined the overlap DEs as "consensus DEs" including 313 miPSC-specific genes expressed at a higher level in miPSCs versus mESCs and 184 mESC-specific genes in total and reasoned that these may contribute to the differences in pluripotency between mESCs and miPSCs. A classification of "consensus DEs" according to their different expression levels between somatic cells and mESCs/miPSCs shows that 86% of the miPSC-specific genes are more highly expressed in somatic cells, while 73% of mESC-specific genes are highly expressed in mESCs/miPSCs, indicating that the miPSCs have not efficiently silenced the expression pattern of the somatic cells from which they are derived and failed to completely induce the genes with high expression levels in mESCs. We further revealed a strong correlation between oocyte-enriched factors and insufficiently induced mESC-specific genes and identified 11 hub genes via network analysis. In light of these findings, we postulated that these key hub genes might not only drive somatic cell nuclear transfer (SCNT) reprogramming but also augment the efficiency and quality of miPSC reprogramming.

  18. Extracting gene expression patterns and identifying co-expressed genes from microarray data reveals biologically responsive processes

    Directory of Open Access Journals (Sweden)

    Paules Richard S

    2007-11-01

    Full Text Available Abstract Background A common observation in the analysis of gene expression data is that many genes display similarity in their expression patterns and therefore appear to be co-regulated. However, the variation associated with microarray data and the complexity of the experimental designs make the acquisition of co-expressed genes a challenge. We developed a novel method for Extracting microarray gene expression Patterns and Identifying co-expressed Genes, designated as EPIG. The approach utilizes the underlying structure of gene expression data to extract patterns and identify co-expressed genes that are responsive to experimental conditions. Results Through evaluation of the correlations among profiles, the magnitude of variation in gene expression profiles, and profile signal-to-noise ratio's, EPIG extracts a set of patterns representing co-expressed genes. The method is shown to work well with a simulated data set and microarray data obtained from time-series studies of dauer recovery and L1 starvation in C. elegans and after ultraviolet (UV or ionizing radiation (IR-induced DNA damage in diploid human fibroblasts. With the simulated data set, EPIG extracted the appropriate number of patterns which were more stable and homogeneous than the set of patterns that were determined using the CLICK or CAST clustering algorithms. However, CLICK performed better than EPIG and CAST with respect to the average correlation between clusters/patterns of the simulated data. With real biological data, EPIG extracted more dauer-specific patterns than CLICK. Furthermore, analysis of the IR/UV data revealed 18 unique patterns and 2661 genes out of approximately 17,000 that were identified as significantly expressed and categorized to the patterns by EPIG. The time-dependent patterns displayed similar and dissimilar responses between IR and UV treatments. Gene Ontology analysis applied to each pattern-related subset of co-expressed genes revealed underlying

  19. Integration of multiple networks and pathways identifies cancer driver genes in pan-cancer analysis.

    Science.gov (United States)

    Cava, Claudia; Bertoli, Gloria; Colaprico, Antonio; Olsen, Catharina; Bontempi, Gianluca; Castiglioni, Isabella

    2018-01-06

    Modern high-throughput genomic technologies represent a comprehensive hallmark of molecular changes in pan-cancer studies. Although different cancer gene signatures have been revealed, the mechanism of tumourigenesis has yet to be completely understood. Pathways and networks are important tools to explain the role of genes in functional genomic studies. However, few methods consider the functional non-equal roles of genes in pathways and the complex gene-gene interactions in a network. We present a novel method in pan-cancer analysis that identifies de-regulated genes with a functional role by integrating pathway and network data. A pan-cancer analysis of 7158 tumour/normal samples from 16 cancer types identified 895 genes with a central role in pathways and de-regulated in cancer. Comparing our approach with 15 current tools that identify cancer driver genes, we found that 35.6% of the 895 genes identified by our method have been found as cancer driver genes with at least 2/15 tools. Finally, we applied a machine learning algorithm on 16 independent GEO cancer datasets to validate the diagnostic role of cancer driver genes for each cancer. We obtained a list of the top-ten cancer driver genes for each cancer considered in this study. Our analysis 1) confirmed that there are several known cancer driver genes in common among different types of cancer, 2) highlighted that cancer driver genes are able to regulate crucial pathways.

  20. Identifying and Analyzing Novel Epilepsy-Related Genes Using Random Walk with Restart Algorithm

    Directory of Open Access Journals (Sweden)

    Wei Guo

    2017-01-01

    Full Text Available As a pathological condition, epilepsy is caused by abnormal neuronal discharge in brain which will temporarily disrupt the cerebral functions. Epilepsy is a chronic disease which occurs in all ages and would seriously affect patients’ personal lives. Thus, it is highly required to develop effective medicines or instruments to treat the disease. Identifying epilepsy-related genes is essential in order to understand and treat the disease because the corresponding proteins encoded by the epilepsy-related genes are candidates of the potential drug targets. In this study, a pioneering computational workflow was proposed to predict novel epilepsy-related genes using the random walk with restart (RWR algorithm. As reported in the literature RWR algorithm often produces a number of false positive genes, and in this study a permutation test and functional association tests were implemented to filter the genes identified by RWR algorithm, which greatly reduce the number of suspected genes and result in only thirty-three novel epilepsy genes. Finally, these novel genes were analyzed based upon some recently published literatures. Our findings implicate that all novel genes were closely related to epilepsy. It is believed that the proposed workflow can also be applied to identify genes related to other diseases and deepen our understanding of the mechanisms of these diseases.

  1. A 6-gene signature identifies four molecular subgroups of neuroblastoma

    Science.gov (United States)

    2011-01-01

    Background There are currently three postulated genomic subtypes of the childhood tumour neuroblastoma (NB); Type 1, Type 2A, and Type 2B. The most aggressive forms of NB are characterized by amplification of the oncogene MYCN (MNA) and low expression of the favourable marker NTRK1. Recently, mutations or high expression of the familial predisposition gene Anaplastic Lymphoma Kinase (ALK) was associated to unfavourable biology of sporadic NB. Also, various other genes have been linked to NB pathogenesis. Results The present study explores subgroup discrimination by gene expression profiling using three published microarray studies on NB (47 samples). Four distinct clusters were identified by Principal Components Analysis (PCA) in two separate data sets, which could be verified by an unsupervised hierarchical clustering in a third independent data set (101 NB samples) using a set of 74 discriminative genes. The expression signature of six NB-associated genes ALK, BIRC5, CCND1, MYCN, NTRK1, and PHOX2B, significantly discriminated the four clusters (p INSS stage 4 and/or dead of disease, p < 0.05, Fisher's exact test). Conclusions Based on expression profiling we have identified four molecular subgroups of neuroblastoma, which can be distinguished by a 6-gene signature. The fourth subgroup has not been described elsewhere, and efforts are currently made to further investigate this group's specific characteristics. PMID:21492432

  2. [Key effect genes responding to nerve injury identified by gene ontology and computer pattern recognition].

    Science.gov (United States)

    Pan, Qian; Peng, Jin; Zhou, Xue; Yang, Hao; Zhang, Wei

    2012-07-01

    In order to screen out important genes from large gene data of gene microarray after nerve injury, we combine gene ontology (GO) method and computer pattern recognition technology to find key genes responding to nerve injury, and then verify one of these screened-out genes. Data mining and gene ontology analysis of gene chip data GSE26350 was carried out through MATLAB software. Cd44 was selected from screened-out key gene molecular spectrum by comparing genes' different GO terms and positions on score map of principal component. Function interferences were employed to influence the normal binding of Cd44 and one of its ligands, chondroitin sulfate C (CSC), to observe neurite extension. Gene ontology analysis showed that the first genes on score map (marked by red *) mainly distributed in molecular transducer activity, receptor activity, protein binding et al molecular function GO terms. Cd44 is one of six effector protein genes, and attracted us with its function diversity. After adding different reagents into the medium to interfere the normal binding of CSC and Cd44, varying-degree remissions of CSC's inhibition on neurite extension were observed. CSC can inhibit neurite extension through binding Cd44 on the neuron membrane. This verifies that important genes in given physiological processes can be identified by gene ontology analysis of gene chip data.

  3. Integration of mouse and human genome-wide association data identifies KCNIP4 as an asthma gene.

    Directory of Open Access Journals (Sweden)

    Blanca E Himes

    Full Text Available Asthma is a common chronic respiratory disease characterized by airway hyperresponsiveness (AHR. The genetics of asthma have been widely studied in mouse and human, and homologous genomic regions have been associated with mouse AHR and human asthma-related phenotypes. Our goal was to identify asthma-related genes by integrating AHR associations in mouse with human genome-wide association study (GWAS data. We used Efficient Mixed Model Association (EMMA analysis to conduct a GWAS of baseline AHR measures from males and females of 31 mouse strains. Genes near or containing SNPs with EMMA p-values <0.001 were selected for further study in human GWAS. The results of the previously reported EVE consortium asthma GWAS meta-analysis consisting of 12,958 diverse North American subjects from 9 study centers were used to select a subset of homologous genes with evidence of association with asthma in humans. Following validation attempts in three human asthma GWAS (i.e., Sepracor/LOCCS/LODO/Illumina, GABRIEL, DAG and two human AHR GWAS (i.e., SHARP, DAG, the Kv channel interacting protein 4 (KCNIP4 gene was identified as nominally associated with both asthma and AHR at a gene- and SNP-level. In EVE, the smallest KCNIP4 association was at rs6833065 (P-value 2.9e-04, while the strongest associations for Sepracor/LOCCS/LODO/Illumina, GABRIEL, DAG were 1.5e-03, 1.0e-03, 3.1e-03 at rs7664617, rs4697177, rs4696975, respectively. At a SNP level, the strongest association across all asthma GWAS was at rs4697177 (P-value 1.1e-04. The smallest P-values for association with AHR were 2.3e-03 at rs11947661 in SHARP and 2.1e-03 at rs402802 in DAG. Functional studies are required to validate the potential involvement of KCNIP4 in modulating asthma susceptibility and/or AHR. Our results suggest that a useful approach to identify genes associated with human asthma is to leverage mouse AHR association data.

  4. Early and long-standing rheumatoid arthritis: distinct molecular signatures identified by gene-expression profiling in synovia

    Science.gov (United States)

    Lequerré, Thierry; Bansard, Carine; Vittecoq, Olivier; Derambure, Céline; Hiron, Martine; Daveau, Maryvonne; Tron, François; Ayral, Xavier; Biga, Norman; Auquit-Auckbur, Isabelle; Chiocchia, Gilles; Le Loët, Xavier; Salier, Jean-Philippe

    2009-01-01

    Introduction Rheumatoid arthritis (RA) is a heterogeneous disease and its underlying molecular mechanisms are still poorly understood. Because previous microarray studies have only focused on long-standing (LS) RA compared to osteoarthritis, we aimed to compare the molecular profiles of early and LS RA versus control synovia. Methods Synovial biopsies were obtained by arthroscopy from 15 patients (4 early untreated RA, 4 treated LS RA and 7 controls, who had traumatic or mechanical lesions). Extracted mRNAs were used for large-scale gene-expression profiling. The different gene-expression combinations identified by comparison of profiles of early, LS RA and healthy synovia were linked to the biological processes involved in each situation. Results Three combinations of 719, 116 and 52 transcripts discriminated, respectively, early from LS RA, and early or LS RA from healthy synovia. We identified several gene clusters and distinct molecular signatures specifically expressed during early or LS RA, thereby suggesting the involvement of different pathophysiological mechanisms during the course of RA. Conclusions Early and LS RA have distinct molecular signatures with different biological processes participating at different times during the course of the disease. These results suggest that better knowledge of the main biological processes involved at a given RA stage might help to choose the most appropriate treatment. PMID:19563633

  5. Novel Myopia Genes and Pathways Identified From Syndromic Forms of Myopia

    Science.gov (United States)

    Loughman, James; Wildsoet, Christine F.; Williams, Cathy; Guggenheim, Jeremy A.

    2018-01-01

    Purpose To test the hypothesis that genes known to cause clinical syndromes featuring myopia also harbor polymorphisms contributing to nonsyndromic refractive errors. Methods Clinical phenotypes and syndromes that have refractive errors as a recognized feature were identified using the Online Mendelian Inheritance in Man (OMIM) database. One hundred fifty-four unique causative genes were identified, of which 119 were specifically linked with myopia and 114 represented syndromic myopia (i.e., myopia and at least one other clinical feature). Myopia was the only refractive error listed for 98 genes and hyperopia and the only refractive error noted for 28 genes, with the remaining 28 genes linked to phenotypes with multiple forms of refractive error. Pathway analysis was carried out to find biological processes overrepresented within these sets of genes. Genetic variants located within 50 kb of the 119 myopia-related genes were evaluated for involvement in refractive error by analysis of summary statistics from genome-wide association studies (GWAS) conducted by the CREAM Consortium and 23andMe, using both single-marker and gene-based tests. Results Pathway analysis identified several biological processes already implicated in refractive error development through prior GWAS analyses and animal studies, including extracellular matrix remodeling, focal adhesion, and axon guidance, supporting the research hypothesis. Novel pathways also implicated in myopia development included mannosylation, glycosylation, lens development, gliogenesis, and Schwann cell differentiation. Hyperopia was found to be linked to a different pattern of biological processes, mostly related to organogenesis. Comparison with GWAS findings further confirmed that syndromic myopia genes were enriched for genetic variants that influence refractive errors in the general population. Gene-based analyses implicated 21 novel candidate myopia genes (ADAMTS18, ADAMTS2, ADAMTSL4, AGK, ALDH18A1, ASXL1, COL4A1

  6. A general method for identifying major hybrid male sterility genes in Drosophila.

    Science.gov (United States)

    Zeng, L W; Singh, R S

    1995-10-01

    The genes responsible for hybrid male sterility in species crosses are usually identified by introgressing chromosome segments, monitored by visible markers, between closely related species by continuous backcrosses. This commonly used method, however, suffers from two problems. First, it relies on the availability of markers to monitor the introgressed regions and so the portion of the genome examined is limited to the marked regions. Secondly, the introgressed regions are usually large and it is impossible to tell if the effects of the introgressed regions are the result of single (or few) major genes or many minor genes (polygenes). Here we introduce a simple and general method for identifying putative major hybrid male sterility genes which is free of these problems. In this method, the actual hybrid male sterility genes (rather than markers), or tightly linked gene complexes with large effects, are selectively introgressed from one species into the background of another species by repeated backcrosses. This is performed by selectively backcrossing heterozygous (for hybrid male sterility gene or genes) females producing fertile and sterile sons in roughly equal proportions to males of either parental species. As no marker gene is required for this procedure, this method can be used with any species pairs that produce unisexual sterility. With the application of this method, a small X chromosome region of Drosophila mauritiana which produces complete hybrid male sterility (aspermic testes) in the background of D. simulans was identified. Recombination analysis reveals that this region contains a second major hybrid male sterility gene linked to the forked locus located at either 62.7 +/- 0.66 map units or at the centromere region of the X chromosome of D. mauritiana.

  7. Epidermal growth factor gene is a newly identified candidate gene for gout.

    Science.gov (United States)

    Han, Lin; Cao, Chunwei; Jia, Zhaotong; Liu, Shiguo; Liu, Zhen; Xin, Ruosai; Wang, Can; Li, Xinde; Ren, Wei; Wang, Xuefeng; Li, Changgui

    2016-08-10

    Chromosome 4q25 has been identified as a genomic region associated with gout. However, the associations of gout with the genes in this region have not yet been confirmed. Here, we performed two-stage analysis to determine whether variations in candidate genes in the 4q25 region are associated with gout in a male Chinese Han population. We first evaluated 96 tag single nucleotide polymorphisms (SNPs) in eight inflammatory/immune pathway- or glucose/lipid metabolism-related genes in the 4q25 region in 480 male gout patients and 480 controls. The SNP rs12504538, located in the elongation of very-long-chain-fatty-acid-like family member 6 gene (Elovl6), was found to be associated with gout susceptibility (Padjusted = 0.00595). In the second stage of analysis, we performed fine mapping analysis of 93 tag SNPs in Elovl6 and in the epidermal growth factor gene (EGF) and its flanking regions in 1017 male patients gout and 1897 healthy male controls. We observed a significant association between the T allele of EGF rs2298999 and gout (odds ratio = 0.77, 95% confidence interval = 0.67-0.88, Padjusted = 6.42 × 10(-3)). These results provide the first evidence for an association between the EGF rs2298999 C/T polymorphism and gout. Our findings should be validated in additional populations.

  8. High-resolution linkage analyses to identify genes that influence Varroa sensitive hygiene behavior in honey bees.

    Directory of Open Access Journals (Sweden)

    Jennifer M Tsuruda

    Full Text Available Varroa mites (V. destructor are a major threat to honey bees (Apis melilfera and beekeeping worldwide and likely lead to colony decline if colonies are not treated. Most treatments involve chemical control of the mites; however, Varroa has evolved resistance to many of these miticides, leaving beekeepers with a limited number of alternatives. A non-chemical control method is highly desirable for numerous reasons including lack of chemical residues and decreased likelihood of resistance. Varroa sensitive hygiene behavior is one of two behaviors identified that are most important for controlling the growth of Varroa populations in bee hives. To identify genes influencing this trait, a study was conducted to map quantitative trait loci (QTL. Individual workers of a backcross family were observed and evaluated for their VSH behavior in a mite-infested observation hive. Bees that uncapped or removed pupae were identified. The genotypes for 1,340 informative single nucleotide polymorphisms were used to construct a high-resolution genetic map and interval mapping was used to analyze the association of the genotypes with the performance of Varroa sensitive hygiene. We identified one major QTL on chromosome 9 (LOD score = 3.21 and a suggestive QTL on chromosome 1 (LOD = 1.95. The QTL confidence interval on chromosome 9 contains the gene 'no receptor potential A' and a dopamine receptor. 'No receptor potential A' is involved in vision and olfaction in Drosophila, and dopamine signaling has been previously shown to be required for aversive olfactory learning in honey bees, which is probably necessary for identifying mites within brood cells. Further studies on these candidate genes may allow for breeding bees with this trait using marker-assisted selection.

  9. Clustering approaches to identifying gene expression patterns from DNA microarray data.

    Science.gov (United States)

    Do, Jin Hwan; Choi, Dong-Kug

    2008-04-30

    The analysis of microarray data is essential for large amounts of gene expression data. In this review we focus on clustering techniques. The biological rationale for this approach is the fact that many co-expressed genes are co-regulated, and identifying co-expressed genes could aid in functional annotation of novel genes, de novo identification of transcription factor binding sites and elucidation of complex biological pathways. Co-expressed genes are usually identified in microarray experiments by clustering techniques. There are many such methods, and the results obtained even for the same datasets may vary considerably depending on the algorithms and metrics for dissimilarity measures used, as well as on user-selectable parameters such as desired number of clusters and initial values. Therefore, biologists who want to interpret microarray data should be aware of the weakness and strengths of the clustering methods used. In this review, we survey the basic principles of clustering of DNA microarray data from crisp clustering algorithms such as hierarchical clustering, K-means and self-organizing maps, to complex clustering algorithms like fuzzy clustering.

  10. Genes Important for Schizosaccharomyces pombe Meiosis Identified Through a Functional Genomics Screen

    Science.gov (United States)

    Blyth, Julie; Makrantoni, Vasso; Barton, Rachael E.; Spanos, Christos; Rappsilber, Juri; Marston, Adele L.

    2018-01-01

    Meiosis is a specialized cell division that generates gametes, such as eggs and sperm. Errors in meiosis result in miscarriages and are the leading cause of birth defects; however, the molecular origins of these defects remain unknown. Studies in model organisms are beginning to identify the genes and pathways important for meiosis, but the parts list is still poorly defined. Here we present a comprehensive catalog of genes important for meiosis in the fission yeast, Schizosaccharomyces pombe. Our genome-wide functional screen surveyed all nonessential genes for roles in chromosome segregation and spore formation. Novel genes important at distinct stages of the meiotic chromosome segregation and differentiation program were identified. Preliminary characterization implicated three of these genes in centrosome/spindle pole body, centromere, and cohesion function. Our findings represent a near-complete parts list of genes important for meiosis in fission yeast, providing a valuable resource to advance our molecular understanding of meiosis. PMID:29259000

  11. Gene dosage, expression, and ontology analysis identifies driver genes in the carcinogenesis and chemoradioresistance of cervical cancer.

    Directory of Open Access Journals (Sweden)

    Malin Lando

    2009-11-01

    Full Text Available Integrative analysis of gene dosage, expression, and ontology (GO data was performed to discover driver genes in the carcinogenesis and chemoradioresistance of cervical cancers. Gene dosage and expression profiles of 102 locally advanced cervical cancers were generated by microarray techniques. Fifty-two of these patients were also analyzed with the Illumina expression method to confirm the gene expression results. An independent cohort of 41 patients was used for validation of gene expressions associated with clinical outcome. Statistical analysis identified 29 recurrent gains and losses and 3 losses (on 3p, 13q, 21q associated with poor outcome after chemoradiotherapy. The intratumor heterogeneity, assessed from the gene dosage profiles, was low for these alterations, showing that they had emerged prior to many other alterations and probably were early events in carcinogenesis. Integration of the alterations with gene expression and GO data identified genes that were regulated by the alterations and revealed five biological processes that were significantly overrepresented among the affected genes: apoptosis, metabolism, macromolecule localization, translation, and transcription. Four genes on 3p (RYBP, GBE1 and 13q (FAM48A, MED4 correlated with outcome at both the gene dosage and expression level and were satisfactorily validated in the independent cohort. These integrated analyses yielded 57 candidate drivers of 24 genetic events, including novel loci responsible for chemoradioresistance. Further mapping of the connections among genetic events, drivers, and biological processes suggested that each individual event stimulates specific processes in carcinogenesis through the coordinated control of multiple genes. The present results may provide novel therapeutic opportunities of both early and advanced stage cervical cancers.

  12. Combined gene expression analysis of whole-tissue and microdissected pancreatic ductal adenocarcinoma identifies genes specifically overexpressed in tumor epithelia.

    Science.gov (United States)

    Badea, Liviu; Herlea, Vlad; Dima, Simona Olimpia; Dumitrascu, Traian; Popescu, Irinel

    2008-01-01

    The precise details of pancreatic ductal adenocarcinoma (PDAC) pathogenesis are still insufficiently known, requiring the use of high-throughput methods. However, PDAC is especially difficult to study using microarrays due to its strong desmoplastic reaction, which involves a hyperproliferating stroma that effectively "masks" the contribution of the minoritary neoplastic epithelial cells. Thus it is not clear which of the genes that have been found differentially expressed between normal and whole tumor tissues are due to the tumor epithelia and which simply reflect the differences in cellular composition. To address this problem, laser microdissection studies have been performed, but these have to deal with much smaller tissue sample quantities and therefore have significantly higher experimental noise. In this paper we combine our own large sample whole-tissue study with a previously published smaller sample microdissection study by Grützmann et al. to identify the genes that are specifically overexpressed in PDAC tumor epithelia. The overlap of this list of genes with other microarray studies of pancreatic cancer as well as with the published literature is impressive. Moreover, we find a number of genes whose over-expression appears to be inversely correlated with patient survival: keratin 7, laminin gamma 2, stratifin, platelet phosphofructokinase, annexin A2, MAP4K4 and OACT2 (MBOAT2), which are all specifically upregulated in the neoplastic epithelia, rather than the tumor stroma. We improve on other microarray studies of PDAC by putting together the higher statistical power due to a larger number of samples with information about cell-type specific expression and patient survival.

  13. GESearch: An Interactive GUI Tool for Identifying Gene Expression Signature

    Directory of Open Access Journals (Sweden)

    Ning Ye

    2015-01-01

    Full Text Available The huge amount of gene expression data generated by microarray and next-generation sequencing technologies present challenges to exploit their biological meanings. When searching for the coexpression genes, the data mining process is largely affected by selection of algorithms. Thus, it is highly desirable to provide multiple options of algorithms in the user-friendly analytical toolkit to explore the gene expression signatures. For this purpose, we developed GESearch, an interactive graphical user interface (GUI toolkit, which is written in MATLAB and supports a variety of gene expression data files. This analytical toolkit provides four models, including the mean, the regression, the delegate, and the ensemble models, to identify the coexpression genes, and enables the users to filter data and to select gene expression patterns by browsing the display window or by importing knowledge-based genes. Subsequently, the utility of this analytical toolkit is demonstrated by analyzing two sets of real-life microarray datasets from cell-cycle experiments. Overall, we have developed an interactive GUI toolkit that allows for choosing multiple algorithms for analyzing the gene expression signatures.

  14. Exome sequencing of Pakistani consanguineous families identifies 30 novel candidate genes for recessive intellectual disability.

    Science.gov (United States)

    Riazuddin, S; Hussain, M; Razzaq, A; Iqbal, Z; Shahzad, M; Polla, D L; Song, Y; van Beusekom, E; Khan, A A; Tomas-Roca, L; Rashid, M; Zahoor, M Y; Wissink-Lindhout, W M; Basra, M A R; Ansar, M; Agha, Z; van Heeswijk, K; Rasheed, F; Van de Vorst, M; Veltman, J A; Gilissen, C; Akram, J; Kleefstra, T; Assir, M Z; Grozeva, D; Carss, K; Raymond, F L; O'Connor, T D; Riazuddin, S A; Khan, S N; Ahmed, Z M; de Brouwer, A P M; van Bokhoven, H; Riazuddin, S

    2017-11-01

    Intellectual disability (ID) is a clinically and genetically heterogeneous disorder, affecting 1-3% of the general population. Although research into the genetic causes of ID has recently gained momentum, identification of pathogenic mutations that cause autosomal recessive ID (ARID) has lagged behind, predominantly due to non-availability of sizeable families. Here we present the results of exome sequencing in 121 large consanguineous Pakistani ID families. In 60 families, we identified homozygous or compound heterozygous DNA variants in a single gene, 30 affecting reported ID genes and 30 affecting novel candidate ID genes. Potential pathogenicity of these alleles was supported by co-segregation with the phenotype, low frequency in control populations and the application of stringent bioinformatics analyses. In another eight families segregation of multiple pathogenic variants was observed, affecting 19 genes that were either known or are novel candidates for ID. Transcriptome profiles of normal human brain tissues showed that the novel candidate ID genes formed a network significantly enriched for transcriptional co-expression (P<0.0001) in the frontal cortex during fetal development and in the temporal-parietal and sub-cortex during infancy through adulthood. In addition, proteins encoded by 12 novel ID genes directly interact with previously reported ID proteins in six known pathways essential for cognitive function (P<0.0001). These results suggest that disruptions of temporal parietal and sub-cortical neurogenesis during infancy are critical to the pathophysiology of ID. These findings further expand the existing repertoire of genes involved in ARID, and provide new insights into the molecular mechanisms and the transcriptome map of ID.

  15. Transcriptome analysis of the Cryptocaryon irritans tomont stage identifies potential genes for the detection and control of cryptocaryonosis

    Directory of Open Access Journals (Sweden)

    Wan Kiew-Lian

    2010-01-01

    diagnostic and control strategies for C. irritans. Conclusions We successfully discovered and examined a large portion of the previously unexplored C. irritans transcriptome and identified potential genes for the development and validation of diagnostic and control strategies for cryptocaryonosis.

  16. Identifying resistance gene analogs associated with resistances to different pathogens in common bean.

    Science.gov (United States)

    López, Camilo E; Acosta, Iván F; Jara, Carlos; Pedraza, Fabio; Gaitán-Solís, Eliana; Gallego, Gerardo; Beebe, Steve; Tohme, Joe

    2003-01-01

    ABSTRACT A polymerase chain reaction approach using degenerate primers that targeted the conserved domains of cloned plant disease resistance genes (R genes) was used to isolate a set of 15 resistance gene analogs (RGAs) from common bean (Phaseolus vulgaris). Eight different classes of RGAs were obtained from nucleotide binding site (NBS)-based primers and seven from not previously described Toll/Interleukin-1 receptor-like (TIR)-based primers. Putative amino acid sequences of RGAs were significantly similar to R genes and contained additional conserved motifs. The NBS-type RGAs were classified in two subgroups according to the expected final residue in the kinase-2 motif. Eleven RGAs were mapped at 19 loci on eight linkage groups of the common bean genetic map constructed at Centro Internacional de Agricultura Tropical. Genetic linkage was shown for eight RGAs with partial resistance to anthracnose, angular leaf spot (ALS) and Bean golden yellow mosaic virus (BGYMV). RGA1 and RGA2 were associated with resistance loci to anthracnose and BGYMV and were part of two clusters of R genes previously described. A new major cluster was detected by RGA7 and explained up to 63.9% of resistance to ALS and has a putative contribution to anthracnose resistance. These results show the usefulness of RGAs as candidate genes to detect and eventually isolate numerous R genes in common bean.

  17. Epidermal growth factor gene is a newly identified candidate gene for gout

    Science.gov (United States)

    Han, Lin; Cao, Chunwei; Jia, Zhaotong; Liu, Shiguo; Liu, Zhen; Xin, Ruosai; Wang, Can; Li, Xinde; Ren, Wei; Wang, Xuefeng; Li, Changgui

    2016-01-01

    Chromosome 4q25 has been identified as a genomic region associated with gout. However, the associations of gout with the genes in this region have not yet been confirmed. Here, we performed two-stage analysis to determine whether variations in candidate genes in the 4q25 region are associated with gout in a male Chinese Han population. We first evaluated 96 tag single nucleotide polymorphisms (SNPs) in eight inflammatory/immune pathway- or glucose/lipid metabolism-related genes in the 4q25 region in 480 male gout patients and 480 controls. The SNP rs12504538, located in the elongation of very-long-chain-fatty-acid-like family member 6 gene (Elovl6), was found to be associated with gout susceptibility (Padjusted = 0.00595). In the second stage of analysis, we performed fine mapping analysis of 93 tag SNPs in Elovl6 and in the epidermal growth factor gene (EGF) and its flanking regions in 1017 male patients gout and 1897 healthy male controls. We observed a significant association between the T allele of EGF rs2298999 and gout (odds ratio = 0.77, 95% confidence interval = 0.67–0.88, Padjusted = 6.42 × 10−3). These results provide the first evidence for an association between the EGF rs2298999 C/T polymorphism and gout. Our findings should be validated in additional populations. PMID:27506295

  18. Identifying the genes of unconventional high temperature superconductors.

    Science.gov (United States)

    Hu, Jiangping

    We elucidate a recently emergent framework in unifying the two families of high temperature (high [Formula: see text]) superconductors, cuprates and iron-based superconductors. The unification suggests that the latter is simply the counterpart of the former to realize robust extended s-wave pairing symmetries in a square lattice. The unification identifies that the key ingredients (gene) of high [Formula: see text] superconductors is a quasi two dimensional electronic environment in which the d -orbitals of cations that participate in strong in-plane couplings to the p -orbitals of anions are isolated near Fermi energy. With this gene, the superexchange magnetic interactions mediated by anions could maximize their contributions to superconductivity. Creating the gene requires special arrangements between local electronic structures and crystal lattice structures. The speciality explains why high [Formula: see text] superconductors are so rare. An explicit prediction is made to realize high [Formula: see text] superconductivity in Co/Ni-based materials with a quasi two dimensional hexagonal lattice structure formed by trigonal bipyramidal complexes.

  19. A 6-gene signature identifies four molecular subgroups of neuroblastoma

    Directory of Open Access Journals (Sweden)

    Kogner Per

    2011-04-01

    Full Text Available Abstract Background There are currently three postulated genomic subtypes of the childhood tumour neuroblastoma (NB; Type 1, Type 2A, and Type 2B. The most aggressive forms of NB are characterized by amplification of the oncogene MYCN (MNA and low expression of the favourable marker NTRK1. Recently, mutations or high expression of the familial predisposition gene Anaplastic Lymphoma Kinase (ALK was associated to unfavourable biology of sporadic NB. Also, various other genes have been linked to NB pathogenesis. Results The present study explores subgroup discrimination by gene expression profiling using three published microarray studies on NB (47 samples. Four distinct clusters were identified by Principal Components Analysis (PCA in two separate data sets, which could be verified by an unsupervised hierarchical clustering in a third independent data set (101 NB samples using a set of 74 discriminative genes. The expression signature of six NB-associated genes ALK, BIRC5, CCND1, MYCN, NTRK1, and PHOX2B, significantly discriminated the four clusters (p ALK, BIRC5, and PHOX2B, and was significantly associated with higher tumour stage, poor outcome and poor survival compared to the Type 1-corresponding favourable group (INSS stage 4 and/or dead of disease, p Conclusions Based on expression profiling we have identified four molecular subgroups of neuroblastoma, which can be distinguished by a 6-gene signature. The fourth subgroup has not been described elsewhere, and efforts are currently made to further investigate this group's specific characteristics.

  20. Microarray Analysis in a Cell Death Resistant Glioma Cell Line to Identify Signaling Pathways and Novel Genes Controlling Resistance and Malignancy

    Energy Technology Data Exchange (ETDEWEB)

    Seznec, Janina; Naumann, Ulrike, E-mail: ulrike.naumann@uni-tuebingen.de [Laboratory of Molecular Neuro-Oncology, Department of General Neurology, Hertie-Institute for Clinical Brain Research and Center Neurology, University of Tuebingen, Otfried-Mueller-Str. 27, Tuebingen 72076 (Germany)

    2011-06-27

    Glioblastoma multiforme (GBM) is a lethal type of cancer mainly resistant to radio- and chemotherapy. Since the tumor suppressor p53 functions as a transcription factor regulating the expression of genes involved in growth inhibition, DNA repair and apoptosis, we previously assessed whether specific differences in the modulation of gene expression are responsible for the anti-tumor properties of a dominant positive p53, chimeric tumor suppressor (CTS)-1. CTS-1 is based on the sequence of p53 and designed to resist various mechanisms of inactivation which limit the activity of p53. To identify CTS-1-regulated cell death-inducing genes, we generated a CTS-1-resistant glioma cell line (229R). We used Affymetrix whole-genome microarray expression analysis to analyze alterations in gene expression and identified a variety of CTS-1 regulated genes involved in cancer-linked processes. 313 genes were differentially expressed in Adeno-CTS-1 (Ad-CTS-1)-infected and 700 genes in uninfected 229R cells compared to matching parental cells. Ingenuity Pathway Analysis (IPA) determined a variety of differentially expressed genes in Ad-CTS-1-infected cells that were members of the intracellular networks with central tumor-involved players such as nuclear factor kappa B (NF-κB), protein kinase B (PKB/AKT) or transforming growth factor beta (TGF-β). Differentially regulated genes include secreted factors as well as intracellular proteins and transcription factors regulating not only cell death, but also processes such as tumor cell motility and immunity. This work gives an overview of the pathways differentially regulated in the resistant versus parental glioma cells and might be helpful to identify candidate genes which could serve as targets to develop novel glioma specific therapy strategies.

  1. Microarray Analysis in a Cell Death Resistant Glioma Cell Line to Identify Signaling Pathways and Novel Genes Controlling Resistance and Malignancy

    International Nuclear Information System (INIS)

    Seznec, Janina; Naumann, Ulrike

    2011-01-01

    Glioblastoma multiforme (GBM) is a lethal type of cancer mainly resistant to radio- and chemotherapy. Since the tumor suppressor p53 functions as a transcription factor regulating the expression of genes involved in growth inhibition, DNA repair and apoptosis, we previously assessed whether specific differences in the modulation of gene expression are responsible for the anti-tumor properties of a dominant positive p53, chimeric tumor suppressor (CTS)-1. CTS-1 is based on the sequence of p53 and designed to resist various mechanisms of inactivation which limit the activity of p53. To identify CTS-1-regulated cell death-inducing genes, we generated a CTS-1-resistant glioma cell line (229R). We used Affymetrix whole-genome microarray expression analysis to analyze alterations in gene expression and identified a variety of CTS-1 regulated genes involved in cancer-linked processes. 313 genes were differentially expressed in Adeno-CTS-1 (Ad-CTS-1)-infected and 700 genes in uninfected 229R cells compared to matching parental cells. Ingenuity Pathway Analysis (IPA) determined a variety of differentially expressed genes in Ad-CTS-1-infected cells that were members of the intracellular networks with central tumor-involved players such as nuclear factor kappa B (NF-κB), protein kinase B (PKB/AKT) or transforming growth factor beta (TGF-β). Differentially regulated genes include secreted factors as well as intracellular proteins and transcription factors regulating not only cell death, but also processes such as tumor cell motility and immunity. This work gives an overview of the pathways differentially regulated in the resistant versus parental glioma cells and might be helpful to identify candidate genes which could serve as targets to develop novel glioma specific therapy strategies

  2. Identifying human disease genes through cross-species gene mapping of evolutionary conserved processes.

    Directory of Open Access Journals (Sweden)

    Martin Poot

    2011-05-01

    Full Text Available Understanding complex networks that modulate development in humans is hampered by genetic and phenotypic heterogeneity within and between populations. Here we present a method that exploits natural variation in highly diverse mouse genetic reference panels in which genetic and environmental factors can be tightly controlled. The aim of our study is to test a cross-species genetic mapping strategy, which compares data of gene mapping in human patients with functional data obtained by QTL mapping in recombinant inbred mouse strains in order to prioritize human disease candidate genes.We exploit evolutionary conservation of developmental phenotypes to discover gene variants that influence brain development in humans. We studied corpus callosum volume in a recombinant inbred mouse panel (C57BL/6J×DBA/2J, BXD strains using high-field strength MRI technology. We aligned mouse mapping results for this neuro-anatomical phenotype with genetic data from patients with abnormal corpus callosum (ACC development.From the 61 syndromes which involve an ACC, 51 human candidate genes have been identified. Through interval mapping, we identified a single significant QTL on mouse chromosome 7 for corpus callosum volume with a QTL peak located between 25.5 and 26.7 Mb. Comparing the genes in this mouse QTL region with those associated with human syndromes (involving ACC and those covered by copy number variations (CNV yielded a single overlap, namely HNRPU in humans and Hnrpul1 in mice. Further analysis of corpus callosum volume in BXD strains revealed that the corpus callosum was significantly larger in BXD mice with a B genotype at the Hnrpul1 locus than in BXD mice with a D genotype at Hnrpul1 (F = 22.48, p<9.87*10(-5.This approach that exploits highly diverse mouse strains provides an efficient and effective translational bridge to study the etiology of human developmental disorders, such as autism and schizophrenia.

  3. Systems genetics identifies a convergent gene network for cognition and neurodevelopmental disease.

    Science.gov (United States)

    Johnson, Michael R; Shkura, Kirill; Langley, Sarah R; Delahaye-Duriez, Andree; Srivastava, Prashant; Hill, W David; Rackham, Owen J L; Davies, Gail; Harris, Sarah E; Moreno-Moral, Aida; Rotival, Maxime; Speed, Doug; Petrovski, Slavé; Katz, Anaïs; Hayward, Caroline; Porteous, David J; Smith, Blair H; Padmanabhan, Sandosh; Hocking, Lynne J; Starr, John M; Liewald, David C; Visconti, Alessia; Falchi, Mario; Bottolo, Leonardo; Rossetti, Tiziana; Danis, Bénédicte; Mazzuferi, Manuela; Foerch, Patrik; Grote, Alexander; Helmstaedter, Christoph; Becker, Albert J; Kaminski, Rafal M; Deary, Ian J; Petretto, Enrico

    2016-02-01

    Genetic determinants of cognition are poorly characterized, and their relationship to genes that confer risk for neurodevelopmental disease is unclear. Here we performed a systems-level analysis of genome-wide gene expression data to infer gene-regulatory networks conserved across species and brain regions. Two of these networks, M1 and M3, showed replicable enrichment for common genetic variants underlying healthy human cognitive abilities, including memory. Using exome sequence data from 6,871 trios, we found that M3 genes were also enriched for mutations ascertained from patients with neurodevelopmental disease generally, and intellectual disability and epileptic encephalopathy in particular. M3 consists of 150 genes whose expression is tightly developmentally regulated, but which are collectively poorly annotated for known functional pathways. These results illustrate how systems-level analyses can reveal previously unappreciated relationships between neurodevelopmental disease-associated genes in the developed human brain, and provide empirical support for a convergent gene-regulatory network influencing cognition and neurodevelopmental disease.

  4. Hotspots of missense mutation identify novel neurodevelopmental disorder genes and functional domains

    Science.gov (United States)

    Geisheker, Madeleine R.; Heymann, Gabriel; Wang, Tianyun; Coe, Bradley P.; Turner, Tychele N.; Stessman, Holly A.F.; Hoekzema, Kendra; Kvarnung, Malin; Shaw, Marie; Friend, Kathryn; Liebelt, Jan; Barnett, Christopher; Thompson, Elizabeth M.; Haan, Eric; Guo, Hui; Anderlid, Britt-Marie; Nordgren, Ann; Lindstrand, Anna; Vandeweyer, Geert; Alberti, Antonino; Avola, Emanuela; Vinci, Mirella; Giusto, Stefania; Pramparo, Tiziano; Pierce, Karen; Nalabolu, Srinivasa; Michaelson, Jacob J.; Sedlacek, Zdenek; Santen, Gijs W.E.; Peeters, Hilde; Hakonarson, Hakon; Courchesne, Eric; Romano, Corrado; Kooy, R. Frank; Bernier, Raphael A.; Nordenskjöld, Magnus; Gecz, Jozef; Xia, Kun; Zweifel, Larry S.; Eichler, Evan E.

    2017-01-01

    Although de novo missense mutations have been predicted to account for more cases of autism than gene-truncating mutations, most research has focused on the latter. We identified the properties of de novo missense mutations in patients with neurodevelopmental disorders (NDDs) and highlight 35 genes with excess missense mutations. Additionally, 40 amino acid sites were recurrently mutated in 36 genes, and targeted sequencing of 20 sites in 17,689 NDD patients identified 21 new patients with identical missense mutations. One recurrent site (p.Ala636Thr) occurs in a glutamate receptor subunit, GRIA1. This same amino acid substitution in the homologous but distinct mouse glutamate receptor subunit Grid2 is associated with Lurcher ataxia. Phenotypic follow-up in five individuals with GRIA1 mutations shows evidence of specific learning disabilities and autism. Overall, we find significant clustering of de novo mutations in 200 genes, highlighting specific functional domains and synaptic candidate genes important in NDD pathology. PMID:28628100

  5. Identifying the rooted species tree from the distribution of unrooted gene trees under the coalescent.

    Science.gov (United States)

    Allman, Elizabeth S; Degnan, James H; Rhodes, John A

    2011-06-01

    Gene trees are evolutionary trees representing the ancestry of genes sampled from multiple populations. Species trees represent populations of individuals-each with many genes-splitting into new populations or species. The coalescent process, which models ancestry of gene copies within populations, is often used to model the probability distribution of gene trees given a fixed species tree. This multispecies coalescent model provides a framework for phylogeneticists to infer species trees from gene trees using maximum likelihood or Bayesian approaches. Because the coalescent models a branching process over time, all trees are typically assumed to be rooted in this setting. Often, however, gene trees inferred by traditional phylogenetic methods are unrooted. We investigate probabilities of unrooted gene trees under the multispecies coalescent model. We show that when there are four species with one gene sampled per species, the distribution of unrooted gene tree topologies identifies the unrooted species tree topology and some, but not all, information in the species tree edges (branch lengths). The location of the root on the species tree is not identifiable in this situation. However, for 5 or more species with one gene sampled per species, we show that the distribution of unrooted gene tree topologies identifies the rooted species tree topology and all its internal branch lengths. The length of any pendant branch leading to a leaf of the species tree is also identifiable for any species from which more than one gene is sampled.

  6. Linking the salt transcriptome with physiological responses of a salt-resistant Populus species as a strategy to identify genes important for stress acclimation.

    Science.gov (United States)

    Brinker, Monika; Brosché, Mikael; Vinocur, Basia; Abo-Ogiala, Atef; Fayyaz, Payam; Janz, Dennis; Ottow, Eric A; Cullmann, Andreas D; Saborowski, Joachim; Kangasjärvi, Jaakko; Altman, Arie; Polle, Andrea

    2010-12-01

    To investigate early salt acclimation mechanisms in a salt-tolerant poplar species (Populus euphratica), the kinetics of molecular, metabolic, and physiological changes during a 24-h salt exposure were measured. Three distinct phases of salt stress were identified by analyses of the osmotic pressure and the shoot water potential: dehydration, salt accumulation, and osmotic restoration associated with ionic stress. The duration and intensity of these phases differed between leaves and roots. Transcriptome analysis using P. euphratica-specific microarrays revealed clusters of coexpressed genes in these phases, with only 3% overlapping salt-responsive genes in leaves and roots. Acclimation of cellular metabolism to high salt concentrations involved remodeling of amino acid and protein biosynthesis and increased expression of molecular chaperones (dehydrins, osmotin). Leaves suffered initially from dehydration, which resulted in changes in transcript levels of mitochondrial and photosynthetic genes, indicating adjustment of energy metabolism. Initially, decreases in stress-related genes were found, whereas increases occurred only when leaves had restored the osmotic balance by salt accumulation. Comparative in silico analysis of the poplar stress regulon with Arabidopsis (Arabidopsis thaliana) orthologs was used as a strategy to reduce the number of candidate genes for functional analysis. Analysis of Arabidopsis knockout lines identified a lipocalin-like gene (AtTIL) and a gene encoding a protein with previously unknown functions (AtSIS) to play roles in salt tolerance. In conclusion, by dissecting the stress transcriptome of tolerant species, novel genes important for salt endurance can be identified.

  7. Sparse canonical correlation analysis for identifying, connecting and completing gene-expression networks

    NARCIS (Netherlands)

    Waaijenborg, S.; Zwinderman, A.H.

    2009-01-01

    ABSTRACT: BACKGROUND: We generalized penalized canonical correlation analysis for analyzing microarray gene-expression measurements for checking completeness of known metabolic pathways and identifying candidate genes for incorporation in the pathway. We used Wold's method for calculation of the

  8. Integrating genome-wide association study and expression quantitative trait loci data identifies multiple genes and gene set associated with neuroticism.

    Science.gov (United States)

    Fan, Qianrui; Wang, Wenyu; Hao, Jingcan; He, Awen; Wen, Yan; Guo, Xiong; Wu, Cuiyan; Ning, Yujie; Wang, Xi; Wang, Sen; Zhang, Feng

    2017-08-01

    Neuroticism is a fundamental personality trait with significant genetic determinant. To identify novel susceptibility genes for neuroticism, we conducted an integrative analysis of genomic and transcriptomic data of genome wide association study (GWAS) and expression quantitative trait locus (eQTL) study. GWAS summary data was driven from published studies of neuroticism, totally involving 170,906 subjects. eQTL dataset containing 927,753 eQTLs were obtained from an eQTL meta-analysis of 5311 samples. Integrative analysis of GWAS and eQTL data was conducted by summary data-based Mendelian randomization (SMR) analysis software. To identify neuroticism associated gene sets, the SMR analysis results were further subjected to gene set enrichment analysis (GSEA). The gene set annotation dataset (containing 13,311 annotated gene sets) of GSEA Molecular Signatures Database was used. SMR single gene analysis identified 6 significant genes for neuroticism, including MSRA (p value=2.27×10 -10 ), MGC57346 (p value=6.92×10 -7 ), BLK (p value=1.01×10 -6 ), XKR6 (p value=1.11×10 -6 ), C17ORF69 (p value=1.12×10 -6 ) and KIAA1267 (p value=4.00×10 -6 ). Gene set enrichment analysis observed significant association for Chr8p23 gene set (false discovery rate=0.033). Our results provide novel clues for the genetic mechanism studies of neuroticism. Copyright © 2017. Published by Elsevier Inc.

  9. A cross-study gene set enrichment analysis identifies critical pathways in endometriosis

    Directory of Open Access Journals (Sweden)

    Bai Chunyan

    2009-09-01

    Full Text Available Abstract Background Endometriosis is an enigmatic disease. Gene expression profiling of endometriosis has been used in several studies, but few studies went further to classify subtypes of endometriosis based on expression patterns and to identify possible pathways involved in endometriosis. Some of the observed pathways are more inconsistent between the studies, and these candidate pathways presumably only represent a fraction of the pathways involved in endometriosis. Methods We applied a standardised microarray preprocessing and gene set enrichment analysis to six independent studies, and demonstrated increased concordance between these gene datasets. Results We find 16 up-regulated and 19 down-regulated pathways common in ovarian endometriosis data sets, 22 up-regulated and one down-regulated pathway common in peritoneal endometriosis data sets. Among them, 12 up-regulated and 1 down-regulated were found consistent between ovarian and peritoneal endometriosis. The main canonical pathways identified are related to immunological and inflammatory disease. Early secretory phase has the most over-represented pathways in the three uterine cycle phases. There are no overlapping significant pathways between the dataset from human endometrial endothelial cells and the datasets from ovarian endometriosis which used whole tissues. Conclusion The study of complex diseases through pathway analysis is able to highlight genes weakly connected to the phenotype which may be difficult to detect by using classical univariate statistics. By standardised microarray preprocessing and GSEA, we have increased the concordance in identifying many biological mechanisms involved in endometriosis. The identified gene pathways will shed light on the understanding of endometriosis and promote the development of novel therapies.

  10. Genome-Wide Association Studies Identify Candidate Genes for Coat Color and Mohair Traits in the Iranian Markhoz Goat.

    Science.gov (United States)

    Nazari-Ghadikolaei, Anahit; Mehrabani-Yeganeh, Hassan; Miarei-Aashtiani, Seyed R; Staiger, Elizabeth A; Rashidi, Amir; Huson, Heather J

    2018-01-01

    The Markhoz goat provides an opportunity to study the genetics underlying coat color and mohair traits of an Angora type goat using genome-wide association studies (GWAS). This indigenous Iranian breed is valued for its quality mohair used in ceremonial garments and has the distinction of exhibiting an array of coat colors including black, brown, and white. Here, we performed 16 GWAS for different fleece (mohair) traits and coat color in 228 Markhoz goats sampled from the Markhoz Goat Research Station in Sanandaj, Kurdistan province, located in western Iran using the Illumina Caprine 50K beadchip. The Efficient Mixed Model Linear analysis was used to identify genomic regions with potential candidate genes contributing to coat color and mohair characteristics while correcting for population structure. Significant associations to coat color were found within or near the ASIP, ITCH, AHCY , and RALY genes on chromosome 13 for black and brown coat color and the KIT and PDGFRA genes on chromosome 6 for white coat color. Individual mohair traits were analyzed for genetic association along with principal components that allowed for a broader perspective of combined traits reflecting overall mohair quality and volume. A multitude of markers demonstrated significant association to mohair traits highlighting potential candidate genes of POU1F1 on chromosome 1 for mohair quality, MREG on chromosome 2 for mohair volume, DUOX1 on chromosome 10 for yearling fleece weight, and ADGRV1 on chromosome 7 for grease percentage. Variation in allele frequencies and haplotypes were identified for coat color and differentiated common markers associated with both brown and black coat color. This demonstrates the potential for genetic markers to be used in future breeding programs to improve selection for coat color and mohair traits. Putative candidate genes, both novel and previously identified in other species or breeds, require further investigation to confirm phenotypic causality and

  11. A Multiomics Approach to Identify Genes Associated with Childhood Asthma Risk and Morbidity.

    Science.gov (United States)

    Forno, Erick; Wang, Ting; Yan, Qi; Brehm, John; Acosta-Perez, Edna; Colon-Semidey, Angel; Alvarez, Maria; Boutaoui, Nadia; Cloutier, Michelle M; Alcorn, John F; Canino, Glorisa; Chen, Wei; Celedón, Juan C

    2017-10-01

    Childhood asthma is a complex disease. In this study, we aim to identify genes associated with childhood asthma through a multiomics "vertical" approach that integrates multiple analytical steps using linear and logistic regression models. In a case-control study of childhood asthma in Puerto Ricans (n = 1,127), we used adjusted linear or logistic regression models to evaluate associations between several analytical steps of omics data, including genome-wide (GW) genotype data, GW methylation, GW expression profiling, cytokine levels, asthma-intermediate phenotypes, and asthma status. At each point, only the top genes/single-nucleotide polymorphisms/probes/cytokines were carried forward for subsequent analysis. In step 1, asthma modified the gene expression-protein level association for 1,645 genes; pathway analysis showed an enrichment of these genes in the cytokine signaling system (n = 269 genes). In steps 2-3, expression levels of 40 genes were associated with intermediate phenotypes (asthma onset age, forced expiratory volume in 1 second, exacerbations, eosinophil counts, and skin test reactivity); of those, methylation of seven genes was also associated with asthma. Of these seven candidate genes, IL5RA was also significant in analytical steps 4-8. We then measured plasma IL-5 receptor α levels, which were associated with asthma age of onset and moderate-severe exacerbations. In addition, in silico database analysis showed that several of our identified IL5RA single-nucleotide polymorphisms are associated with transcription factors related to asthma and atopy. This approach integrates several analytical steps and is able to identify biologically relevant asthma-related genes, such as IL5RA. It differs from other methods that rely on complex statistical models with various assumptions.

  12. MethylMix 2.0: an R package for identifying DNA methylation genes.

    Science.gov (United States)

    Cedoz, Pierre-Louis; Prunello, Marcos; Brennan, Kevin; Gevaert, Olivier

    2018-04-14

    DNA methylation is an important mechanism regulating gene transcription, and its role in carcinogenesis has been extensively studied. Hyper and hypomethylation of genes is a major mechanism of gene expression deregulation in a wide range of diseases. At the same time, high-throughput DNA methylation assays have been developed generating vast amounts of genome wide DNA methylation measurements. We developed MethylMix, an algorithm implemented in R to identify disease specific hyper and hypomethylated genes. Here we present a new version of MethylMix that automates the construction of DNA-methylation and gene expression datasets from The Cancer Genome Atlas (TCGA). More precisely, MethylMix 2.0 incorporates two major updates: the automated downloading of DNA methylation and gene expression datasets from TCGA and the automated preprocessing of such datasets: value imputation, batch correction and CpG sites clustering within each gene. The resulting datasets can subsequently be analyzed with MethylMix to identify transcriptionally predictive methylation states. We show that the Differential Methylation Values created by MethylMix can be used for cancer subtyping. olivier.gevaert@stanford.edu. https://bioconductor.org/packages/release/bioc/manuals/MethylMix/man/MethylMix.pdf. MethylMix 2.0 was implemented as an R package and is available in bioconductor.

  13. Overexpression screens identify conserved dosage chromosome instability genes in yeast and human cancer

    Science.gov (United States)

    Duffy, Supipi; Fam, Hok Khim; Wang, Yi Kan; Styles, Erin B.; Kim, Jung-Hyun; Ang, J. Sidney; Singh, Tejomayee; Larionov, Vladimir; Shah, Sohrab P.; Andrews, Brenda; Boerkoel, Cornelius F.; Hieter, Philip

    2016-01-01

    Somatic copy number amplification and gene overexpression are common features of many cancers. To determine the role of gene overexpression on chromosome instability (CIN), we performed genome-wide screens in the budding yeast for yeast genes that cause CIN when overexpressed, a phenotype we refer to as dosage CIN (dCIN), and identified 245 dCIN genes. This catalog of genes reveals human orthologs known to be recurrently overexpressed and/or amplified in tumors. We show that two genes, TDP1, a tyrosyl-DNA-phosphdiesterase, and TAF12, an RNA polymerase II TATA-box binding factor, cause CIN when overexpressed in human cells. Rhabdomyosarcoma lines with elevated human Tdp1 levels also exhibit CIN that can be partially rescued by siRNA-mediated knockdown of TDP1. Overexpression of dCIN genes represents a genetic vulnerability that could be leveraged for selective killing of cancer cells through targeting of an unlinked synthetic dosage lethal (SDL) partner. Using SDL screens in yeast, we identified a set of genes that when deleted specifically kill cells with high levels of Tdp1. One gene was the histone deacetylase RPD3, for which there are known inhibitors. Both HT1080 cells overexpressing hTDP1 and rhabdomyosarcoma cells with elevated levels of hTdp1 were more sensitive to histone deacetylase inhibitors valproic acid (VPA) and trichostatin A (TSA), recapitulating the SDL interaction in human cells and suggesting VPA and TSA as potential therapeutic agents for tumors with elevated levels of hTdp1. The catalog of dCIN genes presented here provides a candidate list to identify genes that cause CIN when overexpressed in cancer, which can then be leveraged through SDL to selectively target tumors. PMID:27551064

  14. Identifying genes and gene networks involved in chromium metabolism and detoxification in Crambe abyssinica

    International Nuclear Information System (INIS)

    Zulfiqar, Asma; Paulose, Bibin; Chhikara, Sudesh; Dhankher, Om Parkash

    2011-01-01

    Chromium pollution is a serious environmental problem with few cost-effective remediation strategies available. Crambe abyssinica (a member of Brassicaseae), a non-food, fast growing high biomass crop, is an ideal candidate for phytoremediation of heavy metals contaminated soils. The present study used a PCR-Select Suppression Subtraction Hybridization approach in C. abyssinica to isolate differentially expressed genes in response to Cr exposure. A total of 72 differentially expressed subtracted cDNAs were sequenced and found to represent 43 genes. The subtracted cDNAs suggest that Cr stress significantly affects pathways related to stress/defense, ion transporters, sulfur assimilation, cell signaling, protein degradation, photosynthesis and cell metabolism. The regulation of these genes in response to Cr exposure was further confirmed by semi-quantitative RT-PCR. Characterization of these differentially expressed genes may enable the engineering of non-food, high-biomass plants, including C. abyssinica, for phytoremediation of Cr-contaminated soils and sediments. - Highlights: → Molecular mechanism of Cr uptake and detoxification in plants is not well known. → We identified differentially regulated genes upon Cr exposure in Crambe abyssinica. → 72 Cr-induced subtracted cDNAs were sequenced and found to represent 43 genes. → Pathways linked to stress, ion transport, and sulfur assimilation were affected. → This is the first Cr transcriptome study in a crop with phytoremediation potential. - This study describes the identification and isolation of differentially expressed genes involved in chromium metabolism and detoxification in a non-food industrial oil crop Crambe abyssinica.

  15. Identifying genes and gene networks involved in chromium metabolism and detoxification in Crambe abyssinica

    Energy Technology Data Exchange (ETDEWEB)

    Zulfiqar, Asma, E-mail: asmazulfiqar08@yahoo.com [Department of Plant, Soil, and Insect Sciences, 270 Stockbridge Road, University of Massachusetts Amherst, MA 01003 (United States); Paulose, Bibin, E-mail: bpaulose@psis.umass.edu [Department of Plant, Soil, and Insect Sciences, 270 Stockbridge Road, University of Massachusetts Amherst, MA 01003 (United States); Chhikara, Sudesh, E-mail: sudesh@psis.umass.edu [Department of Plant, Soil, and Insect Sciences, 270 Stockbridge Road, University of Massachusetts Amherst, MA 01003 (United States); Dhankher, Om Parkash, E-mail: parkash@psis.umass.edu [Department of Plant, Soil, and Insect Sciences, 270 Stockbridge Road, University of Massachusetts Amherst, MA 01003 (United States)

    2011-10-15

    Chromium pollution is a serious environmental problem with few cost-effective remediation strategies available. Crambe abyssinica (a member of Brassicaseae), a non-food, fast growing high biomass crop, is an ideal candidate for phytoremediation of heavy metals contaminated soils. The present study used a PCR-Select Suppression Subtraction Hybridization approach in C. abyssinica to isolate differentially expressed genes in response to Cr exposure. A total of 72 differentially expressed subtracted cDNAs were sequenced and found to represent 43 genes. The subtracted cDNAs suggest that Cr stress significantly affects pathways related to stress/defense, ion transporters, sulfur assimilation, cell signaling, protein degradation, photosynthesis and cell metabolism. The regulation of these genes in response to Cr exposure was further confirmed by semi-quantitative RT-PCR. Characterization of these differentially expressed genes may enable the engineering of non-food, high-biomass plants, including C. abyssinica, for phytoremediation of Cr-contaminated soils and sediments. - Highlights: > Molecular mechanism of Cr uptake and detoxification in plants is not well known. > We identified differentially regulated genes upon Cr exposure in Crambe abyssinica. > 72 Cr-induced subtracted cDNAs were sequenced and found to represent 43 genes. > Pathways linked to stress, ion transport, and sulfur assimilation were affected. > This is the first Cr transcriptome study in a crop with phytoremediation potential. - This study describes the identification and isolation of differentially expressed genes involved in chromium metabolism and detoxification in a non-food industrial oil crop Crambe abyssinica.

  16. Systems Genetics Analysis to Identify the Genetic Modulation of a Glaucoma-Associated Gene.

    Science.gov (United States)

    Chintalapudi, Sumana R; Jablonski, Monica M

    2017-01-01

    Loss of retinal ganglion cells (RGCs) is one of the hallmarks of retinal neurodegenerative diseases, glaucoma being one of the most common. Recently, γ-synuclein (SNCG) was shown to be highly expressed in the somas and axons of RGCs. In various mouse models of glaucoma, downregulation of Sncg gene expression correlates with RGC loss. To investigate the regulation of Sncg in RGCs, we used a systems genetics approach to identify a gene that modulates the expression of Sncg, followed by confirmatory studies in both healthy and diseased retinas. We found that chromosome 1 harbors an eQTL that modulates the expression of Sncg in the mouse retina and identified Pfdn2 as the candidate upstream modulator of Sncg expression. Downregulation of Pfdn2 in enriched RGCs causes a concomitant reduction in Sncg. In this chapter, we describe our strategy and methods for identifying and confirming a genetic modulation of a glaucoma-associated gene. A similar method can be applied to other genes expressed in other tissues.

  17. A stochastic model for identifying differential gene pair co-expression patterns in prostate cancer progression

    Directory of Open Access Journals (Sweden)

    Mao Yu

    2009-07-01

    Full Text Available Abstract Background The identification of gene differential co-expression patterns between cancer stages is a newly developing method to reveal the underlying molecular mechanisms of carcinogenesis. Most researches of this subject lack an algorithm useful for performing a statistical significance assessment involving cancer progression. Lacking this specific algorithm is apparently absent in identifying precise gene pairs correlating to cancer progression. Results In this investigation we studied gene pair co-expression change by using a stochastic process model for approximating the underlying dynamic procedure of the co-expression change during cancer progression. Also, we presented a novel analytical method named 'Stochastic process model for Identifying differentially co-expressed Gene pair' (SIG method. This method has been applied to two well known prostate cancer data sets: hormone sensitive versus hormone resistant, and healthy versus cancerous. From these data sets, 428,582 gene pairs and 303,992 gene pairs were identified respectively. Afterwards, we used two different current statistical methods to the same data sets, which were developed to identify gene pair differential co-expression and did not consider cancer progression in algorithm. We then compared these results from three different perspectives: progression analysis, gene pair identification effectiveness analysis, and pathway enrichment analysis. Statistical methods were used to quantify the quality and performance of these different perspectives. They included: Re-identification Scale (RS and Progression Score (PS in progression analysis, True Positive Rate (TPR in gene pair analysis, and Pathway Enrichment Score (PES in pathway analysis. Our results show small values of RS and large values of PS, TPR, and PES; thus, suggesting that gene pairs identified by the SIG method are highly correlated with cancer progression, and highly enriched in disease-specific pathways. From

  18. Next-generation sequencing to identify candidate genes and develop diagnostic markers for a novel Phytophthora resistance gene, RpsHC18, in soybean.

    Science.gov (United States)

    Zhong, Chao; Sun, Suli; Li, Yinping; Duan, Canxing; Zhu, Zhendong

    2018-03-01

    A novel Phytophthora sojae resistance gene RpsHC18 was identified and finely mapped on soybean chromosome 3. Two NBS-LRR candidate genes were identified and two diagnostic markers of RpsHC18 were developed. Phytophthora root rot caused by Phytophthora sojae is a destructive disease of soybean. The most effective disease-control strategy is to deploy resistant cultivars carrying Phytophthora-resistant Rps genes. The soybean cultivar Huachun 18 has a broad and distinct resistance spectrum to 12 P. sojae isolates. Quantitative trait loci sequencing (QTL-seq), based on the whole-genome resequencing (WGRS) of two extreme resistant and susceptible phenotype bulks from an F 2:3 population, was performed, and one 767-kb genomic region with ΔSNP-index ≥ 0.9 on chromosome 3 was identified as the RpsHC18 candidate region in Huachun 18. The candidate region was reduced to a 146-kb region by fine mapping. Nonsynonymous SNP and haplotype analyses were carried out in the 146-kb region among ten soybean genotypes using WGRS. Four specific nonsynonymous SNPs were identified in two nucleotide-binding sites-leucine-rich repeat (NBS-LRR) genes, RpsHC18-NBL1 and RpsHC18-NBL2, which were considered to be the candidate genes. Finally, one specific SNP marker in each candidate gene was successfully developed using a tetra-primer ARMS-PCR assay, and the two markers were verified to be specific for RpsHC18 and to effectively distinguish other known Rps genes. In this study, we applied an integrated genomic-based strategy combining WGRS with traditional genetic mapping to identify RpsHC18 candidate genes and develop diagnostic markers. These results suggest that next-generation sequencing is a precise, rapid and cost-effective way to identify candidate genes and develop diagnostic markers, and it can accelerate Rps gene cloning and marker-assisted selection for breeding of P. sojae-resistant soybean cultivars.

  19. A 6-gene signature identifies four molecular subgroups of neuroblastoma

    LENUS (Irish Health Repository)

    Abel, Frida

    2011-04-14

    Abstract Background There are currently three postulated genomic subtypes of the childhood tumour neuroblastoma (NB); Type 1, Type 2A, and Type 2B. The most aggressive forms of NB are characterized by amplification of the oncogene MYCN (MNA) and low expression of the favourable marker NTRK1. Recently, mutations or high expression of the familial predisposition gene Anaplastic Lymphoma Kinase (ALK) was associated to unfavourable biology of sporadic NB. Also, various other genes have been linked to NB pathogenesis. Results The present study explores subgroup discrimination by gene expression profiling using three published microarray studies on NB (47 samples). Four distinct clusters were identified by Principal Components Analysis (PCA) in two separate data sets, which could be verified by an unsupervised hierarchical clustering in a third independent data set (101 NB samples) using a set of 74 discriminative genes. The expression signature of six NB-associated genes ALK, BIRC5, CCND1, MYCN, NTRK1, and PHOX2B, significantly discriminated the four clusters (p < 0.05, one-way ANOVA test). PCA clusters p1, p2, and p3 were found to correspond well to the postulated subtypes 1, 2A, and 2B, respectively. Remarkably, a fourth novel cluster was detected in all three independent data sets. This cluster comprised mainly 11q-deleted MNA-negative tumours with low expression of ALK, BIRC5, and PHOX2B, and was significantly associated with higher tumour stage, poor outcome and poor survival compared to the Type 1-corresponding favourable group (INSS stage 4 and\\/or dead of disease, p < 0.05, Fisher\\'s exact test). Conclusions Based on expression profiling we have identified four molecular subgroups of neuroblastoma, which can be distinguished by a 6-gene signature. The fourth subgroup has not been described elsewhere, and efforts are currently made to further investigate this group\\'s specific characteristics.

  20. Mutations in Genes Encoding Cardiac Ion Channels Previously Associated With Sudden Infant Death Syndrome (SIDS) Are Present With High Frequency in New Exome Data

    DEFF Research Database (Denmark)

    Andreasen, Charlotte Hartig; Refsgaard, Lena; Nielsen, Jonas B

    2013-01-01

    National Heart, Lung, and Blood Institute Grand Opportunity (NHLBI GO) Exome Sequencing Project (ESP) provided important knowledge on genetic variation in the background population. Our aim was to identify all variants previously associated with SIDS in ESP to improve the discrimination between plausible......Sudden infant death syndrome (SIDS) is the leading cause of death in the first 6 months after birth in the industrialized world. The genetic contribution to SIDS has been investigated intensively and to date, 14 cardiac channelopathy genes have been associated with SIDS. Newly published data from...

  1. Using RNA-Seq Data to Evaluate Reference Genes Suitable for Gene Expression Studies in Soybean.

    Directory of Open Access Journals (Sweden)

    Aldrin Kay-Yuen Yim

    Full Text Available Differential gene expression profiles often provide important clues for gene functions. While reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR is an important tool, the validity of the results depends heavily on the choice of proper reference genes. In this study, we employed new and published RNA-sequencing (RNA-Seq datasets (26 sequencing libraries in total to evaluate reference genes reported in previous soybean studies. In silico PCR showed that 13 out of 37 previously reported primer sets have multiple targets, and 4 of them have amplicons with different sizes. Using a probabilistic approach, we identified new and improved candidate reference genes. We further performed 2 validation tests (with 26 RNA samples on 8 commonly used reference genes and 7 newly identified candidates, using RT-qPCR. In general, the new candidate reference genes exhibited more stable expression levels under the tested experimental conditions. The three newly identified candidate reference genes Bic-C2, F-box protein2, and VPS-like gave the best overall performance, together with the commonly used ELF1b. It is expected that the proposed probabilistic model could serve as an important tool to identify stable reference genes when more soybean RNA-Seq data from different growth stages and treatments are used.

  2. A Kinome RNAi Screen in Drosophila Identifies Novel Genes Interacting with Lgl, aPKC, and Crb Cell Polarity Genes in Epithelial Tissues.

    Science.gov (United States)

    Parsons, Linda M; Grzeschik, Nicola A; Amaratunga, Kasun; Burke, Peter; Quinn, Leonie M; Richardson, Helena E

    2017-08-07

    In both Drosophila melanogaster and mammalian systems, epithelial structure and underlying cell polarity are essential for proper tissue morphogenesis and organ growth. Cell polarity interfaces with multiple cellular processes that are regulated by the phosphorylation status of large protein networks. To gain insight into the molecular mechanisms that coordinate cell polarity with tissue growth, we screened a boutique collection of RNAi stocks targeting the kinome for their capacity to modify Drosophila "cell polarity" eye and wing phenotypes. Initially, we identified kinase or phosphatase genes whose depletion modified adult eye phenotypes associated with the manipulation of cell polarity complexes (via overexpression of Crb or aPKC). We next conducted a secondary screen to test whether these cell polarity modifiers altered tissue overgrowth associated with depletion of Lgl in the wing. These screens identified Hippo, Jun kinase (JNK), and Notch signaling pathways, previously linked to cell polarity regulation of tissue growth. Furthermore, novel pathways not previously connected to cell polarity regulation of tissue growth were identified, including Wingless (Wg/Wnt), Ras, and lipid/Phospho-inositol-3-kinase (PI3K) signaling pathways. Additionally, we demonstrated that the "nutrient sensing" kinases Salt Inducible Kinase 2 and 3 ( SIK2 and 3 ) are potent modifiers of cell polarity phenotypes and regulators of tissue growth. Overall, our screen has revealed novel cell polarity-interacting kinases and phosphatases that affect tissue growth, providing a platform for investigating molecular mechanisms coordinating cell polarity and tissue growth during development. Copyright © 2017 Parsons et al.

  3. A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets

    DEFF Research Database (Denmark)

    Taneera, Jalal; Lang, Stefan; Sharma, Amitabh

    2012-01-01

    Close to 50 genetic loci have been associated with type 2 diabetes (T2D), but they explain only 15% of the heritability. In an attempt to identify additional T2D genes, we analyzed global gene expression in human islets from 63 donors. Using 48 genes located near T2D risk variants, we identified ...

  4. Weighted gene co-expression network analysis of expression data of monozygotic twins identifies specific modules and hub genes related to BMI.

    Science.gov (United States)

    Wang, Weijing; Jiang, Wenjie; Hou, Lin; Duan, Haiping; Wu, Yili; Xu, Chunsheng; Tan, Qihua; Li, Shuxia; Zhang, Dongfeng

    2017-11-13

    The therapeutic management of obesity is challenging, hence further elucidating the underlying mechanisms of obesity development and identifying new diagnostic biomarkers and therapeutic targets are urgent and necessary. Here, we performed differential gene expression analysis and weighted gene co-expression network analysis (WGCNA) to identify significant genes and specific modules related to BMI based on gene expression profile data of 7 discordant monozygotic twins. In the differential gene expression analysis, it appeared that 32 differentially expressed genes (DEGs) were with a trend of up-regulation in twins with higher BMI when compared to their siblings. Categories of positive regulation of nitric-oxide synthase biosynthetic process, positive regulation of NF-kappa B import into nucleus, and peroxidase activity were significantly enriched within GO database and NF-kappa B signaling pathway within KEGG database. DEGs of NAMPT, TLR9, PTGS2, HBD, and PCSK1N might be associated with obesity. In the WGCNA, among the total 20 distinct co-expression modules identified, coral1 module (68 genes) had the strongest positive correlation with BMI (r = 0.56, P = 0.04) and disease status (r = 0.56, P = 0.04). Categories of positive regulation of phospholipase activity, high-density lipoprotein particle clearance, chylomicron remnant clearance, reverse cholesterol transport, intermediate-density lipoprotein particle, chylomicron, low-density lipoprotein particle, very-low-density lipoprotein particle, voltage-gated potassium channel complex, cholesterol transporter activity, and neuropeptide hormone activity were significantly enriched within GO database for this module. And alcoholism and cell adhesion molecules pathways were significantly enriched within KEGG database. Several hub genes, such as GAL, ASB9, NPPB, TBX2, IL17C, APOE, ABCG4, and APOC2 were also identified. The module eigengene of saddlebrown module (212 genes) was also significantly

  5. Evolutionary Inference across Eukaryotes Identifies Specific Pressures Favoring Mitochondrial Gene Retention.

    Science.gov (United States)

    Johnston, Iain G; Williams, Ben P

    2016-02-24

    Since their endosymbiotic origin, mitochondria have lost most of their genes. Although many selective mechanisms underlying the evolution of mitochondrial genomes have been proposed, a data-driven exploration of these hypotheses is lacking, and a quantitatively supported consensus remains absent. We developed HyperTraPS, a methodology coupling stochastic modeling with Bayesian inference, to identify the ordering of evolutionary events and suggest their causes. Using 2015 complete mitochondrial genomes, we inferred evolutionary trajectories of mtDNA gene loss across the eukaryotic tree of life. We find that proteins comprising the structural cores of the electron transport chain are preferentially encoded within mitochondrial genomes across eukaryotes. A combination of high GC content and high protein hydrophobicity is required to explain patterns of mtDNA gene retention; a model that accounts for these selective pressures can also predict the success of artificial gene transfer experiments in vivo. This work provides a general method for data-driven inference of the ordering of evolutionary and progressive events, here identifying the distinct features shaping mitochondrial genomes of present-day species. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. A new gene in A. rubens: A sea star Ig kappa gene.

