WorldWideScience

Sample records for previously cloned genes

  1. Cloning and Expression of Three New Azotobacter vinelandii Genes Closely Related to a Previously Described Gene Family Encoding Mannuronan C-5-Epimerases

    OpenAIRE

    Svanem, Britt Iren Glærum; Skjåk-Bræk, Gudmund; Ertesvåg, Helga; Valla, Svein

    1999-01-01

    The cloning and expression of a family of five modular-type mannuronan C-5-epimerase genes from Azotobacter vinelandii (algE1 to -5) has previously been reported. The corresponding proteins catalyze the Ca2+-dependent polymer-level epimerization of β-d-mannuronic acid to α-l-guluronic acid (G) in the commercially important polysaccharide alginate. Here we report the identification of three additional structurally similar genes, designated algE6, algE7, and algY. All three genes were sequenced...

  2. Molecular cloning and characterization of recA-like gene from Schizosaccharomyces pombe

    International Nuclear Information System (INIS)

    Lee, J.S.; Kang, J.K.; Yoon, S.M.; Park, Y.; Yang, Y.K.; Kim, S.W.; Park, J.K.; Park, J.G.; Hong, S.H.; Park, S.D.

    1996-01-01

    We have previously purified and characterized a RecA-like protein from Schizosaccharomyces pombe (S. pombe). In the present study, we have cloned a gene encoding the RecA-like protein. The S. pombe recA-like gene was isolated by immunological screening of the expression library of S. pombe using anti-Escherichia coli (E. coli) RecA antibody as a probe. From 10(6) plaques screened, 6 putative clones were finally isolated. Five of the clones screened contained the same kinds of DNA inserts, as determined by crosshybridization analysis. Among the clones, TC-2 was selected for further studies. The pGEM3Zf(-)Delta 17 vector harboring the 4.3 kb DNA insert of TC-2 clone was capable of producing abeta-gal/RecA-like fusion protein, suggesting that the cloned gene encodes the RecA-like protein of S. pombe. It was also revealed by Southern hybridization analysis that the same DNA sequence as the cloned recA-like gene is located within the S. pombe chromosomal DNA. In addition, the cloned recA-like gene was transcribed into a 3.0 kb RNA transcript, as judged by Northern blot analysis. The level of the RNA transcript of recA-like gene was increased approximately 1.6 to 2.4-fold upon treatment with DNA damaging agents such as ultraviolet (UV)-light, methyl methanesulfonate (MMS), and mitomycin-C (MMC). This data suggests that the cloned S. pombe recA-like gene is slightly inducible to DNAdamage as in E. coli recA gene. These results suggest that an inducible repair mechanism analogous to that of E. coli may exist in fission yeast S. pombe

  3. Gene Cloning of Iranian Leishmania major Mannose-1-Phosphate Guanyltransferase

    Directory of Open Access Journals (Sweden)

    R Salehi

    2009-07-01

    Full Text Available "nBackground: Leishmania is an obligatory intracellular protozoan parasite, which infects human be­ings when infected sand fly vector takes a blood meal.  Most efforts are towards designing an effective vaccine to prevent leishmaniasis. In this way, development of candidate antigen for vaccine has spe­cial im­portant. In this study, we cloned mannose-1-phosphate guanyltransferase gene of Iranian L .major in pET32a expression vector. "nMethods: Primers based on L. major mannose-1-phosphate guanyltransferase sequence gene was de­signed and synthesized. DNA of Leishmania promastigotes was extracted and PCR reaction was done. PCR product was cloned into pTZ57R and sub cloned into pET32a expression vector. "nResults: Recombinant plasmid containing 1140 bp as L. major mannose-1-phosphate guanyltrans­ferase gene was extracted and confirmed by restriction analysis. PCR product was sequenced and de­posited to GenBank. There were some differences in amino acid sequences between Iranian L. major mannose-1-phosphate guanyltransferase and others previously accepted in GenBank "nConclusion: We amplified and cloned Iranian L. major mannose-1-phosphate guanyltransferase successfully.

  4. Cloning and Functional Analysis of cDNAs with Open Reading Frames for 300 Previously Undefined Genes Expressed in CD34+ Hematopoietic Stem/Progenitor Cells

    Science.gov (United States)

    Zhang, Qing-Hua; Ye, Min; Wu, Xin-Yan; Ren, Shuang-Xi; Zhao, Meng; Zhao, Chun-Jun; Fu, Gang; Shen, Yu; Fan, Hui-Yong; Lu, Gang; Zhong, Ming; Xu, Xiang-Ru; Han, Ze-Guang; Zhang, Ji-Wang; Tao, Jiong; Huang, Qiu-Hua; Zhou, Jun; Hu, Geng-Xi; Gu, Jian; Chen, Sai-Juan; Chen, Zhu

    2000-01-01

    Three hundred cDNAs containing putatively entire open reading frames (ORFs) for previously undefined genes were obtained from CD34+ hematopoietic stem/progenitor cells (HSPCs), based on EST cataloging, clone sequencing, in silico cloning, and rapid amplification of cDNA ends (RACE). The cDNA sizes ranged from 360 to 3496 bp and their ORFs coded for peptides of 58–752 amino acids. Public database search indicated that 225 cDNAs exhibited sequence similarities to genes identified across a variety of species. Homology analysis led to the recognition of 50 basic structural motifs/domains among these cDNAs. Genomic exon–intron organization could be established in 243 genes by integration of cDNA data with genome sequence information. Interestingly, a new gene named as HSPC070 on 3p was found to share a sequence of 105bp in 3′ UTR with RAF gene in reversed transcription orientation. Chromosomal localizations were obtained using electronic mapping for 192 genes and with radiation hybrid (RH) for 38 genes. Macroarray technique was applied to screen the gene expression patterns in five hematopoietic cell lines (NB4, HL60, U937, K562, and Jurkat) and a number of genes with differential expression were found. The resource work has provided a wide range of information useful not only for expression genomics and annotation of genomic DNA sequence, but also for further research on the function of genes involved in hematopoietic development and differentiation. [The sequence data described in this paper have been submitted to the GenBank data library under the accession nos. listed in Table 1, pp 1548–1552.] PMID:11042152

  5. Cloning arbuscule-related genes from mycorrhizas

    DEFF Research Database (Denmark)

    Burleigh, Stephen

    2000-01-01

    Until recently little was known about the identity of the genes expressed in the arbuscules of mycorrhizas, due in part to problems associated with cloning genes from the tissues of an obligate symbiont. However, the combination of advanced molecular techniques, innovative use of the materials...... available and fortuitous cloning has resulted in the recent identification of a number of arbuscule-related genes. This article provides a brief summary of the genes involved in arbuscule development, function and regulation, and the techniques used to study them. Molecular techniques include differential...

  6. Cloning and expression of cell wall acid invertase gene fragment ...

    African Journals Online (AJOL)

    ONOS

    2010-01-25

    Jan 25, 2010 ... intron. It had a high homology to previously cloned cell wall acid invertase genes in other plants by sequence .... Japan) in a final volume of 50 µl. The programs for ... The first strand of cDNA was synthesized by using SYBR ...

  7. Localization and cloning of the gene(s) of bacteriophage PM2 responsible for membrane morphogenesis

    International Nuclear Information System (INIS)

    Armour, G.A.

    1988-01-01

    Proteins implicated in membrane morphogenesis (sp6.6 and sp13) have been previously identified by analysis of membrane proteins in the membrane of the purified phage. Analysis of a ts viral mutant that produces empty membrane vesicles also indicated the unique presence of viral structural protein sp6.6. In this work the gene for sp6.6 was localized on the PM2 genome by in vitro coupled transcription-translation directed by restriction endonuclease fragments of PM2 DNA. A Hind III fragment containing the sp6.6 gene among others was cloned into pBR322 in E. coli. Examination with the electron microscope revealed the production of new membrane vesicles whose size were similar to that of the natural membrane of PM2. Clones were then constructed in the pUC family of plasmids which uses the Lac promoter and pPL-lambda which uses the promoter left of lambda. pUC clones were unable to produce vesicles or detectable sp6.6. A pPL-lambda clone was produced 3.5 Kbp in size, that produced p6.6 as detected by SDS-PAGE of radiolabeled protein and immunoblotting

  8. Cloning human DNA repair genes

    International Nuclear Information System (INIS)

    Jeggo, P.A.; Carr, A.M.; Lehmann, A.R.

    1994-01-01

    Many human genes involved in the repair of UV damage have been cloned using different procedures and they have been of great value in assisting the understanding of the mechanism of nucleotide excision-repair. Genes involved in repair of ionizing radiation damage have proved more difficult to isolate. Positional cloning has localized the XRCC5 gene to a small region of chromosome 2q33-35, and a series of yeast artificial chromosomes covering this region have been isolated. Very recent work has shown that the XRCC5 gene encodes the 80 kDa subunit of the Ku DNA-binding protein. The Ku80 gene also maps to this region. Studies with fission yeast have shown that radiation sensitivity can result not only from defective DNA repair but also from abnormal cell cycle control following DNA damage. Several genes involved in this 'check-point' control in fission yeast have been isolated and characterized in detail. It is likely that a similar checkpoint control mechanism exists in human cells. (author)

  9. Altering the selection capabilities of common cloning vectors via restriction enzyme mediated gene disruption

    Science.gov (United States)

    2013-01-01

    Background The cloning of gene sequences forms the basis for many molecular biological studies. One important step in the cloning process is the isolation of bacterial transformants carrying vector DNA. This involves a vector-encoded selectable marker gene, which in most cases, confers resistance to an antibiotic. However, there are a number of circumstances in which a different selectable marker is required or may be preferable. Such situations can include restrictions to host strain choice, two phase cloning experiments and mutagenesis experiments, issues that result in additional unnecessary cloning steps, in which the DNA needs to be subcloned into a vector with a suitable selectable marker. Results We have used restriction enzyme mediated gene disruption to modify the selectable marker gene of a given vector by cloning a different selectable marker gene into the original marker present in that vector. Cloning a new selectable marker into a pre-existing marker was found to change the selection phenotype conferred by that vector, which we were able to demonstrate using multiple commonly used vectors and multiple resistance markers. This methodology was also successfully applied not only to cloning vectors, but also to expression vectors while keeping the expression characteristics of the vector unaltered. Conclusions Changing the selectable marker of a given vector has a number of advantages and applications. This rapid and efficient method could be used for co-expression of recombinant proteins, optimisation of two phase cloning procedures, as well as multiple genetic manipulations within the same host strain without the need to remove a pre-existing selectable marker in a previously genetically modified strain. PMID:23497512

  10. Horse cDNA clones encoding two MHC class I genes

    Energy Technology Data Exchange (ETDEWEB)

    Barbis, D.P.; Maher, J.K.; Stanek, J.; Klaunberg, B.A.; Antczak, D.F.

    1994-12-31

    Two full-length clones encoding MHC class I genes were isolated by screening a horse cDNA library, using a probe encoding in human HLA-A2.2Y allele. The library was made in the pcDNA1 vector (Invitrogen, San Diego, CA), using mRNA from peripheral blood lymphocytes obtained from a Thoroughbred stallion (No. 0834) homozygous for a common horse MHC haplotype (ELA-A2, -B2, -D2; Antczak et al. 1984; Donaldson et al. 1988). The clones were sequenced, using SP6 and T7 universal primers and horse-specific oligonucleotides designed to extend previously determined sequences.

  11. Cloning and heterologous expression of a novel insecticidal gene (tccC1) from Xenorhabdus nematophilus strain

    International Nuclear Information System (INIS)

    Joo Lee, Pom; Ahn, Ji-Young; Kim, Yang-Hoon; Wook Kim, Seung; Kim, Ji-Yeon; Park, Jae-Sung; Lee, Jeewon

    2004-01-01

    We have identified and cloned a novel toxin gene (tccC1/xptB1) from Xenorhabdus nematophilus strain isolated from Korea-specific entomophagous nematode Steinernema glaseri MK. The DNA sequence of cloned toxin gene (3048 bp) has an open reading frame encoding 1016 amino acids with a predicted molecular mass of 111058 Da. The toxin sequence shares 50-96% identical amino acid residues with the previously reported tccC1 cloned from X. nematophilus (AJ308438), Photorhabdus luminescens W14 (AF346499) P. luminescens TTO1 (BX571873), and Yersinia pestis CO92 (NC 0 03143). The toxin gene was successfully expressed in Escherichia coli, and the recombinant toxin protein caused a rapid cessation in mortality of Galleria mellonella larvae (80% death of larvae within 2 days). Conclusively, the heterologous expression of the novel gene tccC1 cloned into E. coli plasmid vector produced recombinant toxin with high insecticidal activity

  12. Cloning and study of the pectate lyase gene of Erwinia carotovora

    International Nuclear Information System (INIS)

    Bukanov, N.O.; Fonshtein, M.Yu.; Evtushenkov, A.N.; Syarinskii, M.A.; Strel'chenko, P.P.; Yankovski, N.K.; Alikhanyan, S.I.; Fomichev, Yu.K.; Debabov, V.G.

    1986-01-01

    The cloning of the gene of a secretable protein of Erwinia carotovora, pectate lyase, in Escherichia coli was described. Primary cloning was conducted using the phage vector λ 47.1. In the gene library of E. carotovora obtained, eight phages carrying the gene sought were identified according to the appearance of enzymatic activity of the gene product, pectate lyase, in situ. The BamHI fragment of DNA, common to all these phages, was recloned on the plasmid pUC19. It was shown that the cloned pectate lyase gene is represented on the E. carotovora chromosome in one copy. Methods of production of representative gene libraries on phage vectors from no less than 1 μg of cloned DNA even for the genomes of eukaryotes have now been developed. Vectors have been created, for example, λ 47.1, permitting the selection only of hybrid molecules. A number of methods have been developed for the search for a required gene in the library, depending on whether the cloned gene can be expressed or not, and if it can, what properties it will impart to the hybrid clone containing it

  13. Molecular cloning of cellulase genes from indigenous bacterial isolates

    International Nuclear Information System (INIS)

    Jong Bor Chyan; Pauline Liew Woan Ying; Mat Rasol Awang

    2006-01-01

    Indigenous cellulolytic bacterial isolates having high activities in degrading carboxymethyl cellulose (CMC) were isolated from local environments. Identification of these isolates were performed by molecular techniques. By using polymerase chain reaction (PCR) techniques, PCR products encoding cellulase gene were amplified from the total genomic DNAs. Purified PCR product was successfully cloned and expressed in Escherichia coli host system. The complete nucleotide sequences of the cellulase genes determined. The analysis of amino acid sequences deduced from the genes indicated that the cloned DNA fragments show high homology to those of endoglucanase genes of family GH5. All cloned genes consist of an N-terminal signal peptide, a catalytic domain of family 5 glycosyl hydrolase and a cellulose-binding domain of family III. (Author)

  14. Clone and characterization of photolyase-gene from soybean

    International Nuclear Information System (INIS)

    Najrana, T.; Hirouchi, T.; Yamamoto, K.

    2003-01-01

    Full text: Cyclobutane pyrimidine dimer (CPD) and pyrimidine [6-4] pyrimidone photoproduct (6-4pp) are the major products of UV-radiation. Both CPD and 6-4pp posses lethal as well as mutagenic property. Excision repair and photoreactivation are involved as major pathways in repairing those photoproducts. To repair those products plant uses photoreactivation as a major pathway. In photoreactivation process photolyase (enzyme encoded by PHR-gene) catalyzes the splitting of the dimer into a monomer under blue light. Photolyase is specific for damage CPD or 6-4pp. The CPD and 6-4pp photolyases are responsible for repairing CPD and 6-4pp lesions respectively. Several investigators reported that removal of CPD lesion is necessary for survival in higher plants in the early development. Thus one should realize the importance of clone and characterization of CPD-photolyase gene from plants especially from those are lying in the list of foods such as wheat, corn, soybean etc. cDNA library (pSPORT-P) of soybean was amplified using the primers that designated as common for CPD-photolyase gene for plants. These primers gave the desire size of PCR product. Desirable PCR product inserted into TA-cloning vector and sequenced. Amino acid sequence revealed considerable homology with CPD-photolyases of rice, arabidopsis thaliana. Then using dilution-PCR amplification method (Hirouchi et al., MGG in press) I have identified the true clone from cDNA library of soybean that containing the full length of CPD-photolyase gene. Full length of cloned gene is about 1698 bps long and exist start and stop codon. Amino acid sequence of the cloned gene shows more than 70% homology with rice, arabidopsis thaliana. Cloned gene enables to complement the E. coli ( phr-uvrA-recA-) system that is completely defective in photoreactivation. The size of CPD-photolyase of soybean is about 56 KDa as identified by 12% SDS PAGE

  15. Cloning and characterization of the major histone H2A genes completes the cloning and sequencing of known histone genes of Tetrahymena thermophila.

    Science.gov (United States)

    Liu, X; Gorovsky, M A

    1996-01-01

    A truncated cDNA clone encoding Tetrahymena thermophila histone H2A2 was isolated using synthetic degenerate oligonucleotide probes derived from H2A protein sequences of Tetrahymena pyriformis. The cDNA clone was used as a homologous probe to isolate a truncated genomic clone encoding H2A1. The remaining regions of the genes for H2A1 (HTA1) and H2A2 (HTA2) were then isolated using inverse PCR on circularized genomic DNA fragments. These partial clones were assembled into intact HTA1 and HTA2 clones. Nucleotide sequences of the two genes were highly homologous within the coding region but not in the noncoding regions. Comparison of the deduced amino acid sequences with protein sequences of T. pyriformis H2As showed only two and three differences respectively, in a total of 137 amino acids for H2A1, and 132 amino acids for H2A2, indicating the two genes arose before the divergence of these two species. The HTA2 gene contains a TAA triplet within the coding region, encoding a glutamine residue. In contrast with the T. thermophila HHO and HTA3 genes, no introns were identified within the two genes. The 5'- and 3'-ends of the histone H2A mRNAs; were determined by RNase protection and by PCR mapping using RACE and RLM-RACE methods. Both genes encode polyadenylated mRNAs and are highly expressed in vegetatively growing cells but only weakly expressed in starved cultures. With the inclusion of these two genes, T. thermophila is the first organism whose entire complement of known core and linker histones, including replication-dependent and basal variants, has been cloned and sequenced. PMID:8760889

  16. Cloning and transformation of SCMV CP gene and regeneration of ...

    African Journals Online (AJOL)

    The coated protein gene of sugarcane mosaic virus ( SCMV CP gene) was cloned from maize (Zea mays L.) leaves showing dwarf mosaic symptoms by reverse-transcription polymerase chain reaction (RTPCR) with degraded primers. The results of sequencing and homologous comparison indicated that the cloned gene ...

  17. Cloning of low dose radiation induced gene RIG1 by RACE based on non-cloned cDNA library

    International Nuclear Information System (INIS)

    Luo Ying; Sui Jianli; Tie Yi; Zhang Yuanping; Zhou Pingkun; Sun Zhixian

    2001-01-01

    Objective: To obtain full-length cDNA of radiation induced new gene RIG1 based on its EST fragment. Methods: Based on non-cloned cDNA library, enhanced nested RACE PCR and biotin-avidin labelled probe for magnetic bead purification was used to obtain full-length cDNA of RIG1. Results: About 1 kb of 3' end of RIG1 gene was successfully cloned by this set of methods and cloning of RIG1 5' end is proceeding well. Conclusion: The result is consistent with the design of experiment. This set of protocol is useful for cloning of full-length gene based on EST fragment

  18. The impact of R1and R3a genes on tuber resistance to late blight of the potato breeding clones

    Directory of Open Access Journals (Sweden)

    Zoteyeva Nadezhda

    2016-04-01

    Full Text Available Potato breeding clones were evaluated for resistance to late blight (agent Phytophthora infestans using tuber inoculation tests and for presence of the resistance alleles of R1 and R3a genes in polymerase chain reaction tests. Among clones tested those expressing high, moderate and low resistance were identified. The data were analysed for the impact of R1 and R3a genes on tuber resistance to late blight in tested plant material. In previous evaluations performed on smaller amount of clones the tuber resistance levels significantly depended on presence/absence of the resistance allele of R3a gene and did not depend on presence of R1 gene allele. In the current study the statistical analyses did not prove the significant difference in resistance levels depending on presence of the resistance alleles, neither of R1 gene, nor of R3a gene. Tuber resistant clones bearing R3a gene resistance alleles still noticeably prevailed over the clones bearing the alleles of R1 gene as well as over the clones bearing the no resistance alleles of both genes. In several cases the resistance of clones with detected resistance allele of R1 gene was higher compared to those derived from the same crosses and showing amplification of the allele of R3a gene or those with no resistance alleles. Clones accumulating the resistance alleles of both (R1 and R3a genes expressed high tuber resistance accompanied by necrotic reaction.

  19. Cloning and selection of reference genes for gene expression ...

    African Journals Online (AJOL)

    Full length mRNA sequences of Ac-β-actin and Ac-gapdh, and partial mRNA sequences of Ac-18SrRNA and Ac-ubiquitin were cloned from pineapple in this study. The four genes were tested as housekeeping genes in three experimental sets. GeNorm and NormFinder analysis revealed that β-actin was the most ...

  20. Cloning and characterization of a gene (UVR3) required for photorepair of 6-4 photoproducts in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Nakajima, S.; Sugiyama, M.; Iwai, S.; Hitomi, K.; Otoshi, E.; Kim SangTae; Jiang CaiZhong; Todo, T.; Britt, A.B.; Yamamoto, K.

    1998-01-01

    UV radiation induces two major classes of pyrimidine dimers: the pyrimidine [6-4] pyrimidone photoproduct (6-4 product) and the cyclobutane pyrimidine dimer (CPD). Many organisms produce enzymes, termed photolyases, that specifically bind to these damage products and split them via a UV-A/blue light-dependent mechanism, thereby reversing the damage. These photolyases are specific for either CPDs or 6-4 products. A gene that expresses a protein with 6-4 photolyase activity in vitro was recently cloned from Drosophila melanogaster and Xenopus laevis. We report here the isolation of a homolog of this gene, cloned on the basis of sequence similarity, from the higher plant Arabidopsis thaliana. This cloned gene produces a protein with 6-4 photolyase activity when expressed in Escherichia coli. We also find that a previously described mutant of Arabidopsis (uvr3) that is defective in photoreactivation of 6-4 products carries a nonsense mutation in this 6-4 photolyase homolog. We have therefore termed this gene UVR3. Although homologs of this gene have previously been shown to produce a functional 6-4 photolyase when expressed in heterologous systems, this is the first demonstration of a requirement for this gene for photoreactivation of 6-4 products in vivo

  1. [A review of the genomic and gene cloning studies in trees].

    Science.gov (United States)

    Yin, Tong-Ming

    2010-07-01

    Supported by the Department of Energy (DOE) of U.S., the first tree genome, black cottonwood (Populus trichocarpa), has been completely sequenced and publicly release. This is the milestone that indicates the beginning of post-genome era for forest trees. Identification and cloning genes underlying important traits are one of the main tasks for the post-genome-era tree genomic studies. Recently, great achievements have been made in cloning genes coordinating important domestication traits in some crops, such as rice, tomato, maize and so on. Molecular breeding has been applied in the practical breeding programs for many crops. By contrast, molecular studies in trees are lagging behind. Trees possess some characteristics that make them as difficult organisms for studying on locating and cloning of genes. With the advances in techniques, given also the fast growth of tree genomic resources, great achievements are desirable in cloning unknown genes from trees, which will facilitate tree improvement programs by means of molecular breeding. In this paper, the author reviewed the progress in tree genomic and gene cloning studies, and prospected the future achievements in order to provide a useful reference for researchers working in this area.

  2. Cloning of human genes encoding novel G protein-coupled receptors

    Energy Technology Data Exchange (ETDEWEB)

    Marchese, A.; Docherty, J.M.; Heiber, M. [Univ. of Toronto, (Canada)] [and others

    1994-10-01

    We report the isolation and characterization of several novel human genes encoding G protein-coupled receptors. Each of the receptors contained the familiar seven transmembrane topography and most closely resembled peptide binding receptors. Gene GPR1 encoded a receptor protein that is intronless in the coding region and that shared identity (43% in the transmembrane regions) with the opioid receptors. Northern blot analysis revealed that GPR1 transcripts were expressed in the human hippocampus, and the gene was localized to chromosome 15q21.6. Gene GPR2 encoded a protein that most closely resembled an interleukin-8 receptor (51% in the transmembrane regions), and this gene, not expressed in the six brain regions examined, was localized to chromosome 17q2.1-q21.3. A third gene, GPR3, showed identity (56% in the transmembrane regions) with a previously characterized cDNA clone from rat and was localized to chromosome 1p35-p36.1. 31 refs., 5 figs., 1 tab.

  3. Cloning of the relative genes of endocrine exophthalmos

    International Nuclear Information System (INIS)

    Zheng, JG

    2004-01-01

    Aim: In order to clarify the pathogenesis of endocrine exophthalmos, and lay foundations for finding the new functions of its relative genes, the cloning of its relative genes was carried out. Methods: The thyroid tissues of 10 hyperthyroidism patients, 5 of them with endocrine exophthalmos and 5 without that, were obtained. Their mRNA were collected respectively by using Quick Prep Micro mRNA purification kit. Then the same amount of the mRNA from 5 patients with endocrine exophthalmos was added into an eppendorf tube to form a mRNA pool. And that of the 5 patients without endocrine exophthalmos was also prepared as the other pool. As a model, the pool was used to synthesize the single and double chains of cDNA through SMART Tm PCR cDNA Synthesis Kit. The double chains cDNA from the endocrine exophthalmos patients, being used as tester, and that from the patients without endocrine exophthalmos, being used as driver, were digested by restriction endonucleases Hae III to get the fragments which was less than 500 bases. The tester cDNA was ligated with adapt or 1 or 2 respectively. Then the subtractive suppressive hybridization was performed between tester and driver cDNA. And the efficacies of subtraction were measured. The differential genes between the thyroid tissues of endocrine exophthalmos and the thyroid tissues without endocrine exophthalmos were obtained through two cycles of subtractive hybridization and two cycles PCR. The differential genes were cloned into the vector of pT-Adv, and then transformed into E.coliDH5a. 48 white clonies were selected to build the subtractive suppressive library of the relative genes of endocrine exophthalmos. The primer 2 was applied for the colony PCR of the relative genes. The amplified genes were obtained and purified by using Quaqwich Spine PCR Purification Kit. According to the principle of random primer, the double chains cDNA from the thyroid tissues with or without endocrine exophthalmos were digested by Hae III

  4. Aberrant epigenetic changes and gene expression in cloned cattle dying around birth

    Directory of Open Access Journals (Sweden)

    Zhao Dingsheng

    2008-02-01

    Full Text Available Abstract Background Aberrant reprogramming of donor somatic cell nuclei may result in many severe problems in animal cloning. To assess the extent of abnormal epigenetic modifications and gene expression in clones, we simultaneously examined DNA methylation, histone H4 acetylation and expression of six genes (β-actin, VEGF, oct4, TERT, H19 and Igf2 and a repetitive sequence (art2 in five organs (heart, liver, spleen, lung and kidney from two cloned cattle groups that had died at different stages. In the ED group (early death, n = 3, the cloned cattle died in the perinatal period. The cattle in the LD group (late death, n = 3 died after the perinatal period. Normally reproduced cattle served as a control group (n = 3. Results Aberrant DNA methylation, histone H4 acetylation and gene expression were observed in both cloned groups. The ED group showed relatively fewer severe DNA methylation abnormalities (p Conclusion Deaths of clones may be ascribed to abnormal expression of a very limited number of genes.

  5. 16S rRNA Gene Sequence Analysis of Drinking Water Using RNA and DNA Extracts as Targets for Clone Library Development

    Science.gov (United States)

    The bacterial composition of chlorinated drinking water was analyzed using 16S rRNA gene clone libraries derived from DNA extracts of 12 samples and compared to clone libraries previously generated using RNA extracts from the same samples. Phylogenetic analysis of 761 DNA-based ...

  6. Molecular transformation, gene cloning, and gene expression systems for filamentous fungi

    Science.gov (United States)

    Gold, Scott E.; Duick, John W.; Redman, Regina S.; Rodriguez, Rusty J.

    2001-01-01

    This chapter discusses the molecular transformation, gene cloning, and gene expression systems for filamentous fungi. Molecular transformation involves the movement of discrete amounts of DNA into cells, the expression of genes on the transported DNA, and the sustainable replication of the transforming DNA. The ability to transform fungi is dependent on the stable replication and expression of genes located on the transforming DNA. Three phenomena observed in bacteria, that is, competence, plasmids, and restriction enzymes to facilitate cloning, were responsible for the development of molecular transformation in fungi. Initial transformation success with filamentous fungi, involving the complementation of auxotrophic mutants by exposure to sheared genomic DNA or RNA from wt isolates, occurred with low transformation efficiencies. In addition, it was difficult to retrieve complementing DNA fragments and isolate genes of interest. This prompted the development of transformation vectors and methods to increase efficiencies. The physiological studies performed with fungi indicated that the cell wall could be removed to generate protoplasts. It was evident that protoplasts could be transformed with significantly greater efficiencies than walled cells.

  7. Cloning and functional characterization of the Rvi15 (Vr2) gene for apple scab resistance

    NARCIS (Netherlands)

    Schouten, H.J.; Brinkhuis, J.; Burgh, van der S.; Schaart, J.; Groenwold, R.; Broggini, G.A.L.; Gessler, C.

    2014-01-01

    Apple scab, caused by Venturia inaequalis, is a serious disease of apple. Previously, the scab resistance Rvi15 (Vr2) from the accession GMAL 2473 was genetically mapped, and three candidate resistance genes were identified. Here, we report the cloning and functional characterization of these three

  8. Cloning and Characterizing Genes Involved in Monoterpene Induced Mammary Tumor Regression.

    Science.gov (United States)

    1996-10-01

    AD GRANT NUMBER DAMDI7-94-J-4041 TITLE: Cloning and Characterizing Genes Involved in Monoterpene Induced Mammary Tumor Regression PRINCIPAL...October 1996 Annual (1 Sep 95 - 31 Aug 96) 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Cloning and Characterizing Genes Involved in Monoterpene Induced... Monoterpene -induced/repressed genes were identified in regressing rat mammary carcinomas treated with dietary limonene using a newly developed method

  9. Cloning and sequencing of a cellobiohydrolase gene from Trichoderma harzianum FP108

    Science.gov (United States)

    Patrick Guilfoile; Ron Burns; Zu-Yi Gu; Matt Amundson; Fu-Hsian Chang

    1999-01-01

    A cbbl cellobiohydrolase gene was cloned and sequenced from the fungus Trichoderrna harzianum FP108. The cloning was performed by PCR amplification of T. harzianum genomic DNA, using PCR primers whose sequence was based on the cbbl gene from Tricboderma reesei. The 3' end of the gene was isolated by inverse...

  10. Cloning of the Repertoire of Individual Plasmodium falciparum var Genes Using Transformation Associated Recombination (TAR)

    Science.gov (United States)

    Schmid, Christoph D.; Bühlmann, Tobias; Louis, Edward J.; Beck, Hans-Peter

    2011-01-01

    One of the major virulence factors of the malaria causing parasite is the Plasmodium falciparum encoded erythrocyte membrane protein 1 (PfEMP1). It is translocated to It the membrane of infected erythrocytes and expressed from approximately 60 var genes in a mutually exclusive manner. Switching of var genes allows the parasite to alter functional and antigenic properties of infected erythrocytes, to escape the immune defense and to establish chronic infections. We have developed an efficient method for isolating VAR genes from telomeric and other genome locations by adapting transformation-associated recombination (TAR) cloning, which can then be analyzed and sequenced. For this purpose, three plasmids each containing a homologous sequence representing the upstream regions of the group A, B, and C var genes and a sequence homologous to the conserved acidic terminal segment (ATS) of var genes were generated. Co-transfection with P. falciparum strain ITG2F6 genomic DNA in yeast cells yielded 200 TAR clones. The relative frequencies of clones from each group were not biased. Clones were screened by PCR, as well as Southern blotting, which revealed clones missed by PCR due to sequence mismatches with the primers. Selected clones were transformed into E. coli and further analyzed by RFLP and end sequencing. Physical analysis of 36 clones revealed 27 distinct types potentially representing 50% of the var gene repertoire. Three clones were selected for sequencing and assembled into single var gene containing contigs. This study demonstrates that it is possible to rapidly obtain the repertoire of var genes from P. falciparum within a single set of cloning experiments. This technique can be applied to individual isolates which will provide a detailed picture of the diversity of var genes in the field. This is a powerful tool to overcome the obstacles with cloning and assembly of multi-gene families by simultaneously cloning each member. PMID:21408186

  11. Cloning of a recA-like gene of Proteus mirabilis

    International Nuclear Information System (INIS)

    Eitner, G.; Solonin, A.S.; Tanyashin, V.I.

    1981-01-01

    A gene of Proteus mirabilis that can substitute for functions of the recA gene of Escherichia coli has been cloned into the plasmid pBR322, using shotgun experiments. The recA-like gene (recAsub(P.m.)) has been localized by restriction mapping within a 1.5-Md PstI fragment that is a part of two cloned Hind III fragments of the chromosome of P. mirabilis. The restriction map of the recAsub(P.m.) gene differs from that of the recA gene of E. coli. Funtionally, the recombinant plasmids containing the recAsub(P.m.) gene restore a nearly wild-type level of UV-resistance to several point and deletion mutants in the recA gene of E. coli. (Auth.)

  12. Cloning and Expression Vector Construction of Glutamate Decarboxylase Gene from Lactobacillus Plantarum

    Directory of Open Access Journals (Sweden)

    B Arabpour

    2016-06-01

    Full Text Available BACKGROUND AND OBJECTIVE: Gamma-aminobutyric acid (GABA is a four-carbon non-protein amino acid used in the treatment of hypertension, diabetes, inflammation, and depression. GABA is synthesized by glutamic acid decarboxylase (GAD enzyme in many organisms, including bacteria. Therefore, cloning of this enzyme is essential to the optimization of GABA production. This study aimed to clone and construct the expression vector of GAD gene from Lactobacillus plantarum PTCC 1058 bacterium. METHODS: In this experimental study, we investigated the morphological, biochemical, genetic and 16s rDNA sequencing of L. plantarum PTCC 1058 strain. Genomic DNA of the bacterium was isolated and amplified using the GAD gene via polymerase chain reaction (PCR. Afterwards, the gene was inserted into the pJET1.2/blunt cloning vector and subcloned in vector pET32a. Plasmid pET32a-gad expression vector was transformed in Escherichia coli BL21 strain, and protein expression was assessed using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE. FINDINGS: Morphological, biochemical and genetic analyses of 16s rDNA sequencing indicated that the studied substrain was of the L. plantarum strain. In addition, results of nucleotide sequencing of the fragmented segment via PCR showed the presence of GAD gene. Results of colony PCR and SDS-PAGE analysis confirmed the accuracy of the cloning and gene expression of the recombinant Escherichia coli BL21 strain. CONCLUSION: According to the results of this study, cloning of GAD gene from L. plantarum PTCC 1058 was successful. These cloned genes could grow rapidly in prokaryotic and eukaryotic systems and be used in cost-effective culture media and even non-recyclable waste.

  13. Cloning

    Science.gov (United States)

    Cloning describes the processes used to create an exact genetic replica of another cell, tissue or organism. ... named Dolly. There are three different types of cloning: Gene cloning, which creates copies of genes or ...

  14. Cloning and characterization of an insecticidal crystal protein gene ...

    Indian Academy of Sciences (India)

    Unknown

    The sequence of the cloned crystal protein gene showed almost complete homology with a mosquitocidal toxin gene from Bacillus .... diet or by topical application on food substrates as .... has very high similarity (99.74%) at DNA level with.

  15. Identification of the Propionicin F Bacteriocin Immunity Gene (pcfI) and Development of a Food-Grade Cloning System for Propionibacterium freudenreichii▿ †

    OpenAIRE

    Brede, Dag Anders; Lothe, Sheba; Salehian, Zhian; Faye, Therese; Nes, Ingolf F.

    2007-01-01

    This report describes the first functional analysis of a bacteriocin immunity gene from Propionibacterium freudenreichii and its use as a selection marker for food-grade cloning. Cloning of the pcfI gene (previously orf5 [located as part of the pcfABC propionicin F operon]) rendered the sensitive host 1,000-fold more tolerant to the propionicin F bacteriocin. The physiochemical properties of the 127-residue large PcfI protein resemble those of membrane-bound immunity proteins from bacteriocin...

  16. Cloning and characterization of a Candida albicans maltase gene involved in sucrose utilization.

    Science.gov (United States)

    Geber, A; Williamson, P R; Rex, J H; Sweeney, E C; Bennett, J E

    1992-01-01

    In order to isolate the structural gene involved in sucrose utilization, we screened a sucrose-induced Candida albicans cDNA library for clones expressing alpha-glucosidase activity. The C. albicans maltase structural gene (CAMAL2) was isolated. No other clones expressing alpha-glucosidase activity. were detected. A genomic CAMAL2 clone was obtained by screening a size-selected genomic library with the cDNA clone. DNA sequence analysis reveals that CAMAL2 encodes a 570-amino-acid protein which shares 50% identity with the maltase structural gene (MAL62) of Saccharomyces carlsbergensis. The substrate specificity of the recombinant protein purified from Escherichia coli identifies the enzyme as a maltase. Northern (RNA) analysis reveals that transcription of CAMAL2 is induced by maltose and sucrose and repressed by glucose. These results suggest that assimilation of sucrose in C. albicans relies on an inducible maltase enzyme. The family of genes controlling sucrose utilization in C. albicans shares similarities with the MAL gene family of Saccharomyces cerevisiae and provides a model system for studying gene regulation in this pathogenic yeast. Images PMID:1400249

  17. Cloning and analysis of two Ceratopteris thalictroides MADS-box genes

    Directory of Open Access Journals (Sweden)

    XU Daolan

    2014-06-01

    Full Text Available MADS-box transcription factors,as a large gene family,play an important role in plant growth and development,especially act as key regulators in controlling the identities of floral organs in flowering plants.They are also significant in the evolutionary revelation.In order to understand MADS-box genes,we need more information of MADS-box genes in non flowering plant.MADS-box genes of Ceratopteris thalictroides were selected to clone and analysis by using RACE method.Two MADS-box genes,designated CtMADS1 and CtMADS2 in C. thalictroides,were cloned.Analysis indicates that CtMADS1 is belonged to MIKC*-clade,while CtMADS2 is belonged to MIKCc-clade.Phylogeny suggests that these two MADS-box genes of C. thalictroides have a close relationship with flowering plants,the data indicates that at least two different MADS-box genes are homologous to floral homeotic genes existed in the last common ancestor of contemporary vascular plants.

  18. Cloning and sequence analysis of hyaluronoglucosaminidase (nagH gene of Clostridium chauvoei

    Directory of Open Access Journals (Sweden)

    Saroj K. Dangi

    2017-09-01

    Full Text Available Aim: Blackleg disease is caused by Clostridium chauvoei in ruminants. Although virulence factors such as C. chauvoei toxin A, sialidase, and flagellin are well characterized, hyaluronidases of C. chauvoei are not characterized. The present study was aimed at cloning and sequence analysis of hyaluronoglucosaminidase (nagH gene of C. chauvoei. Materials and Methods: C. chauvoei strain ATCC 10092 was grown in ATCC 2107 media and confirmed by polymerase chain reaction (PCR using the primers specific for 16-23S rDNA spacer region. nagH gene of C. chauvoei was amplified and cloned into pRham-SUMO vector and transformed into Escherichia cloni 10G cells. The construct was then transformed into E. cloni cells. Colony PCR was carried out to screen the colonies followed by sequencing of nagH gene in the construct. Results: PCR amplification yielded nagH gene of 1143 bp product, which was cloned in prokaryotic expression system. Colony PCR, as well as sequencing of nagH gene, confirmed the presence of insert. Sequence was then subjected to BLAST analysis of NCBI, which confirmed that the sequence was indeed of nagH gene of C. chauvoei. Phylogenetic analysis of the sequence showed that it is closely related to Clostridium perfringens and Clostridium paraputrificum. Conclusion: The gene for virulence factor nagH was cloned into a prokaryotic expression vector and confirmed by sequencing.

  19. Cloning and expression of calmodulin gene in Scoparia dulcis.

    Science.gov (United States)

    Saitoh, Daisuke; Asakura, Yuki; Nkembo, Marguerite Kasidimoko; Shite, Masato; Sugiyama, Ryuji; Lee, Jung-Bum; Hayashi, Toshimitsu; Kurosaki, Fumiya

    2007-06-01

    A homology-based cloning strategy yielded a cDNA clone, designated Sd-cam, encoding calmodulin protein from Scoparia dulcis. The restriction digests of genomic DNA of S. dulcis showed a single hybridized signal when probed with the fragment of this gene in Southern blot analyses, suggesting that Sd-cam occurs as a sole gene encoding calmodulin in the plant. The reverse-transcription polymerase chain reaction analysis revealed that Sd-cam was appreciably expressed in leaf, root and stem tissues. It appeared that transcription of this gene increased transiently when the leaf cultures of S. dulcis were treated with methyl jasmonate and calcium ionophore A23187. These results suggest that transcriptional activation of Sd-cam is one of the early cellular events of the methyl jasmonate-induced responses of S. dulcis.

  20. Characterization and cloning of TMV resistance gene N homologues ...

    African Journals Online (AJOL)

    Tobacco cultivars Nicotiana tabacum cv. Samsun NN plants carrying the N gene contain a multitude of N-related genes. We cloned a few N homologues and isolated two full-length cDNAs of NL-C26 and NL-B69 genes from N. tabacum cv. Samsun NN. Nucleotide sequence analysis showed that the coding regions of ...

  1. Molecular cloning and characterization of arginine kinase gene of Toxocara canis.

    Science.gov (United States)

    Sahu, Shivani; Samanta, S; Harish, D R; Sudhakar, N R; Raina, O K; Shantaveer, S B; Madhu, D N; Kumar, Ashok

    2015-06-01

    Toxocara canis is an important gastrointestinal nematode of dogs and also a causative agent of visceral larva migrans in humans. Arginine kinase (AK) gene is one of the important biomolecule of phosphagen kinase of T. canis which is emerging as an exciting novel diagnostic target in toxocarosis. The present study was carried out to clone and characterize AK gene of T. canis for future utilization as a diagnostic molecule. Total RNA was extracted from intact adult worms and reverse transcription was done with oligo dT primers to obtain complementary DNA (cDNA). Polymerase chain reaction (PCR) was carried out using cDNA as template with specific primers which amplified a product of 1,202 bp. The amplicon was cloned into pDrive cloning vector and clone was confirmed by colony PCR and restriction endonuclease analysis. Sequence analysis of the gene showed 99.8 and 77.9 % homology with the published AK gene of T. canis (EF015466.1) and Ascaris suum respectively. Structural analysis shown that the mature AK protein consist of 400 amino acids with a molecular wt of 45360.73 Da. Further expression studies are required for producing the recombinant protein for its evaluation in the diagnosis of T. canis infection in humans as well as in adult dogs.

  2. Molecular cloning and expression of the gene encoding the kinetoplast-associated type II DNA topoisomerase of Crithidia fasciculata.

    Science.gov (United States)

    Pasion, S G; Hines, J C; Aebersold, R; Ray, D S

    1992-01-01

    A type II DNA topoisomerase, topoIImt, was shown previously to be associated with the kinetoplast DNA of the trypanosomatid Crithidia fasciculata. The gene encoding this kinetoplast-associated topoisomerase has been cloned by immunological screening of a Crithidia genomic expression library with monoclonal antibodies raised against the purified enzyme. The gene CfaTOP2 is a single copy gene and is expressed as a 4.8-kb polyadenylated transcript. The nucleotide sequence of CfaTOP2 has been determined and encodes a predicted polypeptide of 1239 amino acids with a molecular mass of 138,445. The identification of the cloned gene is supported by immunoblot analysis of the beta-galactosidase-CfaTOP2 fusion protein expressed in Escherichia coli and by analysis of tryptic peptide sequences derived from purified topoIImt. CfaTOP2 shares significant homology with nuclear type II DNA topoisomerases of other eukaryotes suggesting that in Crithidia both nuclear and mitochondrial forms of topoisomerase II are encoded by the same gene.

  3. Cloning-free regulated monitoring of reporter and gene expression

    Directory of Open Access Journals (Sweden)

    Demirkaya Omer

    2009-03-01

    Full Text Available Abstract Background The majority of the promoters, their regulatory elements, and their variations in the human genome remain unknown. Reporter gene technology for transcriptional activity is a widely used tool for the study of promoter structure, gene regulation, and signaling pathways. Construction of transcriptional reporter vectors, including use of cis-acting sequences, requires cloning and time-demanding manipulations, particularly with introduced mutations. Results In this report, we describe a cloning-free strategy to generate transcriptionally-controllable linear reporter constructs. This approach was applied in common transcriptional models of inflammatory response and the interferon system. In addition, it was used to delineate minimal transcriptional activity of selected ribosomal protein promoters. The approach was tested for conversion of genes into TetO-inducible/repressible expression cassettes. Conclusion The simple introduction and tuning of any transcriptional control in the linear DNA product renders promoter activation and regulated gene studies simple and versatile.

  4. Gene cloning: exploring cotton functional genomics and genetic improvement

    Institute of Scientific and Technical Information of China (English)

    Diqiu LIU; Xianlong ZHANG

    2008-01-01

    Cotton is the most important natural fiber plant in the world. The genetic improvement of the quality of the cotton fiber and agricultural productivity is imperative under the situation of increasing consumption and rapid development of textile technology. Recently, the study of cotton molecular biology has progressed greatly. A lot of specifically or preferentially expressed cotton fiber genes were cloned and analyzed. On the other hand, identification of stress response genes expressed in cotton was performed by other research groups. The major stress factors were studied including the wilt pathogens Verticillium dahliae, Fusarium oxy-sporum f. sp. vasinfectum, bacterial blight, root-knot nematode, drought, and salt stress. What is more, a few genes related to the biosynthesis of gossypol, other sesquiterpene phytoalexins and the major seed oil fatty acids were isolated from cotton. In the present review, we focused on the major advances in cotton gene cloning and expression profiling in the recent years.

  5. Variation in gene expression within clones of the earthworm Dendrobaena octaedra.

    Directory of Open Access Journals (Sweden)

    Marina Mustonen

    Full Text Available Gene expression is highly plastic, which can help organisms to both acclimate and adapt to changing environments. Possible variation in gene expression among individuals with the same genotype (among clones is not widely considered, even though it could impact the results of studies that focus on gene expression phenotypes, for example studies using clonal lines. We examined the extent of within and between clone variation in gene expression in the earthworm Dendrobaena octaedra, which reproduces through apomictic parthenogenesis. Five microsatellite markers were developed and used to confirm that offspring are genetic clones of their parent. After that, expression of 12 genes was measured from five individuals each from six clonal lines after exposure to copper contaminated soil. Variation in gene expression was higher over all genotypes than within genotypes, as initially assumed. A subset of the genes was also examined in the offspring of exposed individuals in two of the clonal lines. In this case, variation in gene expression within genotypes was as high as that observed over all genotypes. One gene in particular (chymotrypsin inhibitor also showed significant differences in the expression levels among genetically identical individuals. Gene expression can vary considerably, and the extent of variation may depend on the genotypes and genes studied. Ensuring a large sample, with many different genotypes, is critical in studies comparing gene expression phenotypes. Researchers should be especially cautious inferring gene expression phenotypes when using only a single clonal or inbred line, since the results might be specific to only certain genotypes.

  6. Coding sequence of human rho cDNAs clone 6 and clone 9

    Energy Technology Data Exchange (ETDEWEB)

    Chardin, P; Madaule, P; Tavitian, A

    1988-03-25

    The authors have isolated human cDNAs including the complete coding sequence for two rho proteins corresponding to the incomplete isolates previously described as clone 6 and clone 9. The deduced a.a. sequences, when compared to the a.a. sequence deduced from clone 12 cDNA, show that there are in human at least three highly homologous rho genes. They suggest that clone 12 be named rhoA, clone 6 : rhoB and clone 9 : rhoC. RhoA, B and C proteins display approx. 30% a.a. identity with ras proteins,. mainly clustered in four highly homologous internal regions corresponding to the GTP binding site; however at least one significant difference is found; the 3 rho proteins have an Alanine in position corresponding to ras Glycine 13, suggesting that rho and ras proteins might have slightly different biochemical properties.

  7. Clone and expression of human transferrin receptor gene: a marker gene for magnetic resonance imaging

    International Nuclear Information System (INIS)

    Li Li; Liu Lizhi; Lv Yanchun; Liu Xuewen; Cui Chunyan; Wu Peihong; Liu Qicai; Ou Shanxing

    2007-01-01

    Objective: To clone human transferrin receptor (hTfR) gene and construct expression vector producing recombination protein. Methods: Human transferrin receptor gene cDNA was amplified by RT-PCR from human embryonic liver and lung tissue. Recombinant pcDNA3-hTfR and pEGFP-Cl-hTfR plasmids were constructed and confirmed by DNA sequencing. These plasmids were stably transfected into the HEK293 cells. The protein expression in vitro was confirmed by Western Blot. The efficiency of expression and the location of hTfR were also investigated by fluorescence microscopy and confocal fluorescence microscopy. Results: The full length cDNA of hTfR gene (2332 bp) was cloned and sequenced. The hTfR (190 000) was overexpressed in transfected HEK293 cells by Western blot analysis. Fluorescence micrographs displayed that the hTfR was expressed at high level and located predominantly in the cell surface. Conclusions: Human transferrin receptor (hTfR) gene has been successfully cloned and obtained high-level expression in HEK293 cells, and the recombination protein of hTfR distributed predominantly in the cell membrane. (authors)

  8. Cloning an expressed gene shared by the human sex chromosomes

    International Nuclear Information System (INIS)

    Darling, S.M.; Banting, G.S.; Pym, B.; Wolfe, J.; Goodfellow, P.N.

    1986-01-01

    The existence of genes shared by mammalian sex chromosomes has been predicted on both evolutionary and functional grounds. However, the only experimental evidence for such genes in humans is the cell-surface antigen encoded by loci on the X and Y chromosomes (MIC2X and MIC2Y, respectively), which is recognized by the monoclonal antibody 12E7. Using the bacteriophage λgt11 expression system in Escherichia coli and immunoscreening techniques, the authors have isolated a cDNA clone whose primary product is recognized by 12E7. Southern blot analysis using somatic cell hybrids containing only the human X or Y chromosomes shows that the sequences reacting with the cDNA clone are localized to the sex chromosomes. In addition, the clone hybridizes to DNAs isolated from mouse cells that have been transfected with human DNA and selected for 12E7 expression on the fluorescence-activated cell sorter. The authors conclude that the cDNA clone encodes the 12E7 antigen, which is the primary product of the MIC2 loci. The clone was used to explore sequence homology between MIC2X and MIC2Y; these loci are closely related, if not identical

  9. Specific genetic modifications of domestic animals by gene targeting and animal cloning

    Directory of Open Access Journals (Sweden)

    Zhou Jiangfeng

    2003-11-01

    Full Text Available Abstract The technology of gene targeting through homologous recombination has been extremely useful for elucidating gene functions in mice. The application of this technology was thought impossible in the large livestock species until the successful creation of the first mammalian clone "Dolly" the sheep. The combination of the technologies for gene targeting of somatic cells with those of animal cloning made it possible to introduce specific genetic mutations into domestic animals. In this review, the principles of gene targeting in somatic cells and the challenges of nuclear transfer using gene-targeted cells are discussed. The relevance of gene targeting in domestic animals for applications in bio-medicine and agriculture are also examined.

  10. MOLECULAR CLONING OF OVINE cDNA LEPTIN GENE

    Directory of Open Access Journals (Sweden)

    CLAUDIA TEREZIA SOCOL

    2008-05-01

    Full Text Available An efficient bacterial transformation system suitable for cloning the coding sequence of the ovine leptin gene in E. coli DH5α host cells using the pGEMT easy vector it is described in this paper. The necessity of producing leptin is based on the fact that the role of this molecule in the animal and human organism is still unknown, leptin not existing as commercial product on the Romanian market. The results obtained in the bacterial transformation, cloning, recombinant clones selection, control of the insertion experiments and DNA computational analysis represent the first steps in further genetic engineering experiments such as production of DNA libraries, DNA sequencing, protein expression, etc., for a further contribution in elucidating the role of leptin in the animal and human organism.

  11. Cloning and characterization of the gene encoding IMP dehydrogenase from Arabidopsis thaliana.

    Science.gov (United States)

    Collart, F R; Osipiuk, J; Trent, J; Olsen, G J; Huberman, E

    1996-10-03

    We have cloned and characterized the gene encoding inosine monophosphate dehydrogenase (IMPDH) from Arabidopsis thaliana (At). The transcription unit of the At gene spans approximately 1900 bp and specifies a protein of 503 amino acids with a calculated relative molecular mass (M(r)) of 54,190. The gene is comprised of a minimum of four introns and five exons with all donor and acceptor splice sequences conforming to previously proposed consensus sequences. The deduced IMPDH amino-acid sequence from At shows a remarkable similarity to other eukaryotic IMPDH sequences, with a 48% identity to human Type II enzyme. Allowing for conservative substitutions, the enzyme is 69% similar to human Type II IMPDH. The putative active-site sequence of At IMPDH conforms to the IMP dehydrogenase/guanosine monophosphate reductase motif and contains an essential active-site cysteine residue.

  12. Cloning and characterisation of a glucoamylase gene (GlaM) from dimorphic zygomycete Mucor circinelloides

    DEFF Research Database (Denmark)

    Houghton-Larsen, J.; Pedersen, Per Amstrup

    2003-01-01

    This article reports a novel strategy for the cloning of glucoamylase genes using conserved sequences and semi-nested PCR and its application in cloning the GlaM glucoamylase gene and cDNA from the dimorphic zygomycete Mucor circinelloides. The deduced 609-amino-acid enzyme (including signal...

  13. Cloning and bioinformatic analysis of lovastatin biosynthesis regulatory gene lovE.

    Science.gov (United States)

    Huang, Xin; Li, Hao-ming

    2009-08-05

    Lovastatin is an effective drug for treatment of hyperlipidemia. This study aimed to clone lovastatin biosynthesis regulatory gene lovE and analyze the structure and function of its encoding protein. According to the lovastatin synthase gene sequence from genebank, primers were designed to amplify and clone the lovastatin biosynthesis regulatory gene lovE from Aspergillus terrus genomic DNA. Bioinformatic analysis of lovE and its encoding animo acid sequence was performed through internet resources and software like DNAMAN. Target fragment lovE, almost 1500 bp in length, was amplified from Aspergillus terrus genomic DNA and the secondary and three-dimensional structures of LovE protein were predicted. In the lovastatin biosynthesis process lovE is a regulatory gene and LovE protein is a GAL4-like transcriptional factor.

  14. Successful pod infections by Moniliophthora roreri result in differential Theobroma cacao gene expression depending on the clone's level of tolerance.

    Science.gov (United States)

    Ali, Shahin S; Melnick, Rachel L; Crozier, Jayne; Phillips-Mora, Wilberth; Strem, Mary D; Shao, Jonathan; Zhang, Dapeng; Sicher, Richard; Meinhardt, Lyndel; Bailey, Bryan A

    2014-09-01

    An understanding of the tolerance mechanisms of Theobroma cacao used against Moniliophthora roreri, the causal agent of frosty pod rot, is important for the generation of stable disease-tolerant clones. A comparative view was obtained of transcript populations of infected pods from two susceptible and two tolerant clones using RNA sequence (RNA-Seq) analysis. A total of 3009 transcripts showed differential expression among clones. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis of differentially expressed genes indicated shifts in 152 different metabolic pathways between the tolerant and susceptible clones. Real-time quantitative reverse transcription polymerase chain reaction (real-time qRT-PCR) analyses of 36 genes verified the differential expression. Regression analysis validated a uniform progression in gene expression in association with infection levels and fungal loads in the susceptible clones. Expression patterns observed in the susceptible clones diverged in tolerant clones, with many genes showing higher expression at a low level of infection and fungal load. Principal coordinate analyses of real-time qRT-PCR data separated the gene expression patterns between susceptible and tolerant clones for pods showing malformation. Although some genes were constitutively differentially expressed between clones, most results suggested that defence responses were induced at low fungal load in the tolerant clones. Several elicitor-responsive genes were highly expressed in tolerant clones, suggesting rapid recognition of the pathogen and induction of defence genes. Expression patterns suggested that the jasmonic acid-ethylene- and/or salicylic acid-mediated defence pathways were activated in the tolerant clones, being enhanced by reduced brassinosteroid (BR) biosynthesis and catabolic inactivation of both BR and abscisic acids. Finally, several genes associated with hypersensitive response-like cell death were also induced in tolerant clones. © 2014

  15. Gene cloning and characterization of NADH oxidase from ...

    African Journals Online (AJOL)

    The genome search of Thermococcus kodakarensis revealed three open reading frames, Tk0304, Tk1299 and Tk1392 annotated as nicotinamide adenine dinucleotide (NADH) oxidases. This study deals with cloning, and characterization of Tk0304. The gene, composed of 1320 nucleotides, encodes a protein of 439 ...

  16. Isolation and Cloning of mercuric reductase gene (merA from mercury-resistant bacteria

    Directory of Open Access Journals (Sweden)

    Parisa Khoshniyat

    2018-03-01

    Full Text Available Introduction: Some of the bacteria having merA gene coding mineral mercury reducing enzyme, has genetic potential of Hg removing via reduction of mineral mercury and transformation of that to gas form and finally bioremediation of polluted area. The aim of this study is the isolation of merA gene from resistance bacteria and cloning of that into suitable expression vector and then the environmental bioremediation by the transformation of bacteria with this vector. Materials and methods: A number of bacteria were collected in contaminated areas with mercury in order to isolate merA genes. Polymerase chain reaction had done on the four bacterial genomes including Klebsiella pneumoniae, Pseudomonas aeruginosa, Serratia marcescens and Escherichia coli using the specific primers in order to detect merA gene. For cloning, the primers containing restriction enzyme sites are used, merA gene was isolated and amplified. The amplified fragments were cloned in the expression vector pET21a+ and via heat shock method were transformed into E. coli TOP10 competent cell. For clustering of genes, Mega software version 4 was used and bioanformatic studies were achieved for predicted enzyme. Results: merA gene with 1686 bp in length was isolated from K pneumoniae and E. coli. Recombinant vectors in transgenic bacteria were confirmed by various methods and finally were confirmed by sequencing. The result of clustering these genes with existence genes in NCBI showed high similarity. Discussion and conclusion: The existence of merA gene in bacteria that adapted to Hg pollution area is because of resistance, so with cloning this gene into suitable expression vector and transformation of susceptible bacteria with this vector ability of resistance to Hg in bacteria for bioremediation could be given.

  17. Cloning and Sequence Analysis of Vibrio halioticoli Genes Encoding Three Types of Polyguluronate Lyase.

    Science.gov (United States)

    Sugimura; Sawabe; Ezura

    2000-01-01

    The alginate lyase-coding genes of Vibrio halioticoli IAM 14596(T), which was isolated from the gut of the abalone Haliotis discus hannai, were cloned using plasmid vector pUC 18, and expressed in Escherichia coli. Three alginate lyase-positive clones, pVHB, pVHC, and pVHE, were obtained, and all clones expressed the enzyme activity specific for polyguluronate. Three genes, alyVG1, alyVG2, and alyVG3, encoding polyguluronate lyase were sequenced: alyVG1 from pVHB was composed of a 1056-bp open reading frame (ORF) encoding 352 amino acid residues; alyVG2 gene from pVHC was composed of a 993-bp ORF encoding 331 amino acid residues; and alyVG3 gene from pVHE was composed of a 705-bp ORF encoding 235 amino acid residues. Comparison of nucleotide and deduced amino acid sequences among AlyVG1, AlyVG2, and AlyVG3 revealed low homologies. The identity value between AlyVG1 and AlyVG2 was 18.7%, and that between AlyVG2 and AlyVG3 was 17.0%. A higher identity value (26.0%) was observed between AlyVG1 and AlyVG3. Sequence comparison among known polyguluronate lyases including AlyVG1, AlyVG2, and AlyVG3 also did not reveal an identical region in these sequences. However, AlyVG1 showed the highest identity value (36.2%) and the highest similarity (73.3%) to AlyA from Klebsiella pneumoniae. A consensus region comprising nine amino acid (YFKAGXYXQ) in the carboxy-terminal region previously reported by Mallisard and colleagues was observed only in AlyVG1 and AlyVG2.

  18. Gene Transfer and Molecular Cloning of the Human NGF Receptor

    Science.gov (United States)

    Chao, Moses V.; Bothwell, Mark A.; Ross, Alonzo H.; Koprowski, Hilary; Lanahan, Anthony A.; Buck, C. Randall; Sehgal, Amita

    1986-04-01

    Nerve growth factor (NGF) and its receptor are important in the development of cells derived from the neural crest. Mouse L cell transformants have been generated that stably express the human NGF receptor gene transfer with total human DNA. Affinity cross-linking, metabolic labeling and immunoprecipitation, and equilibrium binding with 125I-labeled NGF revealed that this NGF receptor had the same size and binding characteristics as the receptor from human melanoma cells and rat PC12 cells. The sequences encoding the NGF receptor were molecularly cloned using the human Alu repetitive sequence as a probe. A cosmid clone that contained the human NGF receptor gene allowed efficient transfection and expression of the receptor.

  19. Rapid approach for cloning bacterial single-genes directly from soils ...

    African Journals Online (AJOL)

    Obtaining functional genes of bacteria from environmental samples usually depends on library-based approach which is not favored as its large amount of work with small possibility of positive clones. A kind of bacterial single-gene encoding glutamine synthetase (GS) was selected as example to detect the efficiency of ...

  20. Cloning and Expression of Nano Body Gene against Enterotoxin B of Staphylococcus Aureus

    Directory of Open Access Journals (Sweden)

    Zahra Tavassoli

    2017-02-01

    Full Text Available Background & Objectives: Staphylococcus aureus bacteria causes many different diseases by secretion of various enterotoxins. Therefore, it is necessary to develop ways that facilitate the detection of enterotoxins. Nowadays, immunochemical methods which are based on monoclonal antibody technology are used. The heavy chain antibodies that are called VHH or Nano body were found in blood serum of the Camelidae family. The unique properties of this antibody such as their binding to small molecules like toxins make them attractive candidates for the development of immunodiagnostic tests. The present study was done to achieve a VHH molecules against Staphylococcus enterotoxin B. Materials & Methods: Freighting phage library for isolate private Nano bodies against enterotoxin B was done in previous works. Next, pCANTAB 5E vector that consists VHH, extracted from E.coli bacteria strain xl1blue, and after doing PCR process with relative primers, sub cloning in pET21a(+ as an expression vector with cut sites NdeI and XhoI was done. Transformation in E.coli bacteria strain BL21(DE3 was done. Then, the cells effected with IPTG and producing time, and other terms were optimized. Finally, the expression of the protein with SDS-PAGE and western blot techniques was evaluated. Result: For proving cloning of nano body gene in pET21a (+ vector, nucleotide sequence of gene was analyzed, and transforming to E.coli bacteria strain BL21(DE3 was successful. After inspiration, active protein in cell was seen by SDS-PAGE technique and proved by western blot. Conclusion: cloning, sub cloning, and nonabody expression were surveyed in this research. Production of this protein can help to develop new therapeutic methods and produce vaccine against enterotoxin B of Staphylococcus aureus

  1. Cloning and expression of the Escherichia coli K-12 sad gene.

    OpenAIRE

    Marek, L E; Henson, J M

    1988-01-01

    The Escherichia coli K-12 sad gene, which encodes an NAD-dependent succinic semialdehyde dehydrogenase, was cloned into a high-copy-number vector. Minicells carrying a sad+ plasmid produced a 55,000-dalton peptide, the probable sad gene product.

  2. Cloning and sequencing of an alkaline protease gene from Bacillus lentus and amplification of the gene on the B. lentus chromosome by an improved technique.

    Science.gov (United States)

    Jørgensen, P L; Tangney, M; Pedersen, P E; Hastrup, S; Diderichsen, B; Jørgensen, S T

    2000-02-01

    A gene encoding an alkaline protease was cloned from an alkalophilic bacillus, and its nucleotide sequence was determined. The cloned gene was used to increase the copy number of the protease gene on the chromosome by an improved gene amplification technique.

  3. Enzyme free cloning for high throughput gene cloning and expression

    NARCIS (Netherlands)

    de Jong, R.N.; Daniëls, M.; Kaptein, R.; Folkers, G.E.

    2006-01-01

    Structural and functional genomics initiatives significantly improved cloning methods over the past few years. Although recombinational cloning is highly efficient, its costs urged us to search for an alternative high throughput (HTP) cloning method. We implemented a modified Enzyme Free Cloning

  4. Identification and characterization of a novel gene differentially expressed in zebrafish cross-subfamily cloned embryos

    Directory of Open Access Journals (Sweden)

    Wang Ya-Ping

    2008-03-01

    Full Text Available Abstract Background Cross-species nuclear transfer has been shown to be a potent approach to retain the genetic viability of a certain species near extinction. However, most embryos produced by cross-species nuclear transfer were compromised because that they were unable to develop to later stages. Gene expression analysis of cross-species cloned embryos will yield new insights into the regulatory mechanisms involved in cross-species nuclear transfer and embryonic development. Results A novel gene, K31, was identified as an up-regulated gene in fish cross-subfamily cloned embryos using SSH approach and RACE method. K31 complete cDNA sequence is 1106 base pairs (bp in length, with a 342 bp open reading frame (ORF encoding a putative protein of 113 amino acids (aa. Comparative analysis revealed no homologous known gene in zebrafish and other species database. K31 protein contains a putative transmembrane helix and five putative phosphorylation sites but without a signal peptide. Expression pattern analysis by real time RT-PCR and whole-mount in situ hybridization (WISH shows that it has the characteristics of constitutively expressed gene. Sub-cellular localization assay shows that K31 protein can not penetrate the nuclei. Interestingly, over-expression of K31 gene can cause lethality in the epithelioma papulosum cyprinid (EPC cells in cell culture, which gave hint to the inefficient reprogramming events occurred in cloned embryos. Conclusion Taken together, our findings indicated that K31 gene is a novel gene differentially expressed in fish cross-subfamily cloned embryos and over-expression of K31 gene can cause lethality of cultured fish cells. To our knowledge, this is the first report on the determination of novel genes involved in nucleo-cytoplasmic interaction of fish cross-subfamily cloned embryos.

  5. Transformation and Stability of Cloned Polysaccharidase Genes in Gram-Positive Bacteria

    OpenAIRE

    EKİNCİ, Mehmet Sait

    2014-01-01

    Polysaccharidase genes from rumen bacteria were transferred to and expressed in ruminal and non-ruminal Gram-positive bacteria. The transformation efficiency and genetic stability of polysaccharidase genes in bacteria from different habitats were investigated. PCR amplification of cloned polysaccharidase genes from Escherichia coli, Lactococcus lactis, Enterococcus faecalis, Streptococcus sanguis and S. bovis strain 26 showed that rearrangement of plasmid and the gene fragment did not occur. ...

  6. Aberrant DNA methylation in 5'regions of DNA methyltransferase genes in aborted bovine clones

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    High rate of abortion and developmental abnormalities is thought to be closely associated with inefficient epigenetic reprogramming of the transplanted nuclei during bovine cloning.It is known that one of the important mechanisms for epigenetic reprogramming is DNA methylation.DNA methylation is established and maintained by DNA methyltransferases(DNMTs),therefore,it is postulated that the inefficient epigenetic reprogramming of transplanted nuclei may be due to abnormal expression of DNMTs.Since DNA methylation can strongly inhibit gene expression,aberrant DNA methylation of DNMT genes may disturb gene expression.But presently,it is not clear whether the methylation abnormality of DNMT genes is related to developmental failure of somatic cell nuclear transfer embryos.In our study,we analyzed methylation patterns of the 5' regions of four DNMT genes including Dnmt3a,Dnmt3b,Dnmtl and Dnmt2 in four aborted bovine clones.Using bisulfite sequencing method,we found that 3 out of 4 aborted bovine clones(AF1,AF2 and AF3)showed either hypermethylation or hypomethylation in the 5' regions of Dnmt3a and Dnmt3b.indicating that Dnmt3a and Dnmt3b genes are not properly reprogrammed.However,the individual AF4 exhibited similar methylation level and pattern to age-matched in vitro fertilized (IVF)fetuses.Besides,we found that tle 5'regions of Dnmtl and Dnmt2 were nearly completely unmethylated in all normal adults.IVF fetuses,sperm and aborted clones.Together,our results suggest that the aberrant methylation of Dnmt3a and Dnmt3b 5' regions is probably associated with the high abortion of bovine clones.

  7. Cloning and characterization of the rec2 gene of Ustilago maydis

    International Nuclear Information System (INIS)

    Bauchwitz, R.P.; Holloman, W.K.

    1989-01-01

    The authors are exploring the molecular basis for genetic recombination using the corn smut fungus Ustilago maydis, from which the first two eucaryotic DNA repair and recombination mutants, rec1 and rec2, were described. Cells mutant at the rec2 locus are unable to repair lethal damage to their DNA from UV and X irradiation or from chemical alkylating agents such as N-methyl-nitrosoguanidine. Rec2 mutants retain only a residual level of DNA-damage inducible mitotic recombination, and are unable to complete meiosis. Using an autonomously replicating plasmid vector for Ustilago, they established the first nonintegrating plasmid library of the Ustilago genome. The rec2 locus was cloned by complementation of the rec2 mutation in vivo. One clone was found to restore all of the deficient activities. Although this rec2 complementing clone is present on a multicopy plasmid, the authors observed that it fully restored but did not further increase the fifty-fold inducibility of heteroallelic recombination at the nitrate reductase and inositol loci of rec2 or wild type cells. Northern blot analysis using the rec2 complementing clone revealed three UV inducible transcripts, one of which is absent in a rec2 mutant strain. This transcript organization resembles that of the yeast rad10 and the human ERCC-1 genes (MCB 9:1794), but sequence obtained to date from rec2 does not show homology with these genes. They have also observed that the rec2 mutation may alter the level of homologous integration of transformed DNA markers. Integration of a Leu1 complementing plasmid by Scott Fotheringham of the lab has shown that while much of plasmid integration in wild type Ustilago is nonhomologous, integration in at least some rec2 strains is entirely homologous. They are using the cloned rec2 gene to confirm that rec2 is indeed involved in altering the level of homologous integration in Ustilago, and if so, they plan to clone a mammalian analogue of rec2

  8. Cloning and Expression of TRYP6 Gene from Leishmania major (MRHO/IR/75/ER

    Directory of Open Access Journals (Sweden)

    G Eslami

    2008-06-01

    Full Text Available Background: Leishmania, needs to detoxify the macrophage derived potent peroxides (H2O2. Tryparedoxin path­way contains tryparedoxin peroxidase (TSA or TRYP. The aim of the study was to detect the full-length gene se­quence and its encoded protein of the LmTRYP6 gene (EU251502, and comparison the gene sequence with LmTRYP6 (LmjF15.1140, another previously reported member of this gene family.Methods: L.major (MRHO/IR/75/ER promastigotes were cultured, DNA and RNA were extracted and the inter­ested gene was amplified using PCR and RT-PCR methods.  PCR/ RT-PCR fragments were purified and cloned first in pTZ57R/T and then in pET15b expression vector. The expressed protein was verified using western blot method. Char­acterization of the expressed protein was performed bioinformatically.Results: Molecular evaluation revealed that the cloned LmTRYP6 gene (EU251502 encoded a predicted 184 amino acid long protein with a theoretical isoelectric point of 6.1101. Alignment showed a number of changes in amino acid composition including the replacement of highly conserved Trp177 by Cys in LmTRYP6 (ABX26130.Conclusion: So far no study has been done on this group, i.e.  TRYP6 gene, from tryparedoxin peroxidase family. The low homology with LmTRYP6 (LmjF15.1140 and vast array of differences observed in the gene under study (LmTRYP6; EU251502 could open new windows in the field of anti-Leishmania combat. Based on its important role in the viability and successful establishment of the parasite in the host organism it looks to be very good candi­date for vaccine development and any other sort of novel drug development.

  9. [Cloning and characterization of genes differentially expressed in human dental pulp cells and gingival fibroblasts].

    Science.gov (United States)

    Wang, Zhong-dong; Wu, Ji-nan; Zhou, Lin; Ling, Jun-qi; Guo, Xi-min; Xiao, Ming-zhen; Zhu, Feng; Pu, Qin; Chai, Yu-bo; Zhao, Zhong-liang

    2007-02-01

    To study the biological properties of human dental pulp cells (HDPC) by cloning and analysis of genes differentially expressed in HDPC in comparison with human gingival fibroblasts (HGF). HDPC and HGF were cultured and identified by immunocytochemistry. HPDC and HGF subtractive cDNA library was established by PCR-based modified subtractive hybridization, genes differentially expressed by HPDC were cloned, sequenced and compared to find homogeneous sequence in GenBank by BLAST. Cloning and sequencing analysis indicate 12 genes differentially expressed were obtained, in which two were unknown genes. Among the 10 known genes, 4 were related to signal transduction, 2 were related to trans-membrane transportation (both cell membrane and nuclear membrane), and 2 were related to RNA splicing mechanisms. The biological properties of HPDC are determined by the differential expression of some genes and the growth and differentiation of HPDC are associated to the dynamic protein synthesis and secretion activities of the cell.

  10. Cloning the Gravity and Shear Stress Related Genes from MG-63 Cells by Subtracting Hybridization

    Science.gov (United States)

    Zhang, Shu; Dai, Zhong-quan; Wang, Bing; Cao, Xin-sheng; Li, Ying-hui; Sun, Xi-qing

    2008-06-01

    Background The purpose of the present study was to clone the gravity and shear stress related genes from osteoblast-like human osteosarcoma MG-63 cells by subtractive hybridization. Method MG-63 cells were divided into two groups (1G group and simulated microgravity group). After cultured for 60 h in two different gravitational environments, two groups of MG-63 cells were treated with 1.5Pa fluid shear stress (FSS) for 60 min, respectively. The total RNA in cells was isolated. The gravity and shear stress related genes were cloned by subtractive hybridization. Result 200 clones were gained. 30 positive clones were selected using PCR method based on the primers of vector and sequenced. The obtained sequences were analyzed by blast. changes of 17 sequences were confirmed by RT-PCR and these genes are related to cell proliferation, cell differentiation, protein synthesis, signal transduction and apoptosis. 5 unknown genes related to gravity and shear stress were found. Conclusion In this part of our study, our result indicates that simulated microgravity may change the activities of MG-63 cells by inducing the functional alterations of specific genes.

