WorldWideScience

Sample records for previous numerical solutions

  1. Constructing exact symmetric informationally complete measurements from numerical solutions

    Science.gov (United States)

    Appleby, Marcus; Chien, Tuan-Yow; Flammia, Steven; Waldron, Shayne

    2018-04-01

    Recently, several intriguing conjectures have been proposed connecting symmetric informationally complete quantum measurements (SIC POVMs, or SICs) and algebraic number theory. These conjectures relate the SICs to their minimal defining algebraic number field. Testing or sharpening these conjectures requires that the SICs are expressed exactly, rather than as numerical approximations. While many exact solutions of SICs have been constructed previously using Gröbner bases, this method has probably been taken as far as is possible with current computer technology (except in special cases where there are additional symmetries). Here, we describe a method for converting high-precision numerical solutions into exact ones using an integer relation algorithm in conjunction with the Galois symmetries of an SIC. Using this method, we have calculated 69 new exact solutions, including nine new dimensions, where previously only numerical solutions were known—which more than triples the number of known exact solutions. In some cases, the solutions require number fields with degrees as high as 12 288. We use these solutions to confirm that they obey the number-theoretic conjectures, and address two questions suggested by the previous work.

  2. Numerical soliton-like solutions of the potential Kadomtsev-Petviashvili equation by the decomposition method

    International Nuclear Information System (INIS)

    Kaya, Dogan; El-Sayed, Salah M.

    2003-01-01

    In this Letter we present an Adomian's decomposition method (shortly ADM) for obtaining the numerical soliton-like solutions of the potential Kadomtsev-Petviashvili (shortly PKP) equation. We will prove the convergence of the ADM. We obtain the exact and numerical solitary-wave solutions of the PKP equation for certain initial conditions. Then ADM yields the analytic approximate solution with fast convergence rate and high accuracy through previous works. The numerical solutions are compared with the known analytical solutions

  3. Numerical Asymptotic Solutions Of Differential Equations

    Science.gov (United States)

    Thurston, Gaylen A.

    1992-01-01

    Numerical algorithms derived and compared with classical analytical methods. In method, expansions replaced with integrals evaluated numerically. Resulting numerical solutions retain linear independence, main advantage of asymptotic solutions.

  4. New numerical method for solving the solute transport equation

    International Nuclear Information System (INIS)

    Ross, B.; Koplik, C.M.

    1978-01-01

    The solute transport equation can be solved numerically by approximating the water flow field by a network of stream tubes and using a Green's function solution within each stream tube. Compared to previous methods, this approach permits greater computational efficiency and easier representation of small discontinuities, and the results are easier to interpret physically. The method has been used to study hypothetical sites for disposal of high-level radioactive waste

  5. Spurious Numerical Solutions Of Differential Equations

    Science.gov (United States)

    Lafon, A.; Yee, H. C.

    1995-01-01

    Paper presents detailed study of spurious steady-state numerical solutions of differential equations that contain nonlinear source terms. Main objectives of this study are (1) to investigate how well numerical steady-state solutions of model nonlinear reaction/convection boundary-value problem mimic true steady-state solutions and (2) to relate findings of this investigation to implications for interpretation of numerical results from computational-fluid-dynamics algorithms and computer codes used to simulate reacting flows.

  6. A numerical guide to the solution of the bidomain equations of cardiac electrophysiology

    KAUST Repository

    Pathmanathan, Pras

    2010-06-01

    Simulation of cardiac electrical activity using the bidomain equations can be a massively computationally demanding problem. This study provides a comprehensive guide to numerical bidomain modelling. Each component of bidomain simulations-discretisation, ODE-solution, linear system solution, and parallelisation-is discussed, and previously-used methods are reviewed, new methods are proposed, and issues which cause particular difficulty are highlighted. Particular attention is paid to the choice of stimulus currents, compatibility conditions for the equations, the solution of singular linear systems, and convergence of the numerical scheme. © 2010 Elsevier Ltd.

  7. A numerical guide to the solution of the bidomain equations of cardiac electrophysiology

    KAUST Repository

    Pathmanathan, Pras; Bernabeu, Miguel O.; Bordas, Rafel; Cooper, Jonathan; Garny, Alan; Pitt-Francis, Joe M.; Whiteley, Jonathan P.; Gavaghan, David J.

    2010-01-01

    Simulation of cardiac electrical activity using the bidomain equations can be a massively computationally demanding problem. This study provides a comprehensive guide to numerical bidomain modelling. Each component of bidomain simulations-discretisation, ODE-solution, linear system solution, and parallelisation-is discussed, and previously-used methods are reviewed, new methods are proposed, and issues which cause particular difficulty are highlighted. Particular attention is paid to the choice of stimulus currents, compatibility conditions for the equations, the solution of singular linear systems, and convergence of the numerical scheme. © 2010 Elsevier Ltd.

  8. Sensitivity analysis of numerical solutions for environmental fluid problems

    International Nuclear Information System (INIS)

    Tanaka, Nobuatsu; Motoyama, Yasunori

    2003-01-01

    In this study, we present a new numerical method to quantitatively analyze the error of numerical solutions by using the sensitivity analysis. If a reference case of typical parameters is one calculated with the method, no additional calculation is required to estimate the results of the other numerical parameters such as more detailed solutions. Furthermore, we can estimate the strict solution from the sensitivity analysis results and can quantitatively evaluate the reliability of the numerical solution by calculating the numerical error. (author)

  9. Exact solutions, numerical relativity and gravitational radiation

    International Nuclear Information System (INIS)

    Winicour, J.

    1986-01-01

    In recent years, there has emerged a new use for exact solutions to Einstein's equation as checks on the accuracy of numerical relativity codes. Much has already been written about codes based upon the space-like Cauchy problem. In the case of two Killing vectors, a numerical characteristic initial value formulation based upon two intersecting families of null hypersurfaces has successfully evolved the Schwarzschild and the colliding plane wave vacuum solutions. Here the author discusses, in the context of exact solutions, numerical studies of gravitational radiation based upon the null cone initial value problem. Every stage of progress in the null cone approach has been associated with exact solutions in some sense. He begins by briefly recapping this history. Then he presents two new examples illustrating how exact solutions can be useful

  10. Analysis of numerical solutions for Bateman equations

    International Nuclear Information System (INIS)

    Loch, Guilherme G.; Bevilacqua, Joyce S.

    2013-01-01

    The implementation of stable and efficient numerical methods for solving problems involving nuclear transmutation and radioactive decay chains is the main scope of this work. The physical processes associated with irradiations of samples in particle accelerators, or the burning spent nuclear fuel in reactors, or simply the natural decay chains, can be represented by a set of first order ordinary differential equations with constant coefficients, for instance, the decay radioactive constants of each nuclide in the chain. Bateman proposed an analytical solution for a particular case of a linear chain with n nuclides decaying in series and with different decay constants. For more complex and realistic applications, the construction of analytical solutions is not viable and the introduction of numerical techniques is imperative. However, depending on the magnitudes of the decay radioactive constants, the matrix of coefficients could be almost singular, generating unstable and non convergent numerical solutions. In this work, different numerical strategies for solving systems of differential equations were implemented, the Runge-Kutta 4-4, Adams Predictor-Corrector (PC2) and the Rosenbrock algorithm, this last one more specific for stiff equations. Consistency, convergence and stability of the numerical solutions are studied and the performance of the methods is analyzed for the case of the natural decay chain of Uranium-235 comparing numerical with analytical solutions. (author)

  11. A numerical solution of the coupled proton-H atom transport equations for the proton aurora

    International Nuclear Information System (INIS)

    Basu, B.; Jasperse, J.R.; Grossbard, N.J.

    1990-01-01

    A numerical code has been developed to solve the coupled proton-H atom linear transport equations for the proton aurora. The transport equations have been simplified by using plane-parallel geometry and the forward-scattering approximations only. Otherwise, the equations and their numerical solutions are exact. Results are presented for the particle fluxes and the energy deposition rates, and they are compared with the previous analytical results that were obtained by using additional simplifying approximations. It is found that although the analytical solutions for the particle fluxes differ somewhat from the numerical solutions, the energy deposition rates calculated by the two methods agree to within a few percent. The accurate particle fluxes given by the numerical code are useful for accurate calculation of the characteristic quantities of the proton aurora, such as the ionization rates and the emission rates

  12. Numerical integration of asymptotic solutions of ordinary differential equations

    Science.gov (United States)

    Thurston, Gaylen A.

    1989-01-01

    Classical asymptotic analysis of ordinary differential equations derives approximate solutions that are numerically stable. However, the analysis also leads to tedious expansions in powers of the relevant parameter for a particular problem. The expansions are replaced with integrals that can be evaluated by numerical integration. The resulting numerical solutions retain the linear independence that is the main advantage of asymptotic solutions. Examples, including the Falkner-Skan equation from laminar boundary layer theory, illustrate the method of asymptotic analysis with numerical integration.

  13. The numerical solution of ICRF fields in axisymmetric mirrors

    International Nuclear Information System (INIS)

    Phillips, M.W.; Todd, A.M.M.

    1986-01-01

    The numerics of a numerical code called GARFIELD (Grumman Aerospace RF fIELD code) designed to calculate the three-dimensional structure of ICRF fields in axisymmetric mirrors is presented. The code solves the electromagnetic wave equation for the electric field using a cold plasma dispersion relation with a small collision term to simulate absorption. The full wave solution including E.B is computed. The fields are Fourier analyzed in the poloidal direction and solved on a grid in the axial and radial directions. A two-dimensional equilibrium can be used as the source of equilibrium data. This allows us to extend previous studies of ICRF wave propagation and absorption in mirrors to include the effect of axial variation of the magnetic field and density. (orig.)

  14. Numerical evaluation of path-integral solutions to Fokker-Planck equations. II. Restricted stochastic processes

    International Nuclear Information System (INIS)

    Wehner, M.F.

    1983-01-01

    A path-integral solution is derived for processes described by nonlinear Fokker-Plank equations together with externally imposed boundary conditions. This path-integral solution is written in the form of a path sum for small time steps and contains, in addition to the conventional volume integral, a surface integral which incorporates the boundary conditions. A previously developed numerical method, based on a histogram representation of the probability distribution, is extended to a trapezoidal representation. This improved numerical approach is combined with the present path-integral formalism for restricted processes and is show t give accurate results. 35 refs., 5 figs

  15. Numerical solution of non-linear diffusion problems

    International Nuclear Information System (INIS)

    Carmen, A. del; Ferreri, J.C.

    1998-01-01

    This paper presents a method for the numerical solution of non-linear diffusion problems using finite-differences in moving grids. Due to the presence of steep fronts in the solution domain and to the presence of advective terms originating in the grid movement, an implicit TVD scheme, first order in time and second order in space has been developed. Some algebraic details of the derivation are given. Results are shown for the pure advection of a scalar as a test case and an example dealing with the slow spreading of viscous fluids over plane surfaces. The agreement between numerical and analytical solutions is excellent. (author). 8 refs., 3 figs

  16. Six-dimensional localized black holes: Numerical solutions

    International Nuclear Information System (INIS)

    Kudoh, Hideaki

    2004-01-01

    To test the strong-gravity regime in Randall-Sundrum braneworlds, we consider black holes bound to a brane. In a previous paper, we studied numerical solutions of localized black holes whose horizon radii are smaller than the AdS curvature radius. In this paper, we improve the numerical method and discuss properties of the six-dimensional (6D) localized black holes whose horizon radii are larger than the AdS curvature radius. At a horizon temperature T≅1/2πl, the thermodynamics of the localized black hole undergo a transition with its character changing from a 6D Schwarzschild black hole type to a 6D black string type. The specific heat of the localized black holes is negative, and the entropy is greater than or nearly equal to that of the 6D black strings with the same thermodynamic mass. The large localized black holes show flattened horizon geometries, and the intrinsic curvature of the horizon four-geometry becomes negative near the brane. Our results indicate that the recovery mechanism of lower-dimensional Einstein gravity on the brane works even in the presence of the black holes

  17. Numerical solution of singularity-perturbed two-point boundary-value problems

    International Nuclear Information System (INIS)

    Masenge, R.W.P.

    1993-07-01

    Physical processes which involve transportation of slowly diffusing substances in a fast-flowing medium are mathematically modelled by so-called singularly-perturbed second order convection diffusion differential equations in which the convective first order terms dominate over the diffusive second order terms. In general, analytical solutions of such equations are characterized by having sharp solution fronts in some sections of the interior and/or the boundary of the domain of solution. The presence of these (usually very narrow) layer regions in the solution domain makes the task of globally approximating such solutions by standard numerical techniques very difficult. In this expository paper we use a simple one-dimensional prototype problem as a vehicle for analysing the nature of the numerical approximation difficulties involved. In the sequel we present, without detailed derivation, two practical numerical schemes which succeed in varying degrees in numerically resolving the layer of the solution to the prototype problem. (author). 3 refs, 1 fig., 1 tab

  18. Numerically satisfactory solutions of Kummer recurrence relations

    NARCIS (Netherlands)

    J. Segura (Javier); N.M. Temme (Nico)

    2008-01-01

    textabstractPairs of numerically satisfactory solutions as $n\\rightarrow \\infty$ for the three-term recurrence relations satisfied by the families of functions $_1\\mbox{F}_1(a+\\epsilon_1 n; b +\\epsilon_2 n;z)$, $\\epsilon_i \\in {\\mathbb Z}$, are given. It is proved that minimal solutions always

  19. Numerical solution of Boltzmann's equation

    International Nuclear Information System (INIS)

    Sod, G.A.

    1976-04-01

    The numerical solution of Boltzmann's equation is considered for a gas model consisting of rigid spheres by means of Hilbert's expansion. If only the first two terms of the expansion are retained, Boltzmann's equation reduces to the Boltzmann-Hilbert integral equation. Successive terms in the Hilbert expansion are obtained by solving the same integral equation with a different source term. The Boltzmann-Hilbert integral equation is solved by a new very fast numerical method. The success of the method rests upon the simultaneous use of four judiciously chosen expansions; Hilbert's expansion for the distribution function, another expansion of the distribution function in terms of Hermite polynomials, the expansion of the kernel in terms of the eigenvalues and eigenfunctions of the Hilbert operator, and an expansion involved in solving a system of linear equations through a singular value decomposition. The numerical method is applied to the study of the shock structure in one space dimension. Numerical results are presented for Mach numbers of 1.1 and 1.6. 94 refs, 7 tables, 1 fig

  20. Numerical simulation of the shot peening process under previous loading conditions

    International Nuclear Information System (INIS)

    Romero-Ángeles, B; Urriolagoitia-Sosa, G; Torres-San Miguel, C R; Molina-Ballinas, A; Benítez-García, H A; Vargas-Bustos, J A; Urriolagoitia-Calderón, G

    2015-01-01

    This research presents a numerical simulation of the shot peening process and determines the residual stress field induced into a component with a previous loading history. The importance of this analysis is based on the fact that mechanical elements under shot peening are also subjected to manufacturing processes, which convert raw material into finished product. However, material is not provided in a virgin state, it has a previous loading history caused by the manner it is fabricated. This condition could alter some beneficial aspects of the residual stress induced by shot peening and could accelerate the crack nucleation and propagation progression. Studies were performed in beams subjected to strain hardening in tension (5ε y ) before shot peening was applied. Latter results were then compared in a numerical assessment of an induced residual stress field by shot peening carried out in a component (beam) without any previous loading history. In this paper, it is clearly shown the detrimental or beneficial effect that previous loading history can bring to the mechanical component and how it can be controlled to improve the mechanical behavior of the material

  1. Introduction to the numerical solutions of Markov chains

    CERN Document Server

    Stewart, Williams J

    1994-01-01

    A cornerstone of applied probability, Markov chains can be used to help model how plants grow, chemicals react, and atoms diffuse - and applications are increasingly being found in such areas as engineering, computer science, economics, and education. To apply the techniques to real problems, however, it is necessary to understand how Markov chains can be solved numerically. In this book, the first to offer a systematic and detailed treatment of the numerical solution of Markov chains, William Stewart provides scientists on many levels with the power to put this theory to use in the actual world, where it has applications in areas as diverse as engineering, economics, and education. His efforts make for essential reading in a rapidly growing field. Here, Stewart explores all aspects of numerically computing solutions of Markov chains, especially when the state is huge. He provides extensive background to both discrete-time and continuous-time Markov chains and examines many different numerical computing metho...

  2. Numerical Solution of Stokes Flow in a Circular Cavity Using Mesh-free Local RBF-DQ

    DEFF Research Database (Denmark)

    Kutanaai, S Soleimani; Roshan, Naeem; Vosoughi, A

    2012-01-01

    This work reports the results of a numerical investigation of Stokes flow problem in a circular cavity as an irregular geometry using mesh-free local radial basis function-based differential quadrature (RBF-DQ) method. This method is the combination of differential quadrature approximation of der...... in solution of partial differential equations (PDEs).......This work reports the results of a numerical investigation of Stokes flow problem in a circular cavity as an irregular geometry using mesh-free local radial basis function-based differential quadrature (RBF-DQ) method. This method is the combination of differential quadrature approximation...... is applied on a two-dimensional geometry. The obtained results from the numerical simulations are compared with those gained by previous works. Outcomes prove that the current technique is in very good agreement with previous investigations and this fact that RBF-DQ method is an accurate and flexible method...

  3. Numerical Solution of Stochastic Nonlinear Fractional Differential Equations

    KAUST Repository

    El-Beltagy, Mohamed A.

    2015-01-07

    Using Wiener-Hermite expansion (WHE) technique in the solution of the stochastic partial differential equations (SPDEs) has the advantage of converting the problem to a system of deterministic equations that can be solved efficiently using the standard deterministic numerical methods [1]. WHE is the only known expansion that handles the white/colored noise exactly. This work introduces a numerical estimation of the stochastic response of the Duffing oscillator with fractional or variable order damping and driven by white noise. The WHE technique is integrated with the Grunwald-Letnikov approximation in case of fractional order and with Coimbra approximation in case of variable-order damping. The numerical solver was tested with the analytic solution and with Monte-Carlo simulations. The developed mixed technique was shown to be efficient in simulating SPDEs.

  4. Numerical Solution of Stochastic Nonlinear Fractional Differential Equations

    KAUST Repository

    El-Beltagy, Mohamed A.; Al-Juhani, Amnah

    2015-01-01

    Using Wiener-Hermite expansion (WHE) technique in the solution of the stochastic partial differential equations (SPDEs) has the advantage of converting the problem to a system of deterministic equations that can be solved efficiently using the standard deterministic numerical methods [1]. WHE is the only known expansion that handles the white/colored noise exactly. This work introduces a numerical estimation of the stochastic response of the Duffing oscillator with fractional or variable order damping and driven by white noise. The WHE technique is integrated with the Grunwald-Letnikov approximation in case of fractional order and with Coimbra approximation in case of variable-order damping. The numerical solver was tested with the analytic solution and with Monte-Carlo simulations. The developed mixed technique was shown to be efficient in simulating SPDEs.

  5. assessment of concentration of air pollutants using analytical and numerical solution of the atmospheric diffusion equation

    International Nuclear Information System (INIS)

    Esmail, S.F.H.

    2011-01-01

    The mathematical formulation of numerous physical problems a results in differential equations actually partial or ordinary differential equations.In our study we are interested in solutions of partial differential equations.The aim of this work is to calculate the concentrations of the pollution, by solving the atmospheric diffusion equation(ADE) using different mathematical methods of solution. It is difficult to solve the general form of ADE analytically, so we use some assumptions to get its solution.The solutions of it depend on the eddy diffusivity profiles(k) and the wind speed u. We use some physical assumptions to simplify its formula and solve it. In the present work, we solve the ADE analytically in three dimensions using Green's function method, Laplace transform method, normal mode method and these separation of variables method. Also, we use ADM as a numerical method. Finally, comparisons are made with the results predicted by the previous methods and the observed data.

  6. A numerical solution of a singular boundary value problem arising in boundary layer theory.

    Science.gov (United States)

    Hu, Jiancheng

    2016-01-01

    In this paper, a second-order nonlinear singular boundary value problem is presented, which is equivalent to the well-known Falkner-Skan equation. And the one-dimensional third-order boundary value problem on interval [Formula: see text] is equivalently transformed into a second-order boundary value problem on finite interval [Formula: see text]. The finite difference method is utilized to solve the singular boundary value problem, in which the amount of computational effort is significantly less than the other numerical methods. The numerical solutions obtained by the finite difference method are in agreement with those obtained by previous authors.

  7. Rotationally symmetric numerical solutions to the sine-Gordon equation

    DEFF Research Database (Denmark)

    Olsen, O. H.; Samuelsen, Mogens Rugholm

    1981-01-01

    We examine numerically the properties of solutions to the spherically symmetric sine-Gordon equation given an initial profile which coincides with the one-dimensional breather solution and refer to such solutions as ring waves. Expanding ring waves either exhibit a return effect or expand towards...

  8. On numerical solution of Burgers' equation by homotopy analysis method

    International Nuclear Information System (INIS)

    Inc, Mustafa

    2008-01-01

    In this Letter, we present the Homotopy Analysis Method (shortly HAM) for obtaining the numerical solution of the one-dimensional nonlinear Burgers' equation. The initial approximation can be freely chosen with possible unknown constants which can be determined by imposing the boundary and initial conditions. Convergence of the solution and effects for the method is discussed. The comparison of the HAM results with the Homotopy Perturbation Method (HPM) and the results of [E.N. Aksan, Appl. Math. Comput. 174 (2006) 884; S. Kutluay, A. Esen, Int. J. Comput. Math. 81 (2004) 1433; S. Abbasbandy, M.T. Darvishi, Appl. Math. Comput. 163 (2005) 1265] are made. The results reveal that HAM is very simple and effective. The HAM contains the auxiliary parameter h, which provides us with a simple way to adjust and control the convergence region of solution series. The numerical solutions are compared with the known analytical and some numerical solutions

  9. Explicit appropriate basis function method for numerical solution of stiff systems

    International Nuclear Information System (INIS)

    Chen, Wenzhen; Xiao, Hongguang; Li, Haofeng; Chen, Ling

    2015-01-01

    Highlights: • An explicit numerical method called the appropriate basis function method is presented. • The method differs from the power series method for obtaining approximate numerical solutions. • Two cases show the method is fit for linear and nonlinear stiff systems. • The method is very simple and effective for most of differential equation systems. - Abstract: In this paper, an explicit numerical method, called the appropriate basis function method, is presented. The explicit appropriate basis function method differs from the power series method because it employs an appropriate basis function such as the exponential function, or periodic function, other than a polynomial, to obtain approximate numerical solutions. The method is successful and effective for the numerical solution of the first order ordinary differential equations. Two examples are presented to show the ability of the method for dealing with linear and nonlinear systems of differential equations

  10. Automatic validation of numerical solutions

    DEFF Research Database (Denmark)

    Stauning, Ole

    1997-01-01

    This thesis is concerned with ``Automatic Validation of Numerical Solutions''. The basic theory of interval analysis and self-validating methods is introduced. The mean value enclosure is applied to discrete mappings for obtaining narrow enclosures of the iterates when applying these mappings...... differential equations, but in this thesis, we describe how to use the methods for enclosing iterates of discrete mappings, and then later use them for discretizing solutions of ordinary differential equations. The theory of automatic differentiation is introduced, and three methods for obtaining derivatives...... are described: The forward, the backward, and the Taylor expansion methods. The three methods have been implemented in the C++ program packages FADBAD/TADIFF. Some examples showing how to use the three metho ds are presented. A feature of FADBAD/TADIFF not present in other automatic differentiation packages...

  11. Spurious solutions in few-body equations. II. Numerical investigations

    International Nuclear Information System (INIS)

    Adhikari, S.K.

    1979-01-01

    A recent analytic study of spurious solutions in few-body equations by Adhikari and Gloeckle is here complemented by numerical investigations. As proposed by Adhikari and Gloeckle we study numerically the spurious solutions in the three-body Weinberg type equations and draw some general conclusions about the existence of spurious solutions in three-body equations with the Weinberg kernel and in other few-body formulations. In particular we conclude that for most of the potentials we encounter in problems of nuclear physics the three-body Weinberg type equation will not have a spurious solution which may interfere with the bound state or scattering calculation. Hence, if proven convenient, the three-body Weinberg type equation can be used in practical calculations. The same conclusion is true for the three-body channel coupling array scheme of Kouri, Levin, and Tobocman. In the case of the set of six coupled four-body equations proposed by Rosenberg et al. and the set of the Bencze-Redish-Sloan equations a careful study of the possible spurious solutions is needed before using these equations in practical calculations

  12. Numerical solution of electrostatic problems of the accelerator project VICKSI

    International Nuclear Information System (INIS)

    Janetzki, U.

    1975-03-01

    In this work, the numerical solution to a few of the electrostatic problems is dealt with which have occured within the framework of the heavy ion accelerator project VICKSI. By means of these selected examples, the versatile applicability of the numerical method is to be demonstrated, and simultaneously assistance is given for the solution of similar problems. The numerical process for solving ion-optics problems consists generally of two steps. In the first step, the potential distribution for a given boundary value problem is iteratively calculated for the Laplace equation, and then the image characteristics of the electostatic lense are investigated using the Raytrace method. (orig./LH) [de

  13. Efficient numerical solution to vacuum decay with many fields

    Energy Technology Data Exchange (ETDEWEB)

    Masoumi, Ali; Olum, Ken D.; Shlaer, Benjamin, E-mail: ali@cosmos.phy.tufts.edu, E-mail: kdo@cosmos.phy.tufts.edu, E-mail: shlaer@cosmos.phy.tufts.edu [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)

    2017-01-01

    Finding numerical solutions describing bubble nucleation is notoriously difficult in more than one field space dimension. Traditional shooting methods fail because of the extreme non-linearity of field evolution over a macroscopic distance as a function of initial conditions. Minimization methods tend to become either slow or imprecise for larger numbers of fields due to their dependence on the high dimensionality of discretized function spaces. We present a new method for finding solutions which is both very efficient and able to cope with the non-linearities. Our method directly integrates the equations of motion except at a small number of junction points, so we do not need to introduce a discrete domain for our functions. The method, based on multiple shooting, typically finds solutions involving three fields in around a minute, and can find solutions for eight fields in about an hour. We include a numerical package for Mathematica which implements the method described here.

  14. Matching of analytical and numerical solutions for neutron stars of arbitrary rotation

    International Nuclear Information System (INIS)

    Pappas, George

    2009-01-01

    We demonstrate the results of an attempt to match the two-soliton analytical solution with the numerically produced solutions of the Einstein field equations, that describe the spacetime exterior of rotating neutron stars, for arbitrary rotation. The matching procedure is performed by equating the first four multipole moments of the analytical solution to the multipole moments of the numerical one. We then argue that in order to check the effectiveness of the matching of the analytical with the numerical solution we should compare the metric components, the radius of the innermost stable circular orbit (R ISCO ), the rotation frequency and the epicyclic frequencies Ω ρ , Ω z . Finally we present some results of the comparison.

  15. Matching of analytical and numerical solutions for neutron stars of arbitrary rotation

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, George, E-mail: gpappas@phys.uoa.g [Section of Astrophysics, Astronomy, and Mechanics, Department of Physics, University of Athens, Panepistimiopolis Zografos GR15783, Athens (Greece)

    2009-10-01

    We demonstrate the results of an attempt to match the two-soliton analytical solution with the numerically produced solutions of the Einstein field equations, that describe the spacetime exterior of rotating neutron stars, for arbitrary rotation. The matching procedure is performed by equating the first four multipole moments of the analytical solution to the multipole moments of the numerical one. We then argue that in order to check the effectiveness of the matching of the analytical with the numerical solution we should compare the metric components, the radius of the innermost stable circular orbit (R{sub ISCO}), the rotation frequency and the epicyclic frequencies {Omega}{sub {rho}}, {Omega}{sub z}. Finally we present some results of the comparison.

  16. Comptonization in Ultra-Strong Magnetic Fields: Numerical Solution to the Radiative Transfer Problem

    Science.gov (United States)

    Ceccobello, C.; Farinelli, R.; Titarchuk, L.

    2014-01-01

    We consider the radiative transfer problem in a plane-parallel slab of thermal electrons in the presence of an ultra-strong magnetic field (B approximately greater than B(sub c) approx. = 4.4 x 10(exp 13) G). Under these conditions, the magnetic field behaves like a birefringent medium for the propagating photons, and the electromagnetic radiation is split into two polarization modes, ordinary and extraordinary, that have different cross-sections. When the optical depth of the slab is large, the ordinary-mode photons are strongly Comptonized and the photon field is dominated by an isotropic component. Aims. The radiative transfer problem in strong magnetic fields presents many mathematical issues and analytical or numerical solutions can be obtained only under some given approximations. We investigate this problem both from the analytical and numerical point of view, provide a test of the previous analytical estimates, and extend these results with numerical techniques. Methods. We consider here the case of low temperature black-body photons propagating in a sub-relativistic temperature plasma, which allows us to deal with a semi-Fokker-Planck approximation of the radiative transfer equation. The problem can then be treated with the variable separation method, and we use a numerical technique to find solutions to the eigenvalue problem in the case of a singular kernel of the space operator. The singularity of the space kernel is the result of the strong angular dependence of the electron cross-section in the presence of a strong magnetic field. Results. We provide the numerical solution obtained for eigenvalues and eigenfunctions of the space operator, and the emerging Comptonization spectrum of the ordinary-mode photons for any eigenvalue of the space equation and for energies significantly lesser than the cyclotron energy, which is on the order of MeV for the intensity of the magnetic field here considered. Conclusions. We derived the specific intensity of the

  17. Numerical solution of distributed order fractional differential equations

    Science.gov (United States)

    Katsikadelis, John T.

    2014-02-01

    In this paper a method for the numerical solution of distributed order FDEs (fractional differential equations) of a general form is presented. The method applies to both linear and nonlinear equations. The Caputo type fractional derivative is employed. The distributed order FDE is approximated with a multi-term FDE, which is then solved by adjusting appropriately the numerical method developed for multi-term FDEs by Katsikadelis. Several example equations are solved and the response of mechanical systems described by such equations is studied. The convergence and the accuracy of the method for linear and nonlinear equations are demonstrated through well corroborated numerical results.

  18. Numerical solution of ordinary differential equations. For classical, relativistic and nano systems

    International Nuclear Information System (INIS)

    Greenspan, D.

    2006-01-01

    An up-to-date survey on numerical solutions with theory, intuition and applications. Ordinary differential equations (ODE) play a significant role in mathematics, physics and engineering sciences, and thus are part of relevant college and university courses. Many problems, however, both traditional and modern, do not possess exact solutions, and must be treated numerically. Usually this is done with software packages, but for this to be efficient requires a sound understanding of the mathematics involved. This work meets the need for an affordable textbook that helps in understanding numerical solutions of ODE. Carefully structured by an experienced textbook author, it provides a survey of ODE for various applications, both classical and modern, including such special applications as relativistic and nano systems. The examples are carefully explained and compiled into an algorithm, each of which is presented generically, independent of a specific programming language, while each chapter is rounded off with exercises. The text meets the demands of MA200 courses and of the newly created Numerical Solution of Differential Equations courses, making it ideal for both students and lecturers in physics, mathematics, mechanical engineering, electrical engineering, as well as for physicists, mathematicians, engineers, and electrical engineers. From the Contents - Euler's Method - Runge-Kutta Methods - The Method of Taylor Expansions - Large Second Order Systems with Application to Nano Systems - Completely Conservative, Covariant Numerical Methodology - Instability - Numerical Solution of Tridiagonal Linear Algebraic Systems and Related Nonlinear Systems - Approximate Solution of Boundary Value Problems - Special Relativistic Motion - Special Topics - Appendix: Basic Matrix Operations - Bibliography. (orig.) (orig.)

  19. Numerical solutions of the Vlasov equation

    International Nuclear Information System (INIS)

    Satofuka, Nobuyuki; Morinishi, Koji; Nishida, Hidetoshi

    1985-01-01

    A numerical procedure is derived for the solutions of the one- and two-dimensional Vlasov-Poisson system equations. This numerical procedure consists of the phase space discretization and the integration of the resulting set of ordinary differential equations. In the phase space discretization, derivatives with respect to the phase space variable are approximated by a weighted sum of the values of the distribution function at properly chosen neighboring points. Then, the resulting set of ordinary differential equations is solved by using an appropriate time integration scheme. The results for linear Landau damping, nonlinear Landau damping and counter-streaming plasmas are investigated and compared with those of the splitting scheme. The proposed method is found to be very accurate and efficient. (author)

  20. Exact and numerical solutions of generalized Drinfeld-Sokolov equations

    International Nuclear Information System (INIS)

    Ugurlu, Yavuz; Kaya, Dogan

    2008-01-01

    In this Letter, we consider a system of generalized Drinfeld-Sokolov (gDS) equations which models one-dimensional nonlinear wave processes in two-component media. We find some exact solutions of gDS by using tanh function method and we also obtain a numerical solution by using the Adomian's Decomposition Method (ADM)

  1. Exact and numerical solutions of generalized Drinfeld-Sokolov equations

    Energy Technology Data Exchange (ETDEWEB)

    Ugurlu, Yavuz [Firat University, Department of Mathematics, 23119 Elazig (Turkey); Kaya, Dogan [Firat University, Department of Mathematics, 23119 Elazig (Turkey)], E-mail: dkaya36@yahoo.com

    2008-04-14

    In this Letter, we consider a system of generalized Drinfeld-Sokolov (gDS) equations which models one-dimensional nonlinear wave processes in two-component media. We find some exact solutions of gDS by using tanh function method and we also obtain a numerical solution by using the Adomian's Decomposition Method (ADM)

  2. Numerical Solution of the Electron Transport Equation in the Upper Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Mark Christopher [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Holmes, Mark [Rensselaer Polytechnic Inst., Troy, NY (United States); Sailor, William C [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    A new approach for solving the electron transport equation in the upper atmosphere is derived. The problem is a very stiff boundary value problem, and to obtain an accurate numerical solution, matrix factorizations are used to decouple the fast and slow modes. A stable finite difference method is applied to each mode. This solver is applied to a simplifieed problem for which an exact solution exists using various versions of the boundary conditions that might arise in a natural auroral display. The numerical and exact solutions are found to agree with each other to at least two significant digits.

  3. Solution of Milne problem by Laplace transformation with numerical inversion

    International Nuclear Information System (INIS)

    Campos Velho, H.F. de.

    1987-12-01

    The Milne problem for monoenergetic neutrons, by Laplace Transform of the neutron transport integral equation with numerical inversion of the transformed solution by gaussian quadrature, using the fatorization of the dispersion function. The resulted is solved compared its analitical solution. (author) [pt

  4. Numerical solution of large sparse linear systems

    International Nuclear Information System (INIS)

    Meurant, Gerard; Golub, Gene.

    1982-02-01

    This note is based on one of the lectures given at the 1980 CEA-EDF-INRIA Numerical Analysis Summer School whose aim is the study of large sparse linear systems. The main topics are solving least squares problems by orthogonal transformation, fast Poisson solvers and solution of sparse linear system by iterative methods with a special emphasis on preconditioned conjuguate gradient method [fr

  5. On mesh refinement and accuracy of numerical solutions

    NARCIS (Netherlands)

    Zhou, Hong; Peters, Maria; van Oosterom, Adriaan

    1993-01-01

    This paper investigates mesh refinement and its relation with the accuracy of the boundary element method (BEM) and the finite element method (FEM). TO this end an isotropic homogeneous spherical volume conductor, for which the analytical solution is available, wag used. The numerical results

  6. The numerical solution of boundary value problems over an infinite domain

    International Nuclear Information System (INIS)

    Shepherd, M.; Skinner, R.

    1976-01-01

    A method is presented for the numerical solution of boundary value problems over infinite domains. An example that illustrates also the strength and accuracy of a numerical procedure for calculating Green's functions is described in detail

  7. Numerical Solution of Inviscid Compressible Steady Flows around the RAE 2822 Airfoil

    Science.gov (United States)

    Kryštůfek, P.; Kozel, K.

    2015-05-01

    The article presents results of a numerical solution of subsonic, transonic and supersonic flows described by the system of Euler equations in 2D compressible flows around the RAE 2822 airfoil. Authors used FVM multistage Runge-Kutta method to numerically solve the flows around the RAE 2822 airfoil. The results are compared with the solution using the software Ansys Fluent 15.0.7.

  8. Numerical solution of second-order stochastic differential equations with Gaussian random parameters

    Directory of Open Access Journals (Sweden)

    Rahman Farnoosh

    2014-07-01

    Full Text Available In this paper, we present the numerical solution of ordinary differential equations (or SDEs, from each orderespecially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysisfor second-order equations in specially case of scalar linear second-order equations (damped harmonicoscillators with additive or multiplicative noises. Making stochastic differential equations system from thisequation, it could be approximated or solved numerically by different numerical methods. In the case oflinear stochastic differential equations system by Computing fundamental matrix of this system, it could becalculated based on the exact solution of this system. Finally, this stochastic equation is solved by numericallymethod like E.M. and Milstein. Also its Asymptotic stability and statistical concepts like expectationand variance of solutions are discussed.

  9. Born approximation to a perturbative numerical method for the solution of the Schroedinger equation

    International Nuclear Information System (INIS)

    Adam, Gh.

    1978-01-01

    A step function perturbative numerical method (SF-PN method) is developed for the solution of the Cauchy problem for the second order liniar differential equation in normal form. An important point stressed in the present paper, which seems to have been previously ignored in the literature devoted to the PN methods, is the close connection between the first order perturbation theory of the PN approach and the wellknown Born approximation, and, in general, the connection between the varjous orders of the PN corrections and the Neumann series. (author)

  10. A numerical technique for enhanced efficiency and stability for the solution of the nuclear reactor equation

    International Nuclear Information System (INIS)

    Khotylev, V.A.; Hoogenboom, J.E.

    1996-01-01

    The paper presents new techniques for the solution of the nuclear reactor equation in diffusion approximation, that has enhanced efficiency and stability. The code system based on the new technique solves a number of steady-state and/or transient problems with coupled thermal hydraulics in one-, two-, or three dimensional geometry with reduced CPU time as compared to similar code systems of previous generations if well-posed neutronics problems are considered. Automated detection of ill-posed problem and selection of the appropriate numerical method makes the new code system capable of yielding a correct solution for wider range of problems without user intervention. (author)

  11. A numerical technique for enhanced efficiency and stability for the solution of the nuclear reactor equation

    Energy Technology Data Exchange (ETDEWEB)

    Khotylev, V.A.; Hoogenboom, J.E. [Delft Univ. of Technology, Interfaculty Reactor Inst., Delft (Netherlands)

    1996-07-01

    The paper presents new techniques for the solution of the nuclear reactor equation in diffusion approximation, that has enhanced efficiency and stability. The code system based on the new technique solves a number of steady-state and/or transient problems with coupled thermal hydraulics in one-, two-, or three dimensional geometry with reduced CPU time as compared to similar code systems of previous generations if well-posed neutronics problems are considered. Automated detection of ill-posed problem and selection of the appropriate numerical method makes the new code system capable of yielding a correct solution for wider range of problems without user intervention. (author)

  12. Numerical solution of the resistive magnetohydrodynamic boundary-layer equations

    International Nuclear Information System (INIS)

    Glasser, A.H.; Jardin, S.C.; Tesauro, G.

    1983-10-01

    Three different techniques are presented for numerical solution of the equations governing the boundary layer of resistive magnetohydrodynamic tearing and interchange instabilities in toroidal geometry. Excellent agreement among these methods and with analytical results provides confidence in the correctness of the results. Solutions obtained in regimes where analytical medthods fail indicate a new scaling for the tearing mode as well as the existence of a new regime of stability

  13. Numerical solution of the radionuclide transport equation

    International Nuclear Information System (INIS)

    Hadermann, J.; Roesel, F.

    1983-11-01

    A numerical solution of the one-dimensional geospheric radionuclide chain transport equation based on the pseudospectral method is developed. The advantages of this approach are flexibility in incorporating space and time dependent migration parameters, arbitrary boundary conditions and solute rock interactions as well as efficiency and reliability. As an application the authors investigate the impact of non-linear sorption isotherms on migration in crystalline rock. It is shown that non-linear sorption, in the present case a Freundlich isotherm, may reduce concentration at the geosphere outlet by orders of magnitude provided the migration time is comparable or larger than the half-life of the nuclide in question. The importance of fixing dispersivity within the continuum approach is stressed. (Auth.)

  14. Numerical study of traveling-wave solutions for the Camassa-Holm equation

    International Nuclear Information System (INIS)

    Kalisch, Henrik; Lenells, Jonatan

    2005-01-01

    We explore numerically different aspects of periodic traveling-wave solutions of the Camassa-Holm equation. In particular, the time evolution of some recently found new traveling-wave solutions and the interaction of peaked and cusped waves is studied

  15. Numerical solutions of a three-point boundary value problem with an ...

    African Journals Online (AJOL)

    Numerical solutions of a three-point boundary value problem with an integral condition for a third-order partial differential equation by using Laplace transform method Solutions numeriques d'un probleme pour une classe d'equations differentielles d'ordr.

  16. Numerical solution of the polymer system

    Energy Technology Data Exchange (ETDEWEB)

    Haugse, V.; Karlsen, K.H.; Lie, K.-A.; Natvig, J.R.

    1999-05-01

    The paper describes the application of front tracking to the polymer system, an example of a nonstrictly hyperbolic system. Front tracking computes piecewise constant approximations based on approximate Remain solutions and exact tracking of waves. It is well known that the front tracking method may introduce a blow-up of the initial total variation for initial data along the curve where the two eigenvalues of the hyperbolic system are identical. It is demonstrated by numerical examples that the method converges to the correct solution after a finite time that decreases with the discretization parameter. For multidimensional problems, front tracking is combined with dimensional splitting and numerical experiments indicate that large splitting steps can be used without loss of accuracy. Typical CFL numbers are in the range of 10 to 20 and comparisons with the Riemann free, high-resolution method confirm the high efficiency of front tracking. The polymer system, coupled with an elliptic pressure equation, models two-phase, tree-component polymer flooding in an oil reservoir. Two examples are presented where this model is solved by a sequential time stepping procedure. Because of the approximate Riemann solver, the method is non-conservative and CFL members must be chosen only moderately larger than unity to avoid substantial material balance errors generated in near-well regions after water breakthrough. Moreover, it is demonstrated that dimensional splitting may introduce severe grid orientation effects for unstable displacements that are accentuated for decreasing discretization parameters. 9 figs., 2 tabs., 26 refs.

  17. On the numerical evaluation of algebro-geometric solutions to integrable equations

    International Nuclear Information System (INIS)

    Kalla, C; Klein, C

    2012-01-01

    Physically meaningful periodic solutions to certain integrable partial differential equations are given in terms of multi-dimensional theta functions associated with real Riemann surfaces. Typical analytical problems in the numerical evaluation of these solutions are studied. In the case of hyperelliptic surfaces efficient algorithms exist even for almost degenerate surfaces. This allows the numerical study of solitonic limits. For general real Riemann surfaces, the choice of a homology basis adapted to the anti-holomorphic involution is important for a convenient formulation of the solutions and smoothness conditions. Since existing algorithms for algebraic curves produce a homology basis not related to automorphisms of the curve, we study symplectic transformations to an adapted basis and give explicit formulae for M-curves. As examples we discuss solutions of the Davey–Stewartson and the multi-component nonlinear Schrödinger equations

  18. Numerical Solution of Differential Algebraic Equations and Applications

    DEFF Research Database (Denmark)

    Thomsen, Per Grove

    2005-01-01

    These lecture notes have been written as part of a special course on the numerical solution of Differential Algebraic Equations and applications . The course was held at IMM in the spring of 2005. The authors of the different chapters have all taken part in the course and the chapters are written...

  19. Numerical solution of field theories using random walks

    International Nuclear Information System (INIS)

    Barnes, T.; Daniell, G.J.

    1985-01-01

    We show how random walks in function space can be employed to evaluate field theoretic vacuum expectation values numerically. Specific applications which we study are the two-point function, mass gap, magnetization and classical solutions. This technique offers the promise of faster calculations using less computer memory than current methods. (orig.)

  20. Numerical double layer solutions with ionization

    International Nuclear Information System (INIS)

    Andersson, D.; Soerensen, J.

    1982-08-01

    Maxwell's equation div D = ro in one dimension is solved numerically, taking ionization into account. Time independent anode sheath and double layer solutions are obtained. By varying voltage, neutral gas pressure, temperature of the trapped ions on the cathode side and density and temperature of the trapped electrones on the anode side, diagrams are constructed that show permissible combinations of these parameters. Results from a recent experiment form a subset. Distribution functions, the Langmuir condition, some scaling laws and a possible application to the lower ionosphere are discussed. (Authors)

  1. Numerical solution of dynamic equilibrium models under Poisson uncertainty

    DEFF Research Database (Denmark)

    Posch, Olaf; Trimborn, Timo

    2013-01-01

    We propose a simple and powerful numerical algorithm to compute the transition process in continuous-time dynamic equilibrium models with rare events. In this paper we transform the dynamic system of stochastic differential equations into a system of functional differential equations of the retar...... solution to Lucas' endogenous growth model under Poisson uncertainty are used to compute the exact numerical error. We show how (potential) catastrophic events such as rare natural disasters substantially affect the economic decisions of households....

  2. Case studies in the numerical solution of oscillatory integrals

    International Nuclear Information System (INIS)

    Adam, G.

    1992-06-01

    A numerical solution of a number of 53,249 test integrals belonging to nine parametric classes was attempted by two computer codes: EAQWOM (Adam and Nobile, IMA Journ. Numer. Anal. (1991) 11, 271-296) and DO1ANF (Mark 13, 1988) from the NAG library software. For the considered test integrals, EAQWOM was found to be superior to DO1ANF as it concerns robustness, reliability, and friendly user information in case of failure. (author). 9 refs, 3 tabs

  3. Solutions manual to accompany An introduction to numerical methods and analysis

    CERN Document Server

    Epperson, James F

    2014-01-01

    A solutions manual to accompany An Introduction to Numerical Methods and Analysis, Second Edition An Introduction to Numerical Methods and Analysis, Second Edition reflects the latest trends in the field, includes new material and revised exercises, and offers a unique emphasis on applications. The author clearly explains how to both construct and evaluate approximations for accuracy and performance, which are key skills in a variety of fields. A wide range of higher-level methods and solutions, including new topics such as the roots of polynomials, sp

  4. Numerical Solutions for Convection-Diffusion Equation through Non-Polynomial Spline

    Directory of Open Access Journals (Sweden)

    Ravi Kanth A.S.V.

    2016-01-01

    Full Text Available In this paper, numerical solutions for convection-diffusion equation via non-polynomial splines are studied. We purpose an implicit method based on non-polynomial spline functions for solving the convection-diffusion equation. The method is proven to be unconditionally stable by using Von Neumann technique. Numerical results are illustrated to demonstrate the efficiency and stability of the purposed method.

  5. Numerical solution of a reaction-diffusion equation

    International Nuclear Information System (INIS)

    Moyano, Edgardo A.; Scarpettini, Alberto F.

    2000-01-01

    The purpose of the present work to continue the observations and the numerical experiences on a reaction-diffusion model, that is a simplified form of the neutronic flux equation. The model is parabolic, nonlinear, with Dirichlet boundary conditions. The purpose is to approximate non trivial solutions, asymptotically stables for t → ∞, that is solutions that tend to the elliptic problem, in the Lyapunov sense. It belongs to the so-called reaction-diffusion equations of semi linear kind, that is, linear equations in the heat operator and they have a nonlinear reaction function, in this case f (u, a, b) = u (a - b u), being u concentration, a and b parameters. The study of the incidence of these parameters take an interest to the neutronic flux physics. So that we search non trivial, positive and bounded solutions. The used algorithm is based on the concept of monotone and ordered sequences, and on the existence theorem of Amann and Sattinger. (author)

  6. Numerical Solution of Heun Equation Via Linear Stochastic Differential Equation

    Directory of Open Access Journals (Sweden)

    Hamidreza Rezazadeh

    2014-05-01

    Full Text Available In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.. So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreover, its asymptotic stability and statistical concepts like expectation and variance of solutions are discussed. Finally, the attained solutions of these S.D.E.s compared with exact solution of corresponding differential equations.

  7. 2nd International Workshop on the Numerical Solution of Markov Chains

    CERN Document Server

    1995-01-01

    Computations with Markov Chains presents the edited and reviewed proceedings of the Second International Workshop on the Numerical Solution of Markov Chains, held January 16--18, 1995, in Raleigh, North Carolina. New developments of particular interest include recent work on stability and conditioning, Krylov subspace-based methods for transient solutions, quadratic convergent procedures for matrix geometric problems, further analysis of the GTH algorithm, the arrival of stochastic automata networks at the forefront of modelling stratagems, and more. An authoritative overview of the field for applied probabilists, numerical analysts and systems modelers, including computer scientists and engineers.

  8. Numerical Solution of Compressible Steady Flows around the RAE 2822 Airfoil

    Science.gov (United States)

    Kryštůfek, P.; Kozel, K.

    2014-03-01

    The article presents results of a numerical solution of subsonic, transonic and supersonic flows described by the system of Navier-Stokes equations in 2D laminar compressible flows around the RAE 2822 airfoil. Authors used FVM multistage Runge-Kutta method to numerically solve the flows around the RAE 2822 airfoil.

  9. Numerical Solution of Compressible Steady Flows around the NACA 0012 Airfoil

    Directory of Open Access Journals (Sweden)

    Kozel K

    2013-04-01

    Full Text Available The article presents results of a numerical solution of subsonic and transonic flows described by the system of Navier-Stokes equations in 2D laminar compressible flows around the NACA 0012 airfoil. Authors used Runge-Kutta method to numerically solve the flows around the NACA 0012 airfoil.

  10. Numerical solutions of diffusive logistic equation

    International Nuclear Information System (INIS)

    Afrouzi, G.A.; Khademloo, S.

    2007-01-01

    In this paper we investigate numerically positive solutions of a superlinear Elliptic equation on bounded domains. The study of Diffusive logistic equation continues to be an active field of research. The subject has important applications to population migration as well as many other branches of science and engineering. In this paper the 'finite difference scheme' will be developed and compared for solving the one- and three-dimensional Diffusive logistic equation. The basis of the analysis of the finite difference equations considered here is the modified equivalent partial differential equation approach, developed from many authors these years

  11. Numerical Solution of Compressible Steady Flows around the RAE 2822 Airfoil

    Directory of Open Access Journals (Sweden)

    Kryštůfek P.

    2014-03-01

    Full Text Available The article presents results of a numerical solution of subsonic, transonic and supersonic flows described by the system of Navier-Stokes equations in 2D laminar compressible flows around the RAE 2822 airfoil. Authors used FVM multistage Runge-Kutta method to numerically solve the flows around the RAE 2822 airfoil.

  12. LED-based Photometric Stereo: Modeling, Calibration and Numerical Solutions

    DEFF Research Database (Denmark)

    Quéau, Yvain; Durix, Bastien; Wu, Tao

    2018-01-01

    We conduct a thorough study of photometric stereo under nearby point light source illumination, from modeling to numerical solution, through calibration. In the classical formulation of photometric stereo, the luminous fluxes are assumed to be directional, which is very difficult to achieve in pr...

  13. On the numerical solution of the neutron fractional diffusion equation

    International Nuclear Information System (INIS)

    Maleki Moghaddam, Nader; Afarideh, Hossein; Espinosa-Paredes, Gilberto

    2014-01-01

    Highlights: • The new version of neutron diffusion equation which established on the fractional derivatives is presented. • The Neutron Fractional Diffusion Equation (NFDE) is solved in the finite differences frame. • NFDE is solved using shifted Grünwald-Letnikov definition of fractional operators. • The results show that “K eff ” strongly depends on the order of fractional derivative. - Abstract: In order to core calculation in the nuclear reactors there is a new version of neutron diffusion equation which is established on the fractional partial derivatives, named Neutron Fractional Diffusion Equation (NFDE). In the NFDE model, neutron flux in each zone depends directly on the all previous zones (not only on the nearest neighbors). Under this circumstance, it can be said that the NFDE has the space history. We have developed a one-dimension code, NFDE-1D, which can simulate the reactor core using arbitrary exponent of differential operators. In this work a numerical solution of the NFDE is presented using shifted Grünwald-Letnikov definition of fractional derivative in finite differences frame. The model is validated with some numerical experiments where different orders of fractional derivative are considered (e.g. 0.999, 0.98, 0.96, and 0.94). The results show that the effective multiplication factor (K eff ) depends strongly on the order of fractional derivative

  14. The simulation of solute transport: An approach free of numerical dispersion

    International Nuclear Information System (INIS)

    Carrera, J.; Melloni, G.

    1987-01-01

    The applicability of most algorithms for simulation of solute transport is limited either by instability or by numerical dispersion, as seen by a review of existing methods. A new approach is proposed that is free of these two problems. The method is based on the mixed Eulerian-Lagrangian formulation of the mass-transport problem, thus ensuring stability. Advection is simulated by a variation of reverse-particle tracking that avoids the accumulation of interpolation errors, thus preventing numerical dispersion. The algorithm has been implemented in a one-dimensional code. Excellent results are obtained, in comparison with an analytical solution. 36 refs., 14 figs., 1 tab

  15. Performance analysis of numeric solutions applied to biokinetics of radionuclides

    International Nuclear Information System (INIS)

    Mingatos, Danielle dos Santos; Bevilacqua, Joyce da Silva

    2013-01-01

    Biokinetics models for radionuclides applied to dosimetry problems are constantly reviewed by ICRP. The radionuclide trajectory could be represented by compartmental models, assuming constant transfer rates between compartments. A better understanding of physiological or biochemical phenomena, improve the comprehension of radionuclide behavior in the human body and, in general, more complex compartmental models are proposed, increasing the difficulty of obtaining the analytical solution for the system of first order differential equations. Even with constant transfer rates numerical solutions must be carefully implemented because of almost singular characteristic of the matrix of coefficients. In this work we compare numerical methods with different strategies for ICRP-78 models for Thorium-228 and Uranium-234. The impact of uncertainty in the parameters of the equations is also estimated for local and global truncation errors. (author)

  16. Numerical solution of a model for a superconductor field problem

    International Nuclear Information System (INIS)

    Alsop, L.E.; Goodman, A.S.; Gustavson, F.G.; Miranker, W.L.