    Science.gov (United States)

    Vincent, Nadine; Osteras, Magne; Otten, Patricia; Leclerc, Michel

    2014-12-01

    The sea star Asterias rubens reacts specifically to the antigen:HRP (horse-radish peroxydase) and produces an antibody anti-HRP. We previously identified a candidate Ig kappa gene corresponding to this manuscript. We show now the gene referred to as: "sea star Ig kappa gene in its specificity".

  7. 'Omics' approaches in tomato aimed at identifying candidate genes ...

    African Journals Online (AJOL)

    adriana

    2013-12-04

    Dec 4, 2013 ... approaches could be combined in order to identify candidate genes for the genetic control of ascorbic ..... applied to other traits under the complex control of many ... Engineering increased vitamin C levels in ... Chem. Biol. 13:532–538. Giovannucci E, Rimm EB, Liu Y, Stampfer MJ, Willett WC (2002). A.

  8. Transcriptional dissection of melanoma identifies a high-risk subtype underlying TP53 family genes and epigenome deregulation

    Science.gov (United States)

    Badal, Brateil; Solovyov, Alexander; Di Cecilia, Serena; Chan, Joseph Minhow; Chang, Li-Wei; Iqbal, Ramiz; Aydin, Iraz T.; Rajan, Geena S.; Chen, Chen; Abbate, Franco; Arora, Kshitij S.; Tanne, Antoine; Gruber, Stephen B.; Johnson, Timothy M.; Fullen, Douglas R.; Phelps, Robert; Bhardwaj, Nina; Bernstein, Emily; Ting, David T.; Brunner, Georg; Schadt, Eric E.; Greenbaum, Benjamin D.; Celebi, Julide Tok

    2017-01-01

    BACKGROUND. Melanoma is a heterogeneous malignancy. We set out to identify the molecular underpinnings of high-risk melanomas, those that are likely to progress rapidly, metastasize, and result in poor outcomes. METHODS. We examined transcriptome changes from benign states to early-, intermediate-, and late-stage tumors using a set of 78 treatment-naive melanocytic tumors consisting of primary melanomas of the skin and benign melanocytic lesions. We utilized a next-generation sequencing platform that enabled a comprehensive analysis of protein-coding and -noncoding RNA transcripts. RESULTS. Gene expression changes unequivocally discriminated between benign and malignant states, and a dual epigenetic and immune signature emerged defining this transition. To our knowledge, we discovered previously unrecognized melanoma subtypes. A high-risk primary melanoma subset was distinguished by a 122-epigenetic gene signature (“epigenetic” cluster) and TP53 family gene deregulation (TP53, TP63, and TP73). This subtype associated with poor overall survival and showed enrichment of cell cycle genes. Noncoding repetitive element transcripts (LINEs, SINEs, and ERVs) that can result in immunostimulatory signals recapitulating a state of “viral mimicry” were significantly repressed. The high-risk subtype and its poor predictive characteristics were validated in several independent cohorts. Additionally, primary melanomas distinguished by specific immune signatures (“immune” clusters) were identified. CONCLUSION. The TP53 family of genes and genes regulating the epigenetic machinery demonstrate strong prognostic and biological relevance during progression of early disease. Gene expression profiling of protein-coding and -noncoding RNA transcripts may be a better predictor for disease course in melanoma. This study outlines the transcriptional interplay of the cancer cell’s epigenome with the immune milieu with potential for future therapeutic targeting. FUNDING

  9. Transcriptional Profiling of Whole Blood Identifies a Unique 5-Gene Signature for Myelofibrosis and Imminent Myelofibrosis Transformation

    DEFF Research Database (Denmark)

    Hasselbalch, Hans Carl; Skov, Vibe; Stauffer Larsen, Thomas

    2014-01-01

    Identifying a distinct gene signature for myelofibrosis may yield novel information of the genes, which are responsible for progression of essential thrombocythemia and polycythemia vera towards myelofibrosis. We aimed at identifying a simple gene signature - composed of a few genes - which were...

  10. The FUN of identifying gene function in bacterial pathogens; insights from Salmonella functional genomics.

    Science.gov (United States)

    Hammarlöf, Disa L; Canals, Rocío; Hinton, Jay C D

    2013-10-01

    The availability of thousands of genome sequences of bacterial pathogens poses a particular challenge because each genome contains hundreds of genes of unknown function (FUN). How can we easily discover which FUN genes encode important virulence factors? One solution is to combine two different functional genomic approaches. First, transcriptomics identifies bacterial FUN genes that show differential expression during the process of mammalian infection. Second, global mutagenesis identifies individual FUN genes that the pathogen requires to cause disease. The intersection of these datasets can reveal a small set of candidate genes most likely to encode novel virulence attributes. We demonstrate this approach with the Salmonella infection model, and propose that a similar strategy could be used for other bacterial pathogens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Comparative gene expression profiling of in vitro differentiated megakaryocytes and erythroblasts identifies novel activatory and inhibitory platelet membrane proteins.

    Science.gov (United States)

    Macaulay, Iain C; Tijssen, Marloes R; Thijssen-Timmer, Daphne C; Gusnanto, Arief; Steward, Michael; Burns, Philippa; Langford, Cordelia F; Ellis, Peter D; Dudbridge, Frank; Zwaginga, Jaap-Jan; Watkins, Nicholas A; van der Schoot, C Ellen; Ouwehand, Willem H

    2007-04-15

    To identify previously unknown platelet receptors we compared the transcriptomes of in vitro differentiated megakaryocytes (MKs) and erythroblasts (EBs). RNA was obtained from purified, biologically paired MK and EB cultures and compared using cDNA microarrays. Bioinformatical analysis of MK-up-regulated genes identified 151 transcripts encoding transmembrane domain-containing proteins. Although many of these were known platelet genes, a number of previously unidentified or poorly characterized transcripts were also detected. Many of these transcripts, including G6b, G6f, LRRC32, LAT2, and the G protein-coupled receptor SUCNR1, encode proteins with structural features or functions that suggest they may be involved in the modulation of platelet function. Immunoblotting on platelets confirmed the presence of the encoded proteins, and flow cytometric analysis confirmed the expression of G6b, G6f, and LRRC32 on the surface of platelets. Through comparative analysis of expression in platelets and other blood cells we demonstrated that G6b, G6f, and LRRC32 are restricted to the platelet lineage, whereas LAT2 and SUCNR1 were also detected in other blood cells. The identification of the succinate receptor SUCNR1 in platelets is of particular interest, because physiologically relevant concentrations of succinate were shown to potentiate the effect of low doses of a variety of platelet agonists.

  12. Cloning and Functional Analysis of cDNAs with Open Reading Frames for 300 Previously Undefined Genes Expressed in CD34+ Hematopoietic Stem/Progenitor Cells

    Science.gov (United States)

    Zhang, Qing-Hua; Ye, Min; Wu, Xin-Yan; Ren, Shuang-Xi; Zhao, Meng; Zhao, Chun-Jun; Fu, Gang; Shen, Yu; Fan, Hui-Yong; Lu, Gang; Zhong, Ming; Xu, Xiang-Ru; Han, Ze-Guang; Zhang, Ji-Wang; Tao, Jiong; Huang, Qiu-Hua; Zhou, Jun; Hu, Geng-Xi; Gu, Jian; Chen, Sai-Juan; Chen, Zhu

    2000-01-01

    Three hundred cDNAs containing putatively entire open reading frames (ORFs) for previously undefined genes were obtained from CD34+ hematopoietic stem/progenitor cells (HSPCs), based on EST cataloging, clone sequencing, in silico cloning, and rapid amplification of cDNA ends (RACE). The cDNA sizes ranged from 360 to 3496 bp and their ORFs coded for peptides of 58–752 amino acids. Public database search indicated that 225 cDNAs exhibited sequence similarities to genes identified across a variety of species. Homology analysis led to the recognition of 50 basic structural motifs/domains among these cDNAs. Genomic exon–intron organization could be established in 243 genes by integration of cDNA data with genome sequence information. Interestingly, a new gene named as HSPC070 on 3p was found to share a sequence of 105bp in 3′ UTR with RAF gene in reversed transcription orientation. Chromosomal localizations were obtained using electronic mapping for 192 genes and with radiation hybrid (RH) for 38 genes. Macroarray technique was applied to screen the gene expression patterns in five hematopoietic cell lines (NB4, HL60, U937, K562, and Jurkat) and a number of genes with differential expression were found. The resource work has provided a wide range of information useful not only for expression genomics and annotation of genomic DNA sequence, but also for further research on the function of genes involved in hematopoietic development and differentiation. [The sequence data described in this paper have been submitted to the GenBank data library under the accession nos. listed in Table 1, pp 1548–1552.] PMID:11042152

  13. Gene expression signature analysis identifies vorinostat as a candidate therapy for gastric cancer.

    Directory of Open Access Journals (Sweden)

    Sofie Claerhout

    Full Text Available Gastric cancer continues to be one of the deadliest cancers in the world and therefore identification of new drugs targeting this type of cancer is thus of significant importance. The purpose of this study was to identify and validate a therapeutic agent which might improve the outcomes for gastric cancer patients in the future.Using microarray technology, we generated a gene expression profile of human gastric cancer-specific genes from human gastric cancer tissue samples. We used this profile in the Broad Institute's Connectivity Map analysis to identify candidate therapeutic compounds for gastric cancer. We found the histone deacetylase inhibitor vorinostat as the lead compound and thus a potential therapeutic drug for gastric cancer. Vorinostat induced both apoptosis and autophagy in gastric cancer cell lines. Pharmacological and genetic inhibition of autophagy however, increased the therapeutic efficacy of vorinostat, indicating that a combination of vorinostat with autophagy inhibitors may therapeutically be more beneficial. Moreover, gene expression analysis of gastric cancer identified a collection of genes (ITGB5, TYMS, MYB, APOC1, CBX5, PLA2G2A, and KIF20A whose expression was elevated in gastric tumor tissue and downregulated more than 2-fold by vorinostat treatment in gastric cancer cell lines. In contrast, SCGB2A1, TCN1, CFD, APLP1, and NQO1 manifested a reversed pattern.We showed that analysis of gene expression signature may represent an emerging approach to discover therapeutic agents for gastric cancer, such as vorinostat. The observation of altered gene expression after vorinostat treatment may provide the clue to identify the molecular mechanism of vorinostat and those patients likely to benefit from vorinostat treatment.

  14. Identifying novel genes and biological processes relevant to the development of cancer therapy-induced mucositis: An informative gene network analysis.

    Directory of Open Access Journals (Sweden)

    Cielito C Reyes-Gibby

    Full Text Available Mucositis is a complex, dose-limiting toxicity of chemotherapy or radiotherapy that leads to painful mouth ulcers, difficulty eating or swallowing, gastrointestinal distress, and reduced quality of life for patients with cancer. Mucositis is most common for those undergoing high-dose chemotherapy and hematopoietic stem cell transplantation and for those being treated for malignancies of the head and neck. Treatment and management of mucositis remain challenging. It is expected that multiple genes are involved in the formation, severity, and persistence of mucositis. We used Ingenuity Pathway Analysis (IPA, a novel network-based approach that integrates complex intracellular and intercellular interactions involved in diseases, to systematically explore the molecular complexity of mucositis. As a first step, we searched the literature to identify genes that harbor or are close to the genetic variants significantly associated with mucositis. Our literature review identified 27 candidate genes, of which ERCC1, XRCC1, and MTHFR were the most frequently studied for mucositis. On the basis of this 27-gene list, we used IPA to generate gene networks for mucositis. The most biologically significant novel molecules identified through IPA analyses included TP53, CTNNB1, MYC, RB1, P38 MAPK, and EP300. Additionally, uracil degradation II (reductive and thymine degradation pathways (p = 1.06-08 were most significant. Finally, utilizing 66 SNPs within the 8 most connected IPA-derived candidate molecules, we conducted a genetic association study for oral mucositis in the head and neck cancer patients who were treated using chemotherapy and/or radiation therapy (186 head and neck cancer patients with oral mucositis vs. 699 head and neck cancer patients without oral mucositis. The top ranked gene identified through this association analysis was RB1 (rs2227311, p-value = 0.034, odds ratio = 0.67. In conclusion, gene network analysis identified novel molecules and

  15. Identifying novel genes and biological processes relevant to the development of cancer therapy-induced mucositis: An informative gene network analysis.

    Science.gov (United States)

    Reyes-Gibby, Cielito C; Melkonian, Stephanie C; Wang, Jian; Yu, Robert K; Shelburne, Samuel A; Lu, Charles; Gunn, Gary Brandon; Chambers, Mark S; Hanna, Ehab Y; Yeung, Sai-Ching J; Shete, Sanjay

    2017-01-01

    Mucositis is a complex, dose-limiting toxicity of chemotherapy or radiotherapy that leads to painful mouth ulcers, difficulty eating or swallowing, gastrointestinal distress, and reduced quality of life for patients with cancer. Mucositis is most common for those undergoing high-dose chemotherapy and hematopoietic stem cell transplantation and for those being treated for malignancies of the head and neck. Treatment and management of mucositis remain challenging. It is expected that multiple genes are involved in the formation, severity, and persistence of mucositis. We used Ingenuity Pathway Analysis (IPA), a novel network-based approach that integrates complex intracellular and intercellular interactions involved in diseases, to systematically explore the molecular complexity of mucositis. As a first step, we searched the literature to identify genes that harbor or are close to the genetic variants significantly associated with mucositis. Our literature review identified 27 candidate genes, of which ERCC1, XRCC1, and MTHFR were the most frequently studied for mucositis. On the basis of this 27-gene list, we used IPA to generate gene networks for mucositis. The most biologically significant novel molecules identified through IPA analyses included TP53, CTNNB1, MYC, RB1, P38 MAPK, and EP300. Additionally, uracil degradation II (reductive) and thymine degradation pathways (p = 1.06-08) were most significant. Finally, utilizing 66 SNPs within the 8 most connected IPA-derived candidate molecules, we conducted a genetic association study for oral mucositis in the head and neck cancer patients who were treated using chemotherapy and/or radiation therapy (186 head and neck cancer patients with oral mucositis vs. 699 head and neck cancer patients without oral mucositis). The top ranked gene identified through this association analysis was RB1 (rs2227311, p-value = 0.034, odds ratio = 0.67). In conclusion, gene network analysis identified novel molecules and biological

  16. Gene expression differences between Noccaea caerulescens ecotypes help to identify candidate genes for metal phytoremediation.

    Science.gov (United States)

    Halimaa, Pauliina; Lin, Ya-Fen; Ahonen, Viivi H; Blande, Daniel; Clemens, Stephan; Gyenesei, Attila; Häikiö, Elina; Kärenlampi, Sirpa O; Laiho, Asta; Aarts, Mark G M; Pursiheimo, Juha-Pekka; Schat, Henk; Schmidt, Holger; Tuomainen, Marjo H; Tervahauta, Arja I

    2014-03-18

    Populations of Noccaea caerulescens show tremendous differences in their capacity to hyperaccumulate and hypertolerate metals. To explore the differences that could contribute to these traits, we undertook SOLiD high-throughput sequencing of the root transcriptomes of three phenotypically well-characterized N. caerulescens accessions, i.e., Ganges, La Calamine, and Monte Prinzera. Genes with possible contribution to zinc, cadmium, and nickel hyperaccumulation and hypertolerance were predicted. The most significant differences between the accessions were related to metal ion (di-, trivalent inorganic cation) transmembrane transporter activity, iron and calcium ion binding, (inorganic) anion transmembrane transporter activity, and antioxidant activity. Analysis of correlation between the expression profile of each gene and the metal-related characteristics of the accessions disclosed both previously characterized (HMA4, HMA3) and new candidate genes (e.g., for nickel IRT1, ZIP10, and PDF2.3) as possible contributors to the hyperaccumulation/tolerance phenotype. A number of unknown Noccaea-specific transcripts also showed correlation with Zn(2+), Cd(2+), or Ni(2+) hyperaccumulation/tolerance. This study shows that N. caerulescens populations have evolved great diversity in the expression of metal-related genes, facilitating adaptation to various metalliferous soils. The information will be helpful in the development of improved plants for metal phytoremediation.

  17. Genome-wide association study identifies candidate genes for starch content regulation in maize kernels

    Directory of Open Access Journals (Sweden)

    Na Liu

    2016-07-01

    Full Text Available Kernel starch content is an important trait in maize (Zea mays L. as it accounts for 65% to 75% of the dry kernel weight and positively correlates with seed yield. A number of starch synthesis-related genes have been identified in maize in recent years. However, many loci underlying variation in starch content among maize inbred lines still remain to be identified. The current study is a genome-wide association study that used a set of 263 maize inbred lines. In this panel, the average kernel starch content was 66.99%, ranging from 60.60% to 71.58% over the three study years. These inbred lines were genotyped with the SNP50 BeadChip maize array, which is comprised of 56,110 evenly spaced, random SNPs. Population structure was controlled by a mixed linear model (MLM as implemented in the software package TASSEL. After the statistical analyses, four SNPs were identified as significantly associated with starch content (P ≤ 0.0001, among which one each are located on chromosomes 1 and 5 and two are on chromosome 2. Furthermore, 77 candidate genes associated with starch synthesis were found within the 100-kb intervals containing these four QTLs, and four highly associated genes were within 20-kb intervals of the associated SNPs. Among the four genes, Glucose-1-phosphate adenylyltransferase (APS1; Gene ID GRMZM2G163437 is known as an important regulator of kernel starch content. The identified SNPs, QTLs, and candidate genes may not only be readily used for germplasm improvement by marker-assisted selection in breeding, but can also elucidate the genetic basis of starch content. Further studies on these identified candidate genes may help determine the molecular mechanisms regulating kernel starch content in maize and other important cereal crops.

  18. CAsubtype: An R Package to Identify Gene Sets Predictive of Cancer Subtypes and Clinical Outcomes.

    Science.gov (United States)

    Kong, Hualei; Tong, Pan; Zhao, Xiaodong; Sun, Jielin; Li, Hua

    2018-03-01

    In the past decade, molecular classification of cancer has gained high popularity owing to its high predictive power on clinical outcomes as compared with traditional methods commonly used in clinical practice. In particular, using gene expression profiles, recent studies have successfully identified a number of gene sets for the delineation of cancer subtypes that are associated with distinct prognosis. However, identification of such gene sets remains a laborious task due to the lack of tools with flexibility, integration and ease of use. To reduce the burden, we have developed an R package, CAsubtype, to efficiently identify gene sets predictive of cancer subtypes and clinical outcomes. By integrating more than 13,000 annotated gene sets, CAsubtype provides a comprehensive repertoire of candidates for new cancer subtype identification. For easy data access, CAsubtype further includes the gene expression and clinical data of more than 2000 cancer patients from TCGA. CAsubtype first employs principal component analysis to identify gene sets (from user-provided or package-integrated ones) with robust principal components representing significantly large variation between cancer samples. Based on these principal components, CAsubtype visualizes the sample distribution in low-dimensional space for better understanding of the distinction between samples and classifies samples into subgroups with prevalent clustering algorithms. Finally, CAsubtype performs survival analysis to compare the clinical outcomes between the identified subgroups, assessing their clinical value as potentially novel cancer subtypes. In conclusion, CAsubtype is a flexible and well-integrated tool in the R environment to identify gene sets for cancer subtype identification and clinical outcome prediction. Its simple R commands and comprehensive data sets enable efficient examination of the clinical value of any given gene set, thus facilitating hypothesis generating and testing in biological and

  19. Analysis of pools of targeted Salmonella deletion mutants identifies novel genes affecting fitness during competitive infection in mice.

    Directory of Open Access Journals (Sweden)

    Carlos A Santiviago

    2009-07-01

    Full Text Available Pools of mutants of minimal complexity but maximal coverage of genes of interest facilitate screening for genes under selection in a particular environment. We constructed individual deletion mutants in 1,023 Salmonella enterica serovar Typhimurium genes, including almost all genes found in Salmonella but not in related genera. All mutations were confirmed simultaneously using a novel amplification strategy to produce labeled RNA from a T7 RNA polymerase promoter, introduced during the construction of each mutant, followed by hybridization of this labeled RNA to a Typhimurium genome tiling array. To demonstrate the ability to identify fitness phenotypes using our pool of mutants, the pool was subjected to selection by intraperitoneal injection into BALB/c mice and subsequent recovery from spleens. Changes in the representation of each mutant were monitored using T7 transcripts hybridized to a novel inexpensive minimal microarray. Among the top 120 statistically significant spleen colonization phenotypes, more than 40 were mutations in genes with no previously known role in this model. Fifteen phenotypes were tested using individual mutants in competitive assays of intraperitoneal infection in mice and eleven were confirmed, including the first two examples of attenuation for sRNA mutants in Salmonella. We refer to the method as Array-based analysis of cistrons under selection (ABACUS.

  20. Expression microarray identifies the unliganded glucocorticoid receptor as a regulator of gene expression in mammary epithelial cells

    International Nuclear Information System (INIS)

    Ritter, Heather D; Mueller, Christopher R

    2014-01-01

    While glucocorticoids and the liganded glucocorticoid receptor (GR) have a well-established role in the maintenance of differentiation and suppression of apoptosis in breast tissue, the involvement of unliganded GR in cellular processes is less clear. Our previous studies implicated unliganded GR as a positive regulator of the BRCA1 tumour suppressor gene in the absence of glucocorticoid hormone, which suggested it could play a similar role in the regulation of other genes. An shRNA vector directed against GR was used to create mouse mammary cell lines with depleted endogenous levels of this receptor in order to further characterize the role of GR in breast cells. An expression microarray screen for targets of unliganded GR was performed using our GR-depleted cell lines maintained in the absence of glucocorticoids. Candidate genes positively regulated by unliganded GR were identified, classified by Gene Ontology and Ingenuity Pathway Analysis, and validated using quantitative real-time reverse transcriptase PCR. Chromatin immunoprecipitation and dual luciferase expression assays were conducted to further investigate the mechanism through which unliganded GR regulates these genes. Expression microarray analysis revealed 260 targets negatively regulated and 343 targets positively regulated by unliganded GR. A number of the positively regulated targets were involved in pro-apoptotic networks, possibly opposing the activity of liganded GR targets. Validation and further analysis of five candidates from the microarray indicated that two of these, Hsd11b1 and Ch25h, were regulated by unliganded GR in a manner similar to Brca1 during glucocorticoid treatment. Furthermore, GR was shown to interact directly with and upregulate the Ch25h promoter in the absence, but not the presence, of hydrocortisone (HC), confirming our previously described model of gene regulation by unliganded GR. This work presents the first identification of targets of unliganded GR. We propose that

  1. Gene Expression Signature Analysis Identifies Vorinostat as a Candidate Therapy for Gastric Cancer

    Science.gov (United States)

    Choi, Woonyoung; Park, Yun-Yong; Kim, KyoungHyun; Kim, Sang-Bae; Lee, Ju-Seog; Mills, Gordon B.; Cho, Jae Yong

    2011-01-01

    Background Gastric cancer continues to be one of the deadliest cancers in the world and therefore identification of new drugs targeting this type of cancer is thus of significant importance. The purpose of this study was to identify and validate a therapeutic agent which might improve the outcomes for gastric cancer patients in the future. Methodology/Principal Findings Using microarray technology, we generated a gene expression profile of human gastric cancer–specific genes from human gastric cancer tissue samples. We used this profile in the Broad Institute's Connectivity Map analysis to identify candidate therapeutic compounds for gastric cancer. We found the histone deacetylase inhibitor vorinostat as the lead compound and thus a potential therapeutic drug for gastric cancer. Vorinostat induced both apoptosis and autophagy in gastric cancer cell lines. Pharmacological and genetic inhibition of autophagy however, increased the therapeutic efficacy of vorinostat, indicating that a combination of vorinostat with autophagy inhibitors may therapeutically be more beneficial. Moreover, gene expression analysis of gastric cancer identified a collection of genes (ITGB5, TYMS, MYB, APOC1, CBX5, PLA2G2A, and KIF20A) whose expression was elevated in gastric tumor tissue and downregulated more than 2-fold by vorinostat treatment in gastric cancer cell lines. In contrast, SCGB2A1, TCN1, CFD, APLP1, and NQO1 manifested a reversed pattern. Conclusions/Significance We showed that analysis of gene expression signature may represent an emerging approach to discover therapeutic agents for gastric cancer, such as vorinostat. The observation of altered gene expression after vorinostat treatment may provide the clue to identify the molecular mechanism of vorinostat and those patients likely to benefit from vorinostat treatment. PMID:21931799

  2. X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes

    OpenAIRE

    Hu, H.; Haas, S.A.; Chelly, J.; Van Esch, H.; Raynaud, M.; de Brouwer, A.P.M.; Weinert, S.; Froyen, G.; Frints, S.G.M.; Laumonnier, F.; Zemojtel, T.; Love, M.I.; Richard, H.; Emde, A.K.; Bienek, M.

    2016-01-01

    X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of ...

  3. RNA-Seq analysis and annotation of a draft blueberry genome assembly identifies candidate genes involved in fruit ripening, biosynthesis of bioactive compounds, and stage-specific alternative splicing.

    Science.gov (United States)

    Gupta, Vikas; Estrada, April D; Blakley, Ivory; Reid, Rob; Patel, Ketan; Meyer, Mason D; Andersen, Stig Uggerhøj; Brown, Allan F; Lila, Mary Ann; Loraine, Ann E

    2015-01-01

    Blueberries are a rich source of antioxidants and other beneficial compounds that can protect against disease. Identifying genes involved in synthesis of bioactive compounds could enable the breeding of berry varieties with enhanced health benefits. Toward this end, we annotated a previously sequenced draft blueberry genome assembly using RNA-Seq data from five stages of berry fruit development and ripening. Genome-guided assembly of RNA-Seq read alignments combined with output from ab initio gene finders produced around 60,000 gene models, of which more than half were similar to proteins from other species, typically the grape Vitis vinifera. Comparison of gene models to the PlantCyc database of metabolic pathway enzymes identified candidate genes involved in synthesis of bioactive compounds, including bixin, an apocarotenoid with potential disease-fighting properties, and defense-related cyanogenic glycosides, which are toxic. Cyanogenic glycoside (CG) biosynthetic enzymes were highly expressed in green fruit, and a candidate CG detoxification enzyme was up-regulated during fruit ripening. Candidate genes for ethylene, anthocyanin, and 400 other biosynthetic pathways were also identified. Homology-based annotation using Blast2GO and InterPro assigned Gene Ontology terms to around 15,000 genes. RNA-Seq expression profiling showed that blueberry growth, maturation, and ripening involve dynamic gene expression changes, including coordinated up- and down-regulation of metabolic pathway enzymes and transcriptional regulators. Analysis of RNA-seq alignments identified developmentally regulated alternative splicing, promoter use, and 3' end formation. We report genome sequence, gene models, functional annotations, and RNA-Seq expression data that provide an important new resource enabling high throughput studies in blueberry.

  4. Identifying candidate driver genes by integrative ovarian cancer genomics data

    Science.gov (United States)

    Lu, Xinguo; Lu, Jibo

    2017-08-01

    Integrative analysis of molecular mechanics underlying cancer can distinguish interactions that cannot be revealed based on one kind of data for the appropriate diagnosis and treatment of cancer patients. Tumor samples exhibit heterogeneity in omics data, such as somatic mutations, Copy Number Variations CNVs), gene expression profiles and so on. In this paper we combined gene co-expression modules and mutation modulators separately in tumor patients to obtain the candidate driver genes for resistant and sensitive tumor from the heterogeneous data. The final list of modulators identified are well known in biological processes associated with ovarian cancer, such as CCL17, CACTIN, CCL16, CCL22, APOB, KDF1, CCL11, HNF1B, LRG1, MED1 and so on, which can help to facilitate the discovery of biomarkers, molecular diagnostics, and drug discovery.

  5. Profiling spermatogenic failure in adult testes bearing Sox9-deficient Sertoli cells identifies genes involved in feminization, inflammation and stress

    Directory of Open Access Journals (Sweden)

    Barrionuevo Francisco

    2010-12-01

    Full Text Available Abstract Background Sox9 (Sry box containing gene 9 is a DNA-binding transcription factor involved in chondrocyte development and sex determination. The protein's absence in testicular Sertoli nurse cells has been shown to disrupt testicular function in adults but little is known at the genome-wide level about molecular events concomitant with testicular break-down. Methods To determine the genome-wide effect on mRNA concentrations triggered by the absence of Sox9 in Sertoli cells we analysed adult testicular tissue from wild-type versus mutant mice with high-density oligonucleotide microarrays and integrated the output of this experiment with regulatory motif predictions and protein-protein network data. Results We report the genome-wide mRNA signature of adult testes lacking Sox9 in Sertoli cells before and after the onset of late spermatogenic failure as compared to fertile controls. The GeneChip data integrated with evolutionarily conserved Sox9 DNA binding motifs and regulatory network data identified genes involved in feminization, stress response and inflammation. Conclusions Our results extend previous observations that genes required for female gonadogenesis are up-regulated in the absence of Sox9 in fetal Sertoli cells to the adult stage. Importantly, we identify gene networks involved in immunological processes and stress response which is reminiscent of a phenomenon occurring in a sub-group of infertile men. This suggests mice lacking Sox9 in their Sertoli cells to be a potentially useful model for adult human testicular failure.

  6. Resistance gene candidates identified by PCR with degenerate oligonucleotide primers map to clusters of resistance genes in lettuce.

    Science.gov (United States)

    Shen, K A; Meyers, B C; Islam-Faridi, M N; Chin, D B; Stelly, D M; Michelmore, R W

    1998-08-01

    The recent cloning of genes for resistance against diverse pathogens from a variety of plants has revealed that many share conserved sequence motifs. This provides the possibility of isolating numerous additional resistance genes by polymerase chain reaction (PCR) with degenerate oligonucleotide primers. We amplified resistance gene candidates (RGCs) from lettuce with multiple combinations of primers with low degeneracy designed from motifs in the nucleotide binding sites (NBSs) of RPS2 of Arabidopsis thaliana and N of tobacco. Genomic DNA, cDNA, and bacterial artificial chromosome (BAC) clones were successfully used as templates. Four families of sequences were identified that had the same similarity to each other as to resistance genes from other species. The relationship of the amplified products to resistance genes was evaluated by several sequence and genetic criteria. The amplified products contained open reading frames with additional sequences characteristic of NBSs. Hybridization of RGCs to genomic DNA and to BAC clones revealed large numbers of related sequences. Genetic analysis demonstrated the existence of clustered multigene families for each of the four RGC sequences. This parallels classical genetic data on clustering of disease resistance genes. Two of the four families mapped to known clusters of resistance genes; these two families were therefore studied in greater detail. Additional evidence that these RGCs could be resistance genes was gained by the identification of leucine-rich repeat (LRR) regions in sequences adjoining the NBS similar to those in RPM1 and RPS2 of A. thaliana. Fluorescent in situ hybridization confirmed the clustered genomic distribution of these sequences. The use of PCR with degenerate oligonucleotide primers is therefore an efficient method to identify numerous RGCs in plants.

  7. Gene-environment interaction involving recently identified colorectal cancer susceptibility loci

    Science.gov (United States)

    Kantor, Elizabeth D.; Hutter, Carolyn M.; Minnier, Jessica; Berndt, Sonja I.; Brenner, Hermann; Caan, Bette J.; Campbell, Peter T.; Carlson, Christopher S.; Casey, Graham; Chan, Andrew T.; Chang-Claude, Jenny; Chanock, Stephen J.; Cotterchio, Michelle; Du, Mengmeng; Duggan, David; Fuchs, Charles S.; Giovannucci, Edward L.; Gong, Jian; Harrison, Tabitha A.; Hayes, Richard B.; Henderson, Brian E.; Hoffmeister, Michael; Hopper, John L.; Jenkins, Mark A.; Jiao, Shuo; Kolonel, Laurence N.; Le Marchand, Loic; Lemire, Mathieu; Ma, Jing; Newcomb, Polly A.; Ochs-Balcom, Heather M.; Pflugeisen, Bethann M.; Potter, John D.; Rudolph, Anja; Schoen, Robert E.; Seminara, Daniela; Slattery, Martha L.; Stelling, Deanna L.; Thomas, Fridtjof; Thornquist, Mark; Ulrich, Cornelia M.; Warnick, Greg S.; Zanke, Brent W.; Peters, Ulrike; Hsu, Li; White, Emily

    2014-01-01

    BACKGROUND Genome-wide association studies have identified several single nucleotide polymorphisms (SNPs) that are associated with risk of colorectal cancer (CRC). Prior research has evaluated the presence of gene-environment interaction involving the first 10 identified susceptibility loci, but little work has been conducted on interaction involving SNPs at recently identified susceptibility loci, including: rs10911251, rs6691170, rs6687758, rs11903757, rs10936599, rs647161, rs1321311, rs719725, rs1665650, rs3824999, rs7136702, rs11169552, rs59336, rs3217810, rs4925386, and rs2423279. METHODS Data on 9160 cases and 9280 controls from the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO) and Colon Cancer Family Registry (CCFR) were used to evaluate the presence of interaction involving the above-listed SNPs and sex, body mass index (BMI), alcohol consumption, smoking, aspirin use, post-menopausal hormone (PMH) use, as well as intake of dietary calcium, dietary fiber, dietary folate, red meat, processed meat, fruit, and vegetables. Interaction was evaluated using a fixed-effects meta-analysis of an efficient Empirical Bayes estimator, and permutation was used to account for multiple comparisons. RESULTS None of the permutation-adjusted p-values reached statistical significance. CONCLUSIONS The associations between recently identified genetic susceptibility loci and CRC are not strongly modified by sex, BMI, alcohol, smoking, aspirin, PMH use, and various dietary factors. IMPACT Results suggest no evidence of strong gene-environment interactions involving the recently identified 16 susceptibility loci for CRC taken one at a time. PMID:24994789

  8. LGscore: A method to identify disease-related genes using biological literature and Google data.

    Science.gov (United States)

    Kim, Jeongwoo; Kim, Hyunjin; Yoon, Youngmi; Park, Sanghyun

    2015-04-01

    Since the genome project in 1990s, a number of studies associated with genes have been conducted and researchers have confirmed that genes are involved in disease. For this reason, the identification of the relationships between diseases and genes is important in biology. We propose a method called LGscore, which identifies disease-related genes using Google data and literature data. To implement this method, first, we construct a disease-related gene network using text-mining results. We then extract gene-gene interactions based on co-occurrences in abstract data obtained from PubMed, and calculate the weights of edges in the gene network by means of Z-scoring. The weights contain two values: the frequency and the Google search results. The frequency value is extracted from literature data, and the Google search result is obtained using Google. We assign a score to each gene through a network analysis. We assume that genes with a large number of links and numerous Google search results and frequency values are more likely to be involved in disease. For validation, we investigated the top 20 inferred genes for five different diseases using answer sets. The answer sets comprised six databases that contain information on disease-gene relationships. We identified a significant number of disease-related genes as well as candidate genes for Alzheimer's disease, diabetes, colon cancer, lung cancer, and prostate cancer. Our method was up to 40% more accurate than existing methods. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Genome-Wide Association Studies Identify Candidate Genes for Coat Color and Mohair Traits in the Iranian Markhoz Goat

    Directory of Open Access Journals (Sweden)

    Anahit Nazari-Ghadikolaei

    2018-04-01

    Full Text Available The Markhoz goat provides an opportunity to study the genetics underlying coat color and mohair traits of an Angora type goat using genome-wide association studies (GWAS. This indigenous Iranian breed is valued for its quality mohair used in ceremonial garments and has the distinction of exhibiting an array of coat colors including black, brown, and white. Here, we performed 16 GWAS for different fleece (mohair traits and coat color in 228 Markhoz goats sampled from the Markhoz Goat Research Station in Sanandaj, Kurdistan province, located in western Iran using the Illumina Caprine 50K beadchip. The Efficient Mixed Model Linear analysis was used to identify genomic regions with potential candidate genes contributing to coat color and mohair characteristics while correcting for population structure. Significant associations to coat color were found within or near the ASIP, ITCH, AHCY, and RALY genes on chromosome 13 for black and brown coat color and the KIT and PDGFRA genes on chromosome 6 for white coat color. Individual mohair traits were analyzed for genetic association along with principal components that allowed for a broader perspective of combined traits reflecting overall mohair quality and volume. A multitude of markers demonstrated significant association to mohair traits highlighting potential candidate genes of POU1F1 on chromosome 1 for mohair quality, MREG on chromosome 2 for mohair volume, DUOX1 on chromosome 10 for yearling fleece weight, and ADGRV1 on chromosome 7 for grease percentage. Variation in allele frequencies and haplotypes were identified for coat color and differentiated common markers associated with both brown and black coat color. This demonstrates the potential for genetic markers to be used in future breeding programs to improve selection for coat color and mohair traits. Putative candidate genes, both novel and previously identified in other species or breeds, require further investigation to confirm phenotypic

  10. Gene expression profiling in Entamoeba histolytica identifies key components in iron uptake and metabolism.

    Directory of Open Access Journals (Sweden)

    Nora Adriana Hernández-Cuevas

    Full Text Available Entamoeba histolytica is an ameboid parasite that causes colonic dysentery and liver abscesses in humans. The parasite encounters dramatic changes in iron concentration during its invasion of the host, with relatively low levels in the intestinal lumen and then relatively high levels in the blood and liver. The liver notably contains sources of iron; therefore, the parasite's ability to use these sources might be relevant to its survival in the liver and thus the pathogenesis of liver abscesses. The objective of the present study was to identify factors involved in iron uptake, use and storage in E. histolytica. We compared the respective transcriptomes of E. histolytica trophozoites grown in normal medium (containing around 169 µM iron, low-iron medium (around 123 µM iron, iron-deficient medium (around 91 µM iron, and iron-deficient medium replenished with hemoglobin. The differentially expressed genes included those coding for the ATP-binding cassette transporters and major facilitator transporters (which share homology with bacterial siderophores and heme transporters and genes involved in heme biosynthesis and degradation. Iron deficiency was associated with increased transcription of genes encoding a subset of cell signaling molecules, some of which have previously been linked to adaptation to the intestinal environment and virulence. The present study is the first to have assessed the transcriptome of E. histolytica grown under various iron concentrations. Our results provide insights into the pathways involved in iron uptake and metabolism in this parasite.

  11. Gene expression profiling in Entamoeba histolytica identifies key components in iron uptake and metabolism.

    Science.gov (United States)

    Hernández-Cuevas, Nora Adriana; Weber, Christian; Hon, Chung-Chau; Guillen, Nancy

    2014-01-01

    Entamoeba histolytica is an ameboid parasite that causes colonic dysentery and liver abscesses in humans. The parasite encounters dramatic changes in iron concentration during its invasion of the host, with relatively low levels in the intestinal lumen and then relatively high levels in the blood and liver. The liver notably contains sources of iron; therefore, the parasite's ability to use these sources might be relevant to its survival in the liver and thus the pathogenesis of liver abscesses. The objective of the present study was to identify factors involved in iron uptake, use and storage in E. histolytica. We compared the respective transcriptomes of E. histolytica trophozoites grown in normal medium (containing around 169 µM iron), low-iron medium (around 123 µM iron), iron-deficient medium (around 91 µM iron), and iron-deficient medium replenished with hemoglobin. The differentially expressed genes included those coding for the ATP-binding cassette transporters and major facilitator transporters (which share homology with bacterial siderophores and heme transporters) and genes involved in heme biosynthesis and degradation. Iron deficiency was associated with increased transcription of genes encoding a subset of cell signaling molecules, some of which have previously been linked to adaptation to the intestinal environment and virulence. The present study is the first to have assessed the transcriptome of E. histolytica grown under various iron concentrations. Our results provide insights into the pathways involved in iron uptake and metabolism in this parasite.

  12. Transcriptional profiling of whole blood identifies a unique 5-gene signature for myelofibrosis and imminent myelofibrosis transformation.

    Directory of Open Access Journals (Sweden)

    Hans Carl Hasselbalch

    Full Text Available Identifying a distinct gene signature for myelofibrosis may yield novel information of the genes, which are responsible for progression of essential thrombocythemia and polycythemia vera towards myelofibrosis. We aimed at identifying a simple gene signature - composed of a few genes - which were selectively and highly deregulated in myelofibrosis patients. Gene expression microarray studies have been performed on whole blood from 69 patients with myeloproliferative neoplasms. Amongst the top-20 of the most upregulated genes in PMF compared to controls, we identified 5 genes (DEFA4, ELA2, OLFM4, CTSG, and AZU1, which were highly significantly deregulated in PMF only. None of these genes were significantly regulated in ET and PV patients. However, hierarchical cluster analysis showed that these genes were also highly expressed in a subset of patients with ET (n = 1 and PV (n = 4 transforming towards myelofibrosis and/or being featured by an aggressive phenotype. We have identified a simple 5-gene signature, which is uniquely and highly significantly deregulated in patients in transitional stages of ET and PV towards myelofibrosis and in patients with PMF only. Some of these genes are considered to be responsible for the derangement of bone marrow stroma in myelofibrosis. Accordingly, this gene-signature may reflect key processes in the pathogenesis and pathophysiology of myelofibrosis development.

  13. New Mutation Identified in the SRY Gene High Mobility Group (HMG

    Directory of Open Access Journals (Sweden)

    Feride İffet Şahin

    2013-06-01

    Full Text Available Mutations in the SRY gene prevent the differentiation of the fetal gonads to testes and cause developing female phenotype, and as a result sex reversal and pure gonadal dysgenesis (Swyer syndrome can be developed. Different types of mutations identified in the SRY gene are responsible for 15% of the gonadal dysgenesis. In this study, we report a new mutation (R132P in the High Mobility Group (HMG region of SRY gene was detected in a patient with primary amenorrhea who has 46,XY karyotype. This mutation leads to replacement of the polar and basic arginine with a nonpolar hydrophobic proline residue at aminoacid 132 in the nuclear localization signal region of the protein. With this case report we want to emphasize the genetic approach to the patients with gonadal dysgenesis. If Y chromosome is detected during cytogenetic analysis, revealing the presence of the SRY gene and identification of mutations in this gene by sequencing analysis is become important in.

  14. Selection on plant male function genes identifies candidates for reproductive isolation of yellow monkeyflowers.

    Directory of Open Access Journals (Sweden)

    Jan E Aagaard

    Full Text Available Understanding the genetic basis of reproductive isolation promises insight into speciation and the origins of biological diversity. While progress has been made in identifying genes underlying barriers to reproduction that function after fertilization (post-zygotic isolation, we know much less about earlier acting pre-zygotic barriers. Of particular interest are barriers involved in mating and fertilization that can evolve extremely rapidly under sexual selection, suggesting they may play a prominent role in the initial stages of reproductive isolation. A significant challenge to the field of speciation genetics is developing new approaches for identification of candidate genes underlying these barriers, particularly among non-traditional model systems. We employ powerful proteomic and genomic strategies to study the genetic basis of conspecific pollen precedence, an important component of pre-zygotic reproductive isolation among yellow monkeyflowers (Mimulus spp. resulting from male pollen competition. We use isotopic labeling in combination with shotgun proteomics to identify more than 2,000 male function (pollen tube proteins within maternal reproductive structures (styles of M. guttatus flowers where pollen competition occurs. We then sequence array-captured pollen tube exomes from a large outcrossing population of M. guttatus, and identify those genes with evidence of selective sweeps or balancing selection consistent with their role in pollen competition. We also test for evidence of positive selection on these genes more broadly across yellow monkeyflowers, because a signal of adaptive divergence is a common feature of genes causing reproductive isolation. Together the molecular evolution studies identify 159 pollen tube proteins that are candidate genes for conspecific pollen precedence. Our work demonstrates how powerful proteomic and genomic tools can be readily adapted to non-traditional model systems, allowing for genome-wide screens

  15. Consistent Differential Expression Pattern (CDEP) on microarray to identify genes related to metastatic behavior.

    Science.gov (United States)

    Tsoi, Lam C; Qin, Tingting; Slate, Elizabeth H; Zheng, W Jim

    2011-11-11

    To utilize the large volume of gene expression information generated from different microarray experiments, several meta-analysis techniques have been developed. Despite these efforts, there remain significant challenges to effectively increasing the statistical power and decreasing the Type I error rate while pooling the heterogeneous datasets from public resources. The objective of this study is to develop a novel meta-analysis approach, Consistent Differential Expression Pattern (CDEP), to identify genes with common differential expression patterns across different datasets. We combined False Discovery Rate (FDR) estimation and the non-parametric RankProd approach to estimate the Type I error rate in each microarray dataset of the meta-analysis. These Type I error rates from all datasets were then used to identify genes with common differential expression patterns. Our simulation study showed that CDEP achieved higher statistical power and maintained low Type I error rate when compared with two recently proposed meta-analysis approaches. We applied CDEP to analyze microarray data from different laboratories that compared transcription profiles between metastatic and primary cancer of different types. Many genes identified as differentially expressed consistently across different cancer types are in pathways related to metastatic behavior, such as ECM-receptor interaction, focal adhesion, and blood vessel development. We also identified novel genes such as AMIGO2, Gem, and CXCL11 that have not been shown to associate with, but may play roles in, metastasis. CDEP is a flexible approach that borrows information from each dataset in a meta-analysis in order to identify genes being differentially expressed consistently. We have shown that CDEP can gain higher statistical power than other existing approaches under a variety of settings considered in the simulation study, suggesting its robustness and insensitivity to data variation commonly associated with microarray

  16. Comparative transcriptional profiling of the axolotl limb identifies a tripartite regeneration-specific gene program.

    Directory of Open Access Journals (Sweden)

    Dunja Knapp

    Full Text Available Understanding how the limb blastema is established after the initial wound healing response is an important aspect of regeneration research. Here we performed parallel expression profile time courses of healing lateral wounds versus amputated limbs in axolotl. This comparison between wound healing and regeneration allowed us to identify amputation-specific genes. By clustering the expression profiles of these samples, we could detect three distinguishable phases of gene expression - early wound healing followed by a transition-phase leading to establishment of the limb development program, which correspond to the three phases of limb regeneration that had been defined by morphological criteria. By focusing on the transition-phase, we identified 93 strictly amputation-associated genes many of which are implicated in oxidative-stress response, chromatin modification, epithelial development or limb development. We further classified the genes based on whether they were or were not significantly expressed in the developing limb bud. The specific localization of 53 selected candidates within the blastema was investigated by in situ hybridization. In summary, we identified a set of genes that are expressed specifically during regeneration and are therefore, likely candidates for the regulation of blastema formation.

  17. iTAR: a web server for identifying target genes of transcription factors using ChIP-seq or ChIP-chip data.

    Science.gov (United States)

    Yang, Chia-Chun; Andrews, Erik H; Chen, Min-Hsuan; Wang, Wan-Yu; Chen, Jeremy J W; Gerstein, Mark; Liu, Chun-Chi; Cheng, Chao

    2016-08-12

    Chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq) or microarray hybridization (ChIP-chip) has been widely used to determine the genomic occupation of transcription factors (TFs). We have previously developed a probabilistic method, called TIP (Target Identification from Profiles), to identify TF target genes using ChIP-seq/ChIP-chip data. To achieve high specificity, TIP applies a conservative method to estimate significance of target genes, with the trade-off being a relatively low sensitivity of target gene identification compared to other methods. Additionally, TIP's output does not render binding-peak locations or intensity, information highly useful for visualization and general experimental biological use, while the variability of ChIP-seq/ChIP-chip file formats has made input into TIP more difficult than desired. To improve upon these facets, here we present are fined TIP with key extensions. First, it implements a Gaussian mixture model for p-value estimation, increasing target gene identification sensitivity and more accurately capturing the shape of TF binding profile distributions. Second, it enables the incorporation of TF binding-peak data by identifying their locations in significant target gene promoter regions and quantifies their strengths. Finally, for full ease of implementation we have incorporated it into a web server ( http://syslab3.nchu.edu.tw/iTAR/ ) that enables flexibility of input file format, can be used across multiple species and genome assembly versions, and is freely available for public use. The web server additionally performs GO enrichment analysis for the identified target genes to reveal the potential function of the corresponding TF. The iTAR web server provides a user-friendly interface and supports target gene identification in seven species, ranging from yeast to human. To facilitate investigating the quality of ChIP-seq/ChIP-chip data, the web server generates the chart of the

  18. Genome Comparison of Erythromycin Resistant Campylobacter from Turkeys Identifies Hosts and Pathways for Horizontal Spread of erm(B Genes

    Directory of Open Access Journals (Sweden)

    Diego Florez-Cuadrado

    2017-11-01

    Full Text Available Pathogens in the genus Campylobacter are the most common cause of food-borne bacterial gastro-enteritis. Campylobacteriosis, caused principally by Campylobacter jejuni and Campylobacter coli, is transmitted to humans by food of animal origin, especially poultry. As for many pathogens, antimicrobial resistance in Campylobacter is increasing at an alarming rate. Erythromycin prescription is the treatment of choice for clinical cases requiring antimicrobial therapy but this is compromised by mobility of the erythromycin resistance gene erm(B between strains. Here, we evaluate resistance to six antimicrobials in 170 Campylobacter isolates (133 C. coli and 37 C. jejuni from turkeys. Erythromycin resistant isolates (n = 85; 81 C. coli and 4 C. jejuni were screened for the presence of the erm(B gene, that has not previously been identified in isolates from turkeys. The genomes of two positive C. coli isolates were sequenced and in both isolates the erm(B gene clustered with resistance determinants against aminoglycosides plus tetracycline, including aad9, aadE, aph(2″-IIIa, aph(3′-IIIa, and tet(O genes. Comparative genomic analysis identified identical erm(B sequences among Campylobacter from turkeys, Streptococcus suis from pigs and Enterococcus faecium and Clostridium difficile from humans. This is consistent with multiple horizontal transfer events among different bacterial species colonizing turkeys. This example highlights the potential for dissemination of antimicrobial resistance across bacterial species boundaries which may compromise their effectiveness in antimicrobial therapy.

  19. Preferential Allele Expression Analysis Identifies Shared Germline and Somatic Driver Genes in Advanced Ovarian Cancer

    Science.gov (United States)

    Halabi, Najeeb M.; Martinez, Alejandra; Al-Farsi, Halema; Mery, Eliane; Puydenus, Laurence; Pujol, Pascal; Khalak, Hanif G.; McLurcan, Cameron; Ferron, Gwenael; Querleu, Denis; Al-Azwani, Iman; Al-Dous, Eman; Mohamoud, Yasmin A.; Malek, Joel A.; Rafii, Arash

    2016-01-01

    Identifying genes where a variant allele is preferentially expressed in tumors could lead to a better understanding of cancer biology and optimization of targeted therapy. However, tumor sample heterogeneity complicates standard approaches for detecting preferential allele expression. We therefore developed a novel approach combining genome and transcriptome sequencing data from the same sample that corrects for sample heterogeneity and identifies significant preferentially expressed alleles. We applied this analysis to epithelial ovarian cancer samples consisting of matched primary ovary and peritoneum and lymph node metastasis. We find that preferentially expressed variant alleles include germline and somatic variants, are shared at a relatively high frequency between patients, and are in gene networks known to be involved in cancer processes. Analysis at a patient level identifies patient-specific preferentially expressed alleles in genes that are targets for known drugs. Analysis at a site level identifies patterns of site specific preferential allele expression with similar pathways being impacted in the primary and metastasis sites. We conclude that genes with preferentially expressed variant alleles can act as cancer drivers and that targeting those genes could lead to new therapeutic strategies. PMID:26735499

  20. Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks.

    Directory of Open Access Journals (Sweden)

    Dimitrios Iliopoulos

    Full Text Available BACKGROUND: Osteoarthritis is a multifactorial disease characterized by destruction of the articular cartilage due to genetic, mechanical and environmental components affecting more than 100 million individuals all over the world. Despite the high prevalence of the disease, the absence of large-scale molecular studies limits our ability to understand the molecular pathobiology of osteoathritis and identify targets for drug development. METHODOLOGY/PRINCIPAL FINDINGS: In this study we integrated genetic, bioinformatic and proteomic approaches in order to identify new genes and their collaborative networks involved in osteoarthritis pathogenesis. MicroRNA profiling of patient-derived osteoarthritic cartilage in comparison to normal cartilage, revealed a 16 microRNA osteoarthritis gene signature. Using reverse-phase protein arrays in the same tissues we detected 76 differentially expressed proteins between osteoarthritic and normal chondrocytes. Proteins such as SOX11, FGF23, KLF6, WWOX and GDF15 not implicated previously in the genesis of osteoarthritis were identified. Integration of microRNA and proteomic data with microRNA gene-target prediction algorithms, generated a potential "interactome" network consisting of 11 microRNAs and 58 proteins linked by 414 potential functional associations. Comparison of the molecular and clinical data, revealed specific microRNAs (miR-22, miR-103 and proteins (PPARA, BMP7, IL1B to be highly correlated with Body Mass Index (BMI. Experimental validation revealed that miR-22 regulated PPARA and BMP7 expression and its inhibition blocked inflammatory and catabolic changes in osteoarthritic chondrocytes. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that obesity and inflammation are related to osteoarthritis, a metabolic disease affected by microRNA deregulation. Gene network approaches provide new insights for elucidating the complexity of diseases such as osteoarthritis. The integration of microRNA, proteomic

  1. Amygdala-enriched genes identified by microarray technology are restricted to specific amygdaloid subnuclei

    OpenAIRE

    Zirlinger, M.; Kreiman, Gabriel; Anderson, D. J.

    2001-01-01

    Microarray technology represents a potentially powerful method for identifying cell type- and regionally restricted genes expressed in the brain. Here we have combined a microarray analysis of differential gene expression among five selected brain regions, including the amygdala, cerebellum, hippocampus, olfactory bulb, and periaqueductal gray, with in situ hybridization. On average, 0.3% of the 34,000 genes interrogated were highly enriched in each of the five regions...

  2. X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes

    NARCIS (Netherlands)

    Hu, H; Haas, S.A.; Chelly, J.; Esch, H. Van; Raynaud, M.; Brouwer, A.P. de; Weinert, S.; Froyen, G.; Frints, S.G.; Laumonnier, F.; Zemojtel, T.; Love, M.I.; Richard, H.; Emde, A.K.; Bienek, M.; Jensen, C.; Hambrock, M.; Fischer, U.; Langnick, C.; Feldkamp, M.; Wissink-Lindhout, W.; Lebrun, N.; Castelnau, L.; Rucci, J.; Montjean, R.; Dorseuil, O.; Billuart, P.; Stuhlmann, T.; Shaw, M.; Corbett, M.A.; Gardner, A.; Willis-Owen, S.; Tan, C.; Friend, K.L.; Belet, S.; Roozendaal, K.E. van; Jimenez-Pocquet, M.; Moizard, M.P.; Ronce, N.; Sun, R.; O'Keeffe, S.; Chenna, R.; Bommel, A. van; Goke, J.; Hackett, A.; Field, M.; Christie, L.; Boyle, J.; Haan, E.; Nelson, J.; Turner, G.; Baynam, G.; Gillessen-Kaesbach, G.; Muller, U.; Steinberger, D.; Budny, B.; Badura-Stronka, M.; Latos-Bielenska, A.; Ousager, L.B.; Wieacker, P.; Rodriguez Criado, G.; Bondeson, M.L.; Anneren, G.; Dufke, A.; Cohen, M.; Maldergem, L. Van; Vincent-Delorme, C.; Echenne, B.; Simon-Bouy, B.; Kleefstra, T.; Willemsen, M.H.; Fryns, J.P.; Devriendt, K.; Ullmann, R.; Vingron, M.; Wrogemann, K.; Wienker, T.F.; Tzschach, A.; Bokhoven, H. van; Gecz, J.; Jentsch, T.J.; Chen, W.; Ropers, H.H.; Kalscheuer, V.M.

    2016-01-01

    X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or

  3. X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes

    DEFF Research Database (Denmark)

    Hu, H; Haas, S A; Chelly, J

    2016-01-01

    X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes...

  4. Genes associated with thermosensitive genic male sterility in rice identified by comparative expression profiling.

    Science.gov (United States)

    Pan, Yufang; Li, Qiaofeng; Wang, Zhizheng; Wang, Yang; Ma, Rui; Zhu, Lili; He, Guangcun; Chen, Rongzhi

    2014-12-16

    development, low temperature responses or TGMS was validated by quantitative RT-PCR (qRT-PCR). Temperature strongly affects global gene expression and may be the common regulator of fertility in PGMS/TGMS rice lines. The identified expression changes reflect perturbations in the transcriptomic regulation of pollen development networks in TGMS-Co27. Findings from this and previous studies indicate that sets of genes involved in post-transcriptional and translation processes are involved in thermosensitive male sterility transitions in TGMS-Co27.

  5. Linking the Salt Transcriptome with Physiological Responses of a Salt-Resistant Populus Species as a Strategy to Identify Genes Important for Stress Acclimation1[W][OA

    Science.gov (United States)

    Brinker, Monika; Brosché, Mikael; Vinocur, Basia; Abo-Ogiala, Atef; Fayyaz, Payam; Janz, Dennis; Ottow, Eric A.; Cullmann, Andreas D.; Saborowski, Joachim; Kangasjärvi, Jaakko; Altman, Arie; Polle, Andrea

    2010-01-01

    To investigate early salt acclimation mechanisms in a salt-tolerant poplar species (Populus euphratica), the kinetics of molecular, metabolic, and physiological changes during a 24-h salt exposure were measured. Three distinct phases of salt stress were identified by analyses of the osmotic pressure and the shoot water potential: dehydration, salt accumulation, and osmotic restoration associated with ionic stress. The duration and intensity of these phases differed between leaves and roots. Transcriptome analysis using P. euphratica-specific microarrays revealed clusters of coexpressed genes in these phases, with only 3% overlapping salt-responsive genes in leaves and roots. Acclimation of cellular metabolism to high salt concentrations involved remodeling of amino acid and protein biosynthesis and increased expression of molecular chaperones (dehydrins, osmotin). Leaves suffered initially from dehydration, which resulted in changes in transcript levels of mitochondrial and photosynthetic genes, indicating adjustment of energy metabolism. Initially, decreases in stress-related genes were found, whereas increases occurred only when leaves had restored the osmotic balance by salt accumulation. Comparative in silico analysis of the poplar stress regulon with Arabidopsis (Arabidopsis thaliana) orthologs was used as a strategy to reduce the number of candidate genes for functional analysis. Analysis of Arabidopsis knockout lines identified a lipocalin-like gene (AtTIL) and a gene encoding a protein with previously unknown functions (AtSIS) to play roles in salt tolerance. In conclusion, by dissecting the stress transcriptome of tolerant species, novel genes important for salt endurance can be identified. PMID:20959419

  6. Secretome Characterization and Correlation Analysis Reveal Putative Pathogenicity Mechanisms and Identify Candidate Avirulence Genes in the Wheat Stripe Rust Fungus Puccinia striiformis f. sp. tritici.

    Science.gov (United States)

    Xia, Chongjing; Wang, Meinan; Cornejo, Omar E; Jiwan, Derick A; See, Deven R; Chen, Xianming

    2017-01-01

    Stripe (yellow) rust, caused by Puccinia striiformis f. sp. tritici ( Pst ), is one of the most destructive diseases of wheat worldwide. Planting resistant cultivars is an effective way to control this disease, but race-specific resistance can be overcome quickly due to the rapid evolving Pst population. Studying the pathogenicity mechanisms is critical for understanding how Pst virulence changes and how to develop wheat cultivars with durable resistance to stripe rust. We re-sequenced 7 Pst isolates and included additional 7 previously sequenced isolates to represent balanced virulence/avirulence profiles for several avirulence loci in seretome analyses. We observed an uneven distribution of heterozygosity among the isolates. Secretome comparison of Pst with other rust fungi identified a large portion of species-specific secreted proteins, suggesting that they may have specific roles when interacting with the wheat host. Thirty-two effectors of Pst were identified from its secretome. We identified candidates for Avr genes corresponding to six Yr genes by correlating polymorphisms for effector genes to the virulence/avirulence profiles of the 14 Pst isolates. The putative AvYr76 was present in the avirulent isolates, but absent in the virulent isolates, suggesting that deleting the coding region of the candidate avirulence gene has produced races virulent to resistance gene Yr76 . We conclude that incorporating avirulence/virulence phenotypes into correlation analysis with variations in genomic structure and secretome, particularly presence/absence polymorphisms of effectors, is an efficient way to identify candidate Avr genes in Pst . The candidate effector genes provide a rich resource for further studies to determine the evolutionary history of Pst populations and the co-evolutionary arms race between Pst and wheat. The Avr candidates identified in this study will lead to cloning avirulence genes in Pst , which will enable us to understand molecular mechanisms

  7. Exome Sequencing and Linkage Analysis Identified Novel Candidate Genes in Recessive Intellectual Disability Associated with Ataxia.

    Science.gov (United States)

    Jazayeri, Roshanak; Hu, Hao; Fattahi, Zohreh; Musante, Luciana; Abedini, Seyedeh Sedigheh; Hosseini, Masoumeh; Wienker, Thomas F; Ropers, Hans Hilger; Najmabadi, Hossein; Kahrizi, Kimia

    2015-10-01

    Intellectual disability (ID) is a neuro-developmental disorder which causes considerable socio-economic problems. Some ID individuals are also affected by ataxia, and the condition includes different mutations affecting several genes. We used whole exome sequencing (WES) in combination with homozygosity mapping (HM) to identify the genetic defects in five consanguineous families among our cohort study, with two affected children with ID and ataxia as major clinical symptoms. We identified three novel candidate genes, RIPPLY1, MRPL10, SNX14, and a new mutation in known gene SURF1. All are autosomal genes, except RIPPLY1, which is located on the X chromosome. Two are housekeeping genes, implicated in transcription and translation regulation and intracellular trafficking, and two encode mitochondrial proteins. The pathogenesis of these variants was evaluated by mutation classification, bioinformatic methods, review of medical and biological relevance, co-segregation studies in the particular family, and a normal population study. Linkage analysis and exome sequencing of a small number of affected family members is a powerful new technique which can be used to decrease the number of candidate genes in heterogenic disorders such as ID, and may even identify the responsible gene(s).

  8. High-Throughput Screening to Identify Regulators of Meiosis-Specific Gene Expression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kassir, Yona

    2017-01-01

    Meiosis and gamete formation are processes that are essential for sexual reproduction in all eukaryotic organisms. Multiple intracellular and extracellular signals feed into pathways that converge on transcription factors that induce the expression of meiosis-specific genes. Once triggered the meiosis-specific gene expression program proceeds in a cascade that drives progress through the events of meiosis and gamete formation. Meiosis-specific gene expression is tightly controlled by a balance of positive and negative regulatory factors that respond to a plethora of signaling pathways. The budding yeast Saccharomyces cerevisiae has proven to be an outstanding model for the dissection of gametogenesis owing to the sophisticated genetic manipulations that can be performed with the cells. It is possible to use a variety selection and screening methods to identify genes and their functions. High-throughput screening technology has been developed to allow an array of all viable yeast gene deletion mutants to be screened for phenotypes and for regulators of gene expression. This chapter describes a protocol that has been used to screen a library of homozygous diploid yeast deletion strains to identify regulators of the meiosis-specific IME1 gene.

  9. Comprehensive Analysis of the COBRA-Like (COBL) Gene Family in Gossypium Identifies Two COBLs Potentially Associated with Fiber Quality

    Science.gov (United States)

    Niu, Erli; Shang, Xiaoguang; Cheng, Chaoze; Bao, Jianghao; Zeng, Yanda; Cai, Caiping; Du, Xiongming; Guo, Wangzhen

    2015-01-01

    COBRA-Like (COBL) genes, which encode a plant-specific glycosylphosphatidylinositol (GPI) anchored protein, have been proven to be key regulators in the orientation of cell expansion and cellulose crystallinity status. Genome-wide analysis has been performed in A. thaliana, O. sativa, Z. mays and S. lycopersicum, but little in Gossypium. Here we identified 19, 18 and 33 candidate COBL genes from three sequenced cotton species, diploid cotton G. raimondii, G. arboreum and tetraploid cotton G. hirsutum acc. TM-1, respectively. These COBL members were anchored onto 10 chromosomes in G. raimondii and could be divided into two subgroups. Expression patterns of COBL genes showed highly developmental and spatial regulation in G. hirsutum acc. TM-1. Of them, GhCOBL9 and GhCOBL13 were preferentially expressed at the secondary cell wall stage of fiber development and had significantly co-upregulated expression with cellulose synthase genes GhCESA4, GhCESA7 and GhCESA8. Besides, GhCOBL9 Dt and GhCOBL13 Dt were co-localized with previously reported cotton fiber quality quantitative trait loci (QTLs) and the favorable allele types of GhCOBL9 Dt had significantly positive correlations with fiber quality traits, indicating that these two genes might play an important role in fiber development. PMID:26710066

  10. Identifying noncoding risk variants using disease-relevant gene regulatory networks.

    Science.gov (United States)

    Gao, Long; Uzun, Yasin; Gao, Peng; He, Bing; Ma, Xiaoke; Wang, Jiahui; Han, Shizhong; Tan, Kai

    2018-02-16

    Identifying noncoding risk variants remains a challenging task. Because noncoding variants exert their effects in the context of a gene regulatory network (GRN), we hypothesize that explicit use of disease-relevant GRNs can significantly improve the inference accuracy of noncoding risk variants. We describe Annotation of Regulatory Variants using Integrated Networks (ARVIN), a general computational framework for predicting causal noncoding variants. It employs a set of novel regulatory network-based features, combined with sequence-based features to infer noncoding risk variants. Using known causal variants in gene promoters and enhancers in a number of diseases, we show ARVIN outperforms state-of-the-art methods that use sequence-based features alone. Additional experimental validation using reporter assay further demonstrates the accuracy of ARVIN. Application of ARVIN to seven autoimmune diseases provides a holistic view of the gene subnetwork perturbed by the combinatorial action of the entire set of risk noncoding mutations.

  11. A method to identify differential expression profiles of time-course gene data with Fourier transformation.

    Science.gov (United States)

    Kim, Jaehee; Ogden, Robert Todd; Kim, Haseong

    2013-10-18

    Time course gene expression experiments are an increasingly popular method for exploring biological processes. Temporal gene expression profiles provide an important characterization of gene function, as biological systems are both developmental and dynamic. With such data it is possible to study gene expression changes over time and thereby to detect differential genes. Much of the early work on analyzing time series expression data relied on methods developed originally for static data and thus there is a need for improved methodology. Since time series expression is a temporal process, its unique features such as autocorrelation between successive points should be incorporated into the analysis. This work aims to identify genes that show different gene expression profiles across time. We propose a statistical procedure to discover gene groups with similar profiles using a nonparametric representation that accounts for the autocorrelation in the data. In particular, we first represent each profile in terms of a Fourier basis, and then we screen out genes that are not differentially expressed based on the Fourier coefficients. Finally, we cluster the remaining gene profiles using a model-based approach in the Fourier domain. We evaluate the screening results in terms of sensitivity, specificity, FDR and FNR, compare with the Gaussian process regression screening in a simulation study and illustrate the results by application to yeast cell-cycle microarray expression data with alpha-factor synchronization.The key elements of the proposed methodology: (i) representation of gene profiles in the Fourier domain; (ii) automatic screening of genes based on the Fourier coefficients and taking into account autocorrelation in the data, while controlling the false discovery rate (FDR); (iii) model-based clustering of the remaining gene profiles. Using this method, we identified a set of cell-cycle-regulated time-course yeast genes. The proposed method is general and can be

  12. Gene-set analysis based on the pharmacological profiles of drugs to identify repurposing opportunities in schizophrenia.

    Science.gov (United States)

    de Jong, Simone; Vidler, Lewis R; Mokrab, Younes; Collier, David A; Breen, Gerome

    2016-08-01

    Genome-wide association studies (GWAS) have identified thousands of novel genetic associations for complex genetic disorders, leading to the identification of potential pharmacological targets for novel drug development. In schizophrenia, 108 conservatively defined loci that meet genome-wide significance have been identified and hundreds of additional sub-threshold associations harbour information on the genetic aetiology of the disorder. In the present study, we used gene-set analysis based on the known binding targets of chemical compounds to identify the 'drug pathways' most strongly associated with schizophrenia-associated genes, with the aim of identifying potential drug repositioning opportunities and clues for novel treatment paradigms, especially in multi-target drug development. We compiled 9389 gene sets (2496 with unique gene content) and interrogated gene-based p-values from the PGC2-SCZ analysis. Although no single drug exceeded experiment wide significance (corrected pneratinib. This is a proof of principle analysis showing the potential utility of GWAS data of schizophrenia for the direct identification of candidate drugs and molecules that show polypharmacy. © The Author(s) 2016.

  13. Identifying Genes Controlling Ferulate Cross-Linking Formation in Grass Cell Walls

    Energy Technology Data Exchange (ETDEWEB)

    de O. Buanafina, Marcia Maria [Pennsylvania State Univ., University Park, PA (United States)

    2013-10-16

    This proposal focuses on cell wall feruloylation and our long term goal is to identify and isolate novel genes controlling feruloylation and to characterize the phenotype of mutants in this pathway, with a spotlight on cell wall properties.

  14. Transcriptomic Analysis Identifies Candidate Genes Related to Intramuscular Fat Deposition and Fatty Acid Composition in the Breast Muscle of Squabs (Columba

    Directory of Open Access Journals (Sweden)

    Manhong Ye

    2016-07-01

    Full Text Available Despite the fact that squab is consumed throughout the world because of its high nutritional value and appreciated sensory attributes, aspects related to its characterization, and in particular genetic issues, have rarely been studied. In this study, meat traits in terms of pH, water-holding capacity, intramuscular fat content, and fatty acid profile of the breast muscle of squabs from two meat pigeon breeds were determined. Breed-specific differences were detected in fat-related traits of intramuscular fat content and fatty acid composition. RNA-Sequencing was applied to compare the transcriptomes of muscle and liver tissues between squabs of two breeds to identify candidate genes associated with the differences in the capacity of fat deposition. A total of 27 differentially expressed genes assigned to pathways of lipid metabolism were identified, of which, six genes belonged to the peroxisome proliferator-activated receptor signaling pathway along with four other genes. Our results confirmed in part previous reports in livestock and provided also a number of genes which had not been related to fat deposition so far. These genes can serve as a basis for further investigations to screen markers closely associated with intramuscular fat content and fatty acid composition in squabs. The data from this study were deposited in the National Center for Biotechnology Information (NCBI’s Sequence Read Archive under the accession numbers SRX1680021 and SRX1680022. This is the first transcriptome analysis of the muscle and liver tissue in Columba using next generation sequencing technology. Data provided here are of potential value to dissect functional genes influencing fat deposition in squabs.

  15. A Generally Applicable Translational Strategy Identifies S100A4 as a Candidate Gene in Allergy

    DEFF Research Database (Denmark)

    Bruhn, Sören; Fang, Yu; Barrenäs, Fredrik

    2014-01-01

    The identification of diagnostic markers and therapeutic candidate genes in common diseases is complicated by the involvement of thousands of genes. We hypothesized that genes co-regulated with a key gene in allergy, IL13, would form a module that could help to identify candidate genes. We identi...

  16. Comprehensive fine mapping of chr12q12-14 and follow-up replication identify activin receptor 1B (ACVR1B) as a muscle strength gene

    NARCIS (Netherlands)

    Windelinckx, An; De Mars, Gunther; Huygens, Wim; Peeters, Maarten W.; Vincent, Barbara; Wijmenga, Cisca; Lambrechts, Diether; Delecluse, Christophe; Roth, Stephen M.; Metter, E. Jeffrey; Ferrucci, Luigi; Aerssens, Jeroen; Vlietinck, Robert; Beunen, Gaston P.; Thomis, Martine A.

    Muscle strength is important in functional activities of daily living and the prevention of common pathologies. We describe the two-staged fine mapping of a previously identified linkage peak for knee strength on chr12q12-14. First, 209 tagSNPs in/around 74 prioritized genes were genotyped in 500

  17. Utility and Limitations of Using Gene Expression Data to Identify Functional Associations.

    Directory of Open Access Journals (Sweden)

    Sahra Uygun

    2016-12-01

    Full Text Available Gene co-expression has been widely used to hypothesize gene function through guilt-by association. However, it is not clear to what degree co-expression is informative, whether it can be applied to genes involved in different biological processes, and how the type of dataset impacts inferences about gene functions. Here our goal is to assess the utility and limitations of using co-expression as a criterion to recover functional associations between genes. By determining the percentage of gene pairs in a metabolic pathway with significant expression correlation, we found that many genes in the same pathway do not have similar transcript profiles and the choice of dataset, annotation quality, gene function, expression similarity measure, and clustering approach significantly impacts the ability to recover functional associations between genes using Arabidopsis thaliana as an example. Some datasets are more informative in capturing coordinated expression profiles and larger data sets are not always better. In addition, to recover the maximum number of known pathways and identify candidate genes with similar functions, it is important to explore rather exhaustively multiple dataset combinations, similarity measures, clustering algorithms and parameters. Finally, we validated the biological relevance of co-expression cluster memberships with an independent phenomics dataset and found that genes that consistently cluster with leucine degradation genes tend to have similar leucine levels in mutants. This study provides a framework for obtaining gene functional associations by maximizing the information that can be obtained from gene expression datasets.

  18. High-resolution melting (HRM) re-analysis of a polyposis patients cohort reveals previously undetected heterozygous and mosaic APC gene mutations.