  11. Using "Pseudomonas Putida xylE" Gene to Teach Molecular Cloning Techniques for Undergraduates

    Science.gov (United States)

    Dong, Xu; Xin, Yi; Ye, Li; Ma, Yufang

    2009-01-01

    We have developed and implemented a serial experiment in molecular cloning laboratory course for undergraduate students majored in biotechnology. "Pseudomonas putida xylE" gene, encoding catechol 2, 3-dioxygenase, was manipulated to learn molecular biology techniques. The integration of cloning, expression, and enzyme assay gave students…

  12. Production of cloned pigs with targeted attenuation of gene expression.

    Directory of Open Access Journals (Sweden)

    Vilceu Bordignon

    Full Text Available The objective of this study was to demonstrate that RNA interference (RNAi and somatic cell nuclear transfer (SCNT technologies can be used to attenuate the expression of specific genes in tissues of swine, a large animal species. Apolipoprotein E (apoE, a secreted glycoprotein known for its major role in lipid and lipoprotein metabolism and transport, was selected as the target gene for this study. Three synthetic small interfering RNAs (siRNA targeting the porcine apoE mRNA were tested in porcine granulosa cells in primary culture and reduced apoE mRNA abundance ranging from 45-82% compared to control cells. The most effective sequence was selected for cloning into a short hairpin RNA (shRNA expression vector under the control of RNA polymerase III (U6 promoter. Stably transfected fetal porcine fibroblast cells were generated and used to produce embryos with in vitro matured porcine oocytes, which were then transferred into the uterus of surrogate gilts. Seven live and one stillborn piglet were born from three gilts that became pregnant. Integration of the shRNA expression vector into the genome of clone piglets was confirmed by PCR and expression of the GFP transgene linked to the expression vector. Analysis showed that apoE protein levels in the liver and plasma of the clone pigs bearing the shRNA expression vector targeting the apoE mRNA was significantly reduced compared to control pigs cloned from non-transfected fibroblasts of the same cell line. These results demonstrate the feasibility of applying RNAi and SCNT technologies for introducing stable genetic modifications in somatic cells for eventual attenuation of gene expression in vivo in large animal species.

  13. Cloning of radiation-induced new gene RS1 expressed in mouse intestinal epithelium by enhanced RACE

    International Nuclear Information System (INIS)

    Wang Fengchao; Wang Junping; Su Yongping; Gao Jinsheng; Lou Shufen; Liu Xiaohong; Ren Jiong; Zhang Bo

    2003-01-01

    Objective: To obtain full-length cDNA of radiation-induced new gene RS1 expressed in mouse intestinal epithelium. Methods: The tissue expression profile of RS1 was analyzed by semi-quantitative RT-PCR to find the target tissue which highly expresses RS1. The total RNA extracted from the corresponding tissue was taken as the template for reverse-transcription. Enhanced RACE PCR was used to clone the full-length cDNA of RS1, including enrichment of the target gene through biotin-labeled probe for magnetic bead purification and nested PCR. Results: About a 2 kb long 3' end was successfully cloned and cloning of the 5' end proceeded well. Conclusion: The result is consistent with our experiment design. The set of combined techniques has been identified with the cloning of full-length cDNA from EST sequence especially when the optimal gene-specific primers are not available or the expression level of target gene is low

  14. Cloning, characterization and targeting of the mouse HEXA gene

    Energy Technology Data Exchange (ETDEWEB)

    Wakamatsu, N.; Trasler, J.M.; Gravel, R.A. [McGill Univ., Quebec (Canada)] [and others

    1994-09-01

    The HEXA gene, encoding the {alpha} subunit of {beta}-hexosaminidase A, is essential for the metabolism of ganglioside G{sub M2}, and defects in this gene cause Tay-Sachs disease in humans. To elucidate the role of the gene in the nervous system of the mouse and to establish a mouse model of Tay-Sachs disease, we have cloned and characterized the HEXA gene and targeted a disruption of the gene in mouse ES cells. The mouse HEXA gene spans {approximately}26 kb and consists of 14 exons, similar to the human gene. A heterogeneous transcription initiation site was identified 21-42 bp 5{prime} of the initiator ATG, with two of the sites fitting the consensus CTCA (A = start) as seen for some weak initiator systems. Promoter analysis showed that the first 150 bp 5{prime} of the ATG contained 85% of promoter activity observed in constructs containing up to 1050 bp of 5{prime} sequence. The active region contained a sequence matching that of the adenovirus major late promoter upstream element factor. A survey of mouse tissues showed that the highest mRNA levels were in (max to min): testis (5.5 x brain cortex), adrenal, epididymis, heart, brain, lung, kidney, and liver (0.3 x brain cortex). A 12 kb BstI/SalI fragment containing nine exons was disrupted with the insertion of the bacterial neo{sup r} gene in exon 11 and was targeted into 129/Sv ES cells by homologous recombination. Nine of 153 G418 resistant clones were correctly targeted as confirmed by Southern blotting. The heterozygous ES cells were microinjected into mouse blastocysts and implanted into pseudo-pregnant mice. Nine male chimeric mice, showing that 40-95% chimerism for the 129/Sv agouti coat color marker, are being bred in an effort to generate germline transmission of the disrupted HEXA gene.

  15. Influence of cloning by chromatin transfer on placental gene expression at Day 45 of pregnancy in cattle.

    Science.gov (United States)

    Mesquita, Fernando S; Machado, Sergio A; Drnevich, Jenny; Borowicz, Pawel; Wang, Zhongde; Nowak, Romana A

    2013-01-30

    Poor success rates in somatic cell cloning are often attributed to abnormal early embryonic development as well as late abnormal fetal growth and placental development. Although promising results have been reported following chromatin transfer (CT), a novel cloning method that includes the remodeling of the donor nuclei in vitro prior to their transfer into enucleated oocytes, animals cloned by CT show placental abnormalities similar to those observed following conventional nuclear transfer. We hypothesized that the placental gene expression pattern from cloned fetuses was ontologically related to the frequently observed placental phenotype. The aim of the present study was to compare global gene expression by microarray analysis of Day 44-47 cattle placentas derived from CT cloned fetuses with those derived from in vitro fertilization (i.e. control), and confirm the altered mRNA and protein expression of selected molecules by qRT-PCR and immunohistochemistry, respectively. The differentially expressed genes identified in the present study are known to be involved in a range of activities associated with cell adhesion, cell cycle control, intracellular transport and proteolysis. Specifically, an imprinted gene, involved with cell proliferation and placentomegaly in humans (CDKN1C) and a peptidase that serves as a marker for non-invasive trophoblast cells in human placentas (DPP4), had mRNA and protein altered in CT placentas. It was concluded that the altered pattern of gene expression observed in CT samples may contribute to the abnormal placental development phenotypes commonly identified in cloned offspring, and that expression of imprinted as well as trophoblast invasiveness-related genes is altered in cattle cloned by CT. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Molecular cloning and characterization of two novel genes from hexaploid wheat that encode double PR-1 domains coupled with a receptor-like protein kinase

    Science.gov (United States)

    Hexaploid wheat (Triticum aestivum L.) contains at least 23 TaPr-1 genes encoding the group 1 pathogenesis-related (PR-1) proteins as identified in our previous work. Here we report the cloning and characterization of TaPr-1-rk1 and TaPr-1-rk2, two novel genes closely related to the wheat PR-1 famil...

  17. Cloning and sequencing of phenol oxidase 1 (pox1) gene from ...

    African Journals Online (AJOL)

    The gene (pox1) encoding a phenol oxidase 1 from Pleurotus ostreatus was sequenced and the corresponding pox1-cDNA was also synthesized, cloned and sequenced. The isolated gene is flanked by an upstream region called the promoter (399 bp) prior to the start codon (ATG). The putative metalresponsive elements ...

  18. Effector-driven marker development and cloning of resistance genes against Phytophthora infestans in potato breeding clone SW93-1015

    DEFF Research Database (Denmark)

    Lenman, Marit; Ali, Ashfaq; Mühlenbock, Per

    2016-01-01

    different P. infestans effectors, containing the conserved motif RXLR (for Arg, any amino acid, Leu, Arg), revealed a specific response to Avr2, which suggests that SW93-1015 might contain a functional homolog of the R2 resistance gene. We cloned eight R2 gene homologs from SW93-1015, whereof seven have...

  19. Cloning of a postreplication repair gene in Drosophila

    International Nuclear Information System (INIS)

    Banga, S.S.; Yamamoto, A.H.; Mason, J.M.; Boyd, J.B.

    1987-01-01

    Mutants at the mei-41 locus in Drosophila are strongly hypersensitive to each of eight tested mutagens. Mutant flies exhibit reduced meiotic recombination and elevated levels of chromosomal aberrations. In analogy with the defect in xeroderma pigmentosum variant cells, mei-41 cells are strongly defective in postreplication repair following UV radiation. In preparation for cloning that gene they have performed complementation studies between chromosomal aberrations and mei-41 mutants. That study has localized the mei-41 gene to polytene chromosome bands 14C4-6. A chromosomal walk conducted in that region has recovered about 65 kb of contiguous DNA sequence. The position of the mei-41 gene within that region has been established with the aid of a mutation in that gene which was generated by the insertion of a transposable element. Transcription mapping is being employed to define the complete coding region of the gene in preparation for investigations of gene function

  20. In silico cloning and bioinformatic analysis of PEPCK gene in ...

    African Journals Online (AJOL)

    Phosphoenolpyruvate carboxykinase (PEPCK), a critical gluconeogenic enzyme, catalyzes the first committed step in the diversion of tricarboxylic acid cycle intermediates toward gluconeogenesis. According to the relative conservation of homologous gene, a bioinformatics strategy was applied to clone Fusarium ...

  1. Cloning and characterization of stress responsive Glp genes and their promotor regions from rice (abstract)

    International Nuclear Information System (INIS)

    Naqvi, S.M.S.; Mahmood, T.

    2005-01-01

    Plants respond to a number of environmental stimuli by modulating expression of genes. One such family of genes is now known as germin/germin-like protein genes (Glps). In order to detect any Glp gene response in rice, a pair of degenerate primers was designed based on consensus region from Glp sequences in Genbank. Using these primers a DNA fragment of about 550 bp was obtained by PCR amplification from genomic template. This 550 bp DNA was used as probe in Northern analysis. These studies provided evidence pointing to differential response of Glp expression to salt stress. RNA obtained from the roots was used for synthesis of cDNA. This cDNA was amplifiable with sense primer (RGLP1) from above mentioned pair and oligo-(dt) yielding a fragment of approx. 800 bp. Restriction analysis revealed that the PCR product was heterogeneous. After establishing that 800 bp fragment was the desired product, it was cloned in pCRII-TOPO. Five clones were picked up and analyzed by restriction analysis and sequencing. Two different Glp cDNAs were represented by these partial clones. Remaining sequence of the 5' end for clone 4 and 16 was obtained by Rapid Amplification of cDNA ends (RACE). The resultant sequences have been submitted to Genbank as Oryza sativa Rice Germin-like Protein 1 and 2 (osRGLP1 and 2). When full length genes corresponding to these sequences were amplified from genomic templates, resulting fragments were nearly 150 by larger than cDNAs. Cloning of structural genes for osRGLP1 revealed presence of a 162 bp intron in the coding region near 3' end. Preliminary evidence shows that expression of both osRGLP1 and 2 is severely reduced during salt stress. Another approach to establish both osRGLP1 and 2 genes involvement in stress tolerance is to study the ability of their promotor regions to drive expression of some reporter gene during stress. Promotor regions of about 1100 bp has been amplified and cloned and has been confirmed by restriction analysis and nested

  2. Cloning and characterization of human DNA repair genes

    International Nuclear Information System (INIS)

    Thompson, L.H.; Brookman, K.W.; Weber, C.A.; Salazar, E.P.; Stewart, S.A.; Carrano, A.V.

    1987-01-01

    The isolation of two addition human genes that give efficient restoration of the repair defects in other CHO mutant lines is reported. The gene designated ERCC2 (Excision Repair Complementing Chinese hamster) corrects mutant UV5 from complementation group 1. They recently cloned this gene by first constructing a secondary transformant in which the human gene was shown to have become physically linked to the bacterial gpt dominant-marker gene by cotransfer in calcium phosphate precipitates in the primary transfection. Transformants expressing both genes were recovered by selecting for resistance to both UV radiation and mycophenolic acid. Using similar methods, the human gene that corrects CHO mutant EM9 was isolated in cosmids and named XRCC1 (X-ray Repair Complementing Chinese hamster). In this case, transformants were recovered by selecting for resistance to CldUrd, which kills EM9 very efficiently. In both genomic and cosmid transformants, the XRCC1 gene restored resistance to the normal range. DNA repair was studied using the kinetics of strand-break rejoining, which was measured after exposure to 137 Cs γ-rays

  3. Molecular cloning of the human gene for von Willebrand factor and identification of the transcription initiation site

    International Nuclear Information System (INIS)

    Collins, C.J.; Underdahl, J.P.; Levene, R.B.; Ravera, C.P.; Morin, M.J.; Dombalagian, M.J.; Ricca, G.; Livingston, D.M.; Lynch, D.C.

    1987-01-01

    A series of overlapping cosmid genomic clones have been isolated that contain the entire coding unit of the human gene for van Willebrand factor (vWf), a major component of the hemostatic system. The cloned segments span ≅ 175 kilobases of human DNA sequence, and hybridization analysis suggest that the vWf coding unit is ≅150 kilobases in length. Within one of these clones, the vWF transcription initiation site has been mapped and a portion of the vWf promoter region has been sequenced, revealing a typical TATA box, a downstream CCAAT box, and a perfect downstream repeat of the 8 base pairs containing the transcription start site. Sequencing of a segment of another genomic clone has revealed the vWF translation termination codon. Where tested, comparative restriction analysis of cloned and chromosomal DNA segments strongly suggests that no major alterations occurred during cloning and that there is only one complete copy of the vWf gene in the human haploid genome. Similar analyses of DNA from vWf-producing endothelial cells and nonexpressing leukocytes suggest that vWf gene expression is not accompanied by gross genomic rearrangements. In addition, there is significant homology of C-terminal coding sequences among the vWf genes of several vertebrate species

  4. [Cloning and gene expression in lactic acid bacteria].

    Science.gov (United States)

    Bondarenko, V M; Beliavskaia, V A

    2000-01-01

    The possibility of using the genera Lactobacillus and Lactococcus as vector representatives is widely discussed at present. The prospects of the construction of recombinant bacteria are closely connected with the solution of a number of problems: the level of the transcription of cloned genes, the effectiveness of the translation of heterologous mRNA, the stability of protein with respect to bacterial intracellular proteases, the method by protein molecules leave the cell (by secretion or as the result of lysis). To prevent segregation instability, the construction of vector molecules on the basis of stable cryptic plasmids found in wild strains of lactic acid bacteria was proposed. High copying plasmids with low molecular weight were detected in L. plantarum and L. pentosus strains. Several plasmids with molecular weights of 1.7, 1.8 and 2.3 kb were isolated from bacterial cells to be used as the basis for the construction of vector molecules. Genes of chloramphenicol- and erythromycin-resistance from Staphylococcus aureus plasmids were used as marker genes ensuring cell transformation. The vector plasmids thus constructed exhibited high transformation activity in the electroporation of different strains, including L. casei, L. plantarum, L. acidophilus, L. fermentum and L. brevis which could be classified with the replicons of a wide circle of hosts. But the use of these plasmids was limited due to the risk of the uncontrolled dissemination of recombinant plasmids. L. acidophilus were also found to have strictly specific plasmids with good prospects of being used as the basis for the creation of vectors, incapable of dissemination. In addition to the search of strain-specific plasmids, incapable of uncontrolled gene transmission, the use of chromosome-integrated heterologous genes is recommended in cloning to ensure the maximum safety.

  5. Cloning and characterization of an insecticidal crystal protein gene ...

    Indian Academy of Sciences (India)

    A 1.9-kb DNA fragment, PCR-amplified from HD549 using cryII-gene-specific primers, was cloned and expressed in E. coli. The recombinant protein produced 92% mortality in first-instar larvae of Spodoptera litura and 86% inhibition of adult emergence in Phthorimaea operculella, but showed very low toxicity against ...

  6. Polymerase chain reaction amplification and cloning of immunogenic protein NAD-dependent beta hydroxybutyryl CoA dehydrogenase gene of Clostridium chauvoei

    Directory of Open Access Journals (Sweden)

    Saroj K. Dangi

    2014-10-01

    Full Text Available Aim: The present study was aimed at polymerase chain reaction (PCR amplification and cloning of NAD-dependent betahydroxybutyryl coenzyme A dehydrogenase (BHBD gene of Clostridium chauvoei. Materials and Methods: C. chauvoei was cultured and confirmed by 16-23S rDNA spacer region primers. The primers for nad-bhbd gene of C. chauvoei were designed to aid in cloning into pRham-N-His SUMO-Kan vector, and nad-bhbd gene was amplified by PCR. The amplified nad-bhbd gene was purified and cloned into pRham-N-His SUMO-Kan expression vector. The recombinant plasmid was transformed into E. cloni 10 G cells and the clone was confirmed by colony PCR using the pRham-SUMO-NAD-For and pRham-SUMO-NAD-Rev primers and also by sequencing. Results: PCR amplification of nad-bhbd gene yielded a product length of 844 base pairs which was cloned into pRham-NHis SUMO-Kan vector followed by transformation into E. cloni 10G chemically competent cells. The recombinant clones were characterized by colony PCR, sequencing, followed by basic local alignment search tool (BLAST analysis to confirm the insert. Conclusions: Immunogenic protein NAD- dependent BHBD of C. chauvoei was cloned and the recombinant clones were confirmed by colony PCR and sequencing analysis.

  7. Cloning and homologic analysis of Tpn I gene in silkworm Bombyx ...

    African Journals Online (AJOL)

    Cloning and homologic analysis of Tpn I gene in silkworm Bombyx mori. Y Zhao, Yao Q, X Tang, Q Wang, H Yin, Z Hu, J Lu, K Chen. Abstract. The troponin complex is composed of three subunits, Troponin C (the calcium sensor component) and Troponin T and I (structural proteins). Tpn C is encoded by multiple genes in ...

  8. Cloning and analysis of an HMG gene from the lamprey Lampetra fluviatilis

    DEFF Research Database (Denmark)

    Sharman, A C; Hay-Schmidt, Anders; Holland, P W

    1997-01-01

    Evolution has shaped the organisation of vertebrate genomes, including the human genome. To shed further light on genome history, we have cloned and analysed an HMG gene from lamprey, representing one of the earliest vertebrate lineages. Genes of the HMG1/2 family encode chromosomal proteins...

  9. Clone DB: an integrated NCBI resource for clone-associated data

    Science.gov (United States)

    Schneider, Valerie A.; Chen, Hsiu-Chuan; Clausen, Cliff; Meric, Peter A.; Zhou, Zhigang; Bouk, Nathan; Husain, Nora; Maglott, Donna R.; Church, Deanna M.

    2013-01-01

    The National Center for Biotechnology Information (NCBI) Clone DB (http://www.ncbi.nlm.nih.gov/clone/) is an integrated resource providing information about and facilitating access to clones, which serve as valuable research reagents in many fields, including genome sequencing and variation analysis. Clone DB represents an expansion and replacement of the former NCBI Clone Registry and has records for genomic and cell-based libraries and clones representing more than 100 different eukaryotic taxa. Records provide details of library construction, associated sequences, map positions and information about resource distribution. Clone DB is indexed in the NCBI Entrez system and can be queried by fields that include organism, clone name, gene name and sequence identifier. Whenever possible, genomic clones are mapped to reference assemblies and their map positions provided in clone records. Clones mapping to specific genomic regions can also be searched for using the NCBI Clone Finder tool, which accepts queries based on sequence coordinates or features such as gene or transcript names. Clone DB makes reports of library, clone and placement data on its FTP site available for download. With Clone DB, users now have available to them a centralized resource that provides them with the tools they will need to make use of these important research reagents. PMID:23193260

  10. Cloning of the rat Waf1/Cip1 gene

    International Nuclear Information System (INIS)

    Belinsky, S.A.; Middleton, S.K.

    1994-01-01

    The progression of eukaryotic cells through the cell cycle involves the sequential expression of specific genes. This process is regulated by both external and internal stimuli that prevent the cell from prematurely entering the next phase before all macromolecular events have been completed. The activation and subsequent inactivation of cyclin dependent kinases (Cdks) represent one internal stimuli required to regulate the transit of cells from one stage of the cell cycle to the next. Another member of this regulatory cascade is the p53 tumor suppressor gene, which controls a G 1 checkpoint at which the cell cycle can be arrested prior to the initiation of DNA synthesis. Following DNA damage, p53 protein levels rise, and entry into S phase is delayed, presumably to allow time for repair of the lesions. When p53 function is lost, cells containing damaged DNA template enter S phase leading to fixation and propagation of genetic alterations. Recently, evidence linking the growth-suppressing activity of p53 and inactivation of Cdks has been provided by the cloning of the Waf1/Cip1 gene. Waf1/Cip1 encodes a protein of M r 21,000 (p21), which inhibits Cdks in vitro. The overexpression of Waf1/Cip1 in cells inhibits cell growth, suggesting that p21 is a downstream mediator of p53 function. Loss of Waf1/Cip1 gene function could lead to deregulation of the cell cycle and contribute to the development of the neoplastic phenotype in tumors that do not contain mutations in the p53 gene. The purpose of the present investigation was to clone the rat Waf1/Cip1 gene,then determine the frequency for alteration of this gene in lung tumors induced by X-rays

  11. Cloning and heterologous expression of a gene encoding lycopene ...

    African Journals Online (AJOL)

    This report describes the cloning and expression of a gene lycopene epsilon cyclase, (LCYE) from Camellia sinensis var assamica which is a precursor of the carotenoid lutein in tea. The 1982 bp cDNA sequence with 1599 bp open reading frame of LCYE was identified from an SSH library constructed for quality trait in tea.

  12. Cloning of the cDNA and gene for a human D2 dopamine receptor

    International Nuclear Information System (INIS)

    Grady, D.K.; Makam, H.; Stofko, R.E.; Bunzow, J.R.; Civelli, O.; Marchionni, M.A.; Alfano, M.; Frothingham, L.; Fischer, J.B.; Burke-Howie, K.J.; Server, A.C.

    1989-01-01

    A clone encoding a human D 2 dopamine receptor was isolated from a pituitary cDNA library and sequenced. The deduced protein sequence is 96% identical with that of the cloned rat receptor with one major difference: the human receptor contains an additional 29 amino acids in its putative third cytoplasmic loop. Southern blotting demonstrated the presence of only one human D 2 receptor gene. Two overlapping phage containing the gene were isolated and characterized. DNA sequence analysis of these clones showed that the coding sequence is interrupted by six introns and that the additional amino acids present in the human pituitary receptor are encoded by a single exon of 87 base pairs. The involvement of this sequence in alternative splicing and its biological significance are discussed

  13. Cloning and sequencing of the peroxisomal amine oxidase gene from Hansenula polymorpha

    NARCIS (Netherlands)

    Bruinenberg, P. G.; Evers, M.; Waterham, H. R.; Kuipers, J.; Arnberg, A. C.; AB, G.

    1989-01-01

    We have cloned the AMO gene, encoding the microbody matrix enzyme amine oxidase (EC 1.4.3.6) from the yeast Hansenula polymorpha. The gene was isolated by differential screening of a cDNA library, immunoselection, and subsequent screening of a H. polymorpha genomic library. The nucleotide sequence

  14. Cloning and characterization of novel fast ω-gliadin genes in ...

    Indian Academy of Sciences (India)

    2015-06-02

    Jun 2, 2015 ... In this study, the novel fast u-gliadin genes were cloned from genome A of ... Wheat is one of the most important sources of food in the human diet. In the ..... This work was financially supported by the National Natural Sci-.

  15. Cloning of a Gene Whose Expression is Increased in Scrapie and in Senile Plaques in Human Brain

    Science.gov (United States)

    Wietgrefe, S.; Zupancic, M.; Haase, A.; Chesebro, B.; Race, R.; Frey, W.; Rustan, T.; Friedman, R. L.

    1985-12-01

    A complementary DNA library was constructed from messenger RNA's extracted from the brains of mice infected with the scrapie agent. The library was differentially screened with the objectives of finding clones that might be used as markers of infection and finding clones of genes whose increased expression might be correlated with the pathological changes common to scrapie and Alzheimer's disease. A gene was identified whose expression is increased in scrapie. The complementary DNA corresponding to this gene hybridized preferentially and focally to cells in the brains of scrapie-infected animals. The cloned DNA also hybridized to the neuritic plaques found with increased frequency in brains of patients with Alzheimer's disease.

  16. Cloning and characterization of the gsk gene encoding guanosine kinase of Escherichia coli

    DEFF Research Database (Denmark)

    Harlow, Kenneth W.; Nygaard, Per; Hove-Jensen, Bjarne

    1995-01-01

    The Escherichia coli gsk gene encoding guanosine kinase was cloned from the Kohara gene library by complementation of the E. coli gsk-1 mutant allele. The cloned DNA fragment was sequenced and shown to encode a putative polypeptide of 433 amino acids with a molecular mass of 48,113 Da. Minicell...

  17. Flow Cytometry-Assisted Cloning of Specific Sequence Motifs from Complex 16S rRNA Gene Libraries

    DEFF Research Database (Denmark)

    Nielsen, Jeppe Lund; Schramm, Andreas; Bernhard, Anne E.

    2004-01-01

    for Systems Biology,3 Seattle, Washington, and Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany2 A flow cytometry method was developed for rapid screening and recovery of cloned DNA containing common sequence motifs. This approach, termed fluorescence-activated cell sorting......  FLOW CYTOMETRY-ASSISTED CLONING OF SPECIFIC SEQUENCE MOTIFS FROM COMPLEX 16S RRNA GENE LIBRARIES Jeppe L. Nielsen,1 Andreas Schramm,1,2 Anne E. Bernhard,1 Gerrit J. van den Engh,3 and David A. Stahl1* Department of Civil and Environmental Engineering, University of Washington,1 and Institute......-assisted cloning, was used to recover sequences affiliated with a unique lineage within the Bacteroidetes not abundant in a clone library of environmental 16S rRNA genes.  ...

  18. Cloning and Characterization of upp, a Gene Encoding Uracil Phosphoribosyltransferase from Lactococcus lactis

    DEFF Research Database (Denmark)

    Martinussen, Jan; Hammer, Karin

    1994-01-01

    Uracil phosphoribosyltransferase catalyzes the key reaction in the salvage of uracil in many microorganisms. The gene encoding uracil phosphoribosyltransferase (upp) was cloned from Lactococcus lactis subsp. cremoris MG1363 by complementation of an Escherichia coli mutant. The gene was sequenced...

  19. Identification of the propionicin F bacteriocin immunity gene (pcfI) and development of a food-grade cloning system for Propionibacterium freudenreichii.

    Science.gov (United States)

    Brede, Dag Anders; Lothe, Sheba; Salehian, Zhian; Faye, Therese; Nes, Ingolf F

    2007-12-01

    This report describes the first functional analysis of a bacteriocin immunity gene from Propionibacterium freudenreichii and its use as a selection marker for food-grade cloning. Cloning of the pcfI gene (previously orf5 [located as part of the pcfABC propionicin F operon]) rendered the sensitive host 1,000-fold more tolerant to the propionicin F bacteriocin. The physiochemical properties of the 127-residue large PcfI protein resemble those of membrane-bound immunity proteins from bacteriocin systems found in lactic acid bacteria. The high level of immunity conferred by pcfI allowed its use as a selection marker for plasmid transformation in P. freudenreichii. Electroporation of P. freudenreichii IFO12426 by use of the pcfI expression plasmid pSL102 and propionicin F selection (200 bacteriocin units/ml) yielded 10(7) transformants/microg DNA. The 2.7-kb P. freudenreichii food-grade cloning vector pSL104 consists of the pLME108 replicon, a multiple cloning site, and pcfI expressed from the constitutive P(pampS) promoter for selection. The pSL104 vector efficiently facilitated cloning of the propionicin T1 bacteriocin in P. freudenreichii. High-level propionicin T1 production (640 BU/ml) was obtained with the IFO12426 strain, and the food-grade propionicin T1 expression plasmid pSL106 was maintained by approximately 91% of the cells over 25 generations in the absence of selection. To the best of our knowledge this is the first report of an efficient cloning system that facilitates the generation of food-grade recombinant P. freudenreichii strains.

  20. Cloning, sequencing and expression of a xylanase gene from the maize pathogen Helminthosporium turcicum

    DEFF Research Database (Denmark)

    Degefu, Y.; Paulin, L.; Lübeck, Peter Stephensen

    2001-01-01

    A gene encoding an endoxylanase from the phytopathogenic fungus Helminthosporium turcicum Pass. was cloned and sequenced. The entire nucleotide sequence of a 1991 bp genomic fragment containing an endoxylanase gene was determined. The xylanase gene of 795 bp, interrupted by two introns of 52 and ...

  1. Chitinase determinants of Vibrio vulnificus: gene cloning and applications of a chitinase probe

    International Nuclear Information System (INIS)

    Wortman, A.T.; Somerville, C.C.; Colwell, R.R.

    1986-01-01

    To initiate study of the genetic control of chitinolytic activity in vibrios, the chitobiase gene was isolated by cloning chromosomal DNA prepared from Vibrio vulnificus. Chimeric plasmids were constructed from Sau3A I partial digests of chromosomal DNA by ligating 5 to 15-kilobase fragments into the BamHI site, i.e., in the Tc/sup r/ gene, of pBR322 (Am/sup r/Tc/sup r/). The resulting plasmids were transformed into Escherichia coli DH1. Chitobiase activity of the insert-bearing clones was detected by using a chromogenic substrate, p-nitrophenyl-N-acetyl-β,D-glucosaminide, and confirmed by the appearance of a fluorescent end product from the hydrolysis of 4-methylumbelliferyl-β,D-N-N'-diacetylchitiobiose. Endochitinase activity was demonstrated by liberation of water-soluble products produced by the degradation of [ 3 H]chitin. Transformation of E. coli Y10R (lacY) with plasmids from chitinase-positive clones restored the lactose-positive phenotype, suggesting the presence of a permease associated with chitinase activity. Physical mapping of plasmids containing the chitinase determinants indicate that transcription of these genes in E. coli may be initiated at a V. vulnificus promoter

  2. Apoptosis Gene Hunting Using Retroviral Expression Cloning: Identification of Vacuolar ATPase Subunit E

    Directory of Open Access Journals (Sweden)

    Claire L. Anderson

    2003-01-01

    Full Text Available Over the past 10-15 years there has been an explosion of interest in apoptosis. The delayed realisation that cell death is an essential part of life for any multicellular organism has meant that, despite the recent and rapid developments of the last decade, the precise biochemical pathways involved in apoptosis remain incomplete and potentially novel genes may, as yet, remain undiscovered. The hunt is therefore on to bridge the remaining gaps in our knowledge. Our contribution to this research effort utilises a functional cloning approach to isolate important regulatory genes involved in apoptosis. This mini-review focuses on the use and advantages of a retroviral expression cloning strategy and describes the isolation and identification of one such potential apoptosis regulatory gene, namely that encoding vacuolar ATPase subunit E.

  3. Efficient four fragment cloning for the construction of vectors for targeted gene replacement in filamentous fungi

    DEFF Research Database (Denmark)

    Frandsen, Rasmus John Normand; Andersson, Jens A.; Kristensen, Matilde Bylov

    2008-01-01

    Background: The rapid increase in whole genome fungal sequence information allows large scale functional analyses of target genes. Efficient transformation methods to obtain site-directed gene replacement, targeted over-expression by promoter replacement, in-frame epitope tagging or fusion...... of coding sequences with fluorescent markers such as GFP are essential for this process. Construction of vectors for these experiments depends on the directional cloning of two homologous recombination sequences on each side of a selection marker gene. Results: Here, we present a USER Friendly cloning based...

  4. Cloning and expression analysis of two dehydrodolichyl diphosphate synthase genes from Tripterygium wilfordii

    Directory of Open Access Journals (Sweden)

    Lin-Hui Gao

    2018-01-01

    Full Text Available Objective: To clone and investigate two dehydrodolichyl diphosphate synthase genes of Tripterygium wilfordii by bioinformatics and tissue expression analysis. Materials and Methods: According to the T. wifordii transcriptome database, specific primers were designed to clone the TwDHDDS1 and TwDHDDS2 genes via PCR. Based on the cloned sequences, protein structure prediction, multiple sequence alignment and phylogenetic tree construction were performed. The expression levels of the genes in different tissues of T. wilfordii were measured by real-time quantitative PCR. Results: The TwDHDDS1 gene encompassed a 873 bp open reading frame (ORF and encoded a protein of 290 amino acids. The calculated molecular weight of the translated protein was about 33.46 kDa, and the theoretical isoelectric point (pI was 8.67. The TwDHDDS2 encompassed a 768 bp ORF, encoding a protein of 255 amino acids with a calculated molecular weight of about 21.19 kDa, and a theoretical isoelectric point (pI of 7.72. Plant tissue expression analysis indicated that TwDHDDS1 and TwDHDDS2 both have relatively ubiquitous expression in all sampled organ tissues, but showed the highest transcription levels in the stems. Conclusions: The results of this study provide a basis for further functional studies of TwDHDDS1 and TwDHDDS2. Most importantly, these genes are promising genetic targets for the regulation of the biosynthetic pathways of important bioactive terpenoids such as triptolide.

  5. Cloning and identification of the gene coding for the 140-kd subunit of Drosophila RNA polymerase II

    OpenAIRE

    Faust, Daniela M.; Renkawitz-Pohl, Renate; Falkenburg, Dieter; Gasch, Alexander; Bialojan, Siegfried; Young, Richard A.; Bautz, Ekkehard K. F.

    1986-01-01

    Genomic clones of Drosophila melanogaster were isolated from a λ library by cross-hybridization with the yeast gene coding for the 150-kd subunit of RNA polymerase II. Clones containing a region of ∼2.0 kb with strong homology to the yeast gene were shown to code for a 3.9-kb poly(A)+-RNA. Part of the coding region was cloned into an expression vector. A fusion protein was obtained which reacted with an antibody directed against RNA polymerase II of Drosophila. Peptide mapping of the fusion p...

  6. Hybrid sequencing approach applied to human fecal metagenomic clone libraries revealed clones with potential biotechnological applications.

    Science.gov (United States)

    Džunková, Mária; D'Auria, Giuseppe; Pérez-Villarroya, David; Moya, Andrés

    2012-01-01

    Natural environments represent an incredible source of microbial genetic diversity. Discovery of novel biomolecules involves biotechnological methods that often require the design and implementation of biochemical assays to screen clone libraries. However, when an assay is applied to thousands of clones, one may eventually end up with very few positive clones which, in most of the cases, have to be "domesticated" for downstream characterization and application, and this makes screening both laborious and expensive. The negative clones, which are not considered by the selected assay, may also have biotechnological potential; however, unfortunately they would remain unexplored. Knowledge of the clone sequences provides important clues about potential biotechnological application of the clones in the library; however, the sequencing of clones one-by-one would be very time-consuming and expensive. In this study, we characterized the first metagenomic clone library from the feces of a healthy human volunteer, using a method based on 454 pyrosequencing coupled with a clone-by-clone Sanger end-sequencing. Instead of whole individual clone sequencing, we sequenced 358 clones in a pool. The medium-large insert (7-15 kb) cloning strategy allowed us to assemble these clones correctly, and to assign the clone ends to maintain the link between the position of a living clone in the library and the annotated contig from the 454 assembly. Finally, we found several open reading frames (ORFs) with previously described potential medical application. The proposed approach allows planning ad-hoc biochemical assays for the clones of interest, and the appropriate sub-cloning strategy for gene expression in suitable vectors/hosts.

  7. Microarray analysis identifies a common set of cellular genes modulated by different HCV replicon clones

    Directory of Open Access Journals (Sweden)

    Gerosolimo Germano

    2008-06-01

    Full Text Available Abstract Background Hepatitis C virus (HCV RNA synthesis and protein expression affect cell homeostasis by modulation of gene expression. The impact of HCV replication on global cell transcription has not been fully evaluated. Thus, we analysed the expression profiles of different clones of human hepatoma-derived Huh-7 cells carrying a self-replicating HCV RNA which express all viral proteins (HCV replicon system. Results First, we compared the expression profile of HCV replicon clone 21-5 with both the Huh-7 parental cells and the 21-5 cured (21-5c cells. In these latter, the HCV RNA has been eliminated by IFN-α treatment. To confirm data, we also analyzed microarray results from both the 21-5 and two other HCV replicon clones, 22-6 and 21-7, compared to the Huh-7 cells. The study was carried out by using the Applied Biosystems (AB Human Genome Survey Microarray v1.0 which provides 31,700 probes that correspond to 27,868 human genes. Microarray analysis revealed a specific transcriptional program induced by HCV in replicon cells respect to both IFN-α-cured and Huh-7 cells. From the original datasets of differentially expressed genes, we selected by Venn diagrams a final list of 38 genes modulated by HCV in all clones. Most of the 38 genes have never been described before and showed high fold-change associated with significant p-value, strongly supporting data reliability. Classification of the 38 genes by Panther System identified functional categories that were significantly enriched in this gene set, such as histones and ribosomal proteins as well as extracellular matrix and intracellular protein traffic. The dataset also included new genes involved in lipid metabolism, extracellular matrix and cytoskeletal network, which may be critical for HCV replication and pathogenesis. Conclusion Our data provide a comprehensive analysis of alterations in gene expression induced by HCV replication and reveal modulation of new genes potentially useful

  8. Molecular cloning of L-methylmalonyl-CoA mutase: Gene transfer and analysis of mut cell lines

    International Nuclear Information System (INIS)

    Ledley, F.D.; Lumetta, M.; Nguyen, P.N.; Kolhouse, J.F.; Allen, R.H.

    1988-01-01

    L-Methylmalonyl-CoA mutase (MCM, EC 5.4.99.2) is a mitochondrial adenosylcobalamin-requiring enzyme that catalyzes the isomerization of L-methylmalonyl-CoA to succinyl-CoA. This enzyme is deficient in methylmalonic acidemia, an often fatal disorder of organic acid metabolism. Antibody against human placental MCM was used to screen human placenta and liver cDNA expression libraries for MCM cDNA clones. One clone expressed epitopes that could affinity-purify antibodies against MCM. A cDNA corresponding in length to the mRNA was obtained and introduced into COS cells by DNA-mediated gene transfer. Cells transformed with this clone expressed increased levels of MCM enzymatic activity. RNA blot analysis of cells genetically deficient in MCM indicates that several deficient cell lines have a specific decrease in the amount of hybridizable mRNA. These data confirm the authenticity of the MCM cDNA clone, establish the feasibility of constituting MCM activity by gene transfer for biochemical analysis and gene therapy, and provide a preliminary picture of the genotypic spectrum underlying MCM deficiency

  9. PCR cloning of Polyhydroxybutyrate Synthase Gene (phbC) from Aeromonashydrophila

    International Nuclear Information System (INIS)

    Enan, M. R.; Bashandy, S.A.

    2006-01-01

    Plastic wastes are considered to be severe environmental contaminantscausing waste disposal problems. Widespread use of biodegradable plastics isone of the solutions, but it is limited by high production cost. A polymerasechain reaction (PCR) protocol was developed for the specific for the specificdetection and isolation of full-length gene coding for polyhydroxybutyrate(PBH). (PCR) strategy using (PHB) primers resulted in the amplification of(DNA) fragments with the expected size from all isolated bacteria (PBH)synthase gene was cloned directly from Aeromonas hydrophila genome for thefirst time. The clonec fragment was named (phbCAh) gene exhibits similarly to(PHB) synthase genes of Alcaligenes latus and Pseudomonas oleovorans (97%),Alcaligenes sp. (81%) and Comamonas acidovorans (84%). (author)

  10. Cloning, sequencing and variability analysis of the gap gene from Mycoplasma hominis

    DEFF Research Database (Denmark)

    Mygind, Tina; Jacobsen, Iben Søgaard; Melkova, Renata

    2000-01-01

    The gap gene encodes the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The gene was cloned and sequenced from the Mycoplasma hominis type strain PG21(T). The intraspecies variability was investigated by inspection of restriction fragment length polymorphism (RFLP) patterns...... after polymerase chain reaction (PCR) amplification of the gap gene from 15 strains and furthermore by sequencing of part of the gene in eight strains. The M. hominis gap gene was found to vary more than the Escherichia coli counterpart, but the variation at nucleotide level gave rise to only a few...

  11. Cloning and chromosomal localization of the three human syntrophin genes

    Energy Technology Data Exchange (ETDEWEB)

    Feener, C.A.; Anderson, M.D.S.; Selig, S. [Children`s Hospital, Boston, MA (United States)] [and others

    1994-09-01

    Dystrophin, the protein product the Duchenne muscular dystrophy locus, is normally found to be associated with a complex of proteins. Among these dystrophin-associated proteins are the syntrophins, a group of 59 kDa membrane-associated proteins. When the syntrophins are purified based upon their association with dystrophin, they have been shown previously to form two distinct groups, the acidic ({alpha}) and basic ({beta}) forms. Based on peptide and rodent cDNA sequences, three separate syntrophin genes have been cloned and characterized from human tissues. The predicted amino acid sequences from these cDNA reveal that these proteins are related but are distinct with respect to charge, as predicted from their biochemistry. The family consists of one acidic ({alpha}-syntrophin, analogous to mouse syntrophin-1) and two basic ({beta}{sub 1}-syntrophin; and {beta}{sub 2}-syntrophin, analogous to mouse syntrophin-2) genes. Each of the three genes are widely expressed in a variety of human tissues, but the relative abundance of the three are unique with respect to each other. {alpha}-syntrophin is expressed primarily in skeletal muscle and heart as a single transcript. {beta}{sub 1}-syntrophin is expressed widely in up to five distinct transcript sizes, and is most abundant in brain. The human chromosomal locations of the three syntrophins are currently being mapped. {beta}{sub 1}-syntrophin maps to chromosome 8q23-24 and {beta}{sub 2}-syntrophin to chromosome 16. The {alpha}-syntrophin gene will be mapped accordingly. Although all three genes are candidates for neuromuscular diseases, the predominant expression of {alpha}-syntrophin in skeletal muscle and heart makes it a strong candidate to be involved in a neuromuscular disease.

  12. Cloning and expression of cell wall acid invertase gene fragment ...

    African Journals Online (AJOL)

    A fragment of invertase gene containing catalytic sites of cysteine was cloned from poinsettia (Euphorbia pulcherrima wild.) by using the polymerase chain reaction (PCR) method. The length of the fragment was 521 bp, encoding 173 amino acids and containing a part of open reading frames, but no intron. It had a high ...

  13. Molecular cloning and characterization of genes required for nucleotide excision repair in yeast

    International Nuclear Information System (INIS)

    Friedberg, E.C.

    1987-01-01

    Nucleotide excision repair in the yeast S. cerevisiae is a complex process which involves a large number of genes. At least five of these genes (RAD1, RAD2, RAD3, RAD4 and RAD10) are absolutely required for this process and mutations in any of these genes result in no detectable excision repair in vivo. In order to understand the function of these genes in DNA repair, the authors isolated a number of them by screening a yeast genomic library for recombinant plasmids which complement the phentoype of sensitivity to ultraviolet (UV) radiation imparted to mutant strains. A plasmid containing the RAD4 gene was isolated by an alternative strategy which will be discussed. The cloned genes have been extensively characterized. It has been determined that the RAD3 gene is essential for the viability of haploid yeast cells in the absence of DNA damage. The RAD2 gene is inducible by treatment of cells with a variety of DNA-damaging agents, including UV radiation and ionizing radiation. The RAD10 gene shares considerable amino acid sequence homology with a cloned gene involved in nucleotide excision repair in human cells. Yeast is a particularly versatile organism for studying gene function by molecular and genetic approaches and emphasis is placed on many of the techniques used in the present studies

  14. Phosphoribosylpyrophosphate synthetase of Bacillus subtilis. Cloning, characterization and chromosomal mapping of the prs gene

    DEFF Research Database (Denmark)

    Nilsson, Dan; Hove-Jensen, Bjarne

    1987-01-01

    The gene (prs) encoding phosphoribosylpyrophosphate (PRPP) synthetase has been cloned from a library of Bacillus subtilis DNA by complementation of an Escherichia coli prs mutation. Flanking DNA sequences were pruned away by restriction endonuclease and exonuclease BAL 31 digestions, resulting...... in a DNA fragment of approx. 1.8 kb complementing the E. coli prs mutation. Minicell experiments revealed that this DNA fragment coded for a polypeptide, shown to be the PRPP synthetase subunit, with an Mr of approx. 40,000. B. subtilis strains harbouring the prs gene in a multicopy plasmid contained up...... to nine-fold increased PRPP synthetase activity. The prs gene was cloned in an integration vector and the resulting hybrid plasmid inserted into the B. subtilis chromosome by homologous recombination. The integration site was mapped by transduction and the gene order established as purA-guaA-prs-cysA....

  15. Molecular cloning and expression of Corynebacterium glutamicum genes for amino acid synthesis in Escherichia coli cells

    International Nuclear Information System (INIS)

    Beskrovnaya, O.Yu.; Fonshtein, M.Yu.; Kolibaba, L.G.; Yankovskii, N.K.; Debabov, V.G.

    1989-01-01

    Molecular cloning of Corynebacterium glutamicum genes for threonine and lysine synthesis has been done in Escherichia coli cells. The clonal library of EcoRI fragments of chromosomal DNA of C. glutamicum was constructed on the plasmid vector λpSL5. The genes for threonine and lysine synthesis were identified by complementation of E. coli mutations in thrB and lysA genes, respectively. Recombinant plasmids, isolated from independent ThrB + clone have a common 4.1-kb long EcoRI DNA fragment. Hybrid plasmids isolated from LysA + transductants of E. coli have common 2.2 and 3.3 kb long EcoRI fragments of C. glutamicum DNA. The hybrid plasmids consistently transduced the markers thrB + and lysA + . The Southern hybridization analysis showed that the cloned DNA fragments hybridized with the fragments of identical length in C. glutamicum chromosomes

  16. Cloning of affecting pyruvate decarboxylase gene in the production bioethanol of agricultural waste in the E.coli bacteria

    Directory of Open Access Journals (Sweden)

    Masome Zeinali

    2016-09-01

    Full Text Available Introduction: Ethanol made by a biomass is one of the useful strategies in terms of economic and environmental and as a clean and safe energy to replace fossil fuels considered and examined. Materials and methods: In this study, key enzyme in the production of ethanol (Pyruvate decarboxylase from Zymomonas mobilis bacteria was isolated and cloned at E. coli bacteria by freeze and thaw method. For gene cloning, we used specific primers of pdc and PCR reaction and then pdc gene isolated and pET 28a plasmid double digested with (Sal I and Xho I enzymes. Digestion Products were ligated by T4 DNA ligase in 16 °C for 16 hours. Results: Results of bacteria culture showed that a few colonies containing pET 28a plasmid could grow. Result of colony pcr of pdc gene with specific primers revealed 1700 bp bands in 1% agarose gel electrophoresis. The results of PCR with T7 promotor forward primer and pdc revers primer have proved the accurate direction of integration of pdc gene into plasmid and revealed 1885 bp band. Double digestion of recombinant plasmid with SalI and XhoI enzymes revealed same bands. Finally, RT showed the expected band of 1700 bp that implies the desired gene expression in the samples. Discussion and conclusion: Due to the increased production of ethanol via pyruvate decarboxylase gene cloning in expression plasmids with a strong promoter upstream of the cloning site can conclude that, pyruvate decarboxylase cloning as a key gene would be useful and according to beneficial properties of E. coli bacteria, transfering the gene to bacteria appears to be reasonable.

  17. Somatic cell nuclear transfer cloning: practical applications and current legislation.

    Science.gov (United States)

    Niemann, H; Lucas-Hahn, A

    2012-08-01

    Somatic cloning is emerging as a new biotechnology by which the opportunities arising from the advances in molecular genetics and genome analysis can be implemented in animal breeding. Significant improvements have been made in SCNT protocols in the past years which now allow to embarking on practical applications. The main areas of application of SCNT are: Reproductive cloning, therapeutic cloning and basic research. A great application potential of SCNT based cloning is the production of genetically modified (transgenic) animals. Somatic cell nuclear transfer based transgenic animal production has significant advances over the previously employed microinjection of foreign DNA into pronuclei of zygotes. This cell based transgenesis is compatible with gene targeting and allows both, the addition of a specific gene and the deletion of an endogenous gene. Efficient transgenic animal production provides numerous opportunities for agriculture and biomedicine. Regulatory agencies around the world have agreed that food derived from cloned animals and their offspring is safe and there is no scientific basis for questioning this. Commercial application of somatic cloning within the EU is via the Novel Food regulation EC No. 258/97. Somatic cloning raises novel questions regarding the ethical and moral status of animals and their welfare which has prompted a controversial discussion in Europe which has not yet been resolved. © 2012 Blackwell Verlag GmbH.

  18. Molecular cloning and biological characterization of the human excision repair gene ERCC-3

    International Nuclear Information System (INIS)

    Weeda, G.; van Ham, R.C.; Masurel, R.; Westerveld, A.; Odijk, H.; de Wit, J.; Bootsma, D.; van der Eb, A.J.; Hoeijmakers, J.H.

    1990-01-01

    In this report we present the cloning, partial characterization, and preliminary studies of the biological activity of a human gene, designated ERCC-3, involved in early steps of the nucleotide excision repair pathway. The gene was cloned after genomic DNA transfection of human (HeLa) chromosomal DNA together with dominant marker pSV3gptH to the UV-sensitive, incision-defective Chinese hamster ovary (CHO) mutant 27-1. This mutant belongs to complementation group 3 of repair-deficient rodent mutants. After selection of UV-resistant primary and secondary 27-1 transformants, human sequences associated with the induced UV resistance were rescued in cosmids from the DNA of a secondary transformant by using a linked dominant marker copy and human repetitive DNA as probes. From coinheritance analysis of the ERCC-3 region in independent transformants, we deduce that the gene has a size of 35 to 45 kilobases, of which one essential segment has so far been refractory to cloning. Conserved unique human sequences hybridizing to a 3.0-kilobase mRNA were used to isolate apparently full-length cDNA clones. Upon transfection to 27-1 cells, the ERCC-3 cDNA, inserted in a mammalian expression vector, induced specific and (virtually) complete correction of the UV sensitivity and unscheduled DNA synthesis of mutants of complementation group 3 with very high efficiency. Mutant 27-1 is, unlike other mutants of complementation group 3, also very sensitive toward small alkylating agents. This unique property of the mutant is not corrected by introduction of the ERCC-3 cDNA, indicating that it may be caused by an independent second mutation in another repair function. By hybridization to DNA of a human x rodent hybrid cell panel, the ERCC-3 gene was assigned to chromosome 2, in agreement with data based on cell fusion

  19. Discovery of Functional Toxin/Antitoxin Systems in Bacteria by Shotgun Cloning

    Energy Technology Data Exchange (ETDEWEB)

    Sberro, Hila; Leavitt, Azita; Kiro, Ruth; Koh, Eugene; Peleg, Yoav; Qimron, Udi; Sorek, Rotem

    2013-04-01

    Toxin-antitoxin (TA) modules, composed of a toxic protein and a counteracting antitoxin, play important roles in bacterial physiology. We examined the experimental insertion of 1.5 million genes from 388 microbial genomes into an Escherichia coli host using over 8.5 million random clones. This revealed hundreds of genes (toxins) that could only be cloned when the neighboring gene (antitoxin) was present on the same clone. Clustering of these genes revealed TA families widespread in bacterial genomes, some of which deviate from the classical characteristics previously described for such modules. Introduction of these genes into E. coli validated that the toxin toxicity is mitigated by the antitoxin. Infection experiments with T7 phage showed that two of the new modules can provide resistance against phage. Moreover, our experiments revealed an 'anti-defense' protein in phage T7 that neutralizes phage resistance. Our results expose active fronts in the arms race between bacteria and phage.

  20. Potential complications when developing gene deletion clones in Xylella fastidiosa.

    Science.gov (United States)

    Johnson, Kameka L; Cursino, Luciana; Athinuwat, Dusit; Burr, Thomas J; Mowery, Patricia

    2015-04-16

    The Gram-negative xylem-limited bacterium, Xylella fastidiosa, is an important plant pathogen that infects a number of high value crops. The Temecula 1 strain infects grapevines and induces Pierce's disease, which causes symptoms such as scorching on leaves, cluster collapse, and eventual plant death. In order to understand the pathogenesis of X. fastidiosa, researchers routinely perform gene deletion studies and select mutants via antibiotic markers. Site-directed pilJ mutant of X. fastidiosa were generated and selected on antibiotic media. Mutant cultures were assessed by PCR to determine if they were composed of purely transformant cells or included mixtures of non-transformants cells. Then pure pilJ mutant and wildtype cells were mixed in PD2 medium and following incubation and exposure to kanamycin were assessed by PCR for presence of mutant and wildtype populations. We have discovered that when creating clones of targeted mutants of X. fastidiosa Temecula 1 with selection on antibiotic plates, X. fastidiosa lacking the gene deletion often persist in association with targeted mutant cells. We believe this phenomenon is due to spontaneous antibiotic resistance and/or X. fastidiosa characteristically forming aggregates that can be comprised of transformed and non-transformed cells. A combined population was confirmed by PCR, which showed that targeted mutant clones were mixed with non-transformed cells. After repeated transfer and storage the non-transformed cells became the dominant clone present. We have discovered that special precautions are warranted when developing a targeted gene mutation in X. fastidiosa because colonies that arise following transformation and selection are often comprised of transformed and non-transformed cells. Following transfer and storage the cells can consist primarily of the non-transformed strain. As a result, careful monitoring of targeted mutant strains must be performed to avoid mixed populations and confounding results.

  1. Cloning and expression of Icc1 Laccase gene promoter in Aspergillus niger

    International Nuclear Information System (INIS)

    Marqueda-Galvez, A. P.; Loera Carrol, O.; Xaconostle cazares, B.; Tellez-Jurado, A.; Arana-Cuenca, A.

    2009-01-01

    The white rot fungus Trametes sp. I-62 is a strain with laccase activity and a great potential for biotechnological applications given its ability to detoxify distillery effluents. The Icc1, Icc2 and Icc3 laccase genes of this basidiomycetes have been cloned and sequenced. The promoter region of Icc1 laccase gene contains a putative site for xenobiotics (XRE). (Author)

  2. Cloning and expression of Icc1 Laccase gene promoter in Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Marqueda-Galvez, A. P.; Loera Carrol, O.; Xaconostle cazares, B.; Tellez-Jurado, A.; Arana-Cuenca, A.

    2009-07-01

    The white rot fungus Trametes sp. I-62 is a strain with laccase activity and a great potential for biotechnological applications given its ability to detoxify distillery effluents. The Icc1, Icc2 and Icc3 laccase genes of this basidiomycetes have been cloned and sequenced. The promoter region of Icc1 kaccase gene contains a putative site for xenobiotics (XRE). (Author)

  3. Hybrid sequencing approach applied to human fecal metagenomic clone libraries revealed clones with potential biotechnological applications.

    Directory of Open Access Journals (Sweden)

    Mária Džunková

    Full Text Available Natural environments represent an incredible source of microbial genetic diversity. Discovery of novel biomolecules involves biotechnological methods that often require the design and implementation of biochemical assays to screen clone libraries. However, when an assay is applied to thousands of clones, one may eventually end up with very few positive clones which, in most of the cases, have to be "domesticated" for downstream characterization and application, and this makes screening both laborious and expensive. The negative clones, which are not considered by the selected assay, may also have biotechnological potential; however, unfortunately they would remain unexplored. Knowledge of the clone sequences provides important clues about potential biotechnological application of the clones in the library; however, the sequencing of clones one-by-one would be very time-consuming and expensive. In this study, we characterized the first metagenomic clone library from the feces of a healthy human volunteer, using a method based on 454 pyrosequencing coupled with a clone-by-clone Sanger end-sequencing. Instead of whole individual clone sequencing, we sequenced 358 clones in a pool. The medium-large insert (7-15 kb cloning strategy allowed us to assemble these clones correctly, and to assign the clone ends to maintain the link between the position of a living clone in the library and the annotated contig from the 454 assembly. Finally, we found several open reading frames (ORFs with previously described potential medical application. The proposed approach allows planning ad-hoc biochemical assays for the clones of interest, and the appropriate sub-cloning strategy for gene expression in suitable vectors/hosts.

  4. cDNA cloning and transcriptional controlling of a novel low dose radiation-induced gene and its function analysis

    International Nuclear Information System (INIS)

    Zhou Pingkun; Sui Jianli

    2002-01-01

    Objective: To clone a novel low dose radiation-induced gene (LRIGx) and study its function as well as its transcriptional changes after irradiation. Methods: Its cDNA was obtained by DDRT-PCR and RACE techniques. Northern blot hybridization was used to investigate the gene transcription. Bioinformatics was employed to analysis structure and function of this gene. Results: LRIGx cDNA was cloned. The sequence of LRIGx was identical to a DNA clone located in human chromosome 20 q 11.2-12 Bioinformatics analysis predicted an encoded protein with a conserved helicase domain. Northern analysis revealed a ∼8.5 kb transcript which was induced after 0.2 Gy as well as 0.02 Gy irradiation, and the transcript level was increased 5 times at 4 h after 0.2 Gy irradiation. The induced level of LRIGx transcript by 2.0 Gy high dose was lower than by 0.2 Gy. Conclusion: A novel low dose radiation-induced gene has been cloned. It encodes a protein with a conserved helicase domain that could involve in DNA metabolism in the cellular process of radiation response

  5. Molecular Cloning and Expression of a Novel Gene Related to ...

    African Journals Online (AJOL)

    A new legume lectin gene, designated as SmL1, was cloned from Salvia miltiorrhiza Bunge, a famous traditional Chinese medicinal plant. The cDNA of SmL1 was 919 bp in length and contained an 822 bp open reading frame (ORF) encoding a putative lectin precursor with two legume lectin domains. The deduced SML1 ...

  6. Cloned Bacillus subtilis alkaline protease (aprA) gene showing high level of keratinolytic activity.

    Science.gov (United States)

    Zaghloul, T I

    1998-01-01

    The Bacillus subtilis alkaline protease(aprA) gene was previously cloned on a pUBHO-derivative plasmid. High levels of expression and gene stability were demonstrated when B. subtilis cells were grown on the laboratory medium 2XSG. B. subtilis cells harboring the multicopy aprA gene were grown on basal medium, supplemented with 1 % chicken feather as a source of energy, carbon, and nitrogen. Proteolytic and keratinolytic activities were monitored throughout the cultivation time. A high level of keratinolytic activity was obtained, and this indicates that alkaline protease is acting as a keratinase. Furthermore, considerable amounts of soluble proteins and free amino acids were obtained as a result of the enzymatic hydrolysis of feather. Biodegradation of feather waste using these cells represents an alternative way to improve the nutritional value of feather, since feather waste is currently utilized on a limited basis as a dietary protein supplement for animal feedstuffs. Moreover, the release of free amino acids from feather and the secreted keratinase enzyme would promote industries based on feather waste.

  7. Analysis of nuclear reprogramming in cloned miniature pig embryos by expression of Oct-4 and Oct-4 related genes

    International Nuclear Information System (INIS)

    Lee, Eugine; Lee, So Hyun; Kim, Sue

    2006-01-01

    Xenotransplantation is a rapidly expanding field of research and cloned miniature pigs have been considered as a model animal for it. However, the efficiency of somatic cell nuclear transfer (SCNT) is extremely low, with most clones resulting in early lethality and several kinds of aberrant development. A possible explanation for the developmental failure of SCNT embryos is insufficient reprogramming of the somatic cell nucleus by the oocyte. In order to test this, we analyzed the reprogramming capacity of differentiated fibroblast cell nuclei and embryonic germ cell nuclei with Oct-4 and Oct-4 related genes (Ndp5211, Dppa2, Dppa3, and Dppa5), which are important for embryonic development, Hand1 and GATA-4, which are important for placental development, as molecular markers using RT-PCR. The Oct-4 expression level was significantly lower (P < 0.05) in cloned hatched blastocysts derived from fibroblasts and many of fibroblast-derived clones failed to reactivate at least one of the tested genes, while most of the germ cell clones and control embryos correctly expressed these genes. In conclusion, our results suggest that the reprogramming of fibroblast-derived cloned embryos is highly aberrant and this improper reprogramming could be one reason of the early lethality and post-implantation anomalies of somatic cell-derived clones

  8. Changes in the Composition of Drinking Water Bacterial Clone Libraries Introduced by Using Two Different 16S rRNA Gene PCR Primers

    Science.gov (United States)

    Sequence analysis of 16S rRNA gene clone libraries is a popular tool used to describe the composition of natural microbial communities. Commonly, clone libraries are developed by direct cloning of 16S rRNA gene PCR products. Different primers are often employed in the initial amp...

  9. Cloning and identification of novel hydrolase genes from a dairy cow rumen metagenomic library and characterization of a cellulase gene

    Directory of Open Access Journals (Sweden)

    Gong Xia

    2012-10-01

    Full Text Available Abstract Background Interest in cellulose degrading enzymes has increased in recent years due to the expansion of the cellulosic biofuel industry. The rumen is a highly adapted environment for the degradation of cellulose and a promising source of enzymes for industrial use. To identify cellulase enzymes that may be of such use we have undertaken a functional metagenomic screen to identify cellulase enzymes from the bacterial community in the rumen of a grass-hay fed dairy cow. Results Twenty five clones specifying cellulose activity were identified. Subcloning and sequence analysis of a subset of these hydrolase-positive clones identified 10 endoglucanase genes. Preliminary characterization of the encoded cellulases was carried out using crude extracts of each of the subclones. Zymogram analysis using carboxymethylcellulose as a substrate showed a single positive band for each subclone, confirming that only one functional cellulase gene was present in each. One cellulase gene, designated Cel14b22, was expressed at a high level in Escherichia coli and purified for further characterization. The purified recombinant enzyme showed optimal activity at pH 6.0 and 50°C. It was stable over a broad pH range, from pH 4.0 to 10.0. The activity was significantly enhanced by Mn2+ and dramatically reduced by Fe3+ or Cu2+. The enzyme hydrolyzed a wide range of beta-1,3-, and beta-1,4-linked polysaccharides, with varying activities. Activities toward microcrystalline cellulose and filter paper were relatively high, while the highest activity was toward Oat Gum. Conclusion The present study shows that a functional metagenomic approach can be used to isolate previously uncharacterized cellulases from the rumen environment.

  10. X-linked gene transcription patterns in female and male in vivo, in vitro and cloned porcine individual blastocysts.

    Directory of Open Access Journals (Sweden)

    Chi-Hun Park

    Full Text Available To determine the presence of sexual dimorphic transcription and how in vitro culture environments influence X-linked gene transcription patterns in preimplantation embryos, we analyzed mRNA expression levels in in vivo-derived, in vitro-fertilized (IVF, and cloned porcine blastocysts. Our results clearly show that sex-biased expression occurred between female and male in vivo blastocysts in X-linked genes. The expression levels of XIST, G6PD, HPRT1, PGK1, and BEX1 were significantly higher in female than in male blastocysts, but ZXDA displayed higher levels in male than in female blastocysts. Although we found aberrant expression patterns for several genes in IVF and cloned blastocysts, similar sex-biased expression patterns (on average were observed between the sexes. The transcript levels of BEX1 and XIST were upregulated and PGK1 was downregulated in both IVF and cloned blastocysts compared with in vivo counterparts. Moreover, a remarkable degree of expression heterogeneity was observed among individual cloned embryos (the level of heterogeneity was similar in both sexes but only a small proportion of female IVF embryos exhibited variability, indicating that this phenomenon may be primarily caused by faulty reprogramming by the somatic cell nuclear transfer (SCNT process rather than in vitro conditions. Aberrant expression patterns in cloned embryos of both sexes were not ameliorated by treatment with Scriptaid as a potent HDACi, although the blastocyst rate increased remarkably after this treatment. Taken together, these results indicate that female and male porcine blastocysts produced in vivo and in vitro transcriptional sexual dimorphisms in the selected X-linked genes and compensation of X-linked gene dosage may not occur at the blastocyst stage. Moreover, altered X-linked gene expression frequently occurred in porcine IVF and cloned embryos, indicating that X-linked gene regulation is susceptible to in vitro culture and the SCNT process

  11. Molecular Cloning and Sequencing of Hemoglobin-Beta Gene of Channel Catfish, Ictalurus Punctatus Rafinesque

    Science.gov (United States)

    : Hemoglobin-y gene of channel catfish , lctalurus punctatus, was cloned and sequenced . Total RNA from head kidneys was isolated, reverse transcribed and amplified . The sequence of the channel catfish hemoglobin-y gene consists of 600 nucleotides . Analysis of the nucleotide sequence reveals one o...

  12. Cloning of skeletal myosin heavy chain gene family from adult pleopod muscle and whole larvae of shrimps.

    Science.gov (United States)

    Koyama, Hiroki; Piyapattanakorn, Sanit; Watabe, Shugo

    2013-06-01

    The physiological and biological properties of skeletal muscle in crustacea have not been well understood compared with those of vertebrates. The present study focused on myosin, the major protein in skeletal muscle, from shrimps. In our previous study, two full-length genes encoding myosin heavy chain (MHC), a large subunit of the myosin molecule, were cloned from abdominal fast skeletal muscle of kuruma Marsupenaeus japonicus, black tiger Penaeus monodon and Pacific white Penaeus vannamei shrimps, and named as MHCa and MHCb. In this study, we renamed these as MHC1 and MHC2, respectively, due to the presence of various isoforms newly identified. Partial MHC sequences were identified from pleopod muscle of these shrimps. Two MHCs, named MHC3 and MHC4, were identified from pleopod muscle of kuruma shrimp, whereas two MHCs, named MHC4 and MHC5, were cloned from Pacific white shrimp pleopod. MHC3 was cloned only from black tiger shrimp pleopod. Partial MHC sequences from zoea, mysis, and postlarvae of black tiger and Pacific white shrimps were also determined. The phylogenetic tree demonstrated that most MHCs from pleopod muscle and larval MHCs formed clades with MHC1 and MHC2, respectively. These MHCs were considered to be of fast type, since MHC1 and MHC2 are fast-type MHCs according to our previous study. MHC5 obtained from pleopod muscle of Pacific white shrimp in this study was monophyletic with American lobster Homarus americanus S2 slow tonic MHC previously reported, indicating that MHC5 from Pacific white shrimp is of slow type. Copyright © 2013 Wiley Periodicals, Inc.

  13. Cloning and expression of Pectobacterium carotovorum endo-polygalacturonase gene in Pichia pastoris for production of oligogalacturonates

    Science.gov (United States)

    A bacterial endo-polygalacturonase (endo-PGase) gene from the plant pathogen Pectobacterium carotovorum was cloned into pGAPZaA vector and constitutively expressed in Pichia pastoris. The recombinant endo-PGase secreted by the Pichia clone showed a 1.7 fold increase when the culture medium included ...

  14. Identification of the Propionicin F Bacteriocin Immunity Gene (pcfI) and Development of a Food-Grade Cloning System for Propionibacterium freudenreichii▿ †

    Science.gov (United States)

    Brede, Dag Anders; Lothe, Sheba; Salehian, Zhian; Faye, Therese; Nes, Ingolf F.

    2007-01-01

    This report describes the first functional analysis of a bacteriocin immunity gene from Propionibacterium freudenreichii and its use as a selection marker for food-grade cloning. Cloning of the pcfI gene (previously orf5 [located as part of the pcfABC propionicin F operon]) rendered the sensitive host 1,000-fold more tolerant to the propionicin F bacteriocin. The physiochemical properties of the 127-residue large PcfI protein resemble those of membrane-bound immunity proteins from bacteriocin systems found in lactic acid bacteria. The high level of immunity conferred by pcfI allowed its use as a selection marker for plasmid transformation in P. freudenreichii. Electroporation of P. freudenreichii IFO12426 by use of the pcfI expression plasmid pSL102 and propionicin F selection (200 bacteriocin units/ml) yielded 107 transformants/μg DNA. The 2.7-kb P. freudenreichii food-grade cloning vector pSL104 consists of the pLME108 replicon, a multiple cloning site, and pcfI expressed from the constitutive PpampS promoter for selection. The pSL104 vector efficiently facilitated cloning of the propionicin T1 bacteriocin in P. freudenreichii. High-level propionicin T1 production (640 BU/ml) was obtained with the IFO12426 strain, and the food-grade propionicin T1 expression plasmid pSL106 was maintained by ∼91% of the cells over 25 generations in the absence of selection. To the best of our knowledge this is the first report of an efficient cloning system that facilitates the generation of food-grade recombinant P. freudenreichii strains. PMID:17933941

  15. Molecular cloning and variation of ω-gliadin genes from a somatic ...

    Indian Academy of Sciences (India)

    repetitive domain, which hampers cloning. Further analysis of ω-gliadins at the DNA level would provide more informa- tion to define the evolution and function of this gene family. (Hassania et al. 2008). ∗For correspondence. E-mail: fanguo2002@sdu.edu.cn. Agropyron elongatum (Host) Nevishi (syn. Thinopyrum ponticum ...

  16. Molecular cloning and characterization of arginine kinase gene of Toxocara canis

    OpenAIRE

    Sahu, Shivani; Samanta, S.; Harish, D. R.; Sudhakar, N. R.; Raina, O. K.; Shantaveer, S. B.; Madhu, D. N.; Kumar, Ashok

    2013-01-01

    Toxocara canis is an important gastrointestinal nematode of dogs and also a causative agent of visceral larva migrans in humans. Arginine kinase (AK) gene is one of the important biomolecule of phosphagen kinase of T. canis which is emerging as an exciting novel diagnostic target in toxocarosis. The present study was carried out to clone and characterize AK gene of T. canis for future utilization as a diagnostic molecule. Total RNA was extracted from intact adult worms and reverse transcripti...

  17. Cloning and analysis of the HMG domains of ten Sox genes from ...

    African Journals Online (AJOL)

    Sox is a large gene family which encodes Sry-related transcription factors and contains a HMG box that is responsible for the sequence-specific DNA binding. In this paper, we obtained ten clones representing HMG box-containing Sox genes (BmSox1a, BmSox1b, BmSox3a, BmSox3b, BmSox3c, BmSox11a, BmSox11b, ...

  18. MOLECULAR GENE CLONING OF NICOTINE-DEHIDROGENASE FROM THE pAO1 MEGAPLASMID OF ARTHROBACTER NICOTINOVORANS

    Directory of Open Access Journals (Sweden)

    Andreea Andrei

    2013-10-01

    Full Text Available 6-hydroxi-L-nicotine (6HNic has an important potential as a drug for neuro-degenerative disorders and a  suitable simple and reliable method for obtaining contaminant-free 6HNic preparations is required. Here, we envision the in-vitro production of 6HNic by using purified nicotine-dehydrogenase (NDH followed by HPLC or capillary electrophoresis techniques and we focus on the isolation and cloning of the three genes coding the NDH enzyme.  A PCR protocol was established for easy amplification and the DNA fragment containing the ndhLSM genes was directionally cloned into the pART2 vector.

  19. Two cloned β thalassemia genes are associated with amber mutations at codon 39

    Science.gov (United States)

    Pergolizzi, Robert; Spritz, Richard A.; Spence, Sally; Goossens, Michel; Kan, Yuet Wai; Bank, Arthur

    1981-01-01

    Two β globin genes from patients with the β+ thalassemia phenotype have been cloned and sequenced. A single nucleotide change from CAG to TAG (an amber mutation) at codon 39 is the only difference from normal in both genes analyzed. The results are consistent with the assumption that both patients are doubly heterozygous for β+ and β° thalassemia, and that we have isolated and analyzed the β° thalassemia gene. Images PMID:6278453

  20. Cloning, Codon Optimization, and Expression of Yersinia intermedia Phytase Gene in E. coli.

    Science.gov (United States)

    Mirzaei, Maryam; Saffar, Behnaz; Shareghi, Behzad

    2016-06-01

    Phytate is an anti-nutritional factor in plants, which catches the most phosphorus contents and some vital minerals. Therefore, Phytase is added mainly as an additive to the monogastric animals' foods to hydrolyze phytate and increase absorption of phosphorus. Y. intermedia phytase is a new phytase with special characteristics such as high specific activity, pH stability, and thermostability. Our aim was to clone, express, and characterizea codon optimized Y. intermedia phytase gene in E. coli . The Y. intermedia phytase gene was optimized according to the codon usage in E. coli . The sequence was synthesized and sub-cloned in pET-22b (+) vector and transformed into E. coli Bl21 (DE3). The protein was expressed in the presence of IPTG at a final concentration of 1 mM at 30°C. The purification of recombinant protein was performed by Ni 2+ affinity chromatography. Phytase activity and stability were determined in various pH and temperatures. The codon optimized Y. intermedia phytase gene was sub-cloned successfully.The expression was confirmed by SDS-PAGE and Western blot analysis. The recombinant enzyme (approximately 45 kDa) was purified. Specific activity of enzyme was 3849 (U.mg -1 ) with optimal pH 5 and optimal temperature of 55°C. Thermostability (80°C for 15 min) and pH stability (3-6) of the enzyme were 56 and more than 80%, respectively. The results of the expression and enzyme characterization revealed that the optimized Y. intermedia phytase gene has a good potential to be produced commercially andto be applied in animals' foodsindustry.

  1. Development of a gene cloning system in a fast-growing and moderately thermophilic Streptomyces species and heterologous expression of Streptomyces antibiotic biosynthetic gene clusters

    Science.gov (United States)

    2011-01-01

    Background Streptomyces species are a major source of antibiotics. They usually grow slowly at their optimal temperature and fermentation of industrial strains in a large scale often takes a long time, consuming more energy and materials than some other bacterial industrial strains (e.g., E. coli and Bacillus). Most thermophilic Streptomyces species grow fast, but no gene cloning systems have been developed in such strains. Results We report here the isolation of 41 fast-growing (about twice the rate of S. coelicolor), moderately thermophilic (growing at both 30°C and 50°C) Streptomyces strains, detection of one linear and three circular plasmids in them, and sequencing of a 6996-bp plasmid, pTSC1, from one of them. pTSC1-derived pCWH1 could replicate in both thermophilic and mesophilic Streptomyces strains. On the other hand, several Streptomyces replicons function in thermophilic Streptomyces species. By examining ten well-sporulating strains, we found two promising cloning hosts, 2C and 4F. A gene cloning system was established by using the two strains. The actinorhodin and anthramycin biosynthetic gene clusters from mesophilic S. coelicolor A3(2) and thermophilic S. refuineus were heterologously expressed in one of the hosts. Conclusions We have developed a gene cloning and expression system in a fast-growing and moderately thermophilic Streptomyces species. Although just a few plasmids and one antibiotic biosynthetic gene cluster from mesophilic Streptomyces were successfully expressed in thermophilic Streptomyces species, we expect that by utilizing thermophilic Streptomyces-specific promoters, more genes and especially antibiotic genes clusters of mesophilic Streptomyces should be heterologously expressed. PMID:22032628

  2. Cloning and characterization of ATP synthase CF1 α gene from ...

    African Journals Online (AJOL)

    ATP synthase CF1 α subunit protein is a key enzyme for energy metabolism in plant kingdom, and plays an important role in multiple cell processes. In this study, the complete atpA gene (accession no. JN247444) was cloned from sweet potato (Ipomoea batatas L. Lam) by reverse transcriptasepolymerase chain reaction ...

  3. Molecular cloning of a novel bioH gene from an environmental metagenome encoding a carboxylesterase with exceptional tolerance to organic solvents

    DEFF Research Database (Denmark)

    Shi, Yuping; Pan, Yingjie; Li, Bailin

    2013-01-01

    with a strong potential in industrial applications. CONCLUSIONS: This study constituted the first investigation of a novel bioHx gene in a biotin biosynthetic gene cluster cloned from an environmental metagenome. The bioHx gene was successfully cloned, expressed and characterized. The results demonstrated...... that BioHx is a novel carboxylesterase, displaying distinct biochemical properties with strong application potential in industry. Our results also provided the evidence for the effectiveness of functional metagenomic approach for identifying novel bioH genes from complex ecosystem.......ABSTRACT: BACKGROUND: BioH is one of the key enzymes to produce the precursor pimeloyl-ACP to initiate biotin biosynthesis de novo in bacteria. To date, very few bioH genes have been characterized. In this study, we cloned and identified a novel bioH gene, bioHx, from an environmental metagenome...

  4. Cloning, sequence analysis, and characterization of the genes involved in isoprimeverose metabolism in Lactobacillus pentosus

    NARCIS (Netherlands)

    Chaillou, S.; Lokman, B.C.; Leer, R.J.; Posthuma, C.; Postma, P.W.; Pouwels, P.H.