    1979-01-01

    A model of a magnetic field problem occurring in connection with Josephson junction devices is derived, and numerical solutions are obtained. The model is of mathematical interest, because the magnetic vector potential satisfies inhomogeneous Helmholtz equations in part of the region, i.e., the superconductors, and the Laplace equation elsewhere. Moreover, the inhomogeneities are the guage constants for the potential, which are different for each superconductor, and their magnitudes are proportional to the currents flowing in the superconductors. These constants are directly related to the self and mutual inductances of the superconducting elements in the device. The numerical solution is obtained by the iterative use of a fast Poisson solver. Chebyshev acceleration is used to reduce the number of iterations required to obtain a solution. A typical problem involves solving 100,000 simultaneous equations, which the algorithm used with this model does in 20 iterations, requiring three minutes of CPU time on an IBM VM/370/168. Excellent agreement is obtained between calculated and observed values for the inductances

  17. On the numerical solution of fault trees

    International Nuclear Information System (INIS)

    Demichela, M.; Piccinini, N.; Ciarambino, I.; Contini, S.

    2003-01-01

    In this paper an account will be given of the numerical solution of the logic trees directly extracted from the Recursive Operability Analysis. Particular attention will be devoted to the use of the NOT and INH logic gates for correct logical representation of Fault Trees prior to their quantitative resolution. The NOT gate is needed for correct logical representation of events when both non-intervention and correct intervention of a protective system may lead to a Top Event. The INH gate must be used to correctly represent the time link between two events that are both necessary, but must occur in sequence. Some numerical examples will be employed to show both the correct identification of the events entering the INH gates and how use of the AND gate instead of the INH gate leads to overestimation of the probability of occurrence of a Top Event

  18. Analytical and Numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations

    Science.gov (United States)

    Gómez-Aguilar, J. F.

    2018-03-01

    In this paper, we analyze an alcoholism model which involves the impact of Twitter via Liouville-Caputo and Atangana-Baleanu-Caputo fractional derivatives with constant- and variable-order. Two fractional mathematical models are considered, with and without delay. Special solutions using an iterative scheme via Laplace and Sumudu transform were obtained. We studied the uniqueness and existence of the solutions employing the fixed point postulate. The generalized model with variable-order was solved numerically via the Adams method and the Adams-Bashforth-Moulton scheme. Stability and convergence of the numerical solutions were presented in details. Numerical examples of the approximate solutions are provided to show that the numerical methods are computationally efficient. Therefore, by including both the fractional derivatives and finite time delays in the alcoholism model studied, we believe that we have established a more complete and more realistic indicator of alcoholism model and affect the spread of the drinking.

  19. Numerical solutions of ordinary and partial differential equations in the frequency domain

    International Nuclear Information System (INIS)

    Hazi, G.; Por, G.

    1997-01-01

    Numerical problems during the noise simulation in a nuclear power plant are discussed. The solutions of ordinary and partial differential equations are studied in the frequency domain. Numerical methods by the transfer function method are applied. It is shown that the correctness of the numerical methods is limited for ordinary differential equations in the frequency domain. To overcome the difficulties, step-size selection is suggested. (author)

  20. The Numerical Solution of an Abelian Ordinary Differential Equation ...

    African Journals Online (AJOL)

    In this paper we present a relatively new technique call theNew Hybrid of Adomian decomposition method (ADM) for solution of an Abelian Differential equation. The numerical results of the equation have been obtained in terms of convergent series with easily computable component. These methods are applied to solve ...

  1. Sensitivity of the solution of the Elder problem to density, velocity and numerical perturbations

    Science.gov (United States)

    Park, Chan-Hee; Aral, Mustafa M.

    2007-06-01

    In this paper the Elder problem is studied with the purpose of evaluating the inherent instabilities associated with the numerical solution of this problem. Our focus is first on the question of the existence of a unique numerical solution for this problem, and second on the grid density and fluid density requirements necessary for a unique numerical solution. In particular we have investigated the instability issues associated with the numerical solution of the Elder problem from the following perspectives: (i) physical instability issues associated with density differences; (ii) sensitivity of the numerical solution to idealization irregularities; and, (iii) the importance of a precise velocity field calculation and the association of this process with the grid density levels that is necessary to solve the Elder problem accurately. In the study discussed here we have used a finite element Galerkin model we have developed for solving density-dependent flow and transport problems, which will be identified as TechFlow. In our study, the numerical results of Frolkovič and de Schepper [Frolkovič, P. and H. de Schepper, 2001. Numerical modeling of convection dominated transport coupled with density-driven flow in porous media, Adv. Water Resour., 24, 63-72.] were replicated using the grid density employed in their work. We were also successful in duplicating the same result with a less dense grid but with more computational effort based on a global velocity estimation process we have adopted. Our results indicate that the global velocity estimation approach recommended by Yeh [Yeh, G.-T., 1981. On the computation of Darcian velocity and mass balance in finite element modelling of groundwater flow, Water Resour. Res., 17(5), 1529-1534.] allows the use of less dense grids while obtaining the same accuracy that can be achieved with denser grids. We have also observed that the regularity of the elements in the discretization of the solution domain does make a difference

  2. Fast numerical solution of KKR-CPA equations: Testing new algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, E.; Florio, G.M.; Ginatempo, B.; Giuliano, E.S. (Universita di Messina (Italy))

    1994-04-01

    Some numerical methods for the solution of KKR-CPA equations are discussed and tested. New, efficient, computational algorithms are proposed, allowing a remarkable reduction of computing time and a good reliability in evaluating spectral quantities. 16 refs., 7 figs.

  3. Numerical solution of the helmholtz equation for the superellipsoid via the galerkin method

    Directory of Open Access Journals (Sweden)

    Hy Dinh

    2013-01-01

    Full Text Available The objective of this work was to find the numerical solution of the Dirichlet problem for the Helmholtz equation for a smooth superellipsoid. The superellipsoid is a shape that is controlled by two parameters. There are some numerical issues in this type of an analysis; any integration method is affected by the wave number k, because of the oscillatory behavior of the fundamental solution. In this case we could only obtain good numerical results for super ellipsoids that were more shaped like super cones, which is a narrow range of super ellipsoids. The formula for these shapes was: $x=cos(xsin(y^{n},y=sin(xsin(y^{n},z=cos(y$ where $n$ varied from 0.5 to 4. The Helmholtz equation, which is the modified wave equation, is used in many scattering problems. This project was funded by NASA RI Space Grant for testing of the Dirichlet boundary condition for the shape of the superellipsoid. One practical value of all these computations can be getting a shape for the engine nacelles in a ray tracing the space shuttle. We are researching the feasibility of obtaining good convergence results for the superellipsoid surface. It was our view that smaller and lighter wave numbers would reduce computational costs associated with obtaining Galerkin coefficients. In addition, we hoped to significantly reduce the number of terms in the infinite series needed to modify the original integral equation, all of which were achieved in the analysis of the superellipsoid in a finite range. We used the Green's theorem to solve the integral equation for the boundary of the surface. Previously, multiple surfaces were used to test this method, such as the sphere, ellipsoid, and perturbation of the sphere, pseudosphere and the oval of Cassini Lin and Warnapala , Warnapala and Morgan .

  4. A numerical dressing method for the nonlinear superposition of solutions of the KdV equation

    International Nuclear Information System (INIS)

    Trogdon, Thomas; Deconinck, Bernard

    2014-01-01

    In this paper we present the unification of two existing numerical methods for the construction of solutions of the Korteweg–de Vries (KdV) equation. The first method is used to solve the Cauchy initial-value problem on the line for rapidly decaying initial data. The second method is used to compute finite-genus solutions of the KdV equation. The combination of these numerical methods allows for the computation of exact solutions that are asymptotically (quasi-)periodic finite-gap solutions and are a nonlinear superposition of dispersive, soliton and (quasi-)periodic solutions in the finite (x, t)-plane. Such solutions are referred to as superposition solutions. We compute these solutions accurately for all values of x and t. (paper)

  5. Dynamics of the east India coastal current. 2. Numerical solutions

    Digital Repository Service at National Institute of Oceanography (India)

    McCreary, J.P.; Han, W.; Shankar, D.; Shetye, S.R.

    A linear, continuously stratified model is used to investigate the dynamics of the East India Coastal Current (EICC). Solutions are found numerically in a basin that resembles the Indian Ocean basin north of 29 degrees S, and they are forced...

  6. CSR Fields: Direct Numerical Solution of the Maxwell's Equation

    International Nuclear Information System (INIS)

    Novokhatski, Alexander

    2011-01-01

    We discuss the properties of the coherent electromagnetic fields of a very short, ultra-relativistic bunch in a rectangular vacuum chamber inside a bending magnet. The analysis is based on the results of a direct numerical solution of Maxwell's equations together with Newton's equations. We use a new dispersion-free time-domain algorithm which employs a more efficient use of finite element mesh techniques and hence produces self-consistent and stable solutions for very short bunches. We investigate the fine structure of the CSR fields including coherent edge radiation. This approach should be useful in the study of existing and future concepts of particle accelerators and ultrafast coherent light sources. The coherent synchrotron radiation (CSR) fields have a strong action on the beam dynamics of very short bunches, which are moving in the bends of all kinds of magnetic elements. They are responsible for additional energy loss and energy spread; micro bunching and beam emittance growth. These fields may bound the efficiency of damping rings, electron-positron colliders and ultrafast coherent light sources, where high peak currents and very short bunches are envisioned. This is relevant to most high-brightness beam applications. On the other hand these fields together with transition radiation fields can be used for beam diagnostics or even as a powerful resource of THz radiation. A history of the study of CSR and a good collection of references can be found in (1). Electromagnetic theory suggests several methods on how to calculate CSR fields. The most popular method is to use Lienard-Wiechert potentials. Other approach is to solve numerically the approximate equations, which are a Schrodinger type equation. These numerical methods are described in (2). We suggest that a direct solution of Maxwell's equations together with Newton's equations can describe the detailed structure of the CSR fields (3).

  7. Numerical solution of High-kappa model of superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Karamikhova, R. [Univ. of Texas, Arlington, TX (United States)

    1996-12-31

    We present formulation and finite element approximations of High-kappa model of superconductivity which is valid in the high {kappa}, high magnetic field setting and accounts for applied magnetic field and current. Major part of this work deals with steady-state and dynamic computational experiments which illustrate our theoretical results numerically. In our experiments we use Galerkin discretization in space along with Backward-Euler and Crank-Nicolson schemes in time. We show that for moderate values of {kappa}, steady states of the model system, computed using the High-kappa model, are virtually identical with results computed using the full Ginzburg-Landau (G-L) equations. We illustrate numerically optimal rates of convergence in space and time for the L{sup 2} and H{sup 1} norms of the error in the High-kappa solution. Finally, our numerical approximations demonstrate some well-known experimentally observed properties of high-temperature superconductors, such as appearance of vortices, effects of increasing the applied magnetic field and the sample size, and the effect of applied constant current.

  8. Comparing numerical methods for the solutions of the Chen system

    International Nuclear Information System (INIS)

    Noorani, M.S.M.; Hashim, I.; Ahmad, R.; Bakar, S.A.; Ismail, E.S.; Zakaria, A.M.

    2007-01-01

    In this paper, the Adomian decomposition method (ADM) is applied to the Chen system which is a three-dimensional system of ODEs with quadratic nonlinearities. The ADM yields an analytical solution in terms of a rapidly convergent infinite power series with easily computable terms. Comparisons between the decomposition solutions and the classical fourth-order Runge-Kutta (RK4) numerical solutions are made. In particular we look at the accuracy of the ADM as the Chen system changes from a non-chaotic system to a chaotic one. To highlight some computational difficulties due to a high Lyapunov exponent, a comparison with the Lorenz system is given

  9. Numerical solutions of multi-order fractional differential equations by Boubaker polynomials

    Directory of Open Access Journals (Sweden)

    Bolandtalat A.

    2016-01-01

    Full Text Available In this paper, we have applied a numerical method based on Boubaker polynomials to obtain approximate numerical solutions of multi-order fractional differential equations. We obtain an operational matrix of fractional integration based on Boubaker polynomials. Using this operational matrix, the given problem is converted into a set of algebraic equations. Illustrative examples are are given to demonstrate the efficiency and simplicity of this technique.

  10. Second-order numerical methods for multi-term fractional differential equations: Smooth and non-smooth solutions

    Science.gov (United States)

    Zeng, Fanhai; Zhang, Zhongqiang; Karniadakis, George Em

    2017-12-01

    Starting with the asymptotic expansion of the error equation of the shifted Gr\\"{u}nwald--Letnikov formula, we derive a new modified weighted shifted Gr\\"{u}nwald--Letnikov (WSGL) formula by introducing appropriate correction terms. We then apply one special case of the modified WSGL formula to solve multi-term fractional ordinary and partial differential equations, and we prove the linear stability and second-order convergence for both smooth and non-smooth solutions. We show theoretically and numerically that numerical solutions up to certain accuracy can be obtained with only a few correction terms. Moreover, the correction terms can be tuned according to the fractional derivative orders without explicitly knowing the analytical solutions. Numerical simulations verify the theoretical results and demonstrate that the new formula leads to better performance compared to other known numerical approximations with similar resolution.

  11. Analysis of numerical solutions for Bateman equations; Analise de solucoes numericas para as equacoes de Bateman

    Energy Technology Data Exchange (ETDEWEB)

    Loch, Guilherme G.; Bevilacqua, Joyce S., E-mail: guiloch@ime.usp.br, E-mail: joyce@ime.usp.br [Universidade de Sao Paulo (IME/USP), Sao Paulo, SP (Brazil). Departamento de Matematica Aplicada. Instituto de Matematica e Estatistica; Hiromoto, Goro; Rodrigues Junior, Orlando, E-mail: rodrijr@ipen.br, E-mail: hiromoto@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The implementation of stable and efficient numerical methods for solving problems involving nuclear transmutation and radioactive decay chains is the main scope of this work. The physical processes associated with irradiations of samples in particle accelerators, or the burning spent nuclear fuel in reactors, or simply the natural decay chains, can be represented by a set of first order ordinary differential equations with constant coefficients, for instance, the decay radioactive constants of each nuclide in the chain. Bateman proposed an analytical solution for a particular case of a linear chain with n nuclides decaying in series and with different decay constants. For more complex and realistic applications, the construction of analytical solutions is not viable and the introduction of numerical techniques is imperative. However, depending on the magnitudes of the decay radioactive constants, the matrix of coefficients could be almost singular, generating unstable and non convergent numerical solutions. In this work, different numerical strategies for solving systems of differential equations were implemented, the Runge-Kutta 4-4, Adams Predictor-Corrector (PC2) and the Rosenbrock algorithm, this last one more specific for stiff equations. Consistency, convergence and stability of the numerical solutions are studied and the performance of the methods is analyzed for the case of the natural decay chain of Uranium-235 comparing numerical with analytical solutions. (author)

  12. Numerical solution of the full potential equation using a chimera grid approach

    Science.gov (United States)

    Holst, Terry L.

    1995-01-01

    A numerical scheme utilizing a chimera zonal grid approach for solving the full potential equation in two spatial dimensions is described. Within each grid zone a fully-implicit approximate factorization scheme is used to advance the solution one interaction. This is followed by the explicit advance of all common zonal grid boundaries using a bilinear interpolation of the velocity potential. The presentation is highlighted with numerical results simulating the flow about a two-dimensional, nonlifting, circular cylinder. For this problem, the flow domain is divided into two parts: an inner portion covered by a polar grid and an outer portion covered by a Cartesian grid. Both incompressible and compressible (transonic) flow solutions are included. Comparisons made with an analytic solution as well as single grid results indicate that the chimera zonal grid approach is a viable technique for solving the full potential equation.

  13. Numerical solution of the ekpyrotic scenario in the moduli space approximation

    International Nuclear Information System (INIS)

    Soerensen, Torquil MacDonald

    2005-01-01

    A numerical solution to the equations of motion for the ekpyrotic bulk brane scenario in the moduli space approximation is presented. The visible universe brane has positive tension, and we use a potential that goes to zero exponentially at large distance, and also goes to zero at small distance. In the case considered, no bulk brane, visible brane collision occurs in the solution. This property and the general behavior of the solution is qualitatively the same when the visible brane tension is negative, and for many different parameter choices

  14. A global numerical solution of the radial Schroedinger equation by second-order perturbation theory

    International Nuclear Information System (INIS)

    Adam, G.

    1979-01-01

    A global numerical method, which uses second-order perturbation theory, is described for the solution of the radial Schroedinger equation. The perturbative numerical (PN) solution is derived in two stages: first, the original potential is approximated by a piecewise continuous parabolic function, and second, the resulting Schroedinger equation is solved on each integration step by second-order perturbation theory, starting with a step function reference approximation for the parabolic potential. We get a manageable PN algorithm, which shows an order of accuracy equal to six in the solution of the original Schroedinger equation, and is very stable against round off errors. (author)

  15. special algorithm for the numerical solution of system of initial value ...

    African Journals Online (AJOL)

    Nwokem et al.

    Science World Journal Vol 12(No 4) 2017 ... Over the years, several researchers have considered the collocation method as a way of generating numerical solutions to ... study problems in mathematics, engineering, computer science and.

  16. Numerical Solution and Simulation of Second-Order Parabolic PDEs with Sinc-Galerkin Method Using Maple

    Directory of Open Access Journals (Sweden)

    Aydin Secer

    2013-01-01

    Full Text Available An efficient solution algorithm for sinc-Galerkin method has been presented for obtaining numerical solution of PDEs with Dirichlet-type boundary conditions by using Maple Computer Algebra System. The method is based on Whittaker cardinal function and uses approximating basis functions and their appropriate derivatives. In this work, PDEs have been converted to algebraic equation systems with new accurate explicit approximations of inner products without the need to calculate any numeric integrals. The solution of this system of algebraic equations has been reduced to the solution of a matrix equation system via Maple. The accuracy of the solutions has been compared with the exact solutions of the test problem. Computational results indicate that the technique presented in this study is valid for linear partial differential equations with various types of boundary conditions.

  17. Numerical solution of modified differential equations based on symmetry preservation.

    Science.gov (United States)

    Ozbenli, Ersin; Vedula, Prakash

    2017-12-01

    In this paper, we propose a method to construct invariant finite-difference schemes for solution of partial differential equations (PDEs) via consideration of modified forms of the underlying PDEs. The invariant schemes, which preserve Lie symmetries, are obtained based on the method of equivariant moving frames. While it is often difficult to construct invariant numerical schemes for PDEs due to complicated symmetry groups associated with cumbersome discrete variable transformations, we note that symmetries associated with more convenient transformations can often be obtained by appropriately modifying the original PDEs. In some cases, modifications to the original PDEs are also found to be useful in order to avoid trivial solutions that might arise from particular selections of moving frames. In our proposed method, modified forms of PDEs can be obtained either by addition of perturbation terms to the original PDEs or through defect correction procedures. These additional terms, whose primary purpose is to enable symmetries with more convenient transformations, are then removed from the system by considering moving frames for which these specific terms go to zero. Further, we explore selection of appropriate moving frames that result in improvement in accuracy of invariant numerical schemes based on modified PDEs. The proposed method is tested using the linear advection equation (in one- and two-dimensions) and the inviscid Burgers' equation. Results obtained for these tests cases indicate that numerical schemes derived from the proposed method perform significantly better than existing schemes not only by virtue of improvement in numerical accuracy but also due to preservation of qualitative properties or symmetries of the underlying differential equations.

  18. Nonlinear reaction-diffusion equations with delay: some theorems, test problems, exact and numerical solutions

    Science.gov (United States)

    Polyanin, A. D.; Sorokin, V. G.

    2017-12-01

    The paper deals with nonlinear reaction-diffusion equations with one or several delays. We formulate theorems that allow constructing exact solutions for some classes of these equations, which depend on several arbitrary functions. Examples of application of these theorems for obtaining new exact solutions in elementary functions are provided. We state basic principles of construction, selection, and use of test problems for nonlinear partial differential equations with delay. Some test problems which can be suitable for estimating accuracy of approximate analytical and numerical methods of solving reaction-diffusion equations with delay are presented. Some examples of numerical solutions of nonlinear test problems with delay are considered.

  19. Numerical Solution of Multiterm Fractional Differential Equations Using the Matrix Mittag–Leffler Functions

    Directory of Open Access Journals (Sweden)

    Marina Popolizio

    2018-01-01

    Full Text Available Multiterm fractional differential equations (MTFDEs nowadays represent a widely used tool to model many important processes, particularly for multirate systems. Their numerical solution is then a compelling subject that deserves great attention, not least because of the difficulties to apply general purpose methods for fractional differential equations (FDEs to this case. In this paper, we first transform the MTFDEs into equivalent systems of FDEs, as done by Diethelm and Ford; in this way, the solution can be expressed in terms of Mittag–Leffler (ML functions evaluated at matrix arguments. We then propose to compute it by resorting to the matrix approach proposed by Garrappa and Popolizio. Several numerical tests are presented that clearly show that this matrix approach is very accurate and fast, also in comparison with other numerical methods.

  20. Numerical solutions of stochastic Lotka-Volterra equations via operational matrices

    Directory of Open Access Journals (Sweden)

    F. Hosseini Shekarabi

    2016-03-01

    Full Text Available In this paper, an efficient and convenient method for numerical solutions of stochastic Lotka-Volterra dynamical system is proposed. Here, we consider block pulse functions and their operational matrices of integration. Illustrative example is included to demonstrate the procedure and accuracy of the operational matrices based on block pulse functions.

  1. Numerical solution for heave of expansive soils

    International Nuclear Information System (INIS)

    Sadrnezhad, S. A.

    1999-01-01

    A numerical solution for heave prediction is developed within the context theories for both saturated and unsaturated soil behaviors. Basically, lowering the potential level of compressing on a saturated layer will cause heaving due to water absorption. This water absorption is in an opposite way, similar to water dissipation as what happens during unloading in consolidation process. However, in unsaturated layers any change of the stability of potential energy level will cause the tendency of change in particle interconnection forces. So, any change by either distressing or the variation of moisture ratio will lead to soil heave. In this paper a finite element solution is employed for predicting the heave in saturated soil similar to unloading in consolidation. Also, in the case of unsaturated soil, equivalent soil suction as negative pore water pressures in applied to soil elements as equivalent nodal forces. To show the potential of this method, test results were com pated with those obtained from computations. These comparisons show that the presented method is capable of predicting the heave phenomenon quite well

  2. Numerical solutions of the semiclassical Boltzmann ellipsoidal-statistical kinetic model equation

    Science.gov (United States)

    Yang, Jaw-Yen; Yan, Chin-Yuan; Huang, Juan-Chen; Li, Zhihui

    2014-01-01

    Computations of rarefied gas dynamical flows governed by the semiclassical Boltzmann ellipsoidal-statistical (ES) kinetic model equation using an accurate numerical method are presented. The semiclassical ES model was derived through the maximum entropy principle and conserves not only the mass, momentum and energy, but also contains additional higher order moments that differ from the standard quantum distributions. A different decoding procedure to obtain the necessary parameters for determining the ES distribution is also devised. The numerical method in phase space combines the discrete-ordinate method in momentum space and the high-resolution shock capturing method in physical space. Numerical solutions of two-dimensional Riemann problems for two configurations covering various degrees of rarefaction are presented and various contours of the quantities unique to this new model are illustrated. When the relaxation time becomes very small, the main flow features a display similar to that of ideal quantum gas dynamics, and the present solutions are found to be consistent with existing calculations for classical gas. The effect of a parameter that permits an adjustable Prandtl number in the flow is also studied. PMID:25104904

  3. Numerical solution of modified fokker-planck equation with poissonian input

    Czech Academy of Sciences Publication Activity Database

    Náprstek, Jiří; Král, Radomil

    2010-01-01

    Roč. 17, 3/4 (2010), s. 251-268 ISSN 1802-1484 R&D Projects: GA AV ČR(CZ) IAA200710805; GA ČR(CZ) GA103/09/0094 Institutional research plan: CEZ:AV0Z20710524 Keywords : Fokker-Planck equation * poisson ian exciation * numerical solution * transition effects Subject RIV: JN - Civil Engineering

  4. Numerical tools for musical instruments acoustics: analysing nonlinear physical models using continuation of periodic solutions

    OpenAIRE

    Karkar , Sami; Vergez , Christophe; Cochelin , Bruno

    2012-01-01

    International audience; We propose a new approach based on numerical continuation and bifurcation analysis for the study of physical models of instruments that produce self- sustained oscillation. Numerical continuation consists in following how a given solution of a set of equations is modified when one (or several) parameter of these equations are allowed to vary. Several physical models (clarinet, saxophone, and violin) are formulated as nonlinear dynamical systems, whose periodic solution...

  5. Hermite interpolant multiscaling functions for numerical solution of the convection diffusion equations

    Directory of Open Access Journals (Sweden)

    Elmira Ashpazzadeh

    2018-04-01

    Full Text Available A numerical technique based on the Hermite interpolant multiscaling functions is presented for the solution of Convection-diusion equations. The operational matrices of derivative, integration and product are presented for multiscaling functions and are utilized to reduce the solution of linear Convection-diusion equation to the solution of algebraic equations. Because of sparsity of these matrices, this method is computationally very attractive and reduces the CPU time and computer memory. Illustrative examples are included to demonstrate the validity and applicability of the new technique.

  6. Numerical benchmarking of SPEEDUP trademark against point kinetics solutions

    International Nuclear Information System (INIS)

    Gregory, M.V.

    1993-02-01

    SPEEDUP trademark is a state-of-the-art, dynamic, chemical process modeling package offered by Aspen Technology. In anticipation of new customers' needs for new analytical tools to support the site's waste management activities, SRTC has secured a multiple-user license to SPEEDUP trademark. In order to verify both the installation and mathematical correctness of the algorithms in SPEEDUP trademark, we have performed several numerical benchmarking calculations. These calculations are the first steps in establishing an on-site quality assurance pedigree for SPEEDUP trademark. The benchmark calculations consisted of SPEEDUP trademark Version 5.3L representations of five neutron kinetics benchmarks (each a mathematically stiff system of seven coupled ordinary differential equations), whose exact solutions are documented in the open literature. In all cases, SPEEDUP trademark solutions to be in excellent agreement with the reference solutions. A minor peculiarity in dealing with a non-existent discontinuity in the OPERATION section of the model made itself evident

  7. A note on numerical solution of a parabolic-Schrödinger equation

    Science.gov (United States)

    Ozdemir, Yildirim; Alp, Mustafa

    2016-08-01

    In the present study, a nonlocal boundary value problem for a parabolic-Schrödinger equation is considered. The stability estimates for the solution of the given problem is established. The first and second order of difference schemes are presented for approximately solving a specific nonlocal boundary problem. The theoretical statements for the solution of these difference schemes are supported by the result of numerical examples.

  8. A numerical solution for a class of time fractional diffusion equations with delay

    Directory of Open Access Journals (Sweden)

    Pimenov Vladimir G.

    2017-09-01

    Full Text Available This paper describes a numerical scheme for a class of fractional diffusion equations with fixed time delay. The study focuses on the uniqueness, convergence and stability of the resulting numerical solution by means of the discrete energy method. The derivation of a linearized difference scheme with convergence order O(τ2−α+ h4 in L∞-norm is the main purpose of this study. Numerical experiments are carried out to support the obtained theoretical results.

  9. Random ordinary differential equations and their numerical solution

    CERN Document Server

    Han, Xiaoying

    2017-01-01

    This book is intended to make recent results on the derivation of higher order numerical schemes for random ordinary differential equations (RODEs) available to a broader readership, and to familiarize readers with RODEs themselves as well as the closely associated theory of random dynamical systems. In addition, it demonstrates how RODEs are being used in the biological sciences, where non-Gaussian and bounded noise are often more realistic than the Gaussian white noise in stochastic differential equations (SODEs).   RODEs are used in many important applications and play a fundamental role in the theory of random dynamical systems.  They can be analyzed pathwise with deterministic calculus, but require further treatment beyond that of classical ODE theory due to the lack of smoothness in their time variable. Although classical numerical schemes for ODEs can be used pathwise for RODEs, they rarely attain their traditional order since the solutions of RODEs do not have sufficient smoothness to have Taylor ...

  10. Numerical solution of matrix exponential in burn-up equation using mini-max polynomial approximation

    International Nuclear Information System (INIS)

    Kawamoto, Yosuke; Chiba, Go; Tsuji, Masashi; Narabayashi, Tadashi

    2015-01-01

    Highlights: • We propose a new numerical solution of matrix exponential in burn-up depletion calculations. • The depletion calculation with extremely short half-lived nuclides can be done numerically stable with this method. • The computational time is shorter than the other conventional methods. - Abstract: Nuclear fuel burn-up depletion calculations are essential to compute the nuclear fuel composition transition. In the burn-up calculations, the matrix exponential method has been widely used. In the present paper, we propose a new numerical solution of the matrix exponential, a Mini-Max Polynomial Approximation (MMPA) method. This method is numerically stable for burn-up matrices with extremely short half-lived nuclides as the Chebyshev Rational Approximation Method (CRAM), and it has several advantages over CRAM. We also propose a multi-step calculation, a computational time reduction scheme of the MMPA method, which can perform simultaneously burn-up calculations with several time periods. The applicability of these methods has been theoretically and numerically proved for general burn-up matrices. The numerical verification has been performed, and it has been shown that these methods have high precision equivalent to CRAM

  11. Approximate Analytic and Numerical Solutions to Lane-Emden Equation via Fuzzy Modeling Method

    Directory of Open Access Journals (Sweden)

    De-Gang Wang

    2012-01-01

    Full Text Available A novel algorithm, called variable weight fuzzy marginal linearization (VWFML method, is proposed. This method can supply approximate analytic and numerical solutions to Lane-Emden equations. And it is easy to be implemented and extended for solving other nonlinear differential equations. Numerical examples are included to demonstrate the validity and applicability of the developed technique.

  12. The Numerical Solution of the Equilibrium Problem for a Stretchable Elastic Beam

    Science.gov (United States)

    Mehdiyeva, G. Y.; Aliyev, A. Y.

    2017-08-01

    The boundary value problem under consideration describes the equilibrium of an elastic beam that is stretched or contracted by specified forces. The left end of the beam is free of load, and the right end is rigidly lapped. To solve the problem numerically, an appropriate difference problem is constructed. Solving the difference problem, we obtain an approximate solution of the problem. We estimate the approximate solution of the stated problem.

  13. Criteria for the reliability of numerical approximations to the solution of fluid flow problems

    International Nuclear Information System (INIS)

    Foias, C.

    1986-01-01

    The numerical approximation of the solutions of fluid flows models is a difficult problem in many cases of energy research. In all numerical methods implementable on digital computers, a basic question is if the number N of elements (Galerkin modes, finite-difference cells, finite-elements, etc.) is sufficient to describe the long time behavior of the exact solutions. It was shown using several approaches that some of the estimates based on physical intuition of N are rigorously valid under very general conditions and follow directly from the mathematical theory of the Navier-Stokes equations. Among the mathematical approaches to these estimates, the most promising (which can be and was already applied to many other dissipative partial differential systems) consists in giving upper estimates to the fractal dimension of the attractor associated to one (or all) solution(s) of the respective partial differential equations. 56 refs

  14. Identifying generalized Fitzhugh-Nagumo equation from a numerical solution of Hodgkin-Huxley model

    Directory of Open Access Journals (Sweden)

    Nikola V. Georgiev

    2003-01-01

    Full Text Available An analytic time series in the form of numerical solution (in an appropriate finite time interval of the Hodgkin-Huxley current clamped (HHCC system of four differential equations, well known in the neurophysiology as an exact empirical model of excitation of a giant axon of Loligo, is presented. Then we search for a second-order differential equation of generalized Fitzhugh-Nagumo (GFN type, having as a solution the given single component (action potential of the numerical solution. The given time series is used as a basis for reconstructing orders, powers, and coefficients of the polynomial right-hand sides of GFN equation approximately governing the process of action potential. For this purpose, a new geometrical method for determining phase space dimension of the unknown dynamical system (GFN equation and a specific modification of least squares method for identifying unknown coefficients are developed and applied.

  15. A numerical scheme using multi-shockpeakons to compute solutions of the Degasperis-Procesi equation

    Directory of Open Access Journals (Sweden)

    Hakon A. Hoel

    2007-07-01

    Full Text Available We consider a numerical scheme for entropy weak solutions of the DP (Degasperis-Procesi equation $u_t - u_{xxt} + 4uu_x = 3u_{x}u_{xx}+ uu_{xxx}$. Multi-shockpeakons, functions of the form $$ u(x,t =sum_{i=1}^n(m_i(t -hbox{sign}(x-x_i(ts_i(te^{-|x-x_i(t|}, $$ are solutions of the DP equation with a special property; their evolution in time is described by a dynamical system of ODEs. This property makes multi-shockpeakons relatively easy to simulate numerically. We prove that if we are given a non-negative initial function $u_0 in L^1(mathbb{R}cap BV(mathbb{R}$ such that $u_{0} - u_{0,x}$ is a positive Radon measure, then one can construct a sequence of multi-shockpeakons which converges to the unique entropy weak solution in $mathbb{R}imes[0,T$ for any $T>0$. From this convergence result, we construct a multi-shockpeakon based numerical scheme for solving the DP equation.

  16. Development of numerical solution techniques in the KIKO3D code

    International Nuclear Information System (INIS)

    Panka, Istvan; Kereszturi, Andras; Hegedus, Csaba

    2005-01-01

    The paper describes the numerical methods applied in KIKO3D three-dimensional reactor dynamics code and present a new, more effective method (Bi-CGSTAB) for accelerating the large sparse matrix equation solution. The convergence characteristics were investigated in a given macro time step of a Control Rod Ejection transient. The results obtained by the old GMRES and new Bi-CGSTAB methods are compared. It is concluded that the real relative errors of the solutions obtained by GMRES or Bi - CGSTAB algorithms are in fact closer together than the estimated relative errors. The KIKO3D-Bi-CGSTAB method converges safely and it is 7-12 % faster than the old KIKO3D-GMRES solution (Authors)

  17. Mathematical modelling and numerical solution of swelling of cartilaginous tissues. Part II: Mixed hybrid finite element solution

    NARCIS (Netherlands)

    Malakpoor, K.; Kaasschieter, E.F.; Huyghe, J.M.R.J.

    2007-01-01

    The swelling and shrinkage of biological tissues are modelled by a four-component mixture theory [J.M. Huyghe and J.D. Janssen, Int. J. Engng. Sci. 35 (1997) 793-802; K. Malakpoor, E.F. Kaasschieter and J.M. Huyghe, Mathematical modelling and numerical solution of swelling of cartilaginous tissues.

  18. Numerical solutions for magnetohydrodynamic flow of nanofluid over a bidirectional non-linear stretching surface with prescribed surface heat flux boundary

    International Nuclear Information System (INIS)

    Mahanthesh, B.; Gireesha, B.J.; Gorla, R.S. Reddy; Abbasi, F.M.; Shehzad, S.A.

    2016-01-01

    Numerical solutions of three-dimensional flow over a non-linear stretching surface are developed in this article. An electrically conducting flow of viscous nanoliquid is considered. Heat transfer phenomenon is accounted under thermal radiation, Joule heating and viscous dissipation effects. We considered the variable heat flux condition at the surface of sheet. The governing mathematical equations are reduced to nonlinear ordinary differential systems through suitable dimensionless variables. A well-known shooting technique is implemented to obtain the results of dimensionless velocities and temperature. The obtained results are plotted for multiple values of pertinent parameters to discuss the salient features of these parameters on fluid velocity and temperature. The expressions of skin-friction coefficient and Nusselt number are computed and analyzed comprehensively through numerical values. A comparison of present results with the previous results in absence of nanoparticle volume fraction, mixed convection and magnetic field is computed and an excellent agreement noticed. We also computed the results for both linear and non-linear stretching sheet cases. - Highlights: • Hydromagnetic flow of nanofluid over a bidirectional non-linear stretching surface is examined. • Cu, Al 2 O3 and TiO 2 types nanoparticles are taken into account. • Numerical solutions have been computed and addressed. • The values of skin-friction and Nusselt number are presented.

  19. Numerical solution for identification of feedback coefficients in nuclear reactors

    International Nuclear Information System (INIS)

    Ebizuka, Yoshie; Sakai, Hideo

    1975-01-01

    Quasilinearization technique was studied to determine the Kinetic parameters of nuclear reactors. The method of solution was generalized to the determination of the parameters contained in a nonlinear system with nonlinear boundary conditions. A computer program, SNR-3, was developed to solve the resulting nonlinear two-point boundary value equations with generalized boundary conditions. In this paper, the problem formulation and the method of solution are explained for a general type of time dependent problem. A flow chart shows the procedure of numerical solution. The method was then applied to the determination of the critical factor and the reactivity feedback coefficients of reactors to investigate the accuracy and the applicability of the present method. The results showed that the present method was considerably successful, but that the random observation error effected the results of the identification. (Aoki, K.)

  20. A numerical solution to the radial equation of the tidal wave propagation

    International Nuclear Information System (INIS)

    Makarious, S.H.

    1981-08-01

    The tidal wave function y(x) is a solution to an inhomogeneous, linear, second-order differential equation with variable coefficient. Numerical values for the height-dependence terms, in the observed tides, have been utilized in finding y(x) as a solution to an initial-value problem. Complex Fast Fourier Transform technique is also used to obtain the solution in a complex form. Based on a realistic temperature structure, the atmosphere - below 110 km - has been divided into layers with distinct characteristics, and thus the technique of propagation in stratified media has been applied. The reduced homogeneous equation assumes the form of Helmholtz equation and with initial conditions the general solution is obtained. (author)

  1. A numerical method for finding sign-changing solutions of superlinear Dirichlet problems

    Energy Technology Data Exchange (ETDEWEB)

    Neuberger, J.M.

    1996-12-31

    In a recent result it was shown via a variational argument that a class of superlinear elliptic boundary value problems has at least three nontrivial solutions, a pair of one sign and one which sign changes exactly once. These three and all other nontrivial solutions are saddle points of an action functional, and are characterized as local minima of that functional restricted to a codimension one submanifold of the Hilbert space H-0-1-2, or an appropriate higher codimension subset of that manifold. In this paper, we present a numerical Sobolev steepest descent algorithm for finding these three solutions.

  2. A New Method to Solve Numeric Solution of Nonlinear Dynamic System

    Directory of Open Access Journals (Sweden)

    Min Hu

    2016-01-01

    Full Text Available It is well known that the cubic spline function has advantages of simple forms, good convergence, approximation, and second-order smoothness. A particular class of cubic spline function is constructed and an effective method to solve the numerical solution of nonlinear dynamic system is proposed based on the cubic spline function. Compared with existing methods, this method not only has high approximation precision, but also avoids the Runge phenomenon. The error analysis of several methods is given via two numeric examples, which turned out that the proposed method is a much more feasible tool applied to the engineering practice.

  3. Conceptual and numerical models of groundwater flow and solute transport in fracture zones: Application to the Aspo Island (Sweden)

    International Nuclear Information System (INIS)

    Molinero, J.; Samper, J.

    2003-01-01

    Several countries around the world are considering the final disposal of high-level radioactive waste in deep repositories located in fractured granite formations. Evaluating the long term safety of such repositories requires sound conceptual and numerical models which must consider simultaneously groundwater flow, solute transport and chemical and radiological processes. These models are being developed from data and knowledge gained from in situ experiments carried out at deep underground laboratories such as that of Aspo, Sweden, constructed in fractured granite. The Redox Zone Experiment is one of such experiments performed at Aspo in order to evaluate the effects of the construction of the access tunnel on the hydrogeological and hydrochemical conditions of a fracture zone intersected by the tunnel. Previous authors interpreted hydrochemical and isotopic data of this experiment using a mass-balance approach based on a qualitative description of groundwater flow conditions. Such an interpretation, however, is subject to uncertainties related to an over-simplified conceptualization of groundwater flow. Here we present numerical models of groundwater flow and solute transport for this fracture zone. The first model is based on previously published conceptual model. It presents noticeable un consistencies and fails to match simultaneously observed draw downs and chloride breakthrough curves. To overcome its limitations, a revised flow and transport model is presented which relies directly on available hydrodynamic and transport parameters, is based on the identification of appropriate flow and transport boundary conditions and uses, when needed, solute data extrapolated from nearby fracture zones. A significant quantitative improvement is achieved with the revised model because its results match simultaneously drawdown and chloride data. Other improvements are qualitative and include: ensuring consistency of hydrodynamic and hydrochemical data and avoiding

  4. Reusable Object-Oriented Solutions for Numerical Simulation of PDEs in a High Performance Environment

    Directory of Open Access Journals (Sweden)

    Andrea Lani

    2006-01-01

    Full Text Available Object-oriented platforms developed for the numerical solution of PDEs must combine flexibility and reusability, in order to ease the integration of new functionalities and algorithms. While designing similar frameworks, a built-in support for high performance should be provided and enforced transparently, especially in parallel simulations. The paper presents solutions developed to effectively tackle these and other more specific problems (data handling and storage, implementation of physical models and numerical methods that have arisen in the development of COOLFluiD, an environment for PDE solvers. Particular attention is devoted to describe a data storage facility, highly suitable for both serial and parallel computing, and to discuss the application of two design patterns, Perspective and Method-Command-Strategy, that support extensibility and run-time flexibility in the implementation of physical models and generic numerical algorithms respectively.

  5. A Mass Conservative Numerical Solution for Two-Phase Flow in Porous Media With Application to Unsaturated Flow

    DEFF Research Database (Denmark)

    Celia, Michael A.; Binning, Philip John

    1992-01-01

    that the algorithm produces solutions that are essentially mass conservative and oscillation free, even in the presence of steep infiltrating fronts. When the algorithm is applied to the case of air and water flow in unsaturated soils, numerical results confirm the conditions under which Richards's equation is valid....... Numerical results also demonstrate the potential importance of air phase advection when considering contaminant transport in unsaturated soils. Comparison to several other numerical algorithms shows that the modified Picard approach offers robust, mass conservative solutions to the general equations...

  6. Numerical simulation of solute trapping phenomena using phase-field solidification model for dilute binary alloys

    Directory of Open Access Journals (Sweden)

    Henrique Silva Furtado

    2009-09-01

    Full Text Available Numerical simulation of solute trapping during solidification, using two phase-field model for dilute binary alloys developed by Kim et al. [Phys. Rev. E, 60, 7186 (1999] and Ramirez et al. [Phys. Rev. E, 69, 05167 (2004] is presented here. The simulations on dilute Cu-Ni alloy are in good agreement with one dimensional analytic solution of sharp interface model. Simulation conducted under small solidification velocity using solid-liquid interface thickness (2λ of 8 nanometers reproduced the solute (Cu equilibrium partition coefficient. The spurious numerical solute trapping in solid phase, due to the interface thickness was negligible. A parameter used in analytical solute trapping model was determined by isothermal phase-field simulation of Ni-Cu alloy. Its application to Si-As and Si-Bi alloys reproduced results that agree reasonably well with experimental data. A comparison between the three models of solute trapping (Aziz, Sobolev and Galenko [Phys. Rev. E, 76, 031606 (2007] was performed. It resulted in large differences in predicting the solidification velocity for partition-less solidification, indicating the necessity for new and more acute experimental data.

  7. Numerical solution of neutron transport equations in discrete ordinates and slab geometry

    International Nuclear Information System (INIS)

    Serrano Pedraza, F.

    1985-01-01

    An unified formalism to solve numerically, between other equation, the neutron transport in discrete ordinates, slab geometry, several energy groups and independents of time, has been developed recently. Such a formalism cover some of the conventional schemes as diamond difference, (WDD) characteristic step (SC) lineal characteristic (LC), quadratic characteristic (QC) and lineal discontinuous. Unified formation gives before hand the convergence order of the previously selected scheme. In fact it allows besides to generate a big amount of numerical schemes, with which is also possible to solve numerical equations as soon as neutron transport. The essential purpose of this work was to solve the neutron transport equations in slab geometry and discrete ordinates considering several energy groups without to take under advisement time dependence based in the above mentioned unified formalism. To reach this purpose it was necesary to design a computer code with the name TNOD1 (Neutron transport in discrete ordinates and 1 dimension) which includes each one of the schemes already pointed out. there exist two numerical schemes, also recently developed, quadratic continuous (QC) and cubic continuous (CN), although covered by unified formalism, it has been possible to include them inside this computer code without make substantial changes in its structure. In chapter I, derivative of neutron transport equation independent of time is taken, for angular flux, including boundary conditions and discontinuity. In chapter II the neutron transport equations are obtained in multigroups, independents of time, for approximation of discrete ordinates. Description of theory related with unified formalism and its relationship with mentioned discretization schemes is presented in chapter III. Chapter IV describes the computer code developed and finally, in chapter V different numerical results obtained with TNOD1 program are shown. In Appendix A theorems and mathematical arguments used

  8. Enriched Meshfree Method for an Accurate Numerical Solution of the Motz Problem

    Directory of Open Access Journals (Sweden)

    Won-Tak Hong

    2016-01-01

    Full Text Available We present an enriched meshfree solution of the Motz problem. The Motz problem has been known as a benchmark problem to verify the efficiency of numerical methods in the presence of a jump boundary data singularity at a point, where an abrupt change occurs for the boundary condition. We propose a singular basis function enrichment technique in the context of partition of unity based meshfree method. We take the leading terms of the local series expansion at the point singularity and use them as enrichment functions for the local approximation space. As a result, we obtain highly accurate leading coefficients of the Motz problem that are comparable to the most accurate numerical solution. The proposed singular enrichment technique is highly effective in the case of the local series expansion of the solution being known. The enrichment technique that is used in this study can be applied to monotone singularities (of type rα with α<1 as well as oscillating singularities (of type rαsin⁡(ϵlog⁡r. It is the first attempt to apply singular meshfree enrichment technique to the Motz problem.

  9. Efficient Numerical Solution of Coupled Radial Differential Equations in Multichannel Scattering Problems

    International Nuclear Information System (INIS)

    Houfek, Karel

    2008-01-01

    Numerical solution of coupled radial differential equations which are encountered in multichannel scattering problems is presented. Numerical approach is based on the combination of the exterior complex scaling method and the finite-elements method with the discrete variable representation. This method can be used not only to solve multichannel scattering problem but also to find bound states and resonance positions and widths directly by diagonalization of the corresponding complex scaled Hamiltonian. Efficiency and accuracy of this method is demonstrated on an analytically solvable two-channel problem.

  10. New numerical method for iterative or perturbative solution of quantum field theory

    International Nuclear Information System (INIS)

    Hahn, S.C.; Guralnik, G.S.

    1999-01-01

    A new computational idea for continuum quantum Field theories is outlined. This approach is based on the lattice source Galerkin methods developed by Garcia, Guralnik and Lawson. The method has many promising features including treating fermions on a relatively symmetric footing with bosons. As a spin-off of the technology developed for 'exact' solutions, the numerical methods used have a special case application to perturbation theory. We are in the process of developing an entirely numerical approach to evaluating graphs to high perturbative order. (authors)

  11. A quasilinear model for solute transport under unsaturated flow

    International Nuclear Information System (INIS)

    Houseworth, J.E.; Leem, J.

    2009-01-01

    We developed an analytical solution for solute transport under steady-state, two-dimensional, unsaturated flow and transport conditions for the investigation of high-level radioactive waste disposal. The two-dimensional, unsaturated flow problem is treated using the quasilinear flow method for a system with homogeneous material properties. Dispersion is modeled as isotropic and is proportional to the effective hydraulic conductivity. This leads to a quasilinear form for the transport problem in terms of a scalar potential that is analogous to the Kirchhoff potential for quasilinear flow. The solutions for both flow and transport scalar potentials take the form of Fourier series. The particular solution given here is for two sources of flow, with one source containing a dissolved solute. The solution method may easily be extended, however, for any combination of flow and solute sources under steady-state conditions. The analytical results for multidimensional solute transport problems, which previously could only be solved numerically, also offer an additional way to benchmark numerical solutions. An analytical solution for two-dimensional, steady-state solute transport under unsaturated flow conditions is presented. A specific case with two sources is solved but may be generalized to any combination of sources. The analytical results complement numerical solutions, which were previously required to solve this class of problems.

  12. A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations

    Science.gov (United States)

    Diethelm, Kai; Ford, Neville J.; Freed, Alan D.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    We discuss an Adams-type predictor-corrector method for the numerical solution of fractional differential equations. The method may be used both for linear and for nonlinear problems, and it may be extended to multi-term equations (involving more than one differential operator) too.

  13. Numerical treatment of elliptic BVP with several solutions and of MHD equilibrium problems

    International Nuclear Information System (INIS)

    Meyer-Spasche, R.

    1975-12-01

    It is found out empirically that Newton iteration and difference methods are very suitable for the numerical treatment of elliptic boundary value problems (Lu)(x) = f(x,u(x)) in D c R 2 , u/deltaD = g having several solutions. Some convergence theorems for these methods are presented. Some notable numerical examples are given, including bifurcation diagrams, which are interesting in themselves and show also the applicability of the methods developed. (orig./WB) [de

  14. Numerical solution of inviscid and viscous laminar and turbulent flow around the airfoil

    Directory of Open Access Journals (Sweden)

    Slouka Martin

    2016-01-01

    Full Text Available This work deals with the 2D numerical solution of inviscid compressible flow and viscous compressible laminar and turbulent flow around the profile. In a case of turbulent flow algebraic Baldwin-Lomax model is used and compared with Wilcox k-omega model. Calculations are done for NACA 0012 and RAE 2822 airfoil profile for the different angles of upstream flow. Numerical results are compared and discussed with experimental data.

  15. Numerical solutions of differential equations of an ionization chamber

    International Nuclear Information System (INIS)

    Novkovic, D.; Tomasevic, M.; Subotic, K.; Manic, S.

    1998-01-01

    A system of reduced differential equations generally valid for plane-parallel, cylindrical, and spherical ionization chambers filled with air, which is appropriate for numerical solution, has been derived. The system has been solved for all three geometries. The comparison of the calculated results of Armstrong and Tate, for plane-parallel ionization chambers, and Sprinkle and Tate, for spherical ionization chambers, with the present calculations has shown a good agreement. The calculated values for ionization chambers filled with CO 2 were also in good agreement with the experimental data of Moriuchi et al (author)

  16. Numerical solutions for magnetohydrodynamic flow of nanofluid over a bidirectional non-linear stretching surface with prescribed surface heat flux boundary

    Energy Technology Data Exchange (ETDEWEB)

    Mahanthesh, B., E-mail: bmanths@gmail.com [Department of Mathematics, AIMS Institutes, Peenya, 560058 Bangalore (India); Department of Studies and Research in Mathematics, Kuvempu University, Shankaraghatta, 577451 Shimoga, Karnataka (India); Gireesha, B.J., E-mail: bjgireesu@rediffmail.com [Department of Studies and Research in Mathematics, Kuvempu University, Shankaraghatta, 577451 Shimoga, Karnataka (India); Department of Mechanical Engineering, Cleveland State University, Cleveland, OH (United States); Gorla, R.S. Reddy, E-mail: r.gorla@csuohio.edu [Department of Mechanical Engineering, Cleveland State University, Cleveland, OH (United States); Abbasi, F.M., E-mail: abbasisarkar@gmail.com [Department of Mathematics, Comsats Institute of Information Technology, Islamabad 44000 (Pakistan); Shehzad, S.A., E-mail: ali_qau70@yahoo.com [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan)

    2016-11-01

    Numerical solutions of three-dimensional flow over a non-linear stretching surface are developed in this article. An electrically conducting flow of viscous nanoliquid is considered. Heat transfer phenomenon is accounted under thermal radiation, Joule heating and viscous dissipation effects. We considered the variable heat flux condition at the surface of sheet. The governing mathematical equations are reduced to nonlinear ordinary differential systems through suitable dimensionless variables. A well-known shooting technique is implemented to obtain the results of dimensionless velocities and temperature. The obtained results are plotted for multiple values of pertinent parameters to discuss the salient features of these parameters on fluid velocity and temperature. The expressions of skin-friction coefficient and Nusselt number are computed and analyzed comprehensively through numerical values. A comparison of present results with the previous results in absence of nanoparticle volume fraction, mixed convection and magnetic field is computed and an excellent agreement noticed. We also computed the results for both linear and non-linear stretching sheet cases. - Highlights: • Hydromagnetic flow of nanofluid over a bidirectional non-linear stretching surface is examined. • Cu, Al{sub 2}O3 and TiO{sub 2} types nanoparticles are taken into account. • Numerical solutions have been computed and addressed. • The values of skin-friction and Nusselt number are presented.

  17. Numerical solution of plasma fluid equations using locally refined grids

    International Nuclear Information System (INIS)

    Colella, P.