    Science.gov (United States)

    Out, Astrid A; van Minderhout, Ivonne J H M; van der Stoep, Nienke; van Bommel, Lysette S R; Kluijt, Irma; Aalfs, Cora; Voorendt, Marsha; Vossen, Rolf H A M; Nielsen, Maartje; Vasen, Hans F A; Morreau, Hans; Devilee, Peter; Tops, Carli M J; Hes, Frederik J

    2015-06-01

    Familial adenomatous polyposis is most frequently caused by pathogenic variants in either the APC gene or the MUTYH gene. The detection rate of pathogenic variants depends on the severity of the phenotype and sensitivity of the screening method, including sensitivity for mosaic variants. For 171 patients with multiple colorectal polyps without previously detectable pathogenic variant, APC was reanalyzed in leukocyte DNA by one uniform technique: high-resolution melting (HRM) analysis. Serial dilution of heterozygous DNA resulted in a lowest detectable allelic fraction of 6% for the majority of variants. HRM analysis and subsequent sequencing detected pathogenic fully heterozygous APC variants in 10 (6%) of the patients and pathogenic mosaic variants in 2 (1%). All these variants were previously missed by various conventional scanning methods. In parallel, HRM APC scanning was applied to DNA isolated from polyp tissue of two additional patients with apparently sporadic polyposis and without detectable pathogenic APC variant in leukocyte DNA. In both patients a pathogenic mosaic APC variant was present in multiple polyps. The detection of pathogenic APC variants in 7% of the patients, including mosaics, illustrates the usefulness of a complete APC gene reanalysis of previously tested patients, by a supplementary scanning method. HRM is a sensitive and fast pre-screening method for reliable detection of heterozygous and mosaic variants, which can be applied to leukocyte and polyp derived DNA.

  19. Integrated network analysis identifies fight-club nodes as a class of hubs encompassing key putative switch genes that induce major transcriptome reprogramming during grapevine development.

    Science.gov (United States)

    Palumbo, Maria Concetta; Zenoni, Sara; Fasoli, Marianna; Massonnet, Mélanie; Farina, Lorenzo; Castiglione, Filippo; Pezzotti, Mario; Paci, Paola

    2014-12-01

    We developed an approach that integrates different network-based methods to analyze the correlation network arising from large-scale gene expression data. By studying grapevine (Vitis vinifera) and tomato (Solanum lycopersicum) gene expression atlases and a grapevine berry transcriptomic data set during the transition from immature to mature growth, we identified a category named "fight-club hubs" characterized by a marked negative correlation with the expression profiles of neighboring genes in the network. A special subset named "switch genes" was identified, with the additional property of many significant negative correlations outside their own group in the network. Switch genes are involved in multiple processes and include transcription factors that may be considered master regulators of the previously reported transcriptome remodeling that marks the developmental shift from immature to mature growth. All switch genes, expressed at low levels in vegetative/green tissues, showed a significant increase in mature/woody organs, suggesting a potential regulatory role during the developmental transition. Finally, our analysis of tomato gene expression data sets showed that wild-type switch genes are downregulated in ripening-deficient mutants. The identification of known master regulators of tomato fruit maturation suggests our method is suitable for the detection of key regulators of organ development in different fleshy fruit crops. © 2014 American Society of Plant Biologists. All rights reserved.

  20. Identification of the human ApoAV gene as a novel RORα target gene

    International Nuclear Information System (INIS)

    Lind, Ulrika; Nilsson, Tina; McPheat, Jane; Stroemstedt, Per-Erik; Bamberg, Krister; Balendran, Clare; Kang, Daiwu

    2005-01-01

    Retinoic acid receptor-related orphan receptor-α (RORα) (NR1F1) is an orphan nuclear receptor with a potential role in metabolism. Previous studies have shown that RORα regulates transcription of the murine Apolipoprotein AI gene and human Apolipoprotein CIII genes. In the present study, we present evidence that RORα also induces transcription of the human Apolipoprotein AV gene, a recently identified apolipoprotein associated with triglyceride levels. Adenovirus-mediated overexpression of RORα increased the endogenous expression of ApoAV in HepG2 cells and RORα also enhanced the activity of an ApoAV promoter construct in transiently transfected HepG2 cells. Deletion and mutation studies identified three AGGTCA motifs in the ApoAV promoter that mediate RORα transactivation, one of which overlaps with a previously identified binding site for PPARα. Together, these results suggest a novel mechanism whereby RORα modulates lipid metabolism and implies RORα as a potential target for the treatment of dyslipidemia and atherosclerosis

  1. Gene expression meta-analysis identifies chromosomal regions involved in ovarian cancer survival

    DEFF Research Database (Denmark)

    Thomassen, Mads; Jochumsen, Kirsten M; Mogensen, Ole

    2009-01-01

    the relation of gene expression and chromosomal position to identify chromosomal regions of importance for early recurrence of ovarian cancer. By use of *Gene Set Enrichment Analysis*, we have ranked chromosomal regions according to their association to survival. Over-representation analysis including 1...... using death (P = 0.015) and recurrence (P = 0.002) as outcome. The combined mutation score is strongly associated to upregulation of several growth factor pathways....

  2. Systematic enrichment analysis of gene expression profiling studies identifies consensus pathways implicated in colorectal cancer development

    Directory of Open Access Journals (Sweden)

    Jesús Lascorz

    2011-01-01

    Full Text Available Background: A large number of gene expression profiling (GEP studies on colorectal carcinogenesis have been performed but no reliable gene signature has been identified so far due to the lack of reproducibility in the reported genes. There is growing evidence that functionally related genes, rather than individual genes, contribute to the etiology of complex traits. We used, as a novel approach, pathway enrichment tools to define functionally related genes that are consistently up- or down-regulated in colorectal carcinogenesis. Materials and Methods: We started the analysis with 242 unique annotated genes that had been reported by any of three recent meta-analyses covering GEP studies on genes differentially expressed in carcinoma vs normal mucosa. Most of these genes (218, 91.9% had been reported in at least three GEP studies. These 242 genes were submitted to bioinformatic analysis using a total of nine tools to detect enrichment of Gene Ontology (GO categories or Kyoto Encyclopedia of Genes and Genomes (KEGG pathways. As a final consistency criterion the pathway categories had to be enriched by several tools to be taken into consideration. Results: Our pathway-based enrichment analysis identified the categories of ribosomal protein constituents, extracellular matrix receptor interaction, carbonic anhydrase isozymes, and a general category related to inflammation and cellular response as significantly and consistently overrepresented entities. Conclusions: We triaged the genes covered by the published GEP literature on colorectal carcinogenesis and subjected them to multiple enrichment tools in order to identify the consistently enriched gene categories. These turned out to have known functional relationships to cancer development and thus deserve further investigation.

  3. Blood Pressure Loci Identified with a Gene-Centric Array

    NARCIS (Netherlands)

    Johnson, Toby; Gaunt, Tom R.; Newhouse, Stephen J.; Padmanabhan, Sandosh; Tomaszewski, Maciej; Kumari, Meena; Morris, Richard W.; Tzoulaki, Ioanna; O'Brien, Eoin T.; Poulter, Neil R.; Sever, Peter; Shields, Denis C.; Thom, Simon; Wannamethee, Sasiwarang G.; Whincup, Peter H.; Brown, Morris J.; Connell, John M.; Dobson, Richard J.; Howard, Philip J.; Mein, Charles A.; Onipinla, Abiodun; Shaw-Hawkins, Sue; Zhang, Yun; Smith, George Davey; Day, Ian N. M.; Lawlor, Debbie A.; Goodall, Alison H.; Fowkes, F. Gerald; Abecasis, Goncalo R.; Elliott, Paul; Gateva, Vesela; Braund, Peter S.; Burton, Paul R.; Nelson, Christopher P.; Tobin, Martin D.; van der Harst, Pim; Glorioso, Nicola; Neuvrith, Hani; Salvi, Erika; Staessen, Jan A.; Stucchi, Andrea; Devos, Nabila; Jeunemaitre, Xavier; Plouin, Pierre-Francois; Tichet, Jean; Juhanson, Peeter; Org, Elin; Westra, Harm-Jan; Wolfs, Marcel G. M.; Franke, Lude

    2011-01-01

    Raised blood pressure (BP) is a major risk factor for cardiovascular disease. Previous studies have identified 47 distinct genetic variants robustly associated with BP, but collectively these explain only a few percent of the heritability for BP phenotypes. To find additional BP loci, we used a

  4. Identifying time-delayed gene regulatory networks via an evolvable hierarchical recurrent neural network.

    Science.gov (United States)

    Kordmahalleh, Mina Moradi; Sefidmazgi, Mohammad Gorji; Harrison, Scott H; Homaifar, Abdollah

    2017-01-01

    The modeling of genetic interactions within a cell is crucial for a basic understanding of physiology and for applied areas such as drug design. Interactions in gene regulatory networks (GRNs) include effects of transcription factors, repressors, small metabolites, and microRNA species. In addition, the effects of regulatory interactions are not always simultaneous, but can occur after a finite time delay, or as a combined outcome of simultaneous and time delayed interactions. Powerful biotechnologies have been rapidly and successfully measuring levels of genetic expression to illuminate different states of biological systems. This has led to an ensuing challenge to improve the identification of specific regulatory mechanisms through regulatory network reconstructions. Solutions to this challenge will ultimately help to spur forward efforts based on the usage of regulatory network reconstructions in systems biology applications. We have developed a hierarchical recurrent neural network (HRNN) that identifies time-delayed gene interactions using time-course data. A customized genetic algorithm (GA) was used to optimize hierarchical connectivity of regulatory genes and a target gene. The proposed design provides a non-fully connected network with the flexibility of using recurrent connections inside the network. These features and the non-linearity of the HRNN facilitate the process of identifying temporal patterns of a GRN. Our HRNN method was implemented with the Python language. It was first evaluated on simulated data representing linear and nonlinear time-delayed gene-gene interaction models across a range of network sizes and variances of noise. We then further demonstrated the capability of our method in reconstructing GRNs of the Saccharomyces cerevisiae synthetic network for in vivo benchmarking of reverse-engineering and modeling approaches (IRMA). We compared the performance of our method to TD-ARACNE, HCC-CLINDE, TSNI and ebdbNet across different network

  5. Candidate Essential Genes in Burkholderia cenocepacia J2315 Identified by Genome-Wide TraDIS

    KAUST Repository

    Wong, Yee-Chin

    2016-08-22

    Burkholderia cenocepacia infection often leads to fatal cepacia syndrome in cystic fibrosis patients. However, antibiotic therapy rarely results in complete eradication of the pathogen due to its intrinsic resistance to many clinically available antibiotics. Recent attention has turned to the identification of essential genes as the proteins encoded by these genes may serve as potential targets for development of novel antimicrobials. In this study, we utilized TraDIS (Transposon Directed Insertion-site Sequencing) as a genome-wide screening tool to facilitate the identification of B. cenocepacia genes essential for its growth and viability. A transposon mutant pool consisting of approximately 500,000 mutants was successfully constructed, with more than 400,000 unique transposon insertion sites identified by computational analysis of TraDIS datasets. The saturated library allowed for the identification of 383 genes that were predicted to be essential in B. cenocepacia. We extended the application of TraDIS to identify conditionally essential genes required for in vitro growth and revealed an additional repertoire of 439 genes to be crucial for B. cenocepacia growth under nutrient-depleted conditions. The library of B. cenocepacia mutants can subsequently be subjected to various biologically related conditions to facilitate the discovery of genes involved in niche adaptation as well as pathogenicity and virulence.

  6. Candidate Essential Genes in Burkholderia cenocepacia J2315 Identified by Genome-Wide TraDIS

    KAUST Repository

    Wong, Yee-Chin; Abd El Ghany, Moataz; Naeem, Raeece; Lee, Kok-Wei; Tan, Yung-Chie; Pain, Arnab; Nathan, Sheila

    2016-01-01

    Burkholderia cenocepacia infection often leads to fatal cepacia syndrome in cystic fibrosis patients. However, antibiotic therapy rarely results in complete eradication of the pathogen due to its intrinsic resistance to many clinically available antibiotics. Recent attention has turned to the identification of essential genes as the proteins encoded by these genes may serve as potential targets for development of novel antimicrobials. In this study, we utilized TraDIS (Transposon Directed Insertion-site Sequencing) as a genome-wide screening tool to facilitate the identification of B. cenocepacia genes essential for its growth and viability. A transposon mutant pool consisting of approximately 500,000 mutants was successfully constructed, with more than 400,000 unique transposon insertion sites identified by computational analysis of TraDIS datasets. The saturated library allowed for the identification of 383 genes that were predicted to be essential in B. cenocepacia. We extended the application of TraDIS to identify conditionally essential genes required for in vitro growth and revealed an additional repertoire of 439 genes to be crucial for B. cenocepacia growth under nutrient-depleted conditions. The library of B. cenocepacia mutants can subsequently be subjected to various biologically related conditions to facilitate the discovery of genes involved in niche adaptation as well as pathogenicity and virulence.

  7. Candidate essential genes in Burkholderia cenocepacia J2315 identified by genome-wide TraDIS

    Directory of Open Access Journals (Sweden)

    Yee-Chin Wong

    2016-08-01

    Full Text Available Burkholderia cenocepacia infection often leads to fatal cepacia syndrome in cystic fibrosis patients. However, antibiotic therapy rarely results in complete eradication of the pathogen due to its intrinsic resistance to many clinically available antibiotics. Recent attention has turned to the identification of essential genes as the proteins encoded by these genes may serve as potential targets for development of novel antimicrobials. In this study, we utilized TraDIS (Transposon Directed Insertion-site Sequencing as a genome-wide screening tool to facilitate the identification of B. cenocepacia genes essential for its growth and viability. A transposon mutant pool consisting of approximately 500,000 mutants was successfully constructed, with more than 400,000 unique transposon insertion sites identified by computational analysis of TraDIS datasets. The saturated library allowed for the identification of 383 genes that were predicted to be essential in B. cenocepacia. We extended the application of TraDIS to identify conditionally essential genes required for in vitro growth and revealed an additional repertoire of 439 genes to be crucial for B. cenocepacia growth under nutrient-depleted conditions. The library of B. cenocepacia mutants can subsequently be subjected to various biologically related conditions to facilitate the discovery of genes involved in niche adaptation as well as pathogenicity and virulence.

  8. Transcriptomic variation among six Arabidopsis thaliana accessions identified several novel genes controlling aluminium tolerance.

    Science.gov (United States)

    Kusunoki, Kazutaka; Nakano, Yuki; Tanaka, Keisuke; Sakata, Yoichi; Koyama, Hiroyuki; Kobayashi, Yuriko

    2017-02-01

    Differences in the expression levels of aluminium (Al) tolerance genes are a known determinant of Al tolerance among plant varieties. We combined transcriptomic analysis of six Arabidopsis thaliana accessions with contrasting Al tolerance and a reverse genetic approach to identify Al-tolerance genes responsible for differences in Al tolerance between accession groups. Gene expression variation increased in the signal transduction process under Al stress and in growth-related processes in the absence of stress. Co-expression analysis and promoter single nucleotide polymorphism searching suggested that both trans-acting polymorphisms of Al signal transduction pathway and cis-acting polymorphisms in the promoter sequences caused the variations in gene expression associated with Al tolerance. Compared with the wild type, Al sensitivity increased in T-DNA knockout (KO) lines for five genes, including TARGET OF AVRB OPERATION1 (TAO1) and an unannotated gene (At5g22530). These were identified from 53 Al-inducible genes showing significantly higher expression in tolerant accessions than in sensitive accessions. These results indicate that the difference in transcriptional signalling is partly associated with the natural variation in Al tolerance in Arabidopsis. Our study also demonstrates the feasibility of comparative transcriptome analysis by using natural genetic variation for the identification of genes responsible for Al stress tolerance. © 2016 John Wiley & Sons Ltd.

  9. Cross-species multiple environmental stress responses: An integrated approach to identify candidate genes for multiple stress tolerance in sorghum (Sorghum bicolor (L. Moench and related model species.

    Directory of Open Access Journals (Sweden)

    Adugna Abdi Woldesemayat

    associated with different traits that are responsive to multiple stresses. Ontology mapping was used to validate the identified genes, while reconstruction of the phylogenetic tree was instrumental to infer the evolutionary relationship of the sorghum orthologs. The results also show specific genes responsible for various interrelated components of drought response mechanism such as drought tolerance, drought avoidance and drought escape.We submit that this approach is novel and to our knowledge, has not been used previously in any other research; it enables us to perform cross-species queries for genes that are likely to be associated with multiple stress tolerance, as a means to identify novel targets for engineering stress resistance in sorghum and possibly, in other crop species.

  10. Robust Nonnegative Matrix Factorization via Joint Graph Laplacian and Discriminative Information for Identifying Differentially Expressed Genes

    Directory of Open Access Journals (Sweden)

    Ling-Yun Dai

    2017-01-01

    Full Text Available Differential expression plays an important role in cancer diagnosis and classification. In recent years, many methods have been used to identify differentially expressed genes. However, the recognition rate and reliability of gene selection still need to be improved. In this paper, a novel constrained method named robust nonnegative matrix factorization via joint graph Laplacian and discriminative information (GLD-RNMF is proposed for identifying differentially expressed genes, in which manifold learning and the discriminative label information are incorporated into the traditional nonnegative matrix factorization model to train the objective matrix. Specifically, L2,1-norm minimization is enforced on both the error function and the regularization term which is robust to outliers and noise in gene data. Furthermore, the multiplicative update rules and the details of convergence proof are shown for the new model. The experimental results on two publicly available cancer datasets demonstrate that GLD-RNMF is an effective method for identifying differentially expressed genes.

  11. Candidate gene linkage approach to identify DNA variants that predispose to preterm birth

    DEFF Research Database (Denmark)

    Bream, Elise N A; Leppellere, Cara R; Cooper, Margaret E

    2013-01-01

    Background:The aim of this study was to identify genetic variants contributing to preterm birth (PTB) using a linkage candidate gene approach.Methods:We studied 99 single-nucleotide polymorphisms (SNPs) for 33 genes in 257 families with PTBs segregating. Nonparametric and parametric analyses were...... through the infant and/or the mother in the etiology of PTB....

  12. Transcriptome analysis of recurrently deregulated genes across multiple cancers identifies new pan-cancer biomarkers

    DEFF Research Database (Denmark)

    Kaczkowski, Bogumil; Tanaka, Yuji; Kawaji, Hideya

    2016-01-01

    Genes that are commonly deregulated in cancer are clinically attractive as candidate pan-diagnostic markers and therapeutic targets. To globally identify such targets, we compared Cap Analysis of Gene Expression (CAGE) profiles from 225 different cancer cell lines and 339 corresponding primary cell...

  13. Candidate luminal B breast cancer genes identified by genome, gene expression and DNA methylation profiling.

    Directory of Open Access Journals (Sweden)

    Stéphanie Cornen

    Full Text Available Breast cancers (BCs of the luminal B subtype are estrogen receptor-positive (ER+, highly proliferative, resistant to standard therapies and have a poor prognosis. To better understand this subtype we compared DNA copy number aberrations (CNAs, DNA promoter methylation, gene expression profiles, and somatic mutations in nine selected genes, in 32 luminal B tumors with those observed in 156 BCs of the other molecular subtypes. Frequent CNAs included 8p11-p12 and 11q13.1-q13.2 amplifications, 7q11.22-q34, 8q21.12-q24.23, 12p12.3-p13.1, 12q13.11-q24.11, 14q21.1-q23.1, 17q11.1-q25.1, 20q11.23-q13.33 gains and 6q14.1-q24.2, 9p21.3-p24,3, 9q21.2, 18p11.31-p11.32 losses. A total of 237 and 101 luminal B-specific candidate oncogenes and tumor suppressor genes (TSGs presented a deregulated expression in relation with their CNAs, including 11 genes previously reported associated with endocrine resistance. Interestingly, 88% of the potential TSGs are located within chromosome arm 6q, and seven candidate oncogenes are potential therapeutic targets. A total of 100 candidate oncogenes were validated in a public series of 5,765 BCs and the overexpression of 67 of these was associated with poor survival in luminal tumors. Twenty-four genes presented a deregulated expression in relation with a high DNA methylation level. FOXO3, PIK3CA and TP53 were the most frequent mutated genes among the nine tested. In a meta-analysis of next-generation sequencing data in 875 BCs, KCNB2 mutations were associated with luminal B cases while candidate TSGs MDN1 (6q15 and UTRN (6q24, were mutated in this subtype. In conclusion, we have reported luminal B candidate genes that may play a role in the development and/or hormone resistance of this aggressive subtype.

  14. Use of an activated beta-catenin to identify Wnt pathway target genes in caenorhabditis elegans, including a subset of collagen genes expressed in late larval development.

    Science.gov (United States)

    Jackson, Belinda M; Abete-Luzi, Patricia; Krause, Michael W; Eisenmann, David M

    2014-04-16

    The Wnt signaling pathway plays a fundamental role during metazoan development, where it regulates diverse processes, including cell fate specification, cell migration, and stem cell renewal. Activation of the beta-catenin-dependent/canonical Wnt pathway up-regulates expression of Wnt target genes to mediate a cellular response. In the nematode Caenorhabditis elegans, a canonical Wnt signaling pathway regulates several processes during larval development; however, few target genes of this pathway have been identified. To address this deficit, we used a novel approach of conditionally activated Wnt signaling during a defined stage of larval life by overexpressing an activated beta-catenin protein, then used microarray analysis to identify genes showing altered expression compared with control animals. We identified 166 differentially expressed genes, of which 104 were up-regulated. A subset of the up-regulated genes was shown to have altered expression in mutants with decreased or increased Wnt signaling; we consider these genes to be bona fide C. elegans Wnt pathway targets. Among these was a group of six genes, including the cuticular collagen genes, bli-1 col-38, col-49, and col-71. These genes show a peak of expression in the mid L4 stage during normal development, suggesting a role in adult cuticle formation. Consistent with this finding, reduction of function for several of the genes causes phenotypes suggestive of defects in cuticle function or integrity. Therefore, this work has identified a large number of putative Wnt pathway target genes during larval life, including a small subset of Wnt-regulated collagen genes that may function in synthesis of the adult cuticle.

  15. Gene-wide analysis detects two new susceptibility genes for Alzheimer's disease.

    Science.gov (United States)

    Escott-Price, Valentina; Bellenguez, Céline; Wang, Li-San; Choi, Seung-Hoan; Harold, Denise; Jones, Lesley; Holmans, Peter; Gerrish, Amy; Vedernikov, Alexey; Richards, Alexander; DeStefano, Anita L; Lambert, Jean-Charles; Ibrahim-Verbaas, Carla A; Naj, Adam C; Sims, Rebecca; Jun, Gyungah; Bis, Joshua C; Beecham, Gary W; Grenier-Boley, Benjamin; Russo, Giancarlo; Thornton-Wells, Tricia A; Denning, Nicola; Smith, Albert V; Chouraki, Vincent; Thomas, Charlene; Ikram, M Arfan; Zelenika, Diana; Vardarajan, Badri N; Kamatani, Yoichiro; Lin, Chiao-Feng; Schmidt, Helena; Kunkle, Brian; Dunstan, Melanie L; Vronskaya, Maria; Johnson, Andrew D; Ruiz, Agustin; Bihoreau, Marie-Thérèse; Reitz, Christiane; Pasquier, Florence; Hollingworth, Paul; Hanon, Olivier; Fitzpatrick, Annette L; Buxbaum, Joseph D; Campion, Dominique; Crane, Paul K; Baldwin, Clinton; Becker, Tim; Gudnason, Vilmundur; Cruchaga, Carlos; Craig, David; Amin, Najaf; Berr, Claudine; Lopez, Oscar L; De Jager, Philip L; Deramecourt, Vincent; Johnston, Janet A; Evans, Denis; Lovestone, Simon; Letenneur, Luc; Hernández, Isabel; Rubinsztein, David C; Eiriksdottir, Gudny; Sleegers, Kristel; Goate, Alison M; Fiévet, Nathalie; Huentelman, Matthew J; Gill, Michael; Brown, Kristelle; Kamboh, M Ilyas; Keller, Lina; Barberger-Gateau, Pascale; McGuinness, Bernadette; Larson, Eric B; Myers, Amanda J; Dufouil, Carole; Todd, Stephen; Wallon, David; Love, Seth; Rogaeva, Ekaterina; Gallacher, John; George-Hyslop, Peter St; Clarimon, Jordi; Lleo, Alberto; Bayer, Anthony; Tsuang, Debby W; Yu, Lei; Tsolaki, Magda; Bossù, Paola; Spalletta, Gianfranco; Proitsi, Petra; Collinge, John; Sorbi, Sandro; Garcia, Florentino Sanchez; Fox, Nick C; Hardy, John; Naranjo, Maria Candida Deniz; Bosco, Paolo; Clarke, Robert; Brayne, Carol; Galimberti, Daniela; Scarpini, Elio; Bonuccelli, Ubaldo; Mancuso, Michelangelo; Siciliano, Gabriele; Moebus, Susanne; Mecocci, Patrizia; Zompo, Maria Del; Maier, Wolfgang; Hampel, Harald; Pilotto, Alberto; Frank-García, Ana; Panza, Francesco; Solfrizzi, Vincenzo; Caffarra, Paolo; Nacmias, Benedetta; Perry, William; Mayhaus, Manuel; Lannfelt, Lars; Hakonarson, Hakon; Pichler, Sabrina; Carrasquillo, Minerva M; Ingelsson, Martin; Beekly, Duane; Alvarez, Victoria; Zou, Fanggeng; Valladares, Otto; Younkin, Steven G; Coto, Eliecer; Hamilton-Nelson, Kara L; Gu, Wei; Razquin, Cristina; Pastor, Pau; Mateo, Ignacio; Owen, Michael J; Faber, Kelley M; Jonsson, Palmi V; Combarros, Onofre; O'Donovan, Michael C; Cantwell, Laura B; Soininen, Hilkka; Blacker, Deborah; Mead, Simon; Mosley, Thomas H; Bennett, David A; Harris, Tamara B; Fratiglioni, Laura; Holmes, Clive; de Bruijn, Renee F A G; Passmore, Peter; Montine, Thomas J; Bettens, Karolien; Rotter, Jerome I; Brice, Alexis; Morgan, Kevin; Foroud, Tatiana M; Kukull, Walter A; Hannequin, Didier; Powell, John F; Nalls, Michael A; Ritchie, Karen; Lunetta, Kathryn L; Kauwe, John S K; Boerwinkle, Eric; Riemenschneider, Matthias; Boada, Mercè; Hiltunen, Mikko; Martin, Eden R; Schmidt, Reinhold; Rujescu, Dan; Dartigues, Jean-François; Mayeux, Richard; Tzourio, Christophe; Hofman, Albert; Nöthen, Markus M; Graff, Caroline; Psaty, Bruce M; Haines, Jonathan L; Lathrop, Mark; Pericak-Vance, Margaret A; Launer, Lenore J; Van Broeckhoven, Christine; Farrer, Lindsay A; van Duijn, Cornelia M; Ramirez, Alfredo; Seshadri, Sudha; Schellenberg, Gerard D; Amouyel, Philippe; Williams, Julie

    2014-01-01

    Alzheimer's disease is a common debilitating dementia with known heritability, for which 20 late onset susceptibility loci have been identified, but more remain to be discovered. This study sought to identify new susceptibility genes, using an alternative gene-wide analytical approach which tests for patterns of association within genes, in the powerful genome-wide association dataset of the International Genomics of Alzheimer's Project Consortium, comprising over 7 m genotypes from 25,580 Alzheimer's cases and 48,466 controls. In addition to earlier reported genes, we detected genome-wide significant loci on chromosomes 8 (TP53INP1, p = 1.4×10-6) and 14 (IGHV1-67 p = 7.9×10-8) which indexed novel susceptibility loci. The additional genes identified in this study, have an array of functions previously implicated in Alzheimer's disease, including aspects of energy metabolism, protein degradation and the immune system and add further weight to these pathways as potential therapeutic targets in Alzheimer's disease.

  16. Gene-wide analysis detects two new susceptibility genes for Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Valentina Escott-Price

    Full Text Available Alzheimer's disease is a common debilitating dementia with known heritability, for which 20 late onset susceptibility loci have been identified, but more remain to be discovered. This study sought to identify new susceptibility genes, using an alternative gene-wide analytical approach which tests for patterns of association within genes, in the powerful genome-wide association dataset of the International Genomics of Alzheimer's Project Consortium, comprising over 7 m genotypes from 25,580 Alzheimer's cases and 48,466 controls.In addition to earlier reported genes, we detected genome-wide significant loci on chromosomes 8 (TP53INP1, p = 1.4×10-6 and 14 (IGHV1-67 p = 7.9×10-8 which indexed novel susceptibility loci.The additional genes identified in this study, have an array of functions previously implicated in Alzheimer's disease, including aspects of energy metabolism, protein degradation and the immune system and add further weight to these pathways as potential therapeutic targets in Alzheimer's disease.

  17. Previously Unidentified Single Nucleotide Polymorphisms in HIV/AIDS Cases Associate with Clinical Parameters and Disease Progression

    Directory of Open Access Journals (Sweden)

    Vladimir V. Anokhin

    2016-01-01

    Full Text Available The genetic background of an individual plays an important role in the progression of HIV infection to AIDS. Identifying previously unknown or uncharacterized single nucleotide polymorphisms (SNPs that associate with disease progression may reveal important therapeutic targets and provide a greater understanding of disease pathogenesis. In the present study, we employed ultra-high multiplex PCR on an Ion Torrent next-generation sequencing platform to sequence 23 innate immune genes from 94 individuals with HIV/AIDS. This data was used to identify potential associations of SNPs with clinical parameters and disease progression. SNPs that associated with an increased viral load were identified in the genes for the interleukin 15 receptor (IL15RA, toll-like receptor 7 (TLR7, tripartite motif-containing protein 5 (TRIM5, and two killer-cell immunoglobulin-like receptors (KIR2DL1 and KIR2DL3. Additionally, SNPs that associated with progression from HIV infection to AIDS were identified in two 2′-5′-oligoadenylate synthetase genes (OAS2 and OAS3. In contrast, other SNPs identified in OAS2 and OAS3 genes, as well as in the TRIM5 and KIR2DS4 genes, were associated with a slower progression of disease. Taken together, our data demonstrates the utility of ultra-high multiplex PCR in identifying polymorphisms of potential clinical significance and further,identifies SNPs that may play a role in HIV pathogenesis.

  18. New population-based exome data are questioning the pathogenicity of previously cardiomyopathy-associated genetic variants

    DEFF Research Database (Denmark)

    Andreasen, Charlotte Hartig; Nielsen, Jonas B; Refsgaard, Lena

    2013-01-01

    Cardiomyopathies are a heterogeneous group of diseases with various etiologies. We focused on three genetically determined cardiomyopathies: hypertrophic (HCM), dilated (DCM), and arrhythmogenic right ventricular cardiomyopathy (ARVC). Eighty-four genes have so far been associated with these card......Cardiomyopathies are a heterogeneous group of diseases with various etiologies. We focused on three genetically determined cardiomyopathies: hypertrophic (HCM), dilated (DCM), and arrhythmogenic right ventricular cardiomyopathy (ARVC). Eighty-four genes have so far been associated...... with these cardiomyopathies, but the disease-causing effect of reported variants is often dubious. In order to identify possible false-positive variants, we investigated the prevalence of previously reported cardiomyopathy-associated variants in recently published exome data. We searched for reported missense and nonsense...... variants in the NHLBI-Go Exome Sequencing Project (ESP) containing exome data from 6500 individuals. In ESP, we identified 94 variants out of 687 (14%) variants previously associated with HCM, 58 out of 337 (17%) variants associated with DCM, and 38 variants out of 209 (18%) associated with ARVC...

  19. Gene co-expression analysis identifies gene clusters associated with isotropic and polarized growth in Aspergillus fumigatus conidia.

    Science.gov (United States)

    Baltussen, Tim J H; Coolen, Jordy P M; Zoll, Jan; Verweij, Paul E; Melchers, Willem J G

    2018-04-26

    Aspergillus fumigatus is a saprophytic fungus that extensively produces conidia. These microscopic asexually reproductive structures are small enough to reach the lungs. Germination of conidia followed by hyphal growth inside human lungs is a key step in the establishment of infection in immunocompromised patients. RNA-Seq was used to analyze the transcriptome of dormant and germinating A. fumigatus conidia. Construction of a gene co-expression network revealed four gene clusters (modules) correlated with a growth phase (dormant, isotropic growth, polarized growth). Transcripts levels of genes encoding for secondary metabolites were high in dormant conidia. During isotropic growth, transcript levels of genes involved in cell wall modifications increased. Two modules encoding for growth and cell cycle/DNA processing were associated with polarized growth. In addition, the co-expression network was used to identify highly connected intermodular hub genes. These genes may have a pivotal role in the respective module and could therefore be compelling therapeutic targets. Generally, cell wall remodeling is an important process during isotropic and polarized growth, characterized by an increase of transcripts coding for hyphal growth and cell cycle/DNA processing when polarized growth is initiated. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Use of tiling array data and RNA secondary structure predictions to identify noncoding RNA genes

    DEFF Research Database (Denmark)

    Weile, Christian; Gardner, Paul P; Hedegaard, Mads M

    2007-01-01

    neuroblastoma cell line SK-N-AS. Using this strategy, we identify thousands of human candidate RNA genes. To further verify the expression of these genes, we focused on candidate genes that had a stable hairpin structures or a high level of covariance. Using northern blotting, we verify the expression of 2 out...

  1. Sequence-Based Introgression Mapping Identifies Candidate White Mold Tolerance Genes in Common Bean

    Directory of Open Access Journals (Sweden)

    Sujan Mamidi

    2016-07-01

    Full Text Available White mold, caused by the necrotrophic fungus (Lib. de Bary, is a major disease of common bean ( L.. WM7.1 and WM8.3 are two quantitative trait loci (QTL with major effects on tolerance to the pathogen. Advanced backcross populations segregating individually for either of the two QTL, and a recombinant inbred (RI population segregating for both QTL were used to fine map and confirm the genetic location of the QTL. The QTL intervals were physically mapped using the reference common bean genome sequence, and the physical intervals for each QTL were further confirmed by sequence-based introgression mapping. Using whole-genome sequence data from susceptible and tolerant DNA pools, introgressed regions were identified as those with significantly higher numbers of single-nucleotide polymorphisms (SNPs relative to the whole genome. By combining the QTL and SNP data, WM7.1 was located to a 660-kb region that contained 41 gene models on the proximal end of chromosome Pv07, while the WM8.3 introgression was narrowed to a 1.36-Mb region containing 70 gene models. The most polymorphic candidate gene in the WM7.1 region encodes a BEACH-domain protein associated with apoptosis. Within the WM8.3 interval, a receptor-like protein with the potential to recognize pathogen effectors was the most polymorphic gene. The use of gene and sequence-based mapping identified two candidate genes whose putative functions are consistent with the current model of pathogenicity.

  2. Novel candidate genes and regions for childhood apraxia of speech identified by array comparative genomic hybridization.

    Science.gov (United States)

    Laffin, Jennifer J S; Raca, Gordana; Jackson, Craig A; Strand, Edythe A; Jakielski, Kathy J; Shriberg, Lawrence D

    2012-11-01

    The goal of this study was to identify new candidate genes and genomic copy-number variations associated with a rare, severe, and persistent speech disorder termed childhood apraxia of speech. Childhood apraxia of speech is the speech disorder segregating with a mutation in FOXP2 in a multigenerational London pedigree widely studied for its role in the development of speech-language in humans. A total of 24 participants who were suspected to have childhood apraxia of speech were assessed using a comprehensive protocol that samples speech in challenging contexts. All participants met clinical-research criteria for childhood apraxia of speech. Array comparative genomic hybridization analyses were completed using a customized 385K Nimblegen array (Roche Nimblegen, Madison, WI) with increased coverage of genes and regions previously associated with childhood apraxia of speech. A total of 16 copy-number variations with potential consequences for speech-language development were detected in 12 or half of the 24 participants. The copy-number variations occurred on 10 chromosomes, 3 of which had two to four candidate regions. Several participants were identified with copy-number variations in two to three regions. In addition, one participant had a heterozygous FOXP2 mutation and a copy-number variation on chromosome 2, and one participant had a 16p11.2 microdeletion and copy-number variations on chromosomes 13 and 14. Findings support the likelihood of heterogeneous genomic pathways associated with childhood apraxia of speech.

  3. Integration of TP53, DREAM, MMB-FOXM1 and RB-E2F target gene analyses identifies cell cycle gene regulatory networks.

    Science.gov (United States)

    Fischer, Martin; Grossmann, Patrick; Padi, Megha; DeCaprio, James A

    2016-07-27

    Cell cycle (CC) and TP53 regulatory networks are frequently deregulated in cancer. While numerous genome-wide studies of TP53 and CC-regulated genes have been performed, significant variation between studies has made it difficult to assess regulation of any given gene of interest. To overcome the limitation of individual studies, we developed a meta-analysis approach to identify high confidence target genes that reflect their frequency of identification in independent datasets. Gene regulatory networks were generated by comparing differential expression of TP53 and CC-regulated genes with chromatin immunoprecipitation studies for TP53, RB1, E2F, DREAM, B-MYB, FOXM1 and MuvB. RNA-seq data from p21-null cells revealed that gene downregulation by TP53 generally requires p21 (CDKN1A). Genes downregulated by TP53 were also identified as CC genes bound by the DREAM complex. The transcription factors RB, E2F1 and E2F7 bind to a subset of DREAM target genes that function in G1/S of the CC while B-MYB, FOXM1 and MuvB control G2/M gene expression. Our approach yields high confidence ranked target gene maps for TP53, DREAM, MMB-FOXM1 and RB-E2F and enables prediction and distinction of CC regulation. A web-based atlas at www.targetgenereg.org enables assessing the regulation of any human gene of interest. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Microarray analysis identified Puccinia striiformis f. sp. tritici genes involved in infection and sporulation.

    Science.gov (United States)

    Puccinia striiformis f. sp. tritici (Pst) causes stripe rust, one of the most important diseases of wheat worldwide. To identify Pst genes involved in infection and sporulation, a custom oligonucleotide Genechip was made using sequences of 442 genes selected from Pst cDNA libraries. Microarray analy...

  5. Novel mutations in CRB1 gene identified in a chinese pedigree with retinitis pigmentosa by targeted capture and next generation sequencing

    Science.gov (United States)

    Lo, David; Weng, Jingning; Liu, xiaohong; Yang, Juhua; He, Fen; Wang, Yun; Liu, Xuyang

    2016-01-01

    PURPOSE To detect the disease-causing gene in a Chinese pedigree with autosomal-recessive retinitis pigmentosa (ARRP). METHODS All subjects in this family underwent a complete ophthalmic examination. Targeted-capture next generation sequencing (NGS) was performed on the proband to detect variants. All variants were verified in the remaining family members by PCR amplification and Sanger sequencing. RESULTS All the affected subjects in this pedigree were diagnosed with retinitis pigmentosa (RP). The compound heterozygous c.138delA (p.Asp47IlefsX24) and c.1841G>T (p.Gly614Val) mutations in the Crumbs homolog 1 (CRB1) gene were identified in all the affected patients but not in the unaffected individuals in this family. These mutations were inherited from their parents, respectively. CONCLUSION The novel compound heterozygous mutations in CRB1 were identified in a Chinese pedigree with ARRP using targeted-capture next generation sequencing. After evaluating the significant heredity and impaired protein function, the compound heterozygous c.138delA (p.Asp47IlefsX24) and c.1841G>T (p.Gly614Val) mutations are the causal genes of early onset ARRP in this pedigree. To the best of our knowledge, there is no previous report regarding the compound mutations. PMID:27806333

  6. Digital gene expression profiling of flax (Linum usitatissimum L.) stem peel identifies genes enriched in fiber-bearing phloem tissue.

    Science.gov (United States)

    Guo, Yuan; Qiu, Caisheng; Long, Songhua; Chen, Ping; Hao, Dongmei; Preisner, Marta; Wang, Hui; Wang, Yufu

    2017-08-30

    To better understand the molecular mechanisms and gene expression characteristics associated with development of bast fiber cell within flax stem phloem, the gene expression profiling of flax stem peels and leaves were screened, using Illumina's Digital Gene Expression (DGE) analysis. Four DGE libraries (2 for stem peel and 2 for leaf), ranging from 6.7 to 9.2 million clean reads were obtained, which produced 7.0 million and 6.8 million mapped reads for flax stem peel and leave, respectively. By differential gene expression analysis, a total of 975 genes, of which 708 (73%) genes have protein-coding annotation, were identified as phloem enriched genes putatively involved in the processes of polysaccharide and cell wall metabolism. Differential expression genes (DEGs) was validated using quantitative RT-PCR, the expression pattern of all nine genes determined by qRT-PCR fitted in well with that obtained by sequencing analysis. Cluster and Gene Ontology (GO) analysis revealed that a large number of genes related to metabolic process, catalytic activity and binding category were expressed predominantly in the stem peels. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the phloem enriched genes suggested approximately 111 biological pathways. The large number of genes and pathways produced from DGE sequencing will expand our understanding of the complex molecular and cellular events in flax bast fiber development and provide a foundation for future studies on fiber development in other bast fiber crops. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Integrating Diverse Types of Genomic Data to Identify Genes that Underlie Adverse Pregnancy Phenotypes.

    Directory of Open Access Journals (Sweden)

    Jibril Hirbo

    Full Text Available Progress in understanding complex genetic diseases has been bolstered by synthetic approaches that overlay diverse data types and analyses to identify functionally important genes. Pre-term birth (PTB, a major complication of pregnancy, is a leading cause of infant mortality worldwide. A major obstacle in addressing PTB is that the mechanisms controlling parturition and birth timing remain poorly understood. Integrative approaches that overlay datasets derived from comparative genomics with function-derived ones have potential to advance our understanding of the genetics of birth timing, and thus provide insights into the genes that may contribute to PTB. We intersected data from fast evolving coding and non-coding gene regions in the human and primate lineage with data from genes expressed in the placenta, from genes that show enriched expression only in the placenta, as well as from genes that are differentially expressed in four distinct PTB clinical subtypes. A large fraction of genes that are expressed in placenta, and differentially expressed in PTB clinical subtypes (23-34% are fast evolving, and are associated with functions that include adhesion neurodevelopmental and immune processes. Functional categories of genes that express fast evolution in coding regions differ from those linked to fast evolution in non-coding regions. Finally, there is a surprising lack of overlap between fast evolving genes that are differentially expressed in four PTB clinical subtypes. Integrative approaches, especially those that incorporate evolutionary perspectives, can be successful in identifying potential genetic contributions to complex genetic diseases, such as PTB.

  8. Comparative Transcriptomics to Identify Novel Genes and Pathways in Dinoflagellates

    Science.gov (United States)

    Ryan, D.

    2016-02-01

    The unarmored dinoflagellate Karenia brevis is among the most prominent harmful, bloom-forming phytoplankton species in the Gulf of Mexico. During blooms, the polyketides PbTx-1 and PbTx-2 (brevetoxins) are produced by K. brevis. Brevetoxins negatively impact human health and the Gulf shellfish harvest. However, the genes underlying brevetoxin synthesis are currently unknown. Because the K. brevis genome is extremely large ( 1 × 1011 base pairs long), and with a high proportion of repetitive, non-coding DNA, it has not been sequenced. In fact, large, repetitive genomes are common among the dinoflagellate group. High-throughput RNA sequencing technology enabled us to assemble Karenia transcriptomes de novo and investigate potential genes in the brevetoxin pathway through comparative transcriptomics. The brevetoxin profile varies among K. brevis clonal cultures. For example, well-documented Wilson-CCFWC268 typically produces 8-10 pg PbTx per cell, whereas SP1 produces differences in gene expression. Of the 85,000 transcripts in the K. brevis transcriptome, 4,600 transcripts, including novel unannotated orthologs and putative polyketide synthases (PKSs), were only expressed by brevetoxin-producing K. brevis and K. papilionacea, not K. mikimotoi. Examination of gene expression between the typical- and low-toxin Wilson clones identified about 3,500 genes with significantly different expression levels, including 2 putative PKSs. One of the 2 PKSs was only found in the brevetoxin-producing Karenia species. These transcriptomes could not have been characterized without high-throughput RNA sequencing.

  9. Common mutations identified in the MLH1 gene in familial Lynch syndrome

    Directory of Open Access Journals (Sweden)

    Jisha Elias

    2017-12-01

    In this study we identified three families with Lynch syndrome from a rural cancer center in western India (KCHRC, Goraj, Gujarat, where 70-75 CRC patients are seen annually. DNA isolated from the blood of consented family members of all three families (8-10 members/family was subjected to NGS sequencing methods on an Illumina HiSeq 4000 platform. We identified unique mutations in the MLH1 gene in all three HNPCC family members. Two of the three unrelated families shared a common mutation (154delA and 156delA. Total 8 members of a family were identified as carriers for 156delA mutation of which 5 members were unaffected while 3 were affected (age of onset: 1 member <30yrs & 2 were>40yr. The family with 154delA mutation showed 2 affected members (>40yr carrying the mutations.LYS618DEL mutation found in 8 members of the third family showed that both affected and unaffected carried the mutation. Thus the common mutations identified in the MLH1 gene in two unrelated families had a high risk for lynch syndrome especially above the age of 40.

  10. Integrated microarray and ChIP analysis identifies multiple Foxa2 dependent target genes in the notochord.

    Science.gov (United States)

    Tamplin, Owen J; Cox, Brian J; Rossant, Janet

    2011-12-15

    The node and notochord are key tissues required for patterning of the vertebrate body plan. Understanding the gene regulatory network that drives their formation and function is therefore important. Foxa2 is a key transcription factor at the top of this genetic hierarchy and finding its targets will help us to better understand node and notochord development. We performed an extensive microarray-based gene expression screen using sorted embryonic notochord cells to identify early notochord-enriched genes. We validated their specificity to the node and notochord by whole mount in situ hybridization. This provides the largest available resource of notochord-expressed genes, and therefore candidate Foxa2 target genes in the notochord. Using existing Foxa2 ChIP-seq data from adult liver, we were able to identify a set of genes expressed in the notochord that had associated regions of Foxa2-bound chromatin. Given that Foxa2 is a pioneer transcription factor, we reasoned that these sites might represent notochord-specific enhancers. Candidate Foxa2-bound regions were tested for notochord specific enhancer function in a zebrafish reporter assay and 7 novel notochord enhancers were identified. Importantly, sequence conservation or predictive models could not have readily identified these regions. Mutation of putative Foxa2 binding elements in two of these novel enhancers abrogated reporter expression and confirmed their Foxa2 dependence. The combination of highly specific gene expression profiling and genome-wide ChIP analysis is a powerful means of understanding developmental pathways, even for small cell populations such as the notochord. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Systems Biology-Based Investigation of Cellular Antiviral Drug Targets Identified by Gene-Trap Insertional Mutagenesis.

    Directory of Open Access Journals (Sweden)

    Feixiong Cheng

    2016-09-01

    Full Text Available Viruses require host cellular factors for successful replication. A comprehensive systems-level investigation of the virus-host interactome is critical for understanding the roles of host factors with the end goal of discovering new druggable antiviral targets. Gene-trap insertional mutagenesis is a high-throughput forward genetics approach to randomly disrupt (trap host genes and discover host genes that are essential for viral replication, but not for host cell survival. In this study, we used libraries of randomly mutagenized cells to discover cellular genes that are essential for the replication of 10 distinct cytotoxic mammalian viruses, 1 gram-negative bacterium, and 5 toxins. We herein reported 712 candidate cellular genes, characterizing distinct topological network and evolutionary signatures, and occupying central hubs in the human interactome. Cell cycle phase-specific network analysis showed that host cell cycle programs played critical roles during viral replication (e.g. MYC and TAF4 regulating G0/1 phase. Moreover, the viral perturbation of host cellular networks reflected disease etiology in that host genes (e.g. CTCF, RHOA, and CDKN1B identified were frequently essential and significantly associated with Mendelian and orphan diseases, or somatic mutations in cancer. Computational drug repositioning framework via incorporating drug-gene signatures from the Connectivity Map into the virus-host interactome identified 110 putative druggable antiviral targets and prioritized several existing drugs (e.g. ajmaline that may be potential for antiviral indication (e.g. anti-Ebola. In summary, this work provides a powerful methodology with a tight integration of gene-trap insertional mutagenesis testing and systems biology to identify new antiviral targets and drugs for the development of broadly acting and targeted clinical antiviral therapeutics.

  12. Integrated Network Analysis Identifies Fight-Club Nodes as a Class of Hubs Encompassing Key Putative Switch Genes That Induce Major Transcriptome Reprogramming during Grapevine Development[W][OPEN

    Science.gov (United States)

    Palumbo, Maria Concetta; Zenoni, Sara; Fasoli, Marianna; Massonnet, Mélanie; Farina, Lorenzo; Castiglione, Filippo; Pezzotti, Mario; Paci, Paola

    2014-01-01

    We developed an approach that integrates different network-based methods to analyze the correlation network arising from large-scale gene expression data. By studying grapevine (Vitis vinifera) and tomato (Solanum lycopersicum) gene expression atlases and a grapevine berry transcriptomic data set during the transition from immature to mature growth, we identified a category named “fight-club hubs” characterized by a marked negative correlation with the expression profiles of neighboring genes in the network. A special subset named “switch genes” was identified, with the additional property of many significant negative correlations outside their own group in the network. Switch genes are involved in multiple processes and include transcription factors that may be considered master regulators of the previously reported transcriptome remodeling that marks the developmental shift from immature to mature growth. All switch genes, expressed at low levels in vegetative/green tissues, showed a significant increase in mature/woody organs, suggesting a potential regulatory role during the developmental transition. Finally, our analysis of tomato gene expression data sets showed that wild-type switch genes are downregulated in ripening-deficient mutants. The identification of known master regulators of tomato fruit maturation suggests our method is suitable for the detection of key regulators of organ development in different fleshy fruit crops. PMID:25490918

  13. A follow-up study for left ventricular mass on chromosome 12p11 identifies potential candidate genes

    Directory of Open Access Journals (Sweden)

    Slifer Susan

    2011-07-01

    Full Text Available Abstract Background Left ventricular mass (LVM is an important risk factor for cardiovascular disease. Previously we found evidence for linkage to chromosome 12p11 in Dominican families, with a significant increase in a subset of families with high average waist circumference (WC. In the present study, we use association analysis to further study the genetic effect on LVM. Methods Association analysis with LVM was done in the one LOD critical region of the linkage peak in an independent sample of 897 Caribbean Hispanics. Genotype data were available on 7085 SNPs from 23 to 53 MB on chromosome 12p11. Adjustment was made for vascular risk factors and population substructure using an additive genetic model. Subset analysis by WC was performed to test for a difference in genetic effects between the high and low WC subsets. Results In the overall analysis, the most significant association was found to rs10743465, downstream of the SOX5 gene (p = 1.27E-05. Also, 19 additional SNPs had nominal p TMTC1. Twelve additional SNPs in or near 6 genes had p Conclusions The current study supports previously identified evidence by linkage for a genetic effect on LVM on chromosome 12p11 using association analysis in population-based Caribbean Hispanic cohort. SOX5 may play an important role in the regulation of LVM. An interaction of TMTC1 with abdominal obesity may contribute to phenotypic variation of LVM.

  14. An Integrative Analysis to Identify Driver Genes in Esophageal Squamous Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Genta Sawada

    Full Text Available Few driver genes have been well established in esophageal squamous cell carcinoma (ESCC. Identification of the genomic aberrations that contribute to changes in gene expression profiles can be used to predict driver genes.We searched for driver genes in ESCC by integrative analysis of gene expression microarray profiles and copy number data. To narrow down candidate genes, we performed survival analysis on expression data and tested the genetic vulnerability of each genes using public RNAi screening data. We confirmed the results by performing RNAi experiments and evaluating the clinical relevance of candidate genes in an independent ESCC cohort.We found 10 significantly recurrent copy number alterations accompanying gene expression changes, including loci 11q13.2, 7p11.2, 3q26.33, and 17q12, which harbored CCND1, EGFR, SOX2, and ERBB2, respectively. Analysis of survival data and RNAi screening data suggested that GRB7, located on 17q12, was a driver gene in ESCC. In ESCC cell lines harboring 17q12 amplification, knockdown of GRB7 reduced the proliferation, migration, and invasion capacities of cells. Moreover, siRNA targeting GRB7 had a synergistic inhibitory effect when combined with trastuzumab, an anti-ERBB2 antibody. Survival analysis of the independent cohort also showed that high GRB7 expression was associated with poor prognosis in ESCC.Our integrative analysis provided important insights into ESCC pathogenesis. We identified GRB7 as a novel ESCC driver gene and potential new therapeutic target.

  15. Dissecting the organ specificity of insecticide resistance candidate genes in Anopheles gambiae: known and novel candidate genes.

    Science.gov (United States)

    Ingham, Victoria A; Jones, Christopher M; Pignatelli, Patricia; Balabanidou, Vasileia; Vontas, John; Wagstaff, Simon C; Moore, Jonathan D; Ranson, Hilary

    2014-11-25

    The elevated expression of enzymes with insecticide metabolism activity can lead to high levels of insecticide resistance in the malaria vector, Anopheles gambiae. In this study, adult female mosquitoes from an insecticide susceptible and resistant strain were dissected into four different body parts. RNA from each of these samples was used in microarray analysis to determine the enrichment patterns of the key detoxification gene families within the mosquito and to identify additional candidate insecticide resistance genes that may have been overlooked in previous experiments on whole organisms. A general enrichment in the transcription of genes from the four major detoxification gene families (carboxylesterases, glutathione transferases, UDP glucornyltransferases and cytochrome P450s) was observed in the midgut and malpighian tubules. Yet the subset of P450 genes that have previously been implicated in insecticide resistance in An gambiae, show a surprisingly varied profile of tissue enrichment, confirmed by qPCR and, for three candidates, by immunostaining. A stringent selection process was used to define a list of 105 genes that are significantly (p ≤0.001) over expressed in body parts from the resistant versus susceptible strain. Over half of these, including all the cytochrome P450s on this list, were identified in previous whole organism comparisons between the strains, but several new candidates were detected, notably from comparisons of the transcriptomes from dissected abdomen integuments. The use of RNA extracted from the whole organism to identify candidate insecticide resistance genes has a risk of missing candidates if key genes responsible for the phenotype have restricted expression within the body and/or are over expression only in certain tissues. However, as transcription of genes implicated in metabolic resistance to insecticides is not enriched in any one single organ, comparison of the transcriptome of individual dissected body parts cannot

  16. Identifying novel fruit-related genes in Arabidopsis thaliana based on the random walk with restart algorithm.

    Science.gov (United States)

    Zhang, Yunhua; Dai, Li; Liu, Ying; Zhang, YuHang; Wang, ShaoPeng

    2017-01-01

    Fruit is essential for plant reproduction and is responsible for protection and dispersal of seeds. The development and maturation of fruit is tightly regulated by numerous genetic factors that respond to environmental and internal stimulation. In this study, we attempted to identify novel fruit-related genes in a model organism, Arabidopsis thaliana, using a computational method. Based on validated fruit-related genes, the random walk with restart (RWR) algorithm was applied on a protein-protein interaction (PPI) network using these genes as seeds. The identified genes with high probabilities were filtered by the permutation test and linkage tests. In the permutation test, the genes that were selected due to the structure of the PPI network were discarded. In the linkage tests, the importance of each candidate gene was measured from two aspects: (1) its functional associations with validated genes and (2) its similarity with validated genes on gene ontology (GO) terms and KEGG pathways. Finally, 255 inferred genes were obtained, subsequent extensive analysis of important genes revealed that they mainly contribute to ubiquitination (UBQ9, UBQ8, UBQ11, UBQ10), serine hydroxymethyl transfer (SHM7, SHM5, SHM6) or glycol-metabolism (HXKL2_ARATH, CSY5, GAPCP1), suggesting essential roles during the development and maturation of fruit in Arabidopsis thaliana.

  17. Cross-study analysis of gene expression data for intermediate neuroblastoma identifies two biological subtypes

    International Nuclear Information System (INIS)

    Warnat, Patrick; Oberthuer, André; Fischer, Matthias; Westermann, Frank; Eils, Roland; Brors, Benedikt

    2007-01-01

    Neuroblastoma patients show heterogeneous clinical courses ranging from life-threatening progression to spontaneous regression. Recently, gene expression profiles of neuroblastoma tumours were associated with clinically different phenotypes. However, such data is still rare for important patient subgroups, such as patients with MYCN non-amplified advanced stage disease. Prediction of the individual course of disease and optimal therapy selection in this cohort is challenging. Additional research effort is needed to describe the patterns of gene expression in this cohort and to identify reliable prognostic markers for this subset of patients. We combined gene expression data from two studies in a meta-analysis in order to investigate differences in gene expression of advanced stage (3 or 4) tumours without MYCN amplification that show contrasting outcomes (alive or dead) at five years after initial diagnosis. In addition, a predictive model for outcome was generated. Gene expression profiles from 66 patients were included from two studies using different microarray platforms. In the combined data set, 72 genes were identified as differentially expressed by meta-analysis at a false discovery rate (FDR) of 8.33%. Meta-analysis detected 34 differentially expressed genes that were not found as significant in either single study. Outcome prediction based on data of both studies resulted in a predictive accuracy of 77%. Moreover, the genes that were differentially expressed in subgroups of advanced stage patients without MYCN amplification accurately separated MYCN amplified tumours from low stage tumours without MYCN amplification. Our findings support the hypothesis that neuroblastoma consists of two biologically distinct subgroups that differ by characteristic gene expression patterns, which are associated with divergent clinical outcome

  18. Identifying Novel Candidate Genes Related to Apoptosis from a Protein-Protein Interaction Network

    Directory of Open Access Journals (Sweden)

    Baoman Wang

    2015-01-01

    Full Text Available Apoptosis is the process of programmed cell death (PCD that occurs in multicellular organisms. This process of normal cell death is required to maintain the balance of homeostasis. In addition, some diseases, such as obesity, cancer, and neurodegenerative diseases, can be cured through apoptosis, which produces few side effects. An effective comprehension of the mechanisms underlying apoptosis will be helpful to prevent and treat some diseases. The identification of genes related to apoptosis is essential to uncover its underlying mechanisms. In this study, a computational method was proposed to identify novel candidate genes related to apoptosis. First, protein-protein interaction information was used to construct a weighted graph. Second, a shortest path algorithm was applied to the graph to search for new candidate genes. Finally, the obtained genes were filtered by a permutation test. As a result, 26 genes were obtained, and we discuss their likelihood of being novel apoptosis-related genes by collecting evidence from published literature.

  19. Whole-exome sequencing identified a variant in EFTUD2 gene in establishing a genetic diagnosis.

    Science.gov (United States)

    Rengasamy Venugopalan, S; Farrow, E G; Lypka, M

    2017-06-01

    Craniofacial anomalies are complex and have an overlapping phenotype. Mandibulofacial Dysostosis and Oculo-Auriculo-Vertebral Spectrum are conditions that share common craniofacial phenotype and present a challenge in arriving at a diagnosis. In this report, we present a case of female proband who was given a differential diagnosis of Treacher Collins syndrome or Hemifacial Microsomia without certainty. Prior genetic testing reported negative for 22q deletion and FGFR screenings. The objective of this study was to demonstrate the critical role of whole-exome sequencing in establishing a genetic diagnosis of the proband. The participants were 14½-year-old affected female proband/parent trio. Proband/parent trio were enrolled in the study. Surgical tissue sample from the proband and parental blood samples were collected and prepared for whole-exome sequencing. Illumina HiSeq 2500 instrument was used for sequencing (125 nucleotide reads/84X coverage). Analyses of variants were performed using custom-developed software, RUNES and VIKING. Variant analyses following whole-exome sequencing identified a heterozygous de novo pathogenic variant, c.259C>T (p.Gln87*), in EFTUD2 (NM_004247.3) gene in the proband. Previous studies have reported that the variants in EFTUD2 gene were associated with Mandibulofacial Dysostosis with Microcephaly. Patients with facial asymmetry, micrognathia, choanal atresia and microcephaly should be analyzed for variants in EFTUD2 gene. Next-generation sequencing techniques, such as whole-exome sequencing offer great promise to improve the understanding of etiologies of sporadic genetic diseases. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Tensor decomposition-based unsupervised feature extraction identifies candidate genes that induce post-traumatic stress disorder-mediated heart diseases.

    Science.gov (United States)

    Taguchi, Y-H

    2017-12-21

    Although post-traumatic stress disorder (PTSD) is primarily a mental disorder, it can cause additional symptoms that do not seem to be directly related to the central nervous system, which PTSD is assumed to directly affect. PTSD-mediated heart diseases are some of such secondary disorders. In spite of the significant correlations between PTSD and heart diseases, spatial separation between the heart and brain (where PTSD is primarily active) prevents researchers from elucidating the mechanisms that bridge the two disorders. Our purpose was to identify genes linking PTSD and heart diseases. In this study, gene expression profiles of various murine tissues observed under various types of stress or without stress were analyzed in an integrated manner using tensor decomposition (TD). Based upon the obtained features, ∼ 400 genes were identified as candidate genes that may mediate heart diseases associated with PTSD. Various gene enrichment analyses supported biological reliability of the identified genes. Ten genes encoding protein-, DNA-, or mRNA-interacting proteins-ILF2, ILF3, ESR1, ESR2, RAD21, HTT, ATF2, NR3C1, TP53, and TP63-were found to be likely to regulate expression of most of these ∼ 400 genes and therefore are candidate primary genes that cause PTSD-mediated heart diseases. Approximately 400 genes in the heart were also found to be strongly affected by various drugs whose known adverse effects are related to heart diseases and/or fear memory conditioning; these data support the reliability of our findings. TD-based unsupervised feature extraction turned out to be a useful method for gene selection and successfully identified possible genes causing PTSD-mediated heart diseases.

  1. Analysis of Pigeon (Columba) Ovary Transcriptomes to Identify Genes Involved in Blue Light Regulation

    Science.gov (United States)

    Wang, Ying; Ding, Jia-tong; Yang, Hai-ming; Yan, Zheng-jie; Cao, Wei; Li, Yang-bai

    2015-01-01

    Monochromatic light is widely applied to promote poultry reproductive performance, yet little is currently known regarding the mechanism by which light wavelengths affect pigeon reproduction. Recently, high-throughput sequencing technologies have been used to provide genomic information for solving this problem. In this study, we employed Illumina Hiseq 2000 to identify differentially expressed genes in ovary tissue from pigeons under blue and white light conditions and de novo transcriptome assembly to construct a comprehensive sequence database containing information on the mechanisms of follicle development. A total of 157,774 unigenes (mean length: 790 bp) were obtained by the Trinity program, and 35.83% of these unigenes were matched to genes in a non-redundant protein database. Gene description, gene ontology, and the clustering of orthologous group terms were performed to annotate the transcriptome assembly. Differentially expressed genes between blue and white light conditions included those related to oocyte maturation, hormone biosynthesis, and circadian rhythm. Furthermore, 17,574 SSRs and 533,887 potential SNPs were identified in this transcriptome assembly. This work is the first transcriptome analysis of the Columba ovary using Illumina technology, and the resulting transcriptome and differentially expressed gene data can facilitate further investigations into the molecular mechanism of the effect of blue light on follicle development and reproduction in pigeons and other bird species. PMID:26599806

  2. Analysis of Pigeon (Columba Ovary Transcriptomes to Identify Genes Involved in Blue Light Regulation.

    Directory of Open Access Journals (Sweden)

    Ying Wang

    Full Text Available Monochromatic light is widely applied to promote poultry reproductive performance, yet little is currently known regarding the mechanism by which light wavelengths affect pigeon reproduction. Recently, high-throughput sequencing technologies have been used to provide genomic information for solving this problem. In this study, we employed Illumina Hiseq 2000 to identify differentially expressed genes in ovary tissue from pigeons under blue and white light conditions and de novo transcriptome assembly to construct a comprehensive sequence database containing information on the mechanisms of follicle development. A total of 157,774 unigenes (mean length: 790 bp were obtained by the Trinity program, and 35.83% of these unigenes were matched to genes in a non-redundant protein database. Gene description, gene ontology, and the clustering of orthologous group terms were performed to annotate the transcriptome assembly. Differentially expressed genes between blue and white light conditions included those related to oocyte maturation, hormone biosynthesis, and circadian rhythm. Furthermore, 17,574 SSRs and 533,887 potential SNPs were identified in this transcriptome assembly. This work is the first transcriptome analysis of the Columba ovary using Illumina technology, and the resulting transcriptome and differentially expressed gene data can facilitate further investigations into the molecular mechanism of the effect of blue light on follicle development and reproduction in pigeons and other bird species.

  3. Multi-species comparative analysis of the equine ACE gene identifies a highly conserved potential transcription factor binding site in intron 16.

    Directory of Open Access Journals (Sweden)

    Natasha A Hamilton

    Full Text Available Angiotensin converting enzyme (ACE is essential for control of blood pressure. The human ACE gene contains an intronic Alu indel (I/D polymorphism that has been associated with variation in serum enzyme levels, although the functional mechanism has not been identified. The polymorphism has also been associated with cardiovascular disease, type II diabetes, renal disease and elite athleticism. We have characterized the ACE gene in horses of breeds selected for differing physical abilities. The equine gene has a similar structure to that of all known mammalian ACE genes. Nine common single nucleotide polymorphisms (SNPs discovered in pooled DNA were found to be inherited in nine haplotypes. Three of these SNPs were located in intron 16, homologous to that containing the Alu polymorphism in the human. A highly conserved 18 bp sequence, also within that intron, was identified as being a potential binding site for the transcription factors Oct-1, HFH-1 and HNF-3β, and lies within a larger area of higher than normal homology. This putative regulatory element may contribute to regulation of the documented inter-individual variation in human circulating enzyme levels, for which a functional mechanism is yet to be defined. Two equine SNPs occurred within the conserved area in intron 16, although neither of them disrupted the putative binding site. We propose a possible regulatory mechanism of the ACE gene in mammalian species which was previously unknown. This advance will allow further analysis leading to a better understanding of the mechanisms underpinning the associations seen between the human Alu polymorphism and enzyme levels, cardiovascular disease states and elite athleticism.

  4. Multi-species comparative analysis of the equine ACE gene identifies a highly conserved potential transcription factor binding site in intron 16.

    Science.gov (United States)

    Hamilton, Natasha A; Tammen, Imke; Raadsma, Herman W

    2013-01-01

    Angiotensin converting enzyme (ACE) is essential for control of blood pressure. The human ACE gene contains an intronic Alu indel (I/D) polymorphism that has been associated with variation in serum enzyme levels, although the functional mechanism has not been identified. The polymorphism has also been associated with cardiovascular disease, type II diabetes, renal disease and elite athleticism. We have characterized the ACE gene in horses of breeds selected for differing physical abilities. The equine gene has a similar structure to that of all known mammalian ACE genes. Nine common single nucleotide polymorphisms (SNPs) discovered in pooled DNA were found to be inherited in nine haplotypes. Three of these SNPs were located in intron 16, homologous to that containing the Alu polymorphism in the human. A highly conserved 18 bp sequence, also within that intron, was identified as being a potential binding site for the transcription factors Oct-1, HFH-1 and HNF-3β, and lies within a larger area of higher than normal homology. This putative regulatory element may contribute to regulation of the documented inter-individual variation in human circulating enzyme levels, for which a functional mechanism is yet to be defined. Two equine SNPs occurred within the conserved area in intron 16, although neither of them disrupted the putative binding site. We propose a possible regulatory mechanism of the ACE gene in mammalian species which was previously unknown. This advance will allow further analysis leading to a better understanding of the mechanisms underpinning the associations seen between the human Alu polymorphism and enzyme levels, cardiovascular disease states and elite athleticism.

  5. Genetic interactions of MAF1 identify a role for Med20 in transcriptional repression of ribosomal protein genes.

    Directory of Open Access Journals (Sweden)

    Ian M Willis

    2008-07-01

    Full Text Available Transcriptional repression of ribosomal components and tRNAs is coordinately regulated in response to a wide variety of environmental stresses. Part of this response involves the convergence of different nutritional and stress signaling pathways on Maf1, a protein that is essential for repressing transcription by RNA polymerase (pol III in Saccharomyces cerevisiae. Here we identify the functions buffering yeast cells that are unable to down-regulate transcription by RNA pol III. MAF1 genetic interactions identified in screens of non-essential gene-deletions and conditionally expressed essential genes reveal a highly interconnected network of 64 genes involved in ribosome biogenesis, RNA pol II transcription, tRNA modification, ubiquitin-dependent proteolysis and other processes. A survey of non-essential MAF1 synthetic sick/lethal (SSL genes identified six gene-deletions that are defective in transcriptional repression of ribosomal protein (RP genes following rapamycin treatment. This subset of MAF1 SSL genes included MED20 which encodes a head module subunit of the RNA pol II Mediator complex. Genetic interactions between MAF1 and subunits in each structural module of Mediator were investigated to examine the functional relationship between these transcriptional regulators. Gene expression profiling identified a prominent and highly selective role for Med20 in the repression of RP gene transcription under multiple conditions. In addition, attenuated repression of RP genes by rapamycin was observed in a strain deleted for the Mediator tail module subunit Med16. The data suggest that Mediator and Maf1 function in parallel pathways to negatively regulate RP mRNA and tRNA synthesis.

  6. A framework to identify gene expression profiles in a model of inflammation induced by lipopolysaccharide after treatment with thalidomide

    Directory of Open Access Journals (Sweden)

    Paiva Renata T

    2012-06-01

    Full Text Available Abstract Background Thalidomide is an anti-inflammatory and anti-angiogenic drug currently used for the treatment of several diseases, including erythema nodosum leprosum, which occurs in patients with lepromatous leprosy. In this research, we use DNA microarray analysis to identify the impact of thalidomide on gene expression responses in human cells after lipopolysaccharide (LPS stimulation. We employed a two-stage framework. Initially, we identified 1584 altered genes in response to LPS. Modulation of this set of genes was then analyzed in the LPS stimulated cells treated with thalidomide. Results We identified 64 genes with altered expression induced by thalidomide using the rank product method. In addition, the lists of up-regulated and down-regulated genes were investigated by means of bioinformatics functional analysis, which allowed for the identification of biological processes affected by thalidomide. Confirmatory analysis was done in five of the identified genes using real time PCR. Conclusions The results showed some genes that can further our understanding of the biological mechanisms in the action of thalidomide. Of the five genes evaluated with real time PCR, three were down regulated and two were up regulated confirming the initial results of the microarray analysis.

  7. A comparative gene analysis with rice identified orthologous group II HKT genes and their association with Na(+) concentration in bread wheat.

    Science.gov (United States)

    Ariyarathna, H A Chandima K; Oldach, Klaus H; Francki, Michael G

    2016-01-19

    Although the HKT transporter genes ascertain some of the key determinants of crop salt tolerance mechanisms, the diversity and functional role of group II HKT genes are not clearly understood in bread wheat. The advanced knowledge on rice HKT and whole genome sequence was, therefore, used in comparative gene analysis to identify orthologous wheat group II HKT genes and their role in trait variation under different saline environments. The four group II HKTs in rice identified two orthologous gene families from bread wheat, including the known TaHKT2;1 gene family and a new distinctly different gene family designated as TaHKT2;2. A single copy of TaHKT2;2 was found on each homeologous chromosome arm 7AL, 7BL and 7DL and each gene was expressed in leaf blade, sheath and root tissues under non-stressed and at 200 mM salt stressed conditions. The proteins encoded by genes of the TaHKT2;2 family revealed more than 93% amino acid sequence identity but ≤52% amino acid identity compared to the proteins encoded by TaHKT2;1 family. Specifically, variations in known critical domains predicted functional differences between the two protein families. Similar to orthologous rice genes on chromosome 6L, TaHKT2;1 and TaHKT2;2 genes were located approximately 3 kb apart on wheat chromosomes 7AL, 7BL and 7DL, forming a static syntenic block in the two species. The chromosomal region on 7AL containing TaHKT2;1 7AL-1 co-located with QTL for shoot Na(+) concentration and yield in some saline environments. The differences in copy number, genes sequences and encoded proteins between TaHKT2;2 homeologous genes and other group II HKT gene families within and across species likely reflect functional diversity for ion selectivity and transport in plants. Evidence indicated that neither TaHKT2;2 nor TaHKT2;1 were associated with primary root Na(+) uptake but TaHKT2;1 may be associated with trait variation for Na(+) exclusion and yield in some but not all saline environments.

  8. Identification of the human ApoAV gene as a novel ROR{alpha} target gene

    Energy Technology Data Exchange (ETDEWEB)

    Lind, Ulrika [Department of Molecular Pharmacology, AstraZeneca R and D Moelndal (Sweden); Nilsson, Tina [Department of Molecular Pharmacology, AstraZeneca R and D Moelndal (Sweden); McPheat, Jane [Department of Molecular Pharmacology, AstraZeneca R and D Moelndal (Sweden); Stroemstedt, Per-Erik [Department of Molecular Pharmacology, AstraZeneca R and D Moelndal (Sweden); Bamberg, Krister [Department of Molecular Pharmacology, AstraZeneca R and D Moelndal (Sweden); Balendran, Clare [Department of Molecular Pharmacology, AstraZeneca R and D Moelndal (Sweden); Kang, Daiwu [Department of Molecular Pharmacology, AstraZeneca R and D Moelndal (Sweden)

    2005-04-29

    Retinoic acid receptor-related orphan receptor-{alpha} (ROR{alpha}) (NR1F1) is an orphan nuclear receptor with a potential role in metabolism. Previous studies have shown that ROR{alpha} regulates transcription of the murine Apolipoprotein AI gene and human Apolipoprotein CIII genes. In the present study, we present evidence that ROR{alpha} also induces transcription of the human Apolipoprotein AV gene, a recently identified apolipoprotein associated with triglyceride levels. Adenovirus-mediated overexpression of ROR{alpha} increased the endogenous expression of ApoAV in HepG2 cells and ROR{alpha} also enhanced the activity of an ApoAV promoter construct in transiently transfected HepG2 cells. Deletion and mutation studies identified three AGGTCA motifs in the ApoAV promoter that mediate ROR{alpha} transactivation, one of which overlaps with a previously identified binding site for PPAR{alpha}. Together, these results suggest a novel mechanism whereby ROR{alpha} modulates lipid metabolism and implies ROR{alpha} as a potential target for the treatment of dyslipidemia and atherosclerosis.

