WorldWideScience

Sample records for previous hubble space

  1. HUBBLE SPACE TELESCOPE

    Science.gov (United States)

    Godon, Patrick; Sion, Edward M; Starrfield, Sumner; Livio, Mario; Williams, Robert E; Woodward, Charles E; Kuin, Paul; Page, Kim L

    2014-04-01

    With six recorded nova outbursts, the prototypical recurrent nova T Pyxidis (T Pyx) is the ideal cataclysmic variable system to assess the net change of the white dwarf mass within a nova cycle. Recent estimates of the mass ejected in the 2011 outburst ranged from a few ~10 -5 M ⊙ to 3.3 × 10 -4 M ⊙ , and assuming a mass accretion rate of 10 -8 -10 -7 M ⊙ yr -1 for 44 yr, it has been concluded that the white dwarf in T Pyx is actually losing mass. Using NLTE disk modeling spectra to fit our recently obtained Hubble Space Telescope COS and STIS spectra, we find a mass accretion rate of up to two orders of magnitude larger than previously estimated. Our larger mass accretion rate is due mainly to the newly derived distance of T Pyx (4.8 kpc, larger than the previous 3.5 kpc estimate), our derived reddening of E ( B - V ) = 0.35 (based on combined IUE and GALEX spectra), and NLTE disk modeling (compared to blackbody and raw flux estimates in earlier works). We find that for most values of the reddening (0.25 ≤ E ( B - V ) ≤ 0.50) and white dwarf mass (0.70 M ⊙ ≤ M wd ≤ 1.35 M ⊙ ) the accreted mass is larger than the ejected mass. Only for a low reddening (~0.25 and smaller) combined with a large white dwarf mass (0.9 M ⊙ and larger) is the ejected mass larger than the accreted one. However, the best results are obtained for a larger value of reddening.

  2. Hubble Space Telescope-Illustration

    Science.gov (United States)

    1989-01-01

    This illustration depicts a side view of the Hubble Space Telescope (HST). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  3. The Hubble Space Telescope: Problems and Solutions.

    Science.gov (United States)

    Villard, Ray

    1990-01-01

    Presented is the best understanding of the flaw discovered in the optics of the Hubble Space Telescope and the possible solutions to the problems. The spherical aberration in the telescope's mirror and its effect on the quality of the telescope's imaging ability is discussed. (CW)

  4. Creation of the Hubble Space Telescope

    Science.gov (United States)

    O'Dell, C. R.

    2009-08-01

    The Hubble Space Telescope has been the most successful space astronomy project to date, producing images that put the public in awe and images and spectra that have produced many scientific discoveries. It is the natural culmination of a dream envisioned when rocket flight into space was first projected and a goal set for the US space program soon after NASA was created. The design and construction period lasted almost two decades and its operations have already lasted almost as long. The capabilities of the observatory have evolved and expanded with periodic upgrading of its instrumentation, thus realizing the advantages of its unique design. The success of this long-lived observatory is closely tied to the availability of the Space Shuttle and the end of the Shuttle program means that the end of the Hubble program will follow before long.

  5. Hubble Space Telescope via the Web

    Science.gov (United States)

    O'Dea, Christopher P.

    The Space Telescope Science Institute (STScI) makes available a wide variety of information concerning the Hubble Space Telescope (HST) via the Space Telescope Electronic Information Service (STEIS). STEIS is accessible via anonymous ftp, gopher, WAIS, and WWW. The information on STEIS includes how to propose for time on the HST, the current status of HST, reports on the scientific instruments, the observing schedule, data reduction software, calibration files, and a set of publicly available images in JPEG, GIF and TIFF format. STEIS serves both the astronomical community as well as the larger Internet community. WWW is currently the most widely used interface to STEIS. Future developments on STEIS are expected to include larger amounts of hypertext, especially HST images and educational material of interest to students, educators, and the general public, and the ability to query proposal status.

  6. European astronaut selected for the third Hubble Space Telescope

    Science.gov (United States)

    1998-08-01

    will remove the European-built Faint Object Camera, which has been working without any problem since the launch in 1990, and replace it with a new-generation instrument, called the Advanced Camera for Survey. With its three electronic cameras and complement of filters, this camera is expected to improve the telescope's sensitivity tenfold. Other primary tasks to be accomplished during STS-104 mission include replacement of the existing solar arrays with rigid, high-efficiency arrays for which ESA will deliver the mechanisms, manufactured by Daimler-Benz Aerospace/Dornier. In common with optical instruments, solar arrays gradually decline in performance when exposed to the space environment. Further tasks are the replacement of a mechanical tape recorder with a new-generation solid-state recorder and the replacement of Fine Guidance Sensor no. 2, one of three such devices that help to point the telescope at a celestial target with an accuracy of 0.007 arc seconds. This is equivalent to keeping the telescope pointed at a candle in Amsterdam from Vevey, Switzerland, about 700 km away, where Nicollier was born. The crew will also install a cooling system to improve the thermal protection of some of the telescope's systems, a new-technology cryogenic cooler for the Near Infrared Camera and Mutli-Object Spectrometer instrument and six improvement kits which will enhance Hubble's battery charge capability. In addition, they will repair and replace much of the multi-layer exterior thermal insulation on the sun-facing side of the telescope. On the second Hubble servicing mission, STS-82 in February 1997, the crew noticed peeling on several areas of the insulation and applied four patches to the worst affected areas. Both Smith and Nicollier have previous in-flight experience with Hubble: Smith performed three extravehicular sorties during the STS-82 mission to Hubble and Nicollier operated the Shuttle's Canadian robot arm during the first servicing mission on the STS-61 mission

  7. Automation of Hubble Space Telescope Mission Operations

    Science.gov (United States)

    Burley, Richard; Goulet, Gregory; Slater, Mark; Huey, William; Bassford, Lynn; Dunham, Larry

    2012-01-01

    On June 13, 2011, after more than 21 years, 115 thousand orbits, and nearly 1 million exposures taken, the operation of the Hubble Space Telescope successfully transitioned from 24x7x365 staffing to 815 staffing. This required the automation of routine mission operations including telemetry and forward link acquisition, data dumping and solid-state recorder management, stored command loading, and health and safety monitoring of both the observatory and the HST Ground System. These changes were driven by budget reductions, and required ground system and onboard spacecraft enhancements across the entire operations spectrum, from planning and scheduling systems to payload flight software. Changes in personnel and staffing were required in order to adapt to the new roles and responsibilities required in the new automated operations era. This paper will provide a high level overview of the obstacles to automating nominal HST mission operations, both technical and cultural, and how those obstacles were overcome.

  8. Hubble Space Telescope 2004 Battery Update

    Science.gov (United States)

    Hollandsworth, Roger; Armantrout, Jon; Whitt, Tom; Rao, Gopalakrishna M.

    2006-01-01

    Battery cell wear out mechanisms and signatures are examined and compared to orbital data from the six on-orbit Hubble Space Telescope (HST) batteries, and the Flight Spare Battery (FSB) Test Bed at Marshall Space Flight Center (MSFC), which is instrumented with individual cell voltage monitoring. The on-orbit HST batteries were manufactured on an expedited basis after the Challenger Shuttle Disaster in 1986. The original design called for the HST to be powered by six 50 Ah Nickel Cadmium batteries, which would have required a shuttle mission every 5 years for battery replacement. The decision to use NiH2 instead has resulted in a longer life battery set which was launched with HST in April 1990, with a design life of 7 years that has now exceeded 14+ years of orbital cycling. This chart details the specifics of the original HST NiH2 cell design. The HST replacement batteries for Service Mission 4, originally scheduled for Spring 2005, are currently in cold storage at NASA Goddard Space Flight Center (GSFC). The SM4 battery cells utilize slurry process electrodes having 80% porosity.

  9. Hubble Space Telescope: Should NASA Proceed with a Servicing Mission?

    National Research Council Canada - National Science Library

    Morgan, Daniel

    2006-01-01

    The National Aeronautics and Space Administration (NASA) estimates that without a servicing mission to replace key components, the Hubble Space Telescope will cease scientific operations in 2008 instead of 2010...

  10. A Scientific Revolution: the Hubble and James Webb Space Telescopes

    Science.gov (United States)

    Gardner, Jonathan P.

    2012-01-01

    Astronomy is going through a scientific revolution, responding to a flood of data from the Hubble Space Telescope, other space missions, and large telescopes on the ground. In this talk, I will discuss some of the most important astronomical discoveries of the last IO years, and the role that space telescopes have played in those discoveries. The next decade looks equally bright with the newly refurbished Hubble and the promise of its successor, the James Webb Space Telescope. I will describe how Hubble was upgraded and how and why we are building Webb.

  11. Hubble Space Telescope Spies on 'Black Eye'

    Science.gov (United States)

    2004-01-01

    Residing roughly 17 million light years from Earth, in the northern constellation Coma Berenices, is a merged star system known as Messier 64 (M64). First cataloged in the 18th century by the French astronomer Messier, M64 is a result of two colliding galaxies and has an unusual appearance as well as bizarre internal motions. It has a spectacular dark band of absorbing dust in front of its bright nucleus, lending to it the nickname of the 'Black Eye' or 'Evil Eye' galaxy. Fine details of the dark band can be seen in this image of the central portion of M64 obtained by the Wide Field Planetary Camera (WFPC2) of NASA's Hubble Space Telescope (HST). Appearing to be a fairly normal pinwheel-shaped galaxy, the M64 stars are rotating in the same direction, clockwise, as in the majority of galaxies. However, detailed studies in the 1990's led to the remarkable discovery that the interstellar gas in the outer regions of M64 rotates in the opposite direction from the gas and stars in the irner region. Astronomers believe that the oppositely rotating gas arose when M64 absorbed a satellite galaxy that collided with it, perhaps more than one billion years ago. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST.

  12. How Long Can the Hubble Space Telescope Operate Reliably?

    Science.gov (United States)

    Xapsos, M. A.; Stauffer, C.; Jordan, T.; Poivey, C.; Lum, G.; Haskins, D. N.; Pergosky, A. M.; Smith, D. C.; LaBel, K. A.

    2014-01-01

    Total ionizing dose exposure of electronic parts in the Hubble Space Telescope is analyzed using 3-D ray trace and Monte Carlo simulations. Results are discussed along with other potential failure mechanisms for science operations.

  13. Hubble Space Telescope Image of Omega Nebula

    Science.gov (United States)

    2002-01-01

    This sturning image, taken by the newly installed Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope (HST), is an image of the center of the Omega Nebula. It is a hotbed of newly born stars wrapped in colorful blankets of glowing gas and cradled in an enormous cold, dark hydrogen cloud. The region of nebula shown in this photograph is about 3,500 times wider than our solar system. The nebula, also called M17 and the Swan Nebula, resides 5,500 light-years away in the constellation Sagittarius. The Swan Nebula is illuminated by ultraviolet radiation from young, massive stars, located just beyond the upper-right corner of the image. The powerful radiation from these stars evaporates and erodes the dense cloud of cold gas within which the stars formed. The blistered walls of the hollow cloud shine primarily in the blue, green, and red light emitted by excited atoms of hydrogen, nitrogen, oxygen, and sulfur. Particularly striking is the rose-like feature, seen to the right of center, which glows in the red light emitted by hydrogen and sulfur. As the infant stars evaporate the surrounding cloud, they expose dense pockets of gas that may contain developing stars. One isolated pocket is seen at the center of the brightest region of the nebula. Other dense pockets of gas have formed the remarkable feature jutting inward from the left edge of the image. The color image is constructed from four separate images taken in these filters: blue, near infrared, hydrogen alpha, and doubly ionized oxygen. Credit: NASA, H. Ford (JHU), G. Illingworth (USCS/LO), M. Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA.

  14. HUBBLE SPACE TELESCOPE RESOLVES VOLCANOES ON IO

    Science.gov (United States)

    2002-01-01

    This picture is a composite of a black and white near infrared image of Jupiter and its satellite Io and a color image of Io at shorter wavelengths taken at almost the same time on March 5, 1994. These are the first images of a giant planet or its satellites taken by NASA's Hubble Space Telescope (HST) since the repair mission in December 1993. Io is too small for ground-based telescopes to see the surface details. The moon's angular diameter of one arc second is at the resolution limit of ground based telescopes. Many of these markings correspond to volcanoes that were first revealed in 1979 during the Voyager spacecraft flyby of Jupiter. Several of the volcanoes periodically are active because Io is heated by tides raised by Jupiter's powerful gravity. The volcano Pele appears as a dark spot surrounded by an irregular orange oval in the lower part of the image. The orange material has been ejected from the volcano and spread over a huge area. Though the volcano was first discovered by Voyager, the distinctive orange color of the volcanic deposits is a new discovery in these HST images. (Voyager missed it because its cameras were not sensitive to the near-infrared wavelengths where the color is apparent). The sulfur and sulfur dioxide that probably dominate Io's surface composition cannot produce this orange color, so the Pele volcano must be generating material with a more unusual composition, possibly rich in sodium. The Jupiter image, taken in near-infrared light, was obtained with HST's Wide Field and Planetary Camera in wide field mode. High altitude ammonia crystal clouds are bright in this image because they reflect infrared light before it is absorbed by methane in Jupiter's atmosphere. The most prominent feature is the Great Red Spot, which is conspicuous because of its high clouds. A cap of high-altitude haze appears at Jupiter's south pole. The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced

  15. HUBBLE SPACE TELESCOPE CAPTURES FIRST DIRECT IMAGE OF A STAR

    Science.gov (United States)

    2002-01-01

    This is the first direct image of a star other than the Sun, made with NASA's Hubble Space Telescope. Called Alpha Orionis, or Betelgeuse, it is a red supergiant star marking the shoulder of the winter constellation Orion the Hunter (diagram at right). The Hubble image reveals a huge ultraviolet atmosphere with a mysterious hot spot on the stellar behemoth's surface. The enormous bright spot, more than ten times the diameter of Earth, is at least 2,000 Kelvin degrees hotter than the surface of the star. The image suggests that a totally new physical phenomenon may be affecting the atmospheres of some stars. Follow-up observations will be needed to help astronomers understand whether the spot is linked to oscillations previously detected in the giant star, or whether it moves systematically across the star's surface under the grip of powerful magnetic fields. The observations were made by Andrea Dupree of the Harvard- Smithsonian Center for Astrophysics in Cambridge, MA, and Ronald Gilliland of the Space Telescope Science Institute in Baltimore, MD, who announced their discovery today at the 187th meeting of the American Astronomical Society in San Antonio, Texas. The image was taken in ultraviolet light with the Faint Object Camera on March 3, 1995. Hubble can resolve the star even though the apparent size is 20,000 times smaller than the width of the full Moon -- roughly equivalent to being able to resolve a car's headlights at a distance of 6,000 miles. Betelgeuse is so huge that, if it replaced the Sun at the center of our Solar System, its outer atmosphere would extend past the orbit of Jupiter (scale at lower left). Credit: Andrea Dupree (Harvard-Smithsonian CfA), Ronald Gilliland (STScI), NASA and ESA Image files in GIF and JPEG format and captions may be accessed on Internet via anonymous ftp from oposite.stsci.edu in /pubinfo.

  16. The Hubble Space Telescope Frontier Fields Program

    Science.gov (United States)

    Koekemoer, Anton M.; Mack, Jennifer; Lotz, Jennifer M.; Borncamp, David; Khandrika, Harish G.; Lucas, Ray A.; Martlin, Catherine; Porterfield, Blair; Sunnquist, Ben; Anderson, Jay; Avila, Roberto J.; Barker, Elizabeth A.; Grogin, Norman A.; Gunning, Heather C.; Hilbert, Bryan; Ogaz, Sara; Robberto, Massimo; Sembach, Kenneth; Flanagan, Kathryn; Mountain, Matt

    2017-08-01

    The Hubble Space Telescope Frontier Fields program is a large Director's Discretionary program of 840 orbits, to obtain ultra-deep observations of six strong lensing clusters of galaxies, together with parallel deep blank fields, making use of the strong lensing amplification by these clusters of distant background galaxies to detect the faintest galaxies currently observable in the high-redshift universe. The entire program has now completed successfully for all 6 clusters, namely Abell 2744, Abell S1063, Abell 370, MACS J0416.1-2403, MACS J0717.5+3745 and MACS J1149.5+2223,. Each of these was observed over two epochs, to a total depth of 140 orbits on the main cluster and an associated parallel field, obtaining images in ACS (F435W, F606W, F814W) and WFC3/IR (F105W, F125W, F140W, F160W) on both the main cluster and the parallel field in all cases. Full sets of high-level science products have been generated for all these clusters by the team at STScI, including cumulative-depth data releases during each epoch, as well as full-depth releases after the completion of each epoch. These products include all the full-depth distortion-corrected drizzled mosaics and associated products for each cluster, which are science-ready to facilitate the construction of lensing models as well as enabling a wide range of other science projects. Many improvements beyond default calibration for ACS and WFC3/IR are implemented in these data products, including corrections for persistence, time-variable sky, and low-level dark current residuals, as well as improvements in astrometric alignment to achieve milliarcsecond-level accuracy. The full set of resulting high-level science products and mosaics are publicly delivered to the community via the Mikulski Archive for Space Telescopes (MAST) to enable the widest scientific use of these data, as well as ensuring a public legacy dataset of the highest possible quality that is of lasting value to the entire community.

  17. Spectacles in Space: A Museum of the Hubble Telescope

    Science.gov (United States)

    Vermillion, Patricia

    2004-01-01

    When the space shuttle "Columbia" was "lost entering the Earth's atmosphere," third graders at the Lamplighter School in Texas became curious about space travel. Using topics of interest and brainstorming exercises based on a presentation by Elaine Scott, author of "Adventures in Space: The Flight to Fix the Hubble,"…

  18. Hubble Space Telescope imaging of compact steep spectrum radio sources

    NARCIS (Netherlands)

    deVries, WH; ODea, CP; Baum, SA; Sparks, WB; Biretta, J; deKoff, S; Golombek, D; Lehnert, MD; Macchetto, F; McCarthy, P; Miley, GK

    We present Hubble Space Telescope WFPC2 images taken through a broad red filter (F702W) of 30 Third Cambridge Catalog compact steep spectrum (CSS) radio sources. We have overlaid radio maps taken from the literature on the optical images to determine the radio-optical alignment and to study detailed

  19. Press briefing: Science with the Hubble Space Telescope

    Science.gov (United States)

    1995-11-01

    From 4 to 9 December 1995, about three hundred scientists from around the world will gather for a conference in Paris to present and discuss the most exciting discoveries that they are making in observing planets, stars, nebulae, galaxies and distant quasars with the unprecedented clear focus of the Hubble Space Telescope. A special session of the conference (Saturday 9 December) has been arranged to discuss ways for bringing these new results into the classroom and to the general public. At the start of the conference, some of the most distinguished participants will present to the media their views on the impact that this new data is having on our understanding of the universe. A press release concerning the discovery of a new black hole in a galaxy will be distributed and commented on by the author. Photographic material and narrative description will be included in the press kit that will be distributed. Media representatives are invited to attend the press briefing on Monday 4 December at ESA Headquarters (programme attached), and are kindly requested to fill in and return the attached registration form preferably by fax to the Public Relations Division (Fax. +33 1 53 69 76 90). Later that same day, at 19:00 hours, in Room XII at UNESCO (7 place de Fontenoy, 75007 Paris), Professor Roger Bonnet, the Director of the ESA Science Programme and Dr. Duccio Macchetto, Associate Director for scientific programs at the Space Telescope Science Institute in Baltimore, will present an overview of ESA's science programmes and the exciting results obtained by the Hubble Space Telescope. This public event is free and no pre- registration is needed in order to attend.. (*) a project of international cooperation between NASA and ESA. Science with the Hubble Space Telescope Press Briefing Monday 4 December 1995 09:45 - 13:00 hrs European Space Agency Headquarters 8-10 rue Mario Nikis Paris Room A 09:45 hrs Arrival. 10:00- 10:15 hrs Overview, European Space Agency science

  20. Observations of the Hubble Deep Field with the Infrared Space Observatory .4. Association of sources with Hubble Deep Field galaxies

    DEFF Research Database (Denmark)

    Mann, R.G.; Oliver, S.J.; Serjeant, S.B.G.

    1997-01-01

    We discuss the identification of sources detected by the Infrared Space Observatory (ISO) at 6.7 and 15 mu m in the Hubble Deep Field (HDF) region. We conservatively associate ISO sources with objects in existing optical and near-infrared HDF catalogues using the likelihood ratio method, confirming...... these results (and, in one case, clarifying them) with independent visual searches, We find 15 ISO sources to be reliably associated with bright [I-814(AB) Hubble Flanking Fields (10 galaxies...

  1. The Hubble Space Telescope Education and Public Outreach Program

    Science.gov (United States)

    Teays, T. J.; Eisenhamer, B.; Eisenhamer, J.; Amazing Space Team

    2001-05-01

    The Hubble Space Telescope has conducted a long-standing and vigorous program in education and public outreach. This program uses a variety of methods to reach a broad spectrum of audiences. Education products are developed in a team environment that partners educators, curriculum experts, scientists, and production experts, such as graphic artists, Web designers, programmers, and education evaluators. A popular Web site is maintained, and has been substantially augmented in the past year. The Amazing Space program consists of a suite of online, interactive modules for use in the kindergarten through 12th grade classroom. The program is rooted in the national education standards and benefits from a robust evaluation process. The HST images and data are used to engage students in learning basic science and mathematics concepts. The activity/lessons include extensive, online assistance for educators, so that they can be readily used in the classroom. Hardcopy products such as posters, lithographs, teacher guides, and trading cards are generally tied to online products, to provide multiple entries to the material. We also provide training for teachers in the use of our products, as appropriate. Informal science education is supported by providing services to museums, planetariums, libraries and related institutions. The very popular ViewSpace, a computer-based video service is being used by many informal science facilities. In addition, HST has supported the creation of both permanent and traveling exhibits about HST. The Space Telescope Science Institute operates the Hubble Space Telescope for NASA.

  2. A Scientific Revolution: The Hubble and James Webb Space Telescopes

    Science.gov (United States)

    Gardner, Jonathan P.

    2010-01-01

    Astronomy is going through a scientific revolution, responding to a flood of data from the Hubble Space Telescope, other space missions, and large telescopes on the ground. In this talk, I will discuss some of the important discoveries of the last decade, from dwarf planets in the outer Solar System to the mysterious dark energy that overcomes gravity to accelerate the expansion of the Universe. The next decade will be equally bright with the newly refurbished Hubble and the promise of its successor, the James Webb Space Telescope. An infrared-optimized 6.5m space telescope, Webb is designed to find the first galaxies that formed in the early universe and to peer into the dusty gas clouds where stars and planets are born. With MEMS technology, a deployed primary mirror and a tennis-court sized sunshield, the mission presents many technical challenges. I will describe Webb's scientific goals, its design and recent progress in constructing the observatory. Webb is scheduled for launch in 2014.

  3. 18 years of science with the Hubble Space Telescope.

    Science.gov (United States)

    Dalcanton, Julianne J

    2009-01-01

    After several decades of planning, the Hubble Space Telescope (HST) was launched in 1990 as the first of NASA's Great Observatories. After a rocky start arising from an error in the fabrication of its main mirror, it went on to change forever many fields of astronomy, and to capture the public's imagination with its images. An ongoing programme of servicing missions has kept the telescope on the cutting edge of astronomical research. Here I review the advances made possible by the HST over the past 18 years.

  4. "Amazing Space": Creating Educational Resources from Current Scientific Research Results from the Hubble Space Telescope.

    Science.gov (United States)

    Christian, C. A.; Eisenhamer, B.; Eisenhamer, Jonathan; Teays, Terry

    2001-01-01

    Introduces the Amazing Space program which is designed to enhance student mathematics, science, and technology skills using recent data and results from the National Aeronautics and Space Administration's (NASA) Hubble Space Telescope mission. Explains the process of designing multi-media resources in a five-week summer workshop that partners…

  5. Artificial intelligence applications for Hubble Space Telescope operations

    Science.gov (United States)

    Miller, Glenn

    Using Hubble Space Telescope operations as an example, this paper has shown practical applications of AI techniques to observatory operations including proposal preparation, proposal selection, proposal transformation, resource usage, duplication, observation monitoring and data analysis. Several of the systems are in routine use by operations staff and solve problems which formerly required highly trained human experts. The power of AI techniques results from several factors including sophisticated development tools, powerful ways to represent and reason with knowledge, and an expressive user interface. Although this paper has used the HST as a case study, most features of HST operations are common to other observatories, both space- and ground-based. NASA's great observatories such as the Advanced X-Ray Astrophysics Facility (AXAF), the Space Station, and ground-based telescopes such as the European Very Large Telescope and Texas-Penn State Spectrocopic Survey Telescope can benefit from applications of AI technology.

  6. NASA's Hubble Space Telescope: Presentation to the Freedom Museum

    Science.gov (United States)

    Leete, Stephen

    2017-01-01

    The Freedom Museum, located in Manassas, VA, requested a speaker through the NASA Speakers Bureau, on the topic of the Hubble Space Telescope. A public outreach presentation has been prepared. Many of the facts are drawn from a public source, the Wikipedia article on the Hubble Space Telescope. This covers the history of the development of the HST, as well as the initial flaw and its repair, and the subsequent series of servicing missions, for which I was involved in the last three. This has been the topic of numerous books. This has been supplemented mostly by facts known to the author, such as names of individuals who played key roles, but not any technical information. Because the reqeustor asked for a significant part of the talk to address major science findings and discoveries, significant portions of a public presentation on this topic developed by Kenneth Carpenter of GSFC were obtained and incorporated, with credit. I have confirmed that this material is also available through public sources.

  7. Observing supernova 1987A with the refurbished Hubble Space Telescope.

    Science.gov (United States)

    France, Kevin; McCray, Richard; Heng, Kevin; Kirshner, Robert P; Challis, Peter; Bouchet, Patrice; Crotts, Arlin; Dwek, Eli; Fransson, Claes; Garnavich, Peter M; Larsson, Josefin; Lawrence, Stephen S; Lundqvist, Peter; Panagia, Nino; Pun, Chun S J; Smith, Nathan; Sollerman, Jesper; Sonneborn, George; Stocke, John T; Wang, Lifan; Wheeler, J Craig

    2010-09-24

    Observations with the Hubble Space Telescope (HST), conducted since 1990, now offer an unprecedented glimpse into fast astrophysical shocks in the young remnant of supernova 1987A. Comparing observations taken in 2010 with the use of the refurbished instruments on HST with data taken in 2004, just before the Space Telescope Imaging Spectrograph failed, we find that the Lyα and Hα lines from shock emission continue to brighten, whereas their maximum velocities continue to decrease. We observe broad, blueshifted Lyα, which we attribute to resonant scattering of photons emitted from hot spots on the equatorial ring. We also detect N v λλ1239, 1243 angstrom line emission, but only to the red of Lyα. The profiles of the N v lines differ markedly from that of Hα, suggesting that the N4+ ions are scattered and accelerated by turbulent electromagnetic fields that isotropize the ions in the collisionless shock.

  8. Hubble Space Telescope NICMOS Polarization Measurements of OMC-1

    Science.gov (United States)

    Simpson, Janet P.; Colgan, Sean W. J.; Erickson, Edwin F.; Burton, Michael G.; Schultz, A. S. B.

    2006-01-01

    We present 2 micrometer polarization measurements of positions in the BN region of the Orion Molecular Cloud (OMC-1) made with NICMOS Camera 2 (0.2" resolution) on Hubble Space Telescope. Our goals are to seek the sources of heating for IRc2, 3, 4, and 7, identify possible young stellar objects (YSOs), and characterize the grain alignment in the dust clouds along the lines-of-sight to the stars. Our results are as follows: BN is approximately 29% polarized by dichroic absorption and appears to be the illuminating source for most of the nebulosity to its north and up to approximately 5" to its south. Although the stars are probably all polarized by dichroic absorption, there are a number of compact, but non-point-source, objects that could be polarized by a combination of both dichroic absorption and local scattering of star light. We identify several candidate YSOs, including an approximately edge-on bipolar YSO 8.7" east of BN, and a deeply-embedded IRc7, all of which are obviously self-luminous at mid-infrared wavelengths and may be YSOs. None of these is a reflection nebula illuminated by a star located near radio source I, as was previously suggested. Other IRc sources are clearly reflection nebulae: IRc3 appears to be illuminated by IRc2-B or a combination of the IRc2 sources, and IRc4 and IRc5 appear to be illuminated by an unseen star in the vicinity of radio source I, or by Star n or IRc2-A. Trends in the magnetic field direction are inferred from the polarization of the 26 stars that are bright enough to be seen as NICMOS point sources. Their polarization ranges from N less than or equal to 1% (all stars with this low polarization are optically visible) to greater than 40%. The most polarized star has a polarization position angle different from its neighbors by approximately 40 degrees, but in agreement with the grain alignment inferred from millimeter polarization measurements of the cold dust cloud in the southern part of OMC-1. The polarization

  9. Hubble Space Telescope: The Telescope, the Observations & the Servicing Mission

    Science.gov (United States)

    1999-11-01

    Today the HST Archives contain more than 260 000 astronomical observations. More than 13 000 astronomical objects have been observed by hundreds of different groups of scientists. Direct proof of the scientific significance of this project is the record-breaking number of papers published : over 2400 to date. Some of HST's most memorable achievements are: * the discovery of myriads of very faint galaxies in the early Universe, * unprecedented, accurate measurements of distances to the farthest galaxies, * significant improvement in the determination of the Hubble constant and thus the age of the Universe, * confirmation of the existence of blacks holes, * a far better understanding of the birth, life and death of stars, * a very detailed look at the secrets of the process by which planets are created. Europe and HST ESA's contribution to HST represents a nominal investment of 15%. ESA provided one of the two imaging instruments - the Faint Object Camera (FOC) - and the solar panels. It also has 15 scientists and computer staff working at the Space Telescope Science Institute in Baltimore (Maryland). In Europe the astronomical community receives observational assistance from the Space Telescope European Coordinating Facility (ST-ECF) located in Garching, Munich. In return for ESA's investment, European astronomers have access to approximately 15% of the observing time. In reality the actual observing time competitively allocated to European astronomers is closer to 20%. Looking back at almost ten years of operation, the head of ST-ECF, European HST Project Scientist Piero Benvenuti states: "Hubble has been of paramount importance to European astronomy, much more than the mere 20% of observing time. It has given the opportunity for European scientists to use a top class instrument that Europe alone would not be able to build and operate. In specific areas of research they have now, mainly due to HST, achieved international leadership." One of the major reasons for

  10. Observations of the Hubble Deep Field with the Infrared Space Observatory .4. Association of sources with Hubble Deep Field galaxies

    DEFF Research Database (Denmark)

    Mann, R.G.; Oliver, S.J.; Serjeant, S.B.G.

    1997-01-01

    We discuss the identification of sources detected by the Infrared Space Observatory (ISO) at 6.7 and 15 mu m in the Hubble Deep Field (HDF) region. We conservatively associate ISO sources with objects in existing optical and near-infrared HDF catalogues using the likelihood ratio method, confirmi...

  11. What the Longest Exposures from the Hubble Space Telescope Will eveal.

    Science.gov (United States)

    Bahcall, J N; Guhathakurta, P; Schneider, D P

    1990-04-13

    Detailed simulations are presented of the longest exposures on representative fields that will be obtained with the Hubble Space Telescope, as well as predictions for the numbers and types of objects that will be recorded with exposures of different durations. The Hubble Space Telescope will reveal the shapes, sizes, and content of faint, distant galaxies and could discover a new population of Galactic stars.

  12. European astronomers' successes with the Hubble Space Telescope*

    Science.gov (United States)

    1997-02-01

    American opposite number, John Bahcall, prefers to stress those quasar hosts that look like undisturbed galaxies. But the important thing is that we have wonderfully clear pictures to argue about. Quasar theories were mostly pure speculation before we had Hubble." The history of the elements Astronomers at the Hamburger Sternwarte use the Faint Object Spectrograph to analyse ultraviolet light from distant quasars, which they also examine by visible light from the ground. They trace the origin, through cosmic time, of elements like carbon, silicon and iron, from which planets and living things can be built. On its way to Hubble, the quasar light passes through various intervening galaxies and gas clouds, like the skewer of a kebab. Each object visited absorbs some of the quasar light, depending on the local abundances of the elements. As they detect more and more objects, Dieter Reimers and his colleagues form an impression of galaxies building up their stocks of elements progressively through time, by the alchemy of successive generations of stars. Apart from primordial hydrogen the second lightest element, helium, has also been abundant since the origin of the Universe. The first major discovery after Hubble's last refurbishment came from Peter Jakobsen of ESA's Space Science Department at Noordwijk, who detected ionized helium in the remote Universe, by the light of a very distant quasar, 0302-003. That was in January 1994, and since then Jakobsen has looked for the ionized helium using other quasars. He now suspects that this helium is nearly all gathered in clumps, rather than scattered freely through intergalactic space. If so, it greatly increases the estimates of the total mass of ordinary matter in the Universe. Through a lens to the early Universe Natural lenses scattered through the cosmos reveal distant galaxies, and make an astronomical tool for Richard Ellis of the Institute of Astronomy, Cambridge (UK). The strong gravity of an intervening cluster of galaxies

  13. Hubble Space Telescope Deep Field Lesson Package. Teacher's Guide, Grades 6-8. Amazing Space: Education On-Line from the Hubble Space Telescope.

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    This lesson guide accompanies the Hubble Deep Field set of 10 lithographs and introduces 4 astronomy lesson plans for middle school students. Lessons include: (1) "How Many Objects Are There?"; (2) "Classifying and Identifying"; (3) "Estimating Distances in Space"; and (4) "Review and Assessment." Appendices…

  14. NASA in Crisis: The Space Agency's Public Relations Efforts Regarding the Hubble Space Telescope.

    Science.gov (United States)

    Kauffman, James

    1997-01-01

    Examines the National Aeronautics and Space Administration's (NASA) public relations efforts concerning the Hubble telescope. Proposes that NASA's poor public relations exacerbated problems: NASA oversold the telescope before it was deployed, failed to develop a plan for release of images, provided misleading flight reports, and reported…

  15. Ending Hubble's Troubles. A Product Service Job Succeeds 357 Miles in Space. Resources in Technology.

    Science.gov (United States)

    Deal, Walter E., III; And Others

    1995-01-01

    Provides information on the problems with the Hubble Space Telescope and how the National Aeronautics and Space Administration is trying to fix it. Includes a student quiz and possible student outcomes. (JOW)

  16. The Hubble Space Telescope from concept to success

    CERN Document Server

    Shayler, David J

    2016-01-01

    The highly successful Hubble Space Telescope was meant to change our view and understanding of the universe. Within weeks of its launch in 1990, however, the space community was shocked to find out that the primary mirror of the telescope was flawed. It was only the skills of scientists and engineers on the ground and the daring talents of astronauts sent to service the telescope in December 1993 that saved the mission. For over two decades NASA had developed the capabilities to service a payload in orbit. This involved numerous studies and the creation of a ground-based infrastructure to support the challenging missions. Unique tools and EVA hardware supported the skills developed in crew training that then enabled astronauts to complete a demanding series of spacewalks. Drawing upon first hand interviews with those closely involved in the project over thirty years ago this story explains the development of the servicing mission concept and the hurdles that had to be overcome to not only launch the telescope...

  17. Hubble Space Telescope Observations of UV Oscillations in WZ Sagittae During the Decline from Outburst

    OpenAIRE

    Welsh, W. F.; Sion, E. M.; Godon, P.; Gansicke, B. T.; Knigge, C.; Long, K. S.; Szkody, P.

    2003-01-01

    We present a time series analysis of Hubble Space Telescope observations of WZ Sge obtained in 2001 September, October, November and December as WZ Sge declined from its 2001 July superoutburst. Previous analysis of these data showed the temperature of the white dwarf decreased from ~29,000 K to ~18,000 K. In this study we binned the spectra over wavelength to yield ultraviolet light curves at each epoch that were then analyzed for the presence of the well-known 27.87 s and 28.96 s oscillatio...

  18. The Hubble Space Telescope at 25: Lessons Learned for Future Missions

    Science.gov (United States)

    Wiseman, Jennifer

    2015-08-01

    This year we celebrate the 25th anniversary of the Hubble Space Telescope mission. Astronomy worldwide has been transformed by the discoveries made with Hubble. At this momentous milestone it is important to reflect on the unique successes of Hubble, and the components of that success, as the astronomical community develops facilities and a vision for future major international efforts in scientific space exploration. First, Hubble was envisioned by pioneering astronomers long before its launch, galvanizing support from astronomers, NASA, and governmental leaders for such an innovative and risky endeavor. Second, the interplay of the astronaut program with scientific exploration was paramount to the success of Hubble, not only with the initial dramatic repair mission, but also for the subsequent five servicing missions that kept the observatory perpetually refreshed. Cooperative missions involving astronauts, engineers, and scientists may be critical for constructing and operating large facilities in space in the future. Third, the scientific discoveries of Hubble involve both incredible successes that were planned from the outset as well as new discoveries and innovative uses of the observatory that could not have been planned in advance. Hubble has been used not only to gauge the expansion rate and age of the universe, but has also been a major player in the recent surprise detection of acceleration in that expansion. Hubble has also been key for studying star formation and now the atmospheres of exoplanets; even water has been detected in exoplanetary systems, something never envisioned for Hubble originally. And the incredible evolutionary picture of galaxies has been unveiled through Hubble observations, now enhanced by the revolutionary uses of gravitational lensing to study both dark matter in the lensing clusters, and extremely distant magnified galaxies. Finally, Hubble’s great success in public outreach has made the discoveries of astronomy easily

  19. Nuclei of nearby disk galaxies .1. A Hubble Space Telescope imaging survey

    NARCIS (Netherlands)

    Phillips, AC; Illingworth, GD; MacKenty, JW; Franx, M

    We present deconvolved images of the central regions of 20 nearby disk galaxies, obtained with the original Planetary Camera of the Hubble Space Telescope. The galaxies span a range in Hubble type from SO to Sm. We have measured surface brightness profiles, and inverted these to estimate

  20. Spike: Artificial intelligence scheduling for Hubble space telescope

    Science.gov (United States)

    Johnston, Mark; Miller, Glenn; Sponsler, Jeff; Vick, Shon; Jackson, Robert

    1990-01-01

    Efficient utilization of spacecraft resources is essential, but the accompanying scheduling problems are often computationally intractable and are difficult to approximate because of the presence of numerous interacting constraints. Artificial intelligence techniques were applied to the scheduling of the NASA/ESA Hubble Space Telescope (HST). This presents a particularly challenging problem since a yearlong observing program can contain some tens of thousands of exposures which are subject to a large number of scientific, operational, spacecraft, and environmental constraints. New techniques were developed for machine reasoning about scheduling constraints and goals, especially in cases where uncertainty is an important scheduling consideration and where resolving conflicts among conflicting preferences is essential. These technique were utilized in a set of workstation based scheduling tools (Spike) for HST. Graphical displays of activities, constraints, and schedules are an important feature of the system. High level scheduling strategies using both rule based and neural network approaches were developed. While the specific constraints implemented are those most relevant to HST, the framework developed is far more general and could easily handle other kinds of scheduling problems. The concept and implementation of the Spike system are described along with some experiments in adapting Spike to other spacecraft scheduling domains.

  1. The Hubble Space Telescope Advanced Spectral Library Project

    Science.gov (United States)

    Ayres, Thomas

    2015-08-01

    Advanced Spectral Library (ASTRAL) is a Hubble Large Treasury Project, whose aim is to collect high-quality ultraviolet (1150-3100 Å) spectra of bright stars, utilizing the echelle modes of powerful Space Telescope Imaging Spectrograph; with resolution and signal-to-noise rivaling the best that can be achieved at ground-based observatories in the visible. During HST Cycle 18 (2010-2011), ASTRAL was allocated 146 orbits to record eight representative late-type ("cool") stars, including well-known cosmic denizens like Procyon and Betelgeuse. In Cycle 21 (2013-2014), ASTRAL was awarded an additional 230 orbits to extend the project to the hot side of the H-R diagram: 21 targets covering the O-A spectral types, including household favorites Vega and Sirius. The second part of the program was completed in January 2015. I describe the scientific motivations for observing hot and cool stars in the UV; the unique instrumental characteristics of STIS that enabled a broad survey like ASTRAL; progress in the program to date; and prospects for the future.

  2. Hubble Space Telescope Observations of the HD 202628 Debris Disk

    Science.gov (United States)

    Krist, John E.; Stapelfeldt, Karl R.; Bryden, Geoffrey; Plavchan, Peter

    2012-01-01

    A ring-shaped debris disk around the G2V star HD 202628 (d = 24.4 pc) was imaged in scattered light at visible wavelengths using the coronagraphic mode of the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. The ring is inclined by approx.64deg from face-on, based on the apparent major/minor axis ratio, with the major axis aligned along PA = 130deg. It has inner and outer radii (> 50% maximum surface brightness) of 139 AU and 193 AU in the northwest ansae and 161 AU and 223 AU in the southeast ((Delta)r/r approx. = 0.4). The maximum visible radial extent is approx. 254 AU. With a mean surface brightnesses of V approx. = 24 mag arcsec.(sup -2), this is the faintest debris disk observed to date in reflected light. The center of the ring appears offset from the star by approx.28 AU (deprojected). An ellipse fit to the inner edge has an eccentricity of 0.18 and a = 158 AU. This offset, along with the relatively sharp inner edge of the ring, suggests the influence of a planetary-mass companion. There is a strong similarity with the debris ring around Fomalhaut, though HD 202628 is a more mature star with an estimated age of about 2 Gyr. We also provide surface brightness limits for nine other stars in our study with strong Spitzer excesses around which no debris disks were detected in scattered light (HD 377, HD 7590, HD 38858, HD 45184, HD 73350, HD 135599, HD 145229, HD 187897, and HD 201219).

  3. HUBBLE SPACE TELESCOPE OBSERVATIONS OF THE HD 202628 DEBRIS DISK

    International Nuclear Information System (INIS)

    Krist, John E.; Bryden, Geoffrey; Stapelfeldt, Karl R.; Plavchan, Peter

    2012-01-01

    A ring-shaped debris disk around the G2V star HD 202628 (d = 24.4 pc) was imaged in scattered light at visible wavelengths using the coronagraphic mode of the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. The ring is inclined by ∼64° from face-on, based on the apparent major/minor axis ratio, with the major axis aligned along P.A. = 130°. It has inner and outer radii (>50% maximum surface brightness) of 139 AU and 193 AU in the northwest ansae and 161 AU and 223 AU in the southeast (Δr/r ≈ 0.4). The maximum visible radial extent is ∼254 AU. With mean surface brightness of V ≈ 24 mag arcsec –2 , this is the faintest debris disk observed to date in reflected light. The center of the ring appears offset from the star by ∼28 AU (deprojected). An ellipse fit to the inner edge has an eccentricity of 0.18 and a = 158 AU. This offset, along with the relatively sharp inner edge of the ring, suggests the influence of a planetary-mass companion. There is a strong similarity with the debris ring around Fomalhaut, though HD 202628 is a more mature star with an estimated age of about 2 Gyr. We also provide surface brightness limits for nine other stars in our study with strong Spitzer excesses around which no debris disks were detected in scattered light (HD 377, HD 7590, HD 38858, HD 45184, HD 73350, HD 135599, HD 145229, HD 187897, and HD 201219).

  4. Observing Supernova 1987A with the Refurbished Hubble Space Telescope

    Science.gov (United States)

    France, Kevin; McCray, Richard; Heng, Kevin; Kirshner, Robert P.; Challis, Peter; Bouchet, Patrice; Crotts, Arlin; Dwek, Eli; Fransson, Claes; Garnavich, Peter M.; hide

    2010-01-01

    The young remnant of supernova 1987A (SN 1987A) offers an unprecedented glimpse into the hydrodynamics and kinetics of fast astrophysical shocks. We have been monitoring SN 1987A with the Hubble Space Telescope (HST) since it was launched. The recent repair of the Space Telescope Imaging Spectrograph (STIS) allows us to compare observations in 2004, just before its demise, with those in 2010, shortly after its resuscitation by NASA astronauts. We find that the Ly-alpha and H-alpha lines from shock emission continue to brighten, while their maximum velocities continue to decrease. We report evidence for nearly coherent, resonant scattering of Lya photons (to blueshifts approximately -12,000 km /s) from hotspots on the equatorial ring. We also report emission to the red of Ly-alpha that we attribute to N v lambda lambda 1239,1243 Angstrom line emission. These lines are detectable because, unlike hydrogen atoms, N4+ ions emit hundreds of photons before they are ionized. The profiles of the N v lines differ markedly from that of H-alpha. We attribute this to scattering of N4+ ions by magnetic fields in the ionized plasma. Thus, N v emission provides a unique probe of the isotropization zone of the collisionless shock. Observations with the recently installed Cosmic Origins Spectrograph (COS) will enable us to observe the N v lambda lambda 1239,1243 Angstrom line profiles with much higher signal-to-noise ratios than possible with STIS and may reveal lines of other highly ionized species (such as C IVlambda lambda 1548,1551 Angstrom) that will test our explanation for the N v emission

  5. Measuring the Impact of the Hubble Space Telescope's Amazing Space Formal Education Program

    Science.gov (United States)

    McCallister, J. D.; Eisenhamer, B.

    2003-12-01

    The Formal Education Team at the Space Telescope Science Institute in Baltimore, Md., is conducting an impact study to evaluate the effectiveness of its online K-12 Amazing Space Education Program. Using program evaluation methods, the Hubble Space Telescope's Formal Education Team has collected information regarding where Amazing Space is being used and who is using it. To date, users have been identified in all 50 states including 299 school districts and 193 colleges and universities. The team plans to use this information to further understand how specific audiences, such as colleges of education, use Amazing Space education materials to teach pre-service and in-service classroom teachers. Amazing Space includes comprehensive education support tools designed primarily for K-12 educators. The program began as an education website in 1996 and has expanded to become a program that reaches a broader audience within the education public outreach community, as well as the general public. The primary focus of the Amazing Space Education Program is to communicate useful and creative ways for classroom teachers to integrate the latest Hubble Space Telescope science discoveries into the classroom.

  6. Hubble Space Telescope Astrometry of the Procyon System

    Science.gov (United States)

    Bond, Howard E.; Gilliland, Ronald L.; Schaefer, Gail H.; Demarque, Pierre; Girard, Terrence M.; Holberg, Jay B.; Gudehus, Donald; Mason, Brian D.; Kozhurina-Platais, Vera; Burleigh, Matthew R.

    2015-01-01

    The nearby star Procyon is a visual binary containing the F5 IV-V subgiant Procyon A, orbited in a 40.84-year period by the faint DQZ white dwarf (WD) Procyon B. Using images obtained over two decades with the Hubble Space Telescope, and historical measurements back to the 19th century, we have determined precise orbital elements. Combined with measurements of the parallax and the motion of the A component, these elements yield dynamical masses of 1.478 plus or minus 0.012M and 0.592 plus or minus 0.006M for A and B, respectively. The mass of Procyon A agrees well with theoretical predictions based on asteroseismology and its temperature and luminosity. Use of a standard core-overshoot model agrees best for a surprisingly high amount of core overshoot. Under these modeling assumptions, Procyon A's age is approximately 2.7 Gyr. Procyon B's location in the H-R diagram is in excellent agreement with theoretical cooling tracks for WDs of its dynamical mass. Its position in the mass-radius plane is also consistent with theory, assuming a carbon-oxygen core and a helium-dominated atmosphere. Its progenitor's mass was 1.9-2.2M, depending on its amount of core overshoot. Several astrophysical puzzles remain. In the progenitor system, the stars at periastron were separated by only approximately AU, which might have led to tidal interactions and even mass transfer; yet there is no direct evidence that these have occurred. Moreover the orbital eccentricity has remained high (approximately 0.40). The mass of Procyon B is somewhat lower than anticipated from the initial-to-final-mass relation seen in open clusters. The presence of heavy elements in its atmosphere requires ongoing accretion, but the place of origin is uncertain.

  7. Hubble Space Telescope EVA Power Ratchet Tool redesign

    Science.gov (United States)

    Richards, Paul W.; Park, Chan; Brown, Lee

    The Power Ratchet Tool (PRT) is a self contained, power-driven, 3/8 inch drive ratchet wrench which will be used by astronauts during Extravehicular Activities (EVA). This battery-powered tool is controlled by a dedicated electonic controller. The PRT was flown during the Hubble Space Telescope (HST) Deployment Mission STS-31 to deploy the solar arrays if the automatic mechanisms failed. The PRT is currently intended for use during the first HST Servicing Mission STS-61 as a general purpose power tool. The PRT consists of three major components; the wrench, the controller, and the battery module. Fourteen discrete combinations of torque, turns, and speed may be programmed into the controller before the EVA. The crewmember selects the desired parameter profile by a switch mounted on the controller. The tool may also be used in the manual mode as a non-powered ratchet wrench. The power is provided by a silver-zinc battery module, which fits into the controller and is replaceable during an EVA. The original PRT did not meet the design specification of torque output and hours of operation. To increase efficiency and reliability the PRT underwent a redesign effort. The majority of this effort focused on the wrench. The original PRT drive train consisted of a low torque, high speed brushless DC motor, a face gear set, and a planocentric gear assembly. The total gear reduction was 300:1. The new PRT wrench consists of a low speed, high torque brushless DC motor, two planetary gear sets and a bevel gear set. The total gear reduction is now 75:1. A spline clutch has also been added to disengage the drive train in the manual mode. The design changes to the controller will consist of only those modifications necessary to accomodate the redesigned wrench.

  8. Thick Disks in the Hubble Space Telescope Frontier Fields

    Energy Technology Data Exchange (ETDEWEB)

    Elmegreen, Bruce G. [IBM Research Division, T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States); Elmegreen, Debra Meloy; Tompkins, Brittany; Jenks, Leah G., E-mail: bge@us.ibm.com, E-mail: elmegreen@vassar.edu [Department of Physics and Astronomy, Vassar College, Poughkeepsie, NY 12604 (United States)

    2017-09-20

    Thick disk evolution is studied using edge-on galaxies in two Hubble Space Telescope Frontier Field Parallels. The galaxies were separated into 72 clumpy types and 35 spiral types with bulges. Perpendicular light profiles in F435W, F606W, and F814W ( B , V , and I ) passbands were measured at 1 pixel intervals along the major axes and fitted to sech{sup 2} functions convolved with the instrument line spread function (LSF). The LSF was determined from the average point spread function of ∼20 stars in each passband and field, convolved with a line of uniform brightness to simulate disk blurring. A spread function for a clumpy disk was also used for comparison. The resulting scale heights were found to be proportional to galactic mass, with the average height for a 10{sup 10±0.5} M {sub ⊙} galaxy at z = 2 ± 0.5 equal to 0.63 ± 0.24 kpc. This value is probably the result of a blend between thin and thick disk components that cannot be resolved. Evidence for such two-component structure is present in an inverse correlation between height and midplane surface brightness. Models suggest that the thick disk is observed best between the clumps, and there the average scale height is 1.06 ± 0.43 kpc for the same mass and redshift. A 0.63 ± 0.68 mag V − I color differential with height is also evidence for a mixture of thin and thick components.

  9. Distance determinations to shield galaxies from Hubble space telescope imaging

    Energy Technology Data Exchange (ETDEWEB)

    McQuinn, Kristen B. W.; Skillman, Evan D. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, 116 Church Street, S.E., Minneapolis, MN 55455 (United States); Cannon, John M.; Cave, Ian [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States); Salzer, John J. [Department of Astronomy, Indiana University, 727 East 3rd Street, Bloomington, IN 47405 (United States); Haynes, Martha P.; Adams, Elizabeth; Giovanelli, Riccardo [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Elson, Ed C. [Astrophysics, Cosmology and Gravity Centre (ACGC), Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Ott, Juërgen [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801 (United States); Saintonge, Amélie, E-mail: kmcquinn@astro.umn.edu [Max-Planck-Institute for Astrophysics, D-85741 Garching (Germany)

    2014-04-10

    The Survey of H I in Extremely Low-mass Dwarf (SHIELD) galaxies is an ongoing multi-wavelength program to characterize the gas, star formation, and evolution in gas-rich, very low-mass galaxies. The galaxies were selected from the first ∼10% of the H I Arecibo Legacy Fast ALFA (ALFALFA) survey based on their inferred low H I mass and low baryonic mass, and all systems have recent star formation. Thus, the SHIELD sample probes the faint end of the galaxy luminosity function for star-forming galaxies. Here, we measure the distances to the 12 SHIELD galaxies to be between 5 and 12 Mpc by applying the tip of the red giant method to the resolved stellar populations imaged by the Hubble Space Telescope. Based on these distances, the H I masses in the sample range from 4 × 10{sup 6} to 6 × 10{sup 7} M {sub ☉}, with a median H I mass of 1 × 10{sup 7} M {sub ☉}. The tip of the red giant branch distances are up to 73% farther than flow-model estimates in the ALFALFA catalog. Because of the relatively large uncertainties of flow-model distances, we are biased toward selecting galaxies from the ALFALFA catalog where the flow model underestimates the true distances. The measured distances allow for an assessment of the native environments around the sample members. Five of the galaxies are part of the NGC 672 and NGC 784 groups, which together constitute a single structure. One galaxy is part of a larger linear ensemble of nine systems that stretches 1.6 Mpc from end to end. Three galaxies reside in regions with 1-9 neighbors, and four galaxies are truly isolated with no known system identified within a radius of 1 Mpc.

  10. HUBBLE SPACE TELESCOPE ASTROMETRY OF THE PROCYON SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Howard E. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Gilliland, Ronald L.; Kozhurina-Platais, Vera; Nelan, Edmund P. [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Schaefer, Gail H. [The CHARA Array of Georgia State University, Mount Wilson Observatory, Mount Wilson, CA 91023 (United States); Demarque, Pierre; Girard, Terrence M. [Department of Astronomy, Yale University, Box 208101, New Haven, CT 06520 (United States); Holberg, Jay B. [Lunar and Planetary Laboratory, University of Arizona, 1541 E. University Blvd., Tucson, AZ 85721 (United States); Gudehus, Donald [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Mason, Brian D. [U.S. Naval Observatory, 3450 Massachusetts Ave., Washington, DC 20392 (United States); Burleigh, Matthew R.; Barstow, Martin A., E-mail: heb11@psu.edu [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom)

    2015-11-10

    The nearby star Procyon is a visual binary containing the F5 IV-V subgiant Procyon A, orbited in a 40.84-year period by the faint DQZ white dwarf (WD) Procyon B. Using images obtained over two decades with the Hubble Space Telescope, and historical measurements back to the 19th century, we have determined precise orbital elements. Combined with measurements of the parallax and the motion of the A component, these elements yield dynamical masses of 1.478 ± 0.012 M{sub ⊙} and 0.592 ± 0.006 M{sub ⊙} for A and B, respectively. The mass of Procyon A agrees well with theoretical predictions based on asteroseismology and its temperature and luminosity. Use of a standard core-overshoot model agrees best for a surprisingly high amount of core overshoot. Under these modeling assumptions, Procyon A’s age is ∼2.7 Gyr. Procyon B’s location in the H-R diagram is in excellent agreement with theoretical cooling tracks for WDs of its dynamical mass. Its position in the mass–radius plane is also consistent with theory, assuming a carbon–oxygen core and a helium-dominated atmosphere. Its progenitor’s mass was 1.9–2.2 M{sub ⊙}, depending on its amount of core overshoot. Several astrophysical puzzles remain. In the progenitor system, the stars at periastron were separated by only ∼5 AU, which might have led to tidal interactions and even mass transfer; yet there is no direct evidence that these have occurred. Moreover the orbital eccentricity has remained high (∼0.40). The mass of Procyon B is somewhat lower than anticipated from the initial-to-final-mass relation seen in open clusters. The presence of heavy elements in its atmosphere requires ongoing accretion, but the place of origin is uncertain.

  11. Hubble Space Telescope Image, Supernova Remnant Cassiopeia A

    Science.gov (United States)

    2000-01-01

    The colorful streamers that float across the sky in this photo taken by NASA's Hubble Space Telescope (HST) were created by the universe's biggest firecracker, the titanic supernova explosion of a massive star. The light from the exploding star reached Earth 320 years ago, nearly a century before the United States celebrated its birth with a bang. The dead star's shredded remains are called Cassiopeia A, or 'Cas A' for short. Cas A is the youngest known supernova remnant in our Milky Way Galaxy and resides 10,000 light-years away in the constellation Cassiopeia, so the star actually blew up 10,000 years before the light reached Earth in the late 1600s. This HST image of Cas A shows for the first time that the debris is arranged into thousands of small, cooling knots of gas. This material eventually will be recycled into building new generations of stars and planets. Our own Sun and planets are constructed from the debris of supernovae that exploded billions of years ago. This photo shows the upper rim of the super nova remnant's expanding shell. Near the top of the image are dozens of tiny clumps of matter. Each small clump, originally just a small fragment of the star, is tens of times larger than the diameter of our solar system. The colors highlight parts of the debris where chemical elements are glowing. The dark blue fragments, for example, are richest in oxygen; the red material is rich in sulfur. The images were taken with the Wide Field and Planetary Camera 2 in January 2000 and January 2002. Image Credit: NASA and HST team (Stoics/AURA). Acknowledgment: R. Fesen (Darmouth) and J. Morse ( Univ. of Colorado).

  12. Hubble Space Telescope: a Vision to 2020 and Beyond: The Hubble Source Catalog

    Science.gov (United States)

    Strolger, Louis-Gregory

    2016-01-01

    The Hubble Source Catalog (HSC) is an initiative centered on what science would be enabled by a master catalog of all the sources HST has imaged over its lifetime. The first version of this catalog was released in early 2015, and included approximately 30 million sources from archived direct imaging with WFPC2, ACS (through 2011), and WFC3 (to 2014). Version 2, scheduled for release in early 2016, will feed off the Hubble Legacy Archive DR9 release, updating the ACS sources with more detections, and more direct imaging, through to mid-2015. This talk will overview the properties and goals of the HSC in terms of its source detection, object resolution, confusion limits, and overall astrometric and photometric precision. I will also discuss the connections to other MAST activities (e.g., the Discovery Portal interface), to STScI and user products (e.g., the Spectroscopic Catalog and High-Level Science Products), and to community resources (e.g., Pan-STARRS, SDSS, and eventually GAIA). The HSC successfully amalgamates the diverse observations with HST, and despite the limitations in uniformity on the sky, will be an important reference for JWST, LSST, and other future telescopes.

  13. Hubble Space Telescope Ultraviolet Light Curves Reveal Interesting Properties of CC Sculptoris and RZ Leonis

    Energy Technology Data Exchange (ETDEWEB)

    Szkody, Paula; Mukadam, Anjum S. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Toloza, Odette; Gänsicke, Boris T.; Pala, Anna F. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Dai, Zhibin [Yunnan Observatories, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming, 650216 (China); Waagen, Elizabeth O. [AAVSO, 48 Bay State Rd, Cambridge, MA 02138 (United States); Godon, Patrick; Sion, Edward M., E-mail: szkody@astro.washington.edu [Department of Astrophysics and Planetary Science, Villanova University, Villanova, PA 19085 (United States)

    2017-03-01

    Time-tag ultraviolet data obtained on the Hubble Space Telescope in 2013 reveal interesting variability related to the white dwarf spin in the two cataclysmic variables RZ Leo and CC Scl. RZ Leo shows a period at 220 s and its harmonic at 110 s, thus identifying it as a likely Intermediate Polar (IP). The spin signal is not visible in a short single night of ground-based data in 2016, but the shorter exposures in that data set indicate a possible partial eclipse. The much larger UV amplitude of the spin signal in the known IP CC Scl allows the spin of 389 s, previously only seen at outburst, to be visible at quiescence. Spectra created from the peaks and troughs of the spin times indicate a hotter temperature of several thousand degrees during the peak phases, with multiple components contributing to the UV light.