    1997-01-01

    This paper describes a numerical method for the solution of plasma fluid equations on block-structured, locally refined grids. The plasma under consideration is typical of those used for the processing of semiconductors. The governing equations consist of a drift-diffusion model of the electrons and an isothermal model of the ions coupled by Poisson's equation. A discretization of the equations is given for a uniform spatial grid, and a time-split integration scheme is developed. The algorithm is then extended to accommodate locally refined grids. This extension involves the advancement of the discrete system on a hierarchy of levels, each of which represents a degree of refinement, together with synchronization steps to ensure consistency across levels. A brief discussion of a software implementation is followed by a presentation of numerical results

  18. The response matrix discrete ordinates solution to the 1D radiative transfer equation

    International Nuclear Information System (INIS)

    Ganapol, Barry D.

    2015-01-01

    The discrete ordinates method (DOM) of solution to the 1D radiative transfer equation has been an effective method of solution for nearly 70 years. During that time, the method has experienced numerous improvements as numerical and computational techniques have become more powerful and efficient. Here, we again consider the analytical solution to the discrete radiative transfer equation in a homogeneous medium by proposing a new, and consistent, form of solution that improves upon previous forms. Aided by a Wynn-epsilon convergence acceleration, its numerical evaluation can achieve extreme precision as demonstrated by comparison with published benchmarks. Finally, we readily extend the solution to a heterogeneous medium through the star product formulation producing a novel benchmark for closed form Henyey–Greenstein scattering as an example. - Highlights: • Presents a new solution to the RTE called the response matrix DOM (RM/DOM). • Solution representations avoid the instability common in exponential solutions. • Explicit form in terms of matrix hyperbolic functions. • Extreme accuracy through Wynn-epsilon acceleration checked by published benchmarks. • Provides a more transparent numerical evaluation than found previously

  19. Reduction of numerical diffusion in three-dimensional vortical flows using a coupled Eulerian/Lagrangian solution procedure

    Science.gov (United States)

    Felici, Helene M.; Drela, Mark

    1993-01-01

    A new approach based on the coupling of an Eulerian and a Lagrangian solver, aimed at reducing the numerical diffusion errors of standard Eulerian time-marching finite-volume solvers, is presented. The approach is applied to the computation of the secondary flow in two bent pipes and the flow around a 3D wing. Using convective point markers the Lagrangian approach provides a correction of the basic Eulerian solution. The Eulerian flow in turn integrates in time the Lagrangian state-vector. A comparison of coarse and fine grid Eulerian solutions makes it possible to identify numerical diffusion. It is shown that the Eulerian/Lagrangian approach is an effective method for reducing numerical diffusion errors.

  20. A numerical method for osmotic water flow and solute diffusion with deformable membrane boundaries in two spatial dimension

    Science.gov (United States)

    Yao, Lingxing; Mori, Yoichiro

    2017-12-01

    Osmotic forces and solute diffusion are increasingly seen as playing a fundamental role in cell movement. Here, we present a numerical method that allows for studying the interplay between diffusive, osmotic and mechanical effects. An osmotically active solute obeys a advection-diffusion equation in a region demarcated by a deformable membrane. The interfacial membrane allows transmembrane water flow which is determined by osmotic and mechanical pressure differences across the membrane. The numerical method is based on an immersed boundary method for fluid-structure interaction and a Cartesian grid embedded boundary method for the solute. We demonstrate our numerical algorithm with the test case of an osmotic engine, a recently proposed mechanism for cell propulsion.

  1. An analytic solution for numerical modeling validation in electromagnetics: the resistive sphere

    Science.gov (United States)

    Swidinsky, Andrei; Liu, Lifei

    2017-11-01

    We derive the electromagnetic response of a resistive sphere to an electric dipole source buried in a conductive whole space. The solution consists of an infinite series of spherical Bessel functions and associated Legendre polynomials, and follows the well-studied problem of a conductive sphere buried in a resistive whole space in the presence of a magnetic dipole. Our result is particularly useful for controlled-source electromagnetic problems using a grounded electric dipole transmitter and can be used to check numerical methods of calculating the response of resistive targets (such as finite difference, finite volume, finite element and integral equation). While we elect to focus on the resistive sphere in our examples, the expressions in this paper are completely general and allow for arbitrary source frequency, sphere radius, transmitter position, receiver position and sphere/host conductivity contrast so that conductive target responses can also be checked. Commonly used mesh validation techniques consist of comparisons against other numerical codes, but such solutions may not always be reliable or readily available. Alternatively, the response of simple 1-D models can be tested against well-known whole space, half-space and layered earth solutions, but such an approach is inadequate for validating models with curved surfaces. We demonstrate that our theoretical results can be used as a complementary validation tool by comparing analytic electric fields to those calculated through a finite-element analysis; the software implementation of this infinite series solution is made available for direct and immediate application.

  2. New numerical solutions of three-dimensional compressible hydrodynamic convection. [in stars

    Science.gov (United States)

    Hossain, Murshed; Mullan, D. J.

    1990-01-01

    Numerical solutions of three-dimensional compressible hydrodynamics (including sound waves) in a stratified medium with open boundaries are presented. Convergent/divergent points play a controlling role in the flows, which are dominated by a single frequency related to the mean sound crossing time. Superposed on these rapid compressive flows, slower eddy-like flows eventually create convective transport. The solutions contain small structures stacked on top of larger ones, with vertical scales equal to the local pressure scale heights, H sub p. Although convective transport starts later in the evolution, vertical scales of H sub p are apparently selected at much earlier times by nonlinear compressive effects.

  3. The Navier-Stokes-Fourier system: From weak solutions to numerical analysis

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard

    2015-01-01

    Roč. 35, č. 3 (2015), s. 185-193 ISSN 0174-4747 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : Navier-Stokes-Fourier system * weak solution * mixed finite-volume finite-element numerical scheme Subject RIV: BA - General Mathematics http://www.degruyter.com/view/j/anly.2015.35.issue-3/anly-2014-1300/anly-2014-1300. xml

  4. Numerical solution of fluid-structure interaction represented by human vocal folds in airflow

    Directory of Open Access Journals (Sweden)

    Valášek J.

    2016-01-01

    Full Text Available The paper deals with the human vocal folds vibration excited by the fluid flow. The vocal fold is modelled as an elastic body assuming small displacements and therefore linear elasticity theory is used. The viscous incompressible fluid flow is considered. For purpose of numerical solution the arbitrary Lagrangian-Euler method (ALE is used. The whole problem is solved by the finite element method (FEM based solver. Results of numerical experiments with different boundary conditions are presented.

  5. Numerical solution of fluid-structure interaction represented by human vocal folds in airflow

    Science.gov (United States)

    Valášek, J.; Sváček, P.; Horáček, J.

    2016-03-01

    The paper deals with the human vocal folds vibration excited by the fluid flow. The vocal fold is modelled as an elastic body assuming small displacements and therefore linear elasticity theory is used. The viscous incompressible fluid flow is considered. For purpose of numerical solution the arbitrary Lagrangian-Euler method (ALE) is used. The whole problem is solved by the finite element method (FEM) based solver. Results of numerical experiments with different boundary conditions are presented.

  6. Numerical Modeling for the Solute Uptake from Groundwater by Plants-Plant Uptake Package

    OpenAIRE

    El-Sayed, Amr A.

    2006-01-01

    A numerical model is presented to describe solute transport in groundwater coupled to sorption by plant roots, translocation into plant stems, and finally evapotranspiration. The conceptual model takes into account both Root Concentration Factor, RCF, and Transpiration Stream Concentration Factor, TSCF for chemicals which are a function of Kow. A similar technique used to simulate the solute transport in groundwater to simulate sorption and plant uptake is used. The mathematical equation is s...

  7. Nature Inspired Computational Technique for the Numerical Solution of Nonlinear Singular Boundary Value Problems Arising in Physiology

    Directory of Open Access Journals (Sweden)

    Suheel Abdullah Malik

    2014-01-01

    Full Text Available We present a hybrid heuristic computing method for the numerical solution of nonlinear singular boundary value problems arising in physiology. The approximate solution is deduced as a linear combination of some log sigmoid basis functions. A fitness function representing the sum of the mean square error of the given nonlinear ordinary differential equation (ODE and its boundary conditions is formulated. The optimization of the unknown adjustable parameters contained in the fitness function is performed by the hybrid heuristic computation algorithm based on genetic algorithm (GA, interior point algorithm (IPA, and active set algorithm (ASA. The efficiency and the viability of the proposed method are confirmed by solving three examples from physiology. The obtained approximate solutions are found in excellent agreement with the exact solutions as well as some conventional numerical solutions.

  8. Numerical Modeling Tools for the Prediction of Solution Migration Applicable to Mining Site

    International Nuclear Information System (INIS)

    Martell, M.; Vaughn, P.

    1999-01-01

    Mining has always had an important influence on cultures and traditions of communities around the globe and throughout history. Today, because mining legislation places heavy emphasis on environmental protection, there is great interest in having a comprehensive understanding of ancient mining and mining sites. Multi-disciplinary approaches (i.e., Pb isotopes as tracers) are being used to explore the distribution of metals in natural environments. Another successful approach is to model solution migration numerically. A proven method to simulate solution migration in natural rock salt has been applied to project through time for 10,000 years the system performance and solution concentrations surrounding a proposed nuclear waste repository. This capability is readily adaptable to simulate solution migration around mining

  9. A third-order KdV solution for internal solitary waves and its application in the numerical wave tank

    Directory of Open Access Journals (Sweden)

    Qicheng Meng

    2016-04-01

    Full Text Available A third-order KdV solution to the internal solitary wave is derived by a new method based on the weakly nonlinear assumptions in a rigid-lid two-layer system. The solution corrects an error by Mirie and Su (1984. A two-dimensional numerical wave tank has been established with the help of the open source CFD library OpenFOAM and the third-party software waves2Foam. Various analytical solutions, including the first-order to third-order KdV solutions, the eKdV solution and the MCC solution, have been used to initialise the flow fields in the CFD simulations of internal solitary waves. Two groups including 11 numerical cases have been carried out. In the same group, the initial wave amplitudes are the same but the implemented analytical solutions are different. The simulated wave profiles at different moments have been presented. The relative errors in terms of the wave amplitude between the last time step and the initial input have been analysed quantitatively. It is found that the third-order KdV solution results in the most stable internal solitary wave in the numerical wave tank for both small-amplitude and finite-amplitude cases. The finding is significant for the further simulations involving internal solitary waves.

  10. Numerical modeling of solute transport in deformable unsaturated layered soil

    Directory of Open Access Journals (Sweden)

    Sheng Wu

    2017-07-01

    Full Text Available The effect of soil stratification was studied through numerical investigation based on the coupled model of solute transport in deformable unsaturated soil. The theoretical model implied two-way coupled excess pore pressure and soil deformation based on Biot's consolidation theory as well as a one-way coupled volatile pollutant concentration field developed from the advection-diffusion theory. Embedded in the model, the degree of saturation, fluid compressibility, self-weight of the soil matrix, porosity variance, longitudinal dispersion, and linear sorption were computed. Based on simulation results of a proposed three-layer landfill model using the finite element method, the multi-layer effects are discussed with regard to the hydraulic conductivity, shear modulus, degree of saturation, molecular diffusion coefficient, and thickness of each layer. Generally speaking, contaminants spread faster in a stratified field with a soft and highly permeable top layer; soil parameters of the top layer are more critical than the lower layers but controlling soil thicknesses will alter the results. This numerical investigation showed noticeable impacts of stratified soil properties on solute migration results, demonstrating the importance of correctly modeling layered soil instead of simply assuming the averaged properties across the soil profile.

  11. Almost Surely Asymptotic Stability of Numerical Solutions for Neutral Stochastic Delay Differential Equations

    Directory of Open Access Journals (Sweden)

    Zhanhua Yu

    2011-01-01

    convergence theorem. It is shown that the Euler method and the backward Euler method can reproduce the almost surely asymptotic stability of exact solutions to NSDDEs under additional conditions. Numerical examples are demonstrated to illustrate the effectiveness of our theoretical results.

  12. An evaluation of solution algorithms and numerical approximation methods for modeling an ion exchange process

    Science.gov (United States)

    Bu, Sunyoung; Huang, Jingfang; Boyer, Treavor H.; Miller, Cass T.

    2010-07-01

    The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte-Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward difference formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte-Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications.

  13. Recursive algorithm for arrays of generalized Bessel functions: Numerical access to Dirac-Volkov solutions.

    Science.gov (United States)

    Lötstedt, Erik; Jentschura, Ulrich D

    2009-02-01

    In the relativistic and the nonrelativistic theoretical treatment of moderate and high-power laser-matter interaction, the generalized Bessel function occurs naturally when a Schrödinger-Volkov and Dirac-Volkov solution is expanded into plane waves. For the evaluation of cross sections of quantum electrodynamic processes in a linearly polarized laser field, it is often necessary to evaluate large arrays of generalized Bessel functions, of arbitrary index but with fixed arguments. We show that the generalized Bessel function can be evaluated, in a numerically stable way, by utilizing a recurrence relation and a normalization condition only, without having to compute any initial value. We demonstrate the utility of the method by illustrating the quantum-classical correspondence of the Dirac-Volkov solutions via numerical calculations.

  14. An Effective Numerical Method and Its Utilization to Solution of Fractional Models Used in Bioengineering Applications

    Directory of Open Access Journals (Sweden)

    Petráš Ivo

    2011-01-01

    Full Text Available This paper deals with the fractional-order linear and nonlinear models used in bioengineering applications and an effective method for their numerical solution. The proposed method is based on the power series expansion of a generating function. Numerical solution is in the form of the difference equation, which can be simply applied in the Matlab/Simulink to simulate the dynamics of system. Several illustrative examples are presented, which can be widely used in bioengineering as well as in the other disciplines, where the fractional calculus is often used.

  15. Numerical solution of an inverse 2D Cauchy problem connected with the Helmholtz equation

    International Nuclear Information System (INIS)

    Wei, T; Qin, H H; Shi, R

    2008-01-01

    In this paper, the Cauchy problem for the Helmholtz equation is investigated. By Green's formulation, the problem can be transformed into a moment problem. Then we propose a numerical algorithm for obtaining an approximate solution to the Neumann data on the unspecified boundary. Error estimate and convergence analysis have also been given. Finally, we present numerical results for several examples and show the effectiveness of the proposed method

  16. Temperature prediction in a coal fired boiler with a fixed bed by fuzzy logic based on numerical solution

    International Nuclear Information System (INIS)

    Biyikoglu, A.; Akcayol, M.A.; Oezdemir, V.; Sivrioglu, M.

    2005-01-01

    In this study, steady state combustion in boilers with a fixed bed has been investigated. Temperature distributions in the combustion chamber of a coal fired boiler with a fixed bed are predicted using fuzzy logic based on data obtained from the numerical solution method for various coal and air feeding rates. The numerical solution method and the discretization of the governing equations of two dimensional turbulent flow in the combustion chamber and one dimensional coal combustion in the fixed bed are explained. Control Volume and Finite Difference Methods are used in the discretization of the equations in the combustion chamber and in the fixed bed, respectively. Results are presented as contours within the solution domain and compared with numerical ones. Comparison of the results shows that the difference between the numerical solution and fuzzy logic prediction throughout the computational domain is less than 1.5%. The statistical coefficient of multiple determinations for the investigated cases is about 0.9993 to 0.9998. This accuracy degree is acceptable in predicting the temperature values. So, it can be concluded that fuzzy logic provides a feasible method for defining the system properties

  17. Numerical Methods for Solution of the Extended Linear Quadratic Control Problem

    DEFF Research Database (Denmark)

    Jørgensen, John Bagterp; Frison, Gianluca; Gade-Nielsen, Nicolai Fog

    2012-01-01

    In this paper we present the extended linear quadratic control problem, its efficient solution, and a discussion of how it arises in the numerical solution of nonlinear model predictive control problems. The extended linear quadratic control problem is the optimal control problem corresponding...... to the Karush-Kuhn-Tucker system that constitute the majority of computational work in constrained nonlinear and linear model predictive control problems solved by efficient MPC-tailored interior-point and active-set algorithms. We state various methods of solving the extended linear quadratic control problem...... and discuss instances in which it arises. The methods discussed in the paper have been implemented in efficient C code for both CPUs and GPUs for a number of test examples....

  18. Solved problems in classical mechanics analytical and numerical solutions with comments

    CERN Document Server

    de Lange, O L

    2010-01-01

    Apart from an introductory chapter giving a brief summary of Newtonian and Lagrangian mechanics, this book consists entirely of questions and solutions on topics in classical mechanics that will be encountered in undergraduate and graduate courses. These include one-, two-, and three- dimensional motion; linear and nonlinear oscillations; energy, potentials, momentum, and angular momentum; spherically symmetric potentials; multi-particle systems; rigid bodies; translation androtation of the reference frame; the relativity principle and some of its consequences. The solutions are followed by a set of comments intended to stimulate inductive reasoning and provide additional information of interest. Both analytical and numerical (computer) techniques are used to obtain andanalyze solutions. The computer calculations use Mathematica (version 7), and the relevant code is given in the text. It includes use of the interactive Manipulate function which enables one to observe simulated motion on a computer screen, and...

  19. Efficient numerical methods for the large-scale, parallel solution of elastoplastic contact problems

    KAUST Repository

    Frohne, Jö rg; Heister, Timo; Bangerth, Wolfgang

    2015-01-01

    © 2016 John Wiley & Sons, Ltd. Quasi-static elastoplastic contact problems are ubiquitous in many industrial processes and other contexts, and their numerical simulation is consequently of great interest in accurately describing and optimizing production processes. The key component in these simulations is the solution of a single load step of a time iteration. From a mathematical perspective, the problems to be solved in each time step are characterized by the difficulties of variational inequalities for both the plastic behavior and the contact problem. Computationally, they also often lead to very large problems. In this paper, we present and evaluate a complete set of methods that are (1) designed to work well together and (2) allow for the efficient solution of such problems. In particular, we use adaptive finite element meshes with linear and quadratic elements, a Newton linearization of the plasticity, active set methods for the contact problem, and multigrid-preconditioned linear solvers. Through a sequence of numerical experiments, we show the performance of these methods. This includes highly accurate solutions of a three-dimensional benchmark problem and scaling our methods in parallel to 1024 cores and more than a billion unknowns.

  20. Efficient numerical methods for the large-scale, parallel solution of elastoplastic contact problems

    KAUST Repository

    Frohne, Jörg

    2015-08-06

    © 2016 John Wiley & Sons, Ltd. Quasi-static elastoplastic contact problems are ubiquitous in many industrial processes and other contexts, and their numerical simulation is consequently of great interest in accurately describing and optimizing production processes. The key component in these simulations is the solution of a single load step of a time iteration. From a mathematical perspective, the problems to be solved in each time step are characterized by the difficulties of variational inequalities for both the plastic behavior and the contact problem. Computationally, they also often lead to very large problems. In this paper, we present and evaluate a complete set of methods that are (1) designed to work well together and (2) allow for the efficient solution of such problems. In particular, we use adaptive finite element meshes with linear and quadratic elements, a Newton linearization of the plasticity, active set methods for the contact problem, and multigrid-preconditioned linear solvers. Through a sequence of numerical experiments, we show the performance of these methods. This includes highly accurate solutions of a three-dimensional benchmark problem and scaling our methods in parallel to 1024 cores and more than a billion unknowns.

  1. TLC scheme for numerical solution of the transport equation on equilateral triangular meshes

    International Nuclear Information System (INIS)

    Walters, W.F.

    1983-01-01

    A new triangular linear characteristic TLC scheme for numerically solving the transport equation on equilateral triangular meshes has been developed. This scheme uses the analytic solution of the transport equation in the triangle as its basis. The data on edges of the triangle are assumed linear as is the source representation. A characteristic approach or nodal approach is used to obtain the analytic solution. Test problems indicate that the new TLC is superior to the widely used DITRI scheme for accuracy

  2. Pseudospectral operational matrix for numerical solution of single and multiterm time fractional diffusion equation

    OpenAIRE

    GHOLAMI, SAEID; BABOLIAN, ESMAIL; JAVIDI, MOHAMMAD

    2016-01-01

    This paper presents a new numerical approach to solve single and multiterm time fractional diffusion equations. In this work, the space dimension is discretized to the Gauss$-$Lobatto points. We use the normalized Grunwald approximation for the time dimension and a pseudospectral successive integration matrix for the space dimension. This approach shows that with fewer numbers of points, we can approximate the solution with more accuracy. Some examples with numerical results in tables and fig...

  3. Numerical Solutions for Nonlinear High Damping Rubber Bearing Isolators: Newmark's Method with Netwon-Raphson Iteration Revisited

    Science.gov (United States)

    Markou, A. A.; Manolis, G. D.

    2018-03-01

    Numerical methods for the solution of dynamical problems in engineering go back to 1950. The most famous and widely-used time stepping algorithm was developed by Newmark in 1959. In the present study, for the first time, the Newmark algorithm is developed for the case of the trilinear hysteretic model, a model that was used to describe the shear behaviour of high damping rubber bearings. This model is calibrated against free-vibration field tests implemented on a hybrid base isolated building, namely the Solarino project in Italy, as well as against laboratory experiments. A single-degree-of-freedom system is used to describe the behaviour of a low-rise building isolated with a hybrid system comprising high damping rubber bearings and low friction sliding bearings. The behaviour of the high damping rubber bearings is simulated by the trilinear hysteretic model, while the description of the behaviour of the low friction sliding bearings is modeled by a linear Coulomb friction model. In order to prove the effectiveness of the numerical method we compare the analytically solved trilinear hysteretic model calibrated from free-vibration field tests (Solarino project) against the same model solved with the Newmark method with Netwon-Raphson iteration. Almost perfect agreement is observed between the semi-analytical solution and the fully numerical solution with Newmark's time integration algorithm. This will allow for extension of the trilinear mechanical models to bidirectional horizontal motion, to time-varying vertical loads, to multi-degree-of-freedom-systems, as well to generalized models connected in parallel, where only numerical solutions are possible.

  4. A numerical simulation of pre-big bang cosmology

    CERN Document Server

    Maharana, J P; Veneziano, Gabriele

    1998-01-01

    We analyse numerically the onset of pre-big bang inflation in an inhomogeneous, spherically symmetric Universe. Adding a small dilatonic perturbation to a trivial (Milne) background, we find that suitable regions of space undergo dilaton-driven inflation and quickly become spatially flat ($\\Omega \\to 1$). Numerical calculations are pushed close enough to the big bang singularity to allow cross checks against previously proposed analytic asymptotic solutions.

  5. Numerical studies of fermionic field theories at large-N

    International Nuclear Information System (INIS)

    Dickens, T.A.

    1987-01-01

    A description of an algorithm, which may be used to study large-N theories with or without fermions, is presented. As an initial test of the method, the spectrum of continuum QCD in 1 + 1 dimensions is determined and compared to previously obtained results. Exact solutions of 1 + 1 dimensional lattice versions of the free fermion theory, the Gross-Neveu model, and QCD are obtained. Comparison of these exact results with results from the numerical algorithm is used to test the algorithms, and more importantly, to determine the errors incurred from the approximations used in the numerical technique. Numerical studies of the above three lattice theories in higher dimensions are also presented. The results are again compared to exact solutions for free fermions and the Gross-Neveu model; perturbation theory is used to derive expansions with which the numerical results for QCD may be compared. The numerical algorithm may also be used to study the euclidean formulation of lattice gauge theories. Results for 1 + 1 dimensional euclidean lattice QCD are compared to the exact solution of this model

  6. Application of a space-time CE/SE (Conversation Element/Solution Element) method to the numerical solution of chromatographic separation processes

    DEFF Research Database (Denmark)

    including convection-difmsion-reaction PDEs are numerically solved using the two methods on the same spatial grid. Even though the CE/SE method uses a simple stencil structure and is developed on a simple mathematical basis (i.e., Gauss' divergence theorem), accurate and computationally-efficient solutions...

  7. A note on numerical solution to the problem of criticality

    International Nuclear Information System (INIS)

    Kyncl, J.

    2002-01-01

    The contribution deals with numerical solution to the problem of criticality for neutron transport equation by the external source iteration method. Especially, the speed of convergence is examined. It is shown that if neutron absorption in the medium considered is high and if the space region occupied by the medium is large then a slow convergence of the iterations can be expected. This expectation is confirmed by results to CB4 benchmark obtained by MCNP code. Besides the results presented some questions concerning applications of them to criticality calculations are pointed out (Author)

  8. Use of Green's functions in the numerical solution of two-point boundary value problems

    Science.gov (United States)

    Gallaher, L. J.; Perlin, I. E.

    1974-01-01

    This study investigates the use of Green's functions in the numerical solution of the two-point boundary value problem. The first part deals with the role of the Green's function in solving both linear and nonlinear second order ordinary differential equations with boundary conditions and systems of such equations. The second part describes procedures for numerical construction of Green's functions and considers briefly the conditions for their existence. Finally, there is a description of some numerical experiments using nonlinear problems for which the known existence, uniqueness or convergence theorems do not apply. Examples here include some problems in finding rendezvous orbits of the restricted three body system.

  9. Stochastic coalescence in finite systems: an algorithm for the numerical solution of the multivariate master equation.

    Science.gov (United States)

    Alfonso, Lester; Zamora, Jose; Cruz, Pedro

    2015-04-01

    The stochastic approach to coagulation considers the coalescence process going in a system of a finite number of particles enclosed in a finite volume. Within this approach, the full description of the system can be obtained from the solution of the multivariate master equation, which models the evolution of the probability distribution of the state vector for the number of particles of a given mass. Unfortunately, due to its complexity, only limited results were obtained for certain type of kernels and monodisperse initial conditions. In this work, a novel numerical algorithm for the solution of the multivariate master equation for stochastic coalescence that works for any type of kernels and initial conditions is introduced. The performance of the method was checked by comparing the numerically calculated particle mass spectrum with analytical solutions obtained for the constant and sum kernels, with an excellent correspondence between the analytical and numerical solutions. In order to increase the speedup of the algorithm, software parallelization techniques with OpenMP standard were used, along with an implementation in order to take advantage of new accelerator technologies. Simulations results show an important speedup of the parallelized algorithms. This study was funded by a grant from Consejo Nacional de Ciencia y Tecnologia de Mexico SEP-CONACYT CB-131879. The authors also thanks LUFAC® Computacion SA de CV for CPU time and all the support provided.

  10. Numerical solution to the hermitian Yang-Mills equation on the Fermat quintic

    International Nuclear Information System (INIS)

    Douglas, Michael R.; Karp, Robert L.; Lukic, Sergio; Reinbacher, Rene

    2007-01-01

    We develop an iterative method for finding solutions to the hermitian Yang-Mills equation on stable holomorphic vector bundles, following ideas recently developed by Donaldson. As illustrations, we construct numerically the hermitian Einstein metrics on the tangent bundle and a rank three vector bundle on P 2 . In addition, we find a hermitian Yang-Mills connection on a stable rank three vector bundle on the Fermat quintic

  11. Direct numerical solution of the Ornstein-Zernike integral equation and spatial distribution of water around hydrophobic molecules

    Science.gov (United States)

    Ikeguchi, Mitsunori; Doi, Junta

    1995-09-01

    The Ornstein-Zernike integral equation (OZ equation) has been used to evaluate the distribution function of solvents around solutes, but its numerical solution is difficult for molecules with a complicated shape. This paper proposes a numerical method to directly solve the OZ equation by introducing the 3D lattice. The method employs no approximation the reference interaction site model (RISM) equation employed. The method enables one to obtain the spatial distribution of spherical solvents around solutes with an arbitrary shape. Numerical accuracy is sufficient when the grid-spacing is less than 0.5 Å for solvent water. The spatial water distribution around a propane molecule is demonstrated as an example of a nonspherical hydrophobic molecule using iso-value surfaces. The water model proposed by Pratt and Chandler is used. The distribution agrees with the molecular dynamics simulation. The distribution increases offshore molecular concavities. The spatial distribution of water around 5α-cholest-2-ene (C27H46) is visualized using computer graphics techniques and a similar trend is observed.

  12. Numerical solution of ordinary differential equations

    CERN Document Server

    Fox, L

    1987-01-01

    Nearly 20 years ago we produced a treatise (of about the same length as this book) entitled Computing methods for scientists and engineers. It was stated that most computation is performed by workers whose mathematical training stopped somewhere short of the 'professional' level, and that some books are therefore needed which use quite simple mathematics but which nevertheless communicate the essence of the 'numerical sense' which is exhibited by the real computing experts and which is surely needed, at least to some extent, by all who use modern computers and modern numerical software. In that book we treated, at no great length, a variety of computational problems in which the material on ordinary differential equations occupied about 50 pages. At that time it was quite common to find books on numerical analysis, with a little on each topic ofthat field, whereas today we are more likely to see similarly-sized books on each major topic: for example on numerical linear algebra, numerical approximation, numeri...

  13. Numerical simulation of laser resonators

    International Nuclear Information System (INIS)

    Yoo, J. G.; Jeong, Y. U.; Lee, B. C.; Rhee, Y. J.; Cho, S. O.

    2004-01-01

    We developed numerical simulation packages for laser resonators on the bases of a pair of integral equations. Two numerical schemes, a matrix formalism and an iterative method, were programmed for finding numeric solutions to the pair of integral equations. The iterative method was tried by Fox and Li, but it was not applicable for high Fresnel numbers since the numerical errors involved propagate and accumulate uncontrollably. In this paper, we implement the matrix method to extend the computational limit further. A great number of case studies are carried out with various configurations of stable and unstable r;esonators to compute diffraction losses, phase shifts, intensity distributions and phases of the radiation fields on mirrors. Our results presented in this paper show not only a good agreement with the results previously obtained by Fox and Li, but also the legitimacy of our numerical procedures for high Fresnel numbers.

  14. Numerical solution of the Schroedinger equation with a polynomial potential

    International Nuclear Information System (INIS)

    Campoy, G.; Palma, A.

    1986-01-01

    A numerical method for solving the Schroedinger equation for a potential expressed as a polynomial is proposed. The basic assumption relies on the asymptotic properties of the solution of this equation. It is possible to obtain the energies and the stationary state functions simultaneously. They analyze, in particular, the cases of the quartic anharmonic oscillator and a hydrogen atom perturbed by a quadratic term, obtaining its energy eigenvalues for some values of the perturbation parameter. Together with the Hellmann-Feynman theorem, they use their algorithm to calculate expectation values of x'' for arbitrary positive values of n. 4 tables

  15. Long-time behavior in numerical solutions of certain dynamical systems

    International Nuclear Information System (INIS)

    Vazquez, L.

    1987-01-01

    A general discretization of the ordinary nonlinear differential equations d 2 v/dt 2 =f(v) and dv/dt=g(v) is studied. The discrete scheme conserves the discrete analogous of a quantity that is conserved by the corresponding equations. This method is applied to two cases and no ''ghost solutions'' were observed for the long range calculation. In these cases we analyze the stability of the corresponding numerical scheme as a dynamical system and in the sense studied by Kuo Pen-Yu and Stetter. In particular we find a correspondence between both kinds of stability. (author)

  16. Exact and Numerical Solutions of a Spatially-Distributed Mathematical Model for Fluid and Solute Transport in Peritoneal Dialysis

    Directory of Open Access Journals (Sweden)

    Roman Cherniha

    2016-06-01

    Full Text Available The nonlinear mathematical model for solute and fluid transport induced by the osmotic pressure of glucose and albumin with the dependence of several parameters on the hydrostatic pressure is described. In particular, the fractional space available for macromolecules (albumin was used as a typical example and fractional fluid void volume were assumed to be different functions of hydrostatic pressure. In order to find non-uniform steady-state solutions analytically, some mathematical restrictions on the model parameters were applied. Exact formulae (involving hypergeometric functions for the density of fluid flux from blood to tissue and the fluid flux across tissues were constructed. In order to justify the applicability of the analytical results obtained, a wide range of numerical simulations were performed. It was found that the analytical formulae can describe with good approximation the fluid and solute transport (especially the rate of ultrafiltration for a wide range of values of the model parameters.

  17. Numerical Solutions for Nonlinear High Damping Rubber Bearing Isolators: Newmark’s Method with Netwon-Raphson Iteration Revisited

    Directory of Open Access Journals (Sweden)

    Markou A.A.

    2018-03-01

    Full Text Available Numerical methods for the solution of dynamical problems in engineering go back to 1950. The most famous and widely-used time stepping algorithm was developed by Newmark in 1959. In the present study, for the first time, the Newmark algorithm is developed for the case of the trilinear hysteretic model, a model that was used to describe the shear behaviour of high damping rubber bearings. This model is calibrated against free-vibration field tests implemented on a hybrid base isolated building, namely the Solarino project in Italy, as well as against laboratory experiments. A single-degree-of-freedom system is used to describe the behaviour of a low-rise building isolated with a hybrid system comprising high damping rubber bearings and low friction sliding bearings. The behaviour of the high damping rubber bearings is simulated by the trilinear hysteretic model, while the description of the behaviour of the low friction sliding bearings is modeled by a linear Coulomb friction model. In order to prove the effectiveness of the numerical method we compare the analytically solved trilinear hysteretic model calibrated from free-vibration field tests (Solarino project against the same model solved with the Newmark method with Netwon-Raphson iteration. Almost perfect agreement is observed between the semi-analytical solution and the fully numerical solution with Newmark’s time integration algorithm. This will allow for extension of the trilinear mechanical models to bidirectional horizontal motion, to time-varying vertical loads, to multi-degree-of-freedom-systems, as well to generalized models connected in parallel, where only numerical solutions are possible.

  18. WATSFAR: numerical simulation of soil WATer and Solute fluxes using a FAst and Robust method

    Science.gov (United States)

    Crevoisier, David; Voltz, Marc

    2013-04-01

    To simulate the evolution of hydro- and agro-systems, numerous spatialised models are based on a multi-local approach and improvement of simulation accuracy by data-assimilation techniques are now used in many application field. The latest acquisition techniques provide a large amount of experimental data, which increase the efficiency of parameters estimation and inverse modelling approaches. In turn simulations are often run on large temporal and spatial domains which requires a large number of model runs. Eventually, despite the regular increase in computing capacities, the development of fast and robust methods describing the evolution of saturated-unsaturated soil water and solute fluxes is still a challenge. Ross (2003, Agron J; 95:1352-1361) proposed a method, solving 1D Richards' and convection-diffusion equation, that fulfil these characteristics. The method is based on a non iterative approach which reduces the numerical divergence risks and allows the use of coarser spatial and temporal discretisations, while assuring a satisfying accuracy of the results. Crevoisier et al. (2009, Adv Wat Res; 32:936-947) proposed some technical improvements and validated this method on a wider range of agro- pedo- climatic situations. In this poster, we present the simulation code WATSFAR which generalises the Ross method to other mathematical representations of soil water retention curve (i.e. standard and modified van Genuchten model) and includes a dual permeability context (preferential fluxes) for both water and solute transfers. The situations tested are those known to be the less favourable when using standard numerical methods: fine textured and extremely dry soils, intense rainfall and solute fluxes, soils near saturation, ... The results of WATSFAR have been compared with the standard finite element model Hydrus. The analysis of these comparisons highlights two main advantages for WATSFAR, i) robustness: even on fine textured soil or high water and solute

  19. LIE GROUPS AND NUMERICAL SOLUTIONS OF DIFFERENTIAL EQUATIONS: INVARIANT DISCRETIZATION VERSUS DIFFERENTIAL APPROXIMATION

    Directory of Open Access Journals (Sweden)

    Decio Levi

    2013-10-01

    Full Text Available We briefly review two different methods of applying Lie group theory in the numerical solution of ordinary differential equations. On specific examples we show how the symmetry preserving discretization provides difference schemes for which the “first differential approximation” is invariant under the same Lie group as the original ordinary differential equation.

  20. Use of artificial bee colonies algorithm as numerical approximation of differential equations solution

    Science.gov (United States)

    Fikri, Fariz Fahmi; Nuraini, Nuning

    2018-03-01

    The differential equation is one of the branches in mathematics which is closely related to human life problems. Some problems that occur in our life can be modeled into differential equations as well as systems of differential equations such as the Lotka-Volterra model and SIR model. Therefore, solving a problem of differential equations is very important. Some differential equations are difficult to solve, so numerical methods are needed to solve that problems. Some numerical methods for solving differential equations that have been widely used are Euler Method, Heun Method, Runge-Kutta and others. However, some of these methods still have some restrictions that cause the method cannot be used to solve more complex problems such as an evaluation interval that we cannot change freely. New methods are needed to improve that problems. One of the method that can be used is the artificial bees colony algorithm. This algorithm is one of metaheuristic algorithm method, which can come out from local search space and do exploration in solution search space so that will get better solution than other method.

  1. Numerical solution of newton´s cooling differential equation by the methods of euler and runge-kutta

    Directory of Open Access Journals (Sweden)

    Andresa Pescador

    2016-04-01

    Full Text Available This article presents the first-order differential equations, which are a very important branch of mathematics as they have a wide applicability, in mathematics, as in physics, biology and economy. The objective of this study was to analyze the resolution of the equation that defines the cooling Newton's law. Verify its behavior using some applications that can be used in the classroom as an auxiliary instrument to the teacher in addressing these contents bringing answers to the questions of the students and motivating them to build their knowledge. It attempted to its resolution through two numerical methods, Euler method and Runge -Kutta method. Finally, there was a comparison of the approach of the solution given by the numerical solution with the analytical resolution whose solution is accurate.

  2. A mass conservative numerical solution of vertical water flow and mass transport equations in unsaturated porous media

    International Nuclear Information System (INIS)

    Lim, S.C.; Lee, K.J.

    1993-01-01

    The Galerkin finite element method is used to solve the problem of one-dimensional, vertical flow of water and mass transport of conservative-nonconservative solutes in unsaturated porous media. Numerical approximations based on different forms of the governing equation, although they are equivalent in continuous forms, can result in remarkably different solutions in an unsaturated flow problem. Solutions given by a simple Galerkin method based on the h-based Richards equation yield a large mass balance error and an underestimation of the infiltration depth. With the employment of the ROMV (restoration of main variable) concept in the discretization step, the mass conservative numerical solution algorithm for water flow has been derived. The resulting computational schemes for water flow and mass transport are applied to sandy soil. The ROMV method shows good mass conservation in water flow analysis, whereas it seems to have a minor effect on mass transport. However, it may relax the time-step size restriction and so ensure an improved calculation output. (author)

  3. Different nonideality relationships, different databases and their effects on modeling precipitation from concentrated solutions using numerical speciation codes

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.F.; Ebinger, M.H.

    1996-08-01

    Four simple precipitation problems are solved to examine the use of numerical equilibrium codes. The study emphasizes concentrated solutions, assumes both ideal and nonideal solutions, and employs different databases and different activity-coefficient relationships. The study uses the EQ3/6 numerical speciation codes. The results show satisfactory material balances and agreement between solubility products calculated from free-energy relationships and those calculated from concentrations and activity coefficients. Precipitates show slightly higher solubilities when the solutions are regarded as nonideal than when considered ideal, agreeing with theory. When a substance may precipitate from a solution dilute in the precipitating substance, a code may or may not predict precipitation, depending on the database or activity-coefficient relationship used. In a problem involving a two-component precipitation, there are only small differences in the precipitate mass and composition between the ideal and nonideal solution calculations. Analysis of this result indicates that this may be a frequent occurrence. An analytical approach is derived for judging whether this phenomenon will occur in any real or postulated precipitation situation. The discussion looks at applications of this approach. In the solutes remaining after the precipitations, there seems to be little consistency in the calculated concentrations and activity coefficients. They do not appear to depend in any coherent manner on the database or activity-coefficient relationship used. These results reinforce warnings in the literature about perfunctory or mechanical use of numerical speciation codes.

  4. Dynamically Adapted Mesh Construction for the Efficient Numerical Solution of a Singular Perturbed Reaction-diffusion-advection Equation

    Directory of Open Access Journals (Sweden)

    Dmitry V. Lukyanenko

    2017-01-01

    Full Text Available This  work develops  a theory  of the  asymptotic-numerical investigation of the  moving fronts  in reaction-diffusion-advection models.  By considering  the  numerical  solution  of the  singularly perturbed Burgers’s  equation  we discuss a method  of dynamically  adapted mesh  construction that is able to significantly  improve  the  numerical  solution  of this  type of equations.  For  the  construction we use a priori information that is based  on the  asymptotic analysis  of the  problem.  In  particular, we take  into account the information about  the speed of the transition layer, its width  and structure. Our algorithms  are able to reduce significantly complexity and enhance stability of the numerical  calculations in comparison  with classical approaches for solving this class of problems.  The numerical  experiment is presented to demonstrate the effectiveness of the proposed  method.The article  is published  in the authors’  wording. 

  5. Comparative numerical solutions of stiff Ordinary differential equations using magnus series expansion method

    Directory of Open Access Journals (Sweden)

    SURE KÖME

    2014-12-01

    Full Text Available In this paper, we investigated the effect of Magnus Series Expansion Method on homogeneous stiff ordinary differential equations with different stiffness ratios. A Magnus type integrator is used to obtain numerical solutions of two different examples of stiff problems and exact and approximate results are tabulated. Furthermore, absolute error graphics are demonstrated in detail.

  6. Parameter estimation in IMEX-trigonometrically fitted methods for the numerical solution of reaction-diffusion problems

    Science.gov (United States)

    D'Ambrosio, Raffaele; Moccaldi, Martina; Paternoster, Beatrice

    2018-05-01

    In this paper, an adapted numerical scheme for reaction-diffusion problems generating periodic wavefronts is introduced. Adapted numerical methods for such evolutionary problems are specially tuned to follow prescribed qualitative behaviors of the solutions, making the numerical scheme more accurate and efficient as compared with traditional schemes already known in the literature. Adaptation through the so-called exponential fitting technique leads to methods whose coefficients depend on unknown parameters related to the dynamics and aimed to be numerically computed. Here we propose a strategy for a cheap and accurate estimation of such parameters, which consists essentially in minimizing the leading term of the local truncation error whose expression is provided in a rigorous accuracy analysis. In particular, the presented estimation technique has been applied to a numerical scheme based on combining an adapted finite difference discretization in space with an implicit-explicit time discretization. Numerical experiments confirming the effectiveness of the approach are also provided.

  7. Multiresolution strategies for the numerical solution of optimal control problems

    Science.gov (United States)

    Jain, Sachin

    There exist many numerical techniques for solving optimal control problems but less work has been done in the field of making these algorithms run faster and more robustly. The main motivation of this work is to solve optimal control problems accurately in a fast and efficient way. Optimal control problems are often characterized by discontinuities or switchings in the control variables. One way of accurately capturing the irregularities in the solution is to use a high resolution (dense) uniform grid. This requires a large amount of computational resources both in terms of CPU time and memory. Hence, in order to accurately capture any irregularities in the solution using a few computational resources, one can refine the mesh locally in the region close to an irregularity instead of refining the mesh uniformly over the whole domain. Therefore, a novel multiresolution scheme for data compression has been designed which is shown to outperform similar data compression schemes. Specifically, we have shown that the proposed approach results in fewer grid points in the grid compared to a common multiresolution data compression scheme. The validity of the proposed mesh refinement algorithm has been verified by solving several challenging initial-boundary value problems for evolution equations in 1D. The examples have demonstrated the stability and robustness of the proposed algorithm. The algorithm adapted dynamically to any existing or emerging irregularities in the solution by automatically allocating more grid points to the region where the solution exhibited sharp features and fewer points to the region where the solution was smooth. Thereby, the computational time and memory usage has been reduced significantly, while maintaining an accuracy equivalent to the one obtained using a fine uniform mesh. Next, a direct multiresolution-based approach for solving trajectory optimization problems is developed. The original optimal control problem is transcribed into a

  8. Numerical analysis

    CERN Document Server

    Rao, G Shanker

    2006-01-01

    About the Book: This book provides an introduction to Numerical Analysis for the students of Mathematics and Engineering. The book is designed in accordance with the common core syllabus of Numerical Analysis of Universities of Andhra Pradesh and also the syllabus prescribed in most of the Indian Universities. Salient features: Approximate and Numerical Solutions of Algebraic and Transcendental Equation Interpolation of Functions Numerical Differentiation and Integration and Numerical Solution of Ordinary Differential Equations The last three chapters deal with Curve Fitting, Eigen Values and Eigen Vectors of a Matrix and Regression Analysis. Each chapter is supplemented with a number of worked-out examples as well as number of problems to be solved by the students. This would help in the better understanding of the subject. Contents: Errors Solution of Algebraic and Transcendental Equations Finite Differences Interpolation with Equal Intervals Interpolation with Unequal Int...

  9. Grad-Shafranov reconstruction: overview and improvement of the numerical solution used in space physics

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda Gonzalez, A.; Domingues, M.O.; Mendes, O., E-mail: ojeda.gonzalez.a@gmail.com [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Kaibara, M.K. [Universidade Federal Fluminense (GMA/IME/UFF), Niteroi, RJ (Brazil); Prestes, A. [Universidade do Vale do Paraiba (IP and D/UNIVAP), Sao Jose dos Campos, SP (Brazil). Lab. de Fisica e Astronomia

    2015-10-15

    The Grad-Shafranov equation is a Poisson's equation, i.e., a partial differential equation of elliptic type. The problem is depending on the initial condition and can be treated as a Cauchy problem. Although it is ill-posed or ill-conditioned, it can be integrated numerically. In the integration of the GS equation, singularities with large values of the potential arise after a certain number of integration steps away from the original data line, and a filter should be used. The Grad-Shafranov reconstruction (GSR) technique was developed from 1996 to 2000 for recovering two-dimensional structures in the magnetopause in an ideal MHD formulation. Other works have used the GSR techniques to study magnetic flux ropes in the solar wind and in the magnetotail from a single spacecraft dataset; posteriorly, it was extended to treat measurements from multiple satellites. From Vlasov equation, it is possible to arrive at the GS-equation in function of the normalized vector potential. A general solution is obtained using complex variable theory. A specific solution was chosen as benchmark case to solve numerically the GS equation.We propose some changes in the resolution scheme of the GS equation to improve the solution. The result of each method is compared with the solution proposed by Hau and Sonnerup (J. Geophys. Res. 104(A4), 6899-6917 (1999)). The main improvement found in the GS resolution was the need to filter Bx values at each y value. (author)

  10. Numerical Simulation of the Freeze-Thaw Behavior of Mortar Containing Deicing Salt Solution.

    Science.gov (United States)

    Esmaeeli, Hadi S; Farnam, Yaghoob; Bentz, Dale P; Zavattieri, Pablo D; Weiss, Jason

    2017-02-01

    This paper presents a one-dimensional finite difference model that is developed to describe the freeze-thaw behavior of an air-entrained mortar containing deicing salt solution. A phenomenological model is used to predict the temperature and the heat flow for mortar specimens during cooling and heating. Phase transformations associated with the freezing/melting of water/ice or transition of the eutectic solution from liquid to solid are included in this phenomenological model. The lever rule is used to calculate the quantity of solution that undergoes the phase transformation, thereby simulating the energy released/absorbed during phase transformation. Undercooling and pore size effects are considered in the numerical model. To investigate the effect of pore size distribution, this distribution is considered using the Gibbs-Thomson equation in a saturated mortar specimen. For an air-entrained mortar, the impact of considering pore size (and curvature) on freezing was relatively insignificant; however the impact of pore size is much more significant during melting. The fluid inside pores smaller than 5 nm (i.e., gel pores) has a relatively small contribution in the macroscopic freeze-thaw behavior of mortar specimens within the temperature range used in this study (i.e., +24 °C to -35 °C), and can therefore be neglected for the macroscopic freeze-thaw simulations. A heat sink term is utilized to simulate the heat dissipation during phase transformations. Data from experiments performed using a low-temperature longitudinal guarded comparative calorimeter (LGCC) on mortar specimens fully saturated with various concentration NaCl solutions or partially saturated with water is compared to the numerical results and a promising agreement is generally obtained.

  11. A Comparison of Numerical and Analytical Radiative-Transfer Solutions for Plane Albedo in Natural Waters

    Science.gov (United States)

    Several numerical and analytical solutions of the radiative transfer equation (RTE) for plane albedo were compared for solar light reflection by sea water. The study incorporated the simplest case, that being a semi-infinite one-dimensional plane-parallel absorbing and scattering...

  12. Numerical solution of multi group-Two dimensional- Adjoint equation with finite element method

    International Nuclear Information System (INIS)

    Poursalehi, N.; Khalafi, H.; Shahriari, M.; Minoochehr

    2008-01-01

    Adjoint equation is used for perturbation theory in nuclear reactor design. For numerical solution of adjoint equation, usually two methods are applied. These are Finite Element and Finite Difference procedures. Usually Finite Element Procedure is chosen for solving of adjoint equation, because it is more use able in variety of geometries. In this article, Galerkin Finite Element method is discussed. This method is applied for numerical solving multi group, multi region and two dimensional (X, Y) adjoint equation. Typical reactor geometry is partitioned with triangular meshes and boundary condition for adjoint flux is considered zero. Finally, for a case of defined parameters, Finite Element Code was applied and results were compared with Citation Code

  13. A numerical comparison between the multiple-scales and finite-element solution for sound propagation in lined flow ducts

    NARCIS (Netherlands)

    Rienstra, S.W.; Eversman, W.

    2001-01-01

    An explicit, analytical, multiple-scales solution for modal sound transmission through slowly varying ducts with mean flow and acoustic lining is tested against a numerical finite-element solution solving the same potential flow equations. The test geometry taken is representative of a high-bypass

  14. Numerical modeling of solute transport in a sand tank physical model under varying hydraulic gradient and hydrological stresses

    Science.gov (United States)

    Atlabachew, Abunu; Shu, Longcang; Wu, Peipeng; Zhang, Yongjie; Xu, Yang

    2018-03-01

    This laboratory study improves the understanding of the impacts of horizontal hydraulic gradient, artificial recharge, and groundwater pumping on solute transport through aquifers. Nine experiments and numerical simulations were carried out using a sand tank. The variable-density groundwater flow and sodium chloride transport were simulated using the three-dimensional numerical model SEAWAT. Numerical modelling results successfully reproduced heads and concentrations observed in the sand tank. A higher horizontal hydraulic gradient enhanced the migration of sodium chloride, particularly in the groundwater flow direction. The application of constant artificial recharge increased the spread of the sodium chloride plume in both the longitudinal and lateral directions. In addition, groundwater pumping accelerated spreading of the sodium chloride plume towards the pumping well. Both higher hydraulic gradient and pumping rate generated oval-shaped plumes in the horizontal plane. However, the artificial recharge process produced stretched plumes. These effects of artificial recharge and groundwater pumping were greater under higher hydraulic gradient. The concentration breakthrough curves indicated that emerging solutions never attained the concentration of the originally injected solution. This is probably because of sorption of sodium chloride onto the silica sand and/or the exchange of sodium chloride between the mobile and immobile liquid domains. The fingering and protruding plume shapes in the numerical models constitute instability zones produced by buoyancy-driven flow. Overall, the results have substantiated the influences of hydraulic gradient, boundary condition, artificial recharge, pumping rate and density differences on solute transport through a homogeneous unconfined aquifer. The implications of these findings are important for managing liquid wastes.

  15. Numerical solution of fully developed heat transfer problem with constant wall temperature and application to isosceles triangle and parabolic ducts

    International Nuclear Information System (INIS)

    Karabulut, Halit; Ipci, Duygu; Cinar, Can

    2016-01-01

    Highlights: • A numerical method has been developed for fully developed flows with constant wall temperature. • The governing equations were transformed to boundary fitted coordinates. • The Nusselt number of parabolic duct has been investigated. • Validation of the numerical method has been made by comparing published data. - Abstract: In motor-vehicles the use of more compact radiators have several advantages such as; improving the aerodynamic form of cars, reducing the weight and volume of the cars, reducing the material consumption and environmental pollutions, and enabling faster increase of the engine coolant temperature after starting to run and thereby improving the thermal efficiency. For the design of efficient and compact radiators, the robust determination of the heat transfer coefficient becomes imperative. In this study the external heat transfer coefficient of the radiator has been investigated for hydrodynamically and thermally fully developed flows in channels with constant wall temperature. In such situation the numerical treatment of the problem results in a trivial solution. To find a non-trivial solution the problem is treated either as an eigenvalue problem or as a thermally developing flow problem. In this study a numerical solution procedure has been developed and the heat transfer coefficients of the fully developed flow in triangular and parabolic air channels were investigated. The governing equations were transformed to boundary fitted coordinates and numerically solved. The non-trivial solution was obtained by means of guessing the temperature of any grid point within the solution domain. The correction of the guessed temperature was performed via smoothing the temperature profile on a line passing through the mentioned grid point. Results were compared with literature data and found to be consistent.

  16. Numerical analysis of the asymptotic behavior of solutions of a boundary problem for a nonlinear parabolic equation

    International Nuclear Information System (INIS)

    Vasileva, D.P.

    1993-01-01

    Blow-up and global time self-similar solutions of a boundary problem for a nonlinear equation u t = Δ u σ+1 + u β are found in the case β = σ + 1. It is shown that they describe the asymptotic behavior of a wide class of initial perturbations. A numerical investigation of the solutions in the case β>σ + 1 is also made. A hypothesis is done that the behavior for large times of global time solutions is described by the self-similar solutions of the equation without source.(author). 20 refs.; 9 figs

  17. Numerical Approximations to the Solution of Ray Tracing through the Crystalline Lens

    International Nuclear Information System (INIS)

    Yildirim, A.; Gökdoğan, A.; Merdan, M.; Lakshminarayanan, V.