  9. Analysis of the structural genes encoding M-factor in the fission yeast Schizosaccharomyces pombe: identification of a third gene, mfm3

    DEFF Research Database (Denmark)

    Kjaerulff, S; Davey, William John; Nielsen, O

    1994-01-01

    We previously identified two genes, mfm1 and mfm2, with the potential to encode the M-factor mating pheromone of the fission yeast Schizosaccharomyces pombe (J. Davey, EMBO J. 11:951-960, 1992), but further analysis revealed that a mutant strain lacking both genes still produced active M-factor. ......We previously identified two genes, mfm1 and mfm2, with the potential to encode the M-factor mating pheromone of the fission yeast Schizosaccharomyces pombe (J. Davey, EMBO J. 11:951-960, 1992), but further analysis revealed that a mutant strain lacking both genes still produced active M...... that is not rescued by addition of exogenous M-factor. A mutational analysis reveals that all three mfm genes contribute to the production of M-factor. Their transcription is limited to M cells and requires the mat1-Mc and ste11 gene products. Each gene is induced when the cells are starved of nitrogen and further...

  10. Use of deep whole-genome sequencing data to identify structure risk variants in breast cancer susceptibility genes.

    Science.gov (United States)

    Guo, Xingyi; Shi, Jiajun; Cai, Qiuyin; Shu, Xiao-Ou; He, Jing; Wen, Wanqing; Allen, Jamie; Pharoah, Paul; Dunning, Alison; Hunter, David J; Kraft, Peter; Easton, Douglas F; Zheng, Wei; Long, Jirong

    2018-03-01

    Functional disruptions of susceptibility genes by large genomic structure variant (SV) deletions in germlines are known to be associated with cancer risk. However, few studies have been conducted to systematically search for SV deletions in breast cancer susceptibility genes. We analysed deep (> 30x) whole-genome sequencing (WGS) data generated in blood samples from 128 breast cancer patients of Asian and European descent with either a strong family history of breast cancer or early cancer onset disease. To identify SV deletions in known or suspected breast cancer susceptibility genes, we used multiple SV calling tools including Genome STRiP, Delly, Manta, BreakDancer and Pindel. SV deletions were detected by at least three of these bioinformatics tools in five genes. Specifically, we identified heterozygous deletions covering a fraction of the coding regions of BRCA1 (with approximately 80kb in two patients), and TP53 genes (with ∼1.6 kb in two patients), and of intronic regions (∼1 kb) of the PALB2 (one patient), PTEN (three patients) and RAD51C genes (one patient). We confirmed the presence of these deletions using real-time quantitative PCR (qPCR). Our study identified novel SV deletions in breast cancer susceptibility genes and the identification of such SV deletions may improve clinical testing.

  11. Gene Expression Profiling Identifies Important Genes Affected by R2 Compound Disrupting FAK and P53 Complex

    International Nuclear Information System (INIS)

    Golubovskaya, Vita M.; Ho, Baotran; Conroy, Jeffrey; Liu, Song; Wang, Dan; Cance, William G.

    2014-01-01

    Focal Adhesion Kinase (FAK) is a non-receptor kinase that plays an important role in many cellular processes: adhesion, proliferation, invasion, angiogenesis, metastasis and survival. Recently, we have shown that Roslin 2 or R2 (1-benzyl-15,3,5,7-tetraazatricyclo[3.3.1.1~3,7~]decane) compound disrupts FAK and p53 proteins, activates p53 transcriptional activity, and blocks tumor growth. In this report we performed a microarray gene expression analysis of R2-treated HCT116 p53 +/+ and p53 −/− cells and detected 1484 genes that were significantly up- or down-regulated (p < 0.05) in HCT116 p53 +/+ cells but not in p53 −/− cells. Among up-regulated genes in HCT p53 +/+ cells we detected critical p53 targets: Mdm-2, Noxa-1, and RIP1. Among down-regulated genes, Met, PLK2, KIF14, BIRC2 and other genes were identified. In addition, a combination of R2 compound with M13 compound that disrupts FAK and Mmd-2 complex or R2 and Nutlin-1 that disrupts Mdm-2 and p53 decreased clonogenicity of HCT116 p53 +/+ colon cancer cells more significantly than each agent alone in a p53-dependent manner. Thus, the report detects gene expression profile in response to R2 treatment and demonstrates that the combination of drugs targeting FAK, Mdm-2, and p53 can be a novel therapy approach

  12. Integrated database for identifying candidate genes for Aspergillus flavus resistance in maize.

    Science.gov (United States)

    Kelley, Rowena Y; Gresham, Cathy; Harper, Jonathan; Bridges, Susan M; Warburton, Marilyn L; Hawkins, Leigh K; Pechanova, Olga; Peethambaran, Bela; Pechan, Tibor; Luthe, Dawn S; Mylroie, J E; Ankala, Arunkanth; Ozkan, Seval; Henry, W B; Williams, W P

    2010-10-07

    Aspergillus flavus Link:Fr, an opportunistic fungus that produces aflatoxin, is pathogenic to maize and other oilseed crops. Aflatoxin is a potent carcinogen, and its presence markedly reduces the value of grain. Understanding and enhancing host resistance to A. flavus infection and/or subsequent aflatoxin accumulation is generally considered an efficient means of reducing grain losses to aflatoxin. Different proteomic, genomic and genetic studies of maize (Zea mays L.) have generated large data sets with the goal of identifying genes responsible for conferring resistance to A. flavus, or aflatoxin. In order to maximize the usage of different data sets in new studies, including association mapping, we have constructed a relational database with web interface integrating the results of gene expression, proteomic (both gel-based and shotgun), Quantitative Trait Loci (QTL) genetic mapping studies, and sequence data from the literature to facilitate selection of candidate genes for continued investigation. The Corn Fungal Resistance Associated Sequences Database (CFRAS-DB) (http://agbase.msstate.edu/) was created with the main goal of identifying genes important to aflatoxin resistance. CFRAS-DB is implemented using MySQL as the relational database management system running on a Linux server, using an Apache web server, and Perl CGI scripts as the web interface. The database and the associated web-based interface allow researchers to examine many lines of evidence (e.g. microarray, proteomics, QTL studies, SNP data) to assess the potential role of a gene or group of genes in the response of different maize lines to A. flavus infection and subsequent production of aflatoxin by the fungus. CFRAS-DB provides the first opportunity to integrate data pertaining to the problem of A. flavus and aflatoxin resistance in maize in one resource and to support queries across different datasets. The web-based interface gives researchers different query options for mining the database

  13. Exome sequencing in 53 sporadic cases of schizophrenia identifies 18 putative candidate genes.

    Directory of Open Access Journals (Sweden)

    Michel Guipponi

    Full Text Available Schizophrenia (SCZ is a severe, debilitating mental illness which has a significant genetic component. The identification of genetic factors related to SCZ has been challenging and these factors remain largely unknown. To evaluate the contribution of de novo variants (DNVs to SCZ, we sequenced the exomes of 53 individuals with sporadic SCZ and of their non-affected parents. We identified 49 DNVs, 18 of which were predicted to alter gene function, including 13 damaging missense mutations, 2 conserved splice site mutations, 2 nonsense mutations, and 1 frameshift deletion. The average number of exonic DNV per proband was 0.88, which corresponds to an exonic point mutation rate of 1.7×10(-8 per nucleotide per generation. The non-synonymous-to-synonymous mutation ratio of 2.06 did not differ from neutral expectations. Overall, this study provides a list of 18 putative candidate genes for sporadic SCZ, and when combined with the results of similar reports, identifies a second proband carrying a non-synonymous DNV in the RGS12 gene.

  14. Genes contributing to prion pathogenesis

    DEFF Research Database (Denmark)

    Tamgüney, Gültekin; Giles, Kurt; Glidden, David V

    2008-01-01

    incubation times, indicating that the conversion reaction may be influenced by other gene products. To identify genes that contribute to prion pathogenesis, we analysed incubation times of prions in mice in which the gene product was inactivated, knocked out or overexpressed. We tested 20 candidate genes...... show that many genes previously implicated in prion replication have no discernible effect on the pathogenesis of prion disease. While most genes tested did not significantly affect survival times, ablation of the amyloid beta (A4) precursor protein (App) or interleukin-1 receptor, type I (Il1r1...

  15. Transcriptome Profiling to Identify Genes Involved in Mesosulfuron-Methyl Resistance in Alopecurus aequalis

    Directory of Open Access Journals (Sweden)

    Ning Zhao

    2017-08-01

    Full Text Available Non-target-site resistance (NTSR to herbicides is a worldwide concern for weed control. However, as the dominant NTSR mechanism in weeds, metabolic resistance is not yet well-characterized at the genetic level. For this study, we have identified a shortawn foxtail (Alopecurus aequalis Sobol. population displaying both TSR and NTSR to mesosulfuron-methyl and fenoxaprop-P-ethyl, yet the molecular basis for this NTSR remains unclear. To investigate the mechanisms of metabolic resistance, an RNA-Seq transcriptome analysis was used to find candidate genes that may confer metabolic resistance to the herbicide mesosulfuron-methyl in this plant population. The RNA-Seq libraries generated 831,846,736 clean reads. The de novo transcriptome assembly yielded 95,479 unigenes (averaging 944 bp in length that were assigned putative annotations. Among these, a total of 29,889 unigenes were assigned to 67 GO terms that contained three main categories, and 14,246 unigenes assigned to 32 predicted KEGG metabolic pathways. Global gene expression was measured using the reads generated from the untreated control (CK, water-only control (WCK, and mesosulfuron-methyl treatment (T of R and susceptible (S. Contigs that showed expression differences between mesosulfuron-methyl-treated R and S biotypes, and between mesosulfuron-methyl-treated, water-treated and untreated R plants were selected for further quantitative real-time PCR (qRT-PCR validation analyses. Seventeen contigs were consistently highly expressed in the resistant A. aequalis plants, including four cytochrome P450 monooxygenase (CytP450 genes, two glutathione S-transferase (GST genes, two glucosyltransferase (GT genes, two ATP-binding cassette (ABC transporter genes, and seven additional contigs with functional annotations related to oxidation, hydrolysis, and plant stress physiology. These 17 contigs could serve as major candidate genes for contributing to metabolic mesosulfuron-methyl resistance; hence

  16. The pathogenicity of genetic variants previously associated with left ventricular non-compaction

    DEFF Research Database (Denmark)

    Abbasi, Yeganeh; Jabbari, Javad; Jabbari, Reza

    2016-01-01

    BACKGROUND: Left ventricular non-compaction (LVNC) is a rare cardiomyopathy. Many genetic variants have been associated with LVNC. However, the number of the previous LVNC-associated variants that are common in the background population remains unknown. The aim of this study was to provide...... an updated list of previously reported LVNC-associated variants with biologic description and investigate the prevalence of LVNC variants in healthy general population to find false-positive LVNC-associated variants. METHODS AND RESULTS: The Human Gene Mutation Database and PubMed were systematically...... searched to identify all previously reported LVNC-associated variants. Thereafter, the Exome Sequencing Project (ESP) and the Exome Aggregation Consortium (ExAC), that both represent the background population, was searched for all variants. Four in silico prediction tools were assessed to determine...

  17. In-Silico Integration Approach to Identify a Key miRNA Regulating a Gene Network in Aggressive Prostate Cancer

    Science.gov (United States)

    Colaprico, Antonio; Bontempi, Gianluca; Castiglioni, Isabella

    2018-01-01

    Like other cancer diseases, prostate cancer (PC) is caused by the accumulation of genetic alterations in the cells that drives malignant growth. These alterations are revealed by gene profiling and copy number alteration (CNA) analysis. Moreover, recent evidence suggests that also microRNAs have an important role in PC development. Despite efforts to profile PC, the alterations (gene, CNA, and miRNA) and biological processes that correlate with disease development and progression remain partially elusive. Many gene signatures proposed as diagnostic or prognostic tools in cancer poorly overlap. The identification of co-expressed genes, that are functionally related, can identify a core network of genes associated with PC with a better reproducibility. By combining different approaches, including the integration of mRNA expression profiles, CNAs, and miRNA expression levels, we identified a gene signature of four genes overlapping with other published gene signatures and able to distinguish, in silico, high Gleason-scored PC from normal human tissue, which was further enriched to 19 genes by gene co-expression analysis. From the analysis of miRNAs possibly regulating this network, we found that hsa-miR-153 was highly connected to the genes in the network. Our results identify a four-gene signature with diagnostic and prognostic value in PC and suggest an interesting gene network that could play a key regulatory role in PC development and progression. Furthermore, hsa-miR-153, controlling this network, could be a potential biomarker for theranostics in high Gleason-scored PC. PMID:29562723

  18. Genome-wide significant localization for working and spatial memory: Identifying genes for psychosis using models of cognition.

    Science.gov (United States)

    Knowles, Emma E M; Carless, Melanie A; de Almeida, Marcio A A; Curran, Joanne E; McKay, D Reese; Sprooten, Emma; Dyer, Thomas D; Göring, Harald H; Olvera, Rene; Fox, Peter; Almasy, Laura; Duggirala, Ravi; Kent, Jack W; Blangero, John; Glahn, David C

    2014-01-01

    It is well established that risk for developing psychosis is largely mediated by the influence of genes, but identifying precisely which genes underlie that risk has been problematic. Focusing on endophenotypes, rather than illness risk, is one solution to this problem. Impaired cognition is a well-established endophenotype of psychosis. Here we aimed to characterize the genetic architecture of cognition using phenotypically detailed models as opposed to relying on general IQ or individual neuropsychological measures. In so doing we hoped to identify genes that mediate cognitive ability, which might also contribute to psychosis risk. Hierarchical factor models of genetically clustered cognitive traits were subjected to linkage analysis followed by QTL region-specific association analyses in a sample of 1,269 Mexican American individuals from extended pedigrees. We identified four genome wide significant QTLs, two for working and two for spatial memory, and a number of plausible and interesting candidate genes. The creation of detailed models of cognition seemingly enhanced the power to detect genetic effects on cognition and provided a number of possible candidate genes for psychosis. © 2013 Wiley Periodicals, Inc.

  19. Transcriptome analysis identifies genes involved in ethanol response of Saccharomyces cerevisiae in Agave tequilana juice.

    Science.gov (United States)

    Ramirez-Córdova, Jesús; Drnevich, Jenny; Madrigal-Pulido, Jaime Alberto; Arrizon, Javier; Allen, Kirk; Martínez-Velázquez, Moisés; Alvarez-Maya, Ikuri

    2012-08-01

    During ethanol fermentation, yeast cells are exposed to stress due to the accumulation of ethanol, cell growth is altered and the output of the target product is reduced. For Agave beverages, like tequila, no reports have been published on the global gene expression under ethanol stress. In this work, we used microarray analysis to identify Saccharomyces cerevisiae genes involved in the ethanol response. Gene expression of a tequila yeast strain of S. cerevisiae (AR5) was explored by comparing global gene expression with that of laboratory strain S288C, both after ethanol exposure. Additionally, we used two different culture conditions, cells grown in Agave tequilana juice as a natural fermentation media or grown in yeast-extract peptone dextrose as artificial media. Of the 6368 S. cerevisiae genes in the microarray, 657 genes were identified that had different expression responses to ethanol stress due to strain and/or media. A cluster of 28 genes was found over-expressed specifically in the AR5 tequila strain that could be involved in the adaptation to tequila yeast fermentation, 14 of which are unknown such as yor343c, ylr162w, ygr182c, ymr265c, yer053c-a or ydr415c. These could be the most suitable genes for transforming tequila yeast to increase ethanol tolerance in the tequila fermentation process. Other genes involved in response to stress (RFC4, TSA1, MLH1, PAU3, RAD53) or transport (CYB2, TIP20, QCR9) were expressed in the same cluster. Unknown genes could be good candidates for the development of recombinant yeasts with ethanol tolerance for use in industrial tequila fermentation.

  20. Parallel analysis of tagged deletion mutants efficiently identifies genes involved in endoplasmic reticulum biogenesis.

    Science.gov (United States)

    Wright, Robin; Parrish, Mark L; Cadera, Emily; Larson, Lynnelle; Matson, Clinton K; Garrett-Engele, Philip; Armour, Chris; Lum, Pek Yee; Shoemaker, Daniel D

    2003-07-30

    Increased levels of HMG-CoA reductase induce cell type- and isozyme-specific proliferation of the endoplasmic reticulum. In yeast, the ER proliferations induced by Hmg1p consist of nuclear-associated stacks of smooth ER membranes known as karmellae. To identify genes required for karmellae assembly, we compared the composition of populations of homozygous diploid S. cerevisiae deletion mutants following 20 generations of growth with and without karmellae. Using an initial population of 1,557 deletion mutants, 120 potential mutants were identified as a result of three independent experiments. Each experiment produced a largely non-overlapping set of potential mutants, suggesting that differences in specific growth conditions could be used to maximize the comprehensiveness of similar parallel analysis screens. Only two genes, UBC7 and YAL011W, were identified in all three experiments. Subsequent analysis of individual mutant strains confirmed that each experiment was identifying valid mutations, based on the mutant's sensitivity to elevated HMG-CoA reductase and inability to assemble normal karmellae. The largest class of HMG-CoA reductase-sensitive mutations was a subset of genes that are involved in chromatin structure and transcriptional regulation, suggesting that karmellae assembly requires changes in transcription or that the presence of karmellae may interfere with normal transcriptional regulation. Copyright 2003 John Wiley & Sons, Ltd.

  1. Genome-wide association study identifies the SERPINB gene cluster as a susceptibility locus for food allergy.

    Science.gov (United States)

    Marenholz, Ingo; Grosche, Sarah; Kalb, Birgit; Rüschendorf, Franz; Blümchen, Katharina; Schlags, Rupert; Harandi, Neda; Price, Mareike; Hansen, Gesine; Seidenberg, Jürgen; Röblitz, Holger; Yürek, Songül; Tschirner, Sebastian; Hong, Xiumei; Wang, Xiaobin; Homuth, Georg; Schmidt, Carsten O; Nöthen, Markus M; Hübner, Norbert; Niggemann, Bodo; Beyer, Kirsten; Lee, Young-Ae

    2017-10-20

    Genetic factors and mechanisms underlying food allergy are largely unknown. Due to heterogeneity of symptoms a reliable diagnosis is often difficult to make. Here, we report a genome-wide association study on food allergy diagnosed by oral food challenge in 497 cases and 2387 controls. We identify five loci at genome-wide significance, the clade B serpin (SERPINB) gene cluster at 18q21.3, the cytokine gene cluster at 5q31.1, the filaggrin gene, the C11orf30/LRRC32 locus, and the human leukocyte antigen (HLA) region. Stratifying the results for the causative food demonstrates that association of the HLA locus is peanut allergy-specific whereas the other four loci increase the risk for any food allergy. Variants in the SERPINB gene cluster are associated with SERPINB10 expression in leukocytes. Moreover, SERPINB genes are highly expressed in the esophagus. All identified loci are involved in immunological regulation or epithelial barrier function, emphasizing the role of both mechanisms in food allergy.

  2. CRDB: database of chemosensory receptor gene families in vertebrate.

    Directory of Open Access Journals (Sweden)

    Dong Dong

    Full Text Available Chemosensory receptors (CR are crucial for animals to sense the environmental changes and survive on earth. The emergence of whole-genome sequences provides us an opportunity to identify the entire CR gene repertoires. To completely gain more insight into the evolution of CR genes in vertebrates, we identified the nearly all CR genes in 25 vertebrates using homology-based approaches. Among these CR gene repertoires, nearly half of them were identified for the first time in those previously uncharacterized species, such as the guinea pig, giant panda and elephant, etc. Consistent with previous findings, we found that the numbers of CR genes vary extensively among different species, suggesting an extreme form of 'birth-and-death' evolution. For the purpose of facilitating CR gene analysis, we constructed a database with the goals to provide a resource for CR genes annotation and a web tool for exploring their evolutionary patterns. Besides a search engine for the gene extraction from a specific chromosome region, an easy-to-use phylogenetic analysis tool was also provided to facilitate online phylogeny study of CR genes. Our work can provide a rigorous platform for further study on the evolution of CR genes in vertebrates.

  3. Extended tracts of homozygosity identify novel candidate genes associated with late onset Alzheimer’s Disease

    Science.gov (United States)

    Nalls, M. A.; Guerreiro, R. J.; Simon-Sanchez, J.; Bras, J. T.; Traynor, B. J.; Gibbs, J. R.; Launer, L.; Hardy, J.; Singleton, A. B.

    2010-01-01

    Large tracts of extended homozygosity are more prevalent in outbred populations than previously thought. With the advent of high-density genotyping platforms, regions of extended homozygosity can be accurately located allowing for the identification of rare recessive risk variants contributing to disease. We compared measures of extended homozygosity (greater than 1 megabase in length) in a population of 837 late onset Alzheimer’s disease (LOAD) cases and 550 controls. In our analyses, we identify one homozygous region on chromosome 8 that is significantly associated with LOAD after adjusting for multiple testing. This region contains seven genes from which the most biologically plausible candidates are STAR, EIF4EBP1 and ADRB3. We also compared the total numbers of homozygous runs and the total length of these runs between cases and controls, showing a suggestive difference in these measures (p-values 0.052-0.062). This research suggests a recessive component to the etiology of LOAD. PMID:19271249

  4. Analyses of expressed sequence tags from the maize foliar pathogen Cercospora zeae-maydis identify novel genes expressed during vegetative, infectious, and reproductive growth

    Directory of Open Access Journals (Sweden)

    Kema Gert HJ

    2008-11-01

    Full Text Available Abstract Background The ascomycete fungus Cercospora zeae-maydis is an aggressive foliar pathogen of maize that causes substantial losses annually throughout the Western Hemisphere. Despite its impact on maize production, little is known about the regulation of pathogenesis in C. zeae-maydis at the molecular level. The objectives of this study were to generate a collection of expressed sequence tags (ESTs from C. zeae-maydis and evaluate their expression during vegetative, infectious, and reproductive growth. Results A total of 27,551 ESTs was obtained from five cDNA libraries constructed from vegetative and sporulating cultures of C. zeae-maydis. The ESTs, grouped into 4088 clusters and 531 singlets, represented 4619 putative unique genes. Of these, 36% encoded proteins similar (E value ≤ 10-05 to characterized or annotated proteins from the NCBI non-redundant database representing diverse molecular functions and biological processes based on Gene Ontology (GO classification. We identified numerous, previously undescribed genes with potential roles in photoreception, pathogenesis, and the regulation of development as well as Zephyr, a novel, actively transcribed transposable element. Differential expression of selected genes was demonstrated by real-time PCR, supporting their proposed roles in vegetative, infectious, and reproductive growth. Conclusion Novel genes that are potentially involved in regulating growth, development, and pathogenesis were identified in C. zeae-maydis, providing specific targets for characterization by molecular genetics and functional genomics. The EST data establish a foundation for future studies in evolutionary and comparative genomics among species of Cercospora and other groups of plant pathogenic fungi.

  5. Genome-wide Analyses Identify KIF5A as a Novel ALS Gene

    NARCIS (Netherlands)

    Nicolas, Aude; Kenna, Kevin P.; Renton, Alan E.; Ticozzi, Nicola; Faghri, Faraz; Chia, Ruth; Dominov, Janice A.; Kenna, Brendan J.; Nalls, Mike A.; Keagle, Pamela; Rivera, Alberto M.; van Rheenen, Wouter; Murphy, Natalie A.; van Vugt, Joke J.F.A.; Geiger, Joshua T.; van der Spek, Rick; Pliner, Hannah A.; Smith, Bradley N.; Marangi, Giuseppe; Topp, Simon D.; Abramzon, Yevgeniya; Gkazi, Athina Soragia; Eicher, John D.; Kenna, Aoife; Logullo, Francesco O.; Simone, Isabella L.; Logroscino, Giancarlo; Salvi, Fabrizio; Bartolomei, Ilaria; Borghero, Giuseppe; Murru, Maria Rita; Costantino, Emanuela; Pani, Carla; Puddu, Roberta; Caredda, Carla; Piras, Valeria; Tranquilli, Stefania; Cuccu, Stefania; Corongiu, Daniela; Melis, Maurizio; Milia, Antonio; Marrosu, Francesco; Marrosu, Maria Giovanna; Floris, Gianluca; Cannas, Antonino; Capasso, Margherita; Caponnetto, Claudia; Mancardi, Gianluigi; Origone, Paola; Mandich, Paola; Conforti, Francesca L.; Cavallaro, Sebastiano; Mora, Gabriele; Marinou, Kalliopi; Sideri, Riccardo; Penco, Silvana; Mosca, Lorena; Lunetta, Christian; Pinter, Giuseppe Lauria; Corbo, Massimo; Riva, Nilo; Carrera, Paola; Volanti, Paolo; Mandrioli, Jessica; Fini, Nicola; Fasano, Antonio; Tremolizzo, Lucio; Arosio, Alessandro; Ferrarese, Carlo; Trojsi, Francesca; Tedeschi, Gioacchino; Monsurrò, Maria Rosaria; Piccirillo, Giovanni; Femiano, Cinzia; Ticca, Anna; Ortu, Enzo; La Bella, Vincenzo; Spataro, Rossella; Colletti, Tiziana; Sabatelli, Mario; Zollino, Marcella; Conte, Amelia; Luigetti, Marco; Lattante, Serena; Marangi, Giuseppe; Santarelli, Marialuisa; Petrucci, Antonio; Pugliatti, Maura; Pirisi, Angelo; Parish, Leslie D.; Occhineri, Patrizia; Giannini, Fabio; Battistini, Stefania; Ricci, Claudia; Benigni, Michele; Cau, Tea B.; Loi, Daniela; Calvo, Andrea; Moglia, Cristina; Brunetti, Maura; Barberis, Marco; Restagno, Gabriella; Casale, Federico; Marrali, Giuseppe; Fuda, Giuseppe; Ossola, Irene; Cammarosano, Stefania; Canosa, Antonio; Ilardi, Antonio; Manera, Umberto; Grassano, Maurizio; Tanel, Raffaella; Pisano, Fabrizio; Mora, Gabriele; Calvo, Andrea; Mazzini, Letizia; Riva, Nilo; Mandrioli, Jessica; Caponnetto, Claudia; Battistini, Stefania; Volanti, Paolo; La Bella, Vincenzo; Conforti, Francesca L.; Borghero, Giuseppe; Messina, Sonia; Simone, Isabella L.; Trojsi, Francesca; Salvi, Fabrizio; Logullo, Francesco O.; D'Alfonso, Sandra; Corrado, Lucia; Capasso, Margherita; Ferrucci, Luigi; Harms, Matthew B.; Goldstein, David B.; Shneider, Neil A.; Goutman, Stephen A.; Simmons, Zachary; Miller, Timothy M.; Chandran, Siddharthan; Pal, Suvankar; Manousakis, George; Appel, Stanley H.; Simpson, Ericka; Wang, Leo; Baloh, Robert H.; Gibson, Summer B.; Bedlack, Richard; Lacomis, David; Sareen, Dhruv; Sherman, Alexander; Bruijn, Lucie; Penny, Michelle; Moreno, Cristiane de Araujo Martins; Kamalakaran, Sitharthan; Goldstein, David B.; Allen, Andrew S.; Appel, Stanley; Baloh, Robert H.; Bedlack, Richard S.; Boone, Braden E.; Brown, Robert; Carulli, John P.; Chesi, Alessandra; Chung, Wendy K.; Cirulli, Elizabeth T.; Cooper, Gregory M.; Couthouis, Julien; Day-Williams, Aaron G.; Dion, Patrick A.; Gibson, Summer B.; Gitler, Aaron D.; Glass, Jonathan D.; Goldstein, David B.; Han, Yujun; Harms, Matthew B.; Harris, Tim; Hayes, Sebastian D.; Jones, Angela L.; Keebler, Jonathan; Krueger, Brian J.; Lasseigne, Brittany N.; Levy, Shawn E.; Lu, Yi Fan; Maniatis, Tom; McKenna-Yasek, Diane; Miller, Timothy M.; Myers, Richard M.; Petrovski, Slavé; Pulst, Stefan M.; Raphael, Alya R.; Ravits, John M.; Ren, Zhong; Rouleau, Guy A.; Sapp, Peter C.; Shneider, Neil A.; Simpson, Ericka; Sims, Katherine B.; Staropoli, John F.; Waite, Lindsay L.; Wang, Quanli; Wimbish, Jack R.; Xin, Winnie W.; Gitler, Aaron D.; Harris, Tim; Myers, Richard M.; Phatnani, Hemali; Kwan, Justin; Sareen, Dhruv; Broach, James R.; Simmons, Zachary; Arcila-Londono, Ximena; Lee, Edward B.; Van Deerlin, Vivianna M.; Shneider, Neil A.; Fraenkel, Ernest; Ostrow, Lyle W.; Baas, Frank; Zaitlen, Noah; Berry, James D.; Malaspina, Andrea; Fratta, Pietro; Cox, Gregory A.; Thompson, Leslie M.; Finkbeiner, Steve; Dardiotis, Efthimios; Miller, Timothy M.; Chandran, Siddharthan; Pal, Suvankar; Hornstein, Eran; MacGowan, Daniel J.L.; Heiman-Patterson, Terry D.; Hammell, Molly G.; Patsopoulos, Nikolaos A.; Dubnau, Joshua; Nath, Avindra; Phatnani, Hemali; Musunuri, Rajeeva Lochan; Evani, Uday Shankar; Abhyankar, Avinash; Zody, Michael C.; Kaye, Julia; Finkbeiner, Steven; Wyman, Stacia K.; LeNail, Alexander; Lima, Leandro; Fraenkel, Ernest; Rothstein, Jeffrey D.; Svendsen, Clive N.; Thompson, Leslie M.; Van Eyk, Jenny; Maragakis, Nicholas J.; Berry, James D.; Glass, Jonathan D.; Miller, Timothy M.; Kolb, Stephen J.; Baloh, Robert H.; Cudkowicz, Merit; Baxi, Emily; Kaye, Julia; Finkbeiner, Steven; Wyman, Stacia K.; Finkbeiner, Steven; LeNail, Alex; Lima, Leandro; Fraenkel, Ernest; Fraenkel, Ernest; Svendsen, Clive N.; Svendsen, Clive N.; Thompson, Leslie M.; Thompson, Leslie M.; Van Eyk, Jennifer E.; Berry, James D.; Berry, James D.; Miller, Timothy M.; Kolb, Stephen J.; Cudkowicz, Merit; Cudkowicz, Merit; Baxi, Emily; Benatar, Michael; Taylor, J. Paul; Wu, Gang; Rampersaud, Evadnie; Wuu, Joanne; Rademakers, Rosa; Züchner, Stephan; Schule, Rebecca; McCauley, Jacob; Hussain, Sumaira; Cooley, Anne; Wallace, Marielle; Clayman, Christine; Barohn, Richard; Statland, Jeffrey; Ravits, John M.; Swenson, Andrea; Jackson, Carlayne; Trivedi, Jaya; Khan, Shaida; Katz, Jonathan; Jenkins, Liberty; Burns, Ted; Gwathmey, Kelly; Caress, James; McMillan, Corey; Elman, Lauren; Pioro, Erik P.; Heckmann, Jeannine; So, Yuen; Walk, David; Maiser, Samuel; Zhang, Jinghui; Benatar, Michael; Taylor, J. Paul; Taylor, J. Paul; Rampersaud, Evadnie; Wu, Gang; Wuu, Joanne; Silani, Vincenzo; Ticozzi, Nicola; Gellera, Cinzia; Ratti, Antonia; Taroni, Franco; Lauria, Giuseppe; Verde, Federico; Fogh, Isabella; Tiloca, Cinzia; Comi, Giacomo P.; Sorarù, Gianni; Cereda, Cristina; D'Alfonso, Sandra; Corrado, Lucia; De Marchi, Fabiola; Corti, Stefania; Ceroni, Mauro; Mazzini, Letizia; Siciliano, Gabriele; Filosto, Massimiliano; Inghilleri, Maurizio; Peverelli, Silvia; Colombrita, Claudia; Poletti, Barbara; Maderna, Luca; Del Bo, Roberto; Gagliardi, Stella; Querin, Giorgia; Bertolin, Cinzia; Pensato, Viviana; Castellotti, Barbara; Lauria, Giuseppe; Verde, Federico; Fogh, Isabella; Tiloca, Cinzia; Fogh, Isabella; Comi, Giacomo P.; Sorarù, Gianni; Cereda, Cristina; Camu, William; Mouzat, Kevin; Lumbroso, Serge; Corcia, Philippe; Meininger, Vincent; Besson, Gérard; Lagrange, Emmeline; Clavelou, Pierre; Guy, Nathalie; Couratier, Philippe; Vourch, Patrick; Danel, Véronique; Bernard, Emilien; Lemasson, Gwendal; Corcia, Philippe; Laaksovirta, Hannu; Myllykangas, Liisa; Jansson, Lilja; Valori, Miko; Ealing, John; Hamdalla, Hisham; Rollinson, Sara; Pickering-Brown, Stuart; Orrell, Richard W.; Sidle, Katie C.; Malaspina, Andrea; Hardy, John; Singleton, Andrew B.; Johnson, Janel O.; Arepalli, Sampath; Sapp, Peter C.; McKenna-Yasek, Diane; Polak, Meraida; Asress, Seneshaw; Al-Sarraj, Safa; King, Andrew; Troakes, Claire; Vance, Caroline; de Belleroche, Jacqueline; Baas, Frank; ten Asbroek, Anneloor L.M.A.; Muñoz-Blanco, José Luis; Hernandez, Dena G.; Ding, Jinhui; Gibbs, J. Raphael; Scholz, Sonja W.; Scholz, Sonja W.; Floeter, Mary Kay; Campbell, Roy H.; Landi, Francesco; Bowser, Robert; Pulst, Stefan M.; Ravits, John M.; MacGowan, Daniel J.L.; Kirby, Janine; Pioro, Erik P.; Pamphlett, Roger; Broach, James; Gerhard, Glenn; Dunckley, Travis L.; Brady, Christopher B.; Brady, Christopher B.; Kowall, Neil W.; Troncoso, Juan C.; Le Ber, Isabelle; Mouzat, Kevin; Lumbroso, Serge; Mouzat, Kevin; Lumbroso, Serge; Heiman-Patterson, Terry D.; Heiman-Patterson, Terry D.; Kamel, Freya; Van Den Bosch, Ludo; Van Den Bosch, Ludo; Baloh, Robert H.; Strom, Tim M.; Meitinger, Thomas; Strom, Tim M.; Shatunov, Aleksey; Van Eijk, Kristel R.; de Carvalho, Mamede; de Carvalho, Mamede; Kooyman, Maarten; Middelkoop, Bas; Moisse, Matthieu; McLaughlin, Russell; Van Es, Michael A.; Weber, Markus; Boylan, Kevin B.; Van Blitterswijk, Marka; Rademakers, Rosa; Morrison, Karen; Basak, A. Nazli; Mora, Jesús S.; Drory, Vivian; Shaw, Pamela; Turner, Martin R.; Talbot, Kevin; Hardiman, Orla; Williams, Kelly L.; Fifita, Jennifer A.; Nicholson, Garth A.; Blair, Ian P.; Nicholson, Garth A.; Rouleau, Guy A.; Esteban-Pérez, Jesús; García-Redondo, Alberto; Al-Chalabi, Ammar; Al Kheifat, Ahmad; Al-Chalabi, Ammar; Andersen, Peter M.; Basak, A. Nazli; Blair, Ian P.; Chio, Adriano; Cooper-Knock, Jonathan; Corcia, Philippe; Couratier, Philippe; de Carvalho, Mamede; Dekker, Annelot; Drory, Vivian; Redondo, Alberto Garcia; Gotkine, Marc; Hardiman, Orla; Hide, Winston; Iacoangeli, Alfredo; Glass, Jonathan D.; Kenna, Kevin P.; Kiernan, Matthew; Kooyman, Maarten; Landers, John E.; McLaughlin, Russell; Middelkoop, Bas; Mill, Jonathan; Neto, Miguel Mitne; Moisse, Matthieu; Pardina, Jesus Mora; Morrison, Karen; Newhouse, Stephen; Pinto, Susana; Pulit, Sara; Robberecht, Wim; Shatunov, Aleksey; Shaw, Pamela; Shaw, Chris; Silani, Vincenzo; Sproviero, William; Tazelaar, Gijs; Ticozzi, Nicola; Van Damme, Philip; van den Berg, Leonard; van der Spek, Rick; Van Eijk, Kristel R.; Van Es, Michael A.; van Rheenen, Wouter; van Vugt, Joke J.F.A.; Veldink, Jan H.; Weber, Markus; Williams, Kelly L.; Van Damme, Philip; Robberecht, Wim; Zatz, Mayana; Robberecht, Wim; Bauer, Denis C.; Twine, Natalie A.; Rogaeva, Ekaterina; Zinman, Lorne; Ostrow, Lyle W.; Maragakis, Nicholas J.; Rothstein, Jeffrey D.; Simmons, Zachary; Cooper-Knock, Johnathan; Brice, Alexis; Goutman, Stephen A.; Feldman, Eva L.; Gibson, Summer B.; Taroni, Franco; Ratti, Antonia; Ratti, Antonia; Gellera, Cinzia; Van Damme, Philip; Robberecht, Wim; Fratta, Pietro; Sabatelli, Mario; Lunetta, Christian; Ludolph, Albert C.; Andersen, Peter M.; Weishaupt, Jochen H.; Camu, William; Trojanowski, John Q.; Van Deerlin, Vivianna M.; Brown, Robert H.; van den Berg, Leonard; Veldink, Jan H.; Harms, Matthew B.; Glass, Jonathan D.; Stone, David J.; Tienari, Pentti; Silani, Vincenzo; Silani, Vincenzo; Chiò, Adriano; Shaw, Christopher E.; Chiò, Adriano; Traynor, Bryan J.; Landers, John E.; Traynor, Bryan J.

    2018-01-01

    To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494

  6. Genome-wide gene expression array identifies novel genes related to disease severity and excessive daytime sleepiness in patients with obstructive sleep apnea.

    Directory of Open Access Journals (Sweden)

    Yung-Che Chen

    Full Text Available We aimed to identify novel molecular associations between chronic intermittent hypoxia with re-oxygenation and adverse consequences in obstructive sleep apnea (OSA. We analyzed gene expression profiles of peripheral blood mononuclear cells from 48 patients with sleep-disordered breathing stratified into four groups: primary snoring (PS, moderate to severe OSA (MSO, very severe OSA (VSO, and very severe OSA patients on long-term continuous positive airway pressure treatment (VSOC. Comparisons of the microarray gene expression data identified eight genes up-regulated with OSA and down-regulated with CPAP treatment, and five genes down-regulated with OSA and up-regulated with CPAP treatment. Protein expression levels of two genes related to endothelial tight junction (AMOT P130, and PLEKHH3, and three genes related to anti-or pro-apoptosis (BIRC3, ADAR1 P150, and LGALS3 were all increased in the VSO group, while AMOT P130 was further increased, and PLEKHH3, BIRC3, and ADAR1 P150 were all decreased in the VSOC group. Subgroup analyses revealed that AMOT P130 protein expression was increased in OSA patients with excessive daytime sleepiness, BIRC3 protein expression was decreased in OSA patients with hypertension, and LGALS3 protein expression was increased in OSA patients with chronic kidney disease. In vitro short-term intermittent hypoxia with re-oxygenation experiment showed immediate over-expression of ADAR1 P150. In conclusion, we identified a novel association between AMOT/PLEKHH3/BIRC3/ADAR1/LGALS3 over-expressions and high severity index in OSA patients. AMOT and GALIG may constitute an important determinant for the development of hypersomnia and kidney injury, respectively, while BIRC3 may play a protective role in the development of hypertension.

  7. Gene expression analysis identifies new candidate genes associated with the development of black skin spots in Corriedale sheep.

    Science.gov (United States)

    Peñagaricano, Francisco; Zorrilla, Pilar; Naya, Hugo; Robello, Carlos; Urioste, Jorge I

    2012-02-01

    The white coat colour of sheep is an important economic trait. For unknown reasons, some animals are born with, and others develop with time, black skin spots that can also produce pigmented fibres. The presence of pigmented fibres in the white wool significantly decreases the fibre quality. The aim of this work was to study gene expression in black spots (with and without pigmented fibres) and white skin by microarray techniques, in order to identify the possible genes involved in the development of this trait. Five unrelated Corriedale sheep were used and, for each animal, the three possible comparisons (three different hybridisations) between the three samples of interest were performed. Differential gene expression patterns were analysed using different t-test approaches. Most of the major genes with well-known roles in skin pigmentation, e.g. ASIP, MC1R and C-KIT, showed no significant difference in the gene expression between white skin and black spots. On the other hand, many of the differentially expressed genes (raw P-value spots. The gene expression of C-FOS and KLF4, transcription factors involved in the cellular response to external factors such as ultraviolet light, was validated by quantitative polymerase chain reaction (PCR). This exploratory study provides a list of candidate genes that could be associated with the development of black skin spots that should be studied in more detail. Characterisation of these genes will enable us to discern the molecular mechanisms involved in the development of this feature and, hence, increase our understanding of melanocyte biology and skin pigmentation. In sheep, understanding this phenomenon is a first step towards developing molecular tools to assist in the selection against the presence of pigmented fibres in white wool.

  8. Identifying pathogenicity genes in the rubber tree anthracnose fungus Colletotrichum gloeosporioides through random insertional mutagenesis.

    Science.gov (United States)

    Cai, Zhiying; Li, Guohua; Lin, Chunhua; Shi, Tao; Zhai, Ligang; Chen, Yipeng; Huang, Guixiu

    2013-07-19

    To gain more insight into the molecular mechanisms of Colletotrichum gloeosporioides pathogenesis, Agrobacterium tumefaciens-mediated transformation (ATMT) was used to identify mutants of C. gloeosporioides impaired in pathogenicity. An ATMT library of 4128 C. gloeosporioides transformants was generated. Transformants were screened for defects in pathogenicity with a detached copper brown leaf assay. 32 mutants showing reproducible pathogenicity defects were obtained. Southern blot analysis showed 60.4% of the transformants had single-site T-DNA integrations. 16 Genomic sequences flanking T-DNA were recovered from mutants by thermal asymmetric interlaced PCR, and were used to isolate the tagged genes from the genome sequence of wild-type C. gloeosporioides by Basic Local Alignment Search Tool searches against the local genome database of the wild-type C. gloeosporioides. One potential pathogenicity genes encoded calcium-translocating P-type ATPase. Six potential pathogenicity genes had no known homologs in filamentous fungi and were likely to be novel fungal virulence factors. Two putative genes encoded Glycosyltransferase family 28 domain-containing protein and Mov34/MPN/PAD-1 family protein, respectively. Five potential pathogenicity genes had putative function matched with putative protein of other Colletotrichum species. Two known C. gloeosporioides pathogenicity genes were also identified, the encoding Glomerella cingulata hard-surface induced protein and C. gloeosporioides regulatory subunit of protein kinase A gene involved in cAMP-dependent PKA signal transduction pathway. Copyright © 2013 Elsevier GmbH. All rights reserved.

  9. Pathogenicity island mobility and gene content.

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Kelly Porter

    2013-10-01

    Key goals towards national biosecurity include methods for analyzing pathogens, predicting their emergence, and developing countermeasures. These goals are served by studying bacterial genes that promote pathogenicity and the pathogenicity islands that mobilize them. Cyberinfrastructure promoting an island database advances this field and enables deeper bioinformatic analysis that may identify novel pathogenicity genes. New automated methods and rich visualizations were developed for identifying pathogenicity islands, based on the principle that islands occur sporadically among closely related strains. The chromosomally-ordered pan-genome organizes all genes from a clade of strains; gaps in this visualization indicate islands, and decorations of the gene matrix facilitate exploration of island gene functions. A %E2%80%9Clearned phyloblocks%E2%80%9D method was developed for automated island identification, that trains on the phylogenetic patterns of islands identified by other methods. Learned phyloblocks better defined termini of previously identified islands in multidrug-resistant Klebsiella pneumoniae ATCC BAA-2146, and found its only antibiotic resistance island.

  10. Exome sequencing identifies rare deleterious mutations in DNA repair genes FANCC and BLM as potential breast cancer susceptibility alleles.

    Directory of Open Access Journals (Sweden)

    Ella R Thompson

    2012-09-01

    Full Text Available Despite intensive efforts using linkage and candidate gene approaches, the genetic etiology for the majority of families with a multi-generational breast cancer predisposition is unknown. In this study, we used whole-exome sequencing of thirty-three individuals from 15 breast cancer families to identify potential predisposing genes. Our analysis identified families with heterozygous, deleterious mutations in the DNA repair genes FANCC and BLM, which are responsible for the autosomal recessive disorders Fanconi Anemia and Bloom syndrome. In total, screening of all exons in these genes in 438 breast cancer families identified three with truncating mutations in FANCC and two with truncating mutations in BLM. Additional screening of FANCC mutation hotspot exons identified one pathogenic mutation among an additional 957 breast cancer families. Importantly, none of the deleterious mutations were identified among 464 healthy controls and are not reported in the 1,000 Genomes data. Given the rarity of Fanconi Anemia and Bloom syndrome disorders among Caucasian populations, the finding of multiple deleterious mutations in these critical DNA repair genes among high-risk breast cancer families is intriguing and suggestive of a predisposing role. Our data demonstrate the utility of intra-family exome-sequencing approaches to uncover cancer predisposition genes, but highlight the major challenge of definitively validating candidates where the incidence of sporadic disease is high, germline mutations are not fully penetrant, and individual predisposition genes may only account for a tiny proportion of breast cancer families.

  11. Gene Unprediction with Spurio: A tool to identify spurious protein sequences.

    Science.gov (United States)

    Höps, Wolfram; Jeffryes, Matt; Bateman, Alex

    2018-01-01

    We now have access to the sequences of tens of millions of proteins. These protein sequences are essential for modern molecular biology and computational biology. The vast majority of protein sequences are derived from gene prediction tools and have no experimental supporting evidence for their translation.  Despite the increasing accuracy of gene prediction tools there likely exists a large number of spurious protein predictions in the sequence databases.  We have developed the Spurio tool to help identify spurious protein predictions in prokaryotes.  Spurio searches the query protein sequence against a prokaryotic nucleotide database using tblastn and identifies homologous sequences. The tblastn matches are used to score the query sequence's likelihood of being a spurious protein prediction using a Gaussian process model. The most informative feature is the appearance of stop codons within the presumed translation of homologous DNA sequences. Benchmarking shows that the Spurio tool is able to distinguish spurious from true proteins. However, transposon proteins are prone to be predicted as spurious because of the frequency of degraded homologs found in the DNA sequence databases. Our initial experiments suggest that less than 1% of the proteins in the UniProtKB sequence database are likely to be spurious and that Spurio is able to identify over 60 times more spurious proteins than the AntiFam resource. The Spurio software and source code is available under an MIT license at the following URL: https://bitbucket.org/bateman-group/spurio.

  12. An elm EST database for identifying leaf beetle egg-induced defense genes

    Directory of Open Access Journals (Sweden)

    Büchel Kerstin

    2012-06-01

    Full Text Available Abstract Background Plants can defend themselves against herbivorous insects prior to the onset of larval feeding by responding to the eggs laid on their leaves. In the European field elm (Ulmus minor, egg laying by the elm leaf beetle ( Xanthogaleruca luteola activates the emission of volatiles that attract specialised egg parasitoids, which in turn kill the eggs. Little is known about the transcriptional changes that insect eggs trigger in plants and how such indirect defense mechanisms are orchestrated in the context of other biological processes. Results Here we present the first large scale study of egg-induced changes in the transcriptional profile of a tree. Five cDNA libraries were generated from leaves of (i untreated control elms, and elms treated with (ii egg laying and feeding by elm leaf beetles, (iii feeding, (iv artificial transfer of egg clutches, and (v methyl jasmonate. A total of 361,196 ESTs expressed sequence tags (ESTs were identified which clustered into 52,823 unique transcripts (Unitrans and were stored in a database with a public web interface. Among the analyzed Unitrans, 73% could be annotated by homology to known genes in the UniProt (Plant database, particularly to those from Vitis, Ricinus, Populus and Arabidopsis. Comparative in silico analysis among the different treatments revealed differences in Gene Ontology term abundances. Defense- and stress-related gene transcripts were present in high abundance in leaves after herbivore egg laying, but transcripts involved in photosynthesis showed decreased abundance. Many pathogen-related genes and genes involved in phytohormone signaling were expressed, indicative of jasmonic acid biosynthesis and activation of jasmonic acid responsive genes. Cross-comparisons between different libraries based on expression profiles allowed the identification of genes with a potential relevance in egg-induced defenses, as well as other biological processes, including signal transduction

  13. An elm EST database for identifying leaf beetle egg-induced defense genes.

    Science.gov (United States)

    Büchel, Kerstin; McDowell, Eric; Nelson, Will; Descour, Anne; Gershenzon, Jonathan; Hilker, Monika; Soderlund, Carol; Gang, David R; Fenning, Trevor; Meiners, Torsten

    2012-06-15

    Plants can defend themselves against herbivorous insects prior to the onset of larval feeding by responding to the eggs laid on their leaves. In the European field elm (Ulmus minor), egg laying by the elm leaf beetle ( Xanthogaleruca luteola) activates the emission of volatiles that attract specialised egg parasitoids, which in turn kill the eggs. Little is known about the transcriptional changes that insect eggs trigger in plants and how such indirect defense mechanisms are orchestrated in the context of other biological processes. Here we present the first large scale study of egg-induced changes in the transcriptional profile of a tree. Five cDNA libraries were generated from leaves of (i) untreated control elms, and elms treated with (ii) egg laying and feeding by elm leaf beetles, (iii) feeding, (iv) artificial transfer of egg clutches, and (v) methyl jasmonate. A total of 361,196 ESTs expressed sequence tags (ESTs) were identified which clustered into 52,823 unique transcripts (Unitrans) and were stored in a database with a public web interface. Among the analyzed Unitrans, 73% could be annotated by homology to known genes in the UniProt (Plant) database, particularly to those from Vitis, Ricinus, Populus and Arabidopsis. Comparative in silico analysis among the different treatments revealed differences in Gene Ontology term abundances. Defense- and stress-related gene transcripts were present in high abundance in leaves after herbivore egg laying, but transcripts involved in photosynthesis showed decreased abundance. Many pathogen-related genes and genes involved in phytohormone signaling were expressed, indicative of jasmonic acid biosynthesis and activation of jasmonic acid responsive genes. Cross-comparisons between different libraries based on expression profiles allowed the identification of genes with a potential relevance in egg-induced defenses, as well as other biological processes, including signal transduction, transport and primary metabolism

  14. Automated Identification of Core Regulatory Genes in Human Gene Regulatory Networks.

    Directory of Open Access Journals (Sweden)

    Vipin Narang

    Full Text Available Human gene regulatory networks (GRN can be difficult to interpret due to a tangle of edges interconnecting thousands of genes. We constructed a general human GRN from extensive transcription factor and microRNA target data obtained from public databases. In a subnetwork of this GRN that is active during estrogen stimulation of MCF-7 breast cancer cells, we benchmarked automated algorithms for identifying core regulatory genes (transcription factors and microRNAs. Among these algorithms, we identified K-core decomposition, pagerank and betweenness centrality algorithms as the most effective for discovering core regulatory genes in the network evaluated based on previously known roles of these genes in MCF-7 biology as well as in their ability to explain the up or down expression status of up to 70% of the remaining genes. Finally, we validated the use of K-core algorithm for organizing the GRN in an easier to interpret layered hierarchy where more influential regulatory genes percolate towards the inner layers. The integrated human gene and miRNA network and software used in this study are provided as supplementary materials (S1 Data accompanying this manuscript.

  15. Suppression subtractive hybridization identified differentially expressed genes in lung adenocarcinoma: ERGIC3 as a novel lung cancer-related gene

    International Nuclear Information System (INIS)

    Wu, Mingsong; Tu, Tao; Huang, Yunchao; Cao, Yi

    2013-01-01

    To understand the carcinogenesis caused by accumulated genetic and epigenetic alterations and seek novel biomarkers for various cancers, studying differentially expressed genes between cancerous and normal tissues is crucial. In the study, two cDNA libraries of lung cancer were constructed and screened for identification of differentially expressed genes. Two cDNA libraries of differentially expressed genes were constructed using lung adenocarcinoma tissue and adjacent nonmalignant lung tissue by suppression subtractive hybridization. The data of the cDNA libraries were then analyzed and compared using bioinformatics analysis. Levels of mRNA and protein were measured by quantitative real-time polymerase chain reaction (q-RT-PCR) and western blot respectively, as well as expression and localization of proteins were determined by immunostaining. Gene functions were investigated using proliferation and migration assays after gene silencing and gene over-expression. Two libraries of differentially expressed genes were obtained. The forward-subtracted library (FSL) and the reverse-subtracted library (RSL) contained 177 and 59 genes, respectively. Bioinformatic analysis demonstrated that these genes were involved in a wide range of cellular functions. The vast majority of these genes were newly identified to be abnormally expressed in lung cancer. In the first stage of the screening for 16 genes, we compared lung cancer tissues with their adjacent non-malignant tissues at the mRNA level, and found six genes (ERGIC3, DDR1, HSP90B1, SDC1, RPSA, and LPCAT1) from the FSL were significantly up-regulated while two genes (GPX3 and TIMP3) from the RSL were significantly down-regulated (P < 0.05). The ERGIC3 protein was also over-expressed in lung cancer tissues and cultured cells, and expression of ERGIC3 was correlated with the differentiated degree and histological type of lung cancer. The up-regulation of ERGIC3 could promote cellular migration and proliferation in vitro. The

  16. Association Analysis Suggests SOD2 as a Newly Identified Candidate Gene Associated With Leprosy Susceptibility.

    Science.gov (United States)

    Ramos, Geovana Brotto; Salomão, Heloisa; Francio, Angela Schneider; Fava, Vinícius Medeiros; Werneck, Renata Iani; Mira, Marcelo Távora

    2016-08-01

    Genetic studies have identified several genes and genomic regions contributing to the control of host susceptibility to leprosy. Here, we test variants of the positional and functional candidate gene SOD2 for association with leprosy in 2 independent population samples. Family-based analysis revealed an association between leprosy and allele G of marker rs295340 (P = .042) and borderline evidence of an association between leprosy and alleles C and A of markers rs4880 (P = .077) and rs5746136 (P = .071), respectively. Findings were validated in an independent case-control sample for markers rs295340 (P = .049) and rs4880 (P = .038). These results suggest SOD2 as a newly identified gene conferring susceptibility to leprosy. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  17. Transcriptomic meta-analysis identifies gene expression characteristics in various samples of HIV-infected patients with nonprogressive disease.

    Science.gov (United States)

    Zhang, Le-Le; Zhang, Zi-Ning; Wu, Xian; Jiang, Yong-Jun; Fu, Ya-Jing; Shang, Hong

    2017-09-12

    A small proportion of HIV-infected patients remain clinically and/or immunologically stable for years, including elite controllers (ECs) who have undetectable viremia (10 years). However, the mechanism of nonprogression needs to be further resolved. In this study, a transcriptome meta-analysis was performed on nonprogressor and progressor microarray data to identify differential transcriptome pathways and potential biomarkers. Using the INMEX (integrative meta-analysis of expression data) program, we performed the meta-analysis to identify consistently differentially expressed genes (DEGs) in nonprogressors and further performed functional interpretation (gene ontology analysis and pathway analysis) of the DEGs identified in the meta-analysis. Five microarray datasets (81 cases and 98 controls in total), including whole blood, CD4 + and CD8 + T cells, were collected for meta-analysis. We determined that nonprogressors have reduced expression of important interferon-stimulated genes (ISGs), CD38, lymphocyte activation gene 3 (LAG-3) in whole blood, CD4 + and CD8 + T cells. Gene ontology (GO) analysis showed a significant enrichment in DEGs that function in the type I interferon signaling pathway. Upregulated pathways, including the PI3K-Akt signaling pathway in whole blood, cytokine-cytokine receptor interaction in CD4 + T cells and the MAPK signaling pathway in CD8 + T cells, were identified in nonprogressors compared with progressors. In each metabolic functional category, the number of downregulated DEGs was more than the upregulated DEGs, and almost all genes were downregulated DEGs in the oxidative phosphorylation (OXPHOS) and tricarboxylic acid (TCA) cycle in the three types of samples. Our transcriptomic meta-analysis provides a comprehensive evaluation of the gene expression profiles in major blood types of nonprogressors, providing new insights in the understanding of HIV pathogenesis and developing strategies to delay HIV disease progression.

  18. Global Gene-Expression Analysis to Identify Differentially Expressed Genes Critical for the Heat Stress Response in Brassica rapa.

    Directory of Open Access Journals (Sweden)

    Xiangshu Dong

    Full Text Available Genome-wide dissection of the heat stress response (HSR is necessary to overcome problems in crop production caused by global warming. To identify HSR genes, we profiled gene expression in two Chinese cabbage inbred lines with different thermotolerances, Chiifu and Kenshin. Many genes exhibited >2-fold changes in expression upon exposure to 0.5- 4 h at 45°C (high temperature, HT: 5.2% (2,142 genes in Chiifu and 3.7% (1,535 genes in Kenshin. The most enriched GO (Gene Ontology items included 'response to heat', 'response to reactive oxygen species (ROS', 'response to temperature stimulus', 'response to abiotic stimulus', and 'MAPKKK cascade'. In both lines, the genes most highly induced by HT encoded small heat shock proteins (Hsps and heat shock factor (Hsf-like proteins such as HsfB2A (Bra029292, whereas high-molecular weight Hsps were constitutively expressed. Other upstream HSR components were also up-regulated: ROS-scavenging genes like glutathione peroxidase 2 (BrGPX2, Bra022853, protein kinases, and phosphatases. Among heat stress (HS marker genes in Arabidopsis, only exportin 1A (XPO1A (Bra008580, Bra006382 can be applied to B. rapa for basal thermotolerance (BT and short-term acquired thermotolerance (SAT gene. CYP707A3 (Bra025083, Bra021965, which is involved in the dehydration response in Arabidopsis, was associated with membrane leakage in both lines following HS. Although many transcription factors (TF genes, including DREB2A (Bra005852, were involved in HS tolerance in both lines, Bra024224 (MYB41 and Bra021735 (a bZIP/AIR1 [Anthocyanin-Impaired-Response-1] were specific to Kenshin. Several candidate TFs involved in thermotolerance were confirmed as HSR genes by real-time PCR, and these assignments were further supported by promoter analysis. Although some of our findings are similar to those obtained using other plant species, clear differences in Brassica rapa reveal a distinct HSR in this species. Our data could also provide a

  19. A Genome-Wide Screen for Dendritically Localized RNAs Identifies Genes Required for Dendrite Morphogenesis

    Directory of Open Access Journals (Sweden)

    Mala Misra

    2016-08-01

    Full Text Available Localizing messenger RNAs at specific subcellular sites is a conserved mechanism for targeting the synthesis of cytoplasmic proteins to distinct subcellular domains, thereby generating the asymmetric protein distributions necessary for cellular and developmental polarity. However, the full range of transcripts that are asymmetrically distributed in specialized cell types, and the significance of their localization, especially in the nervous system, are not known. We used the EP-MS2 method, which combines EP transposon insertion with the MS2/MCP in vivo fluorescent labeling system, to screen for novel localized transcripts in polarized cells, focusing on the highly branched Drosophila class IV dendritic arborization neurons. Of a total of 541 lines screened, we identified 55 EP-MS2 insertions producing transcripts that were enriched in neuronal processes, particularly in dendrites. The 47 genes identified by these insertions encode molecularly diverse proteins, and are enriched for genes that function in neuronal development and physiology. RNAi-mediated knockdown confirmed roles for many of the candidate genes in dendrite morphogenesis. We propose that the transport of mRNAs encoded by these genes into the dendrites allows their expression to be regulated on a local scale during the dynamic developmental processes of dendrite outgrowth, branching, and/or remodeling.

  20. MicroRNA expression profiling to identify and validate reference genes for relative quantification in colorectal cancer.

    LENUS (Irish Health Repository)

    Chang, Kah Hoong

    2010-01-01

    BACKGROUND: Advances in high-throughput technologies and bioinformatics have transformed gene expression profiling methodologies. The results of microarray experiments are often validated using reverse transcription quantitative PCR (RT-qPCR), which is the most sensitive and reproducible method to quantify gene expression. Appropriate normalisation of RT-qPCR data using stably expressed reference genes is critical to ensure accurate and reliable results. Mi(cro)RNA expression profiles have been shown to be more accurate in disease classification than mRNA expression profiles. However, few reports detailed a robust identification and validation strategy for suitable reference genes for normalisation in miRNA RT-qPCR studies. METHODS: We adopt and report a systematic approach to identify the most stable reference genes for miRNA expression studies by RT-qPCR in colorectal cancer (CRC). High-throughput miRNA profiling was performed on ten pairs of CRC and normal tissues. By using the mean expression value of all expressed miRNAs, we identified the most stable candidate reference genes for subsequent validation. As such the stability of a panel of miRNAs was examined on 35 tumour and 39 normal tissues. The effects of normalisers on the relative quantity of established oncogenic (miR-21 and miR-31) and tumour suppressor (miR-143 and miR-145) target miRNAs were assessed. RESULTS: In the array experiment, miR-26a, miR-345, miR-425 and miR-454 were identified as having expression profiles closest to the global mean. From a panel of six miRNAs (let-7a, miR-16, miR-26a, miR-345, miR-425 and miR-454) and two small nucleolar RNA genes (RNU48 and Z30), miR-16 and miR-345 were identified as the most stably expressed reference genes. The combined use of miR-16 and miR-345 to normalise expression data enabled detection of a significant dysregulation of all four target miRNAs between tumour and normal colorectal tissue. CONCLUSIONS: Our study demonstrates that the top six most

  1. MicroRNA expression profiling to identify and validate reference genes for relative quantification in colorectal cancer

    LENUS (Irish Health Repository)

    Chang, Kah Hoong

    2010-04-29

    Abstract Background Advances in high-throughput technologies and bioinformatics have transformed gene expression profiling methodologies. The results of microarray experiments are often validated using reverse transcription quantitative PCR (RT-qPCR), which is the most sensitive and reproducible method to quantify gene expression. Appropriate normalisation of RT-qPCR data using stably expressed reference genes is critical to ensure accurate and reliable results. Mi(cro)RNA expression profiles have been shown to be more accurate in disease classification than mRNA expression profiles. However, few reports detailed a robust identification and validation strategy for suitable reference genes for normalisation in miRNA RT-qPCR studies. Methods We adopt and report a systematic approach to identify the most stable reference genes for miRNA expression studies by RT-qPCR in colorectal cancer (CRC). High-throughput miRNA profiling was performed on ten pairs of CRC and normal tissues. By using the mean expression value of all expressed miRNAs, we identified the most stable candidate reference genes for subsequent validation. As such the stability of a panel of miRNAs was examined on 35 tumour and 39 normal tissues. The effects of normalisers on the relative quantity of established oncogenic (miR-21 and miR-31) and tumour suppressor (miR-143 and miR-145) target miRNAs were assessed. Results In the array experiment, miR-26a, miR-345, miR-425 and miR-454 were identified as having expression profiles closest to the global mean. From a panel of six miRNAs (let-7a, miR-16, miR-26a, miR-345, miR-425 and miR-454) and two small nucleolar RNA genes (RNU48 and Z30), miR-16 and miR-345 were identified as the most stably expressed reference genes. The combined use of miR-16 and miR-345 to normalise expression data enabled detection of a significant dysregulation of all four target miRNAs between tumour and normal colorectal tissue. Conclusions Our study demonstrates that the top six most

  2. Expressed sequences tags of the anther smut fungus, Microbotryum violaceum, identify mating and pathogenicity genes

    Directory of Open Access Journals (Sweden)

    Devier Benjamin

    2007-08-01

    Full Text Available Abstract Background The basidiomycete fungus Microbotryum violaceum is responsible for the anther-smut disease in many plants of the Caryophyllaceae family and is a model in genetics and evolutionary biology. Infection is initiated by dikaryotic hyphae produced after the conjugation of two haploid sporidia of opposite mating type. This study describes M. violaceum ESTs corresponding to nuclear genes expressed during conjugation and early hyphal production. Results A normalized cDNA library generated 24,128 sequences, which were assembled into 7,765 unique genes; 25.2% of them displayed significant similarity to annotated proteins from other organisms, 74.3% a weak similarity to the same set of known proteins, and 0.5% were orphans. We identified putative pheromone receptors and genes that in other fungi are involved in the mating process. We also identified many sequences similar to genes known to be involved in pathogenicity in other fungi. The M. violaceum EST database, MICROBASE, is available on the Web and provides access to the sequences, assembled contigs, annotations and programs to compare similarities against MICROBASE. Conclusion This study provides a basis for cloning the mating type locus, for further investigation of pathogenicity genes in the anther smut fungi, and for comparative genomics.

  3. Evolutionary inference across eukaryotes identifies specific pressures favoring mitochondrial gene retention

    OpenAIRE

    Williams, Ben; Johnston, Iain

    2016-01-01

    Since their endosymbiotic origin, mitochondria have lost most of their genes. Although many selective mechanisms underlying the evolution of mitochondrial genomes have been proposed, a data-driven exploration of these hypotheses is lacking, and a quantitatively supported consensus remains absent. We developed HyperTraPS, a methodology coupling stochastic modelling with Bayesian inference, to identify the ordering of evolutionary events and suggest their causes. Using 2015 complete mitochondri...

  4. Deletion and Gene Expression Analyses Define the Paxilline Biosynthetic Gene Cluster in Penicillium paxilli

    Directory of Open Access Journals (Sweden)

    Emily J. Parker

    2013-08-01

    Full Text Available The indole-diterpene paxilline is an abundant secondary metabolite synthesized by Penicillium paxilli. In total, 21 genes have been identified at the PAX locus of which six have been previously confirmed to have a functional role in paxilline biosynthesis. A combination of bioinformatics, gene expression and targeted gene replacement analyses were used to define the boundaries of the PAX gene cluster. Targeted gene replacement identified seven genes, paxG, paxA, paxM, paxB, paxC, paxP and paxQ that were all required for paxilline production, with one additional gene, paxD, required for regular prenylation of the indole ring post paxilline synthesis. The two putative transcription factors, PP104 and PP105, were not co-regulated with the pax genes and based on targeted gene replacement, including the double knockout, did not have a role in paxilline production. The relationship of indole dimethylallyl transferases involved in prenylation of indole-diterpenes such as paxilline or lolitrem B, can be found as two disparate clades, not supported by prenylation type (e.g., regular or reverse. This paper provides insight into the P. paxilli indole-diterpene locus and reviews the recent advances identified in paxilline biosynthesis.

  5. Genes essential for phototrophic growth by a purple alphaproteobacterium: Genes for phototrophic growth

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jianming [Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao Shandong Province People' s Republic of China; Department of Microbiology, University of Washington, Seattle WA USA; Yin, Liang [Department of Microbiology, University of Washington, Seattle WA USA; Lessner, Faith H. [Department of Biological Sciences, University of Arkansas, Fayetteville AR USA; Nakayasu, Ernesto S. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Payne, Samuel H. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Fixen, Kathryn R. [Department of Microbiology, University of Washington, Seattle WA USA; Gallagher, Larry [Department of Genome Sciences, University of Washington, Seattle WA USA; Harwood, Caroline S. [Department of Microbiology, University of Washington, Seattle WA USA

    2017-07-24

    Anoxygenic purple phototrophic bacteria have served as important models for studies of photophosphorylation. The pigment-protein complexes responsible for converting light energy to ATP are relatively simple and these bacteria can grow heterotrophically under aerobic conditions, thus allowing for the study of mutants defective in photophosphorylation. In the past, genes responsible for anoxygenic phototrophic growth have been identified in a number of different bacterial species. Here we systematically studied the genetic basis for this metabolism by using Tn-seq to identify genes essential for the anaerobic growth of the purple bacterium Rhodopseudomonas palustris on acetate in light. We identified 171 genes required for growth in this condition, 35 of which are annotated as photosynthesis genes. Among these are a few new genes not previously shown to be essential for phototrophic growth. We verified the essentiality of many of the genes we identified by analyzing the phenotypes of mutants we generated by Tn mutagenesis that had altered pigmentation. We used directed mutagenesis to verify that the R. palustris NADH:quinone oxidoreductase complex IE is essential for phototrophic growth. As a complement to the genetic data, we carried out proteomics experiments in which we found that 429 proteins were present in significantly higher amounts in cells grown anaerobically in light compared to aerobically. Among these were proteins encoded by subset of the phototrophic growth-essential genes.

  6. Novel statistical framework to identify differentially expressed genes allowing transcriptomic background differences.

    Science.gov (United States)

    Ling, Zhi-Qiang; Wang, Yi; Mukaisho, Kenichi; Hattori, Takanori; Tatsuta, Takeshi; Ge, Ming-Hua; Jin, Li; Mao, Wei-Min; Sugihara, Hiroyuki

    2010-06-01

    Tests of differentially expressed genes (DEGs) from microarray experiments are based on the null hypothesis that genes that are irrelevant to the phenotype/stimulus are expressed equally in the target and control samples. However, this strict hypothesis is not always true, as there can be several transcriptomic background differences between target and control samples, including different cell/tissue types, different cell cycle stages and different biological donors. These differences lead to increased false positives, which have little biological/medical significance. In this article, we propose a statistical framework to identify DEGs between target and control samples from expression microarray data allowing transcriptomic background differences between these samples by introducing a modified null hypothesis that the gene expression background difference is normally distributed. We use an iterative procedure to perform robust estimation of the null hypothesis and identify DEGs as outliers. We evaluated our method using our own triplicate microarray experiment, followed by validations with reverse transcription-polymerase chain reaction (RT-PCR) and on the MicroArray Quality Control dataset. The evaluations suggest that our technique (i) results in less false positive and false negative results, as measured by the degree of agreement with RT-PCR of the same samples, (ii) can be applied to different microarray platforms and results in better reproducibility as measured by the degree of DEG identification concordance both intra- and inter-platforms and (iii) can be applied efficiently with only a few microarray replicates. Based on these evaluations, we propose that this method not only identifies more reliable and biologically/medically significant DEG, but also reduces the power-cost tradeoff problem in the microarray field. Source code and binaries freely available for download at http://comonca.org.cn/fdca/resources/softwares/deg.zip.

  7. Genome-wide Analyses Identify KIF5A as a Novel ALS Gene.

    Science.gov (United States)

    Nicolas, Aude; Kenna, Kevin P; Renton, Alan E; Ticozzi, Nicola; Faghri, Faraz; Chia, Ruth; Dominov, Janice A; Kenna, Brendan J; Nalls, Mike A; Keagle, Pamela; Rivera, Alberto M; van Rheenen, Wouter; Murphy, Natalie A; van Vugt, Joke J F A; Geiger, Joshua T; Van der Spek, Rick A; Pliner, Hannah A; Shankaracharya; Smith, Bradley N; Marangi, Giuseppe; Topp, Simon D; Abramzon, Yevgeniya; Gkazi, Athina Soragia; Eicher, John D; Kenna, Aoife; Mora, Gabriele; Calvo, Andrea; Mazzini, Letizia; Riva, Nilo; Mandrioli, Jessica; Caponnetto, Claudia; Battistini, Stefania; Volanti, Paolo; La Bella, Vincenzo; Conforti, Francesca L; Borghero, Giuseppe; Messina, Sonia; Simone, Isabella L; Trojsi, Francesca; Salvi, Fabrizio; Logullo, Francesco O; D'Alfonso, Sandra; Corrado, Lucia; Capasso, Margherita; Ferrucci, Luigi; Moreno, Cristiane de Araujo Martins; Kamalakaran, Sitharthan; Goldstein, David B; Gitler, Aaron D; Harris, Tim; Myers, Richard M; Phatnani, Hemali; Musunuri, Rajeeva Lochan; Evani, Uday Shankar; Abhyankar, Avinash; Zody, Michael C; Kaye, Julia; Finkbeiner, Steven; Wyman, Stacia K; LeNail, Alex; Lima, Leandro; Fraenkel, Ernest; Svendsen, Clive N; Thompson, Leslie M; Van Eyk, Jennifer E; Berry, James D; Miller, Timothy M; Kolb, Stephen J; Cudkowicz, Merit; Baxi, Emily; Benatar, Michael; Taylor, J Paul; Rampersaud, Evadnie; Wu, Gang; Wuu, Joanne; Lauria, Giuseppe; Verde, Federico; Fogh, Isabella; Tiloca, Cinzia; Comi, Giacomo P; Sorarù, Gianni; Cereda, Cristina; Corcia, Philippe; Laaksovirta, Hannu; Myllykangas, Liisa; Jansson, Lilja; Valori, Miko; Ealing, John; Hamdalla, Hisham; Rollinson, Sara; Pickering-Brown, Stuart; Orrell, Richard W; Sidle, Katie C; Malaspina, Andrea; Hardy, John; Singleton, Andrew B; Johnson, Janel O; Arepalli, Sampath; Sapp, Peter C; McKenna-Yasek, Diane; Polak, Meraida; Asress, Seneshaw; Al-Sarraj, Safa; King, Andrew; Troakes, Claire; Vance, Caroline; de Belleroche, Jacqueline; Baas, Frank; Ten Asbroek, Anneloor L M A; Muñoz-Blanco, José Luis; Hernandez, Dena G; Ding, Jinhui; Gibbs, J Raphael; Scholz, Sonja W; Floeter, Mary Kay; Campbell, Roy H; Landi, Francesco; Bowser, Robert; Pulst, Stefan M; Ravits, John M; MacGowan, Daniel J L; Kirby, Janine; Pioro, Erik P; Pamphlett, Roger; Broach, James; Gerhard, Glenn; Dunckley, Travis L; Brady, Christopher B; Kowall, Neil W; Troncoso, Juan C; Le Ber, Isabelle; Mouzat, Kevin; Lumbroso, Serge; Heiman-Patterson, Terry D; Kamel, Freya; Van Den Bosch, Ludo; Baloh, Robert H; Strom, Tim M; Meitinger, Thomas; Shatunov, Aleksey; Van Eijk, Kristel R; de Carvalho, Mamede; Kooyman, Maarten; Middelkoop, Bas; Moisse, Matthieu; McLaughlin, Russell L; Van Es, Michael A; Weber, Markus; Boylan, Kevin B; Van Blitterswijk, Marka; Rademakers, Rosa; Morrison, Karen E; Basak, A Nazli; Mora, Jesús S; Drory, Vivian E; Shaw, Pamela J; Turner, Martin R; Talbot, Kevin; Hardiman, Orla; Williams, Kelly L; Fifita, Jennifer A; Nicholson, Garth A; Blair, Ian P; Rouleau, Guy A; Esteban-Pérez, Jesús; García-Redondo, Alberto; Al-Chalabi, Ammar; Rogaeva, Ekaterina; Zinman, Lorne; Ostrow, Lyle W; Maragakis, Nicholas J; Rothstein, Jeffrey D; Simmons, Zachary; Cooper-Knock, Johnathan; Brice, Alexis; Goutman, Stephen A; Feldman, Eva L; Gibson, Summer B; Taroni, Franco; Ratti, Antonia; Gellera, Cinzia; Van Damme, Philip; Robberecht, Wim; Fratta, Pietro; Sabatelli, Mario; Lunetta, Christian; Ludolph, Albert C; Andersen, Peter M; Weishaupt, Jochen H; Camu, William; Trojanowski, John Q; Van Deerlin, Vivianna M; Brown, Robert H; van den Berg, Leonard H; Veldink, Jan H; Harms, Matthew B; Glass, Jonathan D; Stone, David J; Tienari, Pentti; Silani, Vincenzo; Chiò, Adriano; Shaw, Christopher E; Traynor, Bryan J; Landers, John E

    2018-03-21

    To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Yeast functional screen to identify genes conferring salt stress tolerance in Salicornia europaea.