  14. Hubble Space Telescope - Scientific, Technological and Social Contributions to the Public Discourse on Science

    Science.gov (United States)

    Wiseman, Jennifer

    2012-01-01

    The Hubble Space Telescope has unified the world with a sense of awe and wonder for 2 I years and is currently more scientifically powerful than ever. I will present highlights of discoveries made with the Hubble Space Telescope, including details of planetary weather, star formation, extra-solar planets, colliding galaxies, and a universe expanding with the acceleration of dark energy. I will also present the unique technical challenges and triumphs of this phenomenal observatory, and discuss how our discoveries in the cosmos affect our sense of human unity, significance, and wonder.

  15. Analyses of Hubble Space Telescope Aluminized-Teflon Insulation Retrieved After 19 Years of Space Exposure

    Science.gov (United States)

    deGroh, Kim K.; Waters, Deborah L.; Mohammed, Jelila S.; Perry, Bruce A.; Banks, Bruce A.

    2012-01-01

    Since its launch in April 1990, the Hubble Space Telescope (HST) has made many important observations from its vantage point in low Earth orbit (LEO). However, as seen during five servicing missions, the outer layer of multilayer insulation (MLI) has become successively more embrittled and has cracked in many areas. In May 2009, during the 5th servicing mission (called SM4), two MLI blankets were replaced with new insulation pieces and the space-exposed MLI blankets were retrieved for degradation analyses by teams at NASA Glenn Research Center (GRC) and NASA Goddard Space Flight Center (GSFC). The MLI blankets were from Equipment Bay 8, which received direct sunlight, and Equipment Bay 5, which received grazing sunlight. Each blanket contained a range of unique regions based on environmental exposure and/or physical appearance. The retrieved MLI blanket s aluminized-Teflon (DuPont) fluorinated ethylene propylene (Al-FEP) outer layers have been analyzed for changes in optical, physical, and mechanical properties, along with space induced chemical and morphological changes. When compared to pristine material, the analyses have shown how the Al-FEP was severely affected by the space environment. This paper reviews tensile properties, solar absorptance, thermal emittance, x-ray photoelectron spectroscopy (XPS) data and atomic oxygen erosion values of the retrieved HST blankets after 19 years of space exposure.

  16. Charge retention test experiences on Hubble Space Telescope nickel-hydrogen battery cells

    Science.gov (United States)

    Nawrocki, Dave E.; Driscoll, J. R.; Armantrout, J. D.; Baker, R. C.; Wajsgras, H.

    1993-02-01

    The Hubble Space Telescope (HST) nickel-hydrogen battery module was designed by Lockheed Missile & Space Co (LMSC) and manufactured by Eagle-Picher Ind. (EPI) for the Marshall Space Flight Center (MSFC) as an Orbital Replacement Unit (ORU) for the nickel-cadmium batteries originally selected for this low earth orbit mission. The design features of the HST nickel hydrogen battery are described and the results of an extended charge retention test are summarized.

  17. Hubble Space Telescope Near-Ultraviolet Spectroscopy of Bright CEMP-s Stars

    Science.gov (United States)

    Placco, Vinicius M.; Beers, Timothy C.; Ivans, Inese I.; Filler, Dan; Imig, Julie A.; Roederer, Ian U.; Abate, Carlo; Hansen, Terese; Cowan, John J.; Frebel, Anna; Lawler, James E.; Schatz, Hendrik; Sneden, Christopher; Sobeck, Jennifer S.; Aoki, Wako; Smith, Verne V.; Bolte, Michael

    2015-10-01

    We present an elemental-abundance analysis, in the near-ultraviolet (NUV) spectral range, for the bright carbon-enhanced metal-poor (CEMP) stars HD 196944 (V=8.40, [Fe/H] = -2.41) and HD 201626 (V=8.16, [Fe/H] = -1.51), based on data acquired with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope. Both of these stars belong to the sub-class CEMP-s, and exhibit clear over-abundances of heavy elements associated with production by the slow neutron-capture process. HD 196944 has been well-studied in the optical region, but we add abundance results for six species (Ge, Nb, Mo, Lu, Pt, and Au) that are only accessible in the NUV. In addition, we provide the first determination of its orbital period, P = 1325 days. HD 201626 has only a limited number of abundance results based on previous optical work—here we add five new species from the NUV, including Pb. We compare these results with models of binary-system evolution and s-process element production in stars on the asymptotic giant branch, with the goal of explaining their origin and evolution. Our best-fitting models for HD 196944 ({M}1,i=0.9{M}⊙ , {M}2,i=0.86{M}⊙ , for [Fe/H] = -2.2), and HD 201626 ({M}1,i=0.9{M}⊙ , {M}2,i=0.76{M}⊙ , for [Fe/H] = -2.2; {M}1,i=1.6{M}⊙ , {M}2,i=0.59{M}⊙ , for [Fe/H] = -1.5) are consistent with the current accepted scenario for the formation of CEMP-s stars. The data presented herein were obtained with the (i) NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. (These observations are associated with program GO-12554, data sets OBQ601010-30 and OBQ602010-30.); and (ii) W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. (The Observatory was made

  18. Hubble Space Telescope ACS wide-field photometry of the sombrero galaxy globular cluster system

    NARCIS (Netherlands)

    Spitler, L.; Larsen, S.S.; Strader, J.; Brodie, J.P.; Forbes, D.A.; Beasley, M.A.

    2006-01-01

    A detailed imaging analysis of the globular cluster (GC) system of the Sombrero galaxy (NGC 4594) has been accomplished using a six-image mosaic from the Hubble Space Telescope Advanced Camera for Surveys. The quality of the data is such that contamination by foreground stars and background galaxies

  19. Hubble Space Telescope NICMOS observations of the host galaxies of powerful radio sources : Does size matter?

    NARCIS (Netherlands)

    de Vries, WH; O'Dea, CP; Barthel, PD; Fanti, C; Fanti, R; Lehnert, MD

    2000-01-01

    We present near-infrared J- and K-band imaging of a sample of powerful radio source host galaxies with the Hubble Space Telescope NICMOS2 camera. These sources have been selected on their double-lobed radio structure and include a wide range of projected radio source sizes. The largest projected

  20. A guide to hubble space telescope objects their selection, location, and significance

    CERN Document Server

    Chen, James L

    2015-01-01

    From the authors of "How to Find the Apollo Landing Sites," this is a guide to connecting the view above with the history of recent scientific discoveries from the Hubble Space Telescope. Each selected HST photo is shown with a sky map and a photograph or drawing to illustrate where to find it and how it should appear from a backyard telescope. Here is the casual observer's chance to locate the deep space objects visually, and appreciate the historic Hubble photos in comparison to what is visible from a backyard telescope. HST objects of all types are addressed, from Messier objects, Caldwell objects, and NGC objects, and are arranged in terms of what can be seen during the seasons. Additionally, the reader is given an historical perspective on the work of Edwin Hubble, while locating and viewing the deep space objects that changed astronomy forever.  Countless people have seen the amazing photographs taken by the Hubble Space Telescope. But how many people can actually point out where in the sky ...

  1. Interactive, Collaborative Science via the 'Net: Live from the Hubble Space Telescope.

    Science.gov (United States)

    Federman, Alan N.; Edwards, Sheri

    1997-01-01

    As a part of the Passport to Knowledge Project "Live from the Hubble Space Telescope," over 60 schools collaborated by making weather observations that were displayed via the Internet during the week of April 15-19, 1996. Describes the weather activity, technical information, and the experiences of participating students in grades 5/6 at…

  2. 25+ Years of the Hubble Space Telescope and a Simple Error That Cost Millions

    Science.gov (United States)

    Shakerin, Said

    2016-01-01

    A simple mistake in properly setting up a measuring device caused millions of dollars to be spent in correcting the initial optical failure of the Hubble Space Telescope (HST). This short article is intended as a lesson for a physics laboratory and discussion of errors in measurement.

  3. Observations of the Hubble Deep Field with the Infrared Space Observatory .2. Source detection and photometry

    DEFF Research Database (Denmark)

    Goldschmidt, P.; Oliver, S.J.; Serjeant, S.B.G.

    1997-01-01

    We present positions and fluxes of point sources found in the Infrared Space Observatory (ISO) images of the Hubble Deep Field (HDF) at 6.7 and 15 mu m. We have constructed algorithmically selected 'complete' flux-limited samples of 19 sources in the 15-mu m image, and seven sources in the 6.7-mu m...

  4. Asteroseismology of the Transiting Exoplanet Host HD 17156 with Hubble Space Telescope Fine Guidance Sensor

    DEFF Research Database (Denmark)

    Gilliland, Ronald L.; McCullough, Peter R.; Nelan, Edmund P.

    2011-01-01

    Observations conducted with the Fine Guidance Sensor on the Hubble Space Telescope (HST) providing high cadence and precision time-series photometry were obtained over 10 consecutive days in 2008 December on the host star of the transiting exoplanet HD 17156b. During this time, 1.0 × 1012 photons...

  5. Legacy Extragalactic UV Survey (LEGUS) With the Hubble Space Telescope. I. Survey Description

    NARCIS (Netherlands)

    Calzetti, D.; Lee, J.C.; Sabbi, E.; Adamo, A.; Smith, L.J.; Andrews, J.E.; Ubeda, L.; Bright, S.N.; Thilker, D.; Aloisi, A.; Brown, T.M.; Chandar, R.; Christian, C.; Cignoni, M.; Clayton, G.C.; da Silva, R.; de Mink, S.E.; Dobbs, C.; Elmegreen, B.G.; Elmegreen, D.M.; Evans, A.S.; Fumagalli, M.; Gallagher III, J.S.; Gouliermis, D.A.; Grebel, E.K.; Herrero, A.; Hunter, D.A.; Johnson, K.E.; Kennicutt, R.C.; Kim, H.; Krumholz, M.R.; Lennon, D.; Levay, K.; Martin, C.; Nair, P.; Nota, A.; Östlin, G.; Pellerin, A.; Prieto, J.; Regan, M.W.; Ryon, J.E.; Schaerer, D.; Schiminovich, D.; Tosi, M.; Van Dyk, S.D.; Walterbos, R.; Whitmore, B.C.; Wofford, A.

    2015-01-01

    The Legacy ExtraGalactic UV Survey (LEGUS) is a Cycle 21 Treasury program on the Hubble Space Telescope aimed at the investigation of star formation and its relation with galactic environment in nearby galaxies, from the scales of individual stars to those of ~kiloparsec-size clustered structures.

  6. Precise Estimates of the Physical Parameters for the Exoplanet System HD 17156 Enabled by Hubble Space Telescope Fine Guidance Sensor Transit and Asteroseismic Observations

    DEFF Research Database (Denmark)

    Nutzman, Philip; Gilliland, Ronald L.; McCullough, Peter R.

    2011-01-01

    We present observations of three distinct transits of HD 17156b obtained with the Fine Guidance Sensors on board the Hubble Space Telescope. We analyzed both the transit photometry and previously published radial velocities to find the planet-star radius ratio Rp /R sstarf = 0.07454 ± 0.00035, in...

  7. DISENTANGLING AGN AND STAR FORMATION ACTIVITY AT HIGH REDSHIFT USING HUBBLE SPACE TELESCOPE GRISM SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Bridge, Joanna S.; Zeimann, Gregory R.; Trump, Jonathan R.; Gronwall, Caryl; Ciardullo, Robin; Fox, Derek; Schneider, Donald P., E-mail: jsbridge@psu.edu [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2016-08-01

    Differentiating between active galactic nucleus (AGN) activity and star formation in z ∼ 2 galaxies is difficult because traditional methods, such as line-ratio diagnostics, change with redshift, while multi-wavelength methods (X-ray, radio, IR) are sensitive to only the brightest AGNs. We have developed a new method for spatially resolving emission lines using the Hubble Space Telescope /Wide Field Camera 3 G141 grism spectra and quantifying AGN activity through the spatial gradient of the [O iii]/H β line ratio. Through detailed simulations, we show that our novel line-ratio gradient approach identifies ∼40% more low-mass and obscured AGNs than obtained by classical methods. Based on our simulations, we developed a relationship that maps the stellar mass, star formation rate, and measured [O iii]/H β gradient to the AGN Eddington ratio. We apply our technique to previously studied stacked samples of galaxies at z ∼ 2 and find that our results are consistent with these studies. This gradient method will also be able to inform other areas of galaxy evolution science, such as inside-out quenching and metallicity gradients, and will be widely applicable to future spatially resolved James Webb Space Telescope data.

  8. YOUNG PLANETARY NEBULAE: HUBBLE SPACE TELESCOPE IMAGING AND A NEW MORPHOLOGICAL CLASSIFICATION SYSTEM

    International Nuclear Information System (INIS)

    Sahai, Raghvendra; Villar, Gregory G.; Morris, Mark R.

    2011-01-01

    Using Hubble Space Telescope images of 119 young planetary nebulae (PNs), most of which have not previously been published, we have devised a comprehensive morphological classification system for these objects. This system generalizes a recently devised system for pre-planetary nebulae, which are the immediate progenitors of PNs. Unlike previous classification studies, we have focused primarily on young PNs rather than all PNs, because the former best show the influences or symmetries imposed on them by the dominant physical processes operating at the first and primary stage of the shaping process. Older PNs develop instabilities, interact with the ambient interstellar medium, and are subject to the passage of photoionization fronts, all of which obscure the underlying symmetries and geometries imposed early on. Our classification system is designed to suffer minimal prejudice regarding the underlying physical causes of the different shapes and structures seen in our PN sample, however, in many cases, physical causes are readily suggested by the geometry, along with the kinematics that have been measured in some systems. Secondary characteristics in our system, such as ansae, indicate the impact of a jet upon a slower-moving, prior wind; a waist is the signature of a strong equatorial concentration of matter, whether it be outflowing or in a bound Keplerian disk, and point symmetry indicates a secular trend, presumably precession, in the orientation of the central driver of a rapid, collimated outflow.

  9. Servicing Mission 4 and the Extraordinary Science of the Hubble Space Telescope

    Science.gov (United States)

    Wiseman, Jennifer J.

    2012-01-01

    Just two years ago, NASA astronauts performed a challenging and flawless final Space Shuttle servicing mission to the orbiting Hubble Space Telescope. With science instruments repaired on board and two new ones installed, the observatory. is more powerful now than ever before. I will show the dramatic highlights of the servicing mission and present some of the early scientific results from the refurbished telescope. Its high sensitivity and multi-wavelength capabilities are revealing the highest redshift galaxies ever seen, as well as details of the cosmic web of intergalactic medium, large scale structure formation, solar system bodies, and stellar evolution. Enlightening studies of dark matter, dark energy, and exoplanet atmospheres add to the profound contributions to astrophysics that are being made with Hubble, setting a critical stage for future observatories such as the James Webb Space Telescope.

  10. New Parallaxes of Galactic Cepheids from Spatially Scanning the Hubble Space Telescope: Implications for the Hubble Constant

    Science.gov (United States)

    Riess, Adam G.; Casertano, Stefano; Yuan, Wenlong; Macri, Lucas; Anderson, Jay; MacKenty, John W.; Bowers, J. Bradley; Clubb, Kelsey I.; Filippenko, Alexei V.; Jones, David O.; Tucker, Brad E.

    2018-03-01

    We present new measurements of the parallax of seven long-period (≥10 days) Milky Way (MW) Cepheid variables (SS CMa, XY Car, VY Car, VX Per, WZ Sgr, X Pup, and S Vul) using one-dimensional astrometric measurements from spatial scanning of Wide-Field Camera 3 on the Hubble Space Telescope (HST). The observations were obtained at ∼6 month intervals over 4 years. The distances are 1.7–3.6 kpc, with a mean precision of 45 μas (signal-to-noise ratio (S/N) ≈ 10) and a best precision of 29 μas (S/N = 14). The accuracy of the parallaxes is demonstrated through independent analyses of >100 reference stars. This raises to 10 the number of long-period Cepheids with significant parallax measurements, 8 obtained from this program. We also present high-precision mean F555W, F814W, and F160W magnitudes of these Cepheids, allowing a direct, zeropoint-independent comparison to >1800 extragalactic Cepheids in the hosts of 19 SNe Ia. This sample addresses two outstanding systematic uncertainties affecting prior comparisons of MW and extragalactic Cepheids used to calibrate the Hubble constant (H 0): their dissimilarity of periods and photometric systems. Comparing the new parallaxes to their predicted values derived from reversing the distance ladder gives a ratio (or independent scale for H 0) of 1.037 ± 0.036, consistent with no change and inconsistent at the 3.5σ level with a ratio of 0.91 needed to match the value predicted by Planck cosmic microwave background data in concert with ΛCDM. Using these data instead to augment the Riess et al. measurement of H 0 improves the precision to 2.3%, yielding 73.48 ± 1.66 km s‑1 Mpc‑1, and the tension with Planck + ΛCDM increases to 3.7σ. The future combination of Gaia parallaxes and HST spatial scanning photometry of 50 MW Cepheids can support a <1% calibration of H 0.

  11. Overview of EVA PRA for TPS Repair for Hubble Space Telescope Servicing Mission

    Science.gov (United States)

    Bigler, Mark; Duncan, Gary; Roeschel, Eduardo; Canga, Michael

    2010-01-01

    Following the Columbia accident in 2003, NASA developed techniques to repair the Thermal Protection System (TPS) in the event of damage to the TPS as one of several actions to reduce the risk to future flights from ascent debris, micro-meteoroid and/or orbital debris (MMOD). Other actions to help reduce the risk include improved inspection techniques, reduced shedding of debris from the External Tank and ability to rescue the crew with a launch on need vehicle. For the Hubble Space Telescope (HST) Servicing Mission the crew rescue capability was limited by the inability to safe haven on the International Space Station (ISS), resulting in a greater reliance on the repair capability. Therefore it was desirable to have an idea of the risk associated with conducting a repair, where the repair would have to be conducted using an Extra-Vehicular Activity (EVA). Previously, focused analyses had been conducted to quantify the risk associated with certain aspects of an EVA, for example the EVA Mobility Unit (EMU) or Space Suit; however, the analyses were somewhat limited in scope. A complete integrated model of an EVA which could quantify the risk associated with all of the major components of an EVA had never been done before. It was desired to have a complete integrated model to be able to assess the risks associated with an EVA to support the Space Shuttle Program (SSP) in making risk informed decisions. In the case of the HST Servicing Mission, this model was developed to assess specifically the risks associated with performing a TPS repair EVA. This paper provides an overview of the model that was developed to support the HST mission in the event of TPS damage. The HST Servicing Mission was successfully completed on May 24th 2009 with no critical TPS damage; therefore the model was not required for real-time mission support. However, it laid the foundation upon which future EVA quantitative risk assessments could be based.

  12. HUBBLE SPACE TELESCOPE WFC3 EARLY RELEASE SCIENCE: EMISSION-LINE GALAXIES FROM INFRARED GRISM OBSERVATIONS

    International Nuclear Information System (INIS)

    Straughn, Amber N.; Gardner, Jonathan P.; Kuntschner, Harald; Kuemmel, Martin; Walsh, Jeremy R.; Cohen, Seth H.; Windhorst, Rogier A.; Malhotra, Sangeeta; Rhoads, James; O'Connell, Robert W.; Pirzkal, Norbert; Bond, Howard E.; Meurer, Gerhardt; McCarthy, Patrick J.; Hathi, Nimish P.; Balick, Bruce; Calzetti, Daniela; Disney, Michael J.; Dopita, Michael A.; Frogel, Jay A.

    2011-01-01

    We present grism spectra of emission-line galaxies (ELGs) from 0.6 to 1.6 μm from the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope. These new infrared grism data augment previous optical Advanced Camera for Surveys G800L 0.6-0.95 μm grism data in GOODS-South from the PEARS program, extending the wavelength coverage well past the G800L red cutoff. The Early Release Science (ERS) grism field was observed at a depth of two orbits per grism, yielding spectra of hundreds of faint objects, a subset of which is presented here. ELGs are studied via the Hα, [O III], and [O II] emission lines detected in the redshift ranges 0.2 ∼ B(F098M) ≅ 25 mag. Seventeen GOODS-South galaxies that previously only had photometric redshifts now have new grism-spectroscopic redshifts, in some cases with large corrections to the photometric redshifts (Δz ≅ 0.3-0.5). Additionally, one galaxy had no previously measured redshift but now has a secure grism-spectroscopic redshift, for a total of 18 new GOODS-South spectroscopic redshifts. The faintest source in our sample has a magnitude m AB(F098M) = 26.9 mag. The ERS grism data also reflect the expected trend of lower specific star formation rates for the highest mass galaxies in the sample as a function of redshift, consistent with downsizing and discovered previously from large surveys. These results demonstrate the remarkable efficiency and capability of the WFC3 NIR grisms for measuring galaxy properties to faint magnitudes and redshifts to z ∼> 2.

  13. HUBBLE SPACE TELESCOPE OBSERVATIONS OF MAIN-BELT COMET (596) SCHEILA

    International Nuclear Information System (INIS)

    Jewitt, David; Weaver, Harold; Mutchler, Max; Larson, Stephen; Agarwal, Jessica

    2011-01-01

    We present Hubble Space Telescope Observations of (596) Scheila during its recent dust outburst. The nucleus remained point-like with absolute magnitude H V = 8.85 ± 0.02 in our data, equal to the pre-outburst value, with no secondary fragments of diameter ≥100 m (for assumed albedos 0.04). We find a coma having a peak scattering cross section ∼2.2x10 4 km 2 , corresponding to a mass in micron-sized particles of ∼4x10 7 kg. The particles are deflected by solar radiation pressure on projected spatial scales ∼2x10 4 km, in the sunward direction, and swept from the vicinity of the nucleus on timescales of weeks. The coma fades by ∼30% between observations on UT 2010 December 27 and 2011 January 4. The observed mass loss is inconsistent with an origin either by rotational instability of the nucleus or by electrostatic ejection of regolith charged by sunlight. Dust ejection could be caused by the sudden but unexplained exposure of buried ice. However, the data are most simply explained by the impact, at ∼5 km s -1 , of a previously unknown asteroid ∼35 m in diameter.

  14. Close encounters of the third kind with the Hubble Space Telescope

    Science.gov (United States)

    Nicollier, Claude

    Close encounters of the third kind are encounters with contact. Since its launch in 1990, the Hubble Space Telescope has been visited four times by Space Shuttle crews - including several former astronomers - for exchange of failed or degraded components, or installation of higher performance subsystems and scientific instruments. Following a description of the servicing philosophy and a brief narrative of the four encounters so far, this paper describes the challenge of working on Hubble spacewalking, with thick gloves, and in the absence of gravity where everything tends to float away if not held or retained in some manner ... This paper also attempts to detail some of the reasons for the remarkable success rate of these on-orbit interventions that have kept the orbiting observatory healthy and remarkably productive over more than twelve years.

  15. Proper Motions of Dwarf Spheroidal Galaxies from Hubble Space Telescope Imaging. V. Final Measurement for Fornax

    Science.gov (United States)

    Piatek, Slawomir; Pryor, Carlton; Bristow, Paul; Olszewski, Edward W.; Harris, Hugh C.; Mateo, Mario; Minniti, Dante; Tinney, Christopher G.

    2007-03-01

    The measured proper motion of Fornax, expressed in the equatorial coordinate system, is (μα,μδ)=(47.6+/-4.6,-36.0+/-4.1) mas century-1. This proper motion is a weighted mean of four independent measurements for three distinct fields. Each measurement uses a quasi-stellar object as a reference point. Removing the contribution of the motion of the Sun and of the local standard of rest to the measured proper motion produces a Galactic rest-frame proper motion of (μGrfα,μGrfδ)=(24.4+/-4.6,-14.3+/-4.1) mas century-1. The implied space velocity with respect to the Galactic center has a radial component of Vr=-31.8+/-1.7 km s-1 and a tangential component of Vt=196+/-29 km s-1. Integrating the motion of Fornax in a realistic potential for the Milky Way produces orbital elements. The perigalacticon and apogalacticon are 118 (66, 137) and 152 (144, 242) kpc, respectively, where the values in the parentheses represent the 95% confidence intervals derived from Monte Carlo experiments. The eccentricity of the orbit is 0.13 (0.11, 0.38), and the orbital period is 3.2 (2.5, 4.6) Gyr. The orbit is retrograde and inclined by 101° (94°, 107°) to the Galactic plane. Fornax could be a member of a proposed ``stream'' of galaxies and globular clusters; however, the membership of another proposed galaxy in the stream, Sculptor, has been previously ruled out. Fornax is in the Kroupa-Theis-Boily plane, which contains 11 of the Galactic satellite galaxies, but its orbit will take it out of that plane. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  16. A knowledge-based system for monitoring the electrical power system of the Hubble Space Telescope

    Science.gov (United States)

    Eddy, Pat

    1987-01-01

    The design and the prototype for the expert system for the Hubble Space Telescope's electrical power system are discussed. This prototype demonstrated the capability to use real time data from a 32k telemetry stream and to perform operational health and safety status monitoring, detect trends such as battery degradation, and detect anomalies such as solar array failures. This prototype, along with the pointing control system and data management system expert systems, forms the initial Telemetry Analysis for Lockheed Operated Spacecraft (TALOS) capability.

  17. Deep Hubble Space Telescope imaging of IC 1613. II. The star formation history

    NARCIS (Netherlands)

    Skillman, ED; Tolstoy, E; Cole, AA; Dolphin, AE; Saha, A; Gallagher, JS; Dohm-Palmer, RC; Mateo, M

    2003-01-01

    We have taken deep images of an outlying field in the Local Group dwarf irregular galaxy IC 1613 with the WFPC2 aboard the Hubble Space Telescope in the standard broadband F555W (V, 8 orbits) and F814W (I,16 orbits) filters. The photometry reaches to V=27.7 (M-V=+3.4) and I=27.1 (M-I=+2.8) at the

  18. Hubble Space Telescope nickel-hydrogen battery testing: An update

    Science.gov (United States)

    Whitt, Thomas H.; Brewer, Jeffrey C.

    1995-02-01

    The Marshall Space Flight Center (MSFC) began testing the HST Ni-H2 Six Battery Test and the 'Flight Spare Battery' Tests approximately one year before the launch of the HST. These tests are operated and reported on by the MSFC, but are managed and funded by Goddard Space Flight Center in direct support of the HST program. The HST Ni-H2 batteries are built from Eagle Picher RNH-90-3 cells. The HST EPS (electrical power system) is a direct energy transfer power system. The HST Ni-H2 Six Battery Test is a breadboard of the HST EPS. The batteries in the test are composed of test module cells and packaged into three battery modules identical to the flight modules. This test is the HST EPS testbed. The 'Flight Spare Battery' Test is a simulation of one of the six battery channels on the HST. The cells in the test are from the flight spare lot of cells, which are the same lot of cells that three of the six HST flight batteries are made from. This test is the battery life test for the HST program.

  19. Thermally Induced Vibrations of the Hubble Space Telescope's Solar Array 3 in a Test Simulated Space Environment

    Science.gov (United States)

    Early, Derrick A.; Haile, William B.; Turczyn, Mark T.; Griffin, Thomas J. (Technical Monitor)

    2001-01-01

    NASA Goddard Space Flight Center and the European Space Agency (ESA) conducted a disturbance verification test on a flight Solar Array 3 (SA3) for the Hubble Space Telescope using the ESA Large Space Simulator (LSS) in Noordwijk, the Netherlands. The LSS cyclically illuminated the SA3 to simulate orbital temperature changes in a vacuum environment. Data acquisition systems measured signals from force transducers and accelerometers resulting from thermally induced vibrations of the SAI The LSS with its seismic mass boundary provided an excellent background environment for this test. This paper discusses the analysis performed on the measured transient SA3 responses and provides a summary of the results.

  20. Accretion Disk Reverberation with Hubble Space Telescope Observations of NGC 4593: Evidence for Diffuse Continuum Lags

    Science.gov (United States)

    Cackett, Edward M.; Chiang, Chia-Ying; McHardy, Ian; Edelson, Rick; Goad, Michael R.; Horne, Keith; Korista, Kirk T.

    2018-04-01

    The Seyfert 1 galaxy NGC 4593 was monitored spectroscopically with the Hubble Space Telescope as part of a reverberation mapping campaign that also included Swift, Kepler, and ground-based photometric monitoring. During 2016 July 12–August 6, we obtained 26 spectra across a nearly continuous wavelength range of ∼1150–10000 Å. These were combined with Swift data to produce a UV/optical “lag spectrum,” which shows the interband lag relative to the Swift UVW2 band as a function of wavelength. The broad shape of the lag spectrum appears to follow the τ ∝ λ 4/3 relation seen previously in photometric interband lag measurements of other active galactic nuclei (AGNs). This shape is consistent with the standard thin disk model, but the magnitude of the lags implies a disk that is a factor of ∼3 larger than predicted, again consistent with what has been previously seen in other AGNs. In all cases these large disk sizes, which are also implied by independent gravitational microlensing of higher-mass AGNs, cannot be simply reconciled with the standard model. However, the most striking feature in this higher-resolution lag spectrum is a clear excess around the 3646 Å Balmer jump. This strongly suggests that diffuse emission from gas in the much larger broad-line region (BLR) must also contribute significantly to the interband lags. While the relative contributions of the disk and BLR cannot be uniquely determined in these initial measurements, it is clear that both will need to be considered to comprehensively model and understand AGN lag spectra.

  1. Hubble space telescope investigation of main-belt comet 133P/Elst-Pizarro

    Energy Technology Data Exchange (ETDEWEB)

    Jewitt, David; Ishiguro, Masateru [Department of Earth, Planetary and Space Sciences, University of California at Los Angeles, 595 Charles Young Drive East, Los Angeles, CA 90095-1567 (United States); Weaver, Harold [The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Agarwal, Jessica [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Gottingen (Germany); Mutchler, Max [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Larson, Steven, E-mail: jewitt@ucla.edu [Lunar and Planetary Laboratory, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721-0092 (United States)

    2014-05-01

    We report new observations of the prototype main-belt comet (active asteroid) 133P/Elst-Pizarro taken at high angular resolution using the Hubble Space Telescope. The object has three main components: (1) a point-like nucleus; (2) a long, narrow antisolar dust tail; and (3) a short, sunward anti-tail. There is no resolved coma. The nucleus has a mean absolute magnitude H{sub V} = 15.70 ± 0.10 and a light curve range ΔV = 0.42 mag, the latter corresponding to projected dimensions 3.6 × 5.4 km (axis ratio 1.5:1) at the previously measured geometric albedo of 0.05 ± 0.02. We explored a range of continuous and impulsive emission models to simultaneously fit the measured surface brightness profile, width, and position angle of the antisolar tail. Preferred fits invoke protracted emission, over a period of 150 days or less, of dust grains following a differential power-law size distribution with index 3.25 ≤q ≤ 3.5 and with a wide range of sizes. Ultra-low surface brightness dust projected in the sunward direction is a remnant from emission activity occurring in previous orbits, and consists of the largest (≥cm-sized) particles. Ejection velocities of one-micron-sized particles are comparable to the ∼1.8 m s{sup –1} gravitational escape speed of the nucleus, while larger particles are released at speeds less than the gravitational escape velocity. The observations are consistent with, but do not prove, a hybrid hypothesis in which mass loss is driven by gas drag from the sublimation of near-surface water ice, but escape is aided by centripetal acceleration from the rotation of the elongated nucleus. No plausible alternative hypothesis has been identified.

  2. Micrometeoroid Impacts on the Hubble Space Telescope Wide Field and Planetary Camera 2: Larger Particles

    Science.gov (United States)

    Kearsley, A. T.; Grime, G. W.; Webb, R. P.; Jeynes, C.; Palitsin, V.; Colaux, J. L.; Ross, D. K.; Anz-Meador, P.; Liou, J. C.; Opiela, J.; hide

    2014-01-01

    The Wide Field and Planetary Camera 2 (WFPC2) was returned from the Hubble Space Telescope (HST) by shuttle mission STS-125 in 2009. In space for 16 years, the surface accumulated hundreds of impact features on the zinc orthotitanate paint, some penetrating through into underlying metal. Larger impacts were seen in photographs taken from within the shuttle orbiter during service missions, with spallation of paint in areas reaching 1.6 cm across, exposing alloy beneath. Here we describe larger impact shapes, the analysis of impactor composition, and the micrometeoroid (MM) types responsible.

  3. Perkinelmer Lamda 950 Measurements in Support of Nasa's Hubble Space Telescope

    Science.gov (United States)

    Miller, Kevin H.; Quijada, Manuel A.

    2014-01-01

    We present visible spectroscopy measurements using the PerkinElmer Lambda 950 grating monochromator in support of two projects at NASA Goddard Space Flight Center. The first and primary project to be discussed is the Wide Field Planetary Camera 2 as an upgrade to the Hubble Space Telescope. Numerous optical filters were measured in the visible and near-infrared regions to experimentally vet the theoretical prediction upon which the filters were engineered. The second topic of our presentation will cover the measurement of SNAP prototype filters from three venders (ASAHI, BARR and JDSU) with applications towards NASAs the Joint Dark Energy Mission (JDEM).

  4. An Explanation of Hubble Redshift due to the Global Non-Holonomity of Space

    Directory of Open Access Journals (Sweden)

    Rabounski D.

    2009-01-01

    Full Text Available In General Relativity, the change of the energy of a freely moving photon should be the solution to the scalar equation of the isotropic geodesic equations, which manifests the work produced on the photon being moved along the path. I solved the equation in terms of physical observables (Zelmanov, Physics Doklady , 1956, v. 1, 227–230, and in the large scale approximation, i.e. with gravitation and deformation neglected in the space, while supposing the isotropic space to be globally non-holonomic (the time lines are non-orthogonal to the spatial section, a condition manifested by the rotation of the space. The solution is E = E 0 exp( at=c , where is the angular velocity of the space (it meets the Hubble constant H 0 = c=a = 2 : 3 10 H 0 = c=a = 2 : 3 10 is the radius of the Universe, t = r=c is the time of the photon’s travel. So a photon loses energy with distance due to the work against the field of the space non-holonomity. According to the solution, the redshift should be z = exp( H 0 r=c This solution explains both the redshift z = H 0 r=c observed at small distances and the non-linearity of the empirical Hubble law due to the exponent (at large r . The ultimate redshift, according to the theory, should be z = exp( = 22.14.

  5. Small-Scale Mechanical Characterization of Space-Exposed Fluorinated Ethylene Propylene Recovered from the Hubble Space Telescope

    Science.gov (United States)

    Jones, J. S.; Sharon, J. A.; Mohammed, J.; Hemker, K. J.

    2012-01-01

    Multi-layer insulation panels from the Hubble Space Telescope have been recovered after 19.1 years of on-orbit service and micro-tensile experiments have been performed to characterize the effect of space exposure on the mechanical response of the outermost layer. This outer layer, 127 m thick fluorinated ethylene propylene with a 100 nm thick vapor deposited aluminum reflective coating, maintained significant tensile ductility but exhibited a degradation of strength that scales with severity of space exposure. This change in properties is attributed to damage from incident solar flux, atomic oxygen damage, and thermal cycling.

  6. Eyes on the Universe: The Legacy of the Hubble Space Telescope and Looking to the Future with the James Webb Space Telescope

    Science.gov (United States)

    Straughn, Amber

    2011-01-01

    Over the past 20 years the Hubble Space Telescope has revolutionized our understanding of the Universe. Most recently, the complete refurbishment of Hubble in 2009 has given new life to the telescope and the new science instruments have already produced groundbreaking science results, revealing some of the most distant galaxy candidates ever discovered. Despite the remarkable advances in astrophysics that Hubble has provided, the new questions that have arisen demand a new space telescope with new technologies and capabilities. I will present the exciting new technology development and science goals of NASA's James Webb Space Telescope, which is currently being built and tested and will be launched this decade.

  7. THE HUBBLE SPACE TELESCOPE UV LEGACY SURVEY OF GALACTIC GLOBULAR CLUSTERS. VIII. PRELIMINARY PUBLIC CATALOG RELEASE

    Energy Technology Data Exchange (ETDEWEB)

    Soto, M.; Bellini, A.; Anderson, J.; Van der Marel, R. P.; Brown, T. M. [Space Telescope Science Institute, San Martin Drive 3700, Baltimore, MD 21218 (United States); Piotto, G.; Granata, V.; Ortolani, S.; Nardiello, D. [Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova, Vicolo dell’Osservatorio 3, I-35122 Padova (Italy); Bedin, L. R. [INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Milone, A. P. [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston, ACT, 2611 (Australia); Cool, A. M. [Department of Physics and Astronomy, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132 (United States); King, I. R. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195-1580 (United States); Sarajedini, A. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States); Cassisi, S. [Osservatorio Astronomico di Teramo, Via Mentore Maggini s.n.c., I-64100 Teramo (Italy); Aparicio, A.; Hidalgo, S., E-mail: mario.soto@uda.cl [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife, Canary Islands (Spain)

    2017-01-01

    The Hubble Space Telescope (HST) UV Legacy Survey of Galactic Globular Clusters (GO-13297) has been specifically designed to complement the existing F606W and F814W observations of the Advanced Camera for Surveys (ACS) Globular Cluster Survey (GO-10775) by observing the most accessible 47 of the previous survey’s 65 clusters in three WFC3/UVIS filters F275W, F336W, and F438W. The new survey also adds super-solar metallicity open cluster NGC 6791 to increase the metallicity diversity. The combined survey provides a homogeneous 5-band data set that can be used to pursue a broad range of scientific investigations. In particular, the chosen UV filters allow the identification of multiple stellar populations by targeting the regions of the spectrum that are sensitive to abundance variations in C, N, and O. In order to provide the community with uniform preliminary catalogs, we have devised an automated procedure that performs high-quality photometry on the new UV observations (along with similar observations of seven other programs in the archive). This procedure finds and measures the potential sources on each individual exposure using library point-spread functions and cross-correlates these observations with the original ACS-Survey catalog. The catalog of 57 clusters we publish here will be useful to identify stars in the different stellar populations, in particular for spectroscopic follow-up. Eventually, we will construct a more sophisticated catalog and artificial-star tests based on an optimal reduction of the UV survey data, but the catalogs presented here give the community the chance to make early use of this HST Treasury survey.

  8. A Hubble Space Telescope Survey of the Disk Cluster Population of M31. II. Advanced Camera for Surveys Pointings

    Science.gov (United States)

    Krienke, O. K.; Hodge, P. W.

    2008-01-01

    This paper reports on a survey of star clusters in M31 based on archival images from the Hubble Space Telescope. Paper I reported results from images obtained with the Wide Field Planetary Camera 2 (WFPC2) and this paper reports results from the Advanced Camera for Surveys (ACS). The ACS survey has yielded a total of 339 star clusters, 52 of which—mostly globular clusters—were found to have been cataloged previously. As for the previous survey, the luminosity function of the clusters drops steeply for absolute magnitudes fainter than MV = -3 the implied cluster mass function has a turnover for masses less than a few hundred solar masses. The color-integrated magnitude diagram of clusters shows three significant features: (1) a group of very red, luminous objects: the globular clusters, (2) a wide range in color for the fainter clusters, representing a considerable range in age and reddening, and (3) a maximum density of clusters centered approximately at V = 21, B - V = 0.30, V - I = 0.50, where there are intermediate-age, intermediate-mass clusters with ages close to 500 million years and masses of about 2000 solar masses. We give a brief qualitative interpretation of the distribution of clusters in the CMDs in terms of their formation and destruction rates. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for research in astronomy, Inc., under NASA contract NAS 5-26555.

  9. Artificial neural network for the determination of Hubble Space Telescope aberration from stellar images

    Science.gov (United States)

    Barrett, Todd K.; Sandler, David G.

    1993-01-01

    An artificial-neural-network method, first developed for the measurement and control of atmospheric phase distortion, using stellar images, was used to estimate the optical aberration of the Hubble Space Telescope. A total of 26 estimates of distortion was obtained from 23 stellar images acquired at several secondary-mirror axial positions. The results were expressed as coefficients of eight orthogonal Zernike polynomials: focus through third-order spherical. For all modes other than spherical the measured aberration was small. The average spherical aberration of the estimates was -0.299 micron rms, which is in good agreement with predictions obtained when iterative phase-retrieval algorithms were used.

  10. The shape and surface variation of 2 Pallas from the Hubble Space Telescope.

    Science.gov (United States)

    Schmidt, B E; Thomas, P C; Bauer, J M; Li, J-Y; McFadden, L A; Mutchler, M J; Radcliffe, S C; Rivkin, A S; Russell, C T; Parker, J Wm; Stern, S A

    2009-10-09

    We obtained Hubble Space Telescope images of 2 Pallas in September 2007 that reveal distinct color and albedo variations across the surface of this large asteroid. Pallas's shape is an ellipsoid with radii of 291 (+/-9), 278 (+/-9), and 250 (+/-9) kilometers, implying a density of 2400 (+/-250) kilograms per cubic meter-a value consistent with a body that formed from water-rich material. Our observations are consistent with the presence of an impact feature, 240 (+/-25) kilometers in diameter, within Pallas's ultraviolet-dark terrain. Our observations imply that Pallas is an intact protoplanet that has undergone impact excavation and probable internal alteration.

  11. Theoretical colours and isochrones for some Hubble Space Telescope colour systems

    Science.gov (United States)

    Edvardsson, B.; Bell, R. A.

    1989-01-01

    Synthetic spectra for effective temperatures of 4000-7250 K, logarithmic surface gravities typical of dwarfs and subgiants, and metallicities from solar values to 0.001 of the solar metallicity were used to derive a grid of synthetic surface brightness magnitudes for 21 of the Hubble Space Telescope Wide Field Camera (WFC) band passes. The absolute magnitudes of these 21 band passes are also obtained for a set of globular cluster isochrones with different helium abundances, metallicities, oxygen abundances, and ages. The usefulness and efficiency of different sets of broad and intermediate bandwidth WFC colors for determining ages and metallicities for globular clusters are evaluated.

  12. Cryo Cooler Induced Micro-Vibration Disturbances to the Hubble Space Telescope

    Science.gov (United States)

    Jedrich, Nick; Zimbelman, Darrell; Turczyn, Mark; Sills, Joel; Voorhees, Carl; Clapp, Brian; Brumfield, Mark (Technical Monitor)

    2002-01-01

    This paper presents an overview of the Hubble Space Telescope (HST) Near Infrared Camera and Multi-Object Spectrometer (NICMOS) Cryo Cooler (MCC) system, a description of the micro-vibration characterization testing performed, and a discussion of the simulated performance. The NCC is a reverse Brayton cycle system that employs micro turbo-machinery to provide cooling to the NICMOS instrument. Extensive testing was conducted to quantify the expected on-orbit disturbances caused by the micro turbo-machinery and provide input to a flexible-body dynamic simulation to demonstrate compliance with the HST 7 milli-arcsecond root mean square jitter requirement.

  13. Hubble Space Telescope Near-ultraviolet Spectroscopy of the Bright CEMP-no Star BD+44°493

    Science.gov (United States)

    Placco, Vinicius M.; Beers, Timothy C.; Roederer, Ian U.; Cowan, John J.; Frebel, Anna; Filler, Dan; Ivans, Inese I.; Lawler, James E.; Schatz, Hendrik; Sneden, Christopher; Sobeck, Jennifer S.; Aoki, Wako; Smith, Verne V.

    2014-07-01

    We present an elemental-abundance analysis, in the near-ultraviolet (NUV) spectral range, for the extremely metal-poor star BD+44°493 a ninth magnitude subgiant with [Fe/H] =-3.8 and enhanced carbon, based on data acquired with the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. This star is the brightest example of a class of objects that, unlike the great majority of carbon-enhanced metal-poor (CEMP) stars, does not exhibit over-abundances of heavy neutron-capture elements (CEMP-no). In this paper, we validate the abundance determinations for a number of species that were previously studied in the optical region, and obtain strong upper limits for beryllium and boron, as well as for neutron-capture elements from zirconium to platinum, many of which are not accessible from ground-based spectra. The boron upper limit we obtain for BD+44°493, log epsilon (B) formed at a very early time, and that it could well be a bona-fide second-generation star. Finally, the Pb upper limit strengthens the argument for non-s-process production of the heavy-element abundance patterns in CEMP-no stars. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-12554, and we also make use of data taken in program GO-12268.

  14. NASA Astrophysics E/PO: A Quarter Century of Discovery and Inspiration with the Hubble Space Telescope

    Science.gov (United States)

    Jirdeh, Hussein; Straughn, Amber; Smith, Denise Anne; Eisenhamer, Bonnie

    2015-08-01

    April 24, 2015 marked the 25th anniversary of the launch of the Hubble Space Telescope. In its quarter-century in orbit, the Hubble Space Telescope has transformed the way we understand the Universe, helped us find our place among the stars, and paved the way to incredible advancements in science and technology.In this presentation, we explain how NASA and ESA, including the Space Telescope Science Institute (STScI) and partners, is using the 25th anniversary of Hubble’s launch as a unique opportunity to communicate to students, educators, and the public the significance of the past quarter-century of discovery with the Hubble Space Telescope. We describe the various programs, resources, and experiences we are utilizing to enhancethe public understanding of Hubble’s many contributions to the scientific world. These include educator professional development opportunities, exhibits, events, traditional and social media, and resources for educators (formal k-12, informal, and higher education). We also highlight how we are capitalizing on Hubble’s cultural popularity to make the scientific connection to NASA’s next Great Observatory, the James Webb Space Telescope.This presentation highlights many of the opportunities by which students, educators, and the public are joining in the anniversary activities, both in-person and online. Find out more at hubble25th.org and follow #Hubble25 on social media.

  15. Ultraviolet spectropolarimetry of high-redshift quasars with the Hubble Space Telescope

    Science.gov (United States)

    Impey, C. D.; Malkan, Matthew A.; Webb, Wayne; Petry, C. E.

    1995-01-01

    Ultraviolet spectropolarimetry of three bright high-redshift low-polarization quasars (LPQs) was obtained with the Faint Object Spectrograph of the Hubble Space Telescope (HST). Two of the quasars, PG 1634+706 and PG 2302+029, had polarizations p approximately = 0.5%-1.0% throughout the ultraviolet, and showed no significant variation of polarization amplitude or position angle with wavelength. PG 2302+029 was also marginally (2.4 sigma) circularly polarized in the optical continuum. For the highest redshift quasar, PG 1222+228 (Ton 1530), the polarization was measured down to rest wavelengths below 800 A. Although the continuum of PG 1222+228 was weakened by Lyman limit absorption from an intergalactic gas cloud, the polarization increased sharply from 1% to about 4.5%, a change of 4 sigma significance. This abrupt rise in polarization does not appear attributable to any known instrumental artifact. These UV polarizations were only slightly less than those previously observed for these same objects in the optical. The polarization spectra were flat with a typical slope of the polarized flux pF(sub nu) proportional to nu(exp -0.8 +/- 0.5). Unlike the case of several high luminosity Seyfert 1 nuclei studied previously, polarization caused by scattering from dust grains does not provide the best fit to the polarization spectra of these luminous quasars. These observed spectra are consistent with a wavelength-independent polarization proportional to the total nonstellar light or, possibly, to the contribution of the blue thermal component. The polarization spectra have insufficient signal-to-noise to locate the scatterers with respect to the continuum source and the much larger broad line region. A decrease in amplitude and rotation of the position angle of the polarization vector at the shortest wavelengths, which could result from general relativistic effects near a spinning black hole, was not observed. In fact, in PG 1222+228, the polarization was observed to

  16. STS-103 Hubble servicing cargo is transferred to Space Shuttle Discovery

    Science.gov (United States)

    1999-01-01

    Workers oversee the transfer of STS-103's Hubble servicing cargo from the payload changeout room at Launch Pad 39B to the payload bay in Space Shuttle Discovery. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.

  17. The Hubble Space Telescope's Student ERO Pilot Project: Implementing Formal and Informal Collaborative Projects

    Science.gov (United States)

    Eisenhamer, Bonnie; Ryer, H.; McCallister, D.; Taylor, J.; Bishop, M.

    2010-05-01

    The Hubble Space Telescope's Early Release Observations (EROs) were revealed to the public on September 9, 2009, and K-12 students and educators in six states across the country are joining in the celebration. Students and educators in Maryland, Ohio, New York, California, New Mexico, and Delaware have been invited to participate in the Hubble Space Telescope's Student ERO Pilot Project. This is an interdisciplinary project created by STScI's Office of Public Outreach in which students research the four ERO objects and create various types of projects. In recognition of their participation, the projects are displayed at host institutions in each state (museum, science center, school, planetarium or library) during a special public event for participating students, their families, and teachers. As part of its evaluation program, STScI's Office of Public Outreach has been conducting an evaluation of the project to determine the viability and potential of conducting large-scale, formal/informal collaborative projects in the future. This poster will highlight preliminary findings and share lessons learned.

  18. Proper Motions of Dwarf Spheroidal Galaxies from Hubble Space Telescope Imaging. IV. Measurement for Sculptor

    Science.gov (United States)

    Piatek, Slawomir; Pryor, Carlton; Bristow, Paul; Olszewski, Edward W.; Harris, Hugh C.; Mateo, Mario; Minniti, Dante; Tinney, Christopher G.

    2006-03-01

    This article presents a measurement of the proper motion of the Sculptor dwarf spheroidal galaxy determined from images taken with the Hubble Space Telescope using the Space Telescope Imaging Spectrograph in the imaging mode. Each of two distinct fields contains a quasi-stellar object that serves as the ``reference point.'' The measured proper motion of Sculptor, expressed in the equatorial coordinate system, is (μα, μδ)=(9+/-13, 2+/-13) mas century-1. Removing the contributions from the motion of the Sun and the motion of the local standard of rest produces the proper motion in the Galactic rest frame: (μGrfα, μGrfδ)=(-23+/-13, 45+/-13) mas century-1. The implied space velocity with respect to the Galactic center has a radial component of Vr=79+/-6 km s-1 and a tangential component of Vt=198+/-50 km s-1. Integrating the motion of Sculptor in a realistic potential for the Milky Way produces orbital elements. The perigalacticon and apogalacticon are 68 (31, 83) and 122 (97, 313) kpc, respectively, where the values in the parentheses represent the 95% confidence interval derived from Monte Carlo experiments. The eccentricity of the orbit is 0.29 (0.26, 0.60), and the orbital period is 2.2 (1.5, 4.9) Gyr. Sculptor is on a polar orbit around the Milky Way: the angle of inclination is 86° (83°, 90°). Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  19. An Explanation of Hubble Redshift due to the Global Non-Holonomity of Space

    Directory of Open Access Journals (Sweden)

    Rabounski D.

    2009-01-01

    Full Text Available In General Relativity, the change of the energy of a freely moving photon should be the solution to the scalar equation of the isotropic geodesic equations, which manifests the work produced on the photon being moved along the path. I solved the equation in terms of physical observables (Zelmanov, Physics Doklady, 1956, v.1, 227-230, and in the large scale approximation, i.e. with gravitation and deformation neglected in the space, while supposing the isotropic space to be globally non-holonomic (the time lines are non-orthogonal to the spatial section, a condition manifested by the rotation of the space. The solution is $E = E_{0} exp(-Omega^{2} at/c$, where $Omega$ is the angular velocity of the space (it meets the Hubble constant $H_{0} = c/a = 2.3 imes 10^{-18}$ s$^{-1}$, $a$ is the radius of the Universe, $t = r/c$ is the time of the photon's travel. So a photon loses energy with distance due to the work against the field of the space non-holonomity. According to the solution, the redshift should be $z = exp(H_{0} r/c - 1 = H_{0} r/c$. This solution explains both the redshift $z = H_{0} r/c$ observed at small distances and the non-linearity of the empirical Hubble law due to the exponent (at large $r$. The ultimate redshift, according to the theory, should be $z = exp(pi - 1 = 22.14$.

  20. Micrometeoroid Impacts on the Hubble Space Telescope Wide Field and Planetary Camera 2: Smaller Particle Impacts

    Science.gov (United States)

    Ross, D. K.; Anz-Meador, P.; Liou, J.C.; Opiela, J.; Kearsley, A. T.; Grime, G.; Webb, R.; Jeynes, C.; Palitsin, V.; Colaux, J.; hide

    2014-01-01

    The radiator shield on the Wide Field and Planetary Camera 2 (WFPC2) was subject to optical inspection following return from the Hubble Space Telescope (HST) in 2009. The survey revealed over 600 impact features of > 300 micrometers diameter, from exposure in space for 16 years. Subsequently, an international collaborative programme of analysis was organized to determine the origin of hypervelocity particles responsible for the damage. Here we describe examples of the numerous smaller micrometeoroid (MM) impact features (< 700 micrometers diameter) which excavated zinc orthotitanate (ZOT) paint from the radiator surface, but did not incorporate material from underlying Al alloy; larger impacts are described by [3]. We discuss recognition and interpretation of impactor remains, and MM compositions found on WFPC2.

  1. How Long Can the Hubble Space Telescope Operate Reliably? A Total Dose Perspective

    Science.gov (United States)

    Xapsos, M. A.; Stauffer, C.; Jordan, T.; Poivey, C.; Haskins, D. N.; Lum, G.; Pergosky, A. M.; Smith, D. C.; LaBel, K. A.

    2014-01-01

    The Hubble Space Telescope has been at the forefront of discoveries in the field of astronomy for more than 20 years. It was the first telescope designed to be serviced in space and the last such servicing mission occurred in May 2009. The question of how much longer this valuable resource can continue to return science data remains. In this paper a detailed analysis of the total dose exposure of electronic parts at the box level is performed using solid angle sectoring/3-dimensional ray trace and Monte Carlo radiation transport simulations. Results are related to parts that have been proposed as possible total dose concerns. The spacecraft subsystem that appears to be at the greatest risk for total dose failure is identified. This is discussed with perspective on the overall lifetime of the spacecraft.

  2. Dynamical 3-Space: Supernovae and the Hubble Expansion — the Older Universe without Dark Energy

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2007-10-01

    Full Text Available We apply the new dynamics of 3-space to cosmology by deriving a Hubble expansion solution. This dynamics involves two constants; G and — the fine structure constant. This solution gives an excellent parameter-free fit to the recent supernova and gamma- ray burst redshift data without the need for “dark energy” or “dark matter”. The data and theory together imply an older age for the universe of some 14.7Gyrs. The 3-space dynamics has explained the bore hole anomaly, spiral galaxy flat rotation speeds, the masses of black holes in spherical galaxies, gravitational light bending and lensing, all without invoking “dark matter” or “dark energy”. These developments imply that a new understanding of the universe is now available.

  3. HUBBLE SPACE TELESCOPE OBSERVATIONS OF ACTIVE ASTEROID 324P/La SAGRA

    Energy Technology Data Exchange (ETDEWEB)

    Jewitt, David; Li, Jing [Department of Earth, Planetary and Space Sciences, UCLA, 595 Charles Young Drive East, Los Angeles, CA 90095-1567 (United States); Agarwal, Jessica [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Weaver, Harold [The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723 (United States); Mutchler, Max [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Larson, Stephen, E-mail: jewitt@ucla.edu [Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Boulevard, Tucson, AZ 85721-0092 (United States)

    2016-09-01

    Hubble Space Telescope observations of active asteroid 324P/La Sagra near perihelion show continued mass loss consistent with the sublimation of near-surface ice. Isophotes of the coma measured from a vantage point below the orbital plane are best matched by steady emission of particles having a nominal size  of  a  ∼ 100 μ m. The inferred rate of mass loss, dM{sub d} / dt  ∼ 0.2 kg s{sup −1}, can be supplied by sublimation of water ice in thermal equilibrium with sunlight from an area as small as 930 m{sup 2}, corresponding to about 0.2% of the nucleus surface. Observations taken from a vantage point only 0.°6 from the orbital plane of 324P set a limit to the velocity of ejection of dust in the direction perpendicular to the plane, V {sub ⊥} < 1 m s{sup −1}. Short-term photometric variations of the near-nucleus region, if related to rotation of the underlying nucleus, rule-out periods ≤3.8 hr and suggest that rotation probably does not play a central role in driving the observed mass loss. We estimate that, in the previous orbit, 324P lost about 4 × 10{sup 7} kg in dust particles, corresponding to 6 × 10{sup −5} of the mass of a 550 m spherical nucleus of assumed density ρ  = 1000 kg m{sup −3}. If continued, mass loss at this rate would limit the lifetime of 324P to ∼1.6 × 10{sup 4} orbits (about 10{sup 5} years). To survive for the 100–400 Myr timescales corresponding to dynamical and collisional stability requires a duty cycle of 2 × 10{sup −4} ≤  f{sub d}  ≤ 8 × 10{sup −4}. Unless its time in orbit is overestimated by many orders of magnitude, 324P is revealed as a briefly active member of a vast population of otherwise dormant ice-containing asteroids.

  4. A Minuet of Galaxies: Hickson Compact Group 87 as Viewed by the Hubble Space Telescope

    Science.gov (United States)

    English, J.; Hunsberger, S.; Charlton, J.; Hamilton, F.; Bond, H. E.; Christian, C. A.; Frattare, L.; Levay, Z.; Noll, K.

    2000-05-01

    HCG 87 was selected from 3 visually, and scientifically, intriguing compact groups for HST WFPC2 imaging by members of the public who visited the Hubble Heritage website (http://heritage.stsci.edu) and registered their votes. The HST exposures in four filters (F450W, F555W, F675W and F814W) of the winning target were used to create a color image, released in September 1999 as part of the Hubble Heritage Team's program to provide images for public outreach and education. Along with these data and image, we present a preliminary determination of colors and brightness profiles for the large galaxies in this group. The pair of apparently interacting galaxies each harbour AGN. One is a ``boxy'' spiral with a prominent dust lane and the other a lenticular galaxy. Another group member is a smaller starbursting spiral galaxy. Our goal is to study their stellar populations and examine the influence of active nuclei on star formation histories. In addition, a similar analysis is being performed on all faint, extended objects distributed throughout the group. For those determined to be tidal dwarf galaxies, we plan to appraise the role gravitational instabilities play during their formation. Support for this work was provided by NASA through grant number GO-07632.01-96A from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under the NASA contract NAS5-26555.