    1998-01-01

    Two genes, xylP and xylQ, from the xylose regulon of Lactobacillus pentosus were cloned and sequenced. Together with the repressor gene of the regulon, xylR, the xylPQ genes form an operon which is inducible by xylose and which is transcribed from a promoter located 145 bp upstream of xylP. A

  5. [Gene clone and expression of Barx1 in different tooth of the mini-pig at embryonic day 40].

    Science.gov (United States)

    Zhang, Ying; Yin, Ji-rong; Yang, Kai

    2012-10-01

    To partially clone and compare the quantitative expression of tooth development-related gene Barx1 in different teeth of the mini-pig embryo at embryonic day 40, and to investigate the relationship between Barx1 spatial quantitative expression and tooth morphogenesis. The mini-pig Barx1 genes was partially cloned and the mRNA sequences of human Barx1 genes was aligned with expressed sequence tags (EST) of pig by basic local alignment search tool (BLAST), which were assembled with DNAman v5.2.2. With designed primers, Barx1 was partially cloned in use of reverse transcription polymerase chain reaction (PCR), and tested by BLAST with all the species in NCBI database and confirmed as one part of target gene. Laser capture microdissection was used to collect tooth samples from frozen sections which were prepared before in -80°C freezer. Real-time PCR was carried out to analyze quantitative expression in different teeth. Partial mini-pig Barx1 gene of 698 bp was cloned. Real-time PCR showed that, glyceraldehyde-3-phosphate dehydrogenase used as loading control, the figures of 2(-ΔCT) of lower deciduous incisor, canine, the third premolar and molar were 0.000 249, 0.000 715, 0.026 096 and 0.112 656, respectively. There was a trend of increasing expression from anterior to posterior teeth. Barx1 gene could be related to the number or differentiation of tooth cusps.

  6. Cloning and construction of recombinant palI gene from Klebsiella oxytoca on pET-32b into E. coli BL21 (DE3) pLysS for production of isomaltulose, a new generation of sugar

    Energy Technology Data Exchange (ETDEWEB)

    Moeis, Maelita R., E-mail: sony@sith.itb.ac.id; Berlian, Liska, E-mail: sony@sith.itb.ac.id; Suhandono, Sony, E-mail: sony@sith.itb.ac.id; Prima, Alex, E-mail: sony@sith.itb.ac.id; Komalawati, Eli, E-mail: sony@sith.itb.ac.id; Kristianti, Tati, E-mail: sony@sith.itb.ac.id

    2014-03-24

    Klebsiella oxytoca produces sucrose isomerase which catalyses the conversion of sucrose to isomaltulose, a new generation of sugar. From the previous study, palI gene from Klebsiella oxytoca was succesfully isolated from sapodilla fruit (Manilkara zapota). The full-length palI gene sequence of Klebsiella oxytoca was cloned in E. coli DH5α. The deduced amino acid sequence shows 498 residues which includes conserved motif for sucrose isomerisation {sup 325}RLDRD{sup 329} and 97% identical to palI gene from Klebsiella sp. LX3 (GenBank:AAK82938.1). This fragment was succesfullly ligated into the expression vector pET-32b using overlap-extension PCR and cloned in Escherichia coli BL21 (DE3) pLysS. DNA sequencing result shows that palI gene of Klebsiella oxytoca was inserted in-frame in pET-32b. This is the first report on cloning of palI gene from Klebsiella oxytoca.

  7. Feedback regulation of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 via ATM/Chk2 pathway contributes to the resistance of MCF-7 breast cancer cells to cisplatin.

    Science.gov (United States)

    Lv, Juan; Qian, Ying; Ni, Xiaoyan; Xu, Xiuping; Dong, Xuejun

    2017-03-01

    The methyl methanesulfonate and ultraviolet-sensitive gene clone 81 protein is a structure-specific nuclease that plays important roles in DNA replication and repair. Knockdown of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 has been found to sensitize cancer cells to chemotherapy. However, the underlying molecular mechanism is not well understood. We found that methyl methanesulfonate and ultraviolet-sensitive gene clone 81 was upregulated and the ATM/Chk2 pathway was activated at the same time when MCF-7 cells were treated with cisplatin. By using lentivirus targeting methyl methanesulfonate and ultraviolet-sensitive gene clone 81 gene, we showed that knockdown of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 enhanced cell apoptosis and inhibited cell proliferation in MCF-7 cells under cisplatin treatment. Abrogation of ATM/Chk2 pathway inhibited cell viability in MCF-7 cells in response to cisplatin. Importantly, we revealed that ATM/Chk2 was required for the upregulation of methyl methanesulfonate and ultraviolet-sensitive gene clone 81, and knockdown of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 resulted in inactivation of ATM/Chk2 pathway in response to cisplatin. Meanwhile, knockdown of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 activated the p53/Bcl-2 pathway in response to cisplatin. These data suggest that the ATM/Chk2 may promote the repair of DNA damage caused by cisplatin by sustaining methyl methanesulfonate and ultraviolet-sensitive gene clone 81, and the double-strand breaks generated by methyl methanesulfonate and ultraviolet-sensitive gene clone 81 may activate the ATM/Chk2 pathway in turn, which provide a novel mechanism of how methyl methanesulfonate and ultraviolet-sensitive gene clone 81 modulates DNA damage response and repair.

  8. A simple, flexible and efficient PCR-fusion/Gateway cloning procedure for gene fusion, site-directed mutagenesis, short sequence insertion and domain deletions and swaps

    Directory of Open Access Journals (Sweden)

    Etchells J Peter

    2009-10-01

    Full Text Available Abstract Background The progress and completion of various plant genome sequencing projects has paved the way for diverse functional genomic studies that involve cloning, modification and subsequent expression of target genes. This requires flexible and efficient procedures for generating binary vectors containing: gene fusions, variants from site-directed mutagenesis, addition of protein tags together with domain swaps and deletions. Furthermore, efficient cloning procedures, ideally high throughput, are essential for pyramiding of multiple gene constructs. Results Here, we present a simple, flexible and efficient PCR-fusion/Gateway cloning procedure for construction of binary vectors for a range of gene fusions or variants with single or multiple nucleotide substitutions, short sequence insertions, domain deletions and swaps. Results from selected applications of the procedure which include ORF fusion, introduction of Cys>Ser mutations, insertion of StrepII tag sequence and domain swaps for Arabidopsis secondary cell wall AtCesA genes are demonstrated. Conclusion The PCR-fusion/Gateway cloning procedure described provides an elegant, simple and efficient solution for a wide range of diverse and complicated cloning tasks. Through streamlined cloning of sets of gene fusions and modification variants into binary vectors for systematic functional studies of gene families, our method allows for efficient utilization of the growing sequence and expression data.

  9. Development of intra-strain self-cloning procedure for breeding baker's yeast strains.

    Science.gov (United States)

    Nakagawa, Youji; Ogihara, Hiroyuki; Mochizuki, Chisato; Yamamura, Hideki; Iimura, Yuzuru; Hayakawa, Masayuki

    2017-03-01

    Previously reported self-cloning procedures for breeding of industrial yeast strains require DNA from other strains, plasmid DNA, or mutagenesis. Therefore, we aimed to construct a self-cloning baker's yeast strain that exhibits freeze tolerance via an improved self-cloning procedure. We first disrupted the URA3 gene of a prototrophic baker's yeast strain without the use of any marker gene, resulting in a Δura3 homozygous disruptant. Then, the URA3 gene of the parental baker's yeast strain was used as a selection marker to introduce the constitutive TDH3 promoter upstream of the PDE2 gene encoding high-affinity cyclic AMP phosphodiesterase. This self-cloning procedure was performed without using DNA from other Saccharomyces cerevisiae strains, plasmid DNA, or mutagenesis and was therefore designated an intra-strain self-cloning procedure. Using this self-cloning procedure, we succeeded in producing self-cloning baker's yeast strains that harbor the TDH3p-PDE2 gene heterozygously and homozygously, designated TDH3p-PDE2 hetero and TDH3p-PDE2 homo strains, respectively. These self-cloning strains expressed much higher levels of PDE2 mRNA than the parental strain and exhibited higher viability after freeze stress, as well as higher fermentation ability in frozen dough, when compared with the parental strain. The TDH3p-PDE2 homo strain was genetically more stable than the TDH3p-PDE2 hetero strain. These results indicate that both heterozygous and homozygous strains of self-cloning PDE2-overexpressing freeze-tolerant strains of industrial baker's yeast can be prepared using the intra-strain self-cloning procedure, and, from a practical viewpoint, the TDH3p-PDE2 homo strain constructed in this study is preferable to the TDH3p-PDE2 hetero strain for frozen dough baking. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Cloning of Bacteroides fragilis plasmid genes affecting metronidazole resistance and ultraviolet survival in Escherichia coli

    International Nuclear Information System (INIS)

    Wehnert, G.U.; Abratt, V.R.; Goodman, H.J.; Woods, D.R.

    1990-01-01

    Since reduced metronidazole causes DNA damage, resistance to metronidazole was used as a selection method for the cloning of Bacteroides fragilis genes affecting DNA repair mechanisms in Escherichia coli. Genes from B. fragilis Bf-2 were cloned on a recombinant plasmid pMT100 which made E. coli AB1157 and uvrA, B, and C mutant strains more resistant to metronidazole, but more sensitive to far uv irradiation under aerobic conditions. The loci affecting metronidazole resistance and uv sensitivity were linked and located on a 5-kb DNA fragment which originated from the small 6-kb cryptic plasmid pBFC1 present in B. fragilis Bf-2 cells

  11. Cloning of the gene encoding the δ subunit of the human T-cell receptor reveals its physical organization within the α-subunit locus and its involvement in chromosome translocations in T-cell malignancy

    International Nuclear Information System (INIS)

    Isobe, M.; Russo, G.; Haluska, F.G.; Croce, C.M.

    1988-01-01

    By taking advantage of chromosomal walking techniques, the authors have obtained clones that encompass the T-cell receptor (TCR) δ-chain gene. They analyzed clones spanning the entire J α region extending 115 kilobases 5' of the TCR α-chain constant region and have shown that the TCR δ-chain gene is located over 80 kilobases 5' of C α . TCR δ-chain gene is rearranged in the γ/δ-expressing T-cell line Peer and is deleted in α/β-expressing T-cell lines. Sequence analysis of portions of this genomic region demonstrates its identity with previously described cDNA clones corresponding to the C δ and J δ segments. Furthermore, they have analyzed a t(8;14)-(q24;q11) chromosome translocation from a T-cell leukemia and have shown that the J δ segment is rearranged in cells deriving from this tumor and probably directly involved in the translocation. Thus, the newly clones TCR δ chain is implicated in the genesis of chromosome translocations in T-cell malignancies carrying cytogenetic abnormalities of band 14q11

  12. Cloning of the DNA Repair Gene, Uvsf, by Transformation of Aspergillus Nidulans

    OpenAIRE

    Oza, K.; Kafer, E.

    1990-01-01

    As a first step in the cloning of the DNA repair gene uvsF of Aspergillus nidulans, uvsF pyrG double mutant strains were transformed with a genomic library which carried the complementing Neurospora pyr-4 gene in the vector. Rare pyr(+) uvs(+) cotransformants were obtained on media lacking pyrimidines, overlayed with MMS (methyl-methane sulfonate) to which uvsF is hypersensitive. Among MMS-resistant transformants, Southerns revealed two types which showed single bands of different sizes when ...

  13. Cloning of synthetic gene including antigens against Urinary Tract Infections in pET28a+ vector

    Directory of Open Access Journals (Sweden)

    Zohreh Haghri

    2017-12-01

    Full Text Available There are many different bacterial infections in the world that patients are suffering from and research teams are trying to find suitable ways to prevent and treat them. Urinary Tract Infections (UTIs are most important infections in the world , and they are more common among women because vaginal cavity is near to urethral opening. The aim of this study is cloning of synthetic gene include antigens against UTIs in pET28a+ vector. Antibiotic resistant has been increasing because of antibiotic overuse recently, so It shows the necessity of developing a vaccine against these infections. There for, it will be imperative to develop a vaccine instead of antibiotics. This infection causes by many organisms, most important of which are Uropathogenic Escherichia coli (UPEC, Proteus mirabilis and Klebsiella pneumoniae Uropathogenic Escherichia .coli is the most important microorganism that causes these infections more than other bacteria, so in developing a vaccine it is the most important one, that have to be considered. The synthetic Gene which was designed against these three bacteria including antigens which are important and common to cause these infections. This gene has involved 1293bp. It was ordered to Gene Ray Biotechnology. Primers were designed by Gene Runner. Gene and pET28a+ vector was checked by SnappGene. Synthetic gene was multiplied by PCR and cloned in pET28a+ vector. Construct was transformed into E. coli TOP10.The clone was confirmed by PCR, Digestion. This data indicates that this gene can be expressed and it might be a vaccine candidate to protect people from these infections in the future.

  14. [Cloning and sequencing of the papA gene from uropathogenic Escherichia coli 4030 strain].

    Science.gov (United States)

    Wu, Qinggang; Zhang, Jingping; Zhao, Chuncheng; Zhu, Jianguo

    2008-09-01

    Cloning and sequencing of the papA gene from uropathogenic Escherichia coli 4030 strain to investigate the differences of the sequences of the papA of UPEC4030 strain and the ones of related genes, in order to make whether or not it was a new genotype. Cloning and sequencing methods were used to analyze the sequence of the papA of UPEC4030 strain in comparison with related sequences. The sequence analysis of papA revealed a 722 bp gene and encode 192 amino acid polypeptide. The overall homology of the papA genes between UPEC4030 and the standard strains of ten F types were 36.11%-77.95% and 22.20%-78.34% at nucleotide and deduced amino acid levels. The homology between the sequence of the reverse primers and the corresponding sequence of UPEC4030 papA was 10%-66.67%. The results confirmed that UPEC4030 strain contained a novel papA variant. UPEC4030 strain could contain an unknown papA variant or the novel genotype. The pathogenic mechanism and epidemiology related need to be further studied.

  15. Molecular Cloning and Sequence Analysis of a Phenylalanine Ammonia-Lyase Gene from Dendrobium

    Science.gov (United States)

    Cai, Yongping; Lin, Yi

    2013-01-01

    In this study, a phenylalanine ammonia-lyase (PAL) gene was cloned from Dendrobium candidum using homology cloning and RACE. The full-length sequence and catalytic active sites that appear in PAL proteins of Arabidopsis thaliana and Nicotiana tabacum are also found: PAL cDNA of D. candidum (designated Dc-PAL1, GenBank No. JQ765748) has 2,458 bps and contains a complete open reading frame (ORF) of 2,142 bps, which encodes 713 amino acid residues. The amino acid sequence of DcPAL1 has more than 80% sequence identity with the PAL genes of other plants, as indicated by multiple alignments. The dominant sites and catalytic active sites, which are similar to that showing in PAL proteins of Arabidopsis thaliana and Nicotiana tabacum, are also found in DcPAL1. Phylogenetic tree analysis revealed that DcPAL is more closely related to PALs from orchidaceae plants than to those of other plants. The differential expression patterns of PAL in protocorm-like body, leaf, stem, and root, suggest that the PAL gene performs multiple physiological functions in Dendrobium candidum. PMID:23638048

  16. Cloning and Characterization of Genes that Inhibit TRAIL-Induced Apoptosis of Breast Cancer Cells

    National Research Council Canada - National Science Library

    Shu, Hong-Bing

    2003-01-01

    ...). However, some cancer cells are resistant to TRAIL-induced apoptosis (3, 4, 6-13). The purpose of this proposed study is to clone and characterize such inhibitory genes of TRAIL-induced apoptosis...

  17. Molecular cloning and expression of the calmodulin gene from guinea pig hearts.

    Science.gov (United States)

    Feng, Rui; Liu, Yan; Sun, Xuefei; Wang, Yan; Hu, Huiyuan; Guo, Feng; Zhao, Jinsheng; Hao, Liying

    2015-06-01

    The aim of the present study was to isolate and characterize a complementary DNA (cDNA) clone encoding the calmodulin (CaM; GenBank accession no. FJ012165) gene from guinea pig hearts. The CaM gene was amplified from cDNA collected from guinea pig hearts and inserted into a pGEM®-T Easy vector. Subsequently, CaM nucleotide and protein sequence similarity analysis was conducted between guinea pigs and other species. In addition, reverse transcription-polymerase chain reaction (RT-PCR) was performed to investigate the CaM 3 expression patterns in different guinea pig tissues. Sequence analysis revealed that the CaM gene isolated from the guinea pig heart had ∼90% sequence identity with the CaM 3 genes in humans, mice and rats. Furthermore, the deduced peptide sequences of CaM 3 in the guinea pig showed 100% homology to the CaM proteins from other species. In addition, the RT-PCR results indicated that CaM 3 was widely and differentially expressed in guinea pigs. In conclusion, the current study provided valuable information with regard to the cloning and expression of CaM 3 in guinea pig hearts. These findings may be helpful for understanding the function of CaM3 and the possible role of CaM3 in cardiovascular diseases.

  18. Cloning, Characterization, Controlled Overexpression, and Inactivation of the Major Tributyrin Esterase Gene of Lactococcus lactis

    NARCIS (Netherlands)

    Fernández, Leonides; Beerthuyzen, Marke M.; Brown, Julie; Siezen, Roland J.; Coolbear, Tim; Holland, Ross; Kuipers, Oscar P.

    2000-01-01

    The gene encoding the major intracellular tributyrin esterase of Lactococcus lactis was cloned using degenerate DNA probes based on 19 known N-terminal amino acid residues of the purified enzyme. The gene, named estA, was sequenced and found to encode a protein of 258 amino acid residues. The

  19. Cloned Erwinia chrysanthemi out genes enable Escherichia coli to selectively secrete a diverse family of heterologous proteins to its milieu.

    Science.gov (United States)

    He, S Y; Lindeberg, M; Chatterjee, A K; Collmer, A

    1991-02-01

    The out genes of the enterobacterial plant pathogen Erwinia chrysanthemi are responsible for the efficient extracellular secretion of multiple plant cell wall-degrading enzymes, including four isozymes of pectate lyase, exo-poly-alpha-D-galacturonosidase, pectin methylesterase, and cellulase. Out- mutants of Er. chrysanthemi are unable to export any of these proteins beyond the periplasm and are severely reduced in virulence. We have cloned out genes from Er. chrysanthemi in the stable, low-copy-number cosmid pCPP19 by complementing several transposon-induced mutations. The cloned out genes were clustered in a 12-kilobase chromosomal DNA region, complemented all existing out mutations in Er. chrysanthemi EC16, and enabled Escherichia coli strains to efficiently secrete the extracellular pectic enzymes produced from cloned Er. chrysanthemi genes, while retaining the periplasmic marker protein beta-lactamase. DNA sequencing of a 2.4-kilobase EcoRI fragment within the out cluster revealed four genes arranged colinearly and sharing substantial similarity with the Klebsiella pneumoniae genes pulH, pulI, pulJ, and pulK, which are necessary for pullulanase secretion. However, K. pneumoniae cells harboring the cloned Er. chrysanthemi pelE gene were unable to secrete the Erwinia pectate lyase. Furthermore, the Er. chrysanthemi Out system was unable to secrete an extracellular pectate lyase encoded by a gene from a closely related plant pathogen. Erwinia carotovora ssp. carotovora. The results suggest that these enterobacteria secrete polysaccharidases by a conserved mechanism whose protein-recognition capacities have diverged.

  20. Luciferase genes cloned from the unculturable luminous bacteroid symbiont of the Caribbean flashlight fish, Kryptophanaron alfredi.

    Science.gov (United States)

    Haygood, M G; Cohn, D H

    1986-01-01

    Light organs of anomalopid (flashlight) fish contain luminous bacteroids that have never been cultured and, consequently, have been difficult to study. We have characterized the luciferase (lux) region of DNA extracted from light organs of the Caribbean flashlight fish Kryptophanaron alfredi by hybridization of cloned Vibrio harveyi lux genes to restriction-endonuclease-digested, light organ DNA. Comparison of the hybridization pattern of light organ DNA with that of DNA of a putative symbiotic isolate provides a method for identifying the authentic luminous symbiont regardless of its luminescence, and was used to reject one such isolate. Light organ DNA was further used to construct a cosmid clone bank and the luciferase genes were isolated. Unlike other bacterial luciferase genes, the genes were not expressed in Escherichia coli. When placed under the control of the E. coli trp promoter, the genes were transcribed but no luciferase was detected, suggesting a posttranscriptional block to expression.

  1. Cloning and sequence analysis of chitin synthase gene fragments of Demodex mites*

    OpenAIRE

    Zhao, Ya-e; Wang, Zheng-hang; Xu, Yang; Xu, Ji-ru; Liu, Wen-yan; Wei, Meng; Wang, Chu-ying

    2012-01-01

    To our knowledge, few reports on Demodex studied at the molecular level are available at present. In this study our group, for the first time, cloned, sequenced and analyzed the chitin synthase (CHS) gene fragments of Demodex folliculorum, Demodex brevis, and Demodex canis (three isolates from each species) from Xi’an China, by designing specific primers based on the only partial sequence of the CHS gene of D. canis from Japan, retrieved from GenBank. Results show that amplification was succe...

  2. Cloning of resistance gene analogs located on the alien chromosome in an addition line of wheat-Thinopyrum intermedium.

    Science.gov (United States)

    Jiang, Shu-Mei; Hu, Jun; Yin, Wei-Bo; Chen, Yu-Hong; Wang, Richard R-C; Hu, Zan-Min

    2005-09-01

    Homology-based gene/gene-analog cloning method has been extensively applied in isolation of RGAs (resistance gene analogs) in various plant species. However, serious interference of sequences on homoeologous chromosomes in polyploidy species usually occurred when cloning RGAs in a specific chromosome. In this research, the techniques of chromosome microdissection combined with homology-based cloning were used to clone RGAs from a specific chromosome of Wheat-Thinopyrum alien addition line TAi-27, which was derived from common wheat and Thinopyrum intermedium with a pair of chromosomes from Th. intermedium. The alien chromosomes carry genes for resistance to BYDV. The alien chromosome in TAi-27 was isolated by a glass needle and digested with proteinase K. The DNA of the alien chromosome was amplified by two rounds of Sau3A linker adaptor-mediated PCR. RGAs were amplified by PCR with the degenerated primers designed based on conserved domains of published resistance genes (R genes) by using the alien chromosome DNA, genomic DNA and cDNA of Th. intermedium, TAi-27 and 3B-2 (a parent of TAi-27) as templates. A total of seven RGAs were obtained and sequenced. Of which, a constitutively expressed single-copy NBS-LRR type RGA ACR 3 was amplified from the dissected alien chromosome of TAi-27, TcDR 2 and TcDR 3 were from cDNA of Th. intermedium, AcDR 3 was from cDNA of TAi-27, FcDR 2 was from cDNA of 3B-2, AR 2 was from genomic DNA of TAi-27 and TR 2 was from genomic DNA of Th. intermedium. Sequence homology analyses showed that the above RGAs were highly homologous with known resistance genes or resistance gene analogs and belonged to NBS-LRR type of R genes. ACR 3 was recovered by PCR from genomic DNA and cDNA of Th. intermedium and TAi-27, but not from 3B-2. Southern hybridization using the digested genomic DNA of Th. intermedium, TAi-27 and 3B-2 as the template and ACR 3 as the probe showed that there is only one copy of ACR 3 in the genome of Th. intermedium and TAi

  3. Skewed X-inactivation in cloned mice

    International Nuclear Information System (INIS)

    Senda, Sho; Wakayama, Teruhiko; Yamazaki, Yukiko; Ohgane, Jun; Hattori, Naka; Tanaka, Satoshi; Yanagimachi, Ryuzo; Shiota, Kunio

    2004-01-01

    In female mammals, dosage compensation for X-linked genes is accomplished by inactivation of one of two X chromosomes. The X-inactivation ratio (a percentage of the cells with inactivated maternal X chromosomes in the whole cells) is skewed as a consequence of various genetic mutations, and has been observed in a number of X-linked disorders. We previously reported that phenotypically normal full-term cloned mouse fetuses had loci with inappropriate DNA methylation. Thus, cloned mice are excellent models to study abnormal epigenetic events in mammalian development. In the present study, we analyzed X-inactivation ratios in adult female cloned mice (B6C3F1). Kidneys of eight naturally produced controls and 11 cloned mice were analyzed. Although variations in X-inactivation ratio among the mice were observed in both groups, the distributions were significantly different (Ansary-Bradley test, P < 0.01). In particular, 2 of 11 cloned mice showed skewed X-inactivation ratios (19.2% and 86.8%). Similarly, in intestine, 1 of 10 cloned mice had a skewed ratio (75.7%). Skewed X-inactivation was observed to various degrees in different tissues of different individuals, suggesting that skewed X-inactivation in cloned mice is the result of secondary cell selection in combination with stochastic distortion of primary choice. The present study is the first demonstration that skewed X-inactivation occurs in cloned animals. This finding is important for understanding both nuclear transfer technology and etiology of X-linked disorders

  4. Nef does not contribute to replication differences between R5 pre-AIDS and AIDS HIV-1 clones from patient ACH142

    Directory of Open Access Journals (Sweden)

    Rekosh David

    2008-05-01

    Full Text Available Abstract AIDS-associated, CCR5-tropic (R5 HIV-1 clones, isolated from a patient that never developed CXCR4-tropic HIV-1, replicate to a greater extent and cause greater cytopathic effects than R5 HIV-1 clones isolated before the onset of AIDS. Previously, we showed that HIV-1 Env substantially contributed to the enhanced replication of an AIDS clone. In order to determine if Nef makes a similar contribution, we cloned and phenotypically analyzed nef genes from a series of patient ACH142 derived R5 HIV-1 clones. The AIDS-associated Nef contains a series of residues found in Nef proteins from progressors 1. In contrast to other reports 123, this AIDS-associated Nef downmodulated MHC-I to a greater extent and CD4 less than pre-AIDS Nef proteins. Additionally, all Nef proteins enhanced infectivity similarly in a single round of replication. Combined with our previous study, these data show that evolution of the HIV-1 env gene, but not the nef gene, within patient ACH142 significantly contributed to the enhanced replication and cytopathic effects of the AIDS-associated R5 HIV-1 clone.

  5. [Gene cloning and bioinformatics analysis of SABATH methyltransferase in Lonicera japonica var. chinensis].

    Science.gov (United States)

    Yu, Xiao-Dan; Jiang, Chao; Huang, Lu-Qi; Qin, Shuang-Shuang; Zeng, Xiang-Mei; Chen, Ping; Yuan, Yuan

    2013-08-01

    To clone SABATH methyltransferase (rLjSABATHMT) gene in Lonicera japonica var. chinensis, and compare the gene expression and intron sequence of SABATH methyltransferase orthologous in L. japonica with L. japonica var. chinensis. It provide a basis for gene regulate the formation of L. japonica floral scents. The cDNA and genome sequences of LjSABATHMT from L. japonica var. chinensis were cloned according to the gene fragments in cDNA library. The LjSABATHMT protein was characterized by bioinformatics analysis. SABATH family phylogenetic tree were built by MEGA 5.0. The transcripted level of SABATHMT orthologous were analyzed in different organs and different flower periods of L. japonica and L. japonica var. chinensis using RT-PCR analysis. Intron sequences of SABATHMT orthologous were also analyzied. The cDNA of LjSABATHMT was 1 251 bp, had a complete coding frame with 365 amino acids. The protein had the conservative SABATHMT domain, and phylogenetic tree showed that it may be a salicylic acid/benzoic acid methyltransferase. Higher expression of SABATH methyltransferase orthologous was found in flower. The intron sequence of L. japonica and L. japonica var. chinensis had rich polymorphism, and two SNP are unique genotype of L. japonica var. chinensis. The motif elements in two orthologous genes were significant differences. The intron difference of SABATH methyltransferase orthologous could be inducing to difference of gene expression between L. japonica and L. japonica var. chinensis. These results will provide important base on regulating active compounds of L. japonica.

  6. Structural defect linked to nonrandom mutations in the matrix gene of Biden strain subacute sclerosing panencephalitis virus defined by cDNA cloning and expression of chimeric genes

    International Nuclear Information System (INIS)

    Ayata, M.; Hirano, A.; Wong, T.C.

    1989-01-01

    Biken strain, a nonproductive measles viruslike agent isolated from a subacute sclerosing panencephalitis (SSPE) patient, contains a posttranscriptional defect affecting matrix (M) protein. A putative M protein was translated in vitro with RNA from Biken strain-infected cells. A similar protein was detected in vivo by an antiserum against a peptide synthesized from the cloned M gene of Edmonston strain measles virus. By using a novel method, full-length cDNAs of the Biken M gene were selectively cloned. The cloned Biken M gene contained an open reading frame which encoded 8 extra carboxy-terminal amino acid residues and 20 amino acid substitutions predicted to affect both the hydrophobicity and secondary structure of the gene product. The cloned gene was expressed in vitro and in vivo into a 37,500 M r protein electrophoretically and antigenically distinct from the M protein of Edmonston strain but identical to the M protein in Biken strain-infected cells. Chimeric M proteins synthesized in vitro and in vivo showed that the mutations in the carboxy-proximal region altered the local antigenicity and those in the amino region affected the overall protein conformation. The protein expressed from the Biken M gene was unstable in vivo. Instability was attributed to multiple mutations. These results offer insights into the basis of the defect in Biken strain and pose intriguing questions about the evolutionary origins of SSPE viruses in general

  7. Cloning the uteroglobin gene promoter from the relic volcano rabbit (Romerolagus diazi) reveals an ancient estrogen-response element.

    Science.gov (United States)

    Acosta-MontesdeOca, Adriana; Zariñán, Teresa; Macías, Héctor; Pérez-Solís, Marco A; Ulloa-Aguirre, Alfredo; Gutiérrez-Sagal, Rubén

    2012-05-01

    To gain further insight on the estrogen-dependent transcriptional regulation of the uteroglobin (UG) gene, we cloned the 5'-flanking region of the UG gene from the phylogenetically ancient volcano rabbit (Romerolagus diazi; Rd). The cloned region spans 812 base pairs (bp; -812/-1) and contains a noncanonical TATA box (TACA). The translation start site is 48 bp downstream from the putative transcription initiation site (AGA), and is preceded by a consensus Kozak box. Comparison of the Rd-UG gene with that previously isolated from rabbits (Oryctolagus cuniculus) showed 93% in sequence identity as well as a number of conserved cis-acting elements, including the estrogen-response element (ERE; -265/-251), which differs from the consensus by two nucleotides. In MCF-7 cells, 17β-estradiol (E(2)) induced transcription of a luciferase reporter driven by the Rd-UG promoter in a similar manner as in an equivalent rabbit UG reporter; the Rd-UG promoter was 30% more responsive to E(2) than the rabbit promoter. Mutagenesis studies on the Rd-ERE confirmed this cis-element as a target of E(2) as two luciferase mutant reporters of the Rd-promoter, one with the rabbit and the other with the consensus ERE, were more responsive to the hormone than the wild-type reporter. Gel shift and super-shift assays showed that estrogen receptor-α indeed binds to the imperfect palindromic sequence of the Rd-ERE. Copyright © 2012 Wiley Periodicals, Inc.

  8. New vectors in fission yeast: application for cloning the his2 gene

    DEFF Research Database (Denmark)

    Weilguny, D; Praetorius, M; Carr, Alan

    1991-01-01

    of transforming Sc. pombe ura4 strains, as well as ura 3 strains of the distantly related budding yeast Saccharomyces cerevisiae. We have used pON163 for the construction of two fission yeast genomic libraries. From these gene banks clones were isolated that were able to complement fission yeast his2 mutants...

  9. The clone of wheat dehydrin-like gene wzy2 and its functional ...

    African Journals Online (AJOL)

    We used winter wheat (Triticum aestivum) Zhengyin No.1 as the material, the complete cDNA sequence of dehydrin wzy2 was cloned and the code sequence of wzy2 was transformed into yeast (Pichia pastoris) for eukaryotic expression. We also analyzed the relationship between wheat dehydrin wzy2 gene and drought ...

  10. Molecular cloning of a mouse DNA repair gene that complements the defect of group-A xeroderma pigmentosum

    International Nuclear Information System (INIS)

    Tanaka, K.; Satokata, I.; Ogita, Z.; Uchida, T.; Okada, Y.

    1989-01-01

    For isolation of the gene responsible for xeroderma pigmentosum (XP) complementation group A, plasmid pSV2gpt and genomic DNA from a mouse embryo were cotransfected into XP2OSSV cells, a group-A XP cell line. Two primary UV-resistant XP transfectants were isolated from about 1.6 X 10(5) pSV2gpt-transformed XP colonies. pSV2gpt and genomic DNA from the primary transfectants were again cotransfected into XP2OSSV cells and a secondary UV-resistant XP transfectant was obtained by screening about 4.8 X 10(5) pSV2gpt-transformed XP colonies. The secondary transfectant retained fewer mouse repetitive sequences. A mouse gene that complements the defect of XP2OSSV cells was cloned into an EMBL3 vector from the genome of a secondary transfectant. Transfections of the cloned DNA also conferred UV resistance on another group-A XP cell line but not on XP cell lines of group C, D, F, or G. Northern blot analysis of poly(A)+ RNA with a subfragment of cloned mouse DNA repair gene as the probe revealed that an approximately 1.0 kilobase mRNA was transcribed in the donor mouse embryo and secondary transfectant, and approximately 1.0- and approximately 1.3-kilobase mRNAs were transcribed in normal human cells, but none of these mRNAs was detected in three strains of group-A XP cells. These results suggest that the cloned DNA repair gene is specific for group-A XP and may be the mouse homologue of the group-A XP human gene

  11. Purification of cold-shock-like proteins from Stigmatella aurantiaca - molecular cloning and characterization of the cspA gene.

    Science.gov (United States)

    Stamm, I; Leclerque, A; Plaga, W

    1999-09-01

    Prominent low-molecular-weight proteins were isolated from vegetative cells of the myxobacterium Stigmatella aurantiaca and were found to be members of the cold-shock protein family. A first gene of this family (cspA) was cloned and sequenced. It encodes a protein of 68 amino acid residues that displays up to 71% sequence identity with other bacterial cold-shock(-like) proteins. A cysteine residue within the RNP-2 motif is a peculiarity of Stigmatella CspA. A cspA::(Deltatrp-lacZ) fusion gene construct was introduced into Stigmatella by electroporation, a method that has not been used previously for this strain. Analysis of the resultant transformants revealed that cspA transcription occurs at high levels during vegetative growth at 20 and 32 degrees C, and during fruiting body formation.

  12. Isolation, cloning, and characterization of a partial novel aro A gene in common reed (Phragmites australis).

    Science.gov (United States)

    Taravat, Elham; Zebarjadi, Alireza; Kahrizi, Danial; Yari, Kheirollah

    2015-05-01

    Among the essential amino acids, phenylalanine, tryptophan, and tyrosine are aromatic amino acids which are synthesized by the shikimate pathway in plants and bacteria. Herbicide glyphosate can inhibit the biosynthesis of these amino acids. So, identification of the gene tolerant to glyphosate is very important. It has been shown that the common reed or Phragmites australis Cav. (Poaceae) is relatively tolerant to glyphosate. The aim of the current research is identification, cloning, sequencing, and registering of partial aro A gene of the common reed P. australis. The partial aro A gene of common reed (P. australis) was cloned in Escherichia coli and the amino acid sequence was identified/determined for the first time. This is the first report for isolation, cloning, and sequencing of a part of aro A gene from the common reed. A 670 bp fragment including two introns (86 bp and 289 bp) was obtained. The open reading frame (ORF) region in part of gene was encoded for 98 amino acids. Alignment showed high similarity among this region with Zea mays (L.) (Poaceae) (94.6%), Eleusine indica L. Gaertn (Poaceae) (94.2%), and Zoysia japonica Steud. (Poaceae) (94.2%). The alignment of amino acid sequence of the investigated part of the gene showed a homology with aro A from several other plants. This conserved region forms the enzyme active site. The alignment results of nucleotide and amino acid residues with related sequences showed that there are some differences among them. The relative glyphosate tolerance in the common reed may be related to these differences.

  13. Molecular cloning and expression of heteromeric ACCase subunit genes from Jatropha curcas.

    Science.gov (United States)

    Gu, Keyu; Chiam, Huihui; Tian, Dongsheng; Yin, Zhongchao

    2011-04-01

    Acetyl-CoA carboxylase (ACCase) catalyzes the biotin-dependent carboxylation of acetyl-CoA to produce malonyl-CoA, which is the essential first step in the biosynthesis of long-chain fatty acids. ACCase exists as a multi-subunit enzyme in most prokaryotes and the chloroplasts of most plants and algae, while it is present as a multi-domain enzyme in the endoplasmic reticulum of most eukaryotes. The heteromeric ACCase of higher plants consists of four subunits: an α-subunit of carboxyltransferase (α-CT, encoded by accA gene), a biotin carboxyl carrier protein (BCCP, encoded by accB gene), a biotin carboxylase (BC, encoded by accC gene) and a β-subunit of carboxyltransferase (β-CT, encoded by accD gene). In this study, we cloned and characterized the genes accA, accB1, accC and accD that encode the subunits of heteromeric ACCase in Jatropha (Jatropha curcas), a potential biofuel plant. The full-length cDNAs of the four subunit genes were isolated from a Jatropha cDNA library and by using 5' RACE, whereas the genomic clones were obtained from a Jatropha BAC library. They encode a 771 amino acid (aa) α-CT, a 286-aa BCCP1, a 537-aa BC and a 494-aa β-CT, respectively. The single-copy accA, accB1 and accC genes are nuclear genes, while the accD gene is located in chloroplast genome. Jatropha α-CT, BCCP1, BC and β-CT show high identity to their homologues in other higher plants at amino acid level and contain all conserved domains for ACCase activity. The accA, accB1, accC and accD genes are temporally and spatially expressed in the leaves and endosperm of Jatropha plants, which are regulated by plant development and environmental factors. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Molecular cloning and chromosome mapping of the human gene encoding protein phosphotyrosyl phosphatase 1B

    International Nuclear Information System (INIS)

    Brown-Shimer, S.; Johnson, K.A.; Bruskin, A.; Green, N.R.; Hill, D.E.; Lawrence, J.B.; Johnson, C.

    1990-01-01

    The inactivation of growth suppressor genes appears to play a major role in the malignant process. To assess whether protein phosphotyrosyl phosphatases function as growth suppressors, the authors have isolated a cDNA clone encoding human protein phosphotyrosyl phosphatase 1B for structural and functional characterization. The translation product deduced from the 1,305-nucleotide open reading frame predicts a protein containing 435 amino acids and having a molecular mass of 49,966 Da. The amino-terminal 321 amino acids deduced from the cDNA sequence are identical to the empirically determined sequence of protein phosphotyrosyl phosphatase 1B. A genomic clone has been isolated and used in an in situ hybridization to banded metaphase chromosomes to determine that the gene encoding protein phosphotyrosyl phosphatase 1B maps as a single-copy gene to the long arm of chromosome 20 in the region q13.1-q13.2

  15. [Research progress on the cloning of Mendel's gene in pea (Pisum sativum L.) and its application in genetics teaching].

    Science.gov (United States)

    He, Feng-Hua; Zhu, Bi-Yan; Gao, Feng; Li, Shao-Shan; Li, Niang-Hui

    2013-07-01

    One hundred and fifty years ago, Gregor Mendel investigated the segregation of seven traits in pea (Pisum sativum) and established the law of segregation and the law of independent assortment in genetics. After the two laws of genetics were rediscovered in 1900, the seven traits have been extensively investigated in the fields of plant physiology and biochemistry as well as in the cell and molecular levels. Recently, with the development of molecular technology in genetics, four genes for seed shape (R), stem length (Le), cotyledon colour (I), and flower colour (A) have been cloned and sequenced; and another three genes for immature pod colour (Gp), fasciation (Fa) and pod form (V) have been located in the linkage groups, respectively. The identification and cloning of the four Mendel's genes will help deeply understand the basic concept of gene in many respects: like the diversity of gene function, the different origins for gene mutation in molecular level, and the molecular nature of a dominant gene or a recessive gene. In teaching of genetics, the introduction of most recent research advancements of cloning of Mendel's genes to the students and the interpretation of the Mendel's laws in molecular level will help students promote their learning interests in genetics and help students grasp the whole content from classical genetics to molecular genetics and the developmental direction of this subject.

  16. Genome-wide cloning and sequence analysis of leucine-rich repeat receptor-like protein kinase genes in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Yuan Tong

    2010-01-01

    Full Text Available Abstract Background Transmembrane receptor kinases play critical roles in both animal and plant signaling pathways regulating growth, development, differentiation, cell death, and pathogenic defense responses. In Arabidopsis thaliana, there are at least 223 Leucine-rich repeat receptor-like kinases (LRR-RLKs, representing one of the largest protein families. Although functional roles for a handful of LRR-RLKs have been revealed, the functions of the majority of members in this protein family have not been elucidated. Results As a resource for the in-depth analysis of this important protein family, the complementary DNA sequences (cDNAs of 194 LRR-RLKs were cloned into the GatewayR donor vector pDONR/ZeoR and analyzed by DNA sequencing. Among them, 157 clones showed sequences identical to the predictions in the Arabidopsis sequence resource, TAIR8. The other 37 cDNAs showed gene structures distinct from the predictions of TAIR8, which was mainly caused by alternative splicing of pre-mRNA. Most of the genes have been further cloned into GatewayR destination vectors with GFP or FLAG epitope tags and have been transformed into Arabidopsis for in planta functional analysis. All clones from this study have been submitted to the Arabidopsis Biological Resource Center (ABRC at Ohio State University for full accessibility by the Arabidopsis research community. Conclusions Most of the Arabidopsis LRR-RLK genes have been isolated and the sequence analysis showed a number of alternatively spliced variants. The generated resources, including cDNA entry clones, expression constructs and transgenic plants, will facilitate further functional analysis of the members of this important gene family.

  17. Cloning and characterization of an epoxide hydrolase-encoding gene from Rhodotorula glutinis

    NARCIS (Netherlands)

    Visser, H.; Vreugdenhil, S.; Bont, de J.A.M.; Verdoes, J.C.

    2000-01-01

    We cloned and characterized the epoxide hydrolase gene, EPH1, from Rhodotorula glutinis. The EPH1 open reading frame of 1230 bp was interrupted by nine introns and encoded a polypeptide of 409 amino acids with a calculated molecular mass of 46.3 kDa. The amino acid sequence was similar to that of

  18. Phage display used for gene cloning of human recombinant antibody against the erythrocyte surface antigen, rhesus D

    DEFF Research Database (Denmark)

    Dziegiel, M; Nielsen, L K; Andersen, P S

    1995-01-01

    A novel phage display system has been developed for PCR amplification and cloning of the Fab fragments of human immunoglobulin genes. Using this system, we have cloned an antibody from a mouse-human hybridoma cell line directed against the erythrocyte antigen rhesus D. Intact erythrocytes were used...... for absorption of the Fab phages. Soluble Fab fragments produced from the cloned material showed identical performance to the parental antibody in agglutination assays. Gel filtration confirmed that the Fab fragment consists of a kappa-Fd heterodimer. The successful use of intact cells for selection of specific...... Fab phages demonstrates that it is possible to by-pass purification of the antigen of interest. Comparison with published germline sequences demonstrated that the immunoglobulin coding regions had the highest homology to the VH 1.9III and V kappa Hum kappa v325 germline genes, respectively....

  19. Cloning of a novel gene from Penicillium oxalicum I1 which in Escherichia coli enhances the secretion of acetic acid

    Directory of Open Access Journals (Sweden)

    Xue, L.

    2018-01-01

    Full Text Available Description of the subject. Organic acids play an important role in the conversion of insoluble ions into soluble ones in soil. Heterologous overexpression of a single gene in a cell is the optimal strategy for increasing the secretion of organic acids solubilizing phosphate. Objectives. In this study, we constructed a primary cDNA library of Penicillium oxalicum I1, and screened clones that can solubilize P in tricalcium phosphate (TCP medium. We aimed to obtain the gene expressed in Escherichia coli, which can enhance organic acid secretion. Method. A primary cDNA library of Penicillium oxalicum I1 was constructed using the switching mechanism at the 5'-end of RNA transcription. The organic acid secretion ability of E. coli DH5α™ with overexpressed P. oxalicum I1gene was tested in TCP medium where glucose is the sole carbon source. Afterwards, pyruvic acid, citric acid, α-ketoglutaric acid, succinic acid, fumaric acid, and malic acid were used as sole carbon source substitutes for glucose in the TCP medium to test the organic acid secretion ability of the transformed E. coli DH5α™. Results. A total of 106 clones showed halos in TCP medium, among which clone I-2 displayed clear halo. The full-length cDNA of clone I-2 was 1,151 bp, with a complete open reading frame of 702 bp, which encoded a hypothetical protein of 233 amino acids. The cDNA sequence showed 68% identity and 73% query cover with other fungal gene sequences of which the function remains unknown. Escherichia coli containing the cloned gene secreted up to 567 mg·l-1 acetic acid within 48 h. The use of glucose, pyruvic acid, α-ketoglutaric acid, and malic acid improved the acetic acid secretion of the E. coli DH5α™ clone I-2. By contrast, the use of citric acid, succinic acid, and fumaric acid did not improve the acetic acid secretion of clone I-2 compared to a control E. coli DH5α™ strain bearing only the cloning vector without any insert. Conclusions. We obtained a

  20. Molecular cloning and sequence analysis of a phenylalanine ammonia-lyase gene from dendrobium.

    Directory of Open Access Journals (Sweden)

    Qing Jin

    Full Text Available In this study, a phenylalanine ammonia-lyase (PAL gene was cloned from Dendrobium candidum using homology cloning and RACE. The full-length sequence and catalytic active sites that appear in PAL proteins of Arabidopsis thaliana and Nicotiana tabacum are also found: PAL cDNA of D. candidum (designated Dc-PAL1, GenBank No. JQ765748 has 2,458 bps and contains a complete open reading frame (ORF of 2,142 bps, which encodes 713 amino acid residues. The amino acid sequence of DcPAL1 has more than 80% sequence identity with the PAL genes of other plants, as indicated by multiple alignments. The dominant sites and catalytic active sites, which are similar to that showing in PAL proteins of Arabidopsis thaliana and Nicotiana tabacum, are also found in DcPAL1. Phylogenetic tree analysis revealed that DcPAL is more closely related to PALs from orchidaceae plants than to those of other plants. The differential expression patterns of PAL in protocorm-like body, leaf, stem, and root, suggest that the PAL gene performs multiple physiological functions in Dendrobium candidum.

  1. Cloning and expression of gene encoding P23 protein from Cryptosporidium parvum

    Directory of Open Access Journals (Sweden)

    Dinh Thi Bich Lan

    2014-12-01

    Full Text Available We cloned the cp23 gene coding P23 (glycoprotein from Cryptosporidium parvum isolated from Thua Thien Hue province, Vietnam. The coding region of cp23 gene from C. parvum is 99% similar with cp23 gene deposited in NCBI (accession number: U34390. SDS-PAGE and Western blot analysis showed that the cp23 gene in E. coli BL21 StarTM (DE3 produced polypeptides with molecular weights of approximately 37, 40 and 49 kDa. These molecules may be non-glycosylated or glycosylated P23 fusion polypeptides. Recombinant P23 protein purified by GST (glutathione S-transferase affinity chromatography can be used as an antigen for C. parvum antibody production as well as to develop diagnostic kit for C. parvum.

  2. Transcript levels of several epigenome regulatory genes in bovine somatic donor cells are not correlated with their cloning efficiency.

    Science.gov (United States)

    Zhou, Wenli; Sadeghieh, Sanaz; Abruzzese, Ronald; Uppada, Subhadra; Meredith, Justin; Ohlrichs, Charletta; Broek, Diane; Polejaeva, Irina

    2009-09-01

    Among many factors that potentially affect somatic cell nuclear transfer (SCNT) embryo development is the donor cell itself. Cloning potentials of somatic donor cells vary greatly, possibly because the cells have different capacities to be reprogrammed by ooplasma. It is therefore intriguing to identify factors that regulate the reprogrammability of somatic donor cells. Gene expression analysis is a widely used tool to investigate underlying mechanisms of various phenotypes. In this study, we conducted a retrospective analysis investigating whether donor cell lines with distinct cloning efficiencies express different levels of genes involved in epigenetic reprogramming including histone deacetylase-1 (HDAC1), -2 (HDAC2); DNA methyltransferase-1 (DNMT1), -3a (DNMT3a),-3b (DNMT3b), and the bovine homolog of yeast sucrose nonfermenting-2 (SNF2L), a SWI/SNF family of ATPases. Cell samples from 12 bovine donor cell lines were collected at the time of nuclear transfer experiments and expression levels of the genes were measured using quantitative polymerase chain reaction (PCR). Our results show that there are no significant differences in expression levels of these genes between donor cell lines of high and low cloning efficiency defined as live calving rates, although inverse correlations are observed between in vitro embryo developmental rates and expression levels of HDAC2 and SNF2L. We also show that selection of stable reference genes is important for relative quantification, and different batches of cells can have different gene expression patterns. In summary, we demonstrate that expression levels of these epigenome regulatory genes in bovine donor cells are not correlated with cloning potential. The experimental design and data analysis method reported here can be applied to study any genes expressed in donor cells.

  3. Cloning and expression analysis of FaPR-1 gene in strawberry

    Science.gov (United States)

    Mo, Fan; Luo, Ya; Ge, Cong; Mo, Qin; Ling, Yajie; Luo, Shu; Tang, Haoru

    2018-04-01

    The FaPR-1 gene was cloned by RT-PCR from `Benihoppe' strawberry and its bioinformatics analysis was conducted. The results showed that the open reading frame was 483 bp encoding encoding l60 amino acids which protein molecular weight and theoretical isoelectricity were 17854.17 and 8.72 respectively. Subcellular localization prediction shows that this gene is located extracellularly. By comparing strawberry FaPR-l and other plant Pathogenesis-related protein, homology and phylogenetic tree construction showed that the homology with grapes, peach is relatively close. In the treatments of ABA, sucrose and the mixture of the two, the expression of FaPR-1 in strawberry fruit were significantly increased.

  4. Cloning, sequencing and variability analysis of the gap gene from Mycoplasma hominis

    DEFF Research Database (Denmark)

    Mygind, Tina; Jacobsen, Iben Søgaard; Melkova, Renata

    2000-01-01

    The gap gene encodes the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The gene was cloned and sequenced from the Mycoplasma hominis type strain PG21(T). The intraspecies variability was investigated by inspection of restriction fragment length polymorphism (RFLP) patterns...... after polymerase chain reaction (PCR) amplification of the gap gene from 15 strains and furthermore by sequencing of part of the gene in eight strains. The M. hominis gap gene was found to vary more than the Escherichia coli counterpart, but the variation at nucleotide level gave rise to only a few...... amino acid substitutions. To verify that the gene was expressed in M. hominis, a polyclonal antibody was produced and tested against whole cell protein from 15 strains. The enzyme was expressed in all strains investigated as a 36-kDa protein. All strains except type strain PG21(T) showed reaction...

  5. Molecular cloning and characterization of the recA gene of Pseudomonas aeruginosa PAO

    Energy Technology Data Exchange (ETDEWEB)

    Kokjohn, T.A.; Miller, R.V.

    1985-08-01

    The recA gene of Pseudomonas aeruginosa PAO has been isolated and introduced into Escherichia coli K-12. Resistance to killing by UV irradiation was restored in several RecA-E. coli K-12 hosts by the P. aeruginosa gene, as was resistance to methyl methanesulfonate. Recombination proficiency was also restored, as measured by HfrH-mediated conjugation and by the ability to propagate Fec-phage lambda derivatives. The cloned P. aeruginosa recA gene restored both spontaneous and mitomycin C-stimulated induction of lambda prophage in lysogens of a recA strain of E. coli K-12.

  6. Protease of Stenotrophomonas sp. from Indonesian fermented food: gene cloning and analysis

    Directory of Open Access Journals (Sweden)

    Frans Kurnia

    2018-02-01

    Full Text Available Screening of proteolytic and fibrinolytic bacteria from Indonesian soy bean based fermented food Oncom revealed several potential isolates. Based on 16s rDNA gene analysis, one particular isolate with the highest proteolytic and fibrinolytic activity was identified as Stenotrophomonas sp. The protease gene was amplified to generate a 1749 bp Polymerase Chain Reaction product and BLAST analysis, revealed 90% homology with gene encoding protease enzyme from Stenotrophomonas maltophilia. The putative amino acid sequence indicated a serine protease enzyme with typical amino acid aspartate, histidine and serine in the catalytic triad. The gene was translated into a pre-pro-protein consisted of cleavage site on its N terminal and Pre-Peptidase Cterminal domain. Cloning of the protease gene in pET22b with Escherichia coli BL21 DE3 as the host showed that the gene was expressed as insoluble protein fraction. This is the first report for analysis of protease gene from food origin Stenotrophomonas sp.

  7. Hepatocyte specific expression of human cloned genes

    Energy Technology Data Exchange (ETDEWEB)

    Cortese, R

    1986-01-01

    A large number of proteins are specifically synthesized in the hepatocyte. Only the adult liver expresses the complete repertoire of functions which are required at various stages during development. There is therefore a complex series of regulatory mechanisms responsible for the maintenance of the differentiated state and for the developmental and physiological variations in the pattern of gene expression. Human hepatoma cell lines HepG2 and Hep3B display a pattern of gene expression similar to adult and fetal liver, respectively; in contrast, cultured fibroblasts or HeLa cells do not express most of the liver specific genes. They have used these cell lines for transfection experiments with cloned human liver specific genes. DNA segments coding for alpha1-antitrypsin and retinol binding protein (two proteins synthesized both in fetal and adult liver) are expressed in the hepatoma cell lines HepG2 and Hep3B, but not in HeLa cells or fibroblasts. A DNA segment coding for haptoglobin (a protein synthesized only after birth) is only expressed in the hepatoma cell line HepG2 but not in Hep3B nor in non hepatic cell lines. The information for tissue specific expression is located in the 5' flanking region of all three genes. In vivo competition experiments show that these DNA segments bind to a common, apparently limiting, transacting factor. Conventional techniques (Bal deletions, site directed mutagenesis, etc.) have been used to precisely identify the DNA sequences responsible for these effects. The emerging picture is complex: they have identified multiple, separate transcriptional signals, essential for maximal promoter activation and tissue specific expression. Some of these signals show a negative effect on transcription in fibroblast cell lines.

  8. Cloning and Characterization of the Polyether Salinomycin Biosynthesis Gene Cluster of Streptomyces albus XM211

    Science.gov (United States)

    Jiang, Chunyan; Wang, Hougen; Kang, Qianjin; Liu, Jing

    2012-01-01

    Salinomycin is widely used in animal husbandry as a food additive due to its antibacterial and anticoccidial activities. However, its biosynthesis had only been studied by feeding experiments with isotope-labeled precursors. A strategy with degenerate primers based on the polyether-specific epoxidase sequences was successfully developed to clone the salinomycin gene cluster. Using this strategy, a putative epoxidase gene, slnC, was cloned from the salinomycin producer Streptomyces albus XM211. The targeted replacement of slnC and subsequent trans-complementation proved its involvement in salinomycin biosynthesis. A 127-kb DNA region containing slnC was sequenced, including genes for polyketide assembly and release, oxidative cyclization, modification, export, and regulation. In order to gain insight into the salinomycin biosynthesis mechanism, 13 gene replacements and deletions were conducted. Including slnC, 7 genes were identified as essential for salinomycin biosynthesis and putatively responsible for polyketide chain release, oxidative cyclization, modification, and regulation. Moreover, 6 genes were found to be relevant to salinomycin biosynthesis and possibly involved in precursor supply, removal of aberrant extender units, and regulation. Sequence analysis and a series of gene replacements suggest a proposed pathway for the biosynthesis of salinomycin. The information presented here expands the understanding of polyether biosynthesis mechanisms and paves the way for targeted engineering of salinomycin activity and productivity. PMID:22156425

  9. Cloning and sequencing of cDNA encoding human DNA topoisomerase II and localization of the gene to chromosome region 17q21-22

    International Nuclear Information System (INIS)

    Tsai-Pflugfelder, M.; Liu, L.F.; Liu, A.A.; Tewey, K.M.; Whang-Peng, J.; Knutsen, T.; Huebner, K.; Croce, C.M.; Wang, J.C.

    1988-01-01

    Two overlapping cDNA clones encoding human DNA topoisomerase II were identified by two independent methods. In one, a human cDNA library in phage λ was screened by hybridization with a mixed oligonucleotide probe encoding a stretch of seven amino acids found in yeast and Drosophila DNA topoisomerase II; in the other, a different human cDNA library in a λgt11 expression vector was screened for the expression of antigenic determinants that are recognized by rabbit antibodies specific to human DNA topoisomerase II. The entire coding sequences of the human DNA topoisomerase II gene were determined from these and several additional clones, identified through the use of the cloned human TOP2 gene sequences as probes. Hybridization between the cloned sequences and mRNA and genomic DNA indicates that the human enzyme is encoded by a single-copy gene. The location of the gene was mapped to chromosome 17q21-22 by in situ hybridization of a cloned fragment to metaphase chromosomes and by hybridization analysis with a panel of mouse-human hybrid cell lines, each retaining a subset of human chromosomes

  10. Gene cloning and heterologous expression of pyranose 2-oxidase from the brown-rot fungus, Gloeophyllum trabeum

    Science.gov (United States)

    Diane Dietrich; Casey Crooks

    2009-01-01

    A pyranose 2-oxidase gene from the brown-rot basidiomycete Gloeophyllum trabeum was isolated using homology-based degenerate PCR. The gene structure was determined and compared to that of several pyranose 2-oxidases cloned from white-rot fungi. The G. trabeum pyranose 2-oxidase gene consists of 16 coding exons with canonical promoter CAAT and TATA elements in the 5’UTR...

  11. Development of new USER-based cloning vectors for multiple genes expression in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Kildegaard, Kanchana Rueksomtawin; Jensen, Niels Bjerg; Maury, Jerome

    2013-01-01

    auxotrophic and dominant markers for convenience of use. Our vector set also contains both integrating and multicopy vectors for stability of protein expression and high expression level. We will make the new vector system available to the yeast community and provide a comprehensive protocol for cloning...... the production strain with the proper phenotype and product yield. However, the sequential number of metabolic engineering is time-consuming. Furthermore, the number of available selectable markers is also limiting the number of genetic modifications. To overcome these limitations, we have developed a new set...... of shuttle vectors for convenience of use for high-throughput cloning and selectable marker recycling. The new USER-based cloning vectors consist of a unique USER site and a CRE-loxP-mediated marker recycling system. The USER site allows insertion of genes of interest along with a bidirectional promoter...

  12. Molecular cloning and expression of the IL-10 gene from guinea pigs.

    Science.gov (United States)

    Dirisala, Vijaya R; Jeevan, Amminikutty; Bix, Gregory; Yoshimura, Teizo; McMurray, David N

    2012-04-25

    The Guinea pig (Cavia porcellus) is one of the most relevant small animals for modeling human tuberculosis (TB) in terms of susceptibility to low dose aerosol infection, the organization of granulomas, extrapulmonary dissemination and vaccine-induced protection. It is also considered to be a gold standard for a number of other infectious and non-infectious diseases; however, this animal model has a major disadvantage due to the lack of readily available immunological reagents. In the present study, we successfully cloned a cDNA for the critical Th2 cytokine, interleukin-10 (IL-10), from inbred Strain 2 guinea pigs using the DNA sequence information provided by the genome project. The complete open reading frame (ORF) consists of 537 base pairs which encodes a protein of 179 amino acids. This cDNA sequence exhibited 87% homology with human IL-10. Surprisingly, it showed only 84% homology with the previously published IL-10 sequence from the C4-deficient (C4D) guinea pig, leading us to clone IL-10 cDNA from the Hartley strain of guinea pig. The IL-10 gene from the Hartley strain showed 100% homology with the IL-10 sequence of Strain 2 guinea pigs. In order to validate the only published IL-10 sequence existing in Genbank reported from C4D guinea pigs, genomic DNA was isolated from tissues of C4D guinea pigs. Amplification with various sets of primers showed that the IL-10 sequence reported from C4D guinea pigs contained numerous errors. Hence the IL-10 sequence that is being reported by us replaces the earlier sequence making our IL-10 sequence to be the first one accurate from guinea pig. Recombinant guinea pig IL-10 proteins were subsequently expressed in both prokaryotic and eukaryotic cells, purified and were confirmed by N-terminal sequencing. Polyclonal anti-IL-10 antibodies were generated in rabbits using the recombinant IL-10 protein expressed in this study. Taken together, our results indicate that the DNA sequence information provided by the genome project

  13. Reliable cloning of functional antibody variable domains from hybridomas and spleen cell repertoires employing a reengineered phage display system.

    Science.gov (United States)

    Krebber, A; Bornhauser, S; Burmester, J; Honegger, A; Willuda, J; Bosshard, H R; Plückthun, A

    1997-02-14

    A prerequisite for the use of recombinant antibody technologies starting from hybridomas or immune repertoires is the reliable cloning of functional immunoglobulin genes. For this purpose, a standard phage display system was optimized for robustness, vector stability, tight control of scFv-delta geneIII expression, primer usage for PCR amplification of variable region genes, scFv assembly strategy and subsequent directional cloning using a single rare cutting restriction enzyme. This integrated cloning, screening and selection system allowed us to rapidly obtain antigen binding scFvs derived from spleen-cell repertoires of mice immunized with ampicillin as well as from all hybridoma cell lines tested to date. As representative examples, cloning of monoclonal antibodies against a his tag, leucine zippers, the tumor marker EGP-2 and the insecticide DDT is presented. Several hybridomas whose genes could not be cloned in previous experimental setups, but were successfully obtained with the present system, expressed high amounts of aberrant heavy and light chain mRNAs, which were amplified by PCR and greatly exceeded the amount of binding antibody sequences. These contaminating variable region genes were successfully eliminated by employing the optimized phage display system, thus avoiding time consuming sequencing of non-binding scFv genes. To maximize soluble expression of functional scFvs subsequent to cloning, a compatible vector series to simplify modification, detection, multimerization and rapid purification of recombinant antibody fragments was constructed.

  14. Differential Regulation of Gene Expression of Alveolar Epithelial Cell Markers in Human Lung Adenocarcinoma-Derived A549 Clones

    Directory of Open Access Journals (Sweden)

    Hiroshi Kondo

    2015-01-01

    Full Text Available Stem cell therapy appears to be promising for restoring damaged or irreparable lung tissue. However, establishing a simple and reproducible protocol for preparing lung progenitor populations is difficult because the molecular basis for alveolar epithelial cell differentiation is not fully understood. We investigated an in vitro system to analyze the regulatory mechanisms of alveolus-specific gene expression using a human alveolar epithelial type II (ATII cell line, A549. After cloning A549 subpopulations, each clone was classified into five groups according to cell morphology and marker gene expression. Two clones (B7 and H12 were further analyzed. Under serum-free culture conditions, surfactant protein C (SPC, an ATII marker, was upregulated in both H12 and B7. Aquaporin 5 (AQP5, an ATI marker, was upregulated in H12 and significantly induced in B7. When the RAS/MAPK pathway was inhibited, SPC and thyroid transcription factor-1 (TTF-1 expression levels were enhanced. After treatment with dexamethasone (DEX, 8-bromoadenosine 3′5′-cyclic monophosphate (8-Br-cAMP, 3-isobutyl-1-methylxanthine (IBMX, and keratinocyte growth factor (KGF, surfactant protein B and TTF-1 expression levels were enhanced. We found that A549-derived clones have plasticity in gene expression of alveolar epithelial differentiation markers and could be useful in studying ATII maintenance and differentiation.

  15. An Improved Single-Step Cloning Strategy Simplifies the Agrobacterium tumefaciens-Mediated Transformation (ATMT)-Based Gene-Disruption Method for Verticillium dahliae.

    Science.gov (United States)

    Wang, Sheng; Xing, Haiying; Hua, Chenlei; Guo, Hui-Shan; Zhang, Jie

    2016-06-01

    The soilborne fungal pathogen Verticillium dahliae infects a broad range of plant species to cause severe diseases. The availability of Verticillium genome sequences has provided opportunities for large-scale investigations of individual gene function in Verticillium strains using Agrobacterium tumefaciens-mediated transformation (ATMT)-based gene-disruption strategies. Traditional ATMT vectors require multiple cloning steps and elaborate characterization procedures to achieve successful gene replacement; thus, these vectors are not suitable for high-throughput ATMT-based gene deletion. Several advancements have been made that either involve simplification of the steps required for gene-deletion vector construction or increase the efficiency of the technique for rapid recombinant characterization. However, an ATMT binary vector that is both simple and efficient is still lacking. Here, we generated a USER-ATMT dual-selection (DS) binary vector, which combines both the advantages of the USER single-step cloning technique and the efficiency of the herpes simplex virus thymidine kinase negative-selection marker. Highly efficient deletion of three different genes in V. dahliae using the USER-ATMT-DS vector enabled verification that this newly-generated vector not only facilitates the cloning process but also simplifies the subsequent identification of fungal homologous recombinants. The results suggest that the USER-ATMT-DS vector is applicable for efficient gene deletion and suitable for large-scale gene deletion in V. dahliae.

  16. Overexpression of Differentially Expressed Genes Identified in Non-pathogenic and Pathogenic Entamoeba histolytica Clones Allow Identification of New Pathogenicity Factors Involved in Amoebic Liver Abscess Formation.

    Directory of Open Access Journals (Sweden)

    Martin Meyer

    2016-08-01

    Full Text Available We here compared pathogenic (p and non-pathogenic (np isolates of Entamoeba histolytica to identify molecules involved in the ability of this parasite to induce amoebic liver abscess (ALA-like lesions in two rodent models for the disease. We performed a comprehensive analysis of 12 clones (A1-A12 derived from a non-pathogenic isolate HM-1:IMSS-A and 12 clones (B1-B12 derived from a pathogenic isolate HM-1:IMSS-B. "Non-pathogenicity" included the induction of small and quickly resolved lesions while "pathogenicity" comprised larger abscess development that overstayed day 7 post infection. All A-clones were designated as non-pathogenic, whereas 4 out of 12 B-clones lost their ability to induce ALAs in gerbils. No correlation between ALA formation and cysteine peptidase (CP activity, haemolytic activity, erythrophagocytosis, motility or cytopathic activity was found. To identify the molecular framework underlying different pathogenic phenotypes, three clones were selected for in-depth transcriptome analyses. Comparison of a non-pathogenic clone A1np with pathogenic clone B2p revealed 76 differentially expressed genes, whereas comparison of a non-pathogenic clone B8np with B2p revealed only 19 differentially expressed genes. Only six genes were found to be similarly regulated in the two non-pathogenic clones A1np and B8np in comparison with the pathogenic clone B2p. Based on these analyses, we chose 20 candidate genes and evaluated their roles in ALA formation using the respective gene-overexpressing transfectants. We conclude that different mechanisms lead to loss of pathogenicity. In total, we identified eight proteins, comprising a metallopeptidase, C2 domain proteins, alcohol dehydrogenases and hypothetical proteins, that affect the pathogenicity of E. histolytica.

  17. Overexpression of Differentially Expressed Genes Identified in Non-pathogenic and Pathogenic Entamoeba histolytica Clones Allow Identification of New Pathogenicity Factors Involved in Amoebic Liver Abscess Formation.

    Science.gov (United States)

    Meyer, Martin; Fehling, Helena; Matthiesen, Jenny; Lorenzen, Stephan; Schuldt, Kathrin; Bernin, Hannah; Zaruba, Mareen; Lender, Corinna; Ernst, Thomas; Ittrich, Harald; Roeder, Thomas; Tannich, Egbert; Lotter, Hannelore; Bruchhaus, Iris

    2016-08-01

    We here compared pathogenic (p) and non-pathogenic (np) isolates of Entamoeba histolytica to identify molecules involved in the ability of this parasite to induce amoebic liver abscess (ALA)-like lesions in two rodent models for the disease. We performed a comprehensive analysis of 12 clones (A1-A12) derived from a non-pathogenic isolate HM-1:IMSS-A and 12 clones (B1-B12) derived from a pathogenic isolate HM-1:IMSS-B. "Non-pathogenicity" included the induction of small and quickly resolved lesions while "pathogenicity" comprised larger abscess development that overstayed day 7 post infection. All A-clones were designated as non-pathogenic, whereas 4 out of 12 B-clones lost their ability to induce ALAs in gerbils. No correlation between ALA formation and cysteine peptidase (CP) activity, haemolytic activity, erythrophagocytosis, motility or cytopathic activity was found. To identify the molecular framework underlying different pathogenic phenotypes, three clones were selected for in-depth transcriptome analyses. Comparison of a non-pathogenic clone A1np with pathogenic clone B2p revealed 76 differentially expressed genes, whereas comparison of a non-pathogenic clone B8np with B2p revealed only 19 differentially expressed genes. Only six genes were found to be similarly regulated in the two non-pathogenic clones A1np and B8np in comparison with the pathogenic clone B2p. Based on these analyses, we chose 20 candidate genes and evaluated their roles in ALA formation using the respective gene-overexpressing transfectants. We conclude that different mechanisms lead to loss of pathogenicity. In total, we identified eight proteins, comprising a metallopeptidase, C2 domain proteins, alcohol dehydrogenases and hypothetical proteins, that affect the pathogenicity of E. histolytica.

  18. Isolation of BAC Clones Containing Conserved Genes from Libraries of Three Distantly Related Moths: A Useful Resource for Comparative Genomics of Lepidoptera

    Directory of Open Access Journals (Sweden)

    Yuji Yasukochi

    2011-01-01

    Full Text Available Lepidoptera, butterflies and moths, is the second largest animal order and includes numerous agricultural pests. To facilitate comparative genomics in Lepidoptera, we isolated BAC clones containing conserved and putative single-copy genes from libraries of three pests, Heliothis virescens, Ostrinia nubilalis, and Plutella xylostella, harboring the haploid chromosome number, =31, which are not closely related with each other or with the silkworm, Bombyx mori, (=28, the sequenced model lepidopteran. A total of 108–184 clones representing 101–182 conserved genes were isolated for each species. For 79 genes, clones were isolated from more than two species, which will be useful as common markers for analysis using fluorescence in situ hybridization (FISH, as well as for comparison of genome sequence among multiple species. The PCR-based clone isolation method presented here is applicable to species which lack a sequenced genome but have a significant collection of cDNA or EST sequences.

  19. Cloning of a novel gene, Cymg1, related to family 2 cystatins and ...

    Indian Academy of Sciences (India)

    Unknown

    We have cloned a novel gene, Cymg1 (GenBank accession number ... Cymg1 expression level varied in the different developmental stages of .... Reaction mixture containing 10 µl ribonuclease-free water, ... reaction was terminated by heating at 70ºC for 10 min, .... stage-specific germ cells in the testis (Cornwall et al. 1992 ...

  20. Molecular cloning and sequence of the B880 holochrome gene from Rhodospirillum rubrum

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Restriction fragments of genomic Rhodospirillum rubrum DNA were selected according to size by electrophoresis followed by hybridization with [ 32 P]mRNA encoding the two B880 holochrome polypeptides. The fragments were cloned into Escherchia coli C600 with plasmid pBR327 as a vector. The clones were selected by colony hybridization with 32 P-holochrome-mRNA and counter selected by hybridization with Rs. rubrum ribosomal RNA, a minor contaminant of the mRNA preparation. Chimeric plasmid pRR22 was shown to contain the B880 genes by hybrid selection of B880 holochrome-mRNA. A restriction map of its 2.2-kilobase insert and the sequence of a 430 base pair fragment thereof is reported. Genes α and β are nearly contiguous, indicating that they are transcribed as a single operon. The predicted amino acid sequences coincide with the sequences of the α and β polypeptides established in other laboratories, except for additional C-terminal tails of 10 and 13 amino acid residues, respectively

  1. Cloning and expression analysis of a novel ammonium transporter gene from eichhornia

    International Nuclear Information System (INIS)

    Li, Y.; Yan, G.; Zheng, L.

    2014-01-01

    In order to explore the molecular mechanism for Eichhornia crassipes to transport ammonium from outside, we cloned a novel ammonium transporter (EcAMT) gene from E. crassipes and identified its function by using yeast complementation experiment. The full-length cDNA of EcAMT contains a 1506 nucletide-long open reading frame which encodes a protein of 501 amino acids. Bioinformatics analysis predicted that EcAMT had 8 transmembrane regions. The expressions of EcAMT gene under three different nitrogen conditions were evaluated by quantitative reverse transcriptase PCR (qRT-PCR) and the results showed that the expression of EcAMT gene was up-regulated under nitrogen starvation. Our study results revealed some molecular mechanism of E. crassipes to absorb the ammonium in eutrophic water. (author)

  2. Molecular cloning and expression analysis of annexin A2 gene in sika deer antler tip

    Directory of Open Access Journals (Sweden)

    Yanling Xia

    2018-04-01

    Full Text Available Objective Molecular cloning and bioinformatics analysis of annexin A2 (ANXA2 gene in sika deer antler tip were conducted. The role of ANXA2 gene in the growth and development of the antler were analyzed initially. Methods The reverse transcriptase polymerase chain reaction (RT-PCR was used to clone the cDNA sequence of the ANXA2 gene from antler tip of sika deer (Cervus Nippon hortulorum and the bioinformatics methods were applied to analyze the amino acid sequence of Anxa2 protein. The mRNA expression levels of the ANXA2 gene in different growth stages were examined by real time reverse transcriptase polymerase chain reaction (real time RT-PCR. Results The nucleotide sequence analysis revealed an open reading frame of 1,020 bp encoding 339 amino acids long protein of calculated molecular weight 38.6 kDa and isoelectric point 6.09. Homologous sequence alignment and phylogenetic analysis indicated that the Anxa2 mature protein of sika deer had the closest genetic distance with Cervus elaphus and Bos mutus. Real time RT-PCR results showed that the gene had differential expression levels in different growth stages, and the expression level of the ANXA2 gene was the highest at metaphase (rapid growing period. Conclusion ANXA2 gene may promote the cell proliferation, and the finding suggested Anxa2 as an important candidate for regulating the growth and development of deer antler.

  3. TA-GC cloning: A new simple and versatile technique for the directional cloning of PCR products for recombinant protein expression.

    Science.gov (United States)

    Niarchos, Athanasios; Siora, Anastasia; Konstantinou, Evangelia; Kalampoki, Vasiliki; Lagoumintzis, George; Poulas, Konstantinos

    2017-01-01

    During the last few decades, the recombinant protein expression finds more and more applications. The cloning of protein-coding genes into expression vectors is required to be directional for proper expression, and versatile in order to facilitate gene insertion in multiple different vectors for expression tests. In this study, the TA-GC cloning method is proposed, as a new, simple and efficient method for the directional cloning of protein-coding genes in expression vectors. The presented method features several advantages over existing methods, which tend to be relatively more labour intensive, inflexible or expensive. The proposed method relies on the complementarity between single A- and G-overhangs of the protein-coding gene, obtained after a short incubation with T4 DNA polymerase, and T and C overhangs of the novel vector pET-BccI, created after digestion with the restriction endonuclease BccI. The novel protein-expression vector pET-BccI also facilitates the screening of transformed colonies for recombinant transformants. Evaluation experiments of the proposed TA-GC cloning method showed that 81% of the transformed colonies contained recombinant pET-BccI plasmids, and 98% of the recombinant colonies expressed the desired protein. This demonstrates that TA-GC cloning could be a valuable method for cloning protein-coding genes in expression vectors.