    Science.gov (United States)

    Nakahara, Yoshiki; Sawabe, Shogo; Kainuma, Kenta; Katsuhara, Maki; Shibasaka, Mineo; Suzuki, Masanori; Yamamoto, Kosuke; Oguri, Suguru; Sakamoto, Hikaru

    2015-01-01

    Salinity is a critical environmental factor that adversely affects crop productivity. Halophytes have evolved various mechanisms to adapt to saline environments. Salicornia europaea L. is one of the most salt-tolerant plant species. It does not have special salt-secreting structures like a salt gland or salt bladder, and is therefore a good model for studying the common mechanisms underlying plant salt tolerance. To identify candidate genes encoding key proteins in the mediation of salt tolerance in S. europaea, we performed a functional screen of a cDNA library in yeast. The library was screened for genes that allowed the yeast to grow in the presence of 1.3 M NaCl. We obtained three full-length S. europaea genes that confer salt tolerance. The genes are predicted to encode (1) a novel protein highly homologous to thaumatin-like proteins, (2) a novel coiled-coil protein of unknown function, and (3) a novel short peptide of 32 residues. Exogenous application of a synthetic peptide corresponding to the 32 residues improved salt tolerance of Arabidopsis. The approach described in this report provides a rapid assay system for large-scale screening of S. europaea genes involved in salt stress tolerance and supports the identification of genes responsible for such mechanisms. These genes may be useful candidates for improving crop salt tolerance by genetic transformation.

  9. Yeast functional screen to identify genes conferring salt stress tolerance in Salicornia europaea

    Directory of Open Access Journals (Sweden)

    Yoshiki eNakahara

    2015-10-01

    Full Text Available Salinity is a critical environmental factor that adversely affects crop productivity. Halophytes have evolved various mechanisms to adapt to saline environments. Salicornia europaea L. is one of the most salt-tolerant plant species. It does not have special salt-secreting structures like a salt gland or salt bladder, and is therefore a good model for studying the common mechanisms underlying plant salt tolerance. To identify candidate genes encoding key proteins in the mediation of salt tolerance in S. europaea, we performed a functional screen of a cDNA library in yeast. The library was screened for genes that allowed the yeast to grow in the presence of 1.3 M NaCl. We obtained three full-length S. europaea genes that confer salt tolerance. The genes are predicted to encode (1 a novel protein highly homologous to thaumatin-like proteins, (2 a novel coiled-coil protein of unknown function, and (3 a novel short peptide of 32 residues. Exogenous application of a synthetic peptide corresponding to the 32 residues improved salt tolerance of Arabidopsis. The approach described in this report provides a rapid assay system for large-scale screening of S. europaea genes involved in salt stress tolerance and supports the identification of genes responsible for such mechanisms. These genes may be useful candidates for improving crop salt tolerance by genetic transformation.

  10. Identifying knowledge gaps for gene drive research to control invasive animal species: The next CRISPR step

    Directory of Open Access Journals (Sweden)

    Dorian Moro

    2018-01-01

    Full Text Available Invasive animals have been linked to the extinctions of native wildlife, and to significant agricultural financial losses or impacts. Current approaches to control invasive species require ongoing resources and management over large geographic scales, and often result in the short-term suppression of populations. New and innovative approaches are warranted. Recently, the RNA guided gene drive system based on CRISPR/Cas9 is being proposed as a potential gene editing tool that could be used by wildlife managers as a non-lethal addition or alternative to help reduce pest animal populations. While regulatory control and social acceptance are crucial issues that must be addressed, there is an opportunity now to identify the knowledge and research gaps that exist for some important invasive species. Here we systematically determine the knowledge gaps for pest species for which gene drives could potentially be applied. We apply a conceptual ecological risk framework within the gene drive context within an Australian environment to identify key requirements for undertaking work on seven exemplar invasive species in Australia. This framework allows an evaluation of the potential research on an invasive species of interest and within a gene drive and risk context. We consider the currently available biological, genetic and ecological information for the house mouse, European red fox, feral cat, European rabbit, cane toad, black rat and European starling to evaluate knowledge gaps and identify candidate species for future research. We discuss these findings in the context of future thematic areas of research worth pursuing in preparation for a more formal assessment of the use of gene drives as a novel strategy for the control of these and other invasive species. Keywords: Invasive species, Gene drive, CRISPR, Pest management, Islands

  11. ZCURVE 3.0: identify prokaryotic genes with higher accuracy as well as automatically and accurately select essential genes

    Science.gov (United States)

    Hua, Zhi-Gang; Lin, Yan; Yuan, Ya-Zhou; Yang, De-Chang; Wei, Wen; Guo, Feng-Biao

    2015-01-01

    In 2003, we developed an ab initio program, ZCURVE 1.0, to find genes in bacterial and archaeal genomes. In this work, we present the updated version (i.e. ZCURVE 3.0). Using 422 prokaryotic genomes, the average accuracy was 93.7% with the updated version, compared with 88.7% with the original version. Such results also demonstrate that ZCURVE 3.0 is comparable with Glimmer 3.02 and may provide complementary predictions to it. In fact, the joint application of the two programs generated better results by correctly finding more annotated genes while also containing fewer false-positive predictions. As the exclusive function, ZCURVE 3.0 contains one post-processing program that can identify essential genes with high accuracy (generally >90%). We hope ZCURVE 3.0 will receive wide use with the web-based running mode. The updated ZCURVE can be freely accessed from http://cefg.uestc.edu.cn/zcurve/ or http://tubic.tju.edu.cn/zcurveb/ without any restrictions. PMID:25977299

  12. Identifying Tmem59 related gene regulatory network of mouse neural stem cell from a compendium of expression profiles

    Directory of Open Access Journals (Sweden)

    Guo Xiuyun

    2011-09-01

    Full Text Available Abstract Background Neural stem cells offer potential treatment for neurodegenerative disorders, such like Alzheimer's disease (AD. While much progress has been made in understanding neural stem cell function, a precise description of the molecular mechanisms regulating neural stem cells is not yet established. This lack of knowledge is a major barrier holding back the discovery of therapeutic uses of neural stem cells. In this paper, the regulatory mechanism of mouse neural stem cell (NSC differentiation by tmem59 is explored on the genome-level. Results We identified regulators of tmem59 during the differentiation of mouse NSCs from a compendium of expression profiles. Based on the microarray experiment, we developed the parallelized SWNI algorithm to reconstruct gene regulatory networks of mouse neural stem cells. From the inferred tmem59 related gene network including 36 genes, pou6f1 was identified to regulate tmem59 significantly and might play an important role in the differentiation of NSCs in mouse brain. There are four pathways shown in the gene network, indicating that tmem59 locates in the downstream of the signalling pathway. The real-time RT-PCR results shown that the over-expression of pou6f1 could significantly up-regulate tmem59 expression in C17.2 NSC line. 16 out of 36 predicted genes in our constructed network have been reported to be AD-related, including Ace, aqp1, arrdc3, cd14, cd59a, cds1, cldn1, cox8b, defb11, folr1, gdi2, mmp3, mgp, myrip, Ripk4, rnd3, and sncg. The localization of tmem59 related genes and functional-related gene groups based on the Gene Ontology (GO annotation was also identified. Conclusions Our findings suggest that the expression of tmem59 is an important factor contributing to AD. The parallelized SWNI algorithm increased the efficiency of network reconstruction significantly. This study enables us to highlight novel genes that may be involved in NSC differentiation and provides a shortcut to

  13. Gene interactions in the DNA damage-response pathway identified by genome-wide RNA-interference analysis of synthetic lethality

    NARCIS (Netherlands)

    van Haaften, Gijs; Vastenhouw, Nadine L; Nollen, Ellen A A; Plasterk, Ronald H A; Tijsterman, Marcel

    2004-01-01

    Here, we describe a systematic search for synthetic gene interactions in a multicellular organism, the nematode Caenorhabditis elegans. We established a high-throughput method to determine synthetic gene interactions by genome-wide RNA interference and identified genes that are required to protect

  14. Methods for simultaneously identifying coherent local clusters with smooth global patterns in gene expression profiles

    Directory of Open Access Journals (Sweden)

    Lee Yun-Shien

    2008-03-01

    Full Text Available Abstract Background The hierarchical clustering tree (HCT with a dendrogram 1 and the singular value decomposition (SVD with a dimension-reduced representative map 2 are popular methods for two-way sorting the gene-by-array matrix map employed in gene expression profiling. While HCT dendrograms tend to optimize local coherent clustering patterns, SVD leading eigenvectors usually identify better global grouping and transitional structures. Results This study proposes a flipping mechanism for a conventional agglomerative HCT using a rank-two ellipse (R2E, an improved SVD algorithm for sorting purpose seriation by Chen 3 as an external reference. While HCTs always produce permutations with good local behaviour, the rank-two ellipse seriation gives the best global grouping patterns and smooth transitional trends. The resulting algorithm automatically integrates the desirable properties of each method so that users have access to a clustering and visualization environment for gene expression profiles that preserves coherent local clusters and identifies global grouping trends. Conclusion We demonstrate, through four examples, that the proposed method not only possesses better numerical and statistical properties, it also provides more meaningful biomedical insights than other sorting algorithms. We suggest that sorted proximity matrices for genes and arrays, in addition to the gene-by-array expression matrix, can greatly aid in the search for comprehensive understanding of gene expression structures. Software for the proposed methods can be obtained at http://gap.stat.sinica.edu.tw/Software/GAP.

  15. Phylogenomic analysis of UDP glycosyltransferase 1 multigene family in Linum usitatissimum identified genes with varied expression patterns

    Science.gov (United States)

    2012-01-01

    Background The glycosylation process, catalyzed by ubiquitous glycosyltransferase (GT) family enzymes, is a prevalent modification of plant secondary metabolites that regulates various functions such as hormone homeostasis, detoxification of xenobiotics and biosynthesis and storage of secondary metabolites. Flax (Linum usitatissimum L.) is a commercially grown oilseed crop, important because of its essential fatty acids and health promoting lignans. Identification and characterization of UDP glycosyltransferase (UGT) genes from flax could provide valuable basic information about this important gene family and help to explain the seed specific glycosylated metabolite accumulation and other processes in plants. Plant genome sequencing projects are useful to discover complexity within this gene family and also pave way for the development of functional genomics approaches. Results Taking advantage of the newly assembled draft genome sequence of flax, we identified 137 UDP glycosyltransferase (UGT) genes from flax using a conserved signature motif. Phylogenetic analysis of these protein sequences clustered them into 14 major groups (A-N). Expression patterns of these genes were investigated using publicly available expressed sequence tag (EST), microarray data and reverse transcription quantitative real time PCR (RT-qPCR). Seventy-three per cent of these genes (100 out of 137) showed expression evidence in 15 tissues examined and indicated varied expression profiles. The RT-qPCR results of 10 selected genes were also coherent with the digital expression analysis. Interestingly, five duplicated UGT genes were identified, which showed differential expression in various tissues. Of the seven intron loss/gain positions detected, two intron positions were conserved among most of the UGTs, although a clear relationship about the evolution of these genes could not be established. Comparison of the flax UGTs with orthologs from four other sequenced dicot genomes indicated that

  16. Phylogenomic analysis of UDP glycosyltransferase 1 multigene family in Linum usitatissimum identified genes with varied expression patterns

    Directory of Open Access Journals (Sweden)

    Barvkar Vitthal T

    2012-05-01

    Full Text Available Abstract Background The glycosylation process, catalyzed by ubiquitous glycosyltransferase (GT family enzymes, is a prevalent modification of plant secondary metabolites that regulates various functions such as hormone homeostasis, detoxification of xenobiotics and biosynthesis and storage of secondary metabolites. Flax (Linum usitatissimum L. is a commercially grown oilseed crop, important because of its essential fatty acids and health promoting lignans. Identification and characterization of UDP glycosyltransferase (UGT genes from flax could provide valuable basic information about this important gene family and help to explain the seed specific glycosylated metabolite accumulation and other processes in plants. Plant genome sequencing projects are useful to discover complexity within this gene family and also pave way for the development of functional genomics approaches. Results Taking advantage of the newly assembled draft genome sequence of flax, we identified 137 UDP glycosyltransferase (UGT genes from flax using a conserved signature motif. Phylogenetic analysis of these protein sequences clustered them into 14 major groups (A-N. Expression patterns of these genes were investigated using publicly available expressed sequence tag (EST, microarray data and reverse transcription quantitative real time PCR (RT-qPCR. Seventy-three per cent of these genes (100 out of 137 showed expression evidence in 15 tissues examined and indicated varied expression profiles. The RT-qPCR results of 10 selected genes were also coherent with the digital expression analysis. Interestingly, five duplicated UGT genes were identified, which showed differential expression in various tissues. Of the seven intron loss/gain positions detected, two intron positions were conserved among most of the UGTs, although a clear relationship about the evolution of these genes could not be established. Comparison of the flax UGTs with orthologs from four other sequenced dicot

  17. An Evolutionary Genomic Approach to Identify Genes Involved in Human Birth Timing

    Science.gov (United States)

    Orabona, Guilherme; Morgan, Thomas; Haataja, Ritva; Hallman, Mikko; Puttonen, Hilkka; Menon, Ramkumar; Kuczynski, Edward; Norwitz, Errol; Snegovskikh, Victoria; Palotie, Aarno; Fellman, Vineta; DeFranco, Emily A.; Chaudhari, Bimal P.; McGregor, Tracy L.; McElroy, Jude J.; Oetjens, Matthew T.; Teramo, Kari; Borecki, Ingrid; Fay, Justin; Muglia, Louis

    2011-01-01

    Coordination of fetal maturation with birth timing is essential for mammalian reproduction. In humans, preterm birth is a disorder of profound global health significance. The signals initiating parturition in humans have remained elusive, due to divergence in physiological mechanisms between humans and model organisms typically studied. Because of relatively large human head size and narrow birth canal cross-sectional area compared to other primates, we hypothesized that genes involved in parturition would display accelerated evolution along the human and/or higher primate phylogenetic lineages to decrease the length of gestation and promote delivery of a smaller fetus that transits the birth canal more readily. Further, we tested whether current variation in such accelerated genes contributes to preterm birth risk. Evidence from allometric scaling of gestational age suggests human gestation has been shortened relative to other primates. Consistent with our hypothesis, many genes involved in reproduction show human acceleration in their coding or adjacent noncoding regions. We screened >8,400 SNPs in 150 human accelerated genes in 165 Finnish preterm and 163 control mothers for association with preterm birth. In this cohort, the most significant association was in FSHR, and 8 of the 10 most significant SNPs were in this gene. Further evidence for association of a linkage disequilibrium block of SNPs in FSHR, rs11686474, rs11680730, rs12473870, and rs1247381 was found in African Americans. By considering human acceleration, we identified a novel gene that may be associated with preterm birth, FSHR. We anticipate other human accelerated genes will similarly be associated with preterm birth risk and elucidate essential pathways for human parturition. PMID:21533219

  18. A CRISPR-Based Screen Identifies Genes Essential for West-Nile-Virus-Induced Cell Death.

    Science.gov (United States)

    Ma, Hongming; Dang, Ying; Wu, Yonggan; Jia, Gengxiang; Anaya, Edgar; Zhang, Junli; Abraham, Sojan; Choi, Jang-Gi; Shi, Guojun; Qi, Ling; Manjunath, N; Wu, Haoquan

    2015-07-28

    West Nile virus (WNV) causes an acute neurological infection attended by massive neuronal cell death. However, the mechanism(s) behind the virus-induced cell death is poorly understood. Using a library containing 77,406 sgRNAs targeting 20,121 genes, we performed a genome-wide screen followed by a second screen with a sub-library. Among the genes identified, seven genes, EMC2, EMC3, SEL1L, DERL2, UBE2G2, UBE2J1, and HRD1, stood out as having the strongest phenotype, whose knockout conferred strong protection against WNV-induced cell death with two different WNV strains and in three cell lines. Interestingly, knockout of these genes did not block WNV replication. Thus, these appear to be essential genes that link WNV replication to downstream cell death pathway(s). In addition, the fact that all of these genes belong to the ER-associated protein degradation (ERAD) pathway suggests that this might be the primary driver of WNV-induced cell death. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Machine Learning Analysis Identifies Drosophila Grunge/Atrophin as an Important Learning and Memory Gene Required for Memory Retention and Social Learning.

    Science.gov (United States)

    Kacsoh, Balint Z; Greene, Casey S; Bosco, Giovanni

    2017-11-06

    High-throughput experiments are becoming increasingly common, and scientists must balance hypothesis-driven experiments with genome-wide data acquisition. We sought to predict novel genes involved in Drosophila learning and long-term memory from existing public high-throughput data. We performed an analysis using PILGRM, which analyzes public gene expression compendia using machine learning. We evaluated the top prediction alongside genes involved in learning and memory in IMP, an interface for functional relationship networks. We identified Grunge/Atrophin ( Gug/Atro ), a transcriptional repressor, histone deacetylase, as our top candidate. We find, through multiple, distinct assays, that Gug has an active role as a modulator of memory retention in the fly and its function is required in the adult mushroom body. Depletion of Gug specifically in neurons of the adult mushroom body, after cell division and neuronal development is complete, suggests that Gug function is important for memory retention through regulation of neuronal activity, and not by altering neurodevelopment. Our study provides a previously uncharacterized role for Gug as a possible regulator of neuronal plasticity at the interface of memory retention and memory extinction. Copyright © 2017 Kacsoh et al.

  20. A novel APOC2 gene mutation identified in a Chinese patient with severe hypertriglyceridemia and recurrent pancreatitis.

    Science.gov (United States)

    Jiang, Jingjing; Wang, Yuhui; Ling, Yan; Kayoumu, Abudurexiti; Liu, George; Gao, Xin

    2016-01-16

    The severe forms of hypertriglyceridemia are usually caused by genetic defects. In this study, we described a Chinese female with severe hypertriglyceridemia caused by a novel homozygous mutation in the APOC2 gene. Lipid profiles of the pedigree were studied in detail. LPL and HL activity were also measured. The coding regions of 5 candidate genes (namely LPL, APOC2, APOA5, LMF1, and GPIHBP1) were sequenced using genomic DNA from peripheral leucocytes. The ApoE gene was also genotyped. Serum triglyceride level was extremely high in the proband, compared with other family members. Plasma LPL activity was also significantly reduced in the proband. Serum ApoCII was very low in the proband as well as in the heterozygous mutation carriers. A novel mutation (c.86A > CC) was identified on exon 3 [corrected] of the APOC2 gene, which converted the Asp [corrected] codon at position 29 into Ala, followed by a termination codon (TGA). This study presented the first case of ApoCII deficiency in the Chinese population, with a novel mutation c.86A > CC in the APOC2 gene identified. Serum ApoCII protein might be a useful screening test for identifying mutation carriers.

  1. Genome-Wide Association Study Identifying Candidate Genes Influencing Important Agronomic Traits of Flax (Linum usitatissimum L.) Using SLAF-seq.

    Science.gov (United States)

    Xie, Dongwei; Dai, Zhigang; Yang, Zemao; Sun, Jian; Zhao, Debao; Yang, Xue; Zhang, Liguo; Tang, Qing; Su, Jianguang

    2017-01-01

    Flax ( Linum usitatissimum L.) is an important cash crop, and its agronomic traits directly affect yield and quality. Molecular studies on flax remain inadequate because relatively few flax genes have been associated with agronomic traits or have been identified as having potential applications. To identify markers and candidate genes that can potentially be used for genetic improvement of crucial agronomic traits, we examined 224 specimens of core flax germplasm; specifically, phenotypic data for key traits, including plant height, technical length, number of branches, number of fruits, and 1000-grain weight were investigated under three environmental conditions before specific-locus amplified fragment sequencing (SLAF-seq) was employed to perform a genome-wide association study (GWAS) for these five agronomic traits. Subsequently, the results were used to screen single nucleotide polymorphism (SNP) loci and candidate genes that exhibited a significant correlation with the important agronomic traits. Our analyses identified a total of 42 SNP loci that showed significant correlations with the five important agronomic flax traits. Next, candidate genes were screened in the 10 kb zone of each of the 42 SNP loci. These SNP loci were then analyzed by a more stringent screening via co-identification using both a general linear model (GLM) and a mixed linear model (MLM) as well as co-occurrences in at least two of the three environments, whereby 15 final candidate genes were obtained. Based on these results, we determined that UGT and PL are candidate genes for plant height, GRAS and XTH are candidate genes for the number of branches, Contig1437 and LU0019C12 are candidate genes for the number of fruits, and PHO1 is a candidate gene for the 1000-seed weight. We propose that the identified SNP loci and corresponding candidate genes might serve as a biological basis for improving crucial agronomic flax traits.

  2. Genome-Wide Association Study Identifying Candidate Genes Influencing Important Agronomic Traits of Flax (Linum usitatissimum L. Using SLAF-seq

    Directory of Open Access Journals (Sweden)

    Dongwei Xie

    2018-01-01

    Full Text Available Flax (Linum usitatissimum L. is an important cash crop, and its agronomic traits directly affect yield and quality. Molecular studies on flax remain inadequate because relatively few flax genes have been associated with agronomic traits or have been identified as having potential applications. To identify markers and candidate genes that can potentially be used for genetic improvement of crucial agronomic traits, we examined 224 specimens of core flax germplasm; specifically, phenotypic data for key traits, including plant height, technical length, number of branches, number of fruits, and 1000-grain weight were investigated under three environmental conditions before specific-locus amplified fragment sequencing (SLAF-seq was employed to perform a genome-wide association study (GWAS for these five agronomic traits. Subsequently, the results were used to screen single nucleotide polymorphism (SNP loci and candidate genes that exhibited a significant correlation with the important agronomic traits. Our analyses identified a total of 42 SNP loci that showed significant correlations with the five important agronomic flax traits. Next, candidate genes were screened in the 10 kb zone of each of the 42 SNP loci. These SNP loci were then analyzed by a more stringent screening via co-identification using both a general linear model (GLM and a mixed linear model (MLM as well as co-occurrences in at least two of the three environments, whereby 15 final candidate genes were obtained. Based on these results, we determined that UGT and PL are candidate genes for plant height, GRAS and XTH are candidate genes for the number of branches, Contig1437 and LU0019C12 are candidate genes for the number of fruits, and PHO1 is a candidate gene for the 1000-seed weight. We propose that the identified SNP loci and corresponding candidate genes might serve as a biological basis for improving crucial agronomic flax traits.

  3. Comparative Transcriptome Analysis Identifies Putative Genes Involved in Steroid Biosynthesis in Euphorbia tirucalli

    Directory of Open Access Journals (Sweden)

    Weibo Qiao

    2018-01-01

    Full Text Available Phytochemical analysis of different Euphorbia tirucalli tissues revealed a contrasting tissue-specificity for the biosynthesis of euphol and β-sitosterol, which represent the two pharmaceutically active steroids in E. tirucalli. To uncover the molecular mechanism underlying this tissue-specificity for phytochemicals, a comprehensive E. tirucalli transcriptome derived from its root, stem, leaf and latex was constructed, and a total of 91,619 unigenes were generated with 51.08% being successfully annotated against the non-redundant (Nr protein database. A comparison of the transcriptome from different tissues discovered members of unigenes in the upstream steps of sterol backbone biosynthesis leading to this tissue-specific sterol biosynthesis. Among them, the putative oxidosqualene cyclase (OSC encoding genes involved in euphol synthesis were notably identified, and their expressions were significantly up-regulated in the latex. In addition, genome-wide differentially expressed genes (DEGs in the different E. tirucalli tissues were identified. The cluster analysis of those DEGs showed a unique expression pattern in the latex compared with other tissues. The DEGs identified in this study would enrich the insights of sterol biosynthesis and the regulation mechanism of this latex-specificity.

  4. Analysis of SOX10 mutations identified in Waardenburg-Hirschsprung patients: Differential effects on target gene regulation.

    Science.gov (United States)

    Chan, Kwok Keung; Wong, Corinne Kung Yen; Lui, Vincent Chi Hang; Tam, Paul Kwong Hang; Sham, Mai Har

    2003-10-15

    SOX10 is a member of the SOX gene family related by homology to the high-mobility group (HMG) box region of the testis-determining gene SRY. Mutations of the transcription factor gene SOX10 lead to Waardenburg-Hirschsprung syndrome (Waardenburg-Shah syndrome, WS4) in humans. A number of SOX10 mutations have been identified in WS4 patients who suffer from different extents of intestinal aganglionosis, pigmentation, and hearing abnormalities. Some patients also exhibit signs of myelination deficiency in the central and peripheral nervous systems. Although the molecular bases for the wide range of symptoms displayed by the patients are still not clearly understood, a few target genes for SOX10 have been identified. We have analyzed the impact of six different SOX10 mutations on the activation of SOX10 target genes by yeast one-hybrid and mammalian cell transfection assays. To investigate the transactivation activities of the mutant proteins, three different SOX target binding sites were introduced into luciferase reporter gene constructs and examined in our series of transfection assays: consensus HMG domain protein binding sites; SOX10 binding sites identified in the RET promoter; and Sox10 binding sites identified in the P0 promoter. We found that the same mutation could have different transactivation activities when tested with different target binding sites and in different cell lines. The differential transactivation activities of the SOX10 mutants appeared to correlate with the intestinal and/or neurological symptoms presented in the patients. Among the six mutant SOX10 proteins tested, much reduced transactivation activities were observed when tested on the SOX10 binding sites from the RET promoter. Of the two similar mutations X467K and 1400del12, only the 1400del12 mutant protein exhibited an increase of transactivation through the P0 promoter. While the lack of normal SOX10 mediated activation of RET transcription may lead to intestinal aganglionosis

  5. Shortest-path network analysis is a useful approach toward identifying genetic determinants of longevity.

    Directory of Open Access Journals (Sweden)

    J R Managbanag

    Full Text Available BACKGROUND: Identification of genes that modulate longevity is a major focus of aging-related research and an area of intense public interest. In addition to facilitating an improved understanding of the basic mechanisms of aging, such genes represent potential targets for therapeutic intervention in multiple age-associated diseases, including cancer, heart disease, diabetes, and neurodegenerative disorders. To date, however, targeted efforts at identifying longevity-associated genes have been limited by a lack of predictive power, and useful algorithms for candidate gene-identification have also been lacking. METHODOLOGY/PRINCIPAL FINDINGS: We have utilized a shortest-path network analysis to identify novel genes that modulate longevity in Saccharomyces cerevisiae. Based on a set of previously reported genes associated with increased life span, we applied a shortest-path network algorithm to a pre-existing protein-protein interaction dataset in order to construct a shortest-path longevity network. To validate this network, the replicative aging potential of 88 single-gene deletion strains corresponding to predicted components of the shortest-path longevity network was determined. Here we report that the single-gene deletion strains identified by our shortest-path longevity analysis are significantly enriched for mutations conferring either increased or decreased replicative life span, relative to a randomly selected set of 564 single-gene deletion strains or to the current data set available for the entire haploid deletion collection. Further, we report the identification of previously unknown longevity genes, several of which function in a conserved longevity pathway believed to mediate life span extension in response to dietary restriction. CONCLUSIONS/SIGNIFICANCE: This work demonstrates that shortest-path network analysis is a useful approach toward identifying genetic determinants of longevity and represents the first application of

  6. Network-Based Integration of GWAS and Gene Expression Identifies a HOX-Centric Network Associated with Serous Ovarian Cancer Risk.

    Science.gov (United States)

    Kar, Siddhartha P; Tyrer, Jonathan P; Li, Qiyuan; Lawrenson, Kate; Aben, Katja K H; Anton-Culver, Hoda; Antonenkova, Natalia; Chenevix-Trench, Georgia; Baker, Helen; Bandera, Elisa V; Bean, Yukie T; Beckmann, Matthias W; Berchuck, Andrew; Bisogna, Maria; Bjørge, Line; Bogdanova, Natalia; Brinton, Louise; Brooks-Wilson, Angela; Butzow, Ralf; Campbell, Ian; Carty, Karen; Chang-Claude, Jenny; Chen, Yian Ann; Chen, Zhihua; Cook, Linda S; Cramer, Daniel; Cunningham, Julie M; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; Dennis, Joe; Dicks, Ed; Doherty, Jennifer A; Dörk, Thilo; du Bois, Andreas; Dürst, Matthias; Eccles, Diana; Easton, Douglas F; Edwards, Robert P; Ekici, Arif B; Fasching, Peter A; Fridley, Brooke L; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G; Glasspool, Rosalind; Goode, Ellen L; Goodman, Marc T; Grownwald, Jacek; Harrington, Patricia; Harter, Philipp; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A T; Hillemanns, Peter; Hogdall, Estrid; Hogdall, Claus K; Hosono, Satoyo; Iversen, Edwin S; Jakubowska, Anna; Paul, James; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y; Kjaer, Susanne K; Kelemen, Linda E; Kellar, Melissa; Kelley, Joseph; Kiemeney, Lambertus A; Krakstad, Camilla; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D; Lee, Alice W; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A; Liang, Dong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R; McNeish, Iain A; Menon, Usha; Modugno, Francesmary; Moysich, Kirsten B; Narod, Steven A; Nedergaard, Lotte; Ness, Roberta B; Nevanlinna, Heli; Odunsi, Kunle; Olson, Sara H; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Pearce, Celeste Leigh; Pejovic, Tanja; Pelttari, Liisa M; Permuth-Wey, Jennifer; Phelan, Catherine M; Pike, Malcolm C; Poole, Elizabeth M; Ramus, Susan J; Risch, Harvey A; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H; Rudolph, Anja; Runnebaum, Ingo B; Rzepecka, Iwona K; Salvesen, Helga B; Schildkraut, Joellen M; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C; Sucheston-Campbell, Lara E; Tangen, Ingvild L; Teo, Soo-Hwang; Terry, Kathryn L; Thompson, Pamela J; Timorek, Agnieszka; Tsai, Ya-Yu; Tworoger, Shelley S; van Altena, Anne M; Van Nieuwenhuysen, Els; Vergote, Ignace; Vierkant, Robert A; Wang-Gohrke, Shan; Walsh, Christine; Wentzensen, Nicolas; Whittemore, Alice S; Wicklund, Kristine G; Wilkens, Lynne R; Woo, Yin-Ling; Wu, Xifeng; Wu, Anna; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Sellers, Thomas A; Monteiro, Alvaro N A; Freedman, Matthew L; Gayther, Simon A; Pharoah, Paul D P

    2015-10-01

    Genome-wide association studies (GWAS) have so far reported 12 loci associated with serous epithelial ovarian cancer (EOC) risk. We hypothesized that some of these loci function through nearby transcription factor (TF) genes and that putative target genes of these TFs as identified by coexpression may also be enriched for additional EOC risk associations. We selected TF genes within 1 Mb of the top signal at the 12 genome-wide significant risk loci. Mutual information, a form of correlation, was used to build networks of genes strongly coexpressed with each selected TF gene in the unified microarray dataset of 489 serous EOC tumors from The Cancer Genome Atlas. Genes represented in this dataset were subsequently ranked using a gene-level test based on results for germline SNPs from a serous EOC GWAS meta-analysis (2,196 cases/4,396 controls). Gene set enrichment analysis identified six networks centered on TF genes (HOXB2, HOXB5, HOXB6, HOXB7 at 17q21.32 and HOXD1, HOXD3 at 2q31) that were significantly enriched for genes from the risk-associated end of the ranked list (P < 0.05 and FDR < 0.05). These results were replicated (P < 0.05) using an independent association study (7,035 cases/21,693 controls). Genes underlying enrichment in the six networks were pooled into a combined network. We identified a HOX-centric network associated with serous EOC risk containing several genes with known or emerging roles in serous EOC development. Network analysis integrating large, context-specific datasets has the potential to offer mechanistic insights into cancer susceptibility and prioritize genes for experimental characterization. ©2015 American Association for Cancer Research.

  7. Candidate gene resequencing to identify rare, pedigree-specific variants influencing healthy aging phenotypes in the long life family study

    DEFF Research Database (Denmark)

    Druley, Todd E; Wang, Lihua; Lin, Shiow J

    2016-01-01

    from six pedigrees. OBFC1 (chromosome 10) is involved in telomere maintenance, and falls within a linkage peak recently reported from an analysis of telomere length in LLFS families. Two different algorithms for single gene associations identified three genes with an enrichment of variation......BACKGROUND: The Long Life Family Study (LLFS) is an international study to identify the genetic components of various healthy aging phenotypes. We hypothesized that pedigree-specific rare variants at longevity-associated genes could have a similar functional impact on healthy phenotypes. METHODS......: We performed custom hybridization capture sequencing to identify the functional variants in 464 candidate genes for longevity or the major diseases of aging in 615 pedigrees (4,953 individuals) from the LLFS, using a multiplexed, custom hybridization capture. Variants were analyzed individually...

  8. Gene trapping identifies a putative tumor suppressor and a new inducer of cell migration

    International Nuclear Information System (INIS)

    Guardiola-Serrano, Francisca; Haendeler, Judith; Lukosz, Margarete; Sturm, Karsten; Melchner, Harald von; Altschmied, Joachim

    2008-01-01

    Tumor necrosis factor alpha (TNFα) is a pleiotropic cytokine involved in apoptotic cell death, cellular proliferation, differentiation, inflammation, and tumorigenesis. In tumors it is secreted by tumor associated macrophages and can have both pro- and anti-tumorigenic effects. To identify genes regulated by TNFα, we performed a gene trap screen in the mammary carcinoma cell line MCF-7 and recovered 64 unique, TNFα-induced gene trap integration sites. Among these were the genes coding for the zinc finger protein ZC3H10 and for the transcription factor grainyhead-like 3 (GRHL3). In line with the dual effects of TNFα on tumorigenesis, we found that ZC3H10 inhibits anchorage independent growth in soft agar suggesting a tumor suppressor function, whereas GRHL3 strongly stimulated the migration of endothelial cells which is consistent with an angiogenic, pro-tumorigenic function

  9. A novel nonsense mutation in the DMP1 gene identified by a genome-wide association study is responsible for inherited rickets in Corriedale sheep.

    Directory of Open Access Journals (Sweden)

    Xia Zhao

    Full Text Available Inherited rickets of Corriedale sheep is characterized by decreased growth rate, thoracic lordosis and angular limb deformities. Previous outcross and backcross studies implicate inheritance as a simple autosomal recessive disorder. A genome wide association study was conducted using the Illumina OvineSNP50 BeadChip on 20 related sheep comprising 17 affected and 3 carriers. A homozygous region of 125 consecutive single-nucleotide polymorphism (SNP loci was identified in all affected sheep, covering a region of 6 Mb on ovine chromosome 6. Among 35 candidate genes in this region, the dentin matrix protein 1 gene (DMP1 was sequenced to reveal a nonsense mutation 250C/T on exon 6. This mutation introduced a stop codon (R145X and could truncate C-terminal amino acids. Genotyping by PCR-RFLP for this mutation showed all 17 affected sheep were "T T" genotypes; the 3 carriers were "C T"; 24 phenotypically normal related sheep were either "C T" or "C C"; and 46 unrelated normal control sheep from other breeds were all "C C". The other SNPs in DMP1 were not concordant with the disease and can all be ruled out as candidates. Previous research has shown that mutations in the DMP1 gene are responsible for autosomal recessive hypophosphatemic rickets in humans. Dmp1_knockout mice exhibit rickets phenotypes. We believe the R145X mutation to be responsible for the inherited rickets found in Corriedale sheep. A simple diagnostic test can be designed to identify carriers with the defective "T" allele. Affected sheep could be used as animal models for this form of human rickets, and for further investigation of the role of DMP1 in phosphate homeostasis.

  10. A Novel Nonsense Mutation in the DMP1 Gene Identified by a Genome-Wide Association Study Is Responsible for Inherited Rickets in Corriedale Sheep

    Science.gov (United States)

    Blair, Hugh T.; Thompson, Keith G.; Rothschild, Max F.; Garrick, Dorian J.

    2011-01-01

    Inherited rickets of Corriedale sheep is characterized by decreased growth rate, thoracic lordosis and angular limb deformities. Previous outcross and backcross studies implicate inheritance as a simple autosomal recessive disorder. A genome wide association study was conducted using the Illumina OvineSNP50 BeadChip on 20 related sheep comprising 17 affected and 3 carriers. A homozygous region of 125 consecutive single-nucleotide polymorphism (SNP) loci was identified in all affected sheep, covering a region of 6 Mb on ovine chromosome 6. Among 35 candidate genes in this region, the dentin matrix protein 1 gene (DMP1) was sequenced to reveal a nonsense mutation 250C/T on exon 6. This mutation introduced a stop codon (R145X) and could truncate C-terminal amino acids. Genotyping by PCR-RFLP for this mutation showed all 17 affected sheep were “T T” genotypes; the 3 carriers were “C T”; 24 phenotypically normal related sheep were either “C T” or “C C”; and 46 unrelated normal control sheep from other breeds were all “C C”. The other SNPs in DMP1 were not concordant with the disease and can all be ruled out as candidates. Previous research has shown that mutations in the DMP1 gene are responsible for autosomal recessive hypophosphatemic rickets in humans. Dmp1_knockout mice exhibit rickets phenotypes. We believe the R145X mutation to be responsible for the inherited rickets found in Corriedale sheep. A simple diagnostic test can be designed to identify carriers with the defective “T” allele. Affected sheep could be used as animal models for this form of human rickets, and for further investigation of the role of DMP1 in phosphate homeostasis. PMID:21747952

  11. Network Diffusion-Based Prioritization of Autism Risk Genes Identifies Significantly Connected Gene Modules

    Directory of Open Access Journals (Sweden)

    Ettore Mosca

    2017-09-01

    Full Text Available Autism spectrum disorder (ASD is marked by a strong genetic heterogeneity, which is underlined by the low overlap between ASD risk gene lists proposed in different studies. In this context, molecular networks can be used to analyze the results of several genome-wide studies in order to underline those network regions harboring genetic variations associated with ASD, the so-called “disease modules.” In this work, we used a recent network diffusion-based approach to jointly analyze multiple ASD risk gene lists. We defined genome-scale prioritizations of human genes in relation to ASD genes from multiple studies, found significantly connected gene modules associated with ASD and predicted genes functionally related to ASD risk genes. Most of them play a role in synapsis and neuronal development and function; many are related to syndromes that can be in comorbidity with ASD and the remaining are involved in epigenetics, cell cycle, cell adhesion and cancer.

  12. Pathways-driven sparse regression identifies pathways and genes associated with high-density lipoprotein cholesterol in two Asian cohorts.

    Directory of Open Access Journals (Sweden)

    Matt Silver

    2013-11-01

    Full Text Available Standard approaches to data analysis in genome-wide association studies (GWAS ignore any potential functional relationships between gene variants. In contrast gene pathways analysis uses prior information on functional structure within the genome to identify pathways associated with a trait of interest. In a second step, important single nucleotide polymorphisms (SNPs or genes may be identified within associated pathways. The pathways approach is motivated by the fact that genes do not act alone, but instead have effects that are likely to be mediated through their interaction in gene pathways. Where this is the case, pathways approaches may reveal aspects of a trait's genetic architecture that would otherwise be missed when considering SNPs in isolation. Most pathways methods begin by testing SNPs one at a time, and so fail to capitalise on the potential advantages inherent in a multi-SNP, joint modelling approach. Here, we describe a dual-level, sparse regression model for the simultaneous identification of pathways and genes associated with a quantitative trait. Our method takes account of various factors specific to the joint modelling of pathways with genome-wide data, including widespread correlation between genetic predictors, and the fact that variants may overlap multiple pathways. We use a resampling strategy that exploits finite sample variability to provide robust rankings for pathways and genes. We test our method through simulation, and use it to perform pathways-driven gene selection in a search for pathways and genes associated with variation in serum high-density lipoprotein cholesterol levels in two separate GWAS cohorts of Asian adults. By comparing results from both cohorts we identify a number of candidate pathways including those associated with cardiomyopathy, and T cell receptor and PPAR signalling. Highlighted genes include those associated with the L-type calcium channel, adenylate cyclase, integrin, laminin, MAPK

  13. Pathways-Driven Sparse Regression Identifies Pathways and Genes Associated with High-Density Lipoprotein Cholesterol in Two Asian Cohorts

    Science.gov (United States)

    Silver, Matt; Chen, Peng; Li, Ruoying; Cheng, Ching-Yu; Wong, Tien-Yin; Tai, E-Shyong; Teo, Yik-Ying; Montana, Giovanni

    2013-01-01

    Standard approaches to data analysis in genome-wide association studies (GWAS) ignore any potential functional relationships between gene variants. In contrast gene pathways analysis uses prior information on functional structure within the genome to identify pathways associated with a trait of interest. In a second step, important single nucleotide polymorphisms (SNPs) or genes may be identified within associated pathways. The pathways approach is motivated by the fact that genes do not act alone, but instead have effects that are likely to be mediated through their interaction in gene pathways. Where this is the case, pathways approaches may reveal aspects of a trait's genetic architecture that would otherwise be missed when considering SNPs in isolation. Most pathways methods begin by testing SNPs one at a time, and so fail to capitalise on the potential advantages inherent in a multi-SNP, joint modelling approach. Here, we describe a dual-level, sparse regression model for the simultaneous identification of pathways and genes associated with a quantitative trait. Our method takes account of various factors specific to the joint modelling of pathways with genome-wide data, including widespread correlation between genetic predictors, and the fact that variants may overlap multiple pathways. We use a resampling strategy that exploits finite sample variability to provide robust rankings for pathways and genes. We test our method through simulation, and use it to perform pathways-driven gene selection in a search for pathways and genes associated with variation in serum high-density lipoprotein cholesterol levels in two separate GWAS cohorts of Asian adults. By comparing results from both cohorts we identify a number of candidate pathways including those associated with cardiomyopathy, and T cell receptor and PPAR signalling. Highlighted genes include those associated with the L-type calcium channel, adenylate cyclase, integrin, laminin, MAPK signalling and immune

  14. Social Regulation of Gene Expression in Threespine Sticklebacks.

    Directory of Open Access Journals (Sweden)

    Anna K Greenwood

    Full Text Available Identifying genes that are differentially expressed in response to social interactions is informative for understanding the molecular basis of social behavior. To address this question, we described changes in gene expression as a result of differences in the extent of social interactions. We housed threespine stickleback (Gasterosteus aculeatus females in either group conditions or individually for one week, then measured levels of gene expression in three brain regions using RNA-sequencing. We found that numerous genes in the hindbrain/cerebellum had altered expression in response to group or individual housing. However, relatively few genes were differentially expressed in either the diencephalon or telencephalon. The list of genes upregulated in fish from social groups included many genes related to neural development and cell adhesion as well as genes with functions in sensory signaling, stress, and social and reproductive behavior. The list of genes expressed at higher levels in individually-housed fish included several genes previously identified as regulated by social interactions in other animals. The identified genes are interesting targets for future research on the molecular mechanisms of normal social interactions.

  15. Gene expression profiling following NRF2 and KEAP1 siRNA knockdown in human lung fibroblasts identifies CCL11/Eotaxin-1 as a novel NRF2 regulated gene

    Science.gov (United States)

    2012-01-01

    Background Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant response in cells. Nrf2 knockout mice have implicated this pathway in regulating inflammatory airway diseases such as asthma and COPD. To better understand the role the NRF2 pathway has on respiratory disease we have taken a novel approach to define NRF2 dependent gene expression in a relevant lung system. Methods Normal human lung fibroblasts were transfected with siRNA specific for NRF2 or KEAP1. Gene expression changes were measured at 30 and 48 hours using a custom Affymetrix Gene array. Changes in Eotaxin-1 gene expression and protein secretion were further measured under various inflammatory conditions with siRNAs and pharmacological tools. Results An anti-correlated gene set (inversely regulated by NRF2 and KEAP1 RNAi) that reflects specific NRF2 regulated genes was identified. Gene annotations show that NRF2-mediated oxidative stress response is the most significantly regulated pathway, followed by heme metabolism, metabolism of xenobiotics by Cytochrome P450 and O-glycan biosynthesis. Unexpectedly the key eosinophil chemokine Eotaxin-1/CCL11 was found to be up-regulated when NRF2 was inhibited and down-regulated when KEAP1 was inhibited. This transcriptional regulation leads to modulation of Eotaxin-1 secretion from human lung fibroblasts under basal and inflammatory conditions, and is specific to Eotaxin-1 as NRF2 or KEAP1 knockdown had no effect on the secretion of a set of other chemokines and cytokines. Furthermore, the known NRF2 small molecule activators CDDO and Sulphoraphane can also dose dependently inhibit Eotaxin-1 release from human lung fibroblasts. Conclusions These data uncover a previously unknown role for NRF2 in regulating Eotaxin-1 expression and further the mechanistic understanding of this pathway in modulating inflammatory lung disease. PMID:23061798

  16. Genes2WordCloud: a quick way to identify biological themes from gene lists and free text.

    Science.gov (United States)

    Baroukh, Caroline; Jenkins, Sherry L; Dannenfelser, Ruth; Ma'ayan, Avi

    2011-10-13

    Word-clouds recently emerged on the web as a solution for quickly summarizing text by maximizing the display of most relevant terms about a specific topic in the minimum amount of space. As biologists are faced with the daunting amount of new research data commonly presented in textual formats, word-clouds can be used to summarize and represent biological and/or biomedical content for various applications. Genes2WordCloud is a web application that enables users to quickly identify biological themes from gene lists and research relevant text by constructing and displaying word-clouds. It provides users with several different options and ideas for the sources that can be used to generate a word-cloud. Different options for rendering and coloring the word-clouds give users the flexibility to quickly generate customized word-clouds of their choice. Genes2WordCloud is a word-cloud generator and a word-cloud viewer that is based on WordCram implemented using Java, Processing, AJAX, mySQL, and PHP. Text is fetched from several sources and then processed to extract the most relevant terms with their computed weights based on word frequencies. Genes2WordCloud is freely available for use online; it is open source software and is available for installation on any web-site along with supporting documentation at http://www.maayanlab.net/G2W. Genes2WordCloud provides a useful way to summarize and visualize large amounts of textual biological data or to find biological themes from several different sources. The open source availability of the software enables users to implement customized word-clouds on their own web-sites and desktop applications.

  17. Suppression subtractive hybridization and comparative expression analysis to identify developmentally regulated genes in filamentous fungi.

    Science.gov (United States)

    Gesing, Stefan; Schindler, Daniel; Nowrousian, Minou

    2013-09-01

    Ascomycetes differentiate four major morphological types of fruiting bodies (apothecia, perithecia, pseudothecia and cleistothecia) that are derived from an ancestral fruiting body. Thus, fruiting body differentiation is most likely controlled by a set of common core genes. One way to identify such genes is to search for genes with evolutionary conserved expression patterns. Using suppression subtractive hybridization (SSH), we selected differentially expressed transcripts in Pyronema confluens (Pezizales) by comparing two cDNA libraries specific for sexual and for vegetative development, respectively. The expression patterns of selected genes from both libraries were verified by quantitative real time PCR. Expression of several corresponding homologous genes was found to be conserved in two members of the Sordariales (Sordaria macrospora and Neurospora crassa), a derived group of ascomycetes that is only distantly related to the Pezizales. Knockout studies with N. crassa orthologues of differentially regulated genes revealed a functional role during fruiting body development for the gene NCU05079, encoding a putative MFS peptide transporter. These data indicate conserved gene expression patterns and a functional role of the corresponding genes during fruiting body development; such genes are candidates of choice for further functional analysis. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Genome-wide local ancestry approach identifies genes and variants associated with chemotherapeutic susceptibility in African Americans.

    Directory of Open Access Journals (Sweden)

    Heather E Wheeler

    Full Text Available Chemotherapeutic agents are used in the treatment of many cancers, yet variable resistance and toxicities among individuals limit successful outcomes. Several studies have indicated outcome differences associated with ancestry among patients with various cancer types. Using both traditional SNP-based and newly developed gene-based genome-wide approaches, we investigated the genetics of chemotherapeutic susceptibility in lymphoblastoid cell lines derived from 83 African Americans, a population for which there is a disparity in the number of genome-wide studies performed. To account for population structure in this admixed population, we incorporated local ancestry information into our association model. We tested over 2 million SNPs and identified 325, 176, 240, and 190 SNPs that were suggestively associated with cytarabine-, 5'-deoxyfluorouridine (5'-DFUR-, carboplatin-, and cisplatin-induced cytotoxicity, respectively (p≤10(-4. Importantly, some of these variants are found only in populations of African descent. We also show that cisplatin-susceptibility SNPs are enriched for carboplatin-susceptibility SNPs. Using a gene-based genome-wide association approach, we identified 26, 11, 20, and 41 suggestive candidate genes for association with cytarabine-, 5'-DFUR-, carboplatin-, and cisplatin-induced cytotoxicity, respectively (p≤10(-3. Fourteen of these genes showed evidence of association with their respective chemotherapeutic phenotypes in the Yoruba from Ibadan, Nigeria (p<0.05, including TP53I11, COPS5 and GAS8, which are known to be involved in tumorigenesis. Although our results require further study, we have identified variants and genes associated with chemotherapeutic susceptibility in African Americans by using an approach that incorporates local ancestry information.

  19. A genome-wide shRNA screen identifies GAS1 as a novel melanoma metastasis suppressor gene.

    Science.gov (United States)

    Gobeil, Stephane; Zhu, Xiaochun; Doillon, Charles J; Green, Michael R

    2008-11-01

    Metastasis suppressor genes inhibit one or more steps required for metastasis without affecting primary tumor formation. Due to the complexity of the metastatic process, the development of experimental approaches for identifying genes involved in metastasis prevention has been challenging. Here we describe a genome-wide RNAi screening strategy to identify candidate metastasis suppressor genes. Following expression in weakly metastatic B16-F0 mouse melanoma cells, shRNAs were selected based upon enhanced satellite colony formation in a three-dimensional cell culture system and confirmed in a mouse experimental metastasis assay. Using this approach we discovered 22 genes whose knockdown increased metastasis without affecting primary tumor growth. We focused on one of these genes, Gas1 (Growth arrest-specific 1), because we found that it was substantially down-regulated in highly metastatic B16-F10 melanoma cells, which contributed to the high metastatic potential of this mouse cell line. We further demonstrated that Gas1 has all the expected properties of a melanoma tumor suppressor including: suppression of metastasis in a spontaneous metastasis assay, promotion of apoptosis following dissemination of cells to secondary sites, and frequent down-regulation in human melanoma metastasis-derived cell lines and metastatic tumor samples. Thus, we developed a genome-wide shRNA screening strategy that enables the discovery of new metastasis suppressor genes.

  20. Expression profiling identifies genes involved in neoplastic transformation of serous ovarian cancer

    International Nuclear Information System (INIS)

    Merritt, Melissa A; Parsons, Peter G; Newton, Tanya R; Martyn, Adam C; Webb, Penelope M; Green, Adèle C; Papadimos, David J; Boyle, Glen M

    2009-01-01

    The malignant potential of serous ovarian tumors, the most common ovarian tumor subtype, varies from benign to low malignant potential (LMP) tumors to frankly invasive cancers. Given the uncertainty about the relationship between these different forms, we compared their patterns of gene expression. Expression profiling was carried out on samples of 7 benign, 7 LMP and 28 invasive (moderate and poorly differentiated) serous tumors and four whole normal ovaries using oligonucleotide microarrays representing over 21,000 genes. We identified 311 transcripts that distinguished invasive from benign tumors, and 20 transcripts that were significantly differentially expressed between invasive and LMP tumors at p < 0.01 (with multiple testing correction). Five genes that were differentially expressed between invasive and either benign or normal tissues were validated by real time PCR in an independent panel of 46 serous tumors (4 benign, 7 LMP, 35 invasive). Overexpression of SLPI and WNT7A and down-regulation of C6orf31, PDGFRA and GLTSCR2 were measured in invasive and LMP compared with benign and normal tissues. Over-expression of WNT7A in an ovarian cancer cell line led to increased migration and invasive capacity. These results highlight several genes that may play an important role across the spectrum of serous ovarian tumorigenesis

  1. Methanotrophic bacteria in warm geothermal spring sediments identified using stable-isotope probing.

    Science.gov (United States)

    Sharp, Christine E; Martínez-Lorenzo, Azucena; Brady, Allyson L; Grasby, Stephen E; Dunfield, Peter F

    2014-10-01

    We investigated methanotrophic bacteria in sediments of several warm geothermal springs ranging in temperature from 22 to 45 °C. Methane oxidation was measured at potential rates up to 141 μmol CH4 d(-1) g(-1) sediment. Active methanotrophs were identified using (13) CH4 stable-isotope probing (SIP) incubations performed at close to in situ temperatures for each site. Quantitative (q) PCR of pmoA genes identified the position of the heavy ((13) C-labelled) DNA fractions in density gradients, and 16S rRNA gene pyrotag sequencing of the heavy fractions was performed to identify the active methanotrophs. Methanotroph communities identified in heavy fractions of all samples were predominated by species similar (≥ 95% 16S rRNA gene identities) to previously characterized Gammaproteobacteria and Alphaproteobacteria methanotrophs. Among the five hottest samples (45 °C), members of the Gammaproteobacteria genus Methylocaldum dominated in two cases, while three others were dominated by an OTU closely related (96.8% similarity) to the Alphaproteobacteria genus Methylocapsa. These results suggest that diverse methanotroph groups are adapted to warm environments, including the Methylocapsa-Methylocella-Methyloferula group, which has previously only been detected in cooler sites. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  2. Genome-wide association study identifies candidate genes for male fertility traits in humans.

    Science.gov (United States)

    Kosova, Gülüm; Scott, Nicole M; Niederberger, Craig; Prins, Gail S; Ober, Carole

    2012-06-08

    Despite the fact that hundreds of genes are known to affect fertility in animal models, relatively little is known about genes that influence natural fertility in humans. To broadly survey genes contributing to variation in male fertility, we conducted a genome-wide association study (GWAS) of two fertility traits (family size and birth rate) in 269 married men who are members of a founder population of European descent that proscribes contraception and has large family sizes. Associations between ∼250,000 autosomal SNPs and the fertility traits were examined. A total of 41 SNPs with p ≤ 1 × 10(-4) for either trait were taken forward to a validation study of 123 ethnically diverse men from Chicago who had previously undergone semen analyses. Nine (22%) of the SNPs associated with reduced fertility in the GWAS were also associated with one or more of the ten measures of reduced sperm quantity and/or function, yielding 27 associations with p values LRRC32, which encodes a latent transforming growth factor β (TGF-β) receptor on regulatory T cells. We suggest that mutations in these genes that are more severe may account for some of the unexplained infertility (or subfertility) in the general population. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  3. Assessment of a 44 gene classifier for the evaluation of chronic fatigue syndrome from peripheral blood mononuclear cell gene expression.

    Directory of Open Access Journals (Sweden)

    Daniel Frampton

    Full Text Available Chronic fatigue syndrome (CFS is a clinically defined illness estimated to affect millions of people worldwide causing significant morbidity and an annual cost of billions of dollars. Currently there are no laboratory-based diagnostic methods for CFS. However, differences in gene expression profiles between CFS patients and healthy persons have been reported in the literature. Using mRNA relative quantities for 44 previously identified reporter genes taken from a large dataset comprising both CFS patients and healthy volunteers, we derived a gene profile scoring metric to accurately classify CFS and healthy samples. This metric out-performed any of the reporter genes used individually as a classifier of CFS.To determine whether the reporter genes were robust across populations, we applied this metric to classify a separate blind dataset of mRNA relative quantities from a new population of CFS patients and healthy persons with limited success. Although the metric was able to successfully classify roughly two-thirds of both CFS and healthy samples correctly, the level of misclassification was high. We conclude many of the previously identified reporter genes are study-specific and thus cannot be used as a broad CFS diagnostic.

  4. ZCURVE 3.0: identify prokaryotic genes with higher accuracy as well as automatically and accurately select essential genes.

    Science.gov (United States)

    Hua, Zhi-Gang; Lin, Yan; Yuan, Ya-Zhou; Yang, De-Chang; Wei, Wen; Guo, Feng-Biao

    2015-07-01

    In 2003, we developed an ab initio program, ZCURVE 1.0, to find genes in bacterial and archaeal genomes. In this work, we present the updated version (i.e. ZCURVE 3.0). Using 422 prokaryotic genomes, the average accuracy was 93.7% with the updated version, compared with 88.7% with the original version. Such results also demonstrate that ZCURVE 3.0 is comparable with Glimmer 3.02 and may provide complementary predictions to it. In fact, the joint application of the two programs generated better results by correctly finding more annotated genes while also containing fewer false-positive predictions. As the exclusive function, ZCURVE 3.0 contains one post-processing program that can identify essential genes with high accuracy (generally >90%). We hope ZCURVE 3.0 will receive wide use with the web-based running mode. The updated ZCURVE can be freely accessed from http://cefg.uestc.edu.cn/zcurve/ or http://tubic.tju.edu.cn/zcurveb/ without any restrictions. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Development of a Simple Tool for Identifying Alcohol Use Disorder in Female Korean Drinkers from Previous Questionnaires.

    Science.gov (United States)

    Seo, Yu Ri; Kim, Jong Sung; Kim, Sung Soo; Yoon, Seok Joon; Suh, Won Yoon; Youn, Kwangmi

    2016-01-01

    This study aimed to develop a simple tool for identifying alcohol use disorders in female Korean drinkers from previous questionnaires. This research was conducted on 400 women who consumed at least one alcoholic drink during the past month and visited the health promotion center at Chungnam National University Hospital between June 2013 to May 2014. Drinking habits and alcohol use disorders were assessed by structured interviews using the Diagnostic and Statistical Manual of Mental Disorders, 5th Edition diagnostic criteria. The subjects were also asked to answer the Alcohol Use Disorders Identification Test (AUDIT), AUDIT-Consumption, CAGE (Cut down, Annoyed, Guilty, Eye-opener), TWEAK (Tolerance, Worried, Eye-opener, Amnesia, Kut down), TACE (Tolerance, Annoyed, Cut down, Eye-opener), and NET (Normal drinker, Eye-opener, Tolerance) questionnaires. The area under receiver operating characteristic (AUROC) of each question of the questionnaires on alcohol use disorders was assessed. After combining two questions with the largest AUROC, it was compared to other previous questionnaires. Among the 400 subjects, 58 (14.5%) were identified as having an alcohol use disorder. Two questions with the largest AUROC were question no. 7 in AUDIT, "How often during the last year have you had a feeling of guilt or remorse after drinking?" and question no. 5 in AUDIT, "How often during the past year have you failed to do what was normally expected from you because of drinking?" with an AUROC (95% confidence interval [CI]) of 0.886 (0.850-0.915) and 0.862 (0.824-0.894), respectively. The AUROC (95% CI) of the combination of the two questions was 0.958 (0.934-0.976) with no significant difference as compared to the existing AUDIT with the largest AUROC. The above results suggest that the simple tool consisting of questions no. 5 and no. 7 in AUDIT is useful in identifying alcohol use disorders in Korean female drinkers.

  6. Integrated genomic and gene expression profiling identifies two major genomic circuits in urothelial carcinoma.

    Directory of Open Access Journals (Sweden)

    David Lindgren

    Full Text Available Similar to other malignancies, urothelial carcinoma (UC is characterized by specific recurrent chromosomal aberrations and gene mutations. However, the interconnection between specific genomic alterations, and how patterns of chromosomal alterations adhere to different molecular subgroups of UC, is less clear. We applied tiling resolution array CGH to 146 cases of UC and identified a number of regions harboring recurrent focal genomic amplifications and deletions. Several potential oncogenes were included in the amplified regions, including known oncogenes like E2F3, CCND1, and CCNE1, as well as new candidate genes, such as SETDB1 (1q21, and BCL2L1 (20q11. We next combined genome profiling with global gene expression, gene mutation, and protein expression data and identified two major genomic circuits operating in urothelial carcinoma. The first circuit was characterized by FGFR3 alterations, overexpression of CCND1, and 9q and CDKN2A deletions. The second circuit was defined by E3F3 amplifications and RB1 deletions, as well as gains of 5p, deletions at PTEN and 2q36, 16q, 20q, and elevated CDKN2A levels. TP53/MDM2 alterations were common for advanced tumors within the two circuits. Our data also suggest a possible RAS/RAF circuit. The tumors with worst prognosis showed a gene expression profile that indicated a keratinized phenotype. Taken together, our integrative approach revealed at least two separate networks of genomic alterations linked to the molecular diversity seen in UC, and that these circuits may reflect distinct pathways of tumor development.

  7. Genome Wide Association Study of SNP-, Gene-, and Pathway-based Approaches to Identify Genes Influencing Susceptibility to Staphylococcus aureus Infections

    Directory of Open Access Journals (Sweden)

    Zhan eYe

    2014-05-01

    Full Text Available Background: We conducted a genome-wide association study (GWAS to identify specific genetic variants that underlie susceptibility to disease caused by Staphylococcus aureus in humans. Methods: Cases (n=309 and controls (n=2,925 were genotyped at 508,921 single nucleotide polymorphisms (SNPs. Cases had at least one laboratory and clinician confirmed disease caused by S. aureus whereas controls did not. R-package (for SNP association, EIGENSOFT (to estimate and adjust for population stratification and gene- (VEGAS and pathway-based (DAVID, PANTHER, and Ingenuity Pathway Analysis analyses were performed.Results: No SNP reached genome-wide significance. Four SNPs exceeded the pConclusion: We identified potential susceptibility genes for S. aureus diseases in this preliminary study but confirmation by other studies is needed. The observed associations could be relevant given the complexity of S. aureus as a pathogen and its ability to exploit multiple biological pathways to cause infections in humans.

  8. Machine Learning Leveraging Genomes from Metagenomes Identifies Influential Antibiotic Resistance Genes in the Infant Gut Microbiome

    Science.gov (United States)

    Olm, Matthew R.; Morowitz, Michael J.

    2018-01-01

    ABSTRACT Antibiotic resistance in pathogens is extensively studied, and yet little is known about how antibiotic resistance genes of typical gut bacteria influence microbiome dynamics. Here, we leveraged genomes from metagenomes to investigate how genes of the premature infant gut resistome correspond to the ability of bacteria to survive under certain environmental and clinical conditions. We found that formula feeding impacts the resistome. Random forest models corroborated by statistical tests revealed that the gut resistome of formula-fed infants is enriched in class D beta-lactamase genes. Interestingly, Clostridium difficile strains harboring this gene are at higher abundance in formula-fed infants than C. difficile strains lacking this gene. Organisms with genes for major facilitator superfamily drug efflux pumps have higher replication rates under all conditions, even in the absence of antibiotic therapy. Using a machine learning approach, we identified genes that are predictive of an organism’s direction of change in relative abundance after administration of vancomycin and cephalosporin antibiotics. The most accurate results were obtained by reducing annotated genomic data to five principal components classified by boosted decision trees. Among the genes involved in predicting whether an organism increased in relative abundance after treatment are those that encode subclass B2 beta-lactamases and transcriptional regulators of vancomycin resistance. This demonstrates that machine learning applied to genome-resolved metagenomics data can identify key genes for survival after antibiotics treatment and predict how organisms in the gut microbiome will respond to antibiotic administration. IMPORTANCE The process of reconstructing genomes from environmental sequence data (genome-resolved metagenomics) allows unique insight into microbial systems. We apply this technique to investigate how the antibiotic resistance genes of bacteria affect their ability to

  9. TaHsfA6f is a transcriptional activator that regulates a suite of heat stress protection genes in wheat (Triticum aestivum L.) including previously unknown Hsf targets.

    Science.gov (United States)

    Xue, Gang-Ping; Drenth, Janneke; McIntyre, C Lynne

    2015-02-01

    Heat stress is a significant environmental factor adversely affecting crop yield. Crop adaptation to high-temperature environments requires transcriptional reprogramming of a suite of genes involved in heat stress protection. This study investigated the role of TaHsfA6f, a member of the A6 subclass of heat shock transcription factors, in the regulation of heat stress protection genes in Triticum aestivum (bread wheat), a poorly understood phenomenon in this crop species. Expression analysis showed that TaHsfA6f was expressed constitutively in green organs but was markedly up-regulated during heat stress. Overexpression of TaHsfA6f in transgenic wheat using a drought-inducible promoter resulted in up-regulation of heat shock proteins (HSPs) and a number of other heat stress protection genes that included some previously unknown Hsf target genes such as Golgi anti-apoptotic protein (GAAP) and the large isoform of Rubisco activase. Transgenic wheat plants overexpressing TaHsfA6f showed improved thermotolerance. Transactivation assays showed that TaHsfA6f activated the expression of reporter genes driven by the promoters of several HSP genes (TaHSP16.8, TaHSP17, TaHSP17.3, and TaHSP90.1-A1) as well as TaGAAP and TaRof1 (a co-chaperone) under non-stress conditions. DNA binding analysis revealed the presence of high-affinity TaHsfA6f-binding heat shock element-like motifs in the promoters of these six genes. Promoter truncation and mutagenesis analyses identified TaHsfA6f-binding elements that were responsible for transactivation of TaHSP90.1-A1 and TaGAAP by TaHsfA6f. These data suggest that TaHsfA6f is a transcriptional activator that directly regulates TaHSP, TaGAAP, and TaRof1 genes in wheat and its gene regulatory network has a positive impact on thermotolerance. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. A mechanistic explanation of popularity: genes, rule breaking, and evocative gene-environment correlations.

    Science.gov (United States)

    Burt, Alexandra

    2009-04-01

    Previous work has suggested that the serotonergic system plays a key role in "popularity" or likeability. A polymorphism within the 5HT-sub(2A) serotonin receptor gene (-G1438A) has also been associated with popularity, suggesting that genes may predispose individuals to particular social experiences. However, because genes cannot code directly for others' reactions, any legitimate association should be mediated via the individual's behavior (i.e., genes-->behaviors-->social consequences), a phenomenon referred to as an evocative gene-environment correlation (rGE). The current study aimed to identify one such mediating behavior. The author focused on rule breaking given its prior links to both the serotonergic system and to increased popularity during adolescence. Two samples of previously unacquainted late-adolescent boys completed a peer-based interaction paradigm designed to assess their popularity. Analyses revealed that rule breaking partially mediated the genetic effect on popularity, thereby furthering our understanding of the biological mechanisms that underlie popularity. Moreover, the present results represent the first meaningfully explicated evidence that genes predispose individuals not only to particular behaviors but also to the social consequences of those behaviors. (c) 2009 APA, all rights reserved.

  11. Transcriptome analysis reveals novel patterning and pigmentation genes underlying Heliconius butterfly wing pattern variation

    Directory of Open Access Journals (Sweden)

    Hines Heather M

    2012-06-01

    Full Text Available Abstract Background Heliconius butterfly wing pattern diversity offers a unique opportunity to investigate how natural genetic variation can drive the evolution of complex adaptive phenotypes. Positional cloning and candidate gene studies have identified a handful of regulatory and pigmentation genes implicated in Heliconius wing pattern variation, but little is known about the greater developmental networks within which these genes interact to pattern a wing. Here we took a large-scale transcriptomic approach to identify the network of genes involved in Heliconius wing pattern development and variation. This included applying over 140 transcriptome microarrays to assay gene expression in dissected wing pattern elements across a range of developmental stages and wing pattern morphs of Heliconius erato. Results We identified a number of putative early prepattern genes with color-pattern related expression domains. We also identified 51 genes differentially expressed in association with natural color pattern variation. Of these, the previously identified color pattern “switch gene” optix was recovered as the first transcript to show color-specific differential expression. Most differentially expressed genes were transcribed late in pupal development and have roles in cuticle formation or pigment synthesis. These include previously undescribed transporter genes associated with ommochrome pigmentation. Furthermore, we observed upregulation of melanin-repressing genes such as ebony and Dat1 in non-melanic patterns. Conclusions This study identifies many new genes implicated in butterfly wing pattern development and provides a glimpse into the number and types of genes affected by variation in genes that drive color pattern evolution.

  12. CGMIM: Automated text-mining of Online Mendelian Inheritance in Man (OMIM to identify genetically-associated cancers and candidate genes

    Directory of Open Access Journals (Sweden)

    Jones Steven

    2005-03-01

    Full Text Available Abstract Background Online Mendelian Inheritance in Man (OMIM is a computerized database of information about genes and heritable traits in human populations, based on information reported in the scientific literature. Our objective was to establish an automated text-mining system for OMIM that will identify genetically-related cancers and cancer-related genes. We developed the computer program CGMIM to search for entries in OMIM that are related to one or more cancer types. We performed manual searches of OMIM to verify the program results. Results In the OMIM database on September 30, 2004, CGMIM identified 1943 genes related to cancer. BRCA2 (OMIM *164757, BRAF (OMIM *164757 and CDKN2A (OMIM *600160 were each related to 14 types of cancer. There were 45 genes related to cancer of the esophagus, 121 genes related to cancer of the stomach, and 21 genes related to both. Analysis of CGMIM results indicate that fewer than three gene entries in OMIM should mention both, and the more than seven-fold discrepancy suggests cancers of the esophagus and stomach are more genetically related than current literature suggests. Conclusion CGMIM identifies genetically-related cancers and cancer-related genes. In several ways, cancers with shared genetic etiology are anticipated to lead to further etiologic hypotheses and advances regarding environmental agents. CGMIM results are posted monthly and the source code can be obtained free of charge from the BC Cancer Research Centre website http://www.bccrc.ca/ccr/CGMIM.

  13. A small interfering RNA screen of genes involved in DNA repair identifies tumor-specific radiosensitization by POLQ knockdown

    DEFF Research Database (Denmark)

    Higgins, Geoff S; Prevo, Remko; Lee, Yin-Fai

    2010-01-01

    The effectiveness of radiotherapy treatment could be significantly improved if tumor cells could be rendered more sensitive to ionizing radiation (IR) without altering the sensitivity of normal tissues. However, many of the key therapeutically exploitable mechanisms that determine intrinsic tumor...... radiosensitivity are largely unknown. We have conducted a small interfering RNA (siRNA) screen of 200 genes involved in DNA damage repair aimed at identifying genes whose knockdown increased tumor radiosensitivity. Parallel siRNA screens were conducted in irradiated and unirradiated tumor cells (SQ20B......) and irradiated normal tissue cells (MRC5). Using gammaH2AX foci at 24 hours after IR, we identified several genes, such as BRCA2, Lig IV, and XRCC5, whose knockdown is known to cause increased cell radiosensitivity, thereby validating the primary screening end point. In addition, we identified POLQ (DNA...

  14. Genes2WordCloud: a quick way to identify biological themes from gene lists and free text

    Directory of Open Access Journals (Sweden)

    Ma'ayan Avi

    2011-10-01

    Full Text Available Abstract Background Word-clouds recently emerged on the web as a solution for quickly summarizing text by maximizing the display of most relevant terms about a specific topic in the minimum amount of space. As biologists are faced with the daunting amount of new research data commonly presented in textual formats, word-clouds can be used to summarize and represent biological and/or biomedical content for various applications. Results Genes2WordCloud is a web application that enables users to quickly identify biological themes from gene lists and research relevant text by constructing and displaying word-clouds. It provides users with several different options and ideas for the sources that can be used to generate a word-cloud. Different options for rendering and coloring the word-clouds give users the flexibility to quickly generate customized word-clouds of their choice. Methods Genes2WordCloud is a word-cloud generator and a word-cloud viewer that is based on WordCram implemented using Java, Processing, AJAX, mySQL, and PHP. Text is fetched from several sources and then processed to extract the most relevant terms with their computed weights based on word frequencies. Genes2WordCloud is freely available for use online; it is open source software and is available for installation on any web-site along with supporting documentation at http://www.maayanlab.net/G2W. Conclusions Genes2WordCloud provides a useful way to summarize and visualize large amounts of textual biological data or to find biological themes from several different sources. The open source availability of the software enables users to implement customized word-clouds on their own web-sites and desktop applications.

  15. Candidate chemosensory genes identified in the endoparasitoid Meteorus pulchricornis (Hymenoptera: Braconidae) by antennal transcriptome analysis.