  5. Hubble Space Telescope Trigonometric Parallax of Polaris B, Companion of the Nearest Cepheid

    Science.gov (United States)

    Bond, Howard E.; Nelan, Edmund P.; Remage Evans, Nancy; Schaefer, Gail H.; Harmer, Dianne

    2018-01-01

    Polaris, the nearest and brightest Cepheid, is a potential anchor point for the Leavitt period–luminosity relation. However, its distance is a matter of contention, with recent advocacy for a parallax of ∼10 mas, in contrast with the Hipparcos measurement of 7.54 ± 0.11 mas. We report an independent trigonometric parallax determination, using the Fine Guidance Sensors (FGS) on the Hubble Space Telescope. Polaris itself is too bright for FGS, so we measured its eighth-magnitude companion Polaris B, relative to a network of background reference stars. We converted the FGS relative parallax to absolute, using estimated distances to the reference stars from ground-based photometry and spectral classification. Our result, 6.26 ± 0.24 mas, is even smaller than that found by Hipparcos. We note other objects for which Hipparcos appears to have overestimated parallaxes, including the well-established case of the Pleiades. We consider possible sources of systematic error in the FGS parallax, but find no evidence they are significant. If our “long” distance is correct, the high luminosity of Polaris indicates that it is pulsating in the second overtone of its fundamental mode. Our results raise several puzzles, including a long pulsation period for Polaris compared to second-overtone pulsators in the Magellanic Clouds, and a conflict between the isochrone age of Polaris B (∼2.1 Gyr) and the much younger age of Polaris A. We discuss possibilities that B is not a physical companion of A, in spite of the strong evidence that it is, or that one of the stars is a merger remnant. These issues may be resolved when Gaia provides parallaxes for both stars. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained by the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  6. Hubble Space Telescope Photometry of Hodge 301: An ``Old'' Star Cluster in 30 Doradus

    Science.gov (United States)

    Grebel, Eva K.; Chu, You-Hua

    2000-02-01

    We present Hubble Space Telescope Planetary Camera UVI data for Hodge 301, the little-studied cluster 3' northwest of the central ionizing cluster R136 in 30 Doradus. The average reddening of Hodge 301 is found to be =0.28+/-0.05 mag from published infrared and ultraviolet photometry. Using two different sets of evolutionary models, we derive an age of about 20-25 Myr for Hodge 301, which makes it roughly 10 times as old as R136. Hodge 301 is the most prominent representative of the oldest population in the 30 Dor starburst region, a region that has undergone multiple star formation events. This range of ages is an important consideration for the modeling of starburst regions. Hodge 301 shows a widened upper main sequence largely caused by Be stars. We present a list of Be star candidates. The slope of the initial mass function for intermediate-mass, main-sequence stars ranging from 10 to 1.3 Msolar is found to be Γ=-1.4+/-0.1, in good agreement with a Salpeter law. There is no indication for a truncation or change of slope of the initial mass function (IMF) within this mass range. In accordance with the age of Hodge 301, no obvious pre-main-sequence stars are seen down to about 1 Msolar. We estimate that up to 41+/-7 stars with masses more than 12 Msolar may have turned into supernovae since the formation of the cluster. Multiple supernova explosions are the most likely origin of the extremely violent gas motions and the diffuse X-ray emission observed in the cluster surroundings. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS5-26555.

  7. Multiwavelength Photometry and Hubble Space Telescope Spectroscopy of the Old Nova V842 Centaurus

    Science.gov (United States)

    Sion, Edward M.; Szkody, Paula; Mukadam, Anjum; Warner, Brian; Woudt, Patrick; Walter, Frederic; Henden, Arne; Godon, Patrick

    2013-08-01

    We present ground-based optical and near infrared photometric observations and Hubble Space Telescope (HST) COS spectroscopic observations of the old nova V842 Cen (Nova Cen 1986). Analysis of the optical light curves reveals a peak at 56.5 ± 0.3 s with an amplitude of 8.9 ± 4.2 mma, which is consistent with the rotation of a magnetic white dwarf primary in V842 Cen that was detected earlier by Woudt et al., and led to its classification as an intermediate polar. However, our UV lightcurve created from the COS time-tag spectra does not show this periodicity. Our synthetic spectral analysis of an HST COS spectrum rules out a hot white dwarf photosphere as the source of the FUV flux. The best-fitting model to the COS spectrum is a full optically thick accretion disk with no magnetic truncation, a low disk inclination angle, low accretion rate and a distance less than half the published distance that was determined on the basis of interstellar sodium D line strengths. Truncated accretion disks with truncation radii of 3 R wd and 5 R wd yielded unsatisfactory agreement with the COS data. The accretion rate is unexpectedly low for a classical nova only 24 yr after the explosion when the accretion rate is expected to be high and the white dwarf should still be very hot, especially if irradiation of the donor star took place. Our low accretion rate is consistent with those derived from X-ray and ground-based optical data. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., (AURA) under NASA contract NAS 5-26555, with the Apache Point Observatory 3.5 m telescope which is owned and operated by the Astrophysical Research Consortium.

  8. Long term trending of engineering data for the Hubble Space Telescope

    Science.gov (United States)

    Cox, Ross M.

    1993-01-01

    A major goal in spacecraft engineering analysis is the detection of component failures before the fact. Trending is the process of monitoring subsystem states to discern unusual behaviors. This involves reducing vast amounts of data about a component or subsystem into a form that helps humans discern underlying patterns and correlations. A long term trending system has been developed for the Hubble Space Telescope. Besides processing the data for 988 distinct telemetry measurements each day, it produces plots of 477 important parameters for the entire 24 hours. Daily updates to the trend files also produce 339 thirty day trend plots each month. The total system combines command procedures to control the execution of the C-based data processing program, user-written FORTRAN routines, and commercial off-the-shelf plotting software. This paper includes a discussion the performance of the trending system and of its limitations.

  9. New Horizons: Long-Range Kuiper Belt Targets Observed by the Hubble Space Telescope

    Science.gov (United States)

    Benecchi, S. D.; Noll, K. S.; Weaver, H. A.; Spencer, J. R.; Stern, S. A.; Buie, M. W.; Parker, A. H.

    2014-01-01

    We report on Hubble Space Telescope (HST) observations of three Kuiper Belt Objects (KBOs), discovered in our dedicated ground-based search campaign, that are candidates for long-range observations from the New Horizons spacecraft: 2011 epochY31, 2011 HZ102, and 2013 LU35. Astrometry with HST enables both current and future critical accuracy improvements for orbit precision, required for possible New Horizons observations, beyond what can be obtained from the ground. Photometric colors of all three objects are red, typical of the Cold Classical dynamical population within which they reside; they are also the faintest KBOs to have had their colors measured. None are observed to be binary with HST above separations of approx. 0.02 arcsec (approx. 700 km at 44 AU) and delta m less than or equal to 0.5.

  10. CONFRONTING THREE-DIMENSIONAL TIME-DEPENDENT JET SIMULATIONS WITH HUBBLE SPACE TELESCOPE OBSERVATIONS

    International Nuclear Information System (INIS)

    Staff, Jan E.; Niebergal, Brian P.; Ouyed, Rachid; Pudritz, Ralph E.; Cai, Kai

    2010-01-01

    We perform state-of-the-art, three-dimensional, time-dependent simulations of magnetized disk winds, carried out to simulation scales of 60 AU, in order to confront optical Hubble Space Telescope observations of protostellar jets. We 'observe' the optical forbidden line emission produced by shocks within our simulated jets and compare these with actual observations. Our simulations reproduce the rich structure of time-varying jets, including jet rotation far from the source, an inner (up to 400 km s -1 ) and outer (less than 100 km s -1 ) component of the jet, and jet widths of up to 20 AU in agreement with observed jets. These simulations when compared with the data are able to constrain disk wind models. In particular, models featuring a disk magnetic field with a modest radial spatial variation across the disk are favored.

  11. Low Frequency Flats for Imaging Cameras on the Hubble Space Telescope

    Science.gov (United States)

    Kossakowski, Diana; Avila, Roberto J.; Borncamp, David; Grogin, Norman A.

    2017-01-01

    We created a revamped Low Frequency Flat (L-Flat) algorithm for the Hubble Space Telescope (HST) and all of its imaging cameras. The current program that makes these calibration files does not compile on modern computer systems and it requires translation to Python. We took the opportunity to explore various methods that reduce the scatter of photometric observations using chi-squared optimizers along with Markov Chain Monte Carlo (MCMC). We created simulations to validate the algorithms and then worked with the UV photometry of the globular cluster NGC6681 to update the calibration files for the Advanced Camera for Surveys (ACS) and Solar Blind Channel (SBC). The new software was made for general usage and therefore can be applied to any of the current imaging cameras on HST.

  12. A natural language query system for Hubble Space Telescope proposal selection

    Science.gov (United States)

    Hornick, Thomas; Cohen, William; Miller, Glenn

    1987-01-01

    The proposal selection process for the Hubble Space Telescope is assisted by a robust and easy to use query program (TACOS). The system parses an English subset language sentence regardless of the order of the keyword phases, allowing the user a greater flexibility than a standard command query language. Capabilities for macro and procedure definition are also integrated. The system was designed for flexibility in both use and maintenance. In addition, TACOS can be applied to any knowledge domain that can be expressed in terms of a single reaction. The system was implemented mostly in Common LISP. The TACOS design is described in detail, with particular attention given to the implementation methods of sentence processing.

  13. Re-Engineering of the Hubble Space Telescope (HST) to Reduce Operational Costs

    Science.gov (United States)

    Garvis, Michael; Dougherty, Andrew; Whittier, Wallace

    1996-01-01

    Satellite telemetry processing onboard the Hubble Space Telescope (HST) is carried out using dedicated software and hardware. The current ground system is expensive to operate and maintain. The mandate to reduce satellite ground system operations and maintenance costs by the year 2000 led NASA to upgrade the command and control systems in order to improve the data processing capabilities, reduce operator experience levels and increase system standardization. As a result, a command and control system product development team was formed to redesign and develop the HST ground system. The command and control system ground system development consists of six elements. The results of the prototyping phase carried out for the following of these elements are presented: the front end processor; middleware, and the graphical user interface.

  14. Dynamic auroral storms on Saturn as observed by the Hubble Space Telescope.

    Science.gov (United States)

    Nichols, J D; Badman, S V; Baines, K H; Brown, R H; Bunce, E J; Clarke, J T; Cowley, S W H; Crary, F J; Dougherty, M K; Gérard, J-C; Grocott, A; Grodent, D; Kurth, W S; Melin, H; Mitchell, D G; Pryor, W R; Stallard, T S

    2014-05-28

    We present observations of significant dynamics within two UV auroral storms observed on Saturn using the Hubble Space Telescope in April/May 2013. Specifically, we discuss bursts of auroral emission observed at the poleward boundary of a solar wind-induced auroral storm, propagating at ∼330% rigid corotation from near ∼01 h LT toward ∼08 h LT. We suggest that these are indicative of ongoing, bursty reconnection of lobe flux in the magnetotail, providing strong evidence that Saturn's auroral storms are caused by large-scale flux closure. We also discuss the later evolution of a similar storm and show that the emission maps to the trailing region of an energetic neutral atom enhancement. We thus identify the auroral form with the upward field-aligned continuity currents flowing into the associated partial ring current.

  15. Multi-Epoch Hubble Space Telescope Observations of IZw18 : Characterization of Variable Stars at Ultra-Low Metallicities

    NARCIS (Netherlands)

    Fiorentino, G.; Ramos, R. Contreras; Clementini, G.; Marconi, M.; Musella, I.; Aloisi, A.; Annibali, F.; Saha, A.; Tosi, M.; van der Marel, R. P.

    2010-01-01

    Variable stars have been identified for the first time in the very metal-poor blue compact dwarf galaxy IZw18, using deep multi-band (F606W, F814W) time-series photometry obtained with the Advanced Camera for Surveys on board the Hubble Space Telescope. We detected 34 candidate variable stars in the

  16. Observations of the Hubble Deep Field with the Infrared Space Observatory .1. Data reduction, maps and sky coverage

    DEFF Research Database (Denmark)

    Serjeant, S.B.G.; Eaton, N.; Oliver, S.J.

    1997-01-01

    We present deep imaging at 6.7 and 15 mu m from the CAM instrument on the Infrared Space Observatory (ISO), centred on the Hubble Deep Field (HDF). These are the deepest integrations published to date at these wavelengths in any region of sky. We discuss the observational strategy and the data...

  17. New Hubble Space Telescope Observations of Heavy Elements in Four Metal-Poor Stars

    Science.gov (United States)

    Roederer, Ian U.; Lawler, James E.; Sobeck, Jennifer S.; Beers, Timothy C.; Cowan, John J.; Frebel, Anna; Ivans, Inese I.; Schatz, Hendrik; Sneden, Christopher; Thompson, Ian B.

    2012-12-01

    Elements heavier than the iron group are found in nearly all halo stars. A substantial number of these elements, key to understanding neutron-capture nucleosynthesis mechanisms, can only be detected in the near-ultraviolet. We report the results of an observing campaign using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope to study the detailed heavy-element abundance patterns in four metal-poor stars. We derive abundances or upper limits from 27 absorption lines of 15 elements produced by neutron-capture reactions, including seven elements (germanium, cadmium, tellurium, lutetium, osmium, platinum, and gold) that can only be detected in the near-ultraviolet. We also examine 202 heavy-element absorption lines in ground-based optical spectra obtained with the Magellan Inamori Kyocera Echelle Spectrograph on the Magellan-Clay Telescope at Las Campanas Observatory and the High Resolution Echelle Spectrometer on the Keck I Telescope on Mauna Kea. We have detected up to 34 elements heavier than zinc. The bulk of the heavy elements in these four stars are produced by r-process nucleosynthesis. These observations affirm earlier results suggesting that the tellurium found in metal-poor halo stars with moderate amounts of r-process material scales with the rare earth and third r-process peak elements. Cadmium often follows the abundances of the neighboring elements palladium and silver. We identify several sources of systematic uncertainty that must be considered when comparing these abundances with theoretical predictions. We also present new isotope shift and hyperfine structure component patterns for Lu II and Pb I lines of astrophysical interest. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 8111 and

  18. Central Structural Parameters of Early-Type Galaxies as Viewed with Nicmos on the Hubble Space Telescope

    Science.gov (United States)

    Ravindranath, Swara; Ho, Luis C.; Peng, Chien Y.; Filippenko, Alexei V.; Sargent, Wallace L. W.

    2001-08-01

    We present surface photometry for the central regions of a sample of 33 early-type (E, S0, and S0/a) galaxies observed at 1.6 μm (H band) using the Hubble Space Telescope. Dust absorption has less of an impact on the galaxy morphologies in the near-infrared than found in previous work based on observations at optical wavelengths. When present, dust seems to be most commonly associated with optical line emission. We employ a new technique of two-dimensional fitting to extract quantitative parameters for the bulge light distribution and nuclear point sources, taking into consideration the effects of the point-spread function. By parameterizing the bulge profile with a Nuker law, we confirm that the central surface brightness distributions largely fall into two categories, each of which correlates with the global properties of the galaxies. ``Core'' galaxies tend to be luminous elliptical galaxies with boxy or pure elliptical isophotes, whereas ``power-law'' galaxies are preferentially lower luminosity systems with disky isophotes. The infrared surface brightness profiles are very similar to those in the optical, with notable exceptions being very dusty objects. Similar to the study of Faber et al., based on optical data, we find that galaxy cores obey a set of fundamental plane relations wherein more luminous galaxies with higher central stellar velocity dispersions generally possess larger cores with lower surface brightnesses. Unlike most previous studies, however, we do not find a clear gap in the distribution of inner cusp slopes; several objects have inner cusp slopes (0.3law galaxies. The nature of these intermediate objects is unclear. We draw attention to two objects in the sample that appear to be promising cases of galaxies with isothermal cores that are not the brightest members of a cluster. Unresolved nuclear point sources are found in ~50% of the sample galaxies, roughly independent of profile type, with magnitudes in the range mnucH=12.8 to 17.4 mag

  19. LQG and maximum entropy control design for the Hubble Space Telescope

    Science.gov (United States)

    Collins, Emmanuel G., Jr.; Richter, Stephen

    Solar array vibrations are responsible for serious pointing control problems on the Hubble Space Telescope (HST). The original HST control law was not designed to attenuate these disturbances because they were not perceived to be a problem prior to launch. However, significant solar array vibrations do occur due to large changes in the thermal environment as the HST orbits the earth. Using classical techniques, Marshall Space Flight Center in conjunction with Lockheed Missiles and Space Company developed modified HST controllers that were able to suppress the influence of the vibrations of the solar arrays on the line-of-sight (LOS) performance. Substantial LOS improvement was observed when two of these controllers were implemented on orbit. This paper describes the development of modified HST controllers by using modern control techniques, particularly linear-quadratic-gaussian (LQG) design and Maximum Entropy robust control design, a generalization of LQG that incorporates robustness constraints with respect to modal errors. The fundamental issues are discussed candidly and controllers designed using these modern techniques are described.

  20. The Sirius System and Its Astrophysical Puzzles: Hubble Space Telescope and Ground-based Astrometry

    Science.gov (United States)

    Bond, Howard E.; Schaefer, Gail H.; Gilliland, Ronald L.; Holberg, Jay B.; Mason, Brian D.; Lindenblad, Irving W.; Seitz-McLeese, Miranda; Arnett, W. David; Demarque, Pierre; Spada, Federico; Young, Patrick A.; Barstow, Martin A.; Burleigh, Matthew R.; Gudehus, Donald

    2017-05-01

    Sirius, the seventh-nearest stellar system, is a visual binary containing the metallic-line A1 V star Sirius A, the brightest star in the sky, orbited in a 50.13 year period by Sirius B, the brightest and nearest white dwarf (WD). Using images obtained over nearly two decades with the Hubble Space Telescope (HST), along with photographic observations covering almost 20 years and nearly 2300 historical measurements dating back to the 19th century, we determine precise orbital elements for the visual binary. Combined with the parallax and the motion of the A component, these elements yield dynamical masses of 2.063+/- 0.023 {M}⊙ and 1.018+/- 0.011 {M}⊙ for Sirius A and B, respectively. Our precise HST astrometry rules out third bodies orbiting either star in the system, down to masses of ˜15-25 {M}{Jup}. The location of Sirius B in the Hertzsprung-Russell diagram is in excellent agreement with theoretical cooling tracks for WDs of its dynamical mass, and implies a cooling age of ˜126 Myr. The position of Sirius B on the mass-radius plane is also consistent with WD theory, assuming a carbon-oxygen core. Including the pre-WD evolutionary timescale of the assumed progenitor, the total age of Sirius B is about 228 ± 10 Myr. We calculated evolutionary tracks for stars with the dynamical mass of Sirius A, using two independent codes. We find it necessary to assume a slightly subsolar metallicity, of about 0.85 {Z}⊙ , to fit its location on the luminosity-radius plane. The age of Sirius A based on these models is about 237-247 Myr, with uncertainties of ±15 Myr, consistent with that of the WD companion. We discuss astrophysical puzzles presented by the Sirius system, including the probability that the two stars must have interacted in the past, even though there is no direct evidence for this and the orbital eccentricity remains high. Based in part on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, and from

  1. Proper Motions of Dwarf Spheroidal Galaxies from Hubble Space Telescope Imaging. III. Measurement for Ursa Minor

    Science.gov (United States)

    Piatek, Slawomir; Pryor, Carlton; Bristow, Paul; Olszewski, Edward W.; Harris, Hugh C.; Mateo, Mario; Minniti, Dante; Tinney, Christopher G.

    2005-07-01

    This article presents a measurement of the proper motion of the Ursa Minor dwarf spheroidal galaxy determined from images taken with the Hubble Space Telescope in two distinct fields. Each field contains a quasi-stellar object that serves as the ``reference point.'' The measured proper motion for Ursa Minor, expressed in the equatorial coordinate system, is (μα,μδ)=(-50+/-17,22+/-16) mas century-1. Removing the contributions of the solar motion and the motion of the local standard of rest yields the proper motion in the Galactic rest frame: (μGrfα,μGrfδ)=(-8+/-17,38+/-16) mas century-1. The implied space velocity with respect to the Galactic center has a radial component of Vr=-75+/-44 km s-1 and a tangential component of Vt=144+/-50 km s-1. Integrating the motion of Ursa Minor in a realistic potential for the Milky Way produces orbital elements. The perigalacticon and apogalacticon are 40 (10, 76) and 89 (78, 160) kpc, respectively, where the values in the parentheses represent the 95% confidence intervals derived from Monte Carlo experiments. The eccentricity of the orbit is 0.39 (0.09, 0.79), and the orbital period is 1.5 (1.1, 2.7) Gyr. The orbit is retrograde and inclined by 124° (94°, 136°) to the Galactic plane. Ursa Minor is not a likely member of a proposed stream of galaxies on similar orbits around the Milky Way, nor is the plane of its orbit coincident with a recently proposed planar alignment of galaxies around the Milky Way. Comparing the orbits of Ursa Minor and Carina shows no reason for the different star formation histories of these two galaxies. Ursa Minor must contain dark matter to have a high probability of having survived disruption by the Galactic tidal force until the present. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  2. Hubble 15 years of discovery

    CERN Document Server

    Lindberg Christensen, Lars; Kornmesser, M

    2006-01-01

    Hubble: 15 Years of Discovery was a key element of the European Space Agency's 15th anniversary celebration activities for the 1990 launch of the NASA/ESA Hubble Space Telescope. As an observatory in space, Hubble is one of the most successful scientific projects of all time, both in terms of scientific output and its immediate public appeal.

  3. SOLAR-LIKE OSCILLATIONS IN A METAL-POOR GLOBULAR CLUSTER WITH THE HUBBLE SPACE TELESCOPE

    International Nuclear Information System (INIS)

    Stello, Dennis; Gilliland, Ronald L.

    2009-01-01

    We present analyses of variability in the red giant stars in the metal-poor globular cluster NGC 6397, based on data obtained with the Hubble Space Telescope. We use a nonstandard data reduction approach to turn a 23 day observing run originally aimed at imaging the white dwarf population, into time-series photometry of the cluster's highly saturated red giant stars. With this technique we obtain noise levels in the final power spectra down to 50 parts per million, which allows us to search for low-amplitude solar-like oscillations. We compare the observed excess power seen in the power spectra with estimates of the typical frequency range, frequency spacing, and amplitude from scaling the solar oscillations. We see evidence that the detected variability is consistent with solar-like oscillations in at least one and perhaps up to four stars. With metallicities 2 orders of magnitude lower than those of the Sun, these stars present so far the best evidence of solar-like oscillations in such a low-metallicity environment.

  4. Hubble Space Telescope observations of Europa in and out of eclipse

    Science.gov (United States)

    Sparks, W.B.; McGrath, M.; Hand, K.; Ford, H.C.; Geissler, P.; Hough, J.H.; Turner, E.L.; Chyba, C.F.; Carlson, R.; Turnbull, M.

    2010-01-01

    Europa is a prime target for astrobiology and has been prioritized as the next target for a National Aeronautics and Space Administration flagship mission. It is important, therefore, that we advance our understanding of Europa, its ocean and physical environment as much as possible. Here, we describe observations of Europa obtained during its orbital eclipse by Jupiter using the Hubble Space Telescope. We obtained Advanced Camera for Surveys Solar Blind Channel far ultraviolet low-resolution spectra that show oxygen line emission both in and out of eclipse. We also used the Wide-Field and Planetary Camera-2 and searched for broad-band optical emission from fluorescence of the surface material, arising from the very high level of incident energetic particle radiation on ices and potentially organic substances. The high-energy particle radiation at the surface of Europa is extremely intense and is responsible for the production of a tenuous oxygen atmosphere and associated FUV line emission. Approximately 50% of the oxygen emission lasts at least a few hours into the eclipse. We discuss the detection limits of the optical emission, which allow us to estimate the fraction of incident energy reradiated at optical wavelengths, through electron-excited emission, Cherenkov radiation in the ice and fluorescent processes. ?? 2010 Cambridge University Press.

  5. Identification of the Infrared Counterpart of SGR 1935+2154 with the Hubble Space Telescope

    Science.gov (United States)

    Levan, Andrew; Kouveliotou, Chryssa; Fruchter, Andrew

    2018-02-01

    We present deep Hubble Space Telescope observations of a new magnetar source, the soft gamma-repeater SGR 1935+2154, discovered by Swift. We obtained three epochs of observations: while the source was active in 2015 March, during a quiescent period in 2015 August, and during a further active phase in 2016 May. Close to the center of the X-ray error region identified by Chandra, we find a faint (F140W(AB) = 25.3) source, which fades by a factor of ∼2 over the course of 5 months between the first two epochs of observations, before rebrightening during the second active period. If this source is indeed the counterpart to SGR 1935+2154, then it is among the faintest yet located for a magnetar. Our observations are spaced over 1.3 years and enable us to place limits on the source velocity of μ = (60 ± 40) km s‑1 kpc‑1 observations on timescales of a decade can hence probe proper motion limits smaller than the velocities observed for the majority of pulsars. The comparison of the optical/IR and X-ray light curves of the source suggests that emission in the two regimes is associated but not directly correlated, offering support for a magnetospheric versus a fallback disk origin.

  6. Hubble space telescope near-ultraviolet spectroscopy of the bright cemp-no star BD+44°493

    Energy Technology Data Exchange (ETDEWEB)

    Placco, Vinicius M. [Gemini Observatory, Hilo, HI 96720 (United States); Beers, Timothy C.; Smith, Verne V. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Roederer, Ian U. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Cowan, John J. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States); Frebel, Anna [Kavli Institute for Astrophysics and Space Research and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Filler, Dan; Ivans, Inese I. [Department of Physics and Astronomy, The University of Utah, Salt Lake City, UT 84112 (United States); Lawler, James E. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Schatz, Hendrik [JINA—Joint Institute for Nuclear Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, IN 46556-5670 (United States); Sneden, Christopher [Department of Astronomy and McDonald Observatory, University of Texas, Austin, TX 78712 (United States); Sobeck, Jennifer S. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Aoki, Wako, E-mail: vplacco@gemini.edu [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2014-07-20

    We present an elemental-abundance analysis, in the near-ultraviolet (NUV) spectral range, for the extremely metal-poor star BD+44°493 a ninth magnitude subgiant with [Fe/H] =–3.8 and enhanced carbon, based on data acquired with the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. This star is the brightest example of a class of objects that, unlike the great majority of carbon-enhanced metal-poor (CEMP) stars, does not exhibit over-abundances of heavy neutron-capture elements (CEMP-no). In this paper, we validate the abundance determinations for a number of species that were previously studied in the optical region, and obtain strong upper limits for beryllium and boron, as well as for neutron-capture elements from zirconium to platinum, many of which are not accessible from ground-based spectra. The boron upper limit we obtain for BD+44°493, log ε (B) <–0.70, the first such measurement for a CEMP star, is the lowest yet found for very and extremely metal-poor stars. In addition, we obtain even lower upper limits on the abundances of beryllium, log ε (Be) <–2.3, and lead, log ε (Pb) <–0.23 ([Pb/Fe] <+1.90), than those reported by previous analyses in the optical range. Taken together with the previously measured low abundance of lithium, the very low upper limits on Be and B suggest that BD+44°493 was formed at a very early time, and that it could well be a bona-fide second-generation star. Finally, the Pb upper limit strengthens the argument for non-s-process production of the heavy-element abundance patterns in CEMP-no stars.

  7. THE PECULIAR EXTINCTION LAW OF SN 2014J MEASURED WITH THE HUBBLE SPACE TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Amanullah, R.; Goobar, A.; Johansson, J.; Petrushevska, T. [Oskar Klein Centre, Physics Department, Stockholm University, SE-106 91 Stockholm (Sweden); Banerjee, D. P. K.; Venkataraman, V.; Joshi, V.; Ashok, N. M. [Physical Research Laboratory, Ahmedabad 380009 (India); Cao, Y.; Kulkarni, S. R. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Kasliwal, M. M. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Nugent, P. E. [Department of Astronomy, University of California Berkeley, B-20 Hearst Field, Annex # 3411, Berkeley, CA 94720-3411 (United States); Stanishev, V., E-mail: rahman@fysik.su.se [CENTRA—Centro Multidisciplinar de Astrofísica, Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisbon (Portugal)

    2014-06-20

    The wavelength dependence of the extinction of Type Ia SN 2014J in the nearby galaxy M82 has been measured using UV to near-IR photometry obtained with the Hubble Space Telescope, the Nordic Optical Telescope, and the Mount Abu Infrared Telescope. This is the first time that the reddening of an SN Ia is characterized over the full wavelength range of 0.2-2 μm. A total-to-selective extinction, R{sub V} ≥ 3.1, is ruled out with high significance. The best fit at maximum using a Galactic type extinction law yields R{sub V} = 1.4 ± 0.1. The observed reddening of SN 2014J is also compatible with a power-law extinction, A {sub λ}/A{sub V} = (λ/λ {sub V}) {sup p} as expected from multiple scattering of light, with p = –2.1 ± 0.1. After correcting for differences in reddening, SN 2014J appears to be very similar to SN 2011fe over the 14 broadband filter light curves used in our study.

  8. High-resolution spectra of Jupiter's northern auroral ultraviolet emission with the Hubble Space Telescope

    Science.gov (United States)

    Trafton, L. M.; Gerard, J. C.; Munhoven, G.; Waite, J. H., Jr.

    1994-01-01

    The first spectroscopic observations of planetary aurora with the Hubble Space Telescope (HST) are reported. These include spectral regions centered on the H2 Lyman and Werner bands of a region of Jupiter's northern aurora. The observations were made with the Goddard High Resolution Spectrograph (GHRS) using the Large Science Aperture as part of a campaign to study Jupiter at the time of the Ulysses flyby. The individual rotational-vibrational bands are resolved and the observed emissions are essentially all from H2. A rotational-vibrational temperature for H2 of 530 +/- 100 K is derived, a value significantly less than the 850-1100 K reported for Jovian H3(+) in the near-infrared but consistent with the temperature reported for fundamental-band quadrupole H2 emission. Comparison with the Faint Object Camera (FOC) images shows that the observed region was not one of the hot spots of the aurora. The results are interpreted in trms of electron impact excitation of H2 from secondary particles generated by primaries precipitating into Jupiter's atmsophere from the magnetosphere. In the region of the aurora observed, the homopause level is found to be significantly hotter but not necessarily higher than observed at nonauroral latitudes. The equatorial H2 dayglow spectrum was also detected; its intensity was 3.2 kR or 13% of the strength of the observed auroral emission.

  9. Hubble Space Telescope observations of comet P/Shoemaker-Levy 9 (1993e)

    Science.gov (United States)

    Weaver, H.A.; Feldman, P.D.; A'Hearn, M.F.; Arpigny, C.; Brown, R.A.; Helin, E.F.; Levy, D.H.; Marsden, B.G.; Meech, K.J.; Larson, S.M.; Noll, K.S.; Scotti, J.V.; Sekanina, Z.; Shoemaker, C.S.; Shoemaker, E.M.; Smith, T.E.; Storrs, A.D.; Yeomans, D.K.; Zellner, B.

    1994-01-01

    The Hubble Space Telescope observed the fragmented comet P/Shoemaker-Levy 9 (1993e) (P indicates that it is a periodic comet) on 1 July 1993. Approximately 20 individual nuclei and their comae were observed in images taken with the Planetary Camera. After subtraction of the comae light, the 11 brightest nuclei have magnitudes between ~23.7 and 24.8. Assuming that the geometric albedo is 0.04, these magnitudes imply that the nuclear diameters are in the range ~2.5 to 4.3 kilometers. If the density of each nucleus is 1 gram per cubic centimeter, the total energy deposited by the impact of these 11 nuclei into Jupiter's atmosphere next July will be ~4 x 1030 ergs (~108 megatons of TNT). This latter number should be regarded as an upper limit because the nuclear magnitudes probably contain a small residual coma contribution. The Faint Object Spectrograph was used to search for fluorescence from OH, which is usually an excellent indicator of cometary activity. No OH emission was detected, and this can be translated into an upper limit on the water production rate of ~2 x 1027 molecules per second.

  10. Ultracompact Blue Dwarf Galaxies: Hubble Space Telescope Imaging and Stellar Population Analysis

    Science.gov (United States)

    Corbin, Michael R.; Vacca, William D.; Cid Fernandes, Roberto; Hibbard, John E.; Somerville, Rachel S.; Windhorst, Rogier A.

    2006-11-01

    We present deep Hubble Space Telescope (HST) Advanced Camera for Surveys/High Resolution Channel U-, narrow-V-, and I-band images of nine ``ultracompact'' blue dwarf galaxies (UCBDs) selected from the Sloan Digital Sky Survey (SDSS). We define UCBDs as local (zPOX 186, but the structure of several of them suggests that their current star formation has been triggered by the collisions/mergers of smaller clumps of stars. In one case, HS 0822+3542, the images resolve what may be two small (~100 pc) components that have recently collided, supporting this interpretation. In six of the objects much of the star formation is concentrated in young massive clusters, contributing to their compactness in ground-based images. The evidence that the galaxies consist mainly of ~10 Gyr old stars establishes that they are not protogalaxies, forming their first generation of stars. Their low metallicities are more likely to be the result of the escape of supernova ejecta, rather than youth.

  11. Theoretical colours and isochrones for some Hubble Space Telescope colour systems. II

    Science.gov (United States)

    Paltoglou, G.; Bell, R. A.

    1991-01-01

    A grid of synthetic surface brightness magnitudes for 14 bandpasses of the Hubble Space Telescope Faint Object Camera is presented, as well as a grid of UBV, uvby, and Faint Object Camera surface brightness magnitudes derived from the Gunn-Stryker spectrophotometric atlas. The synthetic colors are used to examine the transformations between the ground-based Johnson UBV and Stromgren uvby systems and the Faint Object Camera UBV and uvby. Two new four-color systems, similar to the Stromgren system, are proposed for the determination of abundance, temperature, and surface gravity. The synthetic colors are also used to calculate color-magnitude isochrones from the list of theoretical tracks provided by VandenBerg and Bell (1990). It is shown that by using the appropriate filters it is possible to minimize the dependence of this color difference on metallicity. The effects of interstellar reddening on various Faint Object Camera colors are analyzed as well as the observational requirements for obtaining data of a given signal-to-noise for each of the 14 bandpasses.

  12. Infall of nearby galaxies into the Virgo cluster as traced with Hubble space telescope

    Energy Technology Data Exchange (ETDEWEB)

    Karachentsev, Igor D. [Special Astrophysical Observatory RAS, Nizhnij Arkhyz, Karachai-Cherkessian Republic 369167 (Russian Federation); Tully, R. Brent; Wu, Po-Feng [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Shaya, Edward J. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Dolphin, Andrew E., E-mail: ikar@sao.ru [Raytheon Company, 1151 East Hermans Road, Tucson, AZ 85756 (United States)

    2014-02-10

    We measured the tip of the red giant branch distances to nine galaxies in the direction to the Virgo cluster using the Advanced Camera for Surveys on the Hubble Space Telescope. These distances put seven galaxies (GR 34, UGC 7512, NGC 4517, IC 3583, NGC 4600, VCC 2037, and KDG 215) in front of Virgo and two galaxies (IC 3023 and KDG 177) likely inside the cluster. Distances and radial velocities of the galaxies situated between us and the Virgo core clearly exhibit the infall phenomenon toward the cluster. In the case of spherically symmetric radial infall, we estimate the radius of the 'zero-velocity surface' to be (7.2 ± 0.7) Mpc, which yields a total mass of the Virgo cluster of (8.0 ± 2.3) × 10{sup 14} M {sub ☉}, in good agreement with its virial mass estimates. We conclude that the Virgo outskirts do not contain significant amounts of dark matter beyond their virial radius.

  13. HUBBLE SPACE TELESCOPE EMISSION-LINE GALAXIES AT z ∼ 2: THE MYSTERY OF NEON

    Energy Technology Data Exchange (ETDEWEB)

    Zeimann, Gregory R.; Ciardullo, Robin; Gebhardt, Henry; Gronwall, Caryl; Hagen, Alex; Trump, Jonathan R.; Bridge, Joanna S.; Luo, Bin; Schneider, Donald P., E-mail: grzeimann@psu.edu [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2015-01-01

    We use near-infrared grism spectroscopy from the Hubble Space Telescope to examine the strength of [Ne III] λ3869 relative to Hβ, [O II] λ3727, and [O III] λ5007 in 236 low-mass (7.5 ≲ log (M {sub *}/M {sub ☉}) ≲ 10.5) star-forming galaxies in the redshift range 1.90 < z < 2.35. By stacking the data by stellar mass, we show that the [Ne III]/[O II] ratios of the z ∼ 2 universe are marginally higher than those seen in a comparable set of local Sloan Digital Sky Survey galaxies, and that [Ne III]/[O III] is enhanced by ∼0.2 dex. We consider the possible explanations for this ∼4σ result, including higher oxygen depletion out of the gas phase, denser H II regions, higher production of {sup 22}Ne via Wolf-Rayet stars, and the existence of a larger population of X-ray obscured active galactic nuclei at z ∼ 2 compared to z ∼ 0. None of these simple scenarios, alone, are favored to explain the observed line ratios. We conclude by suggesting several avenues of future observations to further explore the mystery of enhanced [Ne III] emission.

  14. Proper Motions of Dwarf Spheroidal Galaxies from Hubble Space Telescope Imaging. 3; Measurement for URSA Minor

    Science.gov (United States)

    Piatek, Slawomir; Pryor, Carlton; Bristow, Paul; Olszewski, Edward W.; Harris, Hugh C.; Mateo, Mario; Minniti, Dante; Tinney, Christopher G.

    2005-01-01

    This article presents a measurement of the proper motion of the Ursa Minor dwarf spheroidal galaxy determined from images taken with the Hubble Space Telescope in two distinct fields. Each field contains a quasi-stellar object that serves as the "reference point". Integrating the motion of Ursa Minor in a realistic potential for the Milky Way produces orbital elements. The perigalacticon and apogalacticon are 40 (10, 76) and 89 (78, 160) kpc, respectively, where the values in the parentheses represent the 95% confidence intervals derived from Monte Carlo experiments. The eccentricity of the orbit is 0.39 (0.09, 0.79), and the orbital period is 1.5 (1.1, 2.7) Gyr. The orbit is retrograde and inclined by 124 degrees (94 deg, 36 deg ) to the Galactic plane. Ursa Minor is not a likely member of a proposed stream of galaxies on similar orbits around the Milky Way, nor is the plane of its orbit coincident with a recently proposed planar alignment of galaxies around the Milky Way. Comparing the orbits of Ursa Minor and Carina shows no reason for the different star formation histories of these two galaxies. Ursa Minor must contain dark matter to have a high probability of having survived disruption by the Galactic tidal force until the present.

  15. Hubble Space Telescope observations of the optical counterpart to a ultra-compact high-velocity cloud

    Science.gov (United States)

    Sand, David J.

    2017-01-01

    As part of a comprehensive archival search for optical counterparts to ultra-compact high-velocity clouds (UCHVCs), our team has uncovered five Local Volume dwarf galaxies, two of which were not previously known. Among these was AGC 226067, also known as ALFALFA-Dw1, which appeared to be made up of several HI and blue optical clumps based on ground-based data, with at least one HII region. Here we present Hubble Space Telescope Advanced Camera for Surveys data of AGC 226067. The data show that AGC 226067 is made up of a ~7-30 Myr old stellar population with a [Fe/H]~-0.6. Further, there is no evidence for an old stellar population associated with the system, down to a limit of MV>-8. Based on this and the position of AGC 226067 in the outskirts of the M86 subgroup of the Virgo cluster we present various arguments for the origin of this strange stellar system.

  16. Constraints on water vapor and sulfur dioxide at Ceres: Exploiting the sensitivity of the Hubble Space Telescope

    Science.gov (United States)

    Roth, Lorenz

    2018-05-01

    Far-ultraviolet observations of dwarf-planet (1) Ceres were obtained on several occasions in 2015 and 2016 by the Cosmic Origins Spectrograph (COS) and the Space Telescope Imaging Spectrograph (STIS), both on board the Hubble Space Telescope (HST). We report a search for neutral gas emissions at hydrogen, oxygen and sulfur lines around Ceres from a potential teneous exosphere. No detectable exosphere emissions are present in any of the analyzed HST observations. We apply analytical models to relate the derived upper limits for the atomic species to a water exosphere (for H and O) and a sulfur dioxide exosphere (for S and O), respectively. The H and O upper limits constrain the H2O production rate at the surface to (2 - 4) ×1026 molecules s-1 or lower, similar to or slightly larger than previous detections and upper limits. With low fluxes of energetic protons measured in the solar wind prior to the HST observations and the obtained non-detections, an assessment of the recently suggested sputter-generated water exosphere during solar energetic particle events is not possible. Investigating a sulfur dioxide-based exosphere, we find that the O and S upper limits constrain the SO2 density at the surface to values ∼ 1010 times lower than the equilibrium vapor pressure density. This result implies that SO2 is not present on Ceres' sunlit surface, contrary to previous findings in HST ultraviolet reflectance spectra but in agreement with the absence of SO2 infrared spectral features as observed by the Dawn spacecraft.

  17. Analyses of Hubble Space Telescope Aluminized-Teflon Multilayer Insulation Blankets Retrieved After 19 Years of Space Exposure

    Science.gov (United States)

    de Groh, Kim K.; Perry, Bruce A.; Mohammed, Jelila S.; Banks, Bruce

    2015-01-01

    Since its launch in April 1990, the Hubble Space Telescope (HST) has made many important observations from its vantage point in low Earth orbit (LEO). However, as seen during five servicing missions, the outer layer of multilayer insulation (MLI) has become increasingly embrittled and has cracked in many areas. In May 2009, during the 5th servicing mission (called SM4), two MLI blankets were replaced with new insulation and the space-exposed MLI blankets were retrieved for degradation analyses by teams at NASA Glenn Research Center (GRC) and NASA Goddard Space Flight Center (GSFC). The retrieved MLI blankets were from Equipment Bay 8, which received direct sunlight, and Equipment Bay 5, which received grazing sunlight. Each blanket was divided into several regions based on environmental exposure and/or physical appearance. The aluminized-Teflon (DuPont, Wilmington, DE) fluorinated ethylene propylene (Al-FEP) outer layers of the retrieved MLI blankets have been analyzed for changes in optical, physical, and mechanical properties, along with chemical and morphological changes. Pristine and as-retrieved samples (materials) were heat treated to help understand degradation mechanisms. When compared to pristine material, the analyses have shown how the Al-FEP was severely affected by the space environment. Most notably, the Al-FEP was highly embrittled, fracturing like glass at strains of 1 to 8 percent. Across all measured properties, more significant degradation was observed for Bay 8 material as compared to Bay 5 material. This paper reviews the tensile and bend-test properties, density, thickness, solar absorptance, thermal emittance, x-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS) elemental composition measurements, surface and crack morphologies, and atomic oxygen erosion yields of the Al-FEP outer layer of the retrieved HST blankets after 19 years of space exposure.

  18. The ultraviolet pulsations of the cataclysmic variable AE Aquarii as observed with the Hubble Space Telescope

    Science.gov (United States)

    Eracleous, Michael; Horne, Keith; Robinson, Edward L.; Zhang, Er-Ho; Marsh, Thomas R.; Wood, Janet H.

    1994-01-01

    We present the results of high time resolution UV spectroscopy and simultaneous high-speed UBVR photometry of AE Aqr. The UV spectra were obtained with the Faint Object Spectrograph aboard the Hubble Space Telescope (HST), and the photometry was carried out with the 82 sec telescope at McDonald Observatory. Our study focuses on the coherent 33 sceond oscillations, whose amplitude is found to be very large in the UV (40% of the mean quiescent level). The mean pulse profile has two broad unequal peaks spaced by half an oscillation cycle. The pulse profiles in the UV and optical bands appear quite similar in shape, with no discernible shifts. The orbital delay curve of the UV pulses establishes the white dwarf as their origin. The (UV+optical) spectrum of the pulsations is well described by a white dwarf atmosphere model with a temperature of about 26,000 K. We find no oscillations in the UV emission-line fluxes, nor in their velocities, down to a limit of 800 km/s. Based on the properties of the UV and optical pulsations we suggest that they originate in the X-ray heated magnetic polar caps of the white dwarf. Under this assumption we produce maximum entropy maps of the brightness distribution of the white dwarf surface. Using this model we are able to reproduce the observed mean pulse profile and interpret fluctuations in the oscillation amplitude as small fluctuations in the accretion rate. We find that the amplitudes and profiles of the pulses are not strongly affectd by the large aperiodic flares exhibited by the system. This suggests that the large flares are not related to the process of depositing material onto the white dwarf and argues against models that place their origin at the white dwarf magnetosphere.

  19. Characterizing the Evolution of Circumstellar Systems with the Hubble Space Telescope and the Gemini Planet Imager

    Science.gov (United States)

    Wolff, Schuyler; Schuyler G. Wolff

    2018-01-01

    The study of circumstellar disks at a variety of evolutionary stages is essential to understand the physical processes leading to planet formation. The recent development of high contrast instruments designed to directly image the structures surrounding nearby stars, such as the Gemini Planet Imager (GPI) and coronagraphic data from the Hubble Space Telescope (HST) have made detailed studies of circumstellar systems possible. In my thesis work I detail the observation and characterization of three systems. GPI polarization data for the transition disk, PDS 66 shows a double ring and gap structure with a temporally variable azimuthal asymmetry. This evolved morphology could indicate shadowing from some feature in the innermost regions of the disk, a gap-clearing planet, or a localized change in the dust properties of the disk. Millimeter continuum data of the DH Tau system places limits on the dust mass that is contributing to the strong accretion signature on the wide-separation planetary mass companion, DH Tau b. The lower than expected dust mass constrains the possible formation mechanism, with core accretion followed by dynamical scattering being the most likely. Finally, I present HST scattered light observations of the flared, edge-on protoplanetary disk ESO H$\\alpha$ 569. I combine these data with a spectral energy distribution to model the key structural parameters such as the geometry (disk outer radius, vertical scale height, radial flaring profile), total mass, and dust grain properties in the disk using the radiative transfer code MCFOST. In order to conduct this work, I developed a new tool set to optimize the fitting of disk parameters using the MCMC code \\texttt{emcee} to efficiently explore the high dimensional parameter space. This approach allows us to self-consistently and simultaneously fit a wide variety of observables in order to place constraints on the physical properties of a given disk, while also rigorously assessing the uncertainties in

  20. NEW HUBBLE SPACE TELESCOPE OBSERVATIONS OF HEAVY ELEMENTS IN FOUR METAL-POOR STARS

    Energy Technology Data Exchange (ETDEWEB)

    Roederer, Ian U.; Thompson, Ian B. [Carnegie Observatories, Pasadena, CA 91101 (United States); Lawler, James E. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Sobeck, Jennifer S. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Beers, Timothy C. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Cowan, John J. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States); Frebel, Anna [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, Cambridge, MA 02139 (United States); Ivans, Inese I. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Schatz, Hendrik [Department of Physics and Astronomy, Michigan State University, E. Lansing, MI 48824 (United States); Sneden, Christopher [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States)

    2012-12-15

    Elements heavier than the iron group are found in nearly all halo stars. A substantial number of these elements, key to understanding neutron-capture nucleosynthesis mechanisms, can only be detected in the near-ultraviolet. We report the results of an observing campaign using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope to study the detailed heavy-element abundance patterns in four metal-poor stars. We derive abundances or upper limits from 27 absorption lines of 15 elements produced by neutron-capture reactions, including seven elements (germanium, cadmium, tellurium, lutetium, osmium, platinum, and gold) that can only be detected in the near-ultraviolet. We also examine 202 heavy-element absorption lines in ground-based optical spectra obtained with the Magellan Inamori Kyocera Echelle Spectrograph on the Magellan-Clay Telescope at Las Campanas Observatory and the High Resolution Echelle Spectrometer on the Keck I Telescope on Mauna Kea. We have detected up to 34 elements heavier than zinc. The bulk of the heavy elements in these four stars are produced by r-process nucleosynthesis. These observations affirm earlier results suggesting that the tellurium found in metal-poor halo stars with moderate amounts of r-process material scales with the rare earth and third r-process peak elements. Cadmium often follows the abundances of the neighboring elements palladium and silver. We identify several sources of systematic uncertainty that must be considered when comparing these abundances with theoretical predictions. We also present new isotope shift and hyperfine structure component patterns for Lu II and Pb I lines of astrophysical interest.

  1. The Infrared Eye of the Wide-Field Camera 3 on the Hubble Space Telescope Reveals Multiple Main Sequences of Very Low Mass Stars in NGC 2808

    Science.gov (United States)

    Milone, A. P.; Marino, A. F.; Cassisi, S.; Piotto, G.; Bedin, L. R.; Anderson, J.; Allard, F.; Aparicio, A.; Bellini, A.; Buonanno, R.; Monelli, M.; Pietrinferni, A.

    2012-08-01

    We use images taken with the infrared channel of the Wide Field Camera 3 on the Hubble Space Telescope to study the multiple main sequences (MSs) of NGC 2808. Below the turnoff, the red, the middle, and the blue MS, previously detected from visual-band photometry, are visible over an interval of about 3.5 F160W magnitudes. The three MSs merge together at the level of the MS bend. At fainter magnitudes, the MS again splits into two components containing ~65% and ~35% of stars, with the most-populated MS being the bluest one. Theoretical isochrones suggest that the latter is connected to the red MS discovered in the optical color-magnitude diagram (CMD) and hence corresponds to the first stellar generation, having primordial helium and enhanced carbon and oxygen abundances. The less-populated MS in the faint part of the near-IR CMD is helium-rich and poor in carbon and oxygen, and it can be associated with the middle and the blue MS of the optical CMD. The finding that the photometric signature of abundance anti-correlation is also present in fully convective MS stars reinforces the inference that they have a primordial origin. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  2. HD 104860 and HD 192758: Two Debris Disks Newly Imaged in Scattered Light with the Hubble Space Telescope

    Science.gov (United States)

    Choquet, É.; Bryden, G.; Perrin, M. D.; Soummer, R.; Augereau, J.-C.; Chen, C. H.; Debes, J. H.; Gofas-Salas, E.; Hagan, J. B.; Hines, D. C.; Mawet, D.; Morales, F.; Pueyo, L.; Rajan, A.; Ren, B.; Schneider, G.; Stark, C. C.; Wolff, S.

    2018-02-01

    We present the first scattered-light images of two debris disks around the F8 star HD 104860 and the F0V star HD 192758, respectively ∼45 and ∼67 pc away. We detected these systems in the F110W and F160W filters through our reanalysis of archival Hubble Space Telescope (HST) NICMOS data with modern starlight-subtraction techniques. Our image of HD 104860 confirms the morphology previously observed by Herschel in thermal emission with a well-defined ring at a radius of ∼114 au inclined by ∼58°. Although the outer edge profile is consistent with dynamical evolution models, the sharp inner edge suggests sculpting by unseen perturbers. Our images of HD 192758 reveal a disk at radius ∼95 au inclined by ∼59°, never resolved so far. These disks have low scattering albedos of 10% and 13%, respectively, inconsistent with water ice grain compositions. They are reminiscent of several other disks with similar inclination and scattering albedos: Fomalhaut, HD 92945, HD 202628, and HD 207129. They are also very distinct from brighter disks in the same inclination bin, which point to different compositions between these two populations. Varying scattering albedo values can be explained by different grain porosities, chemical compositions, or grain size distributions, which may indicate distinct formation mechanisms or dynamical processes at work in these systems. Finally, these faint disks with large infrared excesses may be representative of an underlying population of systems with low albedo values. Searches with more sensitive instruments on HST or on the James Webb Space Telescope and using state-of-the art starlight-subtraction methods may help discover more of such faint systems.

  3. A Hubble Space Telescope imaging study of four FeLoBAL quasar host galaxies

    Science.gov (United States)

    Lawther, D.; Vestergaard, M.; Fan, X.

    2018-04-01

    We study the host galaxies of four Iron Low-Ionization Broad Absorption-line Quasars (FeLoBALs), using Hubble Space Telescope imaging data, investigating the possibility that they represent a transition between an obscured active galactic nucleus (AGN) and an ordinary optical quasar. In this scenario, the FeLoBALs represent the early stage of merger-triggered accretion, in which case their host galaxies are expected to show signs of an ongoing or recent merger. Using PSF subtraction techniques, we decompose the images into host galaxy and AGN components at rest-frame ultraviolet and optical wavelengths. The ultraviolet is sensitive to young stars, while the optical probes stellar mass. In the ultraviolet we image at the BAL absorption trough wavelengths so as to decrease the contrast between the quasar and host galaxy emission. We securely detect an extended source for two of the four FeLoBALs in the rest-frame optical; a third host galaxy is marginally detected. In the rest-frame UV we detect no host emission; this constrains the level of unobscured star formation. Thus, the host galaxies have observed properties that are consistent with those of non-BAL quasars with the same nuclear luminosity, i.e. quiescent or moderately star-forming elliptical galaxies. However, we cannot exclude starbursting hosts that have the stellar UV emission obscured by modest amounts of dust reddening. Thus, our findings also allow the merger-induced young quasar scenario. For three objects, we identify possible close companion galaxies that may be gravitationally interacting with the quasar hosts.

  4. Evidence for Type Ia Supernova Diversity from Ultraviolet Observations with the Hubble Space Telescope

    Science.gov (United States)

    Wang, Xiaofeng; Wang, Lifan; Filippenko, Alexei; Baron, Eddie; Kromer, Markus; Jack, Dennis; Zhang, Tianmeng; Aldering, Greg; Antilogus, Pierre; Arnett, W. David; hide

    2012-01-01

    We present ultraviolet (UV) spectroscopy and photometry of four Type Ia supernovae (SNe 2004dt, 2004ef, 2005M, and 2005cf) obtained with the UV prism of the Advanced Camera for Surveys on the Hubble Space Telescope, This dataset provides unique spectral time series down to 2000 A. Significant diversity is seen in the near-maximum-light spectra (approx.2000-3500 A) for this small sample. The corresponding photometric data, together with archival data from Swift Ultraviolet/Optical Telescope observations, provide further evidence of increased dispersion in the UV emission with respect to the optical. The peak luminosities measured in the uvw lIF250W filter are found to correlate with the B-band light-curve shape parameter .(Delta)m15(B), but with much larger scatter relative to the correlation in the broad-band B band (e.g., approx. 0.4 mag versus approx. 0.2 mag for those with 0.8 3(sigma), being brighter than normal SNe Ia such as SN 2005cf by approx. 0,9 mag and approx. 2.0 mag in the uvwl1F250W and uvm2/F220W filters, respectively. We show that different progenitor metallicity or line-expansion velocities alone cannot explain such a large discrepancy. Viewing-angle effects, such as due to an asymmetric explosion, may have a significant influence on the flux emitted in the UV region. Detailed modeling is needed to disentangle and quantify the above effects

  5. Little Blue Dots in the Hubble Space Telescope Frontier Fields: Precursors to Globular Clusters?

    Science.gov (United States)

    Elmegreen, Debra Meloy; Elmegreen, Bruce G.

    2017-12-01

    Galaxies with stellar masses {10}-7.4 yr‑1 were examined on images of the Hubble Space Telescope Frontier Field Parallels for Abell 2744 and MACS J0416.1-02403. They appear as unresolved “Little Blue Dots” (LBDs). They are less massive and have higher specific star formation rates (sSFRs) than “blueberries” studied by Yang et al. and higher sSFRs than “Blue Nuggets” studied by Tacchella et al. We divided the LBDs into three redshift bins and, for each, stacked the B435, V606, and I814 images convolved to the same stellar point-spread function (PSF). Their radii were determined from PSF deconvolution to be ∼80 to ∼180 pc. The high sSFRs suggest that their entire stellar mass has formed in only 1% of the local age of the universe. The sSFRs at similar epochs in local dwarf galaxies are lower by a factor of ∼100. Assuming that the star formation rate is {ε }{ff}{M}{gas}/{t}{ff} for efficiency {ε }{ff}, gas mass M gas, and free-fall time, t ff, the gas mass and gas-to-star mass ratio are determined. This ratio exceeds 1 for reasonable efficiencies, and is likely to be ∼5 even with a high {ε }{ff} of 0.1. We consider whether these regions are forming today’s globular clusters. With their observed stellar masses, the maximum likely cluster mass is ∼ {10}5 {M}ȯ , but if star formation continues at the current rate for ∼ 10{t}{ff}∼ 50 {Myr} before feedback and gas exhaustion stop it, then the maximum cluster mass could become ∼ {10}6 {M}ȯ .

  6. The evolution of C/O in dwarf galaxies from Hubble Space Telescope FOS observations

    Science.gov (United States)

    Garnett, D. R.; Skillman, E. D.; Dufour, R. J.; Peimbert, M.; Torres-Peimbert, S.; Terlevich, R.; Terlevich, E.; Shields, G. A.

    1995-01-01

    We present UV observations of seven H II regions in low-luminosity dwarf irregular galaxies and the Magellanic Clouds obtained with the Faint Object Spectrograph (FOS) on the Hubble Space Telescope (HST) in order to measure the C/O abundance ratio in the interstellar medium (ISM) of those galaxies. We measure both O III 1666 A and C III 1909 A in our spectra, enabling us to determine C(+2)/O(+2) with relatively small uncertainties. The results from our HST observations show a continuous increase in C/O with increasing O/H, consistent with a power law having an index of 0.43 +/- 0.09 over the range -4.7 to -3.6 in log (O/H). One possible interpretation of this trend is that the most metal-poor galaxies are the youngest and dominated by the products of early enrichment by massive stars, while more metal-rich galaxies show increasing, delayed contributions of carbon from intermediate-mass stars. Our results also suggest that it may not be appropiate to combine abundances in irregular galaxies with those in spiral galaxies to study the evolution of chemical abundances. Our measured C/O ratios in the most metal-poor galaxies are consistent with predictions of nucleosynthesis from massive stars for Weaver & Woosley's best estimate for the 12C(alpha, gamma) 16O nuclear reaction rate, assuming negligible contanmination from carbon produced in intermediate-mass stars in these galaxies. We detect a weak N III 1750 A multiplet in SMC N88A and obtain interesting upper limits for two other objects. Our 2 sigma uppr limits on the 1750 A feature indicate that the N(+2)/O(+2) ratios in these objects are not significantly larger than the N(+)/O(+) ratios measured from optical spectra. This behavior is consistent with predictions of photionization models, although better detections of N III are needed to confirm the results.

  7. HUBBLE SPACE TELESCOPE IMAGING OF Lyα EMISSION AT z ∼ 4.4

    International Nuclear Information System (INIS)

    Finkelstein, Steven L.; Finkelstein, Keely D.; Cohen, Seth H.; Windhorst, Rogier A.; Malhotra, Sangeeta; Rhoads, James E.; Ryan, Russell E.; Hathi, Nimish P.; McCarthy, Patrick J.; Anderson, Jay; Grogin, Norman A.; Koekemoer, Anton M.; Mutchler, Max; Bond, Howard E.; O'Connell, Robert W.; Balick, Bruce; Calzetti, Daniela; Disney, Michael J.; Dopita, Michael A.; Frogel, Jay A.

    2011-01-01

    We present the highest redshift detections of resolved Lyα emission, using Hubble Space Telescope (HST)/Advanced Camera for Surveys F658N narrowband-imaging data taken in parallel with the Wide Field Camera 3 Early Release Science program in the GOODS Chandra Deep Field-South. We detect Lyα emission from three spectroscopically confirmed z = 4.4 Lyα emitting galaxies (LAEs), more than doubling the sample of LAEs with resolved Lyα emission. Comparing the light distribution between the rest-frame ultraviolet continuum and narrowband images, we investigate the escape of Lyα photons at high redshift. While our data do not support a positional offset between the Lyα and rest-frame ultraviolet (UV) continuum emission, the half-light radius in one out of the three galaxies is significantly (>1σ) larger in Lyα than in the rest-frame UV continuum. Stacking the three LAEs in both the narrowband and UV continuum images, we find that the Lyα light appears larger than the rest-frame UV at 4.2σ significance. This Lyα flux detected with HST is a factor of 4-10 less than observed in similar filters from the ground. These results together imply that the Lyα emission is not strictly confined to its indigenous star-forming regions. Rather, for at least one object the Lyα emission is more extended, with the missing HST flux possibly existing in a diffuse outer halo. This suggests that the radiative transfer of Lyα photons in high-redshift LAEs is complicated, with the interstellar-medium geometry and/or outflows playing a significant role in galaxies at these redshifts.

