WorldWideScience

Sample records for previously characterized arabidopsis

  1. Induction and characterization of Arabidopsis mutants by Ion beam

    International Nuclear Information System (INIS)

    Yoon, Y. H.; Choi, J. D.; Park, J. Y.; Lee, J. R.; Sohn, H. S.

    2008-03-01

    This study was conducted to search the proper conditions and times for irradiating proton beam to seeds generally used for induction of mutant. Arabidopsis as model plants has good characters that is a short generation time, producing a lot of seeds, sequenced genome, developed maker. This points were the best materials for plant breeding for this study. The data of inducing mutants of Arabidopsis is used to be applicate to crops have more longer generation that is the final goals of this study. The goals of this project were to inducing and characterizing arabidopsis mutants by the proton ion beam and γ-ray. As well as, the purpose of this study was securing more than 10 lines of arabidopsis mutants in this project and also to know the changed DNA structure of the mutants using the basic data for applying to the more study

  2. A previously undescribed jasmonate compound in flowering Arabidopsis thaliana - The identification of cis-(+)-OPDA-Ile

    Czech Academy of Sciences Publication Activity Database

    Floková, K.; Feussner, K.; Herrfurth, C.; Miersch, O.; Mik, V.; Tarkowská, Danuše; Strnad, Miroslav; Feussner, I.; Wasternack, Claus; Novák, Ondřej

    2016-01-01

    Roč. 122, FEB (2016), s. 230-237 ISSN 0031-9422 R&D Projects: GA MŠk(CZ) LO1204; GA MŠk LK21306 Institutional support: RVO:61389030 Keywords : Arabidopsis thaliana (Brassicaceae) * Jasmonates * Cis-(+)-12-oxo-phytodienoyl-L-isoleucine Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.205, year: 2016

  3. Characterization of Sugar Insensitive (sis) Mutants of Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, Susan I.

    2009-06-08

    Despite the fact that soluble sugar levels have been postulated to play an important role in the control of a wide variety of plant metabolic and developmental pathways, the mechanisms by which plants respond to soluble sugar levels remain poorly understood. Plant responses to soluble sugar levels are also important in bioenergy production, as plant sugar responses are believed to help regulate both carbon fixation and carbon partitioning. For example, accumulation of soluble sugars, such as sucrose and glucose, in source tissues leads to feedback inhibition of photosynthesis, thereby decreasing rates of carbon fixation. Soluble sugar levels can also affect sink strengths, affecting the rates of accumulation of carbon-based compounds into both particular molecular forms (e.g. carbohydrates versus lipids versus proteins) and particular plant organs and tissues. Mutants of Arabidopsis that are defective in the ability to respond to soluble sugar levels were isolated and used as tools to identify some of the factors involved in plant sugar response. These sugar insensitive (sis) mutants were isolated by screening mutagenized seeds for those that were able to germinate and develop relatively normal shoot systems on media containing 0.3 M glucose or 0.3 M sucrose. At these sugar concentrations, wild-type Arabidopsis germinate and produce substantial root systems, but show little to no shoot development. Twenty-eight sis mutants were isolated during the course of four independent mutant screens. Based on a preliminary characterization of all of these mutants, sis3 and sis6 were chosen for further study. Both of these mutations appear to lie in previously uncharacterized loci. Unlike many other sugar-response mutants, sis3 mutants exhibit a wild-type or near wild-type response in all phytohormone-response assays conducted to date. The sis6-1 mutation is unusual in that it appears to be due to overexpression of a gene, rather than representing a loss of function mutation

  4. Arabidopsis

    Science.gov (United States)

    Khare, Deepa; Choi, Hyunju; Huh, Sung Un; Bassin, Barbara; Kim, Jeongsik; Martinoia, Enrico; Sohn, Kee Hoon; Paek, Kyung-Hee; Lee, Youngsook

    2017-07-11

    Plant pathogens cause huge yield losses. Plant defense often depends on toxic secondary metabolites that inhibit pathogen growth. Because most secondary metabolites are also toxic to the plant, specific transporters are needed to deliver them to the pathogens. To identify the transporters that function in plant defense, we screened Arabidopsis thaliana mutants of full-size ABCG transporters for hypersensitivity to sclareol, an antifungal compound. We found that atabcg34 mutants were hypersensitive to sclareol and to the necrotrophic fungi Alternaria brassicicola and Botrytis cinerea AtABCG34 expression was induced by A brassicicola inoculation as well as by methyl-jasmonate, a defense-related phytohormone, and AtABCG34 was polarly localized at the external face of the plasma membrane of epidermal cells of leaves and roots. atabcg34 mutants secreted less camalexin, a major phytoalexin in A thaliana , whereas plants overexpressing AtABCG34 secreted more camalexin to the leaf surface and were more resistant to the pathogen. When treated with exogenous camalexin, atabcg34 mutants exhibited hypersensitivity, whereas BY2 cells expressing AtABCG34 exhibited improved resistance. Analyses of natural Arabidopsis accessions revealed that AtABCG34 contributes to the disease resistance in naturally occurring genetic variants, albeit to a small extent. Together, our data suggest that AtABCG34 mediates camalexin secretion to the leaf surface and thereby prevents A brassicicola infection.

  5. Characterization Of Laccase T-DNA Mutants In Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Andersen, Jeppe R; Asp, Torben; Mansfield, Shawn

    Laccases (P-diphenol:O2 oxidoreductase; EC 1.10.3.2), also termed laccase-like multicopper oxidases, are blue copper-containing oxidases which comprise multigene families in plants. In the Arabidopsis thaliana genome, 17 laccase genes (LAC1 to LAC17) have been annotated. To identify laccases...... involved in cell wall biosynthesis in Arabidopsis primary stems we have developed homozygous T-DNA mutants for 14 individual laccases. Six laccases are highly expressed in the wild type primary stem, four of which (LAC2, LAC4, LAC12, and LAC17) show correlated gene expression with one to several genes (e...... different and distinct biochemical pathways and that laccases might be involved in polymerization of both polysaccharides and monolignols in the Arabidopsis cell wall....

  6. Comparative transcriptomic characterization of aluminum, sodium chloride, cadmium and copper rhizotoxicities in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Sakurai Nozomu

    2009-03-01

    Full Text Available Abstract Background Rhizotoxic ions in problem soils inhibit nutrient and water acquisition by roots, which in turn leads to reduced crop yields. Previous studies on the effects of rhizotoxic ions on root growth and physiological functions suggested that some mechanisms were common to all rhizotoxins, while others were more specific. To understand this complex system, we performed comparative transcriptomic analysis with various rhizotoxic ions, followed by bioinformatics analysis, in the model plant Arabidopsis thaliana. Results Roots of Arabidopsis were treated with the major rhizotoxic stressors, aluminum (Al ions, cadmium (Cd ions, copper (Cu ions and sodium (NaCl chloride, and the gene expression responses were analyzed by DNA array technology. The top 2.5% of genes whose expression was most increased by each stressor were compared with identify common and specific gene expression responses induced by these stressors. A number of genes encoding glutathione-S-transferases, peroxidases, Ca-binding proteins and a trehalose-synthesizing enzyme were induced by all stressors. In contrast, gene ontological categorization identified sets of genes uniquely induced by each stressor, with distinct patterns of biological processes and molecular function. These contained known resistance genes for each stressor, such as AtALMT1 (encoding Al-activated malate transporter in the Al-specific group and DREB (encoding dehydration responsive element binding protein in the NaCl-specific group. These gene groups are likely to reflect the common and differential cellular responses and the induction of defense systems in response to each ion. We also identified co-expressed gene groups specific to rhizotoxic ions, which might aid further detailed investigation of the response mechanisms. Conclusion In order to understand the complex responses of roots to rhizotoxic ions, we performed comparative transcriptomic analysis followed by bioinformatics characterization

  7. Characterization of carbon ion-induced mutations in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Shikazono, N.; Suzuki, C.; Kitamura, S.; Watanabe, H.; Tano, S.; Tanaka, A.

    2003-01-01

    Full text: Irradiation of Arabidopsis thaliana by carbon ions was carried out to investigate the mutational effect of ion particles in higher plants. The averaged mutation rate of carbon ions was 2.0 X 10 -6 / Gy, which was 18-fold higher than that of electrons. PCR analysis of the carbon ion-induced mutants showed that, out of 28 mutant alleles, 14 had point-like mutations within the gene, while 14 contained large structural alterations. In the case of 12 electron-induced mutants, 9 had point-like mutations within the gene, while 3 contained large structural alterations. These results suggest that carbon ions are more likely to induce large structural alterations compared with electrons. Further sequence analysis revealed that most of the point-like mutations induced by carbon ions were short deletions. In the case of rearrangements, DNA strand breaks were found to be rejoined using, if present, short homologous sequences for both types of radiation. After carbon ion-irradiation, small deletions were frequently observed around the breakpoints, whereas duplications of terminal sequence were found after electron-irradiation. These results suggest that non-homologous end joining (NHEJ) pathway operates after plant cells are exposed to both ion particles and electrons but that different mode of rejoining deals with the broken ends produced by each radiation. From the present results, it seems reasonable to assume that carbon ions could predominantly induce null mutations in Arabidopsis. The fact that the molecular nature of carbon ion-induced mutation was different from that of electrons and that the molecular mechanisms of cells to induce mutations appeared to be also different implicates that ion particle is not only valuable as a new mutagen but also useful as a new tool to study repair mechanisms of certain types of DNA damage

  8. Isolation and characterization of CNGC17 gene from Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Yamagami, Mutsumi; Kobayashi, Daisuke; Hisamatsu, Shun'ichi

    2007-01-01

    Phytoremediation is a possible countermeasure for cleaning up soil contaminated by 137 Cs, and development of plants which can effectively absorb 137 Cs is important for it. It is expected that capability of Cs extraction from soil can be strengthened by genetic alteration of the Cs + root-uptake mechanism of plants. This study aimed at elucidating the uptake mechanism of Cs + for future genetic engineering. Plant roots take up Cs + from the soil solution via transport proteins at the plasma membrane of root cells. Voltage-insensitive cation channels (VICCs) are a possible transfer route of Cs + , and they are encoded by cyclic-nucleotide gated channel (CNGC) and glutamate receptor (GLR) gene families. The genome of Arabidopsis thaliana contains 20 CNGC genes. We have cloned a putative AtCNGC17 gene from cDNAs which were generated with total-RNA obtained from leaves of Arabidopsis thaliana by RT-PCR. The cDNA contained 2163 bp with an ORF that encoded a protein consisting of 721 amino acids residues. The plasmid prepared by the insertion of the gene under a Taq promoter was used to transform an E. coli deficient in the three major K + uptake systems (Kdp, Trk, and Kup). Only the E. coli with AtCNGC17 gene grew in low K + concentration minimal medium. This result suggested that the AtCNGC17 protein has a function of K + uptake. Growth rates of the E. coli cells expressing the gene were strongly inhibited by CsCl in low K + concentration minimal medium, suggesting that the AtCNGC17 transporter also carries Cs + . (author)

  9. Characterization and expression of a Pinus radiata putative ortholog to the Arabidopsis SHORT-ROOT gene

    OpenAIRE

    Solé, Alicia; Sánchez Fernández, M.ª Concepción; Vielba, Jesús; Valladares, Silvia; Abarca, Dolores; Díaz-Sala, Carmen

    2008-01-01

    We characterized a Pinus radiata D. Don putative ortholog to the Arabidopsis thaliana (L.) Heynh. SHORT-ROOT gene (AtSHR) and analyzed its expression in different organs during vegetative development and in response to exogenous auxin during adventitious rooting. The predicted protein sequence contained domains characteristic of the GRAS protein family and showed a strong similarity to the SHORT-ROOT (SHR) proteins. Quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) and in...

  10. Isolation and characterization of powdery mildew-resistant Arabidopsis mutants.

    Science.gov (United States)

    Vogel, J; Somerville, S

    2000-02-15

    A compatible interaction between a plant and a pathogen is the result of a complex interplay between many factors of both plant and pathogen origin. Our objective was to identify host factors involved in this interaction. These factors may include susceptibility factors required for pathogen growth, factors manipulated by the pathogen to inactivate or avoid host defenses, or negative regulators of defense responses. To this end, we identified 20 recessive Arabidopsis mutants that do not support normal growth of the powdery mildew pathogen, Erysiphe cichoracearum. Complementation analyses indicated that four loci, designated powdery mildew resistant 1-4 (pmr1-4), are defined by this collection. These mutants do not constitutively accumulate elevated levels of PR1 or PDF1.2 mRNA, indicating that resistance is not simply due to constitutive activation of the salicylic acid- or ethylene- and jasmonic acid-dependent defense pathways. Further Northern blot analyses revealed that some mutants accumulate higher levels of PR1 mRNA than wild type in response to infection by powdery mildew. To test the specificity of the resistance, the pmr mutants were challenged with other pathogens including Pseudomonas syringae, Peronospora parasitica, and Erysiphe orontii. Surprisingly, one mutant, pmr1, was susceptible to E. orontii, a very closely related powdery mildew, suggesting that a very specific resistance mechanism is operating in this case. Another mutant, pmr4, was resistant to P. parasitica, indicating that this resistance is more generalized. Thus, we have identified a novel collection of mutants affecting genes required for a compatible interaction between a plant and a biotrophic pathogen.

  11. Affinity Purification and Characterization of Functional Tubulin from Cell Suspension Cultures of Arabidopsis and Tobacco1

    Science.gov (United States)

    Fujita, Satoshi; Uchimura, Seiichi; Noguchi, Masahiro; Demura, Taku

    2016-01-01

    Microtubules assemble into several distinct arrays that play important roles in cell division and cell morphogenesis. To decipher the mechanisms that regulate the dynamics and organization of this versatile cytoskeletal component, it is essential to establish in vitro assays that use functional tubulin. Although plant tubulin has been purified previously from protoplasts by reversible taxol-induced polymerization, a simple and efficient purification method has yet to be developed. Here, we used a Tumor Overexpressed Gene (TOG) column, in which the tubulin-binding domains of a yeast (Saccharomyces cerevisiae) TOG homolog are immobilized on resin, to isolate functional plant tubulin. We found that several hundred micrograms of pure tubulin can readily be purified from cell suspension cultures of tobacco (Nicotiana tabacum) and Arabidopsis (Arabidopsis thaliana). The tubulin purified by the TOG column showed high assembly competence, partly because of low levels of polymerization-inhibitory phosphorylation of α-tubulin. Compared with porcine brain tubulin, Arabidopsis tubulin is highly dynamic in vitro at both the plus and minus ends, exhibiting faster shrinkage rates and more frequent catastrophe events, and exhibits frequent spontaneous nucleation. Furthermore, our study shows that an internal histidine tag in α-tubulin can be used to prepare particular isotypes and specifically engineered versions of α-tubulin. In contrast to previous studies of plant tubulin, our mass spectrometry and immunoblot analyses failed to detect posttranslational modification of the isolated Arabidopsis tubulin or detected only low levels of posttranslational modification. This novel technology can be used to prepare assembly-competent, highly dynamic pure tubulin from plant cell cultures. PMID:26747285

  12. Identification and Partial Characterization of an L-Tyrosine Aminotransferase (TAT from Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Pranav R. Prabhu

    2010-01-01

    Full Text Available The aminotransferase gene family in the model plant Arabidopsis thaliana consists of 44 genes. Twenty six of these enzymes are classified as characterized meaning that the reaction(s that the enzyme catalyzes are documented using experimental means. The remaining 18 enzymes are uncharacterized and are therefore deemed putative. Our laboratory is interested in elucidating the function(s of the remaining putative aminotransferase enzymes. To this end, we have identified and partially characterized an aminotransferase (TAT enzyme from Arabidopsis annotated by the locus tag At5g36160. The full-length cDNA was cloned and the purified recombinant enzyme was characterized using in vitro and in vivo experiments. In vitro analysis showed that the enzyme is capable of interconverting L-Tyrosine and 4-hydroxyphenylpyruvate, and L-Phenylalanine and phenylpyruvate. In vivo analysis by functional complementation showed that the gene was able to complement an E. coli with a background of aminotransferase mutations that confers auxotrophy for L-Tyrosine and L-Phenylalanine.

  13. Identification, cloning and characterization of sis7 and sis10 sugar-insensitive mutants of Arabidopsis

    Directory of Open Access Journals (Sweden)

    Biddle Kelly D

    2008-10-01

    Full Text Available Abstract Background The levels of soluble sugars, such as glucose and sucrose, help regulate many plant metabolic, physiological and developmental processes. Genetic screens are helping identify some of the loci involved in plant sugar response and reveal extensive cross-talk between sugar and phytohormone response pathways. Results A forward genetic screen was performed to identify mutants with increased resistance to the inhibitory effects of high levels of exogenous sugars on early Arabidopsis seedling development. The positional cloning and characterization of two of these sugar insensitive (sis mutants, both of which are also involved in abscisic acid (ABA biosynthesis or response, are reported. Plants carrying mutations in SIS7/NCED3/STO1 or SIS10/ABI3 are resistant to the inhibitory effects of high levels of exogenous Glc and Suc. Quantitative RT-PCR analyses indicate transcriptional upregulation of ABA biosynthesis genes by high concentrations of Glc in wild-type germinating seeds. Gene expression profiling revealed that a significant number of genes that are expressed at lower levels in germinating sis7-1/nced3-4/sto1-4 seeds than in wild-type seeds are implicated in auxin biosynthesis or transport, suggesting cross-talk between ABA and auxin response pathways. The degree of sugar insensitivity of different sis10/abi3 mutant seedlings shows a strong positive correlation with their level of ABA insensitivity during seed germination. Conclusion Mutations in the SIS7/NCED3/STO1 gene, which is primarily required for ABA biosynthesis under drought conditions, confer a sugar-insensitive phenotype, indicating that a constitutive role in ABA biosynthesis is not necessary to confer sugar insensitivity. Findings presented here clearly demonstrate that mutations in ABI3 can confer a sugar-insensitive phenotype and help explain previous, mixed reports on this topic by showing that ABA and sugar insensitivity exhibit a strong positive correlation in

  14. Characterization of a mitochondrially targeted single-stranded DNA-binding protein in Arabidopsis thaliana.

    Science.gov (United States)

    Edmondson, Andrew C; Song, Daqing; Alvarez, Luis A; Wall, Melisa K; Almond, David; McClellan, David A; Maxwell, Anthony; Nielsen, Brent L

    2005-04-01

    A gene encoding a predicted mitochondrially targeted single-stranded DNA binding protein (mtSSB) was identified in the Arabidopsis thaliana genome sequence. This gene (At4g11060) codes for a protein of 201 amino acids, including a 28-residue putative mitochondrial targeting transit peptide. Protein sequence alignment shows high similarity between the mtSSB protein and single-stranded DNA binding proteins (SSB) from bacteria, including residues conserved for SSB function. Phylogenetic analysis indicates a close relationship between this protein and other mitochondrially targeted SSB proteins. The predicted targeting sequence was fused with the GFP coding region, and the organellar localization of the expressed fusion protein was determined. Specific targeting to mitochondria was observed in in-vitro import experiments and by transient expression of a GFP fusion construct in Arabidopsis leaves after microprojectile bombardment. The mature mtSSB coding region was overexpressed in Escherichia coli and the protein was purified for biochemical characterization. The purified protein binds single-stranded, but not double-stranded, DNA. MtSSB stimulates the homologous strand-exchange activity of E. coli RecA. These results indicate that mtSSB is a functional homologue of the E. coli SSB, and that it may play a role in mitochondrial DNA recombination.

  15. Molecular and physiological characterization of AtHIGD1 in Arabidopsis.

    Science.gov (United States)

    Hwang, Soong-Taek; Li, Huiling; Alavilli, Hemasundar; Lee, Byeong-Ha; Choi, Dongsu

    2017-06-10

    Flooding is a principal stress that limits plant productivity. The sensing of low oxygen levels (hypoxia) plays a critical role in the signaling pathway that functions in plants in flooded environments. In this study, to investigate hypoxia response mechanisms in Arabidopsis, we identified three hypoxia-related genes and subjected one of these genes, Arabidopsis thaliana HYPOXIA-INDUCED GENE DOMAIN 1 (AtHIGD1), to molecular characterization including gene expression analysis and intracellular localization of the encoded protein. AtHIGD1 was expressed in various organs but was preferentially expressed in developing siliques. Confocal microscopy of transgenic plants harboring eGFP-tagged AtHIGD1 indicated that AtHIGD1 is localized to mitochondria. Importantly, plants overexpressing AtHIGD1 exhibited increased resistance to hypoxia compared to wild type. Our results represent the first report of a biological function for an HIGD protein in plants and indicate that AtHIGD1 is a mitochondrial protein that plays an active role in mitigating the effects of hypoxia on plants. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Genetic characterization of five powdery mildew disease resistance loci in Arabidopsis thaliana.

    Science.gov (United States)

    Adam, L; Somerville, S C

    1996-03-01

    This paper reports on six Arabidopsis accessions that show resistance to a wild isolate of the powdery mildew pathogen, Erysiphe cichoracearum. Resistance at 7 days post-inoculation in these accessions was characterized by limited fungal growth and sporadic development of chlorotic or necrotic lesions at inoculation sites. Three accessions, Wa-1, Kas-1 and SI-0, were highly resistant, while the other accessions permitted some fungal growth and conidiation. Papilla formation was a frequent host response; however, cell death appeared to be neither a rapid nor a common response to infection. To determine the genetic basis of resistance, segregation analyses of progeny from crosses between each of the resistant accessions and Columbia (gl1), which is susceptible to the powdery mildew pathogen, were performed. For all accessions except Sl-0, resistance was conferred by a single locus. Sl-0 was unique in that two unlinked loci controlled the disease reaction phenotype. In accessions Wa-1, Kas-1, Stw-0 and Su-0, powdery mildew resistance was encoded by a semi-dominant allele. However, susceptibility was dominant to resistance in accessions Te-0 and Sl-0. Mapping studies revealed that powdery mildew resistances in Kas-1, Wa-1, Te-0, Su-0 and Stw-0 were controlled by five independent loci. This study suggests that the Arabidopsis powdery mildew disease will be a suitable model system in which to investigate powdery mildew diseases.

  17. Functional Characterization of the Apple RING E3 Ligase MdMIEL1 in Transgenic Arabidopsis

    Directory of Open Access Journals (Sweden)

    Jianping AN

    2017-03-01

    Full Text Available E3 ubiquitin ligases are involved in various physiological processes, and they play pivotal roles in growth and development. In this study, we identified a previously unknown gene in the apple fruit (Malus × domestica and named it MdMIEL1. The MdMIEL1 gene encoded a protein that contained a zinc-finger domain at its N-terminus and a RING-finger motif at its C-terminus. To investigate MdMIEL1 functions, we generated transgenic Arabidopsis lines expressing the MdMIEL1 gene under the control of the Cauliflower mosaic virus 35S promoter. Interestingly, ectopic expression of MdMIEL1 in Arabidopsis produced multiple phenotypes, including early germination, early flowering and a lateral root number increase relative to wild-type plants. Further analysis indicated that MdMIEL1 regulated lateral root initiation by increasing auxin accumulation in the roots. In a word, these results suggest that, MdMIEL1 as a novel RING-finger ubiquitin ligase influences plant growth and development, and highlight that MdMIEL1 regulates lateral root growth.

  18. Physiological and Molecular Characterization of Salmonella Bacteriophages Previously Used in Phage Therapy.

    Science.gov (United States)

    Zhang, J; Hong, Y; Fealey, M; Singh, A; Walton, K; Martin, C; Harman, N J; Mahlie, J; Ebner, P D

    2015-12-01

    The use of bacteriophages as biocontrol agents to control Salmonella in food production has gained popularity over the last two decades. Previously, our laboratory demonstrated that bacteriophages can be direct fed to limit Salmonella colonization and transmission in pigs. Here, we characterized the bacteriophages in our treatment cocktail in terms of lytic spectrum, growth kinetics, survivability under various conditions, and genomic sequencing. PCR-based fingerprinting indicated that 9 of the 10 phages, while related, were distinct isolates. Single-step growth kinetics analysis determined that the eclipse periods, latent periods, and burst sizes averaged 21.5 min, 31.5 min, and 43.3 particles, respectively. The viability of the phages was measured after exposure to various pH ranges, temperatures, digestive enzymes, UV light, and chlorinated water. Temperatures greater than 87.5°C, pH of 4.0 to 10.0. Genomic sequencing of the phage with the broadest spectrum in the collection (effectively lysed all four Salmonella serovars tested), vB_SalM_SJ2, revealed it to belong to the Viunalikevirus genus of the Myoviridae family. Of the 197 predicted open reading frames, no toxin-associated, lysogenic, Salmonella virulence, or antimicrobial resistance genes were identified. Taken together, these data indicate that phages, as biologicals, may require some manner of protection (e.g., microencapsulation) to remain viable under various physiological and manufacturing conditions. In addition, based on its ability to effectively lyse diverse Salmonella serovars, phage vB_SalM-SJ2 could be further developed as an important biocontrol agent in various aspects of food production when the exact serovar or strain of contaminating Salmonella is not yet known.

  19. Biochemical characterization of Arabidopsis thaliana starch branching enzyme 2.2 reveals an enzymatic positive cooperativity.

    Science.gov (United States)

    Wychowski, A; Bompard, C; Grimaud, F; Potocki-Véronèse, G; D'Hulst, C; Wattebled, F; Roussel, X

    2017-09-01

    Starch Branching Enzymes (SBE) catalyze the formation of α(1 → 6) branching points on starch polymers: amylopectin and amylose. SBEs are classified in two groups named type 1 and 2. Both types are present in the entire plant kingdom except in some species such as Arabidopsis thaliana that expresses two type 2 SBEs: BE2.1 and BE2.2. The present work describes in vitro enzymatic characterization of the recombinant BE2.2. The function of recombinant BE2.2 was characterized in vitro using spectrophotometry assay, native PAGE and HPAEC-PAD analysis. Size Exclusion Chromatography separation and SAXS experiments were used to identify the oligomeric state and for structural analysis of this enzyme. Optimal pH and temperature for BE2.2 activity were determined to be pH 7 and 25 °C. A glucosyl donor of at least 12 residues is required for BE2.2 activity. The reaction results in the transfer in an α(1 → 6) position of a glucan preferentially composed of 6 glucosyl units. In addition, BE2.2, which has been shown to be monomeric in absence of substrate, is able to adopt different active forms in presence of branched substrates, which affect the kinetic parameters. BE2.2 has substrate specificity similar to those of the other type-2 BEs. We propose that the different conformations of the enzyme displaying more or less affinity toward its substrates would explain the adjustment of the kinetic data to the Hill equation. This work describes the enzymatic parameters of Arabidopsis BE2.2. It reveals for the first time conformational changes for a branching enzyme, leading to a positive cooperative binding process of this enzyme. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  20. Isolation and characterization of broad-spectrum disease-resistant Arabidopsis mutants.

    Science.gov (United States)

    Maleck, Klaus; Neuenschwander, Urs; Cade, Rebecca M; Dietrich, Robert A; Dangl, Jeffery L; Ryals, John A

    2002-04-01

    To identify Arabidopsis mutants that constitutively express systemic acquired resistance (SAR), we constructed reporter lines expressing the firefly luciferase gene under the control of the SAR-inducible PR-1 promoter (PR-1/luc). After EMS mutagenesis of a well-characterized transgenic line, we screened 250,000 M(2) plants for constitutive expression of the reporter gene in vivo. From a mutant collection containing several hundred putative mutants, we concentrated on 16 mutants lacking spontaneous hypersensitive response (HR) cell death. We mapped 4 of these constitutive immunity (cim) mutants to chromosome arms. Constitutive expression of disease resistance was established by analyzing responses to virulent Peronospora parasitica and Pseudomonas syringae strains, by RNA blot analysis for endogenous marker genes, and by determination of salicylic acid levels in the mutants. The variety of the cim phenotypes allowed us to define distinct steps in both the canonical SAR signaling pathway and a separate pathway for resistance to Erysiphe cichoracearum, active in only a subset of the mutants.

  1. Characterizing genomic variation of Arabidopsis thaliana: the roles of geography and climate.

    Science.gov (United States)

    Lasky, Jesse R; Des Marais, David L; McKay, John K; Richards, James H; Juenger, Thomas E; Keitt, Timothy H

    2012-11-01

    Arabidopsis thaliana inhabits diverse climates and exhibits varied phenology across its range. Although A. thaliana is an extremely well-studied model species, the relationship between geography, growing season climate and its genetic variation is poorly characterized. We used redundancy analysis (RDA) to quantify the association of genomic variation [214 051 single nucleotide polymorphisms (SNPs)] with geography and climate among 1003 accessions collected from 447 locations in Eurasia. We identified climate variables most correlated with genomic variation, which may be important selective gradients related to local adaptation across the species range. Climate variation among sites of origin explained slightly more genomic variation than geographical distance. Large-scale spatial gradients and early spring temperatures explained the most genomic variation, while growing season and summer conditions explained the most after controlling for spatial structure. SNP variation in Scandinavia showed the greatest climate structure among regions, possibly because of relatively consistent phenology and life history of populations in this region. Climate variation explained more variation among nonsynonymous SNPs than expected by chance, suggesting that much of the climatic structure of SNP correlations is due to changes in coding sequence that may underlie local adaptation. © 2012 Blackwell Publishing Ltd.

  2. Characterization and expression of a Pinus radiata putative ortholog to the Arabidopsis SHORT-ROOT gene.

    Science.gov (United States)

    Solé, Alicia; Sánchez, Conchi; Vielba, Jesús M; Valladares, Silvia; Abarca, Dolores; Díaz-Sala, Carmen

    2008-11-01

    We characterized a Pinus radiata D. Don putative ortholog to the Arabidopsis thaliana (L.) Heynh. SHORT--ROOT gene (AtSHR) and analyzed its expression in different organs during vegetative development and in response to exogenous auxin during adventitious rooting. The predicted protein sequence contained domains characteristic of the GRAS protein family and showed a strong similarity to the SHORT--ROOT (SHR) proteins. Quantitative reverse transcriptase--polymerase chain reaction (qRT-PCR) and in situ hybridization showed that the gene is predominantly expressed in roots, root primordia and in the cambial region of hypocotyl cuttings. Increased mRNA levels were observed, independently of the presence or absence of exogenous auxin, in the cambial region and rooting competent cells of hypocotyl cuttings within the first 24 h of adventitious rooting, before the activation of cell divisions and the organization of the adventitious root meristem. The expression pattern in organs and during adventitious rooting was similar to that of a Pinus radiata SCARECROW-LIKE (PrSCL1) gene, except that PrSCL1 is induced in response to exogenous auxin. Results suggest that the Pinus radiata SHORT-ROOT (PrSHR) gene has a role in root meristem formation and maintenance and in the cambial region of hypocotyl cuttings.

  3. Partial Purification and Characterization of RNase P from Arabidopsis Thaliana Tissue

    National Research Council Canada - National Science Library

    2000-01-01

    ...) molecules to give mature 5, ends has been isolated from Arabidopsis thaliana tissue. The RNase P activity was isolated by ammonium sulfate precipitation of a tissue homogenate and further purified by anion exchange chromatography...

  4. Regulated Proteolysis of Arabidopsis Argonaute1

    DEFF Research Database (Denmark)

    Kausika, Swathi Pranavi

    on the function of poorly characterized N domain. Arabidopsis thaliana AGO1 is a peripheral membrane protein and membrane association is important for function. Previous studies in the model plant showed that mutation in the N domain resulted in reduced levels of AGO1 at the membrane. In this study we use N...

  5. Molecular and biochemical characterization of the Fe(III) chelate reductase gene family in Arabidopsis thaliana.

    Science.gov (United States)

    Wu, Huilan; Li, Lihua; Du, Juan; Yuan, Youxi; Cheng, Xudong; Ling, Hong-Qing

    2005-09-01

    Iron chelate reductase is required for iron acquisition from soil and for metabolism in plants. In the genome of Arabidopsis thaliana there are eight genes classified into the iron chelate reductase gene family (AtFROs) based on sequence homology with AtFRO2 (a ferric chelate reductase in Arabidopsis). They are localized on chromosome 1 (three AtFROs) and chromosome 5 (five AtFROs) of Arabidopsis and show a high level of amino acid sequence similarity to each other. An assay for ferric chelate reductase activity revealed that AtFRO2, AtFRO3, AtFRO4, AtFRO5, AtFRO7 and AtFRO8 conferred significantly increased iron reduction activity compared with the control when expressed in yeast cells, indicating that the six AtFROs encode iron chelate reductases functioning in iron homeostasis in Arabidopsis. AtFRO2 displayed the highest iron reduction activity among the AtFROs investigated, further demonstrating that AtFRO2 is a major iron reductase gene in Arabidopsis. AtFRO2 and AtFRO3 were mainly expressed in roots of Arabidopsis, AtFRO5 and AtFRO6 in shoots and flowers, and AtFRO7 in cotyledons and trichomes, whereas the transcription of AtFRO8 was specific for leaf veins. Considering the tissue-specific expression profiles of AtFRO genes, we suggest that AtFRO2 and AtFRO3 are two Fe(III) chelate reductases mainly functioning in iron acquisition and metabolism in Arabidopsis roots, while AtFRO5, AtFRO6, AtFRO7 and AtFRO8 are required for iron homeostasis in different tissues of shoots.

  6. Molecular and functional characterization of a human ATM gene analogue at Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Garcia, V.

    2001-12-01

    The human ATM gene, whose inactivation is responsible for the human disease ataxia telangiectasia is conserved throughout the Eukaryotes and plays an important role in the cellular responses to DNA damage, in particular to DNA double-strand breaks (DSBs). Here we describe the identification of an Arabidopsis thaliana homologue of ATM (AtATM), and the molecular and cytological characterization of plants, hereafter called atm, carrying a disrupting T-DNA insertion in this gene. AtATM covers a 32 kb region on chromosome 3. The AtATM transcript has a complex structure, is 12 kb long and formed by 79 exons. The transcriptional level of AtATM is very low in all the tissues tested, and does not vary after exposure to ionizing radiations (IR). In atm plants, the protein is not detected suggesting the mutants are null. The atm mutants are partially sterile. Aberrant segregation of chromosomes during meiosis I on both male and female sides account for this sterility. However, meiotic recombination frequency is normal. Mutant plants are also hypersensitive to gamma rays and methyl methane sulfonate, but not to UV-B, pointing to a specific defect of atm mutants in the response to DNA DSBs. In plants, ionizing radiations induce a strong, rapid and transient transcriptional activation of genes involved in the cellular response to or the repair of DSBs. This transcriptional regulation of AtRAD51, AtPARP1, atGR1 and AtL1G4 is lost in the atm mutants . The absence of AtRAD51 induction associated with ionizing radiation sensitivity suggest that AtAtm play an important function in DSB repair by homologous recombination. In addition we show that homologous intra-chromosomal recombination frequency is elevated in the mutant comparing to wild-type, with or without gamma irradiation. These results show the implication of AtAtm in the genomic stability. (author)

  7. Characterization of previously unidentified lunar pyroclastic deposits using Lunar Reconnaissance Orbiter Camera (LROC) data

    Science.gov (United States)

    Gustafson, J. Olaf; Bell, James F.; Gaddis, Lisa R.R.; Hawke, B. Ray Ray; Giguere, Thomas A.

    2012-01-01

    We used a Lunar Reconnaissance Orbiter Camera (LROC) global monochrome Wide-angle Camera (WAC) mosaic to conduct a survey of the Moon to search for previously unidentified pyroclastic deposits. Promising locations were examined in detail using LROC multispectral WAC mosaics, high-resolution LROC Narrow Angle Camera (NAC) images, and Clementine multispectral (ultraviolet-visible or UVVIS) data. Out of 47 potential deposits chosen for closer examination, 12 were selected as probable newly identified pyroclastic deposits. Potential pyroclastic deposits were generally found in settings similar to previously identified deposits, including areas within or near mare deposits adjacent to highlands, within floor-fractured craters, and along fissures in mare deposits. However, a significant new finding is the discovery of localized pyroclastic deposits within floor-fractured craters Anderson E and F on the lunar farside, isolated from other known similar deposits. Our search confirms that most major regional and localized low-albedo pyroclastic deposits have been identified on the Moon down to ~100 m/pix resolution, and that additional newly identified deposits are likely to be either isolated small deposits or additional portions of discontinuous, patchy deposits.

  8. Characterization of nonhost resistance of Arabidopsis to the Asian soybean rust.

    Science.gov (United States)

    Loehrer, Marco; Langenbach, Caspar; Goellner, Katharina; Conrath, Uwe; Schaffrath, Ulrich

    2008-11-01

    Asian soybean rust (ASR), caused by Phakopsora pachyrhizi, is a devastating disease of soybean. We report the use of the nonhost plant Arabidopsis thaliana to identify the genetic basis of resistance to P. pachyrhizi. Upon attack by P. pachyrhizi, epidermal cells of wild-type Arabidopsis accumulated H2O2, which likely orchestrates the frequently observed epidermal cell death. However, even when epidermal cell death occurred, fungal hyphae grew on and infection was terminated at the mesophyll boundary. These events were associated with expression of PDF1.2, suggesting that P. pachyrhizi, an ostensible biotroph, mimics aspects of a necrotroph. Extensive colonization of the mesophyll occurred in Arabidopsis pen mutants with defective penetration resistance. Although haustoria were found occasionally in mesophyll cells, the successful establishment of biotrophy failed, as evidenced by the cessation of fungal growth. Double mutants affected in either jasmonic acid or salicylic acid signaling in the pen3-1 background revealed the involvement of both pathways in nonhost resistance (NHR) of Arabidopsis to P. pachyrhizi. Interestingly, expression of AtNHL10, a gene that is expressed in tissue undergoing the hypersensitive response, was only triggered in infected pen3-1 mutants. Thus, a suppression of P. pachyrhizi-derived effectors by PEN3 can be inferred. Our results demonstrate that Arabidopsis can be used to study mechanisms of NHR to ASR.

  9. Molecular characterization of previously elusive badnaviruses associated with symptomatic cacao in the New World.

    Science.gov (United States)

    Chingandu, Nomatter; Zia-Ur-Rehman, Muhammad; Sreenivasan, Thyail N; Surujdeo-Maharaj, Surendra; Umaharan, Pathmanathan; Gutierrez, Osman A; Brown, Judith K

    2017-05-01

    Suspected virus-like symptoms were observed in cacao plants in Trinidad during 1943, and the viruses associated with these symptoms were designated as strains A and B of cacao Trinidad virus (CTV). However, viral etiology has not been demonstrated for either phenotype. Total DNA was isolated from symptomatic cacao leaves exhibiting the CTV A and B phenotypes and subjected to Illumina HiSeq and Sanger DNA sequencing. Based on de novo assembly, two apparently full-length badnavirus genomes of 7,533 and 7,454 nucleotides (nt) were associated with CTV strain A and B, respectively. The Trinidad badnaviral genomes contained four open reading frames, three of which are characteristic of other known badnaviruses, and a fourth that is present in only some badnaviruses. Both badnaviral genomes harbored hallmark caulimovirus-like features, including a tRNA Met priming site, a TATA box, and a polyadenylation-like signal. Pairwise comparisons of the RT-RNase H region indicated that the Trinidad isolates share 57-71% nt sequence identity with other known badnaviruses. Based on the system for badnavirus species demarcation in which viruses with less than 80% nt sequence identity in the RT-RNase gene are considered members of separate species, these isolates represent two previously unidentified badnaviruses, herein named cacao mild mosaic virus and cacao yellow vein banding virus, making them the first cacao-infecting badnaviruses identified thus far in the Western Hemisphere.

  10. Identification and Characterization of Three Previously Undescribed Crystal Proteins from Bacillus thuringiensis subsp. jegathesan

    Science.gov (United States)

    Sun, Yunjun; Zhao, Qiang; Ding, Xuezhi; Hu, Quanfang; Federici, Brian A.

    2013-01-01

    The total protoxin complement in the parasporal body of mosquitocidal strain, Bacillus thuringiensis subsp. jegathesan 367, was determined by use of a polyacrylamide gel block coupled to mass spectrometry. A total of eight protoxins were identified from this strain, including five reported protoxins (Cry11Ba, Cry19Aa, Cry24Aa, Cry25Aa, and Cyt2Bb), as well as three previously undescribed (Cry30Ca, Cry60Aa, and Cry60Ba) in this isolate. It was interesting that the encoding genes of three new protoxins existed as cry30Ca-gap-orf2 and cry60Ba-gap-cry60Aa. The cry30Ca and a downstream orf2 gene were oriented in the same direction and separated by 114 bp, and cry60Ba was located 156 bp upstream from and in the same orientation to cry60Aa. The three new protoxin genes were cloned from B. thuringiensis subsp. jegathesan and expressed in an acrystalliferous strain under the control of cyt1A gene promoters and the STAB-SD stabilizer sequence. Recombinant strain containing only cry30Ca did not produce visible inclusion under microscope observation, while that containing both cry30Ca and orf2 could produce large inclusions. Cry60Aa and Cry60Ba synthesized either alone or together in the acrystalliferous host could yield large inclusions. In bioassays using the fourth-instar larvae of Culex quinquefasciatus, Cry60Aa and Cry60Ba alone or together had estimated 50% lethal concentrations of 2.9 to 7.9 μg/ml; however, Cry30Ca with or without ORF2 was not toxic to this mosquito. PMID:23524673

  11. Characterization of the MADS domain transcription factor family in Arabidopsis thaliana

    NARCIS (Netherlands)

    Folter, Stefan de

    2006-01-01

    Gene regulation at the level of transcription is crucial for almost all biological processes in a cell or organism. Transcription factors are sequence-specific DNA-binding proteins that are capable of activating and/or repressing transcription. The genome of Arabidopsis thaliana, for instance,

  12. Identification and characterization of quantitative trait loci that control seed dormancy in Arabidopsis

    NARCIS (Netherlands)

    Bentsink, L.; Koornneef, M.

    2011-01-01

    Seed dormancy is a trait that is under multigenic control and affected strongly by environmental factors. Thus, seed dormancy is a typical quantitative trait. Natural accessions of Arabidopsis thaliana exhibit a great deal of genetic variation for seed dormancy. This natural variation can be used to

  13. Isolation and characterization of an auxin-inducible glutathione S-transferase gene of Arabidopsis thaliana

    NARCIS (Netherlands)

    Kop, D.A.M. van der; Schuyer, M.; Scheres, B.J.G.; Zaal, B.J. van der; Hooykaas, P.J.J.

    1996-01-01

    Genes homologous to the auxin-inducible Nt103 glutathione S-transferase (GST) gene of tobacco, were isolated from a genomic library of Arabidopsis thaliana. We isolated a λ clone containing an auxin-inducible gene, At103-1a, and part of a constitutively expressed gene, At103-1b. The coding regions

  14. Arabidopsis non-specific phospholipase C1: Characterization and its involvement in response to heat stress

    Czech Academy of Sciences Publication Activity Database

    Krčková, Zuzana; Brouzdová, Jitka; Daněk, Michal; Kocourková, Daniela; Rainteau, D.; Ruelland, E.; Valentová, O.; Pejchar, Přemysl; Martinec, Jan

    2015-01-01

    Roč. 6, NOV 4 (2015), s. 928 ISSN 1664-462X R&D Projects: GA ČR(CZ) GAP501/12/1942 Institutional support: RVO:61389030 Keywords : Arabidopsis thaliana * Diacylglycerol * Heat stress Subject RIV: ED - Physiology Impact factor: 4.495, year: 2015

  15. Cloning and characterization of a gene (UVR3) required for photorepair of 6-4 photoproducts in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Nakajima, S.; Sugiyama, M.; Iwai, S.; Hitomi, K.; Otoshi, E.; Kim SangTae; Jiang CaiZhong; Todo, T.; Britt, A.B.; Yamamoto, K.

    1998-01-01

    UV radiation induces two major classes of pyrimidine dimers: the pyrimidine [6-4] pyrimidone photoproduct (6-4 product) and the cyclobutane pyrimidine dimer (CPD). Many organisms produce enzymes, termed photolyases, that specifically bind to these damage products and split them via a UV-A/blue light-dependent mechanism, thereby reversing the damage. These photolyases are specific for either CPDs or 6-4 products. A gene that expresses a protein with 6-4 photolyase activity in vitro was recently cloned from Drosophila melanogaster and Xenopus laevis. We report here the isolation of a homolog of this gene, cloned on the basis of sequence similarity, from the higher plant Arabidopsis thaliana. This cloned gene produces a protein with 6-4 photolyase activity when expressed in Escherichia coli. We also find that a previously described mutant of Arabidopsis (uvr3) that is defective in photoreactivation of 6-4 products carries a nonsense mutation in this 6-4 photolyase homolog. We have therefore termed this gene UVR3. Although homologs of this gene have previously been shown to produce a functional 6-4 photolyase when expressed in heterologous systems, this is the first demonstration of a requirement for this gene for photoreactivation of 6-4 products in vivo

  16. Functional Characterization of Cotton GaMYB62L, a Novel R2R3 TF in Transgenic Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Hamama Islam Butt

    Full Text Available Drought stress can trigger the production of ABA in plants, in response to adverse conditions, which induces the transcript of stress-related marker genes. The R2R3 MYB TFs are implicated in regulation of various plants developmental, metabolic and multiple environmental stress responses. Here, a R2R3-MYB cloned gene, GaMYB62L, was transformed in Arabidopsis and was functionally characterized. The GaMYB62L protein contains two SANT domains with a conserved R2R3 imperfect repeats. The GaMYB62L cDNA is 1,017 bp with a CDS of 879, encodes a 292-residue polypeptide with MW of 38.78 kD and a pI value of 8.91. Overexpressed GaMYB62L transgenic Arabidopsis have increased proline and chlorophyll content, superior seed germination rate under salt and osmotic stress, less water loss rate with reduced stomatal apertures, high drought avoidance as compared to WT on water deprivation and also significant plant survival rates at low temperature. In addition, overexpressed GaMYB62L lines were more sensitive to ABA mediated germination and root elongation assay. Moreover, ABA induced GaMYB62L overexpression, enhanced the expression of ABA stress related marker genes like RD22, COR15A, ADH1, and RD29A. Together, overexpression of GaMYB62L suggested having developed better drought, salt and cold tolerance in transgenic Arabidopsis and thus presented it as a prospective candidate gene to achieve better abiotic stress tolerance in cotton crop.

  17. Genomic and Physiological Characterization of the Mutant time for coffee within the Arabidopsis thaliana Circadian Clock

    OpenAIRE

    Sánchez Villarreal, Alfredo

    2010-01-01

    ircadian clocks are internal timekeepers that provide organisms with a sense of time. These oscillators, which are entrained by external stimuli, predict the daily day/night transitions and have a periodicity of about 24 hours. The Arabidopsis thaliana circadian clock is composed of interconnected transcriptional-translational feedback loops. The morning expressed elements CCA1 and LHY, which are clock controlled and light inducible, repress the transcription of the evening element TOC1. At d...

  18. Characterization and enzymatic properties of protein kinase ACR4 from Arabidopsis thaliana.

    Science.gov (United States)

    Zhao, Yu; Liu, Xuehe; Xu, Ziyan; Yang, Hui; Li, Jixi

    2017-07-22

    Serine/threonine-protein kinase-like protein ARABIDOPSIS CRINKLY4 (ACR4), a transmembrane protein of Arabidopsis thaliana, plays important roles in cell division and differentiation. Although accumulating studies shed light on the function of ACR4, the structure and catalytic mechanism of ACR4 remain to be elucidated. Here, we report the purification and enzymatic properties of the intracellular kinase domain (residues 464-799) of ACR4 (ACR4 IKD ). Through Ni-affinity chromatography and gel filter chromatography methods, we successfully obtain high-purity ACR4 IKD protein from Escherichia coli. Dynamic light scattering and gel-filtration methods reveal that ACR4 IKD distributes with high homogeneity and exists as a monomer in solution. In addition, the ACR4 IKD protein has typical kinase activity with myelin basic protein (MBP) as the substrate. Our study may lay the foundation for structure determination of ACR4 IKD and further functional research, for example, screening significant substrates of ACR4 in Arabidopsis thaliana. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Reverse genetic characterization of cytosolic acetyl-CoA generation by ATP-citrate lyase in Arabidopsis.

    Science.gov (United States)

    Fatland, Beth L; Nikolau, Basil J; Wurtele, Eve Syrkin

    2005-01-01

    Acetyl-CoA provides organisms with the chemical flexibility to biosynthesize a plethora of natural products that constitute much of the structural and functional diversity in nature. Recent studies have characterized a novel ATP-citrate lyase (ACL) in the cytosol of Arabidopsis thaliana. In this study, we report the use of antisense RNA technology to generate a series of Arabidopsis lines with a range of ACL activity. Plants with even moderately reduced ACL activity have a complex, bonsai phenotype, with miniaturized organs, smaller cells, aberrant plastid morphology, reduced cuticular wax deposition, and hyperaccumulation of starch, anthocyanin, and stress-related mRNAs in vegetative tissue. The degree of this phenotype correlates with the level of reduction in ACL activity. These data indicate that ACL is required for normal growth and development and that no other source of acetyl-CoA can compensate for ACL-derived acetyl-CoA. Exogenous malonate, which feeds into the carboxylation pathway of acetyl-CoA metabolism, chemically complements the morphological and chemical alterations associated with reduced ACL expression, indicating that the observed metabolic alterations are related to the carboxylation pathway of cytosolic acetyl-CoA metabolism. The observations that limiting the expression of the cytosolic enzyme ACL reduces the accumulation of cytosolic acetyl-CoA-derived metabolites and that these deficiencies can be alleviated by exogenous malonate indicate that ACL is a nonredundant source of cytosolic acetyl-CoA.

  20. Identification and characterization of ANAC042, a transcription factor family gene involved in the regulation of camalexin biosynthesis in Arabidopsis.

    Science.gov (United States)

    Saga, Hirohisa; Ogawa, Takumi; Kai, Kosuke; Suzuki, Hideyuki; Ogata, Yoshiyuki; Sakurai, Nozomu; Shibata, Daisuke; Ohta, Daisaku

    2012-05-01

    Camalexin is the major phytoalexin in Arabidopsis. An almost complete set of camalexin biosynthetic enzymes have been elucidated but only limited information is available regarding molecular mechanisms regulating camalexin biosynthesis. Here, we demonstrate that ANAC042, a member of the NAM, ATAF1/2, and CUC2 (NAC) transcription factor family genes, is involved in camalexin biosynthesis induction. T-DNA insertion mutants of ANAC042 failed to accumulate camalexin at the levels achieved in the wild type, and were highly susceptible to Alternaria brassicicola infection. The camalexin biosynthetic genes CYP71A12, CYP71A13, and CYP71B15/PAD3 were not fully induced in the mutants, indicating that the camalexin defects were at least partly a result of reduced expression levels of these P450 genes. β-Glucuronidase (GUS)-reporter assays demonstrated tissue-specific induction of ANAC042 in response to differential pathogen infections. Bacterial flagellin (Flg22) induced ANAC042 expression in the root-elongation zone, the camalexin biosynthetic site, and the induction was abolished in the presence of either a general kinase inhibitor (K252a), a Ca(2+)-chelator (BAPTA), or methyl jasmonate. The GUS-reporter assay revealed repression of the Flg22-dependent ANAC042 expression in the ethylene-insensitive ein2-1 background but not in sid2-2 plants defective for salicylic acid biosynthesis. We discuss ANAC042 as a key transcription factor involved in previously unknown regulatory mechanisms to induce phytoalexin biosynthesis in Arabidopsis.

  1. Characterization of a bifunctional O- and N-glucosyltransferase from Vitis vinifera in glucosylating phenolic compounds and 3,4-dichloroaniline in Pichia pastoris and Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Zhi-Sheng Xu

    Full Text Available 2,4,5-Trichlorophenol, 2,6-dimethylphenol, 3-methylcatechol, phenol, hydroquinone, catechol, and 3,4-dichloroaniline are present in the environment and are risky to humans and animals because of their wide applications in many industries. In this study, a putative uridine diphosphate glucose-dependent glycosyltransferase from Vitis vinifera (VvUGT72B1 displayed high O-glucosyltransferase or N-glucosyltransferase activity toward all these xenbiotics and was able to enhance the resistance of P. pastoris to them. Compared with wild-type Arabidopsis plants, VvUGT72B1-transgenic Arabidopsis plants showed higher resistance to all the xenobiotics except for phenol and exhibited higher removal efficiencies against all xenobiotics. Glucosides of 3-methylcatechol, 2,6-dimethylphenol, phenol, and 3,4-dichloroaniline were exported to the surrounding media by Arabidopsis plants while transgenic Arabidopsis plants exported more glucosides than wild-type Arabidopsis plants. Our findings have the potential to provide a broader spectrum remediation strategy for the phytoremoval and degradation of phenolic compounds and 3,4-dichloroaniline than previous works.