    Science.gov (United States)

    Sheng, Sheng; Liao, Cheng-Wu; Zheng, Yu; Zhou, Yu; Xu, Yan; Song, Wen-Miao; He, Peng; Zhang, Jian; Wu, Fu-An

    2017-06-01

    Meteorus pulchricornis is an endoparasitoid wasp which attacks the larvae of various lepidopteran pests. We present the first antennal transcriptome dataset for M. pulchricornis. A total of 48,845,072 clean reads were obtained and 34,967 unigenes were assembled. Of these, 15,458 unigenes showed a significant similarity (E-value <10 -5 ) to known proteins in the NCBI non-redundant protein database. Gene ontology (GO) and cluster of orthologous groups (COG) analyses were used to classify the functions of M. pulchricornis antennae genes. We identified 16 putative odorant-binding protein (OBP) genes, eight chemosensory protein (CSP) genes, 99 olfactory receptor (OR) genes, 19 ionotropic receptor (IR) genes and one sensory neuron membrane protein (SNMP) gene. BLASTx best hit results and phylogenetic analysis both indicated that these chemosensory genes were most closely related to those found in other hymenopteran species. Real-time quantitative PCR assays showed that 14 MpulOBP genes were antennae-specific. Of these, MpulOBP6, MpulOBP9, MpulOBP10, MpulOBP12, MpulOBP15 and MpulOBP16 were found to have greater expression in the antennae than in other body parts, while MpulOBP2 and MpulOBP3 were expressed predominately in the legs and abdomens, respectively. These results might provide a foundation for future studies of olfactory genes and chemoreception in M. pulchricornis. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. The Use of High-Density SNP Array to Map Homozygosity in Consanguineous Families to Efficiently Identify Candidate Genes: Application to Woodhouse-Sakati Syndrome

    Directory of Open Access Journals (Sweden)

    Molly B. Sheridan

    2015-01-01

    Full Text Available Two consanguineous Qatari siblings presented for evaluation: a 17-4/12-year-old male with hypogonadotropic hypogonadism, alopecia, intellectual disability, and microcephaly and his 19-year-old sister with primary amenorrhea, alopecia, and normal cognition. Both required hormone treatment to produce secondary sex characteristics and pubertal development beyond Tanner 1. SNP array analysis of both probands was performed to detect shared regions of homozygosity which may harbor homozygous mutations in a gene causing their common features of abnormal pubertal development, alopecia, and variable cognitive delay. Our patients shared multiple homozygous genomic regions; ten shared regions were >1 Mb in length and constituted 0.99% of the genome. DCAF17, encoding a transmembrane nuclear protein of uncertain function, was the only gene identified in a homozygous region known to cause hypogonadotropic hypogonadism. DCAF17 mutations are associated with Woodhouse-Sakati syndrome, a rare disorder characterized by alopecia, hypogonadotropic hypogonadism, sensorineural hearing loss, diabetes mellitus, and extrapyramidal movements. Sequencing of the coding exons and flanking intronic regions of DCAF17 in the proband revealed homozygosity for a previously described founder mutation (c.436delC. Targeted DCAF17 sequencing of his affected sibling revealed the same homozygous mutation. This family illustrates the utility of SNP array testing in consanguineous families to efficiently and inexpensively identify regions of genomic homozygosity in which genetic candidates for recessive conditions can be identified.

  17. Novel mutations and phenotypic associations identified through APC, MUTYH, NTHL1, POLD1, POLE gene analysis in Indian Familial Adenomatous Polyposis cohort.

    Science.gov (United States)

    Khan, Nikhat; Lipsa, Anuja; Arunachal, Gautham; Ramadwar, Mukta; Sarin, Rajiv

    2017-05-22

    Colo-Rectal Cancer is a common cancer worldwide with 5-10% cases being hereditary. Familial Adenomatous Polyposis (FAP) syndrome is due to germline mutations in the APC or rarely MUTYH gene. NTHL1, POLD1, POLE have been recently reported in previously unexplained FAP cases. Unlike the Caucasian population, FAP phenotype and its genotypic associations have not been widely studied in several geoethnic groups. We report the first FAP cohort from South Asia and the only non-Caucasian cohort with comprehensive analysis of APC, MUTYH, NTHL1, POLD1, POLE genes. In this cohort of 112 individuals from 53 FAP families, we detected germline APC mutations in 60 individuals (45 families) and biallelic MUTYH mutations in 4 individuals (2 families). No NTHL1, POLD1, POLE mutations were identified. Fifteen novel APC mutations and a new Indian APC mutational hotspot at codon 935 were identified. Eight very rare FAP phenotype or phenotypes rarely associated with mutations outside specific APC regions were observed. APC genotype-phenotype association studies in different geo-ethnic groups can enrich the existing knowledge about phenotypic consequences of distinct APC mutations and guide counseling and risk management in different populations. A stepwise cost-effective mutation screening approach is proposed for genetic testing of south Asian FAP patients.

  18. Comparing cancer vs normal gene expression profiles identifies new disease entities and common transcriptional programs in AML patients

    DEFF Research Database (Denmark)

    Rapin, Nicolas; Bagger, Frederik Otzen; Jendholm, Johan

    2014-01-01

    Gene expression profiling has been used extensively to characterize cancer, identify novel subtypes, and improve patient stratification. However, it has largely failed to identify transcriptional programs that differ between cancer and corresponding normal cells and has not been efficient in iden......-karyotype AML, which allowed for the generation of a highly prognostic survival signature. Collectively, our CvN method holds great potential as a tool for the analysis of gene expression profiles of cancer patients....

  19. Does parental divorce moderate the heritability of body dissatisfaction? An extension of previous gene-environment interaction effects.

    Science.gov (United States)

    O'Connor, Shannon M; Klump, Kelly L; VanHuysse, Jessica L; McGue, Matt; Iacono, William

    2016-02-01

    Previous research suggests that parental divorce moderates genetic influences on body dissatisfaction. Specifically, the heritability of body dissatisfaction is higher in children of divorced versus intact families, suggesting possible gene-environment interaction effects. However, prior research is limited to a single, self-reported measure of body dissatisfaction. The primary aim of this study was to examine whether these findings extend to a different dimension of body dissatisfaction: body image perceptions. Participants were 1,534 female twins from the Minnesota Twin Family Study, aged 16-20 years. The Body Rating Scale (BRS) was used to assess body image perceptions. Although BRS scores were heritable in twins from divorced and intact families, the heritability estimates in the divorced group were not significantly greater than estimates in the intact group. However, there were differences in nonshared environmental effects, where the magnitude of these environmental influences was larger in the divorced as compared with the intact families. Different dimensions of body dissatisfaction (i.e., negative self-evaluation versus body image perceptions) may interact with environmental risk, such as parental divorce, in discrete ways. Future research should examine this possibility and explore differential gene-environment interactions using diverse measures. © 2015 Wiley Periodicals, Inc.

  20. Guided genetic screen to identify genes essential in the regeneration of hair cells and other tissues.

    Science.gov (United States)

    Pei, Wuhong; Xu, Lisha; Huang, Sunny C; Pettie, Kade; Idol, Jennifer; Rissone, Alberto; Jimenez, Erin; Sinclair, Jason W; Slevin, Claire; Varshney, Gaurav K; Jones, MaryPat; Carrington, Blake; Bishop, Kevin; Huang, Haigen; Sood, Raman; Lin, Shuo; Burgess, Shawn M

    2018-01-01

    Regenerative medicine holds great promise for both degenerative diseases and traumatic tissue injury which represent significant challenges to the health care system. Hearing loss, which affects hundreds of millions of people worldwide, is caused primarily by a permanent loss of the mechanosensory receptors of the inner ear known as hair cells. This failure to regenerate hair cells after loss is limited to mammals, while all other non-mammalian vertebrates tested were able to completely regenerate these mechanosensory receptors after injury. To understand the mechanism of hair cell regeneration and its association with regeneration of other tissues, we performed a guided mutagenesis screen using zebrafish lateral line hair cells as a screening platform to identify genes that are essential for hair cell regeneration, and further investigated how genes essential for hair cell regeneration were involved in the regeneration of other tissues. We created genetic mutations either by retroviral insertion or CRISPR/Cas9 approaches, and developed a high-throughput screening pipeline for analyzing hair cell development and regeneration. We screened 254 gene mutations and identified 7 genes specifically affecting hair cell regeneration. These hair cell regeneration genes fell into distinct and somewhat surprising functional categories. By examining the regeneration of caudal fin and liver, we found these hair cell regeneration genes often also affected other types of tissue regeneration. Therefore, our results demonstrate guided screening is an effective approach to discover regeneration candidates, and hair cell regeneration is associated with other tissue regeneration.

  1. Integrative multi-platform meta-analysis of gene expression profiles in pancreatic ductal adenocarcinoma patients for identifying novel diagnostic biomarkers.

    Science.gov (United States)

    Irigoyen, Antonio; Jimenez-Luna, Cristina; Benavides, Manuel; Caba, Octavio; Gallego, Javier; Ortuño, Francisco Manuel; Guillen-Ponce, Carmen; Rojas, Ignacio; Aranda, Enrique; Torres, Carolina; Prados, Jose

    2018-01-01

    Applying differentially expressed genes (DEGs) to identify feasible biomarkers in diseases can be a hard task when working with heterogeneous datasets. Expression data are strongly influenced by technology, sample preparation processes, and/or labeling methods. The proliferation of different microarray platforms for measuring gene expression increases the need to develop models able to compare their results, especially when different technologies can lead to signal values that vary greatly. Integrative meta-analysis can significantly improve the reliability and robustness of DEG detection. The objective of this work was to develop an integrative approach for identifying potential cancer biomarkers by integrating gene expression data from two different platforms. Pancreatic ductal adenocarcinoma (PDAC), where there is an urgent need to find new biomarkers due its late diagnosis, is an ideal candidate for testing this technology. Expression data from two different datasets, namely Affymetrix and Illumina (18 and 36 PDAC patients, respectively), as well as from 18 healthy controls, was used for this study. A meta-analysis based on an empirical Bayesian methodology (ComBat) was then proposed to integrate these datasets. DEGs were finally identified from the integrated data by using the statistical programming language R. After our integrative meta-analysis, 5 genes were commonly identified within the individual analyses of the independent datasets. Also, 28 novel genes that were not reported by the individual analyses ('gained' genes) were also discovered. Several of these gained genes have been already related to other gastroenterological tumors. The proposed integrative meta-analysis has revealed novel DEGs that may play an important role in PDAC and could be potential biomarkers for diagnosing the disease.

  2. Identifying novel genes in C. elegans using SAGE tags

    Directory of Open Access Journals (Sweden)

    Chen Nansheng

    2010-12-01

    Full Text Available Abstract Background Despite extensive efforts devoted to predicting protein-coding genes in genome sequences, many bona fide genes have not been found and many existing gene models are not accurate in all sequenced eukaryote genomes. This situation is partly explained by the fact that gene prediction programs have been developed based on our incomplete understanding of gene feature information such as splicing and promoter characteristics. Additionally, full-length cDNAs of many genes and their isoforms are hard to obtain due to their low level or rare expression. In order to obtain full-length sequences of all protein-coding genes, alternative approaches are required. Results In this project, we have developed a method of reconstructing full-length cDNA sequences based on short expressed sequence tags which is called sequence tag-based amplification of cDNA ends (STACE. Expressed tags are used as anchors for retrieving full-length transcripts in two rounds of PCR amplification. We have demonstrated the application of STACE in reconstructing full-length cDNA sequences using expressed tags mined in an array of serial analysis of gene expression (SAGE of C. elegans cDNA libraries. We have successfully applied STACE to recover sequence information for 12 genes, for two of which we found isoforms. STACE was used to successfully recover full-length cDNA sequences for seven of these genes. Conclusions The STACE method can be used to effectively reconstruct full-length cDNA sequences of genes that are under-represented in cDNA sequencing projects and have been missed by existing gene prediction methods, but their existence has been suggested by short sequence tags such as SAGE tags.

  3. Ginger and turmeric expressed sequence tags identify signature genes for rhizome identity and development and the biosynthesis of curcuminoids, gingerols and terpenoids

    Science.gov (United States)

    2013-01-01

    Background Ginger (Zingiber officinale) and turmeric (Curcuma longa) accumulate important pharmacologically active metabolites at high levels in their rhizomes. Despite their importance, relatively little is known regarding gene expression in the rhizomes of ginger and turmeric. Results In order to identify rhizome-enriched genes and genes encoding specialized metabolism enzymes and pathway regulators, we evaluated an assembled collection of expressed sequence tags (ESTs) from eight different ginger and turmeric tissues. Comparisons to publicly available sorghum rhizome ESTs revealed a total of 777 gene transcripts expressed in ginger/turmeric and sorghum rhizomes but apparently absent from other tissues. The list of rhizome-specific transcripts was enriched for genes associated with regulation of tissue growth, development, and transcription. In particular, transcripts for ethylene response factors and AUX/IAA proteins appeared to accumulate in patterns mirroring results from previous studies regarding rhizome growth responses to exogenous applications of auxin and ethylene. Thus, these genes may play important roles in defining rhizome growth and development. Additional associations were made for ginger and turmeric rhizome-enriched MADS box transcription factors, their putative rhizome-enriched homologs in sorghum, and rhizomatous QTLs in rice. Additionally, analysis of both primary and specialized metabolism genes indicates that ginger and turmeric rhizomes are primarily devoted to the utilization of leaf supplied sucrose for the production and/or storage of specialized metabolites associated with the phenylpropanoid pathway and putative type III polyketide synthase gene products. This finding reinforces earlier hypotheses predicting roles of this enzyme class in the production of curcuminoids and gingerols. Conclusion A significant set of genes were found to be exclusively or preferentially expressed in the rhizome of ginger and turmeric. Specific

  4. Comparison of Expression Profiles in Ovarian Epithelium In Vivo and Ovarian Cancer Identifies Novel Candidate Genes Involved in Disease Pathogenesis

    Science.gov (United States)

    Emmanuel, Catherine; Gava, Natalie; Kennedy, Catherine; Balleine, Rosemary L.; Sharma, Raghwa; Wain, Gerard; Brand, Alison; Hogg, Russell; Etemadmoghadam, Dariush; George, Joshy; Birrer, Michael J.; Clarke, Christine L.; Chenevix-Trench, Georgia; Bowtell, David D. L.; Harnett, Paul R.; deFazio, Anna

    2011-01-01

    Molecular events leading to epithelial ovarian cancer are poorly understood but ovulatory hormones and a high number of life-time ovulations with concomitant proliferation, apoptosis, and inflammation, increases risk. We identified genes that are regulated during the estrous cycle in murine ovarian surface epithelium and analysed these profiles to identify genes dysregulated in human ovarian cancer, using publically available datasets. We identified 338 genes that are regulated in murine ovarian surface epithelium during the estrous cycle and dysregulated in ovarian cancer. Six of seven candidates selected for immunohistochemical validation were expressed in serous ovarian cancer, inclusion cysts, ovarian surface epithelium and in fallopian tube epithelium. Most were overexpressed in ovarian cancer compared with ovarian surface epithelium and/or inclusion cysts (EpCAM, EZH2, BIRC5) although BIRC5 and EZH2 were expressed as highly in fallopian tube epithelium as in ovarian cancer. We prioritised the 338 genes for those likely to be important for ovarian cancer development by in silico analyses of copy number aberration and mutation using publically available datasets and identified genes with established roles in ovarian cancer as well as novel genes for which we have evidence for involvement in ovarian cancer. Chromosome segregation emerged as an important process in which genes from our list of 338 were over-represented including two (BUB1, NCAPD2) for which there is evidence of amplification and mutation. NUAK2, upregulated in ovarian surface epithelium in proestrus and predicted to have a driver mutation in ovarian cancer, was examined in a larger cohort of serous ovarian cancer where patients with lower NUAK2 expression had shorter overall survival. In conclusion, defining genes that are activated in normal epithelium in the course of ovulation that are also dysregulated in cancer has identified a number of pathways and novel candidate genes that may contribute

  5. Comparative Transcriptome Analysis Identifies Putative Genes Involved in the Biosynthesis of Xanthanolides in Xanthium strumarium L.

    Science.gov (United States)

    Li, Yuanjun; Gou, Junbo; Chen, Fangfang; Li, Changfu; Zhang, Yansheng

    2016-01-01

    Xanthium strumarium L. is a traditional Chinese herb belonging to the Asteraceae family. The major bioactive components of this plant are sesquiterpene lactones (STLs), which include the xanthanolides. To date, the biogenesis of xanthanolides, especially their downstream pathway, remains largely unknown. In X. strumarium, xanthanolides primarily accumulate in its glandular trichomes. To identify putative gene candidates involved in the biosynthesis of xanthanolides, three X. strumarium transcriptomes, which were derived from the young leaves of two different cultivars and the purified glandular trichomes from one of the cultivars, were constructed in this study. In total, 157 million clean reads were generated and assembled into 91,861 unigenes, of which 59,858 unigenes were successfully annotated. All the genes coding for known enzymes in the upstream pathway to the biosynthesis of xanthanolides were present in the X. strumarium transcriptomes. From a comparative analysis of the X. strumarium transcriptomes, this study identified a number of gene candidates that are putatively involved in the downstream pathway to the synthesis of xanthanolides, such as four unigenes encoding CYP71 P450s, 50 unigenes for dehydrogenases, and 27 genes for acetyltransferases. The possible functions of these four CYP71 candidates are extensively discussed. In addition, 116 transcription factors that are highly expressed in X. strumarium glandular trichomes were also identified. Their possible regulatory roles in the biosynthesis of STLs are discussed. The global transcriptomic data for X. strumarium should provide a valuable resource for further research into the biosynthesis of xanthanolides.

  6. Cry-Bt identifier: a biological database for PCR detection of Cry genes present in transgenic plants.

    Science.gov (United States)

    Singh, Vinay Kumar; Ambwani, Sonu; Marla, Soma; Kumar, Anil

    2009-10-23

    We describe the development of a user friendly tool that would assist in the retrieval of information relating to Cry genes in transgenic crops. The tool also helps in detection of transformed Cry genes from Bacillus thuringiensis present in transgenic plants by providing suitable designed primers for PCR identification of these genes. The tool designed based on relational database model enables easy retrieval of information from the database with simple user queries. The tool also enables users to access related information about Cry genes present in various databases by interacting with different sources (nucleotide sequences, protein sequence, sequence comparison tools, published literature, conserved domains, evolutionary and structural data). http://insilicogenomics.in/Cry-btIdentifier/welcome.html.

  7. Gene Expression and the Diversity of Identified Neurons

    OpenAIRE

    Buck, L.; Stein, R.; Palazzolo, M.; Anderson, D. J.; Axel, R.

    1983-01-01

    Nervous systems consist of diverse populations of neurons that are anatomically and functionally distinct. The diversity of neurons and the precision with which they are interconnected suggest that specific genes or sets of genes are activated in some neurons but not expressed in others. Experimentally, this problem may be considered at two levels. First, what is the total number of genes expressed in the brain, and how are they distributed among the different populations of neurons? Second, ...

  8. Genome-wide gene-environment study identifies glutamate receptor gene GRIN2A as a Parkinson's disease modifier gene via interaction with coffee.

    OpenAIRE

    Taye H Hamza; Honglei Chen; Erin M Hill-Burns; Shannon L Rhodes; Jennifer Montimurro; Denise M Kay; Albert Tenesa; Victoria I Kusel; Patricia Sheehan; Muthukrishnan Eaaswarkhanth; Dora Yearout; Ali Samii; John W Roberts; Pinky Agarwal; Yvette Bordelon

    2011-01-01

    Our aim was to identify genes that influence the inverse association of coffee with the risk of developing Parkinson's disease (PD). We used genome-wide genotype data and lifetime caffeinated-coffee-consumption data on 1,458 persons with PD and 931 without PD from the NeuroGenetics Research Consortium (NGRC), and we performed a genome-wide association and interaction study (GWAIS), testing each SNP's main-effect plus its interaction with coffee, adjusting for sex, age, and two principal compo...

  9. Network-Based Method for Identifying Co- Regeneration Genes in Bone, Dentin, Nerve and Vessel Tissues.

    Science.gov (United States)

    Chen, Lei; Pan, Hongying; Zhang, Yu-Hang; Feng, Kaiyan; Kong, XiangYin; Huang, Tao; Cai, Yu-Dong

    2017-10-02

    Bone and dental diseases are serious public health problems. Most current clinical treatments for these diseases can produce side effects. Regeneration is a promising therapy for bone and dental diseases, yielding natural tissue recovery with few side effects. Because soft tissues inside the bone and dentin are densely populated with nerves and vessels, the study of bone and dentin regeneration should also consider the co-regeneration of nerves and vessels. In this study, a network-based method to identify co-regeneration genes for bone, dentin, nerve and vessel was constructed based on an extensive network of protein-protein interactions. Three procedures were applied in the network-based method. The first procedure, searching, sought the shortest paths connecting regeneration genes of one tissue type with regeneration genes of other tissues, thereby extracting possible co-regeneration genes. The second procedure, testing, employed a permutation test to evaluate whether possible genes were false discoveries; these genes were excluded by the testing procedure. The last procedure, screening, employed two rules, the betweenness ratio rule and interaction score rule, to select the most essential genes. A total of seventeen genes were inferred by the method, which were deemed to contribute to co-regeneration of at least two tissues. All these seventeen genes were extensively discussed to validate the utility of the method.

  10. De novo RNA sequencing transcriptome of Rhododendron obtusum identified the early heat response genes involved in the transcriptional regulation of photosynthesis.

    Directory of Open Access Journals (Sweden)

    Linchuan Fang

    Full Text Available Rhododendron spp. is an important ornamental species that is widely cultivated for landscape worldwide. Heat stress is a major obstacle for its cultivation in south China. Previous studies on rhododendron principally focused on its physiological and biochemical processes, which are involved in a series of stress tolerance. However, molecular or genetic properties of rhododendron's response to heat stress are still poorly understood. The phenotype and chlorophyll fluorescence kinetics parameters of four rhododendron cultivars were compared under normal or heat stress conditions, and a cultivar with highest heat tolerance, "Yanzhimi" (R. obtusum was selected for transcriptome sequencing. A total of 325,429,240 high quality reads were obtained and assembled into 395,561 transcripts and 92,463 unigenes. Functional annotation showed that 38,724 unigenes had sequence similarity to known genes in at least one of the proteins or nucleotide databases used in this study. These 38,724 unigenes were categorized into 51 functional groups based on Gene Ontology classification and were blasted to 24 known cluster of orthologous groups. A total of 973 identified unigenes belonged to 57 transcription factor families, including the stress-related HSF, DREB, ZNF, and NAC genes. Photosynthesis was significantly enriched in the Kyoto Encyclopedia of Genes and Genomes pathway, and the changed expression pattern was illustrated. The key pathways and signaling components that contribute to heat tolerance in rhododendron were revealed. These results provide a potentially valuable resource that can be used for heat-tolerance breeding.

  11. De novo RNA sequencing transcriptome of Rhododendron obtusum identified the early heat response genes involved in the transcriptional regulation of photosynthesis

    Science.gov (United States)

    Tong, Jun; Dong, Yanfang; Xu, Dongyun; Mao, Jing; Zhou, Yuan

    2017-01-01

    Rhododendron spp. is an important ornamental species that is widely cultivated for landscape worldwide. Heat stress is a major obstacle for its cultivation in south China. Previous studies on rhododendron principally focused on its physiological and biochemical processes, which are involved in a series of stress tolerance. However, molecular or genetic properties of rhododendron’s response to heat stress are still poorly understood. The phenotype and chlorophyll fluorescence kinetics parameters of four rhododendron cultivars were compared under normal or heat stress conditions, and a cultivar with highest heat tolerance, “Yanzhimi” (R. obtusum) was selected for transcriptome sequencing. A total of 325,429,240 high quality reads were obtained and assembled into 395,561 transcripts and 92,463 unigenes. Functional annotation showed that 38,724 unigenes had sequence similarity to known genes in at least one of the proteins or nucleotide databases used in this study. These 38,724 unigenes were categorized into 51 functional groups based on Gene Ontology classification and were blasted to 24 known cluster of orthologous groups. A total of 973 identified unigenes belonged to 57 transcription factor families, including the stress-related HSF, DREB, ZNF, and NAC genes. Photosynthesis was significantly enriched in the Kyoto Encyclopedia of Genes and Genomes pathway, and the changed expression pattern was illustrated. The key pathways and signaling components that contribute to heat tolerance in rhododendron were revealed. These results provide a potentially valuable resource that can be used for heat-tolerance breeding. PMID:29059200

  12. A comparative genomics screen identifies a Sinorhizobium meliloti 1021 sodM-like gene strongly expressed within host plant nodules

    Directory of Open Access Journals (Sweden)

    Queiroux Clothilde

    2012-05-01

    Full Text Available Abstract Background We have used the genomic data in the Integrated Microbial Genomes system of the Department of Energy’s Joint Genome Institute to make predictions about rhizobial open reading frames that play a role in nodulation of host plants. The genomic data was screened by searching for ORFs conserved in α-proteobacterial rhizobia, but not conserved in closely-related non-nitrogen-fixing α-proteobacteria. Results Using this approach, we identified many genes known to be involved in nodulation or nitrogen fixation, as well as several new candidate genes. We knocked out selected new genes and assayed for the presence of nodulation phenotypes and/or nodule-specific expression. One of these genes, SMc00911, is strongly expressed by bacterial cells within host plant nodules, but is expressed minimally by free-living bacterial cells. A strain carrying an insertion mutation in SMc00911 is not defective in the symbiosis with host plants, but in contrast to expectations, this mutant strain is able to out-compete the S. meliloti 1021 wild type strain for nodule occupancy in co-inoculation experiments. The SMc00911 ORF is predicted to encode a “SodM-like” (superoxide dismutase-like protein containing a rhodanese sulfurtransferase domain at the N-terminus and a chromate-resistance superfamily domain at the C-terminus. Several other ORFs (SMb20360, SMc01562, SMc01266, SMc03964, and the SMc01424-22 operon identified in the screen are expressed at a moderate level by bacteria within nodules, but not by free-living bacteria. Conclusions Based on the analysis of ORFs identified in this study, we conclude that this comparative genomics approach can identify rhizobial genes involved in the nitrogen-fixing symbiosis with host plants, although none of the newly identified genes were found to be essential for this process.

  13. De Novo assembly of the Japanese flounder (Paralichthys olivaceus spleen transcriptome to identify putative genes involved in immunity.

    Directory of Open Access Journals (Sweden)

    Lin Huang

    Full Text Available Japanese flounder (Paralichthys olivaceus is an economically important marine fish in Asia and has suffered from disease outbreaks caused by various pathogens, which requires more information for immune relevant genes on genome background. However, genomic and transcriptomic data for Japanese flounder remain scarce, which limits studies on the immune system of this species. In this study, we characterized the Japanese flounder spleen transcriptome using an Illumina paired-end sequencing platform to identify putative genes involved in immunity.A cDNA library from the spleen of P. olivaceus was constructed and randomly sequenced using an Illumina technique. The removal of low quality reads generated 12,196,968 trimmed reads, which assembled into 96,627 unigenes. A total of 21,391 unigenes (22.14% were annotated in the NCBI Nr database, and only 1.1% of the BLASTx top-hits matched P. olivaceus protein sequences. Approximately 12,503 (58.45% unigenes were categorized into three Gene Ontology groups, 19,547 (91.38% were classified into 26 Cluster of Orthologous Groups, and 10,649 (49.78% were assigned to six Kyoto Encyclopedia of Genes and Genomes pathways. Furthermore, 40,928 putative simple sequence repeats and 47, 362 putative single nucleotide polymorphisms were identified. Importantly, we identified 1,563 putative immune-associated unigenes that mapped to 15 immune signaling pathways.The P. olivaceus transciptome data provides a rich source to discover and identify new genes, and the immune-relevant sequences identified here will facilitate our understanding of the mechanisms involved in the immune response. Furthermore, the plentiful potential SSRs and SNPs found in this study are important resources with respect to future development of a linkage map or marker assisted breeding programs for the flounder.

  14. A recessive contiguous gene deletion causing infantile hyperinsulinism, enteropathy and deafness identifies the Usher type 1C gene.

    Science.gov (United States)

    Bitner-Glindzicz, M; Lindley, K J; Rutland, P; Blaydon, D; Smith, V V; Milla, P J; Hussain, K; Furth-Lavi, J; Cosgrove, K E; Shepherd, R M; Barnes, P D; O'Brien, R E; Farndon, P A; Sowden, J; Liu, X Z; Scanlan, M J; Malcolm, S; Dunne, M J; Aynsley-Green, A; Glaser, B

    2000-09-01

    Usher syndrome type 1 describes the association of profound, congenital sensorineural deafness, vestibular hypofunction and childhood onset retinitis pigmentosa. It is an autosomal recessive condition and is subdivided on the basis of linkage analysis into types 1A through 1E. Usher type 1C maps to the region containing the genes ABCC8 and KCNJ11 (encoding components of ATP-sensitive K + (KATP) channels), which may be mutated in patients with hyperinsulinism. We identified three individuals from two consanguineous families with severe hyperinsulinism, profound congenital sensorineural deafness, enteropathy and renal tubular dysfunction. The molecular basis of the disorder is a homozygous 122-kb deletion of 11p14-15, which includes part of ABCC8 and overlaps with the locus for Usher syndrome type 1C and DFNB18. The centromeric boundary of this deletion includes part of a gene shown to be mutated in families with type 1C Usher syndrome, and is hence assigned the name USH1C. The pattern of expression of the USH1C protein is consistent with the clinical features exhibited by individuals with the contiguous gene deletion and with isolated Usher type 1C.

  15. Regulatory network analysis of Epstein-Barr virus identifies functional modules and hub genes involved in infectious mononucleosis.

    Science.gov (United States)

    Poorebrahim, Mansour; Salarian, Ali; Najafi, Saeideh; Abazari, Mohammad Foad; Aleagha, Maryam Nouri; Dadras, Mohammad Nasr; Jazayeri, Seyed Mohammad; Ataei, Atousa; Poortahmasebi, Vahdat

    2017-05-01

    Epstein-Barr virus (EBV) is the most common cause of infectious mononucleosis (IM) and establishes lifetime infection associated with a variety of cancers and autoimmune diseases. The aim of this study was to develop an integrative gene regulatory network (GRN) approach and overlying gene expression data to identify the representative subnetworks for IM and EBV latent infection (LI). After identifying differentially expressed genes (DEGs) in both IM and LI gene expression profiles, functional annotations were applied using gene ontology (GO) and BiNGO tools, and construction of GRNs, topological analysis and identification of modules were carried out using several plugins of Cytoscape. In parallel, a human-EBV GRN was generated using the Hu-Vir database for further analyses. Our analysis revealed that the majority of DEGs in both IM and LI were involved in cell-cycle and DNA repair processes. However, these genes showed a significant negative correlation in the IM and LI states. Furthermore, cyclin-dependent kinase 2 (CDK2) - a hub gene with the highest centrality score - appeared to be the key player in cell cycle regulation in IM disease. The most significant functional modules in the IM and LI states were involved in the regulation of the cell cycle and apoptosis, respectively. Human-EBV network analysis revealed several direct targets of EBV proteins during IM disease. Our study provides an important first report on the response to IM/LI EBV infection in humans. An important aspect of our data was the upregulation of genes associated with cell cycle progression and proliferation.

  16. Relating genes to function: identifying enriched transcription factors using the ENCODE ChIP-Seq significance tool.

    Science.gov (United States)

    Auerbach, Raymond K; Chen, Bin; Butte, Atul J

    2013-08-01

    Biological analysis has shifted from identifying genes and transcripts to mapping these genes and transcripts to biological functions. The ENCODE Project has generated hundreds of ChIP-Seq experiments spanning multiple transcription factors and cell lines for public use, but tools for a biomedical scientist to analyze these data are either non-existent or tailored to narrow biological questions. We present the ENCODE ChIP-Seq Significance Tool, a flexible web application leveraging public ENCODE data to identify enriched transcription factors in a gene or transcript list for comparative analyses. The ENCODE ChIP-Seq Significance Tool is written in JavaScript on the client side and has been tested on Google Chrome, Apple Safari and Mozilla Firefox browsers. Server-side scripts are written in PHP and leverage R and a MySQL database. The tool is available at http://encodeqt.stanford.edu. abutte@stanford.edu Supplementary material is available at Bioinformatics online.

  17. Nociceptor-Enriched Genes Required for Normal Thermal Nociception

    Directory of Open Access Journals (Sweden)

    Ken Honjo

    2016-07-01

    Full Text Available Here, we describe a targeted reverse genetic screen for thermal nociception genes in Drosophila larvae. Using laser capture microdissection and microarray analyses of nociceptive and non-nociceptive neurons, we identified 275 nociceptor-enriched genes. We then tested the function of the enriched genes with nociceptor-specific RNAi and thermal nociception assays. Tissue-specific RNAi targeted against 14 genes caused insensitive thermal nociception while targeting of 22 genes caused hypersensitive thermal nociception. Previously uncategorized genes were named for heat resistance (i.e., boilerman, fire dancer, oven mitt, trivet, thawb, and bunker gear or heat sensitivity (firelighter, black match, eucalyptus, primacord, jet fuel, detonator, gasoline, smoke alarm, and jetboil. Insensitive nociception phenotypes were often associated with severely reduced branching of nociceptor neurites and hyperbranched dendrites were seen in two of the hypersensitive cases. Many genes that we identified are conserved in mammals.

  18. Transposon mutagenesis identifies novel genes associated with Staphylococcus aureus persister formation

    Directory of Open Access Journals (Sweden)

    Wang ewenjie

    2015-12-01

    Full Text Available Pathogenic bacterial persisters are responsible for the recalcitrance of chronic and persistent infections to antimicrobial therapy. Although the mechanisms of persister formation and survival have been widely studied in Escherichia coli, persistence mechanisms in S. aureus remain largely unknown. Here, we screened a transposon mutant library of a clinical methicillin-resistant Staphylococcus aureus(MRSA)strain, USA500 (ST8, under antibiotic pressure and identified 13 genes whose insertion mutations resulted in a defect in persistence. These candidate genes were further confirmed by evaluating the survival of the mutants upon exposure to levofloxacin and several other stress conditions. We found 13 insertion mutants with significantly lower persister numbers under several stress conditions, including sdhA, sdhB, ureG, mnhG1, fbaA, ctaB, clpX, parE, HOU_0223, HOU_0587, HOU_2091, HOU_2315 and HOU_2346, which mapped into pathways of oxidative phosphorylation, TCA cycle, glycolysis, cell cycle and ABC transporters, suggesting that these genes and pathways may play an important role in persister formation and survival. The newly constructed knockout strains of ureG, sdhA and sdhB and their complemented strains were also tested for defect in persisters following exposure to levofloxacin and several other stress conditions. The results from these experiments were consistent with the screening results, which indicated that deletion of these genes in MRSA USA500 leads to persister defect. These findings provide novel insights into the mechanisms of persister formation and survival in S. aureus and offer new targets for the development of persister-directed antibiotics for the improved treatment of chronic and persistent infections.

  19. Unique Trichomonas vaginalis gene sequences identified in multinational regions of Northwest China.

    Science.gov (United States)

    Liu, Jun; Feng, Meng; Wang, Xiaolan; Fu, Yongfeng; Ma, Cailing; Cheng, Xunjia

    2017-07-24

    Trichomonas vaginalis (T. vaginalis) is a flagellated protozoan parasite that infects humans worldwide. This study determined the sequence of the 18S ribosomal RNA gene of T. vaginalis infecting both females and males in Xinjiang, China. Samples from 73 females and 28 males were collected and confirmed for infection with T. vaginalis, a total of 110 sequences were identified when the T. vaginalis 18S ribosomal RNA gene was sequenced. These sequences were used to prepare a phylogenetic network. The rooted network comprised three large clades and several independent branches. Most of the Xinjiang sequences were in one group. Preliminary results suggest that Xinjiang T. vaginalis isolates might be genetically unique, as indicated by the sequence of their 18S ribosomal RNA gene. Low migration rate of local people in this province may contribute to a genetic conservativeness of T. vaginalis. The unique genetic feature of our isolates may suggest a different clinical presentation of trichomoniasis, including metronidazole susceptibility, T. vaginalis virus or Mycoplasma co-infection characteristics. The transmission and evolution of Xinjiang T. vaginalis is of interest and should be studied further. More attention should be given to T. vaginalis infection in both females and males in Xinjiang.

  20. Identifying Growth Conditions for Nicotiana benthimiana Resulting in Predictable Gene Expression of Promoter-Gus Fusion

    Science.gov (United States)

    Sandoval, V.; Barton, K.; Longhurst, A.

    2012-12-01

    Revoluta (Rev) is a transcription factor that establishes leaf polarity inArabidopsis thaliana. Through previous work in Dr. Barton's Lab, it is known that Revoluta binds to the ZPR3 promoter, thus activating the ZPR3 gene product inArabidopsis thaliana. Using this knowledge, two separate DNA constructs were made, one carrying revgene and in the other, the ZPR3 promoter fussed with the GUS gene. When inoculated in Nicotiana benthimiana (tobacco), the pMDC32 plasmid produces the Rev protein. Rev binds to the ZPR3 promoter thereby activating the transcription of the GUS gene, which can only be expressed in the presence of Rev. When GUS protein comes in contact with X-Gluc it produce the blue stain seen (See Figure 1). In the past, variability has been seen of GUS expression on tobacco therefore we hypothesized that changing the growing conditions and leaf age might improve how well it's expressed.

  1. Prediction potential of candidate biomarker sets identified and validated on gene expression data from multiple datasets

    Directory of Open Access Journals (Sweden)

    Karacali Bilge

    2007-10-01

    Full Text Available Abstract Background Independently derived expression profiles of the same biological condition often have few genes in common. In this study, we created populations of expression profiles from publicly available microarray datasets of cancer (breast, lymphoma and renal samples linked to clinical information with an iterative machine learning algorithm. ROC curves were used to assess the prediction error of each profile for classification. We compared the prediction error of profiles correlated with molecular phenotype against profiles correlated with relapse-free status. Prediction error of profiles identified with supervised univariate feature selection algorithms were compared to profiles selected randomly from a all genes on the microarray platform and b a list of known disease-related genes (a priori selection. We also determined the relevance of expression profiles on test arrays from independent datasets, measured on either the same or different microarray platforms. Results Highly discriminative expression profiles were produced on both simulated gene expression data and expression data from breast cancer and lymphoma datasets on the basis of ER and BCL-6 expression, respectively. Use of relapse-free status to identify profiles for prognosis prediction resulted in poorly discriminative decision rules. Supervised feature selection resulted in more accurate classifications than random or a priori selection, however, the difference in prediction error decreased as the number of features increased. These results held when decision rules were applied across-datasets to samples profiled on the same microarray platform. Conclusion Our results show that many gene sets predict molecular phenotypes accurately. Given this, expression profiles identified using different training datasets should be expected to show little agreement. In addition, we demonstrate the difficulty in predicting relapse directly from microarray data using supervised machine

  2. Gene profile analysis of osteoblast genes differentially regulated by histone deacetylase inhibitors

    Directory of Open Access Journals (Sweden)

    Lamblin Anne-Francoise

    2007-10-01

    Full Text Available Abstract Background Osteoblast differentiation requires the coordinated stepwise expression of multiple genes. Histone deacetylase inhibitors (HDIs accelerate the osteoblast differentiation process by blocking the activity of histone deacetylases (HDACs, which alter gene expression by modifying chromatin structure. We previously demonstrated that HDIs and HDAC3 shRNAs accelerate matrix mineralization and the expression of osteoblast maturation genes (e.g. alkaline phosphatase, osteocalcin. Identifying other genes that are differentially regulated by HDIs might identify new pathways that contribute to osteoblast differentiation. Results To identify other osteoblast genes that are altered early by HDIs, we incubated MC3T3-E1 preosteoblasts with HDIs (trichostatin A, MS-275, or valproic acid for 18 hours in osteogenic conditions. The promotion of osteoblast differentiation by HDIs in this experiment was confirmed by osteogenic assays. Gene expression profiles relative to vehicle-treated cells were assessed by microarray analysis with Affymetrix GeneChip 430 2.0 arrays. The regulation of several genes by HDIs in MC3T3-E1 cells and primary osteoblasts was verified by quantitative real-time PCR. Nine genes were differentially regulated by at least two-fold after exposure to each of the three HDIs and six were verified by PCR in osteoblasts. Four of the verified genes (solute carrier family 9 isoform 3 regulator 1 (Slc9a3r1, sorbitol dehydrogenase 1, a kinase anchor protein, and glutathione S-transferase alpha 4 were induced. Two genes (proteasome subunit, beta type 10 and adaptor-related protein complex AP-4 sigma 1 were suppressed. We also identified eight growth factors and growth factor receptor genes that are significantly altered by each of the HDIs, including Frizzled related proteins 1 and 4, which modulate the Wnt signaling pathway. Conclusion This study identifies osteoblast genes that are regulated early by HDIs and indicates pathways that

  3. Identifying Genetic Signatures of Natural Selection Using Pooled Population Sequencing in Picea abies.

    Science.gov (United States)

    Chen, Jun; Källman, Thomas; Ma, Xiao-Fei; Zaina, Giusi; Morgante, Michele; Lascoux, Martin

    2016-07-07

    The joint inference of selection and past demography remain a costly and demanding task. We used next generation sequencing of two pools of 48 Norway spruce mother trees, one corresponding to the Fennoscandian domain, and the other to the Alpine domain, to assess nucleotide polymorphism at 88 nuclear genes. These genes are candidate genes for phenological traits, and most belong to the photoperiod pathway. Estimates of population genetic summary statistics from the pooled data are similar to previous estimates, suggesting that pooled sequencing is reliable. The nonsynonymous SNPs tended to have both lower frequency differences and lower FST values between the two domains than silent ones. These results suggest the presence of purifying selection. The divergence between the two domains based on synonymous changes was around 5 million yr, a time similar to a recent phylogenetic estimate of 6 million yr, but much larger than earlier estimates based on isozymes. Two approaches, one of them novel and that considers both FST and difference in allele frequencies between the two domains, were used to identify SNPs potentially under diversifying selection. SNPs from around 20 genes were detected, including genes previously identified as main target for selection, such as PaPRR3 and PaGI. Copyright © 2016 Chen et al.

  4. Transcriptional profiling of human liver identifies sex-biased genes associated with polygenic dyslipidemia and coronary artery disease.

    Directory of Open Access Journals (Sweden)

    Yijing Zhang

    Full Text Available Sex-differences in human liver gene expression were characterized on a genome-wide scale using a large liver sample collection, allowing for detection of small expression differences with high statistical power. 1,249 sex-biased genes were identified, 70% showing higher expression in females. Chromosomal bias was apparent, with female-biased genes enriched on chrX and male-biased genes enriched on chrY and chr19, where 11 male-biased zinc-finger KRAB-repressor domain genes are distributed in six clusters. Top biological functions and diseases significantly enriched in sex-biased genes include transcription, chromatin organization and modification, sexual reproduction, lipid metabolism and cardiovascular disease. Notably, sex-biased genes are enriched at loci associated with polygenic dyslipidemia and coronary artery disease in genome-wide association studies. Moreover, of the 8 sex-biased genes at these loci, 4 have been directly linked to monogenic disorders of lipid metabolism and show an expression profile in females (elevated expression of ABCA1, APOA5 and LDLR; reduced expression of LIPC that is consistent with the lower female risk of coronary artery disease. Female-biased expression was also observed for CYP7A1, which is activated by drugs used to treat hypercholesterolemia. Several sex-biased drug-metabolizing enzyme genes were identified, including members of the CYP, UGT, GPX and ALDH families. Half of 879 mouse orthologs, including many genes of lipid metabolism and homeostasis, show growth hormone-regulated sex-biased expression in mouse liver, suggesting growth hormone might play a similar regulatory role in human liver. Finally, the evolutionary rate of protein coding regions for human-mouse orthologs, revealed by dN/dS ratio, is significantly higher for genes showing the same sex-bias in both species than for non-sex-biased genes. These findings establish that human hepatic sex differences are widespread and affect diverse cell

  5. A previously uncharacterized gene stm0551 plays a repressive role in the regulation of type 1 fimbriae in Salmonella enterica serotype Typhimurium

    Directory of Open Access Journals (Sweden)

    Wang Ke-Chuan

    2012-06-01

    Full Text Available Abstract Background Salmonella enterica serotype Typhimurium produces surface-associated fimbriae that facilitate adherence of the bacteria to a variety of cells and tissues. Type 1 fimbriae with binding specificity to mannose residues are the most commonly found fimbrial type. In vitro, static-broth culture favors the growth of S. Typhimurium with type 1 fimbriae, whereas non-type 1 fimbriate bacteria are obtained by culture on solid-agar media. Previous studies demonstrated that the phenotypic expression of type 1 fimbriae is the result of the interaction and cooperation of the regulatory genes fimZ, fimY, fimW, and fimU within the fim gene cluster. Genome sequencing revealed a novel gene, stm0551, located between fimY and fimW that encodes an 11.4-kDa putative phosphodiesterase specific for the bacterial second messenger cyclic-diguanylate monophosphate (c-di-GMP. The role of stm0551 in the regulation of type 1 fimbriae in S. Typhimurium remains unclear. Results A stm0551-deleted stain constructed by allelic exchange constitutively produced type 1 fimbriae in both static-broth and solid-agar medium conditions. Quantative RT-PCR revealed that expression of the fimbrial major subunit gene, fimA, and one of the regulatory genes, fimZ, were comparably increased in the stm0551-deleted strain compared with those of the parental strain when grown on the solid-agar medium, a condition that normally inhibits expression of type 1 fimbriae. Following transformation with a plasmid possessing the coding sequence of stm0551, expression of fimA and fimZ decreased in the stm0551 mutant strain in both culture conditions, whereas transformation with the control vector pACYC184 relieved this repression. A purified STM0551 protein exhibited a phosphodiesterase activity in vitro while a point mutation in the putative EAL domain, substituting glutamic acid (E with alanine (A, of STM0551 or a FimY protein abolished this activity. Conclusions The finding that the

  6. Aromatic Polyketide GTRI-02 is a Previously Unidentified Product of the act Gene Cluster in Streptomyces coelicolor A3(2).

    Science.gov (United States)

    Wu, Changsheng; Ichinose, Koji; Choi, Young Hae; van Wezel, Gilles P

    2017-07-18

    The biosynthesis of aromatic polyketides derived from type II polyketide synthases (PKSs) is complex, and it is not uncommon that highly similar gene clusters give rise to diverse structural architectures. The act biosynthetic gene cluster (BGC) of the model actinomycete Streptomyces coelicolor A3(2) is an archetypal type II PKS. Here we show that the act BGC also specifies the aromatic polyketide GTRI-02 (1) and propose a mechanism for the biogenesis of its 3,4-dihydronaphthalen-1(2H)-one backbone. Polyketide 1 was also produced by Streptomyces sp. MBT76 after activation of the act-like qin gene cluster by overexpression of the pathway-specific activator. Mining of this strain also identified dehydroxy-GTRI-02 (2), which most likely originated from dehydration of 1 during the isolation process. This work shows that even extensively studied model gene clusters such as act of S. coelicolor can still produce new chemistry, offering new perspectives for drug discovery. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Frameshift mutational target gene analysis identifies similarities and differences in constitutional mismatch repair-deficiency and Lynch syndrome.

    Science.gov (United States)

    Maletzki, Claudia; Huehns, Maja; Bauer, Ingrid; Ripperger, Tim; Mork, Maureen M; Vilar, Eduardo; Klöcking, Sabine; Zettl, Heike; Prall, Friedrich; Linnebacher, Michael

    2017-07-01

    Mismatch-repair deficient (MMR-D) malignancies include Lynch Syndrome (LS), which is secondary to germline mutations in one of the MMR genes, and the rare childhood-form of constitutional mismatch repair-deficiency (CMMR-D); caused by bi-allelic MMR gene mutations. A hallmark of LS-associated cancers is microsatellite instability (MSI), characterized by coding frameshift mutations (cFSM) in target genes. By contrast, tumors arising in CMMR-D patients are thought to display a somatic mutation pattern differing from LS. This study has the main goal to identify cFSM in MSI target genes relevant in CMMR-D and to compare the spectrum of common somatic mutations, including alterations in DNA polymerases POLE and D1 between LS and CMMR-D. CMMR-D-associated tumors harbored more somatic mutations compared to LS cases, especially in the TP53 gene and in POLE and POLD1, where novel mutations were additionally identified. Strikingly, MSI in classical mononucleotide markers BAT40 and CAT25 was frequent in CMMR-D cases. MSI-target gene analysis revealed mutations in CMMR-D-associated tumors, some of them known to be frequently hit in LS, such as RNaseT2, HT001, and TGFβR2. Our results imply a general role for these cFSM as potential new drivers of MMR-D tumorigenesis. © 2017 Wiley Periodicals, Inc.

  8. Whole exome sequencing identifies mutations in Usher syndrome genes in profoundly deaf Tunisian patients.

    Science.gov (United States)

    Riahi, Zied; Bonnet, Crystel; Zainine, Rim; Lahbib, Saida; Bouyacoub, Yosra; Bechraoui, Rym; Marrakchi, Jihène; Hardelin, Jean-Pierre; Louha, Malek; Largueche, Leila; Ben Yahia, Salim; Kheirallah, Moncef; Elmatri, Leila; Besbes, Ghazi; Abdelhak, Sonia; Petit, Christine

    2015-01-01

    Usher syndrome (USH) is an autosomal recessive disorder characterized by combined deafness-blindness. It accounts for about 50% of all hereditary deafness blindness cases. Three clinical subtypes (USH1, USH2, and USH3) are described, of which USH1 is the most severe form, characterized by congenital profound deafness, constant vestibular dysfunction, and a prepubertal onset of retinitis pigmentosa. We performed whole exome sequencing in four unrelated Tunisian patients affected by apparently isolated, congenital profound deafness, with reportedly normal ocular fundus examination. Four biallelic mutations were identified in two USH1 genes: a splice acceptor site mutation, c.2283-1G>T, and a novel missense mutation, c.5434G>A (p.Glu1812Lys), in MYO7A, and two previously unreported mutations in USH1G, i.e. a frameshift mutation, c.1195_1196delAG (p.Leu399Alafs*24), and a nonsense mutation, c.52A>T (p.Lys18*). Another ophthalmological examination including optical coherence tomography actually showed the presence of retinitis pigmentosa in all the patients. Our findings provide evidence that USH is under-diagnosed in Tunisian deaf patients. Yet, early diagnosis of USH is of utmost importance because these patients should undergo cochlear implant surgery in early childhood, in anticipation of the visual loss.

  9. Whole exome sequencing identifies mutations in Usher syndrome genes in profoundly deaf Tunisian patients.

    Directory of Open Access Journals (Sweden)

    Zied Riahi

    Full Text Available Usher syndrome (USH is an autosomal recessive disorder characterized by combined deafness-blindness. It accounts for about 50% of all hereditary deafness blindness cases. Three clinical subtypes (USH1, USH2, and USH3 are described, of which USH1 is the most severe form, characterized by congenital profound deafness, constant vestibular dysfunction, and a prepubertal onset of retinitis pigmentosa. We performed whole exome sequencing in four unrelated Tunisian patients affected by apparently isolated, congenital profound deafness, with reportedly normal ocular fundus examination. Four biallelic mutations were identified in two USH1 genes: a splice acceptor site mutation, c.2283-1G>T, and a novel missense mutation, c.5434G>A (p.Glu1812Lys, in MYO7A, and two previously unreported mutations in USH1G, i.e. a frameshift mutation, c.1195_1196delAG (p.Leu399Alafs*24, and a nonsense mutation, c.52A>T (p.Lys18*. Another ophthalmological examination including optical coherence tomography actually showed the presence of retinitis pigmentosa in all the patients. Our findings provide evidence that USH is under-diagnosed in Tunisian deaf patients. Yet, early diagnosis of USH is of utmost importance because these patients should undergo cochlear implant surgery in early childhood, in anticipation of the visual loss.

  10. Gene expression profiling of placentas affected by pre-eclampsia

    DEFF Research Database (Denmark)

    Hoegh, Anne Mette; Borup, Rehannah; Nielsen, Finn Cilius

    2010-01-01

    Several studies point to the placenta as the primary cause of pre-eclampsia. Our objective was to identify placental genes that may contribute to the development of pre-eclampsia. RNA was purified from tissue biopsies from eleven pre-eclamptic placentas and eighteen normal controls. Messenger RNA...... expression from pooled samples was analysed by microarrays. Verification of the expression of selected genes was performed using real-time PCR. A surprisingly low number of genes (21 out of 15,000) were identified as differentially expressed. Among these were genes not previously associated with pre-eclampsia...... as bradykinin B1 receptor and a 14-3-3 protein, but also genes that have already been connected with pre-eclampsia, for example, inhibin beta A subunit and leptin. A low number of genes were repeatedly identified as differentially expressed, because they may represent the endpoint of a cascade of events...

  11. Genome-wide Association Study Identifies Five Susceptibility Loci for Follicular Lymphoma outside the HLA Region

    NARCIS (Netherlands)

    Skibola, Christine F.; Berndt, Sonja I.; Vijai, Joseph; Conde, Lucia; Wang, Zhaoming; Yeager, Meredith; de Bakker, Paul I. W.; Birmann, Brenda M.; Vajdic, Claire M.; Foo, Jia-Nee; Bracci, Paige M.; Vermeulen, Roel C. H.; Slager, Susan L.; de Sanjose, Silvia; Wang, Sophia S.; Linet, Martha S.; Salles, Gilles; Lan, Qing; Severi, Gianluca; Hjalgrim, Henrik; Lightfoot, Tracy; Melbye, Mads; Gu, Jian; Ghesquieres, Herve; Link, Brian K.; Morton, Lindsay M.; Holly, Elizabeth A.; Smith, Alex; Tinker, Lesley F.; Teras, Lauren R.; Kricker, Anne; Becker, Nikolaus; Purdue, Mark P.; Spinelli, John J.; Zhang, Yawei; Giles, Graham G.; Vineis, Paolo; Monnereau, Alain; Bertrand, Kimberly A.; Albanes, Demetrius; Zeleniuch-Jacquotte, Anne; Gabbas, Attilio; Chung, Charles C.; Burdett, Laurie; Hutchinson, Amy; Lawrence, Charles; Montalvan, Rebecca; Liang, Liming; Huang, Jinyan; Ma, Baoshan; Liu, Jianjun; Adami, Hans-Olov; Glimelius, Bengt; Ye, Yuanqing; Nowakowski, Grzegorz S.; Dogan, Ahmet; Thompson, Carrie A.; Habermann, Thomas M.; Novak, Anne J.; Liebow, Mark; Witzig, Thomas E.; Weiner, George J.; Schenk, Maryjean; Hartge, Patricia; De Roos, Anneclaire J.; Cozen, Wendy; Zhi, Degui; Akers, Nicholas K.; Riby, Jacques; Smith, Martyn T.; Lacher, Mortimer; Villano, Danylo J.; Maria, Ann; Roman, Eve; Kane, Eleanor; Jackson, Rebecca D.; North, Kari E.; Diver, W. Ryan; Turner, Jenny; Armstrong, Bruce K.; Benavente, Yolanda; Boffetta, Paolo; Brennan, Paul; Foretova, Lenka; Maynadie, Marc; Staines, Anthony; McKay, James; Brooks-Wilson, Angela R.; Zheng, Tongzhang; Holford, Theodore R.; Chamosa, Saioa; Kaaks, Rudolph; Kelly, Rachel S.; Ohlsson, Bodil; Travis, Ruth C.; Weiderpass, Elisabete; Clave, Jacqueline; Giovannucci, Edward; Kraft, Peter; Virtamo, Jarmo; Mazza, Patrizio; Cocco, Pierluigi; Ennas, Maria Grazia; Chiu, Brian C. H.; Fraumeni, Joseph R.; Nieters, Alexandra; Offit, Kenneth; Wu, Xifeng; Cerhan, James R.; Smedby, Karin E.; Chanock, Stephen J.; Rothman, Nathaniel

    2014-01-01

    Genome-wide association studies (GWASs) of follicular lymphoma (FL) have previously identified human leukocyte antigen (HLA) gene variants. To identify additional FL susceptibility loci, we conducted a large-scale two-stage GWAS in 4,523 case subjects and 13,344 control subjects of European

  12. Obesity in BSB mice is correlated with expression of genes foriron homeostasis and leptin

    Energy Technology Data Exchange (ETDEWEB)

    Farahani, Poupak; Chiu, Sally; Bowlus, Christopher L.; Boffelli,Dario; Lee, Eric; Fisler, Janis S.; Krauss, Ronald M.; Warden, Craig H.

    2003-04-01

    Obesity is a complex disease. To date, over 100 chromosomal loci for body weight, body fat, regional white adipose tissue weight, and other obesity-related traits have been identified in humans and in animal models. For most loci, the underlying genes are not yet identified; some of these chromosomal loci will be alleles of known obesity genes, whereas many will represent alleles of unknown genes. Microarray analysis allows simultaneous multiple gene and pathway discovery. cDNA and oligonucleotide arrays are commonly used to identify differentially expressed genes by surveys of large numbers of known and unnamed genes. Two papers previously identified genes differentially expressed in adipose tissue of mouse models of obesity and diabetes by analysis of hybridization to Affymetrix oligonucleotide chips.

  13. Identifying differential miR and gene consensus patterns in peripheral blood of patients with cardiovascular diseases from literature data.

    Science.gov (United States)

    Šatrauskienė, Agnė; Navickas, Rokas; Laucevičius, Aleksandras; Huber, Heinrich J

    2017-06-30

    Numerous recent studies suggest the potential of circulating MicroRNAs (miRs) in peripheral blood samples as diagnostic or prognostic markers for coronary artery disease (CAD), acute coronary syndrome (ACS) and heart failure (HF). However, literature often remains inconclusive regarding as to which markers are most indicative for which of the above diseases. This shortcoming is mainly due to the lack of a systematic analyses and absence of information on the functional pathophysiological role of these miRs and their target genes. We here provide an-easy-to-use scoring approach to investigate the likelihood of regulation of several miRs and their target genes from literature by identifying consensus patterns of regulation. We therefore have screened over 1000 articles that study mRNA markers in cardiovascular and metabolic diseases, and devised a scoring algorithm to identify consensus means for miRs and genes regulation across several studies. We then aimed to identify differential markers between CAD, ACS and HF. We first identified miRs (miR-122, -126, -223, -138 and -370) as commonly regulated within a group of metabolic disease, while investigating cardiac-related pathologies (CAD, ACS, HF) revealed a decisive role of miR-1, -499, -208b, and -133a. Looking at differential markers between cardiovascular disease revealed miR-1, miR-208a and miR-133a to distinguish ACS and CAD to HF. Relating differentially expressed miRs to their putative gene targets using MirTarBase, we further identified HCN2/4 and LASP1 as potential markers of CAD and ACS, but not in HF. Likewise, BLC-2 was found oppositely regulated between CAD and HF. Interestingly, while studying overlap in target genes between CAD, ACS and HF only revealed little similarities, mapping these genes to gene ontology terms revealed a surprising similarity between CAD and ACS compared to HF. We conclude that our analysis using gene and miR scores allows the extraction of meaningful markers and the elucidation

  14. A database of phylogenetically atypical genes in archaeal and bacterial genomes, identified using the DarkHorse algorithm

    Directory of Open Access Journals (Sweden)

    Allen Eric E

    2008-10-01

    Full Text Available Abstract Background The process of horizontal gene transfer (HGT is believed to be widespread in Bacteria and Archaea, but little comparative data is available addressing its occurrence in complete microbial genomes. Collection of high-quality, automated HGT prediction data based on phylogenetic evidence has previously been impractical for large numbers of genomes at once, due to prohibitive computational demands. DarkHorse, a recently described statistical method for discovering phylogenetically atypical genes on a genome-wide basis, provides a means to solve this problem through lineage probability index (LPI ranking scores. LPI scores inversely reflect phylogenetic distance between a test amino acid sequence and its closest available database matches. Proteins with low LPI scores are good horizontal gene transfer candidates; those with high scores are not. Description The DarkHorse algorithm has been applied to 955 microbial genome sequences, and the results organized into a web-searchable relational database, called the DarkHorse HGT Candidate Resource http://darkhorse.ucsd.edu. Users can select individual genomes or groups of genomes to screen by LPI score, search for protein functions by descriptive annotation or amino acid sequence similarity, or select proteins with unusual G+C composition in their underlying coding sequences. The search engine reports LPI scores for match partners as well as query sequences, providing the opportunity to explore whether potential HGT donor sequences are phylogenetically typical or atypical within their own genomes. This information can be used to predict whether or not sufficient information is available to build a well-supported phylogenetic tree using the potential donor sequence. Conclusion The DarkHorse HGT Candidate database provides a powerful, flexible set of tools for identifying phylogenetically atypical proteins, allowing researchers to explore both individual HGT events in single genomes, and

  15. Identifying the Viral Genes Encoding Envelope Glycoproteins for Differentiation of Cyprinid herpesvirus 3 Isolates

    Directory of Open Access Journals (Sweden)

    Se Chang Park

    2013-01-01

    Full Text Available Cyprinid herpes virus 3 (CyHV-3 diseases have been reported around the world and are associated with high mortalities of koi (Cyprinus carpio. Although little work has been conducted on the molecular analysis of this virus, glycoprotein genes identified in the present study seem to be valuable targets for genetic comparison of this virus. Three envelope glycoprotein genes (ORF25, 65 and 116 of the CyHV-3 isolates from the USA, Israel, Japan and Korea were compared, and interestingly, sequence insertions or deletions were observed in these target regions. In addition, polymorphisms were presented in microsatellite zones from two glycoprotein genes (ORF65 and 116. In phylogenetic tree analysis, the Korean isolate was remarkably distinguished from USA, Israel, Japan isolates. These findings may be suitable for many applications including isolates differentiation and phylogeny studies.

  16. Identifying the Viral Genes Encoding Envelope Glycoproteins for Differentiation of Cyprinid herpesvirus 3 Isolates

    Science.gov (United States)

    Han, Jee Eun; Kim, Ji Hyung; Renault, Tristan; Choresca, Casiano; Shin, Sang Phil; Jun, Jin Woo; Park, Se Chang

    2013-01-01

    Cyprinid herpes virus 3 (CyHV-3) diseases have been reported around the world and are associated with high mortalities of koi (Cyprinus carpio). Although little work has been conducted on the molecular analysis of this virus, glycoprotein genes identified in the present study seem to be valuable targets for genetic comparison of this virus. Three envelope glycoprotein genes (ORF25, 65 and 116) of the CyHV-3 isolates from the USA, Israel, Japan and Korea were compared, and interestingly, sequence insertions or deletions were observed in these target regions. In addition, polymorphisms were presented in microsatellite zones from two glycoprotein genes (ORF65 and 116). In phylogenetic tree analysis, the Korean isolate was remarkably distinguished from USA, Israel, Japan isolates. These findings may be suitable for many applications including isolates differentiation and phylogeny studies. PMID:23435236

  17. Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data.

    Directory of Open Access Journals (Sweden)

    Abigail Bigham

    2010-09-01

    Full Text Available High-altitude hypoxia (reduced inspired oxygen tension due to decreased barometric pressure exerts severe physiological stress on the human body. Two high-altitude regions where humans have lived for millennia are the Andean Altiplano and the Tibetan Plateau. Populations living in these regions exhibit unique circulatory, respiratory, and hematological adaptations to life at high altitude. Although these responses have been well characterized physiologically, their underlying genetic basis remains unknown. We performed a genome scan to identify genes showing evidence of adaptation to hypoxia. We looked across each chromosome to identify genomic regions with previously unknown function with respect to altitude phenotypes. In addition, groups of genes functioning in oxygen metabolism and sensing were examined to test the hypothesis that particular pathways have been involved in genetic adaptation to altitude. Applying four population genetic statistics commonly used for detecting signatures of natural selection, we identified selection-nominated candidate genes and gene regions in these two populations (Andeans and Tibetans separately. The Tibetan and Andean patterns of genetic adaptation are largely distinct from one another, with both populations showing evidence of positive natural selection in different genes or gene regions. Interestingly, one gene previously known to be important in cellular oxygen sensing, EGLN1 (also known as PHD2, shows evidence of positive selection in both Tibetans and Andeans. However, the pattern of variation for this gene differs between the two populations. Our results indicate that several key HIF-regulatory and targeted genes are responsible for adaptation to high altitude in Andeans and Tibetans, and several different chromosomal regions are implicated in the putative response to selection. These data suggest a genetic role in high-altitude adaption and provide a basis for future genotype/phenotype association

  18. Comparative Transcriptome Analysis Identifies Putative Genes Involved in the Biosynthesis of Xanthanolides in Xanthium strumarium L.

    Directory of Open Access Journals (Sweden)

    Yuanjun Li

    2016-08-01

    Full Text Available Xanthium strumarium L. is a traditional Chinese herb belonging to the Asteraceae family. The major bioactive components of this plant are sesquiterpene lactones, which include the xanthanolides. To date, the biogenesis of xanthanolides, especiallytheir downstream pathway, remains largely unknown. In X. strumarium, xanthanolides primarily accumulate in its glandular trichomes. To identify putative gene candidates involved in the biosynthesis of xanthanolides, three X. strumarium transcriptomes, which were derived from the young leaves of two different cultivars and the purified glandular trichomes from one of the cultivars, were constructed in this study. In total, 157 million clean reads were generated and assembled into 91,861 unigenes, of which 59,858 unigenes were successfully annotated. All the genes coding for known enzymes in the upstream pathway to the biosynthesis of xanthanolides were present in the X. strumarium transcriptomes. From a comparative analysis of the X. strumarium transcriptomes, this study identified a number of gene candidates that are putatively involved in the downstream pathway to the synthesis of xanthanolides, such as four unigenes encoding CYP71 P450s, 50 unigenes for dehydrogenases, and 27 genes for acetyltransferases. The possible functions of these four CYP71 candidates are extensively discussed. In addition, 116 transcription factors that were highly expressed in X. strumarium glandular trichomes were also identified. Their possible regulatory roles in the biosynthesis of sesquiterpene lactones are discussed. The global transcriptomic data for X. strumarium should provide a valuable resource for further research into the biosynthesis of xanthanolides.

  19. Characterization of the interferon genes in homozygous rainbow trout reveals two novel genes, alternate splicing and differential regulation of duplicated genes

    Science.gov (United States)

    Purcell, M.K.; Laing, K.J.; Woodson, J.C.; Thorgaard, G.H.; Hansen, J.D.

    2009-01-01

    The genes encoding the type I and type II interferons (IFNs) have previously been identified in rainbow trout and their proteins partially characterized. These previous studies reported a single type II IFN (rtIFN-??) and three rainbow trout type I IFN genes that are classified into either group I (rtIFN1, rtIFN2) or group II (rtIFN3). In this present study, we report the identification of a novel IFN-?? gene (rtIFN-??2) and a novel type I group II IFN (rtIFN4) in homozygous rainbow trout and predict that additional IFN genes or pseudogenes exist in the rainbow trout genome. Additionally, we provide evidence that short and long forms of rtIFN1 are actively and differentially transcribed in homozygous trout, and likely arose due to alternate splicing of the first exon. Quantitative reverse transcriptase PCR (qRT-PCR) assays were developed to systematically profile all of the rainbow trout IFN transcripts, with high specificity at an individual gene level, in na??ve fish and after stimulation with virus or viral-related molecules. Cloned PCR products were used to ensure the specificity of the qRT-PCR assays and as absolute standards to assess transcript abundance of each gene. All IFN genes were modulated in response to Infectious hematopoietic necrosis virus (IHNV), a DNA vaccine based on the IHNV glycoprotein, and poly I:C. The most inducible of the type I IFN genes, by all stimuli tested, were rtIFN3 and the short transcript form of rtIFN1. Gene expression of rtIFN-??1 and rtIFN-??2 was highly up-regulated by IHNV infection and DNA vaccination but rtIFN-??2 was induced to a greater magnitude. The specificity of the qRT-PCR assays reported here will be useful for future studies aimed at identifying which cells produce IFNs at early time points after infection. ?? 2008 Elsevier Ltd.

  20. Silencing of Taxol-Sensitizer Genes in Cancer Cells: Lack of Sensitization Effects

    International Nuclear Information System (INIS)

    Huang, Shang-Lang; Chao, Chuck C.-K.

    2015-01-01

    A previous genome-wide screening analysis identified a panel of genes that sensitize the human non-small-cell lung carcinoma cell line NCI-H1155 to taxol. However, whether the identified genes sensitize other cancer cells to taxol has not been examined. Here, we silenced the taxol-sensitizer genes identified (acrbp, atp6v0d2, fgd4, hs6st2, psma6, and tubgcp2) in nine other cancer cell types (including lung, cervical, ovarian, and hepatocellular carcinoma cell lines) that showed reduced cell viability in the presence of a sub-lethal concentration of taxol. Surprisingly, none of the genes studied increased sensitivity to taxol in the tested panel of cell lines. As observed in H1155 cells, SKOV3 cells displayed induction of five of the six genes studied in response to a cell killing dose of taxol. The other cell types were much less responsive to taxol. Notably, four of the five inducible taxol-sensitizer genes tested (acrbp, atp6v0d2, psma6, and tubgcp2) were upregulated in a taxol-resistant ovarian cancer cell line. These results indicate that the previously identified taxol-sensitizer loci are not conserved genetic targets involved in inhibiting cell proliferation in response to taxol. Our findings also suggest that regulation of taxol-sensitizer genes by taxol may be critical for acquired cell resistance to the drug

  1. Silencing of Taxol-Sensitizer Genes in Cancer Cells: Lack of Sensitization Effects

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shang-Lang [Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Chao, Chuck C.-K., E-mail: cckchao@mail.cgu.edu.tw [Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Department of Medical Research and Development, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan (China)

    2015-06-16

    A previous genome-wide screening analysis identified a panel of genes that sensitize the human non-small-cell lung carcinoma cell line NCI-H1155 to taxol. However, whether the identified genes sensitize other cancer cells to taxol has not been examined. Here, we silenced the taxol-sensitizer genes identified (acrbp, atp6v0d2, fgd4, hs6st2, psma6, and tubgcp2) in nine other cancer cell types (including lung, cervical, ovarian, and hepatocellular carcinoma cell lines) that showed reduced cell viability in the presence of a sub-lethal concentration of taxol. Surprisingly, none of the genes studied increased sensitivity to taxol in the tested panel of cell lines. As observed in H1155 cells, SKOV3 cells displayed induction of five of the six genes studied in response to a cell killing dose of taxol. The other cell types were much less responsive to taxol. Notably, four of the five inducible taxol-sensitizer genes tested (acrbp, atp6v0d2, psma6, and tubgcp2) were upregulated in a taxol-resistant ovarian cancer cell line. These results indicate that the previously identified taxol-sensitizer loci are not conserved genetic targets involved in inhibiting cell proliferation in response to taxol. Our findings also suggest that regulation of taxol-sensitizer genes by taxol may be critical for acquired cell resistance to the drug.

  2. Genome-wide siRNA-based functional genomics of pigmentation identifies novel genes and pathways that impact melanogenesis in human cells.

    Directory of Open Access Journals (Sweden)

    Anand K Ganesan

    2008-12-01

    Full Text Available Melanin protects the skin and eyes from the harmful effects of UV irradiation, protects neural cells from toxic insults, and is required for sound conduction in the inner ear. Aberrant regulation of melanogenesis underlies skin disorders (melasma and vitiligo, neurologic disorders (Parkinson's disease, auditory disorders (Waardenburg's syndrome, and opthalmologic disorders (age related macular degeneration. Much of the core synthetic machinery driving melanin production has been identified; however, the spectrum of gene products participating in melanogenesis in different physiological niches is poorly understood. Functional genomics based on RNA-mediated interference (RNAi provides the opportunity to derive unbiased comprehensive collections of pharmaceutically tractable single gene targets supporting melanin production. In this study, we have combined a high-throughput, cell-based, one-well/one-gene screening platform with a genome-wide arrayed synthetic library of chemically synthesized, small interfering RNAs to identify novel biological pathways that govern melanin biogenesis in human melanocytes. Ninety-two novel genes that support pigment production were identified with a low false discovery rate. Secondary validation and preliminary mechanistic studies identified a large panel of targets that converge on tyrosinase expression and stability. Small molecule inhibition of a family of gene products in this class was sufficient to impair chronic tyrosinase expression in pigmented melanoma cells and UV-induced tyrosinase expression in primary melanocytes. Isolation of molecular machinery known to support autophagosome biosynthesis from this screen, together with in vitro and in vivo validation, exposed a close functional relationship between melanogenesis and autophagy. In summary, these studies illustrate the power of RNAi-based functional genomics to identify novel genes, pathways, and pharmacologic agents that impact a biological phenotype

  3. Putative pathway of sex pheromone biosynthesis and degradation by expression patterns of genes identified from female pheromone gland and adult antenna of Sesamia inferens (Walker).

    Science.gov (United States)

    Zhang, Ya-Nan; Xia, Yi-Han; Zhu, Jia-Yao; Li, Sheng-Yun; Dong, Shuang-Lin

    2014-05-01

    The general pathway of biosynthesis and degradation for Type-I sex pheromones in moths is well established, but some genes involved in this pathway remain to be characterized. The purple stem borer, Sesamia inferens, employs a pheromone blend containing components with three different terminal functional groups (Z11-16:OAc, Z11-16:OH, and Z11-16:Ald) of Type-I sex pheromones. Thus, it provides a good model to study the diversity of genes involved in pheromone biosynthesis and degradation pathways. By analyzing previously obtained transcriptomic data of the sex pheromone glands and antennae, we identified 73 novel genes that are possibly related to pheromone biosynthesis (46 genes) or degradation (27 genes). Gene expression patterns and phylogenetic analysis revealed that one desaturase (SinfDes4), one fatty acid reductase (SinfFAR2), and one fatty acid xtransport protein (SinfFATP1) genes were predominantly expressed in pheromone glands, and clustered with genes involved in pheromone synthesis in other moth species. Ten genes including five carboxylesterases (SinfCXE10, 13, 14, 18, and 20), three aldehyde oxidases (SinfAOX1, 2 and 3), and two alcohol dehydrogenases (SinfAD1 and 3) were expressed specifically or predominantly in antennae, and could be candidate genes involved in pheromone degradation. SinfAD1 and 3 are the first reported alcohol dehydrogenase genes with antennae-biased expression. Based on these results we propose a pathway involving these potential enzyme-encoding gene candidates in sex pheromone biosynthesis and degradation in S. inferens. This study provides robust background information for further elucidation of the genetic basis of sex pheromone biosynthesis and degradation, and ultimately provides potential targets to disrupt sexual communication in S. inferens for control purposes.

  4. A systems approach identifies networks and genes linking sleep and stress: implications for neuropsychiatric disorders.