  8. Edwin P Hubble

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Edwin P Hubble. Articles written in Resonance – Journal of Science Education. Volume 14 Issue 3 March 2009 pp 303-306 Classics. The Exploration of Space · Edwin P Hubble · More Details Fulltext PDF ...

  9. The universe in a mirror the saga of the Hubble Space Telescope and the visionaries who built it

    CERN Document Server

    Zimmerman, Robert

    2008-01-01

    The Hubble Space Telescope has produced the most stunning images of the cosmos humanity has ever seen. It has transformed our understanding of the universe around us, revealing new information about its age and evolution, the life cycle of stars, and the very existence of black holes, among other startling discoveries. But it took an amazing amount of work and perseverance to get the first space telescope up and running. The Universe in a Mirror tells the story of this telescope and the visionaries responsible for its extraordinary accomplishments. Robert Zimmerman takes readers beh

  10. Atmospheric Characterization of Five Hot Jupiters with the Wide Field Camera 3 on the Hubble Space Telescope

    Science.gov (United States)

    Ranjan, Sukrit; Charbonneau, David; Desert, Jean-Michel; Madhusudhan, Nikku; Deming, Drake; Wilkins, Ashlee; Mandell, Avi M.

    2014-01-01

    We probe the structure and composition of the atmospheres of five hot Jupiter exoplanets using the Hubble Space Telescope Wide Field Camera 3 (WFC3) instrument. We use the G141 grism (1.1-1.7 micrometers) to study TrES-2b, TrES-4b, and CoRoT-1b in transit; TrES-3b in secondary eclipse; and WASP-4b in both. This wavelength region includes a predicted absorption feature from water at 1.4 micrometers, which we expect to be nondegenerate with the other molecules that are likely to be abundant for hydrocarbon-poor (e.g., solar composition) hot Jupiter atmospheres. We divide our wavelength regions into 10 bins. For each bin we produce a spectrophotometric light curve spanning the time of transit or eclipse. We correct these light curves for instrumental systematics without reference to an instrument model. For our transmission spectra, our mean 1s precision per bin corresponds to variations of 2.1, 2.8, and 3.0 atmospheric scale heights for TrES-2b, TrES-4b, and CoRoT-1b, respectively. We find featureless spectra for these three planets. We are unable to extract a robust transmission spectrum for WASP-4b. For our dayside emission spectra, our mean 1 sigma precision per bin corresponds to a planet-to-star flux ratio of 1.5 x 10(exp -4) and 2.1 x 10(exp -4) for WASP-4b and TrES-3b, respectively. We combine these estimates with previous broadband measurements and conclude that for both planets isothermal atmospheres are disfavored. We find no signs of features due to water. We confirm that WFC3 is suitable for studies of transiting exoplanets, but in staring mode multivisit campaigns are necessary to place strong constraints on water abundance.

  11. Hubble space telescope observations of the afterglow, supernova, and host galaxy associated with the extremely bright GRB 130427A

    Energy Technology Data Exchange (ETDEWEB)

    Levan, A. J. [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Tanvir, N. R.; Wiersema, K. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom); Fruchter, A. S.; Hounsell, R. A.; Graham, J. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Hjorth, J.; Fynbo, J. P. U. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Pian, E. [INAF, Trieste Astronomical Observatory, via G.B. Tiepolo 11, I-34143 Trieste (Italy); Mazzali, P. [Astrophysics Research Institute, Liverpool John Moores University, IC2 Liverpool Science Park 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Blvd., Pasadena, CA 91125 (United States); Cano, Z. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavik (Iceland); Cenko, S. B. [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Kouveliotou, C. [Science and Technology Office, ZP12, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Pe' er, A. [Department of Physics, University College Cork, Cork (Ireland); Misra, K., E-mail: a.j.levan@warwick.ac.uk [Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital-263 002 (India)

    2014-09-10

    We present Hubble Space Telescope (HST) observations of the exceptionally bright and luminous Swift gamma-ray burst (GRB), GRB 130427A. At z = 0.34, this burst affords an excellent opportunity to study the supernova (SN) and host galaxy associated with an intrinsically extremely luminous burst (E {sub iso} > 10{sup 54} erg): more luminous than any previous GRB with a spectroscopically associated SN. We use the combination of the image quality, UV capability, and invariant point-spread function of HST to provide the best possible separation of the afterglow, host, and SN contributions to the observed light ∼17 rest-frame days after the burst, utilizing a host subtraction spectrum obtained one year later. Advanced Camera for Surveys grism observations show that the associated SN, SN 2013cq, has an overall spectral shape and luminosity similar to SN 1998bw (with a photospheric velocity, v {sub ph} ∼ 15, 000 km s{sup –1}). The positions of the bluer features are better matched by the higher velocity SN 2010bh (v {sub ph} ∼ 30, 000 km s{sup –1}), but this SN is significantly fainter and fails to reproduce the overall spectral shape, perhaps indicative of velocity structure in the ejecta. We find that the burst originated ∼4 kpc from the nucleus of a moderately star forming (1 M {sub ☉} yr{sup –1}), possibly interacting disk galaxy. The absolute magnitude, physical size, and morphology of this galaxy, as well as the location of the GRB within it, are also strikingly similar to those of GRB 980425/SN 1998bw. The similarity of the SNe and environment from both the most luminous and least luminous GRBs suggests that broadly similar progenitor stars can create GRBs across six orders of magnitude in isotropic energy.

  12. Hubble Space Telescope Observations of the Afterglow, Supernova and Host Galaxy Associated with the Extremely Bright GRB 130427A

    Science.gov (United States)

    Levan, A.J.; Tanvir, N. R.; Fruchter, A. S.; Hjorth, J.; Pian, E.; Mazzali, P.; Hounsell, R. A.; Perley, D. A.; Cano, Z.; Graham, J.; hide

    2014-01-01

    We present Hubble Space Telescope (HST) observations of the exceptionally bright and luminous Swift gamma-ray burst, GRB 130427A. At z=0.34 this burst affords an excellent opportunity to study the supernova and host galaxy associated with an intrinsically extremely luminous burst (E(sub iso) greater than 10(exp 54) erg): more luminous than any previous GRB with a spectroscopically associated supernova. We use the combination of the image quality, UV capability and and invariant PSF of HST to provide the best possible separation of the afterglow, host and supernova contributions to the observed light approximately 17 rest-frame days after the burst utilising a host subtraction spectrum obtained 1 year later. Advanced Camera for Surveys (ACS) grism observations show that the associated supernova, SN 2013cq, has an overall spectral shape and luminosity similar to SN 1998bw (with a photospheric velocity, vph approximately 15,000 kilometers per second). The positions of the bluer features are better matched by the higher velocity SN 2010bh (vph approximately 30,000 kilometers per second), but SN 2010bh (vph approximately 30,000 kilometers per second but this SN is significantly fainter, and fails to reproduce the overall spectral shape, perhaps indicative of velocity structure in the ejecta. We find that the burst originated approximately 4 kpc from the nucleus of a moderately star forming (1 Solar Mass yr(exp-1)), possibly interacting disc galaxy. The absolute magnitude, physical size and morphology of this galaxy, as well as the location of the GRB within it are also strikingly similar to those of GRB980425SN 1998bw. The similarity of supernovae and environment from both the most luminous and least luminous GRBs suggests broadly similar progenitor stars can create GRBs across six orders of magnitude in isotropic energy.

  13. Wide-Field Hubble Space Telescope Observations of the Globular Cluster System in NGC 1399*

    Science.gov (United States)

    Puzia, Thomas H.; Paolillo, Maurizio; Goudfrooij, Paul; Maccarone, Thomas J.; Fabbiano, Giuseppina; Angelini, Lorella

    2014-01-01

    We present a comprehensive high spatial resolution imaging study of globular clusters (GCs) in NGC 1399, thecentral giant elliptical cD galaxy in the Fornax galaxy cluster, conducted with the Advanced Camera for Surveys(ACS) aboard theHubble Space Telescope(HST).Using a novel technique to construct drizzled point-spreadfunction libraries for HSTACS data, we accurately determine the fidelity of GC structural parameter measurementsfrom detailed artificial star cluster experiments and show the superior robustness of the GC half-light radius,rh,compared with other GC structural parameters, such as King core and tidal radius. The measurement ofrhfor themajor fraction of the NGC 1399 GC system reveals a trend of increasingrhversus galactocentric distance,Rgal,out to about 10 kpc and a flat relation beyond. This trend is very similar for blue and red GCs, which are found tohave a mean size ratio ofrh,redrh,blue0.820.11 at all galactocentric radii from the core regions of the galaxyout to40 kpc. This suggests that the size difference between blue and red GCs is due to internal mechanismsrelated to the evolution of their constituent stellar populations. Modeling the mass density profile of NGC 1399shows that additional external dynamical mechanisms are required to limit the GC size in the galaxy halo regionstorh2 pc. We suggest that this may be realized by an exotic GC orbit distribution function, an extended darkmatter halo, andor tidal stress induced by the increased stochasticity in the dwarf halo substructure at largergalactocentric distances. We compare our results with the GCrhdistribution functions in various galaxies and findthat the fraction of extended GCs withrh5 pc is systematically larger in late-type galaxies compared with GCsystems in early-type galaxies. This is likely due to the dynamically more violent evolution of early-type galaxies.We match our GCrhmeasurements with radial velocity data from the literature and split the resulting sample at

  14. Measuring metallicities with Hubble space telescope/wide-field camera 3 photometry

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Teresa L.; Holtzman, Jon A. [Department of Astronomy, New Mexico State University, P.O. Box 30001, MSC 4500, Las Cruces, NM 88003-8001 (United States); Anthony-Twarog, Barbara J.; Twarog, Bruce [Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045-7582 (United States); Bond, Howard E. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Saha, Abhijit [National Optical Astronomy Observatory, P.O. Box 26732, Tucson, AZ 85726 (United States); Walker, Alistair, E-mail: rosst@nmsu.edu, E-mail: holtz@nmsu.edu, E-mail: bjat@ku.edu, E-mail: btwarog@ku.edu, E-mail: heb11@psu.edu, E-mail: awalker@ctio.noao.edu [Cerro Tololo Inter-American Observatory (CTIO), National Optical Astronomy Observatory, Casilla 603, La Serena (Chile)

    2014-01-01

    We quantified and calibrated the metallicity and temperature sensitivities of colors derived from nine Wide-Field Camera 3 filters on board the Hubble Space Telescope using Dartmouth isochrones and Kurucz atmosphere models. The theoretical isochrone colors were tested and calibrated against observations of five well studied galactic clusters, M92, NGC 6752, NGC 104, NGC 5927, and NGC 6791, all of which have spectroscopically determined metallicities spanning –2.30 < [Fe/H] <+0.4. We found empirical corrections to the Dartmouth isochrone grid for each of the following color-magnitude diagrams (CMDs): (F555W-F814W, F814W), (F336W-F555W, F814W), (F390M-F555W, F814W), and (F390W-F555W, F814W). Using empirical corrections, we tested the accuracy and spread of the photometric metallicities assigned from CMDs and color-color diagrams (which are necessary to break the age-metallicity degeneracy). Testing three color-color diagrams [(F336W-F555W),(F390M-F555W),(F390W-F555W), versus (F555W-F814W)], we found the colors (F390M-F555W) and (F390W-F555W) to be the best suited to measure photometric metallicities. The color (F390W-F555W) requires much less integration time, but generally produces wider metallicity distributions and, at very low metallicity, the metallicity distribution function (MDF) from (F390W-F555W) is ∼60% wider than that from (F390M-F555W). Using the calibrated isochrones, we recovered the overall cluster metallicity to within ∼0.1 dex in [Fe/H] when using CMDs (i.e., when the distance, reddening, and ages are approximately known). The measured MDF from color-color diagrams shows that this method measures metallicities of stellar clusters of unknown age and metallicity with an accuracy of ∼0.2-0.5 dex using F336W-F555W, ∼0.15-0.25 dex using F390M-F555W, and ∼0.2-0.4 dex with F390W-F555W, with the larger uncertainty pertaining to the lowest metallicity range.

  15. Hubble Space Telescope far-ultraviolet imaging of M31, M32, and NGC 205

    Science.gov (United States)

    Bertola, F.; Bressan, A.; Burstein, D.; Buson, L. M.; Chiosi, C.; Di Serego Alighieri, S.

    1995-01-01

    Hubble Space Telescope (HST) Faint Object Camera (FOC) f/48 images of M31, M32, and NGC 205 (field of view 23 sec x 23 sec with 0.45 sec pixel size) are analyzed as observed through the combined UV filters F150W and F130LP. The absolute calibration of the data and the internal disagreement between observed and expected count rates in the UV region lead us to suggest that the filter combination F150W+F130LP suffers from a 5 times degraded UV sensitivity. A corrected efficiency curve is construced using the UV/optical spectral energy distributions of these three galaxies, which is consistent with all of the data analyzed here. Eighty-one individual stars are detected in M31, 10 stars in M32, and 78 stars in NGC 205. Comparisons with other UV images and optical images indicates that these stars are hot, UV-bright stars, even though our corrected efficiency curve suggests that flux from 1200-2450 A contributes only 7% of the counts in M32, 19% in M31, and 60% in NGC 205. The complex nucleus of M31 as seen by Lauer et al. (1993) is confirmed; M32 has a generally smooth appearance and NGC 205 is dominated by a UV-bright, somewhat resolved nucleus. Analysis of these data is done through the new, extensive stellar isochrones of Bertelli et al. (1994) and the population synthesis models of Bressan, Chiosi, and Fagotto (1994). This analysis shows that high-metal stars (Z greater than 0.05) evolve into UV-bright stars (P-EAGB, H-HB, and AGB-manque stars) that are less luminous and cooler but are significantly longer lived than the P-AGB stars produced by stars with Z less than 0.05. Moreover, the proportion of P-EAGB, H-HB, and AGB-manque stars is also a function of age, with older stars of fixed mean metallicity having a higher proportion than younger stars. Hence, with either metallicity or age differences as an interpretation of the line-strength luminosity correlation for ellipticals, the high-metallicity 'tail' of the stellar content of a galaxy can produce far-UV flux

  16. Hubble Space Telescope Eclipse Observations of the Nova Like Cataclysmic Variable UX Ursae Majoris

    Science.gov (United States)

    Knigge, Christian; Long, Knox S.; Wade, Richard A.; Baptista, Raymundo; Horne, Keith; Hubeny, Ivan; Rutten, Rene G. M.

    1998-01-01

    We present and analyze Hubble Space Telescope observations of the eclipsing nova-like cataclysmic variable UX UMa obtained with the Faint Object Spectrograph. Two eclipses each were observed with the G160L grating (covering the ultraviolet waveband) in 1994 August and with the PRISM (covering the near-ultraviolet to near-infrared) in November of the same year. The system was about 50% brighter in November than in August, which, if due to a change in the accretion rate, indicates a fairly substantial increase in Mass accretion by about 50%. The eclipse light curves are qualitatively consistent with the gradual occultation of an accretion disk with a radially decreasing temperature distribution. The light curves also exhibit asymmetries about mideclipse that are likely due to a bright spot at the disk edge. Bright-spot spectra have been constructed by differencing the mean spectra observed at pre- and posteclipse orbital phases. These difference spectra contain ultraviolet absorption lines and show the Balmer jump in emission. This suggests that part of the bright spot may be optically thin in the continuum and vertically extended enough to veil the inner disk and/or the outflow from UX UMa in some spectral lines. Model disk spectra constructed as ensembles of stellar atmospheres provide poor descriptions of the observed posteclipse spectra, despite the fact that UX UMa's light should be dominated by the disk at this time. Suitably scaled single temperature model stellar atmospheres with T(sub eff) approximately equals 12,500-14,500 K actually provide a better match to both the ultraviolet and optical posteclipse spectra. Evidently, great care must be taken in attempts to derive accretion rates from comparisons of disk models to observations. One way to reconcile disk models with the observed posteclipse spectra is to postulate the presence of a significant amount of optically thin material in the system. Such an optically thin component might be associated with the

  17. An Extremely Slow Motion Servo Control Technique Used in the Hubble Space Telescope's Star Selector Servo Subsystem

    Science.gov (United States)

    Madni, Asad M.; Jumper, Mike

    1997-02-01

    A state-of-the-art, slow motion dual axis servo control system used on the Hubble Space Telescope's Star Selector Subsystem is presented. It utilizes optical encoders with integral DC torque motors to provide precise, digital rate control over a range of 0.5 arcseconds/second (0.0333 revolution/day) to 16,384 arcseconds/second (0.759 revolution/minute) and 21-bit absolute-position words to an accuracy of 2.0 arcseconds peak-to-peak. In the finetracking mode the system provides position tracking to the order of 0.1 microradian.

  18. The Black Hole Mass-Bulge Luminosity Relationship for Active Galactic Nuclei From Reverberation Mapping and Hubble Space Telescope Imaging

    DEFF Research Database (Denmark)

    Bentz, Misty C.; Peterson, Bradley M.; Pogge, Richard W.

    2009-01-01

    We investigate the relationship between black hole mass and bulge luminosity for active galactic nuclei (AGNs) with reverberation-based black hole mass measurements and bulge luminosities from two-dimensional decompositions of Hubble Space Telescope host galaxy images. We find that the slope...... of the relationship for AGNs is 0.76-0.85 with an uncertainty of ~0.1, somewhat shallower than the M BH vprop L 1.0±0.1 relationship that has been fit to nearby quiescent galaxies with dynamical black hole mass measurements. This difference is somewhat perplexing, as the AGN black hole masses include an overall...

  19. Impacts on the Hubble Space Telescope Wide Field and Planetary Camera 2: Experimental Simulation of Micrometeoroid Capture

    Science.gov (United States)

    Price, M. C.; Kearsley, A. T.; Wozniakiewicz, P. J.; Spratt, J.; Burchell, M. J.; Cole, M. J.; Anz-Meador, P.; Liou, J. C.; Ross, D. K.; Opiela, J.; hide

    2014-01-01

    Hypervelocity impact features have been recognized on painted surfaces returned from the Hubble Space Telescope (HST). Here we describe experiments that help us to understand their creation, and the preservation of micrometeoroid (MM) remnants. We simulated capture of silicate and sulfide minerals on the Zinc orthotitanate (ZOT) paint and Al alloy plate of the Wide Field and Planetary Camera 2 (WFPC2) radiator, which was returned from HST after 16 years in low Earth orbit (LEO). Our results also allow us to validate analytical methods for identification of MM (and orbital debris) impacts in LEO.

  20. Results of a technical analysis of the Hubble Space Telescope nickel-cadmium and nickel-hydrogen batteries

    Science.gov (United States)

    Manzo, Michelle A.

    1991-01-01

    The Hubble Space Telescope (HST) Program Office requested the expertise of the NASA Aerospace Flight Battery Systems Steering Committee (NAFBSSC) in the conduct of an independent assessment of the HST's battery system to assist in their decision of whether to fly nickel-cadmium or nickel-hydrogen batteries on the telescope. In response, a subcommittee to the NAFBSSC was organized with membership comprised of experts with background in the nickel-cadmium/nickel-hydrogen secondary battery/power systems areas. The work and recommendations of that subcommittee are presented.

  1. Hubble Space Telescope Wide Field Planetary Camera 2 Observations of Neptune

    Science.gov (United States)

    1995-01-01

    Two groups have recently used the Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC 2) to acquire new high-resolution images of the planet Neptune. Members of the WFPC-2 Science Team, lead by John Trauger, acquired the first series of images on 27 through 29 June 1994. These were the highest resolution images of Neptune taken since the Voyager-2 flyby in August of 1989. A more comprehensive program is currently being conducted by Heidi Hammel and Wes Lockwood. These two sets of observations are providing a wealth of new information about the structure, composition, and meteorology of this distant planet's atmosphere.Neptune is currently the most distant planet from the sun, with an orbital radius of 4.5 billion kilometers (2.8 billion miles, or 30 Astronomical Units). Even though its diameter is about four times that of the Earth (49,420 vs. 12,742 km), ground-based telescopes reveal a tiny blue disk that subtends less than 1/1200 of a degree (2.3 arc-seconds). Neptune has therefore been a particularly challenging object to study from the ground because its disk is badly blurred by the Earth's atmosphere. In spite of this, ground-based astronomers had learned a great deal about this planet since its position was first predicted by John C. Adams and Urbain Leverrier in 1845. For example, they had determined that Neptune was composed primarily of hydrogen and helium gas, and that its blue color caused by the presence of trace amounts of the gas methane, which absorbs red light. They had also detected bright cloud features whose brightness changed with time, and tracked these clouds to infer a rotation period between 17 and 22 hours.When the Voyager-2 spacecraft flew past the Neptune in 1989, its instruments revealed a surprising array of meteorological phenomena, including strong winds, bright, high-altitude clouds, and two large dark spots attributed to long-lived giant storm systems. These bright clouds and dark spots were tracked as they moved

  2. Innovative Resources for Education and Public Information: Electronic Services, Data and Information from NASA's Hubble Space Telescope and Other NASA Missions.

    Science.gov (United States)

    Christian, Carol A.

    The Space Telescope Science Institute (STScI), which supports the operation of the Hubble Space Telescope, is actively investigating and supporting innovative and experimental methods for improving science and math education content. The educational resources on the World Wide Web are derived from the latest data, scientific results, and advances…

  3. Analysis of Hubble Space Telescope Fine Guidance Sensor Data in TRANS Mode: An Overview

    OpenAIRE

    Elliott P. Horch

    2006-01-01

    El Sensor para el Guiado Fino del Telescopio Espacial Hubble ha sido un instrumento muy productivo en el campo de las estrellas binarias. En este trabajo el autor describe el instrumento brevemente y discute el formato de datos de las observaciones en modo TRANS. Este modo es empleado para la realización de observaciones conducentes a la obtención de la astrometría relativa de estrellas binarias con baja separación angular. Los procedimientos de análisis de datos típicamente usados son discut...

  4. DIFFRACTO-ASTROMETRY WITH HUBBLE SPACE TELESCOPE AND ADAPTIVE OPTICS IMAGES

    OpenAIRE

    L. J. Sanchez; A. Ruelas-Mayorga; C. Allen; A. Poveda

    2008-01-01

    Como continuación del trabajo de Allen et al. (1974, 2004) acerca de los movimientos internos de sistemas tipo Trapecio, decidimos investigar la posibilidad de realizar astrometría de precisión sobre imágenes del Telescopio Espacial Hubble (HST) y sobre imágenes obtenidas con sistemas de óptica Adaptativa (OA). Una región muy bien observada por el HST es la del Trapecio de Orión. Los archivos del HST contienen observaciones de acceso público de este Trapecio tomadas con la WFPC/WFPC2 durante ...

  5. Impacts on the Hubble Space Telescope Wide Field and Planetary Camera 2: Microanalysis and Recognition of Micrometeoroid Compositions

    Science.gov (United States)

    Kearsley, A. T.; Ross, D. K.; Anz-Meador, P.; Liou, J. C.; Opiela, J.; Grime, G. W.; Webb, R. P.; Jeynes, C.; Palitsin, V. V.; Colaux, J. L.; hide

    2014-01-01

    Postflight surveys of the Wide Field and Planetary Camera 2 (WFPC2) on the Hubble Space Telescope have located hundreds of features on the 2.2 by 0.8 m curved plate, evidence of hypervelocity impact by small particles during 16 years of exposure to space in low Earth orbit (LEO). The radiator has a 100 - 200 micron surface layer of white paint, overlying 4 mm thick Al alloy, which was not fully penetrated by any impact. Over 460 WFPC2 samples were extracted by coring at JSC. About half were sent to NHM in a collaborative program with NASA, ESA and IBC. The structural and compositional heterogeneity at micrometer scale required microanalysis by electron and ion beam microscopes to determine the nature of the impactors (artificial orbital debris, or natural micrometeoroids, MM). Examples of MM impacts are described elsewhere. Here we describe the development of novel electron beam analysis protocols, required to recognize the subtle traces of MM residues.

  6. Physical and Thermal Properties Evaluated of Teflon FEP Retrieved From the Hubble Space Telescope During Three Servicing Missions

    Science.gov (United States)

    Dever, Joyce A.; deGroh, Kim, K.; Sutter, James K.; Gaier, James R.; Messer, Russell, K.; Scheiman, Daniel A.; McClendon, Mark W.; Viens, Michael J.; Wang, L. Len; He, Charles C.; hide

    2002-01-01

    Mechanical properties of aluminized Teflon fluorinated ethylene propylene (FEP) thermal control materials on the Hubble Space Telescope (HST) exposed to low Earth orbit for up to 9.7 years have significantly degraded, with extensive cracking occurring on orbit. The NASA Glenn Research Center and the NASA Goddard Space Flight Center have collaborated on analyzing the physical and thermal properties of aluminized FEP (FEP-Al, DuPont) materials retrieved in December 1999 during HST's third servicing mission (SM3A). Comparisons have been made to properties of FEP-Al retrieved during the first and second HST servicing missions, SM1 and SM2, in order to determine degradation processes for FEP on HST.

  7. MULTI-EPOCH HUBBLE SPACE TELESCOPE OBSERVATIONS OF IZw18: CHARACTERIZATION OF VARIABLE STARS AT ULTRA-LOW METALLICITIES

    International Nuclear Information System (INIS)

    Fiorentino, G.; Ramos, R. Contreras; Clementini, G.; Tosi, M.; Marconi, M.; Musella, I.; Aloisi, A.; Van der Marel, R. P.; Annibali, F.; Saha, A.

    2010-01-01

    Variable stars have been identified for the first time in the very metal-poor blue compact dwarf galaxy IZw18, using deep multi-band (F606W, F814W) time-series photometry obtained with the Advanced Camera for Surveys on board the Hubble Space Telescope. We detected 34 candidate variable stars in the galaxy. We classify three of them as Classical Cepheids, with periods of 8.71, 125.0, and 130.3 days, respectively, and other two as long period variables with periodicities longer than 100 days. These are the lowest metallicity Classical Cepheids known so far, thus providing the opportunity to explore and fit models of stellar pulsation for Classical Cepheids at previously inaccessible metallicities. The period distribution of the confirmed Cepheids is markedly different from what is seen in other nearby galaxies, which is likely related to the star bursting nature of IZw18. The long period Cepheids we have detected in IZw18 seem to indicate that massive stars at the metallicity of IZw18 (Z = 0.0004) may cross the instability strip long enough to be observed. By applying to the 8.71 days Cepheid theoretical Wesenheit (V, I) relations based on new pulsation models of Classical Cepheids specifically computed for the extremely low metallicity of this galaxy (Z = 0.0004, Y = 0.24), we estimate the distance modulus of IZw18 to be μ 0 = 31.4 ± 0.3 (D = 19.0 +2.8 -2.5 Mpc) for canonical models of Classical Cepheids, and of 31.2 ± 0.3 mag (D = 17.4 +2.6 -2.2 Mpc) using over luminous models. The theoretical modeling of the star's light curves provides μ 0 = 31.4± 0.2 mag, D = 19.0 +1.8 -1.7 Mpc, in good agreement with the results from the theoretical Wesenheit relations. These pulsation distances bracket the distance of 18.2 ±1.5 Mpc inferred by Aloisi et al. using the galaxy's red giant branch tip.

  8. Probing the properties of relic neutrinos using the cosmic microwave background, the Hubble Space Telescope and galaxy clusters

    Science.gov (United States)

    Nunes, Rafael C.; Bonilla, Alexander

    2018-02-01

    We investigate the observational constraints on the cosmic neutrino background (CNB) given by the extended ΛCDM scenario (ΛCDM + N_eff + \\sum m_{ν } + c^2_eff + c^2_vis + ξ _{ν }) using the latest observational data from the cosmic microwave background (CMB) as observed by Planck (i.e. temperature power spectrum, low-polarization and lensing reconstruction), baryon acoustic oscillations (BAOs), the new recent local value of the Hubble constant from the Hubble Space Telescope (HST) and information on the abundance of galaxy clusters (GCs). We study the constraints on the CNB background using CMB + BAO + HST data with and without the GC data. We find ΔNeff = 0.614 ± 0.26 at the 68 per cent confidence level when the GC data are added to the analysis. We do not find any significant deviation for sound speed in the CNB rest frame. We also analyse the particular case ΛCDM +Neff + ∑mν + ξν with the observational data. Within this scenario, we find ΔNeff = 0.60 ± 0.28 at the 68 per cent confidence level. In both scenarios, no mean deviations are found for the degeneracy parameter.

  9. Jupiter After the 2009 Impact: Hubble Space Telescope Imaging of the Impact-Generated Debris and Its Temporal Evolution

    Science.gov (United States)

    Hammel, H. B.; Wong, M. H.; Clarke, J. T.; de Pater, I.; Fletcher, L. N.; Hueso, R.; Noll, K.; Orton, G. S.; Perez-Hoyos, S.; Sanchez-Lavega, A.; hide

    2010-01-01

    We report Hubble Space Telescope images of Jupiter during the aftermath of an impact by an unknown object in 2009 July, The 2009 impact-created debris field evolved more slowly than those created in 1994 by the collision of the tidally disrupted comet D/Shoemaker-Levy 9 (SL9). The slower evolution, in conjunction with the isolated nature of this single impact, permits a more detailed assessment of the altitudes and meridional motion of the debris than was possible with SL9. The color of the 2009 debris was markedly similar to that seen in 1994, thus this dark debris is likely to be Jovian material that is highly thermally processed. The 2009 impact site differed from the 1994 SL9 sites in UV morphology and contrast lifetime; both are suggestive of the impacting body being asteroidal rather than cometary. Transport of the 2009 Jovian debris as imaged by Hubble shared similarities with transport of volcanic aerosols in Earth's atmosphere after major eruptions.

  10. The Globular Cluster System in NGC 5866: Optical Observations from Hubble Space Telescope Advanced Camera for Surveys

    Science.gov (United States)

    Cantiello, Michele; Blakeslee, John P.; Raimondo, Gabriella

    2007-10-01

    We perform a detailed study of the globular cluster (GC) system in the galaxy NGC 5866 based on F435W, F555W, and F625W (~B, V, and R) Hubble Space Telescope Advanced Camera for Surveys images. Adopting color, size, and shape selection criteria, the final list of GC candidates comprises 109 objects, with small estimated contamination from background galaxies, and foreground stars. The color distribution of the final GC sample has a bimodal form. Adopting color to metallicity transformations derived from the Teramo-SPoT simple stellar population model, we estimate a metallicity [Fe/H]~-1.5 and -0.6 dex for the blue and red peaks, respectively. A similar result is found if the empirical color-metallicity relations derived from Galactic GC data are used. The two subpopulations show some of the features commonly observed in the GC system of other galaxies, like a ``blue tilt,'' higher central concentrations of the red subsystem, and larger half-light radii at larger galactocentric distances. However, we do not find evidence of a substantial difference between the average sizes of red and blue clusters. Our analysis of the GC luminosity function indicates a V-band turnover magnitude VTOM0=23.46+/-0.06, or MTOMV,0~-7.29+/-0.10 mag, using the distance modulus derived from the average of surface brightness fluctuation (SBF) and the planetary nebula luminosity function (PNLF) distances. The absolute turnover magnitude obtained agrees well with calibrations from literature. The specific frequency is measured to be SN=1.4+/-0.3, typical for galaxies of this type. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  11. The Star Formation Histories of Local Group Dwarf Galaxies. I. Hubble Space Telescope/Wide Field Planetary Camera 2 Observations

    Science.gov (United States)

    Weisz, Daniel R.; Dolphin, Andrew E.; Skillman, Evan D.; Holtzman, Jon; Gilbert, Karoline M.; Dalcanton, Julianne J.; Williams, Benjamin F.

    2014-07-01

    We present uniformly measured star formation histories (SFHs) of 40 Local Group (LG) dwarf galaxies based on color-magnitude diagram (CMD) analysis from archival Hubble Space Telescope imaging. We demonstrate that accurate SFHs can be recovered from CMDs that do not reach the oldest main sequence turn-off (MSTO), but emphasize that the oldest MSTO is critical for precisely constraining the earliest epochs of star formation. We find that: (1) the average lifetime SFHs of dwarf spheroidals (dSphs) can be approximated by an exponentially declining SFH with τ ~ 5 Gyr (2) lower luminosity dSphs are less likely to have extended SFHs than more luminous dSphs; (3) the average SFHs of dwarf irregulars (dIrrs), transition dwarfs, and dwarf ellipticals can be approximated by the combination of an exponentially declining SFH (τ ~ 3-4 Gyr) for lookback ages >10-12 Gyr ago and a constant SFH thereafter; (4) the observed fraction of stellar mass formed prior to z = 2 ranges considerably (80% for galaxies with M 107 M ⊙) and is largely explained by environment; (5) the distinction between "ultra-faint" and "classical" dSphs is arbitrary; (6) LG dIrrs formed a significantly higher fraction of stellar mass prior to z = 2 than the Sloan Digital Sky Survey galaxies from Leitner and the SFHs from the abundance matching models of Behroozi et al. This may indicate higher than expected star formation efficiencies at early times in low mass galaxies. Finally, we provide all the SFHs in tabulated electronic format for use by the community. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  12. Validation of GNSS Multipath Model for Space Proximity Operations Using the Hubble Servicing Mission 4 Experiment

    Science.gov (United States)

    Ashman, Ben; Veldman, Jeanette; Axelrad, Penina; Garrison, James; Winternitz, Luke

    2016-01-01

    In the rendezvous and docking of spacecraft, GNSS signals can reflect off the target vehicle and cause prohibitively large errors in the chaser vehicle receiver at ranges below 200 meters. It has been proposed that the additional ray paths, or multipath, be used as a source of information about the state of the target relative to the receiver. With Hubble Servicing Mission 4 as a case study, electromagnetic ray tracing has been used to construct a model of reflected signals from known geometry. Oscillations in the prompt correlator power due to multipath, known as multipath fading, are studied as a means of model validation. Agreement between the measured and simulated multipath fading serves to confirm the presence of signals reflected off the target spacecraft that might be used for relative navigation.

  13. Hubble space telescope servicing mission joint ESA/BAE UK technical press briefing Wednesday 10 March 1993

    Science.gov (United States)

    1993-02-01

    On Wednesday 10 March 1993 astronauts from ESA and NASA will be at British Aerospace Space Systems Limited, Filton, Bristol, UK, training on the replacement set of solar arrays which they are scheduled to fit to the Hubble Space Telescope at year end. You are invited to attend a technical briefing on that day, which will be given by senior representatives of the European Space Agency and British Aerospace. The briefing will include details of the design modifications and status of the solar arrays, together with a brief overview of the scientific results already achieved by the teams of astronomers using the telescope. There will be an opportunity for interviews with the mission specialists in the crew of NASA's Space Shuttle flight STS-61, who will be carrying out the servicing mission for the Hubble Space Telescope in a series of "Extra-Vehicular Activities - EVA' (space-walks). Five astronauts are expected : Story Musgrave, Colonel Tom Akers, Jeffrey A. Hoffman, Kathryn C. Thornton from NASA and Claude Nicollier from ESA. There will also be a chance to view the solar arrays in the British Aerospace clean room area where the astronauts are working on their familiarisation programme. The briefing will take place on Wednesday 10 March 1993 at British Aerospace Space Systems, Filton, Bristol, UK (on the northern outskirts of the city of Bristol). The event will begin at 10h30 a.m. and end with a buffet lunch running from approximately 01h30 p.m. to 02h30 p.m. In order to assists with arrangements for travel to and from bristol, British Aerospace proposes to run a free coach from and to London Victoria Coach Station - if there proves to be sufficient press interest. This coach would depart from London at approximately 07h50 a.m. and arrive back at around 05h30 p.m. Further details will be available on request when numbers are known. In order to gain access to the site and the briefing it is essential that all attendees are expected and their names are provided in

  14. New Understanding of Hubble Space Telescope Gyro Current Increase Led to a Method to Save a Failing Gyro Presentation

    Science.gov (United States)

    Blumenstock, Kenneth A.

    2017-01-01

    Throughout the history of the Hubble Space Telescope (HST) program, gyro current increases have been observed to occur, often times leading to gyro failure. The explanation was that debris from the surfaces of the gas bearings, with only 1.27 micron clearance, resulted in rotor restriction, which increased friction, torque, and current. However, the rotor restriction theory never could account for the fact that a restart of the gyro would restore the current back to nominal. An effort was made to understand this puzzling gyro behavior after two HST gyros exhibited increased current within the same week in November 2015. A review board was created to resolve these anomalies and generate operational procedures to potentially extend gyro life. A new understanding of gyro current behavior led to implementation of a method that could potentially save a failing gyro.

  15. New Understanding of Hubble Space Telescope Gyro Current Increase Led to a Method to Save a Failing Gyro

    Science.gov (United States)

    Blumenstock, Kenneth A.

    2017-01-01

    Throughout the history of the Hubble Space Telescope (HST) program, gyro current increases have been observed to occur, oftentimes leading to gyro failure. The explanation was that debris from the surfaces of the gas bearings, with only 50 millionths on an inch clearance, resulted in rotor restriction, which increased friction, torque, and current. However, the rotor restriction theory never could account for the fact that a restart of the gyro would restore the current back to nominal. An effort was made to understand this puzzling gyro behavior after two HST gyros exhibited increased current within the same week in November 2015. A review board was created to resolve these anomalies and generate operational procedures to potentially extend gyro life.

  16. The age of the universe, the Hubble constant, the accelerated expansion and the Hubble effect

    OpenAIRE

    Soares, Domingos

    2009-01-01

    The idea of an accelerating universe comes almost simultaneously with the determination of Hubble's constant by one of the Hubble Space Telescope Key Projects. The age of the universe dilemma is probably the link between these two issues. In an appendix, I claim that "Hubble's law" might yet to be investigated for its ultimate cause, and suggest the "Hubble effect" as the searched candidate.

  17. Observations of the Hubble Deep Field with the Infrared Space Observatory .5. Spectral energy distributions, starburst models and star formation history

    DEFF Research Database (Denmark)

    Rowan Robinson, M.; Mann, R.G.; Oliver, S.J.

    1997-01-01

    We have modelled the spectral energy distributions of the 13 Hubble Deep Field (HDF) galaxies reliably detected by the Infrared Space Observatory (ISO). For two galaxies the emission detected by ISO is consistent with being starlight or the infrared 'cirrus' in the galaxies. For the remaining II...

  18. A High-resolution Multiband Survey of Westerlund 2 with the Hubble Space Telescope. I. Is the Massive Star Cluster Double?

    NARCIS (Netherlands)

    Zeidler, P.; Sabbi, E.; Nota, A.; Grebel, E.K.; Tosi, M.; Bonanos, A.Z.; Pasquali, A.; Christian, C.; de Mink, S.E.; Ubeda, L.

    2015-01-01

    We present first results from a high resolution multi-band survey of the Westerlund 2 region with the Hubble Space Telescope. Specifically, we imaged Westerlund 2 with the Advanced Camera for Surveys through the F555W, F814W, and F658N filters and with the Wide Field Camera 3 in the F125W, F160W,

  19. CANDELS : THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY-THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS

    NARCIS (Netherlands)

    Koekemoer, Anton M.; Faber, S. M.; Ferguson, Henry C.; Grogin, Norman A.; Kocevski, Dale D.; Koo, David C.; Lai, Kamson; Lotz, Jennifer M.; Lucas, Ray A.; McGrath, Elizabeth J.; Ogaz, Sara; Rajan, Abhijith; Riess, Adam G.; Rodney, Steve A.; Strolger, Louis; Casertano, Stefano; Castellano, Marco; Dahlen, Tomas; Dickinson, Mark; Dolch, Timothy; Fontana, Adriano; Giavalisco, Mauro; Grazian, Andrea; Guo, Yicheng; Hathi, Nimish P.; Huang, Kuang-Han; van der Wel, Arjen; Yan, Hao-Jing; Acquaviva, Viviana; Alexander, David M.; Almaini, Omar; Ashby, Matthew L. N.; Barden, Marco; Bell, Eric F.; Bournaud, Frederic; Brown, Thomas M.; Caputi, Karina I.; Cassata, Paolo; Challis, Peter J.; Chary, Ranga-Ram; Cheung, Edmond; Cirasuolo, Michele; Conselice, Christopher J.; Cooray, Asantha Roshan; Croton, Darren J.; Daddi, Emanuele; Dave, Romeel; de Mello, Duilia F.; de Ravel, Loic; Dekel, Avishai; Donley, Jennifer L.; Dunlop, James S.; Dutton, Aaron A.; Elbaz, David; Fazio, Giovanni G.; Filippenko, Alexei V.; Finkelstein, Steven L.; Frazer, Chris; Gardner, Jonathan P.; Garnavich, Peter M.; Gawiser, Eric; Gruetzbauch, Ruth; Hartley, Will G.; Haeussler, Boris; Herrington, Jessica; Hopkins, Philip F.; Huang, Jia-Sheng; Jha, Saurabh W.; Johnson, Andrew; Kartaltepe, Jeyhan S.; Khostovan, Ali A.; Kirshner, Robert P.; Lani, Caterina; Lee, Kyoung-Soo; Li, Weidong; Madau, Piero; McCarthy, Patrick J.; McIntosh, Daniel H.; McLure, Ross J.; McPartland, Conor; Mobasher, Bahram; Moreira, Heidi; Mortlock, Alice; Moustakas, Leonidas A.; Mozena, Mark; Nandra, Kirpal; Newman, Jeffrey A.; Nielsen, Jennifer L.; Niemi, Sami; Noeske, Kai G.; Papovich, Casey J.; Pentericci, Laura; Pope, Alexandra; Primack, Joel R.; Ravindranath, Swara; Reddy, Naveen A.; Renzini, Alvio; Rix, Hans-Walter; Robaina, Aday R.; Rosario, David J.; Rosati, Piero; Salimbeni, Sara; Scarlata, Claudia; Siana, Brian; Simard, Luc; Smidt, Joseph; Snyder, Diana; Somerville, Rachel S.; Spinrad, Hyron; Straughn, Amber N.; Telford, Olivia; Teplitz, Harry I.; Trump, Jonathan R.; Vargas, Carlos; Villforth, Carolin; Wagner, Cory R.; Wandro, Pat; Wechsler, Risa H.; Weiner, Benjamin J.; Wiklind, Tommy; Wild, Vivienne; Wilson, Grant; Wuyts, Stijn; Yun, Min S.

    2011-01-01

    This paper describes the Hubble Space Telescope imaging data products and data reduction procedures for the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). This survey is designed to document the evolution of galaxies and black holes at z approximate to 1.5-8, and to study

  20. A Hubble Space Telescope/Cosmic Origins Spectrograph Search for Warm-hot Baryons in the Mrk 421 Sight Line

    Science.gov (United States)

    Danforth, Charles W.; Stocke, John T.; Keeney, Brian A.; Penton, Steven V.; Shull, J. Michael; Yao, Yangsen; Green, James C.

    2011-12-01

    Thermally broadened Lyα absorbers (BLAs) offer an alternate method to using highly ionized metal absorbers (O VI, O VII, etc.) to probe the warm-hot intergalactic medium (WHIM, T = 105-107 K). Until now, WHIM surveys via BLAs have been no less ambiguous than those via far-UV and X-ray metal-ion probes. Detecting these weak, broad features requires background sources with a well-characterized far-UV continuum and data of very high quality. However, a recent Hubble Space Telescope/Cosmic Origins Spectrograph (COS) observation of the z = 0.03 blazar Mrk 421 allows us to perform a metal-independent search for WHIM gas with unprecedented precision. The data have high signal-to-noise ratio (S/N ≈ 50 per ~20 km s-1 resolution element) and the smooth, power-law blazar spectrum allows a fully parametric continuum model. We analyze the Mrk 421 sight line for BLA absorbers, particularly for counterparts to the proposed O VII WHIM systems reported by Nicastro et al. based on Chandra/Low Energy Transmission Grating observations. We derive the Lyα profiles predicted by the X-ray observations. The S/N of the COS data is high (S/N ≈ 25 pixel-1), but much higher S/N can be obtained by binning the data to widths characteristic of the expected BLA profiles. With this technique, we are sensitive to WHIM gas over a large (N H, T) parameter range in the Mrk 421 sight line. We rule out the claimed Nicastro et al. O VII detections at their nominal temperatures (T ~ 1-2 × 106 K) and metallicities (Z = 0.1 Z ⊙) at >~ 2σ level. However, WHIM gas at higher temperatures and/or higher metallicities is consistent with our COS non-detections. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS5-26555.

  1. THE DEEPEST HUBBLE SPACE TELESCOPE COLOR-MAGNITUDE DIAGRAM OF M32. EVIDENCE FOR INTERMEDIATE-AGE POPULATIONS

    International Nuclear Information System (INIS)

    Monachesi, Antonela; Trager, Scott C.; Lauer, Tod R.; Mighell, Kenneth J.; Freedman, Wendy; Dressler, Alan; Grillmair, Carl

    2011-01-01

    We present the deepest optical color-magnitude diagram (CMD) to date of the local elliptical galaxy M32. We have obtained F435W and F555W photometries based on Hubble Space Telescope (HST) Advanced Camera for Surveys/High-Resolution Channel images for a region 110'' from the center of M32 (F1) and a background field (F2) about 320'' away from M32 center. Due to the high resolution of our Nyquist-sampled images, the small photometric errors, and the depth of our data (the CMD of M32 goes as deep as F435W ∼ 28.5 at 50% completeness level), we obtain the most detailed resolved photometric study of M32 yet. Deconvolution of HST images proves to be superior than other standard methods to derive stellar photometry on extremely crowded HST images, as its photometric errors are ∼2x smaller than other methods tried. The location of the strong red clump in the CMD suggests a mean age between 8 and 10 Gyr for [Fe/H] = -0.2 dex in M32. We detect for the first time a red giant branch bump and an asymptotic giant branch (AGB) bump in M32 which, together with the red clump, allow us to constrain the age and metallicity of the dominant population in this region of M32. These features indicate that the mean age of M32's population at ∼2' from its center is between 5 and 10 Gyr. We see evidence of an intermediate-age population in M32 mainly due to the presence of AGB stars rising to M F555W ∼ -2.0. Our detection of a blue component of stars (blue plume) may indicate for the first time the presence of a young stellar population, with ages of the order of 0.5 Gyr, in our M32 field. However, it is likely that the brighter stars of this blue plume belong to the disk of M31 rather than to M32. The fainter stars populating the blue plume indicate the presence of stars not younger than 1 Gyr and/or BSSs in M32. The CMD of M32 displays a wide color distribution of red giant branch stars indicating an intrinsic spread in metallicity with a peak at [Fe/H] ∼ -0.2. There is not a

  2. Simulated Solar Flare X-Ray and Thermal Cycling Durability Evaluation of Hubble Space Telescope Thermal Control Candidate Replacement Materials

    Science.gov (United States)

    deGroh, Kim K.; Banks, Bruce A.; Sechkar, Edward A.; Scheiman, David A.

    1998-01-01

    During the Hubble Space Telescope (HST) second servicing mission (SM2), astronauts noticed that the multilayer insulation (MLI) covering the telescope was damaged. Large pieces of the outer layer of MLI (aluminized Teflon fluorinated ethylene propylene (Al-FEP)) were torn in several locations around the telescope. A piece of curled up Al-FEP was retrieved by the astronauts and was found to be severely embrittled, as witnessed by ground testing. Goddard Space Flight Center (GSFC) organized a HST MLI Failure Review Board (FRB) to determine the damage mechanism of FEP in the HST environment, and to recommend replacement insulation material to be installed on HST during the third servicing mission (SM3) in 1999. Candidate thermal control replacement materials were chosen by the FRB and tested for environmental durability under various exposures and durations. This paper describes durability testing of candidate materials which were exposed to charged particle radiation, simulated solar flare x-ray radiation and thermal cycling under load. Samples were evaluated for changes in solar absorptance and tear resistance. Descriptions of environmental exposures and durability evaluations of these materials are presented.

  3. Design of the Experimental Exposure Conditions to Simulate Ionizing Radiation Effects on Candidate Replacement Materials for the Hubble Space Telescope

    Science.gov (United States)

    Smith, L. Montgomery

    1998-09-01

    In this effort, experimental exposure times for monoenergetic electrons and protons were determined to simulate the space radiation environment effects on Teflon components of the Hubble Space Telescope. Although the energy range of the available laboratory particle accelerators was limited, optimal exposure times for 50 keV, 220 keV, 350 keV, and 500 KeV electrons were calculated that produced a dose-versus-depth profile that approximated the full spectrum profile, and were realizable with existing equipment. For the case of proton exposure, the limited energy range of the laboratory accelerator restricted simulation of the dose to a depth of .5 mil. Also, while optimal exposure times were found for 200 keV, 500 keV and 700 keV protons that simulated the full spectrum dose-versus-depth profile to this depth, they were of such short duration that the existing laboratory could not be controlled to within the required accuracy. In addition to the obvious experimental issues, other areas exist in which the analytical work could be advanced. Improved computer codes for the dose prediction- along with improved methodology for data input and output- would accelerate and make more accurate the calculational aspects. This is particularly true in the case of proton fluxes where a paucity of available predictive software appears to exist. The dated nature of many of the existing Monte Carlo particle/radiation transport codes raises the issue as to whether existing codes are sufficient for this type of analysis. Other areas that would result in greater fidelity of laboratory exposure effects to the space environment is the use of a larger number of monoenergetic particle fluxes and improved optimization algorithms to determine the weighting values.

  4. Evidence for Type Ia Supernova Diversity from Ultraviolet Observations with the Hubble Space Telescope

    Science.gov (United States)

    2012-04-20

    Observational Cosmology, NASA Goddard Space Flight Center, Code 665, Greenbelt, MD 20771, USA 31 Enrico Fermi Institute, Department of Physics, and Kavli...Dietrich Baade11, Brian J. Barris12, Stefano Benetti13, Patrice Bouchet14, Adam S. Burrows15, Ramon Canal16, Enrico Cappellaro13, Raymond G

  5. High-Speed Hubble Space Telescope Ultraviolet photometry of two DB white dwarfs: Nonradial and radial pulsations

    Science.gov (United States)

    Kawaler, Steven D.; Bond, Howard E.; Sherbert, Lisa E.; Watson, Todd K.

    1994-01-01

    We observed two DB white dwarf stars with the High Speed Photometer aboard the Hubble Space Telescope. The two targets, the nonradial pulsator GD 358, and PG 0112+104, a non-pulsating white dwarf with similar temperature, were each observed for 1800 s with a time resolution of 10 ms. We used the F140LP configuration, which gives a broadband response in the UV between 1400 and 3000 A. The data clearly show the long period (about 700 s) pulsations in GD 358. Comparison with optical observations obtained two weeks earlier shows that the amplitude of the pulsations in the UV is approximately 1.4 times higher, consistent with nonradial pulsations due solely to temperature changes at constant radius. The high time resolution of these observations allows us to search for high-frequency pulsations (such as p modes or high overtone radial modes). No firm evidencefor high-frequency pulsations was seen in either object between 1 and 12 Hz. Correlation analysis of GD 358 shows no clear signal of multifrequency high overtone radial pulsations at the 0.00075 mag level, with no individual modes above the 0.0016 mag level. Upper limits for PG 0112+104 are approximately 2 times higher than for GD 358. Implications of this study for the theory of white dwarf pulsations are discussed.

  6. THE BLACK HOLE MASS-BULGE LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI FROM REVERBERATION MAPPING AND HUBBLE SPACE TELESCOPE IMAGING

    International Nuclear Information System (INIS)

    Bentz, Misty C.; Peterson, Bradley M.; Pogge, Richard W.; Vestergaard, Marianne

    2009-01-01

    We investigate the relationship between black hole mass and bulge luminosity for active galactic nuclei (AGNs) with reverberation-based black hole mass measurements and bulge luminosities from two-dimensional decompositions of Hubble Space Telescope host galaxy images. We find that the slope of the relationship for AGNs is 0.76-0.85 with an uncertainty of ∼0.1, somewhat shallower than the M BH ∝ L 1.0±0.1 relationship that has been fit to nearby quiescent galaxies with dynamical black hole mass measurements. This difference is somewhat perplexing, as the AGN black hole masses include an overall scaling factor that brings the AGN M BH -σ * relationship into agreement with that of quiescent galaxies. We discuss biases that may be inherent to the AGN and quiescent galaxy samples and could cause the apparent inconsistency in the forms of their M BH -L bulge relationships. Recent work by Graham, however, presents a similar slope of ∼0.8 for the quiescent galaxies and may bring the relationship for AGNs and quiescent galaxies into agreement.

  7. HUBBLE SPACE TELESCOPE/NEAR-INFRARED CAMERA AND MULTI-OBJECT SPECTROMETER OBSERVATIONS OF THE GLIMPSE9 STELLAR CLUSTER

    International Nuclear Information System (INIS)

    Messineo, Maria; Figer, Donald F.; Davies, Ben; Trombley, Christine; Kudritzki, R. P.; Rich, R. Michael; MacKenty, John

    2010-01-01

    We present Hubble Space Telescope/Near-Infrared Camera and Multi-Object Spectrometer photometry, and low-resolution K-band spectra of the GLIMPSE9 stellar cluster. The newly obtained color-magnitude diagram shows a cluster sequence with H - K S = ∼1 mag, indicating an interstellar extinction A K s = 1.6 ± 0.2 mag. The spectra of the three brightest stars show deep CO band heads, which indicate red supergiants with spectral type M1-M2. Two 09-B2 supergiants are also identified, which yield a spectrophotometric distance of 4.2 ± 0.4 kpc. Presuming that the population is coeval, we derive an age between 15 and 27 Myr, and a total cluster mass of 1600 ± 400 M sun , integrated down to 1 M sun . In the vicinity of GLIMPSE9 are several H II regions and supernova remnants, all of which (including GLIMPSE9) are probably associated with a giant molecular cloud (GMC) in the inner galaxy. GLIMPSE9 probably represents one episode of massive star formation in this GMC. We have identified several other candidate stellar clusters of the same complex.

  8. Design and specification of optical bandpass filters for Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS)

    Science.gov (United States)

    Leviton, Douglas B.; Tsvetanov, Zlatan; Woodruff, Robert A.; Mooney, Thomas A.

    1998-08-01

    Advanced optical bandpass filters for the Hubble Space Telescope (HST) advanced camera for surveys (ACS) have been developed on a filer-by-filter basis through detailed studies which take into account the instrument's science goals, available optical filter fabrication technology, and developments in ACS's charge-coupled-device detector technology. These filters include a subset of filters for the Sloan Digital Sky Survey which are optimized for astronomical photometry using today's charge-coupled- devices. In order for ACS to be truly advanced, these filters must push the state-of-the-at in performance in a number of key areas at the same time. Important requirements for these filters include outstanding transmitted wavefront, high transmittance, uniform transmittance across each filter, spectrally structure-free bandpasses, exceptionally high out of band rejection, a high degree of parfocality, and immunity to environmental degradation. These constitute a very stringent set of requirements indeed, especially for filters which are up to 90 mm in diameter. The highly successful paradigm in which final specifications for flight filters were derived through interaction amongst the ACS Science Team, the instrument designer, the lead optical engineer, and the filter designer and vendor is described. Examples of iterative design trade studies carried out in the context of science needs and budgetary and schedule constraints are presented. An overview of the final design specifications for the ACS bandpass and ramp filters is also presented.

  9. Hubble Space Telescope and Ground-Based Observations of the Type Iax Supernovae SN 2005hk and SN 2008A

    Energy Technology Data Exchange (ETDEWEB)

    McCully, Curtis; Jha, Saurabh W.; Foley, Ryan J.; Chornock, Ryan; Holtzman, Jon A.; Balam, David D.; Branch, David; Filippenko, Alexei V.; Frieman, Joshua; Fynbo, Johan; Galbany, Lluis; Ganeshalingam, Mohan; Garnavich, Peter M.; Graham, Melissa L.; Hsiao, Eric Y.; Leloudas, Giorgos; Leonard, Douglas C.; Li, Weidong; Riess, Adam G.; Sako, Masao; Schneider, Donald P.; Silverman, Jeffrey M.; Sollerman, Jesper; Steele, Thea N.; Thomas, Rollin C.; Wheeler, J. Craig; Zheng, Chen

    2014-04-24

    We present Hubble Space Telescope (HST) and ground-based optical and near-infrared observations of SN 2005hk and SN 2008A, typical members of the Type Iax class of supernovae (SNe). Here we focus on late-time observations, where these objects deviate most dramatically from all other SN types. Instead of the dominant nebular emission lines that are observed in other SNe at late phases, spectra of SNe 2005hk and 2008A show lines of Fe II, Ca II, and Fe I more than a year past maximum light, along with narrow [Fe II] and [Ca II] emission. We use spectral features to constrain the temperature and density of the ejecta, and find high densities at late times, with ne109 cm–3. Such high densities should yield enhanced cooling of the ejecta, making these objects good candidates to observe the expected "infrared catastrophe," a generic feature of SN Ia models. However, our HST photometry of SN 2008A does not match the predictions of an infrared catastrophe. Moreover, our HST observations rule out a "complete deflagration" that fully disrupts the white dwarf for these peculiar SNe, showing no evidence for unburned material at late times. Deflagration explosion models that leave behind a bound remnant can match some of the observed properties of SNe Iax, but no published model is consistent with all of our observations of SNe 2005hk and 2008A.

  10. Chemically-dissected Rotation Curves of the Galactic Bulge from Hubble Space Telescope Proper Motions on the Main Sequence

    Science.gov (United States)

    Clarkson, William I.; Calamida, Annalisa; Sahu, Kailash C.; Gennaro, Mario; Brown, Thomas M.; Avila, Roberto J.; Rich, R. Michael; Debattista, Victor P.

    2018-01-01

    We report results from a pilot study using archival Hubble Space Telescope imaging observations in seven filters over a multi-year time-baseline to probe the co-dependence of chemical abundance and kinematics, using proper motion-based rotation curves selected on relative metallicity. With spectroscopic studies suggesting the metallicity distribution of the Bulge may be bimodal, we follow a data-driven approach to classify stars as belonging to metal-rich or metal-poor ends of the observed relative photometric metallicity distribution, with classification implemented using standard unsupervised learning techniques. We detect clear differences in both slope and amplitude of the proper motion-based rotation curve as traced by the more “metal-rich” and “metal-poor” samples. The sense of the discrepancy is qualitatively in agreement both with recent observational and theoretical indications; the “metal-poor” sample does indeed show a weaker rotation signature.This is the first study to dissect the proper motion rotation curve of the Bulge by chemical abundance using main-sequence targets, which are orders of magnitude more common on the sky than bright giants. These techniques thus offer a pencil-beam complement to wide-field studies that use more traditional tracer populations.

  11. Constraints on the Progenitor System of the Type Ia Supernova 2014J from Pre-Explosion Hubble Space Telescope Imaging

    Science.gov (United States)

    Kelly, Patrick L.; Fox, Ori D.; Filippenko, Alexei V.; Cenko, S. Bradley; Prato, Lisa; Schaefer, Gail; Shen, Ken J.; Zheng, WeiKang; Graham, Melissa L.; Tucker, Brad E.