  4. Cloning and molecular analysis of L-asparaginase II gene (ansB

    Directory of Open Access Journals (Sweden)

    ZEINAT K. MOHAMED

    2015-12-01

    Full Text Available The deamination of L-asparagine to L-aspartic acid and ammonia is catalyzed by L-asparaginases (L-asparagine amino hydrolase. The enzyme L-asparaginase is widely distributed in nature from different living organisms, starting from bacteria till mammals and plants. It has been recently thought to be a therapeutic agent in treatment of various lymphoblastic leukemia diseases. There have been many attempts to isolate microorganisms that produce L-asparaginase. L-ASNase producing bacteria, Escherichia coli MG27, was previously isolated from the River Nile and identified. In this study, ansB gene, encoding L-ASNase II from E. coli MG27, was amplified by PCR, cloned and characterized by DNA sequencing. The DNA sequence was then analyzed using bioinformatics analysis and translated into amino acid sequence. Identification of highly conserved amino acid sequence motifs was conducted by comparison against the InterPro database. Analysis revealed that the protein sequence had a catalytic domain of L-asparaginase type II (IPR004550 that belong to asparaginase/glutaminase family (IPR006034 and has asparaginase/glutaminase conserved site (IPR020827. According to results predicted using PSIpred tool, ansB consists of eight α-helices and 13 β-strands.

  5. Survival of Skin Graft between Transgenic Cloned Dogs and Non-Transgenic Cloned Dogs

    Science.gov (United States)

    Kim, Geon A; Oh, Hyun Ju; Kim, Min Jung; Jo, Young Kwang; Choi, Jin; Park, Jung Eun; Park, Eun Jung; Lim, Sang Hyun; Yoon, Byung Il; Kang, Sung Keun; Jang, Goo; Lee, Byeong Chun

    2014-01-01

    Whereas it has been assumed that genetically modified tissues or cells derived from somatic cell nuclear transfer (SCNT) should be accepted by a host of the same species, their immune compatibility has not been extensively explored. To identify acceptance of SCNT-derived cells or tissues, skin grafts were performed between cloned dogs that were identical except for their mitochondrial DNA (mtDNA) haplotypes and foreign gene. We showed here that differences in mtDNA haplotypes and genetic modification did not elicit immune responses in these dogs: 1) skin tissues from genetically-modified cloned dogs were successfully transplanted into genetically-modified cloned dogs with different mtDNA haplotype under three successive grafts over 63 days; and 2) non-transgenic cloned tissues were accepted into transgenic cloned syngeneic recipients with different mtDNA haplotypes and vice versa under two successive grafts over 63 days. In addition, expression of the inserted gene was maintained, being functional without eliciting graft rejection. In conclusion, these results show that transplanting genetically-modified tissues into normal, syngeneic or genetically-modified recipient dogs with different mtDNA haplotypes do not elicit skin graft rejection or affect expression of the inserted gene. Therefore, therapeutically valuable tissue derived from SCNT with genetic modification might be used safely in clinical applications for patients with diseased tissues. PMID:25372489

  6. Molecular cloning and expression analysis of a zebrafish novel zinc finger protein gene rnf141

    Directory of Open Access Journals (Sweden)

    Wenqian Deng

    2009-01-01

    Full Text Available ZNF230 is a novel zinc finger gene cloned by our laboratory. In order to understand the potential functions of this gene in vertebrate development, we cloned the zebrafish orthologue of human ZNF230, named rnf141. The cDNA fragment of rnf141 was obtained by rapid amplification of cDNA ends (RACE. The open reading frame (ORF encodes a polypeptide of 222 amino acids which shares 75.65% identity with the human ZNF230. RT-PCR analysis in zebrafish embryo and adult tissues revealed that rnf141 transcripts are maternally derived and that rnf141 mRNA has a broad distribution. Zygotic rnf141 message is strongly localized in the central nervous system, as shown by whole-mount in situ hybridization. Knockdown and over expression of rnf141 can induce abnormal phenotypes, including abnormal development of brain, as well as yolk sac and axis extendsion. Marker gene analysis showed that rnf141 may play a role in normal dorsoventral patterning of zebrafish embryos, suggesting that rnf141 may have a broad function during early development of vertebrates.

  7. Cloning of a novel gene, Cymg1, related to family 2 cystatins and ...

    Indian Academy of Sciences (India)

    We have cloned a novel gene, Cymg1 (GenBank accession number AY600990), from a mouse testis cDNA library. Cymg1 is located in 2G3 of mouse chromosome 2. The cDNA includes an open reading frame that encodes 141 amino acid residues. The encoded polypeptide has a cysteine protease inhibitor domain found ...

  8. A new set of ESTs and cDNA clones from full-length and normalized libraries for gene discovery and functional characterization in citrus

    Directory of Open Access Journals (Sweden)

    Alamar Santiago

    2009-09-01

    Full Text Available Abstract Background Interpretation of ever-increasing raw sequence information generated by modern genome sequencing technologies faces multiple challenges, such as gene function analysis and genome annotation. Indeed, nearly 40% of genes in plants encode proteins of unknown function. Functional characterization of these genes is one of the main challenges in modern biology. In this regard, the availability of full-length cDNA clones may fill in the gap created between sequence information and biological knowledge. Full-length cDNA clones facilitate functional analysis of the corresponding genes enabling manipulation of their expression in heterologous systems and the generation of a variety of tagged versions of the native protein. In addition, the development of full-length cDNA sequences has the power to improve the quality of genome annotation. Results We developed an integrated method to generate a new normalized EST collection enriched in full-length and rare transcripts of different citrus species from multiple tissues and developmental stages. We constructed a total of 15 cDNA libraries, from which we isolated 10,898 high-quality ESTs representing 6142 different genes. Percentages of redundancy and proportion of full-length clones range from 8 to 33, and 67 to 85, respectively, indicating good efficiency of the approach employed. The new EST collection adds 2113 new citrus ESTs, representing 1831 unigenes, to the collection of citrus genes available in the public databases. To facilitate functional analysis, cDNAs were introduced in a Gateway-based cloning vector for high-throughput functional analysis of genes in planta. Herein, we describe the technical methods used in the library construction, sequence analysis of clones and the overexpression of CitrSEP, a citrus homolog to the Arabidopsis SEP3 gene, in Arabidopsis as an example of a practical application of the engineered Gateway vector for functional analysis. Conclusion The new

  9. A new set of ESTs and cDNA clones from full-length and normalized libraries for gene discovery and functional characterization in citrus

    Science.gov (United States)

    Marques, M Carmen; Alonso-Cantabrana, Hugo; Forment, Javier; Arribas, Raquel; Alamar, Santiago; Conejero, Vicente; Perez-Amador, Miguel A

    2009-01-01

    Background Interpretation of ever-increasing raw sequence information generated by modern genome sequencing technologies faces multiple challenges, such as gene function analysis and genome annotation. Indeed, nearly 40% of genes in plants encode proteins of unknown function. Functional characterization of these genes is one of the main challenges in modern biology. In this regard, the availability of full-length cDNA clones may fill in the gap created between sequence information and biological knowledge. Full-length cDNA clones facilitate functional analysis of the corresponding genes enabling manipulation of their expression in heterologous systems and the generation of a variety of tagged versions of the native protein. In addition, the development of full-length cDNA sequences has the power to improve the quality of genome annotation. Results We developed an integrated method to generate a new normalized EST collection enriched in full-length and rare transcripts of different citrus species from multiple tissues and developmental stages. We constructed a total of 15 cDNA libraries, from which we isolated 10,898 high-quality ESTs representing 6142 different genes. Percentages of redundancy and proportion of full-length clones range from 8 to 33, and 67 to 85, respectively, indicating good efficiency of the approach employed. The new EST collection adds 2113 new citrus ESTs, representing 1831 unigenes, to the collection of citrus genes available in the public databases. To facilitate functional analysis, cDNAs were introduced in a Gateway-based cloning vector for high-throughput functional analysis of genes in planta. Herein, we describe the technical methods used in the library construction, sequence analysis of clones and the overexpression of CitrSEP, a citrus homolog to the Arabidopsis SEP3 gene, in Arabidopsis as an example of a practical application of the engineered Gateway vector for functional analysis. Conclusion The new EST collection denotes an

  10. Cloning and functional expression of a human pancreatic islet glucose-transporter cDNA

    International Nuclear Information System (INIS)

    Permutt, M.A.; Koranyi, L.; Keller, K.; Lacy, P.E.; Scharp, D.W.; Mueckler, M.

    1989-01-01

    Previous studies have suggested that pancreatic islet glucose transport is mediated by a high-K m , low-affinity facilitated transporter similar to that expressed in liver. To determine the relationship between islet and liver glucose transporters, liver-type glucose-transporter cDNA clones were isolated from a human liver cDNA library. The liver-type glucose-transporter cDNA clone hybridized to mRNA transcripts of the same size in human liver and pancreatic islet RNA. A cDNA library was prepared from purified human pancreatic islet tissue and screened with human liver-type glucose-transporter cDNA. The authors isolated two overlapping cDNA clones encompassing 2600 base pairs, which encode a pancreatic islet protein identical in sequence to that of the putative liver-type glucose-transporter protein. Xenopus oocytes injected with synthetic mRNA transcribed from a full-length cDNA construct exhibited increased uptake of 2-deoxyglucose, confirming the functional identity of the clone. These cDNA clones can now be used to study regulation of expression of the gene and to assess the role of inherited defects in this gene as a candidate for inherited susceptibility to non-insulin-dependent diabetes mellitus

  11. [Cloning of human CD45 gene and its expression in Hela cells].

    Science.gov (United States)

    Li, Jie; Xu, Tianyu; Wu, Lulin; Zhang, Liyun; Lu, Xiao; Zuo, Daming; Chen, Zhengliang

    2015-11-01

    To clone human CD45 gene PTPRC and establish Hela cells overexpressing recombinant human CD45 protein. The intact cDNA encoding human CD45 amplified using RT-PCR from the total RNA extracted from peripheral blood mononuclear cells (PBMCs) of a healthy donor was cloned into pMD-18T vector. The CD45 cDNA fragment amplified from the pMD-18T-CD45 by PCR was inserted to the coding region of the PcDNA3.1-3xflag vector, and the resultant recombinant expression vector PcDNA3.1-3xflag-CD45 was transfected into Hela cells. The expression of CD45 in Hela cells was detected by flow cytometry and Western blotting, and the phosphastase activity of CD45 was quantified using an alkaline phosphatase assay kit. The cDNA fragment of about 3 900 bp was amplified from human PBMCs and cloned into pMD-18T vector. The recombinant expression vector PcDNA3.1-3xflag-CD45 was constructed, whose restriction maps and sequence were consistent with those expected. The expression of CD45 in transfected Hela cells was detected by flow cytometry and Western blotting, and the expressed recombinant CD45 protein in Hela cells showed a phosphastase activity. The cDNA of human CD45 was successfully cloned and effectively expressed in Hela cells, which provides a basis for further exploration of the functions of CD45.

  12. Constitutive synthesis of a transport function encoded by the Thiobacillus ferrooxidans merC gene cloned in Escherichia coli

    International Nuclear Information System (INIS)

    Kusano, Tomonobu; Ji, Guangyong; Silver, S.; Inoue, Chihiro

    1990-01-01

    Mercuric reductase activity determined by the Thiobacillus ferrooxidans merA gene (cloned and expressed constitutively in Escherichia coli) was measured by volatilization of 203 Hg 2+ . (The absence of a merR regulatory gene in the cloned Thiobacillus mer determinant provides a basis for the constitutive synthesis of this system.) In the absence of the Thiobacillus merC transport gene, the mercury volatilization activity was cryptic and was not seen with whole cells but only with sonication-disrupted cells. The Thiobacillus merC transport function was compared with transport via the merT-merP system of plasmid pDU1358. Both systems, cloned and expressed in E. coli, governed enhanced uptake of 203 Hg 2+ in a temperature- and concentration-dependent fashion. Uptake via MerT-MerP was greater and conferred greater hypersensitivity to Hg 2+ than did uptake with MerC. Mercury uptake was inhibited by N-ethylmaleimide but not by EDTA. Ag + salts inhibited mercury uptake by the MerT-MerP system but did not inhibit uptake via MerC. Radioactive mercury accumulated by the MerT-MerP and by the MerC systems was exchangeable with nonradioactive Hg 2+

  13. Cloning in Escherichia coli of the enterotoxin gene from Clostridium perfringens type A.

    Science.gov (United States)

    Iwanejko, L A; Routledge, M N; Stewart, G S

    1989-04-01

    A 26 bp DNA probe has been constructed with minimal degeneracy to the protein sequence for Clostridium perfringens enterotoxin. The probe has been hybridized against a 6-10 kb chromosomal bank from C. perfringens 8239, prepared as a HindIII partial digest in pHG165. From this survey a clone has been identified containing a 6.8 kb DNA insert with strong hybridization to the probe. Direct plasmid sequencing has identified a translational reading frame within this clone which correlates with the known protein sequence for the type A enterotoxin. DNA sequences 5' to this open reading frame and containing the putative transcriptional control regions show areas of significant homology with regions upstream from the ATG codon of the tetanus toxin gene.

  14. [Cloning of Clostridium perfringens alpha-toxin gene and extracellular expression in Escherichia coli].

    Science.gov (United States)

    Inoue, Masaharu; Kikuchi, Maho; Komoriya, Tomoe; Watanabe, Kunitomo; Kouno, Hideki

    2007-01-01

    Clostridium perfringens (C. perfringens) is a Gram-positive bacterial pathogen that widely propagets in the soil and the gastrointestinal tract of human and animals. This bacteria causes food poisoning, gas gangrene and other various range of infectious diseases. But there is no standard diagnosis method of C. perfringens. In order to develop a new type of immunoassay for clinical purpose, we studied expression and extracellular secretion of recombinant alpha-toxin having enzyme activity in E. coli expression system. Cloning was carried out after PCR amplification from C. perfringens GAI 94074 which was clinical isolate. Three kinds of fragment were cloned using pET100/D-TOPO vector. These fragments coded for ribosome binding site, signal peptide, and alpha-toxin gene respectively. Recombinant pET100 plasmid transformed into TOP 10 cells and the obtained plasmids were transformed into BL21 (DE3) cells. Then, the transformants were induced expression with IPTG. In conclusion, we successfully cloned, expressed and exteracellular secreted C. perfringens alpha-toxin containing signal peptide. Biologically, the obtained recombinant protein was positive for phospholipase C activity.

  15. Human terminal deoxyribonucleotidyltransferase: molecular cloning and structural analysis of the gene and 5' flanking region

    International Nuclear Information System (INIS)

    Riley, L.K.; Morrow, J.K.; Danton, M.J.; Coleman, M.S.

    1988-01-01

    Human terminal deoxyribonucleotidyltransferase cDNA contains an open reading frame of 1530 base pairs (bp) corresponding to a protein containing 510 amino acids. The encoded protein is a template-independent DNA polymerase found only in a restricted population of normal and malignant prelymphocytes. To begin to investigate the genetic elements responsible for the tissue-specific expression of terminal deoxyribonucleotidyltransferase, genomic clones, containing the entire human gene were isolated and characterized. Initially, cDNA clones were isolated from a library generated from the human lymphoblastoid cell line, MOLT-4R. A cDNA clone containing the entire coding region of the protein was used to isolate a series of overlapping clones from two human genomic libraries. The gene comprises 11 exons and 10 introns and spans 49.4 kilobases. The 5' flanking region (709 bp) including exon 1 was sequenced. Several putative transcription initiation sites were mapped. Within 500 nucleotides of the translation start site, a series of promoter elements was detected. TATA and CAAT sequences, respectively, were found to start at nucleotides -185 and -204, -328 and -370, and -465 and -505. Start sites were found for a cyclic AMP-dependent promoter analog at nucleotide -121, an eight-base sequence corresponding to the IgG promoter enhancer (cd) at nucleotide -455, and an analog of the IgG promoter (pd) at nucleotide -159. These findings suggest that transcripts coding for terminal deoxyribonucleotidyltransferase may be variable in length and that transcription may be influenced by a variety of genetic elements

  16. Defended to the Nines: 25 Years of Resistance Gene Cloning Identifies Nine Mechanisms for R Protein Function.

    Science.gov (United States)

    Kourelis, Jiorgos; van der Hoorn, Renier A L

    2018-02-01

    Plants have many, highly variable resistance ( R ) gene loci, which provide resistance to a variety of pathogens. The first R gene to be cloned, maize ( Zea mays ) Hm1 , was published over 25 years ago, and since then, many different R genes have been identified and isolated. The encoded proteins have provided clues to the diverse molecular mechanisms underlying immunity. Here, we present a meta-analysis of 314 cloned R genes. The majority of R genes encode cell surface or intracellular receptors, and we distinguish nine molecular mechanisms by which R proteins can elevate or trigger disease resistance: direct (1) or indirect (2) perception of pathogen-derived molecules on the cell surface by receptor-like proteins and receptor-like kinases; direct (3) or indirect (4) intracellular detection of pathogen-derived molecules by nucleotide binding, leucine-rich repeat receptors, or detection through integrated domains (5); perception of transcription activator-like effectors through activation of executor genes (6); and active (7), passive (8), or host reprogramming-mediated (9) loss of susceptibility. Although the molecular mechanisms underlying the functions of R genes are only understood for a small proportion of known R genes, a clearer understanding of mechanisms is emerging and will be crucial for rational engineering and deployment of novel R genes. © 2018 American Society of Plant Biologists. All rights reserved.

  17. EasyClone: method for iterative chromosomal integration of multiple genes in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Jensen, Niels Bjerg; Strucko, Tomas; Kildegaard, Kanchana Rueksomtawin

    2014-01-01

    of multiple genes with an option of recycling selection markers. The vectors combine the advantage of efficient uracil excision reaction-based cloning and Cre-LoxP-mediated marker recycling system. The episomal and integrative vector sets were tested by inserting genes encoding cyan, yellow, and red...... fluorescent proteins into separate vectors and analyzing for co-expression of proteins by flow cytometry. Cells expressing genes encoding for the three fluorescent proteins from three integrations exhibited a much higher level of simultaneous expression than cells producing fluorescent proteins encoded...... on episomal plasmids, where correspondingly 95% and 6% of the cells were within a fluorescence interval of Log10 mean ± 15% for all three colors. We demonstrate that selective markers can be simultaneously removed using Cre-mediated recombination and all the integrated heterologous genes remain...

  18. TA-GC cloning: A new simple and versatile technique for the directional cloning of PCR products for recombinant protein expression.

    Directory of Open Access Journals (Sweden)

    Athanasios Niarchos

    Full Text Available During the last few decades, the recombinant protein expression finds more and more applications. The cloning of protein-coding genes into expression vectors is required to be directional for proper expression, and versatile in order to facilitate gene insertion in multiple different vectors for expression tests. In this study, the TA-GC cloning method is proposed, as a new, simple and efficient method for the directional cloning of protein-coding genes in expression vectors. The presented method features several advantages over existing methods, which tend to be relatively more labour intensive, inflexible or expensive. The proposed method relies on the complementarity between single A- and G-overhangs of the protein-coding gene, obtained after a short incubation with T4 DNA polymerase, and T and C overhangs of the novel vector pET-BccI, created after digestion with the restriction endonuclease BccI. The novel protein-expression vector pET-BccI also facilitates the screening of transformed colonies for recombinant transformants. Evaluation experiments of the proposed TA-GC cloning method showed that 81% of the transformed colonies contained recombinant pET-BccI plasmids, and 98% of the recombinant colonies expressed the desired protein. This demonstrates that TA-GC cloning could be a valuable method for cloning protein-coding genes in expression vectors.

  19. Cloning of the DNA repair gene, uvsF, by transformation of Aspergillus nidulans.

    Science.gov (United States)

    Oza, K; Käfer, E

    1990-06-01

    As a first step in the cloning of the DNA repair gene uvsF of Aspergillus nidulans, uvsF pyrG double mutant strains were transformed with a genomic library which carried the complementing Neurospora pyr-4 gene in the vector. Rare pyr+ uvs+ cotransformants were obtained on media lacking pyrimidines, overlayed with MMS (methyl-methane sulfonate) to which uvsF is hypersensitive. Among MMS-resistant transformants, Southerns revealed two types which showed single bands of different sizes when BglII-digested genomic DNA was probed with the vector. Both types produced uvsF- recombinants without vector sequences in homozygous crosses, but only those with the larger band also produced haploid uvs+ progeny. Using BglII-digested genomic DNA to transform Escherichia coli, plasmids of the corresponding two sizes could be rescued. Their inserts had a short internal region in common, giving evidence of rearrangement(s). In secondary transformation of uvsF mutants, only the plasmids with the larger insert showed complementation and these were used to screen Aspergillus libraries. Three types of genomic and two overlapping cDNA clones were identified. The cDNAs hybridized not only to each other, but also to the common region of the rescued plasmids. Therefore, cDNA subclones were used to map the putative uvsF sequences to a short segment in one genomic clone. In Northerns, the complementing large plasmid hybridized to three mRNAs, while the cDNA subclone identified one of these as the probable uvsF message.

  20. Cloning and characterization of a mouse gene with homology to the human von Hippel-Lindau disease tumor suppressor gene: implications for the potential organization of the human von Hippel-Lindau disease gene.

    Science.gov (United States)

    Gao, J; Naglich, J G; Laidlaw, J; Whaley, J M; Seizinger, B R; Kley, N

    1995-02-15

    The human von Hippel-Lindau disease (VHL) gene has recently been identified and, based on the nucleotide sequence of a partial cDNA clone, has been predicted to encode a novel protein with as yet unknown functions [F. Latif et al., Science (Washington DC), 260: 1317-1320, 1993]. The length of the encoded protein and the characteristics of the cellular expressed protein are as yet unclear. Here we report the cloning and characterization of a mouse gene (mVHLh1) that is widely expressed in different mouse tissues and shares high homology with the human VHL gene. It predicts a protein 181 residues long (and/or 162 amino acids, considering a potential alternative start codon), which across a core region of approximately 140 residues displays a high degree of sequence identity (98%) to the predicted human VHL protein. High stringency DNA and RNA hybridization experiments and protein expression analyses indicate that this gene is the most highly VHL-related mouse gene, suggesting that it represents the mouse VHL gene homologue rather than a related gene sharing a conserved functional domain. These findings provide new insights into the potential organization of the VHL gene and nature of its encoded protein.

  1. Defended to the Nines: 25 Years of Resistance Gene Cloning Identifies Nine Mechanisms for R Protein Function[OPEN

    Science.gov (United States)

    2018-01-01

    Plants have many, highly variable resistance (R) gene loci, which provide resistance to a variety of pathogens. The first R gene to be cloned, maize (Zea mays) Hm1, was published over 25 years ago, and since then, many different R genes have been identified and isolated. The encoded proteins have provided clues to the diverse molecular mechanisms underlying immunity. Here, we present a meta-analysis of 314 cloned R genes. The majority of R genes encode cell surface or intracellular receptors, and we distinguish nine molecular mechanisms by which R proteins can elevate or trigger disease resistance: direct (1) or indirect (2) perception of pathogen-derived molecules on the cell surface by receptor-like proteins and receptor-like kinases; direct (3) or indirect (4) intracellular detection of pathogen-derived molecules by nucleotide binding, leucine-rich repeat receptors, or detection through integrated domains (5); perception of transcription activator-like effectors through activation of executor genes (6); and active (7), passive (8), or host reprogramming-mediated (9) loss of susceptibility. Although the molecular mechanisms underlying the functions of R genes are only understood for a small proportion of known R genes, a clearer understanding of mechanisms is emerging and will be crucial for rational engineering and deployment of novel R genes. PMID:29382771

  2. Cloning and sequence analysis demonstrate the chromate reduction ability of a novel chromate reductase gene from Serratia sp.

    Science.gov (United States)

    Deng, Peng; Tan, Xiaoqing; Wu, Ying; Bai, Qunhua; Jia, Yan; Xiao, Hong

    2015-03-01

    The ChrT gene encodes a chromate reductase enzyme which catalyzes the reduction of Cr(VI). The chromate reductase is also known as flavin mononucleotide (FMN) reductase (FMN_red). The aim of the present study was to clone the full-length ChrT DNA from Serratia sp. CQMUS2 and analyze the deduced amino acid sequence and three-dimensional structure. The putative ChrT gene fragment of Serratia sp. CQMUS2 was isolated by polymerase chain reaction (PCR), according to the known FMN_red gene sequence from Serratia sp. AS13. The flanking sequences of the ChrT gene were obtained by high efficiency TAIL-PCR, while the full-length gene of ChrT was cloned in Escherichia coli for subsequent sequencing. The nucleotide sequence of ChrT was submitted onto GenBank under the accession number, KF211434. Sequence analysis of the gene and amino acids was conducted using the Basic Local Alignment Search Tool, and open reading frame (ORF) analysis was performed using ORF Finder software. The ChrT gene was found to be an ORF of 567 bp that encodes a 188-amino acid enzyme with a calculated molecular weight of 20.4 kDa. In addition, the ChrT protein was hypothesized to be an NADPH-dependent FMN_red and a member of the flavodoxin-2 superfamily. The amino acid sequence of ChrT showed high sequence similarity to the FMN reductase genes of Klebsiella pneumonia and Raoultella ornithinolytica , which belong to the flavodoxin-2 superfamily. Furthermore, ChrT was shown to have a 85.6% similarity to the three-dimensional structure of Escherichia coli ChrR, sharing four common enzyme active sites for chromate reduction. Therefore, ChrT gene cloning and protein structure determination demonstrated the ability of the gene for chromate reduction. The results of the present study provide a basis for further studies on ChrT gene expression and protein function.

  3. Cloning and sequence analysis demonstrate the chromate reduction ability of a novel chromate reductase gene from Serratia sp

    Science.gov (United States)

    DENG, PENG; TAN, XIAOQING; WU, YING; BAI, QUNHUA; JIA, YAN; XIAO, HONG

    2015-01-01

    The ChrT gene encodes a chromate reductase enzyme which catalyzes the reduction of Cr(VI). The chromate reductase is also known as flavin mononucleotide (FMN) reductase (FMN_red). The aim of the present study was to clone the full-length ChrT DNA from Serratia sp. CQMUS2 and analyze the deduced amino acid sequence and three-dimensional structure. The putative ChrT gene fragment of Serratia sp. CQMUS2 was isolated by polymerase chain reaction (PCR), according to the known FMN_red gene sequence from Serratia sp. AS13. The flanking sequences of the ChrT gene were obtained by high efficiency TAIL-PCR, while the full-length gene of ChrT was cloned in Escherichia coli for subsequent sequencing. The nucleotide sequence of ChrT was submitted onto GenBank under the accession number, KF211434. Sequence analysis of the gene and amino acids was conducted using the Basic Local Alignment Search Tool, and open reading frame (ORF) analysis was performed using ORF Finder software. The ChrT gene was found to be an ORF of 567 bp that encodes a 188-amino acid enzyme with a calculated molecular weight of 20.4 kDa. In addition, the ChrT protein was hypothesized to be an NADPH-dependent FMN_red and a member of the flavodoxin-2 superfamily. The amino acid sequence of ChrT showed high sequence similarity to the FMN reductase genes of Klebsiella pneumonia and Raoultella ornithinolytica, which belong to the flavodoxin-2 superfamily. Furthermore, ChrT was shown to have a 85.6% similarity to the three-dimensional structure of Escherichia coli ChrR, sharing four common enzyme active sites for chromate reduction. Therefore, ChrT gene cloning and protein structure determination demonstrated the ability of the gene for chromate reduction. The results of the present study provide a basis for further studies on ChrT gene expression and protein function. PMID:25667630

  4. Cloning of genes required for hypersensitivity and pathogenicity in Pseudomonas syringae pv. aptata.

    Science.gov (United States)

    Minardi, P

    1995-01-01

    A genomic library of Pseudomonas syringae pv. aptata strain NCPPB 2664, which causes bacterial blight of sugar beet, lettuce and other plants, was constructed in the cosmid vector pCPP31. The 13.4 kb EcoRI fragment of the cosmid pHIR11, containing the hrp (hypersensitive response and pathogenicity) gene cluster of the closely related bacterium Pseudomonas syringae pv. syringae strain 61, was used as a probe to identify a homologous hrp gene cluster in P. syringae pv. aptata. Thirty of 2500 cosmid clones, screened by colony hybridization, gave a strong hybridization signal with the probe, but none of these conferred to the non-pathogenic bacterium, Pseudomonas fluorescens, the ability to elicit the hypersensitive response (HR) in tobacco. Southern blot analysis of EcoRI-digested genomic DNA of P. syringae pv. aptata showed hybridizing bands of 12 kb and 4.4 kb. Only a 12 kb fragment hybridized in digests of the cosmids. Cosmid clone pCPP1069 was mutagenized with Tn10-minitet and marker-exchanged into the genome of P. syringae pv. aptata. Three resulting prototrophic mutant strains failed to elicit the HR in tobacco and to cause disease in lettuce. The DNA flanking the Tn10-minitet insertions from mutated derivatives of pCPP1069 hybridized with the 10.6 kb Bg/II fragment of pHIR11. These results indicate that P. syringae pv. aptata harbours hrp genes that are similar to, but arranged differently from, homologous hrp genes of P. syringae pv. syringae.

  5. Cloning and molecular analyses of a gibberellin 20-oxidase gene expressed specifically in developing seeds of watermelon.

    Science.gov (United States)

    Kang, H G; Jun, S H; Kim, J; Kawaide, H; Kamiya, Y; An, G

    1999-10-01

    To understand the biosynthesis and functional role of gibberellins (GAs) in developing seeds, we isolated Cv20ox, a cDNA clone from watermelon (Citrullus lanatus) that shows significant amino acid homology with GA 20-oxidases. The complementary DNA clone was expressed in Escherichia coli as a fusion protein, which oxidized GA(12) at C-20 to the C(19) compound GA(9), a precursor of bioactive GAs. RNA-blot analysis showed that the Cv20ox gene was expressed specifically in developing seeds. The gene was strongly expressed in the integument tissues, and it was also expressed weakly in inner seed tissues. In parthenocarpic fruits induced by 1-(2-chloro-4-pyridyl)-3-phenylurea treatment, the expression pattern of Cv20ox did not change, indicating that the GA 20-oxidase gene is expressed primarily in the maternal cells of developing seeds. The promoter of Cv20ox was isolated and fused to the beta-glucuronidase (GUS) gene. In a transient expression system, beta-glucuronidase staining was detectable only in the integument tissues of developing watermelon seeds.

  6. Simultaneous cloning and expression of two cellulase genes from Bacillus subtilis newly isolated from Golden Takin (Budorcas taxicolor Bedfordi)

    International Nuclear Information System (INIS)

    Li, Wang; Huan, Xiajuan; Zhou, Ying; Ma, Qingyi; Chen, Yulin

    2009-01-01

    A bacterial strain with high cellulase activity was isolated of feces sample of Golden Takin (Budorcas taxicolor Bedfordi). The bacterium was classified and designated Bacillus subtilis LN by morphological and 16SrDNA gene sequence analysis. Two putative cellulase genes, CelL15 and CelL73, were simultaneously cloned from the isolated strain by PCR. The putative gene CelL15 consisted of an open reading frame (ORF) of 1470 nucleotides and encoded a protein of 490 amino acids with a molecular weight of 54 kDa. The CelL73 gene consisted of an open reading frame (ORF) of 741 nucleotides and encoded a protein of 247 amino acids with a molecular weight of 27 kDa. Both genes were purified and cloned into pET-28a for expression in Escherichia coli BL21 (DE3). The ability of E. coli to degrade cellulose was enhanced when the two recombinants were cultured together.

  7. Cloning of the staurosporine biosynthetic gene cluster from Streptomyces sp. TP-A0274 and its heterologous expression in Streptomyces lividans.

    Science.gov (United States)

    Onaka, Hiroyasu; Taniguchi, Shin-ichi; Igarashi, Yasuhiro; Furumai, Tamotsu

    2002-12-01

    Staurosporine is a representative member of indolocarbazole antibiotics. The entire staurosporine biosynthetic and regulatory gene cluster spanning 20-kb was cloned from Streptomyces sp. TP-A0274 and sequenced. The gene cluster consists of 14 ORFs and the amino acid sequence homology search revealed that it contains three genes, staO, staD, and staP, coding for the enzymes involved in the indolocarbazole aglycone biosynthesis, two genes, staG and staN, for the bond formation between the aglycone and deoxysugar, eight genes, staA, staB, staE, staJ, staI, staK, staMA, and staMB, for the deoxysugar biosynthesis and one gene, staR is a transcriptional regulator. Heterologous gene expression of a 38-kb fragment containing a complete set of the biosynthetic genes for staurosporine cloned into pTOYAMAcos confirmed its role in staurosporine biosynthesis. Moreover, the distribution of the gene for chromopyrrolic acid synthase, the key enzyme for the biosynthesis of indolocarbazole aglycone, in actinomycetes was investigated, and rebD homologs were shown to exist only in the strains producing indolocarbazole antibiotics.

  8. Integrated physical map of bread wheat chromosome arm 7DS to facilitate gene cloning and comparative studies.

    Science.gov (United States)

    Tulpová, Zuzana; Luo, Ming-Cheng; Toegelová, Helena; Visendi, Paul; Hayashi, Satomi; Vojta, Petr; Paux, Etienne; Kilian, Andrzej; Abrouk, Michaël; Bartoš, Jan; Hajdúch, Marián; Batley, Jacqueline; Edwards, David; Doležel, Jaroslav; Šimková, Hana

    2018-03-08

    Bread wheat (Triticum aestivum L.) is a staple food for a significant part of the world's population. The growing demand on its production can be satisfied by improving yield and resistance to biotic and abiotic stress. Knowledge of the genome sequence would aid in discovering genes and QTLs underlying these traits and provide a basis for genomics-assisted breeding. Physical maps and BAC clones associated with them have been valuable resources from which to generate a reference genome of bread wheat and to assist map-based gene cloning. As a part of a joint effort coordinated by the International Wheat Genome Sequencing Consortium, we have constructed a BAC-based physical map of bread wheat chromosome arm 7DS consisting of 895 contigs and covering 94% of its estimated length. By anchoring BAC contigs to one radiation hybrid map and three high resolution genetic maps, we assigned 73% of the assembly to a distinct genomic position. This map integration, interconnecting a total of 1713 markers with ordered and sequenced BAC clones from a minimal tiling path, provides a tool to speed up gene cloning in wheat. The process of physical map assembly included the integration of the 7DS physical map with a whole-genome physical map of Aegilops tauschii and a 7DS Bionano genome map, which together enabled efficient scaffolding of physical-map contigs, even in the non-recombining region of the genetic centromere. Moreover, this approach facilitated a comparison of bread wheat and its ancestor at BAC-contig level and revealed a reconstructed region in the 7DS pericentromere. Copyright © 2018. Published by Elsevier B.V.

  9. Brain cDNA clone for human cholinesterase

    International Nuclear Information System (INIS)

    McTiernan, C.; Adkins, S.; Chatonnet, A.; Vaughan, T.A.; Bartels, C.F.; Kott, M.; Rosenberry, T.L.; La Du, B.N.; Lockridge, O.

    1987-01-01

    A cDNA library from human basal ganglia was screened with oligonucleotide probes corresponding to portions of the amino acid sequence of human serum cholinesterase. Five overlapping clones, representing 2.4 kilobases, were isolated. The sequenced cDNA contained 207 base pairs of coding sequence 5' to the amino terminus of the mature protein in which there were four ATG translation start sites in the same reading frame as the protein. Only the ATG coding for Met-(-28) lay within a favorable consensus sequence for functional initiators. There were 1722 base pairs of coding sequence corresponding to the protein found circulating in human serum. The amino acid sequence deduced from the cDNA exactly matched the 574 amino acid sequence of human serum cholinesterase, as previously determined by Edman degradation. Therefore, our clones represented cholinesterase rather than acetylcholinesterase. It was concluded that the amino acid sequences of cholinesterase from two different tissues, human brain and human serum, were identical. Hybridization of genomic DNA blots suggested that a single gene, or very few genes coded for cholinesterase

  10. Cloning and Sequence Analysis of the Amylase Gene from the Rice Pest Walker and its Inhibitor from Wheat (Variety MP Sehore

    Directory of Open Access Journals (Sweden)

    Poonam Sharma

    2009-01-01

    Full Text Available Scirpophaga incertulas Walker (Lepidoptera: Pyralideae, commonly known as yellow stem borer, is a predominant monophagous pest of rice, which causes 5% to 30% loss of the rice crop. We report for the first time, the cloning and sequence analysis of the amylase gene of this pest. The cloned gene translates into a protein of 487 amino acids having a predicted molecular weight of 54,955 daltons and a theoretical pI of 5.9. The 3D structure of the amylase is predicted from its amino acid sequence by homology modeling using the structure of the amylase from Tenebrio molitor L (Coleoptera: Tenebrionidae. We also report the purification of a dimeric α-amylase inhibitor from a local variety of wheat MP Sehore that is specific for the amylase of this pest and does not inhibit human salivary amylase or porcine pancreatic amylase. The gene encoding this inhibitor has been cloned and its sequence has been analysed to find a possible explanation for this specificity.

  11. CLONING AND SEQUENCING OF THE GENE FOR A LACTOCOCCAL ENDOPEPTIDASE, AN ENZYME WITH SEQUENCE SIMILARITY TO MAMMALIAN ENKEPHALINASE

    NARCIS (Netherlands)

    Mierau, Igor; Tan, Paris S.T.; Haandrikman, Alfred J.; Kok, Jan; Leenhouts, Kees J.; Konings, Wil N.; Venema, Gerard

    The gene specifying an endopeptidase of Lactococcus lactis, named pepO, was cloned from a genomic library of L. lactis subsp. cremoris P8-247 in lambdaEMBL3 and was subsequently sequenced. pepO is probably the last gene of an operon encoding the binding-protein-dependent oligopeptide transport

  12. Cloning and sequencing of the gene for human β-casein

    International Nuclear Information System (INIS)

    Loennerdal, B.; Bergstroem, S.; Andersson, Y.; Hialmarsson, K.; Sundgyist, A.; Hernell, O.

    1990-01-01

    Human β-casein is a major protein in human milk. This protein is part of the casein micelle and has been suggested to have several physiological functions in the newborn. Since there is limited information on βcasein and the factors that affect its concentration in human milk, the authors have isolated and sequenced the gene for this protein. A human mammary gland cDNA library (Clontech) in gt 11 was screened by plaque hy-hybridization using a 42-mer synthetic 32 p-labelled oligo-nucleotide. Positive clones were identified and isolated, DNA was prepared and the gene isolated by cleavage with EcoR1. Following subcloning (PUC18), restriction mapping and Southern blotting, DNA for sequencing was prepared. The gene was sequenced by the dideoxy method. Human β-casein has 212 amino acids and the amino acid sequence deducted from the nucleotide sequence is to 91% identical to the published sequence for human β-casein show a high degree of conservation at the leader peptide and the highly phosphorylated sequences, but also deletions and divergence at several positions. These results provide insight into the structure of the human β-casein gene and will facilitate studies on factors affecting its expression

  13. Cloning and expression of clt genes encoding milk-clotting proteases from Myxococcus xanthus 422.

    Science.gov (United States)

    Poza, M; Prieto-Alcedo, M; Sieiro, C; Villa, T G

    2004-10-01

    The screening of a gene library of the milk-clotting strain Myxococcus xanthus 422 constructed in Escherichia coli allowed the description of eight positive clones containing 26 open reading frames. Only three of them (cltA, cltB, and cltC) encoded proteins that exhibited intracellular milk-clotting ability in E. coli, Saccharomyces cerevisiae, and Pichia pastoris expression systems.

  14. Cloning analysis of HBV-specific CD8 T cell receptor gene in patients with acute hepatitis B

    Directory of Open Access Journals (Sweden)

    Ning DING

    2011-05-01

    Full Text Available Objective To investigate the molecular mechanism of T cell receptor(TCR in CD8 T cell-mediated immune response to HBV in patients with acute hepatitis B(AHB.Methods Peripheral blood mononuclear cells(PBMCs were collected from HLA-A2-positive AHB patients.To determine HBsAg183-191 and HBsAg335-343-specific CD8 T cell frequencies,the PBMCs were stained by fluorescence-labeled anti-CD3,anti-CD8 and pentamers,and analyzed by flow cytometry.PBMCs from 6 patients were stimulated with epitopic peptide HBsAg335-343 in vitro for 3 to 4 weeks.HBV-specific CD8 T cells were isolated by magnetic activated cell sorting followed by flow florescence activated cell sorting.The mRNA of sorted cells was extracted after expanding by IL-2,anti-CD3 and anti-CD8.The full-length gene fragments of variable region of TCR α and β chains were gained by 5’-RACE,and then cloned and sequenced(≥50 clones for single chain of each sample.The gene families of TCR α and β chains were identified and the sequence characters of CDR3 were compared.Results Analysis of more than 600 cloned gene sequences of TCR α and β chains showed that the proliferated HBV-specific CD8 T cells from 6 AHB patients presented a predominant expression in TCR α and chains,with 2-4 α chain families and 1-4 chain families in each case.The α2,α14,α15,β3,β13 and 23 families were detected in more than one case.The chain genes were all 13 for all tested clones in one case.For the same α chain or-chain family,CDR3 sequences tended to be identical in one case but different among cases.Conclusions HBV-specific CD8 T cells with antigenic peptide-induced proliferation present predominance in the usage of TCR α and β chains.This property might be one of the important molecular factors influencing anti-HBV immunity.

  15. Identification and characterization of the human type II collagen gene (COL2A1).

    OpenAIRE

    Cheah, Kathryn; Stoker, N.G.; Griffin, J.R.; Grosveld, Frank; Solomon, E.

    1985-01-01

    textabstractThe gene contained in the human cosmid clone CosHcol1, previously designated an alpha 1(I) collagen-like gene, has now been identified. CosHcol1 hybridizes strongly to a single 5.9-kilobase mRNA species present only in tissue in which type II collagen is expressed. DNA sequence analysis shows that this clone is highly homologous to the chicken alpha 1(II) collagen gene. These data together suggest that CosHcol1 contains the human alpha 1(II) collagen gene COL2A1. The clone appears...

  16. Cloning and Sequencing of Gene Encoding Outer Membrane Lipoprotein LipL41 of Leptospira Interrogans Serovar Grippotyphosa

    Directory of Open Access Journals (Sweden)

    M.S. Soltani

    2014-12-01

    Full Text Available Background: Leptospirosis is an infectious bacterial disease caused by pathogenic serovars of Leptospira. Development of reliable and applicable diagnostic test and also recombinant vaccine for this disease require specific antigens that are highly conserved among diverse pathogenic leptospiral serovars. Outer membrane proteins(OMPs of leptospira are effective antigens which can stimulate remarkable immune responses during infection, among them LipL41 is an immunogenic lipoprotein which is present only in pathogenic serovars so it could be regarded as a good candidate for vaccine development and diagnostic method. In order to identify genetic conservation of the lipL41 gene, we cloned and sequenced this gen from Leptospira interrogans serovar vaccinal and field of Grippotyphosa. Materials and Methods: Leptospira interrogans serovar vaccinal Grippotyphosa (RTCC2808 and serovar field Grippotyphosa (RTCC2825were used to inoculate into the selective culture medium(EMJH. The genomic DNA was extracted by standard phenol-chloroform method. The lipL41 gene were amplified by specific primers and cloned into pTZ57R/T vector and transformed into the competent E. coli (Top10 cells. the extracted recombinant plasmid were sequenced. And the related sequences were subjected to homology analysis by comparing them to sequences in the Genbank database. Results: PCR amplification of the lipL41 gene resulted in the 1065 bp PCR product. DNA sequence analysis revealed that lipL41 gene between serovar vaccinal Grippotyphosa (RTCC2808and serovar field Grippotyphosa (RTCC2825 in Iran was 100%. It was also showed that the lipL41 gene had high identity (96%-100% with other pathogenic serovars submitted in Genbank database. Conclusion: The results of this study showed that the lipL41 gene was highly conserved among various pathogenic Leptospira serovars( >95.9 % identity. Hence the cloned gene could be further used for expression of recombinant protein for serodiagnosis

  17. Cloning of the PYR3 gene of Ustilago maydis and its use in DNA transformation

    Energy Technology Data Exchange (ETDEWEB)

    Banks, G.R.; Taylor, S.Y. (National Institute for Medical Research, London (England))

    1988-12-01

    The Ustilago maydis PYR3 gene encoding dihydroorotase activity was cloned by direct complementation of Escherichia coli pyrC mutations. PYR3 transformants of E. coli pyrC mutants expressed homologous transcripts of a variety of sizes and regained dihydroorotase activity. PYR3 also complemented Saccharomyces cerevisiae ura4 mutations, and again multiple transcripts were expressed in transformants, and enzyme activity was regained. A 1.25-kilobase poly(rA)+ PYR3 transcript was detected in U. maydis itself. Linear DNA carrying the PYR3 gene transformed a U. maydis pyr3-1 pyrimidine auxotroph to prototrophy. Hybridization analysis revealed that three different types of transformants could be generated, depending on the structure of the transforming DNA used. The first type involved exchange of chromosomal mutant gene sequences with the cloned wild-type plasmid sequences. A second type had integrated linear transforming DNA at the chromosomal PYR3 locus, probably via a single crossover event. The third type had integrated transforming DNA sequences at multiple sites in the U. maydis genome. In the last two types, tandemly reiterated copies of the transforming DNA were found to have been integrated. All three types had lost the sensitivity of the parental pyr3-1 mutant to UV irradiation. They had also regained dihydroorotase activity, although its level did not correlate with the PYR3 gene copy number.

  18. Molecular cloning, nucleotide sequence, and expression of the gene encoding human eosinophil differentiation factor (interleukin 5)

    International Nuclear Information System (INIS)

    Campbell, H.D.; Tucker, W.Q.J.; Hort, Y.; Martinson, M.E.; Mayo, G.; Clutterbuck, E.J.; Sanderson, C.J.; Young, I.G.

    1987-01-01

    The human eosinophil differentiation factor (EDF) gene was cloned from a genomic library in λ phage EMBL3A by using a murine EDF cDNA clone as a probe. The DNA sequence of a 3.2-kilobase BamHI fragment spanning the gene was determined. The gene contains three introns. The predicted amino acid sequence of 134 amino acids is identical with that recently reported for human interleukin 5 but shows no significant homology with other known hemopoietic growth regulators. The amino acid sequence shows strong homology (∼ 70% identity) with that of murine EDF. Recombinant human EDF, expressed from the human EDF gene after transfection into monkey COS cells, stimulated the production of eosinophils and eosinophil colonies from normal human bone marrow but had no effect on the production of neutrophils or mononuclear cells (monocytes and lymphoid cells). The apparent specificity of human EDF for the eosinophil lineage in myeloid hemopoiesis contrasts with the properties of human interleukin 3 and granulocyte/macrophage and granulocyte colony-stimulating factors but is directly analogous to the biological properties of murine EDF. Human EDF therefore represents a distinct hemopoietic growth factor that could play a central role in the regulation of eosinophilia

  19. Molecular cloning of a recA-like gene from the cyanobacterium Anabaena variabilis

    International Nuclear Information System (INIS)

    Owttrim, G.W.; Coleman, J.R.

    1987-01-01

    A recA-like gene isolated from the cyanobacterium Anabaena variabilis was cloned and partially characterized. When introduced into Escherichia coli recA mutants, the 7.5-kilobase-pair plasmid-borne DNA insert restored resistance to methyl methanesulfonate and UV irradiation, as well as recombination proficiency when measured by Hfr-mediated conjugation. The cyanobacterial recA gene restored spontaneous but not mitomycin C-induced prophage production. Restriction analysis and subcloning yielded a 1.5-kilobase-pair Sau3A fragment which also restored methylmethane sulfonate resistance and coded for a 38- to 40-kilodalton polypeptide when expressed in an in vitro transcription-translation system

  20. Six cloned calves produced from adult fibroblast cells after long-term culture

    Science.gov (United States)

    Kubota, Chikara; Yamakuchi, Hiroshi; Todoroki, Junichi; Mizoshita, Kazunori; Tabara, Norio; Barber, Michele; Yang, Xiangzhong

    2000-01-01

    Cloning whole animals with somatic cells as parents offers the possibility of targeted genetic manipulations in vitro such as “gene knock-out” by homologous recombination. However, such manipulation requires prolonged culture of nuclear donor cells. Previous successes in cloning have been limited to the use of cells collected either fresh or after short-term culture. Therefore, demonstration of genetic totipotency of cells after prolonged culture is pivotal to combining site-specific genetic manipulations and cloning. Here we report birth of six clones of an aged (17-year-old) Japanese Black Beef bull using ear skin fibroblast cells as nuclear donor cells after up to 3 months of in vitro culture (10–15 passages). We observed higher developmental rates for embryos derived from later passages (10 and 15) as compared with those embryos from an early passage (passage 5). The four surviving clones are now 10–12 months of age and appear normal, similar to their naturally reproduced peers. These data show that fibroblasts of aged animals remain competent for cloning, and prolonged culture does not affect the cloning competence of adult somatic donor cells. PMID:10655472

  1. Cloning and characterisation of the sagA gene of Aspergillus nidulans: a gene which affects sensitivity to DNA-damaging agents.

    Science.gov (United States)

    Jones, G W; Hooley, P; Farrington, S M; Shawcross, S G; Iwanejko, L A; Strike, P

    1999-03-01

    Mutations within the sagA gene of Aspergillus nidulans cause sensitisation to DNA-damaging chemicals but have no effect upon spontaneous or damage-induced mutation frequency. The sagA gene was cloned on a 19-kb cosmid-derived fragment by functional complementation of a sagA1 sagC3 double mutant; subsequently, a fragment of the gene was also isolated on a 3.9-kb genomic subclone. Initial sequencing of a small section of the 19-kb fragment allowed the design of primers that were subsequently used in RTPCR experiments to show that this DNA is transcribed. A 277-bp fragment derived from the transcribed region was used to screen an A. nidulans cDNA library, resulting in the isolation of a 1.4-kb partial cDNA clone which had sequence overlap with the genomic sagA fragment. This partial cDNA was incomplete but appeared to contain the whole coding region of sagA. The sagA1 mutant was shown to possess two mutations; a G-T transversion and a+ 1 frameshift due to insertion of a T. causing disruption to the C-terminal region of the SagA protein. Translation of the sagA cDNA predicts a protein of 378 amino acids, which has homology to the Saccharomyces cerevisiae End3 protein and also to certain mammalian proteins capable of causing cell transformation.

  2. Cloning and Molecular Analyses of a Gibberellin 20-Oxidase Gene Expressed Specifically in Developing Seeds of Watermelon1

    Science.gov (United States)

    Kang, Hong-Gyu; Jun, Sung-Hoon; Kim, Junyul; Kawaide, Hiroshi; Kamiya, Yuji; An, Gynheung

    1999-01-01

    To understand the biosynthesis and functional role of gibberellins (GAs) in developing seeds, we isolated Cv20ox, a cDNA clone from watermelon (Citrullus lanatus) that shows significant amino acid homology with GA 20-oxidases. The complementary DNA clone was expressed in Escherichia coli as a fusion protein, which oxidized GA12 at C-20 to the C19 compound GA9, a precursor of bioactive GAs. RNA-blot analysis showed that the Cv20ox gene was expressed specifically in developing seeds. The gene was strongly expressed in the integument tissues, and it was also expressed weakly in inner seed tissues. In parthenocarpic fruits induced by 1-(2-chloro-4-pyridyl)-3-phenylurea treatment, the expression pattern of Cv20ox did not change, indicating that the GA 20-oxidase gene is expressed primarily in the maternal cells of developing seeds. The promoter of Cv20ox was isolated and fused to the β-glucuronidase (GUS) gene. In a transient expression system, β-glucuronidase staining was detectable only in the integument tissues of developing watermelon seeds. PMID:10517828

  3. Integrative annotation of 21,037 human genes validated by full-length cDNA clones.

    Directory of Open Access Journals (Sweden)

    Tadashi Imanishi

    2004-06-01

    Full Text Available The human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/. It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs, identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4% of the human genome sequence (National Center for Biotechnology Information build 34 assembly may contain misassembled or missing regions. We found that 6.5% of the human gene candidates (1,377 loci did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for non-protein-coding RNA

  4. Cloning of smac gene and its overexpression effects on radiosensitivity of HeLa cells to γ-rays

    International Nuclear Information System (INIS)

    Zhao Baofeng; Tian Mei; Lei Hongwei; Su Xu

    2006-01-01

    Objective: To clone smac gene and construct eukaryocytic expression vector pcDNA3.1/ smac. The smac gene was transfected into HeLa cells to explore the effects of over-expression of extrinsic smac gene on radiosensitivity to γ-rays of HeLa cells. Methods: The full-length smac gene was amplified from total RNA of HeLa cells by RTPCR. The RTPCR product was ligated with the vector pcDNA3.1 and sequenced. The correct pcDNA3.1/smac was transfected into HeLa cells. The expression of smac gene was tested by RTPCR and Western blot. The cellular growth inhibition rates were evaluated by MTT 48 horns after irradiation with different doses of γ-rays. Results: Recombinant eukaryocytic expression vector pcDNA3.1/smac was successfully constructed. RTPCR and Western blot results indicated that the expression of smac gene of HeLa/smac cells was significantly enhanced compared with the expression of smac gene of HeLa/pcDNA3.1 and HeLa cells. 48 hours after different doses of γ-ray irradiation was significantly higher in pcDNA3.1/smac transfected HeLa/smac cells than those of non-transfected HeLa cells or pcDNA3.1 transfected HeLa/pcDNA3.1 cells, inhabitation rates were 38.85%, 17.64% and 20.32%, respectively. Conclusions: smac gene was successfully cloned. Extrinsic smac gene over-expression could significantly enhance radiosensitivity to γ-ray of HeLa cells, which would herald a new approach to improve radiosensitivity of cervical cancer. (authors)

  5. Cloning of the Bacillus subtilis recE+ gene and functional expression of recE+ in B. subtilis

    International Nuclear Information System (INIS)

    Marrero, R.; Yasbin, R.E.

    1988-01-01

    By use of the Bacillus subtilis bacteriophage cloning vehicle Phi 105J23, B. subtilis chromosomal MboI fragments have been cloned that alleviate the pleiotropic effects of the recE4 mutation. The recombinant bacteriophages Phi 105Rec Phi1 (3.85-kilobase insert) and Phi 105Rec Phi4 (3.3-kilobase insert) both conferred on the recE4 strain YB1015 resistance to ethylmethane sulfonate, methylmethane sulfonate, mitomycin C, and UV irradiation comparable with the resistance observed in recE + strains. While strain YB1015 (recE4) and its derivatives lysogenized with bacteriophage Phi105J23 were not transformed to prototrophy by B. subtilis chromosomal DNA, strain YB1015 lysogenized with either Phi 105Rec Phi 1 or Phi 105RecPhi 4 was susceptible to transformation with homologous B. subtilis chromosomal DNA. The heteroimmune prophages Phi 105 and SPO2 were essentially uninducible in strain YB1015. Significantly, both recombinant prophages Phi 105RecPhi 1 and Phi 105Rec Phi 4 were fully inducible and allowed the spontaneous and mitomycin C-dependent induction of a coresident SPO2 prophage in a recE4 host. The presence of the recombinant prophages also restored the ability of din genes to be induced in strains carrying the recE4 mutation. Finally, both recombinant bacteriophages elaborated a mitomycin C-inducible, 45-kilodalton protein that was immunoreactive with Escherichia coli recA + gene product antibodies. Collectively, these data demonstrate that the recE + gene has been cloned and that this gene elaborates the 45-kilodalton protein that is involved in SOB induction and homologous recombination

  6. Cloning and sequence of the human adrenodoxin reductase gene

    International Nuclear Information System (INIS)

    Lin, Dong; Shi, Y.; Miller, W.L.

    1990-01-01

    Adrenodoxin reductase is a flavoprotein mediating electron transport to all mitochondrial forms of cytochrome P450. The authors cloned the human adrenodoxin reductase gene and characterized it by restriction endonuclease mapping and DNA sequencing. The entire gene is approximately 12 kilobases long and consists of 12 exons. The first exon encodes the first 26 of the 32 amino acids of the signal peptide, and the second exon encodes the remainder of signal peptide and the apparent FAD binding site. The remaining 10 exons are clustered in a region of only 4.3 kilobases, separated from the first two exons by a large intron of about 5.6 kilobases. Two forms of human adrenodoxin reductase mRNA, differing by the presence or absence of 18 bases in the middle of the sequence, arise from alternate splicing at the 5' end of exon 7. This alternately spliced region is directly adjacent to the NADPH binding site, which is entirely contained in exon 6. The immediate 5' flanking region lacks TATA and CAAT boxes; however, this region is rich in G+C and contains six copies of the sequence GGGCGGG, resembling promoter sequences of housekeeping genes. RNase protection experiments show that transcription is initiated from multiple sites in the 5' flanking region, located about 21-91 base pairs upstream from the AUG translational initiation codon

  7. Biodiversity versus cloning

    International Nuclear Information System (INIS)

    Jaramillo T, Jose Hernan

    1998-01-01

    The announcement has been made on the cloning of mice in these days and he doesn't stop to miss, because the world lives a stage where conscience of the protection is creating that should be given to the biodiversity. It is known that alone we won't subsist and the protection of the means and all that contains that environment is of vital importance for the man. But it is also known that the vegetables and animal transgenic that they come to multiply the species have appeared that we prepare. The transgenic has been altered genetically, for substitution of one or more genes of other species, inclusive human genes. This represents an improvement compared with the investigations that gave origin to the cloning animal. But it is necessary to notice that to it you arrived through the cloning. This year 28 million hectares have been sowed in cultivations of transgenic seeds and there is around 700 bovine transgenic whose milk contains a necessary protein in the treatment of the man's illnesses

  8. The human MCP-2 gene (SCYA8): Cloning, sequence analysis, tissue expression, and assignment to the CC chemokine gene contig on chromosome 17q11.2

    Energy Technology Data Exchange (ETDEWEB)

    Van Coillie, E.; Fiten, P.; Van Damme, J.; Opdenakker, G. [Univ. of Leuven (Belgium)] [and others

    1997-03-01

    Monocyte chemotactic proteins (MCPs) form a subfamily of chemokines that recruit leukocytes to sites of inflammation and that may contribute to tumor-associated leukocyte infiltration and to the antiviral state against HIV infection. With the use of degenerate primers that were based on CC chemokine consensus sequences, the known MIP-1{alpha}/LD78{alpha}, MCP-1, and MCP-3 genes and the previously unidentified eotaxin and MCP-2 genes were isolated from a YAC contig from human chromosome 17q11.2. The amplified genomic MCP-2 fragment was used to isolate an MCP-2 cosmid from which the gene sequence was determined. The MCP-2 gene shares with the MCP-1 and MCP-3 genes a conserved intron-exon structure and a coding nucleotide sequence homology of 77%. By Northern blot analysis the 1.0-kb MCP-2 mRNA was predominantly detectable in the small intestine, peripheral blood, heart, placenta, lung, skeletal muscle, ovary, colon, spinal cord, pancreas, and thymus. Transcripts of 1.5 and 2.4 kb were found in the testis, the small intestine, and the colon. The isolation of the MCP-2 gene from the chemokine contig localized it on YAC clones of chromosome 17q11.2, which also contain the eotaxin, MCP-1, MCP-3, and NCC-1/MCP-4 genes. The combination of using degenerate primer PCR and YACs illustrates that novel genes can efficiently be isolated from gene cluster contigs with less redundancy and effort than the isolation of novel ESTs. 42 refs., 5 figs., 2 tabs.

  9. Cloning and expression of 130-kd mosquito-larvicidal delta-endotoxin gene of Bacillus thuringiensis var. Israelensis in Escherichia coli.

    Science.gov (United States)

    Angsuthanasombat, C; Chungjatupornchai, W; Kertbundit, S; Luxananil, P; Settasatian, C; Wilairat, P; Panyim, S

    1987-07-01

    Five recombinant E. coli clones exhibiting toxicity to Aedes aegypti larvae were obtained from a library of 800 clones containing XbaI DNA fragments of 110 kb plasmid from B. thuringiensis var. israelensis. All the five clones (pMU 14/258/303/388/679) had the same 3.8-kb insert and encoded a major protein of 130 kDa which was highly toxic to A. aegypti larvae. Three clones (pMU 258/303/388) transcribed the 130 kD a gene in the same direction as that of lac Z promoter of pUC12 vector whereas the transcription of the other two (pMU 14/679) was in the opposite direction. A 1.9-kb fragment of the 3.8 kb insert coded for a protein of 65 kDa. Partial DNA sequence of the 3.8 kb insert, corresponding to the 5'-terminal of the 130 kDa gene, revealed a continuous reading frame, a Shine-Dalgarno sequence and a tentative 5'-regulatory region. These results demonstrated that the 3.8 kb insert is a minimal DNA fragment containing a regulatory region plus the coding sequence of the 130 kDa protein that is highly toxic to mosquito larvae.

  10. Cloning and functional characterization of SAD genes in potato.

    Science.gov (United States)

    Li, Fei; Bian, Chun Song; Xu, Jian Fei; Pang, Wan Fu; Liu, Jie; Duan, Shao Guang; Lei, Zun-Guo; Jiwan, Palta; Jin, Li-Ping

    2015-01-01

    Stearoyl-acyl carrier protein desaturase (SAD), locating in the plastid stroma, is an important fatty acid biosynthetic enzyme in higher plants. SAD catalyzes desaturation of stearoyl-ACP to oleyl-ACP and plays a key role in determining the homeostasis between saturated fatty acids and unsaturated fatty acids, which is an important player in cold acclimation in plants. Here, four new full-length cDNA of SADs (ScoSAD, SaSAD, ScaSAD and StSAD) were cloned from four Solanum species, Solanum commersonii, S. acaule, S. cardiophyllum and S. tuberosum, respectively. The ORF of the four SADs were 1182 bp in length, encoding 393 amino acids. A sequence alignment indicated 13 amino acids varied among the SADs of three wild species. Further analysis showed that the freezing tolerance and cold acclimation capacity of S. commersonii are similar to S. acaule and their SAD amino acid sequences were identical but differed from that of S. cardiophyllum, which is sensitive to freezing. Furthermore, the sequence alignments between StSAD and ScoSAD indicated that only 7 different amino acids at residues were found in SAD of S. tuberosum (Zhongshu8) against the protein sequence of ScoSAD. A phylogenetic analysis showed the three wild potato species had the closest genetic relationship with the SAD of S. lycopersicum and Nicotiana tomentosiformis but not S. tuberosum. The SAD gene from S. commersonii (ScoSAD) was cloned into multiple sites of the pBI121 plant binary vector and transformed into the cultivated potato variety Zhongshu 8. A freeze tolerance analysis showed overexpression of the ScoSAD gene in transgenic plants significantly enhanced freeze tolerance in cv. Zhongshu 8 and increased their linoleic acid content, suggesting that linoleic acid likely plays a key role in improving freeze tolerance in potato plants. This study provided some new insights into how SAD regulates in the freezing tolerance and cold acclimation in potato.

  11. Cloning and functional characterization of SAD genes in potato.

    Directory of Open Access Journals (Sweden)

    Fei Li

    Full Text Available Stearoyl-acyl carrier protein desaturase (SAD, locating in the plastid stroma, is an important fatty acid biosynthetic enzyme in higher plants. SAD catalyzes desaturation of stearoyl-ACP to oleyl-ACP and plays a key role in determining the homeostasis between saturated fatty acids and unsaturated fatty acids, which is an important player in cold acclimation in plants. Here, four new full-length cDNA of SADs (ScoSAD, SaSAD, ScaSAD and StSAD were cloned from four Solanum species, Solanum commersonii, S. acaule, S. cardiophyllum and S. tuberosum, respectively. The ORF of the four SADs were 1182 bp in length, encoding 393 amino acids. A sequence alignment indicated 13 amino acids varied among the SADs of three wild species. Further analysis showed that the freezing tolerance and cold acclimation capacity of S. commersonii are similar to S. acaule and their SAD amino acid sequences were identical but differed from that of S. cardiophyllum, which is sensitive to freezing. Furthermore, the sequence alignments between StSAD and ScoSAD indicated that only 7 different amino acids at residues were found in SAD of S. tuberosum (Zhongshu8 against the protein sequence of ScoSAD. A phylogenetic analysis showed the three wild potato species had the closest genetic relationship with the SAD of S. lycopersicum and Nicotiana tomentosiformis but not S. tuberosum. The SAD gene from S. commersonii (ScoSAD was cloned into multiple sites of the pBI121 plant binary vector and transformed into the cultivated potato variety Zhongshu 8. A freeze tolerance analysis showed overexpression of the ScoSAD gene in transgenic plants significantly enhanced freeze tolerance in cv. Zhongshu 8 and increased their linoleic acid content, suggesting that linoleic acid likely plays a key role in improving freeze tolerance in potato plants. This study provided some new insights into how SAD regulates in the freezing tolerance and cold acclimation in potato.

  12. Molecular cloning and expression analysis of three omega-6 desaturase genes from purslane (Portulaca oleracea L.).

    Science.gov (United States)

    Teixeira, M C; Coelho, N; Olsson, M E; Brodelius, P E; Carvalho, I S; Brodelius, M

    2009-07-01

    Two full-length cDNA clones of PoleFAD2 and one full-length cDNA clone of PoleFAD6, encoding omega-6 fatty acid desaturases, the key enzymes for the conversion of oleic into linoleic acid, were isolated from purslane (Portulaca oleracea L.) leaves and seeds. The deduced amino acid sequence of both isoforms of PoleFAD2 showed higher similarities to other microsomal omega-6 desaturases then to PoleFAD6 or other plastidial orthologues, and vice versa. Expression analysis by RT-PCR showed that all genes are expressed in all tissues of purslane tested, but higher levels of mRNA accumulation were detected in reproductive organs and cells that proliferate rapidly or store lipids. Wounding affected the levels of mRNA accumulation of both, FAD2 and FAD6 genes in purslane leaves, while chilling stress affected only FAD2 transcript level. The expression patterns observed reflect the discrete roles of these genes in membrane synthesis for cell division, thylakoid development, and lipid storage or in the biosynthetic pathway for the production of signaling molecules that influence plant development or defense.

  13. Cloning and functional analysis of 5'-upstream region of the Pokemon gene.

    Science.gov (United States)

    Yang, Yutao; Zhou, Xiaowei; Zhu, Xudong; Zhang, Chuanfu; Yang, Zhixin; Xu, Long; Huang, Peitang

    2008-04-01

    Pokemon, the POK erythroid myeloid ontogenic factor, not only regulates the expression of many genes, but also plays an important role in cell tumorigenesis. To investigate the molecular mechanism regulating expression of the Pokemon gene in humans, its 5'-upstream region was cloned and analyzed. Transient analysis revealed that the Pokemon promoter is constitutive. Deletion analysis and a DNA decoy assay indicated that the NEG-U and NEG-D elements were involved in negative regulation of the Pokemon promoter, whereas the POS-D element was mainly responsible for its strong activity. Electrophoretic mobility shift assays suggested that the NEG-U, NEG-D and POS-D elements were specifically bound by the nuclear extract from A549 cells in vitro. Mutation analysis demonstrated that cooperation of the NEG-U and NEG-D elements led to negative regulation of the Pokemon promoter. Moreover, the NEG-U and NEG-D elements needed to be an appropriate distance apart in the Pokemon promoter in order to cooperate. Taken together, our results elucidate the mechanism underlying the regulation of Pokemon gene transcription, and also define a novel regulatory sequence that may be used to decrease expression of the Pokemon gene in cancer gene therapy.

  14. Cloning and sequence analysis of a partial CDS of leptospiral ligA gene in pET-32a - Escherichia coli DH5α system

    Directory of Open Access Journals (Sweden)

    Manju Soman

    2018-04-01

    Full Text Available Aim: This study aims at cloning, sequencing, and phylogenetic analysis of a partial CDS of ligA gene in pET-32a - Escherichia coli DH5α system, with the objective of identifying the conserved nature of the ligA gene in the genus Leptospira. Materials and Methods: A partial CDS (nucleotide 1873 to nucleotide 3363 of the ligA gene was amplified from genomic DNA of Leptospira interrogans serovar Canicola by polymerase chain reaction (PCR. The PCR-amplified DNA was cloned into pET-32a vector and transformed into competent E. coli DH5α bacterial cells. The partial ligA gene insert was sequenced and the nucleotide sequences obtained were aligned with the published ligA gene sequences of other Leptospira serovars, using nucleotide BLAST, NCBI. Phylogenetic analysis of the gene sequence was done by maximum likelihood method using Mega 6.06 software. Results: The PCR could amplify the 1491 nucleotide sequence spanning from nucleotide 1873 to nucleotide 3363 of the ligA gene and the partial ligA gene could be successfully cloned in E. coli DH5α cells. The nucleotide sequence when analyzed for homology with the reported gene sequences of other Leptospira serovars was found to have 100% homology to the 1910 bp to 3320 bp sequence of ligA gene of L. interrogans strain Kito serogroup Canicola. The predicted protein consisted of 470 aminoacids. Phylogenetic analysis revealed that the ligA gene was conserved in L. interrogans species. Conclusion: The partial ligA gene could be successfully cloned and sequenced from E. coli DH5α cells. The sequence showed 100% homology to the published ligA gene sequences. The phylogenetic analysis revealed the conserved nature of the ligA gene. Further studies on the expression and immunogenicity of the partial LigA protein need to be carried out to determine its competence as a subunit vaccine candidate.

  15. Cloning and analysis of calmodulin gene from Porphyra yezoensis Ueda (Bangiales, Rhodophyta)

    Science.gov (United States)

    Wang, Mengqiang; Mao, Yunxiang; Zhuang, Yunyun; Kong, Fanna; Sui, Zhenghong

    2009-09-01

    In order to understand the mechanisms of signal transduction and anti-desiccation mechanisms of Porphyra yezoensis, cDNA and its genomic sequence of Calmodulin gene (CaM) was cloned by the technique of polymerase chain reaction (PCR) based on the analysis of P. yezoensis ESTs from dbEST database. The result shows that the full-length cDNA of CaM consists of 603 bps including an ORF encoding for 151 amino acids and a terminate codon UGA, while the length of genomic sequence is 1231 bps including 2 exons and 1 intron. The average GC content of the coding region is 58.77%, while the GC content of the third position of this gene is as high as 82.23%. Four Ca2+ binding sites (EF-hand) are found in this gene. The predicted molecular mass of the deduced peptide is 16688.72 Da and the pI is 4.222. By aligning with known CaM genes, the similarity of CaM gene sequence with homologous genes in Chlamydomonas incerta and Chlamydomonas reinhardtii is 72.7% and 72.2% respectively, and the similarity of the deduced amino acid sequence of CaM gene with homologous genes in C. incerta and C. reinhardtii are both 71.5%. This is the first report on CaM from a species of Rhodophyta.

  16. Alternative splicing of human elastin mRNA indicated by sequence analysis of cloned genomic and complementary DNA

    International Nuclear Information System (INIS)

    Indik, Z.; Yeh, H.; Ornstein-goldstein, N.; Sheppard, P.; Anderson, N.; Rosenbloom, J.C.; Peltonen, L.; Rosenbloom, J.

    1987-01-01

    Poly(A) + RNA, isolated from a single 7-mo fetal human aorta, was used to synthesize cDNA by the RNase H method, and the cDNA was inserted into λgt10. Recombinant phage containing elastin sequences were identified by hybridization with cloned, exon-containing fragments of the human elastin gene. Three clones containing inserts of 3.3, 2.7, and 2.3 kilobases were selected for further analysis. Three overlapping clones containing 17.8 kilobases of the human elastin gene were also isolated from genomic libraries. Complete sequence analysis of the six clones demonstrated that: (i) the cDNA encompassed the entire translated portion of the mRNA encoding 786 amino acids, including several unusual hydrophilic amino acid sequences not previously identified in porcine tropoelastin, (ii) exons encoding either hydrophobic or crosslinking domains in the protein alternated in the gene, and (iii) a great abundance of Alu repetitive sequences occurred throughout the introns. The data also indicated substantial alternative splicing of the mRNA. These results suggest the potential for significant variation in the precise molecular structure of the elastic fiber in the human population

  17. Cloning, recombinant expression and characterization of a new ...

    African Journals Online (AJOL)

    A new amylase gene APGA1 was cloned from Aureobasidium pullulans NRRL 12974 and expressed in Pichia pastoris. This is the first report on cloning and expression of amylolytic gene from the industrially important microorganism A. pullulans. The purified recombinant protein with MW of 66 kDa and specific activity of ...

  18. [Cloning, prokaryotic expression and antibacterial assay of Tenecin gene encoding an antibacterial peptide from Tenebrio molitor].

    Science.gov (United States)

    Liu, Ying; Jiang, Yu-xin; Li, Chao-pin

    2011-12-01

    To clone tenecin gene, an antibacterial peptide gene, from Tenebrio molitor for its prokaryotic expression and explore the molecular mechanism for regulating the expression of antibacterial peptide in Tenebrio molitor larvae. The antibacterial peptide was induced from the larvae of Tenebrio molitor by intraperitoneal injection of Escherichia coli DH-5α (1×10(8)/ml). RT-PCR was performed 72 h after the injection to clone Tenecin gene followed by sequencing and bioinformatic analysis. The recombinant expression vector pET-28a(+)-Tenecin was constructed and transformed into E. coli BL21(DE3) cells and the expression of tenecin protein was observed after IPTG induction. Tenecin expression was detected in transformed E.coli using SDS-PAGE after 1 mmol/L IPTG induction. Tenecin gene, which was about 255 bp in length, encoded Tenecin protein with a relative molecular mass of 9 kD. Incubation of E.coli with 80, 60, 40, and 20 µg/ml tenecin for 18 h resulted in a diameter of the inhibition zone of 25.1∓0.03, 20.7∓0.06, 17.2∓0.11 and 9.3∓0.04 mm, respectively. Tenecin protein possesses strong antibacterial activity against E. coli DH-5α, which warrants further study of this protein for its potential as an antibacterial agent in clinical application.

  19. Cloning and characterization of genes involved in nostoxanthin biosynthesis of Sphingomonas elodea ATCC 31461.

    Directory of Open Access Journals (Sweden)

    Liang Zhu

    Full Text Available Most Sphingomonas species synthesize the yellow carotenoid nostoxanthin. However, the carotenoid biosynthetic pathway of these species remains unclear. In this study, we cloned and characterized a carotenoid biosynthesis gene cluster containing four carotenogenic genes (crtG, crtY, crtI and crtB and a β-carotene hydroxylase gene (crtZ located outside the cluster, from the gellan-gum producing bacterium Sphingomonas elodea ATCC 31461. Each of these genes was inactivated, and the biochemical function of each gene was confirmed based on chromatographic and spectroscopic analysis of the intermediates accumulated in the knockout mutants. Moreover, the crtG gene encoding the 2,2'-β-hydroxylase and the crtZ gene encoding the β-carotene hydroxylase, both responsible for hydroxylation of β-carotene, were confirmed by complementation studies using Escherichia coli producing different carotenoids. Expression of crtG in zeaxanthin and β-carotene accumulating E. coli cells resulted in the formation of nostoxanthin and 2,2'-dihydroxy-β-carotene, respectively. Based on these results, a biochemical pathway for synthesis of nostoxanthin in S. elodea ATCC 31461 is proposed.