  2. Functional characterization of a constitutively active kinase variant of Arabidopsis phototropin 1.

    Science.gov (United States)

    Petersen, Jan; Inoue, Shin-Ichiro; Kelly, Sharon M; Sullivan, Stuart; Kinoshita, Toshinori; Christie, John M

    2017-08-18

    Phototropins (phots) are plasma membrane-associated serine/threonine kinases that coordinate a range of processes linked to optimizing photosynthetic efficiency in plants. These photoreceptors contain two light-, oxygen-, or voltage-sensing (LOV) domains within their N terminus, with each binding one molecule of flavin mononucleotide as a UV/blue light-absorbing chromophore. Although phots contain two LOV domains, light-induced activation of the C-terminal kinase domain and subsequent receptor autophosphorylation is controlled primarily by the A'α-LOV2-Jα photosensory module. Mutations that disrupt interactions between the LOV2 core and its flanking helical segments can uncouple this mode of light regulation. However, the impact of these mutations on phot function in Arabidopsis has not been explored. Here we report that histidine substitution of Arg-472 located within the A'α-helix of Arabidopsis phot1 constitutively activates phot1 kinase activity in vitro without affecting LOV2 photochemistry. Expression analysis of phot1 R472H in the phot-deficient mutant confirmed that it is autophosphorylated in darkness in vivo but unable to initiate phot1 signaling in the absence of light. Instead, we found that phot1 R472H is poorly functional under low-light conditions but can restore phototropism, chloroplast accumulation, stomatal opening, and leaf positioning and expansion at higher light intensities. Our findings suggest that Arabidopsis can adapt to the elevated phosphorylation status of the phot1 R472H mutant in part by reducing its stability, whereas the activity of the mutant under high-light conditions can be attributed to additional increases in LOV2-mediated photoreceptor autophosphorylation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Proteomic characterization of golgi membranes enriched from Arabidopsis suspension cell cultures

    DEFF Research Database (Denmark)

    Hansen, Sara Fasmer; Ebert, Berit; Rautengarten, Carsten

    2016-01-01

    The plant Golgi apparatus has a central role in the secretory pathway and is the principal site within the cell for the assembly and processing of macromolecules. The stacked membrane structure of the Golgi apparatus along with its interactions with the cytoskeleton and endoplasmic reticulum has...... from an Arabidopsis cell suspension culture that can be used to investigate the proteome of this organelle. We also provide a useful workflow for the examination of proteomic data as the result of multiple analyses. Finally, we highlight a simple technique to validate the subcellular localization...

  4. Biochemical and genetic characterization of three molybdenum cofactor hydroxylases in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Hoff, Tine; Frandsen, Gitte Inselmann; Rocher, Anne

    1998-01-01

    Aldehyde oxidases and xanthine dehydrogenases/oxidases belong to the molybdenum cofactor dependent hydroxylase class of enzymes. Zymograms show that Arabidopsis thaliana has at least three different aldehyde oxidases and one xanthine oxidase. Three different cDNA clones encoding putative aldehyde...... oxidases (AtAO1, 2, 3) were isolated. An aldehyde oxidase is the last step in abscisic acid (ABA) biosynthesis. AtAO1 is mainly expressed in seeds and roots which might reflect that it is involved in ABA biosynthesis....

  5. Characterization and functional analysis of four HYH splicing variants in Arabidopsis hypocotyl elongation.

    Science.gov (United States)

    Li, Chen; Zheng, Lanlan; Zhang, Jingxuan; Lv, Yanxia; Liu, Jianping; Wang, Xuanbin; Palfalvi, Gergo; Wang, Guodong; Zhang, Yonghong

    2017-07-01

    Arabidopsis thaliana LONG HYPOCOTYL5 (HY5) is a positive regulator of the light signaling pathway. The hy5 mutant has an elongated hypocotyl in all light conditions, whereas the hy5 homolog (hyh) mutant has a very weak phenotype, but only in blue light. However, overexpression of HYH rescues the elongated hypocotyl phenotype in the hy5 null mutant. Here, we report the identification of four HYH splicing variants in Arabidopsis. Alternative splicing in the 5' region of the HYH gene occurred such that the proteins encoded by all four HYH variants retained their bZIP domain. In hypocotyl tissue, transcript levels of HYH.2, HYH.3, and HYH.4 were higher than those of HYH.1. Like HY5, all HYH variants were induced by light. Functional analysis of the four HYH variants, based on their abilities to complement the hy5 mutant, indicated that they have similar roles in hypocotyl development, and may function redundantly with HY5. Our results indicate that the bZIP domain in HYH is critical for the function of four variants in the compensation of hy5 mutant in hypocotyl development. Additionally, while HY5/HYH is found in plant species ranging from green algae to flowering plants, the potential alternative splicing events are distinct in different species, with certain HYH variants found with greater frequency in some species than others. Copyright © 2017. Published by Elsevier B.V.

  6. A Genome-Scale Resource for the Functional Characterization of Arabidopsis Transcription Factors

    Directory of Open Access Journals (Sweden)

    Jose L. Pruneda-Paz

    2014-07-01

    Full Text Available Extensive transcriptional networks play major roles in cellular and organismal functions. Transcript levels are in part determined by the combinatorial and overlapping functions of multiple transcription factors (TFs bound to gene promoters. Thus, TF-promoter interactions provide the basic molecular wiring of transcriptional regulatory networks. In plants, discovery of the functional roles of TFs is limited by an increased complexity of network circuitry due to a significant expansion of TF families. Here, we present the construction of a comprehensive collection of Arabidopsis TFs clones created to provide a versatile resource for uncovering TF biological functions. We leveraged this collection by implementing a high-throughput DNA binding assay and identified direct regulators of a key clock gene (CCA1 that provide molecular links between different signaling modules and the circadian clock. The resources introduced in this work will significantly contribute to a better understanding of the transcriptional regulatory landscape of plant genomes.

  7. Identification and characterization of novel defence and PCD signalling components in Arabidopsis

    DEFF Research Database (Denmark)

    Xie, Wenjun

    Plants protect themselves from pathogens by activating a defence signalling network. The Arabidopsis double mutant syp121 syp122 is dwarfed and mimics a response as if it was attacked by pathogens. Using EMS as mutagen on syp121 syp122, a suppressor screen was performed. More than 200 partially...... for topology studies of membrane proteins, and SSD6 was found to be an ER membrane-anchored cytosolic protein. The position of SSD6 in the defence signalling network was studied using syp121 syp122 ssd6 ssdy quadruple mutants, which suggested that SSD6 is not involved in any known signalling pathway. All...... pathogens to test the involvement in defence. The position of PRLIP2 in the defence signalling network was studied like in the case of SSD6, and the result suggested that PRLIP2 is neither involved in any known signalling pathway....

  8. VOZ; isolation and characterization of novel vascular plant transcription factors with a one-zinc finger from Arabidopsis thaliana.

    Science.gov (United States)

    Mitsuda, Nobutaka; Hisabori, Toru; Takeyasu, Kunio; Sato, Masa H

    2004-07-01

    A 38-bp pollen-specific cis-acting region of the AVP1 gene is involved in the expression of the Arabidopsis thaliana V-PPase during pollen development. Here, we report the isolation and structural characterization of AtVOZ1 and AtVOZ2, novel transcription factors that bind to the 38-bp cis-acting region of A. thaliana V-PPase gene, AVP1. AtVOZ1 and AtVOZ2 show 53% amino acid sequence similarity. Homologs of AtVOZ1 and AtVOZ2 are found in various vascular plants as well as a moss, Physcomitrella patens. Promoter-beta-glucuronidase reporter analysis shows that AtVOZ1 is specifically expressed in the phloem tissue and AtVOZ2 is strongly expressed in the root. In vivo transient effector-reporter analysis in A. thaliana suspension-cultured cells demonstrates that AtVOZ1 and AtVOZ2 function as transcriptional activators in the Arabidopsis cell. Two conserved regions termed Domain-A and Domain-B were identified from an alignment of AtVOZ proteins and their homologs of O. sativa and P. patens. AtVOZ2 binds as a dimer to the specific palindromic sequence, GCGTNx7ACGC, with Domain-B, which is comprised of a functional novel zinc coordinating motif and a conserved basic region. Domain-B is shown to function as both the DNA-binding and the dimerization domains of AtVOZ2. From highly the conservative nature among all identified VOZ proteins, we conclude that Domain-B is responsible for the DNA binding and dimerization of all VOZ-family proteins and designate it as the VOZ-domain.

  9. Characterization of two Arabidopsis thaliana myb-like proteins showing affinity to telomeric DNA sequence.

    Science.gov (United States)

    Schrumpfová, Petra; Kuchar, Milan; Miková, Gabriela; Skrísovská, Lenka; Kubicárová, Tatiana; Fajkus, Jirí

    2004-04-01

    Telomere-binding proteins participate in forming a functional nucleoprotein structure at chromosome ends. Using a genomic approach, two Arabidopsis thaliana genes coding for candidate Myb-like telomere binding proteins were cloned and expressed in E. coli. Both proteins, termed AtTBP2 (accession Nos. T46051 (protein database) and GI:638639 (nucleotide database); 295 amino acids, 32 kDa, pI 9.53) and AtTBP3 (BAB08466, GI:9757879; 299 amino acids, 33 kDa, pI 9.88), contain a single Myb-like DNA-binding domain at the N-terminus, and a histone H1/H5-like DNA-binding domain in the middle of the protein sequence. Both proteins are expressed in various A. thaliana tissues. Using the two-hybrid system interaction between the proteins AtTBP2 and AtTBP3 and self interactions of each of the proteins were detected. Gel-retardation assays revealed that each of the two proteins is able to bind the G-rich strand and double-stranded DNA of plant telomeric sequence with an affinity proportional to a number of telomeric repeats. Substrates bearing a non-telomeric DNA sequence positioned between two telomeric repeats were bound with an efficiency depending on the length of interrupting sequence. The ability to bind variant telomere sequences decreased with sequence divergence from the A. thaliana telomeric DNA. None of the proteins alone or their mixture affects telomerase activity in vitro. Correspondingly, no interaction was observed between any of two proteins and the Arabidopsis telomerase reverse transcriptase catalytic subunit TERT (accession No. AF172097) using two-hybrid assay.

  10. Structural characterization of the mechanosensitive channel candidate MCA2 from Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Hideki Shigematsu

    Full Text Available Mechanosensing in plants is thought to be governed by sensory complexes containing a Ca²⁺-permeable, mechanosensitive channel. The plasma membrane protein MCA1 and its paralog MCA2 from Arabidopsis thaliana are involved in mechanical stress-induced Ca²⁺ influx and are thus considered as candidates for such channels or their regulators. Both MCA1 and MCA2 were functionally expressed in Sf9 cells using a baculovirus system in order to elucidate their molecular natures. Because of the abundance of protein in these cells, MCA2 was chosen for purification. Purified MCA2 in a detergent-solubilized state formed a tetramer, which was confirmed by chemical cross-linking. Single-particle analysis of cryo-electron microscope images was performed to depict the overall shape of the purified protein. The three-dimensional structure of MCA2 was reconstructed at a resolution of 26 Å from 5,500 particles and appears to comprise a small transmembrane region and large cytoplasmic region.

  11. Characterization of cucumber violaxanthin de-epoxidase gene promoter in Arabidopsis.

    Science.gov (United States)

    Li, Xin; Sui, Xiaolei; Zhao, Wenchao; Huang, Hongyu; Chen, Yakun; Zhang, Zhenxian

    2015-04-01

    Violaxanthin de-epoxidase (VDE) activates the dissipation of excessive light energy as heat and protects the photosynthetic apparatus from photo-damage. Here we quantitatively analyzed the expression characteristics of cucumber violaxanthin de-epoxidase (CsVDE) promoter using the 1983 bp upstream fragment, and a series of 5'-truncated fragments, to drive β-glucuronidase (GUS) expression in Arabidopsis. The activity of CsVDE promoter was altered by hormones and abiotic stresses are positively by indole-3-acetic acid and gibberellin, but negatively by polyethylene glycol, abscisic acid, salicylic acid, mannitol and sodium chloride. Quantitative analysis by fluorometry of GUS activity and histochemical localization showed that the CsVDE promoter is green tissue-specific. A 334 bp fragment was sufficient to drive the expression of GUS to the same extent as the longest 1983 bp one in green tissue-specific manner. Further analysis of the promoter led to the discovery of one enhancer region and two silencer regions. The activities of GUS driven by the CsVDE promoter fragments were increased when plants were exposed to high light for 4 h, but decreased by 8 h illumination. The high light responsive elements were defined in two positions. The normal-level light-responsive elements were also found in different regions. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Functional characterization of CEBiP and CERK1 homologs in arabidopsis and rice reveals the presence of different chitin receptor systems in plants.

    Science.gov (United States)

    Shinya, Tomonori; Motoyama, Noriko; Ikeda, Asahi; Wada, Miyuki; Kamiya, Kota; Hayafune, Masahiro; Kaku, Hanae; Shibuya, Naoto

    2012-10-01

    Chitin is a representative microbe-associated molecular pattern (MAMP) molecule for various fungi and induces immune responses in many plant species. It has been clarified that the chitin signaling in rice requires a receptor kinase OsCERK1 and a receptor-like protein (Os)CEBiP, which specifically binds chitin oligosaccharides. On the other hand, Arabidopsis requires a receptor kinase (At)CERK1 for chitin signaling but it is not clear whether the plant also requires a CEBiP-like molecule for chitin perception/signaling. To clarify the similarity/difference of the chitin receptor in these two model plants, we first characterized CEBiP homologs in Arabidopsis. Only one of three CEBiP homologs, AtCEBiP (LYM2), showed a high-affinity binding for chitin oligosaccharides similar to rice CEBiP. AtCEBiP also represented the major chitin-binding protein in the Arabidopsis membrane. However, the single/triple knockout (KO) mutants of Arabidopsis CEBiP homologs and the overexpressor of AtCEBiP showed chitin-induced defense responses similar to wild-type Arabidopsis, indicating that AtCEBiP is biochemically functional as a chitin-binding protein but does not contribute to signaling. Studies of the chitin binding properties of the ectodomains of At/OsCERK1 and the chimeric receptors consisting of ecto/cytosolic domains of these molecules indicated that AtCERK1 is sufficient for chitin perception by itself.

  13. Structural and Functional Characterization of the Protein Kinase Mps1 in Arabidopsis thaliana

    Science.gov (United States)

    de Oliveira, Eduardo Alves Gamosa; Romeiro, Nelilma Correia; Ribeiro, Elane da Silva; Santa-Catarina, Claudete; Oliveira, Antônia Elenir Amâncio; Silveira, Vanildo; de Souza Filho, Gonçalo Apolinário; Venancio, Thiago Motta; Cruz, Marco Antônio Lopes

    2012-01-01

    In eukaryotes, protein kinases catalyze the transfer of a gamma-phosphate from ATP (or GTP) to specific amino acids in protein targets. In plants, protein kinases have been shown to participate in signaling cascades driving responses to environmental stimuli and developmental processes. Plant meristems are undifferentiated tissues that provide the major source of cells that will form organs throughout development. However, non-dividing specialized cells can also dedifferentiate and re-initiate cell division if exposed to appropriate conditions. Mps1 (Monopolar spindle) is a dual-specificity protein kinase that plays a critical role in monitoring the accuracy of chromosome segregation in the mitotic checkpoint mechanism. Although Mps1 functions have been clearly demonstrated in animals and fungi, its role in plants is so far unclear. Here, using structural and biochemical analyses here we show that Mps1 has highly similar homologs in many plant genomes across distinct lineages (e.g. AtMps1 in Arabidopsis thaliana). Several structural features (i.e. catalytic site, DFG motif and threonine triad) are clearly conserved in plant Mps1 kinases. Structural and sequence analysis also suggest that AtMps1 interact with other cell cycle proteins, such as Mad2 and MAPK1. By using a very specific Mps1 inhibitor (SP600125) we show that compromised AtMps1 activity hampers the development of A. thaliana seedlings in a dose-dependent manner, especially in secondary roots. Moreover, concomitant administration of the auxin IAA neutralizes the AtMps1 inhibition phenotype, allowing secondary root development. These observations let us to hypothesize that AtMps1 might be a downstream regulator of IAA signaling in the formation of secondary roots. Our results indicate that Mps1 might be a universal component of the Spindle Assembly Checkpoint machinery across very distant lineages of eukaryotes. PMID:23049844

  14. Datura stramonium agglutinin: cloning, molecular characterization and recombinant production in Arabidopsis thaliana.

    Science.gov (United States)

    Nishimoto, Keisuke; Tanaka, Kaori; Murakami, Takahiro; Nakashita, Hideo; Sakamoto, Hikaru; Oguri, Suguru

    2015-02-01

    Datura stramonium seeds contain at least three chitin-binding isolectins [termed Datura stramonium agglutinin (DSA)] as homo- or heterodimers of A and B subunits. We isolated a cDNA encoding isolectin B (DSA-B) from an immature fruit cDNA library; this contained an open reading frame encoding 279 deduced amino acids, which was confirmed by partial sequencing of the native DSA-B peptide. The sequence consisted of: (i) a cysteine (Cys)-rich carbohydrate-binding domain composed of four conserved chitin-binding domains and (ii) an extensin-like domain of 37 residues containing four SerPro4-6 motifs that was inserted between the second and third chitin-binding domains (CBDs). Although each chitin-binding domain contained eight conserved Cys residues, only the second chitin-binding domain contained an extra Cys residue, which may participate in dimerization through inter-disulfide bridge formation. Using matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry, the molecular mass of homodimeric lectin composed of two B-subunits was determined as 68,821 Da. The molecular mass of the S-pyridilethylated B-subunit were found to be 37,748 Da and that of the de-glycosylated form was 26,491 Da, which correlated with the molecular weight estimated from the deduced sequence. Transgenic Arabidopsis plants overexpressing the dsa-b demonstrated hemagglutinating activity. Recombinant DSA-B was produced as a homodimeric glycoprotein with a similar molecular mass to that of the native form. Moreover, the N-terminus of the purified recombinant DSA-B protein was identical to that of the native DSA-B, confirming that the cloned cDNA encoded DSA-B. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Molecular and phenotypic characterization of transgenic soybean expressing the Arabidopsis ferric chelate reductase gene, FRO2.

    Science.gov (United States)

    Vasconcelos, Marta; Eckert, Helene; Arahana, Venancio; Graef, George; Grusak, Michael A; Clemente, Tom

    2006-10-01

    Soybean (Glycine max Merr.) production is reduced under iron-limiting calcareous soils throughout the upper Midwest regions of the US. Like other dicotyledonous plants, soybean responds to iron-limiting environments by induction of an active proton pump, a ferric iron reductase and an iron transporter. Here we demonstrate that heterologous expression of the Arabidopsis thaliana ferric chelate reductase gene, FRO2, in transgenic soybean significantly enhances Fe(+3) reduction in roots and leaves. Root ferric reductase activity was up to tenfold higher in transgenic plants and was not subjected to post-transcriptional regulation. In leaves, reductase activity was threefold higher in the transgenic plants when compared to control. The enhanced ferric reductase activity led to reduced chlorosis, increased chlorophyll concentration and a lessening in biomass loss in the transgenic events between Fe treatments as compared to control plants grown under hydroponics that mimicked Fe-sufficient and Fe-deficient soil environments. However, the data indicate that constitutive FRO2 expression under non-iron stress conditions may lead to a decrease in plant productivity as reflected by reduced biomass accumulation in the transgenic events under non-iron stress conditions. When grown at Fe(III)-EDDHA levels greater than 10 microM, iron concentration in the shoots of transgenic plants was significantly higher than control. The same observation was found in the roots in plants grown at iron levels higher than 32 microM Fe(III)-EDDHA. These results suggest that heterologous expression of an iron chelate reductase in soybean can provide a route to alleviate iron deficiency chlorosis.

  16. Development and characterization of 96 microsatellite markers suitable for QTL mapping and accession control in an Arabidopsis core collection.

    Science.gov (United States)

    Cosson, Patrick; Decroocq, Véronique; Revers, Frédéric

    2014-01-22

    To identify plant genes involved in various key traits, QTL mapping is a powerful approach. This approach is based on the use of mapped molecular markers to identify genomic regions controlling quantitative traits followed by a fine mapping and eventually positional cloning of candidate genes. Mapping technologies using SNP markers are still rather expensive and not feasible in every laboratory. In contrast, microsatellite (also called SSR for Simple Sequence Repeat) markers are technologically less demanding and less costly for any laboratory interested in genetic mapping. In this study, we present the development and the characterization of a panel of 96 highly polymorphic SSR markers along the Arabidopsis thaliana genome allowing QTL mapping among accessions of the Versailles 24 core collection that covers a high percentage of the A. thaliana genetic diversity. These markers can be used for any QTL mapping analysis involving any of these accessions. We optimized the use of these markers in order to reveal polymorphism using standard PCR conditions and agarose gel electrophoresis. In addition, we showed that the use of only three of these markers allows differentiating all 24 accessions which makes this set of markers a powerful tool to control accession identity or any cross between any of these accessions. The set of SSR markers developed in this study provides a simple and efficient tool for any laboratory focusing on QTL mapping in A. thaliana and a simple means to control seed stock or crosses between accessions.

  17. Characterization of Plant Growth under Single-Wavelength Laser Light Using the Model Plant Arabidopsis Thaliana

    KAUST Repository

    Ooi, Amanda

    2016-12-01

    Indoor horticulture offers a promising solution for sustainable food production and is becoming increasingly widespread. However, it incurs high energy and cost due to the use of artificial lighting such as high-pressure sodium lamps, fluorescent light or increasingly, the light-emitting diodes (LEDs). The energy efficiency and light quality of currently available lighting is suboptimal, therefore less than ideal for sustainable and cost-effective large-scale plant production. Here, we demonstrate the use of high-powered single-wavelength lasers for indoor horticulture. Lasers are highly energy-efficient and can be remotely guided to the site of plant growth, thus reducing on-site heat accumulation. Besides, laser beams can be tailored to match the absorption profiles of different plants. We have developed a prototype laser growth chamber and demonstrate that laser-grown plants can complete a full growth cycle from seed to seed with phenotypes resembling those of plants grown under LEDs. Importantly, the plants have lower expression of proteins diagnostic for light and radiation stress. The phenotypical, biochemical and proteomic data show that the singlewavelength laser light is suitable for plant growth and therefore, potentially able to unlock the advantages of this next generation lighting technology for highly energy-efficient horticulture. Furthermore, stomatal movement partly determines the plant productivity and stress management. Abscisic acid (ABA) induces stomatal closure by promoting net K+-efflux from guard cells through outwardrectifying K+ (K+ out) channels to regulate plant water homeostasis. Here, we show that the Arabidopsis thaliana guard cell outward-rectifying K+ (ATGORK) channel is a direct target for ABA in the regulation of stomatal aperture and hence gas exchange and transpiration. Addition of (±)-ABA, but not the biologically inactive (−)-isomer, increases K+ out channel activity in Vicia faba guard cell protoplast. A similar ABA

  18. Seed maturation in Arabidopsis thaliana is characterized by nuclear size reduction and increased chromatin condensation

    NARCIS (Netherlands)

    van Zanten, M.; Koini, M. A.; Geyer, R.; Liu, Y.; Brambilla, V.; Bartels, D.; Koornneef, M.; Fransz, P.; Soppe, W. J.

    2011-01-01

    Most plant species rely on seeds for their dispersal and survival under unfavorable environmental conditions. Seeds are characterized by their low moisture content and significantly reduced metabolic activities. During the maturation phase, seeds accumulate storage reserves and become

  19. Characterization of three loci controlling resistance of Arabidopsis thaliana accession Ms-0 to two powdery mildew diseases.

    Science.gov (United States)

    Xiao, S; Ellwood, S; Findlay, K; Oliver, R P; Turner, J G

    1997-10-01

    Arabidopsis thaliana accession La-er was susceptible, and accession Ms-0 was resistant, to powdery mildew diseases caused by Erysiphe cruciferarum UEA1 and E. cichoracearum UCSC1. The resistance reaction phenotype of A. thaliana Ms-0 to both pathogens was characterized, and the resistance loci were genetically mapped. Growth of E. cruciferarum UEA1 on Ms-0 leaves was arrested after formation of the first appressorium: the underlying host epidermal cell collapsed, and occasionally there was necrosis of one or two host mesophyll cells. Growth of E. cichoracearum UCSC1 on Ms-0 leaves was arrested after emergence of several germ tubes from the conidium, and there was necrosis of host mesophyll cells at the sites of infection. Examination of F2 progeny of a cross La-er x Ms-0 indicated that two independently-segregating dominant loci were required for resistance to E. cruciferarum UEA1. One locus, named RPW6, was genetically mapped to chromosome 5, in a 5.6 cM interval flanked by pCITf16 and PI. The other locus, named RPW7, mapped to chromosome 3 in a 8.5 cM interval flanked by CDC2A and AFC1. Independent effects of RPW6 and RPW7 on E. cruciferarum UEA1 could be detected by quantitative measurements of growth of mycelium and production of conidia. Resistance to E. cichoracearum UCSC1 mapped to a single locus, named RPW8, at a location on chromosome 3 which we could not distinguish from RPW7. Evidently, RPW7 and RPW8 define either a complex resistance locus, or a common resistance gene with dual specificity.

  20. Biochemical and Spectroscopic Characterization of Highly Stable Photosystem II Supercomplexes from Arabidopsis.

    Science.gov (United States)

    Crepin, Aurelie; Santabarbara, Stefano; Caffarri, Stefano

    2016-09-02

    Photosystem II (PSII) is a large membrane supercomplex involved in the first step of oxygenic photosynthesis. It is organized as a dimer, with each monomer consisting of more than 20 subunits as well as several cofactors, including chlorophyll and carotenoid pigments, lipids, and ions. The isolation of stable and homogeneous PSII supercomplexes from plants has been a hindrance for their deep structural and functional characterization. In recent years, purification of complexes with different antenna sizes was achieved with mild detergent solubilization of photosynthetic membranes and fractionation on a sucrose gradient, but these preparations were only stable in the cold for a few hours. In this work, we present an improved protocol to obtain plant PSII supercomplexes that are stable for several hours/days at a wide range of temperatures and can be concentrated without degradation. Biochemical and spectroscopic properties of the purified PSII are presented, as well as a study of the complex solubility in the presence of salts. We also tested the impact of a large panel of detergents on PSII stability and found that very few are able to maintain the integrity of PSII. Such new PSII preparation opens the possibility of performing experiments that require room temperature conditions and/or high protein concentrations, and thus it will allow more detailed investigations into the structure and molecular mechanisms that underlie plant PSII function. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Isolation and characterization of a floral homeotic gene in Fraxinus nigra causing earlier flowering and homeotic alterations in transgenic Arabidopsis

    Science.gov (United States)

    Jun Hyung Lee; Paula M. Pijut

    2017-01-01

    Reproductive sterility, which can be obtained by manipulating floral organ identity genes, is an important tool for gene containment of genetically engineered trees. In Arabidopsis, AGAMOUS (AG) is the only C-class gene responsible for both floral meristem determinacy and floral organ identity, and its mutations produce...

  2. Proteome-wide characterization of seed aging in Arabidopsis. A comparison between artificial and natural aging protocols

    NARCIS (Netherlands)

    Rajjou, L.; Lovigny, Y.; Groot, S.P.C.; Belghazi, M.; Job, C.; Job, D.

    2008-01-01

    A variety of mechanisms has been proposed to account for the extension of life span in seeds (seed longevity). In the present work, we have used Arabidopsis thaliana seeds as a model and carried out differential proteomics to investigate this trait, which is of both ecological and agricultural

  3. NMR-based phytochemical analysis of Vitis vinifera cv Falanghina leaves. Characterization of a previously undescribed biflavonoid with antiproliferative activity.

    Science.gov (United States)

    Tartaglione, Luciana; Gambuti, Angelita; De Cicco, Paola; Ercolano, Giuseppe; Ianaro, Angela; Taglialatela-Scafati, Orazio; Moio, Luigi; Forino, Martino

    2018-03-01

    Vitis vinifera cv Falanghina is an ancient grape variety of Southern Italy. A thorough phytochemical analysis of the Falanghina leaves was conducted to investigate its specialised metabolite content. Along with already known molecules, such as caftaric acid, quercetin-3-O-β-d-glucopyranoside, quercetin-3-O-β-d-glucuronide, kaempferol-3-O-β-d-glucopyranoside and kaempferol-3-O-β-d-glucuronide, a previously undescribed biflavonoid was identified. For this last compound, a moderate bioactivity against metastatic melanoma cells proliferation was discovered. This datum can be of some interest to researchers studying human melanoma. The high content in antioxidant glycosylated flavonoids supports the exploitation of grape vine leaves as an inexpensive source of natural products for the food industry and for both pharmaceutical and nutraceutical companies. Additionally, this study offers important insights into the plant physiology, thus prompting possible technological researches of genetic selection based on the vine adaptation to specific pedo-climatic environments. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Molecular diagnosis and characterization of Cryptosporidium spp. in turkeys and chickens in Germany reveals evidence for previously undetected parasite species.

    Directory of Open Access Journals (Sweden)

    Yosra A Helmy

    Full Text Available A total of 256 fecal specimens were randomly collected from farmed poultry in Germany and screened for the presence of Cryptosporidium spp. by PCR and further characterized by direct automated DNA sequencing. Using a nested PCR amplifying approximately 830 bp 18S rDNA fragment, 7.03% (n = 18 of the samples were Cryptosporidium-positive. In detail, Cryptosporidium was detected in 9.3% (8/86 of turkeys, 5.7% (9/158 of broilers and 8.3% (1/12 of layers. After DNA sequencing, Cryptosporidium parvum the most frequently observed species was identified in 5.1% (13/256 of all poultry species, including 8.1% (7/86 of turkeys, 3.2% (5/158 of broilers and 8.3% (1/12 of layers. Cryptosporidium baileyi was detected in 1.3% (2/256 of the broilers only. Three novel unclassified Cryptosporidium spp. were detected in 1.2% (1/86 of turkeys and 1.3% (2/158 of broilers. The infection rate was high in 13-20 week old turkeys, 1-6 weeks old broilers and >20 weeks old layers but differences between age groups were not significant. This is the first study in Germany uses molecular methods for the detection of Cryptosporidium in poultry. The results indicate that Cryptosporidium parasites are common among broilers and turkeys in Germany. Considering the large size of the poultry industry, the large amount of poultry meat that is consumed and the fact that C. parvum is also the most common Cryptosporidium parasite in humans, poultry might also be a source of human infections.

  5. Extraction and Characterization of Extracellular Proteins and Their Post-Translational Modifications from Arabidopsis thaliana Suspension Cell Cultures and Seedlings: A Critical Review

    Directory of Open Access Journals (Sweden)

    Mina Ghahremani

    2016-09-01

    Full Text Available Proteins secreted by plant cells into the extracellular space, consisting of the cell wall, apoplastic fluid, and rhizosphere, play crucial roles during development, nutrient acquisition, and stress acclimation. However, isolating the full range of secreted proteins has proven difficult, and new strategies are constantly evolving to increase the number of proteins that can be detected and identified. In addition, the dynamic nature of the extracellular proteome presents the further challenge of identifying and characterizing the post-translational modifications (PTMs of secreted proteins, particularly glycosylation and phosphorylation. Such PTMs are common and important regulatory modifications of proteins, playing a key role in many biological processes. This review explores the most recent methods in isolating and characterizing the plant extracellular proteome with a focus on the model plant Arabidopsis thaliana, highlighting the current challenges yet to be overcome. Moreover, the crucial role of protein PTMs in cell wall signalling, development, and plant responses to biotic and abiotic stress is discussed.

  6. Characterization and Functional Analysis of a Type 2 Diacylglycerol Acyltransferase (DGAT2) Gene from Oil Palm (Elaeis guineensis Jacq.) Mesocarp in Saccharomyces cerevisiae and Transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Jin, Yuanhang; Yuan, Yijun; Gao, Lingchao; Sun, Ruhao; Chen, Lizhi; Li, Dongdong; Zheng, Yusheng

    2017-01-01

    Oil palm ( Elaeis guineensis Jacq.) is the highest oil-yielding plant in the world, storing 90 and 60% (dry weight) oil in its mesocarp and kernel, respectively. To gain insights into the oil accumulation mechanism, one of the key enzymes involved in triacylglycerol (TAG) biosynthesis, a Type 2 diacylglycerol acyltransferase (DGAT2) from oil palm, was characterized for its in vivo activity. EgDGAT2 is highly expressed in mesocarp during the last two developmental stages while large amounts of oil are accumulated at the highest rate during ripening. Heterologous expression of EgDGAT2 in mutant yeast H1246 restored TAG biosynthesis with substrate preference toward unsaturated fatty acids (FAs) (16:1 and 18:1). Furthermore, seed-specific overexpression of EgDGAT2 in Arabidopsis thaliana enhanced the content of polyunsaturated FAs 18:2 and 18:3 (each by 6 mol%) in seed TAGs, when compared to that from wild-type Arabidopsis. In turn, the proportion of 18:0 and 20:0 FAs in seed TAGs from EgDGAT2 transgenic lines decreased accordingly. These results provide new insights into understanding the in vivo activity of EgDGAT2 from oil palm mesocarp, which will be of importance for metabolic enhancement of unsaturated FAs production.

  7. Reference: 150 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ridization, Pht1;4 was found mainly expressed in inorgan...physiological characterization of Arabidopsis pht1;4 high affinity phosphate transporter mutants. Using GUS-gene trap and in situ hyb

  8. Functional characterization of the Arabidopsis HSP70-HSP90 organizing protein (HOP) family in response to stress

    OpenAIRE

    Fernández Bautista-Abad, Nuria

    2017-01-01

    La proteína organizadora de HSP70 y HSP90 (HOP) es una familia conservada de cochaperonas citosólicas, cuyo papel como proteína de andamio de las chaperonas HSP70 y HSP90 se ha estudiado profundamente en mamíferos y levaduras. A pesar de que la familia HOP también se conserva en plantas, su participación en la formación de diferentes complejos de proteínas y su papel biológico en la fisiología de las plantas se ha mantenido extremadamente difícil de elucidar. El genoma de Arabidopsis codific...

  9. Peptomics, identification of novel cationic Arabidopsis peptides with conserved sequence motifs

    DEFF Research Database (Denmark)

    Olsen, Addie Nina; Mundy, John; Skriver, Karen

    2002-01-01

    function. Annotation of the Arabidopsis genome sequence has made it possible to identify peptide-encoding genes. However, such annotational identification is impeded because small genes are poorly predicted by gene-prediction algorithms, thus prompting the alternative approaches described here. We...... initially performed a systematic analysis of short polypeptides encoded by annotated genes on two Arabidopsis chromosomes using SignalP to identify potentially secreted peptides. Subsequent homology searches with selected, putatively secreted peptides, led to the identification of a potential, large...... Arabidopsis family of 34 genes. The predicted peptides are characterized by a conserved C-terminal sequence motif and additional primary structure conservation in a core region. The majority of these genes had not previously been annotated. A subset of the predicted peptides show high overall sequence...

  10. Characterization of microRNAs and their target genes associated with transcriptomic changes in gamma-irradiated Arabidopsis.

    Science.gov (United States)

    Kim, J H; Go, Y S; Kim, J K; Chung, B Y

    2016-07-29

    MicroRNAs (miRNAs) regulate gene expression in response to biotic and abiotic stress in plants. We investigated gamma-ray-responsive miRNAs in Arabidopsis wild-type and cmt3-11t mutant plants using miRNA microarray analysis. miRNA expression was differentiated between the wild-type and cmt3-11t mutants. miR164a, miR169d, miR169h, miR172b*, and miR403 were identified as repressible in the wild-type and/or cmt3-11t mutant in response to gamma irradiation, while miR827, miR840, and miR850 were strongly inducible. These eight miRNA genes contain UV-B-responsive cis-elements, including G-box, I-box core, ARE, and/or MBS in the putative promoter regions. Moreover, Box 4, MBS, TCA-element, and Unnamed_4, as well as CAAT- and TATA-box, were identified in these eight miRNA genes. However, a positive correlation between the transcriptions of miRNAs and their putative target genes was only observed between miR169d and At1g30560 in the wild-type, and between miR827 and At1g70700 in the cmt3-11t mutant. Quantitative RT-PCR analysis confirmed that the transcription of miR164a, miR169d, miR169h, miR172b*, miR403, and miR827 differed after gamma irradiation depending on the genotype (wild-type, cmt3-11t, drm2, drd1-6, and ddm1-2) and developmental stage (14 or 28 days after sowing). In contrast, high transcriptional induction of miR840 and miR850 was observed in these six genotypes regardless of the developmental stage. Although the actual target genes and functions of miR840 and miR850 remain to be determined, our results indicate that these two miRNAs may be strongly induced and reproducible genetic markers in Arabidopsis plants exposed to gamma rays.

  11. Genome-wide characterization of ISR induced in Arabidopsis thaliana by Trichoderma hamatum T382 against Botrytis cinerea infection

    Directory of Open Access Journals (Sweden)

    Janick eMathys

    2012-05-01

    Full Text Available In this study, the molecular basis of the induced systemic resistance (ISR in Arabidopsis thaliana by the biocontrol fungus Trichoderma hamatum T382 against the phytopathogen Botrytis cinerea B05-10 was unraveled by microarray analysis both before (ISR-prime and after (ISR-boost additional pathogen inoculation. The observed high numbers of differentially expressed genes allowed us to classify them according to the biological pathways in which they are involved. By focusing on pathways instead of genes, a holistic picture of the mechanisms underlying ISR emerged. In general, a close resemblance is observed between ISR-prime and systemic acquired resistance (SAR, the systemic defense response that is triggered in plants upon pathogen infection leading to increased resistance towards secondary infections. Treatment with Trichoderma hamatum T382 primes the plant (ISR-prime, resulting in an accelerated activation of the defense response against Botrytis cinerea during ISR-boost and a subsequent moderation of the Botrytis cinerea induced defense response (BIDR. Microarray results were confirmed for representative genes by qRT-PCR, by analysis of transgenic plants expressing relevant promoter-GUS constructs and by phenotypic analysis of mutants affected in various defense-related pathways, thereby proving the validity of our approach.

  12. Use of synchrotron radiation to characterize metals in plants: the case of Cd in the hyperacumulator Arabidopsis halleri

    Science.gov (United States)

    Isaure, M.; Sarret, G.; Verbruggen, N.

    2010-12-01

    Phytoremediation uses plants to extract (phytoextraction) or stabilize (phytostabilization) metals accumulated in soils, and can be an alternative to invasive physico-chemical remediation techniques. Its development requires the knowledge of the mechanisms involved in metal tolerance and accumulation in plants, and particularly the way that plants transfer and store metals. In that context, synchrotron radiation based techniques such as micro-focused X-Ray Fluorescence (µXRF), and micro-focused X-ray Absorption Spectroscopy, including Extended X-ray Absorption Fine Structure and X-ray Absorption Near Edge Structure, are particularly suited to determine the localization and the chemical forms of metals in the different tissues, cells and sub-cellular compartments. Arabidopsis halleri is a Zn, Cd hyperaccumulating plant, naturally growing on contaminated sites, and is a model plant to investigate metal hyperaccumulation. This work presents the application of µXRF and Cd µXANES to determine the distribution and speciation of Cd in this species. Results showed that Cd was mainly located in the mesophyll and veins of leaves. It is bound to S ligands in some leaves and to O/N ligands in other ones, and the observed variations may be related to the age of the leaves. Cd speciation seems to differ from other metals, and particularly Zn, generally encountered in hyperaccumulators. High local Cd concentrations were also detected at the base of trichomes, epidermal hairs of leaves, associated to O/N ligands, probably to the cell wall. This phenomenon was also observed on non-hyperaccumulators and is clearly not the major sink for Cd, but trichomes might play a role in the detoxification process. This study illustrates the suitability of synchrotron radiation based techniques to investigate metal distribution and speciation in plants.

  13. Molecular characterization of the cold- and heat-induced Arabidopsis PXL1 gene and its potential role in transduction pathways under temperature fluctuations.

    Science.gov (United States)

    Jung, Chang Gyo; Hwang, Sun-Goo; Park, Yong Chan; Park, Hyeon Mi; Kim, Dong Sub; Park, Duck Hwan; Jang, Cheol Seong

    2015-03-15

    LRR-RLK (Leucine-Rich Repeat Receptor-Like Kinase) proteins are believed to play essential roles in cell-to-cell communication during various cellular processes including development, hormone perception, and abiotic stress responses. We isolated an LRR-RLK gene previously named Arabidopsis PHLOEM INTERCALATED WITH XYLEM-LIKE 1 (AtPXL1) and examined its expression patterns. AtPXL1 was highly induced by cold and heat stress, but not by drought. The fluorescence signal of 35S::AtPXL1-EGFP was closely localized to the plasma membrane. A yeast two-hybrid and bimolecular fluorescence complementation assay exhibited that AtPXL1 interacts with both proteins, A. thaliana histidine-rich dehydrin1 (AtHIRD1) and A. thaliana light-harvesting protein complex I (AtLHCA1). We found that AtPXL1 possesses autophosphorylation activity and phosphorylates AtHIRD1 and AtLHCA1 in an in vitro assay. Subsequently, we found that the knockout line (atpxl1) showed hypersensitive phenotypes when subjected to cold and heat during the germination stage, while the AtPXL1 overexpressing line as well as wild type plants showed high germination rates compared to the knockout plants. These results provide an insight into the molecular function of AtPXL1 in the regulation of signal transduction pathways under temperature fluctuations. Copyright © 2015 Elsevier GmbH. All rights reserved.

  14. Photorepair mutants of Arabidopsis

    International Nuclear Information System (INIS)

    Jiang, C.Z.; Yee, J.; Mitchell, D.L.; Britt, A.B.

    1997-01-01

    UV radiation induces two major DNA damage products, the cyclobutane pyrimidine dimer (CPD) and, at a lower frequency, the pyrimidine (6-4) pyrimidinone dimer (6-4 product). Although Escherichia coli and Saccharomyces cerevisiae produce a CPD-specific photolyase that eliminates only this class of dimer, Arabidopsis thaliana, Drosophila melanogaster, Crotalus atrox, and Xenopus laevis have recently been shown to photoreactivate both CPDs and 6-4 products. We describe the isolation and characterization of two new classes of mutants of Arabidopsis, termed uvr2 and uvr3, that are defective in the photoreactivation of CPDs and 6-4 products, respectively. We demonstrate that the CPD photolyase mutation is genetically linked to a DNA sequence encoding a type II (metazoan) CPD photolyase. In addition, we are able to generate plants in which only CPDs or 6-4 products are photoreactivated in the nuclear genome by exposing these mutants to UV light and then allowing them to repair one or the other class of dimers. This provides us with a unique opportunity to study the biological consequences of each of these two major UV-induced photoproducts in an intact living system

  15. Reverse genetic characterization of two paralogous acetoacetyl CoA thiolase genes in Arabidopsis reveals their importance in plant growth and development

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Huanan; Song, Zhihong; Nikolau, Basil J.

    2012-03-31

    Acetoacetyl CoA thiolase (AACT, EC 2.3.1.9) catalyzes the condensation of two acetyl CoA molecules to form acetoacetyl CoA. Two AACT‐encoding genes, At5g47720 (AACT1) and At5g48230 (AACT2), were functionally identified in the Arabidopsis genome by direct enzymological assays and functional expression in yeast. Promoter::GUS fusion experiments indicated that AACT1 is primarily expressed in the vascular system and AACT2 is highly expressed in root tips, young leaves, top stems and anthers. Characterization of T‐DNA insertion mutant alleles at each AACT locus established that AACT2 function is required for embryogenesis and for normal male gamete transmission. In contrast, plants lacking AACT1 function are completely viable and show no apparent growth phenotypes, indicating that AACT1 is functionally redundant with respect to AACT2 function. RNAi lines that express reduced levels of AACT2 show pleiotropic phenotypes, including reduced apical dominance, elongated life span and flowering duration, sterility, dwarfing, reduced seed yield and shorter root length. Microscopic analysis reveals that the reduced stature is caused by a reduction in cell size and fewer cells, and male sterility is caused by loss of the pollen coat and premature degeneration of the tapetal cells. Biochemical analyses established that the roots of AACT2 RNAi plants show quantitative and qualitative alterations in phytosterol profiles. These phenotypes and biochemical alterations are reversed when AACT2 RNAi plants are grown in the presence of mevalonate, which is consistent with the role of AACT2 in generating the bulk of the acetoacetyl CoA precursor required for the cytosol‐localized, mevalonate‐derived isoprenoid biosynthetic pathway.

  16. Functional Characterization of TaSnRK2.8 Promoter in Response to Abiotic Stresses by Deletion Analysis in Transgenic Arabidopsis

    Directory of Open Access Journals (Sweden)

    Hongying Zhang

    2017-07-01

    Full Text Available Drought, salinity, and cold are the major factors limiting wheat quality and productivity; it is thus highly desirable to characterize the abiotic-stress-inducible promoters suitable for the genetic improvement of plant resistance. The sucrose non-fermenting 1-related protein kinase 2 (SnRK2 family genes show distinct regulatory properties in response to abiotic stresses. The present study characterized the approximately 3000-bp upstream sequence (the 313 bp upstream of the ATG was the transcription start site of the Triticum aestivum TaSnRK2.8 promoter under abscisic acid (ABA and abiotic stresses. Four different-length 5′ deletion fragments of TaSnRK2.8 promoter were fused with the GUS reporter gene and transformed into Arabidopsis. Tissue expression analysis showed that the TaSnRK2.8 promoter region from position -1481 to -821 contained the stalk-specific elements, and the region from position -2631 to -1481 contained the leaf- and root-specific elements. In the ABA-treated seedlings, the deletion analysis showed that the TaSnRK2.8 promoter region from position -821 to -2631 contained ABA response elements. The abiotic stress responses of the TaSnRK2.8 promoter derivatives demonstrated that they harbored abiotic-stress response elements: the region from position -821 to -408 harbored the osmotic-stress response elements, whereas the region from position -2631 to -1481 contained the positive regulatory motifs and the region from position -1481 to -821 contained the leaf- and stalk-specific enhancers. Further deletion analysis of the promoter region from position -821 to -408 indicated that a 125-bp region from position -693 to -568 was required to induce an osmotic-stress response. These results contribute to a better understanding of the molecular mechanisms of TaSnRK2.8 in response to abiotic stresses, and the TaSnRK2.8 promoter seems to be a candidate for regulating the expression of abiotic stress response genes in transgenic plants.

  17. Early effects of altered gravity environments on plant cell growth and cell proliferation: characterization of morphofunctional nucleolar types in an Arabidopsis cell culture system

    NARCIS (Netherlands)

    Manzano, A.I.; Herranz, R.; Manzano, A.; van Loon, J.J.W.A.; Medina, F.J.

    Changes in the cell growth rate of an in vitro cellular system in Arabidopsis thaliana induced by short exposure to an altered gravity environment have been estimated by a novel approach. The method consisted of defining three structural nucleolar types which are easy and reliable indicators of the

  18. Functional characterization of a heterologously expressed Brassica napus WRKY41-1 transcription factor in regulating anthocyanin biosynthesis in Arabidopsis thaliana.

    Science.gov (United States)

    Duan, Shaowei; Wang, Jianjun; Gao, Chenhao; Jin, Changyu; Li, Dong; Peng, Danshuai; Du, Guomei; Li, Yiqian; Chen, Mingxun

    2018-03-01

    Previous studies have shown that a plant WRKY transcription factor, WRKY41, has multiple functions, and regulates seed dormancy, hormone signaling pathways, and both biotic and abiotic stress responses. However, it is not known about the roles of AtWRKY41 from the model plant, Arabidopsis thaliana, and its ortholog, BnWRKY41, from the closely related and important oil-producing crop, Brassica napus, in the regulation of anthocyanin biosynthesis. Here, we found that the wrky41 mutation in A. thaliana resulted in a significant increase in anthocyanin levels in rosette leaves, indicating that AtWRKY41 acts as repressor of anthocyanin biosynthesis. RNA sequencing and quantitative real-time PCR analysis revealed increased expression of three regulatory genes AtMYB75, AtMYB111, and AtMYBD, and two structural genes, AT1G68440 and AtGSTF12, all of which contribute to anthocyanin biosynthesis, in the sixth rosette leaves of wrky41-2 plants at 20 days after germination. We cloned the full length complementary DNA of BnWRKY41-1 from the C2 subgenome of the B. napus genotype Westar and observed that, when overexpressed in tobacco leaves as a fusion protein with green fluorescent protein, BnWRKY41-1 is localized to the nucleus. We further showed that overexpression of BnWRKY41-1 in the A. thaliana wrky41-2 mutant rescued the higher anthocyanin content phenotype in rosette leaves of the mutant. Moreover, the elevated expression levels in wrky41-2 rosette leaves of several important regulatory and structural genes regulating anthocyanin biosynthesis were not observed in the BnWRKY41-1 overexpressing lines. These results reveal that BnWRKY41-1 has a similar role with AtWRKY41 in regulating anthocyanin biosynthesis when overexpressed in A. thaliana. This gene represents a promising target for genetically manipulating B. napus to increase the amounts of anthocyanins in rosette leaves. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Isolation and characterization of a novel semi-lethal Arabidopsis thaliana mutant of gene for pentatricopeptide (PPR) repeat-containing protein

    Czech Academy of Sciences Publication Activity Database

    Kocábek, Tomáš; Řepková, J.; Dudová, M.; Hoyerová, Klára; Vrba, Lukáš

    2006-01-01

    Roč. 128, - (2006), s. 395-407 ISSN 0016-6707 R&D Projects: GA ČR GA521/00/D036; GA ČR(CZ) GD204/05/H505; GA AV ČR KJB600510503 Institutional research plan: CEZ:AV0Z50510513 Keywords : Arabidopsis thaliana * gene manipulation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.492, year: 2006

  20. Characterization of microRNAs from Arabidopsis galls highlights a role for miR159 in the plant response to the root-knot nematode Meloidogyne incognita.

    Science.gov (United States)

    Medina, Clémence; da Rocha, Martine; Magliano, Marc; Ratpopoulo, Alizée; Revel, Benoît; Marteu, Nathalie; Magnone, Virginie; Lebrigand, Kevin; Cabrera, Javier; Barcala, Marta; Silva, Ana Cláudia; Millar, Anthony; Escobar, Carolina; Abad, Pierre; Favery, Bruno; Jaubert-Possamai, Stéphanie

    2017-11-01

    Root knot nematodes (RKN) are root parasites that induce the genetic reprogramming of vascular cells into giant feeding cells and the development of root galls. MicroRNAs (miRNAs) regulate gene expression during development and plant responses to various stresses. Disruption of post-transcriptional gene silencing in Arabidopsis ago1 or ago2 mutants decrease the infection rate of RKN suggesting a role for this mechanism in the plant-nematode interaction. By sequencing small RNAs from uninfected Arabidopsis roots and from galls 7 and 14 d post infection with Meloidogyne incognita, we identified 24 miRNAs differentially expressed in gall as putative regulators of gall development. Moreover, strong activity within galls was detected for five miRNA promoters. Analyses of nematode development in an Arabidopsis miR159abc mutant had a lower susceptibility to RKN, suggesting a role for the miR159 family in the plant response to M. incognita. Localization of mature miR159 within the giant and surrounding cells suggested a role in giant cell and gall. Finally, overexpression of miR159 in galls at 14 d post inoculation was associated with the repression of the miR159 target MYB33 which expression is restricted to the early stages of infection. Overall, these results implicate the miR159 in plant responses to RKN. © 2017 INRA. New Phytologist © 2017 New Phytologist Trust.

  1. Reference: 516 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available hien et al. 2007 Mar. Plant Physiol. 143(3):1189-202. Far-red (FR) insensitive 219 (FIN219) was previously s...ing in Arabidopsis. 3 1189-202 17220357 2007 Mar Plant physiology Chen Ing-Chien|Chung Shu-Shiang|Hsieh Hsu-Liang|Huang I-Ching|Liu Ming-Jung|Wang Zhi-Gong

  2. G2 Checkpoint Responses in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Britt, Anne [Univ. of California, Davis, CA (United States)

    2013-03-18

    This project focused on the mechanism and biological significance of the G2 arrest response to replication stress in plants. We employed both forward and reverse genetic approaches to identify genes required for this response. A total of 3 different postdocs, 5 undergraduates, and 2 graduate students participated in the project. We identified several genes required for damage response in plants, including homologs of genes previously identified in animals (ATM and ATR), novel, a plant-specific genes (SOG1) and a gene known in animals but previously thought to be missing from the Arabidopsis genome (ATRIP). We characterized the transcriptome of gamma-irradiated plants, and found that plants, unlike animals, express a robust transcriptional response to damage, involving genes that regulate the cell cycle and DNA metabolism. This response requires both ATM and the transcription factor SOG1. We found that both ATM and ATR play a role in meiosis in plants. We also found that plants have a cell-type-specific programmed cell death response to ionizing radiation and UV light, and that this response requires ATR, ATM, and SOG1. These results were published in a series of 5 papers.

  3. PREVIOUS SECOND TRIMESTER ABORTION

    African Journals Online (AJOL)

    PNLC

    PREVIOUS SECOND TRIMESTER ABORTION: A risk factor for third trimester uterine rupture in three ... for accurate diagnosis of uterine rupture. KEY WORDS: Induced second trimester abortion - Previous uterine surgery - Uterine rupture. ..... scarred uterus during second trimester misoprostol- induced labour for a missed ...

  4. Heterologous expression and characterization of an Arabidopsis β-l-arabinopyranosidase and α-d-galactosidases acting on β-l-arabinopyranosyl residues.