    2014-01-01

    We constrain the properties of the progenitor system of the highly reddened Type Ia supernova (SN Ia) 2014J in Messier 82 (M82; d (is) approx. 3.5 Mpc). We determine the supernova (SN) location using Keck-II K-band adaptive optics images, and we find no evidence for flux from a progenitor system in pre-explosion near-ultraviolet through near-infrared Hubble Space Telescope (HST) images. Our upper limits exclude systems having a bright red giant companion, including symbiotic novae with luminosities comparable to that of RS Ophiuchi. While the flux constraints are also inconsistent with predictions for comparatively cool He-donor systems (T (is) approximately 35,000 K), we cannot preclude a system similar to V445 Puppis. The progenitor constraints are robust across a wide range of RV and AV values, but significantly greater values than those inferred from the SN light curve and spectrum would yield proportionally brighter luminosity limits. The comparatively faint flux expected from a binary progenitor system consisting of white dwarf stars would not have been detected in the pre-explosion HST imaging. Infrared HST exposures yield more stringent constraints on the luminosities of very cool (T (is) less than 3000 K) companion stars than was possible in the case of SN Ia 2011fe.

  12. The HST/WFC3 Quicklook Project: A User Interface to Hubble Space Telescope Wide Field Camera 3 Data

    Science.gov (United States)

    Bourque, Matthew; Bajaj, Varun; Bowers, Ariel; Dulude, Michael; Durbin, Meredith; Gosmeyer, Catherine; Gunning, Heather; Khandrika, Harish; Martlin, Catherine; Sunnquist, Ben; Viana, Alex

    2017-06-01

    The Hubble Space Telescope's Wide Field Camera 3 (WFC3) instrument, comprised of two detectors, UVIS (Ultraviolet-Visible) and IR (Infrared), has been acquiring ~ 50-100 images daily since its installation in 2009. The WFC3 Quicklook project provides a means for instrument analysts to store, calibrate, monitor, and interact with these data through the various Quicklook systems: (1) a ~ 175 TB filesystem, which stores the entire WFC3 archive on disk, (2) a MySQL database, which stores image header data, (3) a Python-based automation platform, which currently executes 22 unique calibration/monitoring scripts, (4) a Python-based code library, which provides system functionality such as logging, downloading tools, database connection objects, and filesystem management, and (5) a Python/Flask-based web interface to the Quicklook system. The Quicklook project has enabled large-scale WFC3 analyses and calibrations, such as the monitoring of the health and stability of the WFC3 instrument, the measurement of ~ 20 million WFC3/UVIS Point Spread Functions (PSFs), the creation of WFC3/IR persistence calibration products, and many others.

  13. Targeting Alzheimer's disease by investigating previously unexplored chemical space surrounding the cholinesterase inhibitor donepezil

    CSIR Research Space (South Africa)

    Van Greunen, DG

    2017-02-01

    Full Text Available A series of twenty seven acetylcholinesterase inhibitors, as potential agents for the treatment of Alzheimer's disease, were designed and synthesised based upon previously unexplored chemical space surrounding the molecular skeleton of the drug...

  14. CHEERS Results from NGC 3393. II. Investigating the Extended Narrow-line Region Using Deep Chandra Observations and Hubble Space Telescope Narrow-line Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Paggi, Alessandro; Raymond, John [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Wang, Junfeng [Department of Astronomy, Physics Building, Xiamen University Xiamen, Fujian, 361005 (China); Storchi-Bergmann, Thaisa, E-mail: walter.maksym@cfa.harvard.edu [Departamento de Astronomia, Universidade Federal do Rio Grande do Sul, IF, CP 15051, 91501-970 Porto Alegre, RS (Brazil)

    2017-07-20

    The CHandra Extended Emission Line Region Survey (CHEERS) is an X-ray study of nearby active galactic nuclei (AGNs) designed to take full advantage of Chandra 's unique angular resolution by spatially resolving feedback signatures and effects. In the second paper of a series on CHEERS target NGC 3393, we examine deep high-resolution Chandra images and compare them with Hubble Space Telescope narrow-line images of [O iii], [S ii], and H α , as well as previously unpublished mid-ultraviolet (MUV) images. The X-rays provide unprecedented evidence that the S-shaped arms that envelope the nuclear radio outflows extend only ≲0.″2 (≲50 pc) across. The high-resolution multiwavelength data suggest that the extended narrow-line region is a complex multiphase structure in the circumnuclear interstellar medium (ISM). Its ionization structure is highly stratified with respect to outflow-driven bubbles in the bicone and varies dramatically on scales of ∼10 pc. Multiple findings show likely contributions from shocks to the feedback in regions where radio outflows from the AGN most directly influence the ISM. These findings include H α evidence for gas compression and extended MUV emission and are in agreement with existing STIS kinematics. Extended filamentary structure in the X-rays and optical suggests the presence of an undetected plasma component, whose existence could be tested with deeper radio observations.

  15. HUBBLE SPACE TELESCOPE PRE-PERIHELION ACS/WFC IMAGING POLARIMETRY OF COMET ISON (C/2012 S1) AT 3.81 AU

    Energy Technology Data Exchange (ETDEWEB)

    Hines, Dean C.; Mutchler, Max; Hammer, Derek [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Videen, Gorden; Sitko, Michael L.; Yanamandra-Fisher, Padmavati A. [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States); Zubko, Evgenij; Muinonen, Karri [Department of Physics, P.O. Box 64, FI-00014 University of Helsinki (Finland); Shkuratov, Yuriy; Kaydash, Vadim G. [Astronomical Institute of V. N. Karazin University, Kharkov, 61058 (Ukraine); Knight, Matthew M. [Lowell Observatory, Flagstaff, AZ 86001 (United States); Lisse, Carey M. [Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723 (United States)

    2014-01-10

    We present polarization images of Comet ISON (C/2012 S1) taken with the Hubble Space Telescope (HST) on UTC 2013 May 8 (r {sub h} = 3.81 AU, Δ = 4.34 AU), when the phase angle was α ≈ 12.°16. This phase angle is approximately centered in the negative polarization branch for cometary dust. The region beyond 1000 km (∼0.32 arcsec ≈ 6 pixels) from the nucleus shows a negative polarization amplitude of p% ∼ –1.6%. Within 1000 km of the nucleus, the polarization position angle rotates to be approximately perpendicular to the scattering plane, with an amplitude p% ∼ +2.5%. Such positive polarization has been observed previously as a characteristic feature of cometary jets, and we show that Comet ISON does indeed harbor a jet-like feature. These HST observations of Comet ISON represent the first visible light, imaging polarimetry with subarcsecond spatial resolution of a Nearly Isotropic Comet beyond 3.8 AU from the Sun at a small phase angle. The observations provide an early glimpse of the properties of the cometary dust preserved in this Oort-Cloud comet.

  16. New Constraints on ΩM, ΩΛ, and w from an Independent Set of 11 High-Redshift Supernovae Observed with the Hubble Space Telescope

    Science.gov (United States)

    Knop, R. A.; Aldering, G.; Amanullah, R.; Astier, P.; Blanc, G.; Burns, M. S.; Conley, A.; Deustua, S. E.; Doi, M.; Ellis, R.; Fabbro, S.; Folatelli, G.; Fruchter, A. S.; Garavini, G.; Garmond, S.; Garton, K.; Gibbons, R.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hardin, D.; Hook, I.; Howell, D. A.; Kim, A. G.; Lee, B. C.; Lidman, C.; Mendez, J.; Nobili, S.; Nugent, P. E.; Pain, R.; Panagia, N.; Pennypacker, C. R.; Perlmutter, S.; Quimby, R.; Raux, J.; Regnault, N.; Ruiz-Lapuente, P.; Sainton, G.; Schaefer, B.; Schahmaneche, K.; Smith, E.; Spadafora, A. L.; Stanishev, V.; Sullivan, M.; Walton, N. A.; Wang, L.; Wood-Vasey, W. M.; Yasuda, N.

    2003-11-01

    We report measurements of ΩM, ΩΛ, and w from 11 supernovae (SNe) at z=0.36-0.86 with high-quality light curves measured using WFPC2 on the Hubble Space Telescope (HST). This is an independent set of high-redshift SNe that confirms previous SN evidence for an accelerating universe. The high-quality light curves available from photometry on WFPC2 make it possible for these 11 SNe alone to provide measurements of the cosmological parameters comparable in statistical weight to the previous results. Combined with earlier Supernova Cosmology Project data, the new SNe yield a measurement of the mass density ΩM=0.25+0.07-0.06(statistical)+/-0.04 (identified systematics), or equivalently, a cosmological constant of ΩΛ=0.75+0.06-0.07(statistical)+/-0.04 (identified systematics), under the assumptions of a flat universe and that the dark energy equation-of-state parameter has a constant value w=-1. When the SN results are combined with independent flat-universe measurements of ΩM from cosmic microwave background and galaxy redshift distortion data, they provide a measurement of w=-1.05+0.15-0.20(statistical)+/-0.09 (identified systematic), if w is assumed to be constant in time. In addition to high-precision light-curve measurements, the new data offer greatly improved color measurements of the high-redshift SNe and hence improved host galaxy extinction estimates. These extinction measurements show no anomalous negative E(B-V) at high redshift. The precision of the measurements is such that it is possible to perform a host galaxy extinction correction directly for individual SNe without any assumptions or priors on the parent E(B-V) distribution. Our cosmological fits using full extinction corrections confirm that dark energy is required with P(ΩΛ>0)>0.99, a result consistent with previous and current SN analyses that rely on the identification of a low-extinction subset or prior assumptions concerning the intrinsic extinction distribution. Based in part on

  17. Discretization of space and time: mass-energy relation, accelerating expansion of the Universe, Hubble constant

    OpenAIRE

    Roatta, Luca

    2017-01-01

    Assuming that space and time can only have discrete values, we obtain the expression of the gravitational potential energy that at large distance coincides with the Newtonian. In very precise circumstances it coincides with the relativistic mass-energy relation: this shows that the Universe is a black hole in which all bodies are subjected to an acceleration toward the border of the Universe itself. Since the Universe is a black hole with a fixed radius, we can obtain the density of the Unive...

  18. Effect of Solar Exposure on the Atomic Oxygen Erosion of Hubble Space Telescope Aluminized-Teflon Thermal Shields

    Science.gov (United States)

    Guo, Aobo; Ashmead, Claire C.; deGroh, Kim K.

    2012-01-01

    When exposed to low Earth orbital (LEO) environment, external spacecraft materials degrade due to radiation, thermal cycling, micrometeoroid and debris impacts, and atomic oxygen (AO) interaction. Collisions between AO and spacecraft can result in oxidation of external spacecraft surface materials, which can lead to erosion and severe structural and/or optical property deterioration. It is therefore essential to understand the AO erosion yield (Ey), the volume loss per incident oxygen atom (cu cm/atom), of polymers to assure durability of spacecraft materials. The objective of this study was to determine whether solar radiation exposure can increase the rate of AO erosion of polymers in LEO. The material studied was a section of aluminized-Teflon (DuPont) fluorinated ethylene propylene (Al-FEP) thermal shield exposed to space on the Hubble Space Telescope (HST) for 8.25 years. Retrieved samples were sectioned from the circular thermal shield and exposed to ground laboratory thermal energy AO. The results indicate that the average Ey of the solar facing HST Al-FEP was 1.9 10(exp -24)cu cm/atom, while the average Ey of the anti-solar HST Al-FEP was 1.5 10(exp -24)cu cm/atom. The Ey of the pristine samples was 1.6- 1.7 10(exp -24)cu cm/atom. These results indicate that solar exposure affects the post-flight erosion rate of FEP in a plasma asher. Therefore, it likely affects the erosion rate while in LEO.

  19. INVESTIGATING THE CORE MORPHOLOGY-SEYFERT CLASS RELATIONSHIP WITH HUBBLE SPACE TELESCOPE ARCHIVAL IMAGES OF LOCAL SEYFERT GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Rutkowski, M. J.; Hegel, P. R.; Kim, Hwihyun; Windhorst, R. A. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-1404 (United States); Tamura, Kazuyuki [Naruto University of Education, Nakashima, Takashima, Naruto-cho, Naruto-shi 772-8502 (Japan)

    2013-07-01

    The unified model of active galactic nuclei (AGNs) has provided a successful explanation for the observed diversity of AGNs in the local universe. However, recent analysis of multi-wavelength spectral and image data suggests that the unified model is only a partial theory of AGNs, and may need to be augmented to remain consistent with all observations. Recent studies using high spatial resolution ground- and space-based observations of local AGNs show that Seyfert class and the ''core'' (r {approx}< 1 kpc) host-galaxy morphology are correlated. Currently, this relationship has only been established qualitatively, by visual inspection of the core morphologies of low-redshift (z < 0.035) Seyfert host galaxies. We re-establish this empirical relationship in Hubble Space Telescope optical imaging by visual inspection of a catalog of 85 local (D < 63 Mpc) Seyfert galaxies. We also attempt to re-establish the core morphology-Seyfert class relationship using an automated, non-parametric technique that combines both existing classification parameter methods (the adapted CAS and G-M {sub 20}) and a new method which implements the Source Extractor software for feature detection in unsharp-mask images. This new method is designed explicitly to detect dust features in the images. We use our automated approach to classify the morphology of the AGN cores and determine that Sy2 galaxies visually appear, on average, to have more dust features than Sy1. With the exception of this ''dustiness'' however, we do not measure a strong correlation between the dust morphology and the Seyfert class of the host galaxy using quantitative techniques. We discuss the implications of these results in the context of the unified model.

  20. A FAR-ULTRAVIOLET ATLAS OF LOW-RESOLUTION HUBBLE SPACE TELESCOPE SPECTRA OF T TAURI STARS

    Energy Technology Data Exchange (ETDEWEB)

    Yang Hao; Linsky, Jeffrey L. [JILA, University of Colorado and NIST, Boulder, CO 80309-0440 (United States); Herczeg, Gregory J. [Max-Planck-Institut fuer extraterrestriche Physik, 85741 Garching (Germany); Brown, Alexander [CASA, University of Colorado, Boulder, CO 80309-0389 (United States); Johns-Krull, Christopher M. [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States); Ingleby, Laura; Calvet, Nuria; Bergin, Edwin [Department of Astronomy, University of Michigan, 830 Dennison Building, Ann Arbor, MI 48109 (United States); Valenti, Jeff A., E-mail: haoyang@jilau1.colorado.edu, E-mail: jlinsky@jilau1.colorado.edu, E-mail: gregoryh@mpe.mpg.de, E-mail: Alexander.Brown@colorado.edu, E-mail: cmj@rice.edu, E-mail: lingleby@umich.edu, E-mail: ncalvet@umich.edu, E-mail: ebergin@umich.edu, E-mail: valenti@stsci.edu [Space Telescope Science Institute, Baltimore, MD 21218 (United States)

    2012-01-10

    We present a far-ultraviolet (FUV) spectral atlas consisting of spectra of 91 pre-main-sequence stars. Most stars in this sample were observed with the Space Telescope Imaging Spectrograph and Advanced Camera for Surveys on the Hubble Space Telescope (HST). A few archival spectra from the International Ultraviolet Explorer and the Goddard High Resolution Spectrograph on HST are included for completeness. We find strong correlations among the O I {lambda}1304 triplet, the Si IV {lambda}{lambda}1394/1403 doublet, the C IV {lambda}1549 doublet, and the He II {lambda}1640 line luminosities. For classical T Tauri stars (CTTSs), we also find strong correlations between these lines and the accretion luminosity, suggesting that these lines form in processes related to accretion. These FUV line fluxes and X-ray luminosity correlate loosely with large scatters. The FUV emission also correlates well with H{alpha}, H{beta}, and Ca II K line luminosities. These correlations between FUV and optical diagnostics can be used to obtain rough estimates of FUV line fluxes from optical observations. Molecular hydrogen (H{sub 2}) emission is generally present in the spectra of actively accreting CTTSs but not the weak-lined T Tauri stars that are not accreting. The presence of H{sub 2} emission in the spectrum of HD 98800 N suggests that the disk should be classified as actively accreting rather than a debris disk. We discuss the importance of FUV radiation, including the hydrogen Ly{alpha} line, on the photoevaporation of exoplanet atmospheres. We find that the Ca II/C IV flux ratios for more evolved stars are lower than those for less evolved accretors, indicating preferential depletion of refractory metals into dust grains.

  1. A HUBBLE SPACE TELESCOPE SURVEY OF H{sub 2} EMISSION IN THE CIRCUMSTELLAR ENVIRONMENTS OF YOUNG STARS

    Energy Technology Data Exchange (ETDEWEB)

    France, Kevin; Schindhelm, Eric; Brown, Alexander [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309 (United States); Herczeg, Gregory J. [Max-Planck-Institut fuer extraterrestriche Physik, Postfach 1312, D-85741 Garching (Germany); Abgrall, Herve; Roueff, Evelyne [LUTH and UMR 8102 du CNRS, Observatoire de Paris, Section de Meudon, Place J. Janssen, F-92195 Meudon (France); Alexander, Richard D. [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Bergin, Edwin A. [Department of Astronomy, University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI 48109 (United States); Brown, Joanna M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-78, Cambridge, MA 02138 (United States); Linsky, Jeffrey L. [JILA, University of Colorado and NIST, 440 UCB, Boulder, CO 80309 (United States); Yang Hao, E-mail: kevin.france@colorado.edu [Institute of Astrophysics, Central China Normal University, Wuhan, Hubei 430079 (China)

    2012-09-10

    The formation timescale and final architecture of exoplanetary systems are closely related to the properties of the molecular disks from which they form. Observations of the spatial distribution and lifetime of the molecular gas at planet-forming radii (a < 10 AU) are important for understanding the formation and evolution of exoplanetary systems. Toward this end, we present the largest spectrally resolved survey of H{sub 2} emission around low-mass pre-main-sequence stars compiled to date. We use a combination of new and archival far-ultraviolet spectra from the Cosmic Origins Spectrograph and Space Telescope Imaging Spectrograph instruments on the Hubble Space Telescope to sample 34 T Tauri stars (27 actively accreting Classical T Tauri Stars and 7 non-accreting Weak-lined T Tauri Stars) with ages ranging from {approx}1 to 10 Myr. We observe fluorescent H{sub 2} emission, excited by Ly{alpha} photons, in 100% of the accreting sources, including all of the transitional disks in our sample (CS Cha, DM Tau, GM Aur, UX Tau A, LkCa 15, HD 135344B, and TW Hya). The spatial distribution of the emitting gas is inferred from spectrally resolved H{sub 2} line profiles. Some of the emitting gas is produced in outflowing material, but the majority of H{sub 2} emission appears to originate in a rotating disk. For the disk-dominated targets, the H{sub 2} emission originates predominately at a {approx}< 3 AU. The emission line widths and inner molecular radii are found to be roughly consistent with those measured from mid-IR CO spectra.

  2. Hubble space telescope/advanced camera for surveys confirmation of the dark substructure in A520

    International Nuclear Information System (INIS)

    Jee, M. J.; Hoekstra, H.; Mahdavi, A.; Babul, A.

    2014-01-01

    We present a weak-lensing study of the cluster A520 based on Advanced Camera for Surveys (ACS) data. The excellent data quality provides a mean source density of ∼109 arcmin –2 , which improves both resolution and significance of the mass reconstruction compared to a previous study based on Wide Field Planetary Camera 2 (WFPC2) images. We take care in removing instrumental effects such as the charge trailing due to radiation damage of the detector and the position-dependent point-spread function. This new ACS analysis confirms the previous claims that a substantial amount of dark mass is present between two luminous subclusters where we observe very little light. The centroid of the dark peak in the current ACS analysis is offset to the southwest by ∼1' with respect to the centroid from the WFPC2 analysis. Interestingly, this new centroid is in better agreement with the location where the X-ray emission is strongest, and the mass-to-light ratio estimated with this centroid is much higher (813 ± 78 M ☉ /L R☉ ) than the previous value; the aperture mass with the WFPC2 centroid provides a consistent mass. Although we cannot provide a definite explanation for the dark peak, we discuss a revised scenario, wherein dark matter with a more conventional range (σ DM /m DM < 1 cm 2 g –1 ) of self-interacting cross-section can lead to the detection of this dark substructure. If supported by detailed numerical simulations, this hypothesis opens up the possibility that the A520 system can be used to establish a lower limit of the self-interacting cross-section of dark matter.

  3. Degradation of Multi-Layer Insulation (MLI) Retrieved from the Hubble Space Telescope

    Science.gov (United States)

    Mohammed, Jelila S.; deGroh, Kim, K.

    2011-01-01

    Multi-Layer Insulation (MLI) returned during Servicing Mission 4 are still being analyzed. Analysis has revealed degradation of optical, thermal, and mechanical properties, increased crystallinity, and reduction in fluorine/carbon ratio of aluminized-Teflon fluorinated ethylene propylene (Al-FEP) FEP. These material properties can be affected by high temperatures on orbit, increased radiation exposure, and in some cases contamination from materials in close proximity to the insulation on orbit. Preliminary results support conclusions of previous studies: areas of Al-FEP that received higher levels of solar exposure show more degradation (high temperatures and radiation combined).

  4. A Lyman Break Galaxy in the Epoch of Reionization from Hubble Space Telescope (HST) Grism Spectroscopy

    Science.gov (United States)

    Rhoads, James E.; Malhotra, Sangeeta; Stern, Daniel K.; Gardner, Jonathan P.; Dickinson, Mark; Pirzkal, Norbert; Spinrad, Hyron; Reddy, Naveen; Dey, Arjun; Hathi, Nimish; hide

    2013-01-01

    Slitless grism spectroscopy from space offers dramatic advantages for studying high redshift galaxies: high spatial resolution to match the compact sizes of the targets, a dark and uniform sky background, and simultaneous observation over fields ranging from five square arcminutes (HST) to over 1000 square arcminutes (Euclid). Here we present observations of a galaxy at z = 6.57 the end of the reioinization epoch identified using slitless HST grism spectra from the PEARS survey (Probing Evolution And Reionization Spectroscopically) and reconfirmed with Keck + DEIMOS. This high redshift identification is enabled by the depth of the PEARS survey. Substantially higher redshifts are precluded for PEARS data by the declining sensitivity of the ACS grism at greater than lambda 0.95 micrometers. Spectra of Lyman breaks at yet higher redshifts will be possible using comparably deep observations with IR-sensitive grisms.

  5. Hubble Space Telescope ultraviolet spectroscopy of the highly polarized but quiescent quasar OI 287

    Science.gov (United States)

    Antonucci, Robert; Kinney, Anne L.; Hurt, Todd

    1993-01-01

    The quasar OI 287 has a unique combination of properties, including a high and constant optical polarization oriented parallel to the radio axis, a quiescent optical flux, and a lobe-dominant radio source. Previous studies have led to the picture of an edge-on thin dusty torus occulting a featureless continuum (FC) source and a broad line region (BLR) in this object. The FC source and the BLR are seen only in reflected (polarized) light. In the unified models, this makes OI 287 a 'quasar 2', analogous to the type 2 Seyfert galaxies and the narrow-line radio galaxies. Our UV spectrum adds two bits of information consistent with the above ideas. First, the spectrum neither turns up in the UV, as expected for optically thin dust scattering, nor turns down as expected for polarization by dust transmission. It is consistent with reflection by free electrons or optically thick dust. Second, there are in fact blueshifted absorption troughs associated with the C IV 1549 A line, supporting the analogy with BALs, as well as the idea that the BALs are objects which present a nearly edge-on view of a disk structure.

  6. Hubble Space Telescope Proper Motion (HSTPROMO) Catalogs of Galactic Globular Clusters. V. The Rapid Rotation of 47 Tuc Traced and Modeled in Three Dimensions

    Science.gov (United States)

    Bellini, A.; Bianchini, P.; Varri, A. L.; Anderson, J.; Piotto, G.; van der Marel, R. P.; Vesperini, E.; Watkins, L. L.

    2017-08-01

    High-precision proper motions of the globular cluster 47 Tuc have allowed us to measure for the first time the cluster rotation in the plane of the sky and the velocity anisotropy profile from the cluster core out to about 13‧. These profiles are coupled with prior measurements along the line of sight (LOS) and the surface brightness profile and fit all together with self-consistent models specifically constructed to describe quasi-relaxed stellar systems with realistic differential rotation, axisymmetry, and pressure anisotropy. The best-fit model provides an inclination angle i between the rotation axis and the LOS direction of 30° and is able to simultaneously reproduce the full three-dimensional kinematics and structure of the cluster, while preserving a good agreement with the projected morphology. Literature models based solely on LOS measurements imply a significantly different inclination angle (i = 45°), demonstrating that proper motions play a key role in constraining the intrinsic structure of 47 Tuc. Our best-fit global dynamical model implies an internal rotation higher than previous studies have shown and suggests a peak of the intrinsic V/σ ratio of ∼0.9 at around two half-light radii, with a nonmonotonic intrinsic ellipticity profile reaching values up to 0.45. Our study unveils a new degree of dynamical complexity in 47 Tuc, which may be leveraged to provide new insights into the formation and evolution of globular clusters. Based on archival observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  7. EXTINCTION AND DUST GEOMETRY IN M83 H II REGIONS: AN HUBBLE SPACE TELESCOPE/WFC3 STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guilin; Calzetti, Daniela; Hong, Sungryong [Astronomy Department, University of Massachusetts, Amherst, MA 01003 (United States); Whitmore, Bradley [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Chandar, Rupali [Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States); O' Connell, Robert W. [Astronomy Department, University of Virginia, P.O. Box 3818, Charlottesville, VA 22903 (United States); Blair, William P. [Center for Astrophysical Sciences, Johns Hopkins University, Baltimore, MD 21218 (United States); Cohen, Seth H.; Kim, Hwihyun [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Frogel, Jay A., E-mail: liu@pha.jhu.edu [Galaxies Unlimited, Lutherville, MD 21093 (United States)

    2013-12-01

    We present Hubble Space Telescope/WFC3 narrow-band imaging of the starburst galaxy M83 targeting the hydrogen recombination lines (Hβ, Hα, and Paβ), which we use to investigate the dust extinction in the H II regions. We derive extinction maps with 6 pc spatial resolution from two combinations of hydrogen lines (Hα/Hβ and Hα/Paβ), and show that the longer wavelengths probe larger optical depths, with A{sub V} values larger by ≳1 mag than those derived from the shorter wavelengths. This difference leads to a factor ≳2 discrepancy in the extinction-corrected Hα luminosity, a significant effect when studying extragalactic H II regions. By comparing these observations to a series of simple models, we conclude that a large diversity of absorber/emitter geometric configurations can account for the data, implying a more complex physical structure than the classical foreground ''dust screen'' assumption. However, most data points are bracketed by the foreground screen and a model where dust and emitters are uniformly mixed. When averaged over large (≳100-200 pc) scales, the extinction becomes consistent with a ''dust screen'', suggesting that other geometries tend to be restricted to more local scales. Moreover, the extinction in any region can be described by a combination of the foreground screen and the uniform mixture model with weights of 1/3 and 2/3 in the center (≲2 kpc), respectively, and 2/3 and 1/3 for the rest of the disk. This simple prescription significantly improves the accuracy of the dust extinction corrections and can be especially useful for pixel-based analyses of galaxies similar to M83.

  8. Probing the Metal Enrichment of the Intergalactic Medium at z = 5–6 Using the Hubble Space Telescope

    International Nuclear Information System (INIS)

    Cai, Zheng; Fan, Xiaohui; Dave, Romeel; Finlator, Kristian; Oppenheimer, Ben

    2017-01-01

    We test the galactic outflow model by probing associated galaxies of four strong intergalactic C iv absorbers at z = 5–6 using the Hubble Space Telescope ( HST ) Advanced Camera for Surveys (ACS) ramp narrowband filters. The four strong C iv absorbers reside at z = 5.74, 5.52, 4.95, and 4.87, with column densities ranging from N Civ = 10 13.8 to 10 14.8 cm −2 . At z = 5.74, we detect an i-dropout Ly α emitter (LAE) candidate with a projected impact parameter of 42 physical kpc from the C iv absorber. This LAE candidate has a Ly α -based star formation rate (SFR Lyα ) of 2 M ⊙ yr −1 and a UV-based SFR of 4 M ⊙ yr −1 . Although we cannot completely rule out that this i-dropout emitter may be an [O ii] interloper, its measured properties are consistent with the C iv powered galaxy at z = 5.74. For C iv absorbers at z = 4.95 and z = 4.87, although we detect two LAE candidates with impact parameters of 160 and 200 kpc, such distances are larger than that predicted from the simulations. Therefore, we treat them as nondetections. For the system at z = 5.52, we do not detect LAE candidates, placing a 3 σ upper limit of SFR Lyα ≈ 1.5 M ⊙ yr −1 . In summary, in these four cases, we only detect one plausible C iv source at z = 5.74. Combining the modest SFR of the one detection and the three nondetections, our HST observations strongly support that smaller galaxies (SFR Lyα ≲ 2 M ⊙ yr −1 ) are main sources of intergalactic C iv absorbers, and such small galaxies play a major role in the metal enrichment of the intergalactic medium at z ≳ 5.

  9. Probing the Metal Enrichment of the Intergalactic Medium at z = 5-6 Using the Hubble Space Telescope

    Science.gov (United States)

    Cai, Zheng; Fan, Xiaohui; Dave, Romeel; Finlator, Kristian; Oppenheimer, Ben

    2017-11-01

    We test the galactic outflow model by probing associated galaxies of four strong intergalactic C IV absorbers at z = 5-6 using the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) ramp narrowband filters. The four strong C IV absorbers reside at z = 5.74, 5.52, 4.95, and 4.87, with column densities ranging from N C IV = 1013.8 to 1014.8 cm-2. At z = 5.74, we detect an I-dropout Lyα emitter (LAE) candidate with a projected impact parameter of 42 physical kpc from the C IV absorber. This LAE candidate has a Lyα-based star formation rate (SFRLyα ) of 2 M ⊙ yr-1 and a UV-based SFR of 4 M ⊙ yr-1. Although we cannot completely rule out that this I-dropout emitter may be an [O II] interloper, its measured properties are consistent with the C IV powered galaxy at z = 5.74. For C IV absorbers at z = 4.95 and z = 4.87, although we detect two LAE candidates with impact parameters of 160 and 200 kpc, such distances are larger than that predicted from the simulations. Therefore, we treat them as nondetections. For the system at z = 5.52, we do not detect LAE candidates, placing a 3σ upper limit of SFRLyα ≈ 1.5 M ⊙ yr-1. In summary, in these four cases, we only detect one plausible C IV source at z = 5.74. Combining the modest SFR of the one detection and the three nondetections, our HST observations strongly support that smaller galaxies (SFRLyα ≲ 2 M ⊙ yr-1) are main sources of intergalactic C IV absorbers, and such small galaxies play a major role in the metal enrichment of the intergalactic medium at z ≳ 5.

  10. The Hubble Space Telescope UV Legacy Survey of Galactic Globular Clusters - XII. The RGB bumps of multiple stellar populations

    Science.gov (United States)

    Lagioia, E. P.; Milone, A. P.; Marino, A. F.; Cassisi, S.; Aparicio, A. J.; Piotto, G.; Anderson, J.; Barbuy, B.; Bedin, L. R.; Bellini, A.; Brown, T.; D'Antona, F.; Nardiello, D.; Ortolani, S.; Pietrinferni, A.; Renzini, A.; Salaris, M.; Sarajedini, A.; van der Marel, R.; Vesperini, E.

    2018-04-01

    The Hubble Space Telescope UV Legacy Survey of Galactic Globular Clusters is providing a major breakthrough in our knowledge of globular clusters (GCs) and their stellar populations. Among the main results, we discovered that all the studied GCs host two main discrete groups consisting of first generation (1G) and second generation (2G) stars. We exploit the multiwavelength photometry from this project to investigate, for the first time, the Red Giant Branch Bump (RGBB) of the two generations in a large sample of GCs. We identified, with high statistical significance, the RGBB of 1G and 2G stars in 26 GCs and found that their magnitude separation as a function of the filter wavelength follows comparable trends. The comparison of observations to synthetic spectra reveals that the RGBB luminosity depends on the stellar chemical composition and that the 2G RGBB is consistent with stars enhanced in He and N and depleted in C and O with respect to 1G stars. For metal-poor GCs the 1G and 2G RGBB relative luminosity in optical bands mostly depends on helium content, Y. We used the RGBB observations in F606W and F814W bands to infer the relative helium abundance of 1G and 2G stars in 18 GCs, finding an average helium enhancement ΔY = 0.011 ± 0.002 of 2G stars with respect to 1G stars. This is the first determination of the average difference in helium abundance of multiple populations in a large number of clusters and provides a lower limit to the maximum internal variation of helium in GCs.

  11. THE EXTENDED HUBBLE SPACE TELESCOPE SUPERNOVA SURVEY: THE RATE OF CORE COLLAPSE SUPERNOVAE TO z {approx} 1

    Energy Technology Data Exchange (ETDEWEB)

    Dahlen, Tomas; Riess, Adam G. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Strolger, Louis-Gregory [Department of Physics and Astronomy, Western Kentucky University, Bowling Green, KY 42101 (United States); Mattila, Seppo; Kankare, Erkki [Tuorla Observatory, Department of Physics and Astronomy, University of Turku, Vaeisaelaentie 20, FI-21500 Piikkioe (Finland); Mobasher, Bahram, E-mail: dahlen@stsci.edu [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States)

    2012-09-20

    We use a sample of 45 core collapse supernovae detected with the Advanced Camera for Surveys on board the Hubble Space Telescope to derive the core collapse supernova rate in the redshift range 0.1 < z < 1.3. In redshift bins centered on (z) = 0.39, (z) = 0.73, and (z) = 1.11, we find rates of 3.00{sup +1.28}{sub -0.94} {sup +1.04}{sub -0.57}, 7.39{sup +1.86}{sub -1.52} {sup +3.20}{sub -1.60}, and 9.57{sup +3.76}{sub -2.80} {sup +4.96}{sub -2.80}, respectively, given in units of yr{sup -1} Mpc{sup -3} 10{sup -4} h {sup 3}{sub 70}. The rates have been corrected for host galaxy extinction, including supernovae missed in highly dust-enshrouded environments in infrared bright galaxies. The first errors are statistical while the second ones are the estimated systematic errors. We perform a detailed discussion of possible sources of systematic errors and note that these start to dominate over statistical errors at z > 0.5, emphasizing the need to better control the systematic effects. For example, a better understanding of the amount of dust extinction in the host galaxies and knowledge of the supernova luminosity function, in particular the fraction of faint M {approx}> -15 supernovae, is needed to better constrain the rates. When comparing our results with the core collapse supernova rate based on the star formation rate, we find a good agreement, consistent with the supernova rate following the star formation rate, as expected.

  12. WHITE DWARF-RED DWARF SYSTEMS RESOLVED WITH THE HUBBLE SPACE TELESCOPE. II. FULL SNAPSHOT SURVEY RESULTS

    International Nuclear Information System (INIS)

    Farihi, J.; Hoard, D. W.; Wachter, S.

    2010-01-01

    Results are presented for a Hubble Space Telescope Advanced Camera for Surveys high-resolution imaging campaign of 90 white dwarfs with known or suspected low-mass stellar and substellar companions. Of the 72 targets that remain candidate and confirmed white dwarfs with near-infrared excess, 43 are spatially resolved into two or more components, and a total of 12 systems are potentially triples. For 68 systems where a comparison is possible, 50% have significant photometric distance mismatches between their white dwarf and M dwarf components, suggesting that white dwarf parameters derived spectroscopically are often biased due to the cool companion. Interestingly, 9 of the 30 binaries known to have emission lines are found to be visual pairs and hence widely separated, indicating an intrinsically active cool star and not irradiation from the white dwarf. There is a possible, slight deficit of earlier spectral types (bluer colors) among the spatially unresolved companions, exactly the opposite of expectations if significant mass is transferred to the companion during the common envelope phase. Using the best available distance estimates, the low-mass companions to white dwarfs exhibit a bimodal distribution in projected separation. This result supports the hypothesis that during the giant phases of the white dwarf progenitor, any unevolved companions either migrate inward to short periods of hours to days, or outward to periods of hundreds to thousands of years. No intermediate projected separations of a few to several AU are found among these pairs. However, a few double M dwarfs (within triples) are spatially resolved in this range, empirically demonstrating that such separations were readily detectable among the binaries with white dwarfs. A straightforward and testable prediction emerges: all spatially unresolved, low-mass stellar and substellar companions to white dwarfs should be in short-period orbits. This result has implications for substellar companion and

  13. Brown dwarf photospheres are patchy: A Hubble space telescope near-infrared spectroscopic survey finds frequent low-level variability

    International Nuclear Information System (INIS)

    Buenzli, Esther; Apai, Dániel; Radigan, Jacqueline; Reid, I. Neill; Flateau, Davin

    2014-01-01

    Condensate clouds strongly impact the spectra of brown dwarfs and exoplanets. Recent discoveries of variable L/T transition dwarfs argued for patchy clouds in at least some ultracool atmospheres. This study aims to measure the frequency and level of spectral variability in brown dwarfs and to search for correlations with spectral type. We used Hubble Space Telescope/Wide Field Camera 3 to obtain spectroscopic time series for 22 brown dwarfs of spectral types ranging from L5 to T6 at 1.1-1.7 μm for ≈40 minutes per object. Using Bayesian analysis, we find six brown dwarfs with confident (p > 95%) variability in the relative flux in at least one wavelength region at sub-percent precision, and five brown dwarfs with tentative (p > 68%) variability. We derive a minimum variability fraction f min =27 −7 +11 % over all covered spectral types. The fraction of variables is equal within errors for mid-L, late-L, and mid-T spectral types; for early-T dwarfs we do not find any confident variable but the sample is too small to derive meaningful limits. For some objects, the variability occurs primarily in the flux peak in the J or H band, others are variable throughout the spectrum or only in specific absorption regions. Four sources may have broadband peak-to-peak amplitudes exceeding 1%. Our measurements are not sensitive to very long periods, inclinations near pole-on and rotationally symmetric heterogeneity. The detection statistics are consistent with most brown dwarf photospheres being patchy. While multiple-percent near-infrared variability may be rare and confined to the L/T transition, low-level heterogeneities are a frequent characteristic of brown dwarf atmospheres.

  14. Delayed star formation in isolated dwarf galaxies: Hubble space telescope star formation history of the Aquarius dwarf irregular

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Andrew A. [School of Physical Sciences, University of Tasmania, Private Bag 37, Hobart, Tasmania, 7001 Australia (Australia); Weisz, Daniel R. [Department of Astronomy, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Dolphin, Andrew E. [Raytheon, 1151 East Hermans Road, Tucson, AZ 85706 (United States); Skillman, Evan D. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55441 (United States); McConnachie, Alan W. [NRC Herzberg Institute of Astrophysics, Dominion Astrophysical Observatory, Victoria, BC, V9E 2E7 Canada (Canada); Brooks, Alyson M. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Leaman, Ryan, E-mail: andrew.cole@utas.edu.au, E-mail: drw@ucsc.edu, E-mail: adolphin@raytheon.com, E-mail: skillman@astro.umn.edu, E-mail: alan.mcconnachie@nrc-cnrc.gc.ca, E-mail: abrooks@physics.rutgers.edu, E-mail: rleaman@iac.es [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2014-11-01

    We have obtained deep images of the highly isolated (d = 1 Mpc) Aquarius dwarf irregular galaxy (DDO 210) with the Hubble Space Telescope Advanced Camera for Surveys. The resulting color-magnitude diagram (CMD) reaches more than a magnitude below the oldest main-sequence turnoff, allowing us to derive the star formation history (SFH) over the entire lifetime of the galaxy with a timing precision of ≈10% of the lookback time. Using a maximum likelihood fit to the CMD we find that only ≈10% of all star formation in Aquarius took place more than 10 Gyr ago (lookback time equivalent to redshift z ≈ 2). The star formation rate increased dramatically ≈6-8 Gyr ago (z ≈ 0.7-1.1) and then declined until the present time. The only known galaxy with a more extreme confirmed delay in star formation is Leo A, a galaxy of similar M {sub H} {sub I}/M {sub *}, dynamical mass, mean metallicity, and degree of isolation. The delayed stellar mass growth in these galaxies does not track the mean dark matter accretion rate from CDM simulations. The similarities between Leo A and Aquarius suggest that if gas is not removed from dwarf galaxies by interactions or feedback, it can linger for several gigayears without cooling in sufficient quantity to form stars efficiently. We discuss possible causes for the delay in star formation including suppression by reionization and late-time mergers. We find reasonable agreement between our measured SFHs and select cosmological simulations of isolated dwarfs. Because star formation and merger processes are both stochastic in nature, delayed star formation in various degrees is predicted to be a characteristic (but not a universal) feature of isolated small galaxies.

  15. The star formation histories of local group dwarf galaxies. I. Hubble space telescope/wide field planetary camera 2 observations

    Energy Technology Data Exchange (ETDEWEB)

    Weisz, Daniel R. [Department of Astronomy, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 East Hermans Road, Tucson, AZ 85756 (United States); Skillman, Evan D. [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Holtzman, Jon [Department of Astronomy, New Mexico State University, Box 30001, 1320 Frenger Street, Las Cruces, NM 88003 (United States); Gilbert, Karoline M.; Dalcanton, Julianne J.; Williams, Benjamin F., E-mail: drw@ucsc.edu [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States)

    2014-07-10

    We present uniformly measured star formation histories (SFHs) of 40 Local Group (LG) dwarf galaxies based on color-magnitude diagram (CMD) analysis from archival Hubble Space Telescope imaging. We demonstrate that accurate SFHs can be recovered from CMDs that do not reach the oldest main sequence turn-off (MSTO), but emphasize that the oldest MSTO is critical for precisely constraining the earliest epochs of star formation. We find that: (1) the average lifetime SFHs of dwarf spheroidals (dSphs) can be approximated by an exponentially declining SFH with τ ∼ 5 Gyr; (2) lower luminosity dSphs are less likely to have extended SFHs than more luminous dSphs; (3) the average SFHs of dwarf irregulars (dIrrs), transition dwarfs, and dwarf ellipticals can be approximated by the combination of an exponentially declining SFH (τ ∼ 3-4 Gyr) for lookback ages >10-12 Gyr ago and a constant SFH thereafter; (4) the observed fraction of stellar mass formed prior to z = 2 ranges considerably (80% for galaxies with M < 10{sup 5} M{sub ☉} to 30% for galaxies with M > 10{sup 7} M{sub ☉}) and is largely explained by environment; (5) the distinction between 'ultra-faint' and 'classical' dSphs is arbitrary; (6) LG dIrrs formed a significantly higher fraction of stellar mass prior to z = 2 than the Sloan Digital Sky Survey galaxies from Leitner and the SFHs from the abundance matching models of Behroozi et al. This may indicate higher than expected star formation efficiencies at early times in low mass galaxies. Finally, we provide all the SFHs in tabulated electronic format for use by the community.

  16. Hubble Space Telescope Pixel Analysis of the Interacting Face-on Spiral Galaxy NGC 5194 (M51A)

    Science.gov (United States)

    Lee, Joon Hyeop; Kim, Sang Chul; Park, Hong Soo; Ree, Chang Hee; Kyeong, Jaemann; Chung, Jiwon

    2011-10-01

    A pixel analysis is carried out on the interacting face-on spiral galaxy NGC 5194 (M51A), using the Hubble Space Telescope (HST)/Advanced Camera for Surveys (ACS) images in the F435W, F555W, and F814W (BVI) bands. After 4 × 4 binning of the HST/ACS images to secure a sufficient signal-to-noise ratio for each pixel, we derive several quantities describing the pixel color-magnitude diagram (pCMD) of NGC 5194: blue/red color cut, red pixel sequence parameters, blue pixel sequence parameters, and blue-to-red pixel ratio. The red sequence pixels are mostly older than 1 Gyr, while the blue sequence pixels are mostly younger than 1 Gyr, in their luminosity-weighted mean stellar ages. The color variation in the red pixel sequence from V = 20 mag arcsec-2 to V = 17 mag arcsec-2 corresponds to a metallicity variation of Δ[Fe/H] ~2 or an optical depth variation of Δτ V ~ 4 by dust, but the actual sequence is thought to originate from the combination of those two effects. At V compressing process by spiral density waves: dense dust → newly formed stars. The tidal interaction between NGC 5194 and NGC 5195 appears to enhance the star formation at the tidal bridge connecting the two galaxies. We find that the pixels corresponding to the central active galactic nucleus (AGN) area of NGC 5194 show a tight sequence at the bright-end of the pCMD, which are in the region of R ~ 100 pc and may be a photometric indicator of AGN properties.

  17. The Star Formation Main Sequence in the Hubble Space Telescope Frontier Fields

    Science.gov (United States)

    Santini, Paola; Fontana, Adriano; Castellano, Marco; Di Criscienzo, Marcella; Merlin, Emiliano; Amorin, Ricardo; Cullen, Fergus; Daddi, Emanuele; Dickinson, Mark; Dunlop, James S.; Grazian, Andrea; Lamastra, Alessandra; McLure, Ross J.; Michałowski, Michał. J.; Pentericci, Laura; Shu, Xinwen

    2017-09-01

    We investigate the relation between star formation rate (SFR) and stellar mass (M), I.e., the main sequence (MS) relation of star-forming galaxies, at 1.3≤slant zframe UV observations. Gravitational lensing combined with deep HST observations allows us to extend the analysis of the MS down to {log} M/{M}⊙ ˜ 7.5 at z≲ 4 and {log} M/{M}⊙ ˜ 8 at higher redshifts, a factor of ˜10 below most previous results. We perform an accurate simulation to take into account the effect of observational uncertainties and correct for the Eddington bias. This step allows us to reliably measure the MS and in particular its slope. While the normalization increases with redshift, we fit an unevolving and approximately linear slope. We nicely extend to lower masses the results of brighter surveys. Thanks to the large dynamic range in mass and by making use of the simulation, we analyzed any possible mass dependence of the dispersion around the MS. We find tentative evidence that the scatter decreases with increasing mass, suggesting a larger variety of star formation histories in low-mass galaxies. This trend agrees with theoretical predictions and is explained as either a consequence of the smaller number of progenitors of low-mass galaxies in a hierarchical scenario and/or of the efficient but intermittent stellar feedback processes in low-mass halos. Finally, we observe an increase in the SFR per unit stellar mass with redshift milder than predicted by theoretical models, implying a still incomplete understanding of the processes responsible for galaxy growth.

  18. CHARACTERIZING THE STAR FORMATION OF THE LOW-MASS SHIELD GALAXIES FROM HUBBLE SPACE TELESCOPE IMAGING

    Energy Technology Data Exchange (ETDEWEB)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Simones, Jacob E. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, 116 Church Street, S.E., Minneapolis, MN 55455 (United States); Cannon, John M. [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States); Haynes, Martha P.; Giovanelli, Riccardo [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Salzer, John J. [Department of Astronomy, Indiana University, 727 East 3rd Street, Bloomington, IN 47405 (United States); Adams, Elizabeth A. K. [Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7900 AA Dwingeloo (Netherlands); Elson, Ed C. [Astrophysics, Cosmology and Gravity Centre (ACGC), Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Ott, Jürgen, E-mail: kmcquinn@astro.umn.edu [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801 (United States)

    2015-03-20

    The Survey of Hi in Extremely Low-mass Dwarfs is an on-going multi-wavelength program to characterize the gas, star formation, and evolution in gas-rich, very low-mass galaxies that populate the faint end of the galaxy luminosity function. The galaxies were selected from the first ∼10% of the Hi Arecibo Legacy Fast ALFA survey based on their low Hi mass and low baryonic mass. Here, we measure the star formation properties from optically resolved stellar populations for 12 galaxies using a color–magnitude diagram fitting technique. We derive lifetime average star formation rates (SFRs), recent SFRs, stellar masses, and gas fractions. Overall, the recent SFRs are comparable to the lifetime SFRs with mean birthrate parameter of 1.4, with a surprisingly narrow standard deviation of 0.7. Two galaxies are classified as dwarf transition galaxies (dTrans). These dTrans systems have star formation and gas properties consistent with the rest of the sample, in agreement with previous results that some dTrans galaxies may simply be low-luminosity dwarf irregulars. We do not find a correlation between the recent star formation activity and the distance to the nearest neighboring galaxy, suggesting that the star formation process is not driven by gravitational interactions, but regulated internally. Further, we find a broadening in the star formation and gas properties (i.e., specific SFRs, stellar masses, and gas fractions) compared to the generally tight correlation found in more massive galaxies. Overall, the star formation and gas properties indicate these very low-mass galaxies host a fluctuating, non-deterministic, and inefficient star formation process.

  19. Updated analysis of the upwind interplanetary hydrogen velocity as observed by the Hubble Space Telescope during solar cycle 23

    Science.gov (United States)

    Vincent, F.; Ben-Jaffel, L.; Harris, W.

    2011-12-01

    The interplanetary hydrogen (IPH), a population of neutrals that fill the space between planets inside the heliosphere, carries the signature of the interstellar medium (ISM) and the heliospheric interface. As the ionized component of the incoming ISM deflects at the heliopause, charge exchange reactions decelerate the bulk motion of the neutrals that penetrate the heliosphere. Inside the heliosphere, the IPH bulk velocity is further affected by solar gravity, radiation pressure, and ionization processes, with the latter two processes dependent on solar activity. Solar cycle 23 provided the first partial temporal map of the IPH velocity, including measurements from the Hubble Space Telescope (HST) spectrometers (Goddard High Resolution Spectrograph (GHRS) and Space Telescope Imaging Spectrograph (STIS)) and the Solar and Heliospheric Observatory/Solar Wind ANisotropies (SWAN) instrument. We present an updated analysis of IPH velocity measurements from GHRS and STIS, and compare these results with those of SWAN and two different time-dependent models. Our reanalysis of STIS data reveals a significant change in IPH velocity relative to earlier reports, because of the contamination by geocoronal oxygen that was not accounted for. As a consequence, it corrects the discrepancy with SWAN data near solar maximum (2001) and we now find that all data can be fit by the existing models to within 1σ, with the exception of SWAN observations taken at solar minimum (1997/1998). We suggest that this discrepancy at solar minimum could be due to an indirect effect of the local interstellar magnetic field, which should be included in future modeling efforts. There may be extra features as the geocoronal deuterium or a possible Fermi effect from the heliospheric interface but the diagnostic is difficult because the resolution of these observations is limited. We conclude that the current data lack the temporal coverage and/or precision necessary to determine the detailed

  20. The New Horizons and Hubble Space Telescope search for rings, dust, and debris in the Pluto-Charon system

    Science.gov (United States)

    Lauer, Tod R.; Throop, Henry B.; Showalter, Mark R.; Weaver, Harold A.; Stern, S. Alan; Spencer, John R.; Buie, Marc W.; Hamilton, Douglas P.; Porter, Simon B.; Verbiscer, Anne J.; Young, Leslie A.; Olkin, Cathy B.; Ennico, Kimberly; New Horizons Science Team

    2018-02-01

    We conducted an extensive search for dust or debris rings in the Pluto-Charon system before, during, and after the New Horizons encounter in July 2015. Methodologies included attempting to detect features by back-scattered light during the approach to Pluto (phase angle α ∼ 15°), in situ detection of impacting particles, a search for stellar occultations near the time of closest approach, and by forward-scattered light imaging during departure (α ∼ 165°). An extensive search using the Hubble Space Telescope (HST) prior to the encounter also contributed to the final ring limits. No rings, debris, or dust features were observed, but our new detection limits provide a substantially improved picture of the environment throughout the Pluto-Charon system. Searches for rings in back-scattered light covered the range 35,000-250,000 km from the system barycenter, a zone that starts interior to the orbit of Styx, the innermost minor satellite, and extends out to four times the orbital radius of Hydra, the outermost known satellite. We obtained our firmest limits using data from the New Horizons LORRI camera in the inner half of this region. Our limits on the normal I/F of an unseen ring depends on the radial scale of the rings: 2 ×10-8 (3σ) for 1500 km wide rings, 1 ×10-8 for 6000 km rings, and 7 ×10-9 for 12,000 km rings. Beyond ∼ 100, 000 km from Pluto, HST observations limit normal I/F to ∼ 8 ×10-8 . Searches for dust features from forward-scattered light extended from the surface of Pluto to the Pluto-Charon Hill sphere (rHill = 6.4 ×106 km). No evidence for rings or dust clouds was detected to normal I/F limits of ∼ 8.9 ×10-7 on ∼ 104 km scales. Four stellar occulation observations also probed the space interior to Hydra, but again no dust or debris was detected. The Student Dust Counter detected one particle impact 3.6 × 106 km from Pluto, but this is consistent with the interplanetary space environment established during the cruise of New

  1. Hubble Space Telescope Imaging of the Ultra-compact High Velocity Cloud AGC 226067: A Stripped Remnant in the Virgo Cluster

    Science.gov (United States)

    Sand, D. J.; Seth, A. C.; Crnojević, D.; Spekkens, K.; Strader, J.; Adams, E. A. K.; Caldwell, N.; Guhathakurta, P.; Kenney, J.; Randall, S.; Simon, J. D.; Toloba, E.; Willman, B.

    2017-07-01

    We analyze the optical counterpart to the ultra-compact high velocity cloud AGC 226067, utilizing imaging taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope. The color-magnitude diagram of the main body of AGC 226067 reveals an exclusively young stellar population, with an age of ˜7-50 Myr, and is consistent with a metallicity of [Fe/H] ˜ -0.3 as previous work has measured via H II region spectroscopy. Additionally, the color-magnitude diagram is consistent with a distance of D ≈ 17 Mpc, suggesting an association with the Virgo cluster. A secondary stellar system located ˜1.‧6 (˜8 kpc) away in projection has a similar stellar population. The lack of an old red giant branch (≳5 Gyr) is contrasted with a serendipitously discovered Virgo dwarf in the ACS field of view (Dw J122147+132853), and the total diffuse light from AGC 226067 is consistent with the luminosity function of the resolved ˜7-50 Myr stellar population. The main body of AGC 226067 has a M V = -11.3 ± 0.3, or M stars = 5.4 ± 1.3 × 104 M ⊙ given the stellar population. We searched 20 deg2 of imaging data adjacent to AGC 226067 in the Virgo Cluster, and found two similar stellar systems dominated by a blue stellar population, far from any massive galaxy counterpart—if this population has star-formation properties that are similar to those of AGC 226067, it implies ˜0.1 M ⊙ yr-1 in Virgo intracluster star formation. Given its unusual stellar population, AGC 226067 is likely a stripped remnant and is plausibly the result of compressed gas from the ram pressure stripped M86 subgroup (˜350 kpc away in projection) as it falls into the Virgo Cluster.

  2. Hubble Space Telescope Imaging of the Ultra-compact High Velocity Cloud AGC 226067: A Stripped Remnant in the Virgo Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Sand, D. J.; Crnojević, D. [Texas Tech University, Physics and Astronomy Department, Box 41051, Lubbock, TX 79409-1051 (United States); Seth, A. C. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Spekkens, K. [Royal Military College of Canada, Department of Physics, P.O. Box 17000, Station Forces, Kingston, Ontario, K7K 7B4 (Canada); Strader, J. [Center for Data Intensive and Time Domain Astronomy, Department of Physics and Astronomy, Michigan State University, 567 Wilson Road, East Lansing, MI 48824 (United States); Adams, E. A. K. [ASTRON, Netherlands Institute for Radio Astronomy, Postbus 2, 7900 AA Dwingeloo (Netherlands); Caldwell, N.; Randall, S. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Guhathakurta, P. [UCO/Lick Observatory, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Kenney, J. [Yale University Astronomy Department, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Simon, J. D. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Toloba, E. [Department of Physics, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211 (United States); Willman, B., E-mail: david.sand@ttu.edu [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2017-07-10

    We analyze the optical counterpart to the ultra-compact high velocity cloud AGC 226067, utilizing imaging taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope . The color–magnitude diagram of the main body of AGC 226067 reveals an exclusively young stellar population, with an age of ∼7–50 Myr, and is consistent with a metallicity of [Fe/H] ∼ −0.3 as previous work has measured via H ii region spectroscopy. Additionally, the color–magnitude diagram is consistent with a distance of D ≈ 17 Mpc, suggesting an association with the Virgo cluster. A secondary stellar system located ∼1.′6 (∼8 kpc) away in projection has a similar stellar population. The lack of an old red giant branch (≳5 Gyr) is contrasted with a serendipitously discovered Virgo dwarf in the ACS field of view (Dw J122147+132853), and the total diffuse light from AGC 226067 is consistent with the luminosity function of the resolved ∼7–50 Myr stellar population. The main body of AGC 226067 has a M {sub V} = −11.3 ± 0.3, or M {sub stars} = 5.4 ± 1.3 × 10{sup 4} M {sub ⊙} given the stellar population. We searched 20 deg{sup 2} of imaging data adjacent to AGC 226067 in the Virgo Cluster, and found two similar stellar systems dominated by a blue stellar population, far from any massive galaxy counterpart—if this population has star-formation properties that are similar to those of AGC 226067, it implies ∼0.1 M {sub ⊙} yr{sup −1} in Virgo intracluster star formation. Given its unusual stellar population, AGC 226067 is likely a stripped remnant and is plausibly the result of compressed gas from the ram pressure stripped M86 subgroup (∼350 kpc away in projection) as it falls into the Virgo Cluster.

  3. Probing the Metal Enrichment of the Intergalactic Medium at z = 5–6 Using the Hubble Space Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Zheng [UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Fan, Xiaohui [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Dave, Romeel [Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Finlator, Kristian [New Mexico State University, Las Cruces, NM 88003 (United States); Oppenheimer, Ben, E-mail: zcai@ucolick.org [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389 UCB, Boulder, CO 80309 (United States)

    2017-11-01

    We test the galactic outflow model by probing associated galaxies of four strong intergalactic C iv absorbers at z = 5–6 using the Hubble Space Telescope ( HST ) Advanced Camera for Surveys (ACS) ramp narrowband filters. The four strong C iv absorbers reside at z = 5.74, 5.52, 4.95, and 4.87, with column densities ranging from N {sub Civ} = 10{sup 13.8} to 10{sup 14.8} cm{sup −2}. At z = 5.74, we detect an i-dropout Ly α emitter (LAE) candidate with a projected impact parameter of 42 physical kpc from the C iv absorber. This LAE candidate has a Ly α -based star formation rate (SFR{sub Lyα} ) of 2 M {sub ⊙} yr{sup −1} and a UV-based SFR of 4 M {sub ⊙} yr{sup −1}. Although we cannot completely rule out that this i-dropout emitter may be an [O ii] interloper, its measured properties are consistent with the C iv powered galaxy at z = 5.74. For C iv absorbers at z = 4.95 and z = 4.87, although we detect two LAE candidates with impact parameters of 160 and 200 kpc, such distances are larger than that predicted from the simulations. Therefore, we treat them as nondetections. For the system at z = 5.52, we do not detect LAE candidates, placing a 3 σ upper limit of SFR{sub Lyα} ≈ 1.5 M {sub ⊙} yr{sup −1}. In summary, in these four cases, we only detect one plausible C iv source at z = 5.74. Combining the modest SFR of the one detection and the three nondetections, our HST observations strongly support that smaller galaxies (SFR{sub Lyα} ≲ 2 M {sub ⊙} yr{sup −1}) are main sources of intergalactic C iv absorbers, and such small galaxies play a major role in the metal enrichment of the intergalactic medium at z ≳ 5.