  20. Cloning and characterization of genes involved in nostoxanthin biosynthesis of Sphingomonas elodea ATCC 31461.

    Science.gov (United States)

    Zhu, Liang; Wu, Xuechang; Li, Ou; Qian, Chaodong; Gao, Haichun

    2012-01-01

    Most Sphingomonas species synthesize the yellow carotenoid nostoxanthin. However, the carotenoid biosynthetic pathway of these species remains unclear. In this study, we cloned and characterized a carotenoid biosynthesis gene cluster containing four carotenogenic genes (crtG, crtY, crtI and crtB) and a β-carotene hydroxylase gene (crtZ) located outside the cluster, from the gellan-gum producing bacterium Sphingomonas elodea ATCC 31461. Each of these genes was inactivated, and the biochemical function of each gene was confirmed based on chromatographic and spectroscopic analysis of the intermediates accumulated in the knockout mutants. Moreover, the crtG gene encoding the 2,2'-β-hydroxylase and the crtZ gene encoding the β-carotene hydroxylase, both responsible for hydroxylation of β-carotene, were confirmed by complementation studies using Escherichia coli producing different carotenoids. Expression of crtG in zeaxanthin and β-carotene accumulating E. coli cells resulted in the formation of nostoxanthin and 2,2'-dihydroxy-β-carotene, respectively. Based on these results, a biochemical pathway for synthesis of nostoxanthin in S. elodea ATCC 31461 is proposed.

  1. Omission and Resupply of Nitrogen Affect Physiological and Enzymatic Activities and the Gene Expression of Eucalypt Clones

    Directory of Open Access Journals (Sweden)

    Loane Vaz Fernandes

    Full Text Available ABSTRACT: The mineral nutrient uptake of plants in the field occurs in pulses, due to variations in the substance concentrations at the root surface. The fluctuations in nutrient supply probably induce changes in the plant, which are to date unknown for Eucalyptus. This study evaluated these changes in plant growth, nutritional status, photosynthesis, and gene expression, which can serve as biomarkers of the nitrogen status, of four eucalypt clones exposed to N omission and resupply. A greenhouse experiment with four Eucalyptus clones was installed, and after initial growth exposed to N omission for 21 d, followed by N resupply in nutrient solution for 14 d. Nitrogen omission decreased the total N and photosynthetic pigments, net photosynthesis and photochemical dissipation, and increased enzyme activity especially in leaves and the gene expression in leaves and roots. Nitrogen resupply decreased these variations, indicating recovery. The total N concentration was highly and significantly correlated with net photosynthesis, enzyme activity, expression of genes GS2;1 and Gln1;3 in the leaves and AMT1;2 in the roots, contents of chlorophyll a and b, and photochemical energy dissipation. The enzymes GS and NR in the leaves and the genes AMT1;2, GS2;1 and Gln1;3 proved to be sensitive N indicators.

  2. Cloning of a novel transcription factor-like gene amplified in human glioma including astrocytoma grade I

    NARCIS (Netherlands)

    Fischer, U.; Heckel, D.; Michel, A.; Janka, M.; Hulsebos, T.; Meese, E.

    1997-01-01

    Gene amplification, which is generally considered to occur late in tumor development, is a common feature of high grade glioma. Up until now, there have been no reports on amplification in astrocytoma grade I. In this study, we report cloning and sequencing of a cDNA termed glioma-amplified sequence

  3. Cloning, characterization, expression analysis and inhibition studies of a novel gene encoding Bowman-Birk type protease inhibitor from rice bean

    Science.gov (United States)

    This paper presents the first study describing the isolation, cloning and characterization of a full length gene encoding Bowman-Birk protease inhibitor (RbTI) from rice bean (Vigna umbellata). A full-length protease inhibitor gene with complete open reading frame of 327bp encoding 109 amino acids w...

  4. Cloning, expression, and characterization of cadmium and manganese uptake genes from Lactobacillus plantarum

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Z.; Chen, S.; Wilson, D.B.

    1999-11-01

    An Mn{sup 2+} and Cd{sup 2+} uptake gene, mntA, was cloned from Lactobacillus plantarum ATCC 14917 into Escherichia coli. Its expression conferred on E. coli cells increased Cd{sup 2+} sensitivity as well as energy-dependent Cd{sup 2+} uptake activity. Both transcription and translation of mntA were induced by Mn{sup 2+} starvation in L. plantarum, as indicated by reverse transcriptase PCR and immunoblotting. Two Cd{sup 2+} uptake systems have been identified in L. plantarum: one is a high-affinity Mn{sup 2+} and Cd{sup 2+} uptake system that is expressed in Mn{sup 2+}-starved cells, and the other is a nonsaturable Cd{sup 2+} uptake system that is expressed in Cd{sup 2+}-sufficient cells. MntA was not detected in an Mn{sup 2+}-dependent mutant of L. plantarum which had lost high-affinity Mn{sup 2+} and Cd{sup 2+} uptake activity. The results suggest that mntA is the gene encoding the high-affinity Mn{sup 2+} and Cd{sup 2+} transporter. On the basis of its predicted amino acid sequence, MntA belongs to the family of P-type cation-translocating ATPases. The topology and potential Mn{sup 2+}- and Cd{sup 2+}-binding sites of MntA are discussed. A second clone containing a low-affinity Cd{sup 2+} transport system was also isolated.

  5. An innovative strategy to clone positive modifier genes of defects caused by mtDNA mutations: MRPS18C as suppressor gene of m.3946G>A mutation in MT-ND1 gene.

    Science.gov (United States)

    Rodríguez-García, María Elena; Cotrina-Vinagre, Francisco Javier; Carnicero-Rodríguez, Patricia; Martínez-Azorín, Francisco

    2017-07-01

    We have developed a new functional complementation approach to clone modifier genes which overexpression is able to suppress the biochemical defects caused by mtDNA mutations (suppressor genes). This strategy consists in transferring human genes into respiratory chain-deficient fibroblasts, followed by a metabolic selection in a highly selective medium. We used a normalized expression cDNA library in an episomal vector (pREP4) to transfect the fibroblasts, and a medium with glutamine and devoid of any carbohydrate source to select metabolically. Growing the patient's fibroblasts in this selective medium, the deficient cells rapidly disappear unless they are rescued by the cDNA of a suppressor gene. The use of an episomal vector allows us to carry out several rounds of transfection/selection (cyclical phenotypic rescue) to enrich the rescue with true clones of suppressor genes. Using fibroblasts from a patient with epileptic encephalopathy with the m.3946G>A (p.E214K) mutation in the MT-ND1 gene, several candidate genes were identified and one of them was characterized functionally. Thus, overexpression of MRPS18C gene (that encode for bS18m protein) suppressed the molecular defects produced by this mtDNA mutation, recovering the complex I activity and reducing the ROS produced by this complex to normal levels. We suggest that modulation of bS18m expression may be an effective therapeutic strategy for the patients with this mutation.

  6. Cloning and expression of three thaumatin-like protein genes from Polyporus umbellatus

    Directory of Open Access Journals (Sweden)

    Mengmeng Liu

    2017-05-01

    Full Text Available Genes encoding thaumatin-like protein (TLPs are frequently found in fungal genomes. However, information on TLP genes in Polyporus umbellatus is still limited. In this study, three TLP genes were cloned from P. umbellatus. The full-length coding sequence of PuTLP1, PuTLP2 and PuTLP3 were 768, 759 and 561 bp long, respectively, encoding for 256, 253 and 187 amino acids. Phylogenetic trees showed that P. umbellatus PuTLP1, PuTLP2 and PuTLP3 were clustered with sequences from Gloeophyllum trabeum, Trametes versicolor and Stereum hirsutum, respectively. The expression patterns of the three TLP genes were higher in P. umbellatus with Armillaria mellea infection than in the sclerotia without A. mellea. Furthermore, over-expression of three PuTLPs were carried out in Escherichia coli BL21 (DE3 strain, and high quality proteins were obtained using Ni-NTA resin that can be used for preparation of specific antibodies. These results suggest that PuTLP1, PuTLP2 and PuTLP3 in P. umbellatus may be involved in the defense response to A. mellea infections.

  7. Molecular cloning and analysis of zebrafish voltage-gated sodium channel beta subunit genes: implications for the evolution of electrical signaling in vertebrates

    Directory of Open Access Journals (Sweden)

    Zhong Tao P

    2007-07-01

    Full Text Available Abstract Background Action potential generation in excitable cells such as myocytes and neurons critically depends on voltage-gated sodium channels. In mammals, sodium channels exist as macromolecular complexes that include a pore-forming alpha subunit and 1 or more modulatory beta subunits. Although alpha subunit genes have been cloned from diverse metazoans including flies, jellyfish, and humans, beta subunits have not previously been identified in any non-mammalian species. To gain further insight into the evolution of electrical signaling in vertebrates, we investigated beta subunit genes in the teleost Danio rerio (zebrafish. Results We identified and cloned single zebrafish gene homologs for beta1-beta3 (zbeta1-zbeta3 and duplicate genes for beta4 (zbeta4.1, zbeta4.2. Sodium channel beta subunit loci are similarly organized in fish and mammalian genomes. Unlike their mammalian counterparts, zbeta1 and zbeta2 subunit genes display extensive alternative splicing. Zebrafish beta subunit genes and their splice variants are differentially-expressed in excitable tissues, indicating tissue-specific regulation of zbeta1-4 expression and splicing. Co-expression of the genes encoding zbeta1 and the zebrafish sodium channel alpha subunit Nav1.5 in Chinese Hamster Ovary cells increased sodium current and altered channel gating, demonstrating functional interactions between zebrafish alpha and beta subunits. Analysis of the synteny and phylogeny of mammalian, teleost, amphibian, and avian beta subunit and related genes indicated that all extant vertebrate beta subunits are orthologous, that beta2/beta4 and beta1/beta3 share common ancestry, and that beta subunits are closely related to other proteins sharing the V-type immunoglobulin domain structure. Vertebrate sodium channel beta subunit genes were not identified in the genomes of invertebrate chordates and are unrelated to known subunits of the para sodium channel in Drosophila. Conclusion The

  8. Cloning, expression, and enzymatic activity evaluation of cholesterol oxidase gene isolated from a native Rhodococcus sp.

    Directory of Open Access Journals (Sweden)

    Hamed Esmaeil Lashgarian

    2016-10-01

    Full Text Available Cholesterol oxidase (CHO is one of the valuable enzymes that play an important role in: measurement of serum cholesterol, food industry as a biocatalyst and agriculture as a biological larvicide. This enzyme was produced by several bacterial strains. Wild type enzyme produced by Rhodococcus sp. secret two forms of CHO enzyme: extra cellular and membrane bound type which its amount is low and unstable. The goal of the study was cloning, expression, and enzymatic activity evaluation of cholesterol oxidase gene isolated from a native Rhodococcus sp. CHO gene was isolated from native bacteria and cloned into pET23a. In the next step, the construct was expressed in E.coli BL21 and induced by different concentration of IPTG ranges from 0.1 - 0.9 mM. This gene contains 1642 bp and encodes a protein consists of 533 amino acids. It has about 96 % homology with CHO gene isolated from Rhodococcus equi. The high expression was obtained in 0.5 mM concentration of IPTG after 4 hour induction. This recombinant enzyme had a molecular weight of 55 kDa, that secretion of intra cellular type is much more than extracellular form. The optimum pH and temperature conditions for the recombinant enzyme were 7.5 and 45°C, respectively. CHO enzyme obtained from Rhodococcus sp. is a cheap enzyme with medical and industrial applications that can be produced easily and purified in large scale with simple methods.

  9. Cloning and functional analysis of the promoters that upregulate carotenogenic gene expression during flower development in Gentiana lutea

    OpenAIRE

    Zhu, Changfu; Yang, Qingjie; Ni, Xiuzhen; Bai, Chao; Sheng, Yanmin; Shi, Lianxuan; Capell Capell, Teresa; Sandmann, Gerhard; Christou, Paul

    2014-01-01

    Over the last two decades, many carotenogenic genes have been cloned and used to generate metabolically engineered plants producing higher levels of carotenoids. However, comparatively little is known about the regulation of endogenous carotenogenic genes in higher plants, and this restricts our ability to predict how engineered plants will perform in terms of carotenoid content and composition. During petal development in the Great Yellow Gentian (Gentiana lutea), carotenoid accumulation, th...

  10. HTP-OligoDesigner: An Online Primer Design Tool for High-Throughput Gene Cloning and Site-Directed Mutagenesis.

    Science.gov (United States)

    Camilo, Cesar M; Lima, Gustavo M A; Maluf, Fernando V; Guido, Rafael V C; Polikarpov, Igor

    2016-01-01

    Following burgeoning genomic and transcriptomic sequencing data, biochemical and molecular biology groups worldwide are implementing high-throughput cloning and mutagenesis facilities in order to obtain a large number of soluble proteins for structural and functional characterization. Since manual primer design can be a time-consuming and error-generating step, particularly when working with hundreds of targets, the automation of primer design process becomes highly desirable. HTP-OligoDesigner was created to provide the scientific community with a simple and intuitive online primer design tool for both laboratory-scale and high-throughput projects of sequence-independent gene cloning and site-directed mutagenesis and a Tm calculator for quick queries.

  11. Cloning and characterization of a heme oxygenase-2 gene from alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Fu, Guang-Qing; Jin, Qi-Jiang; Lin, Yu-Ting; Feng, Jian-Fei; Nie, Li; Shen, Wen-Biao; Zheng, Tian-Qing

    2011-11-01

    Heme oxygenase (HO, EC 1.14.99.3) catalyzes the oxidation of heme and performs vital roles in plant development and stress responses. Two HO isozymes exist in plants. Between these, HO-1 is an oxidative stress-response protein, and HO-2 usually exhibited constitutive expression. Although alfalfa HO-1 gene (MsHO1) has been investigated previously, HO2 is still poorly understood. In this study, we report the cloning and characterization of HO2 gene, MsHO2, from alfalfa (Medica sativa L.). The full-length cDNA of MsHO2 contains an ORF of 870 bp and encodes for 290 amino acid residues with a predicted molecular mass of 33.3 kDa. Similar to MsHO1, MsHO2 also appears to have an N-terminal transit peptide sequence for chloroplast import. Many conserved residues in plant HO were also conserved in MsHO2. However, unlike HO-1, the conserved histidine (His) required for heme-iron binding and HO activity was replaced by tyrosine (Tyr) in MsHO2. Further biochemical activity analysis of purified mature MsHO2 showed no HO activity, suggesting that MsHO2 may not be a true HO in nature. Semi-quantitative RT-PCR confirmed its maximum expression in the germinating seeds. Importantly, the expression levels of MsHO2 were up-regulated under sodium nitroprusside (SNP) and H(2)O(2) (especially) treatment, respectively.

  12. Direct cloning from enrichment cultures, a reliable strategy for isolation of complete operons and genes from microbial consortia.

    Science.gov (United States)

    Entcheva, P; Liebl, W; Johann, A; Hartsch, T; Streit, W R

    2001-01-01

    Enrichment cultures of microbial consortia enable the diverse metabolic and catabolic activities of these populations to be studied on a molecular level and to be explored as potential sources for biotechnology processes. We have used a combined approach of enrichment culture and direct cloning to construct cosmid libraries with large (>30-kb) inserts from microbial consortia. Enrichment cultures were inoculated with samples from five environments, and high amounts of avidin were added to the cultures to favor growth of biotin-producing microbes. DNA was extracted from three of these enrichment cultures and used to construct cosmid libraries; each library consisted of between 6,000 and 35,000 clones, with an average insert size of 30 to 40 kb. The inserts contained a diverse population of genomic DNA fragments isolated from the consortia organisms. These three libraries were used to complement the Escherichia coli biotin auxotrophic strain ATCC 33767 Delta(bio-uvrB). Initial screens resulted in the isolation of seven different complementing cosmid clones, carrying biotin biosynthesis operons. Biotin biosynthesis capabilities and growth under defined conditions of four of these clones were studied. Biotin measured in the different culture supernatants ranged from 42 to 3,800 pg/ml/optical density unit. Sequencing the identified biotin synthesis genes revealed high similarities to bio operons from gram-negative bacteria. In addition, random sequencing identified other interesting open reading frames, as well as two operons, the histidine utilization operon (hut), and the cluster of genes involved in biosynthesis of molybdopterin cofactors in bacteria (moaABCDE).

  13. Cost-effective sequencing of full-length cDNA clones powered by a de novo-reference hybrid assembly.

    Science.gov (United States)

    Kuroshu, Reginaldo M; Watanabe, Junichi; Sugano, Sumio; Morishita, Shinichi; Suzuki, Yutaka; Kasahara, Masahiro

    2010-05-07

    Sequencing full-length cDNA clones is important to determine gene structures including alternative splice forms, and provides valuable resources for experimental analyses to reveal the biological functions of coded proteins. However, previous approaches for sequencing cDNA clones were expensive or time-consuming, and therefore, a fast and efficient sequencing approach was demanded. We developed a program, MuSICA 2, that assembles millions of short (36-nucleotide) reads collected from a single flow cell lane of Illumina Genome Analyzer to shotgun-sequence approximately 800 human full-length cDNA clones. MuSICA 2 performs a hybrid assembly in which an external de novo assembler is run first and the result is then improved by reference alignment of shotgun reads. We compared the MuSICA 2 assembly with 200 pooled full-length cDNA clones finished independently by the conventional primer-walking using Sanger sequencers. The exon-intron structure of the coding sequence was correct for more than 95% of the clones with coding sequence annotation when we excluded cDNA clones insufficiently represented in the shotgun library due to PCR failure (42 out of 200 clones excluded), and the nucleotide-level accuracy of coding sequences of those correct clones was over 99.99%. We also applied MuSICA 2 to full-length cDNA clones from Toxoplasma gondii, to confirm that its ability was competent even for non-human species. The entire sequencing and shotgun assembly takes less than 1 week and the consumables cost only approximately US$3 per clone, demonstrating a significant advantage over previous approaches.

  14. Cloning and characterization of novel γ-gliadin genes from Aegilops markgrafii in relation to evolution and wheat breeding

    Directory of Open Access Journals (Sweden)

    Min Li

    2017-08-01

    Full Text Available Gliadins are the major components of storage proteins in wheat and play an important role in determining the extensibility properties of dough. In the present work, six novel full-length γ-gliadin genes were cloned from the C genome of Aegilops markgrafii using a PCR-based strategy. Analysis of the deduced amino acid sequences showed that the cloned genes had primary structures that were similar, but not identical, to published γ-gliadins from other wheat-related species. The lengths of the open reading frames (ORFs ranged from 909 to 963 bp, and the repetitive and glutamine-rich domains were mainly responsible for the size of the proteins. An extra cysteine residue was present in the repetitive domain of sequence JX566513. All amino acid sequences of γ-gliadin genes from Ae. markgrafii were searched for the five peptides identified as T cell stimulatory epitopes in celiac disease (CD patients. Peptide Gliγ-3 was present in sequences JX566513 and JX566514. Peptide Gliγ-5 was present only in JX566513. The other γ-gliadins contained no toxic epitopes. These results provide information to better understand the use of Ae. markgrafii in wheat breeding and the evolutionary relationship of the γ-gliadin genes in Ae. markgrafii and other Triticeae species.

  15. Chimeric infectious DNA clones, chimeric porcine circoviruses and uses thereof

    OpenAIRE

    2011-01-01

    The present invention relates to infectious DNA clones, infectious chimeric DNA clones of porcine circovirus (PCV), vaccines and means of protecting pigs against viral infection or postweaning multisystemic wasting syndrome (PMWS) caused by PCV2. The new chimeric infectious DNA clone and its derived, avirulent chimeric virus are constructed from the nonpathogenic PCV1 in which the immunogenic ORF gene of the pathogenic PCV2 replaces a gene of the nonpathogenic PCV1, preferably in the same pos...

  16. Nutritional impact on gene expression and competence of oocytes used to support embryo development and livebirth by cloning procedures in goats.

    Science.gov (United States)

    Fernandes, C C L; Aguiar, L H; Calderón, C E M; Silva, A M; Alves, J P M; Rossetto, R; Bertolini, L R; Bertolini, M; Rondina, D

    2018-01-01

    Changes in the nutritional plan have been shown to affect oocyte quality, crucial to oocyte donors animals used in cloning. This study aimed to evaluate the impact of diets with increasing nutritional levels (maintenance diet=M; 1.3M; 1.6M; 1.9M) fed to goats for four weeks on follicular fluid composition, gene expression and oocyte competence used to cloning in goats. Donor females were superovulated for the retrieval of matured oocytes and physical measurements reported. After four weeks, groups receiving diets above maintenance increased thickness of subcutaneous adipose tissue and body weight, with higher values in 1.9M Group (Pdiet did not affect the expression of GDF9, BMP15, and BAX genes in oocytes, but BCL2 and apoptotic index were significantly higher (P<0.05) in the 1.3M and 1.6M groups than the other groups. Following the transfer of cloned embryos, one fetus was born live of a twin pregnancy in the 1.9M Group. The association between energy intake and oocyte quality suggests better nutritional use by oocytes when the maximum flow was used (1.9M), but the optimal feeding level in cloning still needs refinement. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Morquio A syndrome: Cloning, sequence, and structure of the human N-acetylgalactosamine 6-sulfatase (GALNS) gene

    Energy Technology Data Exchange (ETDEWEB)

    Morris, C.P.; Guo, Xiao-Hui; Apostolou, S. [Adelaide Children`s Hospital, North Adelaide (Australia)] [and others

    1994-08-01

    Deficiency of the lysosomal enzyme, N-acetylgalactosamine 6-sulfatase (GALNS;EC 3.1.6.4), results in the storage of the glycosaminoglycans, keratan sulfate and chrondroitin 6-sulfate, which leads to the lysosomal storage disorder Morquio A syndrome. Four overlapping genomic clones derived from a chromosome 16-specific gridded cosmid library containing the entire GALNS gene were isolated. The structure of the gene and the sequence of the exon/intron boundaries and the 5{prime} promoter region were determined. The GALNS gene is split into 14 exons spanning approximately 40 kb. The potential promoter for GALNS lacks a TATA box but contains GC box consensus sequences, consistent with its role as a housekeeping gene. The GALNS gene contains an Alu repeat in intron 5 and a VNTR-like sequence in intron 6. 12 refs., 3 figs., 1 tab.

  18. Cloning and heterologous expression of the antibiotic peptide (ABP) genes from Rhizopus oligosporus NBRC 8631.

    Science.gov (United States)

    Yamada, Osamu; Sakamoto, Kazutoshi; Tominaga, Mihoko; Nakayama, Tasuku; Koseki, Takuya; Fujita, Akiko; Akita, Osamu

    2005-03-01

    We carried out protein sequencing of purified Antibiotic Peptide (ABP), and cloned two genes encoding this peptide as abp1 and abp2, from Rhizopus oligosporus NBRC 8631. Both genes contain an almost identical 231-bp segment, with only 3 nucleotide substitutions, encoding a 77 amino acid peptide. The abp gene product comprises a 28 amino acid signal sequence and a 49 amino acid mature peptide. Northern blot analysis showed that at least one of the abp genes is transcribed in R. oligosporus NBRC 8631. A truncated form of abp1 encoding only the mature peptide was fused with the alpha-factor signal peptide and engineered for expression in Pichia pastoris SMD1168H. Culture broth of the recombinant Pichia displayed ABP activity against Bacillus subtilis NBRC 3335 after induction of heterologous gene expression. This result indicates that mature ABP formed the active structure without the aid of other factors from R. oligosporus, and was secreted.

  19. Cloning of the Bacillus subtilis recE/sup +/ gene and functional expression of recE/sup +/ in B. subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Marrero, R.; Yasbin, R.E.

    1988-01-01

    By use of the Bacillus subtilis bacteriophage cloning vehicle Phi 105J23, B. subtilis chromosomal MboI fragments have been cloned that alleviate the pleiotropic effects of the recE4 mutation. The recombinant bacteriophages Phi 105Rec Phi1 (3.85-kilobase insert) and Phi 105Rec Phi4 (3.3-kilobase insert) both conferred on the recE4 strain YB1015 resistance to ethylmethane sulfonate, methylmethane sulfonate, mitomycin C, and UV irradiation comparable with the resistance observed in recE/sup +/ strains. While strain YB1015 (recE4) and its derivatives lysogenized with bacteriophage Phi105J23 were not transformed to prototrophy by B. subtilis chromosomal DNA, strain YB1015 lysogenized with either Phi 105Rec Phi 1 or Phi 105RecPhi 4 was susceptible to transformation with homologous B. subtilis chromosomal DNA. The heteroimmune prophages Phi 105 and SPO2 were essentially uninducible in strain YB1015. Significantly, both recombinant prophages Phi 105RecPhi 1 and Phi 105Rec Phi 4 were fully inducible and allowed the spontaneous and mitomycin C-dependent induction of a coresident SPO2 prophage in a recE4 host. The presence of the recombinant prophages also restored the ability of din genes to be induced in strains carrying the recE4 mutation. Finally, both recombinant bacteriophages elaborated a mitomycin C-inducible, 45-kilodalton protein that was immunoreactive with Escherichia coli recA/sup +/ gene product antibodies. Collectively, these data demonstrate that the recE/sup +/ gene has been cloned and that this gene elaborates the 45-kilodalton protein that is involved in SOB induction and homologous recombination.

  20. Cloning and expression of pab gene of M. tuberculosis isolated from pulmonary TB patient in E.coli DH5α

    Directory of Open Access Journals (Sweden)

    Tri Y. M. Raras

    2011-11-01

    Full Text Available Background: Mycobacterium tuberculosis antigen38 is a potent serodiagnostic agent containing two M. tuberculosisspecific B-cell epitopes. The high price of imported diagnostic agents hinders realization of fast clinical TB diagnosis in developing countries. Therefore, we produced recombinant antigen38 (recAg38M from M. tuberculosis local strain, which might be used to produce economical tuberculosis serodiagnostic kit.Methods: Pab gene that was isolated from pulmonary TB patient in Malang was cloned into a plasmid vector (pGEMTeasy to construct pMB38. The E.coli DH5α clone carrying pMb38 was selected on X-gal medium. The expression of pab was mediated using pPRoExHTc under the control of Trc promoter and E.coli DH5α as host.Results: Alignment of the pab sequence from the white E.coli DH5α clones with that of M. tuberculosis H37Rv showed 98% homology. The recombinant protein in which the signal peptide has been deleted to prevent the protein being secreted into medium was found in the cytoplasm.Conclusion: pab gene of M. tuberculosis isolated from a TB patient could be expressed in heterologous system in E.coliDH5α. (Med J Indones 2011; 20:247-54Keywords: Mycobacterium tuberculosis, Pab gene expression, recombinant antigen38

  1. Cloning and sequence analysis of chitin synthase gene fragments of Demodex mites.

    Science.gov (United States)

    Zhao, Ya-e; Wang, Zheng-hang; Xu, Yang; Xu, Ji-ru; Liu, Wen-yan; Wei, Meng; Wang, Chu-ying

    2012-10-01

    To our knowledge, few reports on Demodex studied at the molecular level are available at present. In this study our group, for the first time, cloned, sequenced and analyzed the chitin synthase (CHS) gene fragments of Demodex folliculorum, Demodex brevis, and Demodex canis (three isolates from each species) from Xi'an China, by designing specific primers based on the only partial sequence of the CHS gene of D. canis from Japan, retrieved from GenBank. Results show that amplification was successful only in three D. canis isolates and one D. brevis isolate out of the nine Demodex isolates. The obtained fragments were sequenced to be 339 bp for D. canis and 338 bp for D. brevis. The CHS gene sequence similarities between the three Xi'an D. canis isolates and one Japanese D. canis isolate ranged from 99.7% to 100.0%, and those between four D. canis isolates and one D. brevis isolate were 99.1%-99.4%. Phylogenetic trees based on maximum parsimony (MP) and maximum likelihood (ML) methods shared the same clusters, according with the traditional classification. Two open reading frames (ORFs) were identified in each CHS gene sequenced, and their corresponding amino acid sequences were located at the catalytic domain. The relatively conserved sequences could be deduced to be a CHS class A gene, which is associated with chitin synthesis in the integument of Demodex mites.

  2. Discovering genes underlying QTL

    Energy Technology Data Exchange (ETDEWEB)

    Vanavichit, Apichart [Kasetsart University, Kamphaengsaen, Nakorn Pathom (Thailand)

    2002-02-01

    A map-based approach has allowed scientists to discover few genes at a time. In addition, the reproductive barrier between cultivated rice and wild relatives has prevented us from utilizing the germ plasm by a map-based approach. Most genetic traits important to agriculture or human diseases are manifested as observable, quantitative phenotypes called Quantitative Trait Loci (QTL). In many instances, the complexity of the phenotype/genotype interaction and the general lack of clearly identifiable gene products render the direct molecular cloning approach ineffective, thus additional strategies like genome mapping are required to identify the QTL in question. Genome mapping requires no prior knowledge of the gene function, but utilizes statistical methods to identify the most likely gene location. To completely characterize genes of interest, the initially mapped region of a gene location will have to be narrowed down to a size that is suitable for cloning and sequencing. Strategies for gene identification within the critical region have to be applied after the sequencing of a potentially large clone or set of clones that contains this gene(s). Tremendous success of positional cloning has been shown for cloning many genes responsible for human diseases, including cystic fibrosis and muscular dystrophy as well as plant disease resistance genes. Genome and QTL mapping, positional cloning: the pre-genomics era, comparative approaches to gene identification, and positional cloning: the genomics era are discussed in the report. (M. Suetake)

  3. Probabilistic cloning and deleting of quantum states

    International Nuclear Information System (INIS)

    Feng Yuan; Zhang Shengyu; Ying Mingsheng

    2002-01-01

    We construct a probabilistic cloning and deleting machine which, taking several copies of an input quantum state, can output a linear superposition of multiple cloning and deleting states. Since the machine can perform cloning and deleting in a single unitary evolution, the probabilistic cloning and other cloning machines proposed in the previous literature can be thought of as special cases of our machine. A sufficient and necessary condition for successful cloning and deleting is presented, and it requires that the copies of an arbitrarily presumed number of the input states are linearly independent. This simply generalizes some results for cloning. We also derive an upper bound for the success probability of the cloning and deleting machine

  4. Cloning and functional analysis of the promoters that upregulate carotenogenic gene expression during flower development in Gentiana lutea.

    Science.gov (United States)

    Zhu, Changfu; Yang, Qingjie; Ni, Xiuzhen; Bai, Chao; Sheng, Yanmin; Shi, Lianxuan; Capell, Teresa; Sandmann, Gerhard; Christou, Paul

    2014-04-01

    Over the last two decades, many carotenogenic genes have been cloned and used to generate metabolically engineered plants producing higher levels of carotenoids. However, comparatively little is known about the regulation of endogenous carotenogenic genes in higher plants, and this restricts our ability to predict how engineered plants will perform in terms of carotenoid content and composition. During petal development in the Great Yellow Gentian (Gentiana lutea), carotenoid accumulation, the formation of chromoplasts and the upregulation of several carotenogenic genes are temporally coordinated. We investigated the regulatory mechanisms responsible for this coordinated expression by isolating five G. lutea carotenogenic gene (GlPDS, GlZDS, GlLYCB, GlBCH and GlLYCE) promoters by inverse polymerase chain reaction (PCR). Each promoter was sufficient for developmentally regulated expression of the gusA reporter gene following transient expression in tomato (Solanum lycopersicum cv. Micro-Tom). Interestingly, the GlLYCB and GlBCH promoters drove high levels of gusA expression in chromoplast-containing mature green fruits, but low levels in chloroplast-containing immature green fruits, indicating a strict correlation between promoter activity, tomato fruit development and chromoplast differentiation. As well as core promoter elements such as TATA and CAAT boxes, all five promoters together with previously characterized GlZEP promoter contained three common cis-regulatory motifs involved in the response to methyl jasmonate (CGTCA) and ethylene (ATCTA), and required for endosperm expression (Skn-1_motif, GTCAT). These shared common cis-acting elements may represent binding sites for transcription factors responsible for co-regulation. Our data provide insight into the regulatory basis of the coordinated upregulation of carotenogenic gene expression during flower development in G. lutea. © 2013 Scandinavian Plant Physiology Society.

  5. Cloning and characterization of the human integrin β6 gene promoter.

    Directory of Open Access Journals (Sweden)

    Mingyan Xu

    Full Text Available The integrin β6 (ITGB6 gene, which encodes the limiting subunit of the integrin αvβ6 heterodimer, plays an important role in wound healing and carcinogenesis. The mechanism underlying ITGB6 regulation, including the identification of DNA elements and cognate transcription factors responsible for basic transcription of human ITGB6 gene, remains unknown. This report describes the cloning and characterization of the human ITGB6 promoter. Using 5'-RACE (rapid amplification of cDNA ends analysis, the transcriptional initiation site was identified. Promoter deletion analysis identified and functionally validated a TATA box located in the region -24 to -18 base pairs upstream of the ITGB6 promoter. The regulatory elements for transcription of the ITGB6 gene were predominantly located -289 to -150 from the ITGB6 promoter and contained putative binding sites for transcription factors such as STAT3 and C/EBPα. Using chromatin immunoprecipitation assays, this study has demonstrated, for the first time, that transcription factors STAT3 and C/EBPα are involved in the positive regulation of ITGB6 transcription in oral squamous cell carcinoma cells. These findings have important implications for unraveling the mechanism of abnormal ITGB6 activation in tissue remodeling and tumorigenesis.

  6. [Telomere lengthening by trichostatin A treatment in cloned pigs].

    Science.gov (United States)

    Xie, Bing-Teng; Ji, Guang-Zhen; Kong, Qing-Ran; Mao, Jian; Shi, Yong-Qian; Liu, Shi-Chao; Wu, Mei-Ling; Wang, Juan; Liu, Lin; Liu, Zhong-Hua

    2012-12-01

    Telomeres are repeated GC rich sequences at the end of chromosomes, and shorten with each cell division due to DNA end replication problem. Previously, reprogrammed somatic cells of cloned animals display variable telomere elongation. However, it was reported that the cloned animals including Dolly do not reset telomeres and show premature aging. In this study, we investigated telomere function in cloned or transgenic cloned pigs, including the cloned Northeast Min pigs, eGFP, Mx, and PGC1α transgenic cloned pigs, and found that the telomere lengths of cloned pigs were significantly shorter than the nuclear donor adult fibroblasts and age-matched noncloned pigs (Pstage for 24 h. Consistent with previous reports, the developmental rate of SCNT embryos to the blastocyst stage was significantly increased compared with those of the control group (16.35% vs. 27.09%, 21.60% vs. 34.90%, Plengthen the telomere lengths of cloned pigs.

  7. Chapter 7. Cloning and analysis of natural product pathways.

    Science.gov (United States)

    Gust, Bertolt

    2009-01-01

    The identification of gene clusters of natural products has lead to an enormous wealth of information about their biosynthesis and its regulation, and about self-resistance mechanisms. Well-established routine techniques are now available for the cloning and sequencing of gene clusters. The subsequent functional analysis of the complex biosynthetic machinery requires efficient genetic tools for manipulation. Until recently, techniques for the introduction of defined changes into Streptomyces chromosomes were very time-consuming. In particular, manipulation of large DNA fragments has been challenging due to the absence of suitable restriction sites for restriction- and ligation-based techniques. The homologous recombination approach called recombineering (referred to as Red/ET-mediated recombination in this chapter) has greatly facilitated targeted genetic modifications of complex biosynthetic pathways from actinomycetes by eliminating many of the time-consuming and labor-intensive steps. This chapter describes techniques for the cloning and identification of biosynthetic gene clusters, for the generation of gene replacements within such clusters, for the construction of integrative library clones and their expression in heterologous hosts, and for the assembly of entire biosynthetic gene clusters from the inserts of individual library clones. A systematic approach toward insertional mutation of a complete Streptomyces genome is shown by the use of an in vitro transposon mutagenesis procedure.

  8. The ura5 gene of the ascomycete Sordaria macrospora: molecular cloning, characterization and expression in Escherichia coli.

    Science.gov (United States)

    Le Chevanton, L; Leblon, G

    1989-04-15

    We cloned the ura5 gene coding for the orotate phosphoribosyl transferase from the ascomycete Sordaria macrospora by heterologous probing of a Sordaria genomic DNA library with the corresponding Podospora anserina sequence. The Sordaria gene was expressed in an Escherichia coli pyrE mutant strain defective for the same enzyme, and expression was shown to be promoted by plasmid sequences. The nucleotide sequence of the 1246-bp DNA fragment encompassing the region of homology with the Podospora gene has been determined. This sequence contains an open reading frame of 699 nucleotides. The deduced amino acid sequence shows 72% similarity with the corresponding Podospora protein.

  9. Generation of Five Human Lactoferrin Transgenic Cloned Goats Using Fibroblast Cells and Their Methylation Status of Putative Differential Methylation Regions of IGF2R and H19 Imprinted Genes

    Science.gov (United States)

    Sun, Yanyan; Zhang, Yanli; Wang, Ziyu; Song, Yang; Wang, Feng

    2013-01-01

    Background Somatic cell nuclear transfer (SCNT) is a promising technique to produce transgenic cloned mammalian, including transgenic goats which may produce Human Lactoferrin (hLF). However, success percentage of SCNT is low, because of gestational and neonatal failure of transgenic embryos. According to the studies on cattle and mice, DNA methylation of some imprinted genes, which plays a vital role in the reprogramming of embryo in NT maybe an underlying mechanism. Methodology/Principal Findings Fibroblast cells were derived from the ear of a two-month-old goat. The vector expressing hLF was constructed and transfected into fibroblasts. G418 selection, EGFP expression, PCR, and cell cycle distribution were applied sequentially to select transgenic cells clones. After NT and embryo transfer, five transgenic cloned goats were obtained from 240 cloned transgenic embryos. These transgenic goats were identified by 8 microsatellites genotyping and southern blot. Of the five transgenic goats, 3 were lived after birth, while 2 were dead during gestation. We compared differential methylation regions (DMR) pattern of two paternally imprinted genes (H19 and IGF2R) of the ear tissues from the lived transgenic goats, dead transgenic goats, and control goats from natural reproduction. Hyper-methylation pattern appeared in cloned aborted goats, while methylation status was relatively normal in cloned lived goats compared with normal goats. Conclusions/Significance In this study, we generated five hLF transgenic cloned goats by SCNT. This is the first time the DNA methylation of lived and dead transgenic cloned goats was compared. The results demonstrated that the methylation status of DMRs of H19 and IGF2R were different in lived and dead transgenic goats and therefore this may be potentially used to assess the reprogramming status of transgenic cloned goats. Understanding the pattern of gene imprinting may be useful to improve cloning techniques in future. PMID:24204972

  10. Recombination-assisted megaprimer (RAM) cloning

    Science.gov (United States)

    Mathieu, Jacques; Alvarez, Emilia; Alvarez, Pedro J.J.

    2014-01-01

    No molecular cloning technique is considered universally reliable, and many suffer from being too laborious, complex, or expensive. Restriction-free cloning is among the simplest, most rapid, and cost-effective methods, but does not always provide successful results. We modified this method to enhance its success rate through the use of exponential amplification coupled with homologous end-joining. This new method, recombination-assisted megaprimer (RAM) cloning, significantly extends the application of restriction-free cloning, and allows efficient vector construction with much less time and effort when restriction-free cloning fails to provide satisfactory results. The following modifications were made to the protocol:•Limited number of PCR cycles for both megaprimer synthesis and the cloning reaction to reduce error propagation.•Elimination of phosphorylation and ligation steps previously reported for cloning methods that used exponential amplification, through the inclusion of a reverse primer in the cloning reaction with a 20 base pair region of homology to the forward primer.•The inclusion of 1 M betaine to enhance both reaction specificity and yield. PMID:26150930

  11. Cloning and expression of chaetomium thermophilum xylanase 11-A gene in prokaryote

    International Nuclear Information System (INIS)

    Wajid, S.; Latif, F.; Afzal, S.; Rajoka, I.

    2008-01-01

    The xylanase gene was cloned into pET32a(+) and expressed in E. coli BL21 under T7 promotor alongwith fusion protein. The SDS-PAGE and western blot analysis showed a protein of 42 kDa. The best expression of xylanase enzyme was found by using xylose as carbon source and lactose as an inducer. The maximum activity of xylanase expressed in E. coli was 6.02 U/mL in the presence of 2% xylose in DS medium. The activity of recombinant xylanase was observed on 1% xylan LB agar plates, showed halos of xylan clearance when lactose was used as an inducer. (author)

  12. Cloning of cellulase genes using pUC18 and lambda 2001 vectors

    International Nuclear Information System (INIS)

    Bashir, A.; Ashfaq, S.R.; Rajoka, M.I.; Malik, K.A.; Batt, C.A.

    1991-01-01

    Chromosomal DNA from cellulomonas biazotea NIAB 442 was used for isolation and cloning of cellulase genes. For this purpose plasmid pUC18 was used for cloning fragments in the range of 109 Kb and phase vector lambda 2001 for cloning fragments in the range of 15-20 Kb respectively. Three restriction enzymes BamHI, Sau3AI and SaII were used for partial restriction of chromosomal DNA to obtain fragment size in the range of 0.5 - 20 Kb. BamHI and SaII were used to linearize pUC18 to obtain compatible ends against the three enzymes used in chromosomal DNA restriction. Linearized pUC18 was then ligated to respective compatible chromosomal DNA fragments and transformed to JM109 competent cells. A total of 6781 recombinants were tested for the production of B-glucosidase and carboxy methyl cellulase (CMC-ase) production. Only one of the recombinants was found to be positive for B-glucosidase production in solid culture. One of the recombinants was found positive for CMC-ase production in solid culture and is being verified and characterized. Larger DNA fragments in the range of 15-20 Kilobase were obtained by partial restriction of chromosomal DNA with BamHI, SaII and Xhol. Lambda 2001 was double digested with BamHI/EcoRI and Xhol/EcoRI for removal of stuffer fragment. Ligation of respective compatible ends was performed between Lambda DNA and chromosomal DNA. Ligation mixture was used for packaging and infection of P2 lysogen. No plaques could be obtained on P2 lysogen due to inefficient packaging. (author)

  13. Cloning of Beauveria bassiana chitinase gene Bbchit1 and its application to improve fungal strain virulence.

    Science.gov (United States)

    Fang, Weiguo; Leng, Bo; Xiao, Yuehua; Jin, Kai; Ma, Jincheng; Fan, Yanhua; Feng, Jing; Yang, Xingyong; Zhang, Yongjun; Pei, Yan

    2005-01-01

    Entomopathogenic fungi can produce a series of chitinases, some of which act synergistically with proteases to degrade insect cuticle. However, chitinase involvement in insect fungus pathogenesis has not been fully characterized. In this paper, an endochitinase, Bbchit1, was purified to homogeneity from liquid cultures of Beauveria bassiana grown in a medium containing colloidal chitin. Bbchit1 had a molecular mass of about 33 kDa and pI of 5.4. Based on the N-terminal amino acid sequence, the chitinase gene, Bbchit1, and its upstream regulatory sequence were cloned. Bbchit1 was intronless, and there was a single copy in B. bassiana. Its regulatory sequence contained putative CreA/Crel carbon catabolic repressor binding domains, which was consistent with glucose suppression of Bbchit1. At the amino acid level, Bbchit1 showed significant similarity to a Streptomyces avermitilis putative endochitinase, a Streptomyces coelicolor putative chitinase, and Trichoderma harzianum endochitinase Chit36Y. However, Bbchit1 had very low levels of identity to other chitinase genes previously isolated from entomopathogenic fungi, indicating that Bbchit1 was a novel chitinase gene from an insect-pathogenic fungus. A gpd-Bbchit1 construct, in which Bbchit1 was driven by the Aspergiullus nidulans constitutive promoter, was transformed into the genome of B. bassiana, and three transformants that overproduced Bbchit1 were obtained. Insect bioassays revealed that overproduction of Bbchit1 enhanced the virulence of B. bassiana for aphids, as indicated by significantly lower 50% lethal concentrations and 50% lethal times of the transformants compared to the values for the wild-type strain.

  14. [Cloning and sequencing of KIR2DL1 framework gene cDNA and identification of a novel allele].

    Science.gov (United States)

    Sun, Ge; Wang, Chang; Zhen, Jianxin; Zhang, Guobin; Xu, Yunping; Deng, Zhihui

    2016-10-01

    To develop an assay for cDNA cloning and haplotype sequencing of KIR2DL1 framework gene and determine the genotype of an ethnic Han from southern China. Total RNA was isolated from peripheral blood sample, and complementary DNA (cDNA) transcript was synthesized by RT-PCR. The entire coding sequence of the KIR2DL1 framework gene was amplified with a pair of KIR2DL1-specific PCR primers. The PCR products with a length of approximately 1.2 kb were then subjected to cloning and haplotype sequencing. A specific target fragment of the KIR2DL1 framework gene was obtained. Following allele separation, a wild-type KIR2DL1*00302 allele and a novel variant allele, KIR2DL1*031, were identified. Sequence alignment with KIR2DL1 alleles from the IPD-KIR Database showed that the novel allele KIR2DL1*031 has differed from the closest allele KIR2DL1*00302 by a non-synonymous mutation at CDS nt 188A>G (codon 42 GAG>GGG) in exon 4, which has caused an amino acid change Glu42Gly. The sequence of the novel allele KIR2DL1*031 was submitted to GenBank under the accession number KP025960 and to the IPD-KIR Database under the submission number IWS40001982. A name KIR2DL1*031 has been officially assigned by the World Health Organization (WHO) Nomenclature Committee. An assay for cDNA cloning and haplotype sequencing of KIR2DL1 has been established, which has a broad applications in KIR studies at allelic level.

  15. Molecular cloning of cDNA for rat brain metallothionein-2 and regulation of its gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Saijoh, Kiyofumi; Sumino, Kimiaki [Department of Public Health, Kobe University School of Medicine (Japan); Kuno, Takayoshi; Shuntoh, Hisato; Tanaka, Chikako [Department of Pharmacology, Kobe University of Medicine (Japan)

    1989-01-01

    A rat brain metallothionein-II (MT-II) complementary DNA (cDNA) clone was isolated from a cDNA plasmid library, which was prepared from non-treated rat brain mRNA, by a colony screening procedure using /sup 32/P-labeled synthetic oligonucleotide probes. It is deduced that the clone encodes for a protein of 61 amino acids comprising 20 cysteines, which is highly homologous to MT-IIs in other species. Northern blot analysis demonstrated major mRNA species in the brain, liver and kidneys (approximately 350 b in size), which is induced in response to dexamethasone, zinc, cadmium and mercury but not to methyl mercury. These findings confirm that MT-II genes are expressed and regulated both by steroid and heavy metals in the brain as well as in peripheral organs. (author).

  16. Molecular cloning of cDNA for rat brain metallothionein-2 and regulation of its gene expression

    International Nuclear Information System (INIS)

    Saijoh, Kiyofumi; Sumino, Kimiaki; Kuno, Takayoshi; Shuntoh, Hisato; Tanaka, Chikako

    1989-01-01

    A rat brain metallothionein-II (MT-II) complementary DNA (cDNA) clone was isolated from a cDNA plasmid library, which was prepared from non-treated rat brain mRNA, by a colony screening procedure using 32 P-labeled synthetic oligonucleotide probes. It is deduced that the clone encodes for a protein of 61 amino acids comprising 20 cysteines, which is highly homologous to MT-IIs in other species. Northern blot analysis demonstrated major mRNA species in the brain, liver and kidneys (approximately 350 b in size), which is induced in response to dexamethasone, zinc, cadmium and mercury but not to methyl mercury. These findings confirm that MT-II genes are expressed and regulated both by steroid and heavy metals in the brain as well as in peripheral organs. (author)

  17. Pathogenicity of a Very Virulent Strain of Marek's Disease Herpesvirus Cloned as Infectious Bacterial Artificial Chromosomes

    Directory of Open Access Journals (Sweden)

    Lorraine P. Smith

    2011-01-01

    Full Text Available Bacterial artificial chromosome (BAC vectors containing the full-length genomes of several herpesviruses have been used widely as tools to enable functional studies of viral genes. Marek's disease viruses (MDVs are highly oncogenic alphaherpesviruses that induce rapid-onset T-cell lymphomas in chickens. Oncogenic strains of MDV reconstituted from BAC clones have been used to examine the role of viral genes in inducing tumours. Past studies have demonstrated continuous increase in virulence of MDV strains. We have previously reported on the UK isolate C12/130 that showed increased virulence features including lymphoid organ atrophy and enhanced tropism for the central nervous system. Here we report the construction of the BAC clones (pC12/130 of this strain. Chickens were infected with viruses reconstituted from the pC12/130 clones along with the wild-type virus for the comparison of the pathogenic properties. Our studies show that BAC-derived viruses induced disease similar to the wild-type virus, though there were differences in the levels of pathogenicity between individual viruses. Generation of BAC clones that differ in the potential to induce cytolytic disease provide the opportunity to identify the molecular determinants of increased virulence by direct sequence analysis as well as by using reverse genetics approaches on the infectious BAC clones.

  18. Cloning and characterization of chicken fat mass and obesity associated (Fto) gene: fasting affects Fto expression.

    Science.gov (United States)

    Tiwari, A; Krzysik-Walker, S M; Ramachandran, R

    2012-01-01

    Fat mass and obesity associated gene (Fto), also known as Fatso, is a member of the Fe-II and 2-oxoglutarate-dependent dioxygenase superfamily. Recent studies in humans and rodents suggest that Fto is involved in food intake regulation and lipid metabolism, whereas single nucleotide mutations in the Fto gene are associated with obesity and type 2 diabetes. The Fto gene is highly conserved from green algae to humans, but little is known about the avian Fto gene or protein. The objectives of the current study were to clone full-length chicken Fto cDNA and to determine the effect of age or feeding status on Fto expression. With the use of rapid amplification of cDNA ends, the full-length chicken Fto cDNA was cloned and found to share 63% to 66% homology with the mammalian Fto nucleotide sequence. Several regions of the chicken Fto protein, including the substrate (2-oxoglutarate) binding domains, were found to be identical to mammalian Fto protein. Western blotting with anti-human Fto antibody and reverse transcription PCR studies showed that Fto protein and gene were ubiquitously expressed in various tissues of the chicken. With the use of quantitative PCR, Fto mRNA levels were found to be higher in liver and skeletal muscle of 8-wk-old chickens than in 4-wk-old chickens. In addition, alterations in feeding status resulted in significant changes in Fto mRNA and Fto protein expression in the liver but not in skeletal muscle and adipose tissue of broiler chickens. Taken together, our data suggest that Fto probably plays a significant role in liver function and energy metabolism in the chicken. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. The nucleotide sequence and organization of nuclear 5S rRNA genes in yellow lupine

    International Nuclear Information System (INIS)

    Nuc, K.; Nuc, P.; Pawelkiewicz, J.

    1993-01-01

    We have isolated a genomic clone containing 'Lupinus luteus' 5S ribosomal RNA genes by screening with 5S rDNA probe clones that were hybridized previously with the initiator methionine tRNA preparation (contaminated) with traces of rRNA or its degradation products). The clone isolated contains ten repeat units of 342 bp with 119 bp fragment showing 100% homology to the 5S rRNA from yellow lupine. Sequence analysis indicates only point heterogeneities among the flanking regions of the genes. (author). 6 refs, 3 figs

  20. High-Throughput Cloning and Expression Library Creation for Functional Proteomics

    Science.gov (United States)

    Festa, Fernanda; Steel, Jason; Bian, Xiaofang; Labaer, Joshua

    2013-01-01

    The study of protein function usually requires the use of a cloned version of the gene for protein expression and functional assays. This strategy is particular important when the information available regarding function is limited. The functional characterization of the thousands of newly identified proteins revealed by genomics requires faster methods than traditional single gene experiments, creating the need for fast, flexible and reliable cloning systems. These collections of open reading frame (ORF) clones can be coupled with high-throughput proteomics platforms, such as protein microarrays and cell-based assays, to answer biological questions. In this tutorial we provide the background for DNA cloning, discuss the major high-throughput cloning systems (Gateway® Technology, Flexi® Vector Systems, and Creator™ DNA Cloning System) and compare them side-by-side. We also report an example of high-throughput cloning study and its application in functional proteomics. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP12). Details can be found at http://www.proteomicstutorials.org. PMID:23457047

  1. Cloning of araA Gene Encoding L-Arabinose Isomerase from Marine Geobacillus stearothermophilus Isolated from Tanjung Api, Poso, Indonesia

    Directory of Open Access Journals (Sweden)

    DEWI FITRIANI

    2010-06-01

    Full Text Available L-arabinose isomerase is an enzyme converting D-galactose to D-tagatose. D-tagatose is a potential sweetener-sucrose substitute which has low calorie. This research was to clone and sequence araA gene from marine bacterial strain Geobacillus stearothermophilus isolated from Tanjung Api Poso Indonesia. The amplified araA gene consisted of 1494 bp nucleotides encoding 497 amino acids. DNA alignment analysis showed that the gene had high homology with that of G. stearothermophilus T6. The enzyme had optimum activity at high temperature and alkalin condition.

  2. Cloning and expression of NS3 gene of Pakistani isolate type 2 dengue virus

    Directory of Open Access Journals (Sweden)

    Yasmin Farkhanda

    2018-03-01

    Full Text Available Introduction: Dengue is one of the major emerging viral diseases in the world, with dramatic increases in reported cases in the last few decades and annual worldwide occurrence of approximately 390 million infections. It is a highly important mosquito-vectored disease and is a problem in tropical and subtropical areas of the world. The major aim of this study was to clone and express the dengue NS3 gene, in service to its therapeutic importance for the development of stable cell lines.

  3. Primer sets for cloning the human repertoire of T cell Receptor Variable regions.

    Science.gov (United States)

    Boria, Ilenia; Cotella, Diego; Dianzani, Irma; Santoro, Claudio; Sblattero, Daniele

    2008-08-29

    Amplification and cloning of naïve T cell Receptor (TR) repertoires or antigen-specific TR is crucial to shape immune response and to develop immuno-based therapies. TR variable (V) regions are encoded by several genes that recombine during T cell development. The cloning of expressed genes as large diverse libraries from natural sources relies upon the availability of primers able to amplify as many V genes as possible. Here, we present a list of primers computationally designed on all functional TR V and J genes listed in the IMGT, the ImMunoGeneTics information system. The list consists of unambiguous or degenerate primers suitable to theoretically amplify and clone the entire TR repertoire. We show that it is possible to selectively amplify and clone expressed TR V genes in one single RT-PCR step and from as little as 1000 cells. This new primer set will facilitate the creation of more diverse TR libraries than has been possible using currently available primer sets.

  4. Partial Gene Cloning and Enzyme Structure Modeling of Exolevanase Fragment from Bacillus subtilis

    Science.gov (United States)

    Azhar, M.; Natalia, D.; Syukur, S.; Andriani, N.; Jamsari, J.

    2018-04-01

    Inulin hydrolysis thermophilic and thermotolerant bacteria are potential sources of inulin hydrolysis enzymes. Partial gene that encodes inulin hydrolysis enzymes had been isolated from Bacillus subtilis using polymerase chain reaction (PCR) method with the DPE.slFandDPE.eR degenerative primers. The partial gene was cloned into pGEM-T Easy vector with E. coli as host cells and analyzed using BLASTx, CrustalW2, and Phyre2 programs. Size of thepartial gene had been found539 bp that encoded 179aminoacid residues of protein fragment. The sequences of protein fragment was more similar to exolevanase than exoinulinase. The protein fragment had conserved motif FSGS, and specific hits GH32 β-fructosidase. It had three residues of active site and five residues of substrate binding. The active site on the protein fragment were D (1-WLNDP-5), D (125-FRDPK-129) and E (177-WEC-179). Substrate binding on the protein fragment were ND (1-WLNDP-5), Q (18-FYQY-21), FS (60-FSGS-63) RD (125-FRDPK-129) and E (177-WEC-179).

  5. Cloning and sequence analysis of chitin synthase gene fragments of Demodex mites*

    Science.gov (United States)

    Zhao, Ya-e; Wang, Zheng-hang; Xu, Yang; Xu, Ji-ru; Liu, Wen-yan; Wei, Meng; Wang, Chu-ying

    2012-01-01

    To our knowledge, few reports on Demodex studied at the molecular level are available at present. In this study our group, for the first time, cloned, sequenced and analyzed the chitin synthase (CHS) gene fragments of Demodex folliculorum, Demodex brevis, and Demodex canis (three isolates from each species) from Xi’an China, by designing specific primers based on the only partial sequence of the CHS gene of D. canis from Japan, retrieved from GenBank. Results show that amplification was successful only in three D. canis isolates and one D. brevis isolate out of the nine Demodex isolates. The obtained fragments were sequenced to be 339 bp for D. canis and 338 bp for D. brevis. The CHS gene sequence similarities between the three Xi’an D. canis isolates and one Japanese D. canis isolate ranged from 99.7% to 100.0%, and those between four D. canis isolates and one D. brevis isolate were 99.1%–99.4%. Phylogenetic trees based on maximum parsimony (MP) and maximum likelihood (ML) methods shared the same clusters, according with the traditional classification. Two open reading frames (ORFs) were identified in each CHS gene sequenced, and their corresponding amino acid sequences were located at the catalytic domain. The relatively conserved sequences could be deduced to be a CHS class A gene, which is associated with chitin synthesis in the integument of Demodex mites. PMID:23024043

  6. Cloning of a chitinase gene from Ewingella americana, a pathogen of the cultivated mushroom, Agaricus bisporus

    Directory of Open Access Journals (Sweden)

    P.W. Inglis

    2000-09-01

    Full Text Available We have isolated a gene encoding a chitinase (EC 3.2.1.14 from Ewingella americana, a recently described pathogen of the mushroom Agaricus bisporus. This gene, designated chiA (EMBL/Genbank/DDBJ accession number X90562, was cloned by expression screening of a plasmid-based E. americana HindIII genomic library in Escherichia coli using remazol brilliant violet-stained carboxymethylated chitin incorporated into selective medium. The chiA gene has a 918-bp ORF, terminated by a TAA codon, with a calculated polypeptide size of 33.2 kDa, likely corresponding to a previously purified and characterised 33-kDa endochitinase from E. americana. The deduced amino acid sequence shares 33% identity with chitinase II from Aeromonas sp. No. 10S-24 and 7.8% identity with a chitinase from Saccharopolyspora erythraeus. Homology to other chitinase sequences was otherwise low. The peptide sequence deduced from chiA lacks a typical N-terminal signal sequence and also lacks the chitin binding and type III fibronectin homology units common to many bacterial chitinases. The possibility that this chitinase is not primarily adapted for the environmental mineralisation of pre-formed chitin, but rather for the breakdown of nascent chitin, is discussed in the context of mushroom disease.O gene que codifica uma quitinase (EC 3.2.1.14 foi isolado de Ewingella americana, recentemente descrita como patógeno do cogumelo Agaricus bisporus. Este gene, denominado chiA (EMBL/Genebank/DDBJ número de acesso X9061, foi clonado e selecionado a partir de livraria genômica construída por digestão do DNA de E. americana com HindIII e ligação em plasmídio de expressão em E. coli, utilizando meio seletivo contendo quitina carboximetilada, corada com "remazol brilliant violet'' para seleção de clones. O gene chiA apresenta uma ORF de 918 bp, código terminador TAA, tendo o tamanho do polipeptídeo sido calculado como 33,2 kDa, o qual corresponde ao tamanho de 33 kDa da endoquitinase

  7. Somatic donor cell type correlates with embryonic, but not extra-embryonic, gene expression in postimplantation cloned embryos.

    Directory of Open Access Journals (Sweden)

    Ryutaro Hirasawa

    Full Text Available The great majority of embryos generated by somatic cell nuclear transfer (SCNT display defined abnormal phenotypes after implantation, such as an increased likelihood of death and abnormal placentation. To gain better insight into the underlying mechanisms, we analyzed genome-wide gene expression profiles of day 6.5 postimplantation mouse embryos cloned from three different cell types (cumulus cells, neonatal Sertoli cells and fibroblasts. The embryos retrieved from the uteri were separated into embryonic (epiblast and extraembryonic (extraembryonic ectoderm and ectoplacental cone tissues and were subjected to gene microarray analysis. Genotype- and sex-matched embryos produced by in vitro fertilization were used as controls. Principal component analysis revealed that whereas the gene expression patterns in the embryonic tissues varied according to the donor cell type, those in extraembryonic tissues were relatively consistent across all groups. Within each group, the embryonic tissues had more differentially expressed genes (DEGs (>2-fold vs. controls than did the extraembryonic tissues (P<1.0 × 10(-26. In the embryonic tissues, one of the common abnormalities was upregulation of Dlk1, a paternally imprinted gene. This might be a potential cause of the occasional placenta-only conceptuses seen in SCNT-generated mouse embryos (1-5% per embryos transferred in our laboratory, because dysregulation of the same gene is known to cause developmental failure of embryos derived from induced pluripotent stem cells. There were also some DEGs in the extraembryonic tissues, which might explain the poor development of SCNT-derived placentas at early stages. These findings suggest that SCNT affects the embryonic and extraembryonic development differentially and might cause further deterioration in the embryonic lineage in a donor cell-specific manner. This could explain donor cell-dependent variations in cloning efficiency using SCNT.

  8. Cloning and sequence analysis of sucrose phosphate synthase gene from varieties of Pennisetum species.

    Science.gov (United States)

    Li, H C; Lu, H B; Yang, F Y; Liu, S J; Bai, C J; Zhang, Y W

    2015-03-31

    Sucrose phosphate synthase (SPS) is an enzyme used by higher plants for sucrose synthesis. In this study, three primer sets were designed on the basis of known SPS sequences from maize (GenBank: NM_001112224.1) and sugarcane (GenBank: JN584485.1), and five novel SPS genes were identified by RT-PCR from the genomes of Pennisetum spp (the hybrid P. americanum x P. purpureum, P. purpureum Schum., P. purpureum Schum. cv. Red, P. purpureum Schum. cv. Taiwan, and P. purpureum Schum. cv. Mott). The cloned sequences showed 99.9% identity and 80-88% similarity to the SPS sequences of other plants. The SPS gene of hybrid Pennisetum had one nucleotide and four amino acid polymorphisms compared to the other four germplasms, and cluster analysis was performed to assess genetic diversity in this species. Additional characterization of the SPS gene product can potentially allow Pennisetum to be exploited as a biofuel source.

  9. Fine Mapping and Cloning of Leafy Head Mutant Gene pla1-5 in Rice

    Directory of Open Access Journals (Sweden)

    Gong-neng FENG

    2013-09-01

    Full Text Available We identified a leafy head mutant pla1-5 (plastochron 1-5 from the progeny of japonica rice cultivar Taipei 309 treated with 60Co-γ ray irradiation. The pla1-5 mutant has a dwarf phenotype and small leaves. Compared with its wild type, pla1-5 has more leaves and fewer tillers, and it fails to produce normal panicles at the maturity stage. Genetic analysis showed that the pla1-5 phenotype is controlled by a single recessive nuclear gene. Using the map-based cloning strategy, we narrowed down the location of the target gene to a 58-kb region between simple sequence repeat markers CHR1027 and CHR1030 on the long arm of chromosome 10. The target gene cosegregated with molecular markers CHR1028 and CHR1029. There were five predicted genes in the mapped region. The results from sequencing analysis revealed that there was one base deletion in the first exon of LOC_Os10g26340 encoding cytochrome P450 CYP78A11 in the pla1-5 mutant, which might result in a downstream frame shift and premature termination. These results suggest that the P450 CYP78A11 gene is the candidate gene of PLA1-5.

  10. Molecular cloning of allelopathy related genes and their relation to HHO in Eupatorium adenophorum.

    Science.gov (United States)

    Guo, Huiming; Pei, Xixiang; Wan, Fanghao; Cheng, Hongmei

    2011-10-01

    In this study, conserved sequence regions of HMGR, DXR, and CHS (encoding 3-hydroxy-3-methylglutaryl-CoA reductase, 1-deoxyxylulose-5-phosphate reductoisomerase and chalcone synthase, respectively) were amplified by reverse transcriptase (RT)-PCR from Eupatorium adenophorum. Quantitative real-time PCR showed that the expression of CHS was related to the level of HHO, an allelochemical isolated from E. adenophorum. Semi-quantitative RT-PCR showed that there was no significant difference in expression of genes among three different tissues, except for CHS. Southern blotting indicated that at least three CHS genes are present in the E. adenophorum genome. A full-length cDNA from CHS genes (named EaCHS1, GenBank ID: FJ913888) was cloned. The 1,455 bp cDNA contained an open reading frame (1,206 bp) encoding a protein of 401 amino acids. Preliminary bioinformatics analysis of EaCHS1 revealed that EaCHS1 was a member of CHS family, the subcellular localization predicted that EaCHS1 was a cytoplasmic protein. To the best of our knowledge, this is the first report of conserved sequences of these genes and of a full-length EaCHS1 gene in E. adenophorum. The results indicated that CHS gene is related to allelopathy of E. adenophorum.

  11. Comparison of the genetic organization of the early salt-stress-response gene system in salt-tolerant Lophopyrum elongatum and salt-sensitive wheat

    OpenAIRE

    Dubcovsky, J; Galvez, AF; Dvořák, J

    1994-01-01

    Lophopyrum elongatum is a facultative halophyte related to wheat. Eleven unique clones corresponding to genes showing enhanced mRNA accumulation in the early stages of salt stress were previously isolated from a L. elongatum salt-stressed-root cDNA library. The chromosomal distribution of genes complementary to these clones in several genomes of the tribe Triticeae and their copy number in the L. elongatum and wheat genomes are reported. Genes complementary to clones pESI4, pESI14, pESI15, pE...

  12. Cloning changes the response to obesity of innate immune factors in blood, liver, and adipose tissues in domestic pigs.

    Science.gov (United States)

    Rødgaard, Tina; Skovgaard, Kerstin; Stagsted, Jan; Heegaard, Peter M H

    2013-06-01

    The objective of this study was to evaluate the usefulness of cloned pigs as porcine obesity models reflecting obesity-associated changes in innate immune factor gene expression profiles. Liver and adipose tissue expression of 43 innate immune genes as well as serum concentrations of six immune factors were analyzed in lean and diet-induced obese cloned domestic pigs and compared to normal domestic pigs (obese and lean). The number of genes affected by obesity was lower in cloned animals than in control animals. All genes affected by obesity in adipose tissues of clones were downregulated; both upregulation and downregulation were observed in the controls. Cloning resulted in a less differentiated adipose tissue expression pattern. Finally, the serum concentrations of two acute-phase proteins (APPs), haptoglobin (HP) and orosomucoid (ORM), were increased in obese clones as compared to obese controls as well as lean clones and controls. Generally, the variation in phenotype between individual pigs was not reduced in cloned siblings as compared to normal siblings. Therefore, we conclude that cloning limits both the number of genes responding to obesity as well as the degree of tissue-differentiated gene expression, concomitantly with an increase in APP serum concentrations only seen in cloned, obese pigs. This may suggest that the APP response seen in obese, cloned pigs is a consequence of the characteristic skewed gene response to obesity in cloned pigs, as described in this work. This should be taken into consideration when using cloned animals as models for innate responses to obesity.

  13. Oestrogen regulates the expression of cathepsin E-A-like gene ...

    Indian Academy of Sciences (India)

    Hang Zheng

    2018-02-28

    Feb 28, 2018 ... 1College of Animal Science and Veterinary Medicine, Henan Agricultural .... evaluated the expression regulation mechanism of the gene ... C with ad libitum water and food. ... embryonic liver following the method previously described .... Cloning and sequence analysis of chicken cathepsin E-A-like gene.

  14. Cloning humans? Biological, ethical, and social considerations.

    Science.gov (United States)

    Ayala, Francisco J

    2015-07-21

    There are, in mankind, two kinds of heredity: biological and cultural. Cultural inheritance makes possible for humans what no other organism can accomplish: the cumulative transmission of experience from generation to generation. In turn, cultural inheritance leads to cultural evolution, the prevailing mode of human adaptation. For the last few millennia, humans have been adapting the environments to their genes more often than their genes to the environments. Nevertheless, natural selection persists in modern humans, both as differential mortality and as differential fertility, although its intensity may decrease in the future. More than 2,000 human diseases and abnormalities have a genetic causation. Health care and the increasing feasibility of genetic therapy will, although slowly, augment the future incidence of hereditary ailments. Germ-line gene therapy could halt this increase, but at present, it is not technically feasible. The proposal to enhance the human genetic endowment by genetic cloning of eminent individuals is not warranted. Genomes can be cloned; individuals cannot. In the future, therapeutic cloning will bring enhanced possibilities for organ transplantation, nerve cells and tissue healing, and other health benefits.

  15. Cloning of the Bacillus thuringiensis serovar sotto chitinase (Schi gene and characterization of its protein

    Directory of Open Access Journals (Sweden)

    Wan-Fang Zhong

    2005-12-01

    Full Text Available Chitinase plays a positive role in the pathogenicity of Bacillus thuringiensis to insect pests. We used touchdown PCR to clone the chitinase (Schi gene from Bacillus thuringiensis serovar sotto (Bt sotto chromosomal DNA. Our DNA sequencing analysis revealed that the Bt sotto Schi gene consists of an open reading frame (ORF of 2067 nucleotides with codes for the chitinase precursor. We also found that the putative promoter consensus sequences (the -35 and -10 regions of the Bt soto Schi gene are identical to those of the chiA71 gene from Bt Pakistani, the chiA74 gene from Bt kenyae and the ichi gene from Bt israelensis. The Schi chitinase precursor is 688 amino acids long with an estimated molecular mass of 75.75 kDa and a theoretical isoelectric point of 5.74, and contains four domains, which are, in sequence, a signal peptide, an N-terminal catalytic domain, a fibronectin type III like domain and a C-terminal chitin-binding domain. Sequence comparison and the evolutionary relationship of the Bt sotto Schi chitinase to other chitinase and chitinase-like proteins are also discussed.

  16. Molecular cloning and expression analysis of turnip (Brassica rapa var. rapa sucrose transporter gene family

    Directory of Open Access Journals (Sweden)

    Yuanyuan Liu

    2017-06-01

    Full Text Available In higher plants, sugars (mainly sucrose are produced by photosynthetically assimilated carbon in mesophyll cells of leaves and translocated to heterotrophic organs to ensure plant growth and development. Sucrose transporters, or sucrose carriers (SUCs, play an important role in the long-distance transportation of sucrose from source organs to sink organs, thereby affecting crop yield and quality. The identification, characterization, and molecular function analysis of sucrose transporter genes have been reported for monocot and dicot plants. However, no relevant study has been reported on sucrose transporter genes in Brassica rapa var. rapa, a cruciferous root crop used mainly as vegetables and fodder. We identified and cloned 12 sucrose transporter genes from turnips, named BrrSUC1.1 to BrrSUC6.2 according to the SUC gene sequences of B. rapa pekinensis. We constructed a phylogenetic tree and analyzed conserved motifs for all 12 sucrose transporter genes identified. Real-time quantitative polymerase chain reaction was conducted to understand the expression levels of SUC genes in different tissues and developmental phases of the turnip. These findings add to our understanding of the genetics and physiology of sugar transport during taproot formation in turnips.

  17. Creation of BAC genomic resources for cocoa ( Theobroma cacao L.) for physical mapping of RGA containing BAC clones.

    Science.gov (United States)

    Clément, D; Lanaud, C; Sabau, X; Fouet, O; Le Cunff, L; Ruiz, E; Risterucci, A M; Glaszmann, J C; Piffanelli, P

    2004-05-01

    We have constructed and validated the first cocoa ( Theobroma cacao L.) BAC library, with the aim of developing molecular resources to study the structure and evolution of the genome of this perennial crop. This library contains 36,864 clones with an average insert size of 120 kb, representing approximately ten haploid genome equivalents. It was constructed from the genotype Scavina-6 (Sca-6), a Forastero clone highly resistant to cocoa pathogens and a parent of existing mapping populations. Validation of the BAC library was carried out with a set of 13 genetically-anchored single copy and one duplicated markers. An average of nine BAC clones per probe was identified, giving an initial experimental estimation of the genome coverage represented in the library. Screening of the library with a set of resistance gene analogues (RGAs), previously mapped in cocoa and co-localizing with QTL for resistance to Phytophthora traits, confirmed at the physical level the tight clustering of RGAs in the cocoa genome and provided the first insights into the relationships between genetic and physical distances in the cocoa genome. This library represents an available BAC resource for structural genomic studies or map-based cloning of genes corresponding to important QTLs for agronomic traits such as resistance genes to major cocoa pathogens like Phytophthora spp ( palmivora and megakarya), Crinipellis perniciosa and Moniliophthora roreri.

  18. The cell wall and cell division gene cluster in the Mra operon of Pseudomonas aeruginosa: cloning, production, and purification of active enzymes.

    Science.gov (United States)

    Azzolina, B A; Yuan, X; Anderson, M S; El-Sherbeini, M

    2001-04-01

    We have cloned the Pseudomonas aeruginosa cell wall biosynthesis and cell division gene cluster that corresponds to the mra operon in the 2-min region of the Escherichia coli chromosome. The organization of the two chromosomal regions in P. aeruginosa and E. coli is remarkably similar with the following gene order: pbp3/pbpB, murE, murF, mraY, murD, ftsW, murG, murC, ddlB, ftsQ, ftsA, ftsZ, and envA/LpxC. All of the above P. aeruginosa genes are transcribed from the same strand of DNA with very small, if any, intragenic regions, indicating that these genes may constitute a single operon. All five amino acid ligases, MurC, MurD, MurE, MurF, and DdlB, in addition to MurG and MraY were cloned in expression vectors. The four recombinant P. aeruginosa Mur ligases, MurC, MurD, MurE, and MurF were overproduced in E. coli and purified as active enzymes. Copyright 2001 Academic Press.

  19. Rapid in silico cloning of genes using expressed sequence tags (ESTs).

    Science.gov (United States)

    Gill, R W; Sanseau, P

    2000-01-01

    Expressed sequence tags (ESTs) are short single-pass DNA sequences obtained from either end of cDNA clones. These ESTs are derived from a vast number of cDNA libraries obtained from different species. Human ESTs are the bulk of the data and have been widely used to identify new members of gene families, as markers on the human chromosomes, to discover polymorphism sites and to compare expression patterns in different tissues or pathologies states. Information strategies have been devised to query EST databases. Since most of the analysis is performed with a computer, the term "in silico" strategy has been coined. In this chapter we will review the current status of EST databases, the pros and cons of EST-type data and describe possible strategies to retrieve meaningful information.

  20. Molecular cloning, expression analysis and sequence prediction of ...

    African Journals Online (AJOL)

    CCAAT/enhancer-binding protein beta as an essential transcriptional factor, regulates the differentiation of adipocytes and the deposition of fat. Herein, we cloned the whole open reading frame (ORF) of bovine C/EBPβ gene and analyzed its putative protein structures via DNA cloning and sequence analysis. Then, the ...

  1. A Food-Grade Cloning System for Industrial Strains of Lactococcus lactis

    Science.gov (United States)

    Sørensen, Kim I.; Larsen, Rasmus; Kibenich, Annette; Junge, Mette P.; Johansen, Eric

    2000-01-01

    We have previously reported the construction of a food-grade cloning vector for Lactococcus using the ochre suppressor, supB, as the selective marker. This vector, pFG1, causes only a slight growth inhibition in the laboratory strain MG1363 but is unstable in the industrial strains tested. As supB suppresses both amber and ochre stop codons, which are present in 82% of all known lactococcal genes, this undesirable finding may result from the accumulation of elongated mistranslated polypeptides. Here, we report the development of a new food-grade cloning vector, pFG200, which is suitable for overexpressing a variety of genes in industrial strains of Lactococcus lactis. The vector uses an amber suppressor, supD, as selectable marker and consists entirely of Lactococcus DNA, with the exception of a small polylinker region. Using suppressible pyrimidine auxotrophs, selection and maintenance are efficient in any pyrimidine-free medium including milk. Importantly, the presence of this vector in a variety of industrial strains has no significant effect on the growth rate or the rate of acidification in milk, making this an ideal system for food-grade modification of industrially relevant L. lactis strains. The usefulness of this system is demonstrated by overexpressing the pepN gene in a number of industrial backgrounds. PMID:10742196

  2. Cloning and characterization of the pheromone biosynthesis activating neuropeptide receptor gene in Spodoptera littoralis larvae.