    2012-01-01

    An approximate analytical solution in the form of a rapidly convergent series for tracing light rays through an inhomogeneous graded index medium is developed, using the multi-step differential transform method based on the classical differential transformation method. Numerical results are compared to those obtained by the fourth-order Runge—Kutta method to illustrate the precision and effectiveness of the proposed method. Results are given in explicit and graphical forms. (fundamental areas of phenomenology(including applications))

  18. The numerical solution of thawing process in phase change slab using variable space grid technique

    Directory of Open Access Journals (Sweden)

    Serttikul, C.

    2007-09-01

    Full Text Available This paper focuses on the numerical analysis of melting process in phase change material which considers the moving boundary as the main parameter. In this study, pure ice slab and saturated porous packed bed are considered as the phase change material. The formulation of partial differential equations is performed consisting heat conduction equations in each phase and moving boundary equation (Stefan equation. The variable space grid method is then applied to these equations. The transient heat conduction equations and the Stefan condition are solved by using the finite difference method. A one-dimensional melting model is then validated against the available analytical solution. The effect of constant temperature heat source on melting rate and location of melting front at various times is studied in detail.It is found that the nonlinearity of melting rate occurs for a short time. The successful comparison with numerical solution and analytical solution should give confidence in the proposed mathematical treatment, and encourage the acceptance of this method as useful tool for exploring practical problems such as forming materials process, ice melting process, food preservation process and tissue preservation process.

  19. Numerical evidence for 'multiscalar stars'

    International Nuclear Information System (INIS)

    Hawley, Scott H.; Choptuik, Matthew W.

    2003-01-01

    We present a class of general relativistic solitonlike solutions composed of multiple minimally coupled, massive, real scalar fields which interact only through the gravitational field. We describe a two-parameter family of solutions we call ''phase-shifted boson stars'' (parametrized by central density ρ 0 and phase δ), which are obtained by solving the ordinary differential equations associated with boson stars and then altering the phase between the real and imaginary parts of the field. These solutions are similar to boson stars as well as the oscillating soliton stars found by Seidel and Suen [E. Seidel and W. M. Suen, Phys. Rev. Lett. 66, 1659 (1991)]; in particular, long-time numerical evolutions suggest that phase-shifted boson stars are stable. Our results indicate that scalar solitonlike solutions are perhaps more generic than has been previously thought

  20. Almost Surely Asymptotic Stability of Exact and Numerical Solutions for Neutral Stochastic Pantograph Equations

    Directory of Open Access Journals (Sweden)

    Zhanhua Yu

    2011-01-01

    Full Text Available We study the almost surely asymptotic stability of exact solutions to neutral stochastic pantograph equations (NSPEs, and sufficient conditions are obtained. Based on these sufficient conditions, we show that the backward Euler method (BEM with variable stepsize can preserve the almost surely asymptotic stability. Numerical examples are demonstrated for illustration.

  1. Numerical solution of quadratic matrix equations for free vibration analysis of structures

    Science.gov (United States)

    Gupta, K. K.

    1975-01-01

    This paper is concerned with the efficient and accurate solution of the eigenvalue problem represented by quadratic matrix equations. Such matrix forms are obtained in connection with the free vibration analysis of structures, discretized by finite 'dynamic' elements, resulting in frequency-dependent stiffness and inertia matrices. The paper presents a new numerical solution procedure of the quadratic matrix equations, based on a combined Sturm sequence and inverse iteration technique enabling economical and accurate determination of a few required eigenvalues and associated vectors. An alternative procedure based on a simultaneous iteration procedure is also described when only the first few modes are the usual requirement. The employment of finite dynamic elements in conjunction with the presently developed eigenvalue routines results in a most significant economy in the dynamic analysis of structures.

  2. Determination of Solution Accuracy of Numerical Schemes as Part of Code and Calculation Verification

    Energy Technology Data Exchange (ETDEWEB)

    Blottner, F.G.; Lopez, A.R.

    1998-10-01

    This investigation is concerned with the accuracy of numerical schemes for solving partial differential equations used in science and engineering simulation codes. Richardson extrapolation methods for steady and unsteady problems with structured meshes are presented as part of the verification procedure to determine code and calculation accuracy. The local truncation error de- termination of a numerical difference scheme is shown to be a significant component of the veri- fication procedure as it determines the consistency of the numerical scheme, the order of the numerical scheme, and the restrictions on the mesh variation with a non-uniform mesh. Genera- tion of a series of co-located, refined meshes with the appropriate variation of mesh cell size is in- vestigated and is another important component of the verification procedure. The importance of mesh refinement studies is shown to be more significant than just a procedure to determine solu- tion accuracy. It is suggested that mesh refinement techniques can be developed to determine con- sistency of numerical schemes and to determine if governing equations are well posed. The present investigation provides further insight into the conditions and procedures required to effec- tively use Richardson extrapolation with mesh refinement studies to achieve confidence that sim- ulation codes are producing accurate numerical solutions.

  3. A variational numerical method based on finite elements for the nonlinear solution characteristics of the periodically forced Chen system

    Science.gov (United States)

    Khan, Sabeel M.; Sunny, D. A.; Aqeel, M.

    2017-09-01

    Nonlinear dynamical systems and their solutions are very sensitive to initial conditions and therefore need to be approximated carefully. In this article, we present and analyze nonlinear solution characteristics of the periodically forced Chen system with the application of a variational method based on the concept of finite time-elements. Our approach is based on the discretization of physical time space into finite elements where each time-element is mapped to a natural time space. The solution of the system is then determined in natural time space using a set of suitable basis functions. The numerical algorithm is presented and implemented to compute and analyze nonlinear behavior at different time-step sizes. The obtained results show an excellent agreement with the classical RK-4 and RK-5 methods. The accuracy and convergence of the method is shown by comparing numerically computed results with the exact solution for a test problem. The presented method has shown a great potential in dealing with the solutions of nonlinear dynamical systems and thus can be utilized in delineating different features and characteristics of their solutions.

  4. Numerical modelling of coupled fluid, heat, and solute transport in deformable fractured rock

    International Nuclear Information System (INIS)

    Chan, T.; Reid, J.A.K.

    1987-01-01

    This paper reports on a three-dimensional (3D) finite-element code, MOTIF (model of transport in fractured/porous media), developed to model the coupled processes of groundwater flow, heat transport, brine transport, and one-species radionuclide transport in geological media. Three types of elements are available: a 3D continuum element, a planar fracture element that can be oriented in any arbitrary direction in 3D space or pipe flow in 3D space, and a line element for simulating fracture flow in 2D space or pipe flow in 3D space. As a quality-assurance measure, the MOTIF code was verified by comparison of its results with analytical solutions and other published numerical solutions

  5. Numerical Solutions for Supersonic Flow of an Ideal Gas Around Blunt Two-Dimensional Bodies

    Science.gov (United States)

    Fuller, Franklyn B.

    1961-01-01

    The method described is an inverse one; the shock shape is chosen and the solution proceeds downstream to a body. Bodies blunter than circular cylinders are readily accessible, and any adiabatic index can be chosen. The lower limit to the free-stream Mach number available in any case is determined by the extent of the subsonic field, which in turn depends upon the body shape. Some discussion of the stability of the numerical processes is given. A set of solutions for flows about circular cylinders at several Mach numbers and several values of the adiabatic index is included.

  6. The development of high performance numerical simulation code for transient groundwater flow and reactive solute transport problems based on local discontinuous Galerkin method

    International Nuclear Information System (INIS)

    Suzuki, Shunichi; Motoshima, Takayuki; Naemura, Yumi; Kubo, Shin; Kanie, Shunji

    2009-01-01

    The authors develop a numerical code based on Local Discontinuous Galerkin Method for transient groundwater flow and reactive solute transport problems in order to make it possible to do three dimensional performance assessment on radioactive waste repositories at the earliest stage possible. Local discontinuous Galerkin Method is one of mixed finite element methods which are more accurate ones than standard finite element methods. In this paper, the developed numerical code is applied to several problems which are provided analytical solutions in order to examine its accuracy and flexibility. The results of the simulations show the new code gives highly accurate numeric solutions. (author)

  7. A Lie-admissible method of integration of Fokker-Planck equations with non-linear coefficients (exact and numerical solutions)

    International Nuclear Information System (INIS)

    Fronteau, J.; Combis, P.

    1984-08-01

    A Lagrangian method is introduced for the integration of non-linear Fokker-Planck equations. Examples of exact solutions obtained in this way are given, and also the explicit scheme used for the computation of numerical solutions. The method is, in addition, shown to be of a Lie-admissible type

  8. Numerical solution of large nonlinear boundary value problems by quadratic minimization techniques

    International Nuclear Information System (INIS)

    Glowinski, R.; Le Tallec, P.

    1984-01-01

    The objective of this paper is to describe the numerical treatment of large highly nonlinear two or three dimensional boundary value problems by quadratic minimization techniques. In all the different situations where these techniques were applied, the methodology remains the same and is organized as follows: 1) derive a variational formulation of the original boundary value problem, and approximate it by Galerkin methods; 2) transform this variational formulation into a quadratic minimization problem (least squares methods) or into a sequence of quadratic minimization problems (augmented lagrangian decomposition); 3) solve each quadratic minimization problem by a conjugate gradient method with preconditioning, the preconditioning matrix being sparse, positive definite, and fixed once for all in the iterative process. This paper will illustrate the methodology above on two different examples: the description of least squares solution methods and their application to the solution of the unsteady Navier-Stokes equations for incompressible viscous fluids; the description of augmented lagrangian decomposition techniques and their application to the solution of equilibrium problems in finite elasticity

  9. Optimality conditions for the numerical solution of optimization problems with PDE constraints :

    Energy Technology Data Exchange (ETDEWEB)

    Aguilo Valentin, Miguel Alejandro; Ridzal, Denis

    2014-03-01

    A theoretical framework for the numerical solution of partial di erential equation (PDE) constrained optimization problems is presented in this report. This theoretical framework embodies the fundamental infrastructure required to e ciently implement and solve this class of problems. Detail derivations of the optimality conditions required to accurately solve several parameter identi cation and optimal control problems are also provided in this report. This will allow the reader to further understand how the theoretical abstraction presented in this report translates to the application.

  10. Bäcklund transformation, analytic soliton solutions and numerical simulation for a (2+1)-dimensional complex Ginzburg-Landau equation in a nonlinear fiber

    Science.gov (United States)

    Yu, Ming-Xiao; Tian, Bo; Chai, Jun; Yin, Hui-Min; Du, Zhong

    2017-10-01

    In this paper, we investigate a nonlinear fiber described by a (2+1)-dimensional complex Ginzburg-Landau equation with the chromatic dispersion, optical filtering, nonlinear and linear gain. Bäcklund transformation in the bilinear form is constructed. With the modified bilinear method, analytic soliton solutions are obtained. For the soliton, the amplitude can decrease or increase when the absolute value of the nonlinear or linear gain is enlarged, and the width can be compressed or amplified when the absolute value of the chromatic dispersion or optical filtering is enhanced. We study the stability of the numerical solutions numerically by applying the increasing amplitude, embedding the white noise and adding the Gaussian pulse to the initial values based on the analytic solutions, which shows that the numerical solutions are stable, not influenced by the finite initial perturbations.

  11. Research Article. Geodesic equations and their numerical solutions in geodetic and Cartesian coordinates on an oblate spheroid

    Directory of Open Access Journals (Sweden)

    Panou G.

    2017-02-01

    Full Text Available The direct geodesic problem on an oblate spheroid is described as an initial value problem and is solved numerically using both geodetic and Cartesian coordinates. The geodesic equations are formulated by means of the theory of differential geometry. The initial value problem under consideration is reduced to a system of first-order ordinary differential equations, which is solved using a numerical method. The solution provides the coordinates and the azimuths at any point along the geodesic. The Clairaut constant is not used for the solution but it is computed, allowing to check the precision of the method. An extensive data set of geodesics is used, in order to evaluate the performance of the method in each coordinate system. The results for the direct geodesic problem are validated by comparison to Karney’s method. We conclude that a complete, stable, precise, accurate and fast solution of the problem in Cartesian coordinates is accomplished.

  12. Numerical solution of kinetics equation for point defects accumulation in metals under irradiation

    International Nuclear Information System (INIS)

    Aldzhambekova, G.T.; Iskakov, B.M.

    1999-01-01

    In the report the mathematical model, describing processes of generation and accumulation of defects in solids under irradiation is considered. The equations of this model take into account the velocity of Frenkel pairs generation, the mutual recombination of vacancies and the interstitials, as well as velocity of defects absorption by discharge channeling of vacancies and interstitials. By Runge-Kutta method the numerical solution of the model was carried out

  13. Numerical Solutions of Mechanical Turbulent Filtration Equation Used in Mechatronics and Micro Mechanic

    OpenAIRE

    Hassan Fathabadi

    2013-01-01

    In this study, several novel numerical solutions are presented to solve the turbulent filtration equation and its special case called “Non-Newtonian mechanical filtration equation”. The turbulent filtration equation in porous media is a very important equation which has many applications to solve the problems appearing especially in mechatronics, micro mechanic and fluid mechanic. Many applied mechanical problems can be solved using this equation. For example, non-Newtonian mechanical filtrat...

  14. Analytical solution for vacuum preloading considering the nonlinear distribution of horizontal permeability within the smear zone.

    Directory of Open Access Journals (Sweden)

    Jie Peng

    Full Text Available The vacuum preloading is an effective method which is widely used in ground treatment. In consolidation analysis, the soil around prefabricated vertical drain (PVD is traditionally divided into smear zone and undisturbed zone, both with constant permeability. In reality, the permeability of soil changes continuously within the smear zone. In this study, the horizontal permeability coefficient of soil within the smear zone is described by an exponential function of radial distance. A solution for vacuum preloading consolidation considers the nonlinear distribution of horizontal permeability within the smear zone is presented and compared with previous analytical results as well as a numerical solution, the results show that the presented solution correlates well with the numerical solution, and is more precise than previous analytical solution.

  15. Multiconfiguration time-dependent self-consistent field approximations in the numerical solution of quantum dynamical problems

    International Nuclear Information System (INIS)

    Kotler, Z.; Neria, E.; Nitzan, A.

    1991-01-01

    The use of the time-dependent self-consistent field approximation (TDSCF) in the numerical solution of quantum curve crossing and tunneling dynamical problems is investigated. Particular emphasis is given to multiconfiguration TDSCF (MCTDSCF) approximations, which are shown to perform considerably better with only a small increase in computational effort. We investigate a number of simple models in which a 'system' characterized by two electronic potential surfaces evolves while interacting with a 'bath' mode described by an harmonic oscillator, and compare exact numerical solutions to one- and two-configuration TDSCF approximations. We also introduce and investigate a semiclassical approximation in which the 'bath' mode is described by semiclassical wavepackets (one for each electronic state) and show that for all models investigated this scheme works very well in comparison with the fully quantum MCTDSCF approximation. This provides a potentially very useful method to simulate strongly quantum systems coupled to an essentially classical environment. (orig.)

  16. Multiconfiguration time-dependent self-consistent field approximations in the numerical solution of quantum dynamical problems

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, Z.; Neria, E.; Nitzan, A. (Tel Aviv Univ. (Israel). School of Chemistry)

    1991-02-01

    The use of the time-dependent self-consistent field approximation (TDSCF) in the numerical solution of quantum curve crossing and tunneling dynamical problems is investigated. Particular emphasis is given to multiconfiguration TDSCF (MCTDSCF) approximations, which are shown to perform considerably better with only a small increase in computational effort. We investigate a number of simple models in which a 'system' characterized by two electronic potential surfaces evolves while interacting with a 'bath' mode described by an harmonic oscillator, and compare exact numerical solutions to one- and two-configuration TDSCF approximations. We also introduce and investigate a semiclassical approximation in which the 'bath' mode is described by semiclassical wavepackets (one for each electronic state) and show that for all models investigated this scheme works very well in comparison with the fully quantum MCTDSCF approximation. This provides a potentially very useful method to simulate strongly quantum systems coupled to an essentially classical environment. (orig.).

  17. Numerical models for differential problems

    CERN Document Server

    Quarteroni, Alfio

    2017-01-01

    In this text, we introduce the basic concepts for the numerical modelling of partial differential equations. We consider the classical elliptic, parabolic and hyperbolic linear equations, but also the diffusion, transport, and Navier-Stokes equations, as well as equations representing conservation laws, saddle-point problems and optimal control problems. Furthermore, we provide numerous physical examples which underline such equations. We then analyze numerical solution methods based on finite elements, finite differences, finite volumes, spectral methods and domain decomposition methods, and reduced basis methods. In particular, we discuss the algorithmic and computer implementation aspects and provide a number of easy-to-use programs. The text does not require any previous advanced mathematical knowledge of partial differential equations: the absolutely essential concepts are reported in a preliminary chapter. It is therefore suitable for students of bachelor and master courses in scientific disciplines, an...

  18. Application of synthetic diffusion method in the numerical solution of the equations of neutron transport in slab geometry

    International Nuclear Information System (INIS)

    Valdes Parra, J.J.

    1986-01-01

    One of the main problems in reactor physics is to determine the neutron distribution in reactor core, since knowing that, it is possible to calculate the rapidity of occurrence of different nuclear reaction inside the reactor core. Within different theories existing in nuclear reactor physics, is neutron transport the one in which equation who govern the exact behavior of neutronic distribution are developed even inside the proper neutron transport theory, there exist different methods of solution which are approximations to exact solution; still more, with the purpose to reach a more precise solution, the majority of methods have been approached to the obtention of solutions in numerical form with the aim of take the advantages of modern computers, and for this reason a great deal of effort is dedicated to numerical solution of the equations of neutron transport. In agreement with the above mentioned, in this work has been developed a computer program which uses a relatively new techniques known as 'acceleration of synthetic diffusion' which has been applied to solve the neutron transport equation with 'classical schemes of spatial integration' obtaining results with a smaller quantity of interactions, if they compare to done without using such equation (Author)

  19. Boundary integral equation methods and numerical solutions thin plates on an elastic foundation

    CERN Document Server

    Constanda, Christian; Hamill, William

    2016-01-01

    This book presents and explains a general, efficient, and elegant method for solving the Dirichlet, Neumann, and Robin boundary value problems for the extensional deformation of a thin plate on an elastic foundation. The solutions of these problems are obtained both analytically—by means of direct and indirect boundary integral equation methods (BIEMs)—and numerically, through the application of a boundary element technique. The text discusses the methodology for constructing a BIEM, deriving all the attending mathematical properties with full rigor. The model investigated in the book can serve as a template for the study of any linear elliptic two-dimensional problem with constant coefficients. The representation of the solution in terms of single-layer and double-layer potentials is pivotal in the development of a BIEM, which, in turn, forms the basis for the second part of the book, where approximate solutions are computed with a high degree of accuracy. The book is intended for graduate students and r...

  20. Numerical doubly-periodic solution of the (2+1)-dimensional Boussinesq equation with initial conditions by the variational iteration method

    International Nuclear Information System (INIS)

    Inc, Mustafa

    2007-01-01

    In this Letter, a scheme is developed to study numerical doubly-periodic solutions of the (2+1)-dimensional Boussinesq equation with initial condition by the variational iteration method. As a result, the approximate and exact doubly-periodic solutions are obtained. For different modulus m, comparison between the approximate solution and the exact solution is made graphically, revealing that the variational iteration method is a powerful and effective tool to non-linear problems

  1. Salpeter equation in position space: Numerical solution for arbitrary confining potentials

    International Nuclear Information System (INIS)

    Nickisch, L.J.; Durand, L.; Durand, B.

    1984-01-01

    We present and test two new methods for the numerical solution of the relativistic wave equation [(-del 2 +m 1 2 )/sup 1/2/+(-del 2 +m 2 2 )/sup 1/2/+V(r)-M]psi( r ) = 0, which appears in the theory of relativistic quark-antiquark bound states. Our methods work directly in position space, and hence have the desirable features that we can vary the potential V(r) locally in fitting the qq-bar mass spectrum, and can easily build in the expected behavior of V for r→0,infinity. Our first method converts the nonlocal square-root operators to mildly singular integral operators involving hyperbolic Bessel functions. The resulting integral equation can be solved numerically by matrix techniques. Our second method approximates the square-root operators directly by finite matrices. Both methods converge rapidly with increasing matrix size (the square-root matrix method more rapidly) and can be used in fast-fitting routines. We present some tests for oscillator and Coulomb interactions, and for the realistic Coulomb-plus-linear potential used in qq-bar phenomenology

  2. Numerical model for the solution of two-dimensional natural convection problems in arbitrary cavities

    International Nuclear Information System (INIS)

    Milioli, F.E.

    1985-01-01

    In this research work a numerical model for the solution of two-dimensional natural convection problems in arbitrary cavities of a Boussinesq fluid is presented. The conservation equations are written in a general curvilinear coordinate system which matches the irregular boundaries of the domain. The nonorthogonal system is generated by a suitable system of elliptic equations. The momentum and continuity equations are transformed from the Cartesian system to the general curvilinear system keeping the Cartesian velocity components as the dependent variables in the transformed domain. Finite difference equations are obtained for the contravariant velocity components in the transformed domain. The numerical calculations are performed in a fixed rectangular domain and both the Cartesian and the contravariant velocity components take part in the solutiomn procedure. The dependent variables are arranged on the grid in a staggered manner. The numerical model is tested by solving the driven flow in a square cavity with a moving side using a nonorthogoanl grid. The natural convenction in a square cavity, using an orthogonal and a nonorthogonal grid, is also solved for the model test. Also, the solution for the buoyancy flow between a square cylinder placed inside a circular cylinder is presented. The results of the test problems are compared with those available in the specialized literature. Finally, in order to show the generality of the model, the natural convection problem inside a very irregular cavity is presented. (Author) [pt

  3. Numerical Uncertainty Analysis for Computational Fluid Dynamics using Student T Distribution -- Application of CFD Uncertainty Analysis Compared to Exact Analytical Solution

    Science.gov (United States)

    Groves, Curtis E.; Ilie, marcel; Shallhorn, Paul A.

    2014-01-01

    Computational Fluid Dynamics (CFD) is the standard numerical tool used by Fluid Dynamists to estimate solutions to many problems in academia, government, and industry. CFD is known to have errors and uncertainties and there is no universally adopted method to estimate such quantities. This paper describes an approach to estimate CFD uncertainties strictly numerically using inputs and the Student-T distribution. The approach is compared to an exact analytical solution of fully developed, laminar flow between infinite, stationary plates. It is shown that treating all CFD input parameters as oscillatory uncertainty terms coupled with the Student-T distribution can encompass the exact solution.

  4. Fast and high-order numerical algorithms for the solution of multidimensional nonlinear fractional Ginzburg-Landau equation

    Science.gov (United States)

    Mohebbi, Akbar

    2018-02-01

    In this paper we propose two fast and accurate numerical methods for the solution of multidimensional space fractional Ginzburg-Landau equation (FGLE). In the presented methods, to avoid solving a nonlinear system of algebraic equations and to increase the accuracy and efficiency of method, we split the complex problem into simpler sub-problems using the split-step idea. For a homogeneous FGLE, we propose a method which has fourth-order of accuracy in time component and spectral accuracy in space variable and for nonhomogeneous one, we introduce another scheme based on the Crank-Nicolson approach which has second-order of accuracy in time variable. Due to using the Fourier spectral method for fractional Laplacian operator, the resulting schemes are fully diagonal and easy to code. Numerical results are reported in terms of accuracy, computational order and CPU time to demonstrate the accuracy and efficiency of the proposed methods and to compare the results with the analytical solutions. The results show that the present methods are accurate and require low CPU time. It is illustrated that the numerical results are in good agreement with the theoretical ones.

  5. Numerical fluid solutions for nonlocal electron transport in hot plasmas: Equivalent diffusion versus nonlocal source

    International Nuclear Information System (INIS)

    Colombant, Denis; Manheimer, Wallace

    2010-01-01

    Flux limitation and preheat are important processes in electron transport occurring in laser produced plasmas. The proper calculation of both of these has been a subject receiving much attention over the entire lifetime of the laser fusion project. Where nonlocal transport (instead of simple single flux limit) has been modeled, it has always been with what we denote the equivalent diffusion solution, namely treating the transport as only a diffusion process. We introduce here a new approach called the nonlocal source solution and show it is numerically viable for laser produced plasmas. It turns out that the equivalent diffusion solution generally underestimates preheat. Furthermore, the advance of the temperature front, and especially the preheat, can be held up by artificial 'thermal barriers'. The nonlocal source method of solution, on the other hand more accurately describes preheat and can stably calculate the solution for the temperature even if the heat flux is up the gradient.

  6. Numerical solution of the unsteady diffusion-convection-reaction equation based on improved spectral Galerkin method

    Science.gov (United States)

    Zhong, Jiaqi; Zeng, Cheng; Yuan, Yupeng; Zhang, Yuzhe; Zhang, Ye

    2018-04-01

    The aim of this paper is to present an explicit numerical algorithm based on improved spectral Galerkin method for solving the unsteady diffusion-convection-reaction equation. The principal characteristics of this approach give the explicit eigenvalues and eigenvectors based on the time-space separation method and boundary condition analysis. With the help of Fourier series and Galerkin truncation, we can obtain the finite-dimensional ordinary differential equations which facilitate the system analysis and controller design. By comparing with the finite element method, the numerical solutions are demonstrated via two examples. It is shown that the proposed method is effective.

  7. Symbolic-Numeric Integration of the Dynamical Cosserat Equations

    KAUST Repository

    Lyakhov, Dmitry A.

    2017-08-29

    We devise a symbolic-numeric approach to the integration of the dynamical part of the Cosserat equations, a system of nonlinear partial differential equations describing the mechanical behavior of slender structures, like fibers and rods. This is based on our previous results on the construction of a closed form general solution to the kinematic part of the Cosserat system. Our approach combines methods of numerical exponential integration and symbolic integration of the intermediate system of nonlinear ordinary differential equations describing the dynamics of one of the arbitrary vector-functions in the general solution of the kinematic part in terms of the module of the twist vector-function. We present an experimental comparison with the well-established generalized \\\\alpha -method illustrating the computational efficiency of our approach for problems in structural mechanics.

  8. Symbolic-Numeric Integration of the Dynamical Cosserat Equations

    KAUST Repository

    Lyakhov, Dmitry A.; Gerdt, Vladimir P.; Weber, Andreas G.; Michels, Dominik L.

    2017-01-01

    We devise a symbolic-numeric approach to the integration of the dynamical part of the Cosserat equations, a system of nonlinear partial differential equations describing the mechanical behavior of slender structures, like fibers and rods. This is based on our previous results on the construction of a closed form general solution to the kinematic part of the Cosserat system. Our approach combines methods of numerical exponential integration and symbolic integration of the intermediate system of nonlinear ordinary differential equations describing the dynamics of one of the arbitrary vector-functions in the general solution of the kinematic part in terms of the module of the twist vector-function. We present an experimental comparison with the well-established generalized \\alpha -method illustrating the computational efficiency of our approach for problems in structural mechanics.

  9. Analytical solution and numerical simulation of the liquid nitrogen freezing-temperature field of a single pipe

    Science.gov (United States)

    Cai, Haibing; Xu, Liuxun; Yang, Yugui; Li, Longqi

    2018-05-01

    Artificial liquid nitrogen freezing technology is widely used in urban underground engineering due to its technical advantages, such as simple freezing system, high freezing speed, low freezing temperature, high strength of frozen soil, and absence of pollution. However, technical difficulties such as undefined range of liquid nitrogen freezing and thickness of frozen wall gradually emerge during the application process. Thus, the analytical solution of the freezing-temperature field of a single pipe is established considering the freezing temperature of soil and the constant temperature of freezing pipe wall. This solution is then applied in a liquid nitrogen freezing project. Calculation results show that the radius of freezing front of liquid nitrogen is proportional to the square root of freezing time. The radius of the freezing front also decreases with decreased the freezing temperature, and the temperature gradient of soil decreases with increased distance from the freezing pipe. The radius of cooling zone in the unfrozen area is approximately four times the radius of the freezing front. Meanwhile, the numerical simulation of the liquid nitrogen freezing-temperature field of a single pipe is conducted using the Abaqus finite-element program. Results show that the numerical simulation of soil temperature distribution law well agrees with the analytical solution, further verifies the reliability of the established analytical solution of the liquid nitrogen freezing-temperature field of a single pipe.

  10. Human-computer interfaces applied to numerical solution of the Plateau problem

    Science.gov (United States)

    Elias Fabris, Antonio; Soares Bandeira, Ivana; Ramos Batista, Valério

    2015-09-01

    In this work we present a code in Matlab to solve the Problem of Plateau numerically, and the code will include human-computer interface. The Problem of Plateau has applications in areas of knowledge like, for instance, Computer Graphics. The solution method will be the same one of the Surface Evolver, but the difference will be a complete graphical interface with the user. This will enable us to implement other kinds of interface like ocular mouse, voice, touch, etc. To date, Evolver does not include any graphical interface, which restricts its use by the scientific community. Specially, its use is practically impossible for most of the Physically Challenged People.

  11. An Explicit Finite Difference scheme for numerical solution of fractional neutron point kinetic equation

    International Nuclear Information System (INIS)

    Saha Ray, S.; Patra, A.

    2012-01-01

    Highlights: ► In this paper fractional neutron point kinetic equation has been analyzed. ► The numerical solution for fractional neutron point kinetic equation is obtained. ► Explicit Finite Difference Method has been applied. ► Supercritical reactivity, critical reactivity and subcritical reactivity analyzed. ► Comparison between fractional and classical neutron density is presented. - Abstract: In the present article, a numerical procedure to efficiently calculate the solution for fractional point kinetics equation in nuclear reactor dynamics is investigated. The Explicit Finite Difference Method is applied to solve the fractional neutron point kinetic equation with the Grunwald–Letnikov (GL) definition (). Fractional Neutron Point Kinetic Model has been analyzed for the dynamic behavior of the neutron motion in which the relaxation time associated with a variation in the neutron flux involves a fractional order acting as exponent of the relaxation time, to obtain the best operation of a nuclear reactor dynamics. Results for neutron dynamic behavior for subcritical reactivity, supercritical reactivity and critical reactivity and also for different values of fractional order have been presented and compared with the classical neutron point kinetic (NPK) equation as well as the results obtained by the learned researchers .

  12. Numerical and analytical solutions for problems relevant for quantum computers

    International Nuclear Information System (INIS)

    Spoerl, Andreas

    2008-01-01

    Quantum computers are one of the next technological steps in modern computer science. Some of the relevant questions that arise when it comes to the implementation of quantum operations (as building blocks in a quantum algorithm) or the simulation of quantum systems are studied. Numerical results are gathered for variety of systems, e.g. NMR systems, Josephson junctions and others. To study quantum operations (e.g. the quantum fourier transform, swap operations or multiply-controlled NOT operations) on systems containing many qubits, a parallel C++ code was developed and optimised. In addition to performing high quality operations, a closer look was given to the minimal times required to implement certain quantum operations. These times represent an interesting quantity for the experimenter as well as for the mathematician. The former tries to fight dissipative effects with fast implementations, while the latter draws conclusions in the form of analytical solutions. Dissipative effects can even be included in the optimisation. The resulting solutions are relaxation and time optimised. For systems containing 3 linearly coupled spin (1)/(2) qubits, analytical solutions are known for several problems, e.g. indirect Ising couplings and trilinear operations. A further study was made to investigate whether there exists a sufficient set of criteria to identify systems with dynamics which are invertible under local operations. Finally, a full quantum algorithm to distinguish between two knots was implemented on a spin(1)/(2) system. All operations for this experiment were calculated analytically. The experimental results coincide with the theoretical expectations. (orig.)

  13. Numerical simulation of avascular tumor growth

    Energy Technology Data Exchange (ETDEWEB)

    Slezak, D Fernandez; Suarez, C; Soba, A; Risk, M; Marshall, G [Laboratorio de Sistemas Complejos, Departamento de Computacion, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (C1428EGA) Buenos Aires (Argentina)

    2007-11-15

    A mathematical and numerical model for the description of different aspects of microtumor development is presented. The model is based in the solution of a system of partial differential equations describing an avascular tumor growth. A detailed second-order numeric algorithm for solving this system is described. Parameters are swiped to cover a range of feasible physiological values. While previous published works used a single set of parameters values, here we present a wide range of feasible solutions for tumor growth, covering a more realistic scenario. The model is validated by experimental data obtained with a multicellular spheroid model, a specific type of in vitro biological model which is at present considered to be optimum for the study of complex aspects of avascular microtumor physiology. Moreover, a dynamical analysis and local behaviour of the system is presented, showing chaotic situations for particular sets of parameter values at some fixed points. Further biological experiments related to those specific points may give potentially interesting results.

  14. Numerical solution of chemically reactive non-Newtonian fluid flow: Dual stratification

    Science.gov (United States)

    Rehman, Khalil Ur; Malik, M. Y.; Khan, Abid Ali; Zehra, Iffat; Zahri, Mostafa; Tahir, M.

    2017-12-01

    We have found that only a few attempts are available in the literature relatively to the tangent hyperbolic fluid flow induced by stretching cylindrical surfaces. In particular, temperature and concentration stratification effects have not been investigated until now with respect to the tangent hyperbolic fluid model. Therefore, we have considered the tangent hyperbolic fluid flow induced by an acutely inclined cylindrical surface in the presence of both temperature and concentration stratification effects. To be more specific, the fluid flow is attained with the no slip condition, which implies that the bulk motion of the fluid particles is the same as the stretching velocity of a cylindrical surface. Additionally, the flow field situation is manifested with heat generation, mixed convection and chemical reaction effects. The flow partial differential equations give a complete description of the present problem. Therefore, to trace out the solution, a set of suitable transformations is introduced to convert these equations into ordinary differential equations. In addition, a self-coded computational algorithm is executed to inspect the numerical solution of these reduced equations. The effect logs of the involved parameters are provided graphically. Furthermore, the variations of the physical quantities are examined and given with the aid of tables. It is observed that the fluid temperature is a decreasing function of the thermal stratification parameter and a similar trend is noticed for the concentration via the solutal stratification parameter.

  15. An efficient approach to the numerical solution of rate-independent problems with nonconvex energies

    Czech Academy of Sciences Publication Activity Database

    Bartels, S.; Kružík, Martin

    2011-01-01

    Roč. 9, č. 3 (2011), s. 1275-1300 ISSN 1540-3459 R&D Projects: GA AV ČR IAA100750802 Grant - others:GA ČR(CZ) GAP201/10/0357 Institutional research plan: CEZ:AV0Z10750506 Keywords : numerical solution * nonconvexity Subject RIV: BA - General Mathematics Impact factor: 2.009, year: 2011 http://library.utia.cas.cz/separaty/2011/MTR/kruzik-0364707.pdf

  16. Solution of AntiSeepage for Mengxi River Based on Numerical Simulation of Unsaturated Seepage

    Science.gov (United States)

    Ji, Youjun; Zhang, Linzhi; Yue, Jiannan

    2014-01-01

    Lessening the leakage of surface water can reduce the waste of water resources and ground water pollution. To solve the problem that Mengxi River could not store water enduringly, geology investigation, theoretical analysis, experiment research, and numerical simulation analysis were carried out. Firstly, the seepage mathematical model was established based on unsaturated seepage theory; secondly, the experimental equipment for testing hydraulic conductivity of unsaturated soil was developed to obtain the curve of two-phase flow. The numerical simulation of leakage in natural conditions proves the previous inference and leakage mechanism of river. At last, the seepage control capacities of different impervious materials were compared by numerical simulations. According to the engineering actuality, the impervious material was selected. The impervious measure in this paper has been proved to be effectible by hydrogeological research today. PMID:24707199

  17. Hartree-Fock-Bogoliubov model: a theoretical and numerical perspective

    International Nuclear Information System (INIS)

    Paul, S.

    2012-01-01

    This work is devoted to the theoretical and numerical study of Hartree-Fock-Bogoliubov (HFB) theory for attractive quantum systems, which is one of the main methods in nuclear physics. We first present the model and its main properties, and then explain how to get numerical solutions. We prove some convergence results, in particular for the simple fixed point algorithm (sometimes called Roothaan). We show that it converges, or oscillates between two states, none of them being a solution. This generalizes to the HFB case previous results of Cances and Le Bris for the simpler Hartree-Fock model in the repulsive case. Following these authors, we also propose a relaxed constraint algorithm for which convergence is guaranteed. In the last part of the thesis, we illustrate the behavior of these algorithms by some numerical experiments. We first consider a system where the particles only interact through the Newton potential. Our numerical results show that the pairing matrix never vanishes, a fact that has not yet been proved rigorously. We then study a very simplified model for protons and neutrons in a nucleus. (author)

  18. Numerical solution of viscous and viscoelastic fluids flow through the branching channel by finite volume scheme

    Science.gov (United States)

    Keslerová, Radka; Trdlička, David

    2015-09-01

    This work deals with the numerical modelling of steady flows of incompressible viscous and viscoelastic fluids through the three dimensional channel with T-junction. The fundamental system of equations is the system of generalized Navier-Stokes equations for incompressible fluids. This system is based on the system of balance laws of mass and momentum for incompressible fluids. Two different mathematical models for the stress tensor are used for simulation of Newtonian and Oldroyd-B fluids flow. Numerical solution of the described models is based on cetral finite volume method using explicit Runge-Kutta time integration.

  19. Paraxial light distribution in the focal region of a lens: a comparison of several analytical solutions and a numerical result

    Science.gov (United States)

    Wu, Yang; Kelly, Damien P.

    2014-12-01

    The distribution of the complex field in the focal region of a lens is a classical optical diffraction problem. Today, it remains of significant theoretical importance for understanding the properties of imaging systems. In the paraxial regime, it is possible to find analytical solutions in the neighborhood of the focus, when a plane wave is incident on a focusing lens whose finite extent is limited by a circular aperture. For example, in Born and Wolf's treatment of this problem, two different, but mathematically equivalent analytical solutions, are presented that describe the 3D field distribution using infinite sums of ? and ? type Lommel functions. An alternative solution expresses the distribution in terms of Zernike polynomials, and was presented by Nijboer in 1947. More recently, Cao derived an alternative analytical solution by expanding the Fresnel kernel using a Taylor series expansion. In practical calculations, however, only a finite number of terms from these infinite series expansions is actually used to calculate the distribution in the focal region. In this manuscript, we compare and contrast each of these different solutions to a numerically calculated result, paying particular attention to how quickly each solution converges for a range of different spatial locations behind the focusing lens. We also examine the time taken to calculate each of the analytical solutions. The numerical solution is calculated in a polar coordinate system and is semi-analytic. The integration over the angle is solved analytically, while the radial coordinate is sampled with a sampling interval of ? and then numerically integrated. This produces an infinite set of replicas in the diffraction plane, that are located in circular rings centered at the optical axis and each with radii given by ?, where ? is the replica order. These circular replicas are shown to be fundamentally different from the replicas that arise in a Cartesian coordinate system.

  20. Numerical Solution of the Kzk Equation for Pulsed Finite Amplitude Sound Beams in Thermoviscous Fluids

    Science.gov (United States)

    Lee, Yang-Sub

    A time-domain numerical algorithm for solving the KZK (Khokhlov-Zabolotskaya-Kuznetsov) nonlinear parabolic wave equation is developed for pulsed, axisymmetric, finite amplitude sound beams in thermoviscous fluids. The KZK equation accounts for the combined effects of diffraction, absorption, and nonlinearity at the same order of approximation. The accuracy of the algorithm is established via comparison with analytical solutions for several limiting cases, and with numerical results obtained from a widely used algorithm for solving the KZK equation in the frequency domain. The time domain algorithm is used to investigate waveform distortion and shock formation in directive sound beams radiated by pulsed circular piston sources. New results include predictions for the entire process of self-demodulation, and for the effect of frequency modulation on pulse envelope distortion. Numerical results are compared with measurements, and focused sources are investigated briefly.

  1. Underestimation of nuclear fuel burnup – theory, demonstration and solution in numerical models

    Directory of Open Access Journals (Sweden)

    Gajda Paweł

    2016-01-01

    Full Text Available Monte Carlo methodology provides reference statistical solution of neutron transport criticality problems of nuclear systems. Estimated reaction rates can be applied as an input to Bateman equations that govern isotopic evolution of reactor materials. Because statistical solution of Boltzmann equation is computationally expensive, it is in practice applied to time steps of limited length. In this paper we show that simple staircase step model leads to underprediction of numerical fuel burnup (Fissions per Initial Metal Atom – FIMA. Theoretical considerations indicates that this error is inversely proportional to the length of the time step and origins from the variation of heating per source neutron. The bias can be diminished by application of predictor-corrector step model. A set of burnup simulations with various step length and coupling schemes has been performed. SERPENT code version 1.17 has been applied to the model of a typical fuel assembly from Pressurized Water Reactor. In reference case FIMA reaches 6.24% that is equivalent to about 60 GWD/tHM of industrial burnup. The discrepancies up to 1% have been observed depending on time step model and theoretical predictions are consistent with numerical results. Conclusions presented in this paper are important for research and development concerning nuclear fuel cycle also in the context of Gen4 systems.

  2. Numerical solutions of the N-body problem

    International Nuclear Information System (INIS)

    Marciniak, A.

    1985-01-01

    Devoted to the study of numerical methods for solving the general N-body problem and related problems, this volume starts with an overview of the conventional numerical methods for solving the initial value problem. The major part of the book contains original work and features a presentation of special numerical methods conserving the constants of motion in the general N-body problem and methods conserving the Jacobi constant in the problem of motion of N bodies in a rotating frame, as well as an analysis of the applications of both (conventional and special) kinds of methods for solving these problems. For all the methods considered, the author presents algorithms which are easily programmable in any computer language. Moreover, the author compares various methods and presents adequate numerical results. The appendix contains PL/I procedures for all the special methods conserving the constants of motion. 91 refs.; 35 figs.; 41 tabs

  3. Numerical relativity

    International Nuclear Information System (INIS)

    Piran, T.

    1982-01-01

    There are many recent developments in numerical relativity, but there remain important unsolved theoretical and practical problems. The author reviews existing numerical approaches to solution of the exact Einstein equations. A framework for classification and comparison of different numerical schemes is presented. Recent numerical codes are compared using this framework. The discussion focuses on new developments and on currently open questions, excluding a review of numerical techniques. (Auth.)

  4. Application of Four-Point Newton-EGSOR iteration for the numerical solution of 2D Porous Medium Equations

    Science.gov (United States)

    Chew, J. V. L.; Sulaiman, J.

    2017-09-01

    Partial differential equations that are used in describing the nonlinear heat and mass transfer phenomena are difficult to be solved. For the case where the exact solution is difficult to be obtained, it is necessary to use a numerical procedure such as the finite difference method to solve a particular partial differential equation. In term of numerical procedure, a particular method can be considered as an efficient method if the method can give an approximate solution within the specified error with the least computational complexity. Throughout this paper, the two-dimensional Porous Medium Equation (2D PME) is discretized by using the implicit finite difference scheme to construct the corresponding approximation equation. Then this approximation equation yields a large-sized and sparse nonlinear system. By using the Newton method to linearize the nonlinear system, this paper deals with the application of the Four-Point Newton-EGSOR (4NEGSOR) iterative method for solving the 2D PMEs. In addition to that, the efficiency of the 4NEGSOR iterative method is studied by solving three examples of the problems. Based on the comparative analysis, the Newton-Gauss-Seidel (NGS) and the Newton-SOR (NSOR) iterative methods are also considered. The numerical findings show that the 4NEGSOR method is superior to the NGS and the NSOR methods in terms of the number of iterations to get the converged solutions, the time of computation and the maximum absolute errors produced by the methods.

  5. Numerical solution of the Schrodinger equation for stationary bound states using nodel theorem

    International Nuclear Information System (INIS)

    Chen Zhijiang; Kong Fanmei; Din Yibin

    1987-01-01

    An iterative procedure for getting the numerical solution of Schrodinger equation on stationary bound states is introduced. The theoretical foundtion, the practical steps and the method are presented. An example is added at the end. Comparing with other methods, the present one requires less storage, less running time but posesses higher accuracy. It can be run on the personal computer or microcomputer with 256 K memory and 16 bit word length such as IBM/PC, MC68000/83/20, PDP11/23 etc

  6. Applications of Operator-Splitting Methods to the Direct Numerical Simulation of Particulate and Free-Surface Flows and to the Numerical Solution of the Two-Dimensional Elliptic Monge--Ampère Equation

    OpenAIRE

    Glowinski, R.; Dean, E.J.; Guidoboni, G.; Juárez, L.H.; Pan, T.-W.

    2008-01-01

    The main goal of this article is to review some recent applications of operator-splitting methods. We will show that these methods are well-suited to the numerical solution of outstanding problems from various areas in Mechanics, Physics and Differential Geometry, such as the direct numerical simulation of particulate flow, free boundary problems with surface tension for incompressible viscous fluids, and the elliptic real Monge--Ampère equation. The results of numerical ...

  7. Numerical solution to generalized Burgers'-Fisher equation using Exp-function method hybridized with heuristic computation.

    Science.gov (United States)

    Malik, Suheel Abdullah; Qureshi, Ijaz Mansoor; Amir, Muhammad; Malik, Aqdas Naveed; Haq, Ihsanul

    2015-01-01

    In this paper, a new heuristic scheme for the approximate solution of the generalized Burgers'-Fisher equation is proposed. The scheme is based on the hybridization of Exp-function method with nature inspired algorithm. The given nonlinear partial differential equation (NPDE) through substitution is converted into a nonlinear ordinary differential equation (NODE). The travelling wave solution is approximated by the Exp-function method with unknown parameters. The unknown parameters are estimated by transforming the NODE into an equivalent global error minimization problem by using a fitness function. The popular genetic algorithm (GA) is used to solve the minimization problem, and to achieve the unknown parameters. The proposed scheme is successfully implemented to solve the generalized Burgers'-Fisher equation. The comparison of numerical results with the exact solutions, and the solutions obtained using some traditional methods, including adomian decomposition method (ADM), homotopy perturbation method (HPM), and optimal homotopy asymptotic method (OHAM), show that the suggested scheme is fairly accurate and viable for solving such problems.

  8. Numerical solution to generalized Burgers'-Fisher equation using Exp-function method hybridized with heuristic computation.

    Directory of Open Access Journals (Sweden)

    Suheel Abdullah Malik

    Full Text Available In this paper, a new heuristic scheme for the approximate solution of the generalized Burgers'-Fisher equation is proposed. The scheme is based on the hybridization of Exp-function method with nature inspired algorithm. The given nonlinear partial differential equation (NPDE through substitution is converted into a nonlinear ordinary differential equation (NODE. The travelling wave solution is approximated by the Exp-function method with unknown parameters. The unknown parameters are estimated by transforming the NODE into an equivalent global error minimization problem by using a fitness function. The popular genetic algorithm (GA is used to solve the minimization problem, and to achieve the unknown parameters. The proposed scheme is successfully implemented to solve the generalized Burgers'-Fisher equation. The comparison of numerical results with the exact solutions, and the solutions obtained using some traditional methods, including adomian decomposition method (ADM, homotopy perturbation method (HPM, and optimal homotopy asymptotic method (OHAM, show that the suggested scheme is fairly accurate and viable for solving such problems.

  9. The numerical analysis of eigenvalue problem solutions in multigroup neutron diffusion theory

    International Nuclear Information System (INIS)

    Woznicki, Z.I.

    1995-01-01

    The main goal of this paper is to present a general iteration strategy for solving the discrete form of multidimensional neutron diffusion equations equivalent mathematically to an eigenvalue problem. Usually a solution method is based on different levels of iterations. The presented matrix formalism allows us to visualize explicitly how the used matrix splitting influences the matrix structure in an eigenvalue problem to be solved as well as the interdependence between inner and outer iterations within global iterations. Particular iterative strategies are illustrated by numerical results obtained for several reactor problems. (author). 21 refs, 35 figs, 16 tabs

  10. Solution of AntiSeepage for Mengxi River Based on Numerical Simulation of Unsaturated Seepage

    Directory of Open Access Journals (Sweden)

    Youjun Ji

    2014-01-01

    Full Text Available Lessening the leakage of surface water can reduce the waste of water resources and ground water pollution. To solve the problem that Mengxi River could not store water enduringly, geology investigation, theoretical analysis, experiment research, and numerical simulation analysis were carried out. Firstly, the seepage mathematical model was established based on unsaturated seepage theory; secondly, the experimental equipment for testing hydraulic conductivity of unsaturated soil was developed to obtain the curve of two-phase flow. The numerical simulation of leakage in natural conditions proves the previous inference and leakage mechanism of river. At last, the seepage control capacities of different impervious materials were compared by numerical simulations. According to the engineering actuality, the impervious material was selected. The impervious measure in this paper has been proved to be effectible by hydrogeological research today.

  11. An efficient finite element solution for gear dynamics

    International Nuclear Information System (INIS)

    Cooley, C G; Parker, R G; Vijayakar, S M

    2010-01-01

    A finite element formulation for the dynamic response of gear pairs is proposed. Following an established approach in lumped parameter gear dynamic models, the static solution is used as the excitation in a frequency domain solution of the finite element vibration model. The nonlinear finite element/contact mechanics formulation provides accurate calculation of the static solution and average mesh stiffness that are used in the dynamic simulation. The frequency domain finite element calculation of dynamic response compares well with numerically integrated (time domain) finite element dynamic results and previously published experimental results. Simulation time with the proposed formulation is two orders of magnitude lower than numerically integrated dynamic results. This formulation admits system level dynamic gearbox response, which may include multiple gear meshes, flexible shafts, rolling element bearings, housing structures, and other deformable components.

  12. Numerical solutions of the monoenergetic neutron transport equation with anisotropic scattering

    International Nuclear Information System (INIS)

    Dahl, B.

    1985-01-01

    The Boltzmann equation for monoenergetic neutrons has been solved numerically with high accuracy for homogeneous slabs and spheres with various degree of linear anisotropy. Vacuum boundary conditions are used. The numerical method is based on previous work by Carlvik. Benchmark values of the criticality factor and higher order eigenvalues are given for multiplying systems of thickness or diameter from 10 -5 to 20 mean free paths and with anisotropy coefficients from 0.0 to 0.3. For slab geometry, both even and odd mode eigenvalues are treated. With increasing anisotropy, an increasing number of complex eigenvalues is observer. The total flux is calculated from the eigenvector and tables of the fundamental mode flux are given. Accurate extrapolation distances are derived for various dimensions and anisotropy coefficients from our eigenvalue results on slabs and spheres and from the work by Sanchez on infinite cylinders.The time eigenvalue spectrum in subcritical systems has also been studied. First, the connection between the eigenvalues arising from the time dependent and stationary transport equation is established. Based on this, the spectrum of real time eigenvalues in slabs and spheres is calculated. For spheres, the existence of complex time eigenvalues in the region beyond the value corresponding to the Corngold limit is numerically established. The presence of such eigenvalues has earlier not been proved. It is further shown that the Boltzmann equation for a sphere is significantly simplified when the decay constant is at the Corngold limit. The spectrum of sphere diameters corresponding to this decay constant is calculated for various linear anisotropies, and detailed numerical results are given. (Author)

  13. The Numerical Solution of the Navier-Stokes Equations for Laminar, Incompressible Flow past a Parabolic Cylinder

    NARCIS (Netherlands)

    Botta, E.F.F.; Dijkstra, D.; Veldman, A.E.P.

    1972-01-01

    The numerical method of solution for the semi-infinite flat plate has been extended to the case of the parabolic cylinder. Results are presented for the skin friction, the friction drag, the pressure and the pressure drag. The drag coefficients have been checked by means of an application of the

  14. Solution methods for compartment models of transport through the environment using numerical inversion of Laplace transforms

    International Nuclear Information System (INIS)

    Garratt, T.J.

    1989-05-01

    Compartment models for the transport of radionuclides in the biosphere are conventionally solved using a numerical time-stepping procedure. This report examines an alternative method based on the numerical inversion of Laplace transforms, which is potentially more efficient and accurate for some classes of problem. The central problem considered is the most efficient and robust technique for solving the Laplace-transformed rate equations. The conclusion is that Gaussian elimination is the most efficient and robust solution method. A general compartment model has been implemented on a personal computer and used to solve a realistic case including radionuclide decay chains. (author)

  15. Some properties of band matrix and its application to the numerical solution one-dimensional Bratu's problem

    Directory of Open Access Journals (Sweden)

    Reza Jalilian

    2014-07-01

    Full Text Available ‎A Class of new methods based on a septic non-polynomial spline‎‎function for the numerical solution one-dimensional Bratu's problem‎are presented‎. ‎The local truncation errors and the methods of order‎‎2th‎, ‎4th‎, ‎6th‎, ‎8th‎, ‎10th‎, ‎and 12th‎, ‎are obtained‎. ‎The inverse of‎some band matrixes are obtained which are required in provingthe‎ convergence analysis of the presented method‎. ‎Associatedboundary‎ formulas are developed‎. ‎Convergence analysis of thesemethods is‎ discussed‎. ‎Numerical results are given to illustrate theefficiency‎ of methods‎.

  16. Efficient traveltime solutions of the acoustic TI eikonal equation

    KAUST Repository

    Waheed, Umair bin

    2015-02-01

    Numerical solutions of the eikonal (Hamilton-Jacobi) equation for transversely isotropic (TI) media are essential for imaging and traveltime tomography applications. Such solutions, however, suffer from the inherent higher-order nonlinearity of the TI eikonal equation, which requires solving a quartic polynomial for every grid point. Analytical solutions of the quartic polynomial yield numerically unstable formulations. Thus, it requires a numerical root finding algorithm, adding significantly to the computational load. Using perturbation theory we approximate, in a first order discretized form, the TI eikonal equation with a series of simpler equations for the coefficients of a polynomial expansion of the eikonal solution, in terms of the anellipticity anisotropy parameter. Such perturbation, applied to the discretized form of the eikonal equation, does not impose any restrictions on the complexity of the perturbed parameter field. Therefore, it provides accurate traveltime solutions even for models with complex distribution of velocity and anisotropic anellipticity parameter, such as that for the complicated Marmousi model. The formulation allows for large cost reduction compared to using the direct TI eikonal solver. Furthermore, comparative tests with previously developed approximations illustrate remarkable gain in accuracy in the proposed algorithm, without any addition to the computational cost.