  4. Hubble Space Telescope Observations of Extended [O III]λ 5007 Emission in Nearby QSO2s: New Constraints on AGN Host Galaxy Interaction

    Science.gov (United States)

    Fischer, Travis C.; Kraemer, S. B.; Schmitt, H. R.; Longo Micchi, L. F.; Crenshaw, D. M.; Revalski, M.; Vestergaard, M.; Elvis, M.; Gaskell, C. M.; Hamann, F.; Ho, L. C.; Hutchings, J.; Mushotzky, R.; Netzer, H.; Storchi-Bergmann, T.; Straughn, A.; Turner, T. J.; Ward, M. J.

    2018-04-01

    We present a Hubble Space Telescope survey of extended [O III] λ5007 emission for a sample of 12 nearby (z continuing to be kinematically influenced by the central active galactic nucleus (AGN) out to an average radius of ∼1130 pc. These findings question the effectiveness of AGNs being capable of clearing material from their host bulge in the nearby universe and suggest that disruption of gas by AGN activity may prevent star formation without requiring evacuation. Additionally, we find a dichotomy in our targets when comparing [O III] radial extent and nuclear FWHM, where QSO2s with compact [O III] morphologies typically possess broader nuclear emission lines.

  5. Infrared Observations of Ongoing Star Formation in the 30 Doradus Nebula and a Comparison with Hubble Space Telescope WFPC 2 Images

    Science.gov (United States)

    Rubio, Mónica; Barbá, Rodolfo H.; Walborn, Nolan R.; Probst, Ronald G.; García, Jorge; Roth, Miguel R.

    1998-10-01

    Intercomparisons of ground-based IR continuum and H_2 images with Hubble Space Telescope WFPC2 images of the 30 Dor Nebula reveal detailed structural relationships, which provide new information about current star formation there. Numerous stellar IR sources have been discovered in or near the bright nebular filaments west and northeast of R136; their locations are intimately connected with the nebular microstructures, as well as with early O stars in dense nebular knots whose optical spectral classifications indicate extreme youth. The H_2 emission predominates in the dust clouds beyond the bright nebulosity and IR sources with respect to R136. The emerging picture suggests that a new stellar generation is being triggered by the energetic activity of the massive central cluster in the remanent interstellar material around its periphery. 30 Dor will likely evolve into a giant shell H ii region similar to N11 in the LMC, containing an older association inside an evacuated central cavity, which is surrounded by H ii regions ionized by a younger population. Such ``two-stage starbursts'' may be characteristic of massive-star formation on this scale. Based in part on observations with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS 5-26555.

  6. Observations of the Hubble Deep Field with the Infrared Space Observatory .3. Source counts and P(D) analysis

    DEFF Research Database (Denmark)

    Oliver, S.J.; Goldschmidt, P.; Franceschini, A.

    1997-01-01

    We present source counts at 6.7 and 15 mu m from our maps of the Hubble Deep Field (HDF) region, reaching 38.6 mu Jy at 6.7 mu m and 255 mu Jy at 15 mu m. These are the first ever extragalactic number counts to be presented at 6.7 mu m, and are three decades fainter than IRAS at 12 mu m. Both...

  7. Observations of the Hubble Deep Field with the Infrared Space Observatory .3. Source counts and P(D) analysis

    DEFF Research Database (Denmark)

    Oliver, S.J.; Goldschmidt, P.; Franceschini, A.

    1997-01-01

    We present source counts at 6.7 and 15 mu m from our maps of the Hubble Deep Field (HDF) region, reaching 38.6 mu Jy at 6.7 mu m and 255 mu Jy at 15 mu m. These are the first ever extragalactic number counts to be presented at 6.7 mu m, and are three decades fainter than IRAS at 12 mu m. Both sou...

  8. Recovery of 29 Second Oscillations in Hubble Space Telescope Eclipse Observations of the Cataclysmic Variable UX Ursae Majoris

    Science.gov (United States)

    Knigge, Christian; Drake, Nick; Long, Knox S.; Wade, Richard A.; Horne, Keith; Baptista, Raymundo

    1998-01-01

    Low-amplitude (approximately 0.5%) 29 s oscillations have been detected in Hubble Space Telescope Faint Object Spectrograph eclipse observations of the nova-like cataclysmic variable UX UMa. These are the same dwarf nova-type oscillations that were originally discovered in this system in 1972. The 29 s oscillations are seen in one pair of eclipse sequences obtained with the FOS/PRISM in 1994 November but not in a similar pair obtained with the FOS/GI60L grating in August of the same year. The oscillations in the PRISM data are sinusoidal to within the small observational errors and undergo an approximately - 360' phase shift during eclipses (i.e., one cycle is lost). The amplitudes are highest at pre-eclipse orbital phases and exhibit a rather gradual eclipse whose shape is roughly similar to, although perhaps slightly narrower than, LTX UMa's overall light curve in the PRISM bandpass (2000-8000 A). Spectra of the oscillations have been constructed from pre-, mid, and post-eclipse data segments of the November observations. The spectra obtained from the out-of-eclipse segments are extremely blue, and only lower limits can be placed on the temperature of the source that dominates the modulated flux at these orbital phases. Lower limits derived from blackbody (stellar atmosphere) model fits to these data are >or equal to 95,000 K (> or equal to 85,000 K); the corresponding upper limits on the projected area of this source are all less than 2% of the white dwarf (WD) surface area. By contrast, oscillation spectra derived from mid- eclipse data segments are much redder. Fits to these spectra yield temperature estimates in the range 20,000 K approximately greater T and T approximately less than 30,000 K for both blackbody and stellar atmosphere models and corresponding projected areas of a few percent of the WD surface area. These estimates are subject to revision if the modulated emission is optically thin. We suggest that the ultimate source of the oscillations is a

  9. Hubble Space Telescope faint object spectrograph Quasar Absorption System Snapshot Survey (AbSnap). 1: Astrometric optical positions and finding charts of 269 bright QSO

    Science.gov (United States)

    Bowen, David V.; Osmer, Samantha J.; Blades, J. Chris; Tytler, David; Cottrell, Lance; Fan, Xiao-Ming; Lanzetta, Kenneth M.

    1994-01-01

    We present finding charts and optical positions accurate to less than 1 arcsec for 269 bright (V less than or = 18.5) Quasi-Stellar Objects (QSOs). These objects were selected as candidates for the Hubble Space Telescope (HST) Quasar Absorption System Snapshot Survey (AbSnap), a program designed to use the Faint Object Spectrograph (FOS) to obtain short exposure ultraviolet (UV) spectra of bright QSOs. Many quasars were included because of their proximity to bright, low redshift galaxies and positions of these QSOs are measured accurately for the first time. Data were obtained using the digitized sky survey produced by the Space Telescope Science Institute's Guide Stars Selection System Astrometric Support Program.

  10. A PANCHROMATIC CATALOG OF EARLY-TYPE GALAXIES AT INTERMEDIATE REDSHIFT IN THE HUBBLE SPACE TELESCOPE WIDE FIELD CAMERA 3 EARLY RELEASE SCIENCE FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Rutkowski, M. J.; Cohen, S. H.; Windhorst, R. A. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-1404 (United States); Kaviraj, S.; Crockett, R. M.; Silk, J. [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); O' Connell, R. W. [Department of Astronomy, University of Virginia, P.O. Box 3818, Charlottesville, VA 22903 (United States); Hathi, N. P.; McCarthy, P. J. [Observatories of the Carnegie Institute of Washington, Pasadena, CA 91101 (United States); Ryan, R. E. Jr.; Koekemoer, A.; Bond, H. E. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Yan, H. [Center for Cosmology and Astroparticle Physics, Ohio State University, Columbus, OH 43210 (United States); Kimble, R. A. [NASA-Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Balick, B. [Department of Astronomy, University of Washington, Seattle, WA 98195-1580 (United States); Calzetti, D. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Disney, M. J. [School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA (United Kingdom); Dopita, M. A. [Research School of Physics and Astronomy, The Australian National University, ACT 2611 (Australia); Frogel, J. A. [Astronomy Department, King Abdulaziz University, P.O. Box 80203, Jeddah (Saudi Arabia); Hall, D. N. B. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); and others

    2012-03-01

    In the first of a series of forthcoming publications, we present a panchromatic catalog of 102 visually selected early-type galaxies (ETGs) from observations in the Early Release Science (ERS) program with the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) of the Great Observatories Origins Deep Survey-South (GOODS-S) field. Our ETGs span a large redshift range, 0.35 {approx}< z {approx}< 1.5, with each redshift spectroscopically confirmed by previous published surveys of the ERS field. We combine our measured WFC3 ERS and Advanced Camera for Surveys (ACS) GOODS-S photometry to gain continuous sensitivity from the rest-frame far-UV to near-IR emission for each ETG. The superior spatial resolution of the HST over this panchromatic baseline allows us to classify the ETGs by their small-scale internal structures, as well as their local environment. By fitting stellar population spectral templates to the broadband photometry of the ETGs, we determine that the average masses of the ETGs are comparable to the characteristic stellar mass of massive galaxies, 10{sup 11} < M{sub *}[M{sub Sun }]<10{sup 12}. By transforming the observed photometry into the Galaxy Evolution Explorer FUV and NUV, Johnson V, and Sloan Digital Sky Survey g' and r' bandpasses we identify a noteworthy diversity in the rest-frame UV-optical colors and find the mean rest-frame (FUV-V) = 3.5 and (NUV-V) = 3.3, with 1{sigma} standard deviations {approx_equal}1.0. The blue rest-frame UV-optical colors observed for most of the ETGs are evidence for star formation during the preceding gigayear, but no systems exhibit UV-optical photometry consistent with major recent ({approx}<50 Myr) starbursts. Future publications which address the diversity of stellar populations likely to be present in these ETGs, and the potential mechanisms by which recent star formation episodes are activated, are discussed.

  11. Exploring the NRO Opportunity for a Hubble-Sized Wide-Field Near-IR Space Telescope - New WFIRST

    Science.gov (United States)

    Dressler, Alan; Spergel, David; Mountain, Matt; Postman, Mark; Elliott, Erin; Bendek, Eduardo; Bennett, David; Dalcanton, Julianne; Gaudi, Scott; Gehrels, Neil; hide

    2013-01-01

    We discuss scientific, technical, and programmatic issues related to the use of an NRO 2.4m telescope for the WFIRST initiative of the 2010 Decadal Survey. We show that this implementation of WFIRST, which we call "NEW WFIRST," would achieve the goals of the NWNH Decadal Survey for the WFIRST core programs of Dark Energy and Microlensing Planet Finding, with the crucial benefit of deeper and/or wider near-IR surveys for GO science and a potentially Hubble-like Guest Observer program. NEW WFIRST could also include a coronagraphic imager for direct detection of dust disks and planets around neighboring stars, a high-priority science and technology precursor for future ambitious programs to image Earth-like planets around neighboring stars.

  12. FIRST ULTRAVIOLET REFLECTANCE SPECTRA OF PLUTO AND CHARON BY THE HUBBLE SPACE TELESCOPE COSMIC ORIGINS SPECTROGRAPH: DETECTION OF ABSORPTION FEATURES AND EVIDENCE FOR TEMPORAL CHANGE

    Energy Technology Data Exchange (ETDEWEB)

    Stern, S. A.; Spencer, J. R.; Shinn, A. [Southwest Research Institute, 1050 Walnut Street, Boulder, CO 80302 (United States); Cunningham, N. J.; Hain, M. J., E-mail: astern@swri.edu [Nebraska Wesleyan University, 5000 Saint Paul Avenue, Lincoln, NE 68504 (United States)

    2012-01-15

    We have observed the mid-UV spectra of both Pluto and its large satellite, Charon, at two rotational epochs using the Hubble Space Telescope (HST) Cosmic Origins Spectrograph (COS) in 2010. These are the first HST/COS measurements of Pluto and Charon. Here we describe the observations and our reduction of them, and present the albedo spectra, average mid-UV albedos, and albedo slopes we derive from these data. These data reveal evidence for a strong absorption feature in the mid-UV spectrum of Pluto; evidence for temporal change in Pluto's spectrum since the 1990s is reported, and indirect evidence for a near-UV spectral absorption on Charon is also reported.

  13. SUPERNOVA REMNANTS AND THE INTERSTELLAR MEDIUM OF M83: IMAGING AND PHOTOMETRY WITH THE WIDE FIELD CAMERA 3 ON THE HUBBLE SPACE TELESCOPE

    International Nuclear Information System (INIS)

    Dopita, Michael A.; Blair, William P.; Kuntz, Kip D.; Long, Knox S.; Mutchler, Max; Whitmore, Bradley C.; Bond, Howard E.; MacKenty, John; Balick, Bruce; Calzetti, Daniela; Carollo, Marcella; Disney, Michael; Frogel, Jay A.; O'Connell, Robert; Hall, Donald; Holtzman, Jon A.; Kimble, Randy A.; McCarthy, Patrick; Paresce, Francesco; Saha, Abhijit

    2010-01-01

    We present Wide Field Camera 3 images taken with the Hubble Space Telescope within a single field in the southern grand design star-forming galaxy M83. Based on their size, morphology, and photometry in continuum-subtracted Hα, [S II], Hβ, [O III], and [O II] filters, we have identified 60 supernova remnant (SNR) candidates, as well as a handful of young ejecta-dominated candidates. A catalog of these remnants, their sizes and, where possible, their Hα fluxes are given. Radiative ages and pre-shock densities are derived from those SNRs that have good photometry. The ages lie in the range 2.62 rad /yr) 0 /cm -3 min = 16 +7 -5 M sun . Finally, we give evidence for the likely detection of the remnant of the historical supernova, SN1968L.

  14. Legacy ExtraGalactic UV Survey with The Hubble Space Telescope: Stellar Cluster Catalogs and First Insights Into Cluster Formation and Evolution in NGC 628

    Science.gov (United States)

    Adamo, A.; Ryon, J. E.; Messa, M.; Kim, H.; Grasha, K.; Cook, D. O.; Calzetti, D.; Lee, J. C.; Whitmore, B. C.; Elmegreen, B. G.; Ubeda, L.; Smith, L. J.; Bright, S. N.; Runnholm, A.; Andrews, J. E.; Fumagalli, M.; Gouliermis, D. A.; Kahre, L.; Nair, P.; Thilker, D.; Walterbos, R.; Wofford, A.; Aloisi, A.; Ashworth, G.; Brown, T. M.; Chandar, R.; Christian, C.; Cignoni, M.; Clayton, G. C.; Dale, D. A.; de Mink, S. E.; Dobbs, C.; Elmegreen, D. M.; Evans, A. S.; Gallagher, J. S., III; Grebel, E. K.; Herrero, A.; Hunter, D. A.; Johnson, K. E.; Kennicutt, R. C.; Krumholz, M. R.; Lennon, D.; Levay, K.; Martin, C.; Nota, A.; Östlin, G.; Pellerin, A.; Prieto, J.; Regan, M. W.; Sabbi, E.; Sacchi, E.; Schaerer, D.; Schiminovich, D.; Shabani, F.; Tosi, M.; Van Dyk, S. D.; Zackrisson, E.

    2017-06-01

    We report the large effort that is producing comprehensive high-level young star cluster (YSC) catalogs for a significant fraction of galaxies observed with the Legacy ExtraGalactic UV Survey (LEGUS) Hubble treasury program. We present the methodology developed to extract cluster positions, verify their genuine nature, produce multiband photometry (from NUV to NIR), and derive their physical properties via spectral energy distribution fitting analyses. We use the nearby spiral galaxy NGC 628 as a test case for demonstrating the impact that LEGUS will have on our understanding of the formation and evolution of YSCs and compact stellar associations within their host galaxy. Our analysis of the cluster luminosity function from the UV to the NIR finds a steepening at the bright end and at all wavelengths suggesting a dearth of luminous clusters. The cluster mass function of NGC 628 is consistent with a power-law distribution of slopes ˜ -2 and a truncation of a few times 105 {M}⊙ . After their formation, YSCs and compact associations follow different evolutionary paths. YSCs survive for a longer time frame, confirming their being potentially bound systems. Associations disappear on timescales comparable to hierarchically organized star-forming regions, suggesting that they are expanding systems. We find mass-independent cluster disruption in the inner region of NGC 628, while in the outer part of the galaxy there is little or no disruption. We observe faster disruption rates for low mass (≤104 {M}⊙ ) clusters, suggesting that a mass-dependent component is necessary to fully describe the YSC disruption process in NGC 628. Based on observations obtained with the NASA/ESA Hubble Space Telescope, at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  15. Hubble Provides Clear Images of Saturn's Aurora

    Science.gov (United States)

    1998-01-01

    This is the first image of Saturn's ultraviolet aurora taken by the Space Telescope Imaging Spectrograph (STIS) on board the Hubble Space Telescope in October 1997, when Saturn was a distance of 810 million miles (1.3 billion kilometers) from Earth. The new instrument, used as a camera, provides more than ten times the sensitivity of previous Hubble instruments in the ultraviolet. STIS images reveal exquisite detail never before seen in the spectacular auroral curtains of light that encircle Saturn's north and south poles and rise more than a thousand miles above the cloud tops.Saturn's auroral displays are caused by an energetic wind from the Sun that sweeps over the planet, much like the Earths aurora that is occasionally seen in the nighttime sky and similar to the phenomenon that causes fluorescent lamps to glow. But unlike the Earth, Saturn's aurora is only seen in ultraviolet light that is invisible from the Earths surface, hence the aurora can only be observed from space. New Hubble images reveal ripples and overall patterns that evolve slowly, appearing generally fixed in our view and independent of planet rotation. At the same time, the curtains show local brightening that often follow the rotation of the planet and exhibit rapid variations on time scales of minutes. These variations and regularities indicate that the aurora is primarily shaped and powered by a continual tug-of-war between Saturn's magnetic field and the flow of charged particles from the Sun.Study of the aurora on Saturn had its beginnings just seventeen years ago. The Pioneer 11 spacecraft observed a far-ultraviolet brightening on Saturn's poles in 1979. The Saturn flybys of the Voyager 1 and 2 spacecraft in the early 1980s provided a basic description of the aurora and mapped for the first time planets enormous magnetic field that guides energetic electrons into the atmosphere near the north and south poles.The first images of Saturn's aurora were provided in 1994-5 by the Hubble Space

  16. Hubble, Hubble's Law and the Expanding Universe

    Indian Academy of Sciences (India)

    Srimath

    Hubble, Hubble's Law and the Expanding Universe. J S Bagla. Jasjeet Bagla works at the. Harish-Chandra Research. Institute, Allahabad. His research is mainly on cosmology and he is interested in all areas of physics. Keywords. Cosmology, Big Bang, expan- sion of universe. H ubble's nam e is associated closely w ith ...

  17. Hubble, Hubble's Law and the Expanding Universe

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 3. Hubble, Hubble's Law and the Expanding Universe. J S Bagla. General Article Volume 14 Issue 3 March 2009 pp 216-225. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/014/03/0216-0225 ...

  18. Targeting Alzheimer's disease by investigating previously unexplored chemical space surrounding the cholinesterase inhibitor donepezil.

    Science.gov (United States)

    van Greunen, Divan G; Cordier, Werner; Nell, Margo; van der Westhuyzen, Chris; Steenkamp, Vanessa; Panayides, Jenny-Lee; Riley, Darren L

    2017-02-15

    A series of twenty seven acetylcholinesterase inhibitors, as potential agents for the treatment of Alzheimer's disease, were designed and synthesised based upon previously unexplored chemical space surrounding the molecular skeleton of the drug donepezil, which is currently used for the management of mild to severe Alzheimer's disease. Two series of analogues were prepared, the first looking at the replacement of the piperidine ring in donepezil with different sized saturated N-containing ring systems and the second looking at the introduction of different linkers between the indanone and piperidine rings in donepezil. The most active analogue 5,6-dimethoxy-1-oxo-2,3-dihydro-1H-inden-2-yl 1-benzylpiperidine-4-carboxylate (67) afforded an in vitro IC 50 value of 0.03 ± 0.07 μM against acetylcholinesterase with no cytotoxicity observed (IC 50 of >100 μM, SH-SY5Y cell line). In comparison donepezil had an IC 50 of 0.05 ± 0.06 μM and an observed cytotoxicity IC 50 of 15.54 ± 1.12 μM. Molecular modelling showed a strong correlation between activity and in silico binding in the active site of acetylcholinesterase. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Hubble's diagram and cosmic expansion

    OpenAIRE

    Kirshner, Robert P.

    2003-01-01

    Edwin Hubble's classic article on the expanding universe appeared in PNAS in 1929 [Hubble, E. P. (1929) Proc. Natl. Acad. Sci. USA 15, 168–173]. The chief result, that a galaxy's distance is proportional to its redshift, is so well known and so deeply embedded into the language of astronomy through the Hubble diagram, the Hubble constant, Hubble's Law, and the Hubble time, that the article itself is rarely referenced. Even though Hubble's distances have a large systematic error, Hubble's velo...

  20. Hubble illuminates the universe

    Science.gov (United States)

    Maran, Stephen P.

    1992-01-01

    Latest observations by the Hubble Space Telescope (HST) are described, including the first 'parallel' observations (on January 6, 1992) by the two of the Hubble's instruments of two different targets at the same time. On this date, the faint-object camera made images of the quasar 3C 273 in Virgo, while the wide-field and planetary camera recorded an adjacent field. The new HST images include those of the nucleus and the jet of M85, the giant elliptical galaxy at the heart of the Virgo cluster, and what appears to be a black hole of mass 2.6 billion solar masses in M87, and an image of N66, a planetary nebula in the LMC. Other images yield evidence of 'blue stragglers' in the core of 47 Tucanae, a globular cluster about 16,000 light-years from earth. The Goddard spectrograph recorded the spectrum of the star Capella at very high wavelength resolution, which made it possible to measure deuterium from the Big Bang.

  1. MC2: Mapping the Dark Matter Distribution of the "Toothbrush" Cluster RX J0603.3+4214 with Hubble Space Telescope and Subaru Weak Lensing

    Science.gov (United States)

    Jee, M. James; Dawson, William A.; Stroe, Andra; Wittman, David; van Weeren, Reinout J.; Brüggen, Marcus; Bradač, Maruša; Röttgering, Huub

    2016-02-01

    The galaxy cluster RX J0603.3+4214 at z = 0.225 is one of the rarest clusters boasting an extremely large (˜2 Mpc) radio relic. Because of the remarkable morphology of the relic, the cluster is nicknamed the “Toothbrush Cluster.” Although the cluster's underlying mass distribution is one of the critical pieces of information needed to reconstruct the merger scenario responsible for the puzzling radio relic morphology, its proximity to the Galactic plane b ˜ 10° has imposed significant observational challenges. We present a high-resolution weak-lensing study of the cluster with Subaru/Suprime Cam and Hubble Space Telescope imaging data. Our mass reconstruction reveals that the cluster is composed of complicated dark matter substructures closely tracing the galaxy distribution, in contrast, however, with the relatively simple binary X-ray morphology. Nevertheless, we find that the cluster mass is still dominated by the two most massive clumps aligned north-south with a ˜3:1 mass ratio ({M}200={6.29}-1.62+2.24× {10}14 {M}⊙ and {1.98}-0.74+1.24× {10}14 {M}⊙ for the northern and southern clumps, respectively). The southern mass peak is ˜2‧ offset toward the south with respect to the corresponding X-ray peak, which has a “bullet”-like morphology pointing south. Comparison of the current weak-lensing result with the X-ray, galaxy, and radio relic suggests that perhaps the dominant mechanism responsible for the observed relic may be a high-speed collision of the two most massive subclusters, although the peculiarity of the morphology necessitates involvement of additional subclusters. Careful numerical simulations should follow in order to obtain more complete understanding of the merger scenario utilizing all existing observations. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc.

  2. High-Performance Reaction Wheel Optimization for Fine-Pointing Space Platforms: Minimizing Induced Vibration Effects on Jitter Performance plus Lessons Learned from Hubble Space Telescope for Current and Future Spacecraft Applications

    Science.gov (United States)

    Hasha, Martin D.

    2016-01-01

    The Hubble Space Telescope (HST) applies large-diameter optics (2.5-m primary mirror) for diffraction-limited resolution spanning an extended wavelength range (approx. 100-2500 nm). Its Pointing Control System (PCS) Reaction Wheel Assemblies (RWAs), in the Support Systems Module (SSM), acquired an unprecedented set of high-sensitivity Induced Vibration (IV) data for 5 flight-certified RWAs: dwelling at set rotation rates. Focused on 4 key ratios, force and moment harmonic values (in 3 local principal directions) are extracted in the RWA operating range (0-3000 RPM). The IV test data, obtained under ambient lab conditions, are investigated in detail, evaluated, compiled, and curve-fitted; variational trends, core causes, and unforeseen anomalies are addressed. In aggregate, these values constitute a statistically-valid basis to quantify ground test-to-test variations and facilitate extrapolations to on-orbit conditions. Accumulated knowledge of bearing-rotor vibrational sources, corresponding harmonic contributions, and salient elements of IV key variability factors are discussed. An evolved methodology is presented for absolute assessments and relative comparisons of macro-level IV signal magnitude due to micro-level construction-assembly geometric details/imperfections stemming from both electrical drive and primary bearing design parameters. Based upon studies of same-size/similar-design momentum wheels' IV changes, upper estimates due to transitions from ground tests to orbital conditions are derived. Recommended HST RWA choices are discussed relative to system optimization/tradeoffs of Line-Of-Sight (LOS) vector-pointing focal-plane error driven by higher IV transmissibilities through low-damped structural dynamics that stimulate optical elements. Unique analytical disturbance results for orbital HST accelerations are described applicable to microgravity efforts. Conclusions, lessons learned, historical context/insights, and perspectives on future applications

  3. Hubble's Sharpest View Of Mars

    Science.gov (United States)

    1997-01-01

    Mars Pathfinder, which is scheduled for a July 4 landing. Fortunately, these images show no evidence for large-scale dust storm activity, which plagued a previous Mars mission in the early 1970s.The WFPC2 was used to observe Mars in nine different colors spanning the ultraviolet to the near infrared. The specific colors were chosen to clearly discriminate between airborne dust, ice clouds, and prominent Martian surface features. This picture was created by combining images taken in blue (433 nm), green (554 nm), and red (763 nm) colored filters.This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  4. Hubble Space Telescope STIS observations of GRB 000301C: CCD imaging and near-ultraviolet MAMA spectroscopy

    DEFF Research Database (Denmark)

    Smette, A.; Fruchter, A.S.; Gull, T.R.

    2001-01-01

    We present Space Telescope Imaging Spectrograph observations of the optical transient (OT) counterpart of the c-ray burster GRB 000301C obtained 5 days after the burst, on 2000 March 6. CCD clear-aperture imaging reveals a R similar or equal to 21.50 +/- 0.15 source with no apparent host galaxy. ...

  5. Hubble Space Telescope and VLA observations of two optical continuum knots in the jet of 3C 380

    NARCIS (Netherlands)

    O'Dea, CP; De Vries, W; Biretta, JA; Baum, SA

    We present Nubble Space Telescope Wide Field Planetary Camera 2 broadband red and linear ramp filter (isolating redshifted [O II] lambda 3727) observations and subarcsecond-resolution 15, 22, and 43 GHz VLA observations of the radio-loud quasar 3C 380. We confirm the report of de Vries et ai. that

  6. Hubble Space Telescope STIS Observations of GRB 000301C: CCD Imaging and Near-Ultraviolet MAMA Spectroscopy

    NARCIS (Netherlands)

    Smette, A.; Fruchter, A.S.; Gull, Th.R.; Sahu, K.C.; Petro, L.; Ferguson, H.; Rhoads, J.; Lindler, D.J.; Wijers, R.A.M.J.

    2001-01-01

    We present Space Telescope Imaging Spectrograph observations of the optical transient (OT) counterpart of the gamma-ray burster GRB 000301C obtained 5 days after the burst, on 2000 March 6. CCD clear-aperture imaging reveals a R~=21.50+/-0.15 source with no apparent host galaxy. An 8000 s, 1150

  7. THE HUBBLE SPACE TELESCOPE UV LEGACY SURVEY OF GALACTIC GLOBULAR CLUSTERS. VII. IMPLICATIONS FROM THE NEARLY UNIVERSAL NATURE OF HORIZONTAL BRANCH DISCONTINUITIES

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T. M.; Bellini, A.; Anderson, J. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Cassisi, S.; Pietrinferni, A. [INAF-Osservatorio Astronomico di Teramo, Via Mentore Maggini s.n.c., I-64100 Teramo (Italy); D’Antona, F. [INAF-Osservatorio Astronomico di Roma, Via Frascati 33, I-00040 Monteporzio Catone, Roma (Italy); Salaris, M. [Astrophysics Research Institute,Liverpool John Moores University, Liverpool Science Park, IC2 Building, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Milone, A. P. [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston, ACT, 2611 (Australia); Dalessandro, E. [Dipartimento di Fisica e Astronomia, Università degli Studi di Bologna, Viale Berti Pichat 6/2, I-40127 Bologna (Italy); Piotto, G.; Ortolani, S.; Nardiello, D. [Dipartimento di Fisica e Astronomia “Galileo Galilei,”Università di Padova, Vicolo dell’Osservatorio 3, I-35122 Padova (Italy); Renzini, A.; Bedin, L. R. [INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Sweigart, A. V. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sarajedini, A. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States); Aparicio, A., E-mail: tbrown@stsci.edu, E-mail: jayander@stsci, E-mail: bellini@stsci.edu, E-mail: cassisi@oa-teramo.inaf.it, E-mail: pietrinferni@oa-teramo.inaf.it, E-mail: dantona@oa-roma.inaf.it, E-mail: M.Salaris@ljmu.ac.uk, E-mail: milone@mso.anu.edu.au [Instituto de Astrofísica de Canarias. Calle Vía Láctea s/n. E38200 — La Laguna, Tenerife, Canary Islands (Spain)

    2016-05-01

    The UV-initiative Hubble Space Telescope Treasury survey of Galactic globular clusters provides a new window into the phenomena that shape the morphological features of the horizontal branch (HB). Using this large and homogeneous catalog of UV and blue photometry, we demonstrate that the HB exhibits discontinuities that are remarkably consistent in color (effective temperature). This consistency is apparent even among some of the most massive clusters hosting multiple distinct sub-populations (such as NGC 2808, ω Cen, and NGC 6715), demonstrating that these phenomena are primarily driven by atmospheric physics that is independent of the underlying population properties. However, inconsistencies arise in the metal-rich clusters NGC 6388 and NGC 6441, where the discontinuity within the blue HB (BHB) distribution shifts ∼1000–2000 K hotter. We demonstrate that this shift is likely due to a large helium enhancement in the BHB stars of these clusters, which in turn affects the surface convection and evolution of such stars. Our survey also increases the number of Galactic globular clusters known to host blue-hook stars (also known as late hot flashers) from 6 to 23 clusters. These clusters are biased toward the bright end of the globular cluster luminosity function, confirming that blue-hook stars tend to form in the most massive clusters with significant self-enrichment.

  8. Transient brightening of Jupiter's aurora observed by the Hisaki satellite and Hubble Space Telescope during approach phase of the Juno spacecraft

    Science.gov (United States)

    Kimura, T.; Nichols, J. D.; Gray, R.; Tao, C.; Murakami, G.; Yamazaki, A.; Badman, S. V.; Tsuchiya, F.; Yoshioka, K.; Kita, H.; Grodent, D. C.; Clark, G. B.; Yoshikawa, I.; Fujimoto, M.

    2017-12-01

    In early 2014, continuous monitoring with the Hisaki satellite discovered transient auroral emission at Jupiter during a period when the solar wind was relatively quiet for a few days. Simultaneous imaging made by the Hubble Space Telescope (HST) suggested that the transient aurora is associated with a global magnetospheric disturbance that spans from the inner to outer magnetosphere. However, the temporal and spatial evolutions of the magnetospheric disturbance were not resolved because of the lack of continuous monitoring of the transient aurora simultaneously with the imaging. Here we report the coordinated observation of the aurora and plasma torus made by Hisaki and HST during the approach phase of the Juno spacecraft in mid-2016. On day 142, Hisaki detected a transient aurora with a maximum total H2 emission power of 8.5 TW. The simultaneous HST imaging was indicative of a large `dawn storm', which is associated with tail reconnection, at the onset of the transient aurora. The outer emission, which is associated with hot plasma injection in the inner magnetosphere, followed the dawn storm within less than two Jupiter rotations. The monitoring of the torus with Hisaki indicated that the hot plasma population increased in the torus during the transient aurora. These results imply that the magnetospheric disturbance is initiated via the tail reconnection and rapidly expands toward the inner magnetosphere, followed by the hot plasma injection reaching the plasma torus. This corresponds to the radially inward transport of the plasma and/or energy from the outer to the inner magnetosphere.

  9. A Hubble Space Telescope survey for novae in M87 - III. Are novae good standard candles 15 d after maximum brightness?

    Science.gov (United States)

    Shara, Michael M.; Doyle, Trisha F.; Pagnotta, Ashley; Garland, James T.; Lauer, Tod R.; Zurek, David; Baltz, Edward A.; Goerl, Ariel; Kovetz, Attay; Machac, Tamara; Madrid, Juan P.; Mikołajewska, Joanna; Neill, J. D.; Prialnik, Dina; Welch, D. L.; Yaron, Ofer

    2018-02-01

    Ten weeks of daily imaging of the giant elliptical galaxy M87 with the Hubble Space Telescope (HST) has yielded 41 nova light curves of unprecedented quality for extragalactic cataclysmic variables. We have recently used these light curves to demonstrate that the observational scatter in the so-called maximum-magnitude rate of decline (MMRD) relation for classical novae is so large as to render the nova-MMRD useless as a standard candle. Here, we demonstrate that a modified Buscombe-de Vaucouleurs hypothesis, namely that novae with decline times t2 > 10 d converge to nearly the same absolute magnitude about two weeks after maximum light in a giant elliptical galaxy, is supported by our M87 nova data. For 13 novae with daily sampled light curves, well determined times of maximum light in both the F606W and F814W filters, and decline times t2 > 10 d we find that M87 novae display M606W,15 = -6.37 ± 0.46 and M814W,15 = -6.11 ± 0.43. If very fast novae with decline times t2 < 10 d are excluded, the distances to novae in elliptical galaxies with stellar binary populations similar to those of M87 should be determinable with 1σ accuracies of ± 20 per cent with the above calibrations.

  10. A Deep Search with the Hubble Space Telescope for Late-Time Supernova Signatures in the Hosts of XRF 011030 and XRF 020427

    Science.gov (United States)

    Levan, Andrew; Patel, Sandeep; Kouveliotou, Chryssa; Fruchter, Andrew; Rhoads, James; Rol, Evert; Ramirez-Ruiz, Enrico; Gorosabel, Javier; Hiorth, Jens; Wijers, Ralph

    2005-01-01

    X-ray flashes (XRFs) are, like gamma-ray bursts (GRBs), thought to signal the collapse of massive stars in distant galaxies. Many models posit that the isotropic equivalent energies of XRFs are lower than those for GRBs, such that they are visible fiom a reduced range of distances when compared with GRBs. Here we present the results of two-epoch Hubble Space Telescope imaging of two XRFs. These images, taken approximately 45 and 200 days postburst, reveal no evidence of an associated supernova in either case. Supernovae such as SN 1998bw would have been visible out to z approximately 1.5 in each case, while fainter supernovae such as SN 2002ap would have been visible to z approximately 1. If the XRFs lie at such large distances, their energies would not fit the observed correlation between the GRB peak energy and isotropic energy release (E(sub p) proportional to E(sub iso)(sup 1/2), in which soft bursts are less energetic. We conclude that, should these XRFs reside at low redshifts (z less than 0.6), either their line of sight is heavily extinguished, they are associated with extremely faint supernovae, or, unlike GRBs, these XRFs do not have temporally coincident supernovae.

  11. Searching for z~=6 Objects with the Hubble Space Telescope Advanced Camera for Surveys: Preliminary Analysis of a Deep Parallel Field

    Science.gov (United States)

    Yan, Haojing; Windhorst, Rogier A.; Cohen, Seth H.

    2003-03-01

    Recent results suggest that z~=6 marks the end of the reionization era. A large sample of objects at z~=6, therefore, will be of enormous importance, as it will enable us to observationally determine the exact epoch of the reionization and the sources that are responsible for it. With the Hubble Space Telescope Advanced Camera for Surveys (ACS) coming on-line, we now have a unique opportunity to discover a significant number of objects at z~=6. The pure parallel mode implemented for the Wide-Field Camera (WFC) has greatly enhanced this ability. We present our preliminary analysis of a deep ACS/WFC parallel field at |b|=74.4d. We find 30 plausible z~=6 candidates, all of which have signal-to-noise ratios greater than 7 in the F850LP band. The major source of contamination could be faint cool Galactic dwarfs, and we estimated that they would contribute at most four objects to our candidate list. We derived the cumulative number density of galaxies at 6.0contamination rate, it could possibly imply that the faint-end slope of the z~=6 luminosity function is steeper than α=-1.6. At the very least, our result suggests that galaxies with L

  12. A PANCHROMATIC CATALOG OF EARLY-TYPE GALAXIES AT INTERMEDIATE REDSHIFT IN THE HUBBLE SPACE TELESCOPE WIDE FIELD CAMERA 3 EARLY RELEASE SCIENCE FIELD

    International Nuclear Information System (INIS)

    Rutkowski, M. J.; Cohen, S. H.; Windhorst, R. A.; Kaviraj, S.; Crockett, R. M.; Silk, J.; O'Connell, R. W.; Hathi, N. P.; McCarthy, P. J.; Ryan, R. E. Jr.; Koekemoer, A.; Bond, H. E.; Yan, H.; Kimble, R. A.; Balick, B.; Calzetti, D.; Disney, M. J.; Dopita, M. A.; Frogel, J. A.; Hall, D. N. B.

    2012-01-01

    In the first of a series of forthcoming publications, we present a panchromatic catalog of 102 visually selected early-type galaxies (ETGs) from observations in the Early Release Science (ERS) program with the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) of the Great Observatories Origins Deep Survey-South (GOODS-S) field. Our ETGs span a large redshift range, 0.35 ∼ 11 * [M ☉ ] 12 . By transforming the observed photometry into the Galaxy Evolution Explorer FUV and NUV, Johnson V, and Sloan Digital Sky Survey g' and r' bandpasses we identify a noteworthy diversity in the rest-frame UV-optical colors and find the mean rest-frame (FUV–V) = 3.5 and (NUV–V) = 3.3, with 1σ standard deviations ≅1.0. The blue rest-frame UV-optical colors observed for most of the ETGs are evidence for star formation during the preceding gigayear, but no systems exhibit UV-optical photometry consistent with major recent (∼<50 Myr) starbursts. Future publications which address the diversity of stellar populations likely to be present in these ETGs, and the potential mechanisms by which recent star formation episodes are activated, are discussed.

  13. THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. III. CORRELATED PROPERTIES OF TYPE Ia SUPERNOVAE AND THEIR HOSTS AT 0.9 < z < 1.46

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, J.; Barbary, K.; Fakhouri, H. K.; Goldhaber, G. [Department of Physics, University of California Berkeley, Berkeley, CA 94720 (United States); Aldering, G.; Faccioli, L.; Hsiao, E. [E.O. Lawrence Berkeley National Lab, 1 Cyclotron Rd., Berkeley, CA 94720 (United States); Barrientos, L. F. [Departmento de Astronomia, Pontificia Universidad Catolica de Chile, Santiago (Chile); Brodwin, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Dawson, K. S. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Deustua, S.; Fruchter, A. S. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Doi, M.; Ihara, Y. [Institute of Astronomy, Graduate School of Science, University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Eisenhardt, P. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Gilbank, D. G. [Department of Physics and Astronomy, University Of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Gladders, M. D. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Gonzalez, A. H. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Hattori, T. [Subaru Telescope, National Astronomical Observatory of Japan, 650 North Aohaku Place, Hilo, HI 96720 (United States); Kashikawa, N., E-mail: jmeyers314@berkeley.edu [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Collaboration: Supernova Cosmology Project; and others

    2012-05-01

    Using the sample of Type Ia supernovae (SNe Ia) discovered by the Hubble Space Telescope (HST) Cluster Supernova Survey and augmented with HST-observed SNe Ia in the Great Observatories Origins Deep Survey (GOODS) fields, we search for correlations between the properties of SNe and their host galaxies at high redshift. We use galaxy color and quantitative morphology to determine the red sequence in 25 clusters and develop a model to distinguish passively evolving early-type galaxies from star-forming galaxies in both clusters and the field. With this approach, we identify 6 SN Ia hosts that are early-type cluster members and 11 SN Ia hosts that are early-type field galaxies. We confirm for the first time at z > 0.9 that SNe Ia hosted by early-type galaxies brighten and fade more quickly than SNe Ia hosted by late-type galaxies. We also show that the two samples of hosts produce SNe Ia with similar color distributions. The relatively simple spectral energy distributions expected for passive galaxies enable us to measure stellar masses of early-type SN hosts. In combination with stellar mass estimates of late-type GOODS SN hosts from Thomson and Chary, we investigate the correlation of host mass with Hubble residual observed at lower redshifts. Although the sample is small and the uncertainties are large, a hint of this relation is found at z > 0.9. By simultaneously fitting the average cluster galaxy formation history and dust content to the red-sequence scatters, we show that the reddening of early-type cluster SN hosts is likely E(B - V) {approx}< 0.06. The similarity of the field and cluster early-type host samples suggests that field early-type galaxies that lie on the red sequence may also be minimally affected by dust. Hence, the early-type-hosted SNe Ia studied here occupy a more favorable environment to use as well-characterized high-redshift standard candles than other SNe Ia.

  14. A Cluster Of Activities On Coma From The Hubble Space Telescope, StarDate, And McDonald Observatory

    Science.gov (United States)

    Hemenway, Mary Kay; Jogee, S.; Fricke, K.; Preston, S.

    2011-01-01

    With a goal of providing a vast audience of students, teachers, the general public, and Spanish-speakers with activities to learn about research on the Coma cluster of galaxies based on the HST ACS Treasury survey of Coma, McDonald Observatory used a many-faceted approach. Since this research offered an unprecedented legacy dataset, part of the challenge was to convey the importance of this project to a diverse audience. The methodology was to create different products for different (overlapping) audiences. Five radio programs were produced in English and Spanish for distribution on over 500 radio stations in the US and Mexico with a listening audience of over 2 million; in addition to the radio listeners, there were over 13,000 downloads of the English scripts and almost 6000 of the Spanish. Images were prepared for use in the StarDate Online Astronomy Picture of the Week, for ViewSpace (used in museums), and for the StarDate/Universo Teacher Guide. A high-school level activity on the Coma Cluster was prepared and distributed both on-line and in an upgraded printed version of the StarDate/Universo Teacher Guide. This guide has been distributed to over 1700 teachers nationally. A YouTube video about careers and research in astronomy using the Coma cluster as an example was produced. Just as the activities were varied, so were the evaluation methods. This material is based upon work supported by the National Aeronautics and Space Administration under Grant/Contract/Agreement No. HST-EO-10861.35-A issued through the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  15. Inflows, Outflows, and a Giant Donor in the Remarkable Recurrent Nova M31N 2008-12a?—Hubble Space Telescope Photometry of the 2015 Eruption

    Science.gov (United States)

    Darnley, M. J.; Hounsell, R.; Godon, P.; Perley, D. A.; Henze, M.; Kuin, N. P. M.; Williams, B. F.; Williams, S. C.; Bode, M. F.; Harman, D. J.; Hornoch, K.; Link, M.; Ness, J.-U.; Ribeiro, V. A. R. M.; Sion, E. M.; Shafter, A. W.; Shara, M. M.

    2017-11-01

    The recurrent nova M31N 2008-12a experiences annual eruptions, contains a near-Chandrasekhar-mass white dwarf, and has the largest mass accretion rate in any nova system. In this paper, we present Hubble Space Telescope (HST) WFC3/UVIS photometry of the late decline of the 2015 eruption. We couple these new data with archival HST observations of the quiescent system and Keck spectroscopy of the 2014 eruption. The late-time photometry reveals a rapid decline to a minimum luminosity state, before a possible recovery/rebrightening in the run up to the next eruption. Comparison with accretion disk models supports the survival of the accretion disk during the eruptions, and uncovers a quiescent disk mass accretion rate of the order of {10}-6 {M}⊙ {{yr}}-1, which may rise beyond {10}-5 {M}⊙ {{yr}}-1 during the super-soft source phase—both of which could be problematic for a number of well-established nova eruption models. Such large accretion rates, close to the Eddington limit, might be expected to be accompanied by additional mass loss from the disk through a wind and even through collimated outflows. The archival HST observations, combined with the disk modeling, provide the first constraints on the mass donor: {L}{donor}={103}-11+12 {L}⊙ ,{R}{donor}={14.14}-0.47+0.46 {R}⊙ , and {T}{eff,{donor}}=4890+/- 110 K, which may be consistent with an irradiated M31 red-clump star. Such a donor would require a system orbital period ≳ 5 days. Our updated analysis predicts that the M31N 2008-12a WD could reach the Chandrasekhar mass in < 20 kyr.

  16. The Hubble Space Telescope UV Legacy Survey of Galactic Globular Clusters - XIV. Multiple stellar populations within M 15 and their radial distribution.

    Science.gov (United States)

    Nardiello, D.; Milone, A. P.; Piotto, G.; Anderson, J.; Bedin, L. R.; Bellini, A.; Cassisi, S.; Libralato, M.; Marino, A. F.

    2018-03-01

    In the context of the Hubble Space Telescope UV Survey of Galactic Globular Clusters (GCs), we derived high-precision, multi-band photometry to investigate the multiple stellar populations in the massive and metal-poor GC M 15. By creating for red-giant branch (RGB) stars of the cluster a `chromosome map', which is a pseudo two-colour diagram made with appropriate combination of F275W, F336W, F438W, and F814W magnitudes, we revealed colour spreads around two of the three already known stellar populations. These spreads cannot be produced by photometric errors alone and could hide the existence of (two) additional populations. This discovery increases the complexity of the multiple-population phenomenon in M 15. Our analysis shows that M 15 exhibits a faint sub-giant branch (SGB), which is also detected in colour-magnitude diagrams (CMDs) made with optical magnitudes only. This poorly-populated SGB includes about 5% of the total number of SGB stars and evolves into a red RGB in the mF336W vs. mF336W - mF814W CMD, suggesting that M 15 belongs to the class of Type II GCs. We measured the relative number of stars in each population at various radial distances from the cluster centre, showing that all of these populations share the same radial distribution within statistic uncertainties. These new findings are discussed in the context of the formation and evolution scenarios of the multiple populations.

  17. INFRARED TRANSMISSION SPECTROSCOPY OF THE EXOPLANETS HD 209458b AND XO-1b USING THE WIDE FIELD CAMERA-3 ON THE HUBBLE SPACE TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Deming, Drake; Wilkins, Ashlee [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); McCullough, Peter; Crouzet, Nicolas [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544-1001 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Agol, Eric; Dobbs-Dixon, Ian [NASA Astrobiology Institute' s Virtual Planetary Laboratory (United States); Madhusudhan, Nikku [Yale Center for Astronomy and Astrophysics, Yale University, New Haven, CT 06511 (United States); Desert, Jean-Michel; Knutson, Heather A.; Line, Michael [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Gilliland, Ronald L. [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 (United States); Haynes, Korey [Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030 (United States); Magic, Zazralt [Max-Planck-Institut fuer Astrophysik, D-85741 Garching (Germany); Mandell, Avi M.; Clampin, Mark [NASA' s Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Ranjan, Sukrit; Charbonneau, David [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Seager, Sara, E-mail: ddeming@astro.umd.edu [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); and others

    2013-09-10

    Exoplanetary transmission spectroscopy in the near-infrared using the Hubble Space Telescope (HST) NICMOS is currently ambiguous because different observational groups claim different results from the same data, depending on their analysis methodologies. Spatial scanning with HST/WFC3 provides an opportunity to resolve this ambiguity. We here report WFC3 spectroscopy of the giant planets HD 209458b and XO-1b in transit, using spatial scanning mode for maximum photon-collecting efficiency. We introduce an analysis technique that derives the exoplanetary transmission spectrum without the necessity of explicitly decorrelating instrumental effects, and achieves nearly photon-limited precision even at the high flux levels collected in spatial scan mode. Our errors are within 6% (XO-1) and 26% (HD 209458b) of the photon-limit at a resolving power of {lambda}/{delta}{lambda} {approx} 70, and are better than 0.01% per spectral channel. Both planets exhibit water absorption of approximately 200 ppm at the water peak near 1.38 {mu}m. Our result for XO-1b contradicts the much larger absorption derived from NICMOS spectroscopy. The weak water absorption we measure for HD 209458b is reminiscent of the weakness of sodium absorption in the first transmission spectroscopy of an exoplanet atmosphere by Charbonneau et al. Model atmospheres having uniformly distributed extra opacity of 0.012 cm{sup 2} g{sup -1} account approximately for both our water measurement and the sodium absorption. Our results for HD 209458b support the picture advocated by Pont et al. in which weak molecular absorptions are superposed on a transmission spectrum that is dominated by continuous opacity due to haze and/or dust. However, the extra opacity needed for HD 209458b is grayer than for HD 189733b, with a weaker Rayleigh component.

  18. The Hubble Catalog of Variables

    Directory of Open Access Journals (Sweden)

    Sokolovsky K.

    2017-01-01

    Full Text Available We aim to construct an exceptionally deep (V ≲ 27 catalog of variable objects in selected Galactic and extragalactic fields visited multiple times by the Hubble Space Telescope (HST. While HST observations of some of these fields were searched for specific types of variables before (most notably, the extragalactic Cepheids, we attempt a systematic study of the population of variable objects of all types at the magnitude range not easily accessible with ground-based telescopes. The variability timescales that can be probed range from hours to years depending on how often a particular field has been visited. For source extraction and cross-matching of sources between visits we rely on the Hubble Source Catalog which includes 107 objects detected with WFPC2, ACS, and WFC3 HST instruments. The lightcurves extracted from the HSC are corrected for systematic effects by applying local zero-point corrections and are screened for bad measurements. For each lightcurve we compute variability indices sensitive to a broad range of variability types. The indices characterize the overall lightcurve scatter and smoothness. Candidate variables are selected as having variability index values significantly higher than expected for objects of similar brightness in the given set of observations. The Hubble Catalog of Variables will be released in 2018.

  19. The Hubble Catalog of Variables

    Science.gov (United States)

    Sokolovsky, K.; Bonanos, A.; Gavras, P.; Yang, M.; Hatzidimitriou, D.; Moretti, M. I.; Karampelas, A.; Bellas-Velidis, I.; Spetsieri, Z.; Pouliasis, E.; Georgantopoulos, I.; Charmandaris, V.; Tsinganos, K.; Laskaris, N.; Kakaletris, G.; Nota, A.; Lennon, D.; Arviset, C.; Whitmore, B.; Budavari, T.; Downes, R.; Lubow, S.; Rest, A.; Strolger, L.; White, R.

    2017-09-01

    We aim to construct an exceptionally deep (V ≲ 27) catalog of variable objects in selected Galactic and extragalactic fields visited multiple times by the Hubble Space Telescope (HST). While HST observations of some of these fields were searched for specific types of variables before (most notably, the extragalactic Cepheids), we attempt a systematic study of the population of variable objects of all types at the magnitude range not easily accessible with ground-based telescopes. The variability timescales that can be probed range from hours to years depending on how often a particular field has been visited. For source extraction and cross-matching of sources between visits we rely on the Hubble Source Catalog which includes 107 objects detected with WFPC2, ACS, and WFC3 HST instruments. The lightcurves extracted from the HSC are corrected for systematic effects by applying local zero-point corrections and are screened for bad measurements. For each lightcurve we compute variability indices sensitive to a broad range of variability types. The indices characterize the overall lightcurve scatter and smoothness. Candidate variables are selected as having variability index values significantly higher than expected for objects of similar brightness in the given set of observations. The Hubble Catalog of Variables will be released in 2018.

  20. Legacy ExtraGalactic UV Survey with The Hubble Space Telescope: Stellar Cluster Catalogs and First Insights Into Cluster Formation and Evolution in NGC 628

    NARCIS (Netherlands)

    Adamo, A.; Ryon, J.E.; Messa, M.; Kim, H.; Grasha, K.; Cook, D.O.; Calzetti, D.; Lee, J.C.; Whitmore, B.C.; Elmegreen, B.G.; Ubeda, L.; Smith, L.J.; Bright, S.N.; Runnholm, A.; Andrews, J.E.; Fumagalli, M.; Gouliermis, D.A.; Kahre, L.; Nair, P.; Thilker, D.; Walterbos, R.; Wofford, A.; Aloisi, A.; Ashworth, G.; Brown, T.M.; Chandar, R.; Christian, C.; Cignoni, M.; Clayton, G.C.; Dale, D.A.; de Mink, S.E.; Dobbs, C.; Elmegreen, D.M.; Evans, A.S.; Gallagher III, J.S.; Grebel, E.K.; Herrero, A.; Hunter, D.A.; Johnson, K.E.; Kennicutt, R.C.; Krumholz, M.R.; Lennon, D.; Levay, K.; Martin, C.; Nota, A.; Östlin, G.; Pellerin, A.; Prieto, J.; Regan, M.W.; Sabbi, E.; Sacchi, E.; Schaerer, D.; Schiminovich, D.; Shabani, F.; Tosi, M.; Van Dyk, S.D.; Zackrisson, E.

    2017-01-01

    We report the large effort that is producing comprehensive high-level young star cluster (YSC) catalogs for a significant fraction of galaxies observed with the Legacy ExtraGalactic UV Survey (LEGUS) Hubble treasury program. We present the methodology developed to extract cluster positions, verify

  1. The Hubble effective potential

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, T.M.; Miao, S.P.; Prokopec, T. [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, Leuvenlaan 4, Postbus 80.195, 3508 TD Utrecht (Netherlands); Woodard, R.P., E-mail: T.M.Janssen@uu.nl, E-mail: S.Miao@uu.nl, E-mail: T.Prokopec@uu.nl, E-mail: woodard@phys.ufl.edu [Department of Physics, University of Florida, Gainesville, FL 32611 (United States)

    2009-05-15

    We generalize the effective potential to scalar field configurations which are proportional to the Hubble parameter of a homogeneous and isotropic background geometry. This may be useful in situations for which curvature effects are significant. We evaluate the one loop contribution to the Hubble Effective Potential for a massless scalar with arbitrary conformal and quartic couplings, on a background for which the deceleration parameter is constant. Among other things, we find that inflationary particle production leads to symmetry restoration at late times.

  2. DUST EXTINCTION FROM BALMER DECREMENTS OF STAR-FORMING GALAXIES AT 0.75 {<=} z {<=} 1.5 WITH HUBBLE SPACE TELESCOPE/WIDE-FIELD-CAMERA 3 SPECTROSCOPY FROM THE WFC3 INFRARED SPECTROSCOPIC PARALLEL SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, A.; Siana, B.; Masters, D. [Department of Physics and Astronomy, University of California Riverside, Riverside, CA 92521 (United States); Henry, A. L.; Martin, C. L. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Scarlata, C.; Bedregal, A. G. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Malkan, M.; Ross, N. R. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095 (United States); Atek, H.; Colbert, J. W. [Spitzer Science Center, Caltech, Pasadena, CA 91125 (United States); Teplitz, H. I.; Rafelski, M. [Infrared Processing and Analysis Center, Caltech, Pasadena, CA 91125 (United States); McCarthy, P.; Hathi, N. P.; Dressler, A. [Observatories of the Carnegie Institution for Science, Pasadena, CA 91101 (United States); Bunker, A., E-mail: albertod@ucr.edu [Department of Physics, Oxford University, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom)

    2013-02-15

    Spectroscopic observations of H{alpha} and H{beta} emission lines of 128 star-forming galaxies in the redshift range 0.75 {<=} z {<=} 1.5 are presented. These data were taken with slitless spectroscopy using the G102 and G141 grisms of the Wide-Field-Camera 3 (WFC3) on board the Hubble Space Telescope as part of the WFC3 Infrared Spectroscopic Parallel survey. Interstellar dust extinction is measured from stacked spectra that cover the Balmer decrement (H{alpha}/H{beta}). We present dust extinction as a function of H{alpha} luminosity (down to 3 Multiplication-Sign 10{sup 41} erg s{sup -1}), galaxy stellar mass (reaching 4 Multiplication-Sign 10{sup 8} M {sub Sun }), and rest-frame H{alpha} equivalent width. The faintest galaxies are two times fainter in H{alpha} luminosity than galaxies previously studied at z {approx} 1.5. An evolution is observed where galaxies of the same H{alpha} luminosity have lower extinction at higher redshifts, whereas no evolution is found within our error bars with stellar mass. The lower H{alpha} luminosity galaxies in our sample are found to be consistent with no dust extinction. We find an anti-correlation of the [O III] {lambda}5007/H{alpha} flux ratio as a function of luminosity where galaxies with L {sub H{alpha}} < 5 Multiplication-Sign 10{sup 41} erg s{sup -1} are brighter in [O III] {lambda}5007 than H{alpha}. This trend is evident even after extinction correction, suggesting that the increased [O III] {lambda}5007/H{alpha} ratio in low-luminosity galaxies is likely due to lower metallicity and/or higher ionization parameters.

  3. THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. V. IMPROVING THE DARK-ENERGY CONSTRAINTS ABOVE z > 1 AND BUILDING AN EARLY-TYPE-HOSTED SUPERNOVA SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, N.; Rubin, D.; Aldering, G.; Barbary, K.; Faccioli, L.; Fakhouri, H. K. [E.O. Lawrence Berkeley National Lab, Berkeley, CA 94720 (United States); Lidman, C. [Australian Astronomical Observatory, Epping, NSW 1710 (Australia); Amanullah, R.; Botyanszki, J. [Department of Physics, University of California Berkeley, Berkeley, CA 94720 (United States); Barrientos, L. F. [Departamento de Astronomia y Astrofisica, Pontificia Universidad Catolica de Chile, Santiago (Chile); Brodwin, M. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Connolly, N. [Department of Physics, Hamilton College, Clinton, NY 13323 (United States); Dawson, K. S. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Dey, A. [National Optical Astronomy Observatory, Tucson, AZ 85726-6732 (United States); Doi, M. [Institute of Astronomy, Graduate School of Science, University of Tokyo 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Donahue, M. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Deustua, S. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Eisenhardt, P. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Ellingson, E. [Center for Astrophysics and Space Astronomy, 389 UCB, University of Colorado, Boulder, CO 80309 (United States); Fadeyev, V., E-mail: nsuzuki@lbl.gov, E-mail: rubind@berkeley.edu, E-mail: clidman@aao.gov.au [Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA 94064 (United States); Collaboration: Supernova Cosmology Project; and others

    2012-02-10

    We present Advanced Camera for Surveys, NICMOS, and Keck adaptive-optics-assisted photometry of 20 Type Ia supernovae (SNe Ia) from the Hubble Space Telescope (HST) Cluster Supernova Survey. The SNe Ia were discovered over the redshift interval 0.623 < z < 1.415. Of these SNe Ia, 14 pass our strict selection cuts and are used in combination with the world's sample of SNe Ia to derive the best current constraints on dark energy. Of our new SNe Ia, 10 are beyond redshift z = 1, thereby nearly doubling the statistical weight of HST-discovered SNe Ia beyond this redshift. Our detailed analysis corrects for the recently identified correlation between SN Ia luminosity and host galaxy mass and corrects the NICMOS zero point at the count rates appropriate for very distant SNe Ia. Adding these SNe improves the best combined constraint on dark-energy density, {rho}{sub DE}(z), at redshifts 1.0 < z < 1.6 by 18% (including systematic errors). For a flat {Lambda}CDM universe, we find {Omega}{sub {Lambda}} = 0.729 {+-} 0.014 (68% confidence level (CL) including systematic errors). For a flat wCDM model, we measure a constant dark-energy equation-of-state parameter w = -1.013{sup +0.068}{sub -0.073} (68% CL). Curvature is constrained to {approx}0.7% in the owCDM model and to {approx}2% in a model in which dark energy is allowed to vary with parameters w{sub 0} and w{sub a} . Further tightening the constraints on the time evolution of dark energy will require several improvements, including high-quality multi-passband photometry of a sample of several dozen z > 1 SNe Ia. We describe how such a sample could be efficiently obtained by targeting cluster fields with WFC3 on board HST. The updated supernova Union2.1 compilation of 580 SNe is available at http://supernova.lbl.gov/Union.