    Science.gov (United States)

    Zheng, Lei; Lytle, Christian; Njauw, Ching-Ni; Altstein, Miriam; Martins-Green, Manuela

    2007-05-15

    In noctuid moths cuticular pigmentation is regulated by the pyrokinin/pheromone biosynthesis activating neuropeptide (PK/PBAN) family, which also mediates a variety of other functions in moths and other insects. Numerous studies have shown that these neuropeptides exert their functions through activation of the PBAN receptor (PBAN-R), with subsequent Ca(2+) influx, followed by either activation of cAMP or direct activation of downstream kinases. Recently, several PBAN-Rs have been identified, all of which are from the pheromone gland of adult female moths, but evidence shows that functional PK/PBAN-Rs can also be expressed in insect larvae, where they mediate melanization and possibly other functions (e.g., diapause). Here, we identified a gene encoding a G-protein-coupled receptor from the 5th instar larval tissue of the moth Spodoptera littoralis. The cDNA of this gene contains an open reading frame with a length of 1050 nucleotides, which translates to a 350-amino acid, 42-kDa protein that shares 92% amino acid identity with Helicoverpa zea and Helicoverpa armigera PBAN-R, 81% with Bombyx mori PBAN-R and 72% with Plutella xylostella PBAN-R. The S. littoralis PBAN-R gene was stably expressed in NIH3T3 cells and transiently in HEK293 cells. We show that it mediates the dose-dependent PBAN-induced intracellular Ca(2+) response and activation of the MAP kinase via a PKC-dependent but Galphai-independent signaling mechanism. Other PK/PBAN family peptides (pheromonotropin and a C-terminally PBAN-derived peptide PBAN(28-33)NH(2)) also triggered MAP kinase activation. This receptor, together with the previously cloned PBAN-R, may facilitate our understanding of the cell-specific responses and functional diversities of this diverse neuropeptide family.

  3. Gene cloning and overexpression of two conjugated polyketone reductases, novel aldo-keto reductase family enzymes, of Candida parapsilosis.

    Science.gov (United States)

    Kataoka, M; Delacruz-Hidalgo, A-R G; Akond, M A; Sakuradani, E; Kita, K; Shimizu, S

    2004-04-01

    The genes encoding two conjugated polyketone reductases (CPR-C1, CPR-C2) of Candida parapsilosis IFO 0708 were cloned and sequenced. The genes encoded a total of 304 and 307 amino acid residues for CPR-C1 and CPR-C2, respectively. The deduced amino acid sequences of the two enzymes showed high similarity to each other and to several proteins of the aldo-keto reductase (AKR) superfamily. However, several amino acid residues in putative active sites of AKRs were not conserved in CPR-C1 and CPR-C2. The two CPR genes were overexpressed in Escherichia coli. The E. coli transformant bearing the CPR-C2 gene almost stoichiometrically reduced 30 mg ketopantoyl lactone/ml to D-pantoyl lactone.

  4. Partial structure of the phylloxin gene from the giant monkey frog, Phyllomedusa bicolor: parallel cloning of precursor cDNA and genomic DNA from lyophilized skin secretion.

    Science.gov (United States)

    Chen, Tianbao; Gagliardo, Ron; Walker, Brian; Zhou, Mei; Shaw, Chris

    2005-12-01

    Phylloxin is a novel prototype antimicrobial peptide from the skin of Phyllomedusa bicolor. Here, we describe parallel identification and sequencing of phylloxin precursor transcript (mRNA) and partial gene structure (genomic DNA) from the same sample of lyophilized skin secretion using our recently-described cloning technique. The open-reading frame of the phylloxin precursor was identical in nucleotide sequence to that previously reported and alignment with the nucleotide sequence derived from genomic DNA indicated the presence of a 175 bp intron located in a near identical position to that found in the dermaseptins. The highly-conserved structural organization of skin secretion peptide genes in P. bicolor can thus be extended to include that encoding phylloxin (plx). These data further reinforce our assertion that application of the described methodology can provide robust genomic/transcriptomic/peptidomic data without the need for specimen sacrifice.

  5. Scriptaid and 5-aza-2'deoxycytidine enhanced expression of pluripotent genes and in vitro developmental competence in interspecies Black-footed cat cloned embryos

    Science.gov (United States)

    Gómez, M. C.; Biancardi, M.N.; Jenkins, J.A.; Dumas, C.; Galiguis, J.; Wang, G.; Earle Pope, C.

    2012-01-01

    Somatic cell nuclear transfer offers the possibility of preserving endangered species including the black-footed cat, which is threatened with extinction. The effectiveness and efficiency of somatic cell nuclear transfer (SCNT) depends on a variety of factors, but 'inappropriate epigenetic reprogramming of the transplanted nucleus is the primary cause of the developmental failure of cloned embryos. Abnormal epigenetic events such as DNA methylation and histone modifications during SCNT perturb the expression of imprinted and pluripotent-related genes that, consequently, may result in foetal and neonatal abnormalities. We have demonstrated that pregnancies can be established after transfer of black-footed cat cloned embryos into domestic cat recipients, but none of the implanted embryos developed to term and the foetal failure has been associated to aberrant reprogramming in cloned embryos. There is growing evidence that modifying the epigenetic pattern of the chromatin template of both donor cells and reconstructed embryos with a combination of inhibitors of histone deacetylases and DNA methyltransferases results in enhanced gene reactivation and improved in vitro and in vivo developmental competence. Epigenetic modifications of the chromatin template of black-footed cat donor cells and reconstructed embryos with epigenetic-modifying compounds enhanced in vitro development, and regulated the expression of pluripotent genes, but these epigenetic modifications did not improve in vivo developmental competence.

  6. Cloning and expression analysis of cinnamoyl-CoA reductase (CCR) genes in sorghum.

    Science.gov (United States)

    Li, Jieqin; Fan, Feifei; Wang, Lihua; Zhan, Qiuwen; Wu, Peijin; Du, Junli; Yang, Xiaocui; Liu, Yanlong

    2016-01-01

    Cinnamoyl-CoA reductase (CCR) is the first enzyme in the monolignol-specific branch of the lignin biosynthetic pathway. In this research, three sorghum CCR genes including SbCCR1, SbCCR2-1 and SbCCR2-2 were cloned and characterized. Analyses of the structure and phylogeny of the three CCR genes showed evolutionary conservation of the functional domains and divergence of function. Transient expression assays in Nicotiana benthamiana leaves demonstrated that the three CCR proteins were localized in the cytoplasm. The expression analysis showed that the three CCR genes were induced by drought. But in 48 h, the expression levels of SbCCR1 and SbCCR2-2 did not differ between CK and the drought treatment; while the expression level of SbCCR2-1 in the drought treatment was higher than in CK. The expression of the SbCCR1 and SbCCR2-1 genes was not induced by sorghum aphid [Melanaphis sacchari (Zehntner)] attack, but SbCCR2-2 was significantly induced by sorghum aphid attack. It is suggested that SbCCR2-2 is involved in the process of pest defense. Absolute quantitative real-time PCR revealed that the three CCR genes were mainly expressed in lignin deposition organs. The gene copy number of SbCCR1 was significantly higher than those of SbCCR2-1 and SbCCR2-2 in the tested tissues, especially in stem. The results provide new insight into the functions of the three CCR genes in sorghum.

  7. Third-Generation Sequencing and Analysis of Four Complete Pig Liver Esterase Gene Sequences in Clones Identified by Screening BAC Library.

    Science.gov (United States)

    Zhou, Qiongqiong; Sun, Wenjuan; Liu, Xiyan; Wang, Xiliang; Xiao, Yuncai; Bi, Dingren; Yin, Jingdong; Shi, Deshi

    2016-01-01

    Pig liver carboxylesterase (PLE) gene sequences in GenBank are incomplete, which has led to difficulties in studying the genetic structure and regulation mechanisms of gene expression of PLE family genes. The aim of this study was to obtain and analysis of complete gene sequences of PLE family by screening from a Rongchang pig BAC library and third-generation PacBio gene sequencing. After a number of existing incomplete PLE isoform gene sequences were analysed, primers were designed based on conserved regions in PLE exons, and the whole pig genome used as a template for Polymerase chain reaction (PCR) amplification. Specific primers were then selected based on the PCR amplification results. A three-step PCR screening method was used to identify PLE-positive clones by screening a Rongchang pig BAC library and PacBio third-generation sequencing was performed. BLAST comparisons and other bioinformatics methods were applied for sequence analysis. Five PLE-positive BAC clones, designated BAC-10, BAC-70, BAC-75, BAC-119 and BAC-206, were identified. Sequence analysis yielded the complete sequences of four PLE genes, PLE1, PLE-B9, PLE-C4, and PLE-G2. Complete PLE gene sequences were defined as those containing regulatory sequences, exons, and introns. It was found that, not only did the PLE exon sequences of the four genes show a high degree of homology, but also that the intron sequences were highly similar. Additionally, the regulatory region of the genes contained two 720bps reverse complement sequences that may have an important function in the regulation of PLE gene expression. This is the first report to confirm the complete sequences of four PLE genes. In addition, the study demonstrates that each PLE isoform is encoded by a single gene and that the various genes exhibit a high degree of sequence homology, suggesting that the PLE family evolved from a single ancestral gene. Obtaining the complete sequences of these PLE genes provides the necessary foundation for

  8. Primer sets for cloning the human repertoire of T cell Receptor Variable regions

    Directory of Open Access Journals (Sweden)

    Santoro Claudio

    2008-08-01

    Full Text Available Abstract Background Amplification and cloning of naïve T cell Receptor (TR repertoires or antigen-specific TR is crucial to shape immune response and to develop immuno-based therapies. TR variable (V regions are encoded by several genes that recombine during T cell development. The cloning of expressed genes as large diverse libraries from natural sources relies upon the availability of primers able to amplify as many V genes as possible. Results Here, we present a list of primers computationally designed on all functional TR V and J genes listed in the IMGT®, the ImMunoGeneTics information system®. The list consists of unambiguous or degenerate primers suitable to theoretically amplify and clone the entire TR repertoire. We show that it is possible to selectively amplify and clone expressed TR V genes in one single RT-PCR step and from as little as 1000 cells. Conclusion This new primer set will facilitate the creation of more diverse TR libraries than has been possible using currently available primer sets.

  9. A Food-Grade Cloning System for Industrial Strains of Lactococcus lactis

    OpenAIRE

    Sørensen, Kim I.; Larsen, Rasmus; Kibenich, Annette; Junge, Mette P.; Johansen, Eric

    2000-01-01

    We have previously reported the construction of a food-grade cloning vector for Lactococcus using the ochre suppressor, supB, as the selective marker. This vector, pFG1, causes only a slight growth inhibition in the laboratory strain MG1363 but is unstable in the industrial strains tested. As supB suppresses both amber and ochre stop codons, which are present in 82% of all known lactococcal genes, this undesirable finding may result from the accumulation of elongated mistranslated polypeptide...

  10. Variation in biological properties of cauliflower mosaic virus clones.

    Science.gov (United States)

    al-Kaff, N; Covey, S N

    1994-11-01

    Infectious clones were prepared from virion DNA of three cauliflower mosaic virus (CaMV) isolates, 11/3, Xinjiang (XJ), and Aust, to investigate pathogenic variation in virus populations. Of 10 infectious clones obtained for isolate 11/3, four pathotypes were identified, each producing symptoms in turnip that differed from those of the 11/3 wild-type. Virus from two clonal groups of 11/3 was transmissible by aphids whereas that from two others was not. Of the five infectious clones obtained from isolate XJ, two groups were identified, one of which differed symptomatically from the wild-type. Only one infectious clone was obtained from isolate Aust and this had properties similar to the wild-type. Restriction enzyme polymorphisms were found in some clonal groups and these correlated with symptoms. Other groups with different pathogenic properties could not be distinguished apart by restriction site polymorphisms. Further variation was observed in the nucleotide sequences of gene II (coding for aphid transmission factor) from these viruses as compared with other CaMV isolates. In the aphid non-transmissible clones of isolate 11/3, one had a Gly to Arg mutation in gene II similar to that of other non-deleted non-transmissible CaMV isolates. The second had a 322 bp deletion at the site of a small direct repeat similar to that of isolate CM4-184 although occurring in a different position. The gene II deletion of isolate 11/3 produced a frame-shift that separated genes II and III by 60 bp. Most CaMV clones studied remained biologically stable producing similar symptoms during subsequent passages. However, one clone (11/3-7) produced two new biotypes during its first passage suggesting that it was relatively unstable. Our results show that wild-type populations of CaMV contain a range of infectious genome variants with contrasting biological properties and differing stability. We suggest that a variety of significant viral phenotypic changes can occur during each

  11. Quantitative discrimination of Aggregatibacter actinomycetemcomitans highly leukotoxic JP2 clone from non-JP2 clones in diagnosis of aggressive periodontitis.

    Science.gov (United States)

    Yoshida, Akihiro; Ennibi, Oum-Keltoum; Miyazaki, Hideo; Hoshino, Tomonori; Hayashida, Hideaki; Nishihara, Tatsuji; Awano, Shuji; Ansai, Toshihiro

    2012-10-11

    Aggregatibacter actinomycetemcomitans is the etiological agent of periodontitis, and there is a strong association between clone JP2 and aggressive periodontitis in adolescents of African descent. The JP2 clone has an approximately 530-bp deletion (∆530) in the promoter region of the lkt/ltx gene, which encodes leukotoxin, and this clone has high leukotoxic activity. Therefore, this clone is very important in aggressive periodontitis. To diagnose this disease, culture methods and conventional PCR techniques are used. However, quantitative detection based on qPCR for the JP2 clone has not been developed due to genetic difficulties. In this study, we developed a qPCR-based quantification method specific to the JP2 clone. Based on our analysis of the DNA sequence of the lkt/ltx gene and its flanking region, we designed a reverse primer specific for the ∆530 deletion border sequence and developed a JP2-specific PCR-based quantification method using this primer. We also analyzed the DNA sequence of the ∆530 locus and found it to be highly conserved (97-100%) among 17 non-JP2 strains. Using the ∆530 locus, we designed a qPCR primer-probe set specific to non-JP2 clones. Next, we determined the numbers of JP2 and non-JP2 clone cells in the periodontal pockets of patients with aggressive periodontitis. The JP2-specific primers specifically amplified the genomic DNA of the A. actinomycetemcomitans JP2 clone and did not react with other bacterial DNA, whereas the non-JP2 specific primers reacted only with A. actinomycetemcomitans non-JP2 clones. Samples from the 88 periodontal sites in the 11 patients with aggressive periodontitis were analyzed. The bacterial cell numbers in 88 periodontal sites ranged from 0 to 4.8 × 10(8) (mean 1.28 × 10(7)) for JP2 clones and from 0 to 1.6 × 10(6) for non-JP2 clones (mean 1.84 × 10(5)). There were significant differences in the JP2 cell number between a clinical attachment level (CAL) ≤6 mm and a level ≥7 mm (p clones. This

  12. FastCloning: a highly simplified, purification-free, sequence- and ligation-independent PCR cloning method

    Directory of Open Access Journals (Sweden)

    Lu Jia

    2011-10-01

    Full Text Available Abstract Background Although a variety of methods and expensive kits are available, molecular cloning can be a time-consuming and frustrating process. Results Here we report a highly simplified, reliable, and efficient PCR-based cloning technique to insert any DNA fragment into a plasmid vector or into a gene (cDNA in a vector at any desired position. With this method, the vector and insert are PCR amplified separately, with only 18 cycles, using a high fidelity DNA polymerase. The amplified insert has the ends with ~16-base overlapping with the ends of the amplified vector. After DpnI digestion of the mixture of the amplified vector and insert to eliminate the DNA templates used in PCR reactions, the mixture is directly transformed into competent E. coli cells to obtain the desired clones. This technique has many advantages over other cloning methods. First, it does not need gel purification of the PCR product or linearized vector. Second, there is no need of any cloning kit or specialized enzyme for cloning. Furthermore, with reduced number of PCR cycles, it also decreases the chance of random mutations. In addition, this method is highly effective and reproducible. Finally, since this cloning method is also sequence independent, we demonstrated that it can be used for chimera construction, insertion, and multiple mutations spanning a stretch of DNA up to 120 bp. Conclusion Our FastCloning technique provides a very simple, effective, reliable, and versatile tool for molecular cloning, chimera construction, insertion of any DNA sequences of interest and also for multiple mutations in a short stretch of a cDNA.

  13. An Effect of Cadmium and Lead Ions on Escherichia coli with the Cloned Gene for Metallothionein (MT-3) Revealed by Electrochemistry

    International Nuclear Information System (INIS)

    Adam, Vojtech; Chudobova, Dagmar; Tmejova, Katerina; Cihalova, Kristyna; Krizkova, Sona; Guran, Roman; Kominkova, Marketa; Zurek, Michal; Kremplova, Monika; Jimenez, Ana Maria Jimenez; Konecna, Marie

    2014-01-01

    This study was focused on the application of electrochemical methods for studying of bacterial strains Escherichia coli and Escherichia coli expressing human metallothionein gene (MT-3) before and after the application of cadmium and/or lead ions in four concentrations (25, 50, 75 and 150 μM). Bacterial strains Escherichia coli and Escherichia coli expressing human metallothionein gene (MT-3) were used like model organisms for studying of metals influence to metallothionein expression. Metallothionein was isolated using fast protein liquid chromatography and quantified by electrochemical methods. The occurrence of metallothionein in E.coli was confirmed by gel electrophoresis by the presence of the bands at 15 (MT dimer) and 22 kDa (MT trimer). The changes in electrochemical records due to the interactions of metallothioneins (MT-3 and MT-2A) with cadmium and lead ions showed decline of Cat2 signal of MT with the increasing interaction time because of metal ions binding to cysteines. Electrochemical determination also revealed that Cd(II) remains in E. coli cells in the higher amount than Pb (II). Opposite situation was found at E. coli–MT-3 strain. The antimicrobial effect of cadmium ions was determined by IC 50 and was statistically calculated as 39.2 and 95.5 μM for E. coli without cloned MT-3 and E. coli carrying MT-3 gene, respectively. High provided concentration IC 50 in strains after lead ions application (352.5 μM for E. coli without cloning and 207.0 μM for E. coli carrying cloned MT-3 gene) indicates lower toxicity of lead ions on bacterial strains compared to the cadmium ions

  14. [Scientific ethics of human cloning].

    Science.gov (United States)

    Valenzuela, Carlos Y

    2005-01-01

    True cloning is fission, budding or other types of asexual reproduction. In humans it occurs in monozygote twinning. This type of cloning is ethically and religiously good. Human cloning can be performed by twinning (TWClo) or nuclear transfer (NTClo). Both methods need a zygote or a nuclear transferred cell, obtained in vitro (IVTec). They are under the IVTec ethics. IVTecs use humans (zygotes, embryos) as drugs or things; increase the risk of malformations; increase development and size of abnormalities and may cause long-term changes. Cloning for preserving extinct (or almost extinct) animals or humans when sexual reproduction is not possible is ethically valid. The previous selection of a phenotype in human cloning violates some ethical principles. NTClo for reproductive or therapeutic purposes is dangerous since it increases the risk for nucleotide or chromosome mutations, de-programming or re-programming errors, aging or malignancy of the embryo cells thus obtained.

  15. Molecular cloning of a Candida albicans gene (SSB1) coding for a protein related to the Hsp70 family.

    Science.gov (United States)

    Maneu, V; Cervera, A M; Martinez, J P; Gozalbo, D

    1997-06-15

    We have cloned and sequenced a Candida albicans gene (SSB1) encoding a potential member of the heat-shock protein seventy (hsp70) family. The protein encoded by this gene contains 613 amino acids and shows a high degree (85%) of sequence identity to the ssb subfamily (ssb1 and ssb2) of the Saccharomyces cerevisiae hsp70 family. The transcribed mRNA (2.1 kb) is present in similar amounts both in yeast and germ tube cells of C. albicans.

  16. Cloning, Expression, and Chromosomal Stabilization of the Propionibacterium shermanii Proline Iminopeptidase Gene (pip) for Food-Grade Application in Lactococcus lactis

    NARCIS (Netherlands)

    Leenhouts, Kees; Bolhuis, Albert; Boot, Johan; Deutz, Inge; Toonen, Marjolein; Venema, Gerard; Kok, Jan; Ledeboer, Aat

    1998-01-01

    Proline iminopeptidase produced by Propionibacterium shermanii plays an essential role in the flavor development of Swiss-type cheeses. The enzyme (Pip) was purified and characterized, and the gene (pip) was cloned and expressed in Escherichia coli and Lactococcus lactis, the latter species being an

  17. Cloned Erwinia chrysanthemi out genes enable Escherichia coli to selectively secrete a diverse family of heterologous proteins to its milieu.

    OpenAIRE

    He, S Y; Lindeberg, M; Chatterjee, A K; Collmer, A

    1991-01-01

    The out genes of the enterobacterial plant pathogen Erwinia chrysanthemi are responsible for the efficient extracellular secretion of multiple plant cell wall-degrading enzymes, including four isozymes of pectate lyase, exo-poly-alpha-D-galacturonosidase, pectin methylesterase, and cellulase. Out- mutants of Er. chrysanthemi are unable to export any of these proteins beyond the periplasm and are severely reduced in virulence. We have cloned out genes from Er. chrysanthemi in the stable, low-c...

  18. Fundamental resource-allocating model in colleges and universities based on Immune Clone Algorithms

    Science.gov (United States)

    Ye, Mengdie

    2017-05-01

    In this thesis we will seek the combination of antibodies and antigens converted from the optimal course arrangement and make an analogy with Immune Clone Algorithms. According to the character of the Algorithms, we apply clone, clone gene and clone selection to arrange courses. Clone operator can combine evolutionary search and random search, global search and local search. By cloning and clone mutating candidate solutions, we can find the global optimal solution quickly.

  19. Mapped clone and functional analysis of leaf-color gene Ygl7 in a rice hybrid (Oryza sativa L. ssp. indica).

    Science.gov (United States)

    Deng, Xiao-juan; Zhang, Hai-qing; Wang, Yue; He, Feng; Liu, Jin-ling; Xiao, Xiao; Shu, Zhi-feng; Li, Wei; Wang, Guo-huai; Wang, Guo-liang

    2014-01-01

    Leaf-color is an effective marker to identify the hybridization of rice. Leaf-color related genes function in chloroplast development and the photosynthetic pigment biosynthesis of higher plants. The ygl7 (yellow-green leaf 7) is a mutant with spontaneous yellow-green leaf phenotype across the whole lifespan but with no change to its yield traits. We cloned gene Ygl7 (Os03g59640) which encodes a magnesium-chelatase ChlD protein. Expression of ygl7 turns green-leaves to yellow, whereas RNAi-mediated silence of Ygl7 causes a lethal phenotype of the transgenic plants. This indicates the importance of the gene for rice plant. On the other hand, it corroborates that ygl7 is a non-null mutants. The content of photosynthetic pigment is lower in Ygl7 than the wild type, but its light efficiency was comparatively high. All these results indicated that the mutational YGL7 protein does not cause a complete loss of original function but instead acts as a new protein performing a new function. This new function partially includes its preceding function and possesses an additional feature to promote photosynthesis. Chl1, Ygl98, and Ygl3 are three alleles of the OsChlD gene that have been documented previously. However, mutational sites of OsChlD mutant gene and their encoded protein products were different in the three mutants. The three mutants have suppressed grain output. In our experiment, plant materials of three mutants (ygl7, chl1, and ygl98) all exhibited mutational leaf-color during the whole growth period. This result was somewhat different from previous studies. We used ygl7 as female crossed with chl1 and ygl98, respectively. Both the F1 and F2 generation display yellow-green leaf phenotype with their chlorophyll and carotenoid content falling between the values of their parents. Moreover, we noted an important phenomenon: ygl7-NIL's leaf-color is yellow, not yellowy-green, and this is also true of all back-crossed offspring with ygl7.

  20. Mapped clone and functional analysis of leaf-color gene Ygl7 in a rice hybrid (Oryza sativa L. ssp. indica.

    Directory of Open Access Journals (Sweden)

    Xiao-juan Deng

    Full Text Available Leaf-color is an effective marker to identify the hybridization of rice. Leaf-color related genes function in chloroplast development and the photosynthetic pigment biosynthesis of higher plants. The ygl7 (yellow-green leaf 7 is a mutant with spontaneous yellow-green leaf phenotype across the whole lifespan but with no change to its yield traits. We cloned gene Ygl7 (Os03g59640 which encodes a magnesium-chelatase ChlD protein. Expression of ygl7 turns green-leaves to yellow, whereas RNAi-mediated silence of Ygl7 causes a lethal phenotype of the transgenic plants. This indicates the importance of the gene for rice plant. On the other hand, it corroborates that ygl7 is a non-null mutants. The content of photosynthetic pigment is lower in Ygl7 than the wild type, but its light efficiency was comparatively high. All these results indicated that the mutational YGL7 protein does not cause a complete loss of original function but instead acts as a new protein performing a new function. This new function partially includes its preceding function and possesses an additional feature to promote photosynthesis. Chl1, Ygl98, and Ygl3 are three alleles of the OsChlD gene that have been documented previously. However, mutational sites of OsChlD mutant gene and their encoded protein products were different in the three mutants. The three mutants have suppressed grain output. In our experiment, plant materials of three mutants (ygl7, chl1, and ygl98 all exhibited mutational leaf-color during the whole growth period. This result was somewhat different from previous studies. We used ygl7 as female crossed with chl1 and ygl98, respectively. Both the F1 and F2 generation display yellow-green leaf phenotype with their chlorophyll and carotenoid content falling between the values of their parents. Moreover, we noted an important phenomenon: ygl7-NIL's leaf-color is yellow, not yellowy-green, and this is also true of all back-crossed offspring with ygl7.

  1. Cloning of the cDNA for a human homologue of the Drosophila white gene and mapping to chromosome 21q22.3.

    OpenAIRE

    Chen, H.; Rossier, C.; Lalioti, M. D.; Lynn, A.; Chakravarti, A.; Perrin, G.; Antonarakis, S. E.

    1996-01-01

    In an effort to contribute to the transcript map of human chromosome 21 and the understanding of the pathophysiology of trisomy 21, we have used exon trapping to identify fragments of chromosome 21 genes. Two trapped exons, from pools of chromosome 21-specific cosmids, showed homology to the Drosophila white (w) gene. We subsequently cloned the corresponding cDNA for a human homologue of the Drosophila w gene (hW) from human retina and fetal brain cDNA libraries. The gene belongs to the ATP-b...

  2. Changes in the gut microbiota of cloned and non-cloned control pigs during development of obesity: gut microbiota during development of obesity in cloned pigs

    DEFF Research Database (Denmark)

    Pedersen, Rebecca; Andersen, Anders Daniel; Mølbak, Lars

    2013-01-01

    Background Obesity induced by a high-caloric diet has previously been associated with changes in the gut microbiota in mice and in humans. In this study, pigs were cloned to minimize genetic and biological variation among the animals with the aim of developing a controlled metabolomic model...... suitable for a diet-intervention study. Cloning of pigs may be an attractive way to reduce genetic influences when investigating the effect of diet and obesity on different physiological sites. The aim of this study was to assess and compare the changes in the composition of the gut microbiota of cloned vs....... non-cloned pigs during development of obesity by a high-fat/high-caloric diet. Furthermore, we investigated the association between diet-induced obesity and the relative abundance of the phyla Firmicutes and Bacteroidetes in the fecal-microbiota. The fecal microbiota from obese cloned (n = 5) and non...

  3. Cloning and Functional Analysis of the MADS-box CiMADS9 Gene from Carya illinoinensis

    Directory of Open Access Journals (Sweden)

    Zhang Jiyu

    2015-07-01

    Full Text Available A MADS-box gene, CiMADS9, was cloned from the male flowers of Carya illinoinensis by rapid amplification of cDNA ends. The gene was 1 077 bp with a 768 bp open reading frame encoding 255 amino acids. Multiple sequence comparisons revealed that CiMADS9 is a typical MIKC-type MADS-box gene with a MADS-box domain and a K semi-conserved region. Phylogenetic analysis indicated that CiMADS9 belongs to the AGL15 group of the MADS-box gene family. Quantitative reverse transcription polymerase chain reaction analysis indicated that the expression levels in reproductive organs (i.e., flowers and young fruits were considerably higher than in vegetative tissues (i.e., leaves and branches. The highest expression levels were observed in male flowers. An overexpression vector for CiMADS9 was constructed and the gene was inserted into the Arabidopsis thaliana genome. CiMADS9 expression was confirmed in all transgenic lines. Compared with wild-type plants, transgenic A. thaliana plants overexpressing CiMADS9 exhibited delayed flowering and an increased number of leaves.

  4. Cloning and analysis of the promoter region of the human fibronectin gene

    International Nuclear Information System (INIS)

    Dean, D.C.; Bowlus, C.L.; Bourgeois, S.

    1987-01-01

    Human fibronectin (FN) genomic clones were isolated by screening a human genomic library with a 75-base oligonucleotide. The sequence of the oligonucleotide corresponds to a region near the 5' end of the human FN cDNA clone pFH6 that contains the amino-terminal coding sequences but does not extend to the 5' end of the mRNA. The 5' end of the FN gene is found on a 3.7-kilobase-pair EcoRI fragment that contains about 2.7 kilobase pairs of flanking sequence. The first exon is 414 base pairs long, with a 5' untranslated region of 267 base pairs. As deduced on the basis of the position of the initiation codon, FN is synthesized with a 31-residue amino acid extension on the amion terminus that is not present in the mature polypeptide. This amino-terminal extension appears to contain both a signal peptide and a propeptide. The first 200 base pairs of 5'-flanking sequence is very G+C rich. Upstream of this the sequence becomes relatively A+T rich. The sequence ATATAA is found at -25 and the sequence CAAT is present at -150. The sequence GGGGCGGGGC at -102 exhibits homology to the binding site for the transcription factor SP1, and the sequence TGACGTCA at -173 exhibits homology to 5'-flanking sequences important for induction by cAMP

  5. Changes in the gut microbiota of cloned and non-cloned control pigs during development of obesity: gut microbiota during development of obesity in cloned pigs.

    Science.gov (United States)

    Pedersen, Rebecca; Andersen, Anders Daniel; Mølbak, Lars; Stagsted, Jan; Boye, Mette

    2013-02-07

    Obesity induced by a high-caloric diet has previously been associated with changes in the gut microbiota in mice and in humans. In this study, pigs were cloned to minimize genetic and biological variation among the animals with the aim of developing a controlled metabolomic model suitable for a diet-intervention study. Cloning of pigs may be an attractive way to reduce genetic influences when investigating the effect of diet and obesity on different physiological sites. The aim of this study was to assess and compare the changes in the composition of the gut microbiota of cloned vs. non-cloned pigs during development of obesity by a high-fat/high-caloric diet. Furthermore, we investigated the association between diet-induced obesity and the relative abundance of the phyla Firmicutes and Bacteroidetes in the fecal-microbiota. The fecal microbiota from obese cloned (n = 5) and non-cloned control pigs (n= 6) was investigated biweekly over a period of 136 days, by terminal restriction fragment length polymorphism (T-RFLP) and quantitative real time PCR (qPCR). A positive correlation was observed between body-weight at endpoint and percent body-fat in cloned (r=0.9, Pmicrobiota between the cloned pigs or between cloned and non-cloned control pigs. Body-weight correlated positively with the relative abundance of Firmicutes in both cloned (r=0.37; Pgut microbiota in neither the obese nor the lean state. Diet-induced obesity was associated with an increase in the relative abundance of Firmicutes over time. Our results suggest that cloned pigs are not a more suitable animal model for gut microbiota-obesity related studies than non-cloned pigs. This study is the first to evaluate if cloned pigs provide a better animal model than conventional pigs in diet-intervention, obesity and gut microbiota research.

  6. Molecular Cloning and Expression Analysis of Cu/Zn SOD Gene from Gynura bicolor DC.

    Directory of Open Access Journals (Sweden)

    Xin Xu

    2017-01-01

    Full Text Available Superoxide dismutase is an important antioxidant enzyme extensively existing in eukaryote, which scavenges reactive oxygen species (ROS and plays an essential role in stress tolerance of higher plants. A full-length cDNA encoding Cu/Zn SOD was cloned from leaves of Gynura bicolor DC. by rapid amplification of cDNA ends (RACE. The full-length cDNA of Cu/Zn SOD is 924 bp and has a 681 bp open reading frame encoding 227 amino acids. Bioinformatics analysis revealed that belonged to the plant SOD super family. Cu/Zn SODs of the Helianthus annuus, Mikania micrantha, and Solidago canadensis var. scabra all have 86% similarity to the G. bicolor Cu/Zn SOD. Analysis of the expression of Cu/Zn SOD under different treatments revealed that Cu/Zn SOD was a stress-responsive gene, especially to 1-MCP. It indicates that the Cu/Zn SOD gene would be an important gene in the resistance to stresses and will be helpful in providing evidence for future research on underlying molecular mechanism and choosing proper postharvest treatments for G. bicolor.

  7. Cloning, characterization and sequence comparison of the gene coding for IMP dehydrogenase from Pyrococcus furiosus.

    Science.gov (United States)

    Collart, F R; Osipiuk, J; Trent, J; Olsen, G J; Huberman, E

    1996-10-03

    We have cloned and characterized the gene encoding inosine monophosphate dehydrogenase (IMPDH) from Pyrococcus furiosus (Pf), a hyperthermophillic archeon. Sequence analysis of the Pf gene indicated an open reading frame specifying a protein of 485 amino acids (aa) with a calculated M(r) of 52900. Canonical Archaea promoter elements, Box A and Box B, are located -49 and -17 nucleotides (nt), respectively, upstream of the putative start codon. The sequence of the putative active-site region conforms to the IMPDH signature motif and contains a putative active-site cysteine. Phylogenetic relationships derived by using all available IMPDH sequences are consistent with trees developed for other molecules; they do not precisely resolve the history of Pf IMPDH but indicate a close similarity to bacterial IMPDH proteins. The phylogenetic analysis indicates that a gene duplication occurred prior to the division between rodents and humans, accounting for the Type I and II isoforms identified in mice and humans.

  8. Analysis of microbiota associated with peri-implantitis using 16S rRNA gene clone library

    Directory of Open Access Journals (Sweden)

    Tatsuro Koyanagi

    2010-05-01

    Full Text Available Background: Peri-implantitis (PI is an inflammatory disease which leads to the destruction of soft and hard tissues around osseointegrated implants. The subgingival microbiota appears to be responsible for peri-implant lesions and although the complexity of the microbiota has been reported in PI, the microbiota responsible for PI has not been identified. Objective: The purpose of this study was to identify the microbiota in subjects who have PI, clinically healthy implants, and periodontitis-affected teeth using 16S rRNA gene clone library analysis to clarify the microbial differences. Design: Three subjects participated in this study. The conditions around the teeth and implants were evaluated based on clinical and radiographic examinations and diseased implants, clinically healthy implants, and periodontally diseased teeth were selected. Subgingival plaque samples were taken from the deepest pockets using sterile paper points. Prevalence and identity of bacteria was analyzed using a 16S rRNA gene clone library technique. Results: A total of 112 different species were identified from 335 clones sequenced. Among the 112 species, 51 (46% were uncultivated phylotypes, of which 22 were novel phylotypes. The numbers of bacterial species identified at the sites of PI, periodontitis, and periodontally healthy implants were 77, 57, and 12, respectively. Microbiota in PI mainly included Gram-negative species and the composition was more diverse when compared to that of the healthy implant and periodontitis. The phyla Chloroflexi, Tenericutes, and Synergistetes were only detected at PI sites, as were Parvimonas micra, Peptostreptococcus stomatis, Pseudoramibacter alactolyticus, and Solobacterium moorei. Low levels of periodontopathic bacteria, such as Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, were seen in peri-implant lesions. Conclusions: The biofilm in PI showed a more complex microbiota when compared to periodontitis and

  9. Animal cloning: problems and prospects.

    Science.gov (United States)

    Wells, D N

    2005-04-01

    An efficient animal cloning technology would provide many new opportunities for livestock agriculture, human medicine, and animal conservation. Nuclear cloning involves the production of animals that are genetically identical to the donor cells used in a technique known as nuclear transfer (NT). However, at present it is an inefficient process: in cattle, only around 6% of the embryos transferred to the reproductive tracts of recipient cows result in healthy, longterm surviving clones. Of concern are the high losses throughout gestation, during birth and in the post-natal period through to adulthood. Many of the pregnancy losses relate to failure of the placenta to develop and function correctly. Placental dysfunction may also have an adverse influence on postnatal health. These anomalies are probably due to incorrect epigenetic reprogramming of the donor genome following NT, leading to inappropriate patterns of gene expression during the development of clones. Whilst some physiological tests on surviving clones suggest normality, other reports indicate a variety of post-natal clone-associated abnormalities. This variability in outcome may reflect species-specific and/or cloning methodological differences. Importantly, to date it appears that these clone-associated phenotypes are not transmitted to offspring following sexual reproduction. This indicates that they represent epigenetic errors, rather than genetic errors, which are corrected during gametogenesis. Whilst this needs confirmation at the molecular level, it provides initial confidence in the first application of NT in agriculture, namely, the production of small numbers of cloned sires from genetically elite bulls, for natural mating, to effectively disseminate genetic gain. In addition to the animal welfare concerns with the technology, the underlying health of the animals and the consequential effect on food safety are critical aspects that require investigation to gain regulatory and consumer

  10. Heterologous expression of pikromycin biosynthetic gene cluster using Streptomyces artificial chromosome system.

    Science.gov (United States)

    Pyeon, Hye-Rim; Nah, Hee-Ju; Kang, Seung-Hoon; Choi, Si-Sun; Kim, Eung-Soo

    2017-05-31

    Heterologous expression of biosynthetic gene clusters of natural microbial products has become an essential strategy for titer improvement and pathway engineering of various potentially-valuable natural products. A Streptomyces artificial chromosomal conjugation vector, pSBAC, was previously successfully applied for precise cloning and tandem integration of a large polyketide tautomycetin (TMC) biosynthetic gene cluster (Nah et al. in Microb Cell Fact 14(1):1, 2015), implying that this strategy could be employed to develop a custom overexpression scheme of natural product pathway clusters present in actinomycetes. To validate the pSBAC system as a generally-applicable heterologous overexpression system for a large-sized polyketide biosynthetic gene cluster in Streptomyces, another model polyketide compound, the pikromycin biosynthetic gene cluster, was preciously cloned and heterologously expressed using the pSBAC system. A unique HindIII restriction site was precisely inserted at one of the border regions of the pikromycin biosynthetic gene cluster within the chromosome of Streptomyces venezuelae, followed by site-specific recombination of pSBAC into the flanking region of the pikromycin gene cluster. Unlike the previous cloning process, one HindIII site integration step was skipped through pSBAC modification. pPik001, a pSBAC containing the pikromycin biosynthetic gene cluster, was directly introduced into two heterologous hosts, Streptomyces lividans and Streptomyces coelicolor, resulting in the production of 10-deoxymethynolide, a major pikromycin derivative. When two entire pikromycin biosynthetic gene clusters were tandemly introduced into the S. lividans chromosome, overproduction of 10-deoxymethynolide and the presence of pikromycin, which was previously not detected, were both confirmed. Moreover, comparative qRT-PCR results confirmed that the transcription of pikromycin biosynthetic genes was significantly upregulated in S. lividans containing tandem

  11. A carboxymethyl cellulase from a marine yeast ( Aureobasidium pullulans 98): Its purification, characterization, gene cloning and carboxymethyl cellulose digestion

    Science.gov (United States)

    Rong, Yanjun; Zhang, Liang; Chi, Zhenming; Wang, Xianghong

    2015-10-01

    We have reported that A. pullulans 98 produces a high yield of cellulase. In this study, a carboxymethyl cellulase (CMCase) in the supernatant of the culture of A. pullulans 98 was purified to homogeneity, and the maximum production of CMCase was 4.51 U (mg protein)-1. The SDS-PAGE analysis showed that the molecular mass of the purified CMCase was 67.0 kDa. The optimal temperature of the purified enzyme with considerable thermosensitivity was 40°C, much lower than that of the CMCases from other fungi. The optimal pH of the enzyme was 5.6, and the activity profile was stable in a range of acidity (pH 5.0-6.0). The enzyme was activated by Na+, Mg2+, Ca2+, K+, Fe2+ and Cu2+, however, it was inhibited by Fe3+, Ba2+, Zn2+, Mn2+ and Ag+. K m and V max values of the purified enzyme were 4.7 mg mL-1 and 0.57 µmol L-1 min-1 (mg protein)-1, respectively. Only oligosaccharides with different sizes were released from carboxymethylcellulose (CMC) after hydrolysis with the purified CMCase. The putative gene encoding CMCase was cloned from A. pullulans 98, which contained an open reading frame of 954 bp (EU978473). The protein deduced contained the conserved domain of cellulase superfamily (glucosyl hydrolase family 5). The N-terminal amino acid sequence of the purified CMCase was M-A-P-H-A-E-P-Q-S-Q-T-T-E-Q-T-S-S-G-Q-F, which was consistent with that deduced from the cloned gene. This suggested that the purified CMCase was indeed encoded by the cloned CMCase gene in this yeast.

  12. Molecular Cloning and Characterization of Four Genes Encoding Ethylene Receptors Associated with Pineapple (Ananas comosus L.) Flowering.

    Science.gov (United States)

    Li, Yun-He; Wu, Qing-Song; Huang, Xia; Liu, Sheng-Hui; Zhang, Hong-Na; Zhang, Zhi; Sun, Guang-Ming

    2016-01-01

    Exogenous ethylene, or ethephon, has been widely used to induce pineapple flowering, but the molecular mechanism behind ethephon induction is still unclear. In this study, we cloned four genes encoding ethylene receptors (designated AcERS1a, AcERS1b, AcETR2a, and AcETR2b). The 5' flanking sequences of these four genes were also cloned by self-formed adaptor PCR and SiteFinding-PCR, and a group of putative cis-acting elements was identified. Phylogenetic tree analysis indicated that AcERS1a, AcERS1b, AcETR2a, and AcETR2b belonged to the plant ERS1s and ETR2/EIN4-like groups. Quantitative real-time PCR showed that AcETR2a and AcETR2b (subfamily 2) were more sensitive to ethylene treatment compared with AcERS1a and AcERS1b (subfamily 1). The relative expression of AcERS1b, AcETR2a, and AcETR2b was significantly increased during the earlier period of pineapple inflorescence formation, especially at 1-9 days after ethylene treatment (DAET), whereas AcERS1a expression changed less than these three genes. In situ hybridization results showed that bract primordia (BP) and flower primordia (FP) appeared at 9 and 21 DAET, respectively, and flowers were formed at 37 DAET. AcERS1a, AcERS1b, AcETR2a, and AcETR2b were mainly expressed in the shoot apex at 1-4 DAET; thereafter, with the appearance of BP and FP, higher expression of these genes was found in these new structures. Finally, at 37 DAET, the expression of these genes was mainly focused in the flower but was also low in other structures. These findings indicate that these four ethylene receptor genes, especially AcERS1b, AcETR2a, and AcETR2b, play important roles during pineapple flowering induced by exogenous ethephon.

  13. Cloning and inactivation of a branched-chain-amino-acid aminotransferase gene from Staphylococcus carnosus and characterization of the enzyme

    DEFF Research Database (Denmark)

    Madsen, Søren M; Beck, Hans Christian; Ravn, Peter

    2002-01-01

    . The first step in the catabolism is most likely a transamination reaction catalyzed by BCAA aminotransferases (IlvE proteins). In this study, we cloned the ilvE gene from S. carnosus by using degenerate oligonucleotides and PCR. We found that the deduced amino acid sequence was 80% identical...... were essential for optimal cell growth....

  14. Cloning in Streptococcus lactis of plasmid-mediated UV resistance and effect on prophage stability

    International Nuclear Information System (INIS)

    Chopin, M.C.; Chopin, A.; Rouault, A.; Simon, D.

    1986-01-01

    Plasmid pIL7 (33 kilobases) from Streptococcus lactis enhances UV resistance and prophage stability. A 5.4-kilobase pIL7 fragment carrying genes coding for both characters was cloned into S. lactis, using plasmid pHV1301 as the cloning vector. The recombinant plasmid was subsequently transferred to three other S. lactis strains by transformation or protoplast fusion. Cloned genes were expressed in all tested strains

  15. Purification, gene cloning, gene expression, and mutants of Dps from the obligate anaerobe Porphyromonas gingivalis.

    Science.gov (United States)

    Ueshima, Junichi; Shoji, Mikio; Ratnayake, Dinath B; Abe, Kihachiro; Yoshida, Shinichi; Yamamoto, Kenji; Nakayama, Koji

    2003-03-01

    The periodontopathogen Porphyromonas gingivalis is an obligate anaerobe that is devoid of catalase but exhibits a relatively high degree of resistance to peroxide stress. In the present study, we demonstrate that P. gingivalis contains a Dps homologue that plays an important role in the protection of cells from peroxide stress. The Dps protein isolated from P. gingivalis displayed a ferritin-like spherical polymer consisting of 19-kDa subunits. Molecular cloning and sequencing of the gene encoding this protein revealed that it had a high similarity in nucleotide and amino acid sequences to Dps proteins from other species. The expression of Dps was significantly increased by exposure of P. gingivalis to atmospheric oxygen in an OxyR-dependent manner, indicating that it is regulated by the reactive oxygen species-regulating gene oxyR. The Dps-deficient mutants, including the dps single mutant and the ftn dps double mutant, showed no viability loss upon exposure to atmospheric oxygen for 6 h. In contrast to the wild type, however, these mutants exhibited the high susceptibility to hydrogen peroxide, thereby disrupting the viability. On the other hand, no significant difference in sensitivity to mitomycin C and metronidazole was observed between the wild type and the mutants. Furthermore, the dps single mutant, compared with the wild type, showed a lower viability in infected human umbilical vein endothelial cells.

  16. Quantitative discrimination of Aggregatibacter actinomycetemcomitans highly leukotoxic JP2 clone from non-JP2 clones in diagnosis of aggressive periodontitis

    Directory of Open Access Journals (Sweden)

    Yoshida Akihiro

    2012-10-01

    Full Text Available Abstract Background Aggregatibacter actinomycetemcomitans is the etiological agent of periodontitis, and there is a strong association between clone JP2 and aggressive periodontitis in adolescents of African descent. The JP2 clone has an approximately 530-bp deletion (∆530 in the promoter region of the lkt/ltx gene, which encodes leukotoxin, and this clone has high leukotoxic activity. Therefore, this clone is very important in aggressive periodontitis. To diagnose this disease, culture methods and conventional PCR techniques are used. However, quantitative detection based on qPCR for the JP2 clone has not been developed due to genetic difficulties. In this study, we developed a qPCR-based quantification method specific to the JP2 clone. Methods Based on our analysis of the DNA sequence of the lkt/ltx gene and its flanking region, we designed a reverse primer specific for the ∆530 deletion border sequence and developed a JP2-specific PCR-based quantification method using this primer. We also analyzed the DNA sequence of the ∆530 locus and found it to be highly conserved (97–100% among 17 non-JP2 strains. Using the ∆530 locus, we designed a qPCR primer–probe set specific to non-JP2 clones. Next, we determined the numbers of JP2 and non-JP2 clone cells in the periodontal pockets of patients with aggressive periodontitis. Results The JP2-specific primers specifically amplified the genomic DNA of the A. actinomycetemcomitans JP2 clone and did not react with other bacterial DNA, whereas the non-JP2 specific primers reacted only with A. actinomycetemcomitans non-JP2 clones. Samples from the 88 periodontal sites in the 11 patients with aggressive periodontitis were analyzed. The bacterial cell numbers in 88 periodontal sites ranged from 0 to 4.8 × 108 (mean 1.28 × 107 for JP2 clones and from 0 to 1.6 × 106 for non-JP2 clones (mean 1.84 × 105. There were significant differences in the JP2 cell number between a clinical attachment level

  17. Germacrene A Synthase in Yarrow (Achillea millefolium Is an Enzyme with Mixed Substrate Specificity: Gene Cloning, Functional Characterization and Expression Analysis

    Directory of Open Access Journals (Sweden)

    Leila ePazouki

    2015-03-01

    Full Text Available Terpenoid synthases constitute a highly diverse gene family producing a wide range of cyclic and acyclic molecules consisting of isoprene (C5 residues. Often a single terpene synthase produces a spectrum of molecules of given chain length, but some terpene synthases can use multiple substrates, producing products of different chain length. Only a few such enzymes has been characterized, but the capacity for multiple-substrate use can be more widespread than previously thought. Here we focused on germacrene A synthase (GAS that is a key cytosolic enzyme in the sesquiterpene lactone biosynthesis pathway in the important medicinal plant Achillea millefolium (AmGAS. The full length encoding gene was heterologously expressed in Escherichia coli BL21 (DE3, functionally characterized, and its in vivo expression was analyzed. The recombinant protein catalyzed formation of germacrene A with the C15 substrate farnesyl diphosphate (FDP, while acyclic monoterpenes were formed with the C10 substrate geranyl diphosphate (GDP and cyclic monoterpenes with the C10 substrate neryl diphosphate (NDP. Although monoterpene synthesis has been assumed to be confined exclusively to plastids, AmGAS can potentially synthesize monoterpenes in cytosol when GDP or NDP become available. AmGAS enzyme had high homology with GAS sequences from other Asteraceae species, suggesting that multi-substrate use can be more widespread among germacrene A synthases than previously thought. Expression studies indicated that AmGAS was expressed in both autotrophic and heterotrophic plant compartments with the highest expression levels in leaves and flowers. To our knowledge, this is the first report on the cloning and characterization of germacrene A synthase coding gene in A. millefolium, and multi-substrate use of GAS enzymes.

  18. cDNA cloning and expression of carotenogenic genes during flower development in Gentiana lutea.

    Science.gov (United States)

    Zhu, Changfu; Yamamura, Saburo; Koiwa, Hiroyuki; Nishihara, Masashiro; Sandmann, Gerhard

    2002-02-01

    All cDNAs involved in carotenoid biosynthesis leading to lycopene in yellow petals of Gentiana lutea have been cloned from a cDNA library. They encode a geranylgeranyl pyrophosphate synthase, a phytoene synthase, a phytoene desaturase and a zeta-carotene desaturase. The indicated function of all cDNAs was established by heterologous complementation in Escherichia coli. The amino acid sequences deduced from the cDNAs were between 47.5% and 78.9% identical to those reported for the corresponding enzymes from other higher plants. Southern analysis suggested that the genes for each enzyme probably represent a small multi-gene family. Tissue-specific expression of the genes and expression during flower development was investigated. The expression of the phytoene synthase gene, psy, was enhanced in flowers but transcripts were not detected in stems and leaves by northern blotting. Transcripts of the genes for geranylgeranyl pyrophosphate (ggpps), phytoene desaturase (pds) and zeta-carotene desaturase (zds) were detected in flowers and leaves but not in stems. Analysis of the expression of psy and zds in petals revealed that levels of the transcripts were lowest in young buds and highest in fully open flowers, in parallel with the formation of carotenoids. Obviously, the transcription of these genes control the accumulation of carotenoids during flower development in G. lutea. For pds only a very slight increase of mRNA was found whereas the transcripts of ggpps decreased during flower development.

  19. [The isolation and characterization of beta-glucosidase gene and beta-glucosidase of Trichoderma viride]: Progress report

    International Nuclear Information System (INIS)

    Stafford, D.W.

    1983-01-01

    Our project was to isolate and characterize the enzyme β-glucosidase and to clone and characterize the β-glucosidase gene; our goal is to clone and characterize each of the cellulase genes from Trichoderma. The induction of the Trichoderma reesei cellulase complex by cellulose and by the soluble inducer, sophorose, has been demonstrated. Although the induction of the cellulase complex has previously been well documented, the induction of β-glucosidase had been questioned. 49 refs., 6 figs., 2 tabs

  20. Cloning and characterization of the promoter of the 9-cis-epoxycarotenoid dioxygenase gene in Arachis hypogaea L.

    Science.gov (United States)

    Liang, Jianhua; Yang, Lixia; Chen, Xiong; Li, Ling; Guo, Dongliang; Li, Haihang; Zhang, Biyu

    2009-09-01

    We cloned the promoter of the 9-cis-epoxycarotenoid dioxygenase gene from Arachis hypogaea L. beta-Glucuronidase (GUS) histochemical staining and GUS activity assay indicated that the activity of the promoter was exhibited predominantly in the leaves and enhanced by water and NaCl stresses, and by application of abscisic acid (ABA) and salicylic acid (SA) in transgenic Arabidopsis. Moreover, two novel ABRE-like (abscisic acid response element) elements were identified in the promoter region.

  1. Cloning of the nptII gene of Escherichia coli and construction of a recombinant strain harboring functional recA and nptII antibiotic resistance.

    Science.gov (United States)

    Ghanem, S

    2011-01-01

    In an attempt to clone the ORF of the nptII gene of Escherichia coli K12 (ATCC 10798), two degenerate primers were designed based on the nptII sequence of its Tn5 transposon. The nptII ORF was placed under the control of the E. coli hybrid trc promoter, in the pKK388-1 vector, transformed into E. coli DH5α ΔrecA (recombinant, deficient strain). Transferred cells were tested for ampicillin, tetracycline, kanamycin, neomycin, geneticin, paromomycin, penicillin, and UV resistance. The neomycin phosphotransferase gene of E. coli was cloned successfully and conferred kanamycin, neomycin, geneticin, and paromomycin resistance to recombinant DH5α; this did not inhibit insertion of additional antibiotic resistance against ampicillin and tetracycline, meaning the trc promoter can express two different genes carried by two different plasmids harbored in the same cell. This resistance conferral process could be considered as an emulation of horizontal gene transfer occurring in nature and would be a useful tool for understanding mechanisms of evolution of multidrug-resistant strains.

  2. Cloning and Expression Analysis of Phenylalanine Ammonia-Lyase Gene in the Mycelium and Fruit Body of the Edible Mushroom Flammulina velutipes

    Science.gov (United States)

    Yun, Yeo Hong; Koo, Ja Sun

    2015-01-01

    Phenylalanine ammonia-lyase (PAL) gene is known to be expressed in plants, and is involved in the differentiation, growth and synthesis of secondary metabolites. However, its expression in fungi remains to be explored. To understand its expression in mushroom fungi, the PAL gene of the edible mushroom Flammulina velutipes (Fvpal) was cloned and characterized. The cloned Fvpal consists of 2,175 bp, coding for a polypeptide containing 724 amino acids and having 11 introns. The translated amino acid sequence of Fvpal shares a high identity (66%) with that of ectomycorrhizal fungus Tricholoma matsutake. Distinctively, the Fvpal expression in the mycelium was higher in minimal medium supplemented with L-tyrosine than with other aromatic amino acids. During cultivation of the mushroom on sawdust medium, Fvpal expression in the fruit body correspondingly increased as the mushroom grew. In the fruiting body, Fvpal was expressed more in the stipe than in the pileus. These results suggest that F. velutipes PAL activity differs in the different organs of the mushroom. Overall, this is first report to show that the PAL gene expression is associated with mushroom growth in fungi. PMID:26539050

  3. Somatic Donor Cell Type Correlates with Embryonic, but Not Extra-Embryonic, Gene Expression in Postimplantation Cloned Embryos

    Science.gov (United States)

    Inoue, Kimiko; Ogura, Atsuo

    2013-01-01

    The great majority of embryos generated by somatic cell nuclear transfer (SCNT) display defined abnormal phenotypes after implantation, such as an increased likelihood of death and abnormal placentation. To gain better insight into the underlying mechanisms, we analyzed genome-wide gene expression profiles of day 6.5 postimplantation mouse embryos cloned from three different cell types (cumulus cells, neonatal Sertoli cells and fibroblasts). The embryos retrieved from the uteri were separated into embryonic (epiblast) and extraembryonic (extraembryonic ectoderm and ectoplacental cone) tissues and were subjected to gene microarray analysis. Genotype- and sex-matched embryos produced by in vitro fertilization were used as controls. Principal component analysis revealed that whereas the gene expression patterns in the embryonic tissues varied according to the donor cell type, those in extraembryonic tissues were relatively consistent across all groups. Within each group, the embryonic tissues had more differentially expressed genes (DEGs) (>2-fold vs. controls) than did the extraembryonic tissues (Pcloning efficiency using SCNT. PMID:24146866

  4. Molecular cloning and expression of the human homologue of the murine gene encoding myeloid leukemia-inhibitory factor

    International Nuclear Information System (INIS)

    Gough, N.M.; Gearing, D.P.; King, J.A.; Willson, T.A.; Hilton, D.J.; Nicola, N.A.; Metcalf, D.

    1988-01-01

    A human homologue of the recently cloned murine leukemia-inhibitory factor (LIF) gene was isolated from a genomic library by using the marine cDNA as a hybridization probe. The nucleotide sequence of the human gene indicated that human LIF has 78% amino acid sequence identity with murine LIF, with no insertions or deletions, and that the region of the human gene encoding the mature protein has one intervening sequence. After oligonucleotide-mediated mutagenesis, the mature protein-coding region of the LIF gene was introduced into the yeast expression vector YEpsec1. Yeast cells transformed with the resulting recombinant could be induced with galactose to produce high levels of a factor that induced the differentiation of murine M1 leukemic cells in a manner analogous to murine LIF. This factor competed with 125 I-labeled native murine LIF for binding to specific cellular receptors on murine cells, compatible with a high degree of structural similarity between the murine and human factors

  5. Cloning Changes the Response to Obesity of Innate Immune Factors in Blood, Liver, and Adipose Tissues in Domestic Pigs

    DEFF Research Database (Denmark)

    Højbøge, Tina Rødgaard; Skovgaard, Kerstin; Stagsted, Jan

    2013-01-01

    The objective of this study was to evaluate the usefulness of cloned pigs as porcine obesity models reflecting obesity-associated changes in innate immune factor gene expression profiles. Liver and adipose tissue expression of 43 innate immune genes as well as serum concentrations of six immune...... factors were analyzed in lean and diet-induced obese cloned domestic pigs and compared to normal domestic pigs (obese and lean). The number of genes affected by obesity was lower in cloned animals than in control animals. All genes affected by obesity in adipose tissues of clones were downregulated; both...... upregulation and downregulation were observed in the controls. Cloning resulted in a less differentiated adipose tissue expression pattern. Finally, the serum concentrations of two acute-phase proteins (APPs), haptoglobin (HP) and orosomucoid (ORM), were increased in obese clones as compared to obese controls...

  6. Cloning and characterization of WRKY gene homologs in Chieh-qua (Benincasa hispida Cogn. var. Chieh-qua How) and their expression in response to fusaric acid treatment.

    Science.gov (United States)

    Mao, Yizhou; Jiang, Biao; Peng, Qingwu; Liu, Wenrui; Lin, Yue; Xie, Dasen; He, Xiaoming; Li, Shaoshan

    2017-05-01

    The WRKY transcription factors play an important role in plant resistance for biotic and abiotic stresses. In the present study, we cloned 10 WRKY gene homologs (CqWRKY) in Chieh-qua (Benincasa hispida Cogn. var. Chieh-qua) using the rapid-amplification of cDNA ends (RACE) or homology-based cloning methods. We characterized the structure of these CqWRKY genes. Phylogenetic analysis of these sequences with cucumber homologs suggested possible structural conservation of these genes among cucurbit crops. We examined the expression levels of these genes in response to fusaric acid (FA) treatment between resistant and susceptible Chieh-qua lines with quantitative real-time PCR. All genes could be upregulated upon FA treatment, but four CqWRKY genes exhibited differential expression between resistant and susceptible lines before and after FA application. CqWRKY31 seemed to be a positive regulator while CqWRKY1, CqWRKY23 and CqWRKY53 were negative regulators of fusaric resistance. This is the first report of characterization of WRKY family genes in Chieh-qua. The results may also be useful in breeding Chieh-qua for Fusarium wilt resistance.

  7. Social behavior and kin discrimination in a mixed group of cloned and non cloned heifers (Bos taurus).

    Science.gov (United States)

    Coulon, M; Baudoin, C; Abdi, H; Heyman, Y; Deputte, B L

    2010-12-01

    For more than ten years, reproductive biotechnologies using somatic cell nuclear transfer have made possible the production of cloned animals in various domestic and laboratory species. The influence of the cloning process on offspring characteristics has been studied in various developmental aspects, however, it has not yet been documented in detail for behavioral traits. Behavioral studies of cloned animals have failed to show clear inter-individual differences associated with the cloning process. Preliminary results showed that clones favor each other's company. Preferential social interactions were observed among cloned heifers from the same donor in a mixed herd that also included cloned heifers and control heifers produced by artificial insemination (AI). These results suggest behavioral differences between cloned and non-cloned animals and similarities between clones from the same donor. The aim of the present study was to replicate and to extend these previous results and to study behavioral and cognitive mechanisms of this preferential grouping. We studied a group composed of five cloned heifers derived from the same donor cow, two cloned heifers derived from another donor cow, and AI heifers. Cloned heifers from the same donor were more spatially associated and interacted more between themselves than with heifers derived from another donor or with the AI individuals. This pattern indicates a possible kin discrimination in clones. To study this process, we performed an experiment (using an instrumental conditioning procedure with food reward) of visual discrimination between images of heads of familiar heifers, either related to the subjects or not. The results showed that all subjects (AI and cloned heifers) discriminated between images of familiar cloned heifers produced from the same donor and images of familiar unrelated heifers. Cattle discriminated well between images and used morphological similarities characteristic of cloned related heifers. Our

  8. Previously unidentified changes in renal cell carcinoma gene expression identified by parametric analysis of microarray data

    International Nuclear Information System (INIS)

    Lenburg, Marc E; Liou, Louis S; Gerry, Norman P; Frampton, Garrett M; Cohen, Herbert T; Christman, Michael F

    2003-01-01

    Renal cell carcinoma is a common malignancy that often presents as a metastatic-disease for which there are no effective treatments. To gain insights into the mechanism of renal cell carcinogenesis, a number of genome-wide expression profiling studies have been performed. Surprisingly, there is very poor agreement among these studies as to which genes are differentially regulated. To better understand this lack of agreement we profiled renal cell tumor gene expression using genome-wide microarrays (45,000 probe sets) and compare our analysis to previous microarray studies. We hybridized total RNA isolated from renal cell tumors and adjacent normal tissue to Affymetrix U133A and U133B arrays. We removed samples with technical defects and removed probesets that failed to exhibit sequence-specific hybridization in any of the samples. We detected differential gene expression in the resulting dataset with parametric methods and identified keywords that are overrepresented in the differentially expressed genes with the Fisher-exact test. We identify 1,234 genes that are more than three-fold changed in renal tumors by t-test, 800 of which have not been previously reported to be altered in renal cell tumors. Of the only 37 genes that have been identified as being differentially expressed in three or more of five previous microarray studies of renal tumor gene expression, our analysis finds 33 of these genes (89%). A key to the sensitivity and power of our analysis is filtering out defective samples and genes that are not reliably detected. The widespread use of sample-wise voting schemes for detecting differential expression that do not control for false positives likely account for the poor overlap among previous studies. Among the many genes we identified using parametric methods that were not previously reported as being differentially expressed in renal cell tumors are several oncogenes and tumor suppressor genes that likely play important roles in renal cell

  9. Cloning and evaluation of reference genes for quantitative real-time PCR analysis in Amorphophallus

    Directory of Open Access Journals (Sweden)

    Kai Wang

    2017-04-01

    Full Text Available Quantitative real-time reverse transcription PCR (RT-qPCR has been widely used in the detection and quantification of gene expression levels because of its high accuracy, sensitivity, and reproducibility as well as its large dynamic range. However, the reliability and accuracy of RT-qPCR depends on accurate transcript normalization using stably expressed reference genes. Amorphophallus is a perennial plant with a high content of konjac glucomannan (KGM in its corm. This crop has been used as a food source and as a traditional medicine for thousands of years. Without adequate knowledge of gene expression profiles, there has been no report of validated reference genes in Amorphophallus. In this study, nine genes that are usually used as reference genes in other crops were selected as candidate reference genes. These putative sequences of these genes Amorphophallus were cloned by the use of degenerate primers. The expression stability of each gene was assessed in different tissues and under two abiotic stresses (heat and waterlogging in A. albus and A. konjac. Three distinct algorithms were used to evaluate the expression stability of the candidate reference genes. The results demonstrated that EF1-a, EIF4A, H3 and UBQ were the best reference genes under heat stress in Amorphophallus. Furthermore, EF1-a, EIF4A, TUB, and RP were the best reference genes in waterlogged conditions. By comparing different tissues from all samples, we determined that EF1-α, EIF4A, and CYP were stable in these sets. In addition, the suitability of these reference genes was confirmed by validating the expression of a gene encoding the small heat shock protein SHSP, which is related to heat stress in Amorphophallus. In sum, EF1-α and EIF4A were the two best reference genes for normalizing mRNA levels in different tissues and under various stress treatments, and we suggest using one of these genes in combination with 1 or 2 reference genes associated with different

  10. Molecular cloning and expression of a novel trehalose synthase gene from Enterobacter hormaechei

    Directory of Open Access Journals (Sweden)

    Yue Ming

    2009-06-01

    Full Text Available Abstract Background Trehalose synthase (TreS which converts maltose to trehalose is considered to be a potential biocatalyst for trehalose production. This enzymatic process has the advantage of simple reaction and employs an inexpensive substrate. Therefore, new TreS producing bacteria with suitable enzyme properties are expected to be isolated from extreme environment. Results Six TreS producing strains were isolated from a specimen obtained from soil of the Tibetan Plateau using degenerate PCR. A novel treS gene from Enterobacter hormaechei was amplified using thermal asymmetric interlaced PCR. The gene contained a 1626 bp open reading frame encoding 541 amino acids. The gene was expressed in Escherichia coli, and the recombinant TreS was purified and characterized. The purified TreS had a molecular mass of 65 kDa and an activity of 18.5 U/mg. The optimum temperature and pH for the converting reaction were 37°C and 6, respectively. Hg2+, Zn2+, Cu2+and SDS inhibited the enzyme activity at different levels whereas Mn2+ showed an enhancing effect by 10%. Conclusion In this study, several TreS producing strains were screened from a source of soil bacteria. The characterization of the recombinant TreS of Enterobacter hormaechei suggested its potential application. Consequently, a strategy for isolation of TreS producing strains and cloning of novel treS genes from natural sources was demonstrated.

  11. Molecular cloning of the Coch gene of guinea pig inner ear and its expression analysis in cultured fibrocytes of the spiral ligament.

    Science.gov (United States)

    Li, Lishu; Ikezono, Tetsuo; Sekine, Kuwon; Shindo, Susumu; Matsumura, Tomohiro; Pawankar, Ruby; Ichimiya, Issei; Yagi, Toshiaki

    2010-08-01

    We have cloned guinea pig Coch cDNA and the sequence information will be useful for future molecular study combined with physiological experiments. Proper Coch gene expression appears to be dependent on the unique extracellular micro-environment of the inner ear in vivo. These results provide insight into the Coch gene expression and its regulation. To characterize the guinea pig Coch gene, we performed molecular cloning and expression analysis in the inner ear and cultured fibrocytes of the spiral ligament. The Coch cDNA was isolated using RACE. Cochlin isofoms were studied by Western blot using three different types of mammalian inner ear. The cochlear fibrocytes were cultured and characterized by immunostaining. Coch gene expression in the fibrocytes was investigated and the influence of cytokine stimulation was evaluated. The full-length 1991 bp Coch cDNA that encodes a 553 amino acid protein was isolated. The sequence had significant homology with other mammals, and the sizes of the Cochlin isoforms were identical. In the cultured fibrocytes, Coch mRNA was expressed in a very small amount and the isoform production was different, compared with the results in vivo. Cytokine stimulation did not alter the level of mRNA expression or isoform formation.

  12. Combinations of probabilistic and approximate quantum cloning and deleting

    International Nuclear Information System (INIS)

    Qiu Daowen

    2002-01-01

    We first construct a probabilistic and approximate quantum cloning machine (PACM) and then clarify the relation between the PACM and other cloning machines. After that, we estimate the global fidelity of the approximate cloning that improves the previous estimation for the deterministic cloning machine; and also derive a bound on the success probability of producing perfect multiple clones. Afterwards, we further establish a more generalized probabilistic and approximate cloning and deleting machine (PACDM) and discuss the connections of the PACDM to some of the existing quantum cloning and deleting machines. Finally the global fidelity and a bound on the success probability of the PACDM are obtained. Summarily, the quantum devices established in this paper improve and also greatly generalize some of the existing machines

  13. Efficient preparation of shuffled DNA libraries through recombination (Gateway) cloning.

    Science.gov (United States)

    Lehtonen, Soili I; Taskinen, Barbara; Ojala, Elina; Kukkurainen, Sampo; Rahikainen, Rolle; Riihimäki, Tiina A; Laitinen, Olli H; Kulomaa, Markku S; Hytönen, Vesa P

    2015-01-01

    Efficient and robust subcloning is essential for the construction of high-diversity DNA libraries in the field of directed evolution. We have developed a more efficient method for the subcloning of DNA-shuffled libraries by employing recombination cloning (Gateway). The Gateway cloning procedure was performed directly after the gene reassembly reaction, without additional purification and amplification steps, thus simplifying the conventional DNA shuffling protocols. Recombination-based cloning, directly from the heterologous reassembly reaction, conserved the high quality of the library and reduced the time required for the library construction. The described method is generally compatible for the construction of DNA-shuffled gene libraries. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. 16S rRNA Gene Sequence Analysis of Drinking Water Using RNA and DNA Extracts as Targets for Clone Library Development - Poster

    Science.gov (United States)

    We examined the bacterial composition of chlorinated drinking water using 16S rRNA gene clone libraries derived from RNA and DNA extracted from twelve water samples collected in three different months (June, August, and September of 2007). Phylogenetic analysis of 1234 and 1117 ...

  15. Cloning, DNA sequence, and expression of the Rhodobacter sphaeroides cytochrome c/sub 2/ gene

    Energy Technology Data Exchange (ETDEWEB)

    Donohue, T.J.; McEwan, A.G.; Kaplan, S.

    1986-11-01

    The Rhodobacter sphaeroides cytochrome c/sub 2/ functions as a mobile electron carrier in both aerobic and photosynthetic electron transport chains. Synthetic deoxyoligonucleotide probes, based on the known amino acid sequence of this protein (M/sub r/ 14,000), were used to identify and clone the cytochrome c/sub 2/ structural gene (cycA). DNA sequence analysis of the cycA gene indicated the presence of a typical procaryotic 21-residue signal sequence, suggesting that this periplasmic protein is synthesized in vivo as a precursor. Synthesis of an immunoreactive cytochrome c/sub 2/ precursor protein (M/sub r/ 15,500) was observed in vitro when plasmids containing the cycA gene were used as templates in an R. sphaeroides coupled transcription-translation system. Approximately 500 base pairs of DNA upstream of the cycA gene was sufficient to allow expression of this gene product in vitro. Northern blot analysis with an internal cycA-specific probe identified at least two possibly monocistronic transcripts present in both different cellular levels and relative stoichiometries in steady-state cells grown under different physiological conditions. The ratio of the small (740-mucleotide) and large (920-nucleotide) cycA-specific mRNA species was dependent on cultural conditions but was not affected by light intensity under photosynthetic conditions. These results suggest that the increase in the cellular level of the cytochrome c/sub 2/ protein found in photosynthetic cells was due, in part, to increased transcription of the single-copy cyc operon.

  16. Establishment of pregnancies with handmade cloning porcine embryos reconstructed with fibroblasts containing an Alzheimer's disease gene

    DEFF Research Database (Denmark)

    Kragh, P; Li, J; Du, Y

    2008-01-01

    Somatic cell nuclear transfer (SCNT) offers the possibility of pig transgenesis. Importantly, specific genetic manipulations can be performed in donor cells before SCNT to derive pig models for specific human genetic diseases, including the neurodegenerative disorder Alzheimer's disease (AD......). In the present study, we established pregnancies after transfer of SCNT blastocysts produced by the handmade cloning (HMC) technique. The blastocysts were transgenic for a human gene, amyloid precursor protein gene with the 'Swedish mutation' (APPsw), causing AD. For transgenesis, minipig fibroblasts were...... ovaries of slaughtered sows and matured for 41 h. Subsequently, the cumulus cells were removed in hyaluronidase, and zonae pellucidae were partially digested by incubation in pronase. Oocytes with a visible polar body (PB) were subjected to oriented bisection. Less than half of the cytoplasm adjacent...

  17. Chromosomal mapping of canine-derived BAC clones to the red fox and American mink genomes.

    Science.gov (United States)

    Kukekova, Anna V; Vorobieva, Nadegda V; Beklemisheva, Violetta R; Johnson, Jennifer L; Temnykh, Svetlana V; Yudkin, Dmitry V; Trut, Lyudmila N; Andre, Catherine; Galibert, Francis; Aguirre, Gustavo D; Acland, Gregory M; Graphodatsky, Alexander S

    2009-01-01

    High-quality sequencing of the dog (Canis lupus familiaris) genome has enabled enormous progress in genetic mapping of canine phenotypic variation. The red fox (Vulpes vulpes), another canid species, also exhibits a wide range of variation in coat color, morphology, and behavior. Although the fox genome has not yet been sequenced, canine genomic resources have been used to construct a meiotic linkage map of the red fox genome and begin genetic mapping in foxes. However, a more detailed gene-specific comparative map between the dog and fox genomes is required to establish gene order within homologous regions of dog and fox chromosomes and to refine breakpoints between homologous chromosomes of the 2 species. In the current study, we tested whether canine-derived gene-containing bacterial artificial chromosome (BAC) clones can be routinely used to build a gene-specific map of the red fox genome. Forty canine BAC clones were mapped to the red fox genome by fluorescence in situ hybridization (FISH). Each clone was uniquely assigned to a single fox chromosome, and the locations of 38 clones agreed with cytogenetic predictions. These results clearly demonstrate the utility of FISH mapping for construction of a whole-genome gene-specific map of the red fox. The further possibility of using canine BAC clones to map genes in the American mink (Mustela vison) genome was also explored. Much lower success was obtained for this more distantly related farm-bred species, although a few BAC clones were mapped to the predicted chromosomal locations.

  18. The Budapest Meeting 2005. Intensified networking on ethics of science : The case of reproductive cloning, germline gene therapy and human dignity

    NARCIS (Netherlands)

    van Steendam, Guido; Dinnyes, Andras; Mallet, Jacques; Roosendaal, Hans E.

    2006-01-01

    This paper reports on the meeting of the Sounding Board of the EU Reprogenetics Project that was held in Budapest, Hungary, 6–9 November 2005. The Reprogenetics Project runs from 2004 until 2007 and has a brief to study the ethical aspects of human reproductive cloning and germline gene therapy.