  17. Numerical modelling of solute transport at Forsmark with MIKE SHE. Site descriptive modelling SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Lars-Goeran; Sassner, Mona (DHI Sverige AB, Stockholm (Sweden)); Bosson, Emma (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2008-12-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is performing site investigations at two different locations in Sweden, referred to as the Forsmark and Laxemar areas, with the objective of siting a final repository for high-level radioactive waste. Data from the site investigations are used in a variety of modelling activities. This report presents model development and results of numerical transport modelling based on the numerical flow modelling of surface water and near-surface groundwater at the Forsmark site. The numerical modelling was performed using the modelling tool MIKE SHE and is based on the site data and conceptual model of the Forsmark areas. This report presents solute transport applications based on both particle tracking simulations and advection-dispersion calculations. The MIKE SHE model is the basis for the transport modelling presented in this report. Simulation cases relevant for the transport from a deep geological repository have been studied, but also the pattern of near surface recharge and discharge areas. When the main part of the modelling work presented in this report was carried out, the flow modelling of the Forsmark site was not finalised. Thus, the focus of this work is to describe the sensitivity to different transport parameters, and not to point out specific areas as discharge areas from a future repository (this is to be done later, within the framework of the safety assessment). In the last chapter, however, results based on simulations with the re-calibrated MIKE SHE flow model are presented. The results from the MIKE SHE water movement calculations were used by cycling the calculated transient flow field for a selected one-year period as many times as needed to achieve the desired simulation period. The solute source was located either in the bedrock or on top of the model. In total, 15 different transport simulation cases were studied. Five of the simulations were particle tracking simulations, whereas the rest

  18. Homogenized blocked arcs for multicriteria optimization of radiotherapy: Analytical and numerical solutions

    International Nuclear Information System (INIS)

    Fenwick, John D.; Pardo-Montero, Juan

    2010-01-01

    Purpose: Homogenized blocked arcs are intuitively appealing as basis functions for multicriteria optimization of rotational radiotherapy. Such arcs avoid an organ-at-risk (OAR), spread dose out well over the rest-of-body (ROB), and deliver homogeneous doses to a planning target volume (PTV) using intensity modulated fluence profiles, obtainable either from closed-form solutions or iterative numerical calculations. Here, the analytic and iterative arcs are compared. Methods: Dose-distributions have been calculated for nondivergent beams, both including and excluding scatter, beam penumbra, and attenuation effects, which are left out of the derivation of the analytic arcs. The most straightforward analytic arc is created by truncating the well-known Brahme, Roos, and Lax (BRL) solution, cutting its uniform dose region down from an annulus to a smaller nonconcave region lying beyond the OAR. However, the truncation leaves behind high dose hot-spots immediately on either side of the OAR, generated by very high BRL fluence levels just beyond the OAR. These hot-spots can be eliminated using alternative analytical solutions ''C'' and ''L,'' which, respectively, deliver constant and linearly rising fluences in the gap region between the OAR and PTV (before truncation). Results: Measured in terms of PTV dose homogeneity, ROB dose-spread, and OAR avoidance, C solutions generate better arc dose-distributions than L when scatter, penumbra, and attenuation are left out of the dose modeling. Including these factors, L becomes the best analytical solution. However, the iterative approach generates better dose-distributions than any of the analytical solutions because it can account and compensate for penumbra and scatter effects. Using the analytical solutions as starting points for the iterative methodology, dose-distributions almost as good as those obtained using the conventional iterative approach can be calculated very rapidly. Conclusions: The iterative methodology is

  19. Analytical solution and numerical study on water hammer in a pipeline closed with an elastically attached valve

    Science.gov (United States)

    Henclik, Sławomir

    2018-03-01

    The influence of dynamic fluid-structure interaction (FSI) onto the course of water hammer (WH) can be significant in non-rigid pipeline systems. The essence of this effect is the dynamic transfer of liquid energy to the pipeline structure and back, which is important for elastic structures and can be negligible for rigid ones. In the paper a special model of such behavior is analyzed. A straight pipeline with a steady flow, fixed to the floor with several rigid supports is assumed. The transient is generated by a quickly closed valve installed at the end of the pipeline. FSI effects are assumed to be present mainly at the valve which is fixed with a spring dash-pot attachment. Analysis of WH runs, especially transient pressure changes, for various stiffness and damping parameters of the spring dash-pot valve attachment is presented in the paper. The solutions are found analytically and numerically. Numerical results have been computed with the use of an own computer program developed on the basis of the four equation model of WH-FSI and the specific boundary conditions formulated at the valve. Analytical solutions have been found with the separation of variables method for slightly simplified assumptions. Damping at the dash-pot is taken into account within the numerical study. The influence of valve attachment parameters onto the WH courses was discovered and it was found the transient amplitudes can be reduced. Such a system, elastically attached shut-off valve in a pipeline or other, equivalent design can be a real solution applicable in practice.

  20. Analytical solution for a coaxial plasma gun: Weak coupling limit

    International Nuclear Information System (INIS)

    Dietz, D.

    1987-01-01

    The analytical solution of the system of coupled ODE's which describes the time evolution of an ideal (i.e., zero resistance) coaxial plasma gun operating in the snowplow mode is obtained in the weak coupling limit, i.e, when the gun is fully influenced by the driving (RLC) circuit in which it resides but the circuit is negligibly influenced by the gun. Criteria for the validity of this limit are derived and numerical examples are presented. Although others have obtained approximate, asymptotic and numerical solutions of the equations, the present analytical results seem not to have appeared previously in the literature

  1. Singular perturbation solutions of steady-state Poisson-Nernst-Planck systems.

    Science.gov (United States)

    Wang, Xiang-Sheng; He, Dongdong; Wylie, Jonathan J; Huang, Huaxiong

    2014-02-01

    We study the Poisson-Nernst-Planck (PNP) system with an arbitrary number of ion species with arbitrary valences in the absence of fixed charges. Assuming point charges and that the Debye length is small relative to the domain size, we derive an asymptotic formula for the steady-state solution by matching outer and boundary layer solutions. The case of two ionic species has been extensively studied, the uniqueness of the solution has been proved, and an explicit expression for the solution has been obtained. However, the case of three or more ions has received significantly less attention. Previous work has indicated that the solution may be nonunique and that even obtaining numerical solutions is a difficult task since one must solve complicated systems of nonlinear equations. By adopting a methodology that preserves the symmetries of the PNP system, we show that determining the outer solution effectively reduces to solving a single scalar transcendental equation. Due to the simple form of the transcendental equation, it can be solved numerically in a straightforward manner. Our methodology thus provides a standard procedure for solving the PNP system and we illustrate this by solving some practical examples. Despite the fact that for three ions, previous studies have indicated that multiple solutions may exist, we show that all except for one of these solutions are unphysical and thereby prove the existence and uniqueness for the three-ion case.

  2. The numerical solution of linear multi-term fractional differential equations: systems of equations

    Science.gov (United States)

    Edwards, John T.; Ford, Neville J.; Simpson, A. Charles

    2002-11-01

    In this paper, we show how the numerical approximation of the solution of a linear multi-term fractional differential equation can be calculated by reduction of the problem to a system of ordinary and fractional differential equations each of order at most unity. We begin by showing how our method applies to a simple class of problems and we give a convergence result. We solve the Bagley Torvik equation as an example. We show how the method can be applied to a general linear multi-term equation and give two further examples.

  3. Numerical analysis

    CERN Document Server

    Brezinski, C

    2012-01-01

    Numerical analysis has witnessed many significant developments in the 20th century. This book brings together 16 papers dealing with historical developments, survey papers and papers on recent trends in selected areas of numerical analysis, such as: approximation and interpolation, solution of linear systems and eigenvalue problems, iterative methods, quadrature rules, solution of ordinary-, partial- and integral equations. The papers are reprinted from the 7-volume project of the Journal of Computational and Applied Mathematics on '/homepage/sac/cam/na2000/index.html<

  4. Paraxial light distribution in the focal region of a lens: a comparison of several analytical solutions and a numerical result.

    Science.gov (United States)

    Wu, Yang; Kelly, Damien P

    2014-12-12

    The distribution of the complex field in the focal region of a lens is a classical optical diffraction problem. Today, it remains of significant theoretical importance for understanding the properties of imaging systems. In the paraxial regime, it is possible to find analytical solutions in the neighborhood of the focus, when a plane wave is incident on a focusing lens whose finite extent is limited by a circular aperture. For example, in Born and Wolf's treatment of this problem, two different, but mathematically equivalent analytical solutions, are presented that describe the 3D field distribution using infinite sums of [Formula: see text] and [Formula: see text] type Lommel functions. An alternative solution expresses the distribution in terms of Zernike polynomials, and was presented by Nijboer in 1947. More recently, Cao derived an alternative analytical solution by expanding the Fresnel kernel using a Taylor series expansion. In practical calculations, however, only a finite number of terms from these infinite series expansions is actually used to calculate the distribution in the focal region. In this manuscript, we compare and contrast each of these different solutions to a numerically calculated result, paying particular attention to how quickly each solution converges for a range of different spatial locations behind the focusing lens. We also examine the time taken to calculate each of the analytical solutions. The numerical solution is calculated in a polar coordinate system and is semi-analytic. The integration over the angle is solved analytically, while the radial coordinate is sampled with a sampling interval of [Formula: see text] and then numerically integrated. This produces an infinite set of replicas in the diffraction plane, that are located in circular rings centered at the optical axis and each with radii given by [Formula: see text], where [Formula: see text] is the replica order. These circular replicas are shown to be fundamentally

  5. Numerical Solution of the Fractional Partial Differential Equations by the Two-Dimensional Fractional-Order Legendre Functions

    Directory of Open Access Journals (Sweden)

    Fukang Yin

    2013-01-01

    Full Text Available A numerical method is presented to obtain the approximate solutions of the fractional partial differential equations (FPDEs. The basic idea of this method is to achieve the approximate solutions in a generalized expansion form of two-dimensional fractional-order Legendre functions (2D-FLFs. The operational matrices of integration and derivative for 2D-FLFs are first derived. Then, by these matrices, a system of algebraic equations is obtained from FPDEs. Hence, by solving this system, the unknown 2D-FLFs coefficients can be computed. Three examples are discussed to demonstrate the validity and applicability of the proposed method.

  6. A Family of Symmetric Linear Multistep Methods for the Numerical Solution of the Schroedinger Equation and Related Problems

    International Nuclear Information System (INIS)

    Anastassi, Z. A.; Simos, T. E.

    2010-01-01

    We develop a new family of explicit symmetric linear multistep methods for the efficient numerical solution of the Schroedinger equation and related problems with oscillatory solution. The new methods are trigonometrically fitted and have improved intervals of periodicity as compared to the corresponding classical method with constant coefficients and other methods from the literature. We also apply the methods along with other known methods to real periodic problems, in order to measure their efficiency.

  7. Two numerical methods for the solution of two-dimensional eddy current problems

    International Nuclear Information System (INIS)

    Biddlecombe, C.S.

    1978-07-01

    A general method for the solution of eddy current problems in two dimensions - one component of current density and two of magnetic field, is reported. After examining analytical methods two numerical methods are presented. Both solve the two dimensional, low frequency limit of Maxwell's equations for transient eddy currents in conducting material, which may be permeable, in the presence of other non-conducting permeable material. Both solutions are expressed in terms of the magnetic vector potential. The first is an integral equation method, using zero order elements in the discretisation of the unknown source regions. The other is a differential equation method, using a first order finite element mesh, and the Galerkin weighted residual procedure. The resulting equations are solved as initial-value problems. Results from programs based on each method are presented showing the power and limitations of the methods and the range of problems solvable. The methods are compared and recommendations are made for choosing between them. Suggestions are made for improving both methods, involving boundary integral techniques. (author)

  8. The numerical solution of the Navier-Stokes equations for laminar incompressible flow past a paraboloid of revolution

    NARCIS (Netherlands)

    Veldman, A.E.P.

    1973-01-01

    A numerical method is presented for the solution of the Navier-Stokes equations for flow past a paraboloid of revolution. The flow field has been computed for a large range of Reynolds numbers. Results are presented for the skinfriction and the pressure together with their respective drag

  9. Numerical solutions of multi-dimensional solidification/melting problems by the dual reciprocity boundary element method

    International Nuclear Information System (INIS)

    Jo, Jong Chull; Shin, Won Ky

    1997-01-01

    This paper presents an effective and simple procedure for the simulation of the motion of the solid-liquid interfacial boundary and the transient temperature field during phase change process. To accomplish this purpose, an iterative implicit solution algorithm has been developed by employing the dual reciprocity boundary element method. The dual reciprocity boundary element approach provided in this paper is much simpler than the usual boundary element method applying a reciprocity principle and an available technique for dealing with domain integral of boundary element formulation simultaneously. The effectiveness of the present analysis method have been illustrated through comparisons of the calculation results of an example with its semi-analytical or other numerical solutions where available

  10. Third-order-accurate numerical methods for efficient, large time-step solutions of mixed linear and nonlinear problems

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, J.W.

    1995-02-01

    There is an increasing need for more accurate numerical methods for large-scale nonlinear magneto-fluid turbulence calculations. These methods should not only increase the current state of the art in terms of accuracy, but should also continue to optimize other desired properties such as simplicity, minimized computation, minimized memory requirements, and robust stability. This includes the ability to stably solve stiff problems with long time-steps. This work discusses a general methodology for deriving higher-order numerical methods. It also discusses how the selection of various choices can affect the desired properties. The explicit discussion focuses on third-order Runge-Kutta methods, including general solutions and five examples. The study investigates the linear numerical analysis of these methods, including their accuracy, general stability, and stiff stability. Additional appendices discuss linear multistep methods, discuss directions for further work, and exhibit numerical analysis results for some other commonly used lower-order methods.

  11. Numerical solution to a multi-dimensional linear inverse heat conduction problem by a splitting-based conjugate gradient method

    International Nuclear Information System (INIS)

    Dinh Nho Hao; Nguyen Trung Thanh; Sahli, Hichem

    2008-01-01

    In this paper we consider a multi-dimensional inverse heat conduction problem with time-dependent coefficients in a box, which is well-known to be severely ill-posed, by a variational method. The gradient of the functional to be minimized is obtained by aids of an adjoint problem and the conjugate gradient method with a stopping rule is then applied to this ill-posed optimization problem. To enhance the stability and the accuracy of the numerical solution to the problem we apply this scheme to the discretized inverse problem rather than to the continuous one. The difficulties with large dimensions of discretized problems are overcome by a splitting method which only requires the solution of easy-to-solve one-dimensional problems. The numerical results provided by our method are very good and the techniques seem to be very promising.

  12. Numerical modelling of solute transport at Forsmark with MIKE SHE. Site descriptive modelling SDM-Site Forsmark

    International Nuclear Information System (INIS)

    Gustafsson, Lars-Goeran; Sassner, Mona; Bosson, Emma

    2008-12-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is performing site investigations at two different locations in Sweden, referred to as the Forsmark and Laxemar areas, with the objective of siting a final repository for high-level radioactive waste. Data from the site investigations are used in a variety of modelling activities. This report presents model development and results of numerical transport modelling based on the numerical flow modelling of surface water and near-surface groundwater at the Forsmark site. The numerical modelling was performed using the modelling tool MIKE SHE and is based on the site data and conceptual model of the Forsmark areas. This report presents solute transport applications based on both particle tracking simulations and advection-dispersion calculations. The MIKE SHE model is the basis for the transport modelling presented in this report. Simulation cases relevant for the transport from a deep geological repository have been studied, but also the pattern of near surface recharge and discharge areas. When the main part of the modelling work presented in this report was carried out, the flow modelling of the Forsmark site was not finalised. Thus, the focus of this work is to describe the sensitivity to different transport parameters, and not to point out specific areas as discharge areas from a future repository (this is to be done later, within the framework of the safety assessment). In the last chapter, however, results based on simulations with the re-calibrated MIKE SHE flow model are presented. The results from the MIKE SHE water movement calculations were used by cycling the calculated transient flow field for a selected one-year period as many times as needed to achieve the desired simulation period. The solute source was located either in the bedrock or on top of the model. In total, 15 different transport simulation cases were studied. Five of the simulations were particle tracking simulations, whereas the rest

  13. Numerical relativity

    CERN Document Server

    Shibata, Masaru

    2016-01-01

    This book is composed of two parts: First part describes basics in numerical relativity, that is, the formulations and methods for a solution of Einstein's equation and general relativistic matter field equations. This part will be helpful for beginners of numerical relativity who would like to understand the content of numerical relativity and its background. The second part focuses on the application of numerical relativity. A wide variety of scientific numerical results are introduced focusing in particular on the merger of binary neutron stars and black holes.

  14. Numerical analysis

    CERN Document Server

    Khabaza, I M

    1960-01-01

    Numerical Analysis is an elementary introduction to numerical analysis, its applications, limitations, and pitfalls. Methods suitable for digital computers are emphasized, but some desk computations are also described. Topics covered range from the use of digital computers in numerical work to errors in computations using desk machines, finite difference methods, and numerical solution of ordinary differential equations. This book is comprised of eight chapters and begins with an overview of the importance of digital computers in numerical analysis, followed by a discussion on errors in comput

  15. Numerical study of partitions effect on multiplicity of solutions in an infinite channel periodically heated from below

    International Nuclear Information System (INIS)

    Abourida, B.; Hasnaoui, M.

    2005-01-01

    Laminar natural convection in an infinite horizontal channel heated periodically from below and provided with thin adiabatic partitions on its lower wall, is investigated numerically. The effect of these partitions on the multiplicity of solutions and heat transfer characteristics in the computational domain is studied. The parameters of the study are the Rayleigh number (10 2 Ra 4.9 x 10 6 ) and the height of the partitions (0 B = h'/H' 1/2). The results obtained in the case of air (Pr = 0.72) as working fluid show that depending on the governing parameters, the existence of multiple solutions is possible. Important differences in terms of heat transfer are observed between two different solutions

  16. Exact Closed-form Solutions for Lamb's Problem

    Science.gov (United States)

    Feng, X.

    2017-12-01

    In this work, we report on an exact closedform solution for the displacement at the surfaceof an elastic halfspace elicited by a buried point source that acts at some point underneath thatsurface. This is commonly referred to as the 3D Lamb's problem, for which previous solutionswere restricted to sources and receivers placed at the free surface. By means of the reciprocitytheorem, our solution should also be valid as a means to obtain the displacements at interior pointswhen the source is placed at the free surface. We manage to obtain explicit results by expressingthe solution in terms of elementary algebraic expression as well as elliptic integrals. We anchorour developments on Poissons ratio 0.25 starting from Johnson's numerical, integral transformsolutions. Furthermore, the spatial derivatives of our solutions can be easily acquired in termsof our methods. In the end, our closed-form results agree perfectly with the numerical results ofJohnson, which strongly conrms the correctness of our explicit formulas. It is hoped that in duetime, these formulas may constitute a valuable canonical solution that will serve as a yardstickagainst which other numerical solutions can be compared and measured.In addition, we abstract some terms from our solutions as the generator of the Rayleigh waves.Some basic properties of the Rayleigh waves in the time domain will be indicated in terms of thegenerator. The fareld radiation patterns of P-wave and S-wave elicited by the double-couple forcein the uniform half-space medium could also be acquired from our results.

  17. Solution to the monoenergetic time-dependent neutron transport equation with a time-varying source

    International Nuclear Information System (INIS)

    Ganapol, B.D.

    1986-01-01

    Even though fundamental time-dependent neutron transport problems have existed since the inception of neutron transport theory, it has only been recently that a reliable numerical solution to one of the basic problems has been obtained. Experience in generating numerical solutions to time-dependent transport equations has indicated that the multiple collision formulation is the most versatile numerical technique for model problems. The formulation coupled with a moment reconstruction of each collided flux component has led to benchmark-quality (four- to five-digit accuracy) numerical evaluation of the neutron flux in plane infinite geometry for any degree of scattering anisotropy and for both pulsed isotropic and beam sources. As will be shown in this presentation, this solution can serve as a Green's function, thus extending the previous results to more complicated source situations. Here we will be concerned with a time-varying source at the center of an infinite medium. If accurate, such solutions have both pedagogical and practical uses as benchmarks against which other more approximate solutions designed for a wider class of problems can be compared

  18. Distribution of the Discretization and Algebraic Error in Numerical Solution of Partial Differential Equations

    Czech Academy of Sciences Publication Activity Database

    Papež, Jan; Liesen, J.; Strakoš, Z.

    2014-01-01

    Roč. 449, 15 May (2014), s. 89-114 ISSN 0024-3795 R&D Projects: GA AV ČR IAA100300802; GA ČR GA201/09/0917 Grant - others:GA MŠk(CZ) LL1202; GA UK(CZ) 695612 Institutional support: RVO:67985807 Keywords : numerical solution of partial differential equations * finite element method * adaptivity * a posteriori error analysis * discretization error * algebra ic error * spatial distribution of the error Subject RIV: BA - General Mathematics Impact factor: 0.939, year: 2014

  19. Modeling and numerical simulation of multi-component flow in porous media

    International Nuclear Information System (INIS)

    Saad, B.

    2011-01-01

    This work deals with the modelization and numerical simulation of two phase multi-component flow in porous media. The study is divided into two parts. First we study and prove the mathematical existence in a weak sense of two degenerate parabolic systems modeling two phase (liquid and gas) two component (water and hydrogen) flow in porous media. In the first model, we assume that there is a local thermodynamic equilibrium between both phases of hydrogen by using the Henry's law. The second model consists of a relaxation of the previous model: the kinetic of the mass exchange between dissolved hydrogen and hydrogen in the gas phase is no longer instantaneous. The second part is devoted to the numerical analysis of those models. Firstly, we propose a numerical scheme to compare numerical solutions obtained with the first model and numerical solutions obtained with the second model where the characteristic time to recover the thermodynamic equilibrium goes to zero. Secondly, we present a finite volume scheme with a phase-by-phase upstream weighting scheme without simplified assumptions on the state law of gas densities. We also validate this scheme on a 2D test cases. (author)

  20. Transient well flow in layered aquifer systems: the uniform well-face drawdown solution

    Science.gov (United States)

    Hemker, C. J.

    1999-11-01

    Previously a hybrid analytical-numerical solution for the general problem of computing transient well flow in vertically heterogeneous aquifers was proposed by the author. The radial component of flow was treated analytically, while the finite-difference technique was used for the vertical flow component only. In the present work the hybrid solution has been modified by replacing the previously assumed uniform well-face gradient (UWG) boundary condition in such a way that the drawdown remains uniform along the well screen. The resulting uniform well-face drawdown (UWD) solution also includes the effects of a finite diameter well, wellbore storage and a thin skin, while partial penetration and vertical heterogeneity are accommodated by the one-dimensional discretization. Solutions are proposed for well flow caused by constant, variable and slug discharges. The model was verified by comparing wellbore drawdowns and well-face flux distributions with published numerical solutions. Differences between UWG and UWD well flow will occur in all situations with vertical flow components near the well, which is demonstrated by considering: (1) partially penetrating wells in confined aquifers, (2) fully penetrating wells in unconfined aquifers with delayed response and (3) layered aquifers and leaky multiaquifer systems. The presented solution can be a powerful tool for solving many well-hydraulic problems, including well tests, flowmeter tests, slug tests and pumping tests. A computer program for the analysis of pumping tests, based on the hybrid analytical-numerical technique and UWG or UWD conditions, is available from the author.

  1. The numerical analysis of eigenvalue problem solutions in the multigroup neutron diffusion theory

    International Nuclear Information System (INIS)

    Woznicki, Z.I.

    1994-01-01

    The main goal of this paper is to present a general iteration strategy for solving the discrete form of multidimensional neutron diffusion equations equivalent mathematically to an eigenvalue problem. Usually a solution method is based on different levels of iterations. The presented matrix formalism allows us to visualize explicitly how the used matrix splitting influences the matrix structure in an eigenvalue problem to be solved as well as the interdependence between inner and outer iteration within global iterations. Particular interactive strategies are illustrated by numerical results obtained for several reactor problems. (author). 21 refs, 32 figs, 15 tabs

  2. The numerical analysis of eigenvalue problem solutions in the multigroup neutron diffusion theory

    Energy Technology Data Exchange (ETDEWEB)

    Woznicki, Z I [Institute of Atomic Energy, Otwock-Swierk (Poland)

    1994-12-31

    The main goal of this paper is to present a general iteration strategy for solving the discrete form of multidimensional neutron diffusion equations equivalent mathematically to an eigenvalue problem. Usually a solution method is based on different levels of iterations. The presented matrix formalism allows us to visualize explicitly how the used matrix splitting influences the matrix structure in an eigenvalue problem to be solved as well as the interdependence between inner and outer iteration within global iterations. Particular interactive strategies are illustrated by numerical results obtained for several reactor problems. (author). 21 refs, 32 figs, 15 tabs.

  3. Numerical solutions of multi-dimensional solidification/melting problems by the dual reciprocity boundary element method

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jong Chull; Shin, Won Ky [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    1998-12-31

    This paper presents an effective and simple procedure for the simulation of the motion of the solid-liquid interfacial boundary and the transient temperature field during phase change process. To accomplish this purpose, an iterative implicit solution algorithm has been developed by employing the dual reciprocity boundary element method. The dual reciprocity boundary element approach provided in this paper is much simpler than the usual boundary element method applying a reciprocity principle and an available technique for dealing with domain integral of boundary element formulation simultaneously. The effectiveness of the present analysis method have been illustrated through comparisons of the calculation results of an example with its semi-analytical or other numerical solutions where available. 22 refs., 3 figs. (Author)

  4. Numerical solutions of multi-dimensional solidification/melting problems by the dual reciprocity boundary element method

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jong Chull; Shin, Won Ky [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    1997-12-31

    This paper presents an effective and simple procedure for the simulation of the motion of the solid-liquid interfacial boundary and the transient temperature field during phase change process. To accomplish this purpose, an iterative implicit solution algorithm has been developed by employing the dual reciprocity boundary element method. The dual reciprocity boundary element approach provided in this paper is much simpler than the usual boundary element method applying a reciprocity principle and an available technique for dealing with domain integral of boundary element formulation simultaneously. The effectiveness of the present analysis method have been illustrated through comparisons of the calculation results of an example with its semi-analytical or other numerical solutions where available. 22 refs., 3 figs. (Author)

  5. Numerical solution of a flow inside a labyrinth seal

    Directory of Open Access Journals (Sweden)

    Šimák Jan

    2012-04-01

    Full Text Available The aim of this study is a behaviour of a flow inside a labyrinth seal on a rotating shaft. The labyrinth seal is a type of a non-contact seal where a leakage of a fluid is prevented by a rather complicated path, which the fluid has to overcome. In the presented case the sealed medium is the air and the seal is made by a system of 20 teeth on a rotating shaft situated against a smooth static surface. Centrifugal forces present due to the rotation of the shaft create vortices in each chamber and thus dissipate the axial velocity of the escaping air.The structure of the flow field inside the seal is studied through the use of numerical methods. Three-dimensional solution of the Navier-Stokes equations for turbulent flow is very time consuming. In order to reduce the computational time we can simplify our problem and solve it as an axisymmetric problem in a two-dimensional meridian plane. For this case we use a transformation of the Navier-Stokes equations and of the standard k-omega turbulence model into a cylindrical coordinate system. A finite volume method is used for the solution of the resulting problem. A one-side modification of the Riemann problem for boundary conditions is used at the inlet and at the outlet of the axisymmetric channel. The total pressure and total density (temperature are to be used preferably at the inlet whereas the static pressure is used at the outlet for the compatibility. This idea yields physically relevant boundary conditions. The important characteristics such as a mass flow rate and a power loss, depending on a pressure ratio (1.1 - 4 and an angular velocity (1000 - 15000 rpm are evaluated.

  6. Numerical path integral solution to strong Coulomb correlation in one dimensional Hooke's atom

    Science.gov (United States)

    Ruokosenmäki, Ilkka; Gholizade, Hossein; Kylänpää, Ilkka; Rantala, Tapio T.

    2017-01-01

    We present a new approach based on real time domain Feynman path integrals (RTPI) for electronic structure calculations and quantum dynamics, which includes correlations between particles exactly but within the numerical accuracy. We demonstrate that incoherent propagation by keeping the wave function real is a novel method for finding and simulation of the ground state, similar to Diffusion Monte Carlo (DMC) method, but introducing new useful tools lacking in DMC. We use 1D Hooke's atom, a two-electron system with very strong correlation, as our test case, which we solve with incoherent RTPI (iRTPI) and compare against DMC. This system provides an excellent test case due to exact solutions for some confinements and because in 1D the Coulomb singularity is stronger than in two or three dimensional space. The use of Monte Carlo grid is shown to be efficient for which we determine useful numerical parameters. Furthermore, we discuss another novel approach achieved by combining the strengths of iRTPI and DMC. We also show usefulness of the perturbation theory for analytical approximates in case of strong confinements.

  7. Numerical modeling of optical coherent transient processes with complex configurations-III: Noisy laser source

    International Nuclear Information System (INIS)

    Chang Tiejun; Tian Mingzhen

    2007-01-01

    A previously developed numerical model based on Maxwell-Bloch equations was modified to simulate optical coherent transient and spectral hole burning processes with noisy laser sources. Random walk phase noise was simulated using laser-phase sequences generated numerically according to the normal distribution of the phase shift. The noise model was tested by comparing the simulated spectral hole burning effect with the analytical solution. The noise effects on a few typical optical coherence transient processes were investigated using this numerical tool. Flicker and random walk frequency noises were considered in accumulation process

  8. New numerical methods for open-loop and feedback solutions to dynamic optimization problems

    Science.gov (United States)

    Ghosh, Pradipto

    The topic of the first part of this research is trajectory optimization of dynamical systems via computational swarm intelligence. Particle swarm optimization is a nature-inspired heuristic search method that relies on a group of potential solutions to explore the fitness landscape. Conceptually, each particle in the swarm uses its own memory as well as the knowledge accumulated by the entire swarm to iteratively converge on an optimal or near-optimal solution. It is relatively straightforward to implement and unlike gradient-based solvers, does not require an initial guess or continuity in the problem definition. Although particle swarm optimization has been successfully employed in solving static optimization problems, its application in dynamic optimization, as posed in optimal control theory, is still relatively new. In the first half of this thesis particle swarm optimization is used to generate near-optimal solutions to several nontrivial trajectory optimization problems including thrust programming for minimum fuel, multi-burn spacecraft orbit transfer, and computing minimum-time rest-to-rest trajectories for a robotic manipulator. A distinct feature of the particle swarm optimization implementation in this work is the runtime selection of the optimal solution structure. Optimal trajectories are generated by solving instances of constrained nonlinear mixed-integer programming problems with the swarming technique. For each solved optimal programming problem, the particle swarm optimization result is compared with a nearly exact solution found via a direct method using nonlinear programming. Numerical experiments indicate that swarm search can locate solutions to very great accuracy. The second half of this research develops a new extremal-field approach for synthesizing nearly optimal feedback controllers for optimal control and two-player pursuit-evasion games described by general nonlinear differential equations. A notable revelation from this development

  9. Discrete convolution-operators and radioactive disintegration. [Numerical solution

    Energy Technology Data Exchange (ETDEWEB)

    Kalla, S L; VALENTINUZZI, M E [UNIVERSIDAD NACIONAL DE TUCUMAN (ARGENTINA). FACULTAD DE CIENCIAS EXACTAS Y TECNOLOGIA

    1975-08-01

    The basic concepts of discrete convolution and discrete convolution-operators are briefly described. Then, using the discrete convolution - operators, the differential equations associated with the process of radioactive disintegration are numerically solved. The importance of the method is emphasized to solve numerically, differential and integral equations.

  10. Methods of numerical relativity

    International Nuclear Information System (INIS)

    Piran, T.

    1983-01-01

    Numerical Relativity is an alternative to analytical methods for obtaining solutions for Einstein equations. Numerical methods are particularly useful for studying generation of gravitational radiation by potential strong sources. The author reviews the analytical background, the numerical analysis aspects and techniques and some of the difficulties involved in numerical relativity. (Auth.)

  11. Matrix-oriented implementation for the numerical solution of the partial differential equations governing flows and transport in porous media

    KAUST Repository

    Sun, Shuyu; Salama, Amgad; El-Amin, Mohamed

    2012-01-01

    In this paper we introduce a new technique for the numerical solution of the various partial differential equations governing flow and transport phenomena in porous media. This method is proposed to be used in high level programming languages like

  12. An automated approach for solution based mesh adaptation to enhance numerical accuracy for a given number of grid cells

    NARCIS (Netherlands)

    Lucas, P.; Van Zuijlen, A.H.; Bijl, H.

    2009-01-01

    Mesh adaptation is a fairly established tool to obtain numerically accurate solutions for flow problems. Computational efficiency is, however, not always guaranteed for the adaptation strategies found in literature. Typically excessive mesh growth diminishes the potential efficiency gain. This

  13. Survey of a numerical procedure for the solution of hyperbolic systems of three dimensional fluid flow

    International Nuclear Information System (INIS)

    Graf, U.

    1986-01-01

    A combination of several numerical methods is used to construct a procedure for effective calculation of complex three-dimensional fluid flow problems. The split coefficient matrix (SCM) method is used so that the differenced equations of the hyperbolic system do not disturb correct signal propagation. The semi-discretisation of the equations of the SCM method is done with the asymmetric, separated region, weighted residual (ASWR) method to give accurate solutions on a relatively coarse mesh. For the resulting system of ordinary differential equations, a general-purpose ordinary differential equation solver is used in conjunction with a method of fractional steps for an economic solution of the large system of linear equations. (orig.) [de

  14. A numerical model for the determination of periodic solutions of pipes subjected to non-conservative loads

    International Nuclear Information System (INIS)

    Velloso, P.A.; Galeao, A.C.

    1989-05-01

    This paper deals with nonlinear vibrations of pipes subjected to non-conservative loads. Periodic solutions of these problems are determined using a variational approach based on Hamilton's Principle combined with a Fourier series expansion to describe the displacement field time dependence. A finite element model which utilizes Hemite's cubic interpolation for both axial and transversal displacement amplitudes is used. This model is applied to the problem of a pipe subjected to a tangential and a normal follower force. The numerical results obtained with this model are compared with the corespondent solutions determined using a total lagrangian description for the Principle of Virtual Work, coupled with Newmark's step-by-step integration procedure. It is shown that for small to moderate displacement amplitudes the one-term Fourier series approximation compares fairly well with the predicted solution. For large displacements as least a two-term approximation should be utilized [pt

  15. On randomized algorithms for numerical solution of applied Fredholm integral equations of the second kind

    Science.gov (United States)

    Voytishek, Anton V.; Shipilov, Nikolay M.

    2017-11-01

    In this paper, the systematization of numerical (implemented on a computer) randomized functional algorithms for approximation of a solution of Fredholm integral equation of the second kind is carried out. Wherein, three types of such algorithms are distinguished: the projection, the mesh and the projection-mesh methods. The possibilities for usage of these algorithms for solution of practically important problems is investigated in detail. The disadvantages of the mesh algorithms, related to the necessity of calculation values of the kernels of integral equations in fixed points, are identified. On practice, these kernels have integrated singularities, and calculation of their values is impossible. Thus, for applied problems, related to solving Fredholm integral equation of the second kind, it is expedient to use not mesh, but the projection and the projection-mesh randomized algorithms.

  16. Numerical Solution of a Fractional Order Model of HIV Infection of CD4+T Cells Using Müntz-Legendre Polynomials

    Directory of Open Access Journals (Sweden)

    Mojtaba Rasouli Gandomani

    2016-06-01

    Full Text Available In this paper, the model of HIV infection of CD4+ T cells is considered as a system of fractional differential equations. Then, a numerical method by using collocation method based on the Müntz-Legendre polynomials to approximate solution of the model is presented. The application of the proposed numerical method causes fractional differential equations system to convert into the algebraic equations system. The new system can be solved by one of the existing methods. Finally, we compare the result of this numerical method with the result of the methods have already been presented in the literature.

  17. Adiabatic pumping solutions in global AdS

    Energy Technology Data Exchange (ETDEWEB)

    Carracedo, Pablo [Meteo-Galicia,Santiago de Compostela E-15782 (Spain); Mas, Javier; Musso, Daniele; Serantes, Alexandre [Departamento de Física de Partículas, Universidade de Santiago de Compostela,Santiago de Compostela E-15782 (Spain); Instituto Galego de Física de Altas Enerxías (IGFAE),Santiago de Compostela E-15782 (Spain)

    2017-05-26

    We construct a family of very simple stationary solutions to gravity coupled to a massless scalar field in global AdS. They involve a constantly rising source for the scalar field at the boundary and thereby we name them pumping solutions. We construct them numerically in D=4. They are regular and, generically, have negative mass. We perform a study of linear and nonlinear stability and find both stable and unstable branches. In the latter case, solutions belonging to different sub-branches can either decay to black holes or to limiting cycles. This observation motivates the search for non-stationary exactly time-periodic solutions which we actually construct. We clarify the role of pumping solutions in the context of quasistatic adiabatic quenches. In D=3 the pumping solutions can be related to other previously known solutions, like magnetic or translationally-breaking backgrounds. From this we derive an analytic expression.

  18. Numerical Algorithm for Delta of Asian Option

    Directory of Open Access Journals (Sweden)

    Boxiang Zhang

    2015-01-01

    Full Text Available We study the numerical solution of the Greeks of Asian options. In particular, we derive a close form solution of Δ of Asian geometric option and use this analytical form as a control to numerically calculate Δ of Asian arithmetic option, which is known to have no explicit close form solution. We implement our proposed numerical method and compare the standard error with other classical variance reduction methods. Our method provides an efficient solution to the hedging strategy with Asian options.

  19. Connecting the dots: Semi-analytical and random walk numerical solutions of the diffusion–reaction equation with stochastic initial conditions

    Energy Technology Data Exchange (ETDEWEB)

    Paster, Amir, E-mail: paster@tau.ac.il [Environmental Fluid Mechanics Laboratories, Dept. of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN (United States); School of Mechanical Engineering, Tel Aviv University, Tel Aviv, 69978 (Israel); Bolster, Diogo [Environmental Fluid Mechanics Laboratories, Dept. of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN (United States); Benson, David A. [Hydrologic Science and Engineering, Colorado School of Mines, Golden, CO, 80401 (United States)

    2014-04-15

    We study a system with bimolecular irreversible kinetic reaction A+B→∅ where the underlying transport of reactants is governed by diffusion, and the local reaction term is given by the law of mass action. We consider the case where the initial concentrations are given in terms of an average and a white noise perturbation. Our goal is to solve the diffusion–reaction equation which governs the system, and we tackle it with both analytical and numerical approaches. To obtain an analytical solution, we develop the equations of moments and solve them approximately. To obtain a numerical solution, we develop a grid-less Monte Carlo particle tracking approach, where diffusion is modeled by a random walk of the particles, and reaction is modeled by annihilation of particles. The probability of annihilation is derived analytically from the particles' co-location probability. We rigorously derive the relationship between the initial number of particles in the system and the amplitude of white noise represented by that number. This enables us to compare the particle simulations and the approximate analytical solution and offer an explanation of the late time discrepancies. - Graphical abstract:.

  20. Numerical investigations of solute transport in bimodal porous media under dynamic boundary conditions

    Science.gov (United States)

    Cremer, Clemens; Neuweiler, Insa; Bechtold, Michel; Vanderborght, Jan

    2016-04-01

    Quantification of flow and solute transport in the shallow subsurface adjacent to the atmosphere is decisive to prevent groundwater pollution and conserve groundwater quality, to develop successful remediation strategies and to understand nutrient cycling. In nature, due to erratic precipitation-evaporation patterns, soil moisture content and related hydraulic conductivity in the vadose zone are not only variable in space but also in time. Flow directions and flow paths locally change between precipitation and evaporation periods. This makes the identification and description of solute transport processes in the vadose zone a complex problem. Recent studies (Lehmann and Or, 2009; Bechtold et al., 2011a) focused on the investigation of upward transport of solutes during evaporation in heterogeneous soil columns, where heterogeneity was introduced by a sharp vertical material interface between two types of sand. Lateral solute transport through the interface in both (lateral) directions was observed at different depths of the investigated soil columns. Following recent approaches, we conduct two-dimensional numerical simulations in a similar setup which is composed of two sands with a sharp vertical material interface. The investigation is broadened from the sole evaporation to combined precipitation-evaporation cycles in order to quantify transport processes resulting from the combined effects of heterogeneous soil structure and dynamic flow conditions. Simulations are performed with a coupled finite volume and random walk particle tracking algorithm (Ippisch et al., 2006; Bechtold et al., 2011b). By comparing scenarios with cyclic boundary conditions and stationary counterparts with the same net flow rate, we found that duration and intensity of precipitation and evaporation periods potentially have an influence on lateral redistribution of solutes and thus leaching rates. Whether or not dynamic boundary conditions lead to significant deviations in the transport

  1. Theoretical and numerical study of an optimum design algorithm

    International Nuclear Information System (INIS)

    Destuynder, Philippe.

    1976-08-01

    This work can be separated into two main parts. First, the behavior of the solution of an elliptic variational equation is analyzed when the domain is submitted to a small perturbation. The case of inequations is also considered. Secondly the previous results are used for deriving an optimum design algorithm. This algorithm was suggested by the center-method proposed by Huard. Numerical results show the superiority of the method on other different optimization techniques [fr

  2. Penalty methods for the numerical solution of American multi-asset option problems

    Science.gov (United States)

    Nielsen, Bjørn Fredrik; Skavhaug, Ola; Tveito, Aslak

    2008-12-01

    We derive and analyze a penalty method for solving American multi-asset option problems. A small, non-linear penalty term is added to the Black-Scholes equation. This approach gives a fixed solution domain, removing the free and moving boundary imposed by the early exercise feature of the contract. Explicit, implicit and semi-implicit finite difference schemes are derived, and in the case of independent assets, we prove that the approximate option prices satisfy some basic properties of the American option problem. Several numerical experiments are carried out in order to investigate the performance of the schemes. We give examples indicating that our results are sharp. Finally, the experiments indicate that in the case of correlated underlying assets, the same properties are valid as in the independent case.

  3. Numerical solution of stiff systems of ordinary differential equations with applications to electronic circuits

    Science.gov (United States)

    Rosenbaum, J. S.

    1971-01-01

    Systems of ordinary differential equations in which the magnitudes of the eigenvalues (or time constants) vary greatly are commonly called stiff. Such systems of equations arise in nuclear reactor kinetics, the flow of chemically reacting gas, dynamics, control theory, circuit analysis and other fields. The research reported develops an A-stable numerical integration technique for solving stiff systems of ordinary differential equations. The method, which is called the generalized trapezoidal rule, is a modification of the trapezoidal rule. However, the method is computationally more efficient than the trapezoidal rule when the solution of the almost-discontinuous segments is being calculated.

  4. A fast quadrature-based numerical method for the continuous spectrum biphasic poroviscoelastic model of articular cartilage.

    Science.gov (United States)

    Stuebner, Michael; Haider, Mansoor A

    2010-06-18

    A new and efficient method for numerical solution of the continuous spectrum biphasic poroviscoelastic (BPVE) model of articular cartilage is presented. Development of the method is based on a composite Gauss-Legendre quadrature approximation of the continuous spectrum relaxation function that leads to an exponential series representation. The separability property of the exponential terms in the series is exploited to develop a numerical scheme that can be reduced to an update rule requiring retention of the strain history at only the previous time step. The cost of the resulting temporal discretization scheme is O(N) for N time steps. Application and calibration of the method is illustrated in the context of a finite difference solution of the one-dimensional confined compression BPVE stress-relaxation problem. Accuracy of the numerical method is demonstrated by comparison to a theoretical Laplace transform solution for a range of viscoelastic relaxation times that are representative of articular cartilage. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  5. A simple and rational numerical method of two-phase flow with volume-junction model. 2. The numerical method for general condition of two-phase flow in non-equilibrium states

    International Nuclear Information System (INIS)

    Okazaki, Motoaki

    1997-11-01

    In the previous report, the usefulness of a new numerical method to achieve a rigorous numerical calculation using a simple explicit method with the volume-junction model was presented with the verification calculation for the depressurization of a saturated two-phase mixture. In this report, on the basis of solution method above, a numerical method for general condition of two-phase flow in non-equilibrium states is presented. In general condition of two-phase flow, the combinations of saturated and non-saturated conditions of each phase are considered in the each flow of volume and junction. Numerical evaluation programs are separately prepared for each combination of flow condition. Several numerical calculations of various kinds of non-equilibrium two-phase flow are made to examine the validity of the numerical method. Calculated results showed that the thermodynamic states obtained in different solution schemes were consistent with each other. In the first scheme, the states are determined by using the steam table as a function of pressure and specific enthalpy which are obtained as the solutions of simultaneous equations. In the second scheme, density and specific enthalpy of each phase are directly calculated by using conservation equations of mass and enthalpy of each phase, respectively. Further, no accumulation of error in mass and energy was found. As for the specific enthalpy, two cases of using energy equations for the volume are examined. The first case uses total energy conservation equation and the second case uses the type of the first law of thermodynamics. The results of both cases agreed well. (author)

  6. Numerical discrepancy between serial and MPI parallel computations

    Directory of Open Access Journals (Sweden)

    Sang Bong Lee

    2016-09-01

    Full Text Available Numerical simulations of 1D Burgers equation and 2D sloshing problem were carried out to study numerical discrepancy between serial and parallel computations. The numerical domain was decomposed into 2 and 4 subdomains for parallel computations with message passing interface. The numerical solution of Burgers equation disclosed that fully explicit boundary conditions used on subdomains of parallel computation was responsible for the numerical discrepancy of transient solution between serial and parallel computations. Two dimensional sloshing problems in a rectangular domain were solved using OpenFOAM. After a lapse of initial transient time sloshing patterns of water were significantly different in serial and parallel computations although the same numerical conditions were given. Based on the histograms of pressure measured at two points near the wall the statistical characteristics of numerical solution was not affected by the number of subdomains as much as the transient solution was dependent on the number of subdomains.

  7. Derivation Method for the Foundation Boundaries of Hydraulic Numerical Simulation Models Based on the Elastic Boussinesq Solution

    Directory of Open Access Journals (Sweden)

    Jintao Song

    2015-01-01

    Full Text Available The foundation boundaries of numerical simulation models of hydraulic structures dominated by a vertical load are investigated. The method used is based on the stress formula for fundamental solutions to semi-infinite space body elastic mechanics under a vertical concentrated force. The limit method is introduced into the original formula, which is then partitioned and analyzed according to the direction of the depth extension of the foundation. The point load will be changed to a linear load with a length of 2a. Inverse proportion function assumptions are proposed at parameter a and depth l of the calculation points to solve the singularity questions of elastic stress in a semi-infinite space near the ground. Compared with the original formula, changing the point load to a linear load with a length of 2a is more reasonable. Finally, the boundary depth criterion of a hydraulic numerical simulation model is derived and applied to determine the depth boundary formula for gravity dam numerical simulations.

  8. Numerical linear algebra with applications using Matlab

    CERN Document Server

    Ford, William

    2014-01-01

    Designed for those who want to gain a practical knowledge of modern computational techniques for the numerical solution of linear algebra problems, Numerical Linear Algebra with Applications contains all the material necessary for a first year graduate or advanced undergraduate course on numerical linear algebra with numerous applications to engineering and science. With a unified presentation of computation, basic algorithm analysis, and numerical methods to compute solutions, this book is ideal for solving real-world problems. It provides necessary mathematical background information for

  9. Evidence for a scaling solution in cosmic-string evolution

    International Nuclear Information System (INIS)

    Bennett, D.P.; Bouchet, F.R.

    1988-01-01

    We study, by means of numerical simulations, the most fundamental issue of cosmic-string evolution: the existence of a scaling solution. We find strong evidence that a scaling solution does indeed exist. This justifies the main assumption on which the cosmic-string theories of galaxy formation are based. Our main conclusion coincides with that of Albrecht and Turok in previous work, but our results are not consistent with theirs. In fact, our results indicate that the details of string evolution are very different from the standard dogma

  10. On-design solutions of hypersonic flows past elliptic-cone derived waveriders

    International Nuclear Information System (INIS)

    Yoon, Bok Hyun

    1992-01-01

    The hypersonic flows past a class of elliptic-conederived waverider at the on-design condition are analyzed. A CFD(Computational Fluid Dynamics) algorithm due to Lawrence is utilized to numerically integrate the steady Euler equations. The singular behavior at the sharp leading-edge of a waverider where a bow shock is to be attached for the ideal situation makes the computation extremely difficult for convergence of numerical solution. Various types of grids are generated and tested for converged solutions. A new formula for more accurate waverider shape is established and by means of this new waverider configuration the reason for the shock stand-off which was detected in previous investigations is clarified in this paper. (Author)

  11. On the strong solution of a class of partial differential equations that arise in the pricing of mortgage backed securities

    KAUST Repository

    Parshad, Rana; Bayazit, Derviş; Barlow, Nathaniel S.; Prasad, V. Ramchandra

    2011-01-01

    We consider a reduced form pricing model for mortgage backed securities, formulated as a non-linear partial differential equation. We prove that the model possesses a weak solution. We then show that under additional regularity assumptions on the initial data, we also have a mild solution. This mild solution is shown to be a strong solution via further regularity arguments. We also numerically solve the reduced model via a Fourier spectral method. Lastly, we compare our numerical solution to real market data. We observe interestingly that the reduced model captures a number of recent market trends in this data, that have escaped previous models.

  12. A compositional multiphase model for groundwater contamination by petroleum products: 2. Numerical solution

    Science.gov (United States)

    Baehr, Arthur L.; Corapcioglu, M. Yavuz

    1987-01-01

    In this paper we develop a numerical solution to equations developed in part 1 (M. Y. Corapcioglu and A. L. Baehr, this issue) to predict the fate of an immiscible organic contaminant such as gasoline in the unsaturated zone subsequent to plume establishment. This solution, obtained by using a finite difference scheme and a method of forward projection to evaluate nonlinear coefficients, provides estimates of the flux of solubilized hydrocarbon constituents to groundwater from the portion of a spill which remains trapped in a soil after routine remedial efforts to recover the product have ceased. The procedure was used to solve the one-dimensional (vertical) form of the system of nonlinear partial differential equations defining the transport for each constituent of the product. Additionally, a homogeneous, isothermal soil with constant water content was assumed. An equilibrium assumption partitions the constituents between air, water, adsorbed, and immiscible phases. Free oxygen transport in the soil was also simulated to provide an upper bound estimate of aerobic biodgradation rates. Results are presented for a hypothetical gasoline consisting of eight groups of hydrocarbon constituents. Rates at which hydrocarbon mass is removed from the soil, entering either the atmosphere or groundwater, or is biodegraded are presented. A significant sensitivity to model parameters, particularly the parameters characterizing diffusive vapor transport, was discovered. We conclude that hydrocarbon solute composition in groundwater beneath a gasoline contaminated soil would be heavily weighted toward aromatic constituents like benzene, toluene, and xylene.

  13. Lie group analysis, numerical and non-traveling wave solutions for the (2+1)-dimensional diffusion—advection equation with variable coefficients

    International Nuclear Information System (INIS)

    Kumar, Vikas; Gupta, R. K.; Jiwari, Ram

    2014-01-01

    In this paper, the variable-coefficient diffusion—advection (DA) equation, which arises in modeling various physical phenomena, is studied by the Lie symmetry approach. The similarity reductions are derived by determining the complete sets of point symmetries of this equation, and then exact and numerical solutions are reported for the reduced second-order nonlinear ordinary differential equations. Further, an extended (G'/G)-expansion method is applied to the DA equation to construct some new non-traveling wave solutions

  14. The analytical benchmark solution of spatial diffusion kinetics in source driven systems for homogeneous media

    International Nuclear Information System (INIS)

    Oliveira, F.L. de; Maiorino, J.R.; Santos, R.S.

    2007-01-01

    This paper describes a closed form solution obtained by the expansion method for the general time dependent diffusion model with delayed emission for source transients in homogeneous media. In particular, starting from simple models, and increasing the complexity, numerical results were obtained for different types of source transients. Thus, first an analytical solution of the one group without precursors was solved, followed by considering one precursors family. The general case of G-groups with R families of precursor although having a closed form solution, cannot be solved analytically, since there are no explicit formulae for the eigenvalues, and numerical methods must be used to solve such problem. To illustrate the general solution, the multi-group (three groups) time-dependent without precursors was also solved and the results inter compared with results obtained by the previous one group models for a given fast homogeneous media, and different types of source transients. The results are being compared with the obtained by numerical methods. (author)

  15. Benchmark numerical solutions for radiative heat transfer in two-dimensional medium with graded index distribution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L.H. [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China)]. E-mail: lhliu@hit.edu.cn

    2006-11-15

    In graded index media, the ray goes along a curved path determined by Fermat principle. Generally, the curved ray trajectory in graded index media is a complex implicit function, and the curved ray tracing is very difficult and complex. Only for some special refractive index distributions, the curved ray trajectory can be expressed as a simple explicit function. Two important examples are the layered and the radial graded index distributions. In this paper, the radiative heat transfer problems in two-dimensional square semitransparent with layered and radial graded index distributions are analyzed. After deduction of the ray trajectory, the radiative heat transfer problems are solved by using the Monte Carlo curved ray-tracing method. Some numerical solutions of dimensionless net radiative heat flux and medium temperature are tabulated as the benchmark solutions for the future development of approximation techniques for multi-dimensional radiative heat transfer in graded index media.