  4. THE LUMINOSITY, MASS, AND AGE DISTRIBUTIONS OF COMPACT STAR CLUSTERS IN M83 BASED ON HUBBLE SPACE TELESCOPE/WIDE FIELD CAMERA 3 OBSERVATIONS

    International Nuclear Information System (INIS)

    Chandar, Rupali; Whitmore, Bradley C.; Mutchler, Max; Bond, Howard; Kim, Hwihyun; Kaleida, Catherine; Calzetti, Daniela; Saha, Abhijit; O'Connell, Robert; Balick, Bruce; Carollo, Marcella; Disney, Michael; Dopita, Michael A.; Frogel, Jay A.; Hall, Donald; Holtzman, Jon A.; Kimble, Randy A.; McCarthy, Patrick; Paresce, Francesco; Silk, Joe

    2010-01-01

    The newly installed Wide Field Camera 3 (WFC3) on the Hubble Space Telescope has been used to obtain multi-band images of the nearby spiral galaxy M83. These new observations are the deepest and highest resolution images ever taken of a grand-design spiral, particularly in the near-ultraviolet, and allow us to better differentiate compact star clusters from individual stars and to measure the luminosities of even faint clusters in the U band. We find that the luminosity function (LF) for clusters outside of the very crowded starburst nucleus can be approximated by a power law, dN/dL ∝ L α , with α = -2.04 ± 0.08, down to M V ∼ -5.5. We test the sensitivity of the LF to different selection techniques, filters, binning, and aperture correction determinations, and find that none of these contribute significantly to uncertainties in α. We estimate ages and masses for the clusters by comparing their measured UBVI, Hα colors with predictions from single stellar population models. The age distribution of the clusters can be approximated by a power law, dN/dτ ∝ τ γ , with γ = -0.9 ± 0.2, for M ∼> few x 10 3 M sun and τ ∼ 8 yr. This indicates that clusters are disrupted quickly, with ∼80%-90% disrupted each decade in age over this time. The mass function of clusters over the same M-τ range is a power law, dN/dM ∝ M β , with β = -1.94 ± 0.16, and does not have bends or show curvature at either high or low masses. Therefore, we do not find evidence for a physical upper mass limit, M C , or for the earlier disruption of lower mass clusters when compared with higher mass clusters, i.e., mass-dependent disruption. We briefly discuss these implications for the formation and disruption of the clusters.

  5. HST's 10th anniversary, ESA and Hubble : changing our vision

    Science.gov (United States)

    2000-04-01

    With the astronauts who took part in the most recent Servicing Mission (SM3A) in attendance, ESA is taking the opportunity to give a - first - complete overview of Europe's major contribution to the HST mission. It will also review the first ten years of operations and the outstanding results that have "changed our vision" of the cosmos. A new fully European outreach initiative - the "European Space Agency Hubble Information Centre" - will be presented and officially launched; it has been set up by ESA to provide information on Hubble from a European perspective. A public conference will take place in the afternoon to celebrate Hubble's achievements midway through its life. Ten years of outstanding performance Launched on 24 April 1990, Hubble is now midway through its operating life and it is considered one of the most successful space science missions ever. So far more than 10,000 scientific papers based on Hubble results have been published and European scientists have contributed to more than 25% of these. Not only has Hubble produced a rich harvest of scientific results, it has impressed the man in the street with its beautiful images of the sky. Thousands of headlines all over the world have given direct proof of the public's great interest in the mission - 'The deepest images ever', 'The sharpest view of the Universe', 'Measurements of the earliest galaxies' and many others, all reflecting Hubble's performance as a top-class observatory. The Servicing Missions that keep the observatory and its instruments in prime condition are one of the innovative ideas behind Hubble. Astronauts have serviced Hubble three times, and ESA astronauts have taken part in two of these missions. Claude Nicollier (CH) worked with American colleagues on the First Servicing Mission, when Hubble's initial optical problems were repaired. On the latest, Servicing Mission 3A, both Claude Nicollier and Jean-François Clervoy (F) were members of the crew. Over the next 10 years European

  6. The very local Hubble flow

    Science.gov (United States)

    Karachentsev, I. D.; Sharina, M. E.; Makarov, D. I.; Dolphin, A. E.; Grebel, E. K.; Geisler, D.; Guhathakurta, P.; Hodge, P. W.; Karachentseva, V. E.; Sarajedini, A.; Seitzer, P.

    2002-07-01

    We present Hubble Space Telescope/WFPC2 images of eighteen galaxies situated in the vicinity of the Local Group (LG) as part of an ongoing snapshot survey of nearby galaxies. Their distances derived from the magnitude of the tip of the red giant branch are 1.92±0.10 Mpc (ESO 294-010), 3.06±0.37 (NGC 404), 3.15±0.32 (UGCA 105), 1.36±0.07 (Sex B), 1.33±0.08 (NGC 3109), 2.64±0.21 (UGC 6817), 2.86±0.14 (KDG 90), 2.27±0.19 (IC 3104), 2.54±0.17 (UGC 7577), 2.56±0.15 (UGC 8508), 3.01±0.29 (UGC 8651), 2.61±0.16 (KKH 86), 2.79±0.26 (UGC 9240), 1.11±0.07 (SagDIG), 0.94±0.04 (DDO 210), 2.07±0.18 (IC 5152), 2.23±0.15 (UGCA 438), and 2.45±0.13 (KKH 98). Based on the velocity-distance data for 36 nearest galaxies around the LG, we find the radius of the zero-velocity surface of the LG to be R0 = (0.94±0.10) Mpc, which yields a total mass MLG = (1.3±0.3) × 1012 Msolar. The galaxy distribution around the LG reveals a Local Minivoid which does not contain any galaxy brighter than MV=-11 mag within a volume of ~100 Mpc3. The local Hubble flow seems to be very cold, having a one-dimensional mean random motion of ~30 km s-1. The best-fit value of the local Hubble parameter is 73±15 km s-1 Mpc-1. The luminosity function for the nearby field galaxies is far less steep than one for members of the nearest groups. Figure 2 is only available in the electronic form at http://www.edpsciences.org Based on observations made with the NASA/ESA Hubble Space Telescope. The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555.

  7. Total Dose Survivability of Hubble Electronic Components

    Science.gov (United States)

    Xapsos, M. A.; Stauffer, C.; Jordan, T.; Poivey, C.; Haskins, D. N.; Lum, G.; Pergosky, A. M.; Smith, D. C.; LaBel, K. A.

    2017-01-01

    A total dose analysis for exposure of electronic parts at the box level is presented for the Hubble Space Telescope. This was done using solid angle sectoring/3-dimensional ray trace and Monte Carlo radiation transport simulations. Results are discussed in terms of parts that are potential total dose concerns.

  8. HUBBLE FINDS NEW DARK SPOT ON NEPTUNE

    Science.gov (United States)

    2002-01-01

    NASA's Hubble Space Telescope has discovered a new great dark spot, located in the northern hemisphere of the planet Neptune. Because the planet's northern hemisphere is now tilted away from Earth, the new feature appears near the limb of the planet. The spot is a near mirror-image to a similar southern hemisphere dark spot that was discovered in 1989 by the Voyager 2 probe. In 1994, Hubble showed that the southern dark spot had disappeared. Like its predecessor, the new spot has high altitude clouds along its edge, caused by gasses that have been pushed to higher altitudes where they cool to form methane ice crystal clouds. The dark spot may be a zone of clear gas that is a window to a cloud deck lower in the atmosphere. Planetary scientists don t know how long lived this new feature might be. Hubble's high resolution will allow astronomers to follow the spot's evolution and other unexpected changes in Neptune's dynamic atmosphere. The image was taken on November 2, 1994 with Hubble's Wide Field Planetary Camera 2, when Neptune was 2.8 billion miles (4.5 billion kilometers) from Earth. Hubble can resolve features as small as 625 miles (1,000 kilometers) across in Neptune's cloud tops. Credit: H. Hammel (Massachusetts Institute of Technology) and NASA

  9. Hubble Legacy Archive And The Public

    Science.gov (United States)

    Harris, Jessica; Whitmore, B.; Eisenhamer, B.; Bishop, M.; Knisely, L.

    2012-01-01

    The Hubble Legacy Archive (HLA) at the Space Telescope Science Institute (STScI) hosts the Image of the Month (IOTM) Series. The HLA is a joint project of STScI, the Space Telescope European Coordinating Facility (ST-ECF), and the Canadian Astronomy Data Centre (CADC). The HLA is designed optimize science from the Hubble Space Telescope by providing online enhanced Hubble products and advanced browsing capabilities. The IOTM's are created for astronomers and the public to highlight various features within HLA, such as the "Interactive Display", "Footprint” and "Inventory” features to name a few. We have been working with the Office of Public Outreach (OPO) to create a standards based educational module for middle school to high school students of the IOTM: Rings and the Moons of Uranus. The set of Uranus activities are highlighted by a movie that displays the orbit of five of Uranus’ largest satellites. We made the movie based on eight visits of Uranus from 2000-06-16 to 2000-06-18, using the PC chip on the Wide Field Planetary Camera 2 (WFPC2) and filter F850LP (proposal ID: 8680). Students will be engaged in activities that will allow them to "discover” the rings and satellites around Uranus, calculate the orbit of the satellites, and introduces students to analyze real data from Hubble.

  10. Beyond the Hubble Constant

    Science.gov (United States)

    1995-08-01

    about the distances to galaxies and thereby about the expansion rate of the Universe. A simple way to determine the distance to a remote galaxy is by measuring its redshift, calculate its velocity from the redshift and divide this by the Hubble constant, H0. For instance, the measured redshift of the parent galaxy of SN 1995K (0.478) yields a velocity of 116,000 km/sec, somewhat more than one-third of the speed of light (300,000 km/sec). From the universal expansion rate, described by the Hubble constant (H0 = 20 km/sec per million lightyears as found by some studies), this velocity would indicate a distance to the supernova and its parent galaxy of about 5,800 million lightyears. The explosion of the supernova would thus have taken place 5,800 million years ago, i.e. about 1,000 million years before the solar system was formed. However, such a simple calculation works only for relatively ``nearby'' objects, perhaps out to some hundred million lightyears. When we look much further into space, we also look far back in time and it is not excluded that the universal expansion rate, i.e. the Hubble constant, may have been different at earlier epochs. This means that unless we know the change of the Hubble constant with time, we cannot determine reliable distances of distant galaxies from their measured redshifts and velocities. At the same time, knowledge about such change or lack of the same will provide unique information about the time elapsed since the Universe began to expand (the ``Big Bang''), that is, the age of the Universe and also its ultimate fate. The Deceleration Parameter q0 Cosmologists are therefore eager to determine not only the current expansion rate (i.e., the Hubble constant, H0) but also its possible change with time (known as the deceleration parameter, q0). Although a highly accurate value of H0 has still not become available, increasing attention is now given to the observational determination of the second parameter, cf. also the Appendix at the

  11. HFF-DeepSpace Photometric Catalogs of the 12 Hubble Frontier Fields, Clusters, and Parallels: Photometry, Photometric Redshifts, and Stellar Masses

    Science.gov (United States)

    Shipley, Heath V.; Lange-Vagle, Daniel; Marchesini, Danilo; Brammer, Gabriel B.; Ferrarese, Laura; Stefanon, Mauro; Kado-Fong, Erin; Whitaker, Katherine E.; Oesch, Pascal A.; Feinstein, Adina D.; Labbé, Ivo; Lundgren, Britt; Martis, Nicholas; Muzzin, Adam; Nedkova, Kalina; Skelton, Rosalind; van der Wel, Arjen

    2018-03-01

    We present Hubble multi-wavelength photometric catalogs, including (up to) 17 filters with the Advanced Camera for Surveys and Wide Field Camera 3 from the ultra-violet to near-infrared for the Hubble Frontier Fields and associated parallels. We have constructed homogeneous photometric catalogs for all six clusters and their parallels. To further expand these data catalogs, we have added ultra-deep K S -band imaging at 2.2 μm from the Very Large Telescope HAWK-I and Keck-I MOSFIRE instruments. We also add post-cryogenic Spitzer imaging at 3.6 and 4.5 μm with the Infrared Array Camera (IRAC), as well as archival IRAC 5.8 and 8.0 μm imaging when available. We introduce the public release of the multi-wavelength (0.2–8 μm) photometric catalogs, and we describe the unique steps applied for the construction of these catalogs. Particular emphasis is given to the source detection band, the contamination of light from the bright cluster galaxies (bCGs), and intra-cluster light (ICL). In addition to the photometric catalogs, we provide catalogs of photometric redshifts and stellar population properties. Furthermore, this includes all the images used in the construction of the catalogs, including the combined models of bCGs and ICL, the residual images, segmentation maps, and more. These catalogs are a robust data set of the Hubble Frontier Fields and will be an important aid in designing future surveys, as well as planning follow-up programs with current and future observatories to answer key questions remaining about first light, reionization, the assembly of galaxies, and many more topics, most notably by identifying high-redshift sources to target.

  12. Hubble's Menagerie of Galaxies

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 3. Hubble's Managerie of Galaxies. Biman Nath. General Article Volume 14 Issue 3 March 2009 pp 226-235. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/014/03/0226-0235. Keywords. Galaxies ...

  13. Edwin Powell Hubble

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 3. Edwin Powell Hubble. Swara Ravindranath. Article-in-a-Box Volume 14 Issue 3 March 2009 pp 211-213. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/014/03/0211-0213. Author Affiliations.

  14. Air Space Proportion in Pterosaur Limb Bones Using Computed Tomography and Its Implications for Previous Estimates of Pneumaticity

    Science.gov (United States)

    Martin, Elizabeth G.; Palmer, Colin

    2014-01-01

    Air Space Proportion (ASP) is a measure of how much air is present within a bone, which allows for a quantifiable comparison of pneumaticity between specimens and species. Measured from zero to one, higher ASP means more air and less bone. Conventionally, it is estimated from measurements of the internal and external bone diameter, or by analyzing cross-sections. To date, the only pterosaur ASP study has been carried out by visual inspection of sectioned bones within matrix. Here, computed tomography (CT) scans are used to calculate ASP in a small sample of pterosaur wing bones (mainly phalanges) and to assess how the values change throughout the bone. These results show higher ASPs than previous pterosaur pneumaticity studies, and more significantly, higher ASP values in the heads of wing bones than the shaft. This suggests that pneumaticity has been underestimated previously in pterosaurs, birds, and other archosaurs when shaft cross-sections are used to estimate ASP. Furthermore, ASP in pterosaurs is higher than those found in birds and most sauropod dinosaurs, giving them among the highest ASP values of animals studied so far, supporting the view that pterosaurs were some of the most pneumatized animals to have lived. The high degree of pneumaticity found in pterosaurs is proposed to be a response to the wing bone bending stiffness requirements of flight rather than a means to reduce mass, as is often suggested. Mass reduction may be a secondary result of pneumaticity that subsequently aids flight. PMID:24817312

  15. Hubble expansion in static spacetime

    International Nuclear Information System (INIS)

    Rossler, Otto E.; Froehlich, Dieter; Movassagh, Ramis; Moore, Anthony

    2007-01-01

    A recently proposed mechanism for light-path expansion in a static spacetime is based on the moving-lenses paradigm. Since the latter is valid independently of whether space expands or not, a static universe can be used to better see the implications. The moving-lenses paradigm is related to the paradigm of dynamical friction. If this is correct, a Hubble-like law is implicit. It is described quantitatively. A bent in the Hubble-like line is predictably implied. The main underlying assumption is Price's Principle (PI 3 ). If the theory is sound, the greatest remaining problem in cosmology becomes the origin of hydrogen. Since Blandford's jet production mechanism for quasars is too weak, a generalized Hawking radiation hidden in the walls of cosmic voids is invoked. A second prediction is empirical: slow pattern changes in the cosmic microwave background. A third is ultra-high redshifts for Giacconi quasars. Bruno's eternal universe in the spirit of Augustine becomes a bit less outlandish

  16. Dismantling Hubble's Legacy?

    Science.gov (United States)

    Way, Michael Joseph

    2013-01-01

    Edwin Hubble is famous for a number of discoveries that are well known to amateur and professional astronomers, students and the general public. The origins of these discoveries are examined and it is demonstrated that, in each case, a great deal of supporting evidence was already in place. In some cases the discoveries had either already been made, or competing versions were not adopted for complex scientific and sociological reasons.

  17. The Hubble Constant.

    Science.gov (United States)

    Jackson, Neal

    2015-01-01

    I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H 0 values of around 72-74 km s -1 Mpc -1 , with typical errors of 2-3 km s -1 Mpc -1 . This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67-68 km s -1 Mpc -1 and typical errors of 1-2 km s -1 Mpc -1 . The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.

  18. New Hubble Servicing Mission to upgrade instruments

    Science.gov (United States)

    2006-10-01

    The history of the NASA/ESA Hubble Space Telescope is dominated by the familiar sharp images and amazing discoveries that have had an unprecedented scientific impact on our view of the world and our understanding of the universe. Nevertheless, such important contributions to science and humankind have only been possible as result of regular upgrades and enhancements to Hubble’s instrumentation. Using the Space Shuttle for this fifth Servicing Mission underlines the important role that astronauts have played and continue to play in increasing the Space Telescope’s lifespan and scientific power. Since the loss of Columbia in 2003, the Shuttle has been successfully launched on three missions, confirming that improvements made to it have established the required high level of safety for the spacecraft and its crew. “There is never going to be an end to the science that we can do with a machine like Hubble”, says David Southwood, ESA’s Director of Science. “Hubble is our way of exploring our origins. Everyone should be proud that there is a European element to it and that we all are part of its success at some level.” This Servicing Mission will not just ensure that Hubble can function for perhaps as much as another ten years; it will also increase its capabilities significantly in key areas. This highly visible mission is expected to take place in 2008 and will feature several space walks. As part of the upgrade, two new scientific instruments will be installed: the Cosmic Origins Spectrograph and Wide Field Camera 3. Each has advanced technology sensors that will dramatically improve Hubble’s potential for discovery and enable it to observe faint light from the youngest stars and galaxies in the universe. With such an astounding increase in its science capabilities, this orbital observatory will continue to penetrate the most distant regions of outer space and reveal breathtaking phenomena. “Today, Hubble is producing more science than ever before in

  19. Hubble's new view of the cosmos

    Science.gov (United States)

    Villard, R

    1996-05-01

    Since the December 1993 repair of NASA's Hubble Space Telescope's (HST) optics by the crew of the Space Shuttle Endeavour, the rapid-fire scientific achievements have brought a new era of discovery to the field of astronomy. Hubble has confirmed some astronomical theories, challenged others, and often come up with complete surprises. Some images are so unexpected that astronomers have to develop new theories to explain what they are seeing. The HST has detected galaxies out to the visible horizon of the cosmos, and has made an attempt at pinning down the universe's expansion rate. Both of these key research areas should ultimately yield answers to age-old questions: What has happened since the beginning of time, and will the universe go on forever?

  20. Kennedy Educate to Innovate (KETI) Hubble Powerpoint Presentation

    Science.gov (United States)

    Paglialonga, Jessica

    2011-01-01

    The presentation describes the Hubble Space Telescope and it's contributions to astronomy. Also discussed are the James Webb Space Telescope and the kinds of careers that relate to STEM (science, technology, engineering, and mathematics) that students can pursue in fields related to space telescopes.

  1. The Hubble Constant

    Directory of Open Access Journals (Sweden)

    Neal Jackson

    2015-09-01

    Full Text Available I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H_0 values of around 72–74 km s^–1 Mpc^–1, with typical errors of 2–3 km s^–1 Mpc^–1. This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67–68 km s^–1 Mpc^–1 and typical errors of 1–2 km s^–1 Mpc^–1. The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.

  2. HUBBLE SPIES MOST DISTANT SUPERNOVA EVER SEEN

    Science.gov (United States)

    2002-01-01

    Using NASA's Hubble Space Telescope, astronomers pinpointed a blaze of light from the farthest supernova ever seen, a dying star that exploded 10 billion years ago. The detection and analysis of this supernova, called 1997ff, is greatly bolstering the case for the existence of a mysterious form of dark energy pervading the cosmos, making galaxies hurl ever faster away from each other. The supernova also offers the first glimpse of the universe slowing down soon after the Big Bang, before it began speeding up. This panel of images, taken with the Wide Field and Planetary Camera 2, shows the supernova's cosmic neighborhood; its home galaxy; and the dying star itself. Astronomers found this supernova in 1997 during a second look at the northern Hubble Deep Field [top panel], a tiny region of sky first explored by the Hubble telescope in 1995. The image shows the myriad of galaxies Hubble spied when it peered across more than 10 billion years of time and space. The white box marks the area where the supernova dwells. The photo at bottom left is a close-up view of that region. The white arrow points to the exploding star's home galaxy, a faint elliptical. Its redness is due to the billions of old stars residing there. The picture at bottom right shows the supernova itself, distinguished by the white dot in the center. Although this stellar explosion is among the brightest beacons in the universe, it could not be seen directly in the Hubble images. The stellar blast is so distant from Earth that its light is buried in the glow of its host galaxy. To find the supernova, astronomers compared two pictures of the 'deep field' taken two years apart. One image was of the original Hubble Deep Field; the other, the follow-up deep-field picture taken in 1997. Using special computer software, astronomers then measured the light from the galaxies in both images. Noting any changes in light output between the two pictures, the computer identified a blob of light in the 1997 picture

  3. The Carnegie Hubble Program

    Science.gov (United States)

    Freedman, Wendy L.; Madore, Barry F.; Scowcroft, Vicky; Mnso, Andy; Persson, S. E.; Rigby, Jane; Sturch, Laura; Stetson, Peter

    2011-01-01

    We present an overview of and preliminary results from an ongoing comprehensive program that has a goal of determining the Hubble constant to a systematic accuracy of 2%. As part of this program, we are currently obtaining 3.6 micron data using the Infrared Array Camera (IRAC) on Spitzer, and the program is designed to include JWST in the future. We demonstrate that the mid-infrared period-luminosity relation for Cepheids at 3.6 microns is the most accurate means of measuring Cepheid distances to date. At 3.6 microns, it is possible to minimize the known remaining systematic uncertainties in the Cepheid extragalactic distance scale. We discuss the advantages of 3.6 micron observations in minimizing systematic effects in the Cepheid calibration of the Hubble constant including the absolute zero point, extinction corrections, and the effects of metallicity on the colors and magnitudes of Cepheids. We are undertaking three independent tests of the sensitivity of the mid-IR Cepheid Leavitt Law to metallicity, which when combined will allow a robust constraint on the effect. Finally, we are providing a new mid-IR Tully-Fisher relation for spiral galaxies.

  4. Hubble Images Reveal Jupiter's Auroras

    Science.gov (United States)

    1996-01-01

    These images, taken by the Hubble Space Telescope, reveal changes in Jupiter's auroral emissions and how small auroral spots just outside the emission rings are linked to the planet's volcanic moon, Io. The images represent the most sensitive and sharply-detailed views ever taken of Jovian auroras.The top panel pinpoints the effects of emissions from Io, which is about the size of Earth's moon. The black-and-white image on the left, taken in visible light, shows how Io and Jupiter are linked by an invisible electrical current of charged particles called a 'flux tube.' The particles - ejected from Io (the bright spot on Jupiter's right) by volcanic eruptions - flow along Jupiter's magnetic field lines, which thread through Io, to the planet's north and south magnetic poles. This image also shows the belts of clouds surrounding Jupiter as well as the Great Red Spot.The black-and-white image on the right, taken in ultraviolet light about 15 minutes later, shows Jupiter's auroral emissions at the north and south poles. Just outside these emissions are the auroral spots. Called 'footprints,' the spots are created when the particles in Io's 'flux tube' reach Jupiter's upper atmosphere and interact with hydrogen gas, making it fluoresce. In this image, Io is not observable because it is faint in the ultraviolet.The two ultraviolet images at the bottom of the picture show how the auroral emissions change in brightness and structure as Jupiter rotates. These false-color images also reveal how the magnetic field is offset from Jupiter's spin axis by 10 to 15 degrees. In the right image, the north auroral emission is rising over the left limb; the south auroral oval is beginning to set. The image on the left, obtained on a different date, shows a full view of the north aurora, with a strong emission inside the main auroral oval.The images were taken by the telescope's Wide Field and Planetary Camera 2 between May 1994 and September 1995.This image and other images and data

  5. Cosmology: From Hubble to HST

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Michael S.

    1997-03-01

    The Hubble constant sets the size and age of the Universe, and, together with independent determinations of the age, provides a consistency check of the standard cosmology. The Hubble constant also provides an important test of our most attractive paradigm for extending the standard cosmology, inflation and cold dark matter.

  6. The Ultraviolet Hubble Ultra Deep Field

    Science.gov (United States)

    Rafelski, Marc; UVUDF

    2018-01-01

    The Ultraviolet Hubble Ultra Deep Field (UVUDF) consists of WFC3/UVIS imaging of the HUDF in the F225W, F275W, and F336W filters (30 orbits per filter, half of which included post-flash). The UVUDF complements the optical through near-infrared imaging, adding UV diagnostics to the most well studied extragalactic field in the sky. I will present the science results enabled by this UV imaging, including improved photometric redshift estimates, the UV galaxy luminosity function, the UV morphology of star-forming galaxies, limits on the escape fraction of ionizing radiation, bursty star-formation in low-mass galaxies, and the star-formation efficiency of HI rich galaxies. I will conclude with a reflection about the future of UV imaging in the final years of the Hubble Space Telescope (HST).

  7. Weighing 'El Gordo' with a precision scale: Hubble space telescope weak-lensing analysis of the merging galaxy cluster ACT-CL J0102–4915 at z = 0.87

    Energy Technology Data Exchange (ETDEWEB)

    Jee, M. James; Ng, Karen Y. [Department of Physics, University of California, Davis, One Shields Avenue, Davis, CA 95616 (United States); Hughes, John P.; Menanteau, Felipe [Department of Physics and Astronomy, Rutgers University, 136 Frelinghysen Rd., Piscataway, NJ 08854 (United States); Sifón, Cristóbal [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Mandelbaum, Rachel [Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Barrientos, L. Felipe; Infante, Leopoldo [Departamento de Astronomía y Astrofísica, Facultad de Física, Ponticia Universidad Católica de Chile, Casilla 306, Santiago 22 (Chile)

    2014-04-10

    We present a Hubble Space Telescope weak-lensing study of the merging galaxy cluster 'El Gordo' (ACT-CL J0102–4915) at z = 0.87 discovered by the Atacama Cosmology Telescope (ACT) collaboration as the strongest Sunyaev-Zel'dovich decrement in its ∼1000 deg{sup 2} survey. Our weak-lensing analysis confirms that ACT-CL J0102–4915 is indeed an extreme system consisting of two massive (≳ 10{sup 15} M {sub ☉} each) subclusters with a projected separation of ∼0.7 h{sub 70}{sup −1} Mpc. This binary mass structure revealed by our lensing study is consistent with the cluster galaxy distribution and the dynamical study carried out with 89 spectroscopic members. We estimate the mass of ACT-CL J0102–4915 by simultaneously fitting two axisymmetric Navarro-Frenk-White (NFW) profiles allowing their centers to vary. We use only a single parameter for the NFW mass profile by enforcing the mass-concentration relation from numerical simulations. Our Markov-Chain-Monte-Carlo analysis shows that the masses of the northwestern (NW) and the southeastern (SE) components are M{sub 200c}=(1.38±0.22)×10{sup 15} h{sub 70}{sup −1} M{sub ⊙} and (0.78±0.20)×10{sup 15} h{sub 70}{sup −1} M{sub ⊙}, respectively, where the quoted errors include only 1σ statistical uncertainties determined by the finite number of source galaxies. These mass estimates are subject to additional uncertainties (20%-30%) due to the possible presence of triaxiality, correlated/uncorrelated large scale structure, and departure of the cluster profile from the NFW model. The lensing-based velocity dispersions are 1133{sub −61}{sup +58} km s{sup −1} and 1064{sub −66}{sup +62} km s{sup −1} for the NW and SE components, respectively, which are consistent with their spectroscopic measurements (1290 ± 134 km s{sup –1} and 1089 ± 200 km s{sup –1}, respectively). The centroids of both components are tightly constrained (∼4'') and close to the optical luminosity

  8. "HUBBLE, the astronomer, the telescope, the results"

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    The fundamental discoveries made by Edwin Hubble in the first quarter of the last century will be presented. The space telescope bearing his name will be introduced, as well as the strategy put in place by NASA and the European Space Agency for its operation and its maintenance on-orbit. The personal experience of the speaker having participated in two of five servicing mission will be exposed and illustrated by pictures taken on-orbit. Finally, the main results obtained by the orbital observatory will be presented, in particular the ones related to the large scale structure of the Universe and its early history

  9. The Hubble Constant

    Directory of Open Access Journals (Sweden)

    Jackson Neal

    2007-09-01

    Full Text Available I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. In the last 20 years, much progress has been made and estimates now range between 60 and 75 km s^-1 Mpc^-1, with most now between 70 and 75 km s^-1 Mpc^-1, a huge improvement over the factor-of-2 uncertainty which used to prevail. Further improvements which gave a generally agreed margin of error of a few percent rather than the current 10% would be vital input to much other interesting cosmology. There are several programmes which are likely to lead us to this point in the next 10 years.

  10. BEAUTY IN THE EYE OF HUBBLE

    Science.gov (United States)

    2002-01-01

    A dying star, IC 4406, dubbed the 'Retina Nebula' is revealed in this month's Hubble Heritage image. Like many other so-called planetary nebulae, IC 4406 exhibits a high degree of symmetry; the left and right halves of the Hubble image are nearly mirror images of the other. If we could fly around IC4406 in a starship, we would see that the gas and dust form a vast donut of material streaming outward from the dying star. From Earth, we are viewing the donut from the side. This side view allows us to see the intricate tendrils of dust that have been compared to the eye's retina. In other planetary nebulae, like the Ring Nebula (NGC 6720), we view the donut from the top. The donut of material confines the intense radiation coming from the remnant of the dying star. Gas on the inside of the donut is ionized by light from the central star and glows. Light from oxygen atoms is rendered blue in this image; hydrogen is shown as green, and nitrogen as red. The range of color in the final image shows the differences in concentration of these three gases in the nebula. Unseen in the Hubble image is a larger zone of neutral gas that is not emitting visible light, but which can be seen by radio telescopes. One of the most interesting features of IC 4406 is the irregular lattice of dark lanes that criss-cross the center of the nebula. These lanes are about 160 astronomical units wide (1 astronomical unit is the distance between the Earth and Sun). They are located right at the boundary between the hot glowing gas that produces the visual light imaged here and the neutral gas seen with radio telescopes. We see the lanes in silhouette because they have a density of dust and gas that is a thousand times higher than the rest of the nebula. The dust lanes are like a rather open mesh veil that has been wrapped around the bright donut. The fate of these dense knots of material is unknown. Will they survive the nebula's expansion and become dark denizens of the space between the stars

  11. HUBBLE FINDS THOUSANDS OF GASEOUS FRAGMENTS SURROUNDING DYING STAR

    Science.gov (United States)

    2002-01-01

    Resembling a bizarre setting from a science fiction movie, dramatic images sent back by NASA's Hubble Space Telescope have surprised astronomers by uncovering thousands of gigantic tadpole-shaped objects surrounding a dying star. Dubbed 'cometary knots' because their glowing heads and gossamer tails superficially resemble comets, they are probably the result of a dying star's final outbursts. Though ground-based telescopic observations have hinted at such objects, they have not previously been seen in such abundance, say researchers. The knots were detected by Hubble astronomer C. Robert O'Dell and graduate student Kerry P. Handron of Rice University in Houston, Texas, while exploring the Helix nebula, a ring of glowing gases blown off the surface of a sunlike star late in its life. O'Dell expects the gaseous knots, which are each several billion miles across, will eventually dissipate and vanish into the cold emptiness of interstellar space. However, he speculates that if the objects contract to form permanent solid bodies, they may contribute to a fraction (less than ten percent) of the missing mass of our galaxy, simply because of their sheer abundance around a typical dying star. (This so-called dark matter is a known source of gravity that affects the motions of stars in the galaxy). The mysterious 'space pods' came into view as O'Dell used Hubble's Wide Field Planetary Camera 2 to survey the Helix nebula, located 450 light-years away in the constellation Aquarius and the closest planetary nebula to Earth -- so close that its angular size is almost half that of the full Moon. The most visible cometary knots all lie along the inner edge of the ring, at a distance of trillions of miles from the central star. Their comet-like tails, each stretching a hundred billion miles, form a radial pattern around the star like the spokes on a wagon wheel. Though previous ground-based observations show a spoke pattern in the Helix, and some structure, O'Dell emphasizes that

  12. Previously hidden low-energy ions: a better map of near-Earth space and the terrestrial mass balance

    International Nuclear Information System (INIS)

    André, Mats

    2015-01-01

    This is a review of the mass balance of planet Earth, intended also for scientists not usually working with space physics or geophysics. The discussion includes both outflow of ions and neutrals from the ionosphere and upper atmosphere, and the inflow of meteoroids and larger objects. The focus is on ions with energies less than tens of eV originating from the ionosphere. Positive low-energy ions are complicated to detect onboard sunlit spacecraft at higher altitudes, which often become positively charged to several tens of volts. We have invented a technique to observe low-energy ions based on the detection of the wake behind a charged spacecraft in a supersonic ion flow. We find that low-energy ions usually dominate the ion density and the outward flux in large volumes in the magnetosphere. The global outflow is of the order of 10 26 ions s –1 . This is a significant fraction of the total number outflow of particles from Earth, and changes plasma processes in near-Earth space. We compare order of magnitude estimates of the mass outflow and inflow for planet Earth and find that they are similar, at around 1 kg s −1 (30 000 ton yr −1 ). We briefly discuss atmospheric and ionospheric outflow from other planets and the connection to evolution of extraterrestrial life. (invited comment)

  13. No Neon, but Jets in the Remarkable Recurrent Nova M31N 2008-12a?-Hubble Space Telescope Spectroscopy of the 2015 Eruption

    Czech Academy of Sciences Publication Activity Database

    Darnley, M.J.; Hounsell, R.; Godon, M.; Perley, D.A.; Henze, M.; Kuindersma, S.; Williams, B. F.; Williams, S.C.; Bode, M.F.; Harman, D. J.; Hornoch, Kamil; Link, M.; Ness, J.-U.; Ribeiro, V.A.R.M.; Sion, E. M.; Shafter, A.W.; Shara, M. M.

    2017-01-01

    Roč. 847, č. 1 (2017), 35/1-35/14 ISSN 0004-637X Institutional support: RVO:67985815 Keywords : resolution imaging spectrometer * ultraviolet spectral evolution * x-ray Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 5.533, year: 2016

  14. Inflows, Outflows, and a Giant Donor in the Remarkable Recurrent Nova M31N 2008-12a?-Hubble Space Telescope Photometry of the 2015 Eruption

    Czech Academy of Sciences Publication Activity Database

    Darnley, M.J.; Hounsell, R.; Godon, M.; Perley, D.A.; Henze, M.; Kuindersma, S.; Williams, B. F.; Williams, S.C.; Bode, M.F.; Harman, D. J.; Hornoch, Kamil; Link, M.; Ness, J.-U.; Ribeiro, V.A.R.M.; Sion, E. M.; Shafter, A.W.; Shara, M. M.

    2017-01-01

    Roč. 849, č. 2 (2017), 96/1-96/17 ISSN 0004-637X Institutional support: RVO:67985815 Keywords : accretion * accretion disks * cataclysmic variables Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 5.533, year: 2016

  15. IMF dependence of the open-closed field line boundary in Saturn's ionosphere, and its relation to the UV auroral oval observed by the Hubble Space Telescope

    Directory of Open Access Journals (Sweden)

    E. S. Belenkaya

    2007-06-01

    Full Text Available We study the dependence of Saturn's magnetospheric magnetic field structure on the interplanetary magnetic field (IMF, together with the corresponding variations of the open-closed field line boundary in the ionosphere. Specifically we investigate the interval from 8 to 30 January 2004, when UV images of Saturn's southern aurora were obtained by the Hubble Space Telescope (HST, and simultaneous interplanetary measurements were provided by the Cassini spacecraft located near the ecliptic ~0.2 AU upstream of Saturn and ~0.5 AU off the planet-Sun line towards dawn. Using the paraboloid model of Saturn's magnetosphere, we calculate the magnetospheric magnetic field structure for several values of the IMF vector representative of interplanetary compression regions. Variations in the magnetic structure lead to different shapes and areas of the open field line region in the ionosphere. Comparison with the HST auroral images shows that the area of the computed open flux region is generally comparable to that enclosed by the auroral oval, and sometimes agrees in detail with its poleward boundary, though more typically being displaced by a few degrees in the tailward direction.

  16. Hubble Captures Volcanic Eruption Plume From Io

    Science.gov (United States)

    1997-01-01

    The Hubble Space Telescope has snapped a picture of a 400-km-high (250-mile-high) plume of gas and dust from a volcanic eruption on Io, Jupiter's large innermost moon.Io was passing in front of Jupiter when this image was taken by the Wide Field and Planetary Camera 2 in July 1996. The plume appears as an orange patch just off the edge of Io in the eight o'clock position, against the blue background of Jupiter's clouds. Io's volcanic eruptions blasts material hundreds of kilometers into space in giant plumes of gas and dust. In this image, material must have been blown out of the volcano at more than 2,000 mph to form a plume of this size, which is the largest yet seen on Io.Until now, these plumes have only been seen by spacecraft near Jupiter, and their detection from the Earth-orbiting Hubble Space Telescope opens up new opportunities for long-term studies of these remarkable phenomena.The plume seen here is from Pele, one of Io's most powerful volcanos. Pele's eruptions have been seen before. In March 1979, the Voyager 1 spacecraft recorded a 300-km-high eruption cloud from Pele. But the volcano was inactive when the Voyager 2 spacecraft flew by Jupiter in July 1979. This Hubble observation is the first glimpse of a Pele eruption plume since the Voyager expeditions.Io's volcanic plumes are much taller than those produced by terrestrial volcanos because of a combination of factors. The moon's thin atmosphere offers no resistance to the expanding volcanic gases; its weak gravity (one-sixth that of Earth) allows material to climb higher before falling; and its biggest volcanos are more powerful than most of Earth's volcanos.This image is a contrast-enhanced composite of an ultraviolet image (2600 Angstrom wavelength), shown in blue, and a violet image (4100 Angstrom wavelength), shown in orange. The orange color probably occurs because of the absorption and/or scattering of ultraviolet light in the plume. This light from Jupiter passes through the plume and is

  17. Constraining the evolution of the Hubble Parameter using cosmic chronometers

    Science.gov (United States)

    Dickinson, Hugh

    2017-08-01

    Substantial investment is being made in space- and ground-based missions with the goal of revealing the nature of the observed cosmic acceleration. This is one of the most important unsolved problems in cosmology today.We propose here to constrain the evolution of the Hubble parameter [H(z)] between 1.3 fundamental nature of dark energy.

  18. A Guided Inquiry on Hubble Plots and the Big Bang

    Science.gov (United States)

    Forringer, Ted

    2014-01-01

    In our science for non-science majors course "21st Century Physics," we investigate modern "Hubble plots" (plots of velocity versus distance for deep space objects) in order to discuss the Big Bang, dark matter, and dark energy. There are two potential challenges that our students face when encountering these topics for the…

  19. Star Formation at z = 2.481 in the Lensed Galaxy SDSS J1110+6459. II. What is Missed at the Normal Resolution of the Hubble Space Telescope?

    Science.gov (United States)

    Rigby, J. R.; Johnson, T. L.; Sharon, K.; Whitaker, K.; Gladders, M. D.; Florian, M.; Lotz, J.; Bayliss, M.; Wuyts, E.

    2017-07-01

    For lensed galaxy SGAS J111020.0+645950.8 at redshift z = 2.481, which is magnified by a factor of 28 ± 8, we analyze the morphology of star formation, as traced by rest-frame ultraviolet emission, in both the highly magnified source plane and simulations of how this galaxy would appear without lensing magnification. Were this galaxy not lensed, but rather drawn from a Hubble Space Telescope deep field, we would conclude that almost all its star formation arises from an exponential disk (Sérsic index of 1.0 ± 0.4) with an effective radius of {r}e=2.7+/- 0.3 {kpc} measured from two-dimensional fitting to F606W using Galfit, and {r}e=1.9+/- 0.1 {kpc} measured by fitting a radial profile to F606W elliptical isophotes. At the normal spatial resolution of the deep fields, there is no sign of clumpy star formation within SGAS J111020.0+645950.8. However, the enhanced spatial resolution enabled by gravitational lensing tells a very different story; much of the star formation arises in two dozen clumps with sizes of r = 30-50 pc spread across the 7 kpc length of the galaxy. The color and spatial distribution of the diffuse component suggests that still-smaller clumps are unresolved. Despite this clumpy, messy morphology, the radial profile is still well-characterized by an exponential profile. In this lensed galaxy, stars are forming in complexes with sizes well below 100 pc such sizes are wholly unexplored by surveys of galaxy evolution at 1< z< 3.

  20. Hubble Space Telescope Hx Imaging of Star-forming Galaxies at z approximately equal to 1-1.5: Evolution in the Size and Luminosity of Giant H II Regions

    Science.gov (United States)

    Livermore, R. C.; Jones, T.; Richard, J.; Bower, R. G.; Ellis, R. S.; Swinbank, A. M.; Rigby, J. R.; Smail, Ian; Arribas, S.; Rodriguez-Zaurin, J.; hide

    2013-01-01

    We present Hubble Space Telescope/Wide Field Camera 3 narrow-band imaging of the Ha emission in a sample of eight gravitationally lensed galaxies at z = 1-1.5. The magnification caused by the foreground clusters enables us to obtain a median source plane spatial resolution of 360 pc, as well as providing magnifications in flux ranging from approximately 10× to approximately 50×. This enables us to identify resolved star-forming HII regions at this epoch and therefore study their Ha luminosity distributions for comparisons with equivalent samples at z approximately 2 and in the local Universe. We find evolution in the both luminosity and surface brightness of HII regions with redshift. The distribution of clump properties can be quantified with an HII region luminosity function, which can be fit by a power law with an exponential break at some cut-off, and we find that the cut-off evolves with redshift. We therefore conclude that 'clumpy' galaxies are seen at high redshift because of the evolution of the cut-off mass; the galaxies themselves follow similar scaling relations to those at z = 0, but their HII regions are larger and brighter and thus appear as clumps which dominate the morphology of the galaxy. A simple theoretical argument based on gas collapsing on scales of the Jeans mass in a marginally unstable disc shows that the clumpy morphologies of high-z galaxies are driven by the competing effects of higher gas fractions causing perturbations on larger scales, partially compensated by higher epicyclic frequencies which stabilize the disc.

  1. A Physical Model-based Correction for Charge Traps in the Hubble Space Telescope ’s Wide Field Camera 3 Near-IR Detector and Its Applications to Transiting Exoplanets and Brown Dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yifan; Apai, Dániel; Schneider, Glenn [Department of Astronomy/Steward Observatory, The University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Lew, Ben W. P., E-mail: yzhou@as.arizona.edu [Department of Planetary Science/Lunar and Planetary Laboratory, The University of Arizona, 1640 E. University Boulevard, Tucson, AZ 85718 (United States)

    2017-06-01

    The Hubble Space Telescope Wide Field Camera 3 (WFC3) near-IR channel is extensively used in time-resolved observations, especially for transiting exoplanet spectroscopy as well as brown dwarf and directly imaged exoplanet rotational phase mapping. The ramp effect is the dominant source of systematics in the WFC3 for time-resolved observations, which limits its photometric precision. Current mitigation strategies are based on empirical fits and require additional orbits to help the telescope reach a thermal equilibrium . We show that the ramp-effect profiles can be explained and corrected with high fidelity using charge trapping theories. We also present a model for this process that can be used to predict and to correct charge trap systematics. Our model is based on a very small number of parameters that are intrinsic to the detector. We find that these parameters are very stable between the different data sets, and we provide best-fit values. Our model is tested with more than 120 orbits (∼40 visits) of WFC3 observations and is proved to be able to provide near photon noise limited corrections for observations made with both staring and scanning modes of transiting exoplanets as well as for starting-mode observations of brown dwarfs. After our model correction, the light curve of the first orbit in each visit has the same photometric precision as subsequent orbits, so data from the first orbit no longer need to be discarded. Near-IR arrays with the same physical characteristics (e.g., JWST/NIRCam ) may also benefit from the extension of this model if similar systematic profiles are observed.

  2. A Physical Model-based Correction for Charge Traps in the Hubble Space Telescope’s Wide Field Camera 3 Near-IR Detector and Its Applications to Transiting Exoplanets and Brown Dwarfs

    Science.gov (United States)

    Zhou, Yifan; Apai, Dániel; Lew, Ben W. P.; Schneider, Glenn

    2017-06-01

    The Hubble Space Telescope Wide Field Camera 3 (WFC3) near-IR channel is extensively used in time-resolved observations, especially for transiting exoplanet spectroscopy as well as brown dwarf and directly imaged exoplanet rotational phase mapping. The ramp effect is the dominant source of systematics in the WFC3 for time-resolved observations, which limits its photometric precision. Current mitigation strategies are based on empirical fits and require additional orbits to help the telescope reach a thermal equilibrium. We show that the ramp-effect profiles can be explained and corrected with high fidelity using charge trapping theories. We also present a model for this process that can be used to predict and to correct charge trap systematics. Our model is based on a very small number of parameters that are intrinsic to the detector. We find that these parameters are very stable between the different data sets, and we provide best-fit values. Our model is tested with more than 120 orbits (∼40 visits) of WFC3 observations and is proved to be able to provide near photon noise limited corrections for observations made with both staring and scanning modes of transiting exoplanets as well as for starting-mode observations of brown dwarfs. After our model correction, the light curve of the first orbit in each visit has the same photometric precision as subsequent orbits, so data from the first orbit no longer need to be discarded. Near-IR arrays with the same physical characteristics (e.g., JWST/NIRCam) may also benefit from the extension of this model if similar systematic profiles are observed.

  3. Cosmic Collisions The Hubble Atlas of Merging Galaxies

    CERN Document Server

    Christensen, Lars Lindberg; Martin, Davide

    2009-01-01

    Lars Lindberg Christensen, Raquel Yumi Shida & Davide De Martin Cosmic Collisions: The Hubble Atlas of Merging Galaxies Like majestic ships in the grandest night, galaxies can slip ever closer until their mutual gravitational interaction begins to mold them into intricate figures that are finally, and irreversibly, woven together. It is an immense cosmic dance, choreographed by gravity. Cosmic Collisions contains a hundred new, many thus far unpublished, images of colliding galaxies from the NASA/ESA Hubble Space Telescope. It is believed that many present-day galaxies, including the Milky Way, were assembled from such a coalescence of smaller galaxies, occurring over billions of years. Triggered by the colossal and violent interaction between the galaxies, stars form from large clouds of gas in firework bursts, creating brilliant blue star clusters. The importance of these cosmic encounters reaches far beyond the stunning Hubble images. They may, in fact, be among the most important processes that shape ...

  4. Hubble 2020: Outer Planet Atmospheres Legacy (OPAL) Program

    Science.gov (United States)

    Simon, Amy

    2017-08-01

    Long time base observations of the outer planets are critical in understanding the atmospheric dynamics and evolution of the gas giants. We propose yearly monitoring of each giant planet for the remainder of Hubble's lifetime to provide a lasting legacy of increasingly valuable data for time-domain studies. The Hubble Space Telescope is a unique asset to planetary science, allowing high spatial resolution data with absolute photometric knowledge. For the outer planets, gas/ice giant planets Jupiter, Saturn, Uranus and Neptune, many phenomena happen on timescales of years to decades, and the data we propose are beyond the scope of a typical GO program. Hubble is the only platform that can provide high spatial resolution global studies of cloud coloration, activity, and motion on a consistent time basis to help constrain the underlying mechanics.

  5. WSRT observations of the Hubble Deep Field region

    NARCIS (Netherlands)

    Garrett, MA; de Bruyn, AG; Giroletti, M; Baan, WA; Schilizzi, RT

    We present deep WSRT 1.4 GHz observations of the Hubble Deep Field region. At the 5 sigma level, the WSRT clearly detects 85 regions of radio emission in a 10' x 10' field centred on the HDF Eight of these regions fall within the HDF itself, four of these are sources that have not previously been

  6. PACMan to Help Sort Hubble Proposals

    Science.gov (United States)

    Kohler, Susanna

    2017-04-01

    Every year, astronomers submit over a thousand proposals requesting time on the Hubble Space Telescope (HST). Currently, humans must sort through each of these proposals by hand before sending them off for review. Could this burden be shifted to computers?A Problem of VolumeAstronomer Molly Peeples gathered stats on the HST submissions sent in last week for the upcoming HST Cycle 25 (the deadline was Friday night), relative to previous years. This years proposal round broke the record, with over 1200 proposals submitted in total for Cycle 25. [Molly Peeples]Each proposal cycle for HST time attracts on the order of 1100 proposals accounting for far more HST time than is available. The proposals are therefore carefully reviewed by around 150 international members of the astronomy community during a six-month process to select those with the highest scientific merit.Ideally, each proposal will be read by reviewers that have scientific expertise relevant to the proposal topic: if a proposal requests HST time to study star formation, for instance, then the reviewers assigned to it should have research expertise in star formation.How does this matching of proposals to reviewers occur? The current method relies on self-reported categorization of the submitted proposals. This is unreliable, however; proposals are often mis-categorized by submitters due to misunderstanding or ambiguous cases.As a result, the Science Policies Group at the Space Telescope Science Institute (STScI) which oversees the review of HST proposals must go through each of the proposals by hand and re-categorize them. The proposals are then matched to reviewers with self-declared expertise in the same category.With the number of HST proposals on the rise and the expectation that the upcoming James Webb Space Telescope (JWST) will elicit even more proposals for time than Hubble scientists at STScI and NASA are now asking: could the human hours necessary for this task be spared? Could a computer program

  7. Hubble Space Telescope  Wide Field Camera 3 Observations of Escaping Lyman Continuum Radiation from Galaxies and Weak AGN at Redshifts z ∼ 2.3–4.1

    Science.gov (United States)

    Smith, Brent M.; Windhorst, Rogier A.; Jansen, Rolf A.; Cohen, Seth H.; Jiang, Linhua; Dijkstra, Mark; Koekemoer, Anton M.; Bielby, Richard; Inoue, Akio K.; MacKenty, John W.; O’Connell, Robert W.; Silk, Joseph I.

    2018-02-01

    We present observations of escaping Lyman Continuum (LyC) radiation from 34 massive star-forming galaxies (SFGs) and 12 weak AGN with reliably measured spectroscopic redshifts at z≃ 2.3{--}4.1. We analyzed Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) mosaics of the Early Release Science (ERS) field in three UVIS filters to sample the rest-frame LyC over this redshift range. With our best current assessment of the WFC3 systematics, we provide 1σ upper limits for the average LyC emission of galaxies at = 2.35, 2.75, and 3.60 to ∼28.5, 28.1, and 30.7 mag in image stacks of 11–15 galaxies in the WFC3/UVIS F225W, F275W, and F336W, respectively. The LyC flux of weak AGN at = 2.62 and 3.32 are detected at 28.3 and 27.4 mag with S/Ns of ∼2.7 and 2.5 in F275W and F336W for stacks of 7 and 3 AGN, respectively, while AGN at = 2.37 are constrained to ≳27.9 mag at 1σ in a stack of 2 AGN. The stacked AGN LyC light profiles are flatter than their corresponding non-ionizing UV continuum profiles out to radii of r≲ 0\\buildrel{\\prime\\prime}\\over{.} 9, which may indicate a radial dependence of porosity in the ISM. With synthetic stellar SEDs fit to UV continuum measurements longward of {{Ly}}α and IGM transmission models, we constrain the absolute LyC escape fractions to {f}{esc}{abs}≃ {22}-22+44% at = 2.35 and ≲55% at = 2.75 and 3.60, respectively. All available data for galaxies, including published work, suggests a more sudden increase of {f}{esc} with redshift at z≃ 2. Dust accumulating in (massive) galaxies over cosmic time correlates with increased H I column density, which may lead to reducing {f}{esc} more suddenly at z≲ 2. This may suggest that SFGs collectively contributed to maintaining cosmic reionization at redshifts z≳ 2{--}4, while AGN likely dominated reionization at z≲ 2.

  8. Carnegie Hubble Program: A Mid-Infrared Calibration of the Hubble Constant

    Science.gov (United States)

    Freedman, Wendy L.; Madore, Barry F.; Scowcroft, Victoria; Burns, Chris; Monson, Andy; Persson, S. Eric; Seibert, Mark; Rigby, Jane

    2012-01-01

    Using a mid-infrared calibration of the Cepheid distance scale based on recent observations at 3.6 micrometers with the Spitzer Space Telescope, we have obtained a new, high-accuracy calibration of the Hubble constant. We have established the mid-IR zero point of the Leavitt law (the Cepheid period-luminosity relation) using time-averaged 3.6 micrometers data for 10 high-metallicity, MilkyWay Cepheids having independently measured trigonometric parallaxes. We have adopted the slope of the PL relation using time-averaged 3.6micrometers data for 80 long-period Large Magellanic Cloud (LMC) Cepheids falling in the period range 0.8 Hubble Space Telescope Key Project has decreased by over a factor of three. Applying the Spitzer calibration to the Key Project sample, we find a value of H(sub 0) = 74.3 with a systematic uncertainty of +/-2.1 (systematic) kilometers per second Mpc(sup -1), corresponding to a 2.8% systematic uncertainty in the Hubble constant. This result, in combination with WMAP7measurements of the cosmic microwave background anisotropies and assuming a flat universe, yields a value of the equation of state for dark energy, w(sub 0) = -1.09 +/- 0.10. Alternatively, relaxing the constraints on flatness and the numbers of relativistic species, and combining our results with those of WMAP7, Type Ia supernovae and baryon acoustic oscillations yield w(sub 0) = -1.08 +/- 0.10 and a value of N(sub eff) = 4.13 +/- 0.67, mildly consistent with the existence of a fourth neutrino species.

  9. Hubble Legacy Archive (HLA) Pipeline Progression

    Science.gov (United States)

    Anderson, Rachel E.; Casertano, S.; Lindsay, K.

    2013-01-01

    The HLA maintains a strong commitment to continuing improvement of our Hubble Space Telescope data processing pipelines with the goal of generating better science-ready data products. The HLA image processing pipeline is transitioning from the use of MultiDrizzle to AstroDrizzle for image registration and combination. It is expected that this change will allow for the creation of higher quality science products with improved astrometric solutions. Headerlets, a newly developed tool for AstroDrizzle, will be utilized and made available to simplify access to multiple astrometric solutions for a given data set. The capabilities of AstroDrizzle will allow for functionally simplified data processing, standardizing and streamlining the data reduction process and making it easier for users to reproduce our results. We are beginning with the HLA WFC3 data processing pipeline, and then plan to extend its application to other HST instrument data.

  10. Solar system anomalies: Revisiting Hubble's law

    Science.gov (United States)

    Plamondon, R.

    2017-12-01

    This paper investigates the impact of a new metric recently published [R. Plamondon and C. Ouellet-Plamondon, in On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories, edited by K. Rosquist, R. T. Jantzen, and R. Ruffini (World Scientific, Singapore, 2015), p. 1301] for studying the space-time geometry of a static symmetric massive object. This metric depends on a complementary error function (erfc) potential that characterizes the emergent gravitation field predicted by the model. This results in two types of deviations as compared to computations made on the basis of a Newtonian potential: a constant and a radial outcome. One key feature of the metric is that it postulates the existence of an intrinsic physical constant σ , the massive object-specific proper length that scales measurements in its surroundings. Although σ must be evaluated experimentally, we use a heuristic to estimate its value and point out some latent relationships between the Hubble constant, the secular increase in the astronomical unit, and the Pioneers delay. Indeed, highlighting the systematic errors that emerge when the effect of σ is neglected, one can link the Hubble constant H 0 to σ Sun and the secular increase V AU to σ Earth . The accuracy of the resulting numerical predictions, H 0 = 74 . 42 ( 0 . 02 ) ( km / s ) / Mpc and V AU ≅ 7.8 cm yr-1 , calls for more investigations of this new metric by specific experts. Moreover, we investigate the expected impacts of the new metric on the flyby anomalies, and we revisit the Pioneers delay. It is shown that both phenomena could be partly taken into account within the context of this unifying paradigm, with quite accurate numerical predictions. A correction for the osculating asymptotic velocity at the perigee of the order of 10 mm/s and an inward radial acceleration of 8 . 34 × 10 - 10 m / s 2 affecting the Pioneer ! space crafts could be explained by this new model.

  11. Hubble's View of a Dying Star

    Science.gov (United States)

    2003-01-01

    A recent image of a dying star containing strange, complex structures may help explain the death throes of stars and defy our current understanding of physics. The image of protoplanetary nebula IRAS22036+5306 (in the Infrared Astronomical Satellite Point Source Catalog) was taken on Dec. 15, 2001, by the Wide Field and Planetary Camera 2, designed and built by NASA's Jet Propulsion Laboratory, onboard NASA's Hubble Space Telescope. It is one of the best images yet to capture a fleeting period at the end of a Sun-like star's life, called the protoplanetary nebula phase. This phase, which looks like a beautiful cloud of glowing gas lit up by ultraviolet light from the star's core, results when a star evolves into a bloated red giant and sheds its outer layers. 'Protoplanetary nebulas are rare objects with short lifetimes,' said JPL astrophysicist Dr. Raghvendra Sahai. 'It has generally been very difficult to obtain images of such objects in which their structure can be resolved in detail.' This image is particularly important because it contains a series of what Sahai and his colleagues call 'knotty jets,' blob-like objects emerging along roughly straight lines from the center of the cigar-shaped, bipolar nebula (See insets). There are various theories about what may produce such jets, though it is hard to prove their existence due to their short-lived, episodic nature. Detailed multi-wavelength studies of these nebulas with NASA's Great Observatories are being carried out to understand the nature and origin of these enigmatic jets, and how they may be sculpting shrouds of dying stars into exotic shapes. The Hubble Space Telescope is one of NASA's Great Observatories.