    Science.gov (United States)

    Imaizumi, Chiemi; Tomatsu, Harumi; Kitazawa, Kiminari; Yoshimi, Yoshihisa; Shibano, Seiji; Kikuchi, Kaoru; Yamaguchi, Masatoshi; Kaneko, Satoshi; Tsumuraya, Yoichi; Kotake, Toshihisa

    2017-07-20

    The major plant sugar l-arabinose (l-Ara) has two different ring forms, l-arabinofuranose (l-Araf) and l-arabinopyranose (l-Arap). Although l-Ara mainly appears in the form of α-l-Araf residues in cell wall components, such as pectic α-1,3:1,5-arabinan, arabinoxylan, and arabinogalactan-proteins (AGPs), lesser amounts of it can also be found as β-l-Arap residues of AGPs. Even though AGPs are known to be rapidly metabolized, the enzymes acting on the β-l-Arap residues remain to be identified. In the present study, four enzymes, which we call β-l-ARAPASE (APSE) and α-GALACTOSIDASE 1 (AGAL1), AGAL2, and AGAL3, are identified as those enzymes that are likely to be responsible for the hydrolysis of the β-l-Arap residues in Arabidopsis thaliana. An Arabidopsis apse-1 mutant showed significant reduction in β-l-arabinopyranosidase activity, and an apse-1 agal3-1 double-mutant exhibited even less activity. The apse-1 and the double-mutants both had more β-l-Arap residues in the cell walls than wild-type plants. Recombinant APSE expressed in the yeast Pichia pastoris specifically hydrolyzed β-l-Arap residues and released l-Ara from gum arabic and larch arabinogalactan. The recombinant AGAL3 also showed weak β-l-arabinopyranosidase activity beside its strong α-galactosidase activity. It appears that the β-l-Arap residues of AGPs are hydrolysed mainly by APSE and partially by AGALs in Arabidopsis. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. The Arabidopsis Putative Selenium-Binding Protein Family: Expression Study and Characterization of SBP1 as a Potential New Player in Cadmium Detoxification Processes1[W

    Science.gov (United States)

    Dutilleul, Christelle; Jourdain, Agnès; Bourguignon, Jacques; Hugouvieux, Véronique

    2008-01-01

    In Arabidopsis (Arabidopsis thaliana), the putative selenium-binding protein (SBP) gene family is composed of three members (SBP1–SBP3). Reverse transcription-polymerase chain reaction analyses showed that SBP1 expression was ubiquitous. SBP2 was expressed at a lower level in flowers and roots, whereas SBP3 transcripts were only detected in young seedling tissues. In cadmium (Cd)-treated seedlings, SBP1 level of expression was rapidly increased in roots. In shoots, SBP1 transcripts accumulated later and for higher Cd doses. SBP2 and SBP3 expression showed delayed or no responsiveness to Cd. In addition, luciferase (LUC) activity recorded on Arabidopsis lines expressing the LUC gene under the control of the SBP1 promoter further showed dynamic regulation of SBP1 expression during development and in response to Cd stress. Western-blot analysis using polyclonal antibodies raised against SBP1 showed that SBP1 protein accumulated in Cd-exposed tissues in correlation with SBP1 transcript amount. The sbp1 null mutant displayed no visible phenotype under normal and stress conditions that was explained by the up-regulation of SBP2 expression. SBP1 overexpression enhanced Cd accumulation in roots and reduced sensitivity to Cd in wild type and, more significantly, in Cd-hypersensitive cad mutants that lack phytochelatins. Similarly, in Saccharomyces cerevisiae, SBP1 expression led to increased Cd tolerance of the Cd-hypersensitive ycf1 mutant. In vitro experiments showed that SBP1 has the ability to bind Cd. These data highlight the importance of maintaining the adequate SBP protein level under healthy and stress conditions and suggest that, during Cd stress, SBP1 accumulation efficiently helps to detoxify Cd potentially through direct binding. PMID:18354042

  6. A spatial dissection of the Arabidopsis floral transcriptome by MPSS

    Directory of Open Access Journals (Sweden)

    Sanchez-Leon Nidia

    2008-04-01

    Full Text Available Abstract Background We have further characterized floral organ-localized gene expression in the inflorescence of Arabidopsis thaliana by comparison of massively parallel signature sequencing (MPSS data. Six libraries of RNA sequence tags from immature inflorescence tissues were constructed and matched to their respective loci in the annotated Arabidopsis genome. These signature libraries survey the floral transcriptome of wild-type tissue as well as the floral homeotic mutants, apetala1, apetala3, agamous, a superman/apetala1 double mutant, and differentiated ovules dissected from the gynoecia of wild-type inflorescences. Comparing and contrasting these MPSS floral expression libraries enabled demarcation of transcripts enriched in the petals, stamens, stigma-style, gynoecia, and those with predicted enrichment within the sepal/sepal-petals, petal-stamens, or gynoecia-stamens. Results By comparison of expression libraries, a total of 572 genes were found to have organ-enriched expression within the inflorescence. The bulk of characterized organ-enriched transcript diversity was noted in the gynoecia and stamens, whereas fewer genes demonstrated sepal or petal-localized expression. Validation of the computational analyses was performed by comparison with previously published expression data, in situ hybridizations, promoter-reporter fusions, and reverse transcription PCR. A number of well-characterized genes were accurately delineated within our system of transcript filtration. Moreover, empirical validations confirm MPSS predictions for several genes with previously uncharacterized expression patterns. Conclusion This extensive MPSS analysis confirms and supplements prior microarray floral expression studies and illustrates the utility of sequence survey-based expression analysis in functional genomics. Spatial floral expression data accrued by MPSS and similar methods will be advantageous in the elucidation of more comprehensive genetic

  7. A spatial dissection of the Arabidopsis floral transcriptome by MPSS.

    Science.gov (United States)

    Peiffer, Jason A; Kaushik, Shail; Sakai, Hajime; Arteaga-Vazquez, Mario; Sanchez-Leon, Nidia; Ghazal, Hassan; Vielle-Calzada, Jean-Philippe; Meyers, Blake C

    2008-04-21

    We have further characterized floral organ-localized gene expression in the inflorescence of Arabidopsis thaliana by comparison of massively parallel signature sequencing (MPSS) data. Six libraries of RNA sequence tags from immature inflorescence tissues were constructed and matched to their respective loci in the annotated Arabidopsis genome. These signature libraries survey the floral transcriptome of wild-type tissue as well as the floral homeotic mutants, apetala1, apetala3, agamous, a superman/apetala1 double mutant, and differentiated ovules dissected from the gynoecia of wild-type inflorescences. Comparing and contrasting these MPSS floral expression libraries enabled demarcation of transcripts enriched in the petals, stamens, stigma-style, gynoecia, and those with predicted enrichment within the sepal/sepal-petals, petal-stamens, or gynoecia-stamens. By comparison of expression libraries, a total of 572 genes were found to have organ-enriched expression within the inflorescence. The bulk of characterized organ-enriched transcript diversity was noted in the gynoecia and stamens, whereas fewer genes demonstrated sepal or petal-localized expression. Validation of the computational analyses was performed by comparison with previously published expression data, in situ hybridizations, promoter-reporter fusions, and reverse transcription PCR. A number of well-characterized genes were accurately delineated within our system of transcript filtration. Moreover, empirical validations confirm MPSS predictions for several genes with previously uncharacterized expression patterns. This extensive MPSS analysis confirms and supplements prior microarray floral expression studies and illustrates the utility of sequence survey-based expression analysis in functional genomics. Spatial floral expression data accrued by MPSS and similar methods will be advantageous in the elucidation of more comprehensive genetic regulatory networks governing floral development.

  8. Characterization of Arabidopsis Transcriptional Responses to Different Aphid Species Reveals Genes that Contribute to Host Susceptibility and Non-host Resistance

    Science.gov (United States)

    Jaouannet, Maëlle; Morris, Jenny A.; Hedley, Peter E.; Bos, Jorunn I. B.

    2015-01-01

    Aphids are economically important pests that display exceptional variation in host range. The determinants of diverse aphid host ranges are not well understood, but it is likely that molecular interactions are involved. With significant progress being made towards understanding host responses upon aphid attack, the mechanisms underlying non-host resistance remain to be elucidated. Here, we investigated and compared Arabidopsis thaliana host and non-host responses to aphids at the transcriptional level using three different aphid species, Myzus persicae, Myzus cerasi and Rhopalosiphum pisum. Gene expression analyses revealed a high level of overlap in the overall gene expression changes during the host and non-host interactions with regards to the sets of genes differentially expressed and the direction of expression changes. Despite this overlap in transcriptional responses across interactions, there was a stronger repression of genes involved in metabolism and oxidative responses specifically during the host interaction with M. persicae. In addition, we identified a set of genes with opposite gene expression patterns during the host versus non-host interactions. Aphid performance assays on Arabidopsis mutants that were selected based on our transcriptome analyses identified novel genes contributing to host susceptibility, host defences during interactions with M. persicae as well to non-host resistance against R. padi. Understanding how plants respond to aphid species that differ in their ability to infest plant species, and identifying the genes and signaling pathways involved, is essential for the development of novel and durable aphid control in crop plants. PMID:25993686

  9. Characterization of Arabidopsis Transcriptional Responses to Different Aphid Species Reveals Genes that Contribute to Host Susceptibility and Non-host Resistance.

    Directory of Open Access Journals (Sweden)

    Maëlle Jaouannet

    2015-05-01

    Full Text Available Aphids are economically important pests that display exceptional variation in host range. The determinants of diverse aphid host ranges are not well understood, but it is likely that molecular interactions are involved. With significant progress being made towards understanding host responses upon aphid attack, the mechanisms underlying non-host resistance remain to be elucidated. Here, we investigated and compared Arabidopsis thaliana host and non-host responses to aphids at the transcriptional level using three different aphid species, Myzus persicae, Myzus cerasi and Rhopalosiphum pisum. Gene expression analyses revealed a high level of overlap in the overall gene expression changes during the host and non-host interactions with regards to the sets of genes differentially expressed and the direction of expression changes. Despite this overlap in transcriptional responses across interactions, there was a stronger repression of genes involved in metabolism and oxidative responses specifically during the host interaction with M. persicae. In addition, we identified a set of genes with opposite gene expression patterns during the host versus non-host interactions. Aphid performance assays on Arabidopsis mutants that were selected based on our transcriptome analyses identified novel genes contributing to host susceptibility, host defences during interactions with M. persicae as well to non-host resistance against R. padi. Understanding how plants respond to aphid species that differ in their ability to infest plant species, and identifying the genes and signaling pathways involved, is essential for the development of novel and durable aphid control in crop plants.

  10. Mining the plant-herbivore interface with a leafmining Drosophila of Arabidopsis

    Science.gov (United States)

    Whiteman, Noah K.; Groen, Simon C.; Chevasco, Daniela; Bear, Ashley; Beckwith, Noor; Gregory, T. Ryan; Denoux, Carine; Mammarella, Nicole; Ausubel, Frederick M.; Pierce, Naomi E.

    2010-01-01

    Experimental infections of Arabidopsis thaliana (Arabidopsis) with genomically characterized plant pathogens such as Pseudomonas syringae have facilitated dissection of canonical eukaryotic defense pathways and parasite virulence factors. Plants are also attacked by herbivorous insects, and the development of an ecologically relevant genetic model herbivore that feeds on Arabidopsis will enable the parallel dissection of host defense and reciprocal resistance pathways such as those involved in xenobiotic metabolism. An ideal candidate is Scaptomyza flava, a drosophilid fly whose leafmining larvae are true herbivores that can be found in nature feeding on Arabidopsis and other crucifers. Here we describe the eukaryotic life cycle of S. flava on Arabidopsis, and use multiple approaches to characterize the response of Arabidopsis to S. flava attack. Oviposition choice tests and growth performance assays on different Arabidopsis ecotypes, defense-related mutants, and hormone and chitin-treated plants revealed significant differences in host preference and variation in larval performance across Arabidopsis accessions. The jasmonate (JA) and glucosinolate pathways in Arabidopsis are important in mediating quantitative resistance against S. flava, and priming with JA or chitin resulted in increased resistance. Expression of xenobiotic detoxification genes was reduced in S. flava larvae reared on Arabidopsis JA signaling mutants, and increased in plants pre-treated with chitin. These results and future research directions are discussed in the context of developing a genetic model system to analyze insect/plant interactions. PMID:21073583

  11. A spatial dissection of the Arabidopsis floral transcriptome by MPSS

    OpenAIRE

    Sanchez-Leon Nidia; Arteaga-Vazquez Mario; Sakai Hajime; Kaushik Shail; Peiffer Jason A; Ghazal Hassan; Vielle-Calzada Jean-Philippe; Meyers Blake C

    2008-01-01

    Abstract Background We have further characterized floral organ-localized gene expression in the inflorescence of Arabidopsis thaliana by comparison of massively parallel signature sequencing (MPSS) data. Six libraries of RNA sequence tags from immature inflorescence tissues were constructed and matched to their respective loci in the annotated Arabidopsis genome. These signature libraries survey the floral transcriptome of wild-type tissue as well as the floral homeotic mutants, apetala1, ape...

  12. Differential regulation of an auxin-producing nitrilase gene family in Arabidopsis thaliana.

    OpenAIRE

    Bartel, B; Fink, G R

    1994-01-01

    Nitrilases (nitrile aminohydrolase, EC 3.5.5.1) convert nitriles to carboxylic acids. We report the cloning, characterization, and expression patterns of four Arabidopsis thaliana nitrilase genes (NIT1-4), one of which was previously described [Bartling, D., Seedorf, M., Mithöfer, A. & Weiler, E. W. (1992) Eur. J. Biochem. 205, 417-424]. The nitrilase genes encode very similar proteins that hydrolyze indole-3-acetonitrile to the phytohormone indole-3-acetic acid in vitro, and three of the fou...

  13. Identification and characterization of COI1-dependent transcription factor genes involved in JA-mediated response to wounding in Arabidopsis plants.

    Science.gov (United States)

    Wang, Zhe; Cao, Guangyu; Wang, Xinlei; Miao, Jin; Liu, Xiaoting; Chen, Zhangliang; Qu, Li-Jia; Gu, Hongya

    2008-01-01

    The phytohormone jasmonic acid (JA) is an important signaling molecular involved in many developmental and physiological processes, especially in the response of plants to wounding. In this study, we adopted a new strategy, taking into consideration the microarray data of the CHX treatment, to identify 15 COI1-dependent JA-inducible transcription factors (JCTFs) that have distinct expression patterns in response to wounding. After the analysis on the JCTFs over-expressor plants, we identified four JCTFs, i.e., WRKY18, At1g74930 and At3g53600 in addition to AtMYC2, as the positive regulators in the JA-mediated signaling pathway in response to Arabidopsis wounding.

  14. Characterization and Ectopic Expression of CoWRI1, an AP2/EREBP Domain-Containing Transcription Factor from Coconut (Cocos nucifera L.) Endosperm, Changes the Seeds Oil Content in Transgenic Arabidopsis thaliana and Rice (Oryza sativa L.)

    Science.gov (United States)

    Sun, RuHao; Ye, Rongjian; Gao, Lingchao; Zhang, Lin; Wang, Rui; Mao, Ting; Zheng, Yusheng; Li, Dongdong; Lin, Yongjun

    2017-01-01

    Coconut (Cocos nucifera L.) is a key tropical crop and a member of the monocotyledonous family Arecaceae (Palmaceae). Few genes and related metabolic processes involved in coconut endosperm development have been investigated. In this study, a new member of the WRI1 gene family was isolated from coconut endosperm and was named CoWRI1. Its transcriptional activities and interactions with the acetyl-CoA carboxylase (BCCP2) promoter of CoWRI1 were confirmed by the yeast two-hybrid and yeast one-hybrid approaches, respectively. Functional characterization was carried out through seed-specific expression in Arabidopsis and endosperm-specific expression in rice. In transgenic Arabidopsis, high over-expressions of CoWRI1 in seven independent T2 lines were detected by quantitative real-time PCR. The relative mRNA accumulation of genes encoding enzymes involved in either fatty acid biosynthesis or triacylglycerols assembly (BCCP2, KASI, MAT, ENR, FATA, and GPDH) were also assayed in mature seeds. Furthermore, lipid and fatty acids C16:0 and C18:0 significantly increased. In two homozygous T2 transgenic rice lines (G5 and G2), different CoWRI1 expression levels were detected, but no CoWRI1 transcripts were detected in the wild type. Analyses of the seed oil content, starch content, and total protein content indicated that the two T2 transgenic lines showed a significant increase (P < 0.05) in seed oil content. The transgenic lines also showed a significant increase in starch content, whereas total protein content decreased significantly. Further analysis of the fatty acid composition revealed that palmitic acid (C16:0) and linolenic acid (C18:3) increased significantly in the seeds of the transgenic rice lines, but oleic acid (C18:1) levels significantly declined. PMID:28179911

  15. Characterization and Ectopic Expression of CoWRI1, an AP2/EREBP Domain-Containing Transcription Factor from Coconut (Cocos nucifera L.) Endosperm, Changes the Seeds Oil Content in Transgenic Arabidopsis thaliana and Rice (Oryza sativa L.).

    Science.gov (United States)

    Sun, RuHao; Ye, Rongjian; Gao, Lingchao; Zhang, Lin; Wang, Rui; Mao, Ting; Zheng, Yusheng; Li, Dongdong; Lin, Yongjun

    2017-01-01

    Coconut ( Cocos nucifera L.) is a key tropical crop and a member of the monocotyledonous family Arecaceae ( Palmaceae ). Few genes and related metabolic processes involved in coconut endosperm development have been investigated. In this study, a new member of the WRI1 gene family was isolated from coconut endosperm and was named CoWRI1 . Its transcriptional activities and interactions with the acetyl-CoA carboxylase ( BCCP2 ) promoter of CoWRI1 were confirmed by the yeast two-hybrid and yeast one-hybrid approaches, respectively. Functional characterization was carried out through seed-specific expression in Arabidopsis and endosperm-specific expression in rice. In transgenic Arabidopsis , high over-expressions of CoWRI1 in seven independent T2 lines were detected by quantitative real-time PCR. The relative mRNA accumulation of genes encoding enzymes involved in either fatty acid biosynthesis or triacylglycerols assembly (BCCP2, KASI, MAT, ENR, FATA, and GPDH) were also assayed in mature seeds. Furthermore, lipid and fatty acids C16:0 and C18:0 significantly increased. In two homozygous T2 transgenic rice lines (G5 and G2), different CoWRI1 expression levels were detected, but no CoWRI1 transcripts were detected in the wild type. Analyses of the seed oil content, starch content, and total protein content indicated that the two T2 transgenic lines showed a significant increase ( P oil content. The transgenic lines also showed a significant increase in starch content, whereas total protein content decreased significantly. Further analysis of the fatty acid composition revealed that palmitic acid (C16:0) and linolenic acid (C18:3) increased significantly in the seeds of the transgenic rice lines, but oleic acid (C18:1) levels significantly declined.

  16. Laparoscopy After Previous Laparotomy

    Directory of Open Access Journals (Sweden)

    Zulfo Godinjak

    2006-11-01

    Full Text Available Following the abdominal surgery, extensive adhesions often occur and they can cause difficulties during laparoscopic operations. However, previous laparotomy is not considered to be a contraindication for laparoscopy. The aim of this study is to present that an insertion of Veres needle in the region of umbilicus is a safe method for creating a pneumoperitoneum for laparoscopic operations after previous laparotomy. In the last three years, we have performed 144 laparoscopic operations in patients that previously underwent one or two laparotomies. Pathology of digestive system, genital organs, Cesarean Section or abdominal war injuries were the most common causes of previouslaparotomy. During those operations or during entering into abdominal cavity we have not experienced any complications, while in 7 patients we performed conversion to laparotomy following the diagnostic laparoscopy. In all patients an insertion of Veres needle and trocar insertion in the umbilical region was performed, namely a technique of closed laparoscopy. Not even in one patient adhesions in the region of umbilicus were found, and no abdominal organs were injured.

  17. Arabidopsis gene expression patterns during spaceflight

    Science.gov (United States)

    Paul, A.-L.; Ferl, R. J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments resulted in the differential expression of hundreds of genes. A 5 day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β -Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on two fronts. First, expression patterns visualized with the Adh/GUS transgene were used to address specifically the possibility that spaceflight induces a hypoxic stress response, and to assess whether any spaceflight response was similar to control terrestrial hypoxia-induced gene expression patterns. (Paul et al., Plant Physiol. 2001, 126:613). Second, genome-wide patterns of native gene expression were evaluated utilizing the Affymetrix ATH1 GeneChip? array of 8,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes identified with the arrays was further characterized with quantitative Real-Time RT PCR (ABI - TaqmanTM). Comparison of the patterns of expression for arrays of hybridized with RNA isolated from plants exposed to spaceflight compared to the control arrays revealed hundreds of genes that were differentially expressed in response to spaceflight, yet most genes that are hallmarks of hypoxic stress were unaffected. These results will be discussed in light of current models for plant responses to the spaceflight environment, and with regard to potential future flight opportunities.

  18. Reference: 2 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available at share 60 to 80% protein sequence identity. Gene disruptions of the yeast (Saccharomyces cerevisiae) ortho... that these syntaxins are not essential for growth in yeast. However, we have isolated and characterized gene disruption...s in two genes from each family, finding that disruption of individual syntaxins from these fami...lies is lethal in the male gametophyte of Arabidopsis. Complementation of the syp21-1 gene disruption

  19. Evolution of the Telomere-Associated Protein POT1a in Arabidopsis thaliana Is Characterized by Positive Selection to Reinforce Protein-Protein Interaction.

    Science.gov (United States)

    Beilstein, Mark A; Renfrew, Kyle B; Song, Xiangyu; Shakirov, Eugene V; Zanis, Michael J; Shippen, Dorothy E

    2015-05-01

    Gene duplication is a major driving force in genome evolution. Here, we explore the nature and origin of the POT1 gene duplication in Arabidopsis thaliana. Protection of Telomeres (POT1) is a conserved multifunctional protein that modulates telomerase activity and its engagement with telomeres. Arabidopsis thaliana encodes two divergent POT1 paralogs termed AtPOT1a and AtPOT1b. AtPOT1a positively regulates telomerase activity, whereas AtPOT1b is proposed to negatively regulate telomerase and promote chromosome end protection. Phylogenetic analysis uncovered two independent POT1 duplication events in the plant kingdom, including one at the base of Brassicaceae. Tests for positive selection implemented in PAML revealed that the Brassicaceae POT1a lineage experienced positive selection postduplication and identified three amino acid residues with signatures of positive selection. A sensitive and quantitative genetic complementation assay was developed to assess POT1a function in A. thaliana. The assay showed that AtPOT1a is functionally distinct from single-copy POT1 genes in other plants. Moreover, for two of the sites with a strong signature of positive selection, substitutions that swap the amino acids in AtPOT1a for residues found in AtPOT1b dramatically compromised AtPOT1a function in vivo. In vitro-binding studies demonstrated that all three sites under positive selection specifically enhance the AtPOT1a interaction with CTC1, a core component of the highly conserved CST (CTC1/STN1/TEN1) telomere protein complex. Our results reveal a molecular mechanism for the role of these positively selected sites in AtPOT1a. The data also provide an important empirical example to refine theories of duplicate gene retention, as the outcome of positive selection here appears to be reinforcement of an ancestral function, rather than neofunctionalization. We propose that this outcome may not be unusual when the duplicated protein is a component of a multisubunit complex whose

  20. The Petunia ortholog of Arabidopsis SUPERMAN plays a distinct role in floral morphogenesis

    NARCIS (Netherlands)

    Nakagawa, H.; Ferrario, S.I.T.; Angenent, G.C.; Kobayashi, A.; Takatsuji, H.

    2004-01-01

    Arabidopsis (Arabidopsis thaliana) SUPERMAN (SUP) plays a role in establishing a boundary between whorls 3 and 4 of flowers and in ovule development. We characterized a Petunia hybrida (petunia) homolog of SUP, designated PhSUP1, to compare with SUP. Genomic DNA of the PhSUP1 partially restored the

  1. The petunia ortholog of Arabidopsis SUPERMAN plays a distinct role in floral organ morphogenesis

    NARCIS (Netherlands)

    Nakagawa, H.; Ferrario, S.I.T.; Angenent, G.C.; Kobayashi, A.; Takatsuji, H.

    2004-01-01

    Arabidopsis (Arabidopsis thaliana) SUPERMAN (SUP) plays a role in establishing a boundary between whorls 3 and 4 of flowers and in ovule development. We characterized a Petunia hybrida (petunia) homolog of SUP, designated PhSUP1, to compare with SUP. Genomic DNA of the PhSUP1 partially restored the

  2. Genomewide analysis of intronic microRNAs in rice and Arabidopsis

    Indian Academy of Sciences (India)

    Here we report a comprehensive computational analysis to characterize intronic miRNAs in rice and Arabidopsis. RT-PCR analysis confirmed that the identified intronic miRNAs were derived from the real introns of host genes. Interestingly, 13 intronic miRNAs in rice and two in Arabidopsis were located within seven clusters ...

  3. Genome-wide comparative analysis of the IQD gene families in Arabidopsis thaliana and Oryza sativa

    Science.gov (United States)

    Abel, Steffen; Savchenko, Tatyana; Levy, Maggie

    2005-01-01

    Background Calcium signaling plays a prominent role in plants for coordinating a wide range of developmental processes and responses to environmental cues. Stimulus-specific generation of intracellular calcium transients, decoding of calcium signatures, and transformation of the signal into cellular responses are integral modules of the transduction process. Several hundred proteins with functions in calcium signaling circuits have been identified, and the number of downstream targets of calcium sensors is expected to increase. We previously identified a novel, calmodulin-binding nuclear protein, IQD1, which stimulates glucosinolate accumulation and plant defense in Arabidopsis thaliana. Here, we present a comparative genome-wide analysis of a new class of putative calmodulin target proteins in Arabidopsis and rice. Results We identified and analyzed 33 and 29 IQD1-like genes in Arabidopsis thaliana and Oryza sativa, respectively. The encoded IQD proteins contain a plant-specific domain of 67 conserved amino acid residues, referred to as the IQ67 domain, which is characterized by a unique and repetitive arrangement of three different calmodulin recruitment motifs, known as the IQ, 1-5-10, and 1-8-14 motifs. We demonstrated calmodulin binding for IQD20, the smallest IQD protein in Arabidopsis, which consists of a C-terminal IQ67 domain and a short N-terminal extension. A striking feature of IQD proteins is the high isoelectric point (~10.3) and frequency of serine residues (~11%). We compared the Arabidopsis and rice IQD gene families in terms of gene structure, chromosome location, predicted protein properties and motifs, phylogenetic relationships, and evolutionary history. The existence of an IQD-like gene in bryophytes suggests that IQD proteins are an ancient family of calmodulin-binding proteins and arose during the early evolution of land plants. Conclusion Comparative phylogenetic analyses indicate that the major IQD gene lineages originated before the

  4. Characterization of the Promoter Region of an Arabidopsis Gene for 9-cis-Epoxycarotenoid Dioxygenase Involved in Dehydration-Inducible Transcription

    Science.gov (United States)

    Behnam, Babak; Iuchi, Satoshi; Fujita, Miki; Fujita, Yasunari; Takasaki, Hironori; Osakabe, Yuriko; Yamaguchi-Shinozaki, Kazuko; Kobayashi, Masatomo; Shinozaki, Kazuo

    2013-01-01

    Plants respond to dehydration stress and tolerate water-deficit status through complex physiological and cellular processes. Many genes are induced by water deficit. Abscisic acid (ABA) plays important roles in tolerance to dehydration stress by inducing many stress genes. ABA is synthesized de novo in response to dehydration. Most of the genes involved in ABA biosynthesis have been identified, and they are expressed mainly in leaf vascular tissues. Of the products of such genes, 9-cis-epoxycarotenoid dioxygenase (NCED) is a key enzyme in ABA biosynthesis. One of the five NCED genes in Arabidopsis, AtNCED3, is significantly induced by dehydration. To understand the regulatory mechanism of the early stages of the dehydration stress response, it is important to analyse the transcriptional regulatory systems of AtNCED3. In the present study, we found that an overlapping G-box recognition sequence (5′-CACGTG-3′) at −2248 bp from the transcriptional start site of AtNCED3 is an important cis-acting element in the induction of the dehydration response. We discuss the possible transcriptional regulatory system of dehydration-responsive AtNCED3 expression, and how this may control the level of ABA under water-deficit conditions. PMID:23604098

  5. Arabidopsis GCP3-interacting protein 1/MOZART 1 is an integral component of the γ-tubulin-containing microtubule nucleating complex.

    Science.gov (United States)

    Nakamura, Masayoshi; Yagi, Noriyoshi; Kato, Takehide; Fujita, Satoshi; Kawashima, Noriyuki; Ehrhardt, David W; Hashimoto, Takashi

    2012-07-01

    Microtubules in eukaryotic cells are nucleated from ring-shaped complexes that contain γ-tubulin and a family of homologous γ-tubulin complex proteins (GCPs), but the subunit composition of the complexes can vary among fungi, animals and plants. Arabidopsis GCP3-interacting protein 1 (GIP1), a small protein with no homology to the GCP family, interacts with GCP3 in vitro, and is a plant homolog of vertebrate mitotic-spindle organizing protein associated with a ring of γ-tubulin 1 (MOZART1), a recently identified component of the γ-tubulin complex in human cell lines. In this study, we characterized two closely related Arabidopsis GIP1s: GIP1a and GIP1b. Single mutants of gip1a and gip1b were indistinguishable from wild-type plants, but their double mutant was embryonic lethal, and showed impaired development of male gametophytes. Functional fusions of GIP1a with green fluorescent protein (GFP) were used to purify GIP1a-containing complexes from Arabidopsis plants, which contained all the subunits (except NEDD1) previously identified in the Arabidopsis γ-tubulin complexes. GIP1a and GIP1b interacted specifically with Arabidopsis GCP3 in yeast. GFP-GIP1a labeled mitotic microtubule arrays in a pattern largely consistent with, but partly distinct from, the localization of the γ-tubulin complex containing GCP2 or GCP3 in planta. In interphase cortical arrays, the labeled complexes were preferentially recruited to existing microtubules, from which new microtubules were efficiently nucleated. However, in contrast to complexes labeled with tagged GCP2 or GCP3, their recruitment to cortical areas with no microtubules was rarely observed. These results indicate that GIP1/MOZART1 is an integral component of a subset of the Arabidopsis γ-tubulin complexes. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  6. Visualizing the genetic landscape of Arabidopsis seed performance.

    Science.gov (United States)

    Joosen, Ronny Viktor Louis; Arends, Danny; Willems, Leo Albert Jan; Ligterink, Wilco; Jansen, Ritsert C; Hilhorst, Henk W M

    2012-02-01

    Perfect timing of germination is required to encounter optimal conditions for plant survival and is the result of a complex interaction between molecular processes, seed characteristics, and environmental cues. To detangle these processes, we made use of natural genetic variation present in an Arabidopsis (Arabidopsis thaliana) Bayreuth × Shahdara recombinant inbred line population. For a detailed analysis of the germination response, we characterized rate, uniformity, and maximum germination and discuss the added value of such precise measurements. The effects of after-ripening, stratification, and controlled deterioration as well as the effects of salt, mannitol, heat, cold, and abscisic acid (ABA) with and without cold stratification were analyzed for these germination characteristics. Seed morphology (size and length) of both dry and imbibed seeds was quantified by using image analysis. For the overwhelming amount of data produced in this study, we developed new approaches to perform and visualize high-throughput quantitative trait locus (QTL) analysis. We show correlation of trait data, (shared) QTL positions, and epistatic interactions. The detection of similar loci for different stresses indicates that, often, the molecular processes regulating environmental responses converge into similar pathways. Seven major QTL hotspots were confirmed using a heterogeneous inbred family approach. QTLs colocating with previously reported QTLs and well-characterized mutants are discussed. A new connection between dormancy, ABA, and a cripple mucilage formation due to a naturally occurring mutation in the MUCILAGE-MODIFIED2 gene is proposed, and this is an interesting lead for further research on the regulatory role of ABA in mucilage production and its multiple effects on germination parameters.

  7. Biochemical characterization of the triticale TsPAP1, a new type of plant prolyl aminopeptidase, and its impact on proline content and flowering time in transgenic Arabidopsis plants.

    Science.gov (United States)

    Zdunek-Zastocka, Edyta; Grabowska, Agnieszka; Branicki, Tomasz; Michniewska, Beata

    2017-07-01

    Proline aminopeptidase (PAP, EC 3.4.11.5) is the only enzyme that effectively releases proline from the N-termini of peptides. The amino acid sequence of the PAP from Triticosecale, TsPAP1, comprises conserved regions, characteristic of the monomeric forms of PAP found in bacteria but not yet identified in plants. Therefore, we aimed to obtain and biochemically characterize the TsPAP1 protein. The recombinant TsPAP1 protein was received through heterologous expression of the TsPAP1 coding sequence in a bacterial expression system and purified with affinity chromatography. Gel filtration chromatography and SDS electrophoresis revealed that TsPAP1 is a monomer with a molecular mass of 37.5 kDa. TsPAP1 prefers substrates with proline at the N-terminus but is also capable of hydrolyzing β-naphthylamides of hydroxyproline and alanine. Among the peptides tested, the most preferred were di- and tripeptides, especially those with glycine in the Y position. The use of diagnostic inhibitors indicated that TsPAP1 is a serine peptidase; however, further characterization revealed that the SH residues are also important for maintaining its activity. To examine the role of TsPAP1 under physiological conditions, we developed transgenic Arabidopsis plants overexpressing TsPAP1. Compared with wild-type plants, the transgenic lines accumulated more proline, flowered an average of 3.5 days earlier, and developed more siliques than did untransformed controls. Our paper is the first to describe the biochemical properties of a novel monomeric plant PAP and contributes to the functional characterization of PAP proteins in plants. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Molecular characterization of two cloned nitrilases from Arabidopsis thaliana: key enzymes in biosynthesis of the plant hormone indole-3-acetic acid.

    Science.gov (United States)

    Bartling, D; Seedorf, M; Schmidt, R C; Weiler, E W

    1994-01-01

    As in maize [Wright, A.D., Sampson, M. B., Neuffer, M. G., Michalczuk, L., Slovin, J. P. & Cohen, J. D. (1991) Science 254, 998-1000], the major auxin of higher plants, indole-3-acetic acid, is synthesized mainly via a nontryptophan pathway in Arabidopsis thaliana [Normanly, J., Cohen, J. D. & Fink, G. R. (1993) Proc. Natl. Acad. Sci. USA 90, 10355-10359]. In the latter species, the hormone may be accessible from the glucosinolate glucobrassicin (indole-3-methyl glucosinolate) and from L-tryptophan via indoleacetaldoxime under special circumstances. In each case, indole-3-acetonitrile is the immediate precursor, which is converted into indole-3-acetic acid through the action of nitrilase (nitrile aminohydrolase, EC 3.5.5.1). The genome of A. thaliana contains two nitrilase genes. Nitrilase I had been cloned earlier in our laboratory. The cDNA for nitrilase II (PM255) was cloned and encodes an enzyme that converts indole-3-acetonitrile to indole-3-acetic acid, the plant hormone. We show that the intracellular location as well as the expression pattern of the two A. thaliana nitrilases are distinctly different. Nitrilase I is soluble and is expressed throughout development, but at a very low level during the fruiting stage, while nitrilase II is tightly associated with the plasma membrane, is barely detectable in young rosettes, but is strongly expressed during bolting, flowering, and especially fruit development. The results indicate that more than one pathway of indole-3-acetic acid biosynthesis via indole-3-acetonitrile exists in A. thaliana and that these pathways are differentially regulated throughout plant development. Images PMID:8016109

  9. Biochemical and biophysical characterization of the selenium-binding and reducing site in Arabidopsis thaliana homologue to mammals selenium-binding protein 1.

    Science.gov (United States)

    Schild, Florie; Kieffer-Jaquinod, Sylvie; Palencia, Andrés; Cobessi, David; Sarret, Géraldine; Zubieta, Chloé; Jourdain, Agnès; Dumas, Renaud; Forge, Vincent; Testemale, Denis; Bourguignon, Jacques; Hugouvieux, Véronique

    2014-11-14

    The function of selenium-binding protein 1 (SBP1), present in almost all organisms, has not yet been established. In mammals, SBP1 is known to bind the essential element selenium but the binding site has not been identified. In addition, the SBP family has numerous potential metal-binding sites that may play a role in detoxification pathways in plants. In Arabidopsis thaliana, AtSBP1 over-expression increases tolerance to two toxic compounds for plants, selenium and cadmium, often found as soil pollutants. For a better understanding of AtSBP1 function in detoxification mechanisms, we investigated the chelating properties of the protein toward different ligands with a focus on selenium using biochemical and biophysical techniques. Thermal shift assays together with inductively coupled plasma mass spectrometry revealed that AtSBP1 binds selenium after incubation with selenite (SeO3(2-)) with a ligand to protein molar ratio of 1:1. Isothermal titration calorimetry confirmed the 1:1 stoichiometry and revealed an unexpectedly large value of binding enthalpy suggesting a covalent bond between selenium and AtSBP1. Titration of reduced Cys residues and comparative mass spectrometry on AtSBP1 and the purified selenium-AtSBP1 complex identified Cys(21) and Cys(22) as being responsible for the binding of one selenium. These results were validated by site-directed mutagenesis. Selenium K-edge x-ray absorption near edge spectroscopy performed on the selenium-AtSBP1 complex demonstrated that AtSBP1 reduced SeO3(2-) to form a R-S-Se(II)-S-R-type complex. The capacity of AtSBP1 to bind different metals and selenium is discussed with respect to the potential function of AtSBP1 in detoxification mechanisms and selenium metabolism. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. The Arabidopsis cytosolic proteome

    DEFF Research Database (Denmark)

    Ito, Jun; Parsons, Harriet Tempé; Heazlewood, Joshua L.

    2014-01-01

    compartments. However, a detailed study of enriched cytosolic fractions from Arabidopsis cell culture has been performed only recently, with over 1,000 proteins reproducibly identified by mass spectrometry. The number of proteins allocated to the cytosol nearly doubles to 1,802 if a series of targeted...... proteomic characterizations of complexes is included. Despite this, few groups are currently applying advanced proteomic approaches to this important metabolic space. This review will highlight the current state of the Arabidopsis cytosolic proteome since its initial characterization a few years ago....

  11. Arabidopsis transcriptional responses differentiating closely related chemicals (herbicides) and cross-species extrapolation to Brassica

    Science.gov (United States)

    Using whole genome Affymetrix ATH1 GeneChips we characterized the transcriptional response of Arabidopsis thaliana Columbia 24 hours after treatment with five different herbicides. Four of them (chloransulam, imazapyr, primisulfuron, sulfometuron) inhibit acetolactate synthase (A...

  12. Subgroup-specific intrinsic disorder profiles of arabidopsis NAC transcription factors

    DEFF Research Database (Denmark)

    Stender, Emil G.; O'Shea, Charlotte; Skriver, Karen

    2015-01-01

    Protein intrinsic disorder (ID), referring to the lack of a fixed tertiary structure, is significant in signaling and transcription. We recently characterized ID in 6 phylogenetically representative Arabidopsis thaliana NAC transcription factors. Their transcription regulatory domains are mostly...

  13. Genetic Characterization of a Novel HIV-1 Circulating Recombinant Form (CRF74_01B) Identified among Intravenous Drug Users in Malaysia: Recombination History and Phylogenetic Linkage with Previously Defined Recombinant Lineages.

    Science.gov (United States)

    Cheong, Hui Ting; Chow, Wei Zhen; Takebe, Yutaka; Chook, Jack Bee; Chan, Kok Gan; Al-Darraji, Haider Abdulrazzaq Abed; Koh, Clayton; Kamarulzaman, Adeeba; Tee, Kok Keng

    2015-01-01

    In many parts of Southeast Asia, the HIV-1 epidemic has been driven by the sharing of needles and equipment among intravenous drug users (IDUs). Over the last few decades, many studies have proven time and again that the diversity of HIV-1 epidemics can often be linked to the route of infection transmission. That said, the diversity and complexity of HIV-1 molecular epidemics in the region have been increasing at an alarming rate, due in part to the high tendency of the viral RNA to recombine. This scenario was exemplified by the discovery of numerous circulating recombinant forms (CRFs), especially in Thailand and Malaysia. In this study, we characterized a novel CRF designated CRF74_01B, which was identified in six epidemiologically unlinked IDUs in Kuala Lumpur, Malaysia. The near-full length genomes were composed of CRF01_AE and subtype B', with eight breakpoints dispersed in the gag-pol and nef regions. Remarkably, this CRF shared four and two recombination hotspots with the previously described CRF33_01B and the less prevalent CRF53_01B, respectively. Genealogy-based Bayesian phylogenetic analysis of CRF74_01B genomic regions showed that it is closely related to both CRF33_01B and CRF53_01B. This observation suggests that CRF74_01B was probably a direct descendent from specific lineages of CRF33_01B, CRF53_01B and subtype B' that could have emerged in the mid-1990s. Additionally, it illustrated the active recombination processes between prevalent HIV-1 subtypes and recombinants in Malaysia. In summary, we report a novel HIV-1 genotype designated CRF74_01B among IDUs in Kuala Lumpur, Malaysia. The characterization of the novel CRF74_01B is of considerable significance towards the understanding of the genetic diversity and population dynamics of HIV-1 circulating in the region.

  14. Telomere-binding proteins of Arabidopsis thaliana.

    Science.gov (United States)

    Zentgraf, U

    1995-02-01

    The nucleoprotein structure of Arabidopsis thaliana telomeres was investigated. A protein specifically binding to telomeric sequences was characterized by gel mobility shift assays with synthetic oligonucleotides consisting of four 7 bp telomeric repeats of Arabidopsis (TTTAGGG) and crude nuclear protein extracts of Arabidopsis leaves. These DNA-protein binding studies revealed that the binding affinity of this telomere-binding protein to the G-rich single-strand as well as to the double-stranded telomeric DNA is much higher than to the C-rich single-strand. The molecular mass of the protein was identified by SDS-PAGE to be 67 kDa. The isoelectric points were determined to be 5.0, 4.85 and 4.7, respectively, indicating that either one protein with different modifications or three slightly different proteins have been isolated. An RNA component, possibly serving as a template for reverse transcription of a plant telomerase, does not mediate the DNA-protein contact because the DNA-protein interactions were not RNAse-sensitive.

  15. Identification and functional characterization of the Arabidopsis Snf1-related protein kinase SnRK2.4 phosphatidic acid-binding domain

    NARCIS (Netherlands)

    Julkowska, M.M.; McLoughlin, F.; Galvan-Ampudia, C.S.; Rankenberg, J.M.; Kawa, D.; Klimecka, M.; Haring, M.A.; Munnik, T.; Kooijman, E.E.; Testerink, C.

    2015-01-01

    Phosphatidic acid (PA) is an important signalling lipid involved in various stress-induced signalling cascades. Two SnRK2 protein kinases (SnRK2.4 and SnRK2.10), previously identified as PA-binding proteins, are shown here to prefer binding to PA over other anionic phospholipids and to associate

  16. Arabidopsis transcriptional responses differentiate between O3 and herbicides

    Science.gov (United States)

    Using published data based on Affymetrix ATH1 Gene-Chips we characterized the transcriptional response of Arabidopsis thaliana Columbia to O3 and a few other major environmental stresses including oxidative stress . A set of 101 markers could be extracted which provided a compo...

  17. DOG1-like genes in cereals: investigation of their function by means of ectopic expression in Arabidopsis.

    Science.gov (United States)

    Ashikawa, Ikuo; Abe, Fumitaka; Nakamura, Shingo

    2013-07-01

    The Arabidopsis gene DOG1 (AtDOG1) functions in seed dormancy and in sugar signaling. Little is known about the structural and functional features of plant genes homologous to AtDOG1, except for one type (clade 1) of Triticeae AtDOG1-like genes, which was previously demonstrated to be functionally orthologous to AtDOG1. Here, through phylogenetic, structural, and functional analyses of cereal AtDOG1-like genes, we characterized their features: these genes exist as a gene family that can be classified into five distinct clades (1-5). Of these, AtDOG1-like genes in clades 1-4 have a similar architecture to AtDOG1: they encode proteins with three conserved regions. In contrast, the clade 5 genes are distinct; their encoded proteins lack these conserved regions, but harbor domains that interact with DNA. Ectopic expression of the cereal AtDOG1-like genes of clades 2-4 in Arabidopsis demonstrated that like the clade 1 genes, they performed the same function as AtDOG1. The correlation between the depth of seed dormancy and the efficiency of sugar signaling in transgenic Arabidopsis conferred by genes in clades 1-4 suggests a close link in the underlying mechanisms between the seed dormancy and sugar signaling functions of AtDOG1. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Identifying the transition to the maturation zone in three ecotypes of Arabidopsis thaliana roots.

    Science.gov (United States)

    Cajero Sánchez, Wendy; García-Ponce, Berenice; Sánchez, María de la Paz; Álvarez-Buylla, Elena R; Garay-Arroyo, Adriana

    2018-01-01

    The Arabidopsis thaliana (hereafter Arabidopsis) root has become a useful model for studying how organ morphogenesis emerge from the coordination and balance of cell proliferation and differentiation, as both processes may be observed and quantified in the root at different stages of development. Hence, being able to objectively identify and delimit the different stages of root development has been very important. Up to now, three different zones along the longitudinal axis of the primary root of Arabidopsis, have been identified: the root apical meristematic zone (RAM) with two domains [the proliferative (PD) and the transition domain (TD)], the elongation zone (EZ) and the maturation zone (MZ). We previously reported a method to quantify the length of the cells of the meristematic and the elongation zone, as well as the boundaries or transitions between the root domains along the growing part of the Arabidopsis root. In this study, we provide a more accurate criterion to identify the MZ. Traditionally, the transition between the EZ to the MZ has been established by the emergence of the first root-hair bulge in the epidermis, because this emergence coincides with cell maturation in this cell type. But we have found here that after the emergence of the first root-hair bulge some cells continue to elongate and we have confirmed this in three different Arabidopsis ecotypes. We established the limit between the EZ and the MZ by looking for the closest cortical cell with a longer length than the average cell length of 10 cells after the cortical cell closest to the epidermal cell with the first root-hair bulge in these three ecotypes. In Col-0 and Ws this cell is four cells above the one with the root hair bulge and, in the Ler ecotype, this cell is five cells above. To unambiguously identifying the site at which cells stop elongating and attain their final length and fate at the MZ, we propose to calculate the length of completely elongated cortical cells counting 10

  19. CsAP3: a cucumber homolog to Arabidopsis APETALA3 with novel characteristics

    Directory of Open Access Journals (Sweden)

    Jinjing Sun

    2016-08-01

    Full Text Available In our previous efforts to understand the regulatory mechanisms of cucumber unisexual flower development, we observed a stamen-specific down-regulation of the ethylene receptor CsETR1 in stage 6 female flowers of cucumber (Cucumis sativus L. This down-regulation is correlated with the primordial anther-specific DNA damage that characterizes inappropriate stamen development in cucumber female flowers. To understand how CsETR1 is down regulated in the stamen, we characterized a cucumber MADS box gene homologous to Arabidopsis AP3, CsAP3. We demonstrated that CsAP3 is functionally equivalent to the Arabidopsis B-class MADS gene AP3. However, three novel characteristics of CsAP3 were found. These include firstly, binding and activating CsETR1 promoter in vitro and in vivo; secondly, containing a GV repeat in its C-terminus, which is conserved in cucurbits and required for the transcription activation; and thirdly, decreased expression as the node number increases, which is similar to that found for CsETR1. These findings revealed not only the conserved function of CsAP3 as a B-class floral identity gene, but also its unique functions in regulation of female flower development in cucumber.

  20. Molecular and Genetic Analysis of Hormone-Regulated Differential Cell Elongation in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, Joseph R.

    2005-09-15

    We have utilized the response of Arabidopsis seedlings to the plant hormone ethylene to identify new genes involved in the regulation of ethylene biosynthesis, perception, signal transduction and differential cell growth. In building a genetic framework for the action of these genes, we have developed a molecular model that has facilitated our understanding of the molecular requirements of ethylene for cell elongation processes. The ethylene response pathway in Arabidopsis appears to be primarily linear and is defined by the genes: ETR1, ETR2, ERS1, ERS2, EIN4, CTR1, EIN2, EIN3, EIN5, EIN6, and EIN. Downstream branches identified by the HLS1, EIR1, and AUX1 genes involve interactions with other hormonal (auxin) signals in the process of differential cell elongation in the hypocotyl hook. Cloning and characterization of HLS1 (and three HLL genes) and ETO1 (and ETOL genes) in my laboratory has been supported under this award. HLS1 is required for differential elongation of cells in the hypocotyl and may act in the establishment of hormone gradients. Also during the previous period, we have identified and characterized a gene that genetically acts upstream of the ethylene receptors. ETO1 encodes negative regulators of ethylene biosynthesis.

  1. An Arabidopsis jmjC domain protein protects transcribed genes from DNA methylation at CHG sites.

    Science.gov (United States)

    Miura, Asuka; Nakamura, Miyuki; Inagaki, Soichi; Kobayashi, Akie; Saze, Hidetoshi; Kakutani, Tetsuji

    2009-04-22

    Differential cytosine methylation of genes and transposons is important for maintaining integrity of plant genomes. In Arabidopsis, transposons are heavily methylated at both CG and non-CG sites, whereas the non-CG methylation is rarely found in active genes. Our previous genetic analysis suggested that a jmjC domain-containing protein IBM1 (increase in BONSAI methylation 1) prevents ectopic deposition of non-CG methylation, and this process is necessary for normal Arabidopsis development. Here, we directly determined the genomic targets of IBM1 through high-resolution genome-wide analysis of DNA methylation. The ibm1 mutation induced extensive hyper-methylation in thousands of genes. Transposons were unaffected. Notably, long transcribed genes were most severely affected. Methylation of genes is limited to CG sites in wild type, but CHG sites were also methylated in the ibm1 mutant. The ibm1-induced hyper-methylation did not depend on previously characterized components of the RNAi-based DNA methylation machinery. Our results suggest novel transcription-coupled mechanisms to direct genic methylation not only at CG but also at CHG sites. IBM1 prevents the CHG methylation in genes, but not in transposons.

  2. Genes encoding calmodulin-binding proteins in the Arabidopsis genome

    Science.gov (United States)

    Reddy, Vaka S.; Ali, Gul S.; Reddy, Anireddy S N.

    2002-01-01

    Analysis of the recently completed Arabidopsis genome sequence indicates that approximately 31% of the predicted genes could not be assigned to functional categories, as they do not show any sequence similarity with proteins of known function from other organisms. Calmodulin (CaM), a ubiquitous and multifunctional Ca(2+) sensor, interacts with a wide variety of cellular proteins and modulates their activity/function in regulating diverse cellular processes. However, the primary amino acid sequence of the CaM-binding domain in different CaM-binding proteins (CBPs) is not conserved. One way to identify most of the CBPs in the Arabidopsis genome is by protein-protein interaction-based screening of expression libraries with CaM. Here, using a mixture of radiolabeled CaM isoforms from Arabidopsis, we screened several expression libraries prepared from flower meristem, seedlings, or tissues treated with hormones, an elicitor, or a pathogen. Sequence analysis of 77 positive clones that interact with CaM in a Ca(2+)-dependent manner revealed 20 CBPs, including 14 previously unknown CBPs. In addition, by searching the Arabidopsis genome sequence with the newly identified and known plant or animal CBPs, we identified a total of 27 CBPs. Among these, 16 CBPs are represented by families with 2-20 members in each family. Gene expression analysis revealed that CBPs and CBP paralogs are expressed differentially. Our data suggest that Arabidopsis has a large number of CBPs including several plant-specific ones. Although CaM is highly conserved between plants and animals, only a few CBPs are common to both plants and animals. Analysis of Arabidopsis CBPs revealed the presence of a variety of interesting domains. Our analyses identified several hypothetical proteins in the Arabidopsis genome as CaM targets, suggesting their involvement in Ca(2+)-mediated signaling networks.

  3. Sensitive detection and measurement of oligogalacturonides in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Daniela ePontiggia

    2015-04-01

    Full Text Available Oligogalacturonides (OGs are pectin fragments derived from the partial hydrolysis of the plant cell wall pectin; they are elicitors of various defense responses. While their activity is well documented, the detection of OGs produced in planta is still a challenging task.A protocol has been developed for the extraction and analysis of OGs from small samples of Arabidopsis tissues by using fluorescent labelled OGs, which allowed to monitor the efficiency of extraction. An efficient recovery was obtained by using a combination of calcium chelating agents at acidic pH. Off-line coupling of HPAEC with MALDI-TOF-MS or nanoESI-Orbitrap-MS/MS was used for the identification and characterization of oligosaccharides. The protocol was successfully applied to detect OGs by using low amounts (50 mg of Arabidopsis leaves and very low amounts (30 mg of senescent leaves. The protocol was also successfully used to detect OGs in Arabidopsis cell wall material digested with pectinases.The proposed extraction protocol followed by sensitive and high-resolution analysis methods allowed detection of OGs released from the cell wall in Arabidopsis tissues by using minimal sample material. The protocol may be useful to study OG-triggered plant immunity and cell wall remodeling during Arabidopsis growth and development.