  19. Cloning and characterization of nitrate reductase gene in Ulva prolifera (Ulvophyceae, Chlorophyta).

    Science.gov (United States)

    Guo, Yang; Wang, Hao Zhe; Wu, Chun Hui; Fu, Hui Hui; Jiang, Peng

    2017-10-01

    Ulva spp. dominates green tides around the world, which are occurring at an accelerated rate. The competitive nitrogen assimilation efficiency in Ulva is suggested to result in ecological success against other seaweeds. However, molecular characterization of genes involved in nitrogen assimilation has not been conducted. Here, we describe the identification of the nitrate reductase (NR) gene from a green seaweed Ulva prolifera, an alga which is responsible for the world's largest green tide in the Yellow Sea. Using rapid amplification of cDNA ends and genome walking, the NR gene from U. prolifera (UpNR) was cloned, which consisted of six introns and seven exons encoding 863 amino acids. According to sequence alignment, the NR in U. prolifera was shown to possess all five essential domains and 21 key invariant residues in plant NRs. The GC content of third codon position of UpNR (82.75%) was as high as those of green microalgae, and the intron number supported a potential loss issue from green microalga to land plant. Real-time quantitative PCR results showed that UpNR transcript level was induced by nitrate and repressed by ammonium, which could not be removed by addition of extra nitrate, indicating that U. prolifera preferred ammonium to nitrate. Urea would not repress NR transcription by itself, while it weakened the induction effect of nitrate, implying it possibly inhibited nitrate uptake rather than nitrate reduction. These results suggest the use of UpNR as a gene-sensor to probe the N assimilation process in green tides caused by Ulva. © 2017 Phycological Society of America.

  20. Cloning and sequencing of a gene encoding a 21-kilodalton outer membrane protein from Bordetella avium and expression of the gene in Salmonella typhimurium.

    Science.gov (United States)

    Gentry-Weeks, C R; Hultsch, A L; Kelly, S M; Keith, J M; Curtiss, R

    1992-01-01

    Three gene libraries of Bordetella avium 197 DNA were prepared in Escherichia coli LE392 by using the cosmid vectors pCP13 and pYA2329, a derivative of pCP13 specifying spectinomycin resistance. The cosmid libraries were screened with convalescent-phase anti-B. avium turkey sera and polyclonal rabbit antisera against B. avium 197 outer membrane proteins. One E. coli recombinant clone produced a 56-kDa protein which reacted with convalescent-phase serum from a turkey infected with B. avium 197. In addition, five E. coli recombinant clones were identified which produced B. avium outer membrane proteins with molecular masses of 21, 38, 40, 43, and 48 kDa. At least one of these E. coli clones, which encoded the 21-kDa protein, reacted with both convalescent-phase turkey sera and antibody against B. avium 197 outer membrane proteins. The gene for the 21-kDa outer membrane protein was localized by Tn5seq1 mutagenesis, and the nucleotide sequence was determined by dideoxy sequencing. DNA sequence analysis of the 21-kDa protein revealed an open reading frame of 582 bases that resulted in a predicted protein of 194 amino acids. Comparison of the predicted amino acid sequence of the gene encoding the 21-kDa outer membrane protein with protein sequences in the National Biomedical Research Foundation protein sequence data base indicated significant homology to the OmpA proteins of Shigella dysenteriae, Enterobacter aerogenes, E. coli, and Salmonella typhimurium and to Neisseria gonorrhoeae outer membrane protein III, Haemophilus influenzae protein P6, and Pseudomonas aeruginosa porin protein F. The gene (ompA) encoding the B. avium 21-kDa protein hybridized with 4.1-kb DNA fragments from EcoRI-digested, chromosomal DNA of Bordetella pertussis and Bordetella bronchiseptica and with 6.0- and 3.2-kb DNA fragments from EcoRI-digested, chromosomal DNA of B. avium and B. avium-like DNA, respectively. A 6.75-kb DNA fragment encoding the B. avium 21-kDa protein was subcloned into the

  1. Efficient production of a gene mutant cell line through integrating TALENs and high-throughput cell cloning.

    Science.gov (United States)

    Sun, Changhong; Fan, Yu; Li, Juan; Wang, Gancheng; Zhang, Hanshuo; Xi, Jianzhong Jeff

    2015-02-01

    Transcription activator-like effectors (TALEs) are becoming powerful DNA-targeting tools in a variety of mammalian cells and model organisms. However, generating a stable cell line with specific gene mutations in a simple and rapid manner remains a challenging task. Here, we report a new method to efficiently produce monoclonal cells using integrated TALE nuclease technology and a series of high-throughput cell cloning approaches. Following this method, we obtained three mTOR mutant 293T cell lines within 2 months, which included one homozygous mutant line. © 2014 Society for Laboratory Automation and Screening.

  2. cDNA cloning, structural analysis, SNP detection and tissue ...

    Indian Academy of Sciences (India)

    THOMAS NAICY

    detection and tissue expression profile of the IGF1 gene in Malabari and Attappady Black goats of India. J. Genet. ... Keywords. gene cloning; gene expression; goat; insulin-like growth factor 1; mRNA; single-nucleotide ..... cle tenderness (Koohmaraie et al. .... growth factor (IGF) system in the bovine oviduct at oestrus and.

  3. Cloning and sequencing of the bovine gastrin gene

    DEFF Research Database (Denmark)

    Lund, T; Rehfeld, J F; Olsen, Jørgen

    1989-01-01

    In order to deduce the primary structure of bovine preprogastrin we therefore sequenced a gastrin DNA clone isolated from a bovine liver cosmid library. Bovine preprogastrin comprises 104 amino acids and consists of a signal peptide, a 37 amino acid spacer-sequence, the gastrin-34 sequence followed...

  4. Assignment of the murine protein kinase gene DLK to chromosome 15 in the vicinity of the bt/Koa locus by genetic linkage analysis

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Toshio; Yanagisawa, Masahiro; Matsubara, Nobumichi [Tokyo Univ. (Japan)] [and others

    1997-03-01

    We have cloned protein kinase genes from murine primordial germ cell-derived EG cells by a PCR-based strategy using degenerate primers corresponding to the conserved sequences in the catalytic domain of protein kinases. One of these clones, designated Gek2 (germ cell kinase 2), was used as a probe for screening of a mouse brain cDNA library and obtained clones contained an entire coding sequence. Comparison of the sequence of Gek2 with those in databases revealed that it was identical to a previously reported protein kinase gene, DLK. 8 refs., 1 fig.

  5. Characterisation of genes induced during memory formation in the chick

    International Nuclear Information System (INIS)

    Bailey, K.A.; Luermans, J.; Gibbs, M.

    2002-01-01

    Full text: Memory formation can be divided into short-term and long-term. Short-term memory involves electro-chemical activity in the neurons whereas long-term memory requires a permanent change that includes protein synthesis. One of the problems involved with identifying late memory related genes is determining an optimal system in which to study gene expression. We have used a discriminated passive avoidance task in chicks to identify genes that are differentially regulated during memory formation. A mRNA subtraction method was previously used to specifically identify several genes that are expressed in the chick intermediate medial hyperstriatum ventrale (IMHV) within two hours of training. Eight bands ranging in size from 400bp to 1100bp were obtained in the initially screen. We are currently cloning these PCR products into suitable vectors for further analysis. Two of these clones have been sequenced and analysed using both the blastn and blastx programs in ANGIS. The first clone was found to correspond to cytochrome c oxidase subunit 2. Cytochrome C oxidase (COX) is a transmembrane protein localized in the inner mitochondrial membrane and forms part of the mitochondrial respiratory chain complex. The second clone codes for the ferritin heavy chain. Ferritin is a ubiquitous protein that is involved in iron homeostasis. At present it is unclear what role these two proteins play in memory formation but further studies are being undertaken to determine the expression profiles of these genes following memory induction. Copyright (2002) Australian Neuroscience Society

  6. Meat and milk compositions of bovine clones

    Science.gov (United States)

    Tian, X. Cindy; Kubota, Chikara; Sakashita, Kunihito; Izaike, Yoshiaki; Okano, Ryoichi; Tabara, Norio; Curchoe, Carol; Jacob, Lavina; Zhang, Yuqin; Smith, Sadie; Bormann, Charles; Xu, Jie; Sato, Masumi; Andrew, Sheila; Yang, Xiangzhong

    2005-01-01

    The technology is now available for commercial cloning of farm animals for food production, but is the food safe for consumers? Here, we provide data on >100 parameters that compare the composition of meat and milk from beef and dairy cattle derived from cloning to those of genetic- and breed-matched control animals from conventional reproduction. The cloned animals and the comparators were managed under the same conditions and received the same diet. The composition of the meat and milk from the clones were largely not statistically different from those of matched comparators, and all parameters examined were within the normal industry standards or previously reported values. The data generated from our match-controlled experiments provide science-based information desired by regulatory agencies to address public concerns about the safety of meat and milk from somatic animal clones. PMID:15829585

  7. A novel feruloyl esterase from rumen microbial metagenome: Gene cloning and enzyme characterization in the release of mono- and diferulic acids

    Science.gov (United States)

    A feruloyl esterase (FAE) gene was isolated from a rumen microbial metagenome, cloned into E. coli, and expressed in active form. The enzyme (RuFae4) was classified as a Type D feruloyl esterase based on its action on synthetic substrates and ability to release diferulates. The RuFae4 alone releas...

  8. Gene design, cloning and protein-expression methods for high-value targets at the Seattle Structural Genomics Center for Infectious Disease

    International Nuclear Information System (INIS)

    Raymond, Amy; Haffner, Taryn; Ng, Nathan; Lorimer, Don; Staker, Bart; Stewart, Lance

    2011-01-01

    An overview of one salvage strategy for high-value SSGCID targets is given. Any structural genomics endeavor, particularly ambitious ones such as the NIAID-funded Seattle Structural Genomics Center for Infectious Disease (SSGCID) and Center for Structural Genomics of Infectious Disease (CSGID), face technical challenges at all points of the production pipeline. One salvage strategy employed by SSGCID is combined gene engineering and structure-guided construct design to overcome challenges at the levels of protein expression and protein crystallization. Multiple constructs of each target are cloned in parallel using Polymerase Incomplete Primer Extension cloning and small-scale expressions of these are rapidly analyzed by capillary electrophoresis. Using the methods reported here, which have proven particularly useful for high-value targets, otherwise intractable targets can be resolved

  9. Nitrile-synthesizing enzyme: Gene cloning, overexpression and application for the production of useful compounds.

    Science.gov (United States)

    Kumano, Takuto; Takizawa, Yuko; Shimizu, Sakayu; Kobayashi, Michihiko

    2016-09-12

    One of the nitrile-synthesizing enzymes, β-cyano-L-alanine synthase, catalyzes β-cyano-L-alanine (β-CNAla) from potassium cyanide and O-acetyl-L-serine or L-cysteine. We have identified this enzyme from Pseudomonas ovalis No. 111. In this study, we cloned the β-CNAla synthase gene and expressed it in Escherichia coli and Rhodococcus rhodochrous. Furthermore, we carried out co-expression of β-CNAla synthase with nitrilase or nitrile hydratases in order to synthesize aspartic acid and asparagine from KCN and O-acetyl-L-serine. This strategy can be used for the synthesis of labeled amino acids by using a carbon-labeled KCN as a substrate, resulting in an application for positron emission tomography.

  10. Cloning of partial cry1Ac gene from an indigenous isolate of Bacillus ...

    African Journals Online (AJOL)

    The discoveries of novel cry genes of Bacillus thuringiensis (Bt) with higher toxicity are important for the development of new products. The cry1 family genes are more toxic to the lepidopteran insects according to the previous reports. In the present study, nine indigenous isolates of Bt were used for screening of cry1 genes ...

  11. The completion of the Mammalian Gene Collection (MGC)

    Science.gov (United States)

    Temple, Gary; Gerhard, Daniela S.; Rasooly, Rebekah; Feingold, Elise A.; Good, Peter J.; Robinson, Cristen; Mandich, Allison; Derge, Jeffrey G.; Lewis, Jeanne; Shoaf, Debonny; Collins, Francis S.; Jang, Wonhee; Wagner, Lukas; Shenmen, Carolyn M.; Misquitta, Leonie; Schaefer, Carl F.; Buetow, Kenneth H.; Bonner, Tom I.; Yankie, Linda; Ward, Ming; Phan, Lon; Astashyn, Alex; Brown, Garth; Farrell, Catherine; Hart, Jennifer; Landrum, Melissa; Maidak, Bonnie L.; Murphy, Michael; Murphy, Terence; Rajput, Bhanu; Riddick, Lillian; Webb, David; Weber, Janet; Wu, Wendy; Pruitt, Kim D.; Maglott, Donna; Siepel, Adam; Brejova, Brona; Diekhans, Mark; Harte, Rachel; Baertsch, Robert; Kent, Jim; Haussler, David; Brent, Michael; Langton, Laura; Comstock, Charles L.G.; Stevens, Michael; Wei, Chaochun; van Baren, Marijke J.; Salehi-Ashtiani, Kourosh; Murray, Ryan R.; Ghamsari, Lila; Mello, Elizabeth; Lin, Chenwei; Pennacchio, Christa; Schreiber, Kirsten; Shapiro, Nicole; Marsh, Amber; Pardes, Elizabeth; Moore, Troy; Lebeau, Anita; Muratet, Mike; Simmons, Blake; Kloske, David; Sieja, Stephanie; Hudson, James; Sethupathy, Praveen; Brownstein, Michael; Bhat, Narayan; Lazar, Joseph; Jacob, Howard; Gruber, Chris E.; Smith, Mark R.; McPherson, John; Garcia, Angela M.; Gunaratne, Preethi H.; Wu, Jiaqian; Muzny, Donna; Gibbs, Richard A.; Young, Alice C.; Bouffard, Gerard G.; Blakesley, Robert W.; Mullikin, Jim; Green, Eric D.; Dickson, Mark C.; Rodriguez, Alex C.; Grimwood, Jane; Schmutz, Jeremy; Myers, Richard M.; Hirst, Martin; Zeng, Thomas; Tse, Kane; Moksa, Michelle; Deng, Merinda; Ma, Kevin; Mah, Diana; Pang, Johnson; Taylor, Greg; Chuah, Eric; Deng, Athena; Fichter, Keith; Go, Anne; Lee, Stephanie; Wang, Jing; Griffith, Malachi; Morin, Ryan; Moore, Richard A.; Mayo, Michael; Munro, Sarah; Wagner, Susan; Jones, Steven J.M.; Holt, Robert A.; Marra, Marco A.; Lu, Sun; Yang, Shuwei; Hartigan, James; Graf, Marcus; Wagner, Ralf; Letovksy, Stanley; Pulido, Jacqueline C.; Robison, Keith; Esposito, Dominic; Hartley, James; Wall, Vanessa E.; Hopkins, Ralph F.; Ohara, Osamu; Wiemann, Stefan

    2009-01-01

    Since its start, the Mammalian Gene Collection (MGC) has sought to provide at least one full-protein-coding sequence cDNA clone for every human and mouse gene with a RefSeq transcript, and at least 6200 rat genes. The MGC cloning effort initially relied on random expressed sequence tag screening of cDNA libraries. Here, we summarize our recent progress using directed RT-PCR cloning and DNA synthesis. The MGC now contains clones with the entire protein-coding sequence for 92% of human and 89% of mouse genes with curated RefSeq (NM-accession) transcripts, and for 97% of human and 96% of mouse genes with curated RefSeq transcripts that have one or more PubMed publications, in addition to clones for more than 6300 rat genes. These high-quality MGC clones and their sequences are accessible without restriction to researchers worldwide. PMID:19767417

  12. Isolation, cDNA cloning and gene expression of an antibacterial protein from larvae of the coconut rhinoceros beetle, Oryctes rhinoceros.

    Science.gov (United States)

    Yang, J; Yamamoto, M; Ishibashi, J; Taniai, K; Yamakawa, M

    1998-08-01

    An antibacterial protein, designated rhinocerosin, was purified to homogeneity from larvae of the coconut rhinoceros beetle, Oryctes rhinoceros immunized with Escherichia coli. Based on the amino acid sequence of the N-terminal region, a degenerate primer was synthesized and reverse-transcriptase PCR was performed to clone rhinocerosin cDNA. As a result, a 279-bp fragment was obtained. The complete nucleotide sequence was determined by sequencing the extended rhinocerosin cDNA clone by 5' rapid amplification of cDNA ends. The deduced amino acid sequence of the mature portion of rhinocerosin was composed of 72 amino acids without cystein residues and was shown to be rich in glycine (11.1%) and proline (11.1%) residues. Comparison of the deduced amino acid sequence of rhinocerosin with those of other antibacterial proteins indicated that it has 77.8% and 44.6% identity with holotricin 2 and coleoptrecin, respectively. Rhinocerosin had strong antibacterial activity against E. coli, Streptococcus pyogenes, Staphylococcus aureus but not against Pseudomonas aeruginosa. Results of reverse-transcriptase PCR analysis of gene expression in different tissues indicated that the rhinocerosin gene is strongly expressed in the fat body and the Malpighian tubule, and weakly expressed in hemocytes and midgut. In addition, gene expression was inducible by bacteria in the fat body, the Malpighian tubule and hemocyte but constitutive expression was observed in the midgut.

  13. Deciphering KRAS and NRAS mutated clone dynamics in MLL-AF4 paediatric leukaemia by ultra deep sequencing analysis.

    Science.gov (United States)

    Trentin, Luca; Bresolin, Silvia; Giarin, Emanuela; Bardini, Michela; Serafin, Valentina; Accordi, Benedetta; Fais, Franco; Tenca, Claudya; De Lorenzo, Paola; Valsecchi, Maria Grazia; Cazzaniga, Giovanni; Kronnie, Geertruy Te; Basso, Giuseppe

    2016-10-04

    To induce and sustain the leukaemogenic process, MLL-AF4+ leukaemia seems to require very few genetic alterations in addition to the fusion gene itself. Studies of infant and paediatric patients with MLL-AF4+ B cell precursor acute lymphoblastic leukaemia (BCP-ALL) have reported mutations in KRAS and NRAS with incidences ranging from 25 to 50%. Whereas previous studies employed Sanger sequencing, here we used next generation amplicon deep sequencing for in depth evaluation of RAS mutations in 36 paediatric patients at diagnosis of MLL-AF4+ leukaemia. RAS mutations including those in small sub-clones were detected in 63.9% of patients. Furthermore, the mutational analysis of 17 paired samples at diagnosis and relapse revealed complex RAS clone dynamics and showed that the mutated clones present at relapse were almost all originated from clones that were already detectable at diagnosis and survived to the initial therapy. Finally, we showed that mutated patients were indeed characterized by a RAS related signature at both transcriptional and protein levels and that the targeting of the RAS pathway could be of beneficial for treatment of MLL-AF4+ BCP-ALL clones carrying somatic RAS mutations.

  14. Cloning of fusion protein gene of Newcastle disease virus into a baculovirus derived bacmid shuttle vector, in order to express it in insect cell line

    Directory of Open Access Journals (Sweden)

    Hashemzadeh MS

    2015-05-01

    Full Text Available Abstract Background: Newcastle disease virus (NDV is one of the major pathogens in poultry and vaccination is intended to control the disease, as an effective solution, yet. Fusion protein (F on surface of NDV, has a fundamental role in virus pathogenicity and can induce protective immunity, alone. With this background, here our aim was to construct a baculovirus derived recombinant bacmid shuttle vector (encoding F-protein in order to express it in insect cell line. Materials and Methods: In this experimental study, at first complete F gene from avirulent strain La Sota of NDV was amplified by RT-PCR to produce F cDNA. The amplicon was cloned into T/A cloning vector and afterwards into pFastBac Dual donor plasmid. After the verification of cloning process by two methods, PCR and enzymatic digestion analysis, the accuracy of F gene sequence was confirmed by sequencing. Finally, F-containing recombinant bacmid was subsequently generated in DH10Bac cell and the construct production was confirmed by a special PCR panel, using F specific primers and M13 universal primers. Results: Analysis of confirmatory tests showed that the recombinant bacmid, expressing of F-protein gene in correct sequence and framework, has been constructed successfully. Conclusion: The product of this F-containing recombinant bacmid, in addition to its independent application in the induction of protective immunity, can be used with the other individual recombinant baculoviruses, expressing HN and NP genes to produce NDV-VLPs in insect cell line.

  15. Complementation of the UV-sensitive phenotype of a xeroderma pigmentosum human cell line by transfection with a cDNA clone library

    International Nuclear Information System (INIS)

    Teitz, T.; Naiman, T.; Avissar, S.S.; Bar, S.; Okayama, H.; Canaani, D.

    1987-01-01

    In previous work, a xeroderma pigmentosum cell line belonging to complementation group C was established by transformation with origin-defective simian virus 40. We now report the complementation of the UV sensitivity of this cell line by gene transfer. A human cDNA clone library constructed in a mammalian expression vector, and itself incorporated in a lambda phage vector, was introduced into the cells as a calcium phosphate precipitate. Following selection to G418 resistance, provided by the neo gene of the vector, transformants were selected for UV resistance. Twenty-one cell clones were obtained with UV-resistance levels typical of normal human fibroblasts. All transformants contained vector DNA sequences in their nuclei. Upon further propagation in the absence of selection for G418 resistance, about half of the primary transformants remained UV-resistant. Secondary transformants were generated by transfection with a partial digest of total chromosomal DNA from one of these stable transformants. This resulted in 15 G418-resistant clones, 2 of which exhibited a UV-resistant phenotype. The other primary clones lost UV resistance rapidly when subcultured in the absence of G418. Importantly, several retained UV resistance under G418 selection pressure. The acquisition of UV resistance by secondary transformants derived by transfection of DNA from a stable primary transformant, and the linkage between G418 and UV resistances in the unstable primary transformants, strongly suggests that the transformants acquired UV resistance through DNA-mediated gene transfer and not by reversion

  16. Cloning and expression of a nuclear encoded plastid specific 33 kDa ribonucleoprotein gene (33RNP) from pea that is light stimulated.

    Science.gov (United States)

    Reddy, M K; Nair, S; Singh, B N; Mudgil, Y; Tewari, K K; Sopory, S K

    2001-01-24

    We report the cloning and sequencing of both cDNA and genomic DNA of a 33 kDa chloroplast ribonucleoprotein (33RNP) from pea. The analysis of the predicted amino acid sequence of the cDNA clone revealed that the encoded protein contains two RNA binding domains, including the conserved consensus ribonucleoprotein sequences CS-RNP1 and CS-RNP2, on the C-terminus half and the presence of a putative transit peptide sequence in the N-terminus region. The phylogenetic and multiple sequence alignment analysis of pea chloroplast RNP along with RNPs reported from the other plant sources revealed that the pea 33RNP is very closely related to Nicotiana sylvestris 31RNP and 28RNP and also to 31RNP and 28RNP of Arabidopsis and spinach, respectively. The pea 33RNP was expressed in Escherichia coli and purified to homogeneity. The in vitro import of precursor protein into chloroplasts confirmed that the N-terminus putative transit peptide is a bona fide transit peptide and 33RNP is localized in the chloroplast. The nucleic acid-binding properties of the recombinant protein, as revealed by South-Western analysis, showed that 33RNP has higher binding affinity for poly (U) and oligo dT than for ssDNA and dsDNA. The steady state transcript level was higher in leaves than in roots and the expression of this gene is light stimulated. Sequence analysis of the genomic clone revealed that the gene contains four exons and three introns. We have also isolated and analyzed the 5' flanking region of the pea 33RNP gene.

  17. A Simplified Method for Gene Knockout and Direct Screening of Recombinant Clones for Application in Paenibacillus polymyxa.

    Directory of Open Access Journals (Sweden)

    Seong-Bin Kim

    Full Text Available Paenibacillus polymyxa is a bacterium widely used in agriculture, industry, and environmental remediation because it has multiple functions including nitrogen fixation and produces various biologically active compounds. Among these compounds are the antibiotics polymyxins, and the bacterium is currently being reassessed for medical application. However, a lack of genetic tools for manipulation of P. polymyxa has limited our understanding of the biosynthesis of these compounds.To facilitate an understanding of the genetic determinants of the bacterium, we have developed a system for marker exchange mutagenesis directly on competent cells of P. polymyxa under conditions where homologous recombination is enhanced by denaturation of the suicide plasmid DNA. To test this system, we targeted P. polymyxa α-and β-amylase genes for disruption. Chloramphenicol or erythromycin resistance genes were inserted into the suicide plasmid pGEM7Z-f+ (Promega. To mediate homologous recombination and replacement of the targeted genes with the antibiotic resistance genes nucleotide sequences of the α-and β-amylase genes were cloned into the plasmid flanking the antibiotic resistance genes.We have created a simple system for targeted gene deletion in P. polymyxa E681. We propose that P. polymyxa isogenic mutants could be developed using this system of marker exchange mutagenesis. α-and β-amylase genes provide a useful tool for direct recombinant screening in P. polymyxa.

  18. Cloning and Functional Characterization of the Maize (Zea mays L.) Carotenoid Epsilon Hydroxylase Gene

    Science.gov (United States)

    Sheng, Yanmin; Wang, Yingdian; Capell, Teresa; Shi, Lianxuan; Ni, Xiuzhen; Sandmann, Gerhard; Christou, Paul; Zhu, Changfu

    2015-01-01

    The assignment of functions to genes in the carotenoid biosynthesis pathway is necessary to understand how the pathway is regulated and to obtain the basic information required for metabolic engineering. Few carotenoid ε-hydroxylases have been functionally characterized in plants although this would provide insight into the hydroxylation steps in the pathway. We therefore isolated mRNA from the endosperm of maize (Zea mays L., inbred line B73) and cloned a full-length cDNA encoding CYP97C19, a putative heme-containing carotenoid ε hydroxylase and member of the cytochrome P450 family. The corresponding CYP97C19 genomic locus on chromosome 1 was found to comprise a single-copy gene with nine introns. We expressed CYP97C19 cDNA under the control of the constitutive CaMV 35S promoter in the Arabidopsis thaliana lut1 knockout mutant, which lacks a functional CYP97C1 (LUT1) gene. The analysis of carotenoid levels and composition showed that lutein accumulated to high levels in the rosette leaves of the transgenic lines but not in the untransformed lut1 mutants. These results allowed the unambiguous functional annotation of maize CYP97C19 as an enzyme with strong zeinoxanthin ε-ring hydroxylation activity. PMID:26030746

  19. Cloning, expression and purification of d-tagatose 3-epimerase gene from Escherichia coli JM109.

    Science.gov (United States)

    He, Xiaoliang; Zhou, Xiaohui; Yang, Zi; Xu, Le; Yu, Yuxiu; Jia, Lingling; Li, Guoqing

    2015-10-01

    An unknown d-tagatose 3-epimerase (DTE) containing a IoIE domain was identified and cloned from Escherichia coli. This gene was subcloned into the prokaryotic expression vector pET-15b, and induced by IPTG in E. coli BL21 expression system. Through His-select gel column purification and fast-protein liquid chromatography, highly purified and stable DTE protein was produced. The molecular weight of the DTE protein was estimated to be 29.8kDa. The latest 83 DTE sequences from public database were selected and analyzed by molecular clustering, multi-sequence alignment. DTEs were roughly divided into five categories. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Cloning, characterization, and expression of the dapE gene of Escherichia coli.

    OpenAIRE

    Bouvier, J; Richaud, C; Higgins, W; Bögler, O; Stragier, P

    1992-01-01

    The dapE gene of Escherichia coli encodes N-succinyl-L-diaminopimelic acid desuccinylase, an enzyme that catalyzes the synthesis of LL-diaminopimelic acid, one of the last steps in the diaminopimelic acid-lysine pathway. The dapE gene region was previously purified from a lambda bacteriophage transducing the neighboring purC gene (J. Parker, J. Bacteriol. 157:712-717, 1984). Various subcloning steps led to the identification of a 2.3-kb fragment that complemented several dapE mutants and allo...

  1. [Cloning and expressing of cyclophilin B gene from Schistosoma japonnicum and the analysis of immunoprotective effect].

    Science.gov (United States)

    Peng, Jinbiao; Han, Hongxiao; Hong, Yang; Wang, Yan; Guo, Fanji; Shi, Yaojun; Fu, Zhiqiang; Liu, Jinming; Cheng, Guofeng; Lin, Jiaojiao

    2010-03-01

    The present study was intend to clone and express the cDNA encoding Cyclophilin B (CyPB) of Schistosoma japonicum, its preliminary biological function and further immunoprotective effect against schistosome infection in mice. RT-PCR technique was applied to amplify a full-length cDNA encoding protein Cyclophilin B (Sj CyPB) from schistosomula cDNA. The expression profiles of Sj CyPB were determined by Real-time PCR using the template cDNAs isolated from 7, 13, 18, 23, 32 and 42 days parasites. The cDNA containing the Open Reading Frame of CyPB was then subcloned into a pGEX-6P-1 vector and transformed into competent Escherichia coli BL21 for expressing. The recombinant protein was renaturated, purified and its antigenicity were detected by Western blotting, and the immunoprotective effect induced by recombinant Sj CyPB was evaluated in Balb/C mice. The cDNA containing the ORF of Sj CyPB was cloned with the length of 672 base pairs, encoding 223 amino acids. Real-time PCR analysis revealed that the gene had the highest expression in 18-day schistosomula, suggesting that Sj CyPB was schistosomula differentially expressed gene. The recombinant protein showed a good antigenicity detected by Western blotting. Animal experiment indicated that the vaccination of recombinant CyPB protein in mice led to 31.5% worm and 41.01% liver egg burden reduction, respectively, compared with those of the control. A full-length cDNA differentially expressed in schistosomula was obtained. The recombinant Sj CyPB protein could induce partial protection against schistosome infection.

  2. The organization of the fuc regulon specifying L-fucose dissimilation in Escherichia coli K12 as determined by gene cloning.

    Science.gov (United States)

    Chen, Y M; Zhu, Y; Lin, E C

    1987-12-01

    In Escherichia coli the six known genes specifying the utilization of L-fucose as carbon and energy source cluster at 60.2 min and constitute a regulon. These genes include fucP (encoding L-fucose permease), fucI (encoding L-fucose isomerase), fucK (encoding L-fuculose kinase), fucA (encoding L-fuculose 1-phosphate aldolase), fucO (encoding L-1,2-propanediol oxidoreductase), and fucR (encoding the regulatory protein). In this study the fuc genes were cloned and their positions on the chromosome were established by restriction endonuclease and complementation analyses. Clockwise, the gene order is: fucO-fucA-fucP-fucI-fucK-fucR. The operons comprising the structural genes and the direction of transcription were determined by complementation analysis and Southern blot hybridization. The fucPIK and fucA operons are transcribed clockwise. The fucO operon is transcribed counterclockwise. The fucR gene product activates the three structural operons in trans.

  3. Identification and characterization of the human type II collagen gene (COL2A1).

    NARCIS (Netherlands)

    K.S.E. Cheah (Kathryn); N.G. Stoker; J.R. Griffin; F.G. Grosveld (Frank); E. Solomon

    1985-01-01

    textabstractThe gene contained in the human cosmid clone CosHcol1, previously designated an alpha 1(I) collagen-like gene, has now been identified. CosHcol1 hybridizes strongly to a single 5.9-kilobase mRNA species present only in tissue in which type II collagen is expressed. DNA sequence analysis

  4. Molecular cloning of chicken metallothionein. Deduction of the complete amino acid sequence and analysis of expression using cloned cDNA

    Energy Technology Data Exchange (ETDEWEB)

    Wei, D; Andrews, G K

    1988-01-25

    A cDNA library was constructed using RNA isolated from the livers of chickens which had been treated with zinc. This library was screened with a RNA probe complementary to mouse metallothionein-I (MT), and eight chicken MT cDNA clones were obtained. All of the cDNA clones contained nucleotide sequences homologous to regions of the longest (375 bp) cDNA clone. The latter contained an open reading frame of 189 bp, and the deduced amino acid sequence indicates a protein of 63 amino acids of which 20 are cysteine residues. Amino acid composition and partial amino acid sequence analyses of purified chicken MT protein agreed with the amino acid composition and sequence deduced from the cloned cDNA. Amino acid sequence comparison establish that chicken MT shares extensive homology with mammalian MTs. Southern blot analysis of chicken DNA indicates that the chicken MT gene is not a part of a large family of related sequences, but rather is likely to be a unique gene sequence. In the chicken liver, levels of chicken MT mRNA were rapidly induced by metals (Cd/sup 2 +/, Zn/sup 2 +/, Cu/sup 2 +/), glucocorticoids and lipopolysaccharide. MT mRNA was present in low levels in embryonic liver and increased to high levels during the first week after hatching before decreasing again to the basal levels found in adult liver. The results of this study establish that MT is highly conserved between birds and mammals and is regulated in the chicken by agents which also regulate expression of mammalian MT genes. However, in contrast to the mammals, the results suggest the existence of a single isoform of MT in the chicken.

  5. Developmental Competence and Epigenetic Profile of Porcine Embryos Produced by Two Different Cloning Methods.

    Science.gov (United States)

    Liu, Ying; Lucas-Hahn, Andrea; Petersen, Bjoern; Li, Rong; Hermann, Doris; Hassel, Petra; Ziegler, Maren; Larsen, Knud; Niemann, Heiner; Callesen, Henrik

    2017-06-01

    The "Dolly" based cloning (classical nuclear transfer, [CNT]) and the handmade cloning (HMC) are methods that are nowadays routinely used for somatic cloning of large domestic species. Both cloning protocols share several similarities, but differ with regard to the required in vitro culture, which in turn results in different time intervals until embryo transfer. It is not yet known whether the differences between cloned embryos from the two protocols are due to the cloning methods themselves or the in vitro culture, as some studies have shown detrimental effects of in vitro culture on conventionally produced embryos. The goal of this study was to unravel putative differences between two cloning methods, with regard to developmental competence, expression profile of a panel of developmentally important genes and epigenetic profile of porcine cloned embryos produced by either CNT or HMC, either with (D5 or D6) or without (D0) in vitro culture. Embryos cloned by these two methods had a similar morphological appearance on D0, but displayed different cleavage rates and different quality of blastocysts, with HMC embryos showing higher blastocyst rates (HMC vs. CNT: 35% vs. 10%, p cloned embryos were similar on D0, but differed on D6. In conclusion, both cloning methods and the in vitro culture may affect porcine embryo development and epigenetic profile. The two cloning methods essentially produce embryos of similar quality on D0 and after 5 days in vitro culture, but thereafter both histone acetylation and gene expression differ between the two types of cloned embryos.

  6. Establishment of HeLa cell mutants deficient in sphingolipid-related genes using TALENs.

    Directory of Open Access Journals (Sweden)

    Toshiyuki Yamaji

    Full Text Available Sphingolipids are essential components in eukaryotes and have various cellular functions. Recent developments in genome-editing technologies have facilitated gene disruption in various organisms and cell lines. We here show the disruption of various sphingolipid metabolic genes in human cervical carcinoma HeLa cells by using transcription activator-like effector nucleases (TALENs. A TALEN pair targeting the human CERT gene (alternative name COL4A3BP encoding a ceramide transport protein induced a loss-of-function phenotype in more than 60% of HeLa cells even though the cell line has a pseudo-triploid karyotype. We have isolated several loss-of-function mutant clones for CERT, UGCG (encoding glucosylceramide synthase, and B4GalT5 (encoding the major lactosylceramide synthase, and also a CERT/UGCG double-deficient clone. Characterization of these clones supported previous proposals that CERT primarily contributes to the synthesis of SM but not GlcCer, and that B4GalT5 is the major LacCer synthase. These newly established sphingolipid-deficient HeLa cell mutants together with our previously established stable transfectants provide a 'sphingolipid-modified HeLa cell panel,' which will be useful to elucidate the functions of various sphingolipid species against essentially the same genomic background.

  7. Mycobacterium tuberculosis HspX/EsxS Fusion Protein: Gene Cloning, Protein Expression, and Purification in Escherichia coli.

    Science.gov (United States)

    Khademi, Farzad; Yousefi-Avarvand, Arshid; Derakhshan, Mohammad; Meshkat, Zahra; Tafaghodi, Mohsen; Ghazvini, Kiarash; Aryan, Ehsan; Sankian, Mojtaba

    2017-10-01

    The purpose of this study was to clone, express, and purify a novel multidomain fusion protein of Micobacterium tuberculosis (Mtb) in a prokaryotic system. An hspX/esxS gene construct was synthesized and ligated into a pGH plasmid, E. coli TOP10 cells were transformed, and the vector was purified. The vector containing the construct and pET-21b (+) plasmid were digested with the same enzymes and the construct was ligated into pET-21b (+). The accuracy of cloning was confirmed by colony PCR and sequencing. E. coli BL21 cells were transformed with the pET-21b (+)/hspX/esxS expression vector and protein expression was evaluated. Finally, the expressed fusion protein was purified on a Ni-IDA column and verified by SDS-PAGE and western blotting. The hspX/esxS gene construct was inserted into pET-21b (+) and recombinant protein expression was induced with IPTG in E. coli BL21 cells. Various concentrations of IPTG were tested to determine the optimum concentration for expression induction. The recombinant protein was expressed in insoluble inclusion bodies. Three molar guanidine HCl was used to solubilize the insoluble protein. An HspX/EsxS Mtb fusion protein was expressed in E. coli and the recombinant protein was purified. After immunological analysis, the HspX/EsxS fusion protein might be an anti-tuberculosis vaccine candidate in future clinical trial studies.

  8. Differential distribution and abundance of diazotrophic bacterial communities across different soil niches using a gene-targeted clone library approach.

    Science.gov (United States)

    Yousuf, Basit; Kumar, Raghawendra; Mishra, Avinash; Jha, Bhavanath

    2014-11-01

    Diazotrophs are key players of the globally important biogeochemical nitrogen cycle, having a significant role in maintaining ecosystem sustainability. Saline soils are pristine and unexplored habitats representing intriguing ecosystems expected to harbour potential diazotrophs capable of adapting in extreme conditions, and these implicated organisms are largely obscure. Differential occurrence of diazotrophs was studied by the nifH gene-targeted clone library approach. Four nifH gene clone libraries were constructed from different soil niches, that is saline soils (low and high salinity; EC 3.8 and 7.1 ds m(-1) ), and agricultural and rhizosphere soil. Additionally, the abundance of diazotrophic community members was assessed using quantitative PCR. Results showed environment-dependent metabolic versatility and the presence of nitrogen-fixing bacteria affiliated with a range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, Cyanobacteria and Firmicutes. The analyses unveiled the dominance of Alphaproteobacteria and Gammaproteobacteria (Pseudomonas, Halorhodospira, Ectothiorhodospira, Bradyrhizobium, Agrobacterium, Amorphomonas) as nitrogen fixers in coastal-saline soil ecosystems, and Alphaproteobacteria and Betaproteobacteria (Bradyrhizobium, Azohydromonas, Azospirillum, Ideonella) in agricultural/rhizosphere ecosystems. The results revealed a repertoire of novel nitrogen-fixing bacterial guilds particularly in saline soil ecosystems. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  9. A new trilocus sequence-based multiplex-PCR to detect major Acinetobacter baumannii clones.

    Science.gov (United States)

    Martins, Natacha; Picão, Renata Cristina; Cerqueira-Alves, Morgana; Uehara, Aline; Barbosa, Lívia Carvalho; Riley, Lee W; Moreira, Beatriz Meurer

    2016-08-01

    A collection of 163 Acinetobacter baumannii isolates detected in a large Brazilian hospital, was potentially related with the dissemination of four clonal complexes (CC): 113/79, 103/15, 109/1 and 110/25, defined by University of Oxford/Institut Pasteur multilocus sequence typing (MLST) schemes. The urge of a simple multiplex-PCR scheme to specify these clones has motivated the present study. The established trilocus sequence-based typing (3LST, for ompA, csuE and blaOXA-51-like genes) multiplex-PCR rapidly identifies international clones I (CC109/1), II (CC118/2) and III (CC187/3). Thus, the system detects only one (CC109/1) out of four main CC in Brazil. We aimed to develop an alternative multiplex-PCR scheme to detect these clones, known to be present additionally in Africa, Asia, Europe, USA and South America. MLST, performed in the present study to complement typing our whole collection of isolates, confirmed that all isolates belonged to the same four CC detected previously. When typed by 3LST-based multiplex-PCR, only 12% of the 163 isolates were classified into groups. By comparative sequence analysis of ompA, csuE and blaOXA-51-like genes, a set of eight primers was designed for an alternative multiplex-PCR to distinguish the five CC 113/79, 103/15, 109/1, 110/25 and 118/2. Study isolates and one CC118/2 isolate were blind-tested with the new alternative PCR scheme; all were correctly clustered in groups of the corresponding CC. The new multiplex-PCR, with the advantage of fitting in a single reaction, detects five leading A. baumannii clones and could help preventing the spread in healthcare settings. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Molecular cloning and evolutionary analysis of the GJA1 (connexin43) gene from bats (Chiroptera).

    Science.gov (United States)

    Wang, Li; Li, Gang; Wang, Jinhong; Ye, Shaohui; Jones, Gareth; Zhang, Shuyi

    2009-04-01

    Gap junction protein connexin43 (Cx43), encoded by the GJA1 gene, is the most abundant connexin in the cardiovascular system and was reported as a crucial factor maintaining cardiac electrical conduction, as well as having a very important function in facilitating the recycling of potassium ions from hair cells in the cochlea back into the cochlear endolymph during auditory transduction processes. In mammals, bats are the only taxon possessing powered flight, placing exceptional demand on many organismal processes. To meet the demands of flying, the hearts of bats show many specialties. Moreover, ultrasonic echolocation allows bat species to orientate and often detect and locate food in darkness. In this study, we cloned the full-length coding region of GJA1 gene from 12 different species of bats and obtained orthologous sequences from other mammals. We used the maximum likelihood method to analyse the evolution of GJA1 gene in mammals and the lineage of bats. Our results showed this gene is much conserved in mammals, as well as in bats' lineage. Compared with other mammals, we found one private amino acid substitution shared by bats, which is located on the inner loop domain, as well as some species-specific amino acid substitutions. The evolution rate analyses showed the signature of purifying selection on not only different classification level lineages but also the different domains and amino acid residue sites of this gene. Also, we suggested that GJA1 gene could be used as a good molecular marker to do the phylogenetic reconstruction.

  11. Targeted isolation, sequence assembly and characterization of two white spruce (Picea glauca BAC clones for terpenoid synthase and cytochrome P450 genes involved in conifer defence reveal insights into a conifer genome

    Directory of Open Access Journals (Sweden)

    Ritland Carol

    2009-08-01

    Full Text Available Abstract Background Conifers are a large group of gymnosperm trees which are separated from the angiosperms by more than 300 million years of independent evolution. Conifer genomes are extremely large and contain considerable amounts of repetitive DNA. Currently, conifer sequence resources exist predominantly as expressed sequence tags (ESTs and full-length (FLcDNAs. There is no genome sequence available for a conifer or any other gymnosperm. Conifer defence-related genes often group into large families with closely related members. The goals of this study are to assess the feasibility of targeted isolation and sequence assembly of conifer BAC clones containing specific genes from two large gene families, and to characterize large segments of genomic DNA sequence for the first time from a conifer. Results We used a PCR-based approach to identify BAC clones for two target genes, a terpene synthase (3-carene synthase; 3CAR and a cytochrome P450 (CYP720B4 from a non-arrayed genomic BAC library of white spruce (Picea glauca. Shotgun genomic fragments isolated from the BAC clones were sequenced to a depth of 15.6- and 16.0-fold coverage, respectively. Assembly and manual curation yielded sequence scaffolds of 172 kbp (3CAR and 94 kbp (CYP720B4 long. Inspection of the genomic sequences revealed the intron-exon structures, the putative promoter regions and putative cis-regulatory elements of these genes. Sequences related to transposable elements (TEs, high complexity repeats and simple repeats were prevalent and comprised approximately 40% of the sequenced genomic DNA. An in silico simulation of the effect of sequencing depth on the quality of the sequence assembly provides direction for future efforts of conifer genome sequencing. Conclusion We report the first targeted cloning, sequencing, assembly, and annotation of large segments of genomic DNA from a conifer. We demonstrate that genomic BAC clones for individual members of multi-member gene

  12. Targeted isolation, sequence assembly and characterization of two white spruce (Picea glauca) BAC clones for terpenoid synthase and cytochrome P450 genes involved in conifer defence reveal insights into a conifer genome.

    Science.gov (United States)

    Hamberger, Björn; Hall, Dawn; Yuen, Mack; Oddy, Claire; Hamberger, Britta; Keeling, Christopher I; Ritland, Carol; Ritland, Kermit; Bohlmann, Jörg

    2009-08-06

    Conifers are a large group of gymnosperm trees which are separated from the angiosperms by more than 300 million years of independent evolution. Conifer genomes are extremely large and contain considerable amounts of repetitive DNA. Currently, conifer sequence resources exist predominantly as expressed sequence tags (ESTs) and full-length (FL)cDNAs. There is no genome sequence available for a conifer or any other gymnosperm. Conifer defence-related genes often group into large families with closely related members. The goals of this study are to assess the feasibility of targeted isolation and sequence assembly of conifer BAC clones containing specific genes from two large gene families, and to characterize large segments of genomic DNA sequence for the first time from a conifer. We used a PCR-based approach to identify BAC clones for two target genes, a terpene synthase (3-carene synthase; 3CAR) and a cytochrome P450 (CYP720B4) from a non-arrayed genomic BAC library of white spruce (Picea glauca). Shotgun genomic fragments isolated from the BAC clones were sequenced to a depth of 15.6- and 16.0-fold coverage, respectively. Assembly and manual curation yielded sequence scaffolds of 172 kbp (3CAR) and 94 kbp (CYP720B4) long. Inspection of the genomic sequences revealed the intron-exon structures, the putative promoter regions and putative cis-regulatory elements of these genes. Sequences related to transposable elements (TEs), high complexity repeats and simple repeats were prevalent and comprised approximately 40% of the sequenced genomic DNA. An in silico simulation of the effect of sequencing depth on the quality of the sequence assembly provides direction for future efforts of conifer genome sequencing. We report the first targeted cloning, sequencing, assembly, and annotation of large segments of genomic DNA from a conifer. We demonstrate that genomic BAC clones for individual members of multi-member gene families can be isolated in a gene-specific fashion. The

  13. Cloning and Functional Characterization of a Gene for Capsanthin-Capsorubin Synthase from Tiger Lily (Lilium lancifolium Thunb. ‘Splendens’)

    OpenAIRE

    Jeknić, Zoran; Morré, Jeffrey T.; Jeknić, Stevan; Jevremović, Slađana; Subotić, Angelina; Chen, Tony H.H.

    2012-01-01

    The orange color of tiger lily (Lolium lancifolium ‘Splendens’) flowers is due, primarily, to the accumulation of two κ-xanthophylls, capsanthin and capsorubin. An enzyme, known as capsanthin-capsorubin synthase (CCS), catalyzes the conversion of antheraxanthin and violaxanthin into capsanthin and capsorubin, respectively. We cloned the gene for capsanthin-capsorubin synthase (Llccs) from flower tepals of L. lancifolium by the rapid amplification of cDNA ends (RACE) with a heterologous non-de...

  14. Preservation and Reproduction of Microminipigs by Cloning Technology.

    Science.gov (United States)

    Enya, Satoko; Kawarasaki, Tatsuo; Otake, Masayoshi; Kangawa, Akihisa; Uenishi, Hirohide; Mikawa, Satoshi; Nishimura, Takashi; Kuwahawa, Yasushi; Shibata, Masatoshi

    Microminipigs have been maintained in small populations of closed colonies, involving risks of inbreeding depression and genetic drift. In order to avoid these risks, we assessed the applicability of cloning technology. Male and female clones were produced from a stock of cryopreserved somatic cells, obtaining offspring by means of natural mating. Phenotypic and genotypic characteristics of original microminipigs, clones and their offspring were analyzed and recorded. Clones presented characteristics similar to those of the cell-stock data. Although the body weight of clones tended to be heavier than that of the cell-stock data, body weights of their offspring were similar to those of previous reports. Thus, cloned microminipigs have the potential to be a valuable genetic resource for reproduction and breeding. Our proposed methodology might be useful to provide a large number of animals with adequate quality from a limited population with sufficient genetic diversity. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  15. Isolation and characterisation of cDNA clones representing the genes encoding the major tuber storage protein (dioscorin) of yam (Dioscorea cayenensis Lam.).

    Science.gov (United States)

    Conlan, R S; Griffiths, L A; Napier, J A; Shewry, P R; Mantell, S; Ainsworth, C

    1995-06-01

    cDNA clones encoding dioscorins, the major tuber storage proteins (M(r) 32,000) of yam (Dioscorea cayenesis) have been isolated. Two classes of clone (A and B, based on hybrid release translation product sizes and nucleotide sequence differences) which are 84.1% similar in their protein coding regions, were identified. The protein encoded by the open reading frame of the class A cDNA insert is of M(r) 30,015. The difference in observed and calculated molecular mass might be attributed to glycosylation. Nucleotide sequencing and in vitro transcription/translation suggest that the class A dioscorin proteins are synthesised with signal peptides of 18 amino acid residues which are cleaved from the mature peptide. The class A and class B proteins are 69.6% similar with respect to each other, but show no sequence identity with other plant proteins or with the major tuber storage proteins of potato (patatin) or sweet potato (sporamin). Storage protein gene expression was restricted to developing tubers and was not induced by growth conditions known to induce expression of tuber storage protein genes in other plant species. The codon usage of the dioscorin genes suggests that the Dioscoreaceae are more closely related to dicotyledonous than to monocotyledonous plants.

  16. What is Cloning?

    Science.gov (United States)

    Donate Home Cloning What is Cloning What is Cloning Clones are organisms that are exact genetic copies. ... clones made through modern cloning technologies. How Is Cloning Done? Many people first heard of cloning when ...

  17. A novel blast resistance gene, Pi54rh cloned from wild species of rice, Oryza rhizomatis confers broad spectrum resistance to Magnaporthe oryzae.

    Science.gov (United States)

    Das, Alok; Soubam, D; Singh, P K; Thakur, S; Singh, N K; Sharma, T R

    2012-06-01

    The dominant rice blast resistance gene, Pi54 confers resistance to Magnaporthe oryzae in different parts of India. In our effort to identify more effective forms of this gene, we isolated an orthologue of Pi54 named as Pi54rh from the blast-resistant wild species of rice, Oryza rhizomatis, using allele mining approach and validated by complementation. The Pi54rh belongs to CC-NBS-LRR family of disease resistance genes with a unique Zinc finger (C(3)H type) domain. The 1,447 bp Pi54rh transcript comprises of 101 bp 5'-UTR, 1,083 bp coding region and 263 bp 3'-UTR, driven by pathogen inducible promoter. We showed the extracellular localization of Pi54rh protein and the presence of glycosylation, myristoylation and phosphorylation sites which implicates its role in signal transduction process. This is in contrast to other blast resistance genes that are predicted to be intracellular NBS-LRR-type resistance proteins. The Pi54rh was found to express constitutively at basal level in the leaves, but upregulates 3.8-fold at 96 h post-inoculation with the pathogen. Functional validation of cloned Pi54rh gene using complementation test showed high degree of resistance to seven isolates of M. oryzae collected from different geographical locations of India. In this study, for the first time, we demonstrated that a rice blast resistance gene Pi54rh cloned from wild species of rice provides broad spectrum resistance to M. oryzae hence can be used in rice improvement breeding programme.

  18. Map-based Cloning and Characterization of the BPH18 Gene from Wild Rice Conferring Resistance to Brown Planthopper (BPH) Insect Pest.

    Science.gov (United States)

    Ji, Hyeonso; Kim, Sung-Ryul; Kim, Yul-Ho; Suh, Jung-Pil; Park, Hyang-Mi; Sreenivasulu, Nese; Misra, Gopal; Kim, Suk-Man; Hechanova, Sherry Lou; Kim, Hakbum; Lee, Gang-Seob; Yoon, Ung-Han; Kim, Tae-Ho; Lim, Hyemin; Suh, Suk-Chul; Yang, Jungil; An, Gynheung; Jena, Kshirod K

    2016-09-29

    Brown planthopper (BPH) is a phloem sap-sucking insect pest of rice which causes severe yield loss. We cloned the BPH18 gene from the BPH-resistant introgression line derived from the wild rice species Oryza australiensis. Map-based cloning and complementation test revealed that the BPH18 encodes CC-NBS-NBS-LRR protein. BPH18 has two NBS domains, unlike the typical NBS-LRR proteins. The BPH18 promoter::GUS transgenic plants exhibited strong GUS expression in the vascular bundles of the leaf sheath, especially in phloem cells where the BPH attacks. The BPH18 proteins were widely localized to the endo-membranes in a cell, including the endoplasmic reticulum, Golgi apparatus, trans-Golgi network, and prevacuolar compartments, suggesting that BPH18 may recognize the BPH invasion at endo-membranes in phloem cells. Whole genome sequencing of the near-isogenic lines (NILs), NIL-BPH18 and NIL-BPH26, revealed that BPH18 located at the same locus of BPH26. However, these two genes have remarkable sequence differences and the independent NILs showed differential BPH resistance with different expression patterns of plant defense-related genes, indicating that BPH18 and BPH26 are functionally different alleles. These findings would facilitate elucidation of the molecular mechanism of BPH resistance and the identified novel alleles to fast track breeding BPH resistant rice cultivars.

  19. Molecular cloning and expression analysis of KIN10 and cold-acclimation related genes in wild banana 'Huanxi' (Musa itinerans).

    Science.gov (United States)

    Liu, Weihua; Cheng, Chunzhen; Lai, Gongti; Lin, Yuling; Lai, Zhongxiong

    2015-01-01

    Banana cultivars may experience chilling or freezing injury in some of their cultivated regions, where wild banana can still grow very well. The clarification of the cold-resistant mechanism of wild banana is vital for cold-resistant banana breeding. In this study, the central stress integrator gene KIN10 and some cold-acclimation related genes (HOS1 and ICE1s) from the cold-resistant wild banana 'Huanxi' (Musa itinerans) were cloned and their expression patterns under different temperature treatments were analyzed. Thirteen full-length cDNA transcripts including 6 KIN10s, 1 HOS1 and 6 ICE1s were successfully cloned. Quantitative real-time PCR (qRT-PCR) results showed that all these genes had the highest expression levels at the critical temperature of banana (13 °C). Under chilling temperature (4 °C), the expression level of KIN10 reduced significantly but the expression of HOS1 was still higher than that at the optimal temperature (28 °C, control). Both KIN10 and HOS1 showed the lowest expression levels at 0 °C, the expression level of ICE1, however, was higher than control. As sucrose plays role in plant cold-acclimation and in regulation of KIN10 and HOS1 bioactivities, the sucrose contents of wild banana under different temperatures were detected. Results showed that the sucrose content increased as temperature lowered. Our result suggested that KIN10 may participate in cold stress response via regulating sucrose biosynthesis, which is helpful in regulating cold acclimation pathway in wild banana.

  20. Coincidence in map positions between pathogen-induced defense-responsive genes and quantitative resistance loci in rice

    Institute of Scientific and Technical Information of China (English)

    熊敏; 王石平; 张启发

    2002-01-01

    Quantitative disease resistance conferred by quantitative trait loci (QTLs) is presumably of wider spectrum and durable. Forty-four cDNA clones, representing 44 defense-responsive genes, were fine mapped to 56 loci distributed on 9 of the 12 rice chromosomes. The locations of 32 loci detected by 27 cDNA clones were associated with previously identified resistance QTLs for different rice diseases, including blast, bacterial blight, sheath blight and yellow mottle virus. The loci detected by the same multiple-copy cDNA clones were frequently located on similar locations of different chromosomes. Some of the multiple loci detected by the same clones were all associated with resistance QTLs. These results suggest that some of the genes may be important components in regulation of defense responses against pathogen invasion and they may be the candidates for studying the mechanism of quantitative disease resistance in rice.

  1. Cloning and mRNA expression pattern analysis under low ...

    African Journals Online (AJOL)

    This research cloned endochitinase-antifreeze protein precursor (EAPP) gene of Dong-mu 70 rye (Secale cereale) by designing special primers according to Genbank's EAPP gene sequence, and analyzing the influence of low temperature stress on the expression of mRNA with RT-PCR. The results indicated that the ...

  2. Distinct forms of the β subunit of GTP-binding regulatory proteins identified by molecular cloning

    International Nuclear Information System (INIS)

    Fong, H.K.W.; Amatruda, T.T. III; Birren, B.W.; Simon, M.I.

    1987-01-01

    Two distinct β subunits of guanine nucleotide-binding regulatory proteins have been identified by cDNA cloning and are referred to as β 1 and β 1 subunits. The bovine transducin β subunit (β 1 ) has been cloned previously. The author now isolated and analyzed cDNA clones that encode the β 2 subunit from bovine adrenal, bovine brain, and a human myeloid leukemia cell line, HL-60. The 340-residue M/sub r/ 37,329 Β 2 protein is 90% identical with β 1 in predicted amino acid sequence, and it is also organized as a series of repetitive homologous segments. The major mRNA that encodes the bovine β 2 subunit is 1.7 kilobases in length. It is expressed at lower levels than β 1 subunit mRNA in all tissues examined. The β 1 and β 2 messages are expressed in cloned human cell lines. Hybridization of cDNA probes to bovine DNA showed that β 1 and β 2 are encoded by separate genes. The amino acid sequences for the bovine and human β 2 subunit are identical, as are the amino acid sequences for the bovine and human β 1 subunit. This evolutionary conservation suggests that the two β subunits have different roles in the signal transduction process

  3. Direct selection of expressed sequences on a YAC clone revealed proline-rich-like genes and BARE-1 sequences physically linked to the complex ¤Mla¤ powdery mildew resistance locus of barley (¤Hordeum vulgare¤ L.)

    DEFF Research Database (Denmark)

    Schwarz, G.; Michalek, W.; Jahoor, A.

    2002-01-01

    homology to the copia-like retroelement BA REI of barley, putatively involved in evolution of disease resistance loci. The high degree of clones representing barley rRNA sequences or false positives is a major disadvantage of direct selection of cDNAs in barley. (C) 2002 Elsevier Science Ireland Ltd. All...... gene. Of 22 selected cDNA clones, six were re-located on the YAC by southern analysis. Two of these clones are predicted to encode members of the hydroxyproline-rich glycoprotein and proline-rich protein gene families which have been implicated in plant defense response. Four sequences showed high...

  4. Cloning of cDNA encoding steroid 11β-hydroxylase (P450c11)

    International Nuclear Information System (INIS)

    Chua, S.C.; Szabo, P.; Vitek, A.; Grzeschik, K.H.; John, M.; White, P.C.

    1987-01-01

    The authors have isolated bovine and human adrenal cDNA clones encoding the adrenal cytochrome P-450 specific for 11β-hydroxylation (P450c11). A bovine adrenal cDNA library constructed in the bacteriophage λ vector gt10 was probed with a previously isolated cDNA clone corresponding to part of the 3' untranslated region of the 4.2-kilobase (kb) mRNA encoding P450c11. Several clones with 3.2-kb cDNA inserts were isolated. Sequence analysis showed that they overlapped the original probe by 300 base pairs (bp). Combined cDNA and RNA sequence data demonstrated a continuous open reading frame of 1509 bases. P450c11 is predicted to contain 479 amino acid residues in the mature protein in addition to a 24-residue amino-terminal mitochondrial signal sequence. A bovine clone was used to isolate a homologous clone with a 3.5-kb insert from a human adrenal cDNA library. A region of 1100 bp was 81% homologous to 769 bp of the coding sequence of the bovine cDNA except for a 400-bp segment presumed to be an unprocessed intron. Hybridization of the human cDNA to DNA from a panel of human-rodent somatic cell hybrid lines and in situ hybridization to metaphase spreads of human chromosomes localized the gene to the middle of the long arm of chromosome 8. These data should be useful in developing reagents for heterozygote detection and prenatal diagnosis of 11β-hydroxylase deficiency, the second most frequent cause of congenital adrenal hyperplasia

  5. Cloning and prokaryotic expression of the porcine lipasin gene.

    Science.gov (United States)

    Li, M M; Geng, J; Guo, Y J; Jiao, X Q; Lu, W F; Zhu, H S; Wang, Y Y; Yang, G Y

    2015-11-23

    Lipasin has recently been demonstrated to be involved in lipid metabolism. In this study, two specific primers were used to amplify the lipasin open reading frame from porcine liver tissue. The polymerase chain reaction product was cloned to a pGEM®-T Easy Vector, digested by SalI and NotI, and sequenced. The lipasin fragment was then cloned to a pET21(b) vector and digested by the same restriction enzyme. The recombinant plasmid was transferred to Escherichia coli (BL21), and the lipasin protein was induced with isopropyl-β-D-thiogalactopyranoside. The protein obtained was identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis and western blotting. A pET-lipasin prokaryotic recombinant expression vector was successfully constructed, and a 25.2-kDa protein was obtained. This study provides a basis for further research on the biological function of porcine lipasin.

  6. Cloning and Characterization of an Endoglucanase Gene from sp. Korean Native Goat 40

    Directory of Open Access Journals (Sweden)

    Sung Chan Kim

    2016-01-01

    Full Text Available A gene from Actinomyces sp. Korean native goat (KNG 40 that encodes an endo-β-1,4-glucanase, EG1, was cloned and expressed in Escherichia coli (E. coli DH5α. Recombinant plasmid DNA from a positive clone with a 3.2 kb insert hydrolyzing carboxyl methyl-cellulose (CMC was designated as pDS3. The entire nucleotide sequence was determined, and an open-reading frame (ORF was deduced. The ORF encodes a polypeptide of 684 amino acids. The recombinant EG1 produced in E. coli DH5α harboring pDS3 was purified in one step using affinity chromatography on crystalline cellulose and characterized. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis/zymogram analysis of the purified enzyme revealed two protein bands of 57.1 and 54.1 kDa. The amino terminal sequences of these two bands matched those of the deduced ones, starting from residue 166 and 208, respectively. Putative signal sequences, a Shine–Dalgarno-type ribosomal binding site, and promoter sequences related to the consensus sequences were deduced. EG1 has a typical tripartite structure of cellulase, a catalytic domain, a serine-rich linker region, and a cellulose-binding domain. The optimal temperature for the activity of the purified enzyme was 55°C, but it retained over 90% of maximum activity in a broad temperature range (40°C to 60°C. The optimal pH for the enzyme activity was 6.0. Kinetic parameters, Km and Vmax of rEG1 were 0.39% CMC and 143 U/mg, respectively.

  7. Phylogenetic Analysis of Pasteuria penetrans by 16S rRNA Gene Cloning and Sequencing.

    Science.gov (United States)

    Anderson, J M; Preston, J F; Dickson, D W; Hewlett, T E; Williams, N H; Maruniak, J E

    1999-09-01

    Pasteuria penetrans is an endospore-forming bacterial parasite of Meloidogyne spp. This organism is among the most promising agents for the biological control of root-knot nematodes. In order to establish the phylogenetic position of this species relative to other endospore-forming bacteria, the 16S ribosomal genes from two isolates of P. penetrans, P-20, which preferentially infects M. arenaria race 1, and P-100, which preferentially infects M. incognita and M. javanica, were PCR-amplified from a purified endospore extraction. Universal primers for the 16S rRNA gene were used to amplify DNA which was cloned, and a nucleotide sequence was obtained for 92% of the gene (1,390 base pairs) encoding the 16S rDNA from each isolate. Comparison of both isolates showed identical sequences that were compared to 16S rDNA sequences of 30 other endospore-forming bacteria obtained from GenBank. Parsimony analyses indicated that P. penetrans is a species within a clade that includes Alicyclobacillus acidocaldarius, A. cycloheptanicus, Sulfobacillus sp., Bacillus tusciae, B. schlegelii, and P. ramosa. Its closest neighbor is P. ramosa, a parasite of Daphnia spp. (water fleas). This study provided a genomic basis for the relationship of species assigned to the genus Pasteuria, and for comparison of species that are parasites of different phytopathogenic nematodes.

  8. [Cloning, subcellular localization, and heterologous expression of ApNAC1 gene from Andrographis paniculata].

    Science.gov (United States)

    Wang, Jian; Qi, Meng-Die; Guo, Juan; Shen, Ye; Lin, Hui-Xin; Huang, Lu-Qi

    2017-03-01

    Andrographis paniculata is widely used as medicinal herb in China for a long time and andrographolide is its main medicinal constituent. To investigate the underlying andrographolide biosynthesis mechanisms, RNA-seq for A. paniculata leaves with MeJA treatment was performed. In A. paniculata transcriptomic data, the expression pattern of one member of NAC transcription factor family (ApNAC1) matched with andrographolide accumulation. The coding sequence of ApNAC1 was cloned by RT-PCR, and GenBank accession number was KY196416. The analysis of bioinformatics showed that the gene encodes a peptide of 323 amino acids, with a predicted relative molecular weight of 35.9 kDa and isoelectric point of 6.14. To confirm the subcellular localization, ApNAC1-GFP was transiently expressed in A. paniculata protoplast. The results indicated that ApNAC1 is a nucleus-localized protein. The analysis of real-time quantitative PCR revealed that ApNAC1 gene predominantly expresses in leaves. Compared with control sample, its expression abundance sharply increased with methyl jasmonate treatment. Based on its expression pattern, ApNAC1 gene might involve in andrographolide biosynthesis. ApNAC1 was heterologously expressed in Escherichia coli and recombinant protein was purified by Ni-NTA agarose. Further study will help us to understand the function of ApNAC1 in andrographolide biosynthesis. Copyright© by the Chinese Pharmaceutical Association.

  9. Eight previously unidentified mutations found in the OA1 ocular albinism gene

    Directory of Open Access Journals (Sweden)

    Dufier Jean-Louis

    2006-04-01

    Full Text Available Abstract Background Ocular albinism type 1 (OA1 is an X-linked ocular disorder characterized by a severe reduction in visual acuity, nystagmus, hypopigmentation of the retinal pigmented epithelium, foveal hypoplasia, macromelanosomes in pigmented skin and eye cells, and misrouting of the optical tracts. This disease is primarily caused by mutations in the OA1 gene. Methods The ophthalmologic phenotype of the patients and their family members was characterized. We screened for mutations in the OA1 gene by direct sequencing of the nine PCR-amplified exons, and for genomic deletions by PCR-amplification of large DNA fragments. Results We sequenced the nine exons of the OA1 gene in 72 individuals and found ten different mutations in seven unrelated families and three sporadic cases. The ten mutations include an amino acid substitution and a premature stop codon previously reported by our team, and eight previously unidentified mutations: three amino acid substitutions, a duplication, a deletion, an insertion and two splice-site mutations. The use of a novel Taq polymerase enabled us to amplify large genomic fragments covering the OA1 gene. and to detect very likely six distinct large deletions. Furthermore, we were able to confirm that there was no deletion in twenty one patients where no mutation had been found. Conclusion The identified mutations affect highly conserved amino acids, cause frameshifts or alternative splicing, thus affecting folding of the OA1 G protein coupled receptor, interactions of OA1 with its G protein and/or binding with its ligand.

  10. Characterization of the env gene and long terminal repeat of molecularly cloned Friend mink cell focus-inducing virus DNA.

    OpenAIRE

    Adachi, A; Sakai, K; Kitamura, N; Nakanishi, S; Niwa, O; Matsuyama, M; Ishimoto, A

    1984-01-01

    The highly oncogenic erythroleukemia-inducing Friend mink cell focus-inducing (MCF) virus was molecularly cloned in phage lambda gtWES.lambda B, and the DNA sequences of the env gene and the long terminal repeat were determined. The nucleotide sequences of Friend MCF virus and Friend spleen focus-forming virus were quite homologous, supporting the hypothesis that Friend spleen focus-forming virus might be generated via Friend MCF virus from an ecotropic Friend virus mainly by some deletions. ...

  11. Distinct herpesvirus resistances and immune responses of three gynogenetic clones of gibel carp revealed by comprehensive transcriptomes.

    Science.gov (United States)

    Gao, Fan-Xiang; Wang, Yang; Zhang, Qi-Ya; Mou, Cheng-Yan; Li, Zhi; Deng, Yuan-Sheng; Zhou, Li; Gui, Jian-Fang

    2017-07-24

    Gibel carp is an important aquaculture species in China, and a herpesvirus, called as Carassius auratus herpesvirus (CaHV), has hampered the aquaculture development. Diverse gynogenetic clones of gibel carp have been identified or created, and some of them have been used as aquaculture varieties, but their resistances to herpesvirus and the underlying mechanism remain unknown. To reveal their susceptibility differences, we firstly performed herpesvirus challenge experiments in three gynogenetic clones of gibel carp, including the leading variety clone A + , candidate variety clone F and wild clone H. Three clones showed distinct resistances to CaHV. Moreover, 8772, 8679 and 10,982 differentially expressed unigenes (DEUs) were identified from comparative transcriptomes between diseased individuals and control individuals of clone A + , F and H, respectively. Comprehensive analysis of the shared DEUs in all three clones displayed common defense pathways to the herpesvirus infection, activating IFN system and suppressing complements. KEGG pathway analysis of specifically changed DEUs in respective clones revealed distinct immune responses to the herpesvirus infection. The DEU numbers identified from clone H in KEGG immune-related pathways, such as "chemokine signaling pathway", "Toll-like receptor signaling pathway" and others, were remarkably much more than those from clone A + and F. Several IFN-related genes, including Mx1, viperin, PKR and others, showed higher increases in the resistant clone H than that in the others. IFNphi3, IFI44-like and Gig2 displayed the highest expression in clone F and IRF1 uniquely increased in susceptible clone A + . In contrast to strong immune defense in resistant clone H, susceptible clone A + showed remarkable up-regulation of genes related to apoptosis or death, indicating that clone A + failed to resist virus offensive and evidently induced apoptosis or death. Our study is the first attempt to screen distinct resistances and

  12. Molecular Cloning and Characterization of Two Genes for the Biotin Carboxylase and Carboxyltransferase Subunits of Acetyl Coenzyme A Carboxylase in Myxococcus xanthus

    OpenAIRE

    Kimura, Yoshio; Miyake, Rina; Tokumasu, Yushi; Sato, Masayuki

    2000-01-01

    We have cloned a DNA fragment from a genomic library of Myxococcus xanthus using an oligonucleotide probe representing conserved regions of biotin carboxylase subunits of acetyl coenzyme A (acetyl-CoA) carboxylases. The fragment contained two open reading frames (ORF1 and ORF2), designated the accB and accA genes, capable of encoding a 538-amino-acid protein of 58.1 kDa and a 573-amino-acid protein of 61.5 kDa, respectively. The protein (AccA) encoded by the accA gene was strikingly similar t...

  13. Cloning Expeditions: Risky but Rewarding

    Science.gov (United States)

    2013-01-01

    In the 1980s, a good part of my laboratory was using the then-new recombinant DNA techniques to clone and characterize many important cell surface membrane proteins: GLUT1 (the red cell glucose transporter) and then GLUT2 and GLUT4, the red cell anion exchange protein (Band 3), asialoglycoprotein receptor subunits, sucrase-isomaltase, the erythropoietin receptor, and two of the subunits of the transforming growth factor β (TGF-β) receptor. These cloned genes opened many new fields of basic research, including membrane insertion and trafficking of transmembrane proteins, signal transduction by many members of the cytokine and TGF-β families of receptors, and the cellular physiology of glucose and anion transport. They also led to many insights into the molecular biology of several cancers, hematopoietic disorders, and diabetes. This work was done by an exceptional group of postdocs and students who took exceptionally large risks in developing and using novel cloning technologies. Unsurprisingly, all have gone on to become leaders in the fields of molecular cell biology and molecular medicine. PMID:24061478

  14. [Clone, construct, expression and verification of lactoferricin B gene and several sequence mutations in yeast].

    Science.gov (United States)

    Feng, Yong-qian; Zha, Xiao-jun; Zhai, Chao-yang

    2007-07-01

    To construct the eucaryotic recombinant plasmid of pYES2/LactoferricinB expressing in yeast of S. cerevisiae, of which the expressed protein antibacterial activity was verified in preliminary. By self-template PCR method, the gene of Lactoferricin B and its several sequence mutations were amplified with the parts of the pre-synthesized single chains. And then Lactoferricin B gene and its mutants were cloned into the vector of pYES2 to construct the recombined expression plasmid pYES2/Lactoferricin B etc. extracted and used to transform the yeast S. cerevisiae. The expressions of proteins were determined after induced by galactose. The expression proteins were collected and purified by hydronium-exchange column, and the bacterial inhibited test was applied to identify the protein antibacterial activities. The PCR amplifying and DNA sequencing tests indicated that the purpose plasmid contained the Lactoferricin B gene and several mutations. The induced target proteins were confirmed by SDS-PAGE electrophoresis and mass spectrum test. The protein antibacterial activities of mutations were verified in preliminary. The recombined plasmid pYES2/Lactoferricin B etc. are successfully constructed and induced to express in yeast cell of S. cerevisiae; the obtained recombined protein of Lactoferricin B provides a basis for further research work on the biological function and antibacterial activity.

  15. Cloning and Characterization of Farnesyl Diphosphate Synthase Gene Involved in Triterpenoids Biosynthesis from Poria cocos

    Directory of Open Access Journals (Sweden)

    Jianrong Wang

    2014-12-01

    Full Text Available Poria cocos (P. cocos has long been used as traditional Chinese medicine and triterpenoids are the most important pharmacologically active constituents of this fungus. Farnesyl pyrophosphate synthase (FPS is a key enzyme of triterpenoids biosynthesis. The gene encoding FPS was cloned from P. cocos by degenerate PCR, inverse PCR and cassette PCR. The open reading frame of the gene is 1086 bp in length, corresponding to a predicted polypeptide of 361 amino acid residues with a molecular weight of 41.2 kDa. Comparison of the P. cocos FPS deduced amino acid sequence with other species showed the highest identity with Ganoderma lucidum (74%. The predicted P. cocos FPS shares at least four conserved regions involved in the enzymatic activity with the FPSs of varied species. The recombinant protein was expressed in Pichia pastoris and purified. Gas chromatography analysis showed that the recombinant FPS could catalyze the formation of farnesyl diphosphate (FPP from geranyl diphosphate (GPP and isopentenyl diphosphate (IPP. Furthermore, the expression profile of the FPS gene and content of total triterpenoids under different stages of development and methyl jasmonate treatments were determined. The results indicated that there is a positive correlation between the activity of FPS and the amount of total triterpenoids produced in P. cocos.

  16. cDNA, genomic sequence cloning and overexpression of ribosomal protein S25 gene (RPS25) from the Giant Panda.

    Science.gov (United States)

    Hao, Yan-Zhe; Hou, Wan-Ru; Hou, Yi-Ling; Du, Yu-Jie; Zhang, Tian; Peng, Zheng-Song

    2009-11-01

    RPS25 is a component of the 40S small ribosomal subunit encoded by RPS25 gene, which is specific to eukaryotes. Studies in reference to RPS25 gene from animals were handful. The Giant Panda (Ailuropoda melanoleuca), known as a "living fossil", are increasingly concerned by the world community. Studies on RPS25 of the Giant Panda could provide scientific data for inquiring into the hereditary traits of the gene and formulating the protective strategy for the Giant Panda. The cDNA of the RPS25 cloned from Giant Panda is 436 bp in size, containing an open reading frame of 378 bp encoding 125 amino acids. The length of the genomic sequence is 1,992 bp, which was found to possess four exons and three introns. Alignment analysis indicated that the nucleotide sequence of the coding sequence shows a high homology to those of Homo sapiens, Bos taurus, Mus musculus and Rattus norvegicus as determined by Blast analysis, 92.6, 94.4, 89.2 and 91.5%, respectively. Primary structure analysis revealed that the molecular weight of the putative RPS25 protein is 13.7421 kDa with a theoretical pI 10.12. Topology prediction showed there is one N-glycosylation site, one cAMP and cGMP-dependent protein kinase phosphorylation site, two Protein kinase C phosphorylation sites and one Tyrosine kinase phosphorylation site in the RPS25 protein of the Giant Panda. The RPS25 gene was overexpressed in E. coli BL21 and Western Blotting of the RPS25 protein was also done. The results indicated that the RPS25 gene can be really expressed in E. coli and the RPS25 protein fusioned with the N-terminally his-tagged form gave rise to the accumulation of an expected 17.4 kDa polypeptide. The cDNA and the genomic sequence of RPS25 were cloned successfully for the first time from the Giant Panda using RT-PCR technology and Touchdown-PCR, respectively, which were both sequenced and analyzed preliminarily; then the cDNA of the RPS25 gene was overexpressed in E. coli BL21 and immunoblotted, which is the first

  17. Cloning and expression of a sorghum gene with homology to maize vp1. Its potential involvement in pre-harvest sprouting resistance.