    Science.gov (United States)

    Jiang, Peng; Scarpa, Joseph R; Fitzpatrick, Karrie; Losic, Bojan; Gao, Vance D; Hao, Ke; Summa, Keith C; Yang, He S; Zhang, Bin; Allada, Ravi; Vitaterna, Martha H; Turek, Fred W; Kasarskis, Andrew

    2015-05-05

    Sleep dysfunction and stress susceptibility are comorbid complex traits that often precede and predispose patients to a variety of neuropsychiatric diseases. Here, we demonstrate multilevel organizations of genetic landscape, candidate genes, and molecular networks associated with 328 stress and sleep traits in a chronically stressed population of 338 (C57BL/6J × A/J) F2 mice. We constructed striatal gene co-expression networks, revealing functionally and cell-type-specific gene co-regulations important for stress and sleep. Using a composite ranking system, we identified network modules most relevant for 15 independent phenotypic categories, highlighting a mitochondria/synaptic module that links sleep and stress. The key network regulators of this module are overrepresented with genes implicated in neuropsychiatric diseases. Our work suggests that the interplay among sleep, stress, and neuropathology emerges from genetic influences on gene expression and their collective organization through complex molecular networks, providing a framework for interrogating the mechanisms underlying sleep, stress susceptibility, and related neuropsychiatric disorders. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Midbrain Gene Screening Identifies a New Mesoaccumbal Glutamatergic Pathway and a Marker for Dopamine Cells Neuroprotected in Parkinson's Disease.

    Science.gov (United States)

    Viereckel, Thomas; Dumas, Sylvie; Smith-Anttila, Casey J A; Vlcek, Bianca; Bimpisidis, Zisis; Lagerström, Malin C; Konradsson-Geuken, Åsa; Wallén-Mackenzie, Åsa

    2016-10-20

    The ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) of the midbrain are associated with Parkinson's disease (PD), schizophrenia, mood disorders and addiction. Based on the recently unraveled heterogeneity within the VTA and SNc, where glutamate, GABA and co-releasing neurons have been found to co-exist with the classical dopamine neurons, there is a compelling need for identification of gene expression patterns that represent this heterogeneity and that are of value for development of human therapies. Here, several unique gene expression patterns were identified in the mouse midbrain of which NeuroD6 and Grp were expressed within different dopaminergic subpopulations of the VTA, and TrpV1 within a small heterogeneous population. Optogenetics-coupled in vivo amperometry revealed a previously unknown glutamatergic mesoaccumbal pathway characterized by TrpV1-Cre-expression. Human GRP was strongly detected in non-melanized dopaminergic neurons within the SNc of both control and PD brains, suggesting GRP as a marker for neuroprotected neurons in PD. This study thus unravels markers for distinct subpopulations of neurons within the mouse and human midbrain, defines unique anatomical subregions within the VTA and exposes an entirely new glutamatergic pathway. Finally, both TRPV1 and GRP are implied in midbrain physiology of importance to neurological and neuropsychiatric disorders.

  6. Large-Scale Gene-Centric Meta-Analysis across 39 Studies Identifies Type 2 Diabetes Loci

    NARCIS (Netherlands)

    Saxena, Richa; Elbers, Clara C.; Guo, Yiran; Peter, Inga; Gaunt, Tom R.; Mega, Jessica L.; Lanktree, Matthew B.; Tare, Archana; Almoguera Castillo, Berta; Li, Yun R.; Johnson, Toby; Bruinenberg, Marcel; Gilbert-Diamond, Diane; Rajagopalan, Ramakrishnan; Voight, Benjamin F.; Balasubramanyam, Ashok; Barnard, John; Bauer, Florianne; Baumert, Jens; Bhangale, Tushar; Boehm, Bernhard O.; Braund, Peter S.; Burton, Paul R.; Chandrupatla, Hareesh R.; Clarke, Robert; Cooper-DeHoff, Rhonda M.; Crook, Errol D.; Davey-Smith, George; Day, Ian N.; de Boer, Anthonius; de Groot, Mark C. H.; Drenos, Fotios; Ferguson, Jane; Fox, Caroline S.; Furlong, Clement E.; Gibson, Quince; Gieger, Christian; Gilhuijs-Pederson, Lisa A.; Glessner, Joseph T.; Goel, Anuj; Gong, Yan; Grant, Struan F. A.; Kumari, Meena; van der Harst, Pim; van Vliet-Ostaptchouk, Jana V.; Verweij, Niek; Wolffenbuttel, Bruce H. R.; Hofker, Marten H.; Asselbergs, Folkert W.; Wijmenga, Cisca

    2012-01-01

    To identify genetic factors contributing to type 2 diabetes (T2D), we performed large-scale meta-analyses by using a custom similar to 50,000 SNP genotyping array (the ITMAT-Broad-CARe array) with similar to 2000 candidate genes in 39 multiethnic population-based studies, case-control studies, and

  7. Using the Developmental Gene Bicoid to Identify Species of Forensically Important Blowflies (Diptera: Calliphoridae

    Directory of Open Access Journals (Sweden)

    Seong Hwan Park

    2013-01-01

    Full Text Available Identifying species of insects used to estimate postmortem interval (PMI is a major subject in forensic entomology. Because forensic insect specimens are morphologically uniform and are obtained at various developmental stages, DNA markers are greatly needed. To develop new autosomal DNA markers to identify species, partial genomic sequences of the bicoid (bcd genes, containing the homeobox and its flanking sequences, from 12 blowfly species (Aldrichina grahami, Calliphora vicina, Calliphora lata, Triceratopyga calliphoroides, Chrysomya megacephala, Chrysomya pinguis, Phormia regina, Lucilia ampullacea, Lucilia caesar, Lucilia illustris, Hemipyrellia ligurriens and Lucilia sericata; Calliphoridae: Diptera were determined and analyzed. This study first sequenced the ten blowfly species other than C. vicina and L. sericata. Based on the bcd sequences of these 12 blowfly species, a phylogenetic tree was constructed that discriminates the subfamilies of Calliphoridae (Luciliinae, Chrysomyinae, and Calliphorinae and most blowfly species. Even partial genomic sequences of about 500 bp can distinguish most blowfly species. The short intron 2 and coding sequences downstream of the bcd homeobox in exon 3 could be utilized to develop DNA markers for forensic applications. These gene sequences are important in the evolution of insect developmental biology and are potentially useful for identifying insect species in forensic science.

  8. Using the Developmental Gene Bicoid to Identify Species of Forensically Important Blowflies (Diptera: Calliphoridae)

    Science.gov (United States)

    Park, Seong Hwan; Park, Chung Hyun; Zhang, Yong; Piao, Huguo; Chung, Ukhee; Kim, Seong Yoon; Ko, Kwang Soo; Yi, Cheong-Ho; Jo, Tae-Ho; Hwang, Juck-Joon

    2013-01-01

    Identifying species of insects used to estimate postmortem interval (PMI) is a major subject in forensic entomology. Because forensic insect specimens are morphologically uniform and are obtained at various developmental stages, DNA markers are greatly needed. To develop new autosomal DNA markers to identify species, partial genomic sequences of the bicoid (bcd) genes, containing the homeobox and its flanking sequences, from 12 blowfly species (Aldrichina grahami, Calliphora vicina, Calliphora lata, Triceratopyga calliphoroides, Chrysomya megacephala, Chrysomya pinguis, Phormia regina, Lucilia ampullacea, Lucilia caesar, Lucilia illustris, Hemipyrellia ligurriens and Lucilia sericata; Calliphoridae: Diptera) were determined and analyzed. This study first sequenced the ten blowfly species other than C. vicina and L. sericata. Based on the bcd sequences of these 12 blowfly species, a phylogenetic tree was constructed that discriminates the subfamilies of Calliphoridae (Luciliinae, Chrysomyinae, and Calliphorinae) and most blowfly species. Even partial genomic sequences of about 500 bp can distinguish most blowfly species. The short intron 2 and coding sequences downstream of the bcd homeobox in exon 3 could be utilized to develop DNA markers for forensic applications. These gene sequences are important in the evolution of insect developmental biology and are potentially useful for identifying insect species in forensic science. PMID:23586044

  9. Characterization, expression profiles, intercellular distribution and association analysis of porcine PNAS-4 gene with production traits

    NARCIS (Netherlands)

    Mo, D.L.; Zhu, Z.M.; Pas, te M.F.W.; Li, X.Y.; Yang, S.L.; Wang, H.; Wang, H.L.; Li, K.

    2008-01-01

    Background - In a previous screen to identify differentially expressed genes associated with embryonic development, the porcine PNAS-4 gene had been found. Considering differentially expressed genes in early stages of muscle development are potential candidate genes to improve meat quality and

  10. Differential gene expression and Hog1 interaction with osmoresponsive genes in the extremely halotolerant black yeast Hortaea werneckii

    Directory of Open Access Journals (Sweden)

    Plemenitaš Ana

    2007-08-01

    Full Text Available Abstract Background Fluctuations in external salinity force eukaryotic cells to respond by changes in the gene expression of proteins acting in protective biochemical processes, thus counteracting the changing osmotic pressure. The high-osmolarity glycerol (HOG signaling pathway is essential for the efficient up-regulation of the osmoresponsive genes. In this study, the differential gene expression of the extremely halotolerant black yeast Hortaea werneckii was explored. Furthermore, the interaction of mitogen-activated protein kinase HwHog1 and RNA polymerase II with the chromatin in cells adapted to an extremely hypersaline environment was analyzed. Results A cDNA subtraction library was constructed for H. werneckii, adapted to moderate salinity or an extremely hypersaline environment of 4.5 M NaCl. An uncommon osmoresponsive set of 95 differentially expressed genes was identified. The majority of these had not previously been connected with the adaptation of salt-sensitive S. cerevisiae to hypersaline conditions. The transcriptional response in hypersaline-adapted and hypersaline-stressed cells showed that only a subset of the identified genes responded to acute salt-stress, whereas all were differentially expressed in adapted cells. Interaction with HwHog1 was shown for 36 of the 95 differentially expressed genes. The majority of the identified osmoresponsive and HwHog1-dependent genes in H. werneckii have not been previously reported as Hog1-dependent genes in the salt-sensitive S. cerevisiae. The study further demonstrated the co-occupancy of HwHog1 and RNA polymerase II on the chromatin of 17 up-regulated and 2 down-regulated genes in 4.5 M NaCl-adapted H. werneckii cells. Conclusion Extremely halotolerant H. werneckii represents a suitable and highly relevant organism to study cellular responses to environmental salinity. In comparison with the salt-sensitive S. cerevisiae, this yeast shows a different set of genes being expressed at

  11. Two novel mutations in the homogentisate-1,2-dioxygenase gene identified in Chinese Han Child with Alkaptonuria.

    Science.gov (United States)

    Li, Hongying; Zhang, Kaihui; Xu, Qun; Ma, Lixia; Lv, Xin; Sun, Ruopeng

    2015-03-01

    Alkaptonuria (AKU) is an autosomal recessive disorder of tyrosine metabolism, which is caused by a defect in the enzyme homogentisate 1,2-dioxygenase (HGD) with subsequent accumulation of homogentisic acid. Presently, more than 100 HGD mutations have been identified as the cause of the inborn error of metabolism across different populations worldwide. However, the HGD mutation is very rarely reported in Asia, especially China. In this study, we present mutational analyses of HGD gene in one Chinese Han child with AKU, which had been identified by gas chromatography-mass spectrometry detection of organic acids in urine samples. PCR and DNA sequencing of the entire coding region as well as exon-intron boundaries of HGD have been performed. Two novel mutations were identified in the HGD gene in this AKU case, a frameshift mutation of c.115delG in exon 3 and the splicing mutation of IVS5+3 A>C, a donor splice site of the exon 5 and exon-intron junction. The identification of these mutations in this study further expands the spectrum of known HGD gene mutations and contributes to prenatal molecular diagnosis of AKU.

  12. Whole-exome sequencing of muscle-invasive bladder cancer identifies recurrent mutations of UNC5C and prognostic importance of DNA repair gene mutations on survival.

    Science.gov (United States)

    Yap, Kai Lee; Kiyotani, Kazuma; Tamura, Kenji; Antic, Tatjana; Jang, Miran; Montoya, Magdeline; Campanile, Alexa; Yew, Poh Yin; Ganshert, Cory; Fujioka, Tomoaki; Steinberg, Gary D; O'Donnell, Peter H; Nakamura, Yusuke

    2014-12-15

    Because of suboptimal outcomes in muscle-invasive bladder cancer even with multimodality therapy, determination of potential genetic drivers offers the possibility of improving therapeutic approaches and discovering novel prognostic indicators. Using pTN staging, we case-matched 81 patients with resected ≥pT2 bladder cancers for whom perioperative chemotherapy use and disease recurrence status were known. Whole-exome sequencing was conducted in 43 cases to identify recurrent somatic mutations and targeted sequencing of 10 genes selected from the initial screening in an additional 38 cases was completed. Mutational profiles along with clinicopathologic information were correlated with recurrence-free survival (RFS) in the patients. We identified recurrent novel somatic mutations in the gene UNC5C (9.9%), in addition to TP53 (40.7%), KDM6A (21.0%), and TSC1 (12.3%). Patients who were carriers of somatic mutations in DNA repair genes (one or more of ATM, ERCC2, FANCD2, PALB2, BRCA1, or BRCA2) had a higher overall number of somatic mutations (P = 0.011). Importantly, after a median follow-up of 40.4 months, carriers of somatic mutations (n = 25) in any of these six DNA repair genes had significantly enhanced RFS compared with noncarriers [median, 32.4 vs. 14.8 months; hazard ratio of 0.46, 95% confidence interval (CI), 0.22-0.98; P = 0.0435], after adjustment for pathologic pTN staging and independent of adjuvant chemotherapy usage. Better prognostic outcomes of individuals carrying somatic mutations in DNA repair genes suggest these mutations as favorable prognostic events in muscle-invasive bladder cancer. Additional mechanistic investigation into the previously undiscovered role of UNC5C in bladder cancer is warranted. ©2014 American Association for Cancer Research.

  13. Identifying molecular subtypes in human colon cancer using gene expression and DNA methylation microarray data

    OpenAIRE

    REN, ZHONGLU; WANG, WENHUI; LI, JINMING

    2015-01-01

    Identifying colon cancer subtypes based on molecular signatures may allow for a more rational, patient-specific approach to therapy in the future. Classifications using gene expression data have been attempted before with little concordance between the different studies carried out. In this study we aimed to uncover subtypes of colon cancer that have distinct biological characteristics and identify a set of novel biomarkers which could best reflect the clinical and/or biological characteristi...

  14. Transcriptional Profiling Identifies Location-Specific and Breed-Specific Differentially Expressed Genes in Embryonic Myogenesis in Anas Platyrhynchos.

    Directory of Open Access Journals (Sweden)

    Rong-Ping Zhang

    Full Text Available Skeletal muscle growth and development are highly orchestrated processes involving significant changes in gene expressions. Differences in the location-specific and breed-specific genes and pathways involved have important implications for meat productions and meat quality. Here, RNA-Seq was performed to identify differences in the muscle deposition between two muscle locations and two duck breeds for functional genomics studies. To achieve those goals, skeletal muscle samples were collected from the leg muscle (LM and the pectoral muscle (PM of two genetically different duck breeds, Heiwu duck (H and Peking duck (P, at embryonic 15 days. Functional genomics studies were performed in two experiments: Experiment 1 directly compared the location-specific genes between PM and LM, and Experiment 2 compared the two breeds (H and P at the same developmental stage (embryonic 15 days. Almost 13 million clean reads were generated using Illumina technology (Novogene, Beijing, China on each library, and more than 70% of the reads mapped to the Peking duck (Anas platyrhynchos genome. A total of 168 genes were differentially expressed between the two locations analyzed in Experiment 1, whereas only 8 genes were differentially expressed when comparing the same location between two breeds in Experiment 2. Gene Ontology (GO and the Kyoto Encyclopedia of Genes and Genomes pathways (KEGG were used to functionally annotate DEGs (differentially expression genes. The DEGs identified in Experiment 1 were mainly involved in focal adhesion, the PI3K-Akt signaling pathway and ECM-receptor interaction pathways (corrected P-value<0.05. In Experiment 2, the DEGs were associated with only the ribosome signaling pathway (corrected P-value<0.05. In addition, quantitative real-time PCR was used to confirm 15 of the differentially expressed genes originally detected by RNA-Seq. A comparative transcript analysis of the leg and pectoral muscles of two duck breeds not only

  15. RNA interference screen to identify pathways that enhance or reduce nonviral gene transfer during lipofection.

    Science.gov (United States)

    Barker, Gregory A; Diamond, Scott L

    2008-09-01

    Some barriers to DNA lipofection are well characterized; however, there is as yet no method of finding unknown pathways that impact the process. A druggable genome small-interfering RNA (siRNA) screen against 5,520 genes was tested for its effect on lipofection of human aortic endothelial cells (HAECs). We found 130 gene targets which, when silenced by pooled siRNAs (three siRNAs per gene), resulted in enhanced luminescence after lipofection (86 gene targets showed reduced expression). In confirmation tests with single siRNAs, 18 of the 130 hits showed enhanced lipofection with two or more individual siRNAs in the absence of cytotoxicity. Of these confirmed gene targets, we identified five leading candidates, two of which are isoforms of the regulatory subunit of protein phosphatase 2A (PP2A). The best candidate siRNA targeted the PPP2R2C gene and produced a 65% increase in luminescence from lipofection, with a quantitative PCR-validated knockdown of approximately 76%. Flow cytometric analysis confirmed that the silencing of the PPP2R2C gene resulted in an improvement of 10% in transfection efficiency, thereby demonstrating an increase in the number of transfected cells. These results show that an RNA interference (RNAi) high-throughput screen (HTS) can be applied to nonviral gene transfer. We have also demonstrated that siRNAs can be co-delivered with lipofected DNA to increase the transfection efficiency in vitro.

  16. Retroviral insertions in the VISION database identify molecular pathways in mouse lymphoid leukemia and lymphoma.

    Science.gov (United States)

    Weiser, Keith C; Liu, Bin; Hansen, Gwenn M; Skapura, Darlene; Hentges, Kathryn E; Yarlagadda, Sujatha; Morse Iii, Herbert C; Justice, Monica J

    2007-10-01

    AKXD recombinant inbred (RI) strains develop a variety of leukemias and lymphomas due to somatically acquired insertions of retroviral DNA into the genome of hematopoetic cells that can mutate cellular proto-oncogenes and tumor suppressor genes. We generated a new set of tumors from nine AKXD RI strains selected for their propensity to develop B-cell tumors, the most common type of human hematopoietic cancers. We employed a PCR technique called viral insertion site amplification (VISA) to rapidly isolate genomic sequence at the site of provirus insertion. Here we describe 550 VISA sequence tags (VSTs) that identify 74 common insertion sites (CISs), of which 21 have not been identified previously. Several suspected proto-oncogenes and tumor suppressor genes lie near CISs, providing supportive evidence for their roles in cancer. Furthermore, numerous previously uncharacterized genes lie near CISs, providing a pool of candidate disease genes for future research. Pathway analysis of candidate genes identified several signaling pathways as common and powerful routes to blood cancer, including Notch, E-protein, NFkappaB, and Ras signaling. Misregulation of several Notch signaling genes was confirmed by quantitative RT-PCR. Our data suggest that analyses of insertional mutagenesis on a single genetic background are biased toward the identification of cooperating mutations. This tumor collection represents the most comprehensive study of the genetics of B-cell leukemia and lymphoma development in mice. We have deposited the VST sequences, CISs in a genome viewer, histopathology, and molecular tumor typing data in a public web database called VISION (Viral Insertion Sites Identifying Oncogenes), which is located at http://www.mouse-genome.bcm.tmc.edu/vision .

  17. Feature genes in metastatic breast cancer identified by MetaDE and SVM classifier methods.

    Science.gov (United States)

    Tuo, Youlin; An, Ning; Zhang, Ming

    2018-03-01

    The aim of the present study was to investigate the feature genes in metastatic breast cancer samples. A total of 5 expression profiles of metastatic breast cancer samples were downloaded from the Gene Expression Omnibus database, which were then analyzed using the MetaQC and MetaDE packages in R language. The feature genes between metastasis and non‑metastasis samples were screened under the threshold of PSVM) classifier training and verification. The accuracy of the SVM classifier was then evaluated using another independent dataset from The Cancer Genome Atlas database. Finally, function and pathway enrichment analyses for genes in the SVM classifier were performed. A total of 541 feature genes were identified between metastatic and non‑metastatic samples. The top 10 genes with the highest betweenness centrality values in the PPI network of feature genes were Nuclear RNA Export Factor 1, cyclin‑dependent kinase 2 (CDK2), myelocytomatosis proto‑oncogene protein (MYC), Cullin 5, SHC Adaptor Protein 1, Clathrin heavy chain, Nucleolin, WD repeat domain 1, proteasome 26S subunit non‑ATPase 2 and telomeric repeat binding factor 2. The cyclin‑dependent kinase inhibitor 1A (CDKN1A), E2F transcription factor 1 (E2F1), and MYC interacted with CDK2. The SVM classifier constructed by the top 30 feature genes was able to distinguish metastatic samples from non‑metastatic samples [correct rate, specificity, positive predictive value and negative predictive value >0.89; sensitivity >0.84; area under the receiver operating characteristic curve (AUROC) >0.96]. The verification of the SVM classifier in an independent dataset (35 metastatic samples and 143 non‑metastatic samples) revealed an accuracy of 94.38% and AUROC of 0.958. Cell cycle associated functions and pathways were the most significant terms of the 30 feature genes. A SVM classifier was constructed to assess the possibility of breast cancer metastasis, which presented high accuracy in several

  18. Kinase Gene Expression Profiling of Metastatic Clear Cell Renal Cell Carcinoma Tissue Identifies Potential New Therapeutic Targets.

    Directory of Open Access Journals (Sweden)

    Pooja Ghatalia

    Full Text Available Kinases are therapeutically actionable targets. Kinase inhibitors targeting vascular endothelial growth factor receptors (VEGFR and mammalian target of rapamycin (mTOR improve outcomes in metastatic clear cell renal cell carcinoma (ccRCC, but are not curative. Metastatic tumor tissue has not been comprehensively studied for kinase gene expression. Paired intra-patient kinase gene expression analysis in primary tumor (T, matched normal kidney (N and metastatic tumor tissue (M may assist in identifying drivers of metastasis and prioritizing therapeutic targets. We compared the expression of 519 kinase genes using NanoString in T, N and M in 35 patients to discover genes over-expressed in M compared to T and N tissue. RNA-seq data derived from ccRCC tumors in The Cancer Genome Atlas (TCGA were used to demonstrate differential expression of genes in primary tumor tissue from patients that had metastasis at baseline (n = 79 compared to those that did not develop metastasis for at least 2 years (n = 187. Functional analysis was conducted to identify key signaling pathways by using Ingenuity Pathway Analysis. Of 10 kinase genes overexpressed in metastases compared to primary tumor in the discovery cohort, 9 genes were also differentially expressed in TCGA primary tumors with metastasis at baseline compared to primary tumors without metastasis for at least 2 years: EPHB2, AURKA, GSG2, IKBKE, MELK, CSK, CHEK2, CDC7 and MAP3K8; p<0.001. The top pathways overexpressed in M tissue were pyridoxal 5'-phosphate salvage, salvage pathways of pyrimidine ribonucleotides, NF-kB signaling, NGF signaling and cell cycle control of chromosomal replication. The 9 kinase genes validated to be over-expressed in metastatic ccRCC may represent currently unrecognized but potentially actionable therapeutic targets that warrant functional validation.

  19. Analysis of genomic aberrations and gene expression profiling identifies novel lesions and pathways in myeloproliferative neoplasms

    International Nuclear Information System (INIS)

    Rice, K L; Lin, X; Wolniak, K; Ebert, B L; Berkofsky-Fessler, W; Buzzai, M; Sun, Y; Xi, C; Elkin, P; Levine, R; Golub, T; Gilliland, D G; Crispino, J D; Licht, J D; Zhang, W

    2011-01-01

    Polycythemia vera (PV), essential thrombocythemia and primary myelofibrosis, are myeloproliferative neoplasms (MPNs) with distinct clinical features and are associated with the JAK2V617F mutation. To identify genomic anomalies involved in the pathogenesis of these disorders, we profiled 87 MPN patients using Affymetrix 250K single-nucleotide polymorphism (SNP) arrays. Aberrations affecting chr9 were the most frequently observed and included 9pLOH (n=16), trisomy 9 (n=6) and amplifications of 9p13.3–23.3 (n=1), 9q33.1–34.13 (n=1) and 9q34.13 (n=6). Patients with trisomy 9 were associated with elevated JAK2V617F mutant allele burden, suggesting that gain of chr9 represents an alternative mechanism for increasing JAK2V617F dosage. Gene expression profiling of patients with and without chr9 abnormalities (+9, 9pLOH), identified genes potentially involved in disease pathogenesis including JAK2, STAT5B and MAPK14. We also observed recurrent gains of 1p36.31–36.33 (n=6), 17q21.2–q21.31 (n=5) and 17q25.1–25.3 (n=5) and deletions affecting 18p11.31–11.32 (n=8). Combined SNP and gene expression analysis identified aberrations affecting components of a non-canonical PRC2 complex (EZH1, SUZ12 and JARID2) and genes comprising a ‘HSC signature' (MLLT3, SMARCA2 and PBX1). We show that NFIB, which is amplified in 7/87 MPN patients and upregulated in PV CD34+ cells, protects cells from apoptosis induced by cytokine withdrawal

  20. [Metatropic dysplasia in a girl with c.1811_1812delinsAT mutation in exon 11 of the TRPV4 gene not previously reported].

    Science.gov (United States)

    Cammarata-Scalisi, Francisco; Matysiak-Scholze, Uta; Heinze, Jessica; Barrera, Albaro; Lacruz-Rengel, María Angelina; Bracho, Ana; Guerrero, Yudith

    2015-01-01

    Metatropic dysplasia is a skeletal disorder with clinical heterogeneity, characterized by craniofacial dysmorphy including frontal bossing and midface hypoplasia, short trunk,progressive kyphoscoliosis and shortened limbs. The TRPV4 gene is located on 12q24.11, coding a cation channel with nonselective permeability to calcium; it is expressed and involved in many physiological processes through responses to different stimuli. Over 50 mutations in TRPV4 have been described. We present a seven months old girl with heterozygous mutation c.1811_1812delinsAT; p.I604N in intron 11 not previously reported in the TRPV4 gene and with clinical findings compatible with metatropic dysplasia.

  1. Current Status and Challenges in Identifying Disease Resistance Genes in Brassica napus

    Directory of Open Access Journals (Sweden)

    Ting Xiang Neik

    2017-11-01

    Full Text Available Brassica napus is an economically important crop across different continents including temperate and subtropical regions in Europe, Canada, South Asia, China and Australia. Its widespread cultivation also brings setbacks as it plays host to fungal, oomycete and chytrid pathogens that can lead to serious yield loss. For sustainable crop production, identification of resistance (R genes in B. napus has become of critical importance. In this review, we discuss four key pathogens affecting Brassica crops: Clubroot (Plasmodiophora brassicae, Blackleg (Leptosphaeria maculans and L. biglobosa, Sclerotinia Stem Rot (Sclerotinia sclerotiorum, and Downy Mildew (Hyaloperonospora parasitica. We first review current studies covering prevalence of these pathogens on Brassica crops and highlight the R genes and QTL that have been identified from Brassica species against these pathogens. Insights into the relationships between the pathogen and its Brassica host, the unique host resistance mechanisms and how these affect resistance outcomes is also presented. We discuss challenges in identification and deployment of R genes in B. napus in relation to highly specific genetic interactions between host subpopulations and pathogen pathotypes and emphasize the need for common or shared techniques and research materials or tighter collaboration between researchers to reconcile the inconsistencies in the research outcomes. Using current genomics tools, we provide examples of how characterization and cloning of R genes in B. napus can be carried out more effectively. Lastly, we put forward strategies to breed resistant cultivars through introgressions supported by genomic approaches and suggest prospects that can be implemented in the future for a better, pathogen-resistant B. napus.

  2. Current Status and Challenges in Identifying Disease Resistance Genes in Brassica napus

    Science.gov (United States)

    Neik, Ting Xiang; Barbetti, Martin J.; Batley, Jacqueline

    2017-01-01

    Brassica napus is an economically important crop across different continents including temperate and subtropical regions in Europe, Canada, South Asia, China and Australia. Its widespread cultivation also brings setbacks as it plays host to fungal, oomycete and chytrid pathogens that can lead to serious yield loss. For sustainable crop production, identification of resistance (R) genes in B. napus has become of critical importance. In this review, we discuss four key pathogens affecting Brassica crops: Clubroot (Plasmodiophora brassicae), Blackleg (Leptosphaeria maculans and L. biglobosa), Sclerotinia Stem Rot (Sclerotinia sclerotiorum), and Downy Mildew (Hyaloperonospora parasitica). We first review current studies covering prevalence of these pathogens on Brassica crops and highlight the R genes and QTL that have been identified from Brassica species against these pathogens. Insights into the relationships between the pathogen and its Brassica host, the unique host resistance mechanisms and how these affect resistance outcomes is also presented. We discuss challenges in identification and deployment of R genes in B. napus in relation to highly specific genetic interactions between host subpopulations and pathogen pathotypes and emphasize the need for common or shared techniques and research materials or tighter collaboration between researchers to reconcile the inconsistencies in the research outcomes. Using current genomics tools, we provide examples of how characterization and cloning of R genes in B. napus can be carried out more effectively. Lastly, we put forward strategies to breed resistant cultivars through introgressions supported by genomic approaches and suggest prospects that can be implemented in the future for a better, pathogen-resistant B. napus. PMID:29163558

  3. Comparative analysis of the full genome of Helicobacter pylori isolate Sahul64 identifies genes of high divergence.

    Science.gov (United States)

    Lu, Wei; Wise, Michael J; Tay, Chin Yen; Windsor, Helen M; Marshall, Barry J; Peacock, Christopher; Perkins, Tim

    2014-03-01

    Isolates of Helicobacter pylori can be classified phylogeographically. High genetic diversity and rapid microevolution are a hallmark of H. pylori genomes, a phenomenon that is proposed to play a functional role in persistence and colonization of diverse human populations. To provide further genomic evidence in the lineage of H. pylori and to further characterize diverse strains of this pathogen in different human populations, we report the finished genome sequence of Sahul64, an H. pylori strain isolated from an indigenous Australian. Our analysis identified genes that were highly divergent compared to the 38 publically available genomes, which include genes involved in the biosynthesis and modification of lipopolysaccharide, putative prophage genes, restriction modification components, and hypothetical genes. Furthermore, the virulence-associated vacA locus is a pseudogene and the cag pathogenicity island (cagPAI) is not present. However, the genome does contain a gene cluster associated with pathogenicity, including dupA. Our analysis found that with the addition of Sahul64 to the 38 genomes, the core genome content of H. pylori is reduced by approximately 14% (∼170 genes) and the pan-genome has expanded from 2,070 to 2,238 genes. We have identified three putative horizontally acquired regions, including one that is likely to have been acquired from the closely related Helicobacter cetorum prior to speciation. Our results suggest that Sahul64, with the absence of cagPAI, highly divergent cell envelope proteins, and a predicted nontransportable VacA protein, could be more highly adapted to ancient indigenous Australian people but with lower virulence potential compared to other sequenced and cagPAI-positive H. pylori strains.

  4. Identifying overrepresented concepts in gene lists from literature: a statistical approach based on Poisson mixture model

    Directory of Open Access Journals (Sweden)

    Zhai Chengxiang

    2010-05-01

    Full Text Available Abstract Background Large-scale genomic studies often identify large gene lists, for example, the genes sharing the same expression patterns. The interpretation of these gene lists is generally achieved by extracting concepts overrepresented in the gene lists. This analysis often depends on manual annotation of genes based on controlled vocabularies, in particular, Gene Ontology (GO. However, the annotation of genes is a labor-intensive process; and the vocabularies are generally incomplete, leaving some important biological domains inadequately covered. Results We propose a statistical method that uses the primary literature, i.e. free-text, as the source to perform overrepresentation analysis. The method is based on a statistical framework of mixture model and addresses the methodological flaws in several existing programs. We implemented this method within a literature mining system, BeeSpace, taking advantage of its analysis environment and added features that facilitate the interactive analysis of gene sets. Through experimentation with several datasets, we showed that our program can effectively summarize the important conceptual themes of large gene sets, even when traditional GO-based analysis does not yield informative results. Conclusions We conclude that the current work will provide biologists with a tool that effectively complements the existing ones for overrepresentation analysis from genomic experiments. Our program, Genelist Analyzer, is freely available at: http://workerbee.igb.uiuc.edu:8080/BeeSpace/Search.jsp

  5. [Double mutant alleles in the EXT1 gene not previously reported in a teenager with hereditary multiple exostoses].

    Science.gov (United States)

    Cammarata-Scalisi, Francisco; Cozar, Mónica; Grinberg, Daniel; Balcells, Susana; Asteggiano, Carla G; Martínez-Domenech, Gustavo; Bracho, Ana; Sánchez, Yanira; Stock, Frances; Delgado-Luengo, Wilmer; Zara-Chirinos, Carmen; Chacín, José Antonio

    2015-04-01

    Hereditary forms of multiple exostoses, now called EXT1/EXT2-CDG within Congenital Disorders of Glycosylation, are the most common benign bone tumors in humans and clinical description consists of the formation of several cartilage-capped bone tumors, usually benign and localized in the juxta-epiphyseal region of long bones, although wide body dissemination in severe cases is not uncommon. Onset of the disease is variable ranging from 2-3 years up to 13-15 years with an estimated incidence ranging from 1/18,000 to 1/50,000 cases in European countries. We present a double mutant alleles in the EXT1 gene not previously reported in a teenager and her family with hereditary multiple exostoses.

  6. Validation of MIMGO: a method to identify differentially expressed GO terms in a microarray dataset

    Directory of Open Access Journals (Sweden)

    Yamada Yoichi

    2012-12-01

    Full Text Available Abstract Background We previously proposed an algorithm for the identification of GO terms that commonly annotate genes whose expression is upregulated or downregulated in some microarray data compared with in other microarray data. We call these “differentially expressed GO terms” and have named the algorithm “matrix-assisted identification method of differentially expressed GO terms” (MIMGO. MIMGO can also identify microarray data in which genes annotated with a differentially expressed GO term are upregulated or downregulated. However, MIMGO has not yet been validated on a real microarray dataset using all available GO terms. Findings We combined Gene Set Enrichment Analysis (GSEA with MIMGO to identify differentially expressed GO terms in a yeast cell cycle microarray dataset. GSEA followed by MIMGO (GSEA + MIMGO correctly identified (p Conclusions MIMGO is a reliable method to identify differentially expressed GO terms comprehensively.

  7. The compact Selaginella genome identifies changes in gene content associated with the evolution of vascular plants

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.; Banks, Jo Ann; Nishiyama, Tomoaki; Hasebe, Mitsuyasu; Bowman, John L.; Gribskov, Michael; dePamphilis, Claude; Albert, Victor A.; Aono, Naoki; Aoyama, Tsuyoshi; Ambrose, Barbara A.; Ashton, Neil W.; Axtell, Michael J.; Barker, Elizabeth; Barker, Michael S.; Bennetzen, Jeffrey L.; Bonawitz, Nicholas D.; Chapple, Clint; Cheng, Chaoyang; Correa, Luiz Gustavo Guedes; Dacre, Michael; DeBarry, Jeremy; Dreyer, Ingo; Elias, Marek; Engstrom, Eric M.; Estelle, Mark; Feng, Liang; Finet, Cedric; Floyd, Sandra K.; Frommer, Wolf B.; Fujita, Tomomichi; Gramzow, Lydia; Gutensohn, Michael; Harholt, Jesper; Hattori, Mitsuru; Heyl, Alexander; Hirai, Tadayoshi; Hiwatashi, Yuji; Ishikawa, Masaki; Iwata, Mineko; Karol, Kenneth G.; Koehler, Barbara; Kolukisaoglu, Uener; Kubo, Minoru; Kurata, Tetsuya; Lalonde, Sylvie; Li, Kejie; Li, Ying; Litt, Amy; Lyons, Eric; Manning, Gerard; Maruyama, Takeshi; Michael, Todd P.; Mikami, Koji; Miyazaki, Saori; Morinaga, Shin-ichi; Murata, Takashi; Mueller-Roeber, Bernd; Nelson, David R.; Obara, Mari; Oguri, Yasuko; Olmstead, Richard G.; Onodera, Naoko; Petersen, Bent Larsen; Pils, Birgit; Prigge, Michael; Rensing, Stefan A.; Riano-Pachon, Diego Mauricio; Roberts, Alison W.; Sato, Yoshikatsu; Scheller, Henrik Vibe; Schulz, Burkhard; Schulz, Christian; Shakirov, Eugene V.; Shibagaki, Nakako; Shinohara, Naoki; Shippen, Dorothy E.; Sorensen, Iben; Sotooka, Ryo; Sugimoto, Nagisa; Sugita, Mamoru; Sumikawa, Naomi; Tanurdzic, Milos; Theilsen, Gunter; Ulvskov, Peter; Wakazuki, Sachiko; Weng, Jing-Ke; Willats, William W.G.T.; Wipf, Daniel; Wolf, Paul G.; Yang, Lixing; Zimmer, Andreas D.; Zhu, Qihui; Mitros, Therese; Hellsten, Uffe; Loque, Dominique; Otillar, Robert; Salamov, Asaf; Schmutz, Jeremy; Shapiro, Harris; Lindquist, Erika; Lucas, Susan; Rokhsar, Daniel

    2011-04-28

    We report the genome sequence of the nonseed vascular plant, Selaginella moellendorffii, and by comparative genomics identify genes that likely played important roles in the early evolution of vascular plants and their subsequent evolution

  8. Globicatella sanguinis bacteraemia identified by partial 16S rRNA gene sequencing

    DEFF Research Database (Denmark)

    Abdul-Redha, Rawaa Jalil; Balslew, Ulla; Christensen, Jens Jørgen

    2007-01-01

    Globicatella sanguinis is a gram-positive coccus, resembling non-haemolytic streptococci. The organism has been isolated infrequently from normally sterile sites of humans. Three isolates obtained by blood culture could not be identified by Rapid 32 ID Strep, but partial sequencing of the 16S r......RNA gene revealed the identity of the isolated bacteria, and supplementary biochemical tests confirmed the species identification. The cases histories illustrate the dilemma of finding relevant, newly recognized, opportunistic pathogens and the identification achievement (s) that can be obtained by using...

  9. A systems genetics approach identifies CXCL14, ITGAX, and LPCAT2 as novel aggressive prostate cancer susceptibility genes.

    Directory of Open Access Journals (Sweden)

    Kendra A Williams

    2014-11-01

    Full Text Available Although prostate cancer typically runs an indolent course, a subset of men develop aggressive, fatal forms of this disease. We hypothesize that germline variation modulates susceptibility to aggressive prostate cancer. The goal of this work is to identify susceptibility genes using the C57BL/6-Tg(TRAMP8247Ng/J (TRAMP mouse model of neuroendocrine prostate cancer. Quantitative trait locus (QTL mapping was performed in transgene-positive (TRAMPxNOD/ShiLtJ F2 intercross males (n = 228, which facilitated identification of 11 loci associated with aggressive disease development. Microarray data derived from 126 (TRAMPxNOD/ShiLtJ F2 primary tumors were used to prioritize candidate genes within QTLs, with candidate genes deemed as being high priority when possessing both high levels of expression-trait correlation and a proximal expression QTL. This process enabled the identification of 35 aggressive prostate tumorigenesis candidate genes. The role of these genes in aggressive forms of human prostate cancer was investigated using two concurrent approaches. First, logistic regression analysis in two human prostate gene expression datasets revealed that expression levels of five genes (CXCL14, ITGAX, LPCAT2, RNASEH2A, and ZNF322 were positively correlated with aggressive prostate cancer and two genes (CCL19 and HIST1H1A were protective for aggressive prostate cancer. Higher than average levels of expression of the five genes that were positively correlated with aggressive disease were consistently associated with patient outcome in both human prostate cancer tumor gene expression datasets. Second, three of these five genes (CXCL14, ITGAX, and LPCAT2 harbored polymorphisms associated with aggressive disease development in a human GWAS cohort consisting of 1,172 prostate cancer patients. This study is the first example of using a systems genetics approach to successfully identify novel susceptibility genes for aggressive prostate cancer. Such

  10. Network-Based Integration of GWAS and Gene Expression Identifies a HOX-Centric Network Associated with Serous Ovarian Cancer Risk

    DEFF Research Database (Denmark)

    Kar, Siddhartha P; Tyrer, Jonathan P; Li, Qiyuan

    2015-01-01

    BACKGROUND: Genome-wide association studies (GWAS) have so far reported 12 loci associated with serous epithelial ovarian cancer (EOC) risk. We hypothesized that some of these loci function through nearby transcription factor (TF) genes and that putative target genes of these TFs as identified...... in the unified microarray dataset of 489 serous EOC tumors from The Cancer Genome Atlas. Genes represented in this dataset were subsequently ranked using a gene-level test based on results for germline SNPs from a serous EOC GWAS meta-analysis (2,196 cases/4,396 controls). RESULTS: Gene set enrichment analysis...

  11. Integrating Genetic and Gene Co-expression Analysis Identifies Gene Networks Involved in Alcohol and Stress Responses.

    Science.gov (United States)

    Luo, Jie; Xu, Pei; Cao, Peijian; Wan, Hongjian; Lv, Xiaonan; Xu, Shengchun; Wang, Gangjun; Cook, Melloni N; Jones, Byron C; Lu, Lu; Wang, Xusheng

    2018-01-01

    Although the link between stress and alcohol is well recognized, the underlying mechanisms of how they interplay at the molecular level remain unclear. The purpose of this study is to identify molecular networks underlying the effects of alcohol and stress responses, as well as their interaction on anxiety behaviors in the hippocampus of mice using a systems genetics approach. Here, we applied a gene co-expression network approach to transcriptomes of 41 BXD mouse strains under four conditions: stress, alcohol, stress-induced alcohol and control. The co-expression analysis identified 14 modules and characterized four expression patterns across the four conditions. The four expression patterns include up-regulation in no restraint stress and given an ethanol injection (NOE) but restoration in restraint stress followed by an ethanol injection (RSE; pattern 1), down-regulation in NOE but rescue in RSE (pattern 2), up-regulation in both restraint stress followed by a saline injection (RSS) and NOE, and further amplification in RSE (pattern 3), and up-regulation in RSS but reduction in both NOE and RSE (pattern 4). We further identified four functional subnetworks by superimposing protein-protein interactions (PPIs) to the 14 co-expression modules, including γ-aminobutyric acid receptor (GABA) signaling, glutamate signaling, neuropeptide signaling, cAMP-dependent signaling. We further performed module specificity analysis to identify modules that are specific to stress, alcohol, or stress-induced alcohol responses. Finally, we conducted causality analysis to link genetic variation to these identified modules, and anxiety behaviors after stress and alcohol treatments. This study underscores the importance of integrative analysis and offers new insights into the molecular networks underlying stress and alcohol responses.

  12. Integrating Genetic and Gene Co-expression Analysis Identifies Gene Networks Involved in Alcohol and Stress Responses

    Directory of Open Access Journals (Sweden)

    Jie Luo

    2018-04-01

    Full Text Available Although the link between stress and alcohol is well recognized, the underlying mechanisms of how they interplay at the molecular level remain unclear. The purpose of this study is to identify molecular networks underlying the effects of alcohol and stress responses, as well as their interaction on anxiety behaviors in the hippocampus of mice using a systems genetics approach. Here, we applied a gene co-expression network approach to transcriptomes of 41 BXD mouse strains under four conditions: stress, alcohol, stress-induced alcohol and control. The co-expression analysis identified 14 modules and characterized four expression patterns across the four conditions. The four expression patterns include up-regulation in no restraint stress and given an ethanol injection (NOE but restoration in restraint stress followed by an ethanol injection (RSE; pattern 1, down-regulation in NOE but rescue in RSE (pattern 2, up-regulation in both restraint stress followed by a saline injection (RSS and NOE, and further amplification in RSE (pattern 3, and up-regulation in RSS but reduction in both NOE and RSE (pattern 4. We further identified four functional subnetworks by superimposing protein-protein interactions (PPIs to the 14 co-expression modules, including γ-aminobutyric acid receptor (GABA signaling, glutamate signaling, neuropeptide signaling, cAMP-dependent signaling. We further performed module specificity analysis to identify modules that are specific to stress, alcohol, or stress-induced alcohol responses. Finally, we conducted causality analysis to link genetic variation to these identified modules, and anxiety behaviors after stress and alcohol treatments. This study underscores the importance of integrative analysis and offers new insights into the molecular networks underlying stress and alcohol responses.

  13. Identification and Characterization of Renal Cell Carcinoma Gene Markers

    Directory of Open Access Journals (Sweden)

    Louis S. Liou

    2007-01-01

    Full Text Available Microarray gene expression profiling has been used to distinguish histological subtypes of renal cell carcinoma (RCC, and consequently to identify specific tumor markers. The analytical procedures currently in use find sets of genes whose average differential expression across the two categories differ significantly. In general each of the markers thus identifi ed does not distinguish tumor from normal with 100% accuracy, although the group as a whole might be able to do so. For the purpose of developing a widely used economically viable diagnostic signature, however, large groups of genes are not likely to be useful. Here we use two different methods, one a support vector machine variant, and the other an exhaustive search, to reanalyze data previously generated in our Lab (Lenburg et al. 2003. We identify 158 genes, each having an expression level that is higher (lower in every tumor sample than in any normal sample, and each having a minimum differential expression across the two categorie at a signifi cance of 0.01. The set is highly enriched in cancer related genes (p = 1.6 × 10 – 12, containing 43 genes previously associated with either RCC or other types of cancer. Many of the biomarkers appear to be associated with the central alterations known to be required for cancer transformation. These include the oncogenes JAZF1, AXL, ABL2; tumor suppressors RASD1, PTPRO, TFAP2A, CDKN1C; and genes involved in proteolysis or cell-adhesion such as WASF2, and PAPPA.

  14. Rare copy number variants identified in prune belly syndrome.

    Science.gov (United States)

    Boghossian, Nansi S; Sicko, Robert J; Giannakou, Andreas; Dimopoulos, Aggeliki; Caggana, Michele; Tsai, Michael Y; Yeung, Edwina H; Pankratz, Nathan; Cole, Benjamin R; Romitti, Paul A; Browne, Marilyn L; Fan, Ruzong; Liu, Aiyi; Kay, Denise M; Mills, James L

    2018-03-01

    Prune belly syndrome (PBS), also known as Eagle-Barrett syndrome, is a rare congenital disorder characterized by absence or hypoplasia of the abdominal wall musculature, urinary tract anomalies, and cryptorchidism in males. The etiology of PBS is largely unresolved, but genetic factors are implicated given its recurrence in families. We examined cases of PBS to identify novel pathogenic copy number variants (CNVs). A total of 34 cases (30 males and 4 females) with PBS identified from all live births in New York State (1998-2005) were genotyped using Illumina HumanOmni2.5 microarrays. CNVs were prioritized if they were absent from in-house controls, encompassed ≥10 consecutive probes, were ≥20 Kb in size, had ≤20% overlap with common variants in population reference controls, and had ≤20% overlap with any variant previously detected in other birth defect phenotypes screened in our laboratory. We identified 17 candidate autosomal CNVs; 10 cases each had one CNV and four cases each had two CNVs. The CNVs included a 158 Kb duplication at 4q22 that overlaps the BMPR1B gene; duplications of different sizes carried by two cases in the intron of STIM1 gene; a 67 Kb duplication 202 Kb downstream of the NOG gene, and a 1.34 Mb deletion including the MYOCD gene. The identified rare CNVs spanned genes involved in mesodermal, muscle, and urinary tract development and differentiation, which might help in elucidating the genetic contribution to PBS. We did not have parental DNA and cannot identify whether these CNVs were de novo or inherited. Further research on these CNVs, particularly BMP signaling is warranted to elucidate the pathogenesis of PBS. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Gene expression analysis to identify molecular correlates of pre- and post-conditioning derived neuroprotection.

    Science.gov (United States)

    Prasad, Shiv S; Russell, Marsha; Nowakowska, Margeryta; Williams, Andrew; Yauk, Carole

    2012-06-01

    Mild ischaemic exposures before or after severe injurious ischaemia that elicit neuroprotective responses are referred to as preconditioning and post-conditioning. The corresponding molecular mechanisms of neuroprotection are not completely understood. Identification of the genes and associated pathways of corresponding neuroprotection would provide insight into neuronal survival, potential therapeutic approaches and assessments of therapies for stroke. The objectives of this study were to use global gene expression approach to infer the molecular mechanisms in pre- and post-conditioning-derived neuroprotection in cortical neurons following oxygen and glucose deprivation (OGD) in vitro and then to apply these findings to predict corresponding functional pathways. To this end, microarray analysis was applied to rat cortical neurons with or without the pre- and post-conditioning treatments at 3-h post-reperfusion, and differentially expressed transcripts were subjected to statistical, hierarchical clustering and pathway analyses. The expression patterns of 3,431 genes altered under all conditions of ischaemia (with and without pre- or post-conditioning). We identified 1,595 genes that were commonly regulated within both the pre- and post-conditioning treatments. Cluster analysis revealed that transcription profiles clustered tightly within controls, non-conditioned OGD and neuroprotected groups. Two clusters defining neuroprotective conditions associated with up- and downregulated genes were evident. The five most upregulated genes within the neuroprotective clusters were Tagln, Nes, Ptrf, Vim and Adamts9, and the five most downregulated genes were Slc7a3, Bex1, Brunol4, Nrxn3 and Cpne4. Pathway analysis revealed that the intracellular and second messenger signalling pathways in addition to cell death were predominantly associated with downregulated pre- and post-conditioning associated genes, suggesting that modulation of cell death and signal transduction pathways

  16. Gene Expression Signature in Endemic Osteoarthritis by Microarray Analysis

    Directory of Open Access Journals (Sweden)

    Xi Wang

    2015-05-01

    Full Text Available Kashin-Beck Disease (KBD is an endemic osteochondropathy with an unknown pathogenesis. Diagnosis of KBD is effective only in advanced cases, which eliminates the possibility of early treatment and leads to an inevitable exacerbation of symptoms. Therefore, we aim to identify an accurate blood-based gene signature for the detection of KBD. Previously published gene expression profile data on cartilage and peripheral blood mononuclear cells (PBMCs from adults with KBD were compared to select potential target genes. Microarray analysis was conducted to evaluate the expression of the target genes in a cohort of 100 KBD patients and 100 healthy controls. A gene expression signature was identified using a training set, which was subsequently validated using an independent test set with a minimum redundancy maximum relevance (mRMR algorithm and support vector machine (SVM algorithm. Fifty unique genes were differentially expressed between KBD patients and healthy controls. A 20-gene signature was identified that distinguished between KBD patients and controls with 90% accuracy, 85% sensitivity, and 95% specificity. This study identified a 20-gene signature that accurately distinguishes between patients with KBD and controls using peripheral blood samples. These results promote the further development of blood-based genetic biomarkers for detection of KBD.

  17. Differential gene expression before and after ionizing radiation of subcutaneous fibroblasts identifies breast cancer patients resistant to radiation-induced fibrosis

    DEFF Research Database (Denmark)

    Alsner, Jan; Rødningen, Olaug K.; Overgaard, Jens

    2007-01-01

    BACKGROUND AND PURPOSE: Differentially gene expression between patients with either very low or very high risk of radiation-induced fibrosis (RIF) in patient-derived fibroblasts after irradiation has previously been reported. In the present study, we are investigating the robustness of radiation...... and changes in radiation-induced gene expression in fibroblasts. MATERIAL AND METHODS: Gene expression was analysed by quantitative real-time PCR before and after a fractionated scheme with 3x3.5Gy/3 days in fibroblasts derived from 26 patients with breast cancer treated with post-mastectomy radiotherapy....... RESULTS: Robust radiation-induced changes in gene expression were observed, with differential gene expression between low and high risk patients being most pronounced for the fold induction level ('after' value divided by 'before' value for each patient). When including patients with intermediate risk...

  18. Undifferentiated embryonic cell transcription factor 1 regulates ESC chromatin organization and gene expression

    DEFF Research Database (Denmark)

    Kooistra, Susanne M; van den Boom, Vincent; Thummer, Rajkumar P

    2010-01-01

    Previous reports showed that embryonic stem (ES) cells contain hyperdynamic and globally transcribed chromatin-properties that are important for ES cell pluripotency and differentiation. Here, we demonstrate a role for undifferentiated embryonic cell transcription factor 1 (UTF1) in regulating ES...... cell chromatin structure. Using chromatin immunoprecipitation-on-chip analysis, we identified >1,700 UTF1 target genes that significantly overlap with previously identified Nanog, Oct4, Klf-4, c-Myc, and Rex1 targets. Gene expression profiling showed that UTF1 knock down results in increased expression...... of a large set of genes, including a significant number of UTF1 targets. UTF1 knock down (KD) ES cells are, irrespective of the increased expression of several self-renewal genes, Leukemia inhibitory factor (LIF) dependent. However, UTF1 KD ES cells are perturbed in their differentiation in response...

  19. Identifying gene coexpression networks underlying the dynamic regulation of wood-forming tissues in Populus under diverse environmental conditions.

    Science.gov (United States)

    Zinkgraf, Matthew; Liu, Lijun; Groover, Andrew; Filkov, Vladimir

    2017-06-01

    Trees modify wood formation through integration of environmental and developmental signals in complex but poorly defined transcriptional networks, allowing trees to produce woody tissues appropriate to diverse environmental conditions. In order to identify relationships among genes expressed during wood formation, we integrated data from new and publically available datasets in Populus. These datasets were generated from woody tissue and include transcriptome profiling, transcription factor binding, DNA accessibility and genome-wide association mapping experiments. Coexpression modules were calculated, each of which contains genes showing similar expression patterns across experimental conditions, genotypes and treatments. Conserved gene coexpression modules (four modules totaling 8398 genes) were identified that were highly preserved across diverse environmental conditions and genetic backgrounds. Functional annotations as well as correlations with specific experimental treatments associated individual conserved modules with distinct biological processes underlying wood formation, such as cell-wall biosynthesis, meristem development and epigenetic pathways. Module genes were also enriched for DNase I hypersensitivity footprints and binding from four transcription factors associated with wood formation. The conserved modules are excellent candidates for modeling core developmental pathways common to wood formation in diverse environments and genotypes, and serve as testbeds for hypothesis generation and testing for future studies. No claim to original US government works. New Phytologist © 2017 New Phytologist Trust.

  20. Leveraging Comparative Genomics to Identify and Functionally Characterize Genes Associated with Sperm Phenotypes in Python bivittatus (Burmese Python

    Directory of Open Access Journals (Sweden)

    Kristopher J. L. Irizarry

    2016-01-01

    Full Text Available Comparative genomics approaches provide a means of leveraging functional genomics information from a highly annotated model organism’s genome (such as the mouse genome in order to make physiological inferences about the role of genes and proteins in a less characterized organism’s genome (such as the Burmese python. We employed a comparative genomics approach to produce the functional annotation of Python bivittatus genes encoding proteins associated with sperm phenotypes. We identify 129 gene-phenotype relationships in the python which are implicated in 10 specific sperm phenotypes. Results obtained through our systematic analysis identified subsets of python genes exhibiting associations with gene ontology annotation terms. Functional annotation data was represented in a semantic scatter plot. Together, these newly annotated Python bivittatus genome resources provide a high resolution framework from which the biology relating to reptile spermatogenesis, fertility, and reproduction can be further investigated. Applications of our research include (1 production of genetic diagnostics for assessing fertility in domestic and wild reptiles; (2 enhanced assisted reproduction technology for endangered and captive reptiles; and (3 novel molecular targets for biotechnology-based approaches aimed at reducing fertility and reproduction of invasive reptiles. Additional enhancements to reptile genomic resources will further enhance their value.

  1. Midbrain Gene Screening Identifies a New Mesoaccumbal Glutamatergic Pathway and a Marker for Dopamine Cells Neuroprotected in Parkinson’s Disease

    Science.gov (United States)

    Viereckel, Thomas; Dumas, Sylvie; Smith-Anttila, Casey J. A.; Vlcek, Bianca; Bimpisidis, Zisis; Lagerström, Malin C.; Konradsson-Geuken, Åsa; Wallén-Mackenzie, Åsa

    2016-01-01

    The ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) of the midbrain are associated with Parkinson’s disease (PD), schizophrenia, mood disorders and addiction. Based on the recently unraveled heterogeneity within the VTA and SNc, where glutamate, GABA and co-releasing neurons have been found to co-exist with the classical dopamine neurons, there is a compelling need for identification of gene expression patterns that represent this heterogeneity and that are of value for development of human therapies. Here, several unique gene expression patterns were identified in the mouse midbrain of which NeuroD6 and Grp were expressed within different dopaminergic subpopulations of the VTA, and TrpV1 within a small heterogeneous population. Optogenetics-coupled in vivo amperometry revealed a previously unknown glutamatergic mesoaccumbal pathway characterized by TrpV1-Cre-expression. Human GRP was strongly detected in non-melanized dopaminergic neurons within the SNc of both control and PD brains, suggesting GRP as a marker for neuroprotected neurons in PD. This study thus unravels markers for distinct subpopulations of neurons within the mouse and human midbrain, defines unique anatomical subregions within the VTA and exposes an entirely new glutamatergic pathway. Finally, both TRPV1 and GRP are implied in midbrain physiology of importance to neurological and neuropsychiatric disorders. PMID:27762319

  2. Inactivation of human α-globin gene expression by a de novo deletion located upstream of the α-globin gene cluster

    International Nuclear Information System (INIS)

    Liebhaber, S.A.; Weiss, I.; Cash, F.E.; Griese, E.U.; Horst, J.; Ayyub, H.; Higgs, D.R.

    1990-01-01

    Synthesis of normal human hemoglobin A, α 2 β 2 , is based upon balanced expression of genes in the α-globin gene cluster on chromosome 15 and the β-globin gene cluster on chromosome 11. Full levels of erythroid-specific activation of the β-globin cluster depend on sequences located at a considerable distance 5' to the β-globin gene, referred to as the locus-activating or dominant control region. The existence of an analogous element(s) upstream of the α-globin cluster has been suggested from observations on naturally occurring deletions and experimental studies. The authors have identified an individual with α-thalassemia in whom structurally normal α-globin genes have been inactivated in cis by a discrete de novo 35-kilobase deletion located ∼30 kilobases 5' from the α-globin gene cluster. They conclude that this deletion inactivates expression of the α-globin genes by removing one or more of the previously identified upstream regulatory sequences that are critical to expression of the α-globin genes

  3. Transcriptome-wide selection of a reliable set of reference genes for gene expression studies in potato cyst nematodes (Globodera spp.).

    Science.gov (United States)

    Sabeh, Michael; Duceppe, Marc-Olivier; St-Arnaud, Marc; Mimee, Benjamin

    2018-01-01

    Relative gene expression analyses by qRT-PCR (quantitative reverse transcription PCR) require an internal control to normalize the expression data of genes of interest and eliminate the unwanted variation introduced by sample preparation. A perfect reference gene should have a constant expression level under all the experimental conditions. However, the same few housekeeping genes selected from the literature or successfully used in previous unrelated experiments are often routinely used in new conditions without proper validation of their stability across treatments. The advent of RNA-Seq and the availability of public datasets for numerous organisms are opening the way to finding better reference genes for expression studies. Globodera rostochiensis is a plant-parasitic nematode that is particularly yield-limiting for potato. The aim of our study was to identify a reliable set of reference genes to study G. rostochiensis gene expression. Gene expression levels from an RNA-Seq database were used to identify putative reference genes and were validated with qRT-PCR analysis. Three genes, GR, PMP-3, and aaRS, were found to be very stable within the experimental conditions of this study and are proposed as reference genes for future work.

  4. Bioinformatic analysis of patient-derived ASPS gene expressions and ASPL-TFE3 fusion transcript levels identify potential therapeutic targets.

    Directory of Open Access Journals (Sweden)

    David G Covell

    Full Text Available Gene expression data, collected from ASPS tumors of seven different patients and from one immortalized ASPS cell line (ASPS-1, was analyzed jointly with patient ASPL-TFE3 (t(X;17(p11;q25 fusion transcript data to identify disease-specific pathways and their component genes. Data analysis of the pooled patient and ASPS-1 gene expression data, using conventional clustering methods, revealed a relatively small set of pathways and genes characterizing the biology of ASPS. These results could be largely recapitulated using only the gene expression data collected from patient tumor samples. The concordance between expression measures derived from ASPS-1 and both pooled and individual patient tumor data provided a rationale for extending the analysis to include patient ASPL-TFE3 fusion transcript data. A novel linear model was exploited to link gene expressions to fusion transcript data and used to identify a small set of ASPS-specific pathways and their gene expression. Cellular pathways that appear aberrantly regulated in response to the t(X;17(p11;q25 translocation include the cell cycle and cell adhesion. The identification of pathways and gene subsets characteristic of ASPS support current therapeutic strategies that target the FLT1 and MET, while also proposing additional targeting of genes found in pathways involved in the cell cycle (CHK1, cell adhesion (ARHGD1A, cell division (CDC6, control of meiosis (RAD51L3 and mitosis (BIRC5, and chemokine-related protein tyrosine kinase activity (CCL4.

  5. Utilization of gene mapping and candidate gene mutation screening for diagnosing clinically equivocal conditions: a Norrie disease case study.

    Science.gov (United States)

    Chini, Vasiliki; Stambouli, Danai; Nedelea, Florina Mihaela; Filipescu, George Alexandru; Mina, Diana; Kambouris, Marios; El-Shantil, Hatem

    2014-06-01

    Prenatal diagnosis was requested for an undiagnosed eye disease showing X-linked inheritance in a family. No medical records existed for the affected family members. Mapping of the X chromosome and candidate gene mutation screening identified a c.C267A[p.F89L] mutation in NPD previously described as possibly causing Norrie disease. The detection of the c.C267A[p.F89L] variant in another unrelated family confirms the pathogenic nature of the mutation for the Norrie disease phenotype. Gene mapping, haplotype analysis, and candidate gene screening have been previously utilized in research applications but were applied here in a diagnostic setting due to the scarcity of available clinical information. The clinical diagnosis and mutation identification were critical for providing proper genetic counseling and prenatal diagnosis for this family.

  6. Back to the sea twice: identifying candidate plant genes for molecular evolution to marine life

    Directory of Open Access Journals (Sweden)

    Reusch Thorsten BH

    2011-01-01

    Full Text Available Abstract Background Seagrasses are a polyphyletic group of monocotyledonous angiosperms that have adapted to a completely submerged lifestyle in marine waters. Here, we exploit two collections of expressed sequence tags (ESTs of two wide-spread and ecologically important seagrass species, the Mediterranean seagrass Posidonia oceanica (L. Delile and the eelgrass Zostera marina L., which have independently evolved from aquatic ancestors. This replicated, yet independent evolutionary history facilitates the identification of traits that may have evolved in parallel and are possible instrumental candidates for adaptation to a marine habitat. Results In our study, we provide the first quantitative perspective on molecular adaptations in two seagrass species. By constructing orthologous gene clusters shared between two seagrasses (Z. marina and P. oceanica and eight distantly related terrestrial angiosperm species, 51 genes could be identified with detection of positive selection along the seagrass branches of the phylogenetic tree. Characterization of these positively selected genes using KEGG pathways and the Gene Ontology uncovered that these genes are mostly involved in translation, metabolism, and photosynthesis. Conclusions These results provide first insights into which seagrass genes have diverged from their terrestrial counterparts via an initial aquatic stage characteristic of the order and to the derived fully-marine stage characteristic of seagrasses. We discuss how adaptive changes in these processes may have contributed to the evolution towards an aquatic and marine existence.

  7. Back to the sea twice: identifying candidate plant genes for molecular evolution to marine life.

    Science.gov (United States)

    Wissler, Lothar; Codoñer, Francisco M; Gu, Jenny; Reusch, Thorsten B H; Olsen, Jeanine L; Procaccini, Gabriele; Bornberg-Bauer, Erich

    2011-01-12

    Seagrasses are a polyphyletic group of monocotyledonous angiosperms that have adapted to a completely submerged lifestyle in marine waters. Here, we exploit two collections of expressed sequence tags (ESTs) of two wide-spread and ecologically important seagrass species, the Mediterranean seagrass Posidonia oceanica (L.) Delile and the eelgrass Zostera marina L., which have independently evolved from aquatic ancestors. This replicated, yet independent evolutionary history facilitates the identification of traits that may have evolved in parallel and are possible instrumental candidates for adaptation to a marine habitat. In our study, we provide the first quantitative perspective on molecular adaptations in two seagrass species. By constructing orthologous gene clusters shared between two seagrasses (Z. marina and P. oceanica) and eight distantly related terrestrial angiosperm species, 51 genes could be identified with detection of positive selection along the seagrass branches of the phylogenetic tree. Characterization of these positively selected genes using KEGG pathways and the Gene Ontology uncovered that these genes are mostly involved in translation, metabolism, and photosynthesis. These results provide first insights into which seagrass genes have diverged from their terrestrial counterparts via an initial aquatic stage characteristic of the order and to the derived fully-marine stage characteristic of seagrasses. We discuss how adaptive changes in these processes may have contributed to the evolution towards an aquatic and marine existence.

  8. Common variants in mendelian kidney disease genes and their association with renal function

    NARCIS (Netherlands)

    A. Parsa (Afshin); C. Fuchsberger (Christian); A. Köttgen (Anna); C.M. O'Seaghdha (Conall); C. Pattaro (Cristian); M. de Andrade (Mariza); D.I. Chasman (Daniel); A. Teumer (Alexander); K. Endlich (Karlhans); M. Olden (Matthias); M-H. Chen (Ming-Huei); A. Tin (Adrienne); Y-J. Kim (Yong-Jin); D. Taliun (Daniel); M. Li (Man); M.F. Feitosa (Mary Furlan); M. Gorski (Mathias); Q. Yang (Qiong); C. Hundertmark (Claudia); M.C. Foster (Michael); N. Glazer (Nicole); A.J. Isaacs (Aaron); M. Rao (Madhumathi); G.D. Smith; J.R. O´Connell; M.V. Struchalin (Maksim); T. Tanaka (Toshiko); G. Li (Guo); S.J. Hwang; E.J. Atkinson (Elizabeth); K. Lohman (Kurt); M. Cornelis (Marilyn); A. Johansson (Åsa); A. Tönjes (Anke); A. Dehghan (Abbas); V. Couraki (Vincent); E.G. Holliday (Elizabeth); R. Sorice; Z. Kutalik (Zoltán); T. Lehtimäki (Terho); T. Esko (Tõnu); H. Deshmukh (Harshal); S. Ulivi (Shelia); A.Y. Chu (Audrey); D. Murgia (Daniela); S. Trompet (Stella); M. Imboden (Medea); B. Kollerits (Barbara); G. Pistis (Giorgio); T.B. Harris (Tamara); L.J. Launer (Lenore); T. Aspelund (Thor); G. Eiriksdottir (Gudny); B.D. Mitchell (Braxton); E.A. Boerwinkle (Eric); H. Schmidt (Helena); E. Hofer (Edith); F.B. Hu (Frank); A. Demirkan (Ayşe); B.A. Oostra (Ben); S.T. Turner (Stephen); J. Ding (Jingzhong); J.S. Andrews (Jeanette); B.I. Freedman (Barry); F. Giulianini (Franco); W. Koenig (Wolfgang); T. Illig (Thomas); A. Döring (Angela); H.E. Wichmann (Heinz Erich); L. Zgaga (Lina); T. Zemunik (Tatijana); M. Boban (Mladen); C. Minelli (Cosetta); H.E. Wheeler (Heather); W. Igl (Wilmar); G. Zaboli (Ghazal); S.H. Wild (Sarah); A.F. Wright (Alan); H. Campbell (Harry); D. Ellinghaus (David); U. Nöthlings (Ute); G. Jacobs (Gunnar); R. Biffar (Reiner); F.D.J. Ernst (Florian); G. Homuth (Georg); H.K. Kroemer (Heyo); M. Nauck (Matthias); S. Stracke (Sylvia); U. Vol̈ker (Uwe); H. Völzke (Henry); P. Kovacs (Peter); M. Stumvoll (Michael); R. Mägi (Reedik); A. Hofman (Albert); A.G. Uitterlinden (André); F. Rivadeneira Ramirez (Fernando); Y.S. Aulchenko (Yurii); O. Polasek (Ozren); N. Hastie (Nick); V. Vitart (Veronique); C. Helmer (Catherine); J.J. Wang (Jie Jin); B. Stengel (Bernd); D. Ruggiero; S.M. Bergmann (Sven); M. Kähönen (Mika); J. Viikari (Jorma); T. Nikopensius (Tiit); M.A. Province (Mike); H.M. Colhoun (H.); A.S.F. Doney (Alex); A. Robino (Antonietta); B.K. Krämer (Bernhard); L. Portas (Laura); I. Ford (Ian); B.M. Buckley (Brendan M.); M. Adam (Martin); G.-A. Thun (Gian-Andri); B. Paulweber (Bernhard); M. Haun (Margot); C. Sala (Cinzia); P. Mitchell (Paul); M. Ciullo; P. Vollenweider (Peter); O. Raitakari (Olli); A. Metspalu (Andres); C.N.A. Palmer (Colin); P. Gasparini (Paolo); M. Pirastu (Mario); J.W. Jukema (Jan Wouter); N.M. Probst-Hensch (Nicole M.); F. Kronenberg (Florian); D. Toniolo (Daniela); V. Gudnason (Vilmundur); A.R. Shuldiner (Alan); J. Coresh (Josef); R. Schmidt (Reinhold); L. Ferrucci (Luigi); C.M. van Duijn (Cornelia); I.B. Borecki (Ingrid); S.L.R. Kardia (Sharon); Y. Liu (YongMei); G.C. Curhan (Gary); I. Rudan (Igor); U. Gyllensten (Ulf); J.F. Wilson (James); A. Franke (Andre); P.P. Pramstaller (Peter Paul); R. Rettig (Rainer); I. Prokopenko (Inga); J.C.M. Witteman (Jacqueline); C. Hayward (Caroline); P.M. Ridker (Paul); M. Bochud (Murielle); I.M. Heid (Iris); D.S. Siscovick (David); C.S. Fox (Caroline); W.H.L. Kao (Wen); C.A. Böger (Carsten)

    2013-01-01

    textabstractMany common genetic variants identified by genome-wide association studies for complex traitsmap to genes previously linked to rare inherited Mendelian disorders. A systematic analysis of common single-nucleotide polymorphisms (SNPs) in genes responsible for Mendelian diseases with

  9. Genetic architecture of gene expression in the chicken

    Directory of Open Access Journals (Sweden)

    Stanley Dragana

    2013-01-01

    Full Text Available Abstract Background The annotation of many genomes is limited, with a large proportion of identified genes lacking functional assignments. The construction of gene co-expression networks is a powerful approach that presents a way of integrating information from diverse gene expression datasets into a unified analysis which allows inferences to be drawn about the role of previously uncharacterised genes. Using this approach, we generated a condition-free gene co-expression network for the chicken using data from 1,043 publically available Affymetrix GeneChip Chicken Genome Arrays. This data was generated from a diverse range of experiments, including different tissues and experimental conditions. Our aim was to identify gene co-expression modules and generate a tool to facilitate exploration of the functional chicken genome. Results Fifteen modules, containing between 24 and 473 genes, were identified in the condition-free network. Most of the modules showed strong functional enrichment for particular Gene Ontology categories. However, a few showed no enrichment. Transcription factor binding site enrichment was also noted. Conclusions We have demonstrated that this chicken gene co-expression network is a useful tool in gene function prediction and the identification of putative novel transcription factors and binding sites. This work highlights the relevance of this methodology for functional prediction in poorly annotated genomes such as the chicken.

  10. A cell-based in vitro alternative to identify skin sensitizers by gene expression

    International Nuclear Information System (INIS)

    Hooyberghs, Jef; Schoeters, Elke; Lambrechts, Nathalie; Nelissen, Inge; Witters, Hilda; Schoeters, Greet; Heuvel, Rosette van den

    2008-01-01

    The ethical and economic burden associated with animal testing for assessment of skin sensitization has triggered intensive research effort towards development and validation of alternative methods. In addition, new legislation on the registration and use of cosmetics and chemicals promote the use of suitable alternatives for hazard assessment. Our previous studies demonstrated that human CD34 + progenitor-derived dendritic cells from cord blood express specific gene profiles upon exposure to low molecular weight sensitizing chemicals. This paper presents a classification model based on this cell type which is successful in discriminating sensitizing chemicals from non-sensitizing chemicals based on transcriptome analysis of 13 genes. Expression profiles of a set of 10 sensitizers and 11 non-sensitizers were analyzed by RT-PCR using 9 different exposure conditions and a total of 73 donor samples. Based on these data a predictive dichotomous classifier for skin sensitizers has been constructed, which is referred to as . In a first step the dimensionality of the input data was reduced by selectively rejecting a number of exposure conditions and genes. Next, the generalization of a linear classifier was evaluated by a cross-validation which resulted in a prediction performance with a concordance of 89%, a specificity of 97% and a sensitivity of 82%. These results show that the present model may be a useful human in vitro alternative for further use in a test strategy towards the reduction of animal use for skin sensitization

  11. New tools for Mendelian disease gene identification: PhenoDB variant analysis module; and GeneMatcher, a web-based tool for linking investigators with an interest in the same gene.

    Science.gov (United States)

    Sobreira, Nara; Schiettecatte, François; Boehm, Corinne; Valle, David; Hamosh, Ada

    2015-04-01

    Identifying the causative variant from among the thousands identified by whole-exome sequencing or whole-genome sequencing is a formidable challenge. To make this process as efficient and flexible as possible, we have developed a Variant Analysis Module coupled to our previously described Web-based phenotype intake tool, PhenoDB (http://researchphenodb.net and http://phenodb.org). When a small number of candidate-causative variants have been identified in a study of a particular patient or family, a second, more difficult challenge becomes proof of causality for any given variant. One approach to this problem is to find other cases with a similar phenotype and mutations in the same candidate gene. Alternatively, it may be possible to develop biological evidence for causality, an approach that is assisted by making connections to basic scientists studying the gene of interest, often in the setting of a model organism. Both of these strategies benefit from an open access, online site where individual clinicians and investigators could post genes of interest. To this end, we developed GeneMatcher (http://genematcher.org), a freely accessible Website that enables connections between clinicians and researchers across the world who share an interest in the same gene(s). © 2015 WILEY PERIODICALS, INC.