  4. Sensitive detection and measurement of oligogalacturonides in Arabidopsis

    Science.gov (United States)

    Pontiggia, Daniela; Ciarcianelli, Jacopo; Salvi, Gianni; Cervone, Felice; De Lorenzo, Giulia; Mattei, Benedetta

    2015-01-01

    Oligogalacturonides (OGs) are pectin fragments derived from the partial hydrolysis of the plant cell wall pectin; they are elicitors of various defense responses. While their activity is well documented, the detection of OGs produced in planta is still a challenging task. A protocol has been developed for the extraction and analysis of OGs from small samples of Arabidopsis tissues by using fluorescent labeled OGs, which allowed to monitor the efficiency of extraction. An efficient recovery was obtained by using a combination of calcium chelating agents at acidic pH. Off-line coupling of high performance anion exchange chromatography with matrix assisted laser desorption ionization- time of flight-mass spectrometryor nanoESI-Orbitrap-MS/MS was used for the identification and characterization of oligosaccharides. The protocol was successfully applied to detect OGs by using low amounts (50 mg) of Arabidopsis leaves and very low amounts (30 mg) of senescent leaves. The protocol was also successfully used to detect OGs in Arabidopsis cell wall material digested with pectinases. The proposed extraction protocol followed by sensitive and high-resolution analysis methods allowed detection of OGs released from the cell wall in Arabidopsis tissues by using minimal sample material. The protocol may be useful to study OG-triggered plant immunity and cell wall remodeling during Arabidopsis growth and development. PMID:25954288

  5. Reference: 624 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available on of dihydrocamalexic acid to camalexin by CYP71B15 (PAD3). This article reports... characterization of CYP71A13. Plants carrying cyp71A13 mutations produce greatly reduced amounts of camalexin...f CYP79B2 and CYP71A13 in Nicotiana benthamiana resulted in conversion of Trp to IAN. Exogenously supplied IAN restored camalexin...hat CYP71A13 catalyzes the conversion of IAOx to IAN in camalexin synthesis and p...rovide further support for the role of camalexin in resistance to A. brassicicola. Arabidopsis cytochrome P4

  6. Reference: 462 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available . ATAF1 was one of the first identified NAC proteins in Arabidopsis. In present study, we characterized the ATAF1 express...ion and biological function in response to water deficit stress. ATAF1 mRNA express...ater treatment, suggesting a general role in drought stress responses. Transient expression analysis in onio...otein. Yeast transactivation analysis showed that ATAF1 had ability to activate reporter gene expression. Fu...ught response test. This ataf1 phenotype was coincident with the enhanced expression of stress responsive ma

  7. Classification and phylogenetic analyses of the Arabidopsis and tomato G-type lectin receptor kinases.

    Science.gov (United States)

    Teixeira, Marcella A; Rajewski, Alex; He, Jiangman; Castaneda, Olenka G; Litt, Amy; Kaloshian, Isgouhi

    2018-04-06

    Pathogen perception by plants is mediated by plasma membrane-localized immune receptors that have varied extracellular domains. Lectin receptor kinases (LecRKs) are among these receptors and are subdivided into 3 classes, C-type LecRKs (C-LecRKs), L-type LecRKs (L-LecRKs) and G-type LecRKs (G-LecRKs). While C-LecRKs are represented by one or two members in all plant species investigated and have unknown functions, L-LecRKs have been characterized in a few plant species and have been shown to play roles in plant defense against pathogens. Whereas Arabidopsis G-LecRKs have been characterized, this family of LecRKs has not been studied in tomato. This investigation updates the current characterization of Arabidopsis G-LecRKs and characterizes the tomato G-LecRKs, using LecRKs from the monocot rice and the basal eudicot columbine to establish a basis for comparisons between the two core eudicots. Additionally, revisiting parameters established for Arabidopsis nomenclature for LecRKs is suggested for both Arabidopsis and tomato. Moreover, using phylogenetic analysis, we show the relationship among and between members of G-LecRKs from all three eudicot plant species. Furthermore, investigating presence of motifs in G-LecRKs we identified conserved motifs among members of G-LecRKs in tomato and Arabidopsis, with five present in at least 30 of the 38 Arabidopsis members and in at least 45 of the 73 tomato members. This work characterized tomato G-LecRKs and added members to the currently characterized Arabidopsis G-LecRKs. Additionally, protein sequence analysis showed an expansion of this family in tomato as compared to Arabidopsis, and the existence of conserved common motifs in the two plant species as well as conserved species-specific motifs.

  8. The Arabidopsis Family GT43 Glycosyltransferases Form Two Functionally Nonredundant Groups Essential for the Elongation of Glucuronoxylan Backbone

    Science.gov (United States)

    There exist four members of family GT43 glycosyltransferases in the Arabidopsis (Arabidopsis thaliana) genome, and mutations of two of them, IRX9 and IRX14, have previously been shown to cause a defect in glucuronoxylan (GX) biosynthesis. However, it is currently unknown whether ...

  9. An Arabidopsis callose synthase

    DEFF Research Database (Denmark)

    Ostergaard, Lars; Petersen, Morten; Mattsson, Ole

    2002-01-01

    in the Arabidopsis mpk4 mutant which exhibits systemic acquired resistance (SAR), elevated beta-1,3-glucan synthase activity, and increased callose levels. In addition, AtGsl5 is a likely target of salicylic acid (SA)-dependent SAR, since AtGsl5 mRNA accumulation is induced by SA in wild-type plants, while...... expression of the nahG salicylate hydroxylase reduces AtGsl5 mRNA levels in the mpk4 mutant. These results indicate that AtGsl5 is likely involved in callose synthesis in flowering tissues and in the mpk4 mutant....

  10. Reference: 705 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available w that in Arabidopsis thaliana, the degree of H3K36 methylation is regulated by distinct methyltransferases. The SET2 homologs SDG...8 and SDG26 each can methylate oligonucleosomes in vitro, and both proteins are locali...zed in the nucleus. While the previously reported loss-of-function sdg8 mutants h...ave an early-flowering phenotype, the loss-of-function sdg26 mutants show a late-flowering phenotype. Consis...tently, several MADS-box flowering repressors are down-regulated by sdg8 but up-regulated by sdg26. The sdg8 but not the sdg

  11. Arabidopsis peroxisome proteomics

    Directory of Open Access Journals (Sweden)

    John D. Bussell

    2013-04-01

    Full Text Available The analytical depth of investigation of the peroxisomal proteome of the model plant Arabidopsis thaliana has not yet reached that of other major cellular organelles such as chloroplasts or mitochondria. This is primarily due to the difficulties associated with isolating and obtaining purified samples of peroxisomes from Arabidopsis. So far only a handful of research groups have been successful in obtaining such fractions. To make things worse, enriched peroxisome fractions frequently suffer from significant organellar contamination, lowering confidence in localization assignment of the identified proteins. As with other cellular compartments, identification of peroxisomal proteins forms the basis for investigations of the dynamics of the peroxisomal proteome. It is therefore not surprising that, in terms of functional analyses by proteomic means, there remains a considerable gap between peroxisomes and chloroplasts or mitochondria. Alternative strategies are needed to overcome the obstacle of hard-to-obtain organellar fractions. This will help to close the knowledge gap between peroxisomes and other organelles and provide a full picture of the physiological pathways shared between organelles. In this review we briefly summarize the status quo and discuss some of the methodological alternatives to classic organelle proteomic approaches.

  12. Identification of Arabidopsis BAK1-associating receptor-like kinase 1 (BARK1) and characterization of its gene expression and brassinosteroid-regulated root phenotypes.

    Science.gov (United States)

    Kim, Min Hee; Kim, Yoon; Kim, Ju Won; Lee, Hyun-Suk; Lee, Woo Sung; Kim, Seong-Ki; Wang, Zhi-Yong; Kim, Soo-Hwan

    2013-10-01

    Brassinosteroids (BRs) activate the BRI1 and BAK1/SERK3 membrane receptor complex, which leads to a wide range of changes in gene expression, plant growth and development. As an initial step to elucidate additional roles of BAK1, we cloned a BAK1-binding protein, BAK1-Associating Receptor-Like Kinase 1 (BARK1), and characterized its gene expression and root phenotypes. BARK1 is a putative membrane LRR-RLK (leucine-rich repeat receptor-like kinase) protein that specifically binds to BAK1 and its homologs. Careful examination of BARK1 expression using transgenic plants expressing a green fluorescent protein (GFP) reporter under the control of the native BARK1 promoter (BARK1p::GFP) revealed that this gene is ubiquitously expressed in most plant tissues, and shows especially strong expression in the xylem vasculature of primary and lateral roots as well as in mature pollen. Interestingly, the expression of the BARK1 gene was increased in the BR biosynthetic loss-of-function mutant, det2, and a loss-of-function mutant of BR signaling, bak1-3. In contrast, this gene was down-regulated in the bzr1-1D plant, which is a BR signal gain-of-function mutant. BARK1-overexpressing transgenic plants clearly enhanced primary root growth in a dose-dependent manner, and their roots were hypersensitive to BR-induced root growth inhibition. In addition, both the number and density of lateral roots were dramatically increased in the BARK1 transgenic plants in a dose-dependent manner. Together with observations that ARF (AUXIN RESPONSE FACTOR) genes are up-regulated in the BARK1 overexpressor, we suggest that the BARK1 overexpressor phenotype with more lateral roots is partly due to the increased expression of ARF genes in this genetic background. In conclusion, BAK1-interacting BARK1 protein may be involved in BR-mediated plant growth and development such as in lateral roots via auxin regulation.

  13. Transgenic Arabidopsis Gene Expression System

    Science.gov (United States)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  14. Study of genes induced by ionizing radiations at Arabidopsis thaliana: identification and molecular characterization of the ATGR1 gene, a new gene encoding a protein involved in plant cell division

    International Nuclear Information System (INIS)

    Deveaux, Yves

    1999-01-01

    DNA damage, that can be experimentally introduced by ionizing radiation (IR), induces complex signal transduction pathways leading to cell recovery or, alternatively to programmed cell death if damages are too severe. To identify the inducible components of the response to genotoxic stress in plants, we have screened by Differential Display for mRNAs that rapidly and strongly accumulate after IR treatment in A. thaliana cells. We have characterized ATGR1, a new single copy Arabidopsis gene encoding a PEST-box protein of unknown function. In unstressed plant organs the ATGR1 mRNA is hardly detectable, whereas the protein is present in extracts prepared from roots, shoot meristems and inflorescences, that all contain large amounts of actively dividing cells. This pattern is confirmed by immuno localisation on tissue sections that shows constitutive ATGR1 protein expression covering the root elongation zone, the shoot meristem, leaf primordial and the ovules of developing flowers. Histochemical analysis of transgenic plants expressing the GUS reporter gene under the control of the ATGR1 promoter, demonstrate that the developmental and tissue-specific profile of ATGR1 protein expression is conferred by the gene promoter. The massive, transient and dose-dependent accumulation of ATGR1 transcripts after IR treatment observed in all plant organs does not lead to significant changes in ATGR1 protein pattern. Stable ATGR1 protein overexpression, as exemplified by transgenic A. thaliana plants that contain a 35S promoter-ATGR1 gene fusion, does not induce notable changes of the overall ATGR1 protein level, but leads to male and female sterility. The cause of sterility is a lack of correct chromosome assembly and distribution at the stage metaphase II of meiosis. Taken together our results show that i) ATGR1 gene expression is associated to cell division during plant development ii) the ATGR1 protein level is regulated at the transcriptional and post-transcriptional level iii

  15. Identification of an animal ω-3 fatty acid desaturase by heterologous expression in Arabidopsis

    OpenAIRE

    Spychalla, James P.; Kinney, Anthony J.; Browse, John

    1997-01-01

    In animals, fatty acid desaturases catalyze key reactions in the synthesis of arachidonic acid and other polyunsaturated fatty acids. A search of the Caenorhabditis elegans DNA databases, using the sequences of Arabidopsis genes, identified several putative desaturases. Here we describe the characterization of the first of these genes, fat-1. The predicted protein encoded by a fat-1 cDNA showed 32–35% identity with both FAD2 and FAD3 of Arabidopsis. When expressed in transgenic plants, fat-1 ...

  16. The function of OsbHLH068 is partially redundant with its homolog, AtbHLH112, in the regulation of the salt stress response but has opposite functions to control flowering in Arabidopsis.

    Science.gov (United States)

    Chen, Hung-Chi; Hsieh-Feng, Vicki; Liao, Pei-Chun; Cheng, Wan-Hsing; Liu, Li-Yu; Yang, Yun-Wei; Lai, Ming-Hsin; Chang, Men-Chi

    2017-07-01

    The homologous genes OsbHLH068 and AtbHLH112 have partially redundant functions in the regulation of the salt stress response but opposite functions to control flowering in Arabidopsis. The transcription factor (TF) basic/Helix-Loop-Helix (bHLH) is important for plant growth, development, and stress responses. OsbHLH068, which is a homologous gene of AtbHLH112 that is up-regulated under drought and salt stresses, as indicated by previous microarray data analysis. However, the intrinsic function of OsbHLH068 remains unknown. In the present study, we characterized the function and compared the role of OsbHLH068 with that of its homolog, AtbHLH112. Histochemical GUS staining indicated that OsbHLH068 and AtbHLH112 share a similar expression pattern in transgenic Arabidopsis during the juvenile-to-adult phase transition. Heterologous overexpression of OsbHLH068 in Arabidopsis delays seed germination, decreases salt-induced H 2 O 2 accumulation, and promotes root elongation, whereas AtbHLH112 knock-out mutant displays an opposite phenotype. Both OsbHLH068-overexpressing transgenic Arabidopsis seedlings and the Atbhlh112 mutant display a late-flowering phenotype. Moreover, the expression of OsbHLH068-GFP driven by an AtbHLH112 promoter can compensate for the germination deficiency in the Atbhlh112 mutant, but the delayed-flowering phenotype tends to be more severe. Further analysis by microarray and qPCR indicated that the expression of FT is down-regulated in both OsbHLH068-overexpressing Arabidopsis plants and Atbhlh112 mutant plants, whereas SOC1 but not FT is highly expressed in AtbHLH112-overexpressing Arabidopsis plants. A comparative transcriptomic analysis also showed that several stress-responsive genes, such as AtERF15 and AtPUB23, were affected in both OsbHLH068- and AtbHLH112-overexpressing transgenic Arabidopsis plants. Thus, we propose that OsbHLH068 and AtbHLH112 share partially redundant functions in the regulation of abiotic stress responses but have

  17. Differential regulation of an auxin-producing nitrilase gene family in Arabidopsis thaliana.

    Science.gov (United States)

    Bartel, B; Fink, G R

    1994-01-01

    Nitrilases (nitrile aminohydrolase, EC 3.5.5.1) convert nitriles to carboxylic acids. We report the cloning, characterization, and expression patterns of four Arabidopsis thaliana nitrilase genes (NIT1-4), one of which was previously described [Bartling, D., Seedorf, M., Mithöfer, A. & Weiler, E. W. (1992) Eur. J. Biochem. 205, 417-424]. The nitrilase genes encode very similar proteins that hydrolyze indole-3-acetonitrile to the phytohormone indole-3-acetic acid in vitro, and three of the four genes are tandemly arranged on chromosome III. Northern analysis using gene-specific probes and analysis of transgenic plants containing promoter-reporter gene fusions indicate that the four genes are differentially regulated. NIT2 expression is specifically induced around lesions caused by bacterial pathogen infiltration. The sites of nitrilase expression may represent sites of auxin biosynthesis in A. thaliana. Images PMID:8022831

  18. Reference: 783 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available xpression of the Arabidopsis 10-kilodalton acyl-coenzyme A-binding protein ACBP6 en...phospholipid metabolism in Arabidopsis, including the possibility of ACBP6 in the cytosolic trafficking of phosphatidylcholine. Overe

  19. Reference: 774 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available an essential gene, the disruption of which causes embryonic lethality. Plants carrying a hypomorphic smg7 mu...e progression from anaphase to telophase in the second meiotic division in Arabidopsis. Arabidopsis SMG7 is

  20. Arabidopsis CDS blastp result: AK240660 [KOME

    Lifescience Database Archive (English)

    Full Text Available al to auxin transport protein EIR1 [Arabidopsis thaliana] gi|3377507|gb|AAC39513; identical to root gravitropism control protein [Arabidopsis thaliana] gi|4322486|gb|AAD16060 2e-63 ...

  1. Arabidopsis CDS blastp result: AK240660 [KOME

    Lifescience Database Archive (English)

    Full Text Available al to auxin transport protein EIR1 [Arabidopsis thaliana] gi|3377507|gb|AAC39513; identical to root gravitropism control protein [Arabidopsis thaliana] gi|4322486|gb|AAD16060 3e-40 ...

  2. Reference: 173 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available mical approaches to elucidate the action mechanisms of sirtinol in Arabidopsis. A...tic and chemical analyses of the action mechanisms of sirtinol in Arabidopsis. 8 3129-34 15710899 2005 Feb P

  3. Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes

    Science.gov (United States)

    Matus, José Tomás; Aquea, Felipe; Arce-Johnson, Patricio

    2008-01-01

    Background The MYB superfamily constitutes the most abundant group of transcription factors described in plants. Members control processes such as epidermal cell differentiation, stomatal aperture, flavonoid synthesis, cold and drought tolerance and pathogen resistance. No genome-wide characterization of this family has been conducted in a woody species such as grapevine. In addition, previous analysis of the recently released grape genome sequence suggested expansion events of several gene families involved in wine quality. Results We describe and classify 108 members of the grape R2R3 MYB gene subfamily in terms of their genomic gene structures and similarity to their putative Arabidopsis thaliana orthologues. Seven gene models were derived and analyzed in terms of gene expression and their DNA binding domain structures. Despite low overall sequence homology in the C-terminus of all proteins, even in those with similar functions across Arabidopsis and Vitis, highly conserved motif sequences and exon lengths were found. The grape epidermal cell fate clade is expanded when compared with the Arabidopsis and rice MYB subfamilies. Two anthocyanin MYBA related clusters were identified in chromosomes 2 and 14, one of which includes the previously described grape colour locus. Tannin related loci were also detected with eight candidate homologues in chromosomes 4, 9 and 11. Conclusion This genome wide transcription factor analysis in Vitis suggests that clade-specific grape R2R3 MYB genes are expanded while other MYB genes could be well conserved compared to Arabidopsis. MYB gene abundance, homology and orientation within particular loci also suggests that expanded MYB clades conferring quality attributes of grapes and wines, such as colour and astringency, could possess redundant, overlapping and cooperative functions. PMID:18647406

  4. A new cyanogenic metabolite in Arabidopsis required for inducible pathogen defence.

    Science.gov (United States)

    Rajniak, Jakub; Barco, Brenden; Clay, Nicole K; Sattely, Elizabeth S

    2015-09-17

    Thousands of putative biosynthetic genes in Arabidopsis thaliana have no known function, which suggests that there are numerous molecules contributing to plant fitness that have not yet been discovered. Prime among these uncharacterized genes are cytochromes P450 upregulated in response to pathogens. Here we start with a single pathogen-induced P450 (ref. 5), CYP82C2, and use a combination of untargeted metabolomics and coexpression analysis to uncover the complete biosynthetic pathway to 4-hydroxyindole-3-carbonyl nitrile (4-OH-ICN), a previously unknown Arabidopsis metabolite. This metabolite harbours cyanogenic functionality that is unprecedented in plants and exceedingly rare in nature; furthermore, the aryl cyanohydrin intermediate in the 4-OH-ICN pathway reveals a latent capacity for cyanogenic glucoside biosynthesis in Arabidopsis. By expressing 4-OH-ICN biosynthetic enzymes in Saccharomyces cerevisiae and Nicotiana benthamiana, we reconstitute the complete pathway in vitro and in vivo and validate the functions of its enzymes. Arabidopsis 4-OH-ICN pathway mutants show increased susceptibility to the bacterial pathogen Pseudomonas syringae, consistent with a role in inducible pathogen defence. Arabidopsis has been the pre-eminent model system for studying the role of small molecules in plant innate immunity; our results uncover a new branch of indole metabolism distinct from the canonical camalexin pathway, and support a role for this pathway in the Arabidopsis defence response. These results establish a more complete framework for understanding how the model plant Arabidopsis uses small molecules in pathogen defence.

  5. Reference: 765 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available el K et al. 2008 Jul. Plant Physiol. 147(3):1046-61. The genome of Arabidopsis (Arabidopsis thaliana) contai...ne family in Arabidopsis. 3 1046-61 18467451 2008 Jul Plant physiology Alerding Anne B|Bandara Aloka B|Crosby Kevin C|Owens Daniel K|Westwood James H|Winkel Brenda S J

  6. Reference: 278 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available nthia D et al. 2005 Oct. Plant Physiol. 139(2):722-33. Arabidopsis (Arabidopsis thaliana) mutants lacking a ... is involved in specific aspects of abscisic acid and auxin signaling in Arabidopsis. 2 722-33 16183844 2005 Oct Plant physio

  7. Reference: 222 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available g et al. 2005 Jun. Plant Physiol. 138(2):827-36. Arabidopsis (Arabidopsis thaliana) contains about 130 ATP-b...resistance in Arabidopsis. 2 827-36 15923333 2005 Jun Plant physiology Lee Joohyun|Lee Kiyoul|Lee Miyoung|Lee Youngsook|Noh Eun Woon

  8. Reference: 128 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available s et al. 2004 Nov. Plant Physiol. 136(3):3524-36. Arabidopsis (Arabidopsis thaliana) possesses two isoforms ...lism in mature leaves. Molecular physiological analysis of the two plastidic ATP/ADP transporters from Arabi...dopsis. 3 3524-36 15516503 2004 Nov Plant physiology Jeblick Wolfgang|Lemke Lilia|Linka Nicole|Neuhaus H Ekkehard|Reiser Jens

  9. Diuretics Prime Plant Immunity in Arabidopsis thaliana

    Science.gov (United States)

    Noutoshi, Yoshiteru; Ikeda, Mika; Shirasu, Ken

    2012-01-01

    Plant activators are agrochemicals that activate the plant immune system, thereby enhancing disease resistance. Due to their prophylactic and durable effects on a wide spectrum of diseases, plant activators can provide synergistic crop protection when used in combination with traditional pest controls. Although plant activators have achieved great success in wet-rice farming practices in Asia, their use is still limited. To isolate novel plant activators applicable to other crops, we screened a chemical library using a method that can selectively identify immune-priming compounds. Here, we report the isolation and characterization of three diuretics, bumetanide, bendroflumethiazide and clopamide, as immune-priming compounds. These drugs upregulate the immunity-related cell death of Arabidopsis suspension-cultured cells induced with an avirulent strain of Pseudomonas syringae pv. tomato in a concentration-dependent manner. The application of these compounds to Arabidopsis plants confers disease resistance to not only the avirulent but also a virulent strain of the pathogen. Unlike salicylic acid, an endogenous phytohormone that governs disease resistance in response to biotrophic pathogens, the three diuretic compounds analyzed here do not induce PR1 or inhibit plant growth, showing potential as lead compounds in a practical application. PMID:23144763

  10. Analysis of celery (Apium graveolens) mannitol dehydrogenase (Mtd) promoter regulation in Arabidopsis suggests roles for MTD in key environmental and metabolic responses.

    Science.gov (United States)

    Zamski, E; Guo, W W; Yamamoto, Y T; Pharr, D M; Williamson, J D

    2001-11-01

    Of the growing list of promising genes for plant improvement, some of the most versatile appear to be those involved in sugar alcohol metabolism. Mannitol, one of the best characterized sugar alcohols, is a significant photosynthetic product in many higher plants. The roles of mannitol as both a metabolite and an osmoprotectant in celery (Apium graveolens) are well documented. However, there is growing evidence that 'metabolites' can also have key roles in other environmental and developmental responses in plants. For instance, in addition to its other properties, mannitol is an antioxidant and may have significant roles in plant-pathogen interactions. The mannitol catabolic enzyme mannitol dehydrogenase (MTD) is a prime modulator of mannitol accumulation in plants. Because the complex regulation of MTD is central to the balanced integration of mannitol metabolism in celery, its study is crucial in clarifying the physiological role(s) of mannitol metabolism in environmental and metabolic responses. In this study we used transformed Arabidopsis to analyze the multiple environmental and metabolic responses of the Mtd promoter. Our data show that all previously described changes in Mtd RNA accumulation in celery cells mirrored changes in Mtd transcription in Arabidopsis. These include up-regulation by salicylic acid, hexokinase-mediated sugar down-regulation, and down-regulation by salt, osmotic stress and ABA. In contrast, the massive up-regulation of Mtd expression in the vascular tissues of salt-stressed Arabidopsis roots suggests a possible role for MTD in mannitol translocation and unloading and its interrelation with sugar metabolism.

  11. Arabidopsis thaliana peroxidase N

    DEFF Research Database (Denmark)

    Mirza, Osman Asghar; Henriksen, A; Ostergaard, L

    2000-01-01

    The structure of the neutral peroxidase from Arabidopsis thaliana (ATP N) has been determined to a resolution of 1.9 A and a free R value of 20.5%. ATP N has the expected characteristic fold of the class III peroxidases, with a C(alpha) r.m.s.d. of 0.82 A when compared with horseradish peroxidase C...... (HRP C). HRP C is 54% identical to ATP N in sequence. When the structures of four class III plant peroxidases are superimposed, the regions with structural differences are non-randomly distributed; all are located in one half of the molecule. The architecture of the haem pocket of ATP N is very similar...... to that of HRP C, in agreement with the low small-molecule substrate specificity of all class III peroxidases. The structure of ATP N suggests that the pH dependence of the substrate turnover will differ from that of HRP C owing to differences in polarity of the residues in the substrate-access channel. Since...

  12. Arabidopsis thaliana—Aphid Interaction

    Science.gov (United States)

    Louis, Joe; Singh, Vijay; Shah, Jyoti

    2012-01-01

    Aphids are important pests of plants that use their stylets to tap into the sieve elements to consume phloem sap. Besides the removal of photosynthates, aphid infestation also alters source-sink patterns. Most aphids also vector viral diseases. In this chapter, we will summarize on recent significant findings in plant-aphid interaction, and how studies involving Arabidopsis thaliana and Myzus persicae (Sülzer), more commonly known as the green peach aphid (GPA), are beginning to provide important insights into the molecular basis of plant defense and susceptibility to aphids. The recent demonstration that expression of dsRNA in Arabidopsis can be used to silence expression of genes in GPA has further expanded the utility of Arabidopsis for evaluating the contribution of the aphid genome-encoded proteins to this interaction. PMID:22666177

  13. Control of Arabidopsis lateral root primordium boundaries by MYB36

    OpenAIRE

    Fernández-Marcos, María; Desvoyes, Bénédicte; Manzano, Concepción; Liberman, Louisa M.; Benfey, Philip N.; del Pozo, Juan C.; Gutierrez, Crisanto

    2016-01-01

    Root branching in plants relies on the de novo formation of lateral roots (LRs). These are initiated from founder cells, triggering new formative divisions that generate lateral root primordia (LRP). The LRP size and shape depends on the balance between positive and negative signals that control cell proliferation.The mechanisms controlling proliferation potential of LRP cells remains poorly understood. We found that Arabidopsis thaliana MYB36, which have been previously shown to regulate gen...

  14. SUPERMAN, a regulator of floral homeotic genes in Arabidopsis

    OpenAIRE

    Bowman, John L.; Sakai, Hajime; Jack, Thomas; Weigel, Detlef; Mayer, Ulrike; Meyerowitz, Elliot M.

    1992-01-01

    We describe a locus, SUPERMAN, mutations in which result in extra stamens developing at the expense of the central carpels in the Arabidopsis thaliana flower. The development of superman flowers, from initial primordium to mature flower, is described by scanning electron microscopy. The development of doubly and triply mutant strains, constructed with superman alleles and previously identified homeotic mutations that cause alterations in floral organ identity, is also described. Essentially a...

  15. Functional genetics of intraspecific ecological interactions in Arabidopsis thaliana

    OpenAIRE

    Wolf, Jason B.; Mutic, Joshua J.; Kover, Paula X.

    2011-01-01

    Studying the genetic basis of traits involved in ecological interactions is a fundamental part of elucidating the connections between evolutionary and ecological processes. Such knowledge allows one to link genetic models of trait evolution with ecological models describing interactions within and between species. Previous work has shown that connections between genetic and ecological processes in Arabidopsis thaliana may be mediated by the fact that quantitative trait loci (QTL) with ‘direct...

  16. Investigating the Molecular Mechanism of TSO1 Function in Arabidopsis cell division and meristem development

    Energy Technology Data Exchange (ETDEWEB)

    Zhongchi Liu

    2004-10-01

    Unlike animals, plants are constantly exposed to environmental mutagens including ultraviolet light and reactive oxygen species. Further, plant cells are totipotent with highly plastic developmental programs. An understanding of molecular mechanisms underlying the ability of plants to monitor and repair its DNA and to eliminate damaged cells are of great importance. Previously we have identified two genes, TSO1 and TSO2, from a flowering plant Arabidopsis thaliana. Mutations in these two genes cause callus-like flowers, fasciated shoot apical meristems, and abnormal cell division, indicating that TSO1 and TSO2 may encode important cell cycle regulators. Previous funding from DOE led to the molecular cloning of TSO1, which was shown to encode a novel nuclear protein with two CXC domains suspected to bind DNA. This DOE grant has allowed us to characterize and isolate TSO2 that encodes the small subunit of the ribonucleotide reductase (RNR). RNR comprises two large subunits (R1) an d two small subunits (R2), catalyzes a rate-limiting step in the production of deoxyribonucleotides needed for DNA replication and repair. Previous studies in yeast and mammals indicated that defective RNR often led to cell cycle arrest, growth retardation and p53-dependent apoptosis while abnormally elevated RNR activities led to higher mutation rates. Subsequently, we identified two additional R2 genes, R2A and R2B in the Arabidopsis genome. Using reverse genetics, mutations in R2A and R2B were isolated, and double and triple mutants among the three R2 genes (TSO2, R2A and R2B) were constructed and analyzed. We showed that Arabidopsis tso2 mutants, with reduced dNTP levels, were more sensitive to UV-C. While r2a or r2b single mutants did not exhibit any phenotypes, tso2 r2b double mutants were embryonic lethal and tso2 r2a double mutants were seedling lethal indicating redundant functions among the three R2 genes. Furthermore, tso2 r2a double mutants exhibited increased DNA dam age

  17. Spermine modulates the expression of two probable polyamine transporter genes and determines growth responses to cadaverine in Arabidopsis.

    Science.gov (United States)

    Sagor, G H M; Berberich, Thomas; Kojima, Seiji; Niitsu, Masaru; Kusano, Tomonobu

    2016-06-01

    Two genes, LAT1 and OCT1 , are likely to be involved in polyamine transport in Arabidopsis. Endogenous spermine levels modulate their expression and determine the sensitivity to cadaverine. Arabidopsis spermine (Spm) synthase (SPMS) gene-deficient mutant was previously shown to be rather resistant to the diamine cadaverine (Cad). Furthermore, a mutant deficient in polyamine oxidase 4 gene, accumulating about twofold more of Spm than wild type plants, showed increased sensitivity to Cad. It suggests that endogenous Spm content determines growth responses to Cad in Arabidopsis thaliana. Here, we showed that Arabidopsis seedlings pretreated with Spm absorbs more Cad and has shorter root growth, and that the transgenic Arabidopsis plants overexpressing the SPMS gene are hypersensitive to Cad, further supporting the above idea. The transgenic Arabidopsis overexpressing L-Amino acid Transporter 1 (LAT1) absorbed more Cad and showed increased Cad sensitivity, suggesting that LAT1 functions as a Cad importer. Recently, other research group reported that Organic Cation Transporter 1 (OCT1) is a causal gene which determines the Cad sensitivity of various Arabidopsis accessions. Furthermore, their results suggested that OCT1 is involved in Cad efflux. Thus we monitored the expression of OCT1 and LAT1 during the above experiments. Based on the results, we proposed a model in which the level of Spm content modulates the expression of OCT1 and LAT1, and determines Cad sensitivity of Arabidopsis.

  18. Image of Arabidopsis phenotype - Arabidopsis Phenome Database | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available switchLanguage; BLAST Search Image Search Home About Archive Update History Data List Contact us Arab...idopsis Phenome Database Image of Arabidopsis phenotype Data detail Data name Image of Arab...idopsis phenotype DOI 10.18908/lsdba.nbdc01509-002 Description of data contents Mutant images in Observation of Arab...idopsis phenotype Data file File name: piam_image.tar.gz File URL: ftp://ftp.biosciencedbc.jp/archive/arab...tory of This Database Site Policy | Contact Us Image of Arabidopsis phenotype - Arabidopsis Phenome Database | LSDB Archive ...

  19. BRX promotes Arabidopsis shoot growth

    Czech Academy of Sciences Publication Activity Database

    Beuchat, J.; Scacchi, E.; Tarkowská, Danuše; Ragni, L.; Strnad, Miroslav; Hardtke, C.S.

    2010-01-01

    Roč. 188, č. 1 (2010), s. 23-29 ISSN 0028-646X R&D Projects: GA AV ČR IAA400550801 Institutional research plan: CEZ:AV0Z50380511 Keywords : Arabidopsis * auxin * brassinosteroid Subject RIV: CC - Organic Chemistry Impact factor: 6.516, year: 2010

  20. Exploiting natural variation in Arabidopsis

    NARCIS (Netherlands)

    Molenaar, J.A.; Keurentjes, J.J.B.; Sanchez-Serrano, J.J.; Salinas, J.

    2014-01-01

    Natural variation for many traits is present within the species Arabidopsis thaliana. This chapter describes the use of natural variation to elucidate genes underlying the regulation of quantitative traits. It deals with the development and use of mapping populations, the detection and handling of

  1. P-proteins in Arabidopsis are heteromeric structures involved in rapid sieve tube sealing.

    Science.gov (United States)

    Jekat, Stephan B; Ernst, Antonia M; von Bohl, Andreas; Zielonka, Sascia; Twyman, Richard M; Noll, Gundula A; Prüfer, Dirk

    2013-01-01

    Structural phloem proteins (P-proteins) are characteristic components of the sieve elements in all dicotyledonous and many monocotyledonous angiosperms. Tobacco P-proteins were recently confirmed to be encoded by the widespread sieve element occlusion (SEO) gene family, and tobacco SEO proteins were shown to be directly involved in sieve tube sealing thus preventing the loss of photosynthate. Analysis of the two Arabidopsis SEO proteins (AtSEOa and AtSEOb) indicated that the corresponding P-protein subunits do not act in a redundant manner. However, there are still pending questions regarding the interaction properties and specific functions of AtSEOa and AtSEOb as well as the general function of structural P-proteins in Arabidopsis. In this study, we characterized the Arabidopsis P-proteins in more detail. We used in planta bimolecular fluorescence complementation assays to confirm the predicted heteromeric interactions between AtSEOa and AtSEOb. Arabidopsis mutants depleted for one or both AtSEO proteins lacked the typical P-protein structures normally found in sieve elements, underlining the identity of AtSEO proteins as P-proteins and furthermore providing the means to determine the role of Arabidopsis P-proteins in sieve tube sealing. We therefore developed an assay based on phloem exudation. Mutants with reduced AtSEO expression levels lost twice as much photosynthate following injury as comparable wild-type plants, confirming that Arabidopsis P-proteins are indeed involved in sieve tube sealing.

  2. A 14-3-3 Family Protein from Wild Soybean (Glycine Soja) Regulates ABA Sensitivity in Arabidopsis.

    Science.gov (United States)

    Sun, Xiaoli; Sun, Mingzhe; Jia, Bowei; Chen, Chao; Qin, Zhiwei; Yang, Kejun; Shen, Yang; Meiping, Zhang; Mingyang, Cong; Zhu, Yanming

    2015-01-01

    It is widely accepted that the 14-3-3 family proteins are key regulators of multiple stress signal transduction cascades. By conducting genome-wide analysis, researchers have identified the soybean 14-3-3 family proteins; however, until now, there is still no direct genetic evidence showing the involvement of soybean 14-3-3s in ABA responses. Hence, in this study, based on the latest Glycine max genome on Phytozome v10.3, we initially analyzed the evolutionary relationship, genome organization, gene structure and duplication, and three-dimensional structure of soybean 14-3-3 family proteins systematically. Our results suggested that soybean 14-3-3 family was highly evolutionary conserved and possessed segmental duplication in evolution. Then, based on our previous functional characterization of a Glycine soja 14-3-3 protein GsGF14o in drought stress responses, we further investigated the expression characteristics of GsGF14o in detail, and demonstrated its positive roles in ABA sensitivity. Quantitative real-time PCR analyses in Glycine soja seedlings and GUS activity assays in PGsGF14O:GUS transgenic Arabidopsis showed that GsGF14o expression was moderately and rapidly induced by ABA treatment. As expected, GsGF14o overexpression in Arabidopsis augmented the ABA inhibition of seed germination and seedling growth, promoted the ABA induced stomata closure, and up-regulated the expression levels of ABA induced genes. Moreover, through yeast two hybrid analyses, we further demonstrated that GsGF14o physically interacted with the AREB/ABF transcription factors in yeast cells. Taken together, results presented in this study strongly suggested that GsGF14o played an important role in regulation of ABA sensitivity in Arabidopsis.

  3. Arabidopsis Novel Glycine-Rich Plasma Membrane PSS1 Protein Enhances Disease Resistance in Transgenic Soybean Plants1[OPEN

    Science.gov (United States)

    Wang, Bing; Sumit, Rishi; Srivastava, Subodh K.; Yang, Yang; Swaminathan, Sivakumar

    2018-01-01

    Nonhost resistance is defined as the immunity of a plant species to all nonadapted pathogen species. Arabidopsis (Arabidopsis thaliana) ecotype Columbia-0 is nonhost to the oomycete plant pathogen Phytophthora sojae and the fungal plant pathogen Fusarium virguliforme that are pathogenic to soybean (Glycine max). Previously, we reported generating the pss1 mutation in the pen1-1 genetic background as well as genetic mapping and characterization of the Arabidopsis nonhost resistance Phytophthora sojae-susceptible gene locus, PSS1. In this study, we identified six candidate PSS1 genes by comparing single-nucleotide polymorphisms of (1) the bulked DNA sample of seven F2:3 families homozygous for the pss1 allele and (2) the pen1-1 mutant with Columbia-0. Analyses of T-DNA insertion mutants for each of these candidate PSS1 genes identified the At3g59640 gene encoding a glycine-rich protein as the putative PSS1 gene. Later, complementation analysis confirmed the identity of At3g59640 as the PSS1 gene. PSS1 is induced following P. sojae infection as well as expressed in an organ-specific manner. Coexpression analysis of the available transcriptomic data followed by reverse transcriptase-polymerase chain reaction suggested that PSS1 is coregulated with ATG8a (At4g21980), a core gene in autophagy. PSS1 contains a predicted single membrane-spanning domain. Subcellular localization study indicated that it is an integral plasma membrane protein. Sequence analysis suggested that soybean is unlikely to contain a PSS1-like defense function. Following the introduction of PSS1 into the soybean cultivar Williams 82, the transgenic plants exhibited enhanced resistance to F. virguliforme, the pathogen that causes sudden death syndrome. PMID:29101280

  4. Localización, caracterización y delimitación de un tipo de momento electivo previo al mecanismo Location, characterization and delimiting of a type of elective moment previous to the mechanism

    Directory of Open Access Journals (Sweden)

    Martín Alomo

    2010-12-01

    Full Text Available Destinamos este informe a la exposición de nuestros avances respecto de uno de los objetivos específicos del proyecto UBACyT P039: "Momentos electivos en el tratamiento psicoanalítico de las neurosis - En el servicio de Clínica de Adultos de la Facultad de Psicología, UBA", dirigido por Gabriel Lombardi. Tal objetivo declara:"definir y distinguir momentos electivos de otras situaciones que no serían tales". Procederemos a exponer ejemplos seleccionados de la literatura freudiana para distinguir en ellos qué es mecanismo y qué momento electivo previo. Luego, centraremos nuestros esfuerzos en cumplir los objetivos que el título enuncia, de acuerdo a los siguientes ejes de análisis: a la conceptualización lacaniana de la materialidad del símbolo; b la pragmática lingüística; c las auto-aplicaciones del lenguaje (Lombardi 2008a; d la temporalidad del modo de presentación clínica.We destine this report to the exhibition of our advances respect to one of the specific aims of the project UBACyT P039: "Elective moments in the psychoanalytic treatment of the neurosis - In the service of Adults' Clinic of the Faculty of Psychology, UBA ", directed by Gabriel Lombardi. Such an aim declares: "to define and to distinguish elective moments of other situations". We will proceed to expose examples selected of the freudian literature to distinguish in them what is mechanism and what previous elective moment. Then, we will centre our efforts in expiring the aims that the title enunciates, in agreement to the following axes of analysis: a the lacanian conceptualization of the symbol's materiality; b the linguistic pragmatics; c the auto-applications of the language (Lombardi 2008a; d temporality of the way of clinical presentation.

  5. Diversification of defensins and NLRs in Arabidopsis species by different evolutionary mechanisms.

    Science.gov (United States)

    Mondragón-Palomino, Mariana; Stam, Remco; John-Arputharaj, Ajay; Dresselhaus, Thomas

    2017-12-15

    Genes encoding proteins underlying host-pathogen co-evolution and which are selected for new resistance specificities frequently are under positive selection, a process that maintains diversity. Here, we tested the contribution of natural selection, recombination and transcriptional divergence to the evolutionary diversification of the plant defensins superfamily in three Arabidopsis species. The intracellular NOD-like receptor (NLR) family was used for comparison because positive selection has been well documented in its members. Similar to defensins, NLRs are encoded by a large and polymorphic gene family and many of their members are involved in the immune response. Gene trees of Arabidopsis defensins (DEFLs) show a high prevalence of clades containing orthologs. This indicates that their diversity dates back to a common ancestor and species-specific duplications did not significantly contribute to gene family expansion. DEFLs are characterized by a pervasive pattern of neutral evolution with infrequent positive and negative selection as well as recombination. In comparison, most NLR alignment groups are characterized by frequent occurrence of positive selection and recombination in their leucine-rich repeat (LRR) domain as well negative selection in their nucleotide-binding (NB-ARC) domain. While major NLR subgroups are expressed in pistils and leaves both in presence or absence of pathogen infection, the members of DEFL alignment groups are predominantly transcribed in pistils. Furthermore, conserved groups of NLRs and DEFLs are differentially expressed in response to Fusarium graminearum regardless of whether these genes are under positive selection or not. The present analyses of NLRs expands previous studies in Arabidopsis thaliana and highlights contrasting patterns of purifying and diversifying selection affecting different gene regions. DEFL genes show a different evolutionary trend, with fewer recombination events and significantly fewer instances of

  6. Observation of Arabidopsis phenotype - Arabidopsis Phenome Database | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available switchLanguage; BLAST Search Image Search Home About Archive Update History Data List Contact us Arab...idopsis Phenome Database Observation of Arabidopsis phenotype Data detail Data name Observation of Arab...-hunting line. Data file File name: riken_piam_main.zip File URL: ftp://ftp.biosciencedbc.jp/archive/arabid_...Site Policy | Contact Us Observation of Arabidopsis phenotype - Arabidopsis Phenome Database | LSDB Archive ...

  7. Composition and function of P bodies in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Luis David Maldonado-Bonilla

    2014-05-01

    Full Text Available mRNA accumulation is tightly regulated by diverse molecular pathways. The identification and characterization of enzymes and regulatory proteins involved in controlling the fate of mRNA offers the possibility to broaden our understanding of posttranscriptional gene regulation. Processing bodies (P bodies, PB are cytoplasmic protein complexes involved in degradation and translational arrest of mRNA. Composition and dynamics of these subcellular structures have been studied in animal systems, yeasts and in the model plant Arabidopsis. Their assembly implies the aggregation of specific factors related to decapping, deadenylation and exoribonucleases that operate synchronously to regulate certain mRNA targets during development and adaptation to stress. Although the general function of PB along with the flow of genetic information is understood, several questions still remain open. This review summarizes data on the composition, potential molecular roles, and biological significance of PB and potentially related proteins in Arabidopsis.

  8. Beta galactosidases in Arabidopsis and tomato - a mini review.

    Science.gov (United States)

    Chandrasekar, Balakumaran; van der Hoorn, Renier A L

    2016-02-01

    Beta galactosidases (BGALs) are glycosyl hydrolases that remove terminal β-D-galactosyl residues from β-D-galactosides. There are 17 predicted BGAL genes in the genomes of both Arabidopsis (BGAL1-17) and tomato (TBG1-17). All tested BGALs have BGAL activity but their distinct expression profiles and ancient phylogenetic separation indicates that these enzymes fulfil diverse, non-redundant roles in plant biology. The majority of these BGALs are predicted to have signal peptide and thought to act during cell wall-related biological processes. Interestingly, deletion of BGAL6 and BGAL10 in Arabidopsis causes reduced mucilage release during seed imbibition and shorter siliques respectively, whereas TBG4 depletion by RNAi decreases in fruit softening in tomato. The majority of plant BGALs remain to be characterized. © 2016 Authors; published by Portland Press Limited.

  9. Enrichment and Analysis of Intact Phosphoproteins in Arabidopsis Seedlings.

    Directory of Open Access Journals (Sweden)

    Uma K Aryal

    Full Text Available Protein phosphorylation regulates diverse cellular functions and plays a key role in the early development of plants. To complement and expand upon previous investigations of protein phosphorylation in Arabidopsis seedlings we used an alternative approach that combines protein extraction under non-denaturing conditions with immobilized metal-ion affinity chromatography (IMAC enrichment of intact phosphoproteins in Rubisco-depleted extracts, followed by identification using two-dimensional gel electrophoresis (2-DE and liquid chromatography-tandem mass spectrometry (LC-MS/MS. In-gel trypsin digestion and analysis of selected gel spots identified 144 phosphorylated peptides and residues, of which only 18 phosphopeptides and 8 phosphosites were found in the PhosPhAt 4.0 and P3DB Arabidopsis thaliana phosphorylation site databases. More than half of the 82 identified phosphoproteins were involved in carbohydrate metabolism, photosynthesis/respiration or oxidative stress response mechanisms. Enrichment of intact phosphoproteins prior to 2-DE and LC-MS/MS appears to enhance detection of phosphorylated threonine and tyrosine residues compared with methods that utilize peptide-level enrichment, suggesting that the two approaches are somewhat complementary in terms of phosphorylation site coverage. Comparing results for young seedlings with those obtained previously for mature Arabidopsis leaves identified five proteins that are differentially phosphorylated in these tissues, demonstrating the potential of this technique for investigating the dynamics of protein phosphorylation during plant development.

  10. Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus

    DEFF Research Database (Denmark)

    Andreasson, Erik; Jørgensen, Lise Bolt; Höglund, Anna-Stina

    2001-01-01

    Arabidopsis, Brassica napus, Myrosinase, Myrosinase Binding Protein, Glucosinolates, Myrosin Cell, Immunocytochemistry......Arabidopsis, Brassica napus, Myrosinase, Myrosinase Binding Protein, Glucosinolates, Myrosin Cell, Immunocytochemistry...

  11. Reference: 297 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available is (Arabidopsis thaliana) mineral responses. Confocal microscopic studies localiz...nder normal growth conditions, it significantly altered the expression patterns of WAKL4 under various conditions of miner...oter complemented the phenotypes. Our results suggest versatile roles for WAKL4 in Arabidopsis mineral nutri...tion responses. Involvement of a cell wall-associated kinase, WAKL4, in Arabidopsis mineral responses. 4 170

  12. Identification of redox-sensitive cysteines in the arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method

    KAUST Repository

    Liu, Pei

    2014-01-28

    Cellular redox status plays a key role in mediating various physiological and developmental processes often through modulating activities of redox-sensitive proteins. Various stresses trigger over-production of reactive oxygen/nitrogen species which lead to oxidative modifications of redox-sensitive proteins. Identification and characterization of redox-sensitive proteins are important steps toward understanding molecular mechanisms of stress responses. Here, we report a high-throughput quantitative proteomic approach termed OxiTRAQ for identifying proteins whose thiols undergo reversible oxidative modifications in Arabidopsis cells subjected to oxidative stress. In this approach, a biotinylated thiol-reactive reagent is used for differential labeling of reduced and oxidized thiols. The biotin-tagged peptides are affinity purified, labeled with iTRAQ reagents, and analyzed using a paralleled HCD-CID fragmentation mode in an LTQ-Orbitrap. With this approach, we identified 195 cysteine-containing peptides from 179 proteins whose thiols underwent oxidative modifications in Arabidopsis cells following the treatment with hydrogen peroxide. A majority of those redox-sensitive proteins, including several transcription factors, were not identified by previous redox proteomics studies. This approach allows identification of the specific redox-regulated cysteine residues, and offers an effective tool for elucidation of redox proteomes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Identification of an Arabidopsis transmembrane bZIP transcription factor involved in the endoplasmic reticulum stress response

    International Nuclear Information System (INIS)

    Tajima, Hiromi; Iwata, Yuji; Iwano, Megumi; Takayama, Seiji; Koizumi, Nozomu

    2008-01-01

    Among 75 bZIP transcription factors identified in Arabidopsis, 3 (AtbZIP17, AtbZIP28, and AtbZIP49) possess a putative transmembrane domain (TMD) in addition to AtbZIP60, which was characterized previously. In the present study, cDNAs of AtbZIP17 and AtbZIP28 were isolated. Truncated forms of AtbZIP17 and AtbZIP28 lacking the C-terminal domain including TMD were examined as putative active forms. One of them, AtbZIP28ΔC, activated BiP1 and BiP3 promoters through the cis-elements P-UPRE and ERSE responsible for the ER stress response. Subsequently, a fusion protein of green fluorescent protein (GFP) and AtbZIP28 was expressed in Arabidopsis cultured cells. Under non-stress conditions, GFP fluorescence localization almost overlapped with an ER marker; however, tunicamycin and dithiothreitol treatment clearly increased GFP fluorescence in the nucleus suggesting that the N-terminal fragment of AtbZIP28 translocates to the nucleus in response to ER stress

  14. The Arabidopsis PARAQUAT RESISTANT2 gene encodes an S-nitrosoglutathione reductase that is a key regulator of cell death.

    Science.gov (United States)

    Chen, Ruiqiang; Sun, Shulan; Wang, Chun; Li, Yansha; Liang, Yan; An, Fengying; Li, Chao; Dong, Haili; Yang, Xiaohui; Zhang, Jian; Zuo, Jianru

    2009-12-01

    Metabolism of S-nitrosoglutathione (GSNO), a major biologically active nitric oxide (NO) species, is catalyzed by the evolutionally conserved GSNO reductase (GSNOR). Previous studies showed that the Arabidopsis GSNOR1/HOT5 gene regulates salicylic acid signaling and thermotolerance by modulating the intracellular S-nitrosothiol level. Here, we report the characterization of the Arabidopsis paraquat resistant2-1 (par2-1) mutant that shows an anti-cell death phenotype. The production of superoxide in par2-1 is comparable to that of wild-type plants when treated by paraquat (1,1'-dimethyl-4,4'-bipyridinium dichloride), suggesting that PAR2 acts downstream of superoxide to regulate cell death. PAR2, identified by positional cloning, is shown to be identical to GSNOR1/HOT5. The par2-1 mutant carries a missense mutation in a highly conserved glycine, which renders the mutant protein unstable. Compared to wild type, par2-1 mutant has a higher NO level, as revealed by staining with 4,5-diaminofluorescein diacetate. Consistent with this result, wild-type plants treated with an NO donor display resistance to paraquat. Interestingly, the GSNOR1/HOT5/PAR2 protein level, other than its steady-state mRNA level, is induced by paraquat, but is reduced by NO donors. Taken together, these results suggest that GSNOR1/HOT5/PAR2 plays an important role in regulating cell death in plant cells through modulating intracellular NO level.

  15. Constitutive Activity of the Arabidopsis MAP Kinase 3 Confers Resistance to Pseudomonas syringae and Drives Robust Immune Responses

    KAUST Repository

    Lang, Julien

    2017-08-02

    Mitogen Activated Protein Kinases (MAPKs) are known to be important mediators of plant responses to biotic and abiotic stresses. In a recent report, we enlarged the understanding of the Arabidopsis thaliana MPK3 functions showing that the expression of a constitutively active (CA) form of the protein led to auto-immune phenotypes. CA-MPK3 plants are dwarf and display defense responses that are characterized by the accumulation of salicylic acid and phytoalexins as well as by the upregulation of several defense genes. Consistently with these data, we present here results demonstrating that, compared to wild type controls, CA-MPK3 plants are more resistant to the hemibiotrophic pathogen Pseudomonas syringae DC3000. Based on our previous work, we also discuss the mechanisms of robust plant immunity controlled by sustained MPK3 activity, focusing especially on the roles of disease resistance proteins.

  16. Functional genetics of intraspecific ecological interactions in Arabidopsis thaliana.

    Science.gov (United States)

    Wolf, Jason B; Mutic, Joshua J; Kover, Paula X

    2011-05-12

    Studying the genetic basis of traits involved in ecological interactions is a fundamental part of elucidating the connections between evolutionary and ecological processes. Such knowledge allows one to link genetic models of trait evolution with ecological models describing interactions within and between species. Previous work has shown that connections between genetic and ecological processes in Arabidopsis thaliana may be mediated by the fact that quantitative trait loci (QTL) with 'direct' effects on traits of individuals also have pleiotropic 'indirect' effects on traits expressed in neighbouring plants. Here, we further explore these connections by examining functional relationships between traits affected directly and indirectly by the same QTL. We develop a novel approach using structural equation models (SEMs) to determine whether observed pleiotropic effects result from traits directly affected by the QTL in focal individuals causing the changes in the neighbours' phenotypes. This hypothesis was assessed using SEMs to test whether focal plant phenotypes appear to mediate the connection between the focal plants' genotypes and the phenotypes of their neighbours, or alternatively, whether the connection between the focal plants' genotypes and the neighbours' phenotypes is mediated by unmeasured traits. We implement this analysis using a QTL of major effect that maps to the well-characterized flowering locus, FRIGIDA. The SEMs support the hypothesis that the pleiotropic indirect effects of this locus arise from size and developmental timing-related traits in focal plants affecting the expression of developmental traits in their neighbours. Our findings provide empirical insights into the genetics and nature of intraspecific ecological interactions. Our technique holds promise in directing future work into the genetic basis and functional relationship of traits mediating and responding to ecological interactions.

  17. Alanine aminotransferase variants conferring diverse NUE phenotypes in Arabidopsis thaliana.

    Science.gov (United States)

    McAllister, Chandra H; Good, Allen G

    2015-01-01

    Alanine aminotransferase (AlaAT, E.C. 2.6.1.2), is a pyridoxal-5'-phosphate-dependent (PLP) enzyme that catalyzes the reversible transfer of an amino group from alanine to 2-oxoglutarate to produce glutamate and pyruvate, or vice versa. It has been well documented in both greenhouse and field studies that tissue-specific over-expression of AlaAT from barley (Hordeum vulgare, HvAlaAT) results in a significant increase in plant NUE in both canola and rice. While the physical phenotypes associated with over-expression of HvAlaAT have been well characterized, the role this enzyme plays in vivo to create a more N efficient plant remains unknown. Furthermore, the importance of HvAlaAT, in contrast to other AlaAT enzyme homologues in creating this phenotype has not yet been explored. To address the role of AlaAT in NUE, AlaAT variants from diverse sources and different subcellular locations, were expressed in the wild-type Arabidopsis thaliana Col-0 background and alaat1;2 (alaat1-1;alaat2-1) knockout background in various N environments. The analysis and comparison of both the physical and physiological properties of AlaAT over-expressing transgenic plants demonstrated significant differences between plants expressing the different AlaAT enzymes under different external conditions. This analysis indicates that the over-expression of AlaAT variants other than HvAlaAT in crop plants could further increase the NUE phenotype(s) previously observed.