  16. Infiltration analysis for Abadia de Goias repository: numerical solution; Analise de infiltracao para o repositorio de Abadia de Goias: solucao numerica

    Energy Technology Data Exchange (ETDEWEB)

    Martin Alves, Antonio S. de [NUCLEN, Rio de Janeiro, RJ (Brazil); Passos, Aline M.M. dos [Universidade Federal Fluminense, Niteroi, RJ (Brazil)

    1997-12-01

    The safety analysis of a structure known as repository for medium activity wastes leads to investigating the physical phenomena connected to the water infiltration. This work shows succinctly an engineering approach to obtain numerical results for the model differential equations. One of these equations, related to the two-phase flow within the structure, is a nonlinear Riccati type, whose solution is only known for certain cases. For safety analysis and design purposes, the solution for the case of variable parameters is also advantageous when one aims some accident scenarios analysis. The utilization of numerical techniques allowed excellent results applied for the design of the Abadia de Goias repository. The case treated in this paper was one of those applied to the safety assessment of this repository. (author). 7 refs., 4 figs., 7 tabs.

  17. Performance analysis of numeric solutions applied to biokinetics of radionuclides; Analise de desempenho de solucoes numericas aplicadas a biocinetica de radionuclideos

    Energy Technology Data Exchange (ETDEWEB)

    Mingatos, Danielle dos Santos; Bevilacqua, Joyce da Silva, E-mail: dani@ime.usp.br, E-mail: joyce@ime.usp.br [Universidade de Sao Paulo (IME/USP), SP (Brazil). Instituto de Matematica e Estatistica; Todo, Alberto Saburo; Rodrigues Junior, Orlando, E-mail: astodo@ipen.br, E-mail: rodrijr@ipen.br [Instituto de Pesquisas Energeticas Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Biokinetics models for radionuclides applied to dosimetry problems are constantly reviewed by ICRP. The radionuclide trajectory could be represented by compartmental models, assuming constant transfer rates between compartments. A better understanding of physiological or biochemical phenomena, improve the comprehension of radionuclide behavior in the human body and, in general, more complex compartmental models are proposed, increasing the difficulty of obtaining the analytical solution for the system of first order differential equations. Even with constant transfer rates numerical solutions must be carefully implemented because of almost singular characteristic of the matrix of coefficients. In this work we compare numerical methods with different strategies for ICRP-78 models for Thorium-228 and Uranium-234. The impact of uncertainty in the parameters of the equations is also estimated for local and global truncation errors. (author)

  18. A New Numerical Algorithm for Two-Point Boundary Value Problems

    OpenAIRE

    Guo, Lihua; Wu, Boying; Zhang, Dazhi

    2014-01-01

    We present a new numerical algorithm for two-point boundary value problems. We first present the exact solution in the form of series and then prove that the n-term numerical solution converges uniformly to the exact solution. Furthermore, we establish the numerical stability and error analysis. The numerical results show the effectiveness of the proposed algorithm.

  19. Comparison of different soil water extraction systems for the prognoses of solute transport at the field scale using numerical simulations, field and lysimeter experiments

    Energy Technology Data Exchange (ETDEWEB)

    Weihermueller, L

    2005-07-01

    To date, the understanding of processes, factors, and interactions that influence the amount of extracted water and the solute composition sampled with suction cups is limited. But this information is required for process description of solute transport in natural soils. Improved system understanding can lead to a low cost and easy to install water sampling system which can help to predict solute transport in natural soils for the benefit of environmental protection. The main objectives of this work were to perform numerical simulations with different boundary conditions and to implement the findings in the interpretation of the lysimeter and field experiments. In a first part of this thesis, theoretical considerations on the processes affecting the spatial influence of a suction cup in soil and changes in solute transport initiated by the suction cups are presented, including testing and validation of available model and experimental approaches. In the second part, a detailed experimental study was conducted to obtain data for the comparison of the different soil water sampling systems. Finally, the numerical experiments of the suction cup influence were used for the interpretation of the experimental data. The main goals are summarized as follows: - Characterization of the suction cup activity domain (SCAD), suction cup extraction domain (SCED) and suction cup sampling area (SCSA) of active suction cups (definitions are given in Chapter 6). - Determination of the boundary conditions and soil properties [e.g. infiltration, applied suction, duration of water extraction, soil hydraulic properties and soil heterogeneity] affecting the activity domain, extraction domain and sampling area of a suction cup. - Identification of processes that change the travel time and travel time variance of solutes extracted by suction cups. - Validation of the numerically derived data with analytical and experimental data from literature. - Comparison of the experimental data obtained

  20. An Efficient and Robust Numerical Solution of the Full-Order Multiscale Model of Lithium-Ion Battery

    Directory of Open Access Journals (Sweden)

    Michal Beneš

    2018-01-01

    Full Text Available We propose a novel and efficient numerical approach for solving the pseudo two-dimensional multiscale model of the Li-ion cell dynamics based on first principles, describing the ion diffusion through the electrolyte and the porous electrodes, electric potential distribution, and Butler-Volmer kinetics. The numerical solution is obtained by the finite difference discretization of the diffusion equations combined with an original iterative scheme for solving the integral formulation of the laws of electrochemical interactions. We demonstrate that our implementation is fast and stable over the expected lifetime of the cell. In contrast to some simplified models, it provides physically consistent results for a wide range of applied currents including high loads. The algorithm forms a solid basis for simulations of cells and battery packs in hybrid electric vehicles, with possible straightforward extensions by aging and heat effects.

  1. Born approximation to a perturbative numerical method for the solution of the Schrodinger equation

    International Nuclear Information System (INIS)

    Adam, Gh.

    1978-05-01

    A perturbative numerical (PN) method is given for the solution of a regular one-dimensional Cauchy problem arising from the Schroedinger equation. The present method uses a step function approximation for the potential. Global, free of scaling difficulty, forward and backward PN algorithms are derived within first order perturbation theory (Born approximation). A rigorous analysis of the local truncation errors is performed. This shows that the order of accuracy of the method is equal to four. In between the mesh points, the global formula for the wavefunction is accurate within O(h 4 ), while that for the first order derivative is accurate within O(h 3 ). (author)

  2. Analytical solution to the hybrid diffusion-transport equation

    International Nuclear Information System (INIS)

    Nanneh, M.M.; Williams, M.M.R.

    1986-01-01

    A special integral equation was derived in previous work using a hybrid diffusion-transport theory method for calculating the flux distribution in slab lattices. In this paper an analytical solution of this equation has been carried out on a finite reactor lattice. The analytical results of disadvantage factors are shown to be accurate in comparison with the numerical results and accurate transport theory calculations. (author)

  3. Transient well flow in layered aquifer systems: the uniform well-face drawdown solution.

    NARCIS (Netherlands)

    Hemker, C.J.

    1999-01-01

    Previously a hybrid analytical-numerical solution for the general problem of computing transient well flow in vertically heterogeneous aquifers was proposed by the author. The radial component of flow was treated analytically, while the finite-difference technique was used for the vertical flow

  4. Unsteady analytical solutions to the Poisson–Nernst–Planck equations

    International Nuclear Information System (INIS)

    Schönke, Johannes

    2012-01-01

    It is shown that the Poisson–Nernst–Planck equations for a single ion species can be formulated as one equation in terms of the electric field. This previously not analyzed equation shows similarities to the vector Burgers equation and is identical with it in the one dimensional case. Several unsteady exact solutions for one and multidimensional cases are presented. Besides new mathematical insights which these first known unsteady solutions give, they can serve as test cases in computer simulations to analyze numerical algorithms and to verify code. (paper)

  5. Numerical solution of non-linear dual-phase-lag bioheat transfer equation within skin tissues.

    Science.gov (United States)

    Kumar, Dinesh; Kumar, P; Rai, K N

    2017-11-01

    This paper deals with numerical modeling and simulation of heat transfer in skin tissues using non-linear dual-phase-lag (DPL) bioheat transfer model under periodic heat flux boundary condition. The blood perfusion is assumed temperature-dependent which results in non-linear DPL bioheat transfer model in order to predict more accurate results. A numerical method of line which is based on finite difference and Runge-Kutta (4,5) schemes, is used to solve the present non-linear problem. Under specific case, the exact solution has been obtained and compared with the present numerical scheme, and we found that those are in good agreement. A comparison based on model selection criterion (AIC) has been made among non-linear DPL models when the variation of blood perfusion rate with temperature is of constant, linear and exponential type with the experimental data and it has been found that non-linear DPL model with exponential variation of blood perfusion rate is closest to the experimental data. In addition, it is found that due to absence of phase-lag phenomena in Pennes bioheat transfer model, it achieves steady state more quickly and always predict higher temperature than thermal and DPL non-linear models. The effect of coefficient of blood perfusion rate, dimensionless heating frequency and Kirchoff number on dimensionless temperature distribution has also been analyzed. The whole analysis is presented in dimensionless form. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Flow fields in the supersonic through-flow fan. Comparison of the solutions of the linear potential theory and the numerical solution of the Euler equations; Choonsoku tsukaryu fan nai no nagareba. Senkei potential rironkai to Euler hoteishiki no suchikai no hikaku

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, N; Nanba, M; Tashiro, K [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1996-03-27

    Comparison study between solutions of a linear potential theory and numerical solution of Euler equations was made for flow in a supersonic through-flow fan. In numerical fluid dynamic technique, Euler equations are solved by finite difference method under the assumption of air and perfect gas fluid, and neglected viscosity and thermal conductivity of fluid. As a result, in a linear potential theory, expansion wave was regarded as equipotential discontinuous surface, while in Euler numerical solution, it was regarded as finite pressure gradient where a wave front fans out toward downstream. The latter reflection point of shock wave on a wing existed upstream as compared with the former reflection point. The shock wave angle was dominated by Euler equations, and different from the Mach line of a linear potential theory in both angle and discontinuous quantities in front and behind. Both calculated solutions well agreed with each other until the first reflection point of the Mach line, however, thereafter the difference between them increased toward downstream. 5 refs., 5 figs., 1 tab.

  7. Numerical algorithms for intragranular diffusional fission gas release incorporated in the Transuranus code

    International Nuclear Information System (INIS)

    Lassmann, K.

    2002-01-01

    Complicated physical processes govern diffusional fission gas release in nuclear fuels. In addition to the physical problem there exists a numerical problem, as some solutions of the underlying diffusion equation contain numerical errors that by far exceed the physical details. In this paper the two algorithms incorporated in the TRANSURANUS code, the URGAS and the new FORMAS algorithm are compared. The previously reported deficiency of the most elegant and mathematically sound FORMAS algorithm at low release could be overcome. Both algorithms are simple, fast, without numerical problems, insensitive to time step lengths and well balanced over the entire range of fission gas release. They can be made available on request as FORTRAN subroutines. (author)

  8. A Numerical Model for Trickle Bed Reactors

    Science.gov (United States)

    Propp, Richard M.; Colella, Phillip; Crutchfield, William Y.; Day, Marcus S.

    2000-12-01

    Trickle bed reactors are governed by equations of flow in porous media such as Darcy's law and the conservation of mass. Our numerical method for solving these equations is based on a total-velocity splitting, sequential formulation which leads to an implicit pressure equation and a semi-implicit mass conservation equation. We use high-resolution finite-difference methods to discretize these equations. Our solution scheme extends previous work in modeling porous media flows in two ways. First, we incorporate physical effects due to capillary pressure, a nonlinear inlet boundary condition, spatial porosity variations, and inertial effects on phase mobilities. In particular, capillary forces introduce a parabolic component into the recast evolution equation, and the inertial effects give rise to hyperbolic nonconvexity. Second, we introduce a modification of the slope-limiting algorithm to prevent our numerical method from producing spurious shocks. We present a numerical algorithm for accommodating these difficulties, show the algorithm is second-order accurate, and demonstrate its performance on a number of simplified problems relevant to trickle bed reactor modeling.

  9. Ferrofluids: Modeling, numerical analysis, and scientific computation

    Science.gov (United States)

    Tomas, Ignacio

    This dissertation presents some developments in the Numerical Analysis of Partial Differential Equations (PDEs) describing the behavior of ferrofluids. The most widely accepted PDE model for ferrofluids is the Micropolar model proposed by R.E. Rosensweig. The Micropolar Navier-Stokes Equations (MNSE) is a subsystem of PDEs within the Rosensweig model. Being a simplified version of the much bigger system of PDEs proposed by Rosensweig, the MNSE are a natural starting point of this thesis. The MNSE couple linear velocity u, angular velocity w, and pressure p. We propose and analyze a first-order semi-implicit fully-discrete scheme for the MNSE, which decouples the computation of the linear and angular velocities, is unconditionally stable and delivers optimal convergence rates under assumptions analogous to those used for the Navier-Stokes equations. Moving onto the much more complex Rosensweig's model, we provide a definition (approximation) for the effective magnetizing field h, and explain the assumptions behind this definition. Unlike previous definitions available in the literature, this new definition is able to accommodate the effect of external magnetic fields. Using this definition we setup the system of PDEs coupling linear velocity u, pressure p, angular velocity w, magnetization m, and magnetic potential ϕ We show that this system is energy-stable and devise a numerical scheme that mimics the same stability property. We prove that solutions of the numerical scheme always exist and, under certain simplifying assumptions, that the discrete solutions converge. A notable outcome of the analysis of the numerical scheme for the Rosensweig's model is the choice of finite element spaces that allow the construction of an energy-stable scheme. Finally, with the lessons learned from Rosensweig's model, we develop a diffuse-interface model describing the behavior of two-phase ferrofluid flows and present an energy-stable numerical scheme for this model. For a

  10. Numerically and experimentally analysis of creep

    International Nuclear Information System (INIS)

    Fontanive, J.A.

    1982-11-01

    The problems of creep in concrete are analyzed experimentally and numerically, comparing with classical methods and suggesting a numerical procedure for the solution of these problems. Firstly, fundamentals of viscoelasticity and its application to concrete behaviour representation are presented. Then the theories of Dischinger and Arutyunyan are studied, and a computing numerical solutions are compared in several examples. Finally, experiences on creep and relaxation are described, and its result are analyzed. Some coments on possible future developments are included. (Author) [pt

  11. Numerical solution of the thermalhydraulic conservation equations from fundamental concepts to multidimensional two-fluid analysis

    International Nuclear Information System (INIS)

    Carver, M.B.

    1995-08-01

    The discussion briefly establishes some requisite concepts of differential equation theory, and applies these to describe methods for numerical solution of the thermalhydraulic conservation equations in their various forms. The intent is to cover the general methodology without obscuring the principles with details. As a short overview of computational thermalhydraulics, the material provides an introductory foundation, so that those working on the application of thermalhydraulic codes can begin to understand the many intricacies involved without having to locate and read the references given. Those intending to work in code development will need to read and understand all the references. (author). 49 refs

  12. Experimental Design of a Polymeric Solution to Improve the Mobility Ratio in a Reservoir previous implementation of a pilot project of EOR

    Directory of Open Access Journals (Sweden)

    Vanessa Cuenca

    2016-12-01

    Full Text Available This paper describes experimental formulations of polymeric solutions through lab evaluations with the objective of finding optimum solution concentration to fluid mobility in reservoirs as previous step before implementing a pilot project of enhanced oil recovery. The polymers, firstly, were selected based on the properties from fluids from reservoir. Two types of polymers were used TCC-330 and EOR909 and the experimental tests were: thermal stability, compatibility, adsorption, salinity, and displacement. The design with the best results was with polymer TCC-330 at 1,500 ppm concentration.

  13. A closed-form solution for steady-state coupled phloem/xylem flow using the Lambert-W function.

    Science.gov (United States)

    Hall, A J; Minchin, P E H

    2013-12-01

    A closed-form solution for steady-state coupled phloem/xylem flow is presented. This incorporates the basic Münch flow model of phloem transport, the cohesion model of xylem flow, and local variation in the xylem water potential and lateral water flow along the transport pathway. Use of the Lambert-W function allows this solution to be obtained under much more general and realistic conditions than has previously been possible. Variation in phloem resistance (i.e. viscosity) with solute concentration, and deviations from the Van't Hoff expression for osmotic potential are included. It is shown that the model predictions match those of the equilibrium solution of a numerical time-dependent model based upon the same mechanistic assumptions. The effect of xylem flow upon phloem flow can readily be calculated, which has not been possible in any previous analytical model. It is also shown how this new analytical solution can handle multiple sources and sinks within a complex architecture, and can describe competition between sinks. The model provides new insights into Münch flow by explicitly including interactions with xylem flow and water potential in the closed-form solution, and is expected to be useful as a component part of larger numerical models of entire plants. © 2013 John Wiley & Sons Ltd.

  14. Numerical experiments on the solution of the Holmholtz equation in the case of domains of complicated boundary shape

    International Nuclear Information System (INIS)

    Sarmiento, G.S.; Laura, P.A.A.

    1979-01-01

    Domains of complicated boundary shape are of great practical importance in several fields of technology and applied science; e.g. solid propellant rocket grains, electromagnetic and acoustic waveguides, and certain elements used in nuclear engineering. The technical literature contains very few comparative studies of analytical and numerical solutions when dealing with such rather complex geometries. The present study constitutes an effort in that direction. (Auth.)

  15. Numerical Solution of Nonlinear Volterra Integral Equations System Using Simpson’s 3/8 Rule

    Directory of Open Access Journals (Sweden)

    Adem Kılıçman

    2012-01-01

    Full Text Available The Simpson’s 3/8 rule is used to solve the nonlinear Volterra integral equations system. Using this rule the system is converted to a nonlinear block system and then by solving this nonlinear system we find approximate solution of nonlinear Volterra integral equations system. One of the advantages of the proposed method is its simplicity in application. Further, we investigate the convergence of the proposed method and it is shown that its convergence is of order O(h4. Numerical examples are given to show abilities of the proposed method for solving linear as well as nonlinear systems. Our results show that the proposed method is simple and effective.

  16. Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity

    Directory of Open Access Journals (Sweden)

    Font José A.

    2008-09-01

    Full Text Available This article presents a comprehensive overview of numerical hydrodynamics and magnetohydrodynamics (MHD in general relativity. Some significant additions have been incorporated with respect to the previous two versions of this review (2000, 2003, most notably the coverage of general-relativistic MHD, a field in which remarkable activity and progress has occurred in the last few years. Correspondingly, the discussion of astrophysical simulations in general-relativistic hydrodynamics is enlarged to account for recent relevant advances, while those dealing with general-relativistic MHD are amply covered in this review for the first time. The basic outline of this article is nevertheless similar to its earlier versions, save for the addition of MHD-related issues throughout. Hence, different formulations of both the hydrodynamics and MHD equations are presented, with special mention of conservative and hyperbolic formulations well adapted to advanced numerical methods. A large sample of numerical approaches for solving such hyperbolic systems of equations is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. As previously stated, a comprehensive summary of astrophysical simulations in strong gravitational fields is also presented. These are detailed in three basic sections, namely gravitational collapse, black-hole accretion, and neutron-star evolutions; despite the boundaries, these sections may (and in fact do overlap throughout the discussion. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances in the formulation of the gravitational field, hydrodynamics and MHD equations and the numerical methodology designed to solve them. To keep the length of this article reasonable

  17. Intra nodal reconstruction of the numerical solution generated by the spectro nodal constant for Sn problems of eigenvalues in two-dimensional rectangular geometry

    International Nuclear Information System (INIS)

    Menezes, Welton Alves de

    2009-01-01

    In this dissertation the spectral nodal method SD-SGF-CN, cf. spectral diamond - spectral Green's function - constant nodal, is used to determine the angular fluxes averaged along the edges of the homogenized nodes in heterogeneous domains. Using these results, we developed an algorithm for the reconstruction of the node-edge average angular fluxes within the nodes of the spatial grid set up on the domain, since more localized numerical solutions are not generated by coarse-mesh numerical methods. Numerical results are presented to illustrate the accuracy of the algorithm we offer. (author)

  18. Use of radial basis functions for meshless numerical solutions applied to financial engineering barrier options

    Directory of Open Access Journals (Sweden)

    Gisele Tessari Santos

    2009-08-01

    Full Text Available A large number of financial engineering problems involve non-linear equations with non-linear or time-dependent boundary conditions. Despite available analytical solutions, many classical and modified forms of the well-known Black-Scholes (BS equation require fast and accurate numerical solutions. This work introduces the radial basis function (RBF method as applied to the solution of the BS equation with non-linear boundary conditions, related to path-dependent barrier options. Furthermore, the diffusional method for solving advective-diffusive equations is explored as to its effectiveness to solve BS equations. Cubic and Thin-Plate Spline (TPS radial basis functions were employed and evaluated as to their effectiveness to solve barrier option problems. The numerical results, when compared against analytical solutions, allow affirming that the RBF method is very accurate and easy to be implemented. When the RBF method is applied, the diffusional method leads to the same results as those obtained from the classical formulation of Black-Scholes equation.Muitos problemas de engenharia financeira envolvem equações não-lineares com condições de contorno não-lineares ou dependentes do tempo. Apesar de soluções analíticas disponíveis, várias formas clássicas e modificadas da conhecida equação de Black-Scholes (BS requerem soluções numéricas rápidas e acuradas. Este trabalho introduz o método de função de base radial (RBF aplicado à solução da equação BS com condições de contorno não-lineares relacionadas a opções de barreira dependentes da trajetória. Além disso, explora-se o método difusional para solucionar equações advectivo-difusivas quanto à sua efetividade para solucionar equações BS. Utilizam-se funções de base radial Cúbica e Thin-Plate Spline (TPS, aplicadas à solução de problemas de opções de barreiras. Os resultados numéricos, quando comparados com as soluções analíticas, permitem afirmar

  19. Intracortical stiffness of mid-diaphysis femur bovine bone: lacunar-canalicular based homogenization numerical solutions and microhardness measurements.

    Science.gov (United States)

    Hage, Ilige S; Hamade, Ramsey F

    2017-09-01

    solution are corroborated experimentally using microhardness indentation measurements taken at the same points that the digital images were taken along a radial distance emanating from the interior (endosteum) surface toward the bone's exterior (periosteum) surface. Good agreement was found between numerically calculated and indentation measured stiffness of Intracortical lamellae. Both indentation measurements and numerical solutions of matrix stiffness showed increasing linear trend of compressive longitudinal modulus (E11) values vs. radial position for both interior and exterior regions. In the interior (exterior) region of cortical bone, stiffness modulus values were found to range from 18.5 to 23.4 GPa (23 to 26.0 GPa) with the aggregate stiffness of the cortical lamella in the exterior region being 12% stiffer than that in the interior region. In order to further validate these findings, experimental and FEM simulation of a mid-diaphysis bone ring under compression is employed. The FEM numerical deflections employed nine concentric regions across the thickness with graded stiffness values based on the digital segmentation and homogenization scheme. Bone ring deflections are found to agree well with measured deformations of the compression bone ring.

  20. Numerical Modeling of Ablation Heat Transfer

    Science.gov (United States)

    Ewing, Mark E.; Laker, Travis S.; Walker, David T.

    2013-01-01

    A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.

  1. A numerical model for the solution of the Shallow Water equations in composite channels with movable bed

    Science.gov (United States)

    minatti, L.

    2013-12-01

    A finite volume model solving the shallow water equations coupled with the sediments continuity equation in composite channels with irregular geometry is presented. The model is essentially 1D but can handle composite cross-sections in which bedload transport is considered to occur inside the main channel only. This assumption is coherent with the observed behavior of rivers on short time scales where main channel areas exhibit more relevant morphological variations than overbanks. Furthermore, such a model allows a more precise prediction of thalweg elevation and cross section shape variations than fully 1D models where bedload transport is considered to occur uniformly over the entire cross section. The coupling of the equations describing water and sediments dynamics results in a hyperbolic non-conservative system that cannot be solved numerically with the use of a conservative scheme. Therefore, a path-conservative scheme, based on the approach proposed by Pares and Castro (2004) has been devised in order to account for the coupling with the sediments continuity equation and for the concurrent presence of bottom elevation and breadth variations of the cross section. In order to correctly compute numerical fluxes related to bedload transport in main channel areas, a special treatment of the equations is employed in the model. The resulting scheme is well balanced and fully coupled and can accurately model abrupt time variations of flow and bedload transport conditions in wide rivers, characterized by the presence of overbank areas that are less active than the main channel. The accuracy of the model has been first tested in fixed bed conditions by solving problems with a known analytical solution: in these tests the model proved to be able to handle shocks and supercritical flow conditions properly(see Fig. 01). A practical application of the model to the Ombrone river, southern Tuscany (Italy) is shown. The river has shown relevant morphological changes during

  2. Numerical solution of stiff burnup equation with short half lived nuclides by the Krylov subspace method

    International Nuclear Information System (INIS)

    Yamamoto, Akio; Tatsumi, Masahiro; Sugimura, Naoki

    2007-01-01

    The Krylov subspace method is applied to solve nuclide burnup equations used for lattice physics calculations. The Krylov method is an efficient approach for solving ordinary differential equations with stiff nature such as the nuclide burnup with short lived nuclides. Some mathematical fundamentals of the Krylov subspace method and its application to burnup equations are discussed. Verification calculations are carried out in a PWR pin-cell geometry with UO 2 fuel. A detailed burnup chain that includes 193 fission products and 28 heavy nuclides is used in the verification calculations. Shortest half life found in the present burnup chain is approximately 30 s ( 106 Rh). Therefore, conventional methods (e.g., the Taylor series expansion with scaling and squaring) tend to require longer computation time due to numerical stiffness. Comparison with other numerical methods (e.g., the 4-th order Runge-Kutta-Gill) reveals that the Krylov subspace method can provide accurate solution for a detailed burnup chain used in the present study with short computation time. (author)

  3. Analytical-numerical solution of a nonlinear integrodifferential equation in econometrics

    Science.gov (United States)

    Kakhktsyan, V. M.; Khachatryan, A. Kh.

    2013-07-01

    A mixed problem for a nonlinear integrodifferential equation arising in econometrics is considered. An analytical-numerical method is proposed for solving the problem. Some numerical results are presented.

  4. A Finite-Difference Solution of Solute Transport through a Membrane Bioreactor

    Directory of Open Access Journals (Sweden)

    B. Godongwana

    2015-01-01

    Full Text Available The current paper presents a theoretical analysis of the transport of solutes through a fixed-film membrane bioreactor (MBR, immobilised with an active biocatalyst. The dimensionless convection-diffusion equation with variable coefficients was solved analytically and numerically for concentration profiles of the solutes through the MBR. The analytical solution makes use of regular perturbation and accounts for radial convective flow as well as axial diffusion of the substrate species. The Michaelis-Menten (or Monod rate equation was assumed for the sink term, and the perturbation was extended up to second-order. In the analytical solution only the first-order limit of the Michaelis-Menten equation was considered; hence the linearized equation was solved. In the numerical solution, however, this restriction was lifted. The solution of the nonlinear, elliptic, partial differential equation was based on an implicit finite-difference method (FDM. An upwind scheme was employed for numerical stability. The resulting algebraic equations were solved simultaneously using the multivariate Newton-Raphson iteration method. The solution allows for the evaluation of the effect on the concentration profiles of (i the radial and axial convective velocity, (ii the convective mass transfer rates, (iii the reaction rates, (iv the fraction retentate, and (v the aspect ratio.

  5. Numerical linear algebra theory and applications

    CERN Document Server

    Beilina, Larisa; Karchevskii, Mikhail

    2017-01-01

    This book combines a solid theoretical background in linear algebra with practical algorithms for numerical solution of linear algebra problems. Developed from a number of courses taught repeatedly by the authors, the material covers topics like matrix algebra, theory for linear systems of equations, spectral theory, vector and matrix norms combined with main direct and iterative numerical methods, least squares problems, and eigen problems. Numerical algorithms illustrated by computer programs written in MATLAB® are also provided as supplementary material on SpringerLink to give the reader a better understanding of professional numerical software for the solution of real-life problems. Perfect for a one- or two-semester course on numerical linear algebra, matrix computation, and large sparse matrices, this text will interest students at the advanced undergraduate or graduate level.

  6. Phase-field model and its numerical solution for coring and microstructure evolution studies in alloys

    Science.gov (United States)

    Turchi, Patrice E. A.; Fattebert, Jean-Luc; Dorr, Milo R.; Wickett, Michael E.; Belak, James F.

    2011-03-01

    We describe an algorithm for the numerical solution of a phase-field model (PFM) of microstructure evolution in alloys using physical parameters from thermodynamic (CALPHAD) and kinetic databases. The coupled system of PFM equations includes a local order parameter, a quaternion representation of local crystal orientation and a species composition parameter. Time evolution of microstructures and alloy composition is obtained using an implicit time integration of the system. Physical parameters in databases can be obtained either through experiment or first-principles calculations. Application to coring studies and microstructure evolution of Au-Ni will be presented. Prepared by LLNL under Contract DE-AC52-07NA27344

  7. Details of the general numerical solutions of the Friedberg-Lee soliton model for ground and exited states

    International Nuclear Information System (INIS)

    Koeppel, T.; Harvey, M.

    1984-06-01

    A new numerical method is applied to solving the equations of motion of the Friedberg-Lee Soliton model for both ground and spherically symmetric excited states. General results have been obtained over a wide range of parameters. Critical coupling constants and critical particle numbers have been determined below which soliton solutions cease to exist. The static properties of the proton are considered to show that as presently formulated the model fails to fit all experimental data for any set of parameters

  8. Numerical Hydrodynamics in General Relativity

    Directory of Open Access Journals (Sweden)

    Font José A.

    2003-01-01

    Full Text Available The current status of numerical solutions for the equations of ideal general relativistic hydrodynamics is reviewed. With respect to an earlier version of the article, the present update provides additional information on numerical schemes, and extends the discussion of astrophysical simulations in general relativistic hydrodynamics. Different formulations of the equations are presented, with special mention of conservative and hyperbolic formulations well-adapted to advanced numerical methods. A large sample of available numerical schemes is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. A comprehensive summary of astrophysical simulations in strong gravitational fields is presented. These include gravitational collapse, accretion onto black holes, and hydrodynamical evolutions of neutron stars. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances on the formulation of the gravitational field and hydrodynamic equations and the numerical methodology designed to solve them.

  9. Numerical methods using Matlab

    CERN Document Server

    Lindfield, George

    2012-01-01

    Numerical Methods using MATLAB, 3e, is an extensive reference offering hundreds of useful and important numerical algorithms that can be implemented into MATLAB for a graphical interpretation to help researchers analyze a particular outcome. Many worked examples are given together with exercises and solutions to illustrate how numerical methods can be used to study problems that have applications in the biosciences, chaos, optimization, engineering and science across the board. Numerical Methods using MATLAB, 3e, is an extensive reference offering hundreds of use

  10. NUMERICAL HOPF BIFURCATION OF DELAY-DIFFERENTIAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this paper we consider the numerical solution of some delay differential equations undergoing a Hopf bifurcation. We prove that if the delay differential equations have a Hopf bifurcation point atλ=λ*, then the numerical solution of the equation also has a Hopf bifurcation point atλh =λ* + O(h).

  11. Evaluation of the numerical solution of polymer flooding; Avaliacao da solucao numerica da injecao de polimeros em reservatorios de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Vinicius Ligiero; Pires, Adolfo Puime; Bedrikovetsky, Pavel G. [Universidade Estadual do Norte Fluminense (UENF), Macae, RJ (Brazil). Lab. de Engenharia e Exploracao do Petroleo (LENEP)

    2004-07-01

    Enhanced Oil Recovery (EOR) methods include injection of different fluids into reservoirs to improve oil displacement. The EOR methods may be classified into the following kinds: injection of chemical solutions, injection of solvents and thermal methods. The chemical fluids most commonly injected are polymers, surfactants, micellar solutions, etc. Displacement of oil by any of these fluids involves complex physico-chemical processes of interphase mass transfer, phase transitions and transport properties changes. These processes can be divided into two main categories: thermodynamical and hydrodynamical ones. They occur simultaneously during the displacement, and are coupled in the modern mathematical models of EOR. The model for one-dimensional displacement of oil by polymer solutions is analyzed in this paper. The Courant number is fixed, and we compare the results of different runs of a numerical simulator with the analytical solution of this problem. Each run corresponds to a different spatial discretization. (author)

  12. Numerical solution of boundary-integral equations for molecular electrostatics.

    Science.gov (United States)

    Bardhan, Jaydeep P

    2009-03-07

    Numerous molecular processes, such as ion permeation through channel proteins, are governed by relatively small changes in energetics. As a result, theoretical investigations of these processes require accurate numerical methods. In the present paper, we evaluate the accuracy of two approaches to simulating boundary-integral equations for continuum models of the electrostatics of solvation. The analysis emphasizes boundary-element method simulations of the integral-equation formulation known as the apparent-surface-charge (ASC) method or polarizable-continuum model (PCM). In many numerical implementations of the ASC/PCM model, one forces the integral equation to be satisfied exactly at a set of discrete points on the boundary. We demonstrate in this paper that this approach to discretization, known as point collocation, is significantly less accurate than an alternative approach known as qualocation. Furthermore, the qualocation method offers this improvement in accuracy without increasing simulation time. Numerical examples demonstrate that electrostatic part of the solvation free energy, when calculated using the collocation and qualocation methods, can differ significantly; for a polypeptide, the answers can differ by as much as 10 kcal/mol (approximately 4% of the total electrostatic contribution to solvation). The applicability of the qualocation discretization to other integral-equation formulations is also discussed, and two equivalences between integral-equation methods are derived.

  13. Numerical solution of the kinetic equation in reactor shielding

    International Nuclear Information System (INIS)

    Germogenova, T.A.

    1975-01-01

    A review is made of methods of solving marginal problems of multi-group systems of equations of neutron and γ radiation transfer. The first stage of the solution - the quantification of the basic task, is determined by the qualitative behaviour of the solution - is the nature of its performance and asymptotics. In the second stage - solution of the approximating system, various modifications of the iterative method are as a rule used. A description is given of the features of the major Soviet complexes of programmes (ROZ and RADUGA) for the solution of multi-group systems of transfer equations and some methodological research findings are presented. (author)

  14. A numerical study for off-centered stagnation flow towards a rotating disc

    Directory of Open Access Journals (Sweden)

    M. Heydari

    2015-09-01

    Full Text Available In this investigation, a semi-numerical method based on Bernstein polynomials for solving off-centered stagnation flow towards a rotating disc is introduced. This method expands the desired solutions in terms of a set of Bernstein polynomials over a closed interval and then makes use of the tau method to determine the expansion coefficients to construct approximate solutions. This method can satisfy boundary conditions at infinity. The properties of Bernstein polynomials are presented and are utilized to reduce the solution of governing nonlinear equations and their associated boundary conditions to the solution of algebraic equations. Graphical results are presented to investigate the influence of the rotation ratio α on the radial velocity, azimuthal velocity and the induced velocities. A comparative study with the previous results of viscous fluid flow in the literature is made.

  15. Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations. Part 1: The ODE connection and its implications for algorithm development in computational fluid dynamics

    Science.gov (United States)

    Yee, H. C.; Sweby, P. K.; Griffiths, D. F.

    1990-01-01

    Spurious stable as well as unstable steady state numerical solutions, spurious asymptotic numerical solutions of higher period, and even stable chaotic behavior can occur when finite difference methods are used to solve nonlinear differential equations (DE) numerically. The occurrence of spurious asymptotes is independent of whether the DE possesses a unique steady state or has additional periodic solutions and/or exhibits chaotic phenomena. The form of the nonlinear DEs and the type of numerical schemes are the determining factor. In addition, the occurrence of spurious steady states is not restricted to the time steps that are beyond the linearized stability limit of the scheme. In many instances, it can occur below the linearized stability limit. Therefore, it is essential for practitioners in computational sciences to be knowledgeable about the dynamical behavior of finite difference methods for nonlinear scalar DEs before the actual application of these methods to practical computations. It is also important to change the traditional way of thinking and practices when dealing with genuinely nonlinear problems. In the past, spurious asymptotes were observed in numerical computations but tended to be ignored because they all were assumed to lie beyond the linearized stability limits of the time step parameter delta t. As can be seen from the study, bifurcations to and from spurious asymptotic solutions and transitions to computational instability not only are highly scheme dependent and problem dependent, but also initial data and boundary condition dependent, and not limited to time steps that are beyond the linearized stability limit.

  16. Numerical solution of one-dimensional transient, two-phase flows with temporal fully implicit high order schemes: Subcooled boiling in pipes

    Energy Technology Data Exchange (ETDEWEB)

    López, R., E-mail: ralope1@ing.uc3m.es; Lecuona, A., E-mail: lecuona@ing.uc3m.es; Nogueira, J., E-mail: goriba@ing.uc3m.es; Vereda, C., E-mail: cvereda@ing.uc3m.es

    2017-03-15

    Highlights: • A two-phase flows numerical algorithm with high order temporal schemes is proposed. • Transient solutions route depends on the temporal high order scheme employed. • ESDIRK scheme for two-phase flows events exhibits high computational performance. • Computational implementation of the ESDIRK scheme can be done in a very easy manner. - Abstract: An extension for 1-D transient two-phase flows of the SIMPLE-ESDIRK method, initially developed for incompressible viscous flows by Ijaz is presented. This extension is motivated by the high temporal order of accuracy demanded to cope with fast phase change events. This methodology is suitable for boiling heat exchangers, solar thermal receivers, etc. The methodology of the solution consist in a finite volume staggered grid discretization of the governing equations in which the transient terms are treated with the explicit first stage singly diagonally implicit Runge-Kutta (ESDIRK) method. It is suitable for stiff differential equations, present in instant boiling or condensation processes. It is combined with the semi-implicit pressure linked equations algorithm (SIMPLE) for the calculation of the pressure field. The case of study consists of the numerical reproduction of the Bartolomei upward boiling pipe flow experiment. The steady-state validation of the numerical algorithm is made against these experimental results and well known numerical results for that experiment. In addition, a detailed study reveals the benefits over the first order Euler Backward method when applying 3rd and 4th order schemes, making emphasis in the behaviour when the system is subjected to periodic square wave wall heat function disturbances, concluding that the use of the ESDIRK method in two-phase calculations presents remarkable accuracy and computational advantages.

  17. Reduced-Order Direct Numerical Simulation of Solute Transport in Porous Media

    Science.gov (United States)

    Mehmani, Yashar; Tchelepi, Hamdi

    2017-11-01

    Pore-scale models are an important tool for analyzing fluid dynamics in porous materials (e.g., rocks, soils, fuel cells). Current direct numerical simulation (DNS) techniques, while very accurate, are computationally prohibitive for sample sizes that are statistically representative of the porous structure. Reduced-order approaches such as pore-network models (PNM) aim to approximate the pore-space geometry and physics to remedy this problem. Predictions from current techniques, however, have not always been successful. This work focuses on single-phase transport of a passive solute under advection-dominated regimes and delineates the minimum set of approximations that consistently produce accurate PNM predictions. Novel network extraction (discretization) and particle simulation techniques are developed and compared to high-fidelity DNS simulations for a wide range of micromodel heterogeneities and a single sphere pack. Moreover, common modeling assumptions in the literature are analyzed and shown that they can lead to first-order errors under advection-dominated regimes. This work has implications for optimizing material design and operations in manufactured (electrodes) and natural (rocks) porous media pertaining to energy systems. This work was supported by the Stanford University Petroleum Research Institute for Reservoir Simulation (SUPRI-B).

  18. Numerical methods and optimization a consumer guide

    CERN Document Server

    Walter, Éric

    2014-01-01

    Initial training in pure and applied sciences tends to present problem-solving as the process of elaborating explicit closed-form solutions from basic principles, and then using these solutions in numerical applications. This approach is only applicable to very limited classes of problems that are simple enough for such closed-form solutions to exist. Unfortunately, most real-life problems are too complex to be amenable to this type of treatment. Numerical Methods and Optimization – A Consumer Guide presents methods for dealing with them. Shifting the paradigm from formal calculus to numerical computation, the text makes it possible for the reader to ·         discover how to escape the dictatorship of those particular cases that are simple enough to receive a closed-form solution, and thus gain the ability to solve complex, real-life problems; ·         understand the principles behind recognized algorithms used in state-of-the-art numerical software; ·         learn the advantag...

  19. Bifurcations and Periodic Solutions for an Algae-Fish Semicontinuous System

    Directory of Open Access Journals (Sweden)

    Chuanjun Dai

    2013-01-01

    Full Text Available We propose an algae-fish semicontinuous system for the Zeya Reservoir to study the control of algae, including biological and chemical controls. The bifurcation and periodic solutions of the system were studied using a Poincaré map and a geometric method. The existence of order-1 periodic solution of the system is discussed. Based on previous analysis, we investigated the change in the location of the order-1 periodic solution with variable parameters and we described the transcritical bifurcation of the system. Finally, we provided a series of numerical results to illustrate the feasibility of the theoretical results. These results may help to facilitate a better understanding of algal control in the Zeya Reservoir.

  20. Traveling wavefront solutions to nonlinear reaction-diffusion-convection equations

    Science.gov (United States)

    Indekeu, Joseph O.; Smets, Ruben

    2017-08-01

    Physically motivated modified Fisher equations are studied in which nonlinear convection and nonlinear diffusion is allowed for besides the usual growth and spread of a population. It is pointed out that in a large variety of cases separable functions in the form of exponentially decaying sharp wavefronts solve the differential equation exactly provided a co-moving point source or sink is active at the wavefront. The velocity dispersion and front steepness may differ from those of some previously studied exact smooth traveling wave solutions. For an extension of the reaction-diffusion-convection equation, featuring a memory effect in the form of a maturity delay for growth and spread, also smooth exact wavefront solutions are obtained. The stability of the solutions is verified analytically and numerically.

  1. Traveling wavefront solutions to nonlinear reaction-diffusion-convection equations

    International Nuclear Information System (INIS)

    Indekeu, Joseph O; Smets, Ruben

    2017-01-01

    Physically motivated modified Fisher equations are studied in which nonlinear convection and nonlinear diffusion is allowed for besides the usual growth and spread of a population. It is pointed out that in a large variety of cases separable functions in the form of exponentially decaying sharp wavefronts solve the differential equation exactly provided a co-moving point source or sink is active at the wavefront. The velocity dispersion and front steepness may differ from those of some previously studied exact smooth traveling wave solutions. For an extension of the reaction-diffusion-convection equation, featuring a memory effect in the form of a maturity delay for growth and spread, also smooth exact wavefront solutions are obtained. The stability of the solutions is verified analytically and numerically. (paper)

  2. Integral transform solution of bending problem of clamped orthotropic rectangular plates

    International Nuclear Information System (INIS)

    An, C.; Gu, J.-J.; Su, J.

    2011-01-01

    The generalized integral transform technique (GITT) is employed to obtain an exact solution for the bending problem of fully clamped orthotropic rectangular plates. The use of the GITT approach in the analysis of the transverse deflection equation leads to a coupled system of fourth order differential equations in the dimensionless longitudinal spatial variable. The resulting transformed ODE system is then numerically solved by making use of the subroutine DBVPFD from IMSL Library. Numerical results with automatic global accuracy control are produced for different values of aspect ratio. Critical comparisons with previously reported numerical results are performed with excellent agreement. Several sets of reference results for clamped orthotropic rectangular plates are also provided for future covalidation purposes. (author)

  3. Time-convolutionless mode-coupling theory near the glass transition: Numerical solutions for the Percus-Yevick model

    International Nuclear Information System (INIS)

    Kimura, Y.; Tokuyama, M.

    2016-01-01

    The full numerical solutions of the time-convolutionless modecoupling theory (TMCT) equation recently proposed by Tokuyama are compared with those of the ideal mode-coupling theory (MCT) equation based on the Percus- Yevick static structure factor for hard spheres qualitatively and quantitatively. The ergodic to non-ergodic transition at the critical volume fraction φ_c predicted by MCT is also shown to occur even for TMCT. Thus, φ_c of TMCT is shown to be much higher than that of MCT. The dynamics of coherent-intermediate scattering functions and their two-step relaxation process in a β stage are also discussed.

  4. Zdeněk Kopal: Numerical Analyst

    Science.gov (United States)

    Křížek, M.

    2015-07-01

    We give a brief overview of Zdeněk Kopal's life, his activities in the Czech Astronomical Society, his collaboration with Vladimír Vand, and his studies at Charles University, Cambridge, Harvard, and MIT. Then we survey Kopal's professional life. He published 26 monographs and 20 conference proceedings. We will concentrate on Kopal's extensive monograph Numerical Analysis (1955, 1961) that is widely accepted to be the first comprehensive textbook on numerical methods. It describes, for instance, methods for polynomial interpolation, numerical differentiation and integration, numerical solution of ordinary differential equations with initial or boundary conditions, and numerical solution of integral and integro-differential equations. Special emphasis will be laid on error analysis. Kopal himself applied numerical methods to celestial mechanics, in particular to the N-body problem. He also used Fourier analysis to investigate light curves of close binaries to discover their properties. This is, in fact, a problem from mathematical analysis.

  5. Features of the Numerical Solution of Thermal Destruction Fuel Pins Problems in the Fast Reactor

    Science.gov (United States)

    Usov, E. V.; Butov, A. A.; Klimonov, I. A.; Chuhno, V. I.; Nikolaenko, A. V.; Zhdanov, V. S.; Pribaturin, N. A.; Strizhov, V. F.

    2017-11-01

    In this paper the description of the basic equations which can be used for calculation of melting of fuel and cladding of the fast reactor, moving of the melt on a fuel pin surface and its solidification is presented. The special attention is given speed of calculation algorithms and fidelity of the phenomena which are observed at a stage of severe accidents in fast reactors. For check of working capacity of initial models, numerical calculations of Stefan-type problems on front movement of melting/solidification in cylindrical geometry are presented. Comparison with the solutions received by known analytical methods is executed. For validation of the numerical realization of calculation algorithms the analysis is carried out and experiments in which melting of the model fuel pins of fast reactors was studied are chosen. On the basis of the chosen experiments calculation schemes taking into account initial and boundary conditions are prepared and modeling is performed. Modeling results are shown in the present paper. Estimation of calculation error of the basic physical parameters is done by results of the modeling and conclusions are drawn on a correctness of algorithms operation.

  6. Analysis of numerical methods

    CERN Document Server

    Isaacson, Eugene

    1994-01-01

    This excellent text for advanced undergraduates and graduate students covers norms, numerical solution of linear systems and matrix factoring, iterative solutions of nonlinear equations, eigenvalues and eigenvectors, polynomial approximation, and other topics. It offers a careful analysis and stresses techniques for developing new methods, plus many examples and problems. 1966 edition.

  7. Numerical multistep methods for the efficient solution of quantum mechanics and related problems

    International Nuclear Information System (INIS)

    Anastassi, Z.A.; Simos, T.E.

    2009-01-01

    In this paper we present the recent development in the numerical integration of the Schroedinger equation and related systems of ordinary differential equations with oscillatory solutions, such as the N-body problem. We examine several types of multistep methods (explicit, implicit, predictor-corrector, hybrid) and several properties (P-stability, trigonometric fitting of various orders, phase fitting, high phase-lag order, algebraic order). We analyze the local truncation error and the stability of the methods. The error for the Schroedinger equation is also presented, which reveals the relation of the error to the energy. The efficiency of the methods is evaluated through the integration of five problems. Figures are presented and analyzed and some general conclusions are made. Code written in Maple is given for the development of all methods analyzed in this paper. Also the subroutines written in Matlab, that concern the integration of the methods, are presented.

  8. The secret to successful solute-transport modeling

    Science.gov (United States)

    Konikow, Leonard F.

    2011-01-01

    Modeling subsurface solute transport is difficult—more so than modeling heads and flows. The classical governing equation does not always adequately represent what we see at the field scale. In such cases, commonly used numerical models are solving the wrong equation. Also, the transport equation is hyperbolic where advection is dominant, and parabolic where hydrodynamic dispersion is dominant. No single numerical method works well for all conditions, and for any given complex field problem, where seepage velocity is highly variable, no one method will be optimal everywhere. Although we normally expect a numerically accurate solution to the governing groundwater-flow equation, errors in concentrations from numerical dispersion and/or oscillations may be large in some cases. The accuracy and efficiency of the numerical solution to the solute-transport equation are more sensitive to the numerical method chosen than for typical groundwater-flow problems. However, numerical errors can be kept within acceptable limits if sufficient computational effort is expended. But impractically long

  9. On the Partial Analytical Solution of the Kirchhoff Equation

    KAUST Repository

    Michels, Dominik L.

    2015-09-01

    We derive a combined analytical and numerical scheme to solve the (1+1)-dimensional differential Kirchhoff system. Here the object is to obtain an accurate as well as an efficient solution process. Purely numerical algorithms typically have the disadvantage that the quality of solutions decreases enormously with increasing temporal step sizes, which results from the numerical stiffness of the underlying partial differential equations. To prevent that, we apply a differential Thomas decomposition and a Lie symmetry analysis to derive explicit analytical solutions to specific parts of the Kirchhoff system. These solutions are general and depend on arbitrary functions, which we set up according to the numerical solution of the remaining parts. In contrast to a purely numerical handling, this reduces the numerical solution space and prevents the system from becoming unstable. The differential Kirchhoff equation describes the dynamic equilibrium of one-dimensional continua, i.e. slender structures like fibers. We evaluate the advantage of our method by simulating a cilia carpet.

  10. On the Partial Analytical Solution of the Kirchhoff Equation

    KAUST Repository

    Michels, Dominik L.; Lyakhov, Dmitry; Gerdt, Vladimir P.; Sobottka, Gerrit A.; Weber, Andreas G.

    2015-01-01

    We derive a combined analytical and numerical scheme to solve the (1+1)-dimensional differential Kirchhoff system. Here the object is to obtain an accurate as well as an efficient solution process. Purely numerical algorithms typically have the disadvantage that the quality of solutions decreases enormously with increasing temporal step sizes, which results from the numerical stiffness of the underlying partial differential equations. To prevent that, we apply a differential Thomas decomposition and a Lie symmetry analysis to derive explicit analytical solutions to specific parts of the Kirchhoff system. These solutions are general and depend on arbitrary functions, which we set up according to the numerical solution of the remaining parts. In contrast to a purely numerical handling, this reduces the numerical solution space and prevents the system from becoming unstable. The differential Kirchhoff equation describes the dynamic equilibrium of one-dimensional continua, i.e. slender structures like fibers. We evaluate the advantage of our method by simulating a cilia carpet.

  11. Numerical solution of a logistic growth model for a population with Allee effect considering fuzzy initial values and fuzzy parameters

    Science.gov (United States)

    Amarti, Z.; Nurkholipah, N. S.; Anggriani, N.; Supriatna, A. K.

    2018-03-01

    Predicting the future of population number is among the important factors that affect the consideration in preparing a good management for the population. This has been done by various known method, one among them is by developing a mathematical model describing the growth of the population. The model usually takes form in a differential equation or a system of differential equations, depending on the complexity of the underlying properties of the population. The most widely used growth models currently are those having a sigmoid solution of time series, including the Verhulst logistic equation and the Gompertz equation. In this paper we consider the Allee effect of the Verhulst’s logistic population model. The Allee effect is a phenomenon in biology showing a high correlation between population size or density and the mean individual fitness of the population. The method used to derive the solution is the Runge-Kutta numerical scheme, since it is in general regarded as one among the good numerical scheme which is relatively easy to implement. Further exploration is done via the fuzzy theoretical approach to accommodate the impreciseness of the initial values and parameters in the model.

  12. Recent advances in two-phase flow numerics

    Energy Technology Data Exchange (ETDEWEB)

    Mahaffy, J.H.; Macian, R. [Pennsylvania State Univ., University Park, PA (United States)

    1997-07-01

    The authors review three topics in the broad field of numerical methods that may be of interest to individuals modeling two-phase flow in nuclear power plants. The first topic is iterative solution of linear equations created during the solution of finite volume equations. The second is numerical tracking of macroscopic liquid interfaces. The final area surveyed is the use of higher spatial difference techniques.

  13. Recent advances in two-phase flow numerics

    International Nuclear Information System (INIS)

    Mahaffy, J.H.; Macian, R.

    1997-01-01

    The authors review three topics in the broad field of numerical methods that may be of interest to individuals modeling two-phase flow in nuclear power plants. The first topic is iterative solution of linear equations created during the solution of finite volume equations. The second is numerical tracking of macroscopic liquid interfaces. The final area surveyed is the use of higher spatial difference techniques

  14. Numerical experiments on the determination of unsteady state temperature distribution in domains of complicated boundary shape

    International Nuclear Information System (INIS)

    Laura, P.A.A.

    1978-01-01

    This paper compares analytical and finite element results for an unsteady heat-conduction problem in simply and doubly connected plates of regular polygonal shape. A numerical solution is obtained by means of the powerful finite element method and the results are shown to agree with an approximate conformal mapping-variational technique previously developed by the first author and coworkers. (Auth.)