  12. Gene expression profiling of prostate tissue identifies chromatin regulation as a potential link between obesity and lethal prostate cancer.

    Science.gov (United States)

    Ebot, Ericka M; Gerke, Travis; Labbé, David P; Sinnott, Jennifer A; Zadra, Giorgia; Rider, Jennifer R; Tyekucheva, Svitlana; Wilson, Kathryn M; Kelly, Rachel S; Shui, Irene M; Loda, Massimo; Kantoff, Philip W; Finn, Stephen; Vander Heiden, Matthew G; Brown, Myles; Giovannucci, Edward L; Mucci, Lorelei A

    2017-11-01

    Obese men are at higher risk of advanced prostate cancer and cancer-specific mortality; however, the biology underlying this association remains unclear. This study examined gene expression profiles of prostate tissue to identify biological processes differentially expressed by obesity status and lethal prostate cancer. Gene expression profiling was performed on tumor (n = 402) and adjacent normal (n = 200) prostate tissue from participants in 2 prospective cohorts who had been diagnosed with prostate cancer from 1982 to 2005. Body mass index (BMI) was calculated from the questionnaire immediately preceding cancer diagnosis. Men were followed for metastases or prostate cancer-specific death (lethal disease) through 2011. Gene Ontology biological processes differentially expressed by BMI were identified using gene set enrichment analysis. Pathway scores were computed by averaging the signal intensities of member genes. Odds ratios (ORs) for lethal prostate cancer were estimated with logistic regression. Among 402 men, 48% were healthy weight, 31% were overweight, and 21% were very overweight/obese. Fifteen gene sets were enriched in tumor tissue, but not normal tissue, of very overweight/obese men versus healthy-weight men; 5 of these were related to chromatin modification and remodeling (false-discovery rate 7, 41% vs 17%; P = 2 × 10 -4 ) and an increased risk of lethal disease that was independent of grade and stage (OR, 5.26; 95% confidence interval, 2.37-12.25). This study improves our understanding of the biology of aggressive prostate cancer and identifies a potential mechanistic link between obesity and prostate cancer death that warrants further study. Cancer 2017;123:4130-4138. © 2017 American Cancer Society. © 2017 American Cancer Society.

  13. Genome-Wide Association Study with Sequence Variants Identifies Candidate Genes for Mastitis Resistance in Dairy Cattle

    DEFF Research Database (Denmark)

    Sahana, Goutam; Guldbrandtsen, Bernt; Bendixen, Christian

    Six genomic regions affecting clinical mastitis were identified through a GWAS study with imputed BovineHD chip genotype data in the Nordic Holstein cattle population. The association analyses were carried out using a SNP-by-SNP analysis by fitting the regression of allele dosage and a polygenic...... Effect Predictor (VEP) vers. 2.6 using ENSEMBL vers. 67 databases. Candidate polymorphisms affecting clinical mastitis were selected based on their association with the traits and functional annotations. A strong positional candidate gene for mastitis resistance on chromosome-6 is the NPFFR2 which...... Factor Receptor Alpha (LIFR) emerged as a strong candidate gene for mastitis resistance. The LIFR gene is involved in acute phase response and is expressed in saliva and mammary gland....

  14. Genome-wide association study identified genetic variations and candidate genes for plant architecture component traits in Chinese upland cotton.

    Science.gov (United States)

    Su, Junji; Li, Libei; Zhang, Chi; Wang, Caixiang; Gu, Lijiao; Wang, Hantao; Wei, Hengling; Liu, Qibao; Huang, Long; Yu, Shuxun

    2018-06-01

    Thirty significant associations between 22 SNPs and five plant architecture component traits in Chinese upland cotton were identified via GWAS. Four peak SNP loci located on chromosome D03 were simultaneously associated with more plant architecture component traits. A candidate gene, Gh_D03G0922, might be responsible for plant height in upland cotton. A compact plant architecture is increasingly required for mechanized harvesting processes in China. Therefore, cotton plant architecture is an important trait, and its components, such as plant height, fruit branch length and fruit branch angle, affect the suitability of a cultivar for mechanized harvesting. To determine the genetic basis of cotton plant architecture, a genome-wide association study (GWAS) was performed using a panel composed of 355 accessions and 93,250 single nucleotide polymorphisms (SNPs) identified using the specific-locus amplified fragment sequencing method. Thirty significant associations between 22 SNPs and five plant architecture component traits were identified via GWAS. Most importantly, four peak SNP loci located on chromosome D03 were simultaneously associated with more plant architecture component traits, and these SNPs were harbored in one linkage disequilibrium block. Furthermore, 21 candidate genes for plant architecture were predicted in a 0.95-Mb region including the four peak SNPs. One of these genes (Gh_D03G0922) was near the significant SNP D03_31584163 (8.40 kb), and its Arabidopsis homologs contain MADS-box domains that might be involved in plant growth and development. qRT-PCR showed that the expression of Gh_D03G0922 was upregulated in the apical buds and young leaves of the short and compact cotton varieties, and virus-induced gene silencing (VIGS) proved that the silenced plants exhibited increased PH. These results indicate that Gh_D03G0922 is likely the candidate gene for PH in cotton. The genetic variations and candidate genes identified in this study lay a foundation

  15. Changes in the peripheral blood transcriptome associated with occupational benzene exposure identified by cross-comparison on two microarray platforms

    Energy Technology Data Exchange (ETDEWEB)

    McHale, Cliona M.; Zhang, Luoping; Lan, Qing; Li, Guilan; Hubbard, Alan E.; Forrest, Matthew S.; Vermeulen, Roel; Chen, Jinsong; Shen, Min; Rappaport, Stephen M.; Yin, Songnian; Smith, Martyn T.; Rothman, Nathaniel

    2009-03-01

    Benzene is an established cause of leukemia and a possible cause of lymphoma in humans but the molecular pathways underlying this remain largely undetermined. This study sought to determine if the use of two different microarray platforms could identify robust global gene expression and pathway changes associated with occupational benzene exposure in the peripheral blood mononuclear cell (PBMC) gene expression of a population of shoe-factory workers with well-characterized occupational exposures to benzene. Microarray data was analyzed by a robust t-test using a Quantile Transformation (QT) approach. Differential expression of 2692 genes using the Affymetrix platform and 1828 genes using the Illumina platform was found. While the overall concordance in genes identified as significantly associated with benzene exposure between the two platforms was 26% (475 genes), the most significant genes identified by either array were more likely to be ranked as significant by the other platform (Illumina = 64%, Affymetrix = 58%). Expression ratios were similar among the concordant genes (mean difference in expression ratio = 0.04, standard deviation = 0.17). Four genes (CXCL16, ZNF331, JUN and PF4), which we previously identified by microarray and confirmed by real-time PCR, were identified by both platforms in the current study and were among the top 100 genes. Gene Ontology analysis showed over representation of genes involved in apoptosis among the concordant genes while Ingenuity{reg_sign} Pathway Analysis (IPA) identified pathways related to lipid metabolism. Using a two-platform approach allows for robust changes in the PBMC transcriptome of benzene-exposed individuals to be identified.

  16. Microaspiration of esophageal gland cells and cDNA library construction for identifying parasitism genes of plant-parasitic nematodes.

    Science.gov (United States)

    Hussey, Richard S; Huang, Guozhong; Allen, Rex

    2011-01-01

    Identifying parasitism genes encoding proteins secreted from a plant-parasitic nematode's esophageal gland cells and injected through its stylet into plant tissue is the key to understanding the molecular basis of nematode parasitism of plants. Parasitism genes have been cloned by directly microaspirating the cytoplasm from the esophageal gland cells of different parasitic stages of cyst or root-knot nematodes to provide mRNA to create a gland cell-specific cDNA library by long-distance reverse-transcriptase polymerase chain reaction. cDNA clones are sequenced and deduced protein sequences with a signal peptide for secretion are identified for high-throughput in situ hybridization to confirm gland-specific expression.

  17. Using microarrays to identify positional candidate genes for QTL: the case study of ACTH response in pigs.

    Science.gov (United States)

    Jouffe, Vincent; Rowe, Suzanne; Liaubet, Laurence; Buitenhuis, Bart; Hornshøj, Henrik; SanCristobal, Magali; Mormède, Pierre; de Koning, D J

    2009-07-16

    Microarray studies can supplement QTL studies by suggesting potential candidate genes in the QTL regions, which by themselves are too large to provide a limited selection of candidate genes. Here we provide a case study where we explore ways to integrate QTL data and microarray data for the pig, which has only a partial genome sequence. We outline various procedures to localize differentially expressed genes on the pig genome and link this with information on published QTL. The starting point is a set of 237 differentially expressed cDNA clones in adrenal tissue from two pig breeds, before and after treatment with adrenocorticotropic hormone (ACTH). Different approaches to localize the differentially expressed (DE) genes to the pig genome showed different levels of success and a clear lack of concordance for some genes between the various approaches. For a focused analysis on 12 genes, overlapping QTL from the public domain were presented. Also, differentially expressed genes underlying QTL for ACTH response were described. Using the latest version of the draft sequence, the differentially expressed genes were mapped to the pig genome. This enabled co-location of DE genes and previously studied QTL regions, but the draft genome sequence is still incomplete and will contain many errors. A further step to explore links between DE genes and QTL at the pathway level was largely unsuccessful due to the lack of annotation of the pig genome. This could be improved by further comparative mapping analyses but this would be time consuming. This paper provides a case study for the integration of QTL data and microarray data for a species with limited genome sequence information and annotation. The results illustrate the challenges that must be addressed but also provide a roadmap for future work that is applicable to other non-model species.

  18. Efficient Culture Adaptation of Hepatitis C Virus Recombinants with Genotype-Specific Core-NS2 by Using Previously Identified Mutations

    DEFF Research Database (Denmark)

    Scheel, Troels Kasper Høyer; Gottwein, Judith M; Carlsen, Thomas H R

    2011-01-01

    Hepatitis C virus (HCV) is an important cause of chronic liver disease, and interferon-based therapy cures only 40 to 80% of patients, depending on HCV genotype. Research was accelerated by genotype 2a (strain JFH1) infectious cell culture systems. We previously developed viable JFH1-based...... (HC-TN and DH6), 1b (DH1 and DH5), and 3a (DBN) isolates, using previously identified adaptive mutations. Introduction of mutations from isolates of the same subtype either led to immediate efficient virus production or accelerated culture adaptation. The DH6 and DH5 recombinants without introduced...... mutations did not adapt to culture. Universal adaptive effects of mutations in NS3 (Q1247L, I1312V, K1398Q, R1408W, and Q1496L) and NS5A (V2418L) were investigated for JFH1-based genotype 1 to 5 core-NS2 recombinants; several mutations conferred adaptation to H77C (1a), J4 (1b), S52 (3a), and SA13 (5a...

  19. Identifying prognostic features by bottom-up approach and correlating to drug repositioning.

    Directory of Open Access Journals (Sweden)

    Wei Li

    Full Text Available Traditionally top-down method was used to identify prognostic features in cancer research. That is to say, differentially expressed genes usually in cancer versus normal were identified to see if they possess survival prediction power. The problem is that prognostic features identified from one set of patient samples can rarely be transferred to other datasets. We apply bottom-up approach in this study: survival correlated or clinical stage correlated genes were selected first and prioritized by their network topology additionally, then a small set of features can be used as a prognostic signature.Gene expression profiles of a cohort of 221 hepatocellular carcinoma (HCC patients were used as a training set, 'bottom-up' approach was applied to discover gene-expression signatures associated with survival in both tumor and adjacent non-tumor tissues, and compared with 'top-down' approach. The results were validated in a second cohort of 82 patients which was used as a testing set.Two sets of gene signatures separately identified in tumor and adjacent non-tumor tissues by bottom-up approach were developed in the training cohort. These two signatures were associated with overall survival times of HCC patients and the robustness of each was validated in the testing set, and each predictive performance was better than gene expression signatures reported previously. Moreover, genes in these two prognosis signature gave some indications for drug-repositioning on HCC. Some approved drugs targeting these markers have the alternative indications on hepatocellular carcinoma.Using the bottom-up approach, we have developed two prognostic gene signatures with a limited number of genes that associated with overall survival times of patients with HCC. Furthermore, prognostic markers in these two signatures have the potential to be therapeutic targets.

  20. Large-scale evaluation of candidate genes identifies associations between VEGF polymorphisms and bladder cancer risk.

    Directory of Open Access Journals (Sweden)

    Montserrat García-Closas

    2007-02-01

    Full Text Available Common genetic variation could alter the risk for developing bladder cancer. We conducted a large-scale evaluation of single nucleotide polymorphisms (SNPs in candidate genes for cancer to identify common variants that influence bladder cancer risk. An Illumina GoldenGate assay was used to genotype 1,433 SNPs within or near 386 genes in 1,086 cases and 1,033 controls in Spain. The most significant finding was in the 5' UTR of VEGF (rs25648, p for likelihood ratio test, 2 degrees of freedom = 1 x 10(-5. To further investigate the region, we analyzed 29 additional SNPs in VEGF, selected to saturate the promoter and 5' UTR and to tag common genetic variation in this gene. Three additional SNPs in the promoter region (rs833052, rs1109324, and rs1547651 were associated with increased risk for bladder cancer: odds ratio (95% confidence interval: 2.52 (1.06-5.97, 2.74 (1.26-5.98, and 3.02 (1.36-6.63, respectively; and a polymorphism in intron 2 (rs3024994 was associated with reduced risk: 0.65 (0.46-0.91. Two of the promoter SNPs and the intron 2 SNP showed linkage disequilibrium with rs25648. Haplotype analyses revealed three blocks of linkage disequilibrium with significant associations for two blocks including the promoter and 5' UTR (global p = 0.02 and 0.009, respectively. These findings are biologically plausible since VEGF is critical in angiogenesis, which is important for tumor growth, its elevated expression in bladder tumors correlates with tumor progression, and specific 5' UTR haplotypes have been shown to influence promoter activity. Associations between bladder cancer risk and other genes in this report were not robust based on false discovery rate calculations. In conclusion, this large-scale evaluation of candidate cancer genes has identified common genetic variants in the regulatory regions of VEGF that could be associated with bladder cancer risk.

  1. Third-Generation Sequencing and Analysis of Four Complete Pig Liver Esterase Gene Sequences in Clones Identified by Screening BAC Library.

    Science.gov (United States)

    Zhou, Qiongqiong; Sun, Wenjuan; Liu, Xiyan; Wang, Xiliang; Xiao, Yuncai; Bi, Dingren; Yin, Jingdong; Shi, Deshi

    2016-01-01

    Pig liver carboxylesterase (PLE) gene sequences in GenBank are incomplete, which has led to difficulties in studying the genetic structure and regulation mechanisms of gene expression of PLE family genes. The aim of this study was to obtain and analysis of complete gene sequences of PLE family by screening from a Rongchang pig BAC library and third-generation PacBio gene sequencing. After a number of existing incomplete PLE isoform gene sequences were analysed, primers were designed based on conserved regions in PLE exons, and the whole pig genome used as a template for Polymerase chain reaction (PCR) amplification. Specific primers were then selected based on the PCR amplification results. A three-step PCR screening method was used to identify PLE-positive clones by screening a Rongchang pig BAC library and PacBio third-generation sequencing was performed. BLAST comparisons and other bioinformatics methods were applied for sequence analysis. Five PLE-positive BAC clones, designated BAC-10, BAC-70, BAC-75, BAC-119 and BAC-206, were identified. Sequence analysis yielded the complete sequences of four PLE genes, PLE1, PLE-B9, PLE-C4, and PLE-G2. Complete PLE gene sequences were defined as those containing regulatory sequences, exons, and introns. It was found that, not only did the PLE exon sequences of the four genes show a high degree of homology, but also that the intron sequences were highly similar. Additionally, the regulatory region of the genes contained two 720bps reverse complement sequences that may have an important function in the regulation of PLE gene expression. This is the first report to confirm the complete sequences of four PLE genes. In addition, the study demonstrates that each PLE isoform is encoded by a single gene and that the various genes exhibit a high degree of sequence homology, suggesting that the PLE family evolved from a single ancestral gene. Obtaining the complete sequences of these PLE genes provides the necessary foundation for

  2. Identification of candidate new cancer susceptibility genes using yeast genomics

    International Nuclear Information System (INIS)

    Brown, M.; Brown, J.A.; Game, J.C.

    2003-01-01

    A large proportion of cancer susceptibility syndromes are the result of mutations in genes in DNA repair or in cell-cycle checkpoints in response to DNA damage, such as ataxia telangiectasia (AT), Fanconi's anemia (FA), Bloom's syndrome (BS), Nijmegen breakage syndrome (NBS), and xeroderma pigmentosum (XP). Mutations in these genes often cause gross chromosomal instability leading to an increased mutation rate of all genes including those directly responsible for cancer. We have proposed that because the orthologs of these genes in budding yeast, S. cerevisiae, confer protection against killing by DNA damaging agents it should be possible to identify new cancer susceptibility genes by identifying yeast genes whose deletion causes sensitivity to DNA damage. We therefore screened the recently completed collection of individual gene deletion mutants to identify genes that affect sensitivity to DNA-damaging agents. Screening for sensitivity in this obtained up to now with the F98 glioma model othe fact that each deleted gene is replaced by a cassette containing two molecular 'barcodes', or 20-mers, that uniquely identify the strain when DNA from a pool of strains is hybridized to an oligonucleotide array containing the complementary sequences of the barcodes. We performed the screen with UV, IR, H 2 0 2 and other DNA damaging agents. In addition to identifying genes already known to confer resistance to DNA damaging agents we have identified, and individually confirmed, several genes not previously associated with resistance. Several of these are of unknown function. We have also examined the chromosomal stability of selected strains and found that IR sensitive strains often but not always exhibit genomic instability. We are presently constructing a yeast artificial chromosome to globally interrogate all the genes in the deletion pool for their involvement in genomic stability. This work shows that budding yeast is a valuable eukaryotic model organism to identify

  3. Bioinformatics analysis identify novel OB fold protein coding genes in C. elegans.

    Directory of Open Access Journals (Sweden)

    Daryanaz Dargahi

    Full Text Available BACKGROUND: The C. elegans genome has been extensively annotated by the WormBase consortium that uses state of the art bioinformatics pipelines, functional genomics and manual curation approaches. As a result, the identification of novel genes in silico in this model organism is becoming more challenging requiring new approaches. The Oligonucleotide-oligosaccharide binding (OB fold is a highly divergent protein family, in which protein sequences, in spite of having the same fold, share very little sequence identity (5-25%. Therefore, evidence from sequence-based annotation may not be sufficient to identify all the members of this family. In C. elegans, the number of OB-fold proteins reported is remarkably low (n=46 compared to other evolutionary-related eukaryotes, such as yeast S. cerevisiae (n=344 or fruit fly D. melanogaster (n=84. Gene loss during evolution or differences in the level of annotation for this protein family, may explain these discrepancies. METHODOLOGY/PRINCIPAL FINDINGS: This study examines the possibility that novel OB-fold coding genes exist in the worm. We developed a bioinformatics approach that uses the most sensitive sequence-sequence, sequence-profile and profile-profile similarity search methods followed by 3D-structure prediction as a filtering step to eliminate false positive candidate sequences. We have predicted 18 coding genes containing the OB-fold that have remarkably partially been characterized in C. elegans. CONCLUSIONS/SIGNIFICANCE: This study raises the possibility that the annotation of highly divergent protein fold families can be improved in C. elegans. Similar strategies could be implemented for large scale analysis by the WormBase consortium when novel versions of the genome sequence of C. elegans, or other evolutionary related species are being released. This approach is of general interest to the scientific community since it can be used to annotate any genome.

  4. Improved gene expression signature of testicular carcinoma in situ

    DEFF Research Database (Denmark)

    Almstrup, Kristian; Leffers, Henrik; Lothe, Ragnhild A

    2007-01-01

    on global gene expression in testicular CIS have been previously published. We have merged the two data sets on CIS samples (n = 6) and identified the shared gene expression signature in relation to expression in normal testis. Among the top-20 highest expressed genes, one-third was transcription factors...... development' were significantly altered and could collectively affect cellular pathways like the WNT signalling cascade, which thus may be disrupted in testicular CIS. The merged CIS data from two different microarray platforms, to our knowledge, provide the most precise CIS gene expression signature to date....

  5. Analysis of pan-genome to identify the core genes and essential genes of Brucella spp.

    Science.gov (United States)

    Yang, Xiaowen; Li, Yajie; Zang, Juan; Li, Yexia; Bie, Pengfei; Lu, Yanli; Wu, Qingmin

    2016-04-01

    Brucella spp. are facultative intracellular pathogens, that cause a contagious zoonotic disease, that can result in such outcomes as abortion or sterility in susceptible animal hosts and grave, debilitating illness in humans. For deciphering the survival mechanism of Brucella spp. in vivo, 42 Brucella complete genomes from NCBI were analyzed for the pan-genome and core genome by identification of their composition and function of Brucella genomes. The results showed that the total 132,143 protein-coding genes in these genomes were divided into 5369 clusters. Among these, 1710 clusters were associated with the core genome, 1182 clusters with strain-specific genes and 2477 clusters with dispensable genomes. COG analysis indicated that 44 % of the core genes were devoted to metabolism, which were mainly responsible for energy production and conversion (COG category C), and amino acid transport and metabolism (COG category E). Meanwhile, approximately 35 % of the core genes were in positive selection. In addition, 1252 potential essential genes were predicted in the core genome by comparison with a prokaryote database of essential genes. The results suggested that the core genes in Brucella genomes are relatively conservation, and the energy and amino acid metabolism play a more important role in the process of growth and reproduction in Brucella spp. This study might help us to better understand the mechanisms of Brucella persistent infection and provide some clues for further exploring the gene modules of the intracellular survival in Brucella spp.

  6. Microarray analysis identifies a common set of cellular genes modulated by different HCV replicon clones

    Directory of Open Access Journals (Sweden)

    Gerosolimo Germano

    2008-06-01

    Full Text Available Abstract Background Hepatitis C virus (HCV RNA synthesis and protein expression affect cell homeostasis by modulation of gene expression. The impact of HCV replication on global cell transcription has not been fully evaluated. Thus, we analysed the expression profiles of different clones of human hepatoma-derived Huh-7 cells carrying a self-replicating HCV RNA which express all viral proteins (HCV replicon system. Results First, we compared the expression profile of HCV replicon clone 21-5 with both the Huh-7 parental cells and the 21-5 cured (21-5c cells. In these latter, the HCV RNA has been eliminated by IFN-α treatment. To confirm data, we also analyzed microarray results from both the 21-5 and two other HCV replicon clones, 22-6 and 21-7, compared to the Huh-7 cells. The study was carried out by using the Applied Biosystems (AB Human Genome Survey Microarray v1.0 which provides 31,700 probes that correspond to 27,868 human genes. Microarray analysis revealed a specific transcriptional program induced by HCV in replicon cells respect to both IFN-α-cured and Huh-7 cells. From the original datasets of differentially expressed genes, we selected by Venn diagrams a final list of 38 genes modulated by HCV in all clones. Most of the 38 genes have never been described before and showed high fold-change associated with significant p-value, strongly supporting data reliability. Classification of the 38 genes by Panther System identified functional categories that were significantly enriched in this gene set, such as histones and ribosomal proteins as well as extracellular matrix and intracellular protein traffic. The dataset also included new genes involved in lipid metabolism, extracellular matrix and cytoskeletal network, which may be critical for HCV replication and pathogenesis. Conclusion Our data provide a comprehensive analysis of alterations in gene expression induced by HCV replication and reveal modulation of new genes potentially useful

  7. Identifying the candidate genes involved in the calyx abscission process of 'Kuerlexiangli' (Pyrus sinkiangensis Yu) by digital transcript abundance measurements.

    Science.gov (United States)

    Qi, Xiaoxiao; Wu, Jun; Wang, Lifen; Li, Leiting; Cao, Yufen; Tian, Luming; Dong, Xingguang; Zhang, Shaoling

    2013-10-23

    'Kuerlexiangli' (Pyrus sinkiangensis Yu), a native pear of Xinjiang, China, is an important agricultural fruit and primary export to the international market. However, fruit with persistent calyxes affect fruit shape and quality. Although several studies have looked into the physiological aspects of the calyx abscission process, the underlying molecular mechanisms remain unknown. In order to better understand the molecular basis of the process of calyx abscission, materials at three critical stages of regulation, with 6000 × Flusilazole plus 300 × PBO treatment (calyx abscising treatment) and 50 mg.L-1GA3 treatment (calyx persisting treatment), were collected and cDNA fragments were sequenced using digital transcript abundance measurements to identify candidate genes. Digital transcript abundance measurements was performed using high-throughput Illumina GAII sequencing on seven samples that were collected at three important stages of the calyx abscission process with chemical agent treatments promoting calyx abscission and persistence. Altogether more than 251,123,845 high quality reads were obtained with approximately 8.0 M raw data for each library. The values of 69.85%-71.90% of clean data in the digital transcript abundance measurements could be mapped to the pear genome database. There were 12,054 differentially expressed genes having Gene Ontology (GO) terms and associating with 251 Kyoto Encyclopedia of Genes and Genomes (KEGG) defined pathways. The differentially expressed genes correlated with calyx abscission were mainly involved in photosynthesis, plant hormone signal transduction, cell wall modification, transcriptional regulation, and carbohydrate metabolism. Furthermore, candidate calyx abscission-specific genes, e.g. Inflorescence deficient in abscission gene, were identified. Quantitative real-time PCR was used to confirm the digital transcript abundance measurements results. We identified candidate genes that showed highly dynamic changes in

  8. Defended to the Nines: 25 Years of Resistance Gene Cloning Identifies Nine Mechanisms for R Protein Function.

    Science.gov (United States)

    Kourelis, Jiorgos; van der Hoorn, Renier A L

    2018-02-01

    Plants have many, highly variable resistance ( R ) gene loci, which provide resistance to a variety of pathogens. The first R gene to be cloned, maize ( Zea mays ) Hm1 , was published over 25 years ago, and since then, many different R genes have been identified and isolated. The encoded proteins have provided clues to the diverse molecular mechanisms underlying immunity. Here, we present a meta-analysis of 314 cloned R genes. The majority of R genes encode cell surface or intracellular receptors, and we distinguish nine molecular mechanisms by which R proteins can elevate or trigger disease resistance: direct (1) or indirect (2) perception of pathogen-derived molecules on the cell surface by receptor-like proteins and receptor-like kinases; direct (3) or indirect (4) intracellular detection of pathogen-derived molecules by nucleotide binding, leucine-rich repeat receptors, or detection through integrated domains (5); perception of transcription activator-like effectors through activation of executor genes (6); and active (7), passive (8), or host reprogramming-mediated (9) loss of susceptibility. Although the molecular mechanisms underlying the functions of R genes are only understood for a small proportion of known R genes, a clearer understanding of mechanisms is emerging and will be crucial for rational engineering and deployment of novel R genes. © 2018 American Society of Plant Biologists. All rights reserved.

  9. Gene methylation profiles of normal mucosa, and benign and malignant colorectal tumors identify early onset markers

    Directory of Open Access Journals (Sweden)

    Vatn Morten

    2008-12-01

    Full Text Available Abstract Background Multiple epigenetic and genetic changes have been reported in colorectal tumors, but few of these have clinical impact. This study aims to pinpoint epigenetic markers that can discriminate between non-malignant and malignant tissue from the large bowel, i.e. markers with diagnostic potential. The methylation status of eleven genes (ADAMTS1, CDKN2A, CRABP1, HOXA9, MAL, MGMT, MLH1, NR3C1, PTEN, RUNX3, and SCGB3A1 was determined in 154 tissue samples including normal mucosa, adenomas, and carcinomas of the colorectum. The gene-specific and widespread methylation status among the carcinomas was related to patient gender and age, and microsatellite instability status. Possible CIMP tumors were identified by comparing the methylation profile with microsatellite instability (MSI, BRAF-, KRAS-, and TP53 mutation status. Results The mean number of methylated genes per sample was 0.4 in normal colon mucosa from tumor-free individuals, 1.2 in mucosa from cancerous bowels, 2.2 in adenomas, and 3.9 in carcinomas. Widespread methylation was found in both adenomas and carcinomas. The promoters of ADAMTS1, MAL, and MGMT were frequently methylated in benign samples as well as in malignant tumors, independent of microsatellite instability. In contrast, normal mucosa samples taken from bowels without tumor were rarely methylated for the same genes. Hypermethylated CRABP1, MLH1, NR3C1, RUNX3, and SCGB3A1 were shown to be identifiers of carcinomas with microsatellite instability. In agreement with the CIMP concept, MSI and mutated BRAF were associated with samples harboring hypermethylation of several target genes. Conclusion Methylated ADAMTS1, MGMT, and MAL are suitable as markers for early tumor detection.

  10. Gene Expression Profiling and Identification of Resistance Genes to Aspergillus flavus Infection in Peanut through EST and Microarray Strategies

    Directory of Open Access Journals (Sweden)

    Baozhu Guo

    2011-06-01

    Full Text Available Aspergillus flavus and A. parasiticus infect peanut seeds and produce aflatoxins, which are associated with various diseases in domestic animals and humans throughout the world. The most cost-effective strategy to minimize aflatoxin contamination involves the development of peanut cultivars that are resistant to fungal infection and/or aflatoxin production. To identify peanut Aspergillus-interactive and peanut Aspergillus-resistance genes, we carried out a large scale peanut Expressed Sequence Tag (EST project which we used to construct a peanut glass slide oligonucleotide microarray. The fabricated microarray represents over 40% of the protein coding genes in the peanut genome. For expression profiling, resistant and susceptible peanut cultivars were infected with a mixture of Aspergillus flavus and parasiticus spores. The subsequent microarray analysis identified 62 genes in resistant cultivars that were up-expressed in response to Aspergillus infection. In addition, we identified 22 putative Aspergillus-resistance genes that were constitutively up-expressed in the resistant cultivar in comparison to the susceptible cultivar. Some of these genes were homologous to peanut, corn, and soybean genes that were previously shown to confer resistance to fungal infection. This study is a first step towards a comprehensive genome-scale platform for developing Aspergillus-resistant peanut cultivars through targeted marker-assisted breeding and genetic engineering.

  11. AN MHC class I immune evasion gene of Marek's disease virus

    Science.gov (United States)

    Marek's disease virus (MDV) is a widespread a-herpesvirus of chickens that causes T cell tumors. Acute, but not latent, MDV infection has previously been shown to lead to downregulation of cell-surface MHC class I (Virology 282:198–205 (2001)), but the gene(s) involved have not been identified. Here...

  12. Profiling of Candida albicans Gene Expression During Intra-abdominal Candidiasis Identifies Biologic Processes Involved in Pathogenesis

    Science.gov (United States)

    Cheng, Shaoji; Clancy, Cornelius J.; Xu, Wenjie; Schneider, Frank; Hao, Binghua; Mitchell, Aaron P.; Nguyen, M. Hong

    2013-01-01

    Background. The pathogenesis of intra-abdominal candidiasis is poorly understood. Methods. Mice were intraperitoneally infected with Candida albicans (1 × 106 colony-forming units) and sterile stool. nanoString assays were used to quantitate messenger RNA for 145 C. albicans genes within the peritoneal cavity at 48 hours. Results. Within 6 hours after infection, mice developed peritonitis, characterized by high yeast burdens, neutrophil influx, and a pH of 7.9 within peritoneal fluid. Organ invasion by hyphae and early abscess formation were evident 6 and 24 hours after infection, respectively; abscesses resolved by day 14. nanoString assays revealed adhesion and responses to alkaline pH, osmolarity, and stress as biologic processes activated in the peritoneal cavity. Disruption of the highly-expressed gene RIM101, which encodes an alkaline-regulated transcription factor, did not impact cellular morphology but reduced both C. albicans burden during early peritonitis and C. albicans persistence within abscesses. RIM101 influenced expression of 49 genes during intra-abdominal candidiasis, including previously unidentified Rim101 targets. Overexpression of the RIM101-dependent gene SAP5, which encodes a secreted protease, restored the ability of a rim101 mutant to persist within abscesses. Conclusions. A mouse model of intra-abdominal candidiasis is valuable for studying pathogenesis and C. albicans gene expression. RIM101 contributes to persistence within intra-abdominal abscesses, at least in part through activation of SAP5. PMID:24006479

  13. A chronological expression profile of gene activity during embryonic mouse brain development.

    Science.gov (United States)

    Goggolidou, P; Soneji, S; Powles-Glover, N; Williams, D; Sethi, S; Baban, D; Simon, M M; Ragoussis, I; Norris, D P

    2013-12-01

    The brain is a functionally complex organ, the patterning and development of which are key to adult health. To help elucidate the genetic networks underlying mammalian brain patterning, we conducted detailed transcriptional profiling during embryonic development of the mouse brain. A total of 2,400 genes were identified as showing differential expression between three developmental stages. Analysis of the data identified nine gene clusters to demonstrate analogous expression profiles. A significant group of novel genes of as yet undiscovered biological function were detected as being potentially relevant to brain development and function, in addition to genes that have previously identified roles in the brain. Furthermore, analysis for genes that display asymmetric expression between the left and right brain hemispheres during development revealed 35 genes as putatively asymmetric from a combined data set. Our data constitute a valuable new resource for neuroscience and neurodevelopment, exposing possible functional associations between genes, including novel loci, and encouraging their further investigation in human neurological and behavioural disorders.

  14. New sources of soybean seed meal and oil composition traits identified through TILLING

    Directory of Open Access Journals (Sweden)

    Bilyeu Kristin D

    2009-07-01

    Full Text Available Abstract Background Several techniques are available to study gene function, but many are less than ideal for soybean. Reverse genetics, a relatively new approach, can be utilized to identify novel mutations in candidate genes; this technique has not produced an allelic variant with a confirmed phenotype in soybean. Soybean raffinose synthase genes and microsomal omega-6 fatty acid desaturase genes were screened for novel alleles in mutagenized soybean populations. Results Four mutations in independent lines were identified in the raffinose synthase gene RS2; two mutations resulted in amino acid mutations and one resulted in an altered seed oligosaccharide phenotype. The resulting phenotype was an increase in seed sucrose levels as well as a decrease in both raffinose and stachyose seed oligosaccharide levels. Three mutations in independent lines were identified in the omega-6 fatty acid desaturase gene FAD2-1A; all three mutations resulted in missense amino acid mutations and one resulted in an altered seed fatty acid profile that led to an increase in oleic acid and a decrease in linoleic acid in the seed oil. Conclusion The oligosaccharide phenotype controlled by the novel RS2 allele is similar to previously observed seed oligosaccharide phenotypes in RS2 mutant (PI 200508 allele-containing lines. Due to the anti-nutritional characteristics of raffinose and stachyose, this represents a positive change in seed composition. The fatty acid phenotype controlled by the novel FAD2-1A allele controls an increase in oleic acid in the seed oil, a phenotype also observed in a line previously characterized to have a null allele of the FAD2-1A gene. Molecular marker assays were developed to reliably detect the inheritance of the mutant alleles and can be used in efficient breeding for these desired seed phenotypes. Our results serve as the first demonstration of the identification of soybean mutants controlling seed phenotypes discovered through the

  15. Using sheep genomes from diverse U.S. breeds to identify missense variants in genes affecting fecundity

    Science.gov (United States)

    Background: Access to sheep genome sequences significantly improves the chances of identifying genes that may influence the health, welfare, and productivity of these animals. Methods: A public, searchable DNA sequence resource for U.S. sheep was created with whole genome sequence (WGS) of 96 rams. ...

  16. Phylogenetic analysis of seven WRKY genes across the palm subtribe Attaleinae (Areceaceae) identifies Syagrus as sister to the coconut

    Science.gov (United States)

    The origins of the coconut (Cocos nucifera) have been one of the "abominable mysteries" of palm systematics for decades. Previous studies with predominantly plastid genes have indicated an American ancestry for the coconut but with weak support and ambiguous sister relationships. We used primers d...

  17. Candidate Gene Identification with SNP Marker-Based Fine Mapping of Anthracnose Resistance Gene Co-4 in Common Bean.

    Science.gov (United States)

    Burt, Andrew J; William, H Manilal; Perry, Gregory; Khanal, Raja; Pauls, K Peter; Kelly, James D; Navabi, Alireza

    2015-01-01

    Anthracnose, caused by Colletotrichum lindemuthianum, is an important fungal disease of common bean (Phaseolus vulgaris). Alleles at the Co-4 locus confer resistance to a number of races of C. lindemuthianum. A population of 94 F4:5 recombinant inbred lines of a cross between resistant black bean genotype B09197 and susceptible navy bean cultivar Nautica was used to identify markers associated with resistance in bean chromosome 8 (Pv08) where Co-4 is localized. Three SCAR markers with known linkage to Co-4 and a panel of single nucleotide markers were used for genotyping. A refined physical region on Pv08 with significant association with anthracnose resistance identified by markers was used in BLAST searches with the genomic sequence of common bean accession G19833. Thirty two unique annotated candidate genes were identified that spanned a physical region of 936.46 kb. A majority of the annotated genes identified had functional similarity to leucine rich repeats/receptor like kinase domains. Three annotated genes had similarity to 1, 3-β-glucanase domains. There were sequence similarities between some of the annotated genes found in the study and the genes associated with phosphoinositide-specific phosphilipases C associated with Co-x and the COK-4 loci found in previous studies. It is possible that the Co-4 locus is structured as a group of genes with functional domains dominated by protein tyrosine kinase along with leucine rich repeats/nucleotide binding site, phosphilipases C as well as β-glucanases.

  18. RNA-Seq analysis identifies key genes associated with haustorial development in the root hemiparasite Santalum album

    Directory of Open Access Journals (Sweden)

    Xinhua eZhang

    2015-09-01

    Full Text Available Santalum album (sandalwood is one of the economically important plant species in the Santalaceae for its production of highly valued perfume oils. Sandalwood is also a hemiparasitic tree that obtains some of its water and simple nutrients by tapping into other plants through haustoria which are highly specialized organs in parasitic angiosperms. However, an understanding of the molecular mechanisms involved in haustorium development is limited. In this study, RNA sequencing (RNA-seq analyses were performed to identify changes in gene expression and metabolic pathways associated with the development of the S. album haustorium. A total of 56,011 non-redundant contigs with a mean contig size of 618 bp were obtained by de novo assembly of the transcriptome of haustoria and non-haustorial seedling roots. A substantial number of the identified differentially expressed genes were involved in cell wall metabolism and protein metabolism, as well as mitochondrial electron transport functions. Phytohormone-mediated regulation might play an important role during haustorial development. Especially, auxin signaling is likely to be essential for haustorial initiation, and genes related to cytokinin and gibberellin biosynthesis and metabolism are involved in haustorial development. Our results suggest that genes encoding nodulin-like proteins may be important for haustorial morphogenesis in S. album. The obtained sequence data will become a rich resource for future research in this interesting species. This information improves our understanding of haustorium development in root hemiparasitic species and will allow further exploration of the detailed molecular mechanisms underlying plant parasitism.

  19. Genes responding to water deficit in apple (Malus × domestica Borkh.) roots.

    Science.gov (United States)

    Bassett, Carole Leavel; Baldo, Angela M; Moore, Jacob T; Jenkins, Ryan M; Soffe, Doug S; Wisniewski, Michael E; Norelli, John L; Farrell, Robert E

    2014-07-08

    Individual plants adapt to their immediate environment using a combination of biochemical, morphological and life cycle strategies. Because woody plants are long-lived perennials, they cannot rely on annual life cycle strategies alone to survive abiotic stresses. In this study we used suppression subtractive hybridization to identify genes both up- and down-regulated in roots during water deficit treatment and recovery. In addition we followed the expression of select genes in the roots, leaves, bark and xylem of 'Royal Gala' apple subjected to a simulated drought and subsequent recovery. In agreement with studies from both herbaceous and woody plants, a number of common drought-responsive genes were identified, as well as a few not previously reported. Three genes were selected for more in depth analysis: a high affinity nitrate transporter (MdNRT2.4), a mitochondrial outer membrane translocase (MdTOM7.1), and a gene encoding an NPR1 homolog (MpNPR1-2). Quantitative expression of these genes in apple roots, bark and leaves was consistent with their roles in nutrition and defense. Additional genes from apple roots responding to drought were identified using suppression subtraction hybridization compared to a previous EST analysis from the same organ. Genes up- and down-regulated during drought recovery in roots were also identified. Elevated levels of a high affinity nitrate transporter were found in roots suggesting that nitrogen uptake shifted from low affinity transport due to the predicted reduction in nitrate concentration in drought-treated roots. Suppression of a NPR1 gene in leaves of drought-treated apple trees may explain in part the increased disease susceptibility of trees subjected to dehydrative conditions.

  20. Suppression subtractive hybridization as a tool to identify anthocyanin metabolism-related genes in apple skin.

    Science.gov (United States)

    Ban, Yusuke; Moriguchi, Takaya

    2010-01-01

    The pigmentation of anthocyanins is one of the important determinants for consumer preference and marketability in horticultural crops such as fruits and flowers. To elucidate the mechanisms underlying the physiological process leading to the pigmentation of anthocyanins, identification of the genes differentially expressed in response to anthocyanin accumulation is a useful strategy. Currently, microarrays have been widely used to isolate differentially expressed genes. However, the use of microarrays is limited by its high cost of special apparatus and materials. Therefore, availability of microarrays is limited and does not come into common use at present. Suppression subtractive hybridization (SSH) is an alternative tool that has been widely used to identify differentially expressed genes due to its easy handling and relatively low cost. This chapter describes the procedures for SSH, including RNA extraction from polysaccharides and polyphenol-rich samples, poly(A)+ RNA purification, evaluation of subtraction efficiency, and differential screening using reverse northern in apple skin.

  1. Identification of three novel OA1 gene mutations identified in three families misdiagnosed with congenital nystagmus and carrier status determination by real-time quantitative PCR assay

    Directory of Open Access Journals (Sweden)

    Hamel Christian

    2003-01-01

    Full Text Available Abstract Background X-linked ocular albinism type 1 (OA1 is caused by mutations in OA1 gene, which encodes a membrane glycoprotein localised to melanosomes. OA1 mainly affects pigment production in the eye, resulting in optic changes associated with albinism including hypopigmentation of the retina, nystagmus, strabismus, foveal hypoplasia, abnormal crossing of the optic fibers and reduced visual acuity. Affected Caucasian males usually appear to have normal skin and hair pigment. Results We identified three previously undescribed mutations consisting of two intragenic deletions (one encompassing exon 6, the other encompassing exons 7–8, and a point mutation (310delG in exon 2. We report the development of a new method for diagnosis of heterozygous deletions in OA1 gene based on measurement of gene copy number using real-time quantitative PCR from genomic DNA. Conclusion The identification of OA1 mutations in families earlier reported as families with hereditary nystagmus indicate that ocular albinism type 1 is probably underdiagnosed. Our method of real-time quantitative PCR of OA1 exons with DMD exon as external standard performed on the LightCycler™ allows quick and accurate carrier-status assessment for at-risk females.

  2. Recurrent targeted genes of hepatitis B virus in the liver cancer genomes identified by a next-generation sequencing-based approach.

    Directory of Open Access Journals (Sweden)

    Dong Ding

    Full Text Available Integration of the viral DNA into host chromosomes was found in most of the hepatitis B virus (HBV-related hepatocellular carcinomas (HCCs. Here we devised a massive anchored parallel sequencing (MAPS method using next-generation sequencing to isolate and sequence HBV integrants. Applying MAPS to 40 pairs of HBV-related HCC tissues (cancer and adjacent tissues, we identified 296 HBV integration events corresponding to 286 unique integration sites (UISs with precise HBV-Human DNA junctions. HBV integration favored chromosome 17 and preferentially integrated into human transcript units. HBV targeted genes were enriched in GO terms: cAMP metabolic processes, T cell differentiation and activation, TGF beta receptor pathway, ncRNA catabolic process, and dsRNA fragmentation and cellular response to dsRNA. The HBV targeted genes include 7 genes (PTPRJ, CNTN6, IL12B, MYOM1, FNDC3B, LRFN2, FN1 containing IPR003961 (Fibronectin, type III domain, 7 genes (NRG3, MASP2, NELL1, LRP1B, ADAM21, NRXN1, FN1 containing IPR013032 (EGF-like region, conserved site, and three genes (PDE7A, PDE4B, PDE11A containing IPR002073 (3', 5'-cyclic-nucleotide phosphodiesterase. Enriched pathways include hsa04512 (ECM-receptor interaction, hsa04510 (Focal adhesion, and hsa04012 (ErbB signaling pathway. Fewer integration events were found in cancers compared to cancer-adjacent tissues, suggesting a clonal expansion model in HCC development. Finally, we identified 8 genes that were recurrent target genes by HBV integration including fibronectin 1 (FN1 and telomerase reverse transcriptase (TERT1, two known recurrent target genes, and additional novel target genes such as SMAD family member 5 (SMAD5, phosphatase and actin regulator 4 (PHACTR4, and RNA binding protein fox-1 homolog (C. elegans 1 (RBFOX1. Integrating analysis with recently published whole-genome sequencing analysis, we identified 14 additional recurrent HBV target genes, greatly expanding the HBV recurrent target list

  3. Distinct Molecular Signature of Murine Fetal Liver and Adult Hematopoietic Stem Cells Identify Novel Regulators of Hematopoietic Stem Cell Function.

    Science.gov (United States)

    Manesia, Javed K; Franch, Monica; Tabas-Madrid, Daniel; Nogales-Cadenas, Ruben; Vanwelden, Thomas; Van Den Bosch, Elisa; Xu, Zhuofei; Pascual-Montano, Alberto; Khurana, Satish; Verfaillie, Catherine M

    2017-04-15

    During ontogeny, fetal liver (FL) acts as a major site for hematopoietic stem cell (HSC) maturation and expansion, whereas HSCs in the adult bone marrow (ABM) are largely quiescent. HSCs in the FL possess faster repopulation capacity as compared with ABM HSCs. However, the molecular mechanism regulating the greater self-renewal potential of FL HSCs has not yet extensively been assessed. Recently, we published RNA sequencing-based gene expression analysis on FL HSCs from 14.5-day mouse embryo (E14.5) in comparison to the ABM HSCs. We reanalyzed these data to identify key transcriptional regulators that play important roles in the expansion of HSCs during development. The comparison of FL E14.5 with ABM HSCs identified more than 1,400 differentially expressed genes. More than 200 genes were shortlisted based on the gene ontology (GO) annotation term "transcription." By morpholino-based knockdown studies in zebrafish, we assessed the function of 18 of these regulators, previously not associated with HSC proliferation. Our studies identified a previously unknown role for tdg, uhrf1, uchl5, and ncoa1 in the emergence of definitive hematopoiesis in zebrafish. In conclusion, we demonstrate that identification of genes involved in transcriptional regulation differentially expressed between expanding FL HSCs and quiescent ABM HSCs, uncovers novel regulators of HSC function.

  4. Transposon activation mutagenesis as a screening tool for identifying resistance to cancer therapeutics

    International Nuclear Information System (INIS)

    Chen, Li; Schmidt, Emmett V; Stuart, Lynda; Ohsumi, Toshiro K; Burgess, Shawn; Varshney, Gaurav K; Dastur, Anahita; Borowsky, Mark; Benes, Cyril; Lacy-Hulbert, Adam

    2013-01-01

    The development of resistance to chemotherapies represents a significant barrier to successful cancer treatment. Resistance mechanisms are complex, can involve diverse and often unexpected cellular processes, and can vary with both the underlying genetic lesion and the origin or type of tumor. For these reasons developing experimental strategies that could be used to understand, identify and predict mechanisms of resistance in different malignant cells would be a major advance. Here we describe a gain-of-function forward genetic approach for identifying mechanisms of resistance. This approach uses a modified piggyBac transposon to generate libraries of mutagenized cells, each containing transposon insertions that randomly activate nearby gene expression. Genes of interest are identified using next-gen high-throughput sequencing and barcode multiplexing is used to reduce experimental cost. Using this approach we successfully identify genes involved in paclitaxel resistance in a variety of cancer cell lines, including the multidrug transporter ABCB1, a previously identified major paclitaxel resistance gene. Analysis of co-occurring transposons integration sites in single cell clone allows for the identification of genes that might act cooperatively to produce drug resistance a level of information not accessible using RNAi or ORF expression screening approaches. We have developed a powerful pipeline to systematically discover drug resistance in mammalian cells in vitro. This cost-effective approach can be readily applied to different cell lines, to identify canonical or context specific resistance mechanisms. Its ability to probe complex genetic context and non-coding genomic elements as well as cooperative resistance events makes it a good complement to RNAi or ORF expression based screens

  5. Genome‐wide DNA methylation analysis identifies MEGF10 as a novel epigenetically repressed candidate tumor suppressor gene in neuroblastoma

    Science.gov (United States)

    Charlet, Jessica; Tomari, Ayumi; Dallosso, Anthony R.; Szemes, Marianna; Kaselova, Martina; Curry, Thomas J.; Almutairi, Bader; Etchevers, Heather C.; McConville, Carmel; Malik, Karim T. A.

    2016-01-01

    Neuroblastoma is a childhood cancer in which many children still have poor outcomes, emphasising the need to better understand its pathogenesis. Despite recent genome‐wide mutation analyses, many primary neuroblastomas do not contain recognizable driver mutations, implicating alternate molecular pathologies such as epigenetic alterations. To discover genes that become epigenetically deregulated during neuroblastoma tumorigenesis, we took the novel approach of comparing neuroblastomas to neural crest precursor cells, using genome‐wide DNA methylation analysis. We identified 93 genes that were significantly differentially methylated of which 26 (28%) were hypermethylated and 67 (72%) were hypomethylated. Concentrating on hypermethylated genes to identify candidate tumor suppressor loci, we found the cell engulfment and adhesion factor gene MEGF10 to be epigenetically repressed by DNA hypermethylation or by H3K27/K9 methylation in neuroblastoma cell lines. MEGF10 showed significantly down‐regulated expression in neuroblastoma tumor samples; furthermore patients with the lowest‐expressing tumors had reduced relapse‐free survival. Our functional studies showed that knock‐down of MEGF10 expression in neuroblastoma cell lines promoted cell growth, consistent with MEGF10 acting as a clinically relevant, epigenetically deregulated neuroblastoma tumor suppressor gene. © 2016 The Authors. Molecular Carcinogenesis Published by Wiley Periodicals, Inc. PMID:27862318

  6. Preservation Analysis of Macrophage Gene Coexpression Between Human and Mouse Identifies PARK2 as a Genetically Controlled Master Regulator of Oxidative Phosphorylation in Humans

    Directory of Open Access Journals (Sweden)

    Veronica Codoni

    2016-10-01

    Full Text Available Macrophages are key players involved in numerous pathophysiological pathways and an in-depth characterization of their gene regulatory networks can help in better understanding how their dysfunction may impact on human diseases. We here conducted a cross-species network analysis of macrophage gene expression data between human and mouse to identify conserved networks across both species, and assessed whether such networks could reveal new disease-associated regulatory mechanisms. From a sample of 684 individuals processed for genome-wide macrophage gene expression profiling, we identified 27 groups of coexpressed genes (modules. Six modules were found preserved (P < 10−4 in macrophages from 86 mice of the Hybrid Mouse Diversity Panel. One of these modules was significantly [false discovery rate (FDR = 8.9 × 10−11] enriched for genes belonging to the oxidative phosphorylation (OXPHOS pathway. This pathway was also found significantly (FDR < 10−4 enriched in susceptibility genes for Alzheimer, Parkinson, and Huntington diseases. We further conducted an expression quantitative trait loci analysis to identify SNP that could regulate macrophage OXPHOS gene expression in humans. This analysis identified the PARK2 rs192804963 as a trans-acting variant influencing (minimal P-value = 4.3 × 10−8 the expression of most OXPHOS genes in humans. Further experimental work demonstrated that PARK2 knockdown expression was associated with increased OXPHOS gene expression in THP1 human macrophages. This work provided strong new evidence that PARK2 participates to the regulatory networks associated with oxidative phosphorylation and suggested that PARK2 genetic variations could act as a trans regulator of OXPHOS gene macrophage expression in humans.

  7. A novel method to discover fluoroquinolone antibiotic resistance (qnr genes in fragmented nucleotide sequences

    Directory of Open Access Journals (Sweden)

    Boulund Fredrik

    2012-12-01

    Full Text Available Abstract Background Broad-spectrum fluoroquinolone antibiotics are central in modern health care and are used to treat and prevent a wide range of bacterial infections. The recently discovered qnr genes provide a mechanism of resistance with the potential to rapidly spread between bacteria using horizontal gene transfer. As for many antibiotic resistance genes present in pathogens today, qnr genes are hypothesized to originate from environmental bacteria. The vast amount of data generated by shotgun metagenomics can therefore be used to explore the diversity of qnr genes in more detail. Results In this paper we describe a new method to identify qnr genes in nucleotide sequence data. We show, using cross-validation, that the method has a high statistical power of correctly classifying sequences from novel classes of qnr genes, even for fragments as short as 100 nucleotides. Based on sequences from public repositories, the method was able to identify all previously reported plasmid-mediated qnr genes. In addition, several fragments from novel putative qnr genes were identified in metagenomes. The method was also able to annotate 39 chromosomal variants of which 11 have previously not been reported in literature. Conclusions The method described in this paper significantly improves the sensitivity and specificity of identification and annotation of qnr genes in nucleotide sequence data. The predicted novel putative qnr genes in the metagenomic data support the hypothesis of a large and uncharacterized diversity within this family of resistance genes in environmental bacterial communities. An implementation of the method is freely available at http://bioinformatics.math.chalmers.se/qnr/.

  8. Integrative analysis of survival-associated gene sets in breast cancer.

    Science.gov (United States)

    Varn, Frederick S; Ung, Matthew H; Lou, Shao Ke; Cheng, Chao

    2015-03-12

    Patient gene expression information has recently become a clinical feature used to evaluate breast cancer prognosis. The emergence of prognostic gene sets that take advantage of these data has led to a rich library of information that can be used to characterize the molecular nature of a patient's cancer. Identifying robust gene sets that are consistently predictive of a patient's clinical outcome has become one of the main challenges in the field. We inputted our previously established BASE algorithm with patient gene expression data and gene sets from MSigDB to develop the gene set activity score (GSAS), a metric that quantitatively assesses a gene set's activity level in a given patient. We utilized this metric, along with patient time-to-event data, to perform survival analyses to identify the gene sets that were significantly correlated with patient survival. We then performed cross-dataset analyses to identify robust prognostic gene sets and to classify patients by metastasis status. Additionally, we created a gene set network based on component gene overlap to explore the relationship between gene sets derived from MSigDB. We developed a novel gene set based on this network's topology and applied the GSAS metric to characterize its role in patient survival. Using the GSAS metric, we identified 120 gene sets that were significantly associated with patient survival in all datasets tested. The gene overlap network analysis yielded a novel gene set enriched in genes shared by the robustly predictive gene sets. This gene set was highly correlated to patient survival when used alone. Most interestingly, removal of the genes in this gene set from the gene pool on MSigDB resulted in a large reduction in the number of predictive gene sets, suggesting a prominent role for these genes in breast cancer progression. The GSAS metric provided a useful medium by which we systematically investigated how gene sets from MSigDB relate to breast cancer patient survival. We used

  9. Identification of novel risk genes associated with type 1 diabetes mellitus using a genome-wide gene-based association analysis.

    Science.gov (United States)

    Qiu, Ying-Hua; Deng, Fei-Yan; Li, Min-Jing; Lei, Shu-Feng

    2014-11-01

    Type 1 diabetes mellitus is a serious disorder characterized by destruction of pancreatic β-cells, culminating in absolute insulin deficiency. Genetic factors contribute to the susceptibility of type 1 diabetes mellitus. The aim of the present study was to identify more susceptibility genes of type 1 diabetes mellitus. We carried out an initial gene-based genome-wide association study in a total of 4,075 type 1 diabetes mellitus cases and 2,604 controls by using the Gene-based Association Test using Extended Simes procedure. Furthermore, we carried out replication studies, differential expression analysis and functional annotation clustering analysis to support the significance of the identified susceptibility genes. We identified 452 genes associated with type 1 diabetes mellitus, even after adapting the genome-wide threshold for significance (P diabetes mellitus, which were ignored in single-nucleotide polymorphism-based association analysis and were not previously reported. We found that 53 genes have supportive evidence from replication studies and/or differential expression studies. In particular, seven genes including four non-human leukocyte antigen (HLA) genes (RASIP1, STRN4, BCAR1 and MYL2) are replicated in at least one independent population and also differentially expressed in peripheral blood mononuclear cells or monocytes. Furthermore, the associated genes tend to enrich in immune-related pathways or Gene Ontology project terms. The present results suggest the high power of gene-based association analysis in detecting disease-susceptibility genes. Our findings provide more insights into the genetic basis of type 1 diabetes mellitus.

  10. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes.

    Science.gov (United States)

    Glessner, Joseph T; Wang, Kai; Cai, Guiqing; Korvatska, Olena; Kim, Cecilia E; Wood, Shawn; Zhang, Haitao; Estes, Annette; Brune, Camille W; Bradfield, Jonathan P; Imielinski, Marcin; Frackelton, Edward C; Reichert, Jennifer; Crawford, Emily L; Munson, Jeffrey; Sleiman, Patrick M A; Chiavacci, Rosetta; Annaiah, Kiran; Thomas, Kelly; Hou, Cuiping; Glaberson, Wendy; Flory, James; Otieno, Frederick; Garris, Maria; Soorya, Latha; Klei, Lambertus; Piven, Joseph; Meyer, Kacie J; Anagnostou, Evdokia; Sakurai, Takeshi; Game, Rachel M; Rudd, Danielle S; Zurawiecki, Danielle; McDougle, Christopher J; Davis, Lea K; Miller, Judith; Posey, David J; Michaels, Shana; Kolevzon, Alexander; Silverman, Jeremy M; Bernier, Raphael; Levy, Susan E; Schultz, Robert T; Dawson, Geraldine; Owley, Thomas; McMahon, William M; Wassink, Thomas H; Sweeney, John A; Nurnberger, John I; Coon, Hilary; Sutcliffe, James S; Minshew, Nancy J; Grant, Struan F A; Bucan, Maja; Cook, Edwin H; Buxbaum, Joseph D; Devlin, Bernie; Schellenberg, Gerard D; Hakonarson, Hakon

    2009-05-28

    Autism spectrum disorders (ASDs) are childhood neurodevelopmental disorders with complex genetic origins. Previous studies focusing on candidate genes or genomic regions have identified several copy number variations (CNVs) that are associated with an increased risk of ASDs. Here we present the results from a whole-genome CNV study on a cohort of 859 ASD cases and 1,409 healthy children of European ancestry who were genotyped with approximately 550,000 single nucleotide polymorphism markers, in an attempt to comprehensively identify CNVs conferring susceptibility to ASDs. Positive findings were evaluated in an independent cohort of 1,336 ASD cases and 1,110 controls of European ancestry. Besides previously reported ASD candidate genes, such as NRXN1 (ref. 10) and CNTN4 (refs 11, 12), several new susceptibility genes encoding neuronal cell-adhesion molecules, including NLGN1 and ASTN2, were enriched with CNVs in ASD cases compared to controls (P = 9.5 x 10(-3)). Furthermore, CNVs within or surrounding genes involved in the ubiquitin pathways, including UBE3A, PARK2, RFWD2 and FBXO40, were affected by CNVs not observed in controls (P = 3.3 x 10(-3)). We also identified duplications 55 kilobases upstream of complementary DNA AK123120 (P = 3.6 x 10(-6)). Although these variants may be individually rare, they target genes involved in neuronal cell-adhesion or ubiquitin degradation, indicating that these two important gene networks expressed within the central nervous system may contribute to the genetic susceptibility of ASD.

  11. Gene Structures, Evolution and Transcriptional Profiling of the WRKY Gene Family in Castor Bean (Ricinus communis L.).

    Science.gov (United States)

    Zou, Zhi; Yang, Lifu; Wang, Danhua; Huang, Qixing; Mo, Yeyong; Xie, Guishui

    2016-01-01

    WRKY proteins comprise one of the largest transcription factor families in plants and form key regulators of many plant processes. This study presents the characterization of 58 WRKY genes from the castor bean (Ricinus communis L., Euphorbiaceae) genome. Compared with the automatic genome annotation, one more WRKY-encoding locus was identified and 20 out of the 57 predicted gene models were manually corrected. All RcWRKY genes were shown to contain at least one intron in their coding sequences. According to the structural features of the present WRKY domains, the identified RcWRKY genes were assigned to three previously defined groups (I-III). Although castor bean underwent no recent whole-genome duplication event like physic nut (Jatropha curcas L., Euphorbiaceae), comparative genomics analysis indicated that one gene loss, one intron loss and one recent proximal duplication occurred in the RcWRKY gene family. The expression of all 58 RcWRKY genes was supported by ESTs and/or RNA sequencing reads derived from roots, leaves, flowers, seeds and endosperms. Further global expression profiles with RNA sequencing data revealed diverse expression patterns among various tissues. Results obtained from this study not only provide valuable information for future functional analysis and utilization of the castor bean WRKY genes, but also provide a useful reference to investigate the gene family expansion and evolution in Euphorbiaceus plants.

  12. 'Omics' approaches in tomato aimed at identifying candidate genes ...

    African Journals Online (AJOL)

    adriana

    2013-12-04

    Dec 4, 2013 ... importance for human health and nutrition. This species has ... function to genes, proteins and metabolites is still a daunting task. Major challenges ... relation of the expression pattern of genes with the accu- mulation pattern of ..... M, Gordon JS, Rose, JKC, Martin G, Tanksley SD, Bouzayen M,. Jahn MM ...

  13. Metastatic canine mammary carcinomas can be identified by a gene expression profile that partly overlaps with human breast cancer profiles

    International Nuclear Information System (INIS)

    Klopfleisch, Robert; Lenze, Dido; Hummel, Michael; Gruber, Achim D

    2010-01-01

    Similar to human breast cancer mammary tumors of the female dog are commonly associated with a fatal outcome due to the development of distant metastases. However, the molecular defects leading to metastasis are largely unknown and the value of canine mammary carcinoma as a model for human breast cancer is unclear. In this study, we analyzed the gene expression signatures associated with mammary tumor metastasis and asked for parallels with the human equivalent. Messenger RNA expression profiles of twenty-seven lymph node metastasis positive or negative canine mammary carcinomas were established by microarray analysis. Differentially expressed genes were functionally characterized and associated with molecular pathways. The findings were also correlated with published data on human breast cancer. Metastatic canine mammary carcinomas had 1,011 significantly differentially expressed genes when compared to non-metastatic carcinomas. Metastatic carcinomas had a significant up-regulation of genes associated with cell cycle regulation, matrix modulation, protein folding and proteasomal degradation whereas cell differentiation genes, growth factor pathway genes and regulators of actin organization were significantly down-regulated. Interestingly, 265 of the 1,011 differentially expressed canine genes are also related to human breast cancer and, vice versa, parts of a human prognostic gene signature were identified in the expression profiles of the metastatic canine tumors. Metastatic canine mammary carcinomas can be discriminated from non-metastatic carcinomas by their gene expression profiles. More than one third of the differentially expressed genes are also described of relevance for human breast cancer. Many of the differentially expressed genes are linked to functions and pathways which appear to be relevant for the induction and maintenance of metastatic progression and may represent new therapeutic targets. Furthermore, dogs are in some aspects suitable as a

  14. Gene expression profiles reveal key pathways and genes associated with neuropathic pain in patients with spinal cord injury.

    Science.gov (United States)

    He, Xijing; Fan, Liying; Wu, Zhongheng; He, Jiaxuan; Cheng, Bin

    2017-04-01

    Previous gene expression profiling studies of neuropathic pain (NP) following spinal cord injury (SCI) have predominantly been performed in animal models. The present study aimed to investigate gene alterations in patients with spinal cord injury and to further examine the mechanisms underlying NP following SCI. The GSE69901 gene expression profile was downloaded from the public Gene Expression Omnibus database. Samples of peripheral blood mononuclear cells (PBMCs) derived from 12 patients with intractable NP and 13 control patients without pain were analyzed to identify the differentially expressed genes (DEGs), followed by functional enrichment analysis and protein‑protein interaction (PPI) network construction. In addition, a transcriptional regulation network was constructed and functional gene clustering was performed. A total of 70 upregulated and 61 downregulated DEGs were identified in the PBMC samples from patients with NP. The upregulated and downregulated genes were significantly involved in different Gene Ontology terms and pathways, including focal adhesion, T cell receptor signaling pathway and mitochondrial function. Glycogen synthase kinase 3 β (GSK3B) was identified as a hub protein in the PPI network. In addition, ornithine decarboxylase 1 (ODC1) and ornithine aminotransferase (OAT) were regulated by additional transcription factors in the regulation network. GSK3B, OAT and ODC1 were significantly enriched in two functional gene clusters, the function of mitochondrial membrane and DNA binding. Focal adhesion and the T cell receptor signaling pathway may be significantly linked with NP, and GSK3B, OAT and ODC1 may be potential targets for the treatment of NP.

  15. RNA-seq methods for identifying differentially expressed gene in human pancreatic islet cells treated with pro-inflammatory cytokines.

    Science.gov (United States)

    Li, Bo; Bi, Chang Long; Lang, Ning; Li, Yu Ze; Xu, Chao; Zhang, Ying Qi; Zhai, Ai Xia; Cheng, Zhi Feng

    2014-01-01

    Type 1 diabetes is a chronic autoimmune disease in which pancreatic beta cells are killed by the infiltrating immune cells as well as the cytokines released by these cells. Many studies indicate that inflammatory mediators have an essential role in this disease. In the present study, we profiled the transcriptome in human islets of langerhans under control conditions or following exposure to the pro-inflammatory cytokines based on the RNA sequencing dataset downloaded from SRA database. After filtered the low-quality ones, the RNA readers was aligned to human genome hg19 by TopHat and then assembled by Cufflinks. The expression value of each transcript was calculated and consequently differentially expressed genes were screened out. Finally, a total of 63 differentially expressed genes were identified including 60 up-regulated and three down-regulated genes. GBP5 and CXCL9 stood out as the top two most up-regulated genes in cytokines treated samples with the log2 fold change of 12.208 and 10.901, respectively. Meanwhile, PTF1A and REG3G were identified as the top two most down-regulated genes with the log2 fold change of -3.759 and -3.606, respectively. Of note, we also found 262 lncRNAs (long non-coding RNA), 177 of which were inferred as novel lncRNAs. Further in-depth follow-up analysis of the transcriptional regulation reported in this study may shed light on the specific function of these lncRNA.

  16. The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color.

    Science.gov (United States)

    Motamayor, Juan C; Mockaitis, Keithanne; Schmutz, Jeremy; Haiminen, Niina; Livingstone, Donald; Cornejo, Omar; Findley, Seth D; Zheng, Ping; Utro, Filippo; Royaert, Stefan; Saski, Christopher; Jenkins, Jerry; Podicheti, Ram; Zhao, Meixia; Scheffler, Brian E; Stack, Joseph C; Feltus, Frank A; Mustiga, Guiliana M; Amores, Freddy; Phillips, Wilbert; Marelli, Jean Philippe; May, Gregory D; Shapiro, Howard; Ma, Jianxin; Bustamante, Carlos D; Schnell, Raymond J; Main, Dorrie; Gilbert, Don; Parida, Laxmi; Kuhn, David N

    2013-06-03

    Theobroma cacao L. cultivar Matina 1-6 belongs to the most cultivated cacao type. The availability of its genome sequence and methods for identifying genes responsible for important cacao traits will aid cacao researchers and breeders. We describe the sequencing and assembly of the genome of Theobroma cacao L. cultivar Matina 1-6. The genome of the Matina 1-6 cultivar is 445 Mbp, which is significantly larger than a sequenced Criollo cultivar, and more typical of other cultivars. The chromosome-scale assembly, version 1.1, contains 711 scaffolds covering 346.0 Mbp, with a contig N50 of 84.4 kbp, a scaffold N50 of 34.4 Mbp, and an evidence-based gene set of 29,408 loci. Version 1.1 has 10x the scaffold N50 and 4x the contig N50 as Criollo, and includes 111 Mb more anchored sequence. The version 1.1 assembly has 4.4% gap sequence, while Criollo has 10.9%. Through a combination of haplotype, association mapping and gene expression analyses, we leverage this robust reference genome to identify a promising candidate gene responsible for pod color variation. We demonstrate that green/red pod color in cacao is likely regulated by the R2R3 MYB transcription factor TcMYB113, homologs of which determine pigmentation in Rosaceae, Solanaceae, and Brassicaceae. One SNP within the target site for a highly conserved trans-acting siRNA in dicots, found within TcMYB113, seems to affect transcript levels of this gene and therefore pod color variation. We report a high-quality sequence and annotation of Theobroma cacao L. and demonstrate its utility in identifying candidate genes regulating traits.

  17. Defended to the Nines: 25 Years of Resistance Gene Cloning Identifies Nine Mechanisms for R Protein Function[OPEN

    Science.gov (United States)

    2018-01-01

    Plants have many, highly variable resistance (R) gene loci, which provide resistance to a variety of pathogens. The first R gene to be cloned, maize (Zea mays) Hm1, was published over 25 years ago, and since then, many different R genes have been identified and isolated. The encoded proteins have provided clues to the diverse molecular mechanisms underlying immunity. Here, we present a meta-analysis of 314 cloned R genes. The majority of R genes encode cell surface or intracellular receptors, and we distinguish nine molecular mechanisms by which R proteins can elevate or trigger disease resistance: direct (1) or indirect (2) perception of pathogen-derived molecules on the cell surface by receptor-like proteins and receptor-like kinases; direct (3) or indirect (4) intracellular detection of pathogen-derived molecules by nucleotide binding, leucine-rich repeat receptors, or detection through integrated domains (5); perception of transcription activator-like effectors through activation of executor genes (6); and active (7), passive (8), or host reprogramming-mediated (9) loss of susceptibility. Although the molecular mechanisms underlying the functions of R genes are only understood for a small proportion of known R genes, a clearer understanding of mechanisms is emerging and will be crucial for rational engineering and deployment of novel R genes. PMID:29382771

  18. An Integrated Approach Identifies Nhlh1 and Insm1 as Sonic Hedgehog-regulated Genes in Developing Cerebellum and Medulloblastoma

    Directory of Open Access Journals (Sweden)

    Enrico De Smaele

    2008-01-01

    Full Text Available Medulloblastoma (MB is the most common malignant brain tumor of childhood arising from deregulated cerebellar development. Sonic Hedgehog (Shh pathway plays a critical role in cerebellar development and its aberrant expression has been identified in MB. Gene expression profiling of cerebella from 1- to 14-day-old mice unveiled a cluster of genes whose expression correlates with the levels of Hedgehog (HH activity. From this cluster, we identified Insm1 and Nhlh1/NSCL1 as novel HH targets induced by Shh treatment in cultured cerebellar granule cell progenitors. Nhlh1 promoter was found to be bound and activated by Gli1 transcription factor. Remarkably, the expression of these genes is also upregulated in mouse and human HH-dependent MBs, suggesting that they may be either a part of the HH-induced tumorigenic process or a specific trait of HH-dependent tumor cells.

  19. Identification and validation of suitable endogenous reference genes for gene expression studies in human peripheral blood

    Directory of Open Access Journals (Sweden)

    Turner Renee J

    2009-08-01

    Full Text Available Abstract Background Gene expression studies require appropriate normalization methods. One such method uses stably expressed reference genes. Since suitable reference genes appear to be unique for each tissue, we have identified an optimal set of the most stably expressed genes in human blood that can be used for normalization. Methods Whole-genome Affymetrix Human 2.0 Plus arrays were examined from 526 samples of males and females ages 2 to 78, including control subjects and patients with Tourette syndrome, stroke, migraine, muscular dystrophy, and autism. The top 100 most stably expressed genes with a broad range of expression levels were identified. To validate the best candidate genes, we performed quantitative RT-PCR on a subset of 10 genes (TRAP1, DECR1, FPGS, FARP1, MAPRE2, PEX16, GINS2, CRY2, CSNK1G2 and A4GALT, 4 commonly employed reference genes (GAPDH, ACTB, B2M and HMBS and PPIB, previously reported to be stably expressed in blood. Expression stability and ranking analysis were performed using GeNorm and NormFinder algorithms. Results Reference genes were ranked based on their expression stability and the minimum number of genes needed for nomalization as calculated using GeNorm showed that the fewest, most stably expressed genes needed for acurate normalization in RNA expression studies of human whole blood is a combination of TRAP1, FPGS, DECR1 and PPIB. We confirmed the ranking of the best candidate control genes by using an alternative algorithm (NormFinder. Conclusion The reference genes identified in this study are stably expressed in whole blood of humans of both genders with multiple disease conditions and ages 2 to 78. Importantly, they also have different functions within cells and thus should be expressed independently of each other. These genes should be useful as normalization genes for microarray and RT-PCR whole blood studies of human physiology, metabolism and disease.

  20. In silico reversal of repeat-induced point mutation (RIP identifies the origins of repeat families and uncovers obscured duplicated genes

    Directory of Open Access Journals (Sweden)

    Hane James K

    2010-11-01

    Full Text Available Abstract Background Repeat-induced point mutation (RIP is a fungal genome defence mechanism guarding against transposon invasion. RIP mutates the sequence of repeated DNA and over time renders the affected regions unrecognisable by similarity search tools such as BLAST. Results DeRIP is a new software tool developed to predict the original sequence of a RIP-mutated region prior to the occurrence of RIP. In this study, we apply deRIP to the genome of the wheat pathogen Stagonospora nodorum SN15 and predict the origin of several previously uncharacterised classes of repetitive DNA. Conclusions Five new classes of transposon repeats and four classes of endogenous gene repeats were identified after deRIP. The deRIP process is a new tool for fungal genomics that facilitates the identification and understanding of the role and origin of fungal repetitive DNA. DeRIP is open-source and is available as part of the RIPCAL suite at http://www.sourceforge.net/projects/ripcal.