  18. Transcriptomic responses to aluminum stress in roots of Arabidopsis thaliana.

    Science.gov (United States)

    Kumari, Manjeet; Taylor, Gregory J; Deyholos, Michael K

    2008-04-01

    To help characterize the cellular mechanisms underlying the toxicity of Al to plants, we present the first large-scale, transcriptomic analysis of root responses to Al, using a microarray representing approximately 93% of the predicted genes in the genome of Arabidopsis. More transcripts were responsive to Al (25 microM) during long (48 h, 1,114 genes), as compared to short (6 h, 401 genes) exposures, which contrasts with previous microarray analyses of plant responses to other types of abiotic stress. Exposure to Al triggered changes in the transcript levels for several genes related to oxidative stress pathway, membrane transporters, cell wall, energy, and polysaccharide metabolism. Interestingly, lack of abundance of transcripts encoding TCA cycle enzymes, except for malate dehydrogenase, suggested that synthesis of organic anions in response to Al may not be transcriptionally regulated. Al exposures induced differential abundance of transcripts for several ribosomal proteins, peptidases and protein phosphatases mostly after 48 h. We also detected increased abundance of transcripts for several membrane receptor kinases and non-membrane calcium response kinases, which could play a role in transmission of Al-stress signals. Among Al responsive transcription factors, the most predominant families identified were AP2/EREBP, MYB and bHLH. Further, we studied the kinetics of Al stress responses for class III peroxidases using Q-RT-PCR. Our results indicated that Al triggered dynamic changes in transcript abundance of various peroxidases within 1 h. The results of this screen contribute to the identification of candidate genes for the generation of Al-tolerant transgenic plants.

  19. Assessing Gravitropic Responses in Arabidopsis.

    Science.gov (United States)

    Barker, Richard; Cox, Benjamin; Silber, Logan; Sangari, Arash; Assadi, Amir; Masson, Patrick

    2016-01-01

    Arabidopsis thaliana was the first higher organism to have its genome sequenced and is now widely regarded as the model dicot. Like all plants, Arabidopsis develops distinct growth patterns in response to different environmental stimuli. This can be seen in the gravitropic response of roots. Methods to investigate this particular tropism are presented here. First, we describe a high-throughput time-lapse photographic analysis of root growth and curvature response to gravistimulation allowing the quantification of gravitropic kinetics and growth rate at high temporal resolution. Second, we present a protocol that allows a quantitative evaluation of gravitropic sensitivity using a homemade 2D clinostat. Together, these approaches allow an initial comparative analysis of the key phenomena associated with root gravitropism between different genotypes and/or accessions.

  20. Light responses in Photoperiodism in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Anthony R. Cashmore

    2006-08-01

    ADO1: An Arabidopsis blue light photoreceptor We have reported the characterization of an Arabidopsis gene encoding the ADAGIO 1 (ADO1) protein (Jarillo et al., 2001a). ADO1 contains a LOV domain, similar to WHITE COLLAR 1 (WC1), a photoreceptor for entrainment of Neurospora circadian rhythms (Froehlich et al., 2002), as well as PHOT1 and PHOT2, the blue light photoreceptors for phototropism (Briggs et al., 2001; Christie et al., 1998; Jarillo et al., 2001b; Kinoshita et al., 2001). Loss of function ado1 mutants show an unusually long periodicity for their free running circadian rhythm (Jarillo et al., 2001a). This observation holds for plants grown under white light as well as blue light and surprisingly, plants grown under red light also show altered circadian properties. The similarity of the LOV domain of ADO1 to those of PHOT1, PHOT2 and WC1 (known flavoprotein photoreceptors) as well as the genetic and molecular properties of ADO1, indicate that ADO1 is likely a new class of blue light photoreceptor. Indeed, the LOV domain of the related FKF1/ADO3 has been shown to bind FMN, and exhibit the in vitro photochemistry characteristic of PHOT1 (Imaizumi et al., 2003). Furthermore, ZTL/ADO1 has been shown to participate in the circadian and proteasome mediated degradation of the Arabidopsis clock protein, TOC1 (Mas et al., 2003). We also showed that the ado1 mutation selectively confers hypersensitivity to red light — when grown under red light (but not blue light) the ado1 mutant possesses an unusually short hypocotyl. This red light hypersensivity is even more severe in a triple ado1 ado2 ado3 mutant — ADO2 and ADO3 being the two other members of this ADAGIO gene family. This finding of a mutant phenotype under red light is somewhat unexpected for a protein thought to function as a photoreceptor for blue light. We have pursued our studies of ADO1 by preparing a mutant gene for which we have altered the codon for the cysteine residue conserved in all LOV

  1. Contribution of the GABA shunt to hypoxia-induced alanine accumulation in roots of Arabidopsis thaliana.

    Science.gov (United States)

    Miyashita, Yo; Good, Allen G

    2008-01-01

    When subjected to low oxygen stress, plants accumulate alanine and gamma-aminobutyric acid (GABA). To investigate the function of GABA metabolism under hypoxia and its contribution to alanine accumulation, we studied the genes that encode the two key enzymes of the GABA shunt, glutamate decarboxylase (GAD) and GABA transaminase (GABA-T). Among the five homologous GAD genes found in Arabidopsis thaliana, GAD1 expression was predominantly found in roots, while GAD2 expression was evident in all organs. Expression of the other three GAD genes was generally weak. In response to hypoxia, transcriptional induction was observed for GAD4 only. For GABA-T1, its expression was detected in all organs, but there was no significant transcriptional change under hypoxic conditions. Moreover, we have isolated and characterized Arabidopsis mutants defective in GAD1 and GABA-T1. In gad1 mutants, GAD activity was significantly reduced in roots but was not affected in shoots. In the gaba-t1 mutant, GABA-T activity was decreased to negligible levels in both shoots and roots. These mutants were phenotypically normal under normal growth conditions except for the reduced seed production of the pop2 mutants as described previously. However, metabolite analysis revealed significant changes in GABA content in gad1 and gaba-t1 mutants. The levels of alanine under hypoxic conditions were also affected in the roots of gad1 and gaba-t1 mutants. The partial inhibition of the hypoxia-induced alanine accumulation in roots of these mutants suggests that the GABA shunt is, in part, responsible for the alanine accumulation under hypoxia.

  2. Gravity-regulated gene expression in Arabidopsis thaliana

    Science.gov (United States)

    Sederoff, Heike; Brown, Christopher S.; Heber, Steffen; Kajla, Jyoti D.; Kumar, Sandeep; Lomax, Terri L.; Wheeler, Benjamin; Yalamanchili, Roopa

    Plant growth and development is regulated by changes in environmental signals. Plants sense environmental changes and respond to them by modifying gene expression programs to ad-just cell growth, differentiation, and metabolism. Functional expression of genes comprises many different processes including transcription, translation, post-transcriptional and post-translational modifications, as well as the degradation of RNA and proteins. Recently, it was discovered that small RNAs (sRNA, 18-24 nucleotides long), which are heritable and systemic, are key elements in regulating gene expression in response to biotic and abiotic changes. Sev-eral different classes of sRNAs have been identified that are part of a non-cell autonomous and phloem-mobile network of regulators affecting transcript stability, translational kinetics, and DNA methylation patterns responsible for heritable transcriptional silencing (epigenetics). Our research has focused on gene expression changes in response to gravistimulation of Arabidopsis roots. Using high-throughput technologies including microarrays and 454 sequencing, we iden-tified rapid changes in transcript abundance of genes as well as differential expression of small RNA in Arabidopsis root apices after minutes of reorientation. Some of the differentially regu-lated transcripts are encoded by genes that are important for the bending response. Functional mutants of those genes respond faster to reorientation than the respective wild type plants, indicating that these proteins are repressors of differential cell elongation. We compared the gravity responsive sRNAs to the changes in transcript abundances of their putative targets and identified several potential miRNA: target pairs. Currently, we are using mutant and transgenic Arabidopsis plants to characterize the function of those miRNAs and their putative targets in gravitropic and phototropic responses in Arabidopsis.

  3. Reference: 153 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available rnando et al. 2005 Jan. Plant Physiol. 137(1):70-82. An Arabidopsis (Arabidopsis thaliana) L. Heynh mutant d...no acid biosynthesis and enhanced growth. 1 70-82 15618410 2005 Jan Plant physiology Balbo Ilse|Carrari Fern

  4. Reference: 322 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available neko et al. 2006 Feb. Plant Physiol. 140(2):591-602. Hypocotyl segments of Arabidopsis (Arabidopsis thaliana...gene, ROOT PRIMORDIUM DEFECTIVE 1, is required for the maintenance of active cell proliferation. 2 591-602 16407439 2006 Feb Plant physiology Konishi Mineko|Sugiyama Munetaka

  5. Reference: 208 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available oshiteru et al. 2005 Jul. Plant Cell Physiol. 46(7):1165-72. We isolated an Arabidopsis albino and pale gree... in histidine biosynthesis in Arabidopsis thaliana. 7 1165-72 15870096 2005 Jul Plant & cell physiology Ito Takuya|Noutoshi Yoshiteru|Shinozaki Kazuo

  6. Reference: 537 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ukika et al. 2007 Mar. Plant Cell Physiol. 48(3):555-61. Gibberellin levels in imbibed Arabidopsis thaliana ...uppression of germination of dark-imbibed Arabidopsis thaliana seeds. 3 555-61 17289793 2007 Mar Plant & cell physio

  7. Reference: 218 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available thea et al. 2005 Jun. Plant J. 42(5):757-71. Despite the fact that Arabidopsis is largely self-pollinating, its flowers...nsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers. 5 757-71 15918888 2005 Ju

  8. Arabidopsis CDS blastp result: AK070842 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK070842 J023074O14 At4g35000.1 L-ascorbate peroxidase 3 (APX3) identical to ascorbat...e peroxidase 3 [Arabidopsis thaliana] GI:2444019, L-ascorbate peroxidase [Arabidopsis thaliana] gi|1523791...|emb|CAA66926; similar to ascorbate peroxidase [Gossypium hirsutum] gi|1019946|gb|AAB52954 1e-112 ...

  9. Arabidopsis CDS blastp result: AK108458 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK108458 002-143-D05 At4g35000.1 L-ascorbate peroxidase 3 (APX3) identical to ascorbat...e peroxidase 3 [Arabidopsis thaliana] GI:2444019, L-ascorbate peroxidase [Arabidopsis thaliana] gi|152379...1|emb|CAA66926; similar to ascorbate peroxidase [Gossypium hirsutum] gi|1019946|gb|AAB52954 2e-35 ...

  10. Using "Arabidopsis" Genetic Sequences to Teach Bioinformatics

    Science.gov (United States)

    Zhang, Xiaorong

    2009-01-01

    This article describes a new approach to teaching bioinformatics using "Arabidopsis" genetic sequences. Several open-ended and inquiry-based laboratory exercises have been designed to help students grasp key concepts and gain practical skills in bioinformatics, using "Arabidopsis" leucine-rich repeat receptor-like kinase (LRR…

  11. Reference: 255 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ases, AtIPK1 and AtIPK2beta, for the later steps of phytate synthesis in Arabidopsis thaliana. Coincident disruption...olyphosphate kinases in phosphate signaling biology. Generation of phytate-free seeds in Arabidopsis through disruption

  12. The genetics of some planthormones and photoreceptors in Arabidopsis thaliana (L.) Heynh.

    NARCIS (Netherlands)

    Koornneef, M.

    1982-01-01

    This thesis describes the isolation and characterization in Arabidopsis thaliana (L.) Heynh. of induced mutants, deficient for gibberellins (GA's), abscisic acid (ABA) and photoreceptors.

    These compounds are known to regulate various facets of plant growth and

  13. Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes.

    Science.gov (United States)

    Choi, Kyuha; Reinhard, Carsten; Serra, Heïdi; Ziolkowski, Piotr A; Underwood, Charles J; Zhao, Xiaohui; Hardcastle, Thomas J; Yelina, Nataliya E; Griffin, Catherine; Jackson, Matthew; Mézard, Christine; McVean, Gil; Copenhaver, Gregory P; Henderson, Ian R

    2016-07-01

    Meiotic crossover frequency varies extensively along chromosomes and is typically concentrated in hotspots. As recombination increases genetic diversity, hotspots are predicted to occur at immunity genes, where variation may be beneficial. A major component of plant immunity is recognition of pathogen Avirulence (Avr) effectors by resistance (R) genes that encode NBS-LRR domain proteins. Therefore, we sought to test whether NBS-LRR genes would overlap with meiotic crossover hotspots using experimental genetics in Arabidopsis thaliana. NBS-LRR genes tend to physically cluster in plant genomes; for example, in Arabidopsis most are located in large clusters on the south arms of chromosomes 1 and 5. We experimentally mapped 1,439 crossovers within these clusters and observed NBS-LRR gene associated hotspots, which were also detected as historical hotspots via analysis of linkage disequilibrium. However, we also observed NBS-LRR gene coldspots, which in some cases correlate with structural heterozygosity. To study recombination at the fine-scale we used high-throughput sequencing to analyze ~1,000 crossovers within the RESISTANCE TO ALBUGO CANDIDA1 (RAC1) R gene hotspot. This revealed elevated intragenic crossovers, overlapping nucleosome-occupied exons that encode the TIR, NBS and LRR domains. The highest RAC1 recombination frequency was promoter-proximal and overlapped CTT-repeat DNA sequence motifs, which have previously been associated with plant crossover hotspots. Additionally, we show a significant influence of natural genetic variation on NBS-LRR cluster recombination rates, using crosses between Arabidopsis ecotypes. In conclusion, we show that a subset of NBS-LRR genes are strong hotspots, whereas others are coldspots. This reveals a complex recombination landscape in Arabidopsis NBS-LRR genes, which we propose results from varying coevolutionary pressures exerted by host-pathogen relationships, and is influenced by structural heterozygosity.

  14. Transcriptional regulation by an NAC (NAM-ATAF1,2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis.

    Science.gov (United States)

    Jensen, Michael K; Hagedorn, Peter H; de Torres-Zabala, Marta; Grant, Murray R; Rung, Jesper H; Collinge, David B; Lyngkjaer, Michael F

    2008-12-01

    ATAF1 is a member of a largely uncharacterized plant-specific gene family encoding NAC transcription factors, and is induced in response to various abiotic and biotic stimuli in Arabidopsis thaliana. Previously, we showed that a mutant allele of ATAF1 compromises penetration resistance in Arabidopsis with respect to the non-host biotrophic pathogen Blumeria graminis f. sp. hordei (Bgh). In this study, we have used genome-wide transcript profiling to characterize signalling perturbations in ataf1 plants following Bgh inoculation. Comparative transcriptomic analyses identified an over-representation of abscisic acid (ABA)-responsive genes, including the ABA biosynthesis gene AAO3, which is significantly induced in ataf1 plants compared to wild-type plants following inoculation with Bgh. Additionally, we show that Bgh inoculation results in decreased endogenous ABA levels in an ATAF1-dependent manner, and that the ABA biosynthetic mutant aao3 showed increased penetration resistance to Bgh compared to wild-type plants. Furthermore, we show that ataf1 plants show ABA-hyposensitive phenotypes during seedling development and germination. Our data support a negative correlation between ABA levels and penetration resistance, and identify ATAF1 as a new stimuli-dependent attenuator of ABA signalling for the mediation of efficient penetration resistance in Arabidopsis upon Bgh attack.

  15. MERISTEM DISORGANIZATION1 encodes TEN1, an essential telomere protein that modulates telomerase processivity in Arabidopsis.

    Science.gov (United States)

    Leehy, Katherine A; Lee, Jung Ro; Song, Xiangyu; Renfrew, Kyle B; Shippen, Dorothy E

    2013-04-01

    Telomeres protect chromosome ends from being recognized as DNA damage, and they facilitate the complete replication of linear chromosomes. CST [for CTC1(Cdc13)/STN1/TEN1] is a trimeric chromosome end binding complex implicated in both aspects of telomere function. Here, we characterize TEN1 in the flowering plant Arabidopsis thaliana. We report that TEN1 (for telomeric pathways in association with Stn1, which stands for suppressor of cdc thirteen) is encoded by a previously characterized gene, MERISTEM DISORGANIZATION1 (MDO1). A point mutation in MDO1, mdo1-1/ten1-3 (G77E), triggers stem cell differentiation and death as well as a constitutive DNA damage response. We provide biochemical and genetic evidence that ten1-3 is likely to be a null mutation. As with ctc1 and stn1 null mutants, telomere tracts in ten1-3 are shorter and more heterogeneous than the wild type. Mutants also exhibit frequent telomere fusions, increased single-strand telomeric DNA, and telomeric circles. However, unlike stn1 or ctc1 mutants, telomerase enzyme activity is elevated in ten1-3 mutants due to an increase in repeat addition processivity. In addition, TEN1 is detected at a significantly smaller fraction of telomeres than CTC1. These data indicate that TEN1 is critical for telomere stability and also plays an unexpected role in modulating telomerase enzyme activity.

  16. Natural variation of submergence tolerance among Arabidopsis thaliana accessions

    DEFF Research Database (Denmark)

    Vashisht, D.; Hesselink, A.; Pierik, R.

    2011-01-01

    -six Arabidopsis accessions were screened for natural variation in flooding tolerance. This forms the first step towards the identification and characterization of the role of candidate genes contributing to flooding tolerance. • Arabidopsis accessions at the 10-leaf stage were subjected to complete submergence...... in the dark. Survival curves were plotted to estimate median lethal times as a measure of tolerance. Flooding-associated survival parameters, such as root and shoot oxygen content, initial carbohydrate content and petiole elongation under water, were also measured. • There was a significant variation...... in submergence tolerance among Arabidopsis accessions. However, the order of tolerance did not correlate with root and shoot oxygen content or initial amounts of shoot starch and total soluble sugars. A negative correlation was observed between submergence tolerance and underwater petiole elongation...

  17. Whole genome shotgun sequencing of Brassica oleracea and its application to gene discovery and annotation in Arabidopsis.

    Science.gov (United States)

    Ayele, Mulu; Haas, Brian J; Kumar, Nikhil; Wu, Hank; Xiao, Yongli; Van Aken, Susan; Utterback, Teresa R; Wortman, Jennifer R; White, Owen R; Town, Christopher D

    2005-04-01

    Through comparative studies of the model organism Arabidopsis thaliana and its close relative Brassica oleracea, we have identified conserved regions that represent potentially functional sequences overlooked by previous Arabidopsis genome annotation methods. A total of 454,274 whole genome shotgun sequences covering 283 Mb (0.44 x) of the estimated 650 Mb Brassica genome were searched against the Arabidopsis genome, and conserved Arabidopsis genome sequences (CAGSs) were identified. Of these 229,735 conserved regions, 167,357 fell within or intersected existing gene models, while 60,378 were located in previously unannotated regions. After removal of sequences matching known proteins, CAGSs that were close to one another were chained together as potentially comprising portions of the same functional unit. This resulted in 27,347 chains of which 15,686 were sufficiently distant from existing gene annotations to be considered a novel conserved unit. Of 192 conserved regions examined, 58 were found to be expressed in our cDNA populations. Rapid amplification of cDNA ends (RACE) was used to obtain potentially full-length transcripts from these 58 regions. The resulting sequences led to the creation of 21 gene models at 17 new Arabidopsis loci and the addition of splice variants or updates to another 19 gene structures. In addition, CAGSs overlapping already annotated genes in Arabidopsis can provide guidance for manual improvement of existing gene models. Published genome-wide expression data based on whole genome tiling arrays and massively parallel signature sequencing were overlaid on the Brassica-Arabidopsis conserved sequences, and 1399 regions of intersection were identified. Collectively our results and these data sets suggest that several thousand new Arabidopsis genes remain to be identified and annotated.

  18. Augmenting Sulfur Metabolism and Herbivore Defense in Arabidopsis by Bacterial Volatile Signaling

    Directory of Open Access Journals (Sweden)

    Mina eAziz

    2016-04-01

    Full Text Available Sulfur is an element necessary for the life cycle of higher plants. Its assimilation and reduction into essential biomolecules are pivotal factors determining a plant’s growth and vigor as well as resistance to environmental stress. While certain soil microbes can enhance ion solubility via chelating agents or oxidation, microbial regulation of plant-sulfur assimilation has not been reported. With an increasing understanding that soil microbes can activate growth and stress tolerance in plants via chemical signaling, the question arises as to whether such beneficial bacteria also regulate sulfur assimilation. Here we report a previously unidentified mechanism by which the growth-promoting rhizobacterium Bacillus amyloliquefaciens (GB03 transcriptionally activates genes responsible for sulfur assimilation, increasing sulfur uptake and accumulation in Arabidopsis. Transcripts encoding for sulfur-rich aliphatic and indolic glucosinolates are also GB03 induced. As a result, GB03-exposed plants with elevated glucosinolates exhibit greater protection against the generalist herbivore, Spodoptera exigua (beet armyworm. In contrast, a previously-characterized glucosinolate mutant compromised in the production of both aliphatic and indolic glucosinolates is also compromised in terms of GB03-induced protection against insect herbivory. As with in vitro studies, soil-grown plants show enhanced glucosinolate accumulation and protection against beet armyworm feeding with GB03 exposure. These results demonstrate the potential of microbes to enhance plant sulfur assimilation and emphasize the sophisticated integration of microbial signaling in plant defense.

  19. CB5C affects the glucosinolate profile in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Vik, Daniel; Crocoll, Christoph; Andersen, Tonni Grube

    2016-01-01

    proteins support the cytochrome P450 enzymes of plant specialized metabolism and found CB5C from Arabidopsis thaliana to co-express with glucosinolate biosynthetic genes. We characterized the glucosinolate profiles of two T-DNA insertion mutants of CB5C, and found that long-chained aliphatic glucosinolates...... were reduced in one of the mutant lines - a phenotype that was exaggerated upon methyl-jasmonate treatment. These results support the hypothesis, that CB5C influences glucosinolate biosynthesis, however, the mode of action remains unknown. Furthermore, the mutants differed in their biomass response...

  20. Taming the wild: resolving the gene pools of non-model Arabidopsis lineages.

    Science.gov (United States)

    Hohmann, Nora; Schmickl, Roswitha; Chiang, Tzen-Yuh; Lučanová, Magdalena; Kolář, Filip; Marhold, Karol; Koch, Marcus A

    2014-10-27

    Wild relatives in the genus Arabidopsis are recognized as useful model systems to study traits and evolutionary processes in outcrossing species, which are often difficult or even impossible to investigate in the selfing and annual Arabidopsis thaliana. However, Arabidopsis as a genus is littered with sub-species and ecotypes which make realizing the potential of these non-model Arabidopsis lineages problematic. There are relatively few evolutionary studies which comprehensively characterize the gene pools across all of the Arabidopsis supra-groups and hypothesized evolutionary lineages and none include sampling at a world-wide scale. Here we explore the gene pools of these various taxa using various molecular markers and cytological analyses. Based on ITS, microsatellite, chloroplast and nuclear DNA content data we demonstrate the presence of three major evolutionary groups broadly characterized as A. lyrata group, A. halleri group and A. arenosa group. All are composed of further species and sub-species forming larger aggregates. Depending on the resolution of the marker, a few closely related taxa such as A. pedemontana, A. cebennensis and A. croatica are also clearly distinct evolutionary lineages. ITS sequences and a population-based screen based on microsatellites were highly concordant. The major gene pools identified by ITS sequences were also significantly differentiated by their homoploid nuclear DNA content estimated by flow cytometry. The chloroplast genome provided less resolution than the nuclear data, and it remains unclear whether the extensive haplotype sharing apparent between taxa results from gene flow or incomplete lineage sorting in this relatively young group of species with Pleistocene origins. Our study provides a comprehensive overview of the genetic variation within and among the various taxa of the genus Arabidopsis. The resolved gene pools and evolutionary lineages will set the framework for future comparative studies on genetic

  1. A universal algorithm for genome-wide in silicio identification of biologically significant gene promoter putative cis-regulatory-elements; identification of new elements for reactive oxygen species and sucrose signaling in Arabidopsis.

    Science.gov (United States)

    Geisler, Matt; Kleczkowski, Leszek A; Karpinski, Stanislaw

    2006-02-01

    Short motifs of many cis-regulatory elements (CREs) can be found in the promoters of most Arabidopsis genes, and this raises the question of how their presence can confer specific regulation. We developed a universal algorithm to test the biological significance of CREs by first identifying every Arabidopsis gene with a CRE and then statistically correlating the presence or absence of the element with the gene expression profile on multiple DNA microarrays. This algorithm was successfully verified for previously characterized abscisic acid, ethylene, sucrose and drought responsive CREs in Arabidopsis, showing that the presence of these elements indeed correlates with treatment-specific gene induction. Later, we used standard motif sampling methods to identify 128 putative motifs induced by excess light, reactive oxygen species and sucrose. Our algorithm was able to filter 20 out of 128 novel CREs which significantly correlated with gene induction by either heat, reactive oxygen species and/or sucrose. The position, orientation and sequence specificity of CREs was tested in silicio by analyzing the expression of genes with naturally occurring sequence variations. In three novel CREs the forward orientation correlated with sucrose induction and the reverse orientation with sucrose suppression. The functionality of the predicted novel CREs was experimentally confirmed using Arabidopsis cell-suspension cultures transformed with short promoter fragments or artificial promoters fused with the GUS reporter gene. Our genome-wide analysis opens up new possibilities for in silicio verification of the biological significance of newly discovered CREs, and allows for subsequent selection of such CREs for experimental studies.

  2. Reference: 207 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available e have isolated an Arabidopsis (Arabidopsis thaliana) ispH null mutant that has an albino phenotype and have... generated Arabidopsis transgenic lines showing various albino patterns caused by IspH transgene-induced gen...e silencing. The initiation of albino phenotypes rendered by IspH gene silencing ...can arise independently from multiple sites of the same plant. After a spontaneous initiation, the albino ph...on site. The development of chloroplasts is severely impaired in the IspH-deficient albino

  3. Specification of floral organs in Arabidopsis.

    Science.gov (United States)

    Wellmer, Frank; Graciet, Emmanuelle; Riechmann, José Luis

    2014-01-01

    Floral organs are specified by the activities of a small group of transcriptional regulators, the floral organ identity factors. Extensive genetic and molecular analyses have shown that these proteins act as master regulators of flower development, and function not only in organ identity determination but also during organ morphogenesis. Although it is now well established that these transcription factors act in higher order protein complexes in the regulation of transcription, the gene expression programmes controlled by them have remained largely elusive. Only recently, detailed insights into their functions have been obtained through the combination of a wide range of experimental methods, including transcriptomic and proteomic approaches. Here, we review the progress that has been made in the characterization of the floral organ identity factors from the main model plant Arabidopsis thaliana, and we discuss what is known about the processes acting downstream of these regulators. We further outline open questions, which we believe need to be addressed to obtain a more complete view of the molecular processes that govern floral organ development and specification.

  4. Sequence and RT-PCR expression analysis of two peroxidases from Arabidopsis thaliana belonging to a novel evolutionary branch of plant perioxidases

    DEFF Research Database (Denmark)

    Kjærsgård, I.V.H.; Jespersen, H.M.; Rasmussen, Søren Kjærsgård

    1997-01-01

    sequence to the well characterized group of basic plant peroxidases represented by the horseradish (Armoracia rusticana) isoperoxidases HRP C, HRP E5 and the similar Arabidopsis isoperoxidases ATP Ca, ATP Cb, and ATP Ea. However ATP 1a is 87% identical in amino acid sequence to a peroxidase encoded by an m......RNA isolated from cotton (Gossypium hirsutum). As cotton and Arabidopsis belong to rather diverse families (Malvaceae and Crucifereae, respectively), in contrast with Arabidopsis and horseradish (both Crucifereae), the high degree of sequence identity indicates that this novel type of peroxidase, albeit...

  5. Acquisition of freezing tolerance in Arabidopsis and two contrasting ecotypes of the extremophile Eutrema salsugineum (Thellungiella salsuginea).

    Science.gov (United States)

    Khanal, Nityananda; Moffatt, Barbara A; Gray, Gordon R

    2015-05-15

    Eutrema salsugineum (Thellungiella salsuginea) is an extremophile, a close relative of Arabidopsis, but possessing much higher constitutive levels of tolerance to abiotic stress. This study aimed to characterize the freezing tolerance of Arabidopsis (Columbia ecotype) and two ecotypes of Eutrema (Yukon and Shandong) isolated from contrasting geographical locations. Under our growth conditions, maximal freezing tolerance was observed after two- and three-weeks of cold acclimation for Arabidopsis and Eutrema, respectively. The ecotypes of Eutrema and Arabidopsis do not differ in their constitutive level of freezing tolerance or short-term cold acclimation capacity. However Eutrema remarkably outperforms Arabidopsis in long-term acclimation capacity suggesting a wider phenotypic plasticity for the trait of freezing tolerance. The combination of drought treatment and one-week of cold acclimation was more effective than long-term cold acclimation in achieving maximum levels of freezing tolerance in Eutrema, but not Arabidopsis. Furthermore, it was demonstrated growth conditions, particularly irradiance, are determinates of the level of freezing tolerance attained during cold acclimation suggesting a role for photosynthetic processes in adaptive stress responses. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. From Bench to Bountiful Harvests: A Road Map for the Next Decade of Arabidopsis Research[OA

    Science.gov (United States)

    Lavagi, Irene; Estelle, Mark; Weckwerth, Wolfram; Beynon, Jim; Bastow, Ruth M.

    2012-01-01

    In the face of an increasing world population and climate instability, the demands for food and fuel will continue to rise. Plant science will be crucial to help meet these exponentially increasing requirements for food and fuel supplies. Fundamental plant research will play a major role in providing key advances in our understanding of basic plant processes that can then flow into practical advances through knowledge sharing and collaborations. The model plant Arabidopsis thaliana has played a major role in our understanding of plant biology, and the Arabidopsis community has developed many tools and resources to continue building on this knowledge. Drawing from previous experience of internationally coordinated projects, The international Arabidopsis community, represented by the Multinational Arabidopsis Steering Committee (MASC), has drawn up a road map for the next decade of Arabidopsis research to inform scientists and decision makers on the future foci of Arabidopsis research within the wider plant science landscape. This article provides a summary of the MASC road map. PMID:22751212

  7. Maize and Arabidopsis ARGOS Proteins Interact with Ethylene Receptor Signaling Complex, Supporting a Regulatory Role for ARGOS in Ethylene Signal Transduction[OPEN

    Science.gov (United States)

    Shi, Jinrui; Wang, Hongyu; Habben, Jeffrey E.

    2016-01-01

    The phytohormone ethylene regulates plant growth and development as well as plant response to environmental cues. ARGOS genes reduce plant sensitivity to ethylene when overexpressed in transgenic Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). A previous genetic study suggested that the endoplasmic reticulum and Golgi-localized maize ARGOS1 targets the ethylene signal transduction components at or upstream of CONSTITUTIVE TRIPLE RESPONSE1, but the mechanism of ARGOS modulating ethylene signaling is unknown. Here, we demonstrate in Arabidopsis that ZmARGOS1, as well as the Arabidopsis ARGOS homolog ORGAN SIZE RELATED1, physically interacts with Arabidopsis REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1), an ethylene receptor interacting protein that regulates the activity of ETHYLENE RESPONSE1. The protein-protein interaction was also detected with the yeast split-ubiquitin two-hybrid system. Using the same yeast assay, we found that maize RTE1 homolog REVERSION-TO-ETHYLENE SENSITIVITY1 LIKE4 (ZmRTL4) and ZmRTL2 also interact with maize and Arabidopsis ARGOS proteins. Like AtRTE1 in Arabidopsis, ZmRTL4 and ZmRTL2 reduce ethylene responses when overexpressed in maize, indicating a similar mechanism for ARGOS regulating ethylene signaling in maize. A polypeptide fragment derived from ZmARGOS8, consisting of a Pro-rich motif flanked by two transmembrane helices that are conserved among members of the ARGOS family, can interact with AtRTE1 and maize RTL proteins in Arabidopsis. The conserved domain is necessary and sufficient to reduce ethylene sensitivity in Arabidopsis and maize. Overall, these results suggest a physical association between ARGOS and the ethylene receptor signaling complex via AtRTE1 and maize RTL proteins, supporting a role for ARGOS in regulating ethylene perception and the early steps of signal transduction in Arabidopsis and maize. PMID:27268962

  8. Maize and Arabidopsis ARGOS Proteins Interact with Ethylene Receptor Signaling Complex, Supporting a Regulatory Role for ARGOS in Ethylene Signal Transduction.

    Science.gov (United States)

    Shi, Jinrui; Drummond, Bruce J; Wang, Hongyu; Archibald, Rayeann L; Habben, Jeffrey E

    2016-08-01

    The phytohormone ethylene regulates plant growth and development as well as plant response to environmental cues. ARGOS genes reduce plant sensitivity to ethylene when overexpressed in transgenic Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). A previous genetic study suggested that the endoplasmic reticulum and Golgi-localized maize ARGOS1 targets the ethylene signal transduction components at or upstream of CONSTITUTIVE TRIPLE RESPONSE1, but the mechanism of ARGOS modulating ethylene signaling is unknown. Here, we demonstrate in Arabidopsis that ZmARGOS1, as well as the Arabidopsis ARGOS homolog ORGAN SIZE RELATED1, physically interacts with Arabidopsis REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1), an ethylene receptor interacting protein that regulates the activity of ETHYLENE RESPONSE1. The protein-protein interaction was also detected with the yeast split-ubiquitin two-hybrid system. Using the same yeast assay, we found that maize RTE1 homolog REVERSION-TO-ETHYLENE SENSITIVITY1 LIKE4 (ZmRTL4) and ZmRTL2 also interact with maize and Arabidopsis ARGOS proteins. Like AtRTE1 in Arabidopsis, ZmRTL4 and ZmRTL2 reduce ethylene responses when overexpressed in maize, indicating a similar mechanism for ARGOS regulating ethylene signaling in maize. A polypeptide fragment derived from ZmARGOS8, consisting of a Pro-rich motif flanked by two transmembrane helices that are conserved among members of the ARGOS family, can interact with AtRTE1 and maize RTL proteins in Arabidopsis. The conserved domain is necessary and sufficient to reduce ethylene sensitivity in Arabidopsis and maize. Overall, these results suggest a physical association between ARGOS and the ethylene receptor signaling complex via AtRTE1 and maize RTL proteins, supporting a role for ARGOS in regulating ethylene perception and the early steps of signal transduction in Arabidopsis and maize. © 2016 American Society of Plant Biologists. All Rights Reserved.

  9. Reference: 39 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available membrane proteins that is evolutionarily conserved among higher plants. The enzym...nimal extracellular matrix are synthesized by evolutionarily related enzymes even... gene of Arabidopsis encodes a xyloglucan galactosyltransferase that is evolutionarily related to animal exo

  10. Reference: 368 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available al. 2006 May. Plant Cell 18(5):1213-25. To investigate how and when sister chromatid cohesion is released f...rom chromosomes in plants, we isolated the Arabidopsis thaliana homolog of separase (AESP) and investigated

  11. Arabidopsis CDS blastp result: AK243192 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243192 J100039M06 At3g20330.1 68416.m02576 aspartate carabmoyltransferase, chloro...loroplast precursor (EC 2.1.3.2) (Aspartate transcarbamylase) (ATCase) {Arabidopsis thaliana} 3e-22 ...

  12. Reference: 504 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available o et al. 2007 Feb. Plant Cell Physiol. 48(2):375-80. The Arabidopsis thaliana genome encodes a small family ... 17202180 2007 Feb Plant & cell physiology Iwama Ayako|Kakimoto Tatsuo|Kato Tomoh

  13. Arabidopsis CDS blastp result: AK119708 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK119708 002-157-E08 At1g28330.1 dormancy-associated protein, putative (DRM1) identical to dormancy...-associated protein [Arabidopsis thaliana] GI:2995990; similar to dormancy-associated protei

  14. Arabidopsis CDS blastp result: AK060981 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK060981 006-202-H08 At1g28330.1 dormancy-associated protein, putative (DRM1) identical to dormancy...-associated protein [Arabidopsis thaliana] GI:2995990; similar to dormancy-associated protei

  15. Arabidopsis CDS blastp result: AK099152 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK099152 J023070H02 At4g01900.1 P II nitrogen sensing protein (GLB I) identical to P II nitrogen... sensing protein GLB I (GI:7268574) [Arabidopsis thaliana]; similar to nitrogen regulatory prot

  16. Arabidopsis CDS blastp result: AK068407 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK068407 J013149B08 At4g01900.1 P II nitrogen sensing protein (GLB I) identical to P II nitrogen... sensing protein GLB I (GI:7268574) [Arabidopsis thaliana]; similar to nitrogen regulatory prot

  17. Reference: 643 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available lament disruption and cytoplasmic disorganisation in the tip growth zone. Mutant ...that plant CAP has evolved to attain plant-specific signalling functions. Arabidopsis CAP1 - a key regulator of actin organisation

  18. Reference: 645 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available rter AtDUR3 in nitrogen nutrition in Arabidopsis. In transgenic lines expressing ... impaired growth on urea as a sole nitrogen source were used to investigate a role of the H+/urea co-transpo

  19. Reference: 758 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ol for future investigations into the biological roles of RLPs. A genome-wide fun...ctional investigation into the roles of receptor-like proteins in Arabidopsis. 2 503-17 18434605 2008 Jun Pl

  20. Reference: 572 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available largely unknown. Here, we examined the functional roles of GRP2 in Arabidopsis t...under cold stress. These results provide new evidence indicating that GRP2 plays important roles in seed ger

  1. Reference: 681 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available inity and abscisic acid, suggesting that these genes play specific roles in the control of proline biosynthe...icated P5CS genes of Arabidopsis play distinct roles in stress regulation and dev

  2. Reference: 627 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available omal processing protease (GPP) from the fat-storing cotyledons of watermelon (Citrullus vulgaris) by column ...ptidase, and a Lon-protease. Specific antibodies against the peroxisomal Deg-protease from Arabidopsis (Deg15) identify the watermelo

  3. Reference: 107 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available duction in hypocotyl elongation in the dark, demonstrating a role for endospermic TAG reserves in fueling sk...ve mobilization in the Arabidopsis endosperm fuels hypocotyl elongation in the dark, is independent of absci

  4. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At3g03050.1 68416.m00301 cellulose synthase family protein (CslD3) similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose syntha

  5. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At3g03050.1 68416.m00301 cellulose synthase family protein (CslD3) similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose syntha

  6. Arabidopsis CDS blastp result: AK110467 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK110467 002-166-G08 At3g03050.1 cellulose synthase family protein (CslD3) similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-7 (gi:962

  7. Arabidopsis CDS blastp result: AK066835 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK066835 J013087I16 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 1e-171 ...

  8. Arabidopsis CDS blastp result: AK102695 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102695 J033103F21 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  9. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At3g03050.1 68416.m00301 cellulose synthase family protein (CslD3) similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose syntha

  10. Arabidopsis CDS blastp result: AK100523 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK100523 J023100P04 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  11. Arabidopsis CDS blastp result: AK065259 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK065259 J013002J18 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  12. Arabidopsis CDS blastp result: AK102134 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102134 J033085F12 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  13. Reference: 21 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ication of a number of mutant lines with altered Chl fluorescence characteristics. Analysis of photosynthesis...cation of mutants of Arabidopsis defective in acclimation of photosynthesis to th

  14. Reference: 789 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ylakoid membranes. Microarray analysis of the chl27-t mutant showed repression of numerous nuclear genes involved in photosynthesis...d CHL27 proteins. Role of Arabidopsis CHL27 protein for photosynthesis, chloroplast development and gene exp

  15. Arabidopsis CDS blastp result: AK242788 [KOME

    Lifescience Database Archive (English)

    Full Text Available 3) identical to transcription factor 3 (TCP3) [Arabidopsis thaliana] (GI:3243274); similar to flower development protein cycloidea (cyc3) GI:6358611 from [Misopates orontium] 8e-22 ...

  16. Arabidopsis CDS blastp result: AK241658 [KOME

    Lifescience Database Archive (English)

    Full Text Available 3) identical to transcription factor 3 (TCP3) [Arabidopsis thaliana] (GI:3243274); similar to flower development protein cycloidea (cyc3) GI:6358611 from [Misopates orontium] 1e-41 ...

  17. Reference: 241 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available development of Arabidopsis thaliana. 9 2473-85 16024589 2005 Sep The Plant cell Bevan Mike|Calderon-Villalobos Luz I A|Dohmann Esther M N|Kuhnle Carola|Li Hanbing|Schwechheimer Claus

  18. Arabidopsis CDS blastp result: AK101318 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK101318 J033034D12 At2g02180.1 tobamovirus multiplication protein 3 (TOM3) identical to tobamovirus multipl...ication protein (TOM3) GI:15425641 from [Arabidopsis thaliana] 1e-125 ...

  19. Arabidopsis CDS blastp result: AK066854 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK066854 J013075C10 At2g02180.1 tobamovirus multiplication protein 3 (TOM3) identical to tobamovirus multipl...ication protein (TOM3) GI:15425641 from [Arabidopsis thaliana] 1e-119 ...

  20. Arabidopsis CDS blastp result: AK104882 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104882 001-044-H04 At2g02180.1 tobamovirus multiplication protein 3 (TOM3) identical to tobamovirus multip...lication protein (TOM3) GI:15425641 from [Arabidopsis thaliana] 1e-119 ...

  1. Arabidopsis CDS blastp result: AK061395 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061395 006-305-E02 At2g02180.1 tobamovirus multiplication protein 3 (TOM3) identical to tobamovirus multip...lication protein (TOM3) GI:15425641 from [Arabidopsis thaliana] 1e-125 ...

  2. Reference: 313 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ze that LEA proteins act by mitigating water loss and maintaining cellular stability within the desiccated seed, although the mechani...sms of their actions remain largely unknown. The model plant Arabidopsis (Arabidops

  3. The fifth international conference on Arabidopsis research

    Energy Technology Data Exchange (ETDEWEB)

    Hangarter, R.; Scholl, R.; Davis, K.; Feldmann, K.

    1993-12-31

    This volume contains abstracts of oral and poster presentations made in conjunction with the Fifth International Conference on Arabidopsis Research held August 19--22, 1993 at the Ohio State University, Columbus, Ohio.

  4. Not all anthocyanins are born equal: distinct patterns induced by stress in Arabidopsis.

    Science.gov (United States)

    Kovinich, Nik; Kayanja, Gilbert; Chanoca, Alexandra; Riedl, Ken; Otegui, Marisa S; Grotewold, Erich

    2014-11-01

    Different abiotic stress conditions induce distinct sets of anthocyanins, indicating that anthocyanins have different biological functions, or that decoration patterns of each anthocyanin are used for unique purposes during stress. The induction of anthocyanin accumulation in vegetative tissues is often considered to be a response of plants to biotic or abiotic stress conditions. Arabidopsis thaliana (Arabidopsis) accumulates over 20 anthocyanins derived from the anthocyanidin cyanidin in an organ-specific manner during development, but the anthocyanin chemical diversity for their alleged stress protective functions remains unclear. We show here that, when grown in various abiotic stress conditions, Arabidopsis not only often accumulates significantly higher levels of total anthocyanins, but different stress conditions also favor the accumulation of different sets of anthocyanins. For example, the anthocyanin patterns of seedlings grown at pH 3.3 or in media lacking phosphate are very similar and characterized by relatively high levels of the anthocyanins A8 and A11. In contrast, anthocyanin inductive conditions (AIC) provided by high sucrose media are characterized by high accumulation of A9* and A5 relative to other stress conditions. The modifications present in each condition correlate reasonably well with the induction of the respective anthocyanin modification enzymes. Taken together, our results suggest that Arabidopsis anthocyanin profiles provide 'fingerprints' that reflect the stress status of the plants.

  5. [Arabidopsis CBF1 in plant tolerance to low temperature and drought stresses].

    Science.gov (United States)

    Liu, Fen-Xia; Tan, Zhen-Bo; Zhu, Jian-Qing; Deng, Xiao-Jian

    2004-05-01

    Since it was established that the alteration in gene expression occur during cold acclimation, a major goal in cold acclimation research has been to identify cold-responsive genes and to determine whether they play roles in freezing tolerance. Many cold-regulated genes (COR) were isolated and characterized in Arabidopsis and other cold tolerant plant species. Studies on regulation of COR in Arabidopsis have resulted in the discovery of a family of transcriptional activators, of which, CBF1, a member of the gene family, controls expression of a battery of COR in Arabidopsis and other cold tolerant plant species. During recent years, CBF-like genes were found in the genomes of chilling-sensitive plant species such as tomato and maize. Over-expression of Arabidopsis CBF1 confers elevated tolerance to chilling and drought stresses in transgenic tomato. These results promote our effort to identify and characterize CBF-like genes to improve tolerance of chilling-sensitive plant species to chilling and drought stresses.

  6. Local evolution of seed flotation in Arabidopsis.

    OpenAIRE

    Susana Saez-Aguayo; Corinne Rondeau-Mouro; Audrey Macquet; Ilkka Kronholm; Marie-Christine Ralet; Adeline Berger; Christine Sallé; Damien Poulain; Fabienne Granier; Lucy Botran; Olivier Loudet; Juliette de Meaux; Annie Marion-Poll; Helen M North

    2014-01-01

    Arabidopsis seeds rapidly release hydrophilic polysaccharides from the seed coat on imbibition. These form a heavy mucilage layer around the seed that makes it sink in water. Fourteen natural Arabidopsis variants from central Asia and Scandinavia were identified with seeds that have modified mucilage release and float. Four of these have a novel mucilage phenotype with almost none of the released mucilage adhering to the seed and the absence of cellulose microfibrils. Mucilage release was mod...

  7. Local Evolution of Seed Flotation in Arabidopsis

    OpenAIRE

    Saez Aguayo, S.; Rondeau Mouro, C.; Macquet, A.; Kronholm, I.; Ralet, M.C.; Berger, A.; Sallé, C.; Poulain, D.; Granier, F.; Botran, L.; Loudet, O.; De Meaux, J.; Marion-Poll, A.; North, H.; Botran, L.

    2014-01-01

    Arabidopsis seeds rapidly release hydrophilic polysaccharides from the seed coat on imbibition. These form a heavy mucilage layer around the seed that makes it sink in water. Fourteen natural Arabidopsis variants from central Asia and Scandinavia were identified with seeds that have modified mucilage release and float. Four of these have a novel mucilage phenotype with almost none of the released mucilage adhering to the seed and the absence of cellulose microfibrils. Mucilage release was mod...

  8. Sulfinylated Azadecalins act as functional mimics of a pollen germination stimulant in Arabidopsis pistils

    Science.gov (United States)

    Qin, Yuan; Wysocki, Ronald J; Somogyi, Arpad; Feinstein, Yelena; Franco, Jessica Y; Tsukamoto, Tatsuya; Dunatunga, Damayanthi; Levy, Clara; Smith, Steven; Simpson, Robert; Gang, David; Johnson, Mark A; Palanivelu, Ravishankar

    2011-01-01

    SUMMARY Polarized cell elongation is triggered by small molecule cues during development of diverse organisms. During plant reproduction, pollen interactions with the stigma result in the polar outgrowth of a pollen tube, which delivers sperm cells to the female gametophyte to effect double fertilization. In many plants, pistils stimulate pollen germination. However, in Arabidopsis, the effect of pistils on pollen germination and the pistil factors that stimulate pollen germination remain poorly characterized. Here, we demonstrate that stigma, style, and ovules in Arabidopsis pistils stimulate pollen germination. We isolated an Arabidopsis pistil extract fraction that stimulates Arabidopsis pollen germination, and employed ultrahigh resolution ESI FT-ICR and MS/MS techniques to accurately determine the mass (202.126 daltons) of a compound that is specifically present in this pistil extract fraction. Using the molecular formula (C10H19NOS) and tandem mass spectral fragmentation patterns of the m/z (mass to charge ratio) 202.126 ion, we postulated chemical structures, devised protocols, synthesized N-Methanesulfinyl 1- and 2-azadecalins that are close structural mimics of the m/z 202.126 ion, and showed that they are sufficient to stimulate Arabidopsis pollen germination in vitro (30 µM stimulated ~50% germination) and elicit accession-specific response. Although N-Methanesulfinyl 2-azadecalin stimulated pollen germination in three species of Lineage I of Brassicaceae, it did not induce a germination response in Sisymbrium irio (Lineage II of Brassicaceae) and tobacco, indicating that activity of the compound is not random. Our results show that Arabidopsis pistils promote germination by producing azadecalin-like molecules to ensure rapid fertilization by the appropriate pollen. PMID:21801250

  9. Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis

    International Nuclear Information System (INIS)

    Shirley, B.W.; Kubasek, W.L.; Storz, G.; Bruggemann, E.; Koornneef, M.; Ausubel, F.M.; Goodman, H.M.

    1995-01-01

    Eleven loci that play a role in the synthesis of flavonoids in Arabidopsis are described. Mutations at these loci, collectively named transparent testa (tt), disrupt the synthesis of brown pigments in the seed coat (testa). Several of these loci (tt3, tt4, tt5 and ttg) are also required for the accumulation of purple anthocyanins in leaves and stems and one locus (ttg) plays additional roles in trichome and root hair development. Specific functions were previously assigned to tt1-7 and ttg. Here, the results of additional genetic, biochemical and molecular analyses of these mutants are described. Genetic map positions were determined for tt8, tt9 and tt10. Thin-layer chromatography identified tissue- and locus-specific differences in the flavonols and anthocyanidins synthesized by mutant and wild-type plants. It was found that UV light reveals distinct differences in the floral tissues of tt3, tt4, tt5, tt6 and ttg, even though these tissues are indistinguishable under visible light. Evidence was also uncovered that tt8 and ttg specifically affect dihydroflavonol reductase gene expression. A summary of these and previously published results are incorporated into an overview of the genetics of flavonoid biosynthesis in Arabidopsis

  10. Ectopic Expression of a Glycine soja myo-Inositol Oxygenase Gene (GsMIOX1a in Arabidopsis Enhances Tolerance to Alkaline Stress.

    Directory of Open Access Journals (Sweden)

    Chen Chen

    Full Text Available Myo-inositol participates in various aspects of plant physiology, and myo-inositol oxygenase is the key enzyme of the myo-inositol oxygenation pathway. Previous studies indicated that myo-inositol oxygenase may play a role in plant responses to abiotic stresses. In this study, we focused on the functional characterization of GsMIOX1a, a remarkable alkaline stress-responsive gene of Glycine soja 07256, based on RNA-seq data. Using quantitative real-time PCR, we demonstrated that GsMIOX1a is rapidly induced by alkaline stress and expressed predominantly in flowers. We also elucidated the positive function of GsMIOX1a in the alkaline response in the wild type, atmiox1 mutant as well as GsMIOX1a-overexpressing Arabidopsis. We determined that atmiox1 mutant decreased Arabidopsis tolerance to alkaline stress, whereas GsMIOX1a overexpression increased tolerance. Moreover, the expression levels of some alkaline stress-responsive and inducible marker genes, including H+-Ppase, NADP-ME, KIN1 and RD29B, were also up-regulated in GsMIOX1a overexpression lines compared with the wild type and atmiox1 mutant. Together, these results suggest that the GsMIOX1a gene positively regulates plant tolerance to alkaline stress. This is the first report to demonstrate that ectopic expression of myo-inositol oxygenase improves alkaline tolerance in plants.

  11. Ectopic Expression of a Glycine soja myo-Inositol Oxygenase Gene (GsMIOX1a) in Arabidopsis Enhances Tolerance to Alkaline Stress

    Science.gov (United States)

    Chen, Chen; Sun, Xiaoli; Duanmu, Huizi; Yu, Yang; Liu, Ailin; Xiao, Jialei; Zhu, Yanming

    2015-01-01

    Myo-inositol participates in various aspects of plant physiology, and myo-inositol oxygenase is the key enzyme of the myo-inositol oxygenation pathway. Previous studies indicated that myo-inositol oxygenase may play a role in plant responses to abiotic stresses. In this study, we focused on the functional characterization of GsMIOX1a, a remarkable alkaline stress-responsive gene of Glycine soja 07256, based on RNA-seq data. Using quantitative real-time PCR, we demonstrated that GsMIOX1a is rapidly induced by alkaline stress and expressed predominantly in flowers. We also elucidated the positive function of GsMIOX1a in the alkaline response in the wild type, atmiox1 mutant as well as GsMIOX1a-overexpressing Arabidopsis. We determined that atmiox1 mutant decreased Arabidopsis tolerance to alkaline stress, whereas GsMIOX1a overexpression increased tolerance. Moreover, the expression levels of some alkaline stress-responsive and inducible marker genes, including H+-Ppase, NADP-ME, KIN1 and RD29B, were also up-regulated in GsMIOX1a overexpression lines compared with the wild type and atmiox1 mutant. Together, these results suggest that the GsMIOX1a gene positively regulates plant tolerance to alkaline stress. This is the first report to demonstrate that ectopic expression of myo-inositol oxygenase improves alkaline tolerance in plants. PMID:26091094

  12. Spatio-Temporal Expression Patterns of Arabidopsis thaliana and Medicago truncatula Defensin-Like Genes

    Science.gov (United States)

    Nallu, Sumitha; Wang, Lin; Botanga, Christopher J.; Gomez, S. Karen; Costa, Liliana M.; Harrison, Maria J.; Samac, Deborah A.; Glazebrook, Jane; Katagiri, Fumiaki; Gutierrez-Marcos, Jose F.; VandenBosch, Kathryn A.