  15. Low Mach number analysis of idealized thermoacoustic engines with numerical solution.

    Science.gov (United States)

    Hireche, Omar; Weisman, Catherine; Baltean-Carlès, Diana; Le Quéré, Patrick; Bauwens, Luc

    2010-12-01

    A model of an idealized thermoacoustic engine is formulated, coupling nonlinear flow and heat exchange in the heat exchangers and stack with a simple linear acoustic model of the resonator and load. Correct coupling results in an asymptotically consistent global model, in the small Mach number approximation. A well-resolved numerical solution is obtained for two-dimensional heat exchangers and stack. The model assumes that the heat exchangers and stack are shorter than the overall length by a factor of the order of a representative Mach number. The model is well-suited for simulation of the entire startup process, whereby as a result of some excitation, an initially specified temperature profile in the stack evolves toward a near-steady profile, eventually reaching stationary operation. A validation analysis is presented, together with results showing the early amplitude growth and approach of a stationary regime. Two types of initial excitation are used: Random noise and a small periodic wave. The set of assumptions made leads to a heat-exchanger section that acts as a source of volume but is transparent to pressure and to a local heat-exchanger model characterized by a dynamically incompressible flow to which a locally spatially uniform acoustic pressure fluctuation is superimposed.

  16. Milne, a routine for the numerical solution of Milne's problem

    Science.gov (United States)

    Rawat, Ajay; Mohankumar, N.

    2010-11-01

    The routine Milne provides accurate numerical values for the classical Milne's problem of neutron transport for the planar one speed and isotropic scattering case. The solution is based on the Case eigen-function formalism. The relevant X functions are evaluated accurately by the Double Exponential quadrature. The calculated quantities are the extrapolation distance and the scalar and the angular fluxes. Also, the H function needed in astrophysical calculations is evaluated as a byproduct. Program summaryProgram title: Milne Catalogue identifier: AEGS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 701 No. of bytes in distributed program, including test data, etc.: 6845 Distribution format: tar.gz Programming language: Fortran 77 Computer: PC under Linux or Windows Operating system: Ubuntu 8.04 (Kernel version 2.6.24-16-generic), Windows-XP Classification: 4.11, 21.1, 21.2 Nature of problem: The X functions are integral expressions. The convergence of these regular and Cauchy Principal Value integrals are impaired by the singularities of the integrand in the complex plane. The DE quadrature scheme tackles these singularities in a robust manner compared to the standard Gauss quadrature. Running time: The test included in the distribution takes a few seconds to run.

  17. Numerical considerations for Lagrangian stochastic dispersion models: Eliminating rogue trajectories, and the importance of numerical accuracy

    Science.gov (United States)

    When Lagrangian stochastic models for turbulent dispersion are applied to complex flows, some type of ad hoc intervention is almost always necessary to eliminate unphysical behavior in the numerical solution. This paper discusses numerical considerations when solving the Langevin-based particle velo...

  18. A modified phase-fitted and amplification-fitted Runge-Kutta-Nyström method for the numerical solution of the radial Schrödinger equation

    OpenAIRE

    Papadopoulos , D. F.; Anastassi , Z. A.; Simos , T. E.

    2010-01-01

    Abstract A new Runge-Kutta-Nystrom method, with phase-lag and amplification error of order infinity, for the numerical solution of the Schrodinger equation is developed in this paper. The new method is based on the Runge-Kutta-Nystrom method with fourth algebraic order, developed by Dormand, El-Mikkawy and Prince. Numerical illustrations indicate that the new method is much more efficient than other methods derived for the same purpose. phone: +30-210-9421510 (Simos, T. E.) ...

  19. Numerical modelling of random walk one-dimensional diffusion

    International Nuclear Information System (INIS)

    Vamos, C.; Suciu, N.; Peculea, M.

    1996-01-01

    The evolution of a particle which moves on a discrete one-dimensional lattice, according to a random walk low, approximates better the diffusion process smaller the steps of the spatial lattice and time are. For a sufficiently large assembly of particles one can assume that their relative frequency at lattice knots approximates the distribution function of the diffusion process. This assumption has been tested by simulating on computer two analytical solutions of the diffusion equation: the Brownian motion and the steady state linear distribution. To evaluate quantitatively the similarity between the numerical and analytical solutions we have used a norm given by the absolute value of the difference of the two solutions. Also, a diffusion coefficient at any lattice knots and moment of time has been calculated, by using the numerical solution both from the diffusion equation and the particle flux given by Fick's low. The difference between diffusion coefficient of analytical solution and the spatial lattice mean coefficient of numerical solution constitutes another quantitative indication of the similarity of the two solutions. The results obtained show that the approximation depends first on the number of particles at each knot of the spatial lattice. In conclusion, the random walk is a microscopic process of the molecular dynamics type which permits simulations precision of the diffusion processes with given precision. The numerical method presented in this work may be useful both in the analysis of real experiments and for theoretical studies

  20. IMPSOR, 3-D Boundary Problems Solution for Thermal Conductivity Calculation

    International Nuclear Information System (INIS)

    Wilson, D.G.; Williams, M.A.

    1994-01-01

    1 - Description of program or function: IMPSOR implements finite difference methods for multidimensional moving boundary problems with Dirichlet or Neumann boundary conditions. The geometry of the spatial domain is a rectangular parallelepiped with dimensions specified by the user. Dirichlet or Neumann boundary conditions may be specified on each face of the box independently. The user defines the initial and boundary conditions as well as the thermal and physical properties of the problem and several parameters for the numerical method, e.g. degree of implicitness, time-step size. 2 - Method of solution: The spatial domain is partitioned and the governing equation discretized, which yields a nonlinear system of equations at each time-step. This nonlinear system is solved using a successive over-relaxation (SOR) algorithm. For a given node, the previous iteration's temperature and thermal conductivity values are used for advanced points with current values at previous points. This constitutes a Gauss-Seidel iteration. Most of the computing time used by the numerical method is spent in the iterative solution of the nonlinear system. The SOR scheme employed is designed to accommodate vectorization on a Cray X-MP. 3 - Restrictions on the complexity of the problem: Maximum of 70,000 nodes

  1. One Monopole-Antimonopole Pair Solutions

    International Nuclear Information System (INIS)

    Teh, Rosy; Wong, K.-M.

    2009-01-01

    We present new classical generalized one monopole-antimonopole pair solutions of the SU(2) Yang-Mills-Higgs theory with the Higgs field in the adjoint representation. We show that in general the one monopole-antimonopole solution need not be solved by imposing mθ-winding number to be integer greater than one. We also show that this solution can be solved when m = 1 by transforming the large distance asymptotic solutions to general solutions that depend on a parameter p. Secondly we show that these large distance asymptotic solutions can be further generalized to the Jacobi elliptic functions. We focus our numerical calculation on the Jacobi elliptic functions solution when the nφ-winding number is one and show that this generalized Jacobi elliptic 1-MAP solution possesses lower energy. All these solutions are numerical finite energy non-BPS solutions of the Yang-Mills-Higgs field theory.

  2. Automated smoother for the numerical decoupling of dynamics models.

    Science.gov (United States)

    Vilela, Marco; Borges, Carlos C H; Vinga, Susana; Vasconcelos, Ana Tereza R; Santos, Helena; Voit, Eberhard O; Almeida, Jonas S

    2007-08-21

    Structure identification of dynamic models for complex biological systems is the cornerstone of their reverse engineering. Biochemical Systems Theory (BST) offers a particularly convenient solution because its parameters are kinetic-order coefficients which directly identify the topology of the underlying network of processes. We have previously proposed a numerical decoupling procedure that allows the identification of multivariate dynamic models of complex biological processes. While described here within the context of BST, this procedure has a general applicability to signal extraction. Our original implementation relied on artificial neural networks (ANN), which caused slight, undesirable bias during the smoothing of the time courses. As an alternative, we propose here an adaptation of the Whittaker's smoother and demonstrate its role within a robust, fully automated structure identification procedure. In this report we propose a robust, fully automated solution for signal extraction from time series, which is the prerequisite for the efficient reverse engineering of biological systems models. The Whittaker's smoother is reformulated within the context of information theory and extended by the development of adaptive signal segmentation to account for heterogeneous noise structures. The resulting procedure can be used on arbitrary time series with a nonstationary noise process; it is illustrated here with metabolic profiles obtained from in-vivo NMR experiments. The smoothed solution that is free of parametric bias permits differentiation, which is crucial for the numerical decoupling of systems of differential equations. The method is applicable in signal extraction from time series with nonstationary noise structure and can be applied in the numerical decoupling of system of differential equations into algebraic equations, and thus constitutes a rather general tool for the reverse engineering of mechanistic model descriptions from multivariate experimental

  3. Numerical studies of time-independent and time-dependent scattering by several elliptical cylinders

    Science.gov (United States)

    Nigsch, Martin

    2007-07-01

    A numerical solution to the problem of time-dependent scattering by an array of elliptical cylinders with parallel axes is presented. The solution is an exact one, based on the separation-of-variables technique in the elliptical coordinate system, the addition theorem for Mathieu functions, and numerical integration. Time-independent solutions are described by a system of linear equations of infinite order which are truncated for numerical computations. Time-dependent solutions are obtained by numerical integration involving a large number of these solutions. First results of a software package generating these solutions are presented: wave propagation around three impenetrable elliptical scatterers. As far as we know, this method described has never been used for time-dependent multiple scattering.

  4. Unmitigated numerical solution to the diffraction term in the parabolic nonlinear ultrasound wave equation.

    Science.gov (United States)

    Hasani, Mojtaba H; Gharibzadeh, Shahriar; Farjami, Yaghoub; Tavakkoli, Jahan

    2013-09-01

    Various numerical algorithms have been developed to solve the Khokhlov-Kuznetsov-Zabolotskaya (KZK) parabolic nonlinear wave equation. In this work, a generalized time-domain numerical algorithm is proposed to solve the diffraction term of the KZK equation. This algorithm solves the transverse Laplacian operator of the KZK equation in three-dimensional (3D) Cartesian coordinates using a finite-difference method based on the five-point implicit backward finite difference and the five-point Crank-Nicolson finite difference discretization techniques. This leads to a more uniform discretization of the Laplacian operator which in turn results in fewer calculation gridding nodes without compromising accuracy in the diffraction term. In addition, a new empirical algorithm based on the LU decomposition technique is proposed to solve the system of linear equations obtained from this discretization. The proposed empirical algorithm improves the calculation speed and memory usage, while the order of computational complexity remains linear in calculation of the diffraction term in the KZK equation. For evaluating the accuracy of the proposed algorithm, two previously published algorithms are used as comparison references: the conventional 2D Texas code and its generalization for 3D geometries. The results show that the accuracy/efficiency performance of the proposed algorithm is comparable with the established time-domain methods.

  5. Fall with linear drag and Wien's displacement law: approximate solution and Lambert function

    International Nuclear Information System (INIS)

    Vial, Alexandre

    2012-01-01

    We present an approximate solution for the downward time of travel in the case of a mass falling with a linear drag force. We show how a quasi-analytical solution implying the Lambert function can be found. We also show that solving the previous problem is equivalent to the search for Wien's displacement law. These results can be of interest for undergraduate students, as they show that some transcendental equations found in physics may be solved without purely numerical methods. Moreover, as will be seen in the case of Wien's displacement law, solutions based on series expansion can be very accurate even with few terms. (paper)

  6. Explicit solution for a wave equation with nonlocal condition

    Science.gov (United States)

    Bazhlekova, Emilia; Dimovski, Ivan

    2012-11-01

    An initial-boundary value problem with a nonlocal boundary condition for one-dimensional wave equation is studied. Applying spectral projections, we find a series solution of the problem. The character of the solution found shows that the oscillation amplitude of the system described by this equation increases with time at any fixed x in absence of external forces. To find a representation of the solution more convenient for numerical calculation we develop a two-dimensional operational calculus for the problem. The solution is expressed as a sum of non-classical convolution products of particular solutions and the arbitrary initial functions. This result is an extension of the classical Duhamel principle for the space variable. The representation is used successfully for numerical computation and visualization of the solution. Numerical results obtained for specific test problems with known exact solutions indicate that the present technique provides accurate numerical solutions.

  7. Numerical prediction of kinetic model for enzymatic hydrolysis of cellulose using DAE-QMOM approach

    Science.gov (United States)

    Jamil, N. M.; Wang, Q.

    2016-06-01

    Bioethanol production from lignocellulosic biomass consists of three fundamental processes; pre-treatment, enzymatic hydrolysis, and fermentation. In enzymatic hydrolysis phase, the enzymes break the cellulose chains into sugar in the form of cellobiose or glucose. A currently proposed kinetic model for enzymatic hydrolysis of cellulose that uses population balance equation (PBE) mechanism was studied. The complexity of the model due to integrodifferential equations makes it difficult to find the analytical solution. Therefore, we solved the full model of PBE numerically by using DAE-QMOM approach. The computation was carried out using MATLAB software. The numerical results were compared to the asymptotic solution developed in the author's previous paper and the results of Griggs et al. Besides confirming the findings were consistent with those references, some significant characteristics were also captured. The PBE model for enzymatic hydrolysis process can be solved using DAE-QMOM method. Also, an improved understanding of the physical insights of the model was achieved.

  8. Analytic solutions of hydrodynamics equations

    International Nuclear Information System (INIS)

    Coggeshall, S.V.

    1991-01-01

    Many similarity solutions have been found for the equations of one-dimensional (1-D) hydrodynamics. These special combinations of variables allow the partial differential equations to be reduced to ordinary differential equations, which must then be solved to determine the physical solutions. Usually, these reduced ordinary differential equations are solved numerically. In some cases it is possible to solve these reduced equations analytically to obtain explicit solutions. In this work a collection of analytic solutions of the 1-D hydrodynamics equations is presented. These can be used for a variety of purposes, including (i) numerical benchmark problems, (ii) as a basis for analytic models, and (iii) to provide insight into more complicated solutions

  9. Calculation of radiation effects in solids by direct numerical solution of the adjoint transport equation

    International Nuclear Information System (INIS)

    Matthes, W.K.

    1998-01-01

    The 'adjoint transport equation in its integro-differential form' is derived for the radiation damage produced by atoms injected into solids. We reduce it to the one-dimensional form and prepare it for a numerical solution by: --discretizing the continuous variables energy, space and direction, --replacing the partial differential quotients by finite differences and --evaluating the collision integral by a double sum. By a proper manipulation of this double sum the adjoint transport equation turns into a (very large) set of linear equations with tridiagonal matrix which can be solved by a special (simple and fast) algorithm. The solution of this set of linear equations contains complete information on a specified damage type (e.g. the energy deposited in a volume V) in terms of the function D(i,E,c,x) which gives the damage produced by all particles generated in a cascade initiated by a particle of type i starting at x with energy E in direction c. It is essential to remark that one calculation gives the damage function D for the complete ranges of the variables {i,E,c and x} (for numerical reasons of course on grid-points in the {E,c,x}-space). This is most useful to applications where a general source-distribution S(i,E,c,x) of particles is given by the experimental setup (e.g. beam-window and and target in proton accelerator work. The beam-protons along their path through the window--or target material generate recoil atoms by elastic collisions or nuclear reactions. These recoil atoms form the particle source S). The total damage produced then is eventually given by: D = (Σ)i ∫ ∫ ∫ S(i, E, c, x)*D(i, E, c, x)*dE*dc*dx A Fortran-77 program running on a PC-486 was written for the overall procedure and applied to some problems

  10. Numerical solution of neutral functional-differential equations with proportional delays

    Directory of Open Access Journals (Sweden)

    Mehmet Giyas Sakar

    2017-07-01

    Full Text Available In this paper, homotopy analysis method is improved with optimal determination of auxiliary parameter by use of residual error function for solving neutral functional-differential equations (NFDEs with proportional delays. Convergence analysis and error estimate of method are given. Some numerical examples are solved and comparisons are made with the existing results. The numerical results show that the homotopy analysis method with residual error function is very effective and simple.

  11. Numerical solution of the state-delayed optimal control problems by a fast and accurate finite difference θ-method

    Science.gov (United States)

    Hajipour, Mojtaba; Jajarmi, Amin

    2018-02-01

    Using the Pontryagin's maximum principle for a time-delayed optimal control problem results in a system of coupled two-point boundary-value problems (BVPs) involving both time-advance and time-delay arguments. The analytical solution of this advance-delay two-point BVP is extremely difficult, if not impossible. This paper provides a discrete general form of the numerical solution for the derived advance-delay system by applying a finite difference θ-method. This method is also implemented for the infinite-time horizon time-delayed optimal control problems by using a piecewise version of the θ-method. A matrix formulation and the error analysis of the suggested technique are provided. The new scheme is accurate, fast and very effective for the optimal control of linear and nonlinear time-delay systems. Various types of finite- and infinite-time horizon problems are included to demonstrate the accuracy, validity and applicability of the new technique.

  12. Analytic Closed-Form Solution of a Mixed Layer Model for Stratocumulus Clouds

    Science.gov (United States)

    Akyurek, Bengu Ozge

    Stratocumulus clouds play an important role in climate cooling and are hard to predict using global climate and weather forecast models. Thus, previous studies in the literature use observations and numerical simulation tools, such as large-eddy simulation (LES), to solve the governing equations for the evolution of stratocumulus clouds. In contrast to the previous works, this work provides an analytic closed-form solution to the cloud thickness evolution of stratocumulus clouds in a mixed-layer model framework. With a focus on application over coastal lands, the diurnal cycle of cloud thickness and whether or not clouds dissipate are of particular interest. An analytic solution enables the sensitivity analysis of implicitly interdependent variables and extrema analysis of cloud variables that are hard to achieve using numerical solutions. In this work, the sensitivity of inversion height, cloud-base height, and cloud thickness with respect to initial and boundary conditions, such as Bowen ratio, subsidence, surface temperature, and initial inversion height, are studied. A critical initial cloud thickness value that can be dissipated pre- and post-sunrise is provided. Furthermore, an extrema analysis is provided to obtain the minima and maxima of the inversion height and cloud thickness within 24 h. The proposed solution is validated against LES results under the same initial and boundary conditions. Then, the proposed analytic framework is extended to incorporate multiple vertical columns that are coupled by advection through wind flow. This enables a bridge between the micro-scale and the mesoscale relations. The effect of advection on cloud evolution is studied and a sensitivity analysis is provided.

  13. Numerical solution of integral equations, describing mass spectrum of vector mesons

    International Nuclear Information System (INIS)

    Zhidkov, E.P.; Nikonov, E.G.; Sidorov, A.V.; Skachkov, N.B.; Khoromskij, B.N.

    1988-01-01

    The description of the numerical algorithm for solving quasipotential integral equation in impulse space is presented. The results of numerical computations of the vector meson mass spectrum and the leptonic decay width are given in comparison with the experimental data

  14. Numerical Solution of Fuzzy Differential Equations by Runge-Kutta Verner Method

    Directory of Open Access Journals (Sweden)

    T. Jayakumar

    2015-01-01

    Full Text Available In this paper we study the numerical methods for Fuzzy Differential equations by an application of the Runge-Kutta Verner method for fuzzy differential equations. We prove a convergence result and give numerical examples to illustrate the theory.

  15. Numerical studies of the linear theta pinch

    International Nuclear Information System (INIS)

    Brackbill, J.U.; Menzel, M.T.; Barnes, D.C.

    1975-01-01

    Aspects of several physical problems associated with linear theta pinches were studied using recently developed numerical methods for the solution of the nonlinear equations for time-dependent magnetohydrodynamic flow in two- and three-dimensions. The problems studied include the propagation of end-loss produced rarefaction waves, the flow produced in a proposed injection experiment geometry, and the linear growth and nonlinear saturation of instabilities in rotating plasmas, all in linear geometries. The studies illustrate how numerical computations aid in flow visualization, and how the small amplitude behavior and nonlinear fate of plasmas in unstable equilibria can be connected through the numerical solution of the dynamical equations. (auth)

  16. Numeric databases on the kinetics of transient species in solution

    International Nuclear Information System (INIS)

    Helman, W.P.; Hug, G.L.; Carmichael, Ian; Ross, A.B.

    1988-01-01

    A description is given of data compilations on the kinetics of transient species in solution. In particular information is available for the reactions of radicals in aqueous solution and for excited states such as singlet molecular oxygen and those of metal complexes in solution. Methods for compilation and use of the information in computer-readable form are also described. Emphasis is placed on making the database available for online searching. (author)

  17. Advanced numerical methods for three dimensional two-phase flow calculations

    Energy Technology Data Exchange (ETDEWEB)

    Toumi, I. [Laboratoire d`Etudes Thermiques des Reacteurs, Gif sur Yvette (France); Caruge, D. [Institut de Protection et de Surete Nucleaire, Fontenay aux Roses (France)

    1997-07-01

    This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.

  18. Advanced numerical methods for three dimensional two-phase flow calculations

    International Nuclear Information System (INIS)

    Toumi, I.; Caruge, D.

    1997-01-01

    This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe's method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations

  19. A numerical solution of the problem of crown forest fire initiation and spread

    Science.gov (United States)

    Marzaeva, S. I.; Galtseva, O. V.

    2018-05-01

    Mathematical model of forest fire was based on an analysis of known experimental data and using concept and methods from reactive media mechanics. The study takes in to account the mutual interaction of the forest fires and three-dimensional atmosphere flows. The research is done by means of mathematical modeling of physical processes. It is based on numerical solution of Reynolds equations for chemical components and equations of energy conservation for gaseous and condensed phases. It is assumed that the forest during a forest fire can be modeled as a two-temperature multiphase non-deformable porous reactive medium. A discrete analog for the system of equations was obtained by means of the control volume method. The developed model of forest fire initiation and spreading would make it possible to obtain a detailed picture of the variation in the velocity, temperature and chemical species concentration fields with time. Mathematical model and the result of the calculation give an opportunity to evaluate critical conditions of the forest fire initiation and spread which allows applying the given model for of means for preventing fires.

  20. Two-particle correlations in the one-dimensional Hubbard model: a ground-state analytical solution

    CERN Document Server

    Vallejo, E; Espinosa, J E

    2003-01-01

    A solution to the extended Hubbard Hamiltonian for the case of two-particles in an infinite one-dimensional lattice is presented, using a real-space mapping method and the Green function technique. This Hamiltonian considers the on-site (U) and the nearest-neighbor (V) interactions. The method is based on mapping the correlated many-body problem onto an equivalent site-impurity tight-binding one in a higher dimensional space. In this new space we obtained the analytical solution for the ground state binding energy. Results are in agreement with the numerical solution obtained previously [1], and with those obtained in the reciprocal space [2]. (Author)

  1. Numerical solution of instability phenomenon arising in double phase flow through inclined homogeneous porous media

    Directory of Open Access Journals (Sweden)

    Ravi Borana

    2016-09-01

    Full Text Available In the petroleum reservoir at an early stage the oil is recovered due to existing natural pressure and such type of oil recovery is referred as primary oil recovery. It ends when pressure equilibrium occurs and still large amount of oil remains in the reservoir. Consequently, secondary oil recovery process is employed by injection water into some injection wells to push oil towards the production well. The instability phenomenon arises during secondary oil recovery process. When water is injected into the oil filled region, due to the force of injecting water and difference in viscosities of water and native oil, protuberances occur at the common interface. It gives rise to the shape of fingers (protuberances at common interface. The injected water shoots through inter connected capillaries at very high speed. It appears in the form of irregular trembling fingers, filled with injected water in the native oil field; this is due to the immiscibility of water and oil. The homogeneous porous medium is considered with a small inclination with the horizontal, the basic parameters porosity and permeability remain uniform throughout the porous medium. Based on the mass conservation principle and important Darcy's law under the specific standard relationships and basic assumptions considered, the governing equation yields a non-linear partial differential equation. The Crank–Nicolson finite difference scheme is developed and on implementing the boundary conditions the resulting finite difference scheme is implemented to obtain the numerical results. The numerical results are obtained by generating a MATLAB code for the saturation of water which decreases with the space variable and increases with time. The obtained numerical solution is efficient, accurate, and reliable, matches well with the physical phenomenon.

  2. Comparison between numeric and approximate analytic solutions for the prediction of soil metal uptake by roots. Example of cadmium.

    Science.gov (United States)

    Schneider, André; Lin, Zhongbing; Sterckeman, Thibault; Nguyen, Christophe

    2018-04-01

    The dissociation of metal complexes in the soil solution can increase the availability of metals for root uptake. When it is accounted for in models of bioavailability of soil metals, the number of partial differential equations (PDEs) increases and the computation time to numerically solve these equations may be problematic when a large number of simulations are required, for example for sensitivity analyses or when considering root architecture. This work presents analytical solutions for the set of PDEs describing the bioavailability of soil metals including the kinetics of complexation for three scenarios where the metal complex in solution was fully inert, fully labile, or partially labile. The analytical solutions are only valid i) at steady-state when the PDEs become ordinary differential equations, the transient phase being not covered, ii) when diffusion is the major mechanism of transport and therefore, when convection is negligible, iii) when there is no between-root competition. The formulation of the analytical solutions is for cylindrical geometry but the solutions rely on the spread of the depletion profile around the root, which was modelled assuming a planar geometry. The analytical solutions were evaluated by comparison with the corresponding PDEs for cadmium in the case of the French agricultural soils. Provided that convection was much lower than diffusion (Péclet's number<0.02), the cumulative uptakes calculated from the analytic solutions were in very good agreement with those calculated from the PDEs, even in the case of a partially labile complex. The analytic solutions can be used instead of the PDEs to predict root uptake of metals. The analytic solutions were also used to build an indicator of the contribution of a complex to the uptake of the metal by roots, which can be helpful to predict the effect of soluble organic matter on the bioavailability of soil metals. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Stability of numerical method for semi-linear stochastic pantograph differential equations

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2016-01-01

    Full Text Available Abstract As a particular expression of stochastic delay differential equations, stochastic pantograph differential equations have been widely used in nonlinear dynamics, quantum mechanics, and electrodynamics. In this paper, we mainly study the stability of analytical solutions and numerical solutions of semi-linear stochastic pantograph differential equations. Some suitable conditions for the mean-square stability of an analytical solution are obtained. Then we proved the general mean-square stability of the exponential Euler method for a numerical solution of semi-linear stochastic pantograph differential equations, that is, if an analytical solution is stable, then the exponential Euler method applied to the system is mean-square stable for arbitrary step-size h > 0 $h>0$ . Numerical examples further illustrate the obtained theoretical results.

  4. Review of numerical special relativistic hydrodynamics

    NARCIS (Netherlands)

    D.E.A. van Odyck (Daniel)

    2002-01-01

    textabstractThis paper gives an overview of numerical methods for special relativistichydrodynamics (SRHD). First, a short summary of special relativity is given. Next, the SRHD equations are introduced. The exact solution for the SRHD Riemann problem is described. This solution is used in a Godunov

  5. Conceptual and numerical models of groundwater flow and solute transport in fracture zones: Application to the Aspo Island (Sweden); Modelos conceptuales y numericos de flujo y transporte de solutos en zonas de fractura: aplicacion a la isla de Aspo (Suecia)

    Energy Technology Data Exchange (ETDEWEB)

    Molinero, J.; Samper, J.

    2003-07-01

    Several countries around the world are considering the final disposal of high-level radioactive waste in deep repositories located in fractured granite formations. Evaluating the long term safety of such repositories requires sound conceptual and numerical models which must consider simultaneously groundwater flow, solute transport and chemical and radiological processes. These models are being developed from data and knowledge gained from in situ experiments carried out at deep underground laboratories such as that of Aspo, Sweden, constructed in fractured granite. The Redox Zone Experiment is one of such experiments performed at Aspo in order to evaluate the effects of the construction of the access tunnel on the hydrogeological and hydrochemical conditions of a fracture zone intersected by the tunnel. Previous authors interpreted hydrochemical and isotopic data of this experiment using a mass-balance approach based on a qualitative description of groundwater flow conditions. Such an interpretation, however, is subject to uncertainties related to an over-simplified conceptualization of groundwater flow. Here we present numerical models of groundwater flow and solute transport for this fracture zone. The first model is based on previously published conceptual model. It presents noticeable un consistencies and fails to match simultaneously observed draw downs and chloride breakthrough curves. To overcome its limitations, a revised flow and transport model is presented which relies directly on available hydrodynamic and transport parameters, is based on the identification of appropriate flow and transport boundary conditions and uses, when needed, solute data extrapolated from nearby fracture zones. A significant quantitative improvement is achieved with the revised model because its results match simultaneously drawdown and chloride data. Other improvements are qualitative and include: ensuring consistency of hydrodynamic and hydrochemical data and avoiding

  6. Numerical methods for hydrodynamic stability problems

    International Nuclear Information System (INIS)

    Fujimura, Kaoru

    1985-11-01

    Numerical methods for solving the Orr-Sommerfeld equation, which is the fundamental equation of the hydrodynamic stability theory for various shear flows, are reviewed and typical numerical results are presented. The methods of asymptotic solution, finite difference methods, initial value methods and expansions in orthogonal functions are compared. (author)

  7. Numerical issues for liquid-metal boiling transient analysis

    International Nuclear Information System (INIS)

    Rowe, D.S.

    1986-01-01

    The large liquid-to-vapor density ratio of a boiling liquid-metal leads to a very abrupt change of the two-phase mixture density at the inception of boiling. Unfortunately, the strong dependence of mixture density on pressure leads to a key numerical issue that adversely affects the behavior of numerical solutions. The difficulties can be reduced by using techniques that acknowledge this functional behavior at the start of boiling. Some of the methods used include a spatially averaged density function, mathematical smoothing, and under relaxation. Nonequilibrium two-fluid models also seem to offer aid in obtaining reliable numerical solutions. (author)

  8. NUMERICAL AND ANALYTIC METHODS OF ESTIMATION BRIDGES’ CONSTRUCTIONS

    Directory of Open Access Journals (Sweden)

    Y. Y. Luchko

    2010-03-01

    Full Text Available In this article the numerical and analytical methods of calculation of the stressed-and-strained state of bridge constructions are considered. The task on increasing of reliability and accuracy of the numerical method and its solution by means of calculations in two bases are formulated. The analytical solution of the differential equation of deformation of a ferro-concrete plate under the action of local loads is also obtained.

  9. Modeling of amorphous pocket formation in silicon by numerical solution of the heat transport equation

    International Nuclear Information System (INIS)

    Kovac, D.; Otto, G.; Hobler, G.

    2005-01-01

    In this paper we present a model of amorphous pocket formation that is based on binary collision simulations to generate the distribution of deposited energy, and on numerical solution of the heat transport equation to describe the quenching process. The heat transport equation is modified to consider the heat of melting when the melting temperature is crossed at any point in space. It is discretized with finite differences on grid points that coincide with the crystallographic lattice sites, which allows easy determination of molten atoms. Atoms are considered molten if the average of their energy and the energy of their neighbors meets the melting criterion. The results obtained with this model are in good overall agreement with published experimental data on P, As, Te and Tl implantations in Si and with data on the polyatomic effect at cryogenic temperature

  10. Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes

    International Nuclear Information System (INIS)

    Larsen, E.W.; Morel, J.E.; Miller, W.F. Jr.

    1987-01-01

    We present an asymptotic analysis of spatial differencing schemes for the discrete-ordinates equations, for diffusive media with spatial cells that are not optically thin. Our theoretical tool is an asymptotic expansion that has previously been used to describe the transform from analytic transport to analytic diffusion theory for such media. To introduce this expansion and its physical rationale, we first describe it for the analytic discrete-ordinates equations. Then, we apply the expansion to the spatially discretized discrete-ordinates equations, with the spatial mesh scaled in either of two physically relevant ways such that the optical thickness of the spatial cells is not small. If the result of either expansion is a legitimate diffusion description for either the cell-averaged or cell-edge fluxes, then we say that the approximate flux has the appropriate diffusion limit; otherwise, we say it does not. We consider several transport differencing schemes that are applicable in neutron transport and thermal radiation applications. We also include numerical results which demonstrate the validity of our theory and show that differencing schemes that do have a particular diffusion limit are substantially more accurate, in the regime described by the limit, than those that do not. copyright 1987 Academic Press, Inc

  11. On the solution of two-point linear differential eigenvalue problems. [numerical technique with application to Orr-Sommerfeld equation

    Science.gov (United States)

    Antar, B. N.

    1976-01-01

    A numerical technique is presented for locating the eigenvalues of two point linear differential eigenvalue problems. The technique is designed to search for complex eigenvalues belonging to complex operators. With this method, any domain of the complex eigenvalue plane could be scanned and the eigenvalues within it, if any, located. For an application of the method, the eigenvalues of the Orr-Sommerfeld equation of the plane Poiseuille flow are determined within a specified portion of the c-plane. The eigenvalues for alpha = 1 and R = 10,000 are tabulated and compared for accuracy with existing solutions.

  12. Robust and scalable hierarchical matrix-based fast direct solver and preconditioner for the numerical solution of elliptic partial differential equations

    KAUST Repository

    Chavez Chavez, Gustavo Ivan

    2017-01-01

    Numerical experiments corroborate the robustness, accuracy, and complexity claims and provide a baseline of the performance and memory footprint by comparisons with competing approaches such as the multigrid solver hypre, and the STRUMPACK implementation of the multifrontal factorization with hierarchically semi-separable matrices. The companion implementation can utilize many thousands of cores of Shaheen, KAUST's Haswell-based Cray XC-40 supercomputer, and compares favorably with other implementations of hierarchical solvers in terms of time-to-solution and memory consumption.

  13. A finite difference method for numerical solution of the Nernst-Planck equations when convective flux and electric current are involved

    International Nuclear Information System (INIS)

    Aguilera, V.M.; Garrido, J.; Mafe, S.; Pellicer, J.

    1985-01-01

    An algorithm for the solution of Nernst-Planck equations with simultaneous convective flux and electric current has been developed without using Poisson's equation. The numerical simulation which has been developed reproduces the behaviour of the system employing their experimental variables as parameters of the algorithm. However, other procedures are only capable of dealing with some of the experimental conditions described here. The agreement between the theoretically predicted values and the experimentally obtained is quite reasonable. (author)

  14. Numerical solution of the multichannel scattering problem

    International Nuclear Information System (INIS)

    Korobov, V.I.

    1992-01-01

    A numerical algorithm for solving the multichannel elastic and inelastic scattering problem is proposed. The starting point is the system of radial Schroedinger equations with linear boundary conditions imposed at some point R=R m placed somewhere in asymptotic region. It is discussed how the obtained linear equation can be splitted into a zero-order operator and its pertturbative part. It is shown that Lentini - Pereyra variable order finite-difference method appears to be very suitable for solving that kind of problems. The derived procedure is applied to dμ+t→tμ+d inelastic scattering in the framework of the adiabatic multichannel approach. 19 refs.; 1 fig.; 1 tab

  15. Numerical-solution package for transient two-phase-flow equations

    International Nuclear Information System (INIS)

    Mahaffy, J.H.; Liles, D.

    1982-01-01

    The methods presented have proven to be extremely reliable tools for reactor safety analysis. They can handle a wide range of fluid conditions and time scales with minimal failures, while maintaining time step sizes well above those possible with most other techniques. This robustness is due not only to the finite-difference equations themselves, but also to the choice of solution technique, because poorly chosen iterative solution procedures often require a limit on the time-step size for proper convergence of the iteration

  16. Numerical solution of the Navier-Stokes equations by discontinuous Galerkin method

    Science.gov (United States)

    Krasnov, M. M.; Kuchugov, P. A.; E Ladonkina, M.; E Lutsky, A.; Tishkin, V. F.

    2017-02-01

    Detailed unstructured grids and numerical methods of high accuracy are frequently used in the numerical simulation of gasdynamic flows in areas with complex geometry. Galerkin method with discontinuous basis functions or Discontinuous Galerkin Method (DGM) works well in dealing with such problems. This approach offers a number of advantages inherent to both finite-element and finite-difference approximations. Moreover, the present paper shows that DGM schemes can be viewed as Godunov method extension to piecewise-polynomial functions. As is known, DGM involves significant computational complexity, and this brings up the question of ensuring the most effective use of all the computational capacity available. In order to speed up the calculations, operator programming method has been applied while creating the computational module. This approach makes possible compact encoding of mathematical formulas and facilitates the porting of programs to parallel architectures, such as NVidia CUDA and Intel Xeon Phi. With the software package, based on DGM, numerical simulations of supersonic flow past solid bodies has been carried out. The numerical results are in good agreement with the experimental ones.

  17. Numerical Solution of Magnetostatic Field of Maglev System

    Directory of Open Access Journals (Sweden)

    Jaroslav Sobotka

    2008-01-01

    Full Text Available The paper deals with the design of the levitation and guidance system of the levitation train Transrapid 08 by means of QuickField 5.0 – a 2D program formagnetic electromagnetic fields solutions.

  18. Asynchronous and corrected-asynchronous numerical solutions of parabolic PDES on MIMD multiprocessors

    Science.gov (United States)

    Amitai, Dganit; Averbuch, Amir; Itzikowitz, Samuel; Turkel, Eli

    1991-01-01

    A major problem in achieving significant speed-up on parallel machines is the overhead involved with synchronizing the concurrent process. Removing the synchronization constraint has the potential of speeding up the computation. The authors present asynchronous (AS) and corrected-asynchronous (CA) finite difference schemes for the multi-dimensional heat equation. Although the discussion concentrates on the Euler scheme for the solution of the heat equation, it has the potential for being extended to other schemes and other parabolic partial differential equations (PDEs). These schemes are analyzed and implemented on the shared memory multi-user Sequent Balance machine. Numerical results for one and two dimensional problems are presented. It is shown experimentally that the synchronization penalty can be about 50 percent of run time: in most cases, the asynchronous scheme runs twice as fast as the parallel synchronous scheme. In general, the efficiency of the parallel schemes increases with processor load, with the time level, and with the problem dimension. The efficiency of the AS may reach 90 percent and over, but it provides accurate results only for steady-state values. The CA, on the other hand, is less efficient, but provides more accurate results for intermediate (non steady-state) values.

  19. Numerical simulation of the regularized long wave equation by He's homotopy perturbation method

    International Nuclear Information System (INIS)

    Inc, Mustafa; Ugurlu, Yavuz

    2007-01-01

    In this Letter, we present the homotopy perturbation method (shortly HPM) for obtaining the numerical solution of the RLW equation. We obtain the exact and numerical solutions of the Regularized Long Wave (RLW) equation for certain initial condition. The initial approximation can be freely chosen with possible unknown constants which can be determined by imposing the boundary and initial conditions. Comparison of the results with those of other methods have led us to significant consequences. The numerical solutions are compared with the known analytical solutions

  20. Longitudinal dispersion coefficients for numerical modeling of groundwater solute transport in heterogeneous formations.

    Science.gov (United States)

    Lee, Jonghyun; Rolle, Massimo; Kitanidis, Peter K

    2017-09-15

    Most recent research on hydrodynamic dispersion in porous media has focused on whole-domain dispersion while other research is largely on laboratory-scale dispersion. This work focuses on the contribution of a single block in a numerical model to dispersion. Variability of fluid velocity and concentration within a block is not resolved and the combined spreading effect is approximated using resolved quantities and macroscopic parameters. This applies whether the formation is modeled as homogeneous or discretized into homogeneous blocks but the emphasis here being on the latter. The process of dispersion is typically described through the Fickian model, i.e., the dispersive flux is proportional to the gradient of the resolved concentration, commonly with the Scheidegger parameterization, which is a particular way to compute the dispersion coefficients utilizing dispersivity coefficients. Although such parameterization is by far the most commonly used in solute transport applications, its validity has been questioned. Here, our goal is to investigate the effects of heterogeneity and mass transfer limitations on block-scale longitudinal dispersion and to evaluate under which conditions the Scheidegger parameterization is valid. We compute the relaxation time or memory of the system; changes in time with periods larger than the relaxation time are gradually leading to a condition of local equilibrium under which dispersion is Fickian. The method we use requires the solution of a steady-state advection-dispersion equation, and thus is computationally efficient, and applicable to any heterogeneous hydraulic conductivity K field without requiring statistical or structural assumptions. The method was validated by comparing with other approaches such as the moment analysis and the first order perturbation method. We investigate the impact of heterogeneity, both in degree and structure, on the longitudinal dispersion coefficient and then discuss the role of local dispersion

  1. A Differential Quadrature Procedure with Regularization of the Dirac-delta Function for Numerical Solution of Moving Load Problem

    Directory of Open Access Journals (Sweden)

    S. A. Eftekhari

    Full Text Available AbstractThe differential quadrature method (DQM is one of the most elegant and efficient methods for the numerical solution of partial differential equations arising in engineering and applied sciences. It is simple to use and also straightforward to implement. However, the DQM is well-known to have some difficulty when applied to partial differential equations involving singular functions like the Dirac-delta function. This is caused by the fact that the Dirac-delta function cannot be directly discretized by the DQM. To overcome this difficulty, this paper presents a simple differential quadrature procedure in which the Dirac-delta function is replaced by regularized smooth functions. By regularizing the Dirac-delta function, such singular function is treated as non-singular functions and can be easily and directly discretized using the DQM. To demonstrate the applicability and reliability of the proposed method, it is applied here to solve some moving load problems of beams and rectangular plates, where the location of the moving load is described by a time-dependent Dirac-delta function. The results generated by the proposed method are compared with analytical and numerical results available in the literature. Numerical results reveal that the proposed method can be used as an efficient tool for dynamic analysis of beam- and plate-type structures traversed by moving dynamic loads.

  2. On the Hughes model and numerical aspects

    KAUST Repository

    Gomes, Diogo A.

    2017-01-05

    We study a crowd model proposed by R. Hughes in [11] and we describe a numerical approach to solve it. This model comprises a Fokker-Planck equation coupled with an eikonal equation with Dirichlet or Neumann data. First, we establish a priori estimates for the solutions. Second, we study radial solutions and identify a shock formation mechanism. Third, we illustrate the existence of congestion, the breakdown of the model, and the trend to the equilibrium. Finally, we propose a new numerical method and consider two examples.

  3. Numerical solution of a non-linear conservation law applicable to the interior dynamics of partially molten planets

    Science.gov (United States)

    Bower, Dan J.; Sanan, Patrick; Wolf, Aaron S.

    2018-01-01

    The energy balance of a partially molten rocky planet can be expressed as a non-linear diffusion equation using mixing length theory to quantify heat transport by both convection and mixing of the melt and solid phases. Crucially, in this formulation the effective or eddy diffusivity depends on the entropy gradient, ∂S / ∂r , as well as entropy itself. First we present a simplified model with semi-analytical solutions that highlights the large dynamic range of ∂S / ∂r -around 12 orders of magnitude-for physically-relevant parameters. It also elucidates the thermal structure of a magma ocean during the earliest stage of crystal formation. This motivates the development of a simple yet stable numerical scheme able to capture the large dynamic range of ∂S / ∂r and hence provide a flexible and robust method for time-integrating the energy equation. Using insight gained from the simplified model, we consider a full model, which includes energy fluxes associated with convection, mixing, gravitational separation, and conduction that all depend on the thermophysical properties of the melt and solid phases. This model is discretised and evolved by applying the finite volume method (FVM), allowing for extended precision calculations and using ∂S / ∂r as the solution variable. The FVM is well-suited to this problem since it is naturally energy conserving, flexible, and intuitive to incorporate arbitrary non-linear fluxes that rely on lookup data. Special attention is given to the numerically challenging scenario in which crystals first form in the centre of a magma ocean. The computational framework we devise is immediately applicable to modelling high melt fraction phenomena in Earth and planetary science research. Furthermore, it provides a template for solving similar non-linear diffusion equations that arise in other science and engineering disciplines, particularly for non-linear functional forms of the diffusion coefficient.

  4. Account of volume heat capacity on interface in numerical solution of the Stephen problem using the strained coordinates method

    International Nuclear Information System (INIS)

    Latynin, V.A.; Reshetov, V.A.; Karaseva, L.N.

    1988-01-01

    Numerical solution of the Stephen problem by the strained coordinate method is presented for an one-dimensional sphere. Differential formulae of heat fluxes from moving interfaces do not take into account volume heat capacities of the front nodes. Calculations, carried out according to these balanced formulae, as well as according to those usually used, have shown that the balanced formulae permit to reduce approximately by an order the number of nodes on the sphere radius, if similar accuracy of heat balance of the whole process of melting or crystallization is observed. 2 refs.; 1 fig

  5. Some Numerical Aspects on Crowd Motion - The Hughes Model

    KAUST Repository

    Gomes, Diogo A.

    2016-01-06

    Here, we study a crowd model proposed by R. Hughes in [5] and we describe a numerical approach to solve it. This model comprises a Fokker-Planck equation coupled with an Eikonal equation with Dirichlet or Neumann data. First, we establish a priori estimates for the solution. Second, we study radial solutions and identify a shock formation mechanism. Third, we illustrate the existence of congestion, the breakdown of the model, and the trend to the equilibrium. Finally, we propose a new numerical method and consider two numerical examples.

  6. Numerical Continuation Methods for Intrusive Uncertainty Quantification Studies

    Energy Technology Data Exchange (ETDEWEB)

    Safta, Cosmin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Najm, Habib N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Phipps, Eric Todd [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    Rigorous modeling of engineering systems relies on efficient propagation of uncertainty from input parameters to model outputs. In recent years, there has been substantial development of probabilistic polynomial chaos (PC) Uncertainty Quantification (UQ) methods, enabling studies in expensive computational models. One approach, termed ”intrusive”, involving reformulation of the governing equations, has been found to have superior computational performance compared to non-intrusive sampling-based methods in relevant large-scale problems, particularly in the context of emerging architectures. However, the utility of intrusive methods has been severely limited due to detrimental numerical instabilities associated with strong nonlinear physics. Previous methods for stabilizing these constructions tend to add unacceptably high computational costs, particularly in problems with many uncertain parameters. In order to address these challenges, we propose to adapt and improve numerical continuation methods for the robust time integration of intrusive PC system dynamics. We propose adaptive methods, starting with a small uncertainty for which the model has stable behavior and gradually moving to larger uncertainty where the instabilities are rampant, in a manner that provides a suitable solution.

  7. Numerical Upscaling of Solute Transport in Fractured Porous Media Based on Flow Aligned Blocks

    Science.gov (United States)

    Leube, P.; Nowak, W.; Sanchez-Vila, X.

    2013-12-01

    High-contrast or fractured-porous media (FPM) pose one of the largest unresolved challenges for simulating large hydrogeological systems. The high contrast in advective transport between fast conduits and low-permeability rock matrix, including complex mass transfer processes, leads to the typical complex characteristics of early bulk arrivals and long tailings. Adequate direct representation of FPM requires enormous numerical resolutions. For large scales, e.g. the catchment scale, and when allowing for uncertainty in the fracture network architecture or in matrix properties, computational costs quickly reach an intractable level. In such cases, multi-scale simulation techniques have become useful tools. They allow decreasing the complexity of models by aggregating and transferring their parameters to coarser scales and so drastically reduce the computational costs. However, these advantages come at a loss of detail and accuracy. In this work, we develop and test a new multi-scale or upscaled modeling approach based on block upscaling. The novelty is that individual blocks are defined by and aligned with the local flow coordinates. We choose a multi-rate mass transfer (MRMT) model to represent the remaining sub-block non-Fickian behavior within these blocks on the coarse scale. To make the scale transition simple and to save computational costs, we capture sub-block features by temporal moments (TM) of block-wise particle arrival times to be matched with the MRMT model. By predicting spatial mass distributions of injected tracers in a synthetic test scenario, our coarse-scale solution matches reasonably well with the corresponding fine-scale reference solution. For predicting higher TM-orders (such as arrival time and effective dispersion), the prediction accuracy steadily decreases. This is compensated to some extent by the MRMT model. If the MRMT model becomes too complex, it loses its effect. We also found that prediction accuracy is sensitive to the choice of

  8. Parallel numerical simulation of oscillating airfoil NACA0015 in the channel due to flutter instability

    Directory of Open Access Journals (Sweden)

    Řidký Václav

    2014-03-01

    Full Text Available The work is devoted to 3D and 2D parallel numerical computation of pressure and velocity fields around an elastically supported airfoil self-oscillating due to interaction with the airflow. Numerical solution is computed in the OpenFOAM package, an open-source software package based on finite volume method. Movement of airfoil is described by translation and rotation, identified from experimental data. A new boundary condition for the 2DOF motion of the airfoil was implemented. The results of numerical simulations (velocity are compared with data measured in a wind tunnel, where a physical model of NACA0015 airfoil was mounted and tuned to exhibit the flutter instability. The experimental results were obtained previously in the Institute of Thermomechanics by interferographic measurements in a subsonic wind tunnel in Nový Knín.

  9. Fluid Dynamics Theory, Computation, and Numerical Simulation

    CERN Document Server

    Pozrikidis, Constantine

    2009-01-01

    Fluid Dynamics: Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner. The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming. This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice. There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes. Two distinguishing features of the discourse are: solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty. Matlab codes are presented and discussed for ...

  10. Finger-Based Numerical Skills Link Fine Motor Skills to Numerical Development in Preschoolers.

    Science.gov (United States)

    Suggate, Sebastian; Stoeger, Heidrun; Fischer, Ursula

    2017-12-01

    Previous studies investigating the association between fine-motor skills (FMS) and mathematical skills have lacked specificity. In this study, we test whether an FMS link to numerical skills is due to the involvement of finger representations in early mathematics. We gave 81 pre-schoolers (mean age of 4 years, 9 months) a set of FMS measures and numerical tasks with and without a specific finger focus. Additionally, we used receptive vocabulary and chronological age as control measures. FMS linked more closely to finger-based than to nonfinger-based numerical skills even after accounting for the control variables. Moreover, the relationship between FMS and numerical skill was entirely mediated by finger-based numerical skills. We concluded that FMS are closely related to early numerical skill development through finger-based numerical counting that aids the acquisition of mathematical mental representations.

  11. Numerical Oscillations Analysis for Nonlinear Delay Differential Equations in Physiological Control Systems

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2012-01-01

    Full Text Available This paper deals with the oscillations of numerical solutions for the nonlinear delay differential equations in physiological control systems. The exponential θ-method is applied to p′(t=β0ωμp(t−τ/(ωμ+pμ(t−τ−γp(t and it is shown that the exponential θ-method has the same order of convergence as that of the classical θ-method. Several conditions under which the numerical solutions oscillate are derived. Moreover, it is proven that every nonoscillatory numerical solution tends to positive equilibrium of the continuous system. Finally, the main results are illustrated with numerical examples.

  12. Spectral Methods in Numerical Plasma Simulation

    DEFF Research Database (Denmark)

    Coutsias, E.A.; Hansen, F.R.; Huld, T.

    1989-01-01

    An introduction is given to the use of spectral methods in numerical plasma simulation. As examples of the use of spectral methods, solutions to the two-dimensional Euler equations in both a simple, doubly periodic region, and on an annulus will be shown. In the first case, the solution is expanded...

  13. Industrial numerical analysis

    International Nuclear Information System (INIS)

    McKee, S.; Elliott, C.M.

    1986-01-01

    The applications of mathematics to industrial problems involves the formulation of problems which are amenable to mathematical investigation, mathematical modelling, the solution of the mathematical problem and the inter-pretation of the results. There are 12 chapters describing industrial problems where mathematics and numerical analysis can be applied. These range from the numerical assessment of the flatness of engineering surfaces and plates, the design of chain links, control problems in tidal power generation and low thrust satellite trajectory optimization to mathematical models in welding. One chapter, on the ageing of stainless steels, is indexed separately. (UK)

  14. Numerical computations with GPUs

    CERN Document Server

    Kindratenko, Volodymyr

    2014-01-01

    This book brings together research on numerical methods adapted for Graphics Processing Units (GPUs). It explains recent efforts to adapt classic numerical methods, including solution of linear equations and FFT, for massively parallel GPU architectures. This volume consolidates recent research and adaptations, covering widely used methods that are at the core of many scientific and engineering computations. Each chapter is written by authors working on a specific group of methods; these leading experts provide mathematical background, parallel algorithms and implementation details leading to

  15. Closed Form Solution of Synchronous Machine Short Circuit Transients

    Directory of Open Access Journals (Sweden)

    Gibson H.M. Sianipar

    2010-05-01

    Full Text Available This paper presents the closed form solution of the synchronous machine transients undergoing short circuit. That analytic formulation has been derived based on linearity and balanced conditions of the fault. Even though restrictive, the proposed method will serve somehow or other as a new resource for EMTP productivity. Indisputably superior, the closed-form formulation has some features inimitable by discretization such as continuity, accuracy and absolute numerical stability. Moreover, it enables us to calculate states at one specific instant independent of previous states or a snapshot, which any discretization methods cannot do.

  16. A least-squares/finite element method for the numerical solution of the Navier–Stokes-Cahn–Hilliard system modeling the motion of the contact line

    KAUST Repository

    He, Qiaolin

    2011-06-01

    In this article we discuss the numerical solution of the Navier-Stokes-Cahn-Hilliard system modeling the motion of the contact line separating two immiscible incompressible viscous fluids near a solid wall. The method we employ combines a finite element space approximation with a time discretization by operator-splitting. To solve the Cahn-Hilliard part of the problem, we use a least-squares/conjugate gradient method. We also show that the scheme has the total energy decaying in time property under certain conditions. Our numerical experiments indicate that the method discussed here is accurate, stable and efficient. © 2011 Elsevier Inc.

  17. On the numerical solution of the Gross–Pitaevskii equation | Laoye ...

    African Journals Online (AJOL)

    The Gross–Pitaevskii equation is solved using an approach developed for the solution of the Bogoliubov–de Gennes equations for type II superconductivity. The solution is compared with others in the literature and is shown to be easily adapted to the study of an isolated vortex recently discovered in Bose-Einstein ...

  18. Evaluate the accuracy of the numerical solution of hydrogeological problems of mass transfer

    Directory of Open Access Journals (Sweden)

    Yevhrashkina G.P.