    Science.gov (United States)

    Carrari, F; Perez-Flore, L; Lijavetzky, D; Enciso, S; Sanchez, R; Benech-Arnold, R; Iusem, N

    2001-04-01

    Pre-harvest sprouting (PHS) in sorghum is related to the lack of a normal dormancy level during seed development and maturation. Based on previous evidence that seed dormancy in maize is controlled by the vp1 gene, we used a PCR-based approach to isolate two Sorghum bicolor genomic and cDNA clones from two genotypes exhibiting different PHS behaviour and sensitivity to abscisic acid (ABA). The two 699 amino acid predicted protein sequences differ in two residues at positions 341 (Gly or Cys within the repression domain) and 448 (Pro or Ser) and show over 80, 70 and 60% homology to maize, rice and oat VP1 proteins respectively. Expression analysis of the sorghum vp1 gene in the two lines shows a slightly higher level of vp1 mRNA in the embryos susceptible to PHS than in those resistant to PHS during embryogenesis. However, timing of expression was different between these genotypes during this developmental process. Whereas for the former the main peak of expression was observed at 20 days after pollination (DAP), the peak in the latter was found at later developmental stages when seed maturation was almost complete. Under favourable germination conditions and in the presence of fluridone (an inhibitor of ABA biosynthesis), sorghum vp1 mRNA showed to be consistently correlated with sensitivity to ABA but not with ABA content and dormancy.

  18. Handmade Cloned Buffalo (Bubalus bubalis) Embryos Produced from Somatic Cells Isolated from Milk and Ear Skin Differ in Their Developmental Competence, Epigenetic Status, and Gene Expression.

    Science.gov (United States)

    Jyotsana, Basanti; Sahare, Amol A; Raja, Anuj K; Singh, Karn P; Singla, Suresh K; Chauhan, Manmohan S; Manik, Radhey S; Palta, Prabhat

    2015-10-01

    We compared the cloning efficiency of buffalo embryos produced by handmade cloning (HMC) using ear skin- and milk-derived donor cells. The blastocyst rate was lower (p  milk-derived blastocysts and that of NANOG was (p  milk-derived > skin-derived blastocysts. The expression level of all these genes, except NANOG, was lower (p < 0.05) in milk- than in skin-derived or IVF blastocysts. In conclusion, milk-derived cells can be used for producing HMC embryos of quality similar to that of skin-derived embryos, although with a lower blastocyst rate.

  19. Cloning and sequence analysis of the defective in anther ...

    African Journals Online (AJOL)

    To clone the defective in anther dehiscence1 (DAD1) gene fragment of Chinese kale, about 700 bp product was obtained by PCR amplification using Chinese kale genomic DNA as the template and a pair of specific primers designed according to the conserved sequence of DAD1 genes of Arabidopsis thaliana and ...

  20. [Cloning, expression and transcriptional analysis of biotin carboxyl carrier protein gene (accA) from Amycolatopsis mediterranei U32 ].

    Science.gov (United States)

    Lu, Jie; Yao, Yufeng; Jiang, Weihong; Jiao, Ruishen

    2003-02-01

    Acetyl CoA carboxylase (EC 6.4.1.2, ACC) catalyzes the ATP-dependent carboxylation of acetyl CoA to yield malonyl CoA, which is the first committed step in fatty acid synthesis. A pair of degenerate PCR primers were designed according to the conserved amino acid sequence of AccA from M. tuberculosis and S. coelicolor. The product of the PCR amplification, a DNA fragment of 250bp was used as a probe for screening the U32 genomic cosmid library and its gene, accA, coding the biotinylated protein subunit of acetyl CoA carboxylase, was successfully cloned from U32. The accA ORF encodes a 598-amino-acid protein with the calculated molecular mass of 63.7kD, with 70.1% of G + C content. A typical Streptomyces RBS sequence, AGGAGG, was found at the - 6 position upstream of the start codon GTG. Analysis of the deduced amino acid sequence showed the presence of biotin-binding site and putative ATP-bicarbonate interaction region, which suggested the U32 AccA may act as a biotin carboxylase as well as a biotin carrier protein. Gene accA was then cloned into the pET28 (b) vector and expressed solubly in E. coli BL21 (DE3) by 0.1 mmol/L IPTG induction. Western blot confirmed the covalent binding of biotin with AccA. Northern blot analyzed transcriptional regulation of accA by 5 different nitrogen sources.

  1. Molecular analysis of aniridia patients for deletions involving the Wilms' tumor gene

    NARCIS (Netherlands)

    Drechsler, M.; Meijers-Heijboer, E. J.; Schneider, S.; Schurich, B.; Grond-Ginsbach, C.; Tariverdian, G.; Kantner, G.; Blankenagel, A.; Kaps, D.; Schroeder-Kurth, T.

    1994-01-01

    A human aniridia candidate (AN) gene on chromosome 11p13 has been cloned and characterized. The AN gene is the second cloned gene of the contiguous genes syndrome WAGR (Wilms' tumor, aniridia, genitourinary malformations, mental retardation) on chromosome 11p13, WT1 being the first gene cloned.

  2. Cloning and Characterization of an Alpha-amylase Gene from the Hyperthermophilic Archaeon Thermococcus Thioreducens

    Science.gov (United States)

    Bernhardsdotter, Eva C. M. J.; Pusey, Marc L.; Ng, Joseph D.; Garriott, Owen K.

    2004-01-01

    The gene encoding an extracellular a-amylase, TTA, from the hyperthermophilic archaeon Thermococcus thioreducens was cloned and expressed in Escherichia coli. Primary structural analysis revealed high similarity with other a-amylases from the Thermococcus and Pyrococcus genera, as well as the four highly conserved regions typical for a-amylases. The 1374 bp gene encodes a protein of 457 amino acids, of which 435 constitute the mature protein preceded by a 22 amino acid signal peptide. The molecular weight of the purified recombinant enzyme was estimated to be 43 kDa by denaturing gel electrophoresis. Maximal enzymatic activity of recombinant TTA was observed at 90 C and pH 5.5 in the absence of exogenous Ca(2+), and the enzyme was considerably stable even after incubation at 90 C for 2 hours. The thermostability at 90 and 102 C was enhanced in the presence of 5 mM Ca(2+). The extraordinarily high specific activity (about 7.4 x 10(exp 3) U/mg protein at 90 C, pH 5.5 with soluble starch as substrate) together with its low pH optimum makes this enzyme an interesting candidate for starch processing applications.

  3. Map-based cloning and characterization of Zea mays male sterility33 (ZmMs33) gene, encoding a glycerol-3-phosphate acyltransferase.

    Science.gov (United States)

    Xie, Ke; Wu, Suowei; Li, Ziwen; Zhou, Yan; Zhang, Danfeng; Dong, Zhenying; An, Xueli; Zhu, Taotao; Zhang, Simiao; Liu, Shuangshuang; Li, Jinping; Wan, Xiangyuan

    2018-06-01

    Map-based cloning of maize ms33 gene showed that ZmMs33 encodes a sn-2 glycerol-3-phosphate acyltransferase, the ortholog of rice OsGPAT3, and it is essential for male fertility in maize. Genetic male sterility has been widely studied for its biological significance and commercial value in hybrid seed production. Although many male-sterile mutants have been identified in maize (Zea mays L.), it is likely that most genes that cause male sterility are unknown. Here, we report a recessive genetic male-sterile mutant, male sterility33 (ms33), which displays small, pale yellow anthers, and complete male sterility. Using a map-based cloning approach, maize GRMZM2G070304 was identified as the ms33 gene (ZmMs33). ZmMs33 encodes a novel sn-2 glycerol-3-phosphate acyltransferase (GPAT) in maize. A functional complementation experiment showed that GRMZM2G070304 can rescue the male-sterile phenotype of the ms33-6029 mutant. GRMZM2G070304 was further confirmed to be the ms33 gene via targeted knockouts induced by the clustered regularly interspersed short palindromic repeats (CRISPR)/Cas9 system. ZmMs33 is preferentially expressed in the immature anther from the quartet to early-vacuolate microspore stages and in root tissues at the fifth leaf growth stage. Phylogenetic analysis indicated that ZmMs33 and OsGPAT3 are evolutionarily conserved for anther and pollen development in monocot species. This study reveals that the monocot-specific GPAT3 protein plays an important role in male fertility in maize, and ZmMs33 and mutants in this gene may have value in maize male-sterile line breeding and hybrid seed production.

  4. Molecular Cloning, Expression and Characterization of Plasmid Encoding Rhomboid 4 (ROM4 of Tachyzoite of Toxoplasma gondii RH Strain

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi RAHIMI

    2017-12-01

    Full Text Available AbstractBackground: The objective of this study was to clone, express and characterize the gene encoding rhomboid 4 (ROM4 proteins, a vital gene in surface adhesion and host cell invasion process of tachyzoite of T. gondii in an appropriate expression vector and eukaryotic cell for production of recombinant protein.Methods: Toxoplasma RNA was isolated from tachyzoites (RH strain and complementary DNA was synthesized. Oligonucleotide primer pair was designed based on Toxoplasma ROM4 gene sequence with XhoI and EcoRI restriction sites at 5´ end of forward and reverse primers, respectively. ROM4 gene was amplified by PCR, cloned into pTG19-T vector and the recombinant plasmid was sequenced. The gene was subcloned into pcDNA3 plasmid and expressed in CHO cells as eukaryotic cell. SDS-PAGE and western blotting were performed for protein determination and verification.Results: Cloning of ROM4 gene in pTG19-T vector was confirmed by colony-PCR and enzymatic digestion. The results of enzymatic digestion and gene sequencing confirmed successful cloning and subcloning procedures. The nucleotide sequence of the cloned ROM4 gene showed 99% homology compared to the corresponding sequences of original gene. SDS-PAGE and western blotting analyses of the purified protein revealed a single band having expected size of 65 kDa.Conclusion: This eukaryotic expression system is an appropriate system for high-level recombinant protein production of ROM4 gene from T. gondii tachyzoites used as antigenic component for serological assay and vaccine development.

  5. Cloning of genes and enzymatic characterizations of novel dioscorin isoforms from Dioscorea japonica.

    Science.gov (United States)

    Xue, You-Lin; Miyakawa, Takuya; Sawano, Yoriko; Tanokura, Masaru

    2012-02-01

    Dioscorin, the major tuber storage protein of yam, has been shown to possess carbonic anhydrase, trypsin inhibitor, dehydroascorbate reductase, and monodehydroascorbate reductase activities. In the present study, dioscorin from Dioscorea japonica was confirmed as a glycoprotein using the enhanced concanavalin A-peroxidase staining method, and the protein was shown to have both N- and O-glycans. Following the gene cloning, four full-length isoforms of dioscorin were expressed in Escherichia coli and purified by affinity purification and anion-exchange chromatography for structural and biochemical experiments. It was clearly observed that the recombinant dioscorins had carbonic anhydrase, trypsin inhibitor, dehydroascorbate reductase, and monodehydroascorbate reductase activities. However, the dehydroascorbate reductase and monodehydroascorbate reductase activities were markedly decreased in recombinant dioscorins compared with native dioscorin. The decreased activities were closely related to the loss of the glycosylation from the protein. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. Cloning and characterization of the iron uptake gene iutA from avian Escherichia coli

    Directory of Open Access Journals (Sweden)

    Dorismey Vieira Tokano

    2008-06-01

    Full Text Available The aim of this work was to isolate, clone and characterize the iron uptake gene iutA from avian pathogenic E. coli (APEC. The iutA gene was isolated from the strain APEC 9, serotype O2:H9, which was cloned in the expression vector pET101/D-TOPO. The gene of 2.2 Kb was sequenced (AY602767, which showed high similarity to the iutA gene from three plasmids, two from APEC, pAPEC-02-ColV (AY545598.4 and pTJ100 (AY553855.1, and one from a human invasive E. coli strain, the pColV K30. The recombinant protein IutA was over expressed in E. coli BL21(DE-3 and was solubilized with urea and purified by Ni-NTA column. This method produced a relatively high yield of r-IutA of approximately 74kDa, which was used to produce the antibody anti-IutA. This anti-IutA reacted with the protein r-IutA and native IutA of APEC 9, as demonstrated by Western blot, showing that the r-IutA conserved epitopes and its antigenicity was preserved. The anti-IutA IgY was able to inhibit the IutA biological activity, inhibiting the sensitivity to cloacin DF13 of APEC9. However, it did not inhibit the growth of APEC9 in M9 and did not protect the chickens inoculated with the APEC, suggesting that the APEC possessed another iron acquisition mechanism distinct of aerobactin.A proteína de membrane externa IutA (iron uptake transport é o receptor para aerobactina férrica, um fator de virulência encontrado mais frequentemente entre as amostras de E. coli pathogênicas para aves (APEC do que entre os isolados fecais de aves saudáveis. O gene iutA da amostra APEC 9, sorotipo O2:H9, foi amplificado e clonado no vetor pET101/D-TOPO. O gene iutA 2.2 Kb foi sequenciado (AY602767 e mostrou alta similaridade para gene iutA de três plasmidios, dois da APEC, pAPEC-02-ColV (AY545598.4 e pTJ100 (AY553855.1, e um da amostra E. coli invasiva humana, pColV K30. A proteína IutA recombinante (r-IutA foi produzida em Escherichia coli BL21(DE-3, solubilizada com uréia e purificada em coluna de n

  7. Rapid customised operon assembly by yeast recombinational cloning.

    Science.gov (United States)

    Liu, Michael A; Kenyon, Johanna J; Lee, Jason; Reeves, Peter R

    2017-06-01

    We have developed a system called the Operon Assembly Protocol (OAP), which takes advantage of the homologous recombination DNA repair pathway in Saccharomyces cerevisiae to assemble full-length operons from a series of overlapping PCR products into a specially engineered yeast-Escherichia coli shuttle vector. This flexible, streamlined system can be used to assemble several operon clones simultaneously, and each clone can be expressed in the same E. coli tester strain to facilitate direct functional comparisons. We demonstrated the utility of the OAP by assembling and expressing a series of E. coli O1A O-antigen gene cluster clones containing various gene deletions or replacements. We then used these constructs to assess the substrate preferences of several Wzx flippases, which are responsible for translocation of oligosaccharide repeat units (O units) across the inner membrane during O-antigen biosynthesis. We were able to identify several O unit structural features that appear to be important determinants of Wzx substrate preference. The OAP system should be broadly applicable for the genetic manipulation of any bacterial operon and can be modified for use in other host species. It could also have potential uses in fields such as glycoengineering.

  8. DNA-mediated gene transfer into ataxia-telangiectasia cells

    International Nuclear Information System (INIS)

    Crescenzi, M.; Pulciani, S.; Carbonari, M.; Tedesco, L.; Russo, G.; Gaetano, C.; Fiorilli, M.

    1986-01-01

    The complete description of the genetic lesion(s) underlying the AT mutation might, therefore, highlight not only a DNA-repair pathwa, but also an important aspect of the physiology of lymphocytes. DNA-mediated gene transfer into eukaryotic cells has proved a powerful tool for the molecular cloning of certain mammalian genes. The possibility to clone a given gene using this technology depends, basically, on the availability of a selectable marker associated with the expression of the transfected gene in the recipient cell. Recently, a human DNA repair gene has been cloned in CHO mutant cells by taking advantage of the increased resistance to ultraviolet radiation of the transformants. As a preliminary step toward the molecular cloning of the AT gene(s), the authors have attempted to confer radioresistance to AT cells by transfection with normal human DNA

  9. Cloning of a gene encoding glycosyltransferase from Pueraria lobata

    African Journals Online (AJOL)

    user

    2011-01-03

    Jan 3, 2011 ... Full Length Research Paper. Cloning ... 2Guangzhou Sugarcane Industry Research Institute, Guangzhou 510316, China. ..... min at 4°C and then washed once with deionized water after ..... Brierley RA, Davis RG, Holtz CG (1994). .... Kita M, Hirata Y, Moriguchi T, Endo-Inagaki T, Matsumoto R, Hasegawa.

  10. Frame-Insensitive Expression Cloning of Fluorescent Protein from Scolionema suvaense

    Directory of Open Access Journals (Sweden)

    Yuki Horiuchi

    2018-01-01

    Full Text Available Expression cloning from cDNA is an important technique for acquiring genes encoding novel fluorescent proteins. However, the probability of in-frame cDNA insertion following the first start codon of the vector is normally only 1/3, which is a cause of low cloning efficiency. To overcome this issue, we developed a new expression plasmid vector, pRSET-TriEX, in which transcriptional slippage was induced by introducing a DNA sequence of (dT14 next to the first start codon of pRSET. The effectiveness of frame-insensitive cloning was validated by inserting the gene encoding eGFP with all three possible frames to the vector. After transformation with one of these plasmids, E. coli cells expressed eGFP with no significant difference in the expression level. The pRSET-TriEX vector was then used for expression cloning of a novel fluorescent protein from Scolionema suvaense. We screened 3658 E. coli colonies transformed with pRSET-TriEX containing Scolionema suvaense cDNA, and found one colony expressing a novel green fluorescent protein, ScSuFP. The highest score in protein sequence similarity was 42% with the chain c of multi-domain green fluorescent protein like protein “ember” from Anthoathecata sp. Variations in the N- and/or C-terminal sequence of ScSuFP compared to other fluorescent proteins indicate that the expression cloning, rather than the sequence similarity-based methods, was crucial for acquiring the gene encoding ScSuFP. The absorption maximum was at 498 nm, with an extinction efficiency of 1.17 × 105 M−1·cm−1. The emission maximum was at 511 nm and the fluorescence quantum yield was determined to be 0.6. Pseudo-native gel electrophoresis showed that the protein forms obligatory homodimers.

  11. Integration of molecular biology tools for identifying promoters and genes abundantly expressed in flowers of Oncidium Gower Ramsey

    Directory of Open Access Journals (Sweden)

    Tung Shu-Yun

    2011-04-01

    Full Text Available Abstract Background Orchids comprise one of the largest families of flowering plants and generate commercially important flowers. However, model plants, such as Arabidopsis thaliana do not contain all plant genes, and agronomic and horticulturally important genera and species must be individually studied. Results Several molecular biology tools were used to isolate flower-specific gene promoters from Oncidium 'Gower Ramsey' (Onc. GR. A cDNA library of reproductive tissues was used to construct a microarray in order to compare gene expression in flowers and leaves. Five genes were highly expressed in flower tissues, and the subcellular locations of the corresponding proteins were identified using lip transient transformation with fluorescent protein-fusion constructs. BAC clones of the 5 genes, together with 7 previously published flower- and reproductive growth-specific genes in Onc. GR, were identified for cloning of their promoter regions. Interestingly, 3 of the 5 novel flower-abundant genes were putative trypsin inhibitor (TI genes (OnTI1, OnTI2 and OnTI3, which were tandemly duplicated in the same BAC clone. Their promoters were identified using transient GUS reporter gene transformation and stable A. thaliana transformation analyses. Conclusions By combining cDNA microarray, BAC library, and bombardment assay techniques, we successfully identified flower-directed orchid genes and promoters.

  12. Linkage studies and mutation analysis of the PDEB gene in 23 families with Leber congenital amaurosis

    DEFF Research Database (Denmark)

    Riess, O; Weber, B; Nørremølle, Anne

    1992-01-01

    as to whether mutations in the human PDEB gene might cause LCA. We have previously cloned and characterized the human homologue of the mouse Pdeb gene and have mapped it to chromosome 4p16.3. In this study, a total of 23 LCA families of various ethnic backgrounds have been investigated. Linkage analysis using...

  13. Recombinational Cloning Using Gateway and In-Fusion Cloning Schemes

    Science.gov (United States)

    Throop, Andrea L.; LaBaer, Joshua

    2015-01-01

    The comprehensive study of protein structure and function, or proteomics, depends on the obtainability of full-length cDNAs in species-specific expression vectors and subsequent functional analysis of the expressed protein. Recombinational cloning is a universal cloning technique based on site-specific recombination that is independent of the insert DNA sequence of interest, which differentiates this method from the classical restriction enzyme-based cloning methods. Recombinational cloning enables rapid and efficient parallel transfer of DNA inserts into multiple expression systems. This unit summarizes strategies for generating expression-ready clones using the most popular recombinational cloning technologies, including the commercially available Gateway® (Life Technologies) and In-Fusion® (Clontech) cloning technologies. PMID:25827088

  14. Molecular Cloning and Characterization of a New C-type Lysozyme Gene from Yak Mammary Tissue

    Directory of Open Access Journals (Sweden)

    Ming Feng Jiang

    2015-12-01

    Full Text Available Milk lysozyme is the ubiquitous enzyme in milk of mammals. In this study, the cDNA sequence of a new chicken-type (c-type milk lysozyme gene (YML, was cloned from yak mammary gland tissue. A 444 bp open reading frames, which encodes 148 amino acids (16.54 kDa with a signal peptide of 18 amino acids, was sequenced. Further analysis indicated that the nucleic acid and amino acid sequences identities between yak and cow milk lysozyme were 89.04% and 80.41%, respectively. Recombinant yak milk lysozyme (rYML was produced by Escherichia coli BL21 and Pichia pastoris X33. The highest lysozyme activity was detected for heterologous protein rYML5 (M = 1,864.24 U/mg, SD = 25.75 which was expressed in P. pastoris with expression vector pPICZαA and it clearly inhibited growth of Staphylococcus aureus. Result of the YML gene expression using quantitative polymerase chain reaction showed that the YML gene was up-regulated to maximum at 30 day postpartum, that is, comparatively high YML can be found in initial milk production. The phylogenetic tree indicated that the amino acid sequence was similar to cow kidney lysozyme, which implied that the YML may have diverged from a different ancestor gene such as cow mammary glands. In our study, we suggest that YML be a new c-type lysozyme expressed in yak mammary glands that plays a role as host immunity.

  15. Properties of promoters cloned randomly from the Saccharomyces cerevisiae genome.

    Science.gov (United States)

    Santangelo, G M; Tornow, J; McLaughlin, C S; Moldave, K

    1988-01-01

    Promoters were isolated at random from the genome of Saccharomyces cerevisiae by using a plasmid that contains a divergently arrayed pair of promoterless reporter genes. A comprehensive library was constructed by inserting random (DNase I-generated) fragments into the intergenic region upstream from the reporter genes. Simple in vivo assays for either reporter gene product (alcohol dehydrogenase or beta-galactosidase) allowed the rapid identification of promoters from among these random fragments. Poly(dA-dT) homopolymer tracts were present in three of five randomly cloned promoters. With two exceptions, each RNA start site detected was 40 to 100 base pairs downstream from a TATA element. All of the randomly cloned promoters were capable of activating reporter gene transcription bidirectionally. Interestingly, one of the promoter fragments originated in a region of the S. cerevisiae rDNA spacer; regulated divergent transcription (presumably by RNA polymerase II) initiated in the same region. Images PMID:2847031

  16. Cloning of gene-encoded stem bromelain on system coming from Pichia pastoris as therapeutic protein candidate

    Science.gov (United States)

    Yusuf, Y.; Hidayati, W.

    2018-01-01

    The process of identifying bacterial recombination using PCR, and restriction, and then sequencing process was done after identifying the bacteria. This research aimed to get a yeast cell of Pichia pastoris which has an encoder gene of stem bromelain enzyme. The production of recombinant stem bromelain enzymes using yeast cells of P. pastoris can produce pure bromelain rod enzymes and have the same conformation with the enzyme’s conformation in pineapple plants. This recombinant stem bromelain enzyme can be used as a therapeutic protein in inflammatory, cancer and degenerative diseases. This study was an early stage of a step series to obtain bromelain rod protein derived from pineapple made with genetic engineering techniques. This research was started by isolating the RNA of pineapple stem which was continued with constructing cDNA using reserve transcriptase-PCR technique (RT-PCR), doing the amplification of bromelain enzyme encoder gene with PCR technique using a specific premiere couple which was designed. The process was continued by cloning into bacterium cells of Escherichia coli. A vector which brought the encoder gene of stem bromelain enzyme was inserted into the yeast cell of P. pastoris and was continued by identifying the yeast cell of P. pastoris which brought the encoder gene of stem bromelain enzyme. The research has not found enzyme gene of stem bromelain in yeast cell of P. pastoris yet. The next step is repeating the process by buying new reagent; RNase inhibitor, and buying liquid nitrogen.

  17. Cloning, expression and characterization of COI1 gene (AsCOI1 from Aquilaria sinensis (Lour. Gilg

    Directory of Open Access Journals (Sweden)

    Yongcui Liao

    2015-09-01

    Full Text Available Aquilaria sinensis, a kind of typically wounding-induced medicinal plant with a great economical value, is widely used in the production of traditional Chinese medicine, perfume and incense. Coronatine-insensitive protein 1 (COI1 acts as a receptor in jasmonate (JA signaling pathway, and regulates the expression of JA-responsive genes in plant defense. However, little is known about the COI1 gene in A. sinensis. Here, based on the transcriptome data, a full-length cDNA sequence of COI1 (termed as AsCOI1 was firstly cloned by RT–PCR and rapid-amplification of cDNA ends (RACE strategies. AsCOI1 is 2330 bp in length (GenBank accession No. KM189194, and contains a complete open frame (ORF of 1839 bp. The deduced protein was composed of 612 amino acids, with a predicted molecular weight of 68.93 kDa and an isoelectric point of 6.56, and was predicted to possess F-box and LRRs domains. Combining bioinformatics prediction with subcellular localization experiment analysis, AsCOI1 was appeared to locate in nucleus. AsCOI1 gene was highly expressed in roots and stems, the major organs of agarwood formation. Methyl jasmonate (MeJA, mechanical wounding and heat stress could significantly induce the expression level of AsCOI1 gene. AsCOI1 is an early wound-responsive gene, and it likely plays some role in agarwood formation.

  18. 454 sequencing of pooled BAC clones on chromosome 3H of barley

    Directory of Open Access Journals (Sweden)

    Yamaji Nami

    2011-05-01

    Full Text Available Abstract Background Genome sequencing of barley has been delayed due to its large genome size (ca. 5,000Mbp. Among the fast sequencing systems, 454 liquid phase pyrosequencing provides the longest reads and is the most promising method for BAC clones. Here we report the results of pooled sequencing of BAC clones selected with ESTs genetically mapped to chromosome 3H. Results We sequenced pooled barley BAC clones using a 454 parallel genome sequencer. A PCR screening system based on primer sets derived from genetically mapped ESTs on chromosome 3H was used for clone selection in a BAC library developed from cultivar "Haruna Nijo". The DNA samples of 10 or 20 BAC clones were pooled and used for shotgun library development. The homology between contig sequences generated in each pooled library and mapped EST sequences was studied. The number of contigs assigned on chromosome 3H was 372. Their lengths ranged from 1,230 bp to 58,322 bp with an average 14,891 bp. Of these contigs, 240 showed homology and colinearity with the genome sequence of rice chromosome 1. A contig annotation browser supplemented with query search by unique sequence or genetic map position was developed. The identified contigs can be annotated with barley cDNAs and reference sequences on the browser. Homology analysis of these contigs with rice genes indicated that 1,239 rice genes can be assigned to barley contigs by the simple comparison of sequence lengths in both species. Of these genes, 492 are assigned to rice chromosome 1. Conclusions We demonstrate the efficiency of sequencing gene rich regions from barley chromosome 3H, with special reference to syntenic relationships with rice chromosome 1.

  19. [Cloning of VH and VL Gene of Human anti-IL1RAP McAb and Construction of Recombinant Chimeric Receptor].

    Science.gov (United States)

    Yin, Ling-Ling; Ruan, Su-Hong; Tian, Yu; Zhao, Kai; Xu, Kai Lin

    2015-10-01

    To clone the variable region genes of human anti-IL1RAP (IL-1 receptor accessory protein) monoclonal antibodies (McAb) and to construct IL1RAP chimeric antigen receptors (CARs). The VH and VL DNA of IL1RAP single chain antibodies were amplified by RACE and overlap extension PCR from total RNA extracted from 3H6E10 and 10D8A7 hybridoma and ligated into specific IL1RAP single-chain variable fragments (scFv). CD8α transmembrane domain, CD137 intracellular domain, TCR ζ chain, human CD8α signal peptide and scFv-anti-IL1RAP were cloned into plasmid LV-lac. Recombinant lentiviruses were generated by co-transfection of recombinant plasmid LV-lac, pMD2. G, and psPAX2 helper vectors into 293FT packing cells. The VH and VL genes of 2 human anti-IL1RAP McAb were acquired. The 3H6E10 VH and VL genes consisted of 402 bp and 393 bp encoding 134 and 131 aminoacid residues, respectively; 10D8A7 VH and VL genes consisted of 423 bp and 381 bp encoding 141 and 127 amine acid residues, respectively. Recombinant expression vertors LV-3H6E10 scFv-ICD and LV-10D8A7 scFv-ICD (ICD: CD8α transmembrane domain-CD137 intracellular domain-TCR ζ chain) were constructed. The target fragments were demonstrated by sequencing analysis. Recombinant plasmids were transfected into 293FT cells and lentiviral particles were acquired. Human anti-IL1RAP recombinant receptors are constructed successfully and lay a good foundation for the construction of IL1RAP-CAR killer T cell vaccine.

  20. Cloning and characterization of Sdga gene encoding alpha-subunit of heterotrimeric guanosine 5'-triphosphate-binding protein complex in Scoparia dulcis.

    Science.gov (United States)

    Shite, Masato; Yamamura, Yoshimi; Hayashi, Toshimitsu; Kurosaki, Fumiya

    2008-11-01

    A homology-based cloning strategy yielded Sdga, a cDNA clone presumably encoding alpha-subunit of heterotrimeric guanosine 5'-triphosphate-binding protein complex, from leaf tissues of Scoparia dulcis. Phylogenetic tree analysis of G-protein alpha-subunits from various biological sources suggested that, unlike in animal cells, classification of Galpha-proteins into specific subfamilies could not be applicable to the proteins from higher plants. Restriction digests of genomic DNA of S. dulcis showed a single hybridized signal in Southern blot analysis, suggesting that Sdga is a sole gene encoding Galpha-subunit in this plant. The expression level of Sdga appeared to be maintained at almost constant level after exposure of the leaves to methyl jasmonate as analyzed by reverse-transcription polymerase chain reaction. These results suggest that Sdga plays roles in methyl jasmonate-induced responses of S. dulcis without a notable change in the transcriptional level.

  1. Molecular cloning of a cDNA and chromosomal localization of a human theta-class glutathione S-transferase gene (GSTT2) to chromosome 22

    Energy Technology Data Exchange (ETDEWEB)

    Tan, K.L.; Baker, R.T.; Board, P.G. [Australian National Univ., Canberra (Australia)] [and others

    1995-01-20

    Until recently the Theta-class glutathione S-transferases (GSTs) were largely overlooked due to their low activity with the model substrate 1-chloro-2,4-dinitrobenzene (CDNB) and their failure to bind to immobilized glutathione affinity matrices. Little is known about the number of genes in this class. Recently, Pemble et al. reported the cDNA cloning of a human Theta-class GST, termed GSTT1. In this study, we describe the molecular cloning of a cDNA encoding a second human Theta-class GST (GSTT2) from a {lambda}gt11 human liver 5{prime}-stretch cDNA library. The encoded protein contains 244 amino acids and has 78.3% sequence identity with the rat subunit 12 and only 55.0% identity with human GSTT1. GSTT2 has been mapped to chromosome 22 by somatic cell hybrid analysis. The precise position of the gene was localized to subband 22q11.2 by in situ hybridization. The absence of other regions of hybridization suggests that there are no closely related sequences (e.g., reverse transcribed pseudogenes) scattered throughout the genome and that if there are closely related genes, they must be clustered near GSTT2. Southern blot analysis of human DNA digested with BamHI shows that the size of the GSTT2 gene is relatively small, as the coding sequence falls within a 3.6-kb BamHI fragment. 35 refs., 6 figs.

  2. Sex-linked pheromone receptor genes of the European corn borer, Ostrinia nubilalis, are in tandem arrays.

    Directory of Open Access Journals (Sweden)

    Yuji Yasukochi

    Full Text Available BACKGROUND: Tuning of the olfactory system of male moths to conspecific female sex pheromones is crucial for correct species recognition; however, little is known about the genetic changes that drive speciation in this system. Moths of the genus Ostrinia are good models to elucidate this question, since significant differences in pheromone blends are observed within and among species. Odorant receptors (ORs play a critical role in recognition of female sex pheromones; eight types of OR genes expressed in male antennae were previously reported in Ostrinia moths. METHODOLOGY/PRINCIPAL FINDINGS: We screened an O. nubilalis bacterial artificial chromosome (BAC library by PCR, and constructed three contigs from isolated clones containing the reported OR genes. Fluorescence in situ hybridization (FISH analysis using these clones as probes demonstrated that the largest contig, which contained eight OR genes, was located on the Z chromosome; two others harboring two and one OR genes were found on two autosomes. Sequence determination of BAC clones revealed the Z-linked OR genes were closely related and tandemly arrayed; moreover, four of them shared 181-bp direct repeats spanning exon 7 and intron 7. CONCLUSIONS/SIGNIFICANCE: This is the first report of tandemly arrayed sex pheromone receptor genes in Lepidoptera. The localization of an OR gene cluster on the Z chromosome agrees with previous findings for a Z-linked locus responsible for O. nubilalis male behavioral response to sex pheromone. The 181-bp direct repeats might enhance gene duplications by unequal crossovers. An autosomal locus responsible for male response to sex pheromone in Heliothis virescens and H. subflexa was recently reported to contain at least four OR genes. Taken together, these findings support the hypothesis that generation of additional copies of OR genes can increase the potential for male moths to acquire altered specificity for pheromone components, and accordingly

  3. Molecular cloning, functional expression, and gene silencing of two Drosophila receptors for the Drosophila neuropeptide pyrokinin-2

    DEFF Research Database (Denmark)

    Rosenkilde, Carina; Cazzamali, Giuseppe; Williamson, Michael

    2003-01-01

    The database of the Drosophila Genome Project contains the sequences of two genes, CG8784 and CG8795, predicted to code for two structurally related G protein-coupled receptors. We have cloned these genes and expressed their coding parts in Chinese hamster ovary cells. We found that both receptors...... can be activated by low concentrations of the Drosophila neuropeptide pyrokinin-2 (CG8784, EC(50) for pyrokinin-2, 1x10(-9)M; CG8795, EC(50) for pyrokinin-2, 5 x 10(-10)M). The precise role of Drosophila pyrokinin-2 (SVPFKPRLamide) in Drosophila is unknown, but in other insects, pyrokinins have...... embryos and first instar larvae. In addition to the two Drosophila receptors, we also identified two probable pyrokinin receptors in the genomic database from the malaria mosquito Anopheles gambiae. The two Drosophila pyrokinin receptors are, to our knowledge, the first invertebrate pyrokinin receptors...

  4. Molecular cloning and expression in Saccharomyces cerevisiae and Neurospora crassa of the invertase gene from Neurospora crassa.

    Science.gov (United States)

    Carú, M; Cifuentes, V; Pincheira, G; Jiménez, A

    1989-10-01

    A plasmid (named pCN2) carrying a 7.6 kb BamHI DNA insert was isolated from a Neurospora crassa genomic library raised in the yeast vector YRp7. Saccharomyces cerevisiae suco and N. crassa inv strains transformed with pNC2 were able to grow on sucrose-based media and expressed invertase activity. Saccharomyces cerevisiae suco (pNC2) expressed a product which immunoreacted with antibody raised against purified invertase from wild type N. crassa, although S. cerevisiae suc+ did not. The cloned DNA hybridized with a 7.6 kb DNA fragment from BamHI-restricted wild type N. crassa DNA. Plasmid pNC2 transformed N. crassa Inv- to Inv+ by integration either near to the endogenous inv locus (40% events) or at other genomic sites (60% events). It appears therefore that the cloned DNA piece encodes the N. crassa invertase enzyme. A 3.8 kb XhoI DNA fragment, derived from pNC2, inserted in YRp7, in both orientation, was able to express invertase activity in yeast, suggesting that it contains an intact invertase gene which is not expressed from a vector promoter.

  5. Cloning and characterization of a y-type inactive HMW glutenin ...

    African Journals Online (AJOL)

    The high molecular weight glutenin subunits (HMW-GS) are key factors of the breadmaking quality of common wheat flour. In the present study, one unexpressed 1By gene from Triticum durum cultivar youmangbingmai was cloned and characterized. The results indicated that the silenced 1By gene in youmangbingmai ...

  6. Novel chiral tool, (R)-2-octanol dehydrogenase, from Pichia finlandica: purification, gene cloning, and application for optically active α-haloalcohols.

    Science.gov (United States)

    Yamamoto, Hiroaki; Kudoh, Masatake

    2013-09-01

    A novel enantioselective alcohol dehydrogenase, (R)-2-octanol dehydrogenase (PfODH), was discovered among methylotrophic microorganisms. The enzyme was purified from Pichia finlandica and characterized. The molecular mass of the enzyme was estimated to be 83,000 and 30,000 by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, respectively. The enzyme was an NAD(+)-dependent secondary alcohol dehydrogenase and showed a strict enantioselectivity, very broad substrate specificity, and high tolerance to SH reagents. A gene-encoding PfODH was cloned and sequenced. The gene consisted of 765 nucleotides, coding polypeptides of 254 amino acids. The gene was singly expressed and coexpressed together with a formate dehydrogenase as an NADH regenerator in an Escherichia coli. Ethyl (S)-4-chloro-3-hydroxybutanoate and (S)-2-chloro-1-phenylethanol were synthesized using a whole-cell biocatalyst in more than 99 % optical purity.

  7. Construction of a full-length infectious bacterial artificial chromosome clone of duck enteritis virus vaccine strain

    Science.gov (United States)

    2013-01-01

    Background Duck enteritis virus (DEV) is the causative agent of duck viral enteritis, which causes an acute, contagious and lethal disease of many species of waterfowl within the order Anseriformes. In recent years, two laboratories have reported on the successful construction of DEV infectious clones in viral vectors to express exogenous genes. The clones obtained were either created with deletion of viral genes and based on highly virulent strains or were constructed using a traditional overlapping fosmid DNA system. Here, we report the construction of a full-length infectious clone of DEV vaccine strain that was cloned into a bacterial artificial chromosome (BAC). Methods A mini-F vector as a BAC that allows the maintenance of large circular DNA in E. coli was introduced into the intergenic region between UL15B and UL18 of a DEV vaccine strain by homologous recombination in chicken embryoblasts (CEFs). Then, the full-length DEV clone pDEV-vac was obtained by electroporating circular viral replication intermediates containing the mini-F sequence into E. coli DH10B and identified by enzyme digestion and sequencing. The infectivity of the pDEV-vac was validated by DEV reconstitution from CEFs transfected with pDEV-vac. The reconstructed virus without mini-F vector sequence was also rescued by co-transfecting the Cre recombinase expression plasmid pCAGGS-NLS/Cre and pDEV-vac into CEF cultures. Finally, the in vitro growth properties and immunoprotection capacity in ducks of the reconstructed viruses were also determined and compared with the parental virus. Results The full genome of the DEV vaccine strain was successfully cloned into the BAC, and this BAC clone was infectious. The in vitro growth properties of these reconstructions were very similar to parental DEV, and ducks immunized with these viruses acquired protection against virulent DEV challenge. Conclusions DEV vaccine virus was cloned as an infectious bacterial artificial chromosome maintaining full

  8. Unified Approach to Universal Cloning and Phase-Covariant Cloning

    OpenAIRE

    Hu, Jia-Zhong; Yu, Zong-Wen; Wang, Xiang-Bin

    2008-01-01

    We analyze the problem of approximate quantum cloning when the quantum state is between two latitudes on the Bloch's sphere. We present an analytical formula for the optimized 1-to-2 cloning. The formula unifies the universal quantum cloning (UQCM) and the phase covariant quantum cloning.

  9. Biological activity evaluation of cloned and expressed caprine growth hormone from local Pakistani goat breed beetal

    International Nuclear Information System (INIS)

    Butt, H.I.; Shahzad, M.I.; Bashir, Q.

    2011-01-01

    Growth hormone cDNA of local goat breed-beetal was amplified by RT PCR and gene including leader sequence was cloned in pTZR57 cloning vector. The cGH-pTZR57 clone was confirmed by restriction digestion and sequence analyses before finally sub-cloning the gene in pND- a mammalian expression vector. The clones were again confirmed by restriction digestion and PCR analyses. Highly purified, supercoiled cGH-pND construct was used to transfect Vero cell lines for expression studies. The in vitro expression of cGH was checked by dot-ELISA technique. After confirming its in vitro cell line based expression, the construct was injected to 4 weeks old balb/c mice intramuscularly. Two animals were euthanized per week till four weeks to monitor the in vivo biological activity by evaluating the tibia epiphyseal width and body weight gain assays. Significant increase in tibia epiphyseal width and gain in body weight was observed from vaccinated animals. The study supports the concept that DNA based therapeutics are an efficient and cost effective method for gene delivery and in vivo transgene expressions. (author)

  10. Local circulating clones of Staphylococcus aureus in Ecuador.

    Science.gov (United States)

    Zurita, Jeannete; Barba, Pedro; Ortega-Paredes, David; Mora, Marcelo; Rivadeneira, Sebastián

    The spread of pandemic Staphylococcus aureus clones, mainly methicillin-resistant S. aureus (MRSA), must be kept under surveillance to assemble an accurate, local epidemiological analysis. In Ecuador, the prevalence of the USA300 Latin American variant clone (USA300-LV) is well known; however, there is little information about other circulating clones. The aim of this work was to identify the sequence types (ST) using a Multiple-Locus Variable number tandem repeat Analysis 14-locus genotyping approach. We analyzed 132 S. aureus strains that were recovered from 2005 to 2013 and isolated in several clinical settings in Quito, Ecuador. MRSA isolates composed 46.97% (62/132) of the study population. Within MRSA, 37 isolates were related to the USA300-LV clone (ST8-MRSA-IV, Panton-Valentine Leukocidin [PVL] +) and 10 were related to the Brazilian clone (ST239-MRSA-III, PVL-). Additionally, two isolates (ST5-MRSA-II, PVL-) were related to the New York/Japan clone. One isolate was related to the Pediatric clone (ST5-MRSA-IV, PVL-), one isolate (ST45-MRSA-II, PVL-) was related to the USA600 clone, and one (ST22-MRSA-IV, PVL-) was related to the epidemic UK-EMRSA-15 clone. Moreover, the most prevalent MSSA sequence types were ST8 (11 isolates), ST45 (8 isolates), ST30 (8 isolates), ST5 (7 isolates) and ST22 (6 isolates). Additionally, we found one isolate that was related to the livestock associated S. aureus clone ST398. We conclude that in addition to the high prevalence of clone LV-ST8-MRSA-IV, other epidemic clones are circulating in Quito, such as the Brazilian, Pediatric and New York/Japan clones. The USA600 and UK-EMRSA-15 clones, which were not previously described in Ecuador, were also found. Moreover, we found evidence of the presence of the livestock associated clone ST398 in a hospital environment. Copyright © 2016 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.

  11. Cloning and semi-quantitative expression of endochitinase ( ech42 ...

    African Journals Online (AJOL)

    Cloning and semi-quantitative expression of endochitinase (ech42) gene from Trichoderma spp. Pratibha Sharma, K Saravanan, R Ramesh, P Vignesh Kumar, Dinesh Singh, Manika Sharma, Monica S. Henry, Swati Deep ...

  12. Comprehensive Cloning of Prunus mume Dormancy Associated MADS-Box Genes and Their Response in Flower Bud Development and Dormancy

    Directory of Open Access Journals (Sweden)

    Kai Zhao

    2018-02-01

    Full Text Available Dormancy Associated MADS-box genes are SVP/MADs-box members and supposed to play crucial roles in plant dormancy of perennial species. In Prunus mume, PmDAM6 has been previously identified to induce plant dormancy. In the current study, six PmDAMs were cloned in P. mume and functionally analyzed in yeast and tobacco to detect the roles of the genes paralogous to PmDAM6. The expression patterns together with sequence similarities indicate that PmDAMs are divided into two sub-clades within SVP group. Moreover, PmDAMs are verified to take part in the development of different plant organs, specifically the flower buds, in some intricate patterns. Furthermore, the PmDAM proteins are found to have special functions by forming corresponding protein complex during the development of flower bud and induction of dormancy. In particular, when PmDAM1 dominating in flower bud in the warm months, the protein complexes are consisted of PmDAM1 itself or with PmDAM2. With the decrease temperatures in the following months, PmDAM6 was found to be highly expressed and gradually changed the complex structure to PmDAM6-protein complex due to strong binding tendencies with PmDAM1 and PmDAM3. Finally, the homodimers of PmDAM6 prevailed to induce the dormancy. The results obtained in the current study highlight the functions of PmDAMs in the tissue development and dormancy, which provide available suggestions for further explorations of protein-complex functions in association with bud growth and dormancy.

  13. Map-Based Cloning of the Gene Associated With the Soybean Maturity Locus E3

    Science.gov (United States)

    Watanabe, Satoshi; Hideshima, Rumiko; Xia, Zhengjun; Tsubokura, Yasutaka; Sato, Shusei; Nakamoto, Yumi; Yamanaka, Naoki; Takahashi, Ryoji; Ishimoto, Masao; Anai, Toyoaki; Tabata, Satoshi; Harada, Kyuya

    2009-01-01

    Photosensitivity plays an essential role in the response of plants to their changing environments throughout their life cycle. In soybean [Glycine max (L.) Merrill], several associations between photosensitivity and maturity loci are known, but only limited information at the molecular level is available. The FT3 locus is one of the quantitative trait loci (QTL) for flowering time that corresponds to the maturity locus E3. To identify the gene responsible for this QTL, a map-based cloning strategy was undertaken. One phytochrome A gene (GmPhyA3) was considered a strong candidate for the FT3 locus. Allelism tests and gene sequence comparisons showed that alleles of Misuzudaizu (FT3/FT3; JP28856) and Harosoy (E3/E3; PI548573) were identical. The GmPhyA3 alleles of Moshidou Gong 503 (ft3/ft3; JP27603) and L62-667 (e3/e3; PI547716) showed weak or complete loss of function, respectively. High red/far-red (R/FR) long-day conditions enhanced the effects of the E3/FT3 alleles in various genetic backgrounds. Moreover, a mutant line harboring the nonfunctional GmPhyA3 flowered earlier than the original Bay (E3/E3; PI553043) under similar conditions. These results suggest that the variation in phytochrome A may contribute to the complex systems of soybean flowering response and geographic adaptation. PMID:19474204

  14. Cloning and analysis of the genes encoding the type IIS restriction-modification system HphI from Haemophilus parahaemolyticus.

    Science.gov (United States)

    Lubys, A; Lubienè, J; Kulakauskas, S; Stankevicius, K; Timinskas, A; Janulaitis, A

    1996-07-15

    The genomic region encoding the type IIS restriction-modification (R-M) system HphI (enzymes recognizing the asymmetric sequence 5'-GGTGA-3'/5'-TCACC-3') from Haemophilus parahaemolyticus were cloned into Escherichia coli and sequenced. Sequence analysis of the R-M HphI system revealed three adjacent genes aligned in the same orientation: a cytosine 5 methyltransferase (gene hphIMC), an adenine N6 methyltransferase (hphIMA) and the HphI restriction endonuclease (gene hphIR). Either methyltransferase is capable of protecting plasmid DNA in vivo against the action of the cognate restriction endonuclease. hphIMA methylation renders plasmid DNA resistant to R.Hindill at overlapping sites, suggesting that the adenine methyltransferase modifies the 3'-terminal A residue on the GGTGA strand. Strong homology was found between the N-terminal part of the m6A methyltransferasease and an unidentified reading frame interrupted by an incomplete gaIE gene of Neisseria meningitidis. The HphI R-M genes are flanked by a copy of a 56 bp direct nucleotide repeat on each side. Similar sequences have also been identified in the non-coding regions of H.influenzae Rd DNA. Possible involvement of the repeat sequences in the mobility of the HphI R-M system is discussed.

  15. Cloning of low-temperature induced gene from Morus mongolica CK

    African Journals Online (AJOL)

    SERVER

    2008-03-04

    Mar 4, 2008 ... extracted form the stem and was reverse-transcribed into cDNA. Mulberry .... positive clones to obtain engineered Agrobacterium LBA4404/. pIG121/ ..... Comparative experiment for a new cold and drought tolerance mulberry ...

  16. Molecular cloning and characterization of the plasma membrane ...

    African Journals Online (AJOL)

    O. violaceus) was cloned. The full-length cDNA of O. violaceus gene (OvPIP) was 1314 bp and contained 1188 open reading frame encoding a protein of 395 amino acids. Homology analysis revealed that OvPIP strongly resembled other PIP ...

  17. Identification of a mouse synaptic glycoprotein gene in cultured neurons.

    Science.gov (United States)

    Yu, Albert Cheung-Hoi; Sun, Chun Xiao; Li, Qiang; Liu, Hua Dong; Wang, Chen Ran; Zhao, Guo Ping; Jin, Meilei; Lau, Lok Ting; Fung, Yin-Wan Wendy; Liu, Shuang

    2005-10-01

    Neuronal differentiation and aging are known to involve many genes, which may also be differentially expressed during these developmental processes. From primary cultured cerebral cortical neurons, we have previously identified various differentially expressed gene transcripts from cultured cortical neurons using the technique of arbitrarily primed PCR (RAP-PCR). Among these transcripts, clone 0-2 was found to have high homology to rat and human synaptic glycoprotein. By in silico analysis using an EST database and the FACTURA software, the full-length sequence of 0-2 was assembled and the clone was named as mouse synaptic glycoprotein homolog 2 (mSC2). DNA sequencing revealed transcript size of mSC2 being smaller than the human and rat homologs. RT-PCR indicated that mSC2 was expressed differentially at various culture days. The mSC2 gene was located in various tissues with higher expression in brain, lung, and liver. Functions of mSC2 in neurons and other tissues remain elusive and will require more investigation.

  18. Gene cloning, expression, and characterization of a new carboxylesterase from Serratia sp. SES-01: comparison with Escherichia coli BioHe enzyme.

    Science.gov (United States)

    Kwon, Min-A; Kim, Hyun Suk; Oh, Joon Young; Song, Bong Keun; Song, Jae Kwang

    2009-02-01

    The carboxylesterase-encoding gene (bioHs) of a newly isolated strain, Serratia sp. SES-01, was cloned from the genomic DNA library by detecting formation of transparent halo around the colony on LB-tributyrin agar plates. The amino acid sequence of BioHs was highly similar to the members of the BioH enzyme family involved in the biotin biosynthetic pathway; it showed the highest similarity (91%) with that of Serratia proteamaculans. To compare BioHs with other BioH enzymes, the relatively well-known bioHe gene of E. coli was cloned with PCR. After we achieved high-level expression of soluble BioHs and BioHe through the exploration of different culture conditions, the purified BioHs and BioHe enzymes were characterized in terms of specificity, activity, and stability. BioHe was generally more robust to a change in temperature and pH and an addition of organic solvents than BioHs. The two enzymes exhibited a strong preference for carboxylesterase rather than for thioesterase and were optimal at relatively low temperatures (20-40 degrees ) and alkaline pHs (7.5-9.0). The results in this study strongly suggested that both the BioHs and BioHe enzymes would be potential candidates for use as a carboxylesterase in many industrial applications.

  19. Metal tolerance in emerging clinically relevant multidrug-resistant Salmonella enterica serotype 4,[5],12:i:- clones circulating in Europe.

    Science.gov (United States)

    Mourão, Joana; Novais, Carla; Machado, Jorge; Peixe, Luísa; Antunes, Patrícia

    2015-06-01

    The occurrence of acquired metal tolerance genes in emerging MDR Salmonella enterica serotype 4,[5],12:i:- clones was assessed and their associated platforms and tolerance phenotype were characterised. Salmonella 4,[5],12:i:- from different sources belonging to European, Spanish and Southern European clones were studied. Screening for copper (pcoA-pcoD/tcrB), silver/copper (silA-silE), mercury (merA), arsenic (arsB) and tellurite (terF) tolerance genes was performed by PCR/sequencing. CuSO(4)/AgNO(3) MICs were determined in aerobic/anaerobic atmospheres by agar dilution. Conjugation assays, genomic location and plasmid analysis were performed by standard procedures. Most isolates from European (98%) and Spanish (74%) clones carried silA-silE, contrasting with the Southern European clone (26%). merA/62% (European and Spanish clones) and pcoA-pcoD/50% (European clone) were also detected. merA±pco+sil were chromosomally located in the European clone, whereas in Spanish and Southern European clones sil±merA were within plasmids, both with antibiotic resistance genes. The pcoA-pcoD/silA-silE(+) isolates showed higher MICCuSO(4) in anaerobiosis than those without these genes (MIC(50)=24-28 vs. 2 mM). Different MICAgNO(3) of silA-silE(+) (MIC(50)=0.25 mM) and silA-silE(-)(MIC(50)=0.16 mM) isolates were observed in both atmospheres, with an MIC increment after prior exposure to silver (>3 vs. 0.08-0.125 mM) in aerobiosis. A high frequency of copper and silver tolerance, particularly among the two major Salmonella 4,[5],12:i:- MDR clones (European/Spanish) circulating in Europe and causing human infections, might facilitate adaptation/expansion of these strains in metal-contaminated environments, particularly copper in anaerobiosis. Furthermore, metal toxic concentrations in food-animal environments can contribute to persistence of genetic platforms carrying metal/antibiotic resistance genes in this foodborne zoonotic pathogen. Copyright © 2015 Elsevier B.V. and the

  20. Molecular cloning of a peptidylglycine alpha-hydroxylating monooxygenase from sea anemones

    DEFF Research Database (Denmark)

    Hauser, F; Williamson, M; Grimmelikhuijzen, C J

    1997-01-01

    conserved regions of PHM, we have now cloned a PHM from the sea anemone Calliactis parasitica showing 42% amino acid sequence identity with rat PHM. Among the conserved (identical) amino acid residues are five histidine and one methionine residue, which bind two Cu2+ atoms that are essential for PHM...... activity. No cDNA coding for PAL could be identified, suggesting that sea anemone PAL is coded for by a gene that is different from the sea anemone PHM gene, a situation similar to the one found in insects. This is the first report on the molecular cloning of a cnidarian PHM. Udgivelsesdato: 1997-Dec-18...

  1. Molecular cloning and functional analysis of the gene encoding ...

    African Journals Online (AJOL)

    Here we report for the first time the cloning of a full-length cDNA encoding GGPPS (Jc-GGPPS) from Jatropha curcas L. The full-length cDNA was 1414 base pair (bp), with an 1110-bp open reading frame (ORF) encoding a 370- amino-acids polypeptide. Bioinformatic analysis revealed that Jc-GGPPS is a member of the ...

  2. Cloning and expression analysis of innate immune genes from red sea bream to assess different susceptibility to megalocytivirus infection.

    Science.gov (United States)

    Jin, J W; Kim, Y C; Hong, S; Kim, M S; Jeong, J B; Jeong, H D

    2017-04-01

    As suggested by the Office International des Epizooties (OIE), fishes belonging to the genus Oplegnathus are more sensitive to megalocytivirus infection than other fish species including red sea bream (Pagrus major). To assess the roles of the innate immune response to these different susceptibilities, we cloned the genes encoding inflammatory factors including IL-8 and COX-2, and the antiviral factor like Mx from red sea bream for the first time and performed phylogenetic and structural analysis. Analysed expression levels of IL-1β, IL-8 and COX-2 and the antiviral factor like Mx genes performed with in vivo challenge experiment showed no difference in inflammatory gene expression or respiratory burst activity between red sea bream and rock bream (Oplegnathus fasciatus). However, the Mx gene expression levels in red sea bream were markedly higher than those in rock bream, suggesting the importance of type I interferon (IFN)-induced proteins, particularly Mx, during megalocytivirus infection, rather than inflammation-related genes. The in vitro challenge experiments using embryonic primary cultures derived from both fish species showed no difference in cytopathic effects (CPE), viral replication profiles, and inflammatory and Mx gene expression pattern between the two fish species. © 2016 John Wiley & Sons Ltd.

  3. Isolation and Cloning of cDNA Fragment of Gene Encoding for Multidrug Resistance Associated Protein from M. affine.

    Directory of Open Access Journals (Sweden)

    Utut Widyastuti Suharsono

    2008-11-01

    Full Text Available Isolation and Cloning of cDNA Fragment of Gene Encoding for Multidrug Resistance Associated Protein from M. affine. M. affine can grow well in acid soil with high level of soluble aluminum. One of the important proteins in the detoxifying xenobiotic stress including acid and Al stresses is a multidrug resistance associated protein (MRP encoded by mrp gene. The objective of this research is to isolate and clone the cDNA fragment of MaMrp encoding MRP from M. affine. By reverse transcription, total cDNA had been synthesized from the total RNA as template. The fragment of cDNA MaMrp had been successfully isolated by PCR by using total cDNA as template and mrp primer designed from A. thaliana, yeast, and human. This fragment was successfully inserted into pGEM-T Easy and the recombinant plasmid was successfully introduced into E. coli DH5α. Nucleotide sequence analysis showed that the lenght of MaMrp fragment is 633 bp encoding 208 amino acids. Local alignment analysis based on nucleotide of mRNA showed that MaMrp fragment is 69% identical to AtMrp1 and 63% to AtMrp from A. thaliana. Based on deduced amino acid sequence, MaMRP is 84% identical to part of AtMRP13, 77% to AtMRP12, and 73% to AtMRP1 from A. thaliana respectively. Alignment analysis with AtMRP1 showed that MaMRP fragment is located in TM1 and NBF1 domains and has a specific amino acid sequence QCKAQLQNMEEE.

  4. Homologous gene targeting of a carotenoids biosynthetic gene in Rhodosporidium toruloides by Agrobacterium-mediated transformation.

    Science.gov (United States)

    Sun, Wenyi; Yang, Xiaobing; Wang, Xueying; Lin, Xinping; Wang, Yanan; Zhang, Sufang; Luan, Yushi; Zhao, Zongbao K

    2017-07-01

    To target a carotenoid biosynthetic gene in the oleaginous yeast Rhodosporidium toruloides by using the Agrobacterium-mediated transformation (AMT) method. The RHTO_04602 locus of R. toruloides NP11, previously assigned to code the carotenoid biosynthetic gene CRTI, was amplified from genomic DNA and cloned into the binary plasmid pZPK-mcs, resulting in pZPK-CRT. A HYG-expression cassette was inserted into the CRTI sequence of pZPK-CRT by utilizing the restriction-free clone strategy. The resulted plasmid was used to transform R. toruloides cells according to the AMT method, leading to a few white transformants. Sequencing analysis of those transformants confirmed homologous recombination and insertional inactivation of CRTI. When the white variants were transformed with a CRTI-expression cassette, cells became red and produced carotenoids as did the wild-type strain NP11. Successful homologous targeting of the CrtI locus confirmed the function of RHTO_04602 in carotenoids biosynthesis in R. toruloides. It provided valuable information for metabolic engineering of this non-model yeast species.

  5. Cloning and functional analysis in transgenic tobacco of a tapetum ...

    African Journals Online (AJOL)

    The 5'-flanking region of 1174 bp upstream of the translation start point (TSP) of a reported Arabidopsis anther-specific gene, Anther7 gene (ATA7), which putatively encodes a protein related to lipid transfer protein, was cloned and functionally analyzed in transgenic tobacco after been fused with β- glucuronidase (GUS) ...

  6. Accurate DNA assembly and genome engineering with optimized uracil excision cloning

    DEFF Research Database (Denmark)

    Cavaleiro, Mafalda; Kim, Se Hyeuk; Seppala, Susanna

    2015-01-01

    Simple and reliable DNA editing by uracil excision (a.k.a. USER cloning) has been described by several research groups, but the optimal design of cohesive DNA ends for multigene assembly remains elusive. Here, we use two model constructs based on expression of gfp and a four-gene pathway that pro......Simple and reliable DNA editing by uracil excision (a.k.a. USER cloning) has been described by several research groups, but the optimal design of cohesive DNA ends for multigene assembly remains elusive. Here, we use two model constructs based on expression of gfp and a four-gene pathway...... that produces β-carotene to optimize assembly junctions and the uracil excision protocol. By combining uracil excision cloning with a genomic integration technology, we demonstrate that up to six DNA fragments can be assembled in a one-tube reaction for direct genome integration with high accuracy, greatly...... facilitating the advanced engineering of robust cell factories....

  7. Functional cDNA expression cloning: Pushing it to the limit

    Science.gov (United States)

    OKAYAMA, Hiroto

    2012-01-01

    The 1970s and the following decade are the era of the birth and early development of recombinant DNA technologies, which have entirely revolutionized the modern life science by providing tools that enable us to know the structures of genes and genomes and to dissect their components and understand their functions at the molecular and submolecular levels. One major objective of the life sciences is to achieve molecular and chemical understandings of the functions of genes and their encoded proteins, which are responsible for the manifestation of all biological phenomena in organisms. In the early 1980s, I developed, together with Paul Berg, a new technique that enables the cloning of full-length complementary DNAs (cDNAs) on the basis of their functional expression in a given cell of interest. I review the development, application and future implications in the life sciences of this gene-cloning technique. PMID:22450538

  8. Use of genomics to identify bacterial undecaprenyl pyrophosphate synthetase: cloning, expression, and characterization of the essential uppS gene.

    Science.gov (United States)

    Apfel, C M; Takács, B; Fountoulakis, M; Stieger, M; Keck, W

    1999-01-01

    The prenyltransferase undecaprenyl pyrophosphate synthetase (di-trans,poly-cis-decaprenylcistransferase; EC 2.5.1.31) was purified from the soluble fraction of Escherichia coli by TSK-DEAE, ceramic hydroxyapatite, TSK-ether, Superdex 200, and heparin-Actigel chromatography. The protein was labeled with the photolabile analogue of the farnesyl pyrophosphate analogue (E, E)-[1-3H]-(2-diazo-3-trifluoropropionyloxy)geranyl diphosphate and was detected on a sodium dodecyl sulfate-polyacrylamide gel as a protein with an apparent molecular mass of 29 kDa. This protein band was cut out from the gel, trypsin digested, and subjected to matrix-assisted laser desorption ionization mass spectrometric analysis. Comparison of the experimental data with computer-simulated trypsin digest data for all E. coli proteins yielded a single match with a protein of unassigned function (SWISS-PROT Q47675; YAES_ECOLI). Sequences with strong similarity indicative of homology to this protein were identified in 25 bacterial species, in Saccharomyces cerevisiae, and in Caenorhabditis elegans. The homologous genes (uppS) were cloned from E. coli, Haemophilus influenzae, and Streptococcus pneumoniae, expressed in E. coli as amino-terminal His-tagged fusion proteins, and purified over a Ni2+ affinity column. An untagged version of the E. coli uppS gene was also cloned and expressed, and the protein purified in two chromatographic steps. We were able to detect Upp synthetase activity for all purified enzymes. Further, biochemical characterization revealed no differences between the recombinant untagged E. coli Upp synthetase and the three His-tagged fusion proteins. All enzymes were absolutely Triton X-100 and MgCl2 dependent. With the use of a regulatable gene disruption system, we demonstrated that uppS is essential for growth in S. pneumoniae R6.

  9. Cloning and characterization of a potato StAN11 gene involved in anthocyanin biosynthesis regulation.

    Science.gov (United States)

    Li, Wang; Wang, Bing; Wang, Man; Chen, Min; Yin, Jing-Ming; Kaleri, Ghullam Murtaza; Zhang, Rui-Jie; Zuo, Tie-Niu; You, Xiong; Yang, Qing

    2014-04-01

    Anthocyanins are a class of products of plant secondary metabolism and are responsible for tubers color in potato. The biosynthesis of anthocyanins is a complex biological process, in which multiple genes are involved including structural genes and regulatory genes. In this study, StAN11, a WD40-repeat gene, was cloned from potato cultivar Chieftain (Solanum tuberosum L.). StAN11 (HQ599506) contained no intron and its open reading frame (ORF) was 1,029 bp long, encoding a putative protein of 342 amino acids. In order to verify its role in anthocyanin biosynthesis, StAN11 was inserted behind the CaMV-35S promoter of pCMBIA1304 and the recombination vector was introduced into the potato cultivar Désirée plants by Agrobacterium-mediated transformation. The color of transgenic tuber skin was significantly deepened, compared to the wild-type control, which was highly consistent with the accumulation of anthocyanin and expression of StAN11 in transgenic lines tuber skin. Further analysis on the expression of Flavonone-3-hydroxylase (F3H), Dihydroflavonol reductase (DFR), Anthocyanidin synthase (ANS), and Flavonoid 3-O-glucosyl transferase (3GT) in transgenic plants revealed that only DFR was upregulated. This result suggested that StAN11 regulated anthocyanin biosynthesis in potato by controlling DFR expression and accumulation of anthocyanin could be increased through overexpression of StAN11 in the tubers with the genetic background of anthocyanin biosynthesis. © 2013 Institute of Botany, Chinese Academy of Sciences.

  10. Cloning and adoption: a reply to Levy and Lotz.

    Science.gov (United States)

    Strong, Carson

    2008-02-01

    In previous articles I discussed the ethics of human reproductive cloning, focusing on a possible future scenario in which reproductive cloning can be accomplished without an elevated risk of anomalies to the children who are created. I argued that in such a scenario it would be ethically permissible for infertile couples to use cloning as a way to have genetically related children and that such use should not be prohibited. In 'Reproductive Cloning and a (Kind of) Genetic Fallacy', Neil Levy and Mianna Lotz raise objections to my conclusions. They disagree with the view, for which I argued, that some couples can have defensible reasons for desiring genetically related children. They also offer several new arguments against reproductive cloning, including an argument that it would diminish the number of adoptions, thereby adversely affecting the welfare of children who need to be adopted. In this paper I point out that Levy and Lotz's criticisms misconstrue my arguments and that there are serious problems with their arguments for prohibiting infertile couples from using cloning, including their argument from adoption.

  11. Developmental competence and epigenetic profile of porcine embryos produced by two different cloning methods

    DEFF Research Database (Denmark)

    Liu, Ying; Lucas-Hahn, Andrea; Petersen, Bjoern

    2017-01-01

    on conventionally produced embryos. The goal of this study was to unravel putative differences between two cloning methods, with regard to developmental competence, expression profile of a panel of developmentally important genes and epigenetic profile of porcine cloned embryos produced by either CNT or HMC, either...

  12. An accurate clone-based haplotyping method by overlapping pool sequencing.

    Science.gov (United States)

    Li, Cheng; Cao, Changchang; Tu, Jing; Sun, Xiao

    2016-07-08

    Chromosome-long haplotyping of human genomes is important to identify genetic variants with differing gene expression, in human evolution studies, clinical diagnosis, and other biological and medical fields. Although several methods have realized haplotyping based on sequencing technologies or population statistics, accuracy and cost are factors that prohibit their wide use. Borrowing ideas from group testing theories, we proposed a clone-based haplotyping method by overlapping pool sequencing. The clones from a single individual were pooled combinatorially and then sequenced. According to the distinct pooling pattern for each clone in the overlapping pool sequencing, alleles for the recovered variants could be assigned to their original clones precisely. Subsequently, the clone sequences could be reconstructed by linking these alleles accordingly and assembling them into haplotypes with high accuracy. To verify the utility of our method, we constructed 130 110 clones in silico for the individual NA12878 and simulated the pooling and sequencing process. Ultimately, 99.9% of variants on chromosome 1 that were covered by clones from both parental chromosomes were recovered correctly, and 112 haplotype contigs were assembled with an N50 length of 3.4 Mb and no switch errors. A comparison with current clone-based haplotyping methods indicated our method was more accurate. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Cloning of a yeast alpha-amylase promoter and its regulated heterologous expression

    Science.gov (United States)

    Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR; Hooker, Brian S [Kennewick, WA; Anderson, Daniel B [Pasco, WA

    2003-04-01

    The present invention provides the promoter clone discovery of an alpha-amylase gene of a starch utilizing yeast strain Schwanniomyces castellii. The isolated alpha-amylase promoter is an inducible promoter, which can regulate strong gene expression in starch culture medium.

  14. Evaluation of Reference Genes to Analyze Gene Expression in Silverside Odontesthes humensis Under Different Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Tony L. R. Silveira

    2018-03-01

    Full Text Available Some mammalian reference genes, which are widely used to normalize the qRT-PCR, could not be used for this purpose due to its high expression variation. The normalization with false reference genes leads to misinterpretation of results. The silversides (Odontesthes spp. has been used as models for evolutionary, osmoregulatory and environmental pollution studies but, up to now, there are no studies about reference genes in any Odontesthes species. Furthermore, many studies on silversides have used reference genes without previous validations. Thus, present study aimed to was to clone and sequence potential reference genes, thereby identifying the best ones in Odontesthes humensis considering different tissues, ages and conditions. For this purpose, animals belonging to three ages (adults, juveniles, and immature were exposed to control, Roundup®, and seawater treatments for 24 h. Blood samples were subjected to flow-cytometry and other collected tissues to RNA extraction; cDNA synthesis; molecular cloning; DNA sequencing; and qRT-PCR. The candidate genes tested included 18s, actb, ef1a, eif3g, gapdh, h3a, atp1a, and tuba. Gene expression results were analyzed using five algorithms that ranked the candidate genes. The flow-cytometry data showed that the environmental challenges could trigger a systemic response in the treated fish. Even during this systemic physiological disorder, the consensus analysis of gene expression revealed h3a to be the most stable gene expression when only the treatments were considered. On the other hand, tuba was the least stable gene in the control and gapdh was the least stable in both Roundup® and seawater groups. In conclusion, the consensus analyses of different tissues, ages, and treatments groups revealed that h3a is the most stable gene whereas gapdh and tuba are the least stable genes, even being considered two constitutive genes.

  15. Top 5 exotic clones for potato breeding

    Science.gov (United States)

    Wild and cultivated relatives of potato feature prominently in breeding programs. In this short article, I describe five exotic clones that have promising traits for the future of the US potato industry. They include M6, an inbred line of S. chacoense that provides a source of genes for self-compati...

  16. Generation of a gene cassette for genetically engineered Salmonella Enteritidis in the specific region of the sipC gene

    Directory of Open Access Journals (Sweden)

    M Ghasemi

    2017-05-01

    Full Text Available Introduction: Salmonellosis is an infection caused by eating contaminated food with Salmonella, and it can occur in humans and other animals. Salmonella has acquired the ability to create the infection due to the presence of several virulence genes. One of the virulence genes of salmonella is sipC gene that coding the SipC protein. The aim of this study was creating the gene cassette to genetically engineered Salmonella enteritidis in the specific region of the sipC gene. Methods: In this study, after DNA extraction from Salmonella, the upstream and downstream regions of the sipC gene was amplified based on PCR method. The PCR products were cloned with T/A cloning method and they were inserted into the pGEM vector. In order to generate the final gene cassette, each of the upstream and downstream regions of the sipC gene was subcloned into the pET32 vector, and cloning accuracy was assessed by PCR and enzyme digestion methods. Results: Amplification of the 320 bp upstream and 206 bp downstream of sipC gene was successful by PCR method. T/A cloning of these fragments were caused the formation of two pGEM-up and pGEM-down recombinant vectors. Results that were confirmed the sub-cloning accuracy indicate the formation of the final pET32-up-down gene cassette. Conclusion: The generated gene cassette in this study was considered as a multi-purpose cassette that is able to specific gene manipulation of Salmonella sipC gene by homologous recombination matched. This gene cassette has the necessary potential for sipC gene deletion or insertion of any useful gene instead of sipC gene.

  17. Cloning, sequencing and expression of cDNA encoding growth ...

    Indian Academy of Sciences (India)

    Unknown

    of medicine, animal husbandry, fish farming and animal ..... northern pike (Esox lucius) growth hormone; Mol. Mar. Biol. ... prolactin 1-luciferase fusion gene in African catfish and ... 1988 Cloning and sequencing of cDNA that encodes goat.

  18. Sources of Blood Meals of Sylvatic Triatoma guasayana near Zurima, Bolivia, Assayed with qPCR and 12S Cloning

    Science.gov (United States)

    Lucero, David E.; Ribera, Wilma; Pizarro, Juan Carlos; Plaza, Carlos; Gordon, Levi W.; Peña, Reynaldo; Morrissey, Leslie A.; Rizzo, Donna M.; Stevens, Lori

    2014-01-01

    Background In this study we compared the utility of two molecular biology techniques, cloning of the mitochondrial 12S ribosomal RNA gene and hydrolysis probe-based qPCR, to identify blood meal sources of sylvatic Chagas disease insect vectors collected with live-bait mouse traps (also known as Noireau traps). Fourteen T. guasayana were collected from six georeferenced trap locations in the Andean highlands of the department of Chuquisaca, Bolivia. Methodology/Principal Findings We detected four blood meals sources with the cloning assay: seven samples were positive for human (Homo sapiens), five for chicken (Gallus gallus) and unicolored blackbird (Agelasticus cyanopus), and one for opossum (Monodelphis domestica). Using the qPCR assay we detected chicken (13 vectors), and human (14 vectors) blood meals as well as an additional blood meal source, Canis sp. (4 vectors). Conclusions/Significance We show that cloning of 12S PCR products, which avoids bias associated with developing primers based on a priori knowledge, detected blood meal sources not previously considered and that species-specific qPCR is more sensitive. All samples identified as positive for a specific blood meal source by the cloning assay were also positive by qPCR. However, not all samples positive by qPCR were positive by cloning. We show the power of combining the cloning assay with the highly sensitive hydrolysis probe-based qPCR assay provides a more complete picture of blood meal sources for insect disease vectors. PMID:25474154

  19. Sources of blood meals of sylvatic Triatoma guasayana near Zurima, Bolivia, assayed with qPCR and 12S cloning.

    Directory of Open Access Journals (Sweden)

    David E Lucero

    2014-12-01

    Full Text Available In this study we compared the utility of two molecular biology techniques, cloning of the mitochondrial 12S ribosomal RNA gene and hydrolysis probe-based qPCR, to identify blood meal sources of sylvatic Chagas disease insect vectors collected with live-bait mouse traps (also known as Noireau traps. Fourteen T. guasayana were collected from six georeferenced trap locations in the Andean highlands of the department of Chuquisaca, Bolivia.We detected four blood meals sources with the cloning assay: seven samples were positive for human (Homo sapiens, five for chicken (Gallus gallus and unicolored blackbird (Agelasticus cyanopus, and one for opossum (Monodelphis domestica. Using the qPCR assay we detected chicken (13 vectors, and human (14 vectors blood meals as well as an additional blood meal source, Canis sp. (4 vectors.We show that cloning of 12S PCR products, which avoids bias associated with developing primers based on a priori knowledge, detected blood meal sources not previously considered and that species-specific qPCR is more sensitive. All samples identified as positive for a specific blood meal source by the cloning assay were also positive by qPCR. However, not all samples positive by qPCR were positive by cloning. We show the power of combining the cloning assay with the highly sensitive hydrolysis probe-based qPCR assay provides a more complete picture of blood meal sources for insect disease vectors.

  20. A Seminar on Human Cloning: Cloning in Reproductive Medicine

    OpenAIRE

    Illmensee, Karl

    2001-01-01

    This review article summarizes the historical development of mammalian cloning, presents current advances and presumed risk factors in the field of reproductive cloning, discusses possible clinical applications of therapeutic and diagnostic cloning and outlines prospective commercial trends in pharmacytical cloning. Predictable progress in biotechnology and stem cell engineering should prove to be advantageous for patients' health and for novel benefits in reproductive and regenerative medicine.