    2013-01-01

    Plant genomes contain several hundred defensin-like (DEFL) genes that encode short cysteine-rich proteins resembling defensins, which are well known antimicrobial polypeptides. Little is known about the expression patterns or functions of many DEFLs because most were discovered recently and hence are not well represented on standard microarrays. We designed a custom Affymetrix chip consisting of probe sets for 317 and 684 DEFLs from Arabidopsis thaliana and Medicago truncatula, respectively for cataloging DEFL expression in a variety of plant organs at different developmental stages and during symbiotic and pathogenic associations. The microarray analysis provided evidence for the transcription of 71% and 90% of the DEFLs identified in Arabidopsis and Medicago, respectively, including many of the recently annotated DEFL genes that previously lacked expression information. Both model plants contain a subset of DEFLs specifically expressed in seeds or fruits. A few DEFLs, including some plant defensins, were significantly up-regulated in Arabidopsis leaves inoculated with Alternaria brassicicola or Pseudomonas syringae pathogens. Among these, some were dependent on jasmonic acid signaling or were associated with specific types of immune responses. There were notable differences in DEFL gene expression patterns between Arabidopsis and Medicago, as the majority of Arabidopsis DEFLs were expressed in inflorescences, while only a few exhibited root-enhanced expression. By contrast, Medicago DEFLs were most prominently expressed in nitrogen-fixing root nodules. Thus, our data document salient differences in DEFL temporal and spatial expression between Arabidopsis and Medicago, suggesting distinct signaling routes and distinct roles for these proteins in the two plant species. PMID:23527067

  13. A new cyanogenic metabolite in Arabidopsis required for inducible pathogen defense

    Science.gov (United States)

    Rajniak, Jakub; Barco, Brenden; Clay, Nicole K.; Sattely, Elizabeth S.

    2015-01-01

    SUMMARY Thousands of putative biosynthetic genes in Arabidopsis thaliana have no known function, suggesting that there are numerous molecules contributing to plant fitness that have not yet been discovered1,2. Prime among these uncharacterized genes are cytochromes P450 upregulated in response to pathogens3,4. Starting with a single pathogen-induced P4505, CYP82C2, we used a combination of untargeted metabolomics and co-expression analysis to uncover the complete biosynthetic pathway to a previously unknown Arabidopsis metabolite, 4-hydroxyindole-3-carbonyl nitrile (4-OH-ICN), which harbors cyanogenic functionality that is unprecedented in plants and exceedingly rare in nature6,7. The aryl cyanohydrin intermediate in the 4-OH-ICN pathway reveals a latent capacity for cyanogenic glucoside biosynthesis8,9 in Arabidopsis. By expressing 4-OH-ICN biosynthetic enzymes in Saccharomyces cerevisiae and Nicotiana benthamiana, we reconstitute the complete pathway in vitro and in vivo and validate the functions of its enzymes. 4-OH-ICN pathway mutants show increased susceptibility to the bacterial pathogen Pseudomonas syringae, consistent with a role in inducible pathogen defense. Arabidopsis has been the preeminent model system10,11 for studying the role of small molecules in plant innate immunity12; our results uncover a new branch of indole metabolism distinct from the canonical camalexin pathway, and support a role for this pathway in the Arabidopsis defense response.13 These results establish a more complete framework for understanding how the model plant Arabidopsis uses small molecules in pathogen defense. PMID:26352477

  14. Spatio-temporal expression patterns of Arabidopsis thaliana and Medicago truncatula defensin-like genes.

    Directory of Open Access Journals (Sweden)

    Mesfin Tesfaye

    Full Text Available Plant genomes contain several hundred defensin-like (DEFL genes that encode short cysteine-rich proteins resembling defensins, which are well known antimicrobial polypeptides. Little is known about the expression patterns or functions of many DEFLs because most were discovered recently and hence are not well represented on standard microarrays. We designed a custom Affymetrix chip consisting of probe sets for 317 and 684 DEFLs from Arabidopsis thaliana and Medicago truncatula, respectively for cataloging DEFL expression in a variety of plant organs at different developmental stages and during symbiotic and pathogenic associations. The microarray analysis provided evidence for the transcription of 71% and 90% of the DEFLs identified in Arabidopsis and Medicago, respectively, including many of the recently annotated DEFL genes that previously lacked expression information. Both model plants contain a subset of DEFLs specifically expressed in seeds or fruits. A few DEFLs, including some plant defensins, were significantly up-regulated in Arabidopsis leaves inoculated with Alternaria brassicicola or Pseudomonas syringae pathogens. Among these, some were dependent on jasmonic acid signaling or were associated with specific types of immune responses. There were notable differences in DEFL gene expression patterns between Arabidopsis and Medicago, as the majority of Arabidopsis DEFLs were expressed in inflorescences, while only a few exhibited root-enhanced expression. By contrast, Medicago DEFLs were most prominently expressed in nitrogen-fixing root nodules. Thus, our data document salient differences in DEFL temporal and spatial expression between Arabidopsis and Medicago, suggesting distinct signaling routes and distinct roles for these proteins in the two plant species.

  15. Apoplastic Diffusion Barriers in Arabidopsis

    Science.gov (United States)

    Schreiber, Lukas; Franke, Rochus Benni; Geldner, Niko; Reina-Pinto, José J.; Kunst, Ljerka

    2013-01-01

    During the development of Arabidopsis and other land plants, diffusion barriers are formed in the apoplast of specialized tissues within a variety of plant organs. While the cuticle of the epidermis is the primary diffusion barrier in the shoot, the Casparian strips and suberin lamellae of the endodermis and the periderm represent the diffusion barriers in the root. Different classes of molecules contribute to the formation of extracellular diffusion barriers in an organ- and tissue-specific manner. Cutin and wax are the major components of the cuticle, lignin forms the early Casparian strip, and suberin is deposited in the stage II endodermis and the periderm. The current status of our understanding of the relationships between the chemical structure, ultrastructure and physiological functions of plant diffusion barriers is discussed. Specific aspects of the synthesis of diffusion barrier components and protocols that can be used for the assessment of barrier function and important barrier properties are also presented. PMID:24465172

  16. Genomic architecture of biomass heterosis inArabidopsis.

    Science.gov (United States)

    Yang, Mei; Wang, Xuncheng; Ren, Diqiu; Huang, Hao; Xu, Miqi; He, Guangming; Deng, Xing Wang

    2017-07-25

    Heterosis is most frequently manifested by the substantially increased vigorous growth of hybrids compared with their parents. Investigating genomic variations in natural populations is essential to understand the initial molecular mechanisms underlying heterosis in plants. Here, we characterized the genomic architecture associated with biomass heterosis in 200 Arabidopsis hybrids. The genome-wide heterozygosity of hybrids makes a limited contribution to biomass heterosis, and no locus shows an obvious overdominance effect in hybrids. However, the accumulation of significant genetic loci identified in genome-wide association studies (GWAS) in hybrids strongly correlates with better-parent heterosis (BPH). Candidate genes for biomass BPH fall into diverse biological functions, including cellular, metabolic, and developmental processes and stimulus-responsive pathways. Important heterosis candidates include WUSCHEL , ARGOS , and some genes that encode key factors involved in cell cycle regulation. Interestingly, transcriptomic analyses in representative Arabidopsis hybrid combinations reveal that heterosis candidate genes are functionally enriched in stimulus-responsive pathways, including responses to biotic and abiotic stimuli and immune responses. In addition, stimulus-responsive genes are repressed to low-parent levels in hybrids with high BPH, whereas middle-parent expression patterns are exhibited in hybrids with no BPH. Our study reveals a genomic architecture for understanding the molecular mechanisms of biomass heterosis in Arabidopsis , in which the accumulation of the superior alleles of genes involved in metabolic and cellular processes improve the development and growth of hybrids, whereas the overall repressed expression of stimulus-responsive genes prioritizes growth over responding to environmental stimuli in hybrids under normal conditions.

  17. Glycosylation of inositol phosphorylceramide sphingolipids is required for normal growth and reproduction in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Tartaglio, Virginia [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Systems and Engineering Division; Rennie, Emilie A. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Systems and Engineering Division; Univ. of Nebraska, Lincoln, NE (United States). Center for Plant Science Innovation and Dept. of Biochemistry; Cahoon, Rebecca [Univ. of Nebraska, Lincoln, NE (United States). Center for Plant Science Innovation and Dept. of Biochemistry; Wang, George [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Systems and Engineering Division; Baidoo, Edward [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Systems and Engineering Division; Mortimer, Jennifer C. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Systems and Engineering Division; Cahoon, Edgar B. [Univ. of Nebraska, Lincoln, NE (United States). Center for Plant Science Innovation and Dept. of Biochemistry; Scheller, Henrik V. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Systems and Engineering Division; Univ. of California, Berkeley, CA (United States). Dept. of Plant and Microbial Biology

    2016-09-19

    Sphingolipids are a major component of plant plasma membranes and endomembranes, and mediate a diverse range of biological processes. Study of the highly glycosylated glycosyl inositol phosphorylceramide (GIPC) sphingolipids has been slow as a result of challenges associated with the extractability of GIPCs, and their functions in the plant remain poorly characterized. We recently discovered an Arabidopsis GIPC glucuronosyltransferase, INOSITOL PHOSPHORYLCERAMIDE GLUCURONOSYLTRANSFERASE 1 (IPUT1), which is the first enzyme in the GIPC glycosylation pathway. Plants homozygous for the iput1 loss-of-function mutation were unobtainable, and so the developmental effects of reduced GIPC glucuronosylation could not be analyzed in planta. Using a pollen-specific rescue construct, we have here isolated homozygous iput1 mutants. The iput1 mutants show severe dwarfism, compromised pollen tube guidance, and constitutive activation of salicyclic acid-mediated defense pathways. The mutants also possess reduced GIPCs, increased ceramides, and an increased incorporation of short-chain fatty acids and dihydroxylated bases into inositol phosphorylceramides and GIPCs. The assignment of a direct role for GIPC glycan head groups in the impaired processes in iput1 mutants is complicated by the vast compensatory changes in the sphingolipidome; however, our results reveal that the glycosylation steps of GIPC biosynthesis are important regulated components of sphingolipid metabolism. In conclusion, this study corroborates previously suggested roles for GIPC glycans in plant growth and defense, suggests important role s for them in reproduction and demonstrates that the entire sphingolipidome is sensitive to their status.

  18. A novel root gravitropism mutant of Arabidopsis thaliana exhibiting altered auxin physiology

    Science.gov (United States)

    Simmons, C.; Migliaccio, F.; Masson, P.; Caspar, T.; Soll, D.

    1995-01-01

    A root gravitropism mutant was isolated from the DuPont Arabidopsis thaliana T-DNA insertional mutagenesis collection. This mutant has reduced root gravitropism, hence the name rgr1. Roots of rgr1 are shorter than those of wild-type, and they have reduced lateral root formation. In addition, roots of rgr1 coil clockwise on inclined agar plates, unlike wild-type roots which grow in a wavy pattern. The rgr1 mutant has increased resistance, as measured by root elongation, to exogenously applied auxins (6-fold to indole-3-acetic acid, 3-fold to 2,4-dichlorophenoxyacetic acid, and 2-fold to napthyleneacetic acid). It is also resistant to polar auxin transport inhibitors (2-fold to triiodobenzoic acid and 3- to 5-fold to napthylphthalamic acid). The rgr1 mutant does not appear to be resistant to other plant hormone classes. When grown in the presence of 10(-7) M 2,4-dichlorophenoxyacetic acid, rgr1 roots have fewer root hairs than wild type. All these rgr1 phenotypes are Mendelian recessives. Complementation tests indicate that rgr1 is not allelic to previously characterized agravitropic or auxin-resistant mutants. The rgr1 locus was mapped using visible markers to 1.4 +/- 0.6 map units from the CH1 locus at 1-65.4. The rgr1 mutation and the T-DNA cosegregate, suggesting that rgr1 was caused by insertional gene inactivation.

  19. LEUNIG_HOMOLOG and LEUNIG regulate seed mucilage extrusion in Arabidopsis.

    Science.gov (United States)

    Bui, Minh; Lim, Nathan; Sijacic, Paja; Liu, Zhongchi

    2011-05-01

    LEUNIG (LUG) and LEUNIG_HOMOLOG (LUH) encode two closely related Arabidopsis proteins, belonging to the Gro/TLE family of transcriptional co-repressors. These two genes were previously shown to exhibit partially overlapping functions in embryo and flower development. In this report, the role of both LUH and LUG on seed mucilage extrusion was examined. Seed mucilage extrusion occurs after the seeds are imbibed, serving as functional aid in seed hydration, germination, and dispersal. While luh-1 mutants exhibited strong defects in seed mucilage extrusion, lug-3 mutants exhibited a minor phenotype in mucilage extrusion. Further characterization indicates that luh-1 does not exhibit any obvious defect in seed epidermal cell differentiation, mucilage synthesis, or mucilage deposition, suggesting a specific role of LUH in mucilage extrusion. This seed mucilage phenotype of luh-1 is identical to that of mucilage modified 2 (mum2) mutants. MUM2 encodes a β-galactosidase required for the modification of the mucilage. Quantitative reverse transcription polymerase chain reaction of RNA extracted from siliques detected a slight decrease of MUM2 mRNA in the luh-1 mutant compared to the wild type. Together, LUH and possibly LUG may specifically regulate mucilage extrusion by promoting the expression of genes required for mucilage maturation. © 2011 Institute of Botany, Chinese Academy of Sciences.

  20. Systemic acquired resistance in soybean is regulated by two proteins, Orthologous to Arabidopsis NPR1

    Directory of Open Access Journals (Sweden)

    Sandhu Devinder

    2009-08-01

    Full Text Available Abstract Background Systemic acquired resistance (SAR is induced in non-inoculated leaves following infection with certain pathogenic strains. SAR is effective against many pathogens. Salicylic acid (SA is a signaling molecule of the SAR pathway. The development of SAR is associated with the induction of pathogenesis related (PR genes. Arabidopsis non-expressor of PR1 (NPR1 is a regulatory gene of the SA signal pathway 123. SAR in soybean was first reported following infection with Colletotrichum trancatum that causes anthracnose disease. We investigated if SAR in soybean is regulated by a pathway, similar to the one characterized in Arabidopsis. Results Pathogenesis-related gene GmPR1 is induced following treatment of soybean plants with the SAR inducer, 2,6-dichloroisonicotinic acid (INA or infection with the oomycete pathogen, Phytophthora sojae. In P. sojae-infected plants, SAR was induced against the bacterial pathogen, Pseudomonas syringae pv. glycinea. Soybean GmNPR1-1 and GmNPR1-2 genes showed high identities to Arabidopsis NPR1. They showed similar expression patterns among the organs, studied in this investigation. GmNPR1-1 and GmNPR1-2 are the only soybean homologues of NPR1and are located in homoeologous regions. In GmNPR1-1 and GmNPR1-2 transformed Arabidopsis npr1-1 mutant plants, SAR markers: (i PR-1 was induced following INA treatment and (ii BGL2 following infection with Pseudomonas syringae pv. tomato (Pst, and SAR was induced following Pst infection. Of the five cysteine residues, Cys82, Cys150, Cys155, Cys160, and Cys216 involved in oligomer-monomer transition in NPR1, Cys216 in GmNPR1-1 and GmNPR1-2 proteins was substituted to Ser and Leu, respectively. Conclusion Complementation analyses in Arabidopsis npr1-1 mutants revealed that homoeologous GmNPR1-1 and GmNPR1-2 genes are orthologous to Arabidopsis NPR1. Therefore, SAR pathway in soybean is most likely regulated by GmNPR1 genes. Substitution of Cys216 residue, essential

  1. Genome structures and halophyte-specific gene expression of the extremophile Thellungiella parvula in comparison with Thellungiella salsuginea (Thellungiella halophila) and Arabidopsis.

    Science.gov (United States)

    Oh, Dong-Ha; Dassanayake, Maheshi; Haas, Jeffrey S; Kropornika, Anna; Wright, Chris; d'Urzo, Matilde Paino; Hong, Hyewon; Ali, Shahjahan; Hernandez, Alvaro; Lambert, Georgina M; Inan, Gunsu; Galbraith, David W; Bressan, Ray A; Yun, Dae-Jin; Zhu, Jian-Kang; Cheeseman, John M; Bohnert, Hans J

    2010-11-01

    The genome of Thellungiella parvula, a halophytic relative of Arabidopsis (Arabidopsis thaliana), is being assembled using Roche-454 sequencing. Analyses of a 10-Mb scaffold revealed synteny with Arabidopsis, with recombination and inversion and an uneven distribution of repeat sequences. T. parvula genome structure and DNA sequences were compared with orthologous regions from Arabidopsis and publicly available bacterial artificial chromosome sequences from Thellungiella salsuginea (previously Thellungiella halophila). The three-way comparison of sequences, from one abiotic stress-sensitive species and two tolerant species, revealed extensive sequence conservation and microcolinearity, but grouping Thellungiella species separately from Arabidopsis. However, the T. parvula segments are distinguished from their T. salsuginea counterparts by a pronounced paucity of repeat sequences, resulting in a 30% shorter DNA segment with essentially the same gene content in T. parvula. Among the genes is SALT OVERLY SENSITIVE1 (SOS1), a sodium/proton antiporter, which represents an essential component of plant salinity stress tolerance. Although the SOS1 coding region is highly conserved among all three species, the promoter regions show conservation only between the two Thellungiella species. Comparative transcript analyses revealed higher levels of basal as well as salt-induced SOS1 expression in both Thellungiella species as compared with Arabidopsis. The Thellungiella species and other halophytes share conserved pyrimidine-rich 5' untranslated region proximal regions of SOS1 that are missing in Arabidopsis. Completion of the genome structure of T. parvula is expected to highlight distinctive genetic elements underlying the extremophile lifestyle of this species.

  2. Upland cotton gene GhFPF1 confers promotion of flowering time and shade-avoidance responses in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Xiaoyan Wang

    Full Text Available Extensive studies on floral transition in model species have revealed a network of regulatory interactions between proteins that transduce and integrate developmental and environmental signals to promote or inhibit the transition to flowering. Previous studies indicated FLOWERING PROMOTING FACTOR 1 (FPF1 gene was involved in the promotion of flowering, but the molecular mechanism was still unclear. Here, FPF1 homologous sequences were screened from diploid Gossypium raimondii L. (D-genome, n = 13 and Gossypium arboreum L. genome (A-genome, n = 13 databases. Orthologous genes from the two species were compared, suggesting that distinctions at nucleic acid and amino acid levels were not equivalent because of codon degeneracy. Six FPF1 homologous genes were identified from the cultivated allotetraploid Gossypium hirsutum L. (AD-genome, n = 26. Analysis of relative transcripts of the six genes in different tissues revealed that this gene family displayed strong tissue-specific expression. GhFPF1, encoding a 12.0-kDa protein (Accession No: KC832319 exerted more transcripts in floral apices of short-season cotton, hinting that it could be involved in floral regulation. Significantly activated APETALA 1 and suppressed FLOWERING LOCUS C expression were induced by over-expression of GhFPF1 in the Arabidopsis Columbia-0 ecotype. In addition, transgenic Arabidopsis displayed a constitutive shade-avoiding phenotype that is characterized by long hypocotyls and petioles, reduced chlorophyll content, and early flowering. We propose that GhFPF1 may be involved in flowering time control and shade-avoidance responses.

  3. Mutation induction by ion beams in arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Atsushi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1999-07-01

    An investigation was made on characteristics of ion beams for the biological effects and the induction of mutation using Arabidopsis plant as a model plant for the molecular genetics. Here, the characteristics of mutation at the molecular level as well as new mutants induced by ion beams were described. The ast and sep1 were obtained from the offspring of 1488 carbon ion-irradiated seeds respectively. The uvi1-uvi4 mutants were also induced from 1280 M{sub 1} lines. Thus, ion beams can induce not only known mutants such as tt, gl and hy but also novel mutants with high frequency. Even in the tt phenotype, two new mutant loci other than known loci were found. In chrysanthemum, several kinds of single, complex or stripped flower-color mutants that have been never induced by {gamma}irradiation, indicating that ion beams could produce a variety of mutants with the same phenotype. In conclusion, ion beams for the mutation induction are characterized by 1) to induce mutants with high frequency, 2) to show broad mutation spectrum and 3) to produce novel mutants. For these reasons, chemical mutagens such as EMS and low LET ionizing radiation such as X-rays and {gamma}-rays will predominantly induce many but small modifications or DNA damages on the DNA strands. As the result, several point mutations will be produced on the genome. On the contrary, ion beams as a high LET ionizing radiation will not cause so many but large and irreparable DNA damage locally, resulting in production of limited number of null mutation. (M.N.)

  4. The petunia ortholog of Arabidopsis SUPERMAN plays a distinct role in floral organ morphogenesis.

    Science.gov (United States)

    Nakagawa, Hitoshi; Ferrario, Silvia; Angenent, Gerco C; Kobayashi, Akira; Takatsuji, Hiroshi

    2004-04-01

    Arabidopsis (Arabidopsis thaliana) SUPERMAN (SUP) plays a role in establishing a boundary between whorls 3 and 4 of flowers and in ovule development. We characterized a Petunia hybrida (petunia) homolog of SUP, designated PhSUP1, to compare with SUP. Genomic DNA of the PhSUP1 partially restored the stamen number and ovule development phenotypes of the Arabidopsis sup mutant. Two P. hybrida lines of transposon (dTph1) insertion mutants of PhSUP1 exhibited increased stamen number at the cost of normal carpel development, and ovule development was defective owing to aberrant growth of the integument. Unlike Arabidopsis sup mutants, phsup1 mutants also showed extra tissues connecting stamens, a petal tube and an ovary, and aberrancies in the development of anther and placenta. PhSUP1 transcripts occurred in the basal region of wild-type flowers around developing organ primordia in whorls 2 and 3 as well as in the funiculus of the ovule, concave regions of the placenta, and interthecal regions of developing anthers. Overexpression of PhSUP1 in P. hybrida resulted in size reduction of petals, leaves, and inflorescence stems. The shortening of inflorescence stems and petal tubes was primarily attributable to suppression of cell elongation, whereas a decrease in cell number was mainly responsible for the size reduction of petal limbs.

  5. Correlation between number and position of floral organs in Arabidopsis.

    Science.gov (United States)

    Penin, Aleksey A; Logacheva, Maria D

    2011-07-01

    The study of variation in number, position and type of floral organs may serve as a key to understanding the mechanisms underlying their variation, and will make it possible to improve the analysis of gene function in model plant species by means of a more accurate characterization of mutant phenotypes. The present analysis was carried out in order to understand the correlation between number and position of floral organs in Arabidopsis thaliana. An analysis of number and position of organs in flowers of wild type as well as in a series of mutations with floral organ position alterations was carried out, using light and electron microscopy. Variation common to different genotypes was analysed by means of individual diagrams, upon which generalized diagrams depicting variation in number and position of organs, were built by superimposition. It is shown that in the Arabidopsis flower a correlation exists between positions of petals and sepals, as well as between positions of stamens and carpels, whereas the position of carpels does not seem to depend on number and position of petals and stamens. This suggests that the position of organs in the basal (sepals) and apical (carpels) parts of the flower are determined before that in the intermediate zone. This assumption is consistent with the results of mathematical modelling and is supposed to be the consequence of stem-cell activity in the flower.

  6. Lipidomic analysis of Arabidopsis seed genetically engineered to contain DHA

    Directory of Open Access Journals (Sweden)

    Xue-Rong eZhou

    2014-09-01

    Full Text Available Metabolic engineering of omega-3 long-chain (≥C20 polyunsaturated fatty acids (ω3 LC-PUFA in oilseeds has been one of the key metabolic engineering targets in recent years. By expressing a transgenic pathway for enhancing the synthesis of the ω3 LC-PUFA docosahexaenoic acid (DHA from endogenous -linolenic acid (ALA, we obtained the production of fish oil-like proportions of DHA in Arabidopsis seed oil. Liquid chromatography-mass spectrometry (LC-MS was used to characterize the triacylglycerol (TAG, diacylglycerol (DAG and phospholipid (PL lipid classes in the transgenic and wild type Arabidopsis seeds at both developing and mature stages. The analysis identified the appearance of several abundant DHA-containing phosphatidylcholine (PC, DAG and TAG molecular species in mature seeds. The relative abundances of PL, DAG and TAG species showed a preferred combination of LC-PUFA with ALA in the transgenic seeds, where LC-PUFA were esterified in positions usually occupied by 20:1ω9. Trace amounts of di-DHA PC and tri-DHA TAG were identified, and confirmed by high resolution MS/MS. Studying the lipidome in transgenic seeds provides insights into where DHA accumulated and composed with other fatty acids of neutral and phospholipids from the developing and mature seeds.

  7. Novel disease susceptibility factors for fungal necrotrophic pathogens in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Albor Dobón

    2015-04-01

    Full Text Available Host cells use an intricate signaling system to respond to invasions by pathogenic microorganisms. Although several signaling components of disease resistance against necrotrophic fungal pathogens have been identified, our understanding for how molecular components and host processes contribute to plant disease susceptibility is rather sparse. Here, we identified four transcription factors (TFs from Arabidopsis that limit pathogen spread. Arabidopsis mutants defective in any of these TFs displayed increased disease susceptibility to Botrytis cinerea and Plectosphaerella cucumerina, and a general activation of non-immune host processes that contribute to plant disease susceptibility. Transcriptome analyses revealed that the mutants share a common transcriptional signature of 77 up-regulated genes. We characterized several of the up-regulated genes that encode peptides with a secretion signal, which we named PROVIR (for provirulence factors. Forward and reverse genetic analyses revealed that many of the PROVIRs are important for disease susceptibility of the host to fungal necrotrophs. The TFs and PROVIRs identified in our work thus represent novel genetic determinants for plant disease susceptibility to necrotrophic fungal pathogens.

  8. Arabidopsis SMG7 protein is required for exit from meiosis.

    Science.gov (United States)

    Riehs, Nina; Akimcheva, Svetlana; Puizina, Jasna; Bulankova, Petra; Idol, Rachel A; Siroky, Jiri; Schleiffer, Alexander; Schweizer, Dieter; Shippen, Dorothy E; Riha, Karel

    2008-07-01

    Meiosis consists of two nuclear divisions that are separated by a short interkinesis. Here we show that the SMG7 protein, which plays an evolutionarily conserved role in nonsense-mediated RNA decay (NMD) in animals and yeast, is essential for the progression from anaphase to telophase in the second meiotic division in Arabidopsis. Arabidopsis SMG7 is an essential gene, the disruption of which causes embryonic lethality. Plants carrying a hypomorphic smg7 mutation exhibit an elevated level of transcripts containing premature stop codons. This suggests that the role of SMG7 in NMD is conserved in plants. Furthermore, hypomorphic smg7 alleles render mutant plants sterile by causing an unusual cell-cycle arrest in anaphase II that is characterized by delayed chromosome decondensation and aberrant rearrangement of the meiotic spindle. The smg7 phenotype was mimicked by exposing meiocytes to the proteasome inhibitor MG115. Together, these data indicate that SMG7 counteracts cyclin-dependent kinase (CDK) activity at the end of meiosis, and reveal a novel link between SMG7 and regulation of the meiotic cell cycle.

  9. Functional identification of an Arabidopsis snf4 ortholog by screening for heterologous multicopy suppressors of snf4 deficiency in yeast

    DEFF Research Database (Denmark)

    Kleinow, T.; Bhalerao, R.; Breuer, F.

    2000-01-01

    -finger factors AZF2 and ZAT10, as well as orthologs of hexose/UDP-hexose transporters, calmodulin, SMC1-cohesin and Snf4. Here we describe the characterization of AtSNF4, a functional Arabidopsis Snf4 ortholog, that interacts with yeast Snf1 and specifically binds to the C-terminal regulatory domain...

  10. Transcriptional regulation of receptor-like protein genes by environmental stresses and hormones and their overexpression activities in Arabidopsis thaliana

    NARCIS (Netherlands)

    Wu, Jinbin; Liu, Zhijun; Zhang, Zhao; Lv, Yanting; Yang, Nan; Zhang, Guohua; Wu, Menyao; Lv, Shuo; Pan, Lixia; Joosten, Matthieu H.A.J.; Wang, Guodong

    2016-01-01

    Receptor-like proteins (RLPs) have been implicated in multiple biological processes, including plant development and immunity to microbial infection. Fifty-seven AtRLP genes have been identified in Arabidopsis, whereas only a few have been functionally characterized. This is due to the lack of

  11. Bioavailability of nanoparticulate hematite to Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Marusenko, Yevgeniy; Shipp, Jessie; Hamilton, George A.; Morgan, Jennifer L.L.; Keebaugh, Michael; Hill, Hansina; Dutta, Arnab; Zhuo, Xiaoding; Upadhyay, Nabin; Hutchings, James; Herckes, Pierre; Anbar, Ariel D.; Shock, Everett; Hartnett, Hilairy E.

    2013-01-01

    The environmental effects and bioavailability of nanoparticulate iron (Fe) to plants are currently unknown. Here, plant bioavailability of synthesized hematite Fe nanoparticles was evaluated using Arabidopsis thaliana (A. thaliana) as a model. Over 56-days of growing wild-type A. thaliana, the nanoparticle-Fe and no-Fe treatments had lower plant biomass, lower chlorophyll concentrations, and lower internal Fe concentrations than the Fe-treatment. Results for the no-Fe and nanoparticle-Fe treatments were consistently similar throughout the experiment. These results suggest that nanoparticles (mean diameter 40.9 nm, range 22.3–67.0 nm) were not taken up and therefore not bioavailable to A. thaliana. Over 14-days growing wild-type and transgenic (Type I/II proton pump overexpression) A. thaliana, the Type I plant grew more than the wild-type in the nanoparticle-Fe treatment, suggesting Type I plants cope better with Fe limitation; however, the nanoparticle-Fe and no-Fe treatments had similar growth for all plant types. -- Highlights: ► Iron nanoparticles were synthesized and assessed for bioavailability to Arabidopsis. ► Arabidopsis grew better in the presence of EDTA-bound iron than nanoparticulate iron. ► Arabidopsis grew the same in the presence of nanoparticulate iron compared to no iron. -- Synthesized iron nanoparticles were not bioavailable to Arabidopsis thaliana in agar nutrient media

  12. Mining the active proteome of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Renier A. L. Van Der Hoorn

    2011-11-01

    Full Text Available Assigning functions to the >30.000 proteins encoded by the Arabidopsis genome is a challenging task of the Arabidopsis Functional Genomics Network. Although genome-wide technologies like proteomics and transcriptomics have generated a wealth of information that significantly accelerated gene annotation, protein activities are poorly predicted by transcript or protein levels as protein activities are post-translationally regulated. To directly display protein activities in Arabidopsis proteomes, we developed and applied Activity-based Protein Profiling (ABPP. ABPP is based on the use of small molecule probes that react with the catalytic residues of distinct protein classes in an activity-dependent manner. Labeled proteins are separated and detected from proteins gels and purified and identified by mass spectrometry. Using probes of six different chemotypes we have displayed of activities of 76 Arabidopsis proteins. These proteins represent over ten different protein classes that contain over 250 Arabidopsis proteins, including cysteine- serine- and metallo-proteases, lipases, acyltransferases, and the proteasome. We have developed methods for identification of in vivo labeled proteins using click-chemistry and for in vivo imaging with fluorescent probes. In vivo labeling has revealed novel protein activities and unexpected subcellular activities of the proteasome. Labeling of extracts displayed several differential activities e.g. of the proteasome during immune response and methylesterases during infection. These studies illustrate the power of ABPP to display the functional proteome and testify to a successful interdisciplinary collaboration involving chemical biology, organic chemistry and proteomics.

  13. Placental complications after a previous cesarean section

    OpenAIRE

    Milošević Jelena; Lilić Vekoslav; Tasić Marija; Radović-Janošević Dragana; Stefanović Milan; Antić Vladimir

    2009-01-01

    Introduction The incidence of cesarean section has been rising in the past 50 years. With the increased number of cesarean sections, the number of pregnancies with the previous cesarean section rises as well. The aim of this study was to establish the influence of the previous cesarean section on the development of placental complications: placenta previa, placental abruption and placenta accreta, as well as to determine the influence of the number of previous cesarean sections on the complic...

  14. Phosphate Uptake and Allocation – A Closer Look at Arabidopsis thaliana L. and Oryza sativa L.

    Science.gov (United States)

    Młodzińska, Ewa; Zboińska, Magdalena

    2016-01-01

    This year marks the 20th anniversary of the discovery and characterization of the two Arabidopsis PHT1 genes encoding the phosphate transporter in Arabidopsis thaliana. So far, multiple inorganic phosphate (Pi) transporters have been described, and the molecular basis of Pi acquisition by plants has been well-characterized. These genes are involved in Pi acquisition, allocation, and/or signal transduction. This review summarizes how Pi is taken up by the roots and further distributed within two plants: A. thaliana and Oryza sativa L. by plasma membrane phosphate transporters PHT1 and PHO1 as well as by intracellular transporters: PHO1, PHT2, PHT3, PHT4, PHT5 (VPT1), SPX-MFS and phosphate translocators family. We also describe the role of the PHT1 transporters in mycorrhizal roots of rice as an adaptive strategy to cope with limited phosphate availability in soil. PMID:27574525

  15. Phenylalanine ammonia lyase from Arabidopsis thaliana (AtPAL2): A potent MIO-enzyme for the synthesis of non-canonical aromatic alpha-amino acids: Part I: Comparative characterization to the enzymes from Petroselinum crispum (PcPAL1) and Rhodosporidium toruloides (RtPAL).

    Science.gov (United States)

    Dreßen, Alana; Hilberath, Thomas; Mackfeld, Ursula; Billmeier, Arne; Rudat, Jens; Pohl, Martina

    2017-09-20

    Phenylalanine ammonia lyase (PAL) from Arabidopsis thaliana (AtPAL2) was comparatively characterized to the well-studied enzyme from parsley (PcPAL1) and Rhodosporidium toruloides (RtPAL) with respect to kinetic parameters for the deamination and the amination reaction, pH- and temperature optima and the substrate range of the amination reaction. Whereas both plant enzymes are specific for phenylalanine, the bifunctional enzyme from Rhodosporidium toruloides shows K M -values for L-Phe and L-Tyr in the same order of magnitude and, compared to both plant enzymes, a 10-15-fold higher activity. At 30°C all enzymes were sufficiently stable with half-lives of 3.4days (PcPAL1), 4.6days (AtPAL2) and 9.7days (RtPAL/TAL). Very good results for the amination of various trans-cinnamic acid derivatives were obtained using E. coli cells as whole cell biocatalysts in ammonium carbonate buffer. Investigation of the substrate ranges gave interesting results for the newly tested enzymes from A. thaliana and R. toruloides. Only the latter accepts besides 4-hydroxy-CA also 3-methoxy-4-hydroxy-CA as a substrate, which is an interesting intermediate for the formation of pharmaceutically relevant L-Dopa. AtPAL2 is a very good catalyst for the formation of (S)-3-F-Phe, (S)-4-F-Phe and (S)-2-Cl-Phe. Such non-canonical amino acids are valuable building blocks for the formation of various drug molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The multifunctional protein AtMFP2 is co-ordinately expressed with other genes of fatty acid beta-oxidation during seed germination in Arabidopsis thaliana (L.) Heynh.

    Science.gov (United States)

    Eastmond, P J; Graham, I A

    2000-02-01

    In germinating oilseeds peroxisomal fatty acid beta-oxidation is responsible for the mobilization of storage lipids. This pathway also occurs in other tissues where it has a variety of additional physiological functions. The central enzymatic steps of peroxisomal beta-oxidation are performed by acyl-CoA oxidase (ACOX), the multifunctional protein (MFP) and 3-ketoacyl-CoA thiolase (thiolase). In order to investigate the function and regulation of beta-oxidation in plants it is first necessary to identify and characterize genes encoding the relevant enzymes in a single model species. Recently we and others have reported on the cloning and characterization of genes encoding four ACOXs and a thiolase from the oilseed Arabidopsis thaliana. Here we identify a gene encoding an Arabidopsis MFP (AtMFP2) that is induced transiently during germination. The pattern of AtMFP2 expression closely reflects changes in the activities of 2-trans-enoyl-CoA hydratase and L-3-hydroxyacyl-CoA dehydrogenase. Similar patterns of expression have previously been reported for ACOX and thiolase genes. We conclude that genes encoding the three main proteins responsible for beta-oxidation are co-ordinately expressed during oilseed germination and may share a common mechanism of regulation.

  17. The COP9 signalosome interacts with SCF UFO and participates in Arabidopsis flower development.

    Science.gov (United States)

    Wang, Xiping; Feng, Suhua; Nakayama, Naomi; Crosby, W L; Irish, Vivian; Deng, Xing Wang; Wei, Ning

    2003-05-01

    The COP9 signalosome (CSN) is involved in multiple developmental processes. It interacts with SCF ubiquitin ligases and deconjugates Nedd8/Rub1 from cullins (deneddylation). CSN is highly expressed in Arabidopsis floral tissues. To investigate the role of CSN in flower development, we examined the expression pattern of CSN in developing flowers. We report here that two csn1 partially deficient Arabidopsis strains exhibit aberrant development of floral organs, decline of APETALA3 (AP3) expression, and low fertility in addition to defects in shoot and inflorescence meristems. We show that UNUSUAL FLORAL ORGANS (UFO) forms a SCF(UFO) complex, which is associated with CSN in vivo. Genetic interaction analysis indicates that CSN is necessary for the gain-of-function activity of the F-box protein UFO in AP3 activation and in floral organ transformation. Compared with the previously reported csn5 antisense and csn1 null mutants, partial deficiency of CSN1 causes a reduction in the level of CUL1 in the mutant flowers without an obvious defect in CUL1 deneddylation. We conclude that CSN is an essential regulator of Arabidopsis flower development and suggest that CSN regulates Arabidopsis flower development in part by modulating SCF(UFO)-mediated AP3 activation.

  18. The Use of MPSS for Whole-Genome Transcriptional Analysis in Arabidopsis

    Science.gov (United States)

    Meyers, Blake C.; Tej, Shivakundan Singh; Vu, Tam H.; Haudenschild, Christian D.; Agrawal, Vikas; Edberg, Steve B.; Ghazal, Hassan; Decola, Shannon

    2004-01-01

    We have generated 36,991,173 17-base sequence “signatures” representing transcripts from the model plant Arabidopsis. These data were derived by massively parallel signature sequencing (MPSS) from 14 libraries and comprised 268,132 distinct sequences. Comparable data were also obtained with 20-base signatures. We developed a method for handling these data and for comparing these signatures to the annotated Arabidopsis genome. As part of this procedure, 858,019 potential or “genomic” signatures were extracted from the Arabidopsis genome and classified based on the position and orientation of the signatures relative to annotated genes. A comparison of genomic and expressed signatures matched 67,735 signatures predicted to be derived from distinct transcripts and expressed at significant levels. Expressed signatures were derived from the sense strand of at least 19,088 of 29,084 annotated genes. A comparison of the genomic and expression signatures demonstrated that ∼7.7% of genomic signatures were underrepresented in the expression data. These genomic signatures contained one of 20 four-base words that were consistently associated with reduced MPSS abundances. More than 89% of the sum of the expressed signature abundances matched the Arabidopsis genome, and many of the unmatched signatures found in high abundances were predicted to match to previously uncharacterized transcripts. PMID:15289482

  19. The use of MPSS for whole-genome transcriptional analysis in Arabidopsis.

    Science.gov (United States)

    Meyers, Blake C; Tej, Shivakundan Singh; Vu, Tam H; Haudenschild, Christian D; Agrawal, Vikas; Edberg, Steve B; Ghazal, Hassan; Decola, Shannon

    2004-08-01

    We have generated 36,991,173 17-base sequence "signatures" representing transcripts from the model plant Arabidopsis. These data were derived by massively parallel signature sequencing (MPSS) from 14 libraries and comprised 268,132 distinct sequences. Comparable data were also obtained with 20-base signatures. We developed a method for handling these data and for comparing these signatures to the annotated Arabidopsis genome. As part of this procedure, 858,019 potential or "genomic" signatures were extracted from the Arabidopsis genome and classified based on the position and orientation of the signatures relative to annotated genes. A comparison of genomic and expressed signatures matched 67,735 signatures predicted to be derived from distinct transcripts and expressed at significant levels. Expressed signatures were derived from the sense strand of at least 19,088 of 29,084 annotated genes. A comparison of the genomic and expression signatures demonstrated that approximately 7.7% of genomic signatures were underrepresented in the expression data. These genomic signatures contained one of 20 four-base words that were consistently associated with reduced MPSS abundances. More than 89% of the sum of the expressed signature abundances matched the Arabidopsis genome, and many of the unmatched signatures found in high abundances were predicted to match to previously uncharacterized transcripts. Copyright 2004 Cold Spring Harbor Laboratory Press ISSN

  20. Nucleosome structure incorporated histone acetylation site prediction in Arabidopsis thaliana.

    Science.gov (United States)

    Zhao, Chen; Liu, Hui; Li, Jiang; Deng, Youping; Shi, Tieliu

    2010-11-02

    Acetylation is a crucial post-translational modification for histones, and plays a key role in gene expression regulation. Due to limited data and lack of a clear acetylation consensus sequence, a few researches have focused on prediction of lysine acetylation sites. Several systematic prediction studies have been conducted for human and yeast, but less for Arabidopsis thaliana. Concerning the insufficient observation on acetylation site, we analyzed contributions of the peptide-alignment-based distance definition and 3D structure factors in acetylation prediction. We found that traditional structure contributes little to acetylation site prediction. Identified acetylation sites of histones in Arabidopsis thaliana are conserved and cross predictable with that of human by peptide based methods. However, the predicted specificity is overestimated, because of the existence of non-observed acetylable site. Here, by performing a complete exploration on the factors that affect the acetylability of lysines in histones, we focused on the relative position of lysine at nucleosome level, and defined a new structure feature to promote the performance in predicting the acetylability of all the histone lysines in A. thaliana. We found a new spacial correlated acetylation factor, and defined a ε-N spacial location based feature, which contains five core spacial ellipsoid wired areas. By incorporating the new feature, the performance of predicting the acetylability of all the histone lysines in A. Thaliana was promoted, in which the previous mispredicted acetylable lysines were corrected by comparing to the peptide-based prediction.

  1. ASYMMETRIC LEAVES1 regulates abscission zone placement in Arabidopsis flowers

    Science.gov (United States)

    2014-01-01

    Background The sepals, petals and stamens of Arabidopsis flowers detach via abscission zones formed at their boundaries with the underlying receptacle. The ASYMMETRIC LEAVES1 (AS1) MYB transcription factor plays a critical role in setting boundaries between newly formed leaf primordia and the shoot meristem. By repressing expression of a set of KNOTTED1-LIKE HOMEODOMAIN (KNOX) genes from developing leaf primordia, AS1 and its partner ASYMMETRIC LEAVES2 allow the patterning and differentiation of leaves to proceed. Here we show a unique role for AS1 in establishing the positions of the sepal and petal abscission zones in Arabidopsis flowers. Results In as1 mutant flowers, the sepal abscission zones are displaced into inverted V-shaped positions, leaving behind triangular stubs of tissue when the organs abscise. Movement of the petal abscission zones is also apparent. Abscission of the medial sepals is delayed in as1 flowers; loss of chlorophyll in the senescing sepals contrasts with proximal zones that remain green. AS1 has previously been shown to restrict expression of the KNOX gene, BREVIPEDICELLUS (BP), from the sepals. We show here that loss of BP activity in as1 flowers is sufficient to restore the positions of the sepal and petal abscission zones, the sepal-receptacle boundary of the medial sepals and the timing of their abscission. Conclusions Our results indicate that AS1 activity is critical for the proper placement of the floral organ abscission zones, and influences the timing of organ shedding. PMID:25038814

  2. An Arabidopsis mutant with enhanced resistance to powdery mildew.

    Science.gov (United States)

    Frye, C A; Innes, R W

    1998-06-01

    We have identified an Arabidopsis mutant that displays enhanced disease resistance to the fungus Erysiphe cichoracearum, causal agent of powdery mildew. The edr1 mutant does not constitutively express the pathogenesis-related genes PR-1, BGL2, or PR-5 and thus differs from previously described disease-resistant mutants of Arabidopsis. E. cichoracearum conidia (asexual spores) germinated normally and formed extensive hyphae on edr1 plants, indicating that the initial stages of infection were not inhibited. Production of conidiophores on edr1 plants, however, was cichoracearum, and dead mesophyll cells accumulated in edr1 leaves starting 5 days after inoculation. Macroscopic patches of dead cells appeared 6 days after inoculation. This resistance phenotype is similar to that conferred by "late-acting" powdery mildew resistance genes of wheat and barley. The edr1 mutation is recessive and maps to chromosome 1 between molecular markers ATEAT1 and NCC1. We speculate that the edr1 mutation derepresses multiple defense responses, making them more easily induced by virulent pathogens.

  3. The Arabidopsis defence response mutant esa1 as a tool to discover novel resistance traits against Fusarium diseases

    NARCIS (Netherlands)

    Hemelrijck, van W.; Wouters, P.F.J.; Brouwer, M.; Windelinckx, A.; Goderis, I.J.W.M.; Bolle, De M.F.C.; Thomma, B.P.H.J.; Cammue, B.P.A.; Delauré, S.L.

    2006-01-01

    The Arabidopsis thaliana mutant esa1 was previously shown to exhibit enhanced susceptibility to the necrotrophic fungal pathogens Alternaria brassicicola, Botrytis cinerea and Plectosphaerella cucumerina. In this work, we tried to elaborate on this susceptibility by investigating whether the esa1

  4. The F8H Glycosyltransferase is a Functional Paralog of FRA8 Involved in Glucuronoxylan Biosynthesis in Arabidopsis

    Science.gov (United States)

    The FRAGILE FIBER8 gene was previously shown to be required for the biosynthesis of the reducing end tetrasaccharide sequence of glucuronoxylan (GX) in Arabidopsis thaliana. Here, we demonstrate that F8H, a close homolog of FRA8, is a functional ortholog of FRA8 involved in GX bi...

  5. Heterodimerization of Arabidopsis calcium/proton exchangers contributes to regulation of guard cell dynamics and plant defense responses

    Science.gov (United States)

    "Arabidopsis thaliana" cation exchangers (CAX1 and CAX3) are closely related tonoplast-localized calcium/proton (Ca(2+)/H+) antiporters that contribute to cellular Ca(2+) homeostasis. CAX1 and CAX3 were previously shown to interact in yeast; however, the function of this complex in plants has remain...

  6. Erasure of CpG methylation in Arabidopsis alters patterns of histone H3 methylation in heterochromatin

    DEFF Research Database (Denmark)

    Tariq, M.; Saze, H.; Probst, A.

    2003-01-01

    In mammals and plants, formation of heterochromatin is associated with hypermethylation of DNA at CpG sites and histone H3 methylation at lysine 9. Previous studies have revealed that maintenance of DNA methylation in Neurospora and Arabidopsis requires histone H3 methylation. A feedback loop from...

  7. Three Cytochromes P450 are Sufficient to Reconstitute the Biosynthesis of Camalexin, a Major Arabidopsis Antibiotic**

    Science.gov (United States)

    Klein, Andrew P.; Anarat-Cappillino, Gülbenk

    2013-01-01

    Bringing it all together The discovery of the key missing step in the biosynthesis of camalexin, a model antibiotic from Arabidopsis, was uncovered through in vitro biochemical characterization. The coupling of Trp- and Cys-derived fragments via C–S bond formation is promoted by an unusual cytochrome P450 CYP71A13. The first in vitro reconstitution of camalexin biosynthesis from Trp and Cys was achieved using just three P450s. PMID:24151049

  8. The genetics of some planthormones and photoreceptors in Arabidopsis thaliana (L.) Heynh.

    OpenAIRE

    Koornneef, M.

    1982-01-01

    This thesis describes the isolation and characterization in Arabidopsis thaliana (L.) Heynh. of induced mutants, deficient for gibberellins (GA's), abscisic acid (ABA) and photoreceptors.

    These compounds are known to regulate various facets of plant growth and differentiation, so mutants lacking one of these substances are expected to be affected in several aspects of their physiology. It is shown in this thesis that the earliest expression of these mutants occur...

  9. Auxins increase expression of the brassinosteroid receptor and brassinosteroid-responsive genes in Arabidopsis.

    Science.gov (United States)

    Sakamoto, Tomoaki; Fujioka, Shozo

    2013-04-01

    Auxins and brassinosteroids are essential phytohormones that synergistically regulate physiological and developmental processes in plants. Previously, we demonstrated that auxins stimulate brassinosteroid perception by regulating the level of brassinosteroid receptor in rice. Here we showed that auxin treatment increased expression of the Arabidopsis brassinosteroid receptor gene BRI1. The promoter of BRI1 has an auxin-response element that is targeted by auxin-response factor transcription factors. Auxin pretreatment increased the sensitivity to brassinosteroids of brassinosteroid-responsive genes. Although multilevel interactions between auxins and brassinosteroids have previously been reported, our findings suggest a possibility that auxins control the degree of brassinosteroid perception by regulating the expression of gene for brassinosteroid receptor, and this phenomenon is conserved between monocots (rice) and dicots (Arabidopsis).

  10. The arabidopsis cyclic nucleotide interactome

    KAUST Repository

    Donaldson, Lara Elizabeth

    2016-05-11

    Background Cyclic nucleotides have been shown to play important signaling roles in many physiological processes in plants including photosynthesis and defence. Despite this, little is known about cyclic nucleotide-dependent signaling mechanisms in plants since the downstream target proteins remain unknown. This is largely due to the fact that bioinformatics searches fail to identify plant homologs of protein kinases and phosphodiesterases that are the main targets of cyclic nucleotides in animals. Methods An affinity purification technique was used to identify cyclic nucleotide binding proteins in Arabidopsis thaliana. The identified proteins were subjected to a computational analysis that included a sequence, transcriptional co-expression and functional annotation analysis in order to assess their potential role in plant cyclic nucleotide signaling. Results A total of twelve cyclic nucleotide binding proteins were identified experimentally including key enzymes in the Calvin cycle and photorespiration pathway. Importantly, eight of the twelve proteins were shown to contain putative cyclic nucleotide binding domains. Moreover, the identified proteins are post-translationally modified by nitric oxide, transcriptionally co-expressed and annotated to function in hydrogen peroxide signaling and the defence response. The activity of one of these proteins, GLYGOLATE OXIDASE 1, a photorespiratory enzyme that produces hydrogen peroxide in response to Pseudomonas, was shown to be repressed by a combination of cGMP and nitric oxide treatment. Conclusions We propose that the identified proteins function together as points of cross-talk between cyclic nucleotide, nitric oxide and reactive oxygen species signaling during the defence response.

  11. Reduced Wall Acetylation Proteins Play Vital and Distinct Roles in Cell Wall O-Acetylation in Arabidopsis

    DEFF Research Database (Denmark)

    Manabe, Yuzuki; Verhertbruggen, Yves; Gille, Sascha

    2013-01-01

    The Reduced Wall Acetylation (RWA) proteins are involved in cell wall acetylation in plants. Previously, we described a single mutant, rwa2, which has about 20% lower level of O-acetylation in leaf cell walls and no obvious growth or developmental phenotype. In this study, we generated double......, triple, and quadruple loss-of-function mutants of all four members of the RWA family in Arabidopsis (Arabidopsis thaliana). In contrast to rwa2, the triple and quadruple rwa mutants display severe growth phenotypes revealing the importance of wall acetylation for plant growth and development...

  12. Direct transcriptional activation of BT genes by NLP transcription factors is a key component of the nitrate response in Arabidopsis.

    Science.gov (United States)

    Sato, Takeo; Maekawa, Shugo; Konishi, Mineko; Yoshioka, Nozomi; Sasaki, Yuki; Maeda, Haruna; Ishida, Tetsuya; Kato, Yuki; Yamaguchi, Junji; Yanagisawa, Shuichi

    2017-01-29

    Nitrate modulates growth and development, functioning as a nutrient signal in plants. Although many changes in physiological processes in response to nitrate have been well characterized as nitrate responses, the molecular mechanisms underlying the nitrate response are not yet fully understood. Here, we show that NLP transcription factors, which are key regulators of the nitrate response, directly activate the nitrate-inducible expression of BT1 and BT2 encoding putative scaffold proteins with a plant-specific domain structure in Arabidopsis. Interestingly, the 35S promoter-driven expression of BT2 partially rescued growth inhibition caused by reductions in NLP activity in Arabidopsis. Furthermore, simultaneous disruption of BT1 and BT2 affected nitrate-dependent lateral root development. These results suggest that direct activation of BT1 and BT2 by NLP transcriptional activators is a key component of the molecular mechanism underlying the nitrate response in Arabidopsis. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Transgenic Arabidopsis Plants Expressing Tomato Glutathione S-Transferase Showed Enhanced Resistance to Salt and Drought Stress.

    Science.gov (United States)

    Xu, Jing; Xing, Xiao-Juan; Tian, Yong-Sheng; Peng, Ri-He; Xue, Yong; Zhao, Wei; Yao, Quan-Hong

    2015-01-01

    Although glutathione S-transferases (GST, EC 2.5.1.18) are involved in response to abiotic stress, limited information is available regarding gene function in tomato. In this study, a GST gene from tomato, designated LeGSTU2, was cloned and functionally characterized. Expression profile analysis results showed that it was expressed in roots and flowers, and the transcription was induced by salt, osmotic, and heat stress. The gene was then introduced to Arabidopsis by Agrobacterium tumefaciens-mediated transformation. Transgenic Arabidopsis plants were normal in terms of growth and maturity compared with wild-type plants. Transgenic plants also showed an enhanced resistance to salt and osmotic stress induced by NaCl and mannitol. The increased tolerance of transgenic plants was correlated with the changes in proline, malondialdehyde and antioxidative emzymes activities. Our results indicated that the gene from tomato plays a positive role in improving tolerance to salinity and drought stresses in Arabidopsis.