    2014-12-01

    Full Text Available In the hydrogeological task on quantifying pollution of aquifers the error are starting add up with moment organization of regime observation network as a source of information on the pollution of groundwater in order to evaluate migration options for future prognosis calculations. Optimum element regime observation network should consist of three drill holes on the groundwater flow at equal distances from one another and transversely to the flow of the three drill holes, and at equal distances. If the target of observation drill holes coincides with the stream line on which will then be decided by direct migration task, the error will be minimal. The theoretical basis and results of numerical experiments to assess the accuracy of direct predictive tasks planned migration of groundwater in the area of full water saturation. For the vadose zone, we consider problems of vertical salt transport moisture. All studies were performed by comparing the results of fundamental and approximate solutions in a wide range of characteristics of the processes, which are discussed in relation to ecological and hydrogeological conditions of mining regions on the example of the Western Donbass.

  19. On the formation, growth, and shapes of solution pipes - insights from numerical modeling

    Science.gov (United States)

    Szymczak, Piotr; Tredak, Hanna; Upadhyay, Virat; Kondratiuk, Paweł; Ladd, Anthony J. C.

    2015-04-01

    Cylindrical, vertical structures called solution pipes are a characteristic feature of epikarst, encountered in different parts of the world, both in relatively cold areas such as England and Poland (where their formation is linked to glacial processes) [1] and in coastal areas in tropical or subtropical climate (Bermuda, Australia, South Africa, Caribbean, Mediterranean) [2,3]. They are invariably associated with weakly cemented, porous limestones and relatively high groundwater fluxes. Many of them develop under the colluvial sandy cover and contain the fill of clayey silt. Although it is widely accepted that they are solutional in origin, the exact mechanism by which the flow becomes focused is still under debate. The hypotheses include the concentration of acidified water around stems and roots of plants, or the presence of pre-existing fractures or steeply dipping bedding planes, which would determine the points of entry for the focused groundwater flows. However, there are field sites where neither of this mechanisms was apparently at play and yet the pipes are formed in large quantities [1]. In this communication we show that the systems of solution pipes can develop spontaneously in nearly uniform matrix due to the reactive-infiltration instability: a homogeneous porous matrix is unstable with respect to small variations in local permeability; regions of high permeability dissolve faster because of enhanced transport of reactants, which leads to increased rippling of the front. This leads to the formation of a system of solution pipes which then advance into the matrix. We study this process numerically, by a combination of 2d- and 3d-simulations, solving the coupled flow and transport equations at the Darcy scale. The relative simplicity of this system (pipes developing in a uniform porous matrix, without any pre-existing structure) makes it very attractive from the modeling standpoint. We quantify the factors which control the pipe diameters and the

  20. Perturbation Solutions of the Quintic Duffing Equation with Strong Nonlinearities

    Directory of Open Access Journals (Sweden)

    Mehmet Pakdemirli

    Full Text Available The quintic Duffing equation with strong nonlinearities is considered. Perturbation solutions are constructed using two different techniques: The classical multiple scales method (MS and the newly developed multiple scales Lindstedt Poincare method (MSLP. The validity criteria for admissible solutions are derived. Both approximate solutions are contrasted with the numerical solutions. It is found that MSLP provides compatible solution with the numerical solution for strong nonlinearities whereas MS solution fail to produce physically acceptable solution for large perturbation parameters.

  1. Three-dimensional semi-analytical solution to groundwater flow in confined and unconfined wedge-shaped aquifers

    Science.gov (United States)

    Sedghi, Mohammad Mahdi; Samani, Nozar; Sleep, Brent

    2009-06-01

    The Laplace domain solutions have been obtained for three-dimensional groundwater flow to a well in confined and unconfined wedge-shaped aquifers. The solutions take into account partial penetration effects, instantaneous drainage or delayed yield, vertical anisotropy and the water table boundary condition. As a basis, the Laplace domain solutions for drawdown created by a point source in uniform, anisotropic confined and unconfined wedge-shaped aquifers are first derived. Then, by the principle of superposition the point source solutions are extended to the cases of partially and fully penetrating wells. Unlike the previous solution for the confined aquifer that contains improper integrals arising from the Hankel transform [Yeh HD, Chang YC. New analytical solutions for groundwater flow in wedge-shaped aquifers with various topographic boundary conditions. Adv Water Resour 2006;26:471-80], numerical evaluation of our solution is relatively easy using well known numerical Laplace inversion methods. The effects of wedge angle, pumping well location and observation point location on drawdown and the effects of partial penetration, screen location and delay index on the wedge boundary hydraulic gradient in unconfined aquifers have also been investigated. The results are presented in the form of dimensionless drawdown-time and boundary gradient-time type curves. The curves are useful for parameter identification, calculation of stream depletion rates and the assessment of water budgets in river basins.

  2. Analytical solutions of a fractional diffusion-advection equation for solar cosmic-ray transport

    International Nuclear Information System (INIS)

    Litvinenko, Yuri E.; Effenberger, Frederic

    2014-01-01

    Motivated by recent applications of superdiffusive transport models to shock-accelerated particle distributions in the heliosphere, we analytically solve a one-dimensional fractional diffusion-advection equation for the particle density. We derive an exact Fourier transform solution, simplify it in a weak diffusion approximation, and compare the new solution with previously available analytical results and with a semi-numerical solution based on a Fourier series expansion. We apply the results to the problem of describing the transport of energetic particles, accelerated at a traveling heliospheric shock. Our analysis shows that significant errors may result from assuming an infinite initial distance between the shock and the observer. We argue that the shock travel time should be a parameter of a realistic superdiffusive transport model.

  3. A finite-element model in vorticity and current function for the numerical solution of the Navier-Stokes equations

    International Nuclear Information System (INIS)

    Cunha Furtado, F. da; Galeao, A.C.N.R.

    1984-01-01

    A numerical procedure for the integration of the incompressible Navier-Stokes equations, when expressed in terms of a stream function equation and a vorticity transport equation, is presented. This procedure comprises: the variational formulation of the equations, the construction of the approximation spaces by the finite element method and the discretization via the Galerkin method. For the stationary problems, the system of non-linear algebraic equations resulting from the discretization is solved by the Newton-Raphson algorithm. Finally, for the transient problems, the solution of the non-linear ordinary differential equations resulting from the spatial discretization is accomplished through a Crank-Nicolson scheme. (Author) [pt

  4. A numerical methodology for the Painlevé equations

    KAUST Repository

    Fornberg, Bengt

    2011-07-01

    The six Painlevé transcendents PI-PVI have both applications and analytic properties that make them stand out from most other classes of special functions. Although they have been the subject of extensive theoretical investigations for about a century, they still have a reputation for being numerically challenging. In particular, their extensive pole fields in the complex plane have often been perceived as \\'numerical mine fields\\'. In the present work, we note that the Painlevé property in fact provides the opportunity for very fast and accurate numerical solutions throughout such fields. When combining a Taylor/Padé-based ODE initial value solver for the pole fields with a boundary value solver for smooth regions, numerical solutions become available across the full complex plane. We focus here on the numerical methodology, and illustrate it for the PI equation. In later studies, we will concentrate on mathematical aspects of both the PI and the higher Painlevé transcendents. © 2011 Elsevier Inc.

  5. Numerical solution of special ultra-relativistic Euler equations using central upwind scheme

    Science.gov (United States)

    Ghaffar, Tayabia; Yousaf, Muhammad; Qamar, Shamsul

    2018-06-01

    This article is concerned with the numerical approximation of one and two-dimensional special ultra-relativistic Euler equations. The governing equations are coupled first-order nonlinear hyperbolic partial differential equations. These equations describe perfect fluid flow in terms of the particle density, the four-velocity and the pressure. A high-resolution shock-capturing central upwind scheme is employed to solve the model equations. To avoid excessive numerical diffusion, the considered scheme avails the specific information of local propagation speeds. By using Runge-Kutta time stepping method and MUSCL-type initial reconstruction, we have obtained 2nd order accuracy of the proposed scheme. After discussing the model equations and the numerical technique, several 1D and 2D test problems are investigated. For all the numerical test cases, our proposed scheme demonstrates very good agreement with the results obtained by well-established algorithms, even in the case of highly relativistic 2D test problems. For validation and comparison, the staggered central scheme and the kinetic flux-vector splitting (KFVS) method are also implemented to the same model. The robustness and efficiency of central upwind scheme is demonstrated by the numerical results.

  6. Fluid dynamics theory, computation, and numerical simulation

    CERN Document Server

    Pozrikidis, C

    2001-01-01

    Fluid Dynamics Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes Two distinguishing features of the discourse are solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty Matlab codes are presented and discussed for a broad...

  7. An Algorithm for the Numerical Solution of the Pseudo Compressible Navier-stokes Equations Based on the Experimenting Fields Approach

    KAUST Repository

    Salama, Amgad; Sun, Shuyu; Amin, Mohamed F. El

    2015-01-01

    In this work, the experimenting fields approach is applied to the numerical solution of the Navier-Stokes equation for incompressible viscous flow. In this work, the solution is sought for both the pressure and velocity fields in the same time. Apparently, the correct velocity and pressure fields satisfy the governing equations and the boundary conditions. In this technique a set of predefined fields are introduced to the governing equations and the residues are calculated. The flow according to these fields will not satisfy the governing equations and the boundary conditions. However, the residues are used to construct the matrix of coefficients. Although, in this setup it seems trivial constructing the global matrix of coefficients, in other setups it can be quite involved. This technique separates the solver routine from the physics routines and therefore makes easy the coding and debugging procedures. We compare with few examples that demonstrate the capability of this technique.

  8. An Algorithm for the Numerical Solution of the Pseudo Compressible Navier-stokes Equations Based on the Experimenting Fields Approach

    KAUST Repository

    Salama, Amgad

    2015-06-01

    In this work, the experimenting fields approach is applied to the numerical solution of the Navier-Stokes equation for incompressible viscous flow. In this work, the solution is sought for both the pressure and velocity fields in the same time. Apparently, the correct velocity and pressure fields satisfy the governing equations and the boundary conditions. In this technique a set of predefined fields are introduced to the governing equations and the residues are calculated. The flow according to these fields will not satisfy the governing equations and the boundary conditions. However, the residues are used to construct the matrix of coefficients. Although, in this setup it seems trivial constructing the global matrix of coefficients, in other setups it can be quite involved. This technique separates the solver routine from the physics routines and therefore makes easy the coding and debugging procedures. We compare with few examples that demonstrate the capability of this technique.

  9. Efficient Traveltime Solutions of the TI Acoustic Eikonal Equation

    KAUST Repository

    Waheed, Umair bin

    2014-10-22

    Numerical solutions of the eikonal (Hamilton-Jacobi) equation for transversely isotropic (TI) media are essential for integral imaging and traveltime tomography applications. Such solutions, however, suffer from the inherent higher-order nonlinearity of the TI eikonal equation, which requires solving a quartic polynomial at each computational step. Using perturbation theory, we approximate the first-order discretized form of the TI eikonal equation with a series of simpler equations for the coefficients of a polynomial expansion of the eikonal solution in terms of the anellipticity anisotropy parameter. Such perturbation, applied to the discretized form of the eikonal equation, does not impose any restrictions on the complexity of the perturbed parameter field. Therefore, it provides accurate traveltime solutions even for the anisotropic Marmousi model, with complex distribution of velocity and anellipticity anisotropy parameter. The formulation allows tremendous cost reduction compared to using the exact TI eikonal solver. Furthermore, comparative tests with previously developed approximations illustrate remarkable gain in accuracy of the proposed approximation, without any addition to the computational cost.

  10. Efficient Traveltime Solutions of the TI Acoustic Eikonal Equation

    KAUST Repository

    Waheed, Umair bin; Alkhalifah, Tariq Ali

    2014-01-01

    Numerical solutions of the eikonal (Hamilton-Jacobi) equation for transversely isotropic (TI) media are essential for integral imaging and traveltime tomography applications. Such solutions, however, suffer from the inherent higher-order nonlinearity of the TI eikonal equation, which requires solving a quartic polynomial at each computational step. Using perturbation theory, we approximate the first-order discretized form of the TI eikonal equation with a series of simpler equations for the coefficients of a polynomial expansion of the eikonal solution in terms of the anellipticity anisotropy parameter. Such perturbation, applied to the discretized form of the eikonal equation, does not impose any restrictions on the complexity of the perturbed parameter field. Therefore, it provides accurate traveltime solutions even for the anisotropic Marmousi model, with complex distribution of velocity and anellipticity anisotropy parameter. The formulation allows tremendous cost reduction compared to using the exact TI eikonal solver. Furthermore, comparative tests with previously developed approximations illustrate remarkable gain in accuracy of the proposed approximation, without any addition to the computational cost.

  11. Theory and applications of numerical analysis

    CERN Document Server

    Phillips, G M

    1996-01-01

    This text is a self-contained Second Edition, providing an introductory account of the main topics in numerical analysis. The book emphasizes both the theorems which show the underlying rigorous mathematics andthe algorithms which define precisely how to program the numerical methods. Both theoretical and practical examples are included.* a unique blend of theory and applications* two brand new chapters on eigenvalues and splines* inclusion of formal algorithms* numerous fully worked examples* a large number of problems, many with solutions

  12. Comparison between two meshless methods based on collocation technique for the numerical solution of four-species tumor growth model

    Science.gov (United States)

    Dehghan, Mehdi; Mohammadi, Vahid

    2017-03-01

    As is said in [27], the tumor-growth model is the incorporation of nutrient within the mixture as opposed to being modeled with an auxiliary reaction-diffusion equation. The formulation involves systems of highly nonlinear partial differential equations of surface effects through diffuse-interface models [27]. Simulations of this practical model using numerical methods can be applied for evaluating it. The present paper investigates the solution of the tumor growth model with meshless techniques. Meshless methods are applied based on the collocation technique which employ multiquadrics (MQ) radial basis function (RBFs) and generalized moving least squares (GMLS) procedures. The main advantages of these choices come back to the natural behavior of meshless approaches. As well as, a method based on meshless approach can be applied easily for finding the solution of partial differential equations in high-dimension using any distributions of points on regular and irregular domains. The present paper involves a time-dependent system of partial differential equations that describes four-species tumor growth model. To overcome the time variable, two procedures will be used. One of them is a semi-implicit finite difference method based on Crank-Nicolson scheme and another one is based on explicit Runge-Kutta time integration. The first case gives a linear system of algebraic equations which will be solved at each time-step. The second case will be efficient but conditionally stable. The obtained numerical results are reported to confirm the ability of these techniques for solving the two and three-dimensional tumor-growth equations.

  13. Numerical and adaptive grid methods for ideal magnetohydrodynamics

    Science.gov (United States)

    Loring, Burlen

    2008-02-01

    In this thesis numerical finite difference methods for ideal magnetohydrodynamics(MHD) are investigated. A review of the relevant physics, essential for interpreting the results of numerical solutions and constructing validation cases, is presented. This review includes a discusion of the propagation of small amplitude waves in the MHD system as well as a thorough discussion of MHD shocks, contacts and rarefactions and how they can be piece together to obtain a solutions to the MHD Riemann problem. Numerical issues relevant to the MHD system such as: the loss of nonlinear numerical stability in the presence of discontinuous solutions, the introduction of spurious forces due to the growth of the divergence of the magnetic flux density, the loss of pressure positivity, and the effects of non-conservative numerical methods are discussed, along with the practical approaches which can be used to remedy or minimize the negative consequences of each. The use of block structured adaptive mesh refinement is investigated in the context of a divergence free MHD code. A new method for conserving magnetic flux across AMR grid interfaces is developed and a detailed discussion of our implementation of this method using the CHOMBO AMR framework is given. A preliminary validation of the new method for conserving magnetic flux density across AMR grid interfaces illustrates that the method works. Finally a number of code validation cases are examined spurring a discussion of the strengths and weaknesses of the numerics employed.

  14. Numerical calculation of elastohydrodynamic lubrication methods and programs

    CERN Document Server

    Huang, Ping

    2015-01-01

    The book not only offers scientists and engineers a clear inter-disciplinary introduction and orientation to all major EHL problems and their solutions but, most importantly, it also provides numerical programs on specific application in engineering. A one-stop reference providing equations and their solutions to all major elastohydrodynamic lubrication (EHL) problems, plus numerical programs on specific applications in engineering offers engineers and scientists a clear inter-disciplinary introduction and a concise program for practical engineering applications to most important EHL problems

  15. Extraction of gravitational waves in numerical relativity.

    Science.gov (United States)

    Bishop, Nigel T; Rezzolla, Luciano

    2016-01-01

    A numerical-relativity calculation yields in general a solution of the Einstein equations including also a radiative part, which is in practice computed in a region of finite extent. Since gravitational radiation is properly defined only at null infinity and in an appropriate coordinate system, the accurate estimation of the emitted gravitational waves represents an old and non-trivial problem in numerical relativity. A number of methods have been developed over the years to "extract" the radiative part of the solution from a numerical simulation and these include: quadrupole formulas, gauge-invariant metric perturbations, Weyl scalars, and characteristic extraction. We review and discuss each method, in terms of both its theoretical background as well as its implementation. Finally, we provide a brief comparison of the various methods in terms of their inherent advantages and disadvantages.

  16. A Numerical Simulation for a Deterministic Compartmental ...

    African Journals Online (AJOL)

    In this work, an earlier deterministic mathematical model of HIV/AIDS is revisited and numerical solutions obtained using Eulers numerical method. Using hypothetical values for the parameters, a program was written in VISUAL BASIC programming language to generate series for the system of difference equations from the ...

  17. A new numerical scheme for non uniform homogenized problems: Application to the non linear Reynolds compressible equation

    Directory of Open Access Journals (Sweden)

    Buscaglia Gustavo C.

    2001-01-01

    Full Text Available A new numerical approach is proposed to alleviate the computational cost of solving non-linear non-uniform homogenized problems. The article details the application of the proposed approach to lubrication problems with roughness effects. The method is based on a two-parameter Taylor expansion of the implicit dependence of the homogenized coefficients on the average pressure and on the local value of the air gap thickness. A fourth-order Taylor expansion provides an approximation that is accurate enough to be used in the global problem solution instead of the exact dependence, without introducing significant errors. In this way, when solving the global problem, the solution of local problems is simply replaced by the evaluation of a polynomial. Moreover, the method leads naturally to Newton-Raphson nonlinear iterations, that further reduce the cost. The overall efficiency of the numerical methodology makes it feasible to apply rigorous homogenization techniques in the analysis of compressible fluid contact considering roughness effects. Previous work makes use of an heuristic averaging technique. Numerical comparison proves that homogenization-based methods are superior when the roughness is strongly anisotropic and not aligned with the flow direction.

  18. Nonlinear dynamics and numerical uncertainties in CFD

    Science.gov (United States)

    Yee, H. C.; Sweby, P. K.

    1996-01-01

    The application of nonlinear dynamics to improve the understanding of numerical uncertainties in computational fluid dynamics (CFD) is reviewed. Elementary examples in the use of dynamics to explain the nonlinear phenomena and spurious behavior that occur in numerics are given. The role of dynamics in the understanding of long time behavior of numerical integrations and the nonlinear stability, convergence, and reliability of using time-marching, approaches for obtaining steady-state numerical solutions in CFD is explained. The study is complemented with spurious behavior observed in CFD computations.

  19. The problem of complex eigensystems in the semianalytical solution for advancement of time in solute transport simulations: a new method using real arithmetic

    Science.gov (United States)

    Umari, Amjad M.J.; Gorelick, Steven M.

    1986-01-01

    In the numerical modeling of groundwater solute transport, explicit solutions may be obtained for the concentration field at any future time without computing concentrations at intermediate times. The spatial variables are discretized and time is left continuous in the governing differential equation. These semianalytical solutions have been presented in the literature and involve the eigensystem of a coefficient matrix. This eigensystem may be complex (i.e., have imaginary components) due to the asymmetry created by the advection term in the governing advection-dispersion equation. Previous investigators have either used complex arithmetic to represent a complex eigensystem or chosen large dispersivity values for which the imaginary components of the complex eigenvalues may be ignored without significant error. It is shown here that the error due to ignoring the imaginary components of complex eigenvalues is large for small dispersivity values. A new algorithm that represents the complex eigensystem by converting it to a real eigensystem is presented. The method requires only real arithmetic.

  20. Numerical optimization of conical flow waveriders including detailed viscous effects

    Science.gov (United States)

    Bowcutt, Kevin G.; Anderson, John D., Jr.; Capriotti, Diego

    1987-01-01

    A family of optimized hypersonic waveriders is generated and studied wherein detailed viscous effects are included within the optimization process itself. This is in contrast to previous optimized waverider work, wherein purely inviscid flow is used to obtain the waverider shapes. For the present waveriders, the undersurface is a streamsurface of an inviscid conical flowfield, the upper surface is a streamsurface of the inviscid flow over a tapered cylinder (calculated by the axisymmetric method of characteristics), and the viscous effects are treated by integral solutions of the boundary layer equations. Transition from laminar to turbulent flow is included within the viscous calculations. The optimization is carried out using a nonlinear simplex method. The resulting family of viscous hypersonic waveriders yields predicted high values of lift/drag, high enough to break the L/D barrier based on experience with other hypersonic configurations. Moreover, the numerical optimization process for the viscous waveriders results in distinctly different shapes compared to previous work with inviscid-designed waveriders. Also, the fine details of the viscous solution, such as how the shear stress is distributed over the surface, and the location of transition, are crucial to the details of the resulting waverider geometry. Finally, the moment coefficient variations and heat transfer distributions associated with the viscous optimized waveriders are studied.

  1. Numerical Solutions of the Mean-Value Theorem: New Methods for Downward Continuation of Potential Fields

    Science.gov (United States)

    Zhang, Chong; Lü, Qingtian; Yan, Jiayong; Qi, Guang

    2018-04-01

    Downward continuation can enhance small-scale sources and improve resolution. Nevertheless, the common methods have disadvantages in obtaining optimal results because of divergence and instability. We derive the mean-value theorem for potential fields, which could be the theoretical basis of some data processing and interpretation. Based on numerical solutions of the mean-value theorem, we present the convergent and stable downward continuation methods by using the first-order vertical derivatives and their upward continuation. By applying one of our methods to both the synthetic and real cases, we show that our method is stable, convergent and accurate. Meanwhile, compared with the fast Fourier transform Taylor series method and the integrated second vertical derivative Taylor series method, our process has very little boundary effect and is still stable in noise. We find that the characters of the fading anomalies emerge properly in our downward continuation with respect to the original fields at the lower heights.

  2. On the numerical simulation of tracer flows in porous media

    International Nuclear Information System (INIS)

    Aquino, J.; Pereira, F.; Amaral Souto, H.P.; Francisco, A.S.

    2007-01-01

    We discuss in detail a new Lagrangian, locally conservative procedure which has been proposed for the numerical solution of linear transport problems in porous media. The new scheme is computationally efficient, virtually free of numerical diffusion, and can be applied to investigate numerically the time evolution of radionuclide contaminant plumes. Results of two-dimensional simulations of tracer flows will be presented to show the influence on the computed solutions of distinct interpolation functions for evaluating the velocity field at any position of the physical domain, as required by the Lagrangian scheme. (author)

  3. Solution of the porous media equation by Adomian's decomposition method

    International Nuclear Information System (INIS)

    Pamuk, Serdal

    2005-01-01

    The particular exact solutions of the porous media equation that usually occurs in nonlinear problems of heat and mass transfer, and in biological systems are obtained using Adomian's decomposition method. Also, numerical comparison of particular solutions in the decomposition method indicate that there is a very good agreement between the numerical solutions and particular exact solutions in terms of efficiency and accuracy

  4. Triangular dislocation: an analytical, artefact-free solution

    Science.gov (United States)

    Nikkhoo, Mehdi; Walter, Thomas R.

    2015-05-01

    Displacements and stress-field changes associated with earthquakes, volcanoes, landslides and human activity are often simulated using numerical models in an attempt to understand the underlying processes and their governing physics. The application of elastic dislocation theory to these problems, however, may be biased because of numerical instabilities in the calculations. Here, we present a new method that is free of artefact singularities and numerical instabilities in analytical solutions for triangular dislocations (TDs) in both full-space and half-space. We apply the method to both the displacement and the stress fields. The entire 3-D Euclidean space {R}3 is divided into two complementary subspaces, in the sense that in each one, a particular analytical formulation fulfils the requirements for the ideal, artefact-free solution for a TD. The primary advantage of the presented method is that the development of our solutions involves neither numerical approximations nor series expansion methods. As a result, the final outputs are independent of the scale of the input parameters, including the size and position of the dislocation as well as its corresponding slip vector components. Our solutions are therefore well suited for application at various scales in geoscience, physics and engineering. We validate the solutions through comparison to other well-known analytical methods and provide the MATLAB codes.

  5. Exact numerical solutions of the Schrödinger equation for a two-dimensional exciton in a constant magnetic field of arbitrary strength

    Energy Technology Data Exchange (ETDEWEB)

    Hoang-Do, Ngoc-Tram [Department of Physics, Ho Chi Minh City University of Pedagogy 280, An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam); Pham, Dang-Lan [Institute for Computational Science and Technology, Quang Trung Software Town, District 12, Ho Chi Minh City (Viet Nam); Le, Van-Hoang, E-mail: hoanglv@hcmup.edu.vn [Department of Physics, Ho Chi Minh City University of Pedagogy 280, An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam)

    2013-08-15

    Exact numerical solutions of the Schrödinger equation for a two-dimensional exciton in a constant magnetic field of arbitrary strength are obtained for not only the ground state but also high excited states. Toward this goal, the operator method is developed by combining with the Levi-Civita transformation which transforms the problem under investigation into that of a two-dimensional anharmonic oscillator. This development of the non-perturbation method is significant because it can be applied to other problems of two-dimensional atomic systems. The obtained energies and wave functions set a new record for their precision of up to 20 decimal places. Analyzing the obtained data we also find an interesting result that exact analytical solutions exist at some values of magnetic field intensity.

  6. Exact numerical solutions of the Schrödinger equation for a two-dimensional exciton in a constant magnetic field of arbitrary strength

    International Nuclear Information System (INIS)

    Hoang-Do, Ngoc-Tram; Pham, Dang-Lan; Le, Van-Hoang

    2013-01-01

    Exact numerical solutions of the Schrödinger equation for a two-dimensional exciton in a constant magnetic field of arbitrary strength are obtained for not only the ground state but also high excited states. Toward this goal, the operator method is developed by combining with the Levi-Civita transformation which transforms the problem under investigation into that of a two-dimensional anharmonic oscillator. This development of the non-perturbation method is significant because it can be applied to other problems of two-dimensional atomic systems. The obtained energies and wave functions set a new record for their precision of up to 20 decimal places. Analyzing the obtained data we also find an interesting result that exact analytical solutions exist at some values of magnetic field intensity

  7. Numerical solution for multi-term fractional (arbitrary) orders differential equations

    OpenAIRE

    El-Sayed, A. M. A.; El-Mesiry, A. E. M.; El-Saka, H. A. A.

    2004-01-01

    Our main concern here is to give a numerical scheme to solve a nonlinear multi-term fractional (arbitrary) orders differential equation. Some results concerning the existence and uniqueness have been also obtained.

  8. Singular boundary value problem for the integrodifferential equation in an insurance model with stochastic premiums: Analysis and numerical solution

    Science.gov (United States)

    Belkina, T. A.; Konyukhova, N. B.; Kurochkin, S. V.

    2012-10-01

    A singular boundary value problem for a second-order linear integrodifferential equation with Volterra and non-Volterra integral operators is formulated and analyzed. The equation is defined on ℝ+, has a weak singularity at zero and a strong singularity at infinity, and depends on several positive parameters. Under natural constraints on the coefficients of the equation, existence and uniqueness theorems for this problem with given limit boundary conditions at singular points are proved, asymptotic representations of the solution are given, and an algorithm for its numerical determination is described. Numerical computations are performed and their interpretation is given. The problem arises in the study of the survival probability of an insurance company over infinite time (as a function of its initial surplus) in a dynamic insurance model that is a modification of the classical Cramer-Lundberg model with a stochastic process rate of premium under a certain investment strategy in the financial market. A comparative analysis of the results with those produced by the model with deterministic premiums is given.

  9. A GPU-accelerated semi-implicit fractional step method for numerical solutions of incompressible Navier-Stokes equations

    Science.gov (United States)

    Ha, Sanghyun; Park, Junshin; You, Donghyun

    2017-11-01

    Utility of the computational power of modern Graphics Processing Units (GPUs) is elaborated for solutions of incompressible Navier-Stokes equations which are integrated using a semi-implicit fractional-step method. Due to its serial and bandwidth-bound nature, the present choice of numerical methods is considered to be a good candidate for evaluating the potential of GPUs for solving Navier-Stokes equations using non-explicit time integration. An efficient algorithm is presented for GPU acceleration of the Alternating Direction Implicit (ADI) and the Fourier-transform-based direct solution method used in the semi-implicit fractional-step method. OpenMP is employed for concurrent collection of turbulence statistics on a CPU while Navier-Stokes equations are computed on a GPU. Extension to multiple NVIDIA GPUs is implemented using NVLink supported by the Pascal architecture. Performance of the present method is experimented on multiple Tesla P100 GPUs compared with a single-core Xeon E5-2650 v4 CPU in simulations of boundary-layer flow over a flat plate. Supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (Ministry of Science, ICT and Future Planning NRF-2016R1E1A2A01939553, NRF-2014R1A2A1A11049599, and Ministry of Trade, Industry and Energy 201611101000230).

  10. Soil remediation by heat injection: Experiments and numerical modelling

    Energy Technology Data Exchange (ETDEWEB)

    Betz, C.; Emmert, M.; Faerber, A. [Univ. of Stuttgart (Germany)] [and others

    1995-03-01

    In order to understand physical processes of thermally enhanced soil vapor extraction methods in porous media the isothermal, multiphase formulation for the numerical model MUFTE will be extended by a non-isothermal, multiphase-multicomponent formulation. In order to verify the numerical model, comparison with analytical solutions for well defined problems will be carried out. To identify relevant processes and their interactions, the results of the simulation will be compared with well controlled experiments with sophisticated measurement equipment in three different scales. The aim is to compare the different numerical solution techniques namely Finite Element versus Integral Finite Difference technique as implemented in MUFTE and TOUGH2 [9] respectively.

  11. Exact Solution of a Strongly Coupled Gauge Theory in 0 +1 Dimensions

    Science.gov (United States)

    Krishnan, Chethan; Kumar, K. V. Pavan

    2018-05-01

    Gauged tensor models are a class of strongly coupled quantum mechanical theories. We present the exact analytic solution of a specific example of such a theory: namely, the smallest colored tensor model due to Gurau and Witten that exhibits nonlinearities. We find explicit analytic expressions for the eigenvalues and eigenstates, and the former agree precisely with previous numerical results on (a subset of) eigenvalues of the ungauged theory. The physics of the spectrum, despite the smallness of N , exhibits rudimentary signatures of chaos. This Letter is a summary of our main results: the technical details will appear in companion paper [C. Krishnan and K. V. Pavan Kumar, Complete solution of a gauged tensor model, arXiv:1804.10103].

  12. Preface of "The Second Symposium on Border Zones Between Experimental and Numerical Application Including Solution Approaches By Extensions of Standard Numerical Methods"

    Science.gov (United States)

    Ortleb, Sigrun; Seidel, Christian

    2017-07-01

    In this second symposium at the limits of experimental and numerical methods, recent research is presented on practically relevant problems. Presentations discuss experimental investigation as well as numerical methods with a strong focus on application. In addition, problems are identified which require a hybrid experimental-numerical approach. Topics include fast explicit diffusion applied to a geothermal energy storage tank, noise in experimental measurements of electrical quantities, thermal fluid structure interaction, tensegrity structures, experimental and numerical methods for Chladni figures, optimized construction of hydroelectric power stations, experimental and numerical limits in the investigation of rain-wind induced vibrations as well as the application of exponential integrators in a domain-based IMEX setting.

  13. Numerical solution of the kinetic equation for photoelectrons in the plasmasphere with account for free and trapped zones

    International Nuclear Information System (INIS)

    Khazanov, G.V.; Koen, M.A.; Burenkov, S.I.

    1979-01-01

    Considered is the dinamics of photoelectron fluxes formation in the Earth plasmasphere with account of zone interaction of free and trapped photoelectrons. An algorithm and the results of numerical solution of the equation are presented. The problem of boundary condition choice is discussed. The angular distribution of 10 eV energy photoelectrons at different altitudes of plasmasphere is presented as an example. It is shown that the changes of photoelectron distribution function from bottom of plasmasphere to the top of a force line of the geomagnetic field are within the 1.6 limits. Presented is the estimate of plasmasphere transmittance value and its comparison with the experiment for Mc Ilwain parameter L=2

  14. A conservative finite difference method for the numerical solution of plasma fluid equations

    International Nuclear Information System (INIS)

    Colella, P.; Dorr, M.R.; Wake, D.D.

    1999-01-01

    This paper describes a numerical method for the solution of a system of plasma fluid equations. The fluid model is similar to those employed in the simulation of high-density, low-pressure plasmas used in semiconductor processing. The governing equations consist of a drift-diffusion model of the electrons, together with an internal energy equation, coupled via Poisson's equation to a system of Euler equations for each ion species augmented with electrostatic force, collisional, and source/sink terms. The time integration of the full system is performed using an operator splitting that conserves space charge and avoids dielectric relaxation timestep restrictions. The integration of the individual ion species and electrons within the time-split advancement is achieved using a second-order Godunov discretization of the hyperbolic terms, modified to account for the significant role of the electric field in the propagation of acoustic waves, combined with a backward Euler discretization of the parabolic terms. Discrete boundary conditions are employed to accommodate the plasma sheath boundary layer on underresolved grids. The algorithm is described for the case of a single Cartesian grid as the first step toward an implementation on a locally refined grid hierarchy in which the method presented here may be applied on each refinement level

  15. Numerical simulation of the regularized long wave equation by He's homotopy perturbation method

    Energy Technology Data Exchange (ETDEWEB)

    Inc, Mustafa [Department of Mathematics, Firat University, 23119 Elazig (Turkey)], E-mail: minc@firat.edu.tr; Ugurlu, Yavuz [Department of Mathematics, Firat University, 23119 Elazig (Turkey)

    2007-09-17

    In this Letter, we present the homotopy perturbation method (shortly HPM) for obtaining the numerical solution of the RLW equation. We obtain the exact and numerical solutions of the Regularized Long Wave (RLW) equation for certain initial condition. The initial approximation can be freely chosen with possible unknown constants which can be determined by imposing the boundary and initial conditions. Comparison of the results with those of other methods have led us to significant consequences. The numerical solutions are compared with the known analytical solutions.

  16. Numerical methods and computers used in elastohydrodynamic lubrication

    Science.gov (United States)

    Hamrock, B. J.; Tripp, J. H.

    1982-01-01

    Some of the methods of obtaining approximate numerical solutions to boundary value problems that arise in elastohydrodynamic lubrication are reviewed. The highlights of four general approaches (direct, inverse, quasi-inverse, and Newton-Raphson) are sketched. Advantages and disadvantages of these approaches are presented along with a flow chart showing some of the details of each. The basic question of numerical stability of the elastohydrodynamic lubrication solutions, especially in the pressure spike region, is considered. Computers used to solve this important class of lubrication problems are briefly described, with emphasis on supercomputers.

  17. Numerical methods for axisymmetric and 3D nonlinear beams

    Science.gov (United States)

    Pinton, Gianmarco F.; Trahey, Gregg E.

    2005-04-01

    Time domain algorithms that solve the Khokhlov--Zabolotzskaya--Kuznetsov (KZK) equation are described and implemented. This equation represents the propagation of finite amplitude sound beams in a homogenous thermoviscous fluid for axisymmetric and fully three dimensional geometries. In the numerical solution each of the terms is considered separately and the numerical methods are compared with known solutions. First and second order operator splitting are used to combine the separate terms in the KZK equation and their convergence is examined.

  18. Monopole Solutions in Topologically Massive Gauge Theory

    International Nuclear Information System (INIS)

    Teh, Rosy; Wong, Khai-Ming; Koh, Pin-Wai

    2010-01-01

    Monopoles in topologically massive SU(2) Yang-Mils-Higgs gauge theory in 2+1 dimensions with a Chern-Simon mass term have been studied by Pisarski some years ago. He argued that there is a monopole solution that is regular everywhere, but found that it does not possess finite action. There were no exact or numerical solutions being presented by him. Hence it is our purpose to further investigate this solution in more detail. We obtained numerical regular solutions that smoothly interpolates between the behavior at small and large distances for different values of Chern-Simon term strength and for several fixed values of Higgs field strength.

  19. Solution of stochastic nonlinear PDEs using Wiener-Hermite expansion of high orders

    KAUST Repository

    El Beltagy, Mohamed

    2016-01-01

    In this work, the Wiener-Hermite Expansion (WHE) is used to solve stochastic nonlinear PDEs excited with noise. The generation of the equivalent set of deterministic integro-differential equations is automated and hence allows for high order terms of WHE. The automation difficulties are discussed, solved and implemented to output the final system to be solved. A numerical Pikard-like algorithm is suggested to solve the resulting deterministic system. The automated WHE is applied to the 1D diffusion equation and to the heat equation. The results are compared with previous solutions obtained with WHEP (WHE with perturbation) technique. The solution obtained using the suggested WHE technique is shown to be the limit of the WHEP solutions with infinite number of corrections. The automation is extended easily to account for white-noise of higher dimension and for general nonlinear PDEs.

  20. Solution of stochastic nonlinear PDEs using Wiener-Hermite expansion of high orders

    KAUST Repository

    El Beltagy, Mohamed

    2016-01-06

    In this work, the Wiener-Hermite Expansion (WHE) is used to solve stochastic nonlinear PDEs excited with noise. The generation of the equivalent set of deterministic integro-differential equations is automated and hence allows for high order terms of WHE. The automation difficulties are discussed, solved and implemented to output the final system to be solved. A numerical Pikard-like algorithm is suggested to solve the resulting deterministic system. The automated WHE is applied to the 1D diffusion equation and to the heat equation. The results are compared with previous solutions obtained with WHEP (WHE with perturbation) technique. The solution obtained using the suggested WHE technique is shown to be the limit of the WHEP solutions with infinite number of corrections. The automation is extended easily to account for white-noise of higher dimension and for general nonlinear PDEs.

  1. Explicit analytical solution of the nonlinear Vlasov Poisson system

    International Nuclear Information System (INIS)

    Skarka, V.; Mahajan, S.M.; Fijalkow, E.

    1993-10-01

    In order to describe the time evolution of an inhomogeneous collisionless plasma the nonlinear Vlasov equation is solved perturbatively, using the subdynamics approach and the diagrammatic techniques. The solution is given in terms of a double perturbation series, one with respect to the nonlinearities and the other with respect to the interaction between particles. The infinite sum of interaction terms can be performed exactly due to the property of dynamical factorization. Following the methodology, the exact solution in each order with respect to nonlinearities is computed. For a choice of initial perturbation the first order exact solution is numerically integrated in order to find the local density excess. The approximate analytical solution is found to be in excellent agreement with exact numerical integration as well as with ab initio numerical simulations. Analytical computation gives a better insight into the problem and it has the advantage to be simpler, and also accessible in some range of parameters where it is difficult to find numerical solutions. (author). 27 refs, 12 figs

  2. Numerical simulation methods to richtmyer-meshkov instabilities

    International Nuclear Information System (INIS)

    Zhou Ning; Yu Yan; Tang Weijun

    2003-01-01

    Front tracking algorithms have generally assumed that the computational medium is divided into piece-wise smooth subdomains bounded by interfaces and that strong wave interactions are solved via Riemann solutions. However, in multi-dimensional cases, the Riemann solution of multiple shock wave interactions are far more complicated and still subject to analytical study. For this reason, it is very desirable to be able to track contact discontinuities only. A new numerical algorithm to couple a tracked contact surface and an untracked strong shock wave are described. The new tracking algorithm reduces the complication of computation, and maintains the sharp resolution of the contact surface. The numerical results are good. (authors)

  3. Numerical study of fractional nonlinear Schrodinger equations

    KAUST Repository

    Klein, Christian

    2014-10-08

    Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass and energy sub- and supercritical regimes can be identified. This allows us to study the possibility of finite time blow-up versus global existence, the nature of the blow-up, the stability and instability of nonlinear ground states and the long-time dynamics of solutions. The latter is also studied in a semiclassical setting. Moreover, we numerically construct ground state solutions of the fractional nonlinear Schrödinger equation.

  4. Black-hole solutions with scalar hair in Einstein-scalar-Gauss-Bonnet theories

    Science.gov (United States)

    Antoniou, G.; Bakopoulos, A.; Kanti, P.

    2018-04-01

    In the context of the Einstein-scalar-Gauss-Bonnet theory, with a general coupling function between the scalar field and the quadratic Gauss-Bonnet term, we investigate the existence of regular black-hole solutions with scalar hair. Based on a previous theoretical analysis, which studied the evasion of the old and novel no-hair theorems, we consider a variety of forms for the coupling function (exponential, even and odd polynomial, inverse polynomial, and logarithmic) that, in conjunction with the profile of the scalar field, satisfy a basic constraint. Our numerical analysis then always leads to families of regular, asymptotically flat black-hole solutions with nontrivial scalar hair. The solution for the scalar field and the profile of the corresponding energy-momentum tensor, depending on the value of the coupling constant, may exhibit a nonmonotonic behavior, an unusual feature that highlights the limitations of the existing no-hair theorems. We also determine and study in detail the scalar charge, horizon area, and entropy of our solutions.

  5. A family of four stages embedded explicit six-step methods with eliminated phase-lag and its derivatives for the numerical solution of the second order problems

    Science.gov (United States)

    Simos, T. E.

    2017-11-01

    A family of four stages high algebraic order embedded explicit six-step methods, for the numerical solution of second order initial or boundary-value problems with periodical and/or oscillating solutions, are studied in this paper. The free parameters of the new proposed methods are calculated solving the linear system of equations which is produced by requesting the vanishing of the phase-lag of the methods and the vanishing of the phase-lag's derivatives of the schemes. For the new obtained methods we investigate: • Its local truncation error (LTE) of the methods.• The asymptotic form of the LTE obtained using as model problem the radial Schrödinger equation.• The comparison of the asymptotic forms of LTEs for several methods of the same family. This comparison leads to conclusions on the efficiency of each method of the family.• The stability and the interval of periodicity of the obtained methods of the new family of embedded finite difference pairs.• The applications of the new obtained family of embedded finite difference pairs to the numerical solution of several second order problems like the radial Schrödinger equation, astronomical problems etc. The above applications lead to conclusion on the efficiency of the methods of the new family of embedded finite difference pairs.

  6. Numerical solution of fuzzy boundary value problems using Galerkin ...

    Indian Academy of Sciences (India)

    1 College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China. 2 Department of ... exact solution of fuzzy first-order boundary value problems. (BVPs). ...... edge partial financial support by the Ministerio de Economıa.

  7. Numerical solution of two-dimensional non-linear partial differential ...

    African Journals Online (AJOL)

    linear partial differential equations using a hybrid method. The solution technique involves discritizing the non-linear system of partial differential equations (PDEs) to obtain a corresponding nonlinear system of algebraic difference equations to be ...

  8. Numerical solution of pipe flow problems for generalized Newtonian fluids

    International Nuclear Information System (INIS)

    Samuelsson, K.

    1993-01-01

    In this work we study the stationary laminar flow of incompressible generalized Newtonian fluids in a pipe with constant arbitrary cross-section. The resulting nonlinear boundary value problems can be written in a variational formulation and solved using finite elements and the augmented Lagrangian method. The solution of the boundary value problem is obtained by finding a saddle point of the augmented Lagrangian. In the algorithm the nonlinear part of the equations is treated locally and the solution is obtained by iteration between this nonlinear problem and a global linear problem. For the solution of the linear problem we use the SSOR preconditioned conjugate gradient method. The approximating problem is solved on a sequence of adaptively refined grids. A scheme for adjusting the value of the crucial penalization parameter of the augmented Lagrangian is proposed. Applications to pipe flow and a problem from the theory of capacities are given. (author) (34 refs.)

  9. Numerical model CCC

    International Nuclear Information System (INIS)

    Bodvarsson, G.S.; Lippmann, M.J.

    1980-01-01

    The computer program CCC (conduction-convection-consolidation), developed at Lawrence Berkeley Laboratory, solves numerically the heat and mass flow equations for a fully saturated medium, and computes one-dimensional consolidation of the simulated systems. The model employs the Integrated Finite Difference Method (IFDM) in discretizing the saturated medium and formulating the governing equations. The sets of equations are solved either by an iterative solution technique (old version) or an efficient sparse solver (new version). The deformation of the medium is calculated using the one-dimensional consolidation theory of Terzaghi. In this paper, the numerical code is described, validation examples given and areas of application discussed. Several example problems involving flow through fractured media are also presented

  10. Exact solutions of linear reaction-diffusion processes on a uniformly growing domain: criteria for successful colonization.

    Science.gov (United States)

    Simpson, Matthew J

    2015-01-01

    Many processes during embryonic development involve transport and reaction of molecules, or transport and proliferation of cells, within growing tissues. Mathematical models of such processes usually take the form of a reaction-diffusion partial differential equation (PDE) on a growing domain. Previous analyses of such models have mainly involved solving the PDEs numerically. Here, we present a framework for calculating the exact solution of a linear reaction-diffusion PDE on a growing domain. We derive an exact solution for a general class of one-dimensional linear reaction-diffusion process on 0exact solutions with numerical approximations confirms the veracity of the method. Furthermore, our examples illustrate a delicate interplay between: (i) the rate at which the domain elongates, (ii) the diffusivity associated with the spreading density profile, (iii) the reaction rate, and (iv) the initial condition. Altering the balance between these four features leads to different outcomes in terms of whether an initial profile, located near x = 0, eventually overcomes the domain growth and colonizes the entire length of the domain by reaching the boundary where x = L(t).

  11. The Pathwise Numerical Approximation of Stationary Solutions of Semilinear Stochastic Evolution Equations

    International Nuclear Information System (INIS)

    Caraballo, T.; Kloeden, P.E.

    2006-01-01

    Under a one-sided dissipative Lipschitz condition on its drift, a stochastic evolution equation with additive noise of the reaction-diffusion type is shown to have a unique stochastic stationary solution which pathwise attracts all other solutions. A similar situation holds for each Galerkin approximation and each implicit Euler scheme applied to these Galerkin approximations. Moreover, the stationary solution of the Euler scheme converges pathwise to that of the Galerkin system as the stepsize tends to zero and the stationary solutions of the Galerkin systems converge pathwise to that of the evolution equation as the dimension increases. The analysis is carried out on random partial and ordinary differential equations obtained from their stochastic counterparts by subtraction of appropriate Ornstein-Uhlenbeck stationary solutions

  12. Stable solution of the energy equation for the calculation of transitory regimes of natural convection in sodium circuits

    International Nuclear Information System (INIS)

    Walsh, L.M.

    1988-01-01

    A new treatment is given to the problem studied in the previous work 'Conveccao Natural em um Circuito Termico a Sodio' (1981) by the same author. It consists of another method of the solution of the energy equation. It was obtained some stability in the numerical calculation independent of the value of the step; it was also obtained a considerable reduction in the machine time. A new program is being elaborated for testing the time reduction as compared to the previous one. (author) [pt

  13. Assessing numerical methods used in nuclear aerosol transport models

    International Nuclear Information System (INIS)

    McDonald, B.H.

    1987-01-01

    Several computer codes are in use for predicting the behaviour of nuclear aerosols released into containment during postulated accidents in water-cooled reactors. Each of these codes uses numerical methods to discretize and integrate the equations that govern the aerosol transport process. Computers perform only algebraic operations and generate only numbers. It is in the numerical methods that sense can be made of these numbers and where they can be related to the actual solution of the equations. In this report, the numerical methods most commonly used in the aerosol transport codes are examined as special cases of a general solution procedure, the Method of Weighted Residuals. It would appear that the numerical methods used in the codes are all capable of producing reasonable answers to the mathematical problem when used with skill and care. 27 refs

  14. A numerical solution for a toroidal plasma in equilibrium

    International Nuclear Information System (INIS)

    Hintz, E.; Sudano, J.P.

    1982-01-01

    The iterative techniques alternating direction implicit (ADI), sucessive ove-relaxation (SOR) and Gauss-Seidel are applied to a nonlinear elliptical second order differential equation (Grand-Shafranov). This equation was solve with the free boundary conditions plasma-vacuum interface over a rectangular section in cylindrical coordinates R and Z. The current density profile, plasma pressure profile, magnetic and isobaric surfaces are numerically determined for a toroidal plasma in equilibrium. (L.C.) [pt

  15. Numerical investigation of the recruitment process in open marine population models

    International Nuclear Information System (INIS)

    Angulo, O; López-Marcos, J C; López-Marcos, M A; Martínez-Rodríguez, J

    2011-01-01

    The changes in the dynamics, produced by the recruitment process in an open marine population model, are investigated from a numerical point of view. The numerical method considered, based on the representation of the solution along the characteristic lines, approximates properly the steady states of the model, and is used to analyze the asymptotic behavior of the solutions of the model

  16. A general spectral method for the numerical simulation of one-dimensional interacting fermions

    Science.gov (United States)

    Clason, Christian; von Winckel, Gregory

    2012-08-01

    This software implements a general framework for the direct numerical simulation of systems of interacting fermions in one spatial dimension. The approach is based on a specially adapted nodal spectral Galerkin method, where the basis functions are constructed to obey the antisymmetry relations of fermionic wave functions. An efficient Matlab program for the assembly of the stiffness and potential matrices is presented, which exploits the combinatorial structure of the sparsity pattern arising from this discretization to achieve optimal run-time complexity. This program allows the accurate discretization of systems with multiple fermions subject to arbitrary potentials, e.g., for verifying the accuracy of multi-particle approximations such as Hartree-Fock in the few-particle limit. It can be used for eigenvalue computations or numerical solutions of the time-dependent Schrödinger equation. The new version includes a Python implementation of the presented approach. New version program summaryProgram title: assembleFermiMatrix Catalogue identifier: AEKO_v1_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKO_v1_1.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 332 No. of bytes in distributed program, including test data, etc.: 5418 Distribution format: tar.gz Programming language: MATLAB/GNU Octave, Python Computer: Any architecture supported by MATLAB, GNU Octave or Python Operating system: Any supported by MATLAB, GNU Octave or Python RAM: Depends on the data Classification: 4.3, 2.2. External routines: Python 2.7+, NumPy 1.3+, SciPy 0.10+ Catalogue identifier of previous version: AEKO_v1_0 Journal reference of previous version: Comput. Phys. Commun. 183 (2012) 405 Does the new version supersede the previous version?: Yes Nature of problem: The direct numerical

  17. Comment on “A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition” by A. Aziz, Comm. Nonlinear Sci. Numer. Simul. 2009;14:1064-8

    Science.gov (United States)

    Magyari, Eugen

    2011-01-01

    In a recent paper published in this Journal the title problem has been investigated numerically. In the present paper the exact solution for the temperature boundary layer is given in terms of the solution of the flow problem (the Blasius problem) in a compact integral form.

  18. Numerical difficulties associated with using equality constraints to achieve multi-level decomposition in structural optimization

    Science.gov (United States)

    Thareja, R.; Haftka, R. T.

    1986-01-01

    There has been recent interest in multidisciplinary multilevel optimization applied to large engineering systems. The usual approach is to divide the system into a hierarchy of subsystems with ever increasing detail in the analysis focus. Equality constraints are usually placed on various design quantities at every successive level to ensure consistency between levels. In many previous applications these equality constraints were eliminated by reducing the number of design variables. In complex systems this may not be possible and these equality constraints may have to be retained in the optimization process. In this paper the impact of such a retention is examined for a simple portal frame problem. It is shown that the equality constraints introduce numerical difficulties, and that the numerical solution becomes very sensitive to optimization parameters for a wide range of optimization algorithms.

  19. Periodic solution for state-dependent impulsive shunting inhibitory CNNs with time-varying delays.

    Science.gov (United States)

    Şaylı, Mustafa; Yılmaz, Enes

    2015-08-01

    In this paper, we consider existence and global exponential stability of periodic solution for state-dependent impulsive shunting inhibitory cellular neural networks with time-varying delays. By means of B-equivalence method, we reduce these state-dependent impulsive neural networks system to an equivalent fix time impulsive neural networks system. Further, by using Mawhin's continuation theorem of coincide degree theory and employing a suitable Lyapunov function some new sufficient conditions for existence and global exponential stability of periodic solution are obtained. Previous results are improved and extended. Finally, we give an illustrative example with numerical simulations to demonstrate the effectiveness of our theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Analytic-numerical method of determining the freezing front location

    Directory of Open Access Journals (Sweden)

    R. Grzymkowski

    2011-07-01

    Full Text Available Mathematical modeling of thermal processes combined with the reversible phase transitions of type: solid phase – liquid phase leads to formulation of the parabolic boundary problems with the moving boundary. Solution of such defined problem requires, most often, to use sophisticated numerical techniques and far advanced mathematical tools. Excellent illustration of the complexity of considered problems, as well as of the variety of approaches used for finding their solutions, gives the papers [1-4]. In the current paper, the authors present the, especially attractive from the engineer point of view, analytic-numerical method for finding the approximate solution of selected class of problems which can be reduced to the one-phase solidification problem of a plate with the unknown a priori, varying in time boundary of the region in which the solution is sought. Proposed method is based on the known formalism of initial expansion of the sought function describing the temperature field into the power series, some coefficients of which are determined with the aid of boundary conditions, and on the approximation of the function defining the location of freezing front with the broken line, parameters of which are numerically determined.