  14. Transgenic Arabidopsis Plants Expressing Tomato Glutathione S-Transferase Showed Enhanced Resistance to Salt and Drought Stress.

    Directory of Open Access Journals (Sweden)

    Jing Xu

    Full Text Available Although glutathione S-transferases (GST, EC 2.5.1.18 are involved in response to abiotic stress, limited information is available regarding gene function in tomato. In this study, a GST gene from tomato, designated LeGSTU2, was cloned and functionally characterized. Expression profile analysis results showed that it was expressed in roots and flowers, and the transcription was induced by salt, osmotic, and heat stress. The gene was then introduced to Arabidopsis by Agrobacterium tumefaciens-mediated transformation. Transgenic Arabidopsis plants were normal in terms of growth and maturity compared with wild-type plants. Transgenic plants also showed an enhanced resistance to salt and osmotic stress induced by NaCl and mannitol. The increased tolerance of transgenic plants was correlated with the changes in proline, malondialdehyde and antioxidative emzymes activities. Our results indicated that the gene from tomato plays a positive role in improving tolerance to salinity and drought stresses in Arabidopsis.

  15. Auxins increase expression of the brassinosteroid receptor and brassinosteroid-responsive genes in Arabidopsis

    OpenAIRE

    Sakamoto, Tomoaki; Fujioka, Shozo

    2013-01-01

    Auxins and brassinosteroids are essential phytohormones that synergistically regulate physiological and developmental processes in plants. Previously, we demonstrated that auxins stimulate brassinosteroid perception by regulating the level of brassinosteroid receptor in rice. Here we showed that auxin treatment increased expression of the Arabidopsis brassinosteroid receptor gene BRI1. The promoter of BRI1 has an auxin-response element that is targeted by auxin-response factor transcription f...

  16. An improved, low-cost, hydroponic system for growing Arabidopsis and other plant species under aseptic conditions.

    Science.gov (United States)

    Alatorre-Cobos, Fulgencio; Calderón-Vázquez, Carlos; Ibarra-Laclette, Enrique; Yong-Villalobos, Lenin; Pérez-Torres, Claudia-Anahí; Oropeza-Aburto, Araceli; Méndez-Bravo, Alfonso; González-Morales, Sandra-Isabel; Gutiérrez-Alanís, Dolores; Chacón-López, Alejandra; Peña-Ocaña, Betsy-Anaid; Herrera-Estrella, Luis

    2014-03-21

    Hydroponics is a plant growth system that provides a more precise control of growth media composition. Several hydroponic systems have been reported for Arabidopsis and other model plants. The ease of system set up, cost of the growth system and flexibility to characterize and harvest plant material are features continually improved in new hydroponic system reported. We developed a hydroponic culture system for Arabidopsis and other model plants. This low cost, proficient, and novel system is based on recyclable and sterilizable plastic containers, which are readily available from local suppliers. Our system allows a large-scale manipulation of seedlings. It adapts to different growing treatments and has an extended growth window until adult plants are established. The novel seed-holder also facilitates the transfer and harvest of seedlings. Here we report the use of our hydroponic system to analyze transcriptomic responses of Arabidopsis to nutriment availability and plant/pathogen interactions. The efficiency and functionality of our proposed hydroponic system is demonstrated in nutrient deficiency and pathogenesis experiments. Hydroponically grown Arabidopsis seedlings under long-time inorganic phosphate (Pi) deficiency showed typical changes in root architecture and high expression of marker genes involved in signaling and Pi recycling. Genome-wide transcriptional analysis of gene expression of Arabidopsis roots depleted of Pi by short time periods indicates that genes related to general stress are up-regulated before those specific to Pi signaling and metabolism. Our hydroponic system also proved useful for conducting pathogenesis essays, revealing early transcriptional activation of pathogenesis-related genes.

  17. Preoperative screening: value of previous tests.

    Science.gov (United States)

    Macpherson, D S; Snow, R; Lofgren, R P

    1990-12-15

    To determine the frequency of tests done in the year before elective surgery that might substitute for preoperative screening tests and to determine the frequency of test results that change from a normal value to a value likely to alter perioperative management. Retrospective cohort analysis of computerized laboratory data (complete blood count, sodium, potassium, and creatinine levels, prothrombin time, and partial thromboplastin time). Urban tertiary care Veterans Affairs Hospital. Consecutive sample of 1109 patients who had elective surgery in 1988. At admission, 7549 preoperative tests were done, 47% of which duplicated tests performed in the previous year. Of 3096 previous results that were normal as defined by hospital reference range and done closest to the time of but before admission (median interval, 2 months), 13 (0.4%; 95% CI, 0.2% to 0.7%), repeat values were outside a range considered acceptable for surgery. Most of the abnormalities were predictable from the patient's history, and most were not noted in the medical record. Of 461 previous tests that were abnormal, 78 (17%; CI, 13% to 20%) repeat values at admission were outside a range considered acceptable for surgery (P less than 0.001, frequency of clinically important abnormalities of patients with normal previous results with those with abnormal previous results). Physicians evaluating patients preoperatively could safely substitute the previous test results analyzed in this study for preoperative screening tests if the previous tests are normal and no obvious indication for retesting is present.

  18. In vitro culture of Arabidopsis embryos.

    Science.gov (United States)

    Sauer, Michael; Friml, Jirí

    2008-01-01

    Embryogenesis of Arabidopsis thaliana follows a nearly invariant cell division pattern and provides an ideal system for studies of early plant development. However, experimental manipulation with embryogenesis is difficult, as the embryo develops deeply inside maternal tissues. Here, we present a method to culture zygotic Arabidopsis embryos in vitro. It enables culturing for prolonged periods of time from the first developmental stages on. The technique omits excision of the embryo by culturing the entire ovule, which facilitates the manual procedure. It allows pharmacological manipulation of embryo development and does not interfere with standard techniques for localizing gene expression and protein localization in the cultivated embryos.

  19. DNA methylation increases throughout Arabidopsis development.

    Science.gov (United States)

    Ruiz-García, L; Cervera, M T; Martínez-Zapater, J M

    2005-10-01

    We used amplified fragment length polymorphisms (AFLP) to analyze the stability of DNA methylation throughout Arabidopsis development. AFLP can detect genome-wide changes in cytosine methylation produced by DNA demethylation agents, such as 5-azacytidine, or specific mutations at the DDM1 locus. In both cases, cytosine demethylation is associated with a general increase in the presence of amplified fragments. Using this approach, we followed DNA methylation at methylation sensitive restriction sites throughout Arabidopsis development. The results show a progressive DNA methylation trend from cotyledons to vegetative organs to reproductive organs.

  20. Reference: 576 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available shi et al. 2007 Jun. Plant Physiol. 144(2):1039-51. In the tetrapyrrole biosynthetic pathway, isoforms of gl... the induction of these genes in photosynthetic tissues. The physiological functions of AtHEMA2 and AtFC1 we...ynthetic enzymes, AtHEMA2 and AtFC1, under stress conditions and their physiological functions in Arabidopsi...s. 2 1039-51 17416636 2007 Jun Plant physiology Aono Mitsuko|Kikuta Akihiro|Koide Masumi|Masuda Tatsuru|Naga

  1. Reference: 727 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available epigenetic control of gene expression during plant development. Here, we report that the Arabidopsis SET domain protein, SDG...h, thus affecting fertilization. Using an SDG4-GFP fusion construct, the chromosomal localization of SDG4 wa...s established in tobacco BY-2 cells. In Arabidopsis, sdg4 knockout showed reproductive defects. Tissue-speci...fic expression analyses indicated that SDG4 is the major ASH1-related gene expres...sed in the pollen. Immunological analyses demonstrated that SDG4 was involved in the methylation of histone

  2. Glufosinate ammonium selection of transformed Arabidopsis.

    Science.gov (United States)

    Weigel, Detlef; Glazebrook, Jane

    2006-12-01

    INTRODUCTIONOne of the most commonly used markers for the selection of transgenic Arabidopsis is resistance to glufosinate ammonium, an herbicide that is sold under a variety of trade names including Basta and Finale. Resistance to glufosinate ammonium is conferred by the bacterial bialophos resistance gene (BAR) encoding the enzyme phosphinotricin acetyl transferase (PAT). This protocol describes the use of glufosinate ammonium to select transformed Arabidopsis plants. The major advantage of glufosinate ammonium selection is that it can be performed on plants growing in soil and does not require the use of sterile techniques.

  3. Mechanical touch responses of Arabidopsis TCH1-3 mutant roots on inclined hard-agar surface

    Science.gov (United States)

    Zha, Guodong; Wang, Bochu; Liu, Junyu; Yan, Jie; Zhu, Liqing; Yang, Xingyan

    2016-01-01

    The gravity-induced mechanical touch stimulus can affect plant root architecture. Mechanical touch responses of plant roots are an important aspect of plant root growth and development. Previous studies have reported that Arabidopsis TCH1-3 genes are involved in mechano-related events, how-ever, the physiological functions of TCH1-3 genes in Arabidopsis root mechanoresponses remain unclear. In the present study, we applied an inclined hard agar plate method to produce mechanical touch stimulus, and provided evidence that altered mechanical environment could influence root growth. Furthermore, tch1-3 Arabidopsis mutants were investigated on inclined agar surfaces to explore the functions of TCH1-3 genes on Arabidopsis root mechanoresponses. The results showed that two tch2 mutants, cml24-2 and cml24-4, exhibited significantly reduced root length, biased skewing, and decreased density of lateral root. In addition, primary root length and density of lateral root of tch3 (cml12-2) was significantly decreased on inclined agar surfaces. This study indicates that the tch2 and tch3 mutants are hypersensitive to mechanical touch stimulus, and TCH2 (CML24-2 and CML24-4) and TCH3 (CML12-2) genes may participate in the mechanical touch response of Arabidopsis roots.

  4. Genome-wide identification of GLABRA3 downstream genes for anthocyanin biosynthesis and trichome formation in Arabidopsis.

    Science.gov (United States)

    Gao, Chenhao; Li, Dong; Jin, Changyu; Duan, Shaowei; Qi, Shuanghui; Liu, Kaige; Wang, Hanchen; Ma, Haoli; Hai, Jiangbo; Chen, Mingxun

    2017-04-01

    GLABRA3 (GL3), a bHLH transcription factor, has previously proved to be involved in anthocyanin biosynthesis and trichome formation in Arabidopsis, however, its downstream targeted genes are still largely unknown. Here, we found that GL3 was widely present in Arabidopsis vegetative and reproductive organs. New downstream targeted genes of GL3 for anthocyanin biosynthesis and trichome formation were identified in young shoots and expanding true leaves by RNA sequencing. GL3-mediated gene expression was tissue specific in the two biological processes. This study provides new clues to further understand the GL3-mediated regulatory network of anthocyanin biosynthesis and trichome formation in Arabidopsis. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Automatic electromagnetic valve for previous vacuum

    International Nuclear Information System (INIS)

    Granados, C. E.; Martin, F.

    1959-01-01

    A valve which permits the maintenance of an installation vacuum when electric current fails is described. It also lets the air in the previous vacuum bomb to prevent the oil ascending in the vacuum tubes. (Author)

  6. Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis

    Science.gov (United States)

    2012-01-01

    Background The MYB gene family comprises one of the richest groups of transcription factors in plants. Plant MYB proteins are characterized by a highly conserved MYB DNA-binding domain. MYB proteins are classified into four major groups namely, 1R-MYB, 2R-MYB, 3R-MYB and 4R-MYB based on the number and position of MYB repeats. MYB transcription factors are involved in plant development, secondary metabolism, hormone signal transduction, disease resistance and abiotic stress tolerance. A comparative analysis of MYB family genes in rice and Arabidopsis will help reveal the evolution and function of MYB genes in plants. Results A genome-wide analysis identified at least 155 and 197 MYB genes in rice and Arabidopsis, respectively. Gene structure analysis revealed that MYB family genes possess relatively more number of introns in the middle as compared with C- and N-terminal regions of the predicted genes. Intronless MYB-genes are highly conserved both in rice and Arabidopsis. MYB genes encoding R2R3 repeat MYB proteins retained conserved gene structure with three exons and two introns, whereas genes encoding R1R2R3 repeat containing proteins consist of six exons and five introns. The splicing pattern is similar among R1R2R3 MYB genes in Arabidopsis. In contrast, variation in splicing pattern was observed among R1R2R3 MYB members of rice. Consensus motif analysis of 1kb upstream region (5′ to translation initiation codon) of MYB gene ORFs led to the identification of conserved and over-represented cis-motifs in both rice and Arabidopsis. Real-time quantitative RT-PCR analysis showed that several members of MYBs are up-regulated by various abiotic stresses both in rice and Arabidopsis. Conclusion A comprehensive genome-wide analysis of chromosomal distribution, tandem repeats and phylogenetic relationship of MYB family genes in rice and Arabidopsis suggested their evolution via duplication. Genome-wide comparative analysis of MYB genes and their expression analysis

  7. Overexpression of PeHA1 enhances hydrogen peroxide signaling in salt-stressed Arabidopsis.

    Science.gov (United States)

    Wang, Meijuan; Wang, Yang; Sun, Jian; Ding, Mingquan; Deng, Shurong; Hou, Peichen; Ma, Xujun; Zhang, Yuhong; Wang, Feifei; Sa, Gang; Tan, Yeqing; Lang, Tao; Li, Jinke; Shen, Xin; Chen, Shaoliang

    2013-10-01

    The plant plasma membrane (PM) H(+)-ATPase plays a crucial role in controlling K(+)/Na(+) homeostasis under salt stress. Our previous microarray analysis indicated that Populus euphratica retained a higher abundance of PM H(+)-ATPase transcript versus a salt-sensitive poplar. To clarify the roles of the PM H(+)-ATPase in salt sensing and adaptation, we isolated the PM H(+)-ATPase gene PeHA1 from P. euphratica and introduced it into Arabidopsis thaliana. Compared to wild-type, PeHA1-transgenic Arabidopsis had a greater germination rate, root length, and biomass under NaCl stress (50-150 mM). Ectopic expression of PeHA1 remarkably enhanced the capacity to control the homeostasis of ions and reactive oxygen species in salinized Arabidopsis. Flux data from salinized roots showed that transgenic plants exhibited a more pronounced Na(+)/H(+) antiport and less reduction of K(+) influx versus wild-type. Enhanced PM ATP hydrolytic activity, proton pumping, and Na(+)/H(+) antiport in PeHA1-transgenic plants, were consistent to those observed in vivo, i.e., H(+) extrusion, external acidification, and Na(+) efflux. Activities of the antioxidant enzymes ascorbate peroxidase and catalase were typically higher in transgenic seedlings irrespective of salt concentration. In transgenic Arabidopsis roots, H2O2 production was higher under control conditions and increased more rapidly than wild-type when plants were subjected to NaCl treatment. Interestingly, transgenic plants were unable to control K(+)/Na(+) homeostasis when salt-induced H2O2 production was inhibited by diphenylene iodonium, an inhibitor of NADPH oxidase. These observations suggest that PeHA1 accelerates salt tolerance partially through rapid H2O2 production upon salt treatment, which triggers adjustments in K(+)/Na(+) homeostasis and antioxidant defense in Arabidopsis. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  8. Phototropism and gravitropism in lateral roots of Arabidopsis

    Science.gov (United States)

    Kiss, John Z.; Miller, Kelley M.; Ogden, Lisa A.; Roth, Kelly K.

    2002-01-01

    Gravitropism and, to a lesser extent, phototropism have been characterized in primary roots, but little is known about structural/functional aspects of these tropisms in lateral roots. Therefore, in this study, we report on tropistic responses in lateral roots of Arabidopsis thaliana. Lateral roots initially are plagiogravitropic, but when they reach a length of approximately 10 mm, these roots grow downward and exhibit positive orthogravitropism. Light and electron microscopic studies demonstrate a correlation between positive gravitropism and development of columella cells with large, sedimented amyloplasts in wild-type plants. Lateral roots display negative phototropism in response to white and blue light and positive phototropism in response to red light. As is the case with primary roots, the photoresponse is weak relative to the graviresponse, but phototropism is readily apparent in starchless mutant plants, which are impaired in gravitropism. To our knowledge, this is the first report of phototropism of lateral roots in any plant species.

  9. Concomitant and previous osteoporotic vertebral fractures.

    Science.gov (United States)

    Lenski, Markus; Büser, Natalie; Scherer, Michael

    2017-04-01

    Background and purpose - Patients with osteoporosis who present with an acute onset of back pain often have multiple fractures on plain radiographs. Differentiation of an acute osteoporotic vertebral fracture (AOVF) from previous fractures is difficult. The aim of this study was to investigate the incidence of concomitant AOVFs and previous OVFs in patients with symptomatic AOVFs, and to identify risk factors for concomitant AOVFs. Patients and methods - This was a prospective epidemiological study based on the Registry of Pathological Osteoporotic Vertebral Fractures (REPAPORA) with 1,005 patients and 2,874 osteoporotic vertebral fractures, which has been running since February 1, 2006. Concomitant fractures are defined as at least 2 acute short-tau inversion recovery (STIR-) positive vertebral fractures that happen concomitantly. A previous fracture is a STIR-negative fracture at the time of initial diagnostics. Logistic regression was used to examine the influence of various variables on the incidence of concomitant fractures. Results - More than 99% of osteoporotic vertebral fractures occurred in the thoracic and lumbar spine. The incidence of concomitant fractures at the time of first patient contact was 26% and that of previous fractures was 60%. The odds ratio (OR) for concomitant fractures decreased with a higher number of previous fractures (OR =0.86; p = 0.03) and higher dual-energy X-ray absorptiometry T-score (OR =0.72; p = 0.003). Interpretation - Concomitant and previous osteoporotic vertebral fractures are common. Risk factors for concomitant fractures are a low T-score and a low number of previous vertebral fractures in cases of osteoporotic vertebral fracture. An MRI scan of the the complete thoracic and lumbar spine with STIR sequence reduces the risk of under-diagnosis and under-treatment.

  10. An anion channel in Arabidopsis hypocotyls activated by blue light

    Science.gov (United States)

    Cho, M. H.; Spalding, E. P.; Evans, M. L. (Principal Investigator)

    1996-01-01

    A rapid, transient depolarization of the plasma membrane in seedling stems is one of the earliest effects of blue light detected in plants. It appears to play a role in transducing blue light into inhibition of hypocotyl (stem) elongation, and perhaps other responses. The possibility that activation of a Cl- conductance is part of the depolarization mechanism was raised previously and addressed here. By patch clamping hypocotyl cells isolated from dark-grown (etiolated) Arabidopsis seedlings, blue light was found to activate an anion channel residing at the plasma membrane. An anion-channel blocker commonly known as NPPB 15-nitro-2-(3-phenylpropylamino)-benzoic acid] potently and reversibly blocked this anion channel. NPPB also blocked the blue-light-induced depolarization in vivo and decreased the inhibitory effect of blue light on hypocotyl elongation. These results indicate that activation of this anion channel plays a role in transducing blue light into growth inhibition.

  11. Glucosinolate metabolites required for an Arabidopsis innate immune response.

    Science.gov (United States)

    Clay, Nicole K; Adio, Adewale M; Denoux, Carine; Jander, Georg; Ausubel, Frederick M

    2009-01-02

    The perception of pathogen or microbe-associated molecular pattern molecules by plants triggers a basal defense response analogous to animal innate immunity and is defined partly by the deposition of the glucan polymer callose at the cell wall at the site of pathogen contact. Transcriptional and metabolic profiling in Arabidopsis mutants, coupled with the monitoring of pathogen-triggered callose deposition, have identified major roles in pathogen response for the plant hormone ethylene and the secondary metabolite 4-methoxy-indol-3-ylmethylglucosinolate. Two genes, PEN2 and PEN3, are also necessary for resistance to pathogens and are required for both callose deposition and glucosinolate activation, suggesting that the pathogen-triggered callose response is required for resistance to microbial pathogens. Our study shows that well-studied plant metabolites, previously identified as important in avoiding damage by herbivores, are also required as a component of the plant defense response against microbial pathogens.

  12. Glucosinolate Metabolites Required for an Arabidopsis Innate Immune Response*

    Science.gov (United States)

    Clay, Nicole K.; Adio, Adewale M.; Denoux, Carine; Jander, Georg; Ausubel, Frederick M.

    2008-01-01

    Summary The perception of pathogen or microbe-associated molecular pattern molecules by plants triggers a basal defense response analogous to animal innate immunity, and is defined in part by the deposition of the glucan polymer callose at the cell wall at the site of pathogen contact. Transcriptional and metabolic profiling in Arabidopsis mutants, coupled with the monitoring of pathogen triggered callose deposition, have identified major roles in pathogen response for the plant hormone ethylene and the secondary metabolite 4-methoxy-indol-3-ylmethylglucosinolate. Two genes, PEN2 and PEN3, are also necessary for resistance to pathogens and are required for both callose deposition and glucosinolate activation, suggesting that the pathogen triggered callose response is required for resistance to microbial pathogens. Our study shows that well-studied plant metabolites, previously identified as important in avoiding damage by herbivores, are also required as a component of the plant defense response against microbial pathogens. PMID:19095898

  13. Arabidopsis CDS blastp result: AK068130 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK068130 J013132D11 At5g04140.2 glutamate synthase (GLU1) / ferredoxin-dependent glutamate... synthase (Fd-GOGAT 1) identical to ferredoxin-dependent glutamate synthase precursor [Arabidopsis thaliana] GI:3869251 0.0 ...

  14. Arabidopsis CDS blastp result: AK241281 [KOME

    Lifescience Database Archive (English)

    Full Text Available ctor, putative / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum a...nd contains PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 1e-12 ...

  15. Arabidopsis CDS blastp result: AK241762 [KOME

    Lifescience Database Archive (English)

    Full Text Available ctor, putative / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum a...nd contains PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 9e-17 ...

  16. Arabidopsis CDS blastp result: AK242393 [KOME

    Lifescience Database Archive (English)

    Full Text Available ctor, putative / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum a...nd contains PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 3e-13 ...

  17. Arabidopsis CDS blastp result: AK242986 [KOME

    Lifescience Database Archive (English)

    Full Text Available ctor, putative / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum a...nd contains PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 1e-13 ...

  18. Reference: 55 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available /H+ antiporter in leaf vacuoles in Arabidopsis and also suggest that its contribu...nce of NaCl, nhx1 seedling establishment was impaired. These results place AtNHX1 as the dominant K+ and Na+

  19. Reference: 591 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available loroplast development, we systematically analyzed albino and pale green Arabidopsis thaliana mutants by use ...e focused on one of these albino mutants, designated apg3-1 (for a lbino or p ale g reen mutant 3). A gene e

  20. Arabidopsis CDS blastp result: AK065420 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK065420 J013022D10 At5g13630.1 magnesium-chelatase subunit chlH, chloroplast, puta...tive / Mg-protoporphyrin IX chelatase, putative (CHLH) nearly identical to magnesium chelatase subunit GI:11...54627 from [Arabidopsis thaliana]; contains Pfam profile: PF02514 CobN/magnesium chelatase family protein 1e-166 ...

  1. Arabidopsis CDS blastp result: AK062262 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK062262 001-047-H04 At5g13630.1 magnesium-chelatase subunit chlH, chloroplast, put...ative / Mg-protoporphyrin IX chelatase, putative (CHLH) nearly identical to magnesium chelatase subunit GI:1...154627 from [Arabidopsis thaliana]; contains Pfam profile: PF02514 CobN/magnesium chelatase family protein 0.0 ...

  2. Arabidopsis CDS blastp result: AK069545 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069545 J023025I06 At5g13630.1 magnesium-chelatase subunit chlH, chloroplast, puta...tive / Mg-protoporphyrin IX chelatase, putative (CHLH) nearly identical to magnesium chelatase subunit GI:11...54627 from [Arabidopsis thaliana]; contains Pfam profile: PF02514 CobN/magnesium chelatase family protein 0.0 ...

  3. Arabidopsis CDS blastp result: AK067323 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK067323 J013106B16 At5g13630.1 magnesium-chelatase subunit chlH, chloroplast, puta...tive / Mg-protoporphyrin IX chelatase, putative (CHLH) nearly identical to magnesium chelatase subunit GI:11...54627 from [Arabidopsis thaliana]; contains Pfam profile: PF02514 CobN/magnesium chelatase family protein 0.0 ...

  4. Arabidopsis CDS blastp result: AK060612 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK060612 001-025-F03 At5g13630.1 magnesium-chelatase subunit chlH, chloroplast, put...ative / Mg-protoporphyrin IX chelatase, putative (CHLH) nearly identical to magnesium chelatase subunit GI:1...154627 from [Arabidopsis thaliana]; contains Pfam profile: PF02514 CobN/magnesium chelatase family protein 0.0 ...

  5. Reference: 689 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available the high affinity of MOT1 allows plants to obtain scarce Mo from soil. An Arabidopsis thaliana high-affinity... molybdate transporter required for efficient uptake of molybdate from soil. 47 18807-12 18003916 2007 Nov P

  6. Light signal perception in Arabidopsis rosettes

    NARCIS (Netherlands)

    Evers, J.B.; Pierik, R.; Krol, van der A.R.

    2013-01-01

    Light signals are important signals for future and present competition. We used an architectural model of Arabidopsis development to show that vertical growth of neighboring vegetation is more important than proximity for early detection of competition. Self-signaling is greatly enhanced when own

  7. Arabidopsis CDS blastp result: AK103188 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK103188 J033121M03 At3g56850.1 ABA-responsive element-binding protein 3 (AREB3) id...entical to ABA-responsive element binding protein 3 (AREB3) [Arabidopsis thaliana] GI:9967421 2e-32 ...

  8. Reference: 56 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available Y et al. 2003 Nov. Plant Physiol. 133(3):1170-80. Mutations in the QUARTET loci in Arabidopsis result in fai...cell wall degradation. 3 1170-80 14551328 2003 Nov Plant physiology Osborne Erin|Poindexter Patricia D|Rhee Seung Y|Somerville Chris R

  9. Reference: 724 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available t Sjoerd et al. 2008 Mar. Plant Physiol. 146(3):1293-304. Colonization of Arabidopsis thaliana roots by nonp... 3 1293-304 18218967 2008 Mar Plant physiology Bakker Daniel|Joosten Ruth G|Pel Michiel J C|Pieterse Corné M

  10. Reference: 751 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available Jayashree et al. 2008 Jun. Plant Physiol. 147(2):672-81. Transcription corepressors play important roles in ...unctions during Arabidopsis embryo and floral development. 2 672-81 18390806 2008 Jun Plant physiology Bui Minh|Liu Zhongchi|Sitaraman Jayashree

  11. Reference: 386 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available drea et al. 2006 Jul. Plant Physiol. 141(3):942-56. In many plant species, a subset of the genes of the chlo...d mesophyll cell proliferation in Arabidopsis. 3 942-56 16698900 2006 Jul Plant physiology Hricová Andrea|Micol José Luis|Quesada Victor

  12. Reference: 276 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available Sholpan et al. 2005 Oct. Plant Physiol. 139(2):847-56. Plant acclimation to environmental stress is controll...role in reactive oxygen and abiotic stress signaling in Arabidopsis. 2 847-56 16183833 2005 Oct Plant phys...iology Coutu Jesse|Davletova Sholpan|Mittler Ron|Schlauch Karen

  13. Reference: 215 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available Shinya et al. 2005 Jun. Plant Physiol. 138(2):870-81. Plants have mechanisms for repairing and tolerating de...-damaging agents. Roles of Arabidopsis AtREV1 and AtREV7 in translesion synthesis. 2 870-81 15908599 2005 Jun Plant physio

  14. Arabidopsis CDS blastp result: AK241942 [KOME

    Lifescience Database Archive (English)

    Full Text Available protein similar to fasciclin-like arabinogalactan-protein 1 [Arabidopsis thaliana] gi|13377776|gb|AAK20857; 3e-21 ... ...AK241942 J075088H12 At3g12660.1 68416.m01578 fasciclin-like arabinogalactan family

  15. Arabidopsis CDS blastp result: AK121828 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK121828 J033099G20 At3g46550.1 fasciclin-like arabinogalactan family protein similar to fasciclin-like arab...inogalactan protein FLA8 [Arabidopsis thaliana] gi|10880493|gb|AAG24276 4e-87 ...

  16. Arabidopsis CDS blastp result: AK119375 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK119375 001-132-A06 At3g46550.1 fasciclin-like arabinogalactan family protein similar to fasciclin-like ara...binogalactan protein FLA8 [Arabidopsis thaliana] gi|10880493|gb|AAG24276 2e-85 ...

  17. Arabidopsis CDS blastp result: AK241942 [KOME

    Lifescience Database Archive (English)

    Full Text Available protein similar to fasciclin-like arabinogalactan-protein 1 [Arabidopsis thaliana] gi|13377776|gb|AAK20857 9e-20 ... ...AK241942 J075088H12 At2g24450.1 68415.m02922 fasciclin-like arabinogalactan family

  18. Arabidopsis CDS blastp result: AK241942 [KOME

    Lifescience Database Archive (English)

    Full Text Available protein similar to fasciclin-like arabinogalactan-protein 1 [Arabidopsis thaliana] gi|13377776|gb|AAK20857 2e-15 ... ...AK241942 J075088H12 At4g31370.1 68417.m04448 fasciclin-like arabinogalactan family

  19. Arabidopsis CDS blastp result: AK109762 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK109762 002-146-G11 At3g12660.1 fasciclin-like arabinogalactan family protein similar to fasciclin-like ara...binogalactan-protein 1 [Arabidopsis thaliana] gi|13377776|gb|AAK20857; 3e-24 ...

  20. Arabidopsis CDS blastp result: AK108772 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK108772 002-150-H07 At3g12660.1 fasciclin-like arabinogalactan family protein similar to fasciclin-like ara...binogalactan-protein 1 [Arabidopsis thaliana] gi|13377776|gb|AAK20857; 1e-35 ...

  1. Arabidopsis CDS blastp result: AK289211 [KOME

    Lifescience Database Archive (English)

    Full Text Available protein similar to fasciclin-like arabinogalactan protein FLA8 [Arabidopsis thaliana] gi|10880493|gb|AAG24276 4e-90 ... ...AK289211 J100060N06 At3g46550.1 68416.m05053 fasciclin-like arabinogalactan family

  2. Arabidopsis CDS blastp result: AK071661 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK071661 J023105D07 At5g37770.1 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 3e-33 ...

  3. Arabidopsis CDS blastp result: AK242428 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242428 J080089P09 At5g37770.1 68418.m04547 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 9e-19 ...

  4. Arabidopsis CDS blastp result: AK242428 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242428 J080089P09 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 8e-18 ...

  5. Arabidopsis CDS blastp result: AK241786 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241786 J065207F05 At5g37770.1 68418.m04547 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 1e-19 ...

  6. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 8e-44 ...

  7. Arabidopsis CDS blastp result: AK242428 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242428 J080089P09 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 2e-14 ...

  8. Arabidopsis CDS blastp result: AK242428 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242428 J080089P09 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 3e-16 ...

  9. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At5g37770.1 68418.m04547 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 2e-11 ...

  10. Arabidopsis CDS blastp result: AK108506 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK108506 002-143-H11 At5g37770.1 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 7e-14 ...

  11. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 4e-41 ...

  12. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At5g37770.1 68418.m04547 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 2e-25 ...

  13. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 3e-26 ...

  14. Arabidopsis CDS blastp result: AK243656 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243656 J100088L22 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 1e-19 ...

  15. Arabidopsis CDS blastp result: AK243656 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243656 J100088L22 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 5e-20 ...

  16. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 3e-44 ...

  17. Arabidopsis CDS blastp result: AK243656 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243656 J100088L22 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 2e-17 ...

  18. Arabidopsis CDS blastp result: AK062711 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK062711 001-106-C02 At5g37770.1 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 9e-34 ...

  19. Arabidopsis CDS blastp result: AK288095 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288095 J075191E21 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 2e-16 ...

  20. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 3e-26 ...

  1. Arabidopsis CDS blastp result: AK288095 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288095 J075191E21 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 2e-15 ...

  2. Reference: 677 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ae et al. 2007 Dec. Plant Cell Physiol. 48(12):1713-23. Methionine residues of proteins are a major target f... in cold acclimation in Arabidopsis. 12 1713-23 17956860 2007 Dec Plant & cell physiology Bae Min Seok|Cho Eun Ju|Kwon Soon Il|Kwon Sun Jae|Park Ohkmae K

  3. Reference: 763 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ín M Carmen et al. 2008 Jun. Plant Physiol. 147(2):562-72. Plant cells contain different O-acetylserine(thio...footprints of mutant plants had predicted functions associated with various physiological responses that are...f the cytosol to maintain discrete concentrations of hydrogen peroxide in Arabidopsis. 2 562-72 18441224 2008 Jun Plant physio

  4. Arabidopsis CDS blastp result: AK068433 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK068433 J013156D16 At1g20620.2 catalase 3 (SEN2) almost identical to catalase 3 SP...:Q42547, GI:3123188 from [Arabidopsis thaliana]; identical to catalase 3 (SEN2) mRNA, partial cds GI:3158369 1e-63 ...

  5. Arabidopsis CDS blastp result: AK121261 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK121261 J023104H13 At1g55350.4 calpain-type cysteine protease family identical to calpain...-like protein GI:20268660 from [Arabidopsis thaliana]; contains Pfam profiles: PF00648 Calpain family... cysteine protease, PF01067 Calpain large subunit,domain III; identical to cDNA calpain-like protein GI:20268659 0.0 ...

  6. Self-consuming innate immunity in Arabidopsis

    DEFF Research Database (Denmark)

    Hofius, Daniel; Mundy, John; Petersen, Morten

    2009-01-01

    . However, it has been unclear by which molecular mechanisms plants execute PCD during innate immune responses. We recently examined HR PCD in autophagy-deficient Arabidopsis knockout mutants (atg) and find that PCD conditioned by one class of plant innate immune receptors is suppressed in atg mutants...

  7. Divergent regulation of Arabidopsis SAUR genes

    NARCIS (Netherlands)

    Mourik, van Hilda; Dijk, van Aalt D.J.; Stortenbeker, Niek; Angenent, Gerco C.; Bemer, Marian

    2017-01-01

    Background: Small Auxin-Upregulated RNA (SAUR) genes encode growth regulators that induce cell elongation. Arabidopsis contains more than 70 SAUR genes, of which the growth-promoting function has been unveiled in seedlings, while their role in other tissues remained largely unknown. Here, we

  8. Reference: 250 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available bolite profiling of dark-treated leaves of the wild type and mutants revealed a drama...s accumulated in long-term dark-treated leaves. Analysis of three independent insertional mutants of Arabidopsis ETFQO revealed a dra...matic reduction in their ability to withstand extended darkness, resulting in senes

  9. Die Regulation der Camalexinbiosynthese in Arabidopsis thaliana

    OpenAIRE

    Rauhut, Thomas

    2009-01-01

    Camalexin ist das charakteristische Phytoalexin von Arabidopsis thaliana. Bei Pathogeninfektion wird die Synthese von Camalexin z. B. durch die Erkennung von Peptidoglycan oder Nep1-artigen Proteinen (NLPs) ausgelöst. Pflanzen, welche ein NLP unter der Kontrolle eines Ethanol-induzierbaren Promotors exprimieren zeigten eine starke Induktion der Tryptophan- und Camalexinbiosynthesegene und eine reproduzierbare Camalexinakkumulation. Retrobiosynthetische NMR-Analysen und Markierungsexperimente ...

  10. Arabidopsis CDS blastp result: AK241438 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241438 J065162G03 At4g32040.1 68417.m04561 homeobox protein knotted-1 like 5 (KNAT5) / home...odomain containing protein 1 (H1) identical to homeobox protein knotted-1 like 5 (KNAT5) SP:P48002 from [Arabidopsis thaliana] 4e-98 ...

  11. Arabidopsis CDS blastp result: AK289177 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK289177 J100024E07 At4g32040.1 68417.m04561 homeobox protein knotted-1 like 5 (KNAT5) / home...odomain containing protein 1 (H1) identical to homeobox protein knotted-1 like 5 (KNAT5) SP:P48002 from [Arabidopsis thaliana] 4e-98 ...

  12. Arabidopsis CDS blastp result: AK111761 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111761 J023058F21 At3g20740.1 fertilization-independent endosperm protein (FIE) c...ontains 6 WD-40 repeats (PF00400); identical to fertilization-independent endosperm protein (GI:4567095) [Arabidopsis thaliana] 1e-158 ...

  13. Arabidopsis CDS blastp result: AK242200 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242200 J075166M12 At3g20740.1 68416.m02624 fertilization-independent endosperm pr...otein (FIE) contains 6 WD-40 repeats (PF00400); identical to fertilization-independent endosperm protein (GI:4567095) [Arabidopsis thaliana] 1e-142 ...

  14. Arabidopsis CDS blastp result: AK103126 [KOME

    Lifescience Database Archive (English)

    Full Text Available 0S proteasome beta subunit PBB1 (PBB1) GB:AAC32066 [Arabidopsis thaliana] (Genetics 149 (2), 677-692 (1998)); contains Pfam profile: PF00227 proteasome A-type and B-type; 1e-129 ...

  15. Arabidopsis CDS blastp result: AK058440 [KOME

    Lifescience Database Archive (English)

    Full Text Available 20S proteasome beta subunit PBB1 (PBB1) GB:AAC32066 [Arabidopsis thaliana] (Genetics 149 (2), 677-692 (1998)); contains Pfam profile: PF00227 proteasome A-type and B-type; 1e-92 ...

  16. Arabidopsis CDS blastp result: AK242707 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242707 J090040M15 At1g70550.2 68414.m08120 expressed protein similar to hypotheti...cal protein GB:AAD31338 [Arabidopsis thaliana] and to putative putative carboxyl-terminal peptidase GB:AAC16

  17. Arabidopsis CDS blastp result: AK241860 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241860 J065216G12 At1g70550.1 68414.m08119 expressed protein similar to hypotheti...cal protein GB:AAD31338 [Arabidopsis thaliana] and to putative putative carboxyl-terminal peptidase GB:AAC16

  18. Arabidopsis CDS blastp result: AK242707 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242707 J090040M15 At1g70550.1 68414.m08119 expressed protein similar to hypotheti...cal protein GB:AAD31338 [Arabidopsis thaliana] and to putative putative carboxyl-terminal peptidase GB:AAC16

  19. Arabidopsis CDS blastp result: AK241860 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241860 J065216G12 At1g70550.2 68414.m08120 expressed protein similar to hypotheti...cal protein GB:AAD31338 [Arabidopsis thaliana] and to putative putative carboxyl-terminal peptidase GB:AAC16

  20. Arabidopsis CDS blastp result: AK242472 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242472 J080303B22 At1g70550.2 68414.m08120 expressed protein similar to hypotheti...cal protein GB:AAD31338 [Arabidopsis thaliana] and to putative putative carboxyl-terminal peptidase GB:AAC16

  1. Arabidopsis CDS blastp result: AK073288 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK073288 J033028L24 At1g70550.2 expressed protein similar to hypothetical protein G...B:AAD31338 [Arabidopsis thaliana] and to putative putative carboxyl-terminal peptidase GB:AAC16072 [Arabidop

  2. Arabidopsis CDS blastp result: AK242472 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242472 J080303B22 At1g70550.1 68414.m08119 expressed protein similar to hypotheti...cal protein GB:AAD31338 [Arabidopsis thaliana] and to putative putative carboxyl-terminal peptidase GB:AAC16

  3. Arabidopsis CDS blastp result: AK242472 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242472 J080303B22 At5g46200.1 68418.m05684 expressed protein contains similarity to carboxyl-term...inal proteinase contains Pfam profile PF03080: Arabidopsis proteins of unknown function; expression supported by MPSS 2e-33 ...

  4. Arabidopsis CDS blastp result: AK104980 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104980 001-125-D09 At1g70550.2 expressed protein similar to hypothetical protein ...GB:AAD31338 [Arabidopsis thaliana] and to putative putative carboxyl-terminal peptidase GB:AAC16072 [Arabido

  5. Reference: 632 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available Ludmila et al. 2007 Sep. Plant J. 51(5):874-85. One of the earliest responses of plants to environmental str...elopment in reaction to adverse environmental conditions. We show that the AtCHR12 chromatin-remodeling gene...R12 mediates temporary growth arrest in Arabidopsis thaliana upon perceiving environmental

  6. Reference: 43 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available iam L et al. 2003 Sep. Development 130(18):4249-58. The mechanisms regulating cell layer organisation in dev...guments. Insertion mutations show that ARABIDOPSIS CRINKLY4 is required for regulation of cellular organisation...e plays a role in cell layer organisation during ovule integument and sepal margin development. 18 4249-58 1

  7. Arabidopsis CDS blastp result: AK243046 [KOME

    Lifescience Database Archive (English)

    Full Text Available like protein identical to SP|Q9S7R5 TWIN SISTER of FT protein (TFL1 like protein) {Arabidopsis thaliana}; c...AK243046 J100010A16 At4g20370.1 68417.m02973 twin sister of FT protein (TSF) / TFL1

  8. Arabidopsis CDS blastp result: AK240877 [KOME

    Lifescience Database Archive (English)

    Full Text Available like protein identical to SP|Q9S7R5 TWIN SISTER of FT protein (TFL1 like protein) {Arabidopsis thaliana}; c...AK240877 J065027B08 At4g20370.1 68417.m02973 twin sister of FT protein (TSF) / TFL1

  9. Reference: 206 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ,5-trichlorophenol (TCP). To determine its importance in detoxifying xenobiotics ...oxification as bound-residue formation. Functional importance of the family 1 glucosyltransferase UGT72B1 in the metabolism of xenobi...otics in Arabidopsis thaliana. 4 556-66 15860014 2005 May The Plant journal Brazier-Hicks Melissa|Edwards Robert

  10. Reference: 749 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available former mutant had decreased electron transport rates, a lower DeltapH gradient across the grana membranes, r...the PSII particles of these plants were organized in unusual two-dimensional arrays in the grana membranes. ...d the electron transport rate in grana membranes of Arabidopsis. 4 1012-28 18381925 2008 Apr The Plant cell

  11. Reference: 486 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available time in many plant species through the photoperiod and vernalization pathways, re...cipates in both the photoperiod and vernalization pathways in Arabidopsis thaliana by regulating expression ... of VIN3 in a photoperiod-dependent manner. A PHD finger protein involved in both the vernalization and photoperiod pathways

  12. Reference: 412 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available the tobacco arcA gene, mediates hormone responses and plays a regulatory role in multiple developmental processes...in RACK1A confer defects in multiple developmental processes including seed germination, leaf production, an...ltiple hormone responsiveness and developmental processes in Arabidopsis. 11 2697-708 16829549 2006 Journal

  13. Reference: 145 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available mediating seedling deetiolation. In summary, our results support the notion that FRS family members play distinct roles...g nuclear gene expression. Arabidopsis FHY3/FAR1 gene family and distinct roles of its members in light cont

  14. Reference: 691 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ants. Nine genomic sequences encode putative Bsas proteins in Arabidopsis thaliana. The physiological roles ...thione in the bsas mutants indicated that cytosolic Bsas1;1, plastidic Bsas2;1, and mitochondrial Bsas2;2 play major roles...ucial role of Bsas3;1 in beta-cyano-Ala metabolism in vivo. Physiological roles o

  15. Reference: 109 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ) and RELATIVE OF EARLY FLOWERING 6 (REF6), play divergent roles in the regulation of Arabidopsis flowering.... show that ELF6 and REF6 have different cellular roles and are also regulated differentially despite their s...in higher eukaryotes. Divergent roles of a pair of homologous jumonji/zinc-finger-class transcription factor

  16. Reference: 590 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 590 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u17450124i Caro Elena et al. 2007 May. Nature... to root epidermis patterning in Arabidopsis. 7141 213-7 17450124 2007 May Nature Caro Elena|Castellano M Mar|Gutierrez Crisanto

  17. Reference: 239 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 239 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u16015335i Bundock Paul et al. 2005 Jul. Natur...functions. An Arabidopsis hAT-like transposase is essential for plant development. 7048 282-4 16015335 2005 Jul Nature Bundock Paul|Hooykaas Paul

  18. Reference: 81 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 81 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u15075397i Culligan Kevin...le checkpoint in Arabidopsis thaliana. 5 1091-104 15075397 2004 May The Plant cell Britt Anne|Culligan Kevin|Tissier Alain

  19. Arabidopsis CDS blastp result: AK241627 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241627 J065187G05 At3g12280.1 68416.m01533 retinoblastoma-related protein (RBR1) nearly identical to retin...oblastoma-related protein [Arabidopsis thaliana] GI:8777927; contains Pfam profiles: PF01858 retinoblastoma...-associated protein A domain, PF01857 retinoblastoma-associated protein B domain 0.0 ...

  20. Arabidopsis CDS blastp result: AK121431 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK121431 J023138G19 At3g12280.1 retinoblastoma-related protein (RBR1) nearly identical to retinoblastoma...-related protein [Arabidopsis thaliana] GI:8777927; contains Pfam profiles: PF01858 retinoblastoma...-associated protein A domain, PF01857 retinoblastoma-associated protein B domain 0.0 ...

  1. Arabidopsis CDS blastp result: AK240830 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240830 J065014C16 At3g12280.1 68416.m01533 retinoblastoma-related protein (RBR1) nearly identical to retin...oblastoma-related protein [Arabidopsis thaliana] GI:8777927; contains Pfam profiles: PF01858 retinoblastoma...-associated protein A domain, PF01857 retinoblastoma-associated protein B domain 0.0 ...

  2. Arabidopsis CDS blastp result: AK064987 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK064987 J013001D03 At3g12280.1 retinoblastoma-related protein (RBR1) nearly identical to retinoblastoma...-related protein [Arabidopsis thaliana] GI:8777927; contains Pfam profiles: PF01858 retinoblastoma...-associated protein A domain, PF01857 retinoblastoma-associated protein B domain 0.0 ...

  3. Arabidopsis CDS blastp result: AK241364 [KOME

    Lifescience Database Archive (English)

    Full Text Available 2) identical to Dof zinc finger protein ADOF2 GI:3608263 from [Arabidopsis thaliana]; identical to cDNA adof...AK241364 J065152E11 At3g21270.1 68416.m02688 Dof-type zinc finger domain-containing protein (ADOF

  4. Arabidopsis CDS blastp result: AK288349 [KOME

    Lifescience Database Archive (English)

    Full Text Available 2) identical to Dof zinc finger protein ADOF2 GI:3608263 from [Arabidopsis thaliana]; identical to cDNA adof...AK288349 J090023P19 At3g21270.1 68416.m02688 Dof-type zinc finger domain-containing protein (ADOF

  5. Arabidopsis CDS blastp result: AK287447 [KOME

    Lifescience Database Archive (English)

    Full Text Available 2) identical to Dof zinc finger protein ADOF2 GI:3608263 from [Arabidopsis thaliana]; identical to cDNA adof...AK287447 J043016O04 At3g21270.1 68416.m02688 Dof-type zinc finger domain-containing protein (ADOF

  6. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At4g38190.1 68417.m05391 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-5 (gi:9622882) from Zea mays 0.0 ...

  7. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At1g32180.1 68414.m03958 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-9 (gi:9622890) from Zea mays 0.0 ...

  8. Arabidopsis CDS blastp result: AK121003 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK121003 J023045B21 At2g32540.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 1e-167 ...

  9. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At4g38190.1 68417.m05391 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-5 (gi:9622882) from Zea mays 8e-63 ...

  10. Arabidopsis CDS blastp result: AK109812 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK109812 002-147-H02 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 5e-90 ...

  11. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At4g23990.1 68417.m03448 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 2e-26 ...

  12. Arabidopsis CDS blastp result: AK069071 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069071 J023010H01 At2g32540.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 1e-167 ...

  13. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At2g32540.1 68415.m03975 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 4e-47 ...

  14. Arabidopsis CDS blastp result: AK110534 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK110534 002-168-A07 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 1e-114 ...

  15. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At2g32540.1 68415.m03975 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 3e-31 ...

  16. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At5g16910.1 68418.m01982 cellulose synthase family protein similar to gi:2827143 cellulo...se synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 1e-28 ...

  17. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At4g23990.1 68417.m03448 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 8e-25 ...

  18. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At1g32180.1 68414.m03958 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-9 (gi:9622890) from Zea mays 1e-126 ...

  19. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At4g23990.1 68417.m03448 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 1e-45 ...

  20. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At4g23990.1 68417.m03448 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 5e-25 ...

  1. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At5g16910.1 68418.m01982 cellulose synthase family protein similar to gi:2827143 cellulo...se synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 2e-65 ...

  2. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At1g32180.1 68414.m03958 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-9 (gi:9622890) from Zea mays 1e-24 ...

  3. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At2g32530.1 68415.m03974 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 2e-29 ...

  4. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At1g32180.1 68414.m03958 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-9 (gi:9622890) from Zea mays 3e-66 ...

  5. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At4g23990.1 68417.m03448 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 1e-124 ...

  6. Arabidopsis CDS blastp result: AK105393 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105393 001-123-B04 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  7. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At2g32540.1 68415.m03975 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 2e-45 ...

  8. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At5g16910.1 68418.m01982 cellulose synthase family protein similar to gi:2827143 cellulo...se synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 1e-130 ...

  9. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At4g38190.1 68417.m05391 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-5 (gi:9622882) from Zea mays 1e-125 ...

  10. Arabidopsis CDS blastp result: AK061162 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061162 006-209-A01 At2g32540.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 3e-35 ...

  11. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At2g32540.1 68415.m03975 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 4e-98 ...

  12. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At5g16910.1 68418.m01982 cellulose synthase family protein similar to gi:2827143 cellulo...se synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  13. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At2g32530.1 68415.m03974 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 8e-98 ...

  14. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At4g38190.1 68417.m05391 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-5 (gi:9622882) from Zea mays 4e-27 ...

  15. Arabidopsis CDS blastp result: AK060286 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK060286 001-006-C08 At2g32540.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 6e-78 ...

  16. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At2g32530.1 68415.m03974 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 4e-50 ...

  17. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At2g32530.1 68415.m03974 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 5e-48 ...

  18. Arabidopsis CDS blastp result: AK241112 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241112 J065091K02 At4g16390.1 68417.m02481 chloroplastic RNA-binding protein P67,... putative nearly identical to 67kD chloroplastic RNA-binding protein, P67 [Arabidopsis thaliana] GI:9755842 3e-13 ...

  19. Arabidopsis CDS blastp result: AK289251 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK289251 J100081E23 At4g16390.1 68417.m02481 chloroplastic RNA-binding protein P67,... putative nearly identical to 67kD chloroplastic RNA-binding protein, P67 [Arabidopsis thaliana] GI:9755842 6e-21 ...

  20. Arabidopsis CDS blastp result: AK241112 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241112 J065091K02 At4g16390.1 68417.m02481 chloroplastic RNA-binding protein P67,... putative nearly identical to 67kD chloroplastic RNA-binding protein, P67 [Arabidopsis thaliana] GI:9755842 1e-14 ...

  1. Arabidopsis CDS blastp result: AK240855 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240855 J065021H02 At4g16390.1 68417.m02481 chloroplastic RNA-binding protein P67,... putative nearly identical to 67kD chloroplastic RNA-binding protein, P67 [Arabidopsis thaliana] GI:9755842 7e-25 ...

  2. Arabidopsis CDS blastp result: AK288612 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288612 J090053J15 At4g16390.1 68417.m02481 chloroplastic RNA-binding protein P67,... putative nearly identical to 67kD chloroplastic RNA-binding protein, P67 [Arabidopsis thaliana] GI:9755842 5e-24 ...

  3. Arabidopsis CDS blastp result: AK287737 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287737 J065143M09 At4g16390.1 68417.m02481 chloroplastic RNA-binding protein P67,... putative nearly identical to 67kD chloroplastic RNA-binding protein, P67 [Arabidopsis thaliana] GI:9755842 7e-14 ...

  4. Arabidopsis CDS blastp result: AK287434 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287434 J043012F24 At4g16390.1 68417.m02481 chloroplastic RNA-binding protein P67,... putative nearly identical to 67kD chloroplastic RNA-binding protein, P67 [Arabidopsis thaliana] GI:9755842 2e-27 ...

  5. Arabidopsis CDS blastp result: AK241784 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241784 J065206N09 At4g16390.1 68417.m02481 chloroplastic RNA-binding protein P67,... putative nearly identical to 67kD chloroplastic RNA-binding protein, P67 [Arabidopsis thaliana] GI:9755842 4e-11 ...

  6. Arabidopsis CDS blastp result: AK241112 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241112 J065091K02 At4g16390.1 68417.m02481 chloroplastic RNA-binding protein P67,... putative nearly identical to 67kD chloroplastic RNA-binding protein, P67 [Arabidopsis thaliana] GI:9755842 1e-16 ...

  7. Reference: 438 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ity and drought tolerance in Arabidopsis thaliana. 18 6902-12 16943431 2006 Sep Molecular and cellular bio...logy Chen Zhizhong|Gong Zhizhong|Hong Xuhui|Jablonowski Daniel|Ren Xiaozhi|Schaffrath Raffael|Zhang Hairong|Zhou Xiaofeng|Zhu Jian-Kang

  8. Reference: 356 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 006 Mar Plant molecular biology Deng Xingwang|Dong Li|Wang Lei|Xue Yongbiao|Zhang Yansheng|Zhang Yu'e ...ein CEGENDUO negatively regulates auxin-mediated lateral root formation in Arabidopsis. 4 599-615 16525894 2

  9. Reference: 223 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 223 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u15923347i Dohmann Es... cause the cop/det/fus mutant phenotype in Arabidopsis. 7 1967-78 15923347 2005 Jul The Plant cell Dohmann Esther M N|Kuhnle Carola|Schwechheimer Claus

  10. Arabidopsis CDS blastp result: AK241402 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241402 J065159A02 At4g19070.1 68417.m02810 cadmium-responsive protein / cadmium i...nduced protein (AS8) identical to cadmium induced protein AS8 SP:P42735 from [Arabidopsis thaliana] 3e-11 ...

  11. Reference: 369 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available availability is the hydrolysis of phospholipids. Hydrolyzed phospholipids are replaced by nonphosphorus lipids such as galactolipids... and sulfolipids, which help to maintain the functionali...we show that an Arabidopsis pldz2 mutant is defective in the hydrolysis of phospholipids... and has a reduced capacity to accumulate galactolipids under limiting Pi conditions. Morphological a

  12. Arabidopsis CDS blastp result: AK288349 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288349 J090023P19 At2g46590.1 68415.m05811 Dof zinc finger protein DAG2 / Dof affecting germination... 2 (DAG2) identical to SP|Q9ZPY0 DOF zinc finger protein DAG2 (Dof affecting germination 2) {Arabidopsis thaliana} 1e-23 ...

  13. Arabidopsis CDS blastp result: AK241364 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241364 J065152E11 At2g46590.1 68415.m05811 Dof zinc finger protein DAG2 / Dof affecting germination... 2 (DAG2) identical to SP|Q9ZPY0 DOF zinc finger protein DAG2 (Dof affecting germination 2) {Arabidopsis thaliana} 2e-20 ...

  14. Reference: 439 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available or IID (TFIID) complex. Overexpression of atTAF10 under the control of the 35S promoter in Arabidopsis impro...is TATA box-binding protein (TBP)-associated factor 10 (atTAF10), which constitutes the transcriptional fact

  15. Arabidopsis CDS blastp result: AK104030 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104030 001-020-C01 At3g10920.1 superoxide dismutase [Mn], mitochondrial (SODA) / manga...nese superoxide dismutase (MSD1) identical to manganese superoxide dismutase [Arabidopsis thaliana] gi|3273751|gb|AAC24832 9e-99 ...

  16. Arabidopsis CDS blastp result: AK070528 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK070528 J023060D13 At3g10920.1 superoxide dismutase [Mn], mitochondrial (SODA) / manga...nese superoxide dismutase (MSD1) identical to manganese superoxide dismutase [Arabidopsis thaliana] gi|3273751|gb|AAC24832 9e-99 ...

  17. Arabidopsis CDS blastp result: AK104160 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104160 006-211-E09 At3g10920.1 superoxide dismutase [Mn], mitochondrial (SODA) / manga...nese superoxide dismutase (MSD1) identical to manganese superoxide dismutase [Arabidopsis thaliana] gi|3273751|gb|AAC24832 9e-99 ...

  18. Arabidopsis CDS blastp result: AK119904 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK119904 002-182-A05 At3g10920.1 superoxide dismutase [Mn], mitochondrial (SODA) / manga...nese superoxide dismutase (MSD1) identical to manganese superoxide dismutase [Arabidopsis thaliana] gi|3273751|gb|AAC24832 9e-78 ...

  19. Arabidopsis CDS blastp result: AK064663 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK064663 002-115-A10 At2g34450.1 high mobility group (HMG1/2) family protein simila...r to HMG protein [Arabidopsis thaliana] GI:2832361; contains Pfam profile PF00505: HMG (high mobility group) box 2e-27 ...

  20. Polyamines and Paraquat Toxicity in Arabidopsis thaliana

    OpenAIRE

    Jasmina, Kurepa; Jan, Smalle; Marc Van, Montagu; Dirk, Inze; Laboratorium voor Genetica, Department of Genetics, Flanders Interuniversity Institute for Biotechnology, Universiteit Gent; Laboratorium voor Genetica, Department of Genetics, Flanders Interuniversity Institute for Biotechnology, Universiteit Gent; Laboratorium voor Genetica, Department of Genetics, Flanders Interuniversity Institute for Biotechnology, Universiteit Gent; Laboratorium voor Genetica, Department of Genetics, Flanders Interuniversity Institute for Biotechnology, Universiteit Gent:Laboratoire Associe de l'Institut National de la Recherche Agronomique(France), Universiteit Gent

    1998-01-01

    The relationship between paraquat toxicity and polyamine levels was analyzed in Arabidopsis wild-type and gi-3 plants. Paraquat treatment led to an increase in putrescine, but not of spermidine and spermine content. Additionally, polyamine feeding offered high levels of protection against paraquat toxicity with spermidine being the most effective protectant.

  1. Reference: 379 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available randomization of Arabidopsis hypocotyl orientation provides a fitness advantage to seedlings developing in p...hypocotyls requires GIL1 and confers a fitness advantage. 4 641-8 16640600 2006 May The Plant journal Allen Trudie|Ingles Patricia J|Praekelt Uta|Smith Harry|Whitelam Garry C

  2. Reference: 112 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ecca A et al. 2004 Oct. Plant Physiol. 136(2):3095-103; discussion 3002. The gravitropism defective 2 (grv2)... mutants of Arabidopsis show reduced shoot phototropism and gravitropism. Amyloplasts in the shoot endoderma...g via amyloplasts sedimentation and the subsequent more general tropic growth response. The gravitropism

  3. Reference: 389 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 389 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u16716192i Jolivet Sy...of the Ski8/Rec103 homolog in Arabidopsis. 6 615-22 16716192 2006 Jun Genes to cells Froger Nicole|Jolivet Sylvie|Mercier Raphaël|Vezon Daniel

  4. Uterine rupture without previous caesarean delivery

    DEFF Research Database (Denmark)

    Thisted, Dorthe L. A.; H. Mortensen, Laust; Krebs, Lone

    2015-01-01

    OBJECTIVE: To determine incidence and patient characteristics of women with uterine rupture during singleton births at term without a previous caesarean delivery. STUDY DESIGN: Population based cohort study. Women with term singleton birth, no record of previous caesarean delivery and planned...... vaginal delivery (n=611,803) were identified in the Danish Medical Birth Registry (1997-2008). Medical records from women recorded with uterine rupture during labour were reviewed to ascertain events of complete uterine rupture. Relative Risk (RR) and adjusted Relative Risk Ratio (aRR) of complete uterine...... rupture with 95% confidence intervals (95% CI) were ascertained according to characteristics of the women and of the delivery. RESULTS: We identified 20 cases with complete uterine rupture. The incidence of complete uterine rupture among women without previous caesarean delivery was about 3...

  5. Transgenerational stress memory is not a general response in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Ales Pecinka

    Full Text Available Adverse conditions can trigger DNA damage as well as DNA repair responses in plants. A variety of stress factors are known to stimulate homologous recombination, the most accurate repair pathway, by increasing the concentration of necessary enzymatic components and the frequency of events. This effect has been reported to last into subsequent generations not exposed to the stress. To establish a basis for a genetic analysis of this transgenerational stress memory, a broad range of treatments was tested for quantitative effects on homologous recombination in the progeny. Several Arabidopsis lines, transgenic for well-established recombination traps, were exposed to 10 different physical and chemical stress treatments, and scored for the number of somatic homologous recombination (SHR events in the treated generation as well as in the two subsequent generations that were not treated. These numbers were related to the expression level of genes involved in homologous recombination and repair. SHR was enhanced after the majority of treatments, confirming previous data and adding new effective stress types, especially interference with chromatin. Compounds that directly modify DNA stimulated SHR to values exceeding previously described induction rates, concomitant with an induction of genes involved in SHR. In spite of the significant stimulation in the stressed generations, the two subsequent non-treated generations only showed a low and stochastic increase in SHR that did not correlate with the degree of stimulation in the parental plants. Transcripts coding for SHR enzymes generally returned to pre-treatment levels in the progeny. Thus, transgenerational effects on SHR frequency are not a general response to abiotic stress in Arabidopsis and may require special conditions.

  6. INTRODUCTION Previous reports have documented a high ...

    African Journals Online (AJOL)

    pregnancy if they were married, educated, had dental insurance, previously used dental services when not pregnant, or had knowledge about the possible connection between oral health and pregnancy outcome8. The purpose of this study was to explore the factors determining good oral hygiene among pregnant women ...

  7. Empowerment perceptions of educational managers from previously ...

    African Journals Online (AJOL)

    The perceptions of educational manag ers from previously disadvantaged primary and high schools in the Nelson Mandela Metropole regarding the issue of empowerment are outlined and the perceptions of educational managers in terms of various aspects of empowerment at different levels reflected. A literature study ...

  8. Management of choledocholithiasis after previous gastrectomy.

    Science.gov (United States)

    Anwer, S; Egan, R; Cross, N; Guru Naidu, S; Somasekar, K

    2017-09-01

    Common bile duct stones in patients with a previous gastrectomy can be a technical challenge because of the altered anatomy. This paper presents the successful management of two such patients using non-traditional techniques as conventional endoscopic retrograde cholangiopancreatography was not possible.

  9. Laboratory Grouping Based on Previous Courses.

    Science.gov (United States)

    Doemling, Donald B.; Bowman, Douglas C.

    1981-01-01

    In a five-year study, second-year human physiology students were grouped for laboratory according to previous physiology and laboratory experience. No significant differences in course or board examination performance were found, though correlations were found between predental grade-point averages and grouping. (MSE)

  10. Database Description - Arabidopsis Phenome Database | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us Arabidopsis Phenome Database Database Description General information of database Database n...ame Arabidopsis Phenome Database Alternative name - DOI 10.18908/lsdba.nbdc01509-000 Creator Creator Name: H... BioResource Center Hiroshi Masuya Database classification Plant databases - Arabidopsis thaliana Organism T...axonomy Name: Arabidopsis thaliana Taxonomy ID: 3702 Database description The Arabidopsis thaliana phenome i...heir effective application. We developed the new Arabidopsis Phenome Database integrating two novel database

  11. Mutations in an auxin receptor homolog AFB5 and in SGT1b confer resistance to synthetic picolinate auxins and not to 2,4-dichlorophenoxyacetic acid or indole-3-acetic acid in Arabidopsis.

    Science.gov (United States)

    Walsh, Terence A; Neal, Roben; Merlo, Ann Owens; Honma, Mary; Hicks, Glenn R; Wolff, Karen; Matsumura, Wendy; Davies, John P

    2006-10-01

    Although a wide range of structurally diverse small molecules can act as auxins, it is unclear whether all of these compounds act via the same mechanisms that have been characterized for 2,4-dichlorophenoxyacetic acid (2,4-D) and indole-3-acetic acid (IAA). To address this question, we used a novel member of the picolinate class of synthetic auxins that is structurally distinct from 2,4-D to screen for Arabidopsis (Arabidopsis thaliana) mutants that show chemically selective auxin resistance. We identified seven alleles at two distinct genetic loci that conferred significant resistance to picolinate auxins such as picloram, yet had minimal cross-resistance to 2,4-D or IAA. Double mutants had the same level and selectivity of resistance as single mutants. The sites of the mutations were identified by positional mapping as At4g11260 and At5g49980. At5g49980 is previously uncharacterized and encodes auxin signaling F-box protein 5, one of five homologs of TIR1 in the Arabidopsis genome. TIR1 is the recognition component of the Skp1-cullin-F-box complex associated with the ubiquitin-proteasome pathway involved in auxin signaling and has recently been shown to be a receptor for IAA and 2,4-D. At4g11260 encodes the tetratricopeptide protein SGT1b that has also been associated with Skp1-cullin-F-box-mediated ubiquitination in auxin signaling and other pathways. Complementation of mutant lines with their corresponding wild-type genes restored picolinate auxin sensitivity. These results show that chemical specificity in auxin signaling can be conferred by upstream components of the auxin response pathway. They also demonstrate the utility of genetic screens using structurally diverse chemistries to uncover novel pathway components.

  12. Mutations in an Auxin Receptor Homolog AFB5 and in SGT1b Confer Resistance to Synthetic Picolinate Auxins and Not to 2,4-Dichlorophenoxyacetic Acid or Indole-3-Acetic Acid in Arabidopsis[W

    Science.gov (United States)

    Walsh, Terence A.; Neal, Roben; Merlo, Ann Owens; Honma, Mary; Hicks, Glenn R.; Wolff, Karen; Matsumura, Wendy; Davies, John P.

    2006-01-01

    Although a wide range of structurally diverse small molecules can act as auxins, it is unclear whether all of these compounds act via the same mechanisms that have been characterized for 2,4-dichlorophenoxyacetic acid (2,4-D) and indole-3-acetic acid (IAA). To address this question, we used a novel member of the picolinate class of synthetic auxins that is structurally distinct from 2,4-D to screen for Arabidopsis (Arabidopsis thaliana) mutants that show chemically selective auxin resistance. We identified seven alleles at two distinct genetic loci that conferred significant resistance to picolinate auxins such as picloram, yet had minimal cross-resistance to 2,4-D or IAA. Double mutants had the same level and selectivity of resistance as single mutants. The sites of the mutations were identified by positional mapping as At4g11260 and At5g49980. At5g49980 is previously uncharacterized and encodes auxin signaling F-box protein 5, one of five homologs of TIR1 in the Arabidopsis genome. TIR1 is the recognition component of the Skp1-cullin-F-box complex associated with the ubiquitin-proteasome pathway involved in auxin signaling and has recently been shown to be a receptor for IAA and 2,4-D. At4g11260 encodes the tetratricopeptide protein SGT1b that has also been associated with Skp1-cullin-F-box-mediated ubiquitination in auxin signaling and other pathways. Complementation of mutant lines with their corresponding wild-type genes restored picolinate auxin sensitivity. These results show that chemical specificity in auxin signaling can be conferred by upstream components of the auxin response pathway. They also demonstrate the utility of genetic screens using structurally diverse chemistries to uncover novel pathway components. PMID:16920877

  13. Application of 42K to Arabidopsis tissues using real-time radioisotope imaging system (RRIS)

    International Nuclear Information System (INIS)

    Aramaki, Toshinori; Sugita, Ryohei; Hirose, Atsushi; Kobayashi, Natsuko I.; Tanoi, Keitaro; Nakanishi, Tomoko M.

    2015-01-01

    We performed an imaging analysis of 42 K in Arabidopsis using real-time radioisotope imaging system (RRIS). First, we purified 42 K from an 42 Ar - 42 K generator. And then, we characterized RRIS performance by quantitatively determining 42 K using standard series. As a result, the dynamic range for 42 K was determined to be at least three orders of magnitude. Next, we evaluated the level of self-absorption in Arabidopsis organs by comparing the signal intensity detected using RRIS and the actual radioactivity detected by a gamma-counting method. There was no significant difference in detection efficiency between the thick bolt(stem) tissue and the thin leaf tissue. The reason for scarce self-absorption could be related to the relatively strong β ray emissions that have a maximum energy of 3525.4 keV. (author)

  14. UFO: an Arabidopsis gene involved in both floral meristem and floral organ development.

    Science.gov (United States)

    Levin, J Z; Meyerowitz, E M

    1995-05-01

    We describe the role of the UNUSUAL FLORAL ORGANS (UFO) gene in Arabidopsis floral development based on a genetic and molecular characterization of the phenotypes of nine ufo alleles. UFO is required for the proper identity of the floral meristem and acts in three different aspects of the process that distinguishes flowers from shoots. UFO is involved in establishing the whorled pattern of floral organs, controlling the determinacy of the floral meristem, and activating the APETALA3 and PISTILLATA genes required for petal and stamen identity. In many respects, UFO acts in a manner similar to LEAFY, but the ufo mutant phenotype also suggests an additional role for UFO in defining boundaries within the floral primordia or controlling cell proliferation during floral organ growth. Finally, genetic interactions that prevent flower formation and lead to the generation of filamentous structures implicate UFO as a member of a new, large, and diverse class of genes in Arabidopsis necessary for flower formation.

  15. Comparison of the spaceflight transcriptome of four commonly used Arabidopsis thaliana ecotypes

    Data.gov (United States)

    National Aeronautics and Space Administration — This experiment compared the spaceflight transcriptomes of four commonly used natural variants (ecotypes) of Arabidopsis thaliana using RNAseq. In nature Arabidopsis...

  16. Overexpression of VOZ2 confers biotic stress tolerance but decreases abiotic stress resistance in Arabidopsis.

    Science.gov (United States)

    Nakai, Yusuke; Fujiwara, Sumire; Kubo, Yasuyuki; Sato, Masa H

    2013-03-01

    VOZ (vascular plant one zinc-finger protein) is a plant specific one-zinc finger type transcriptional activator, which is highly conserved through land plant evolution. We have previously shown that loss-of-function mutations in VOZ1 and VOZ2 showed increased cold and drought stress tolerances whereas decreased biotic stress resistance in Arabidopsis. Here, we demonstrate that transgenic plants overexpressing VOZ2 impairs freezing and drought stress tolerances but increases resistance to a fungal pathogen, Colletoricum higginsianum. Consistent with changes in the tolerance to biotic and abiotic stresses, the expression of marker genes for these stresses is significantly altered compared with those of the wild-type plant. These results indicate that a overexpression of VOZ2 confers biotic stress tolerance but impairs abiotic stress tolerances in Arabidopsis.

  17. Catalase and NO CATALASE ACTIVITY1 promote autophagy-dependent cell death in Arabidopsis

    DEFF Research Database (Denmark)

    Hackenberg, Thomas; Juul, Trine; Auzina, Aija

    2013-01-01

    Programmed cell death often depends on generation of reactive oxygen species, which can be detoxified by antioxidative enzymes, including catalases. We previously isolated catalase-deficient mutants (cat2) in a screen for resistance to hydroxyurea-induced cell death. Here, we identify...... an Arabidopsis thaliana hydroxyurea-resistant autophagy mutant, atg2, which also shows reduced sensitivity to cell death triggered by the bacterial effector avrRpm1. To test if catalase deficiency likewise affected both hydroxyurea and avrRpm1 sensitivity, we selected mutants with extremely low catalase...... activities and showed that they carried mutations in a gene that we named NO CATALASE ACTIVITY1 (NCA1). nca1 mutants showed severely reduced activities of all three catalase isoforms in Arabidopsis, and loss of NCA1 function led to strong suppression of RPM1-triggered cell death. Basal and starvation...

  18. Calcium dynamics in root cells of Arabidopsis thaliana visualized with selective plane illumination microscopy.

    Directory of Open Access Journals (Sweden)

    Alex Costa

    Full Text Available Selective Plane Illumination Microscopy (SPIM is an imaging technique particularly suited for long term in-vivo analysis of transparent specimens, able to visualize small organs or entire organisms, at cellular and eventually even subcellular resolution. Here we report the application of SPIM in Calcium imaging based on Förster Resonance Energy Transfer (FRET. Transgenic Arabidopsis plants expressing the genetically encoded-FRET-based Ca(2+ probe Cameleon, in the cytosol or nucleus, were used to demonstrate that SPIM enables ratiometric fluorescence imaging at high spatial and temporal resolution, both at tissue and single cell level. The SPIM-FRET technique enabled us to follow nuclear and cytosolic Ca(2+ dynamics in Arabidopsis root tip cells, deep inside the organ, in response to different stimuli. A relevant physiological phenomenon, namely Ca(2+ signal percolation, predicted in previous studies, has been directly visualized.

  19. Heterologous expression of two GPATs from Jatropha curcas alters seed oil levels in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Misra, Aparna; Khan, Kasim; Niranjan, Abhishek; Kumar, Vinod; Sane, Vidhu A

    2017-10-01

    Oils and fats are stored in endosperm during seed development in the form of triacylglycerols. Three acyltransferases: glycerol-3-phosphate acyltransferase (GPAT), lysophosphatidyl acyltransferase (LPAT) and diacylglycerol acyltransferase (DGAT) are involved in the storage lipid biosynthesis and catalyze the stepwise acylation of glycerol backbone. In this study two members of GPAT gene family (JcGPAT1 and JcGPAT2) from Jatropha seeds were identified and characterized. Sequence analysis suggested that JcGPAT1 and JcGPAT2 are homologous to Arabidopsis acyltransferase-1 (ATS1) and AtGPAT9 respectively. The sub-cellular localization studies of these two GPATs showed that JcGPAT1 localizes into plastid whereas JcGPAT2 localizes in to endoplasmic reticulum. JcGPAT1 and JcGPAT2 expressed throughout the seed development with higher expression in fully matured seed compared to immature seed. The transcript levels of JcGPAT2 were higher in comparison to JcGPAT1 in different developmental stages of seed. Over-expression of JcGPAT1 and JcGPAT2 under constitutive and seed specific promoters in Arabidopsis thaliana increased total oil content. Transgenic seeds of JcGPAT2-OE lines accumulated 43-60% more oil than control seeds whereas seeds of Arabidopsis lines over-expressing plastidial GPAT lead to only 13-20% increase in oil content. Functional characterization of GPAT homologues of Jatropha in Arabidopsis suggested that these are involved in oil biosynthesis but might have specific roles in Jatropha. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The Arabidopsis synaptotagmin SYTA regulates the cell-to-cell movement of diverse plant viruses

    Directory of Open Access Journals (Sweden)

    Asako eUchiyama

    2014-11-01

    Full Text Available Synaptotagmins are a large gene family in animals that have been extensively characterized due to their role as calcium sensors to regulate synaptic vesicle exocytosis and endocytosis in neurons, and dense core vesicle exocytosis for hormone secretion from neuroendocrine cells. Thought to be exclusive to animals, synaptotagmins have recently been characterized in Arabidopsis thaliana, in which they comprise a five gene family. Using infectivity and leaf-based functional assays, we have shown that Arabidopsis SYTA regulates endocytosis and marks an endosomal vesicle recycling pathway to regulate movement protein-mediated trafficking of the Begomovirus Cabbage leaf curl virus (CaLCuV and the Tobamovirus Tobacco mosaic virus (TMV through plasmodesmata (Lewis and Lazarowitz, 2010. To determine whether SYTA has a central role in regulating the cell-to-cell trafficking of a wider range of diverse plant viruses, we extended our studies here to examine the role of SYTA in the cell-to-cell movement of additional plant viruses that employ different modes of movement, namely the Potyvirus Turnip mosaic virus (TuMV, the Caulimovirus Cauliflower mosaic virus (CaMV and the Tobamovirus Turnip vein clearing virus (TVCV, which in contrast to TMV does efficiently infect Arabidopsis. We found that both TuMV and TVCV systemic infection, and the cell-to-cell trafficking of the their movement proteins, were delayed in the Arabidopsis Col-0 syta-1 knockdown mutant. In contrast, CaMV systemic infection was not inhibited in syta-1. Our studies show that SYTA is a key regulator of plant virus intercellular movement, being necessary for the ability of diverse cell-to-cell movement proteins encoded by Begomoviruses (CaLCuV MP, Tobamoviruses (TVCV and TMV 30K protein and Potyviruses (TuMV P3N-PIPO to alter PD and thereby mediate virus cell-to-cell spread.

  1. Identification and characterization of mobile genetic elements LINEs from Brassica genome.

    Science.gov (United States)

    Nouroz, Faisal; Noreen, Shumaila; Khan, Muhammad Fiaz; Ahmed, Shehzad; Heslop-Harrison, J S Pat

    2017-09-05

    Among transposable elements (TEs), the LTR retrotransposons are abundant followed by non-LTR retrotransposons in plant genomes, the lateral being represented by LINEs and SINEs. Computational and molecular approaches were used for the characterization of Brassica LINEs, their diversity and phylogenetic relationships. Four autonomous and four non-autonomous LINE families were identified and characterized from Brassica. Most of the autonomous LINEs displayed two open reading frames, ORF1 and ORF2, where ORF1 is a gag protein domain, while ORF2 encodes endonuclease (EN) and a reverse transcriptase (RT). Three of four families encoded an additional RNase H (RH) domain in pol gene common to 'R' and 'I' type of LINEs. The PCR analyses based on LINEs RT fragments indicate their high diversity and widespread occurrence in tested 40 Brassica cultivars. Database searches revealed the homology in LINE sequences in closely related genera Arabidopsis indicating their origin from common ancestors predating their separation. The alignment of 58 LINEs RT sequences from Brassica, Arabidopsis and other plants depicted 4 conserved domains (domain II-V) showing similarity to previously detected domains. Based on RT alignment of Brassica and 3 known LINEs from monocots, Brassicaceae LINEs clustered in separate clade, further resolving 4 Brassica-Arabidopsis specific families in 2 sub-clades. High similarities were observed in RT sequences in the members of same family, while low homology was detected in members across the families. The investigation led to the characterization of Brassica specific LINE families and their diversity across Brassica species and their cultivars. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Previously unknown organomagnesium compounds in astrochemical context

    OpenAIRE

    Ruf, Alexander

    2018-01-01

    We describe the detection of dihydroxymagnesium carboxylates (CHOMg) in astrochemical context. CHOMg was detected in meteorites via ultrahigh-resolving chemical analytics and represents a novel, previously unreported chemical class. Thus, chemical stability was probed via quantum chemical computations, in combination with experimental fragmentation techniques. Results propose the putative formation of green-chemical OH-Grignard-type molecules and triggered fundamental questions within chemica...

  3. [Placental complications after a previous cesarean section].

    Science.gov (United States)

    Milosević, Jelena; Lilić, Vekoslav; Tasić, Marija; Radović-Janosević, Dragana; Stefanović, Milan; Antić, Vladimir

    2009-01-01

    The incidence of cesarean section has been rising in the past 50 years. With the increased number of cesarean sections, the number of pregnancies with the previous cesarean section rises as well. The aim of this study was to establish the influence of the previous cesarean section on the development of placental complications: placenta previa, placental abruption and placenta accreta, as well as to determine the influence of the number of previous cesarean sections on the complication development. The research was conducted at the Clinic of Gynecology and Obstetrics in Nis covering 10-year-period (from 1995 to 2005) with 32358 deliveries, 1280 deliveries after a previous cesarean section, 131 cases of placenta previa and 118 cases of placental abruption. The experimental groups was presented by the cases of placenta previa or placental abruption with prior cesarean section in obstetrics history, opposite to the control group having the same conditions but without a cesarean section in medical history. The incidence of placenta previa in the control group was 0.33%, opposite to the 1.86% incidence after one cesarean section (pcesarean sections and as high as 14.28% after three cesarean sections in obstetric history. Placental abruption was recorded as placental complication in 0.33% pregnancies in the control group, while its incidence was 1.02% after one cesarean section (pcesarean sections. The difference in the incidence of intrapartal hysterectomy between the group with prior cesarean section (0.86%) and without it (0.006%) shows a high statistical significance (pcesarean section is an important risk factor for the development of placental complications.

  4. Building a hair: tip growth in Arabidopsis thaliana root hairs.

    OpenAIRE

    Carol, Rachel J; Dolan, Liam

    2002-01-01

    The Arabidopsis thaliana root hair is used as a model for studying tip growth in plants. We review recent advances, made using physiological and genetic approaches, which give rise to different, yet compatible, current views of the establishment and maintenance of tip growth in epidermal cells. For example, an active calcium influx channel localized at the tip of Arabidopsis root hairs has been identified by patch-clamp measurements. Actin has been visualized in vivo in Arabidopsis root hairs...

  5. The low-temperature- and salt-induced RCI2A gene of Arabidopsis complements the sodium sensitivity caused by a deletion of the homologous yeast gene SNA1.

    Science.gov (United States)

    Nylander, M; Heino, P; Helenius, E; Palva, E T; Ronne, H; Welin, B V

    2001-02-01

    Two closely related, tandemly arranged, low-temperature- and salt-induced Arabidopsis genes, corresponding to the previously isolated cDNAs RCI2A and RCI2B, were isolated and characterized. The RCI2A transcript accumulated primarily in response to low temperature or high salinity, and to a lesser extent in response to ABA treatment or water deficit stress. The RCI2B transcript was present at much lower levels than RCI2A, and could only be detected by reverse transcription-PCR amplification. The predicted 6 kDa RCI2 proteins are highly hydrophobic and contain two putative membrane-spanning regions. The polypeptides exhibit extensive similarity to deduced low-temperature- and/or salt-induced proteins from barley, wheat grass and strawberry, and to predicted proteins from bacteria, fungi, nematodes and yeast. Interestingly, we found that a deletion of the RCI2 homologous gene, SNA1 (YRD276c), in yeast causes a salt-sensitive phenotype. This effect is specific for sodium, since no growth defect was observed for the sna1 mutant on 1.7 M sorbitol, 1 M KCl or 0.6 M LiCl. Finally, we found that the Arabidopsis RCI2A cDNA can complement the sna1 mutant when expressed in yeast, indicating that the plant and yeast proteins have similar functions during high salt stress.

  6. AGROBEST: an efficient Agrobacterium-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings.

    Science.gov (United States)

    Wu, Hung-Yi; Liu, Kun-Hsiang; Wang, Yi-Chieh; Wu, Jing-Fen; Chiu, Wan-Ling; Chen, Chao-Ying; Wu, Shu-Hsing; Sheen, Jen; Lai, Erh-Min

    2014-01-01

    Transient gene expression via Agrobacterium-mediated DNA transfer offers a simple and fast method to analyze transgene functions. Although Arabidopsis is the most-studied model plant with powerful genetic and genomic resources, achieving highly efficient and consistent transient expression for gene function analysis in Arabidopsis remains challenging. We developed a highly efficient and robust Agrobacterium-mediated transient expression system, named AGROBEST (Agrobacterium-mediated enhanced seedling transformation), which achieves versatile analysis of diverse gene functions in intact Arabidopsis seedlings. Using β-glucuronidase (GUS) as a reporter for Agrobacterium-mediated transformation assay, we show that the use of a specific disarmed Agrobacterium strain with vir gene pre-induction resulted in homogenous GUS staining in cotyledons of young Arabidopsis seedlings. Optimization with AB salts in plant culture medium buffered with acidic pH 5.5 during Agrobacterium infection greatly enhanced the transient expression levels, which were significantly higher than with two existing methods. Importantly, the optimized method conferred 100% infected seedlings with highly increased transient expression in shoots and also transformation events in roots of ~70% infected seedlings in both the immune receptor mutant efr-1 and wild-type Col-0 seedlings. Finally, we demonstrated the versatile applicability of the method for examining transcription factor action and circadian reporter-gene regulation as well as protein subcellular localization and protein-protein interactions in physiological contexts. AGROBEST is a simple, fast, reliable, and robust transient expression system enabling high transient expression and transformation efficiency in Arabidopsis seedlings. Demonstration of the proof-of-concept experiments elevates the transient expression technology to the level of functional studies in Arabidopsis seedlings in addition to previous applications in fluorescent

  7. AGROBEST: an efficient Agrobacterium-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings

    Science.gov (United States)

    2014-01-01

    Background Transient gene expression via Agrobacterium-mediated DNA transfer offers a simple and fast method to analyze transgene functions. Although Arabidopsis is the most-studied model plant with powerful genetic and genomic resources, achieving highly efficient and consistent transient expression for gene function analysis in Arabidopsis remains challenging. Results We developed a highly efficient and robust Agrobacterium-mediated transient expression system, named AGROBEST (Agrobacterium-mediated enhanced seedling transformation), which achieves versatile analysis of diverse gene functions in intact Arabidopsis seedlings. Using β-glucuronidase (GUS) as a reporter for Agrobacterium-mediated transformation assay, we show that the use of a specific disarmed Agrobacterium strain with vir gene pre-induction resulted in homogenous GUS staining in cotyledons of young Arabidopsis seedlings. Optimization with AB salts in plant culture medium buffered with acidic pH 5.5 during Agrobacterium infection greatly enhanced the transient expression levels, which were significantly higher than with two existing methods. Importantly, the optimized method conferred 100% infected seedlings with highly increased transient expression in shoots and also transformation events in roots of ~70% infected seedlings in both the immune receptor mutant efr-1 and wild-type Col-0 seedlings. Finally, we demonstrated the versatile applicability of the method for examining transcription factor action and circadian reporter-gene regulation as well as protein subcellular localization and protein–protein interactions in physiological contexts. Conclusions AGROBEST is a simple, fast, reliable, and robust transient expression system enabling high transient expression and transformation efficiency in Arabidopsis seedlings. Demonstration of the proof-of-concept experiments elevates the transient expression technology to the level of functional studies in Arabidopsis seedlings in addition to previous

  8. Gene expression in plant lipid metabolism in Arabidopsis seedlings.

    Directory of Open Access Journals (Sweden)

    An-Shan Hsiao

    Full Text Available Events in plant lipid metabolism are important during seedling establishment. As it has not been experimentally verified whether lipid metabolism in 2- and 5-day-old Arabidopsis thaliana seedlings is diurnally-controlled, quantitative real-time PCR analysis was used to investigate the expression of target genes in acyl-lipid transfer, β-oxidation and triacylglycerol (TAG synthesis and hydrolysis in wild-type Arabidopsis WS and Col-0. In both WS and Col-0, ACYL-COA-BINDING PROTEIN3 (ACBP3, DIACYLGLYCEROL ACYLTRANSFERASE1 (DGAT1 and DGAT3 showed diurnal control in 2- and 5-day-old seedlings. Also, COMATOSE (CTS was diurnally regulated in 2-day-old seedlings and LONG-CHAIN ACYL-COA SYNTHETASE6 (LACS6 in 5-day-old seedlings in both WS and Col-0. Subsequently, the effect of CIRCADIAN CLOCK ASSOCIATED1 (CCA1 and LATE ELONGATED HYPOCOTYL (LHY from the core clock system was examined using the cca1lhy mutant and CCA1-overexpressing (CCA1-OX lines versus wild-type WS and Col-0, respectively. Results revealed differential gene expression in lipid metabolism between 2- and 5-day-old mutant and wild-type WS seedlings, as well as between CCA1-OX and wild-type Col-0. Of the ACBPs, ACBP3 displayed the most significant changes between cca1lhy and WS and between CCA1-OX and Col-0, consistent with previous reports that ACBP3 is greatly affected by light/dark cycling. Evidence of oil body retention in 4- and 5-day-old seedlings of the cca1lhy mutant in comparison to WS indicated the effect of cca1lhy on storage lipid reserve mobilization. Lipid profiling revealed differences in primary lipid metabolism, namely in TAG, fatty acid methyl ester and acyl-CoA contents amongst cca1lhy, CCA1-OX, and wild-type seedlings. Taken together, this study demonstrates that lipid metabolism is subject to diurnal regulation in the early stages of seedling development in Arabidopsis.

  9. Requirement and functional redundancy of Ib subgroup bHLH proteins for iron deficiency responses and uptake in Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Ning; Cui, Yan; Liu, Yi; Fan, Huajie; Du, Juan; Huang, Zongan; Yuan, Youxi; Wu, Huilan; Ling, Hong-Qing

    2013-03-01

    The Ib subgroup of the bHLH gene family in Arabidopsis contains four members (AtbHLH38, AtbHLH39, AtbHLH100, and AtbHLH101). AtbHLH38 and AtbHLH39 were previously confirmed to interact with FER-like iron deficiency induced transcription factor (FIT), directly functioning in activation of the expression of ferric-chelate reductase FRO2 and high-affinity ferrous iron transporter IRT1. In this work, we characterized the functions of AtbHLH100 and AtbHLH101 in the regulation of the iron-deficiency responses and uptake. Yeast two-hybrid analysis and bimolecular fluorescence complementation assay demonstrated that both AtbHLH100 and AtbHLH101 could interact with FIT. Dual expression of either AtbHLH100 or AtbHLH101 with FIT in yeast cells activated the GUS expression driven by promoters of FRO2 and IRT1. The plants overexpressing FIT together with AtbHLH101 showed constitutive expression of FRO2 and IRT1 in roots, and accumulated more iron in shoots. Further, the single, double, and triple knockout mutants of AtbHLH38, AtbHLH39, AtbHLH100, and AtbHLH101 were generated and characterized. The FRO2 and IRT1 expression in roots and the iron content in shoots were more drastically decreased in the triple knockout mutant of AtbHLH39, AtbHLH100, and AtbHLH101 than that of the other available double and triple mutants of the four genes. Comparison of the physiological responses as well as the expression of FRO2 and IRT1 in the multiple knockout mutants under iron deficiency revealed that AtbHLH100, AtbHLH38, AtbHLH101, and AtbHLH39 played the gradually increased important role in the iron-deficiency responses and uptake. Taken all together, we conclude that the four Ib subgroup bHLH proteins are required and possess redundant functions with differential significance for activation of iron-deficiency responses and uptake in Arabidopsis.

  10. Diclofenac in Arabidopsis cells: Rapid formation of conjugates.

    Science.gov (United States)

    Fu, Qiuguo; Ye, Qingfu; Zhang, Jianbo; Richards, Jaben; Borchardt, Dan; Gan, Jay

    2017-03-01

    Pharmaceutical and personal care products (PPCPs) are continuously introduced into the soil-plant system, through practices such as agronomic use of reclaimed water and biosolids containing these trace contaminants. Plants may accumulate PPCPs from soil, serving as a conduit for human exposure. Metabolism likely controls the final accumulation of PPCPs in plants, but is in general poorly understood for emerging contaminants. In this study, we used diclofenac as a model compound, and employed 14 C tracing, and time-of-flight (TOF) and triple quadruple (QqQ) mass spectrometers to unravel its metabolism pathways in Arabidopsis thaliana cells. We further validated the primary metabolites in Arabidopsis seedlings. Diclofenac was quickly taken up into A. thaliana cells. Phase I metabolism involved hydroxylation and successive oxidation and cyclization reactions. However, Phase I metabolites did not accumulate appreciably; they were instead rapidly conjugated with sulfate, glucose, and glutamic acid through Phase II metabolism. In particular, diclofenac parent was directly conjugated with glutamic acid, with acyl-glutamatyl-diclofenac accounting for >70% of the extractable metabolites after 120-h incubation. In addition, at the end of incubation, >40% of the spiked diclofenac was in the non-extractable form, suggesting extensive sequestration into cell matter. The rapid formation of non-extractable residue and dominance of diclofenac-glutamate conjugate uncover previously unknown metabolism pathways for diclofenac. In particular, the rapid conjugation of parent highlights the need to consider conjugates of emerging contaminants in higher plants, and their biological activity and human health implications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Cross genome comparisons of serine proteases in Arabidopsis and rice

    Directory of Open Access Journals (Sweden)

    Sowdhamini R

    2006-08-01

    Full Text Available Abstract Background Serine proteases are one of the largest groups of proteolytic enzymes found across all kingdoms of life and are associated with several essential physiological pathways. The availability of Arabidopsis thaliana and rice (Oryza sativa genome sequences has permitted the identification and comparison of the repertoire of serine protease-like proteins in the two plant species. Results Despite the differences in genome sizes between Arabidopsis and rice, we identified a very similar number of serine protease-like proteins in the two plant species (206 and 222, respectively. Nearly 40% of the above sequences were identified as potential orthologues. Atypical members could be identified in the plant genomes for Deg, Clp, Lon, rhomboid proteases and species-specific members were observed for the highly populated subtilisin and serine carboxypeptidase families suggesting multiple lateral gene transfers. DegP proteases, prolyl oligopeptidases, Clp proteases and rhomboids share a significantly higher percentage orthology between the two genomes indicating substantial evolutionary divergence was set prior to speciation. Single domain architectures and paralogues for several putative subtilisins, serine carboxypeptidases and rhomboids suggest they may have been recruited for additional roles in secondary metabolism with spatial and temporal regulation. The analysis reveals some domain architectures unique to either or both of the plant species and some inactive proteases, like in rhomboids and Clp proteases, which could be involved in chaperone function. Conclusion The systematic analysis of the serine protease-like proteins in the two plant species has provided some insight into the possible functional associations of previously uncharacterised serine protease-like proteins. Further investigation of these aspects may prove beneficial in our understanding of similar processes in commercially significant crop plant species.

  12. Direct activation of EXPANSIN14 by LBD18 in the gene regulatory network of lateral root formation in Arabidopsis.

    Science.gov (United States)

    Kim, Jungmook; Lee, Han Woo

    2013-02-01

    Root system architecture is important for plants to adapt to a changing environment. The major determinant of the root system is lateral roots originating from the primary root. The developmental process of lateral root formation can be divided into priming, initiation, primordium development and the emergence of lateral roots, and is well characterized in Arabidopsis. The hormone auxin plays a critical role in lateral root development, and several auxin response modules involving AUXIN RESPONSE FACTORS (ARFs), transcriptional regulators of auxin-regulated genes and Aux/IAA, negative regulators of ARFs, regulate lateral root formation. The LATERAL ORGAN BOUNDARIES DOMAIN/ASYMMETRIC LEAVES2-LIKE (LBD/ASL) gene family encodes a unique class of transcription factors harbouring a conserved plant-specific lateral organ boundary domain and plays a role in lateral organ development of plants including lateral root formation. In our previous study, we showed that LBD18 stimulates lateral root formation in combination with LBD16 downstream of ARF7 and ARF19 during the auxin response. We have recently demonstrated that LBD18 activates expression of EXP14, a gene encoding the cell-wall loosening factor, by directly binding to the EXP14 promoter to promote lateral root emergence. Here we present the molecular function of LBD18 and its gene regulatory network during lateral root formation.

  13. Agrobacterium tumefaciens T-DNA Integration and Gene Targeting in Arabidopsis thaliana Non-Homologous End-Joining Mutants

    Directory of Open Access Journals (Sweden)

    Qi Jia

    2012-01-01

    Full Text Available In order to study the role of AtKu70 and AtKu80 in Agrobacterium-mediated transformation and gene targeting, plant lines with a T-DNA insertion in AtKu80 or AtKu70 genes were functionally characterized. Such plant lines lacked both subunits, indicating that heterodimer formation between AtKu70 and AtKu80 is needed for the stability of the proteins. Homozygous mutants were phenotypically indistinguishable from wild-type plants and were fertile. However, they were hypersensitive to the genotoxic agent bleomycin, resulting in more DSBs as quantified in comet assays. They had lower end-joining efficiency, suggesting that NHEJ is a critical pathway for DSB repair in plants. Both Atku mutants and a previously isolated Atmre11 mutant were impaired in Agrobacterium T-DNA integration via floral dip transformation, indicating that AtKu70, AtKu80, and AtMre11 play an important role in T-DNA integration in Arabidopsis. The frequency of gene targeting was not significantly increased in the Atku80 and Atku70 mutants, but it was increased at least 10-fold in the Atmre11 mutant compared with the wild type.

  14. The cell wall-localized atypical β-1,3 glucanase ZERZAUST controls tissue morphogenesis in Arabidopsis thaliana.

    Science.gov (United States)

    Vaddepalli, Prasad; Fulton, Lynette; Wieland, Jennifer; Wassmer, Katrin; Schaeffer, Milena; Ranf, Stefanie; Schneitz, Kay

    2017-06-15

    Orchestration of cellular behavior in plant organogenesis requires integration of intercellular communication and cell wall dynamics. The underlying signaling mechanisms are poorly understood. Tissue morphogenesis in Arabidopsis depends on the receptor-like kinase STRUBBELIG. Mutations in ZERZAUST were previously shown to result in a strubbelig -like mutant phenotype. Here, we report on the molecular identification and functional characterization of ZERZAUST We show that ZERZAUST encodes a putative GPI-anchored β-1,3 glucanase suggested to degrade the cell wall polymer callose. However, a combination of in vitro , cell biological and genetic experiments indicate that ZERZAUST is not involved in the regulation of callose accumulation. Nonetheless, Fourier-transformed infrared-spectroscopy revealed that zerzaust mutants show defects in cell wall composition. Furthermore, the results indicate that ZERZAUST represents a mobile apoplastic protein, and that its carbohydrate-binding module family 43 domain is required for proper subcellular localization and function whereas its GPI anchor is dispensable. Our collective data reveal that the atypical β-1,3 glucanase ZERZAUST acts in a non-cell-autonomous manner and is required for cell wall organization during tissue morphogenesis. © 2017. Published by The Company of Biologists Ltd.

  15. Overexpression of the HspL Promotes Agrobacterium tumefaciens Virulence in Arabidopsis Under Heat Shock Conditions.

    Science.gov (United States)

    Hwang, Hau-Hsuan; Liu, Yin-Tzu; Huang, Si-Chi; Tung, Chin-Yi; Huang, Fan-Chen; Tsai, Yun-Long; Cheng, Tun-Fang; Lai, Erh-Min

    2015-02-01

    Agrobacterium tumefaciens transfers a specific DNA fragment from the resident tumor-inducing (Ti) plasmid and effector virulence (Vir) proteins to plant cells during infection. A. tumefaciens VirB1-11 and VirD4 proteins assemble as the type IV secretion system (T4SS), which mediates transfer of the T-DNA and effector Vir protein into plant cells, thus resulting in crown gall disease in plants. Previous studies revealed that an α-crystallin-type, small heat-shock protein (HspL) is a more effective VirB8 chaperone than three other small heat-shock proteins (HspC, HspAT1, and HspAT2). Additionally, HspL contributes to efficient T4SS-mediated DNA transfer and tumorigenesis under room-temperature growth. In this study, we aimed to characterize the impact of HspL on Agrobacterium-mediated transformation efficiency under heat-shock treatment. During heat shock, transient transformation efficiency and VirB8 protein accumulation were lower in the hspL deletion mutant than in the wild type. Overexpression of HspL in A. tumefaciens enhanced the transient transformation efficiency in root explants of both susceptible and recalcitrant Arabidopsis ecotypes. In addition, the reduced transient transformation efficiency during heat stress was recovered by overexpression of HspL in A. tumefaciens. HspL may help maintain VirB8 homeostasis and elevate Agrobacterium-mediated transformation efficiency under both heat-shock and nonheat-shock growth.

  16. The Biochemical Mechanism of Auxin Biosynthesis by an Arabidopsis YUCCA Flavin-containing Monooxygenase*

    Science.gov (United States)

    Dai, Xinhua; Mashiguchi, Kiyoshi; Chen, Qingguo; Kasahara, Hiroyuki; Kamiya, Yuji; Ojha, Sunil; DuBois, Jennifer; Ballou, David; Zhao, Yunde

    2013-01-01

    Auxin regulates every aspect of plant growth and development. Previous genetic studies demonstrated that YUCCA (YUC) flavin-containing monooxygenases (FMOs) catalyze a rate-limiting step in auxin biosynthesis and that YUCs are essential for many developmental processes. We proposed that YUCs convert indole-3-pyruvate (IPA) to indole-3-acetate (IAA). However, the exact biochemical mechanism of YUCs has remained elusive. Here we present the biochemical characterization of recombinant Arabidopsis YUC6. Expressed in and purified from Escherichia coli, YUC6 contains FAD as a cofactor, which has peaks at 448 nm and 376 nm in the UV-visible spectrum. We show that YUC6 uses NADPH and oxygen to convert IPA to IAA. The first step of the YUC6-catalyzed reaction is the reduction of the FAD cofactor to FADH− by NADPH. Subsequently, FADH− reacts with oxygen to form a flavin-C4a-(hydro)peroxy intermediate, which we show has a maximum absorbance at 381 nm in its UV-visible spectrum. The final chemical step is the reaction of the C4a-intermediate with IPA to produce IAA. Although the sequences of the YUC enzymes are related to those of the mammalian FMOs, which oxygenate nucleophilic substrates, YUC6 oxygenates an electrophilic substrate (IPA). Nevertheless, both classes of enzymes form quasi-stable C4a-(hydro)peroxyl FAD intermediates. The YUC6 intermediate has a half-life of ∼20 s whereas that of some FMOs is >30 min. This work reveals the catalytic mechanism of the first known plant flavin monooxygenase and provides a foundation for further investigating how YUC activities are regulated in plants. PMID:23188833

  17. Identification of myosin XI receptors in Arabidopsis defines a distinct class of transport vesicles.

    Science.gov (United States)

    Peremyslov, Valera V; Morgun, Eva A; Kurth, Elizabeth G; Makarova, Kira S; Koonin, Eugene V; Dolja, Valerian V

    2013-08-01

    To characterize the mechanism through which myosin XI-K attaches to its principal endomembrane cargo, a yeast two-hybrid library of Arabidopsis thaliana cDNAs was screened using the myosin cargo binding domain as bait. This screen identified two previously uncharacterized transmembrane proteins (hereinafter myosin binding proteins or MyoB1/2) that share a myosin binding, conserved domain of unknown function 593 (DUF593). Additional screens revealed that MyoB1/2 also bind myosin XI-1, whereas myosin XI-I interacts with the distantly related MyoB7. The in vivo interactions of MyoB1/2 with myosin XI-K were confirmed by immunoprecipitation and colocalization analyses. In epidermal cells, the yellow fluorescent protein-tagged MyoB1/2 localize to vesicles that traffic in a myosin XI-dependent manner. Similar to myosin XI-K, MyoB1/2 accumulate in the tip-growing domain of elongating root hairs. Gene knockout analysis demonstrated that functional cooperation between myosin XI-K and MyoB proteins is required for proper plant development. Unexpectedly, the MyoB1-containing vesicles did not correspond to brefeldin A-sensitive Golgi and post-Golgi or prevacuolar compartments and did not colocalize with known exocytic or endosomal compartments. Phylogenomic analysis suggests that DUF593 emerged in primitive land plants and founded a multigene family that is conserved in all flowering plants. Collectively, these findings indicate that MyoB are membrane-anchored myosin receptors that define a distinct, plant-specific transport vesicle compartment.

  18. LIK1, a CERK1-interacting kinase, regulates plant immune responses in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Mi Ha Le

    Full Text Available Chitin, an integral component of the fungal cell wall, is one of the best-studied microbe-associated molecular patterns. Previous work identified a LysM receptor-like kinase (LysM-RLK1/CERK1 as the primary chitin receptor in Arabidopsis. In order to identify proteins that interact with CERK1, we conducted a yeast two-hybrid screen using the intracellular kinase domain of CERK1 as the bait. This screen identified 54 putative CERK1-interactors. Screening mutants defective in 43 of these interacting proteins identified only two, a calmodulin like protein (At3g10190 and a leucine-rich repeat receptor like kinase (At3g14840, which differed in their response to pathogen challenge. In the present work, we focused on characterizing the LRR-RLK gene where mutations altered responses to chitin elicitation. This LRR-RLK was named LysM RLK1-interacting kinase 1 (LIK1. The interaction between CERK1 and LIK1 was confirmed by co-immunoprecipitation using protoplasts and transgenic plants. In vitro experiments showed that LIK1 was directly phosphorylated by CERK1. In vivo phosphorylation assays showed that Col-0 wild-type plants have more phosphorylated LIK1 than cerk1 mutant plants, suggesting that LIK1 may be directly phosphorylated by CERK1. Lik1 mutant plants showed an enhanced response to both chitin and flagellin elicitors. In comparison to the wild-type plants, lik1 mutant plants were more resistant to the hemibiotrophic pathogen Pseudomonas syringae, but more susceptible to the necrotrophic pathogen Sclerotinia sclerotiorum. Consistent with the enhanced susceptibility to necrotrophs, lik1 mutants showed reduced expression of genes involved in jasmonic acid and ethylene signaling pathways. These data suggest that LIK1 directly interacts with CERK1 and regulates MAMP-triggered innate immunity.

  19. PageRank-based identification of signaling crosstalk from transcriptomics data: the case of Arabidopsis thaliana.

    Science.gov (United States)

    Omranian, Nooshin; Mueller-Roeber, Bernd; Nikoloski, Zoran

    2012-04-01

    The levels of cellular organization, from gene transcription to translation to protein-protein interaction and metabolism, operate via tightly regulated mutual interactions, facilitating organismal adaptability and various stress responses. Characterizing the mutual interactions between genes, transcription factors, and proteins involved in signaling, termed crosstalk, is therefore crucial for understanding and controlling cells' functionality. We aim at using high-throughput transcriptomics data to discover previously unknown links between signaling networks. We propose and analyze a novel method for crosstalk identification which relies on transcriptomics data and overcomes the lack of complete information for signaling pathways in Arabidopsis thaliana. Our method first employs a network-based transformation of the results from the statistical analysis of differential gene expression in given groups of experiments under different signal-inducing conditions. The stationary distribution of a random walk (similar to the PageRank algorithm) on the constructed network is then used to determine the putative transcripts interrelating different signaling pathways. With the help of the proposed method, we analyze a transcriptomics data set including experiments from four different stresses/signals: nitrate, sulfur, iron, and hormones. We identified promising gene candidates, downstream of the transcription factors (TFs), associated to signaling crosstalk, which were validated through literature mining. In addition, we conduct a comparative analysis with the only other available method in this field which used a biclustering-based approach. Surprisingly, the biclustering-based approach fails to robustly identify any candidate genes involved in the crosstalk of the analyzed signals. We demonstrate that our proposed method is more robust in identifying gene candidates involved downstream of the signaling crosstalk for species for which large transcriptomics data sets

  20. Hypermethylated SUPERMAN epigenetic alleles in arabidopsis.

    Science.gov (United States)

    Jacobsen, S E; Meyerowitz, E M

    1997-08-22

    Mutations in the SUPERMAN gene affect flower development in Arabidopsis. Seven heritable but unstable sup epi-alleles (the clark kent alleles) are associated with nearly identical patterns of excess cytosine methylation within the SUP gene and a decreased level of SUP RNA. Revertants of these alleles are largely demethylated at the SUP locus and have restored levels of SUP RNA. A transgenic Arabidopsis line carrying an antisense methyltransferase gene, which shows an overall decrease in genomic cytosine methylation, also contains a hypermethylated sup allele. Thus, disruption of methylation systems may yield more complex outcomes than expected and can result in methylation defects at known genes. The clark kent alleles differ from the antisense line because they do not show a general decrease in genomic methylation.