  12. Hubble again views Saturn's Rings Edge-on

    Science.gov (United States)

    1995-01-01

    Saturn's magnificent ring system is seen tilted edge-on -- for the second time this year -- in this NASA Hubble Space Telescope picture taken on August 10, 1995, when the planet was 895 million miles (1,440 million kilometers) away. Hubble snapped the image as Earth sped back across Saturn's ring plane to the sunlit side of the rings. Last May 22, Earth dipped below the ring plane, giving observers a brief look at the backlit side of the rings. Ring-plane crossing events occur approximately every 15 years. Earthbound observers won't have as good a view until the year 2038. Several of Saturn's icy moons are visible as tiny starlike objects in or near the ring plane. They are from left to right, Enceladus, Tethys, Dione and Mimas. 'The Hubble data shows numerous faint satellites close to the bright rings, but it will take a couple of months to precisely identify them,' according to Steve Larson (University of Arizona). During the May ring plane crossing, Hubble detected two, and possibly four, new moons orbiting Saturn. These new observations also provide a better view of the faint E ring, 'to help determine the size of particles and whether they will pose a collision hazard to the Cassini spacecraft,' said Larson. The picture was taken with Hubble's Wide Field Planetary Camera 2 in wide field mode. This image is a composite view, where a long exposure of the faint rings has been combined with a shorter exposure of Saturn's disk to bring out more detail. When viewed edge-on, the rings are so dim they almost disappear because they are very thin -- probably less than a mile thick.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  13. HUBBLE CAPTURES VIEW OF SUPERNOVA BLAST IN REMOTE GALAXY CLUSTER

    Science.gov (United States)

    2002-01-01

    In March 1996, the Hubble Space Telescope's Wide Field and Planetary Camera 2 just happened to be pointed at the faraway galaxy cluster MS1054-0321 when it captured the light from an exploding star, called supernova 1996CL. The cluster is 8 billion light-years from Earth. The Hubble telescope can clearly distinguish the supernova light from the glow of its parent galaxy. The larger image on the left shows the entire cluster of galaxies. The galaxy where the supernova was discovered is located in the boxed area. The bright knot of light from the supernova and the fainter glow from the parent galaxy are shown in the inset image on the right. The arrow points to the light from the supernova explosion. The supernova was discovered by members of the Supernova Cosmology Project, led by Saul Perlmutter of Lawrence Berkeley Laboratory in California. Perlmutter and his team made this discovery using images from the Hubble telescope and ground-based observatories. The Hubble data were furnished by Megan Donahue of the Space Telescope Science Institute. Donahue was using the Hubble telescope to study galaxy cluster MS1054-0321. Members of the Supernova Project use ground-based telescopes to search for distant supernovae, such as 1996CL, by comparing multiple, wide-field images of galaxies and clusters of galaxies taken at different times. Supernovae are named for the year and the order in which they are found. Supernova 1996CL is a Type Ia supernova. Exploding stars of this type are particularly useful for cosmology because they share a standard maximum brightness. By measuring this brightness, astronomers can determine a Type Ia's distance from Earth. Astronomers use this information to measure the expansion rate of the universe.

  14. Hubble peers inside a celestial geode

    Science.gov (United States)

    2004-08-01

    celestial geode hi-res Size hi-res: 148 Kb Credits: ESA/NASA, Yäel Nazé (University of Liège, Belgium) and You-Hua Chu (University of Illinois, Urbana, USA) Hubble peers inside a celestial geode In this unusual image, the NASA/ESA Hubble Space Telescope captures a rare view of the celestial equivalent of a geode - a gas cavity carved by the stellar wind and intense ultraviolet radiation from a young hot star. Real geodes are handball-sized, hollow rocks that start out as bubbles in volcanic or sedimentary rock. Only when these inconspicuous round rocks are split in half by a geologist, do we get a chance to appreciate the inside of the rock cavity that is lined with crystals. In the case of Hubble's 35 light-year diameter ‘celestial geode’ the transparency of its bubble-like cavity of interstellar gas and dust reveals the treasures of its interior. Low resolution version (JPG format) 148 Kb High resolution version (TIFF format) 1929 Kb Acknowledgment: This image was created with the help of the ESA/ESO/NASA Photoshop FITS Liberator. Real geodes are handball-sized, hollow rocks that start out as bubbles in volcanic or sedimentary rock. Only when these inconspicuous round rocks are split in half by a geologist, do we get a chance to appreciate the inside of the rock cavity that is lined with crystals. In the case of Hubble's 35 light-year diameter ‘celestial geode’ the transparency of its bubble-like cavity of interstellar gas and dust reveals the treasures of its interior. The object, called N44F, is being inflated by a torrent of fast-moving particles (what astronomers call a 'stellar wind') from an exceptionally hot star (the bright star just below the centre of the bubble) once buried inside a cold dense cloud. Compared with our Sun (which is losing mass through the so-called 'solar wind'), the central star in N44F is ejecting more than a 100 million times more mass per second and the hurricane of particles moves much faster at 7 million km per hour

  15. Telescope simulators for Hubble - An overview of optical designs

    Science.gov (United States)

    Davilla, Pam; Wood, H. J.; Atcheson, Paul D.; Saunders, Renee; Sullivan, Joe; Vaughan, Arthur H.; Saisse, Michel

    1993-01-01

    This paper briefly describes optical design of the Hubble Space Telescope (HST) and overviews three optical design simulators for HST which have been proposed for use as verification tools to characterize the performance of second-generation instruments during ground testing. These simulators are: the Refractive Aberrated Simulator developed at Ball Aerospace, the Optical Simulator developed at Laboratoire Astronomie Spatiale, and the Jet Propulsion Laboratory Stimulus. Relative advantages and disadvantages of each optical configuration are discussed.

  16. HUBBLE SNAPSHOT CAPTURES LIFE CYCLE OF STARS

    Science.gov (United States)

    2002-01-01

    In this stunning picture of the giant galactic nebula NGC 3603, the crisp resolution of NASA's Hubble Space Telescope captures various stages of the life cycle of stars in one single view. To the upper right of center is the evolved blue supergiant called Sher 25. The star has a unique circumstellar ring of glowing gas that is a galactic twin to the famous ring around the supernova 1987A. The grayish-bluish color of the ring and the bipolar outflows (blobs to the upper right and lower left of the star) indicates the presence of processed (chemically enriched) material. Near the center of the view is a so-called starburst cluster dominated by young, hot Wolf-Rayet stars and early O-type stars. A torrent of ionizing radiation and fast stellar winds from these massive stars has blown a large cavity around the cluster. The most spectacular evidence for the interaction of ionizing radiation with cold molecular-hydrogen cloud material are the giant gaseous pillars to the right and lower left of the cluster. These pillars are sculptured by the same physical processes as the famous pillars Hubble photographed in the M16 Eagle Nebula. Dark clouds at the upper right are so-called Bok globules, which are probably in an earlier stage of star formation. To the lower left of the cluster are two compact, tadpole-shaped emission nebulae. Similar structures were found by Hubble in Orion, and have been interpreted as gas and dust evaporation from possibly protoplanetary disks (proplyds). The 'proplyds' in NGC 3603 are 5 to 10 times larger in size and correspondingly also more massive. This single view nicely illustrates the entire stellar life cycle of stars, starting with the Bok globules and giant gaseous pillars, followed by circumstellar disks, and progressing to evolved massive stars in the young starburst cluster. The blue supergiant with its ring and bipolar outflow marks the end of the life cycle. The color difference between the supergiant's bipolar outflow and the diffuse

  17. Electrostatic Studies for the 2008 Hubble Service Repair Mission

    Science.gov (United States)

    Buhler, C. R.; Clements, J. S.; Calle, C. I.

    2012-01-01

    High vacuum triboelectric testing of space materials was required to identify possible Electrostatic Discharge (ESD) concerns for the astronauts in space during electronics board replacement on the Hubble Space Telescope. Testing under high vacuum conditions with common materials resulted in some interesting results. Many materials were able to charge to high levels which did not dissipate quickly even when grounded. Certain materials were able to charge up in contact with grounded metals while others were not. An interesting result was that like materials did not exchange electrostatic charge under high vacuum conditions. The most surprising experimental result is the lack of brush discharges from charged insulators under high vacuum conditions.

  18. Modified Hubble law, the time-varying Hubble parameter and the problem of dark energy

    OpenAIRE

    Liu, Jian-Miin

    2005-01-01

    In the framework of the solvable model of cosmology constructed in the Earth-related coordinate system, we derive the modified Hubble law. This law carries the slowly time-varying Hubble parameter. The modified Hubble law eliminates the need for dark energy.

  19. Young Galaxy Candidates in the Hubble Frontier Fields. IV. MACS J1149.5+2223

    Science.gov (United States)

    Zheng, Wei; Zitrin, Adi; Infante, Leopoldo; Laporte, Nicolas; Huang, Xingxing; Moustakas, John; Ford, Holland C.; Shu, Xinwen; Wang, Junxian; Diego, Jose M.; Bauer, Franz E.; Troncoso Iribarren, Paulina; Broadhurst, Tom; Molino, Alberto

    2017-02-01

    We search for high-redshift dropout galaxies behind the Hubble Frontier Fields (HFF) galaxy cluster MACS J1149.5+2223, a powerful cosmic lens that has revealed a number of unique objects in its field. Using the deep images from the Hubble and Spitzer space telescopes, we find 11 galaxies at z > 7 in the MACS J1149.5+2223 cluster field, and 11 in its parallel field. The high-redshift nature of the bright z ≃ 9.6 galaxy MACS1149-JD, previously reported by Zheng et al., is further supported by non-detection in the extremely deep optical images from the HFF campaign. With the new photometry, the best photometric redshift solution for MACS1149-JD reduces slightly to z = 9.44 ± 0.12. The young galaxy has an estimated stellar mass of (7+/- 2)× {10}8 {M}⊙ , and was formed at z={13.2}-1.6+1.9 when the universe was ≈300 Myr old. Data available for the first four HFF clusters have already enabled us to find faint galaxies to an intrinsic magnitude of {M}{UV}≃ -15.5, approximately a factor of 10 deeper than the parallel fields.

  20. HUBBLE TARANTULA TREASURY PROJECT. V. THE STAR CLUSTER HODGE 301: THE OLD FACE OF 30 DORADUS

    Energy Technology Data Exchange (ETDEWEB)

    Cignoni, M. [Department of Physics—University of Pisa, Largo Pontecorvo, 3 Pisa, I-56127 (Italy); Sabbi, E.; Marel, R. P. van der; Aloisi, A.; Panagia, N. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218 (United States); Lennon, D. J. [European Space Astronomy Centre, Apdo. de Correo 78, E-28691 Villanueva de la Canada, Madrid (Spain); Tosi, M. [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Grebel, E. K. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120 Heidelberg (Germany); Gallagher, J. S. III [Department of Astronomy, University of Wisconsin-Madison, WI 53706 (United States); Marchi, G. de [European Space Research and Technology Centre, Keplerlaan 1, NL-2200 AG Noordwijk (Netherlands); Gouliermis, D. A. [Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Larsen, S. [Department of Astrophysics, Radboud University, P.O. Box 9010, NL-6500 GL Nijmegen (Netherlands); Smith, L. J., E-mail: michele.cignoni@unipi.it [European Space Agency and Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2016-12-20

    Based on color–magnitude diagrams (CMDs) from the Hubble Space Telescope  Hubble Tarantula Treasury Project (HTTP) survey, we present the star formation history of Hodge 301, the oldest star cluster in the Tarantula Nebula. The HTTP photometry extends faint enough to reach, for the first time, the cluster pre-main sequence (PMS) turn-on, where the PMS joins the main sequence. Using the location of this feature, along with synthetic CMDs generated with the latest PARSEC models, we find that Hodge 301 is older than previously thought, with an age between 26.5 and 31.5 Myr. From this age, we also estimate that between 38 and 61 Type II supernovae exploded in the region. The same age is derived from the main sequence turn-off, whereas the age derived from the post-main sequence stars is younger and between 20 and 25 Myr. Other relevant parameters are a total stellar mass of ≈8800 ± 800  M {sub ⊙} and average reddening E ( B − V ) ≈ 0.22–0.24 mag, with a differential reddening δE ( B − V ) ≈ 0.04 mag.

  1. HUBBLE WATCHES STAR TEAR APART ITS NEIGHBORHOOD

    Science.gov (United States)

    2002-01-01

    NASA's Hubble Space Telescope has snapped a view of a stellar demolition zone in our Milky Way Galaxy: a massive star, nearing the end of its life, tearing apart the shell of surrounding material it blew off 250,000 years ago with its strong stellar wind. The shell of material, dubbed the Crescent Nebula (NGC 6888), surrounds the 'hefty,' aging star WR 136, an extremely rare and short-lived class of super-hot star called a Wolf-Rayet. Hubble's multicolored picture reveals with unprecedented clarity that the shell of matter is a network of filaments and dense knots, all enshrouded in a thin 'skin' of gas [seen in blue]. The whole structure looks like oatmeal trapped inside a balloon. The skin is glowing because it is being blasted by ultraviolet light from WR 136. Hubble's view covers a small region at the northeast tip of the structure, which is roughly three light-years across. A picture taken by a ground-based telescope [lower right] shows almost the entire nebula. The whole structure is about 16 light-years wide and 25 light-years long. The bright dot near the center of NGC 6888 is WR 136. The white outline in the upper left-hand corner represents Hubble's view. Hubble's sharp vision is allowing scientists to probe the intricate details of this complex system, which is crucial to understanding the life cycle of stars and their impact on the evolution of our galaxy. The results of this study appear in the June issue of the Astronomical Journal. WR 136 created this web of luminous material during the late stages of its life. As a bloated, red super-giant, WR 136 gently puffed away some of its bulk, which settled around it. When the star passed from a super-giant to a Wolf-Rayet, it developed a fierce stellar wind - a stream of charged particles released from its surface - and began expelling mass at a furious rate. The star began ejecting material at a speed of 3.8 million mph (6.1 million kilometers per hour), losing matter equal to that of our Sun's every 10

  2. Type Ia Supernova Hubble Residuals and Host-Galaxy Properties

    Energy Technology Data Exchange (ETDEWEB)

    Nearby Supernova Factory; Kim, A. G.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey, S.; Baltay, C.; Bongard, S.; Buton, C.; Canto, A.; Cellier-Holzem, F.; Childress, M.; Chotard, N.; Copin, Y.; Fakhouri, H. K.; Feindt, U.; Fleury, M.; Gangler, E.; Greskovic, P.; Guy, J.; Kowalski, M.; Lombardo, S.; Nordin, J.; Nugent, P.; Pain, R.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigault, M.; Runge, K.; Saunders, C.; Scalzo, R.; Smadja, G.; Tao, C.; Thomas, R. C.; Weaver, B. A.

    2014-01-17

    Kim et al. (2013) [K13] introduced a new methodology for determining peak- brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized from the Nearby Supernova Factory spec- trophotometric time series, with global host-galaxy properties. The K13 Hubble residual step with host mass is 0.013 ? 0.031 mag for a supernova subsample with data coverage corresponding to the K13 training; at ? 1?, the step is not significant and lower than previous measurements. Relaxing the data coverage requirement the Hubble residual step with host mass is 0.045 ? 0.026 mag for the larger sample; a calculation using the modes of the distributions, less sensitive to outliers, yields a step of 0.019 mag. The analysis of this article uses K13 inferred luminosities, as distinguished from previous works that use magnitude corrections as a function of SALT2 color and stretch param- eters: Steps at> 2? significance are found in SALT2 Hubble residuals in samples split by the values of their K13 x(1) and x(2) light-curve parameters. x(1) affects the light- curve width and color around peak (similar to the∆m15 and stretch parameters), and x(2) affects colors, the near-UV light-curve width, and the light-curve decline 20 to 30 days after peak brightness. The novel light-curve analysis, increased parameter set, and magnitude corrections of K13 may be capturing features of SN Ia diversity arising from progenitor stellar evolution.

  3. Type Ia supernova Hubble residuals and host-galaxy properties

    Energy Technology Data Exchange (ETDEWEB)

    Kim, A. G.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K. [Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Fleury, M.; Guy, J. [Laboratoire de Physique Nucléaire et des Hautes Énergies, Université Pierre et Marie Curie Paris 6, Université Paris Diderot Paris 7, CNRS-IN2P3, 4 place Jussieu, F-75252 Paris Cedex 05 (France); Baltay, C. [Department of Physics, Yale University, New Haven, CT 06250-8121 (United States); Buton, C.; Feindt, U.; Greskovic, P.; Kowalski, M. [Physikalisches Institut, Universität Bonn, Nußallee 12, D-53115 Bonn (Germany); Childress, M. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Chotard, N.; Copin, Y.; Gangler, E. [Université de Lyon, F-69622 Lyon (France); Université de Lyon 1, Villeurbanne (France); CNRS/IN2P3, Institut de Physique Nucléaire de Lyon (France); and others

    2014-03-20

    Kim et al. introduced a new methodology for determining peak-brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized from the Nearby Supernova Factory spectrophotometric time series, with global host-galaxy properties. The K13 Hubble residual step with host mass is 0.013 ± 0.031 mag for a supernova subsample with data coverage corresponding to the K13 training; at <<1σ, the step is not significant and lower than previous measurements. Relaxing the data coverage requirement of the Hubble residual step with the host mass is 0.045 ± 0.026 mag for the larger sample; a calculation using the modes of the distributions, less sensitive to outliers, yields a step of 0.019 mag. The analysis of this article uses K13 inferred luminosities, as distinguished from previous works that use magnitude corrections as a function of SALT2 color and stretch parameters: steps at >2σ significance are found in SALT2 Hubble residuals in samples split by the values of their K13 x(1) and x(2) light-curve parameters. x(1) affects the light-curve width and color around peak (similar to the Δm {sub 15} and stretch parameters), and x(2) affects colors, the near-UV light-curve width, and the light-curve decline 20-30 days after peak brightness. The novel light-curve analysis, increased parameter set, and magnitude corrections of K13 may be capturing features of SN Ia diversity arising from progenitor stellar evolution.

  4. UV/Visible Telescope with Hubble Disposal

    Science.gov (United States)

    Benford, Dominic J.

    2013-01-01

    Submission Overview: Our primary objective is to convey a sense of the significant advances possible in astrophysics investigations for major Cosmic Origins COR program goals with a 2.4m telescope asset outfitted with one or more advanced UV visible instruments. Several compelling science objectives were identified based on community meetings these science objectives drove the conceptual design of instruments studied by the COR Program Office during July September 2012. This RFI submission encapsulates the results of that study, and suggests that a more detailed look into the instrument suite should be conducted to prove viability and affordability to support the demonstrated scientific value. This study was conducted in the context of a larger effort to consider the options available for a mission to dispose safely of Hubble hence, the overall architecture considered for the mission we studied for the 2.4m telescope asset included resource sharing. This mitigates combined cost and risk and provides naturally for a continued US leadership role in astrophysics with an advanced, general-purpose UV visible space telescope.

  5. First results from the Hubble OPAL Program: Jupiter in 2015

    Science.gov (United States)

    Simon, Amy A.; Wong, Michael H.; Orton, Glenn S.

    2015-11-01

    The Hubble 2020: Outer Planet Atmospheres Legacy (OPAL) program is a Director's Discretionary program designed to generate two yearly global maps for each of the outer planets to enable long term studies of atmospheric color, structure and two-dimensional wind fields. This presentation focuses on Jupiter results from the first year of the campaign. Data were acqured January 19, 2015 with the WFC3/UVIS camera and the F275W, F343N, F395N, F467M, F502N, F547M, F631N, F658N, and F889N filters. Global maps were generated and are publicly available through the High Level Science Products archive: https://archive.stsci.edu/prepds/opal/Using cross-correlation on the global maps, the zonal wind profile was measured between +/- 50 degrees latitude and is in family with Voyager and Cassini era profiles. There are some variations in mid to high latitude wind jet magnitudes, particularly at +40°and -35° planetographic latitude. The Great Red Spot continues to maintain an intense orange coloration, as it did in 2014. However, the interior shows changed structure, including a reduced core and new filamentary features. Finally, a wave not previously seen in Hubble images was also observed and is interpreted as a baroclinic instability with associated cyclone formation near 16° N latitude. A similar feature was observed faintly in Voyager 2 images, and is consistent with the Hubble feature in location and scale.

  6. An updated Type II supernova Hubble diagram

    Science.gov (United States)

    Gall, E. E. E.; Kotak, R.; Leibundgut, B.; Taubenberger, S.; Hillebrandt, W.; Kromer, M.; Burgett, W. S.; Chambers, K.; Flewelling, H.; Huber, M. E.; Kaiser, N.; Kudritzki, R. P.; Magnier, E. A.; Metcalfe, N.; Smith, K.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.

    2018-03-01

    We present photometry and spectroscopy of nine Type II-P/L supernovae (SNe) with redshifts in the 0.045 ≲ z ≲ 0.335 range, with a view to re-examining their utility as distance indicators. Specifically, we apply the expanding photosphere method (EPM) and the standardized candle method (SCM) to each target, and find that both methods yield distances that are in reasonable agreement with each other. The current record-holder for the highest-redshift spectroscopically confirmed supernova (SN) II-P is PS1-13bni (z = 0.335-0.012+0.009), and illustrates the promise of Type II SNe as cosmological tools. We updated existing EPM and SCM Hubble diagrams by adding our sample to those previously published. Within the context of Type II SN distance measuring techniques, we investigated two related questions. First, we explored the possibility of utilising spectral lines other than the traditionally used Fe IIλ5169 to infer the photospheric velocity of SN ejecta. Using local well-observed objects, we derive an epoch-dependent relation between the strong Balmer line and Fe IIλ5169 velocities that is applicable 30 to 40 days post-explosion. Motivated in part by the continuum of key observables such as rise time and decline rates exhibited from II-P to II-L SNe, we assessed the possibility of using Hubble-flow Type II-L SNe as distance indicators. These yield similar distances as the Type II-P SNe. Although these initial results are encouraging, a significantly larger sample of SNe II-L would be required to draw definitive conclusions. Tables A.1, A.3, A.5, A.7, A.9, A.11, A.13, A.15 and A.17 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A25

  7. Las ventanas abiertas por el Hubble

    OpenAIRE

    Barcons, Xavier

    2015-01-01

    El telescopio espacial Hubble ha hecho realidad el sueño del astrónomo: observar el universo sin atmósfera. El Hubble descubrió las galaxias más lejanas y localizó átomos de hidrógeno en el universo más cercano. Y continúa acercando, a través de sus imágenes, la belleza y los misterios del cosmos a la sociedad.

  8. Hubble's View of Little Blue Dots

    Science.gov (United States)

    Kohler, Susanna

    2018-02-01

    The recent discovery of a new type of tiny, star-forming galaxy is the latest in a zoo of detections shedding light on our early universe. What can we learn from the unique little blue dots found in archival Hubble data?Peas, Berries, and DotsGreen pea galaxies identified by citizen scientists with Galaxy Zoo. [Richard Nowell Carolin Cardamone]As telescope capabilities improve and we develop increasingly deeper large-scale surveys of our universe, we continue to learn more about small, faraway galaxies. In recent years, increasing sensitivity first enabled the detection of green peas luminous, compact, low-mass (10 billion solar masses; compare this to the Milky Ways 1 trillion solar masses!) galaxies with high rates of star formation.Not long thereafter, we discovered galaxies that form stars similarly rapidly, but are even smaller only 330 million solar masses, spanning less than 3,000 light-years in size. These tiny powerhouses were termed blueberries for their distinctive color.Now, scientists Debra and Bruce Elmegreen (of Vassar College and IBM Research Division, respectively) report the discovery of galaxies that have even higher star formation rates and even lower masses: little blue dots.Exploring Tiny Star FactoriesThe Elmegreens discovered these unique galaxies by exploring archival Hubble data. The Hubble Frontier Fields data consist of deep images of six distant galaxy clusters and the parallel fields next to them. It was in the archival data for two Frontier Field Parallels, those for clusters Abell 2744 and MAS J0416.1-2403, that the authors noticed several galaxies that stand out as tiny, bright, blue objects that are nearly point sources.Top: a few examples of the little blue dots recently identified in two Hubble Frontier Field Parallels. Bottom: stacked images for three different groups of little blue dots. [Elmegreen Elmegreen 2017]The authors performed a search through the two Frontier Field Parallels, discovering a total of 55 little blue dots

  9. The UV Luminosity Function at 6 < z < 10 from the Hubble Frontier Fields

    Science.gov (United States)

    Livermore, Rachael C.; Finkelstein, Steven L.; Lotz, Jennifer M.

    2017-01-01

    The Hubble Frontier Fields program has obtained deep optical and near-infrared Hubble Space Telescope imaging of six galaxy clusters and associated parallel fields. The depth of the imaging (m_AB ~ 29) means we can identify faint galaxies at z > 6, and those in the cluster fields also benefit from magnification due to strong gravitational lensing that allows us to reach intrinsic absolute magnitudes of M_UV ~ -12.5 at z ~ 6. Here, we present the UV luminosity functions at 6 Universe may have provided sufficient ionizing radiation to sustain reionization.

  10. A Magnified View of the Epoch of Reionization with the Hubble Frontier Fields

    Science.gov (United States)

    Livermore, Rachael C.; Finkelstein, Steven L.; Lotz, Jennifer M.

    2017-06-01

    The Hubble Frontier Fields program has obtained deep optical and near-infrared Hubble Space Telescope imaging of six galaxy clusters and associated parallel fields. The depth of the imaging (m_AB ~ 29) means we can identify faint galaxies at z >6, and those in the cluster fields also benefit from magnification due to strong gravitational lensing. Using wavelet decomposition to subtract the foreground cluster galaxies, we can reach intrinsic absolute magnitudes of M_UV ~ -12.5 at z ~ 6. Here, we present the UV luminosity functions at 6 Universe may have provided sufficient ionizing radiation to sustain reionization.

  11. ESA's new European Hubble Science Archive at ESAC

    Science.gov (United States)

    Baines, Deborah

    2015-12-01

    ESA's European Space Astronomy Centre (ESAC) has recently launched a new version of the European Hubble Space Telescope science archive. The new and enhanced archive offers several new features, some of which are not available anywhere else. The new web-based archive has been completely re-engineered and is now faster, more accurate and more robust than ever. Several of its unique features will be presented: the possibility of seeing the exact footprint of each observations on top of an optical all-sky image, the online visualization and inspection of FITS headers, imaging and spectral observation previews without downloading files or the possibility to search for data that has not yet been published in refereed journals. This state-of-the-art science data archive will be the new main access point to HST data for the European astronomical community and will be enhanced in the near-future to include the Hubble Source Catalogue or other high-level data products as required.

  12. A MULTIWAVELENGTH STUDY OF TADPOLE GALAXIES IN THE HUBBLE ULTRA DEEP FIELD

    International Nuclear Information System (INIS)

    Straughn, Amber N.; Eufrasio, Rafael T.; Gardner, Jonathan P.; Voyer, Elysse N.; Mello, Duilia de; Soto, Emmaris; Petty, Sara; Kassin, Susan; Ravindranath, Swara

    2015-01-01

    Multiwavelength data are essential in order to provide a complete picture of galaxy evolution and to inform studies of galaxies’ morphological properties across cosmic time. Here we present the results of a multiwavelength investigation of the morphologies of “tadpole” galaxies at intermediate redshift (0.314 < z < 3.175) in the Hubble Ultra Deep Field. These galaxies were previously selected from deep Hubble Space Telescope (HST) F775W data based on their distinct asymmetric knot-plus-tail morphologies. Here we use deep Wide Field Camera 3 near-infrared imaging in addition to the HST optical data in order to study the rest-frame UV/optical morphologies of these galaxies across the redshift range 0.3 < z < 3.2. This study reveals that the majority of these galaxies do retain their general asymmetric morphology in the rest-frame optical over this redshift range, if not the distinct “tadpole” shape. The average stellar mass of tadpole galaxies is lower than that of field galaxies, with the effect being slightly greater at higher redshift within the errors. Estimated from spectral energy distribution fits, the average age of tadpole galaxies is younger than that of field galaxies in the lower-redshift bin, and the average metallicity is lower (whereas the specific star formation rate for tadpoles is roughly the same as field galaxies across the redshift range probed here). These average effects combined support the conclusion that this subset of galaxies is in an active phase of assembly, either late-stage merging or cold gas accretion causing localized clumpy star formation

  13. Infrared Spectroscopy of the Transiting Exoplanets HD189733b and XO-1 Using Hubble WFC3 in Spatial Scan Mode

    Science.gov (United States)

    Deming, Drake; Wilkins, A.; McCullough, P.; Madhusudhan, N.; Agol, E.; Burrows, A.; Charbonneau, D.; Clampin, M.; Desert, J.; Gilliland, R.; Knutson, H.; Mandell, A.; Ranjan, S.; Seager, S.; Showman, A.

    2012-01-01

    Infrared transmission spectroscopy of the exoplanets HD189733b and XO-1 has been previously reported by Swain et al. and Tinetti et al. based on observations using the NICMOS instrument on the Hubble Space Telescope. The robustness of those results has been questioned, because derivation of the exoplanetary spectrum required decorrelating strong instrumental systematic effects in the NICMOS data. We here discuss results from HST/WFC3 grism 1.1-1.7 micron spectroscopy of these planets during transit. WFC3 instrumental signatures are smaller in both amplitude and complexity as compared to NICMOS. Moreover, we use a new spatial scan mode to trail the stars perpendicular to the dispersion direction during WFC3 exposures, and this increases the efficiency of the observations and reduces persistence effects in the detector. We derive the 1.4-micron water absorption spectrum of these planets during transit, discuss implications for these exoplanetary atmospheres, and compare our results to the NICMOS spectroscopy.

  14. A comparison of extinction curves for dust in galaxies of different Hubble types

    Science.gov (United States)

    Townsley, Leisa K.; Price, Jill S.

    1993-01-01

    A sample of 25 galaxies of various Hubble types has been observed in a variety of filters. Extinction curves have been generated for absorption regions in these galaxies using a technique which previously had been used on just a few galaxies; for example, NGC 205, NGC 185, NGC 3077, and M31. The results from these studies suggested that there may be systematic trends in dust properties with Hubble type. This would not be surprising; dust properties should vary with metallicity, for example. It is well known that some galaxies and their interstellar materials should reflect this difference.

  15. Correlations Between Hubble Residuals and MCMC Estimated Local Stellar Ages of Type Ia Supernovae

    Science.gov (United States)

    Rose, Benjamin; Garnavich, Peter

    2018-01-01

    There appears to be correlations between SN Ia Hubble diagram residuals and host galaxy mass, metallicity, and star formation history. An uncorrected bias may produce a systematic offset in cosmological measurements. Global properties are the luminosity average of local environments, therefore the properties of local environments may hold stronger correlations than their global counterparts. There have been previous attempts at finding correlations between local environment properties and Hubble residuals, but nothing without contention has been seen. Looking at the host information from the SDSS Scene Modeling data, we use MCMC to constrain the properties of the stellar population using Flexible Stellar Population Synthesis. We estimate the stellar population's age and star formation history at each resolution element of the galaxy image. The stellar population properties are then compared to the SN Ia properties including the Hubble residuals in the search for correlations that could lead to any systematic bias.

  16. The Hubble Flow of Plateau Inflation

    NARCIS (Netherlands)

    Coone, Dries; Roest, Diederik; Vennin, Vincent

    2015-01-01

    In the absence of CMB precision measurements, a Taylor expansion has often been invoked to parametrize the Hubble flow function during inflation. The standard "horizon flow" procedure implicitly relies on this assumption. However, the recent Planck results indicate a strong preference for plateau

  17. On the determination of the Hubble constant

    International Nuclear Information System (INIS)

    Gurzadyan, V.G.; Harutyunyan, V.V.; Kocharyan, A.A.

    1990-10-01

    The possibility of an alternative determination of the distance scale of the Universe and the Hubble constant based on the numerical analysis of the hierarchical nature of the large scale Universe (galaxies, clusters and superclusters) is proposed. The results of computer experiments performed by means of special numerical algorithms are represented. (author). 9 refs, 7 figs

  18. Sample variance in the local measurements of the Hubble constant

    Science.gov (United States)

    Wu, Hao-Yi; Huterer, Dragan

    2017-11-01

    The current >3σ tension between the Hubble constant H0 measured from local distance indicators and from cosmic microwave background is one of the most highly debated issues in cosmology, as it possibly indicates new physics or unknown systematics. In this work, we explore whether this tension can be alleviated by the sample variance in the local measurements, which use a small fraction of the Hubble volume. We use a large-volume cosmological N-body simulation to model the local measurements and to quantify the variance due to local density fluctuations and sample selection. We explicitly take into account the inhomogeneous spatial distribution of type Ia supernovae. Despite the faithful modelling of the observations, our results confirm previous findings that sample variance in the local Hubble constant (H_0^loc) measurements is small; we find σ (H_0^loc)=0.31 {km s^{-1}Mpc^{-1}}, a nearly negligible fraction of the ˜6 km s-1Mpc-1 necessary to explain the difference between the local and global H0 measurements. While the H0 tension could in principle be explained by our local neighbourhood being a underdense region of radius ˜150 Mpc, the extreme required underdensity of such a void (δ ≃ -0.8) makes it very unlikely in a ΛCDM universe, and it also violates existing observational constraints. Therefore, sample variance in a ΛCDM universe cannot appreciably alleviate the tension in H0 measurements even after taking into account the inhomogeneous selection of type Ia supernovae.

  19. HUBBLE PHOTOGRAPHS WARPED GALAXY AS CAMERA PASSES MILESTONE

    Science.gov (United States)

    2002-01-01

    NASA's Hubble Space Telescope has captured an image of an unusual edge-on galaxy, revealing remarkable details of its warped dusty disk and showing how colliding galaxies spawn the formation of new generations of stars. The dust and spiral arms of normal spiral galaxies, like our own Milky Way, appear flat when viewed edge-on. This month's Hubble Heritage image of ESO 510-G13 shows a galaxy that, by contrast, has an unusual twisted disk structure, first seen in ground-based photographs obtained at the European Southern Observatory (ESO) in Chile. ESO 510-G13 lies in the southern constellation Hydra, roughly 150 million light-years from Earth. Details of the structure of ESO 510-G13 are visible because the interstellar dust clouds that trace its disk are silhouetted from behind by light from the galaxy's bright, smooth central bulge. The strong warping of the disk indicates that ESO 510-G13 has recently undergone a collision with a nearby galaxy and is in the process of swallowing it. Gravitational forces distort the structures of the galaxies as their stars, gas, and dust merge together in a process that takes millions of years. Eventually the disturbances will die out, and ESO 510-G13 will become a normal-appearing single galaxy. In the outer regions of ESO 510-G13, especially on the right-hand side of the image, we see that the twisted disk contains not only dark dust, but also bright clouds of blue stars. This shows that hot, young stars are being formed in the disk. Astronomers believe that the formation of new stars may be triggered by collisions between galaxies, as their interstellar clouds smash together and are compressed. The Heritage Team used Hubble's Wide Field Planetary Camera 2 (WFPC2) to observe ESO 510-G13 in April 2001. Pictures obtained through blue, green, and red filters were combined to make this color-composite image, which emphasizes the contrast between the dusty spiral arms, the bright bulge, and the blue star-forming regions. During the

  20. Hubble expansion in a Euclidean framework

    International Nuclear Information System (INIS)

    Alfven, H.

    1979-01-01

    There now seems to be strong evidence for a non-cosmological interpretation of the QSO redshift - in any case, so strong that it is of interest to investigate the consequences. The purpose of this paper is to construct a model of the Hubble expansion which is as far as possible from the conventional Big Bang model without coming in conflict with any well-established observational results (while introducing no new laws of physics). This leads to an essentially Euclidean metagalactic model (see Table I) with very little mass outside one-third or half of the Hubble radius. The total kinetic energy of the Hubble expansion need only to be about 5% of the rest mass energy. Present observations support backwards in time extrapolation of the Hubble expansion to a 'minimum size galaxy' Rsub(m), which may have any value in 0 26 cm. Other arguments speak in favor of a size close to the upper value, say Rsub(m) = 10 26 cm (Table II). As this size is probably about 100 times the Schwarzschild limit, an essentially Euclidean description is allowed. The kinetic energy of the Hubble expansion may derive from an intense QSO-like activity in the minimum size metagalaxy, with an energy release corresponding to the annihilation of a few solar masses per galaxy per year. Some of the conclusions based on the Big Bang hypothesis are criticized and in several cases alternative interpretations are suggested. A comparison between the Euclidean and the conventional models is given in Table III. (orig.)

  1. HUBBLE SPIES BROWN DWARFS IN NEARBY STELLAR NURSERY

    Science.gov (United States)

    2002-01-01

    Probing deep within a neighborhood stellar nursery, NASA's Hubble Space Telescope uncovered a swarm of newborn brown dwarfs. The orbiting observatory's near-infrared camera revealed about 50 of these objects throughout the Orion Nebula's Trapezium cluster [image at right], about 1,500 light-years from Earth. Appearing like glistening precious stones surrounding a setting of sparkling diamonds, more than 300 fledgling stars and brown dwarfs surround the brightest, most massive stars [center of picture] in Hubble's view of the Trapezium cluster's central region. All of the celestial objects in the Trapezium were born together in this hotbed of star formation. The cluster is named for the trapezoidal alignment of those central massive stars. Brown dwarfs are gaseous objects with masses so low that their cores never become hot enough to fuse hydrogen, the thermonuclear fuel stars like the Sun need to shine steadily. Instead, these gaseous objects fade and cool as they grow older. Brown dwarfs around the age of the Sun (5 billion years old) are very cool and dim, and therefore are difficult for telescopes to find. The brown dwarfs discovered in the Trapezium, however, are youngsters (1 million years old). So they're still hot and bright, and easier to see. This finding, along with observations from ground-based telescopes, is further evidence that brown dwarfs, once considered exotic objects, are nearly as abundant as stars. The image and results appear in the Sept. 20 issue of the Astrophysical Journal. The brown dwarfs are too dim to be seen in a visible-light image taken by the Hubble telescope's Wide Field and Planetary Camera 2 [picture at left]. This view also doesn't show the assemblage of infant stars seen in the near-infrared image. That's because the young stars are embedded in dense clouds of dust and gas. The Hubble telescope's near-infrared camera, the Near Infrared Camera and Multi-Object Spectrometer, penetrated those clouds to capture a view of those

  2. Spectroscopy of Lyman Break Galaxies in the Hubble Deep Field

    Science.gov (United States)

    Steidel, Charles C.; Giavalisco, Mauro; Dickinson, Mark; Adelberger, Kurt L.

    1996-08-01

    We report on the initial results of a spectroscopic investigation of galaxies in the Hubble Deep Field which exhibit spectral discontinuities between the F450W and F300W passbands, indicative of the presence of the Lyman continuum break in the redshift range 2.4 candidates from ground-based images. We find that, as for the ground-based color selection, the criteria are very successful in selecting high redshift objects. Of the 8 galaxies observed (selected from a list of 23 candidates with magnitudes equivalent to R contamination from nearby brighter objects. As expected, the HST filter system is sensitive to a somewhat broader range of redshifts than our ground-based U_n_G R filter system, and therefore the surveyed volume per unit area on the sky is correspondingly larger. The distribution of candidates on the plane of the sky is clearly non-uniform, consistent with the available ground- based data on the high redshift galaxies. Most Lyman break objects in the Hubble Deep Field exhibit a similar range of morphological properties to the z > 3 galaxies we have previously identified in other fields, characterized by very compact cores (some with multiple components) with half-light radii of 0.2-0.3 arcseconds, often surrounded by more diffuse and asymmetric "halos." A few of the brighter HDF Lyman break galaxies, however, have particularly unusual morphologies.

  3. Selections from 2017: Hubble Survey Explores Distant Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2017-12-01

    Editors note:In these last two weeks of 2017, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume in January.CANDELS Multi-Wavelength Catalogs: Source Identification and Photometry in the CANDELS COSMOSSurvey FieldPublished January2017Main takeaway:A publication led byHooshang Nayyeri(UC Irvine and UC Riverside) early this year details acatalog of sources built using the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey(CANDELS), a survey carried out by cameras on board the Hubble Space Telescope. The catalogliststhe properties of 38,000 distant galaxies visiblewithin the COSMOS field, a two-square-degree equatorial field explored in depthto answer cosmological questions.Why its interesting:Illustration showing the three-dimensional map of the dark matter distribution in theCOSMOS field. [Adapted from NASA/ESA/R. Massey(California Institute of Technology)]The depth and resolution of the CANDELS observations areuseful for addressingseveral major science goals, including the following:Studying the most distant objects in the universe at the epoch of reionization in the cosmic dawn.Understanding galaxy formation and evolution during the peak epoch of star formation in the cosmic high noon.Studying star formation from deep ultravioletobservations and studying cosmology from supernova observations.Why CANDELS is a major endeavor:CANDELS isthe largest multi-cycle treasury program ever approved on the Hubble Space Telescope using over 900 orbits between 2010 and 2013 withtwo cameras on board the spacecraftto study galaxy formation and evolution throughout cosmic time. The CANDELS images are all publicly available, and the new catalogrepresents an enormous source of information about distant objectsin our universe.CitationH. Nayyeri et al 2017 ApJS 228 7. doi:10.3847/1538-4365/228/1/7

  4. Strong-lensing analysis of A2744 with MUSE and Hubble Frontier Fields images

    Science.gov (United States)

    Mahler, G.; Richard, J.; Clément, B.; Lagattuta, D.; Schmidt, K.; Patrício, V.; Soucail, G.; Bacon, R.; Pello, R.; Bouwens, R.; Maseda, M.; Martinez, J.; Carollo, M.; Inami, H.; Leclercq, F.; Wisotzki, L.

    2018-01-01

    We present an analysis of Multi Unit Spectroscopic Explorer (MUSE) observations obtained on the massive Frontier Fields (FFs) cluster A2744. This new data set covers the entire multiply imaged region around the cluster core. The combined catalogue consists of 514 spectroscopic redshifts (with 414 new identifications). We use this redshift information to perform a strong-lensing analysis revising multiple images previously found in the deep FF images, and add three new MUSE-detected multiply imaged systems with no obvious Hubble Space Telescope counterpart. The combined strong-lensing constraints include a total of 60 systems producing 188 images altogether, out of which 29 systems and 83 images are spectroscopically confirmed, making A2744 one of the most well-constrained clusters to date. Thanks to the large amount of spectroscopic redshifts, we model the influence of substructures at larger radii, using a parametrization including two cluster-scale components in the cluster core and several group scale in the outskirts. The resulting model accurately reproduces all the spectroscopic multiple systems, reaching an rms of 0.67 arcsec in the image plane. The large number of MUSE spectroscopic redshifts gives us a robust model, which we estimate reduces the systematic uncertainty on the 2D mass distribution by up to ∼2.5 times the statistical uncertainty in the cluster core. In addition, from a combination of the parametrization and the set of constraints, we estimate the relative systematic uncertainty to be up to 9 per cent at 200 kpc.

  5. A Hubble Space Telescope Survey for Novae in M87. II. Snuffing out the Maximum Magnitude–Rate of Decline Relation for Novae as a Non-standard Candle, and a Prediction of the Existence of Ultrafast Novae

    Energy Technology Data Exchange (ETDEWEB)

    Shara, Michael M.; Doyle, Trisha; Zurek, David [Department of Astrophysics, American Museum of Natural History, Central Park West and 79th Street, New York, NY 10024-5192 (United States); Lauer, Tod R. [National Optical Astronomy Observatory, P.O. Box 26732, Tucson, AZ 85726 (United States); Baltz, Edward A. [KIPAC, SLAC, 2575 Sand Hill Road, M/S 29, Menlo Park, CA 94025 (United States); Kovetz, Attay [School of Physics and Astronomy, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv (Israel); Madrid, Juan P. [CSIRO, Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710 (Australia); Mikołajewska, Joanna [N. Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, PL 00-716 Warsaw (Poland); Neill, J. D. [California Institute of Technology, 1200 East California Boulevard, MC 278-17, Pasadena CA 91125 (United States); Prialnik, Dina [Department of Geosciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978 (Israel); Welch, D. L. [Department of Physics and Astronomy, McMaster University, Hamilton, L8S 4M1, Ontario (Canada); Yaron, Ofer [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 76100 Rehovot (Israel)

    2017-04-20

    The extensive grid of numerical simulations of nova eruptions from the work of Yaron et al. first predicted that some classical novae might significantly deviate from the Maximum Magnitude–Rate of Decline (MMRD) relation, which purports to characterize novae as standard candles. Kasliwal et al. have announced the observational detection of a new class of faint, fast classical novae in the Andromeda galaxy. These objects deviate strongly from the MMRD relationship, as predicted by Yaron et al. Recently, Shara et al. reported the first detections of faint, fast novae in M87. These previously overlooked objects are as common in the giant elliptical galaxy M87 as they are in the giant spiral M31; they comprise about 40% of all classical nova eruptions and greatly increase the observational scatter in the MMRD relation. We use the extensive grid of the nova simulations of Yaron et al. to identify the underlying causes of the existence of faint, fast novae. These are systems that have accreted, and can thus eject, only very low-mass envelopes, of the order of 10{sup −7}–10{sup −8} M {sub ⊙}, on massive white dwarfs. Such binaries include, but are not limited to, the recurrent novae. These same models predict the existence of ultrafast novae that display decline times, t {sub 2,} to be as short as five hours. We outline a strategy for their future detection.

  6. PREVIOUS SECOND TRIMESTER ABORTION

    African Journals Online (AJOL)

    PNLC

    PREVIOUS SECOND TRIMESTER ABORTION: A risk factor for third trimester uterine rupture in three ... for accurate diagnosis of uterine rupture. KEY WORDS: Induced second trimester abortion - Previous uterine surgery - Uterine rupture. ..... scarred uterus during second trimester misoprostol- induced labour for a missed ...

  7. Enhancing Hubble's vision service missions that expanded our view of the universe

    CERN Document Server

    Shayler, David J

    2016-01-01

    After a 20-year struggle to place a large, sophisticated optical telescope in orbit the Hubble Space Telescope was finally launched in 1990, though its primary mirror was soon found to be flawed. A dramatic mission in 1993 installed corrective optics so that the intended science program could finally begin. Those events are related in a companion to this book, The Hubble Space Telescope: From Concept to Success.   Enhancing Hubble’s Vision: Service Missions That Expanded Our View of the Universe tells the story of the four missions between 1997 and 2009 that repaired, serviced and upgraded the instruments on the telescope to maintain its state-of-the-art capabilities. It draws on first hand interviews with those closely involved in the project. The spacewalking skills and experiences gained from maintaining and upgrading Hubble had direct application to the construction of the International Space Station and help with its maintenance. These skills can be applied to future human and robotic satellite servic...

  8. Hubble Parameter Corrected Interactions in Cosmology

    Directory of Open Access Journals (Sweden)

    J. Sadeghi

    2014-01-01

    character opening a room for different kinds of manipulations. In this paper we will consider a modification of an interaction Q, where we accept that interaction parameter b1 (order of unity in Q=3Hb1ρ is time dependent and presented as a linear function of Hubble parameter H of the form b0+btH, where b and b0 are constants. We consider two different models including modified Chaplygin gas and polytropic gas which have bulk viscosity. Then, we investigate problem numerically and analyze behavior of different cosmological parameters concerning fluids and behavior of the universe.

  9. Astronomers celebrate a year of new Hubble results

    Science.gov (United States)

    1995-02-01

    "We are beginning to understand that because of these observations we are going to have to change the way we look at the Universe," said ESA's Dr Duccio Macchetto, Associate Director for Science Programs at the Space Telescope Science Institute (STScI), Baltimore, Maryland, USA. The European Space Agency plays a major role in the Hubble Space Telescope programme. The Agency provided one of the telescope's four major instruments, called the Faint Object Camera, and two sets of electricity-generating solar arrays. In addition, 15 ESA scientific and technical staff work at the STScI. In return for this contribution, European astronomers are entitled to 15 percent of the telescope's observing time, although currently they account for 20 percent of all observations. "This is a testimony to the quality of the European science community", said Dr Roger Bonnet, Director of Science at ESA. "We are only guaranteed 15 percent of the telescope's use, but consistently receive much more than that." Astronomers from universities, observatories and research institutes across Europe lead more than 60 investigations planned for the telescope's fifth observing cycle, which begins this summer. Many more Europeans contribute to teams led by other astronomers. Looking back to the very start of time European astronomer Dr Peter Jakobsen used ESA's Faint Object Camera to confirm that helium was present in the early Universe. Astronomers had long predicted that 90 percent of the newly born Universe consisted of hydrogen, with helium making up the remainder. Before the refurbished Hubble came along, it was easy to detect the hydrogen, but the primordial helium remained elusive. The ultraviolet capabilities of the telescope, combined with the improvement in spatial resolution following the repair, made it possible for Dr Jakobsen to obtain an image of a quasar close to the edge of the known Universe. A spectral analysis of this picture revealed the quasar's light, which took 13 billion years

  10. Space Science in Action: Astronomy [Videotape].

    Science.gov (United States)

    1999

    This videotape recording teaches students about constellations, star movement, and how scientists have studied celestial bodies throughout history from Ptolemy to Copernicus to the work of the Hubble Space Telescope. An interview with Kathy Thornton, one of the astronauts who repaired the Hubble while in orbit, is featured. A hands-on activity…

  11. Type-Ia Supernova Rates to Redshift 2.4 from Clash: The Cluster Lensing and Supernova Survey with Hubble

    Science.gov (United States)

    Graur, O.; Rodney, S. A.; Maoz, D.; Riess, A. G.; Jha, S. W.; Postman, M.; Dahlen, T.; Holoien, T. W.-S.; McCully, C.; Patel, B.; hide

    2014-01-01

    We present the supernova (SN) sample and Type-Ia SN (SN Ia) rates from the Cluster Lensing And Supernova survey with Hubble (CLASH). Using the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope (HST), we have imaged 25 galaxy-cluster fields and parallel fields of non-cluster galaxies. We report a sample of 27 SNe discovered in the parallel fields. Of these SNe, approximately 13 are classified as SN Ia candidates, including four SN Ia candidates at redshifts z greater than 1.2.We measure volumetric SN Ia rates to redshift 1.8 and add the first upper limit on the SN Ia rate in the range z greater than 1.8 and less than 2.4. The results are consistent with the rates measured by the HST/ GOODS and Subaru Deep Field SN surveys.We model these results together with previous measurements at z less than 1 from the literature. The best-fitting SN Ia delay-time distribution (DTD; the distribution of times that elapse between a short burst of star formation and subsequent SN Ia explosions) is a power law with an index of 1.00 (+0.06(0.09))/(-0.06(0.10)) (statistical) (+0.12/-0.08) (systematic), where the statistical uncertainty is a result of the 68% and 95% (in parentheses) statistical uncertainties reported for the various SN Ia rates (from this work and from the literature), and the systematic uncertainty reflects the range of possible cosmic star-formation histories. We also test DTD models produced by an assortment of published binary population synthesis (BPS) simulations. The shapes of all BPS double-degenerate DTDs are consistent with the volumetric SN Ia measurements, when the DTD models are scaled up by factors of 3-9. In contrast, all BPS single-degenerate DTDs are ruled out by the measurements at greater than 99% significance level.

  12. Hubble trial: time to stick to basics for treatment of haemorrhoids?

    Science.gov (United States)

    Brown, S R

    2017-01-01

    The results of the Hubble trial, a randomised controlled trial comparing haemorrhoidal artery ligation with rubber band ligation for early-grade prolapsing haemorrhoids, are discussed. The difficulties in defining treatment success are debated along with the trial design highlighting the pitfalls of previous research. A finding that haemorrhoidal artery ligation is not necessarily superior to cheap alternatives has implications for current practice and future commissioning of surgeons.

  13. HUBBLE SENDS SEASON'S GREETINGS FROM THE COSMOS TO EARTH

    Science.gov (United States)

    2002-01-01

    Looking like a colorful holiday card, this image from NASA's Hubble Space Telescope reveals a vibrant green and red nebula far from Earth, where nature seems to have put on the traditional colors of the season. These colors, produced by the light emitted by oxygen and hydrogen, help astronomers investigate the star-forming processes in nebulas such as NGC 2080. NGC 2080, nicknamed 'The Ghost Head Nebula,' is one of a chain of star-forming regions lying south of the 30 Doradus nebula in the Large Magellanic Cloud that have attracted special attention. These regions have been studied in detail with Hubble and have long been identified as unique star-forming sites. 30 Doradus is the largest star-forming complex in the whole local group of galaxies. The light from the nebula captured in this image is emitted by two elements, hydrogen and oxygen. The red and the blue light are from regions of hydrogen gas heated by nearby stars. The green light on the left comes from glowing oxygen. The energy to illuminate the green light is supplied by a powerful stellar wind (a stream of high-speed particles) coming from a massive star just outside the image. The white region in the center is a combination of all three emissions and indicates a core of hot, massive stars in this star-formation region. The intense emission from these stars has carved a bowl-shaped cavity in the surrounding gas. In the white region, the two bright areas (the 'eyes of the ghost') - named A1 (left) and A2 (right) - are very hot, glowing 'blobs' of hydrogen and oxygen. The bubble in A1 is produced by the hot, intense radiation and powerful stellar wind from a single massive star. A2 has a more complex appearance due to the presence of more dust, and it contains several hidden, massive stars. The massive stars in A1 and A2 must have formed within the last 10,000 years, since their natal gas shrouds are not yet disrupted by the powerful radiation of the newly born stars. The research team noted that Hubble

  14. Hubble Space Telescope Astrometry of the Procyon System

    Science.gov (United States)

    2015-11-10

    Astrophysical Journal, 813:106 (19pp), 2015 November 10 Bond et al. Onofrio & Wegner (2014) have recently attempted to measure wavelength shifts in the archival...progenitor onto Procyon A (see Wegner 1973; Fuhrmann et al. 2014)—in addition to the hypothetical disk and second-generation planet formation around A...478, 197 Onofrio, R., & Wegner , G. A. 2014, ApJ, 791, 125 18 The Astrophysical Journal, 813:106 (19pp), 2015 November 10 Bond et al. Perets, H. B

  15. HUBBLE UNCOVERS MYSTERY OBJECTS IN THE DENSE CORE OF A NEARBY STAR CLUSTER

    Science.gov (United States)

    2002-01-01

    Piercing the heart of a glittering swarm of stars, NASA's sharp-eyed Hubble Space Telescope unveils the central region of the globular cluster M22, a 12- to 14-billion-year-old grouping of stars in the constellation Sagittarius. The telescope's view of the cluster's core measures 3.3 light-years across. The stars near the cluster's core are 100,000 times more numerous than those in the Sun's neighborhood. Buried in the glow of starlight are about six 'mystery objects,' which astronomers estimate are no larger than one quarter the mass of the giant planet Jupiter, the solar system's heftiest planet. The mystery objects are too far and dim for Hubble to see directly. Instead, the orbiting observatory detected these unseen celestial bodies by looking for their gravitational effects on the light from far distant stars. In this case, the stars are far beyond the cluster in the galactic bulge, about 30,000 light-years from Earth at the center of the Milky Way Galaxy. M22 is 8,500 light-years away. The invisible objects betrayed their presence by bending the starlight gravitationally and amplifying it, a phenomenon known as microlensing. From February 22 to June 15, 1999, Hubble's Wide Field and Planetary Camera 2 looked through this central region and monitored 83,000 stars. During that time the orbiting observatory recorded six unexpectedly brief microlensing events. In each case a background star jumped in brightness for less than 20 hours before dropping back to normal. These transitory spikes in brightness mean that the object passing in front of the star must have been much smaller than a normal star. Hubble also detected one clear microlensing event. In that observation a star appeared about 10 times brighter over an 18-day span before returning to normal. Astronomers traced the leap in brightness to a dwarf star in the cluster floating in front of the background star. The inset photo shows the entire globular cluster of about 10 million stars. M22 is about 60

  16. The Hubble Relation for a Comprehensive Sample of QSOs

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... A correlation between redshifts () and apparent magnitudes () (Hubble relation) of Quasi Stellar Objects (QSOs) has long been sought. Such a correlation exists for galaxies whose redshifts are of cosmological origin. However, a plot of the two quantities representing the Hubble diagram for QSOs ...

  17. The Hubble Relation for a Comprehensive Sample of QSOs

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    been reported to show the Hubble relation. In the present paper, we analyse all optically non-variable QSOs in a comprehensive sample. In our anal- ysis we grouped the objects into certain intervals of apparent magnitudes. Correlations obtained between redshifts and magnitudes are all statistically robust. Also, the Hubble ...

  18. Laryngeal findings and acoustic changes in hubble-bubble smokers.

    Science.gov (United States)

    Hamdan, Abdul-latif; Sibai, Abla; Oubari, Dima; Ashkar, Jihad; Fuleihan, Nabil

    2010-10-01

    The purpose of our investigation was to evaluate the laryngeal findings and acoustic changes in hubble-bubble smokers. A total of 42 subjects with history of hubble-bubble smoking were recruited for this study. A corresponding group with a history of cigarette smoking and controls were matched. All subjects underwent laryngeal video-endostroboscopic evaluation and acoustic analysis. In the hubble-bubble smoking group, 61.9% were males. The average age was 30.02 +/- 9.48 years and the average number of years of smoking was 8.09 +/- 6.45 years. Three subjects had dysphonia at the time of examination. The incidence of benign lesions of the vocal folds in the hubble-bubble group was 21.5%, with edema being the most common at 16.7% followed by cyst at 4.8%. The incidence of laryngeal findings was significantly higher in the hubble-bubble group compared to controls. In the cigarette-smoking group, the most common finding was vocal fold cyst in 14.8% followed by polyps in 7.4%, and edema, sulcus vocalis and granuloma. These findings were not significantly different from the hubble-bubble group except for the thick mucus, which was significantly higher in the latter. There were no significant changes in any of the acoustic parameters between hubble-bubble smokers and controls except for the VTI and MPT, which were significantly lower in the hubble-bubble group. In comparison with the cigarette-smoking group, hubble-bubble smokers had significantly higher Fundamental frequency and habitual pitch (p value 0.042 and 0.008, respectively). The laryngeal findings in hubble-bubble smokers are comparable to cigarette smokers. These laryngeal findings are not translated acoustically, as all the acoustic parameters are within normal range compared to controls.

  19. Laparoscopy After Previous Laparotomy

    Directory of Open Access Journals (Sweden)

    Zulfo Godinjak

    2006-11-01

    Full Text Available Following the abdominal surgery, extensive adhesions often occur and they can cause difficulties during laparoscopic operations. However, previous laparotomy is not considered to be a contraindication for laparoscopy. The aim of this study is to present that an insertion of Veres needle in the region of umbilicus is a safe method for creating a pneumoperitoneum for laparoscopic operations after previous laparotomy. In the last three years, we have performed 144 laparoscopic operations in patients that previously underwent one or two laparotomies. Pathology of digestive system, genital organs, Cesarean Section or abdominal war injuries were the most common causes of previouslaparotomy. During those operations or during entering into abdominal cavity we have not experienced any complications, while in 7 patients we performed conversion to laparotomy following the diagnostic laparoscopy. In all patients an insertion of Veres needle and trocar insertion in the umbilical region was performed, namely a technique of closed laparoscopy. Not even in one patient adhesions in the region of umbilicus were found, and no abdominal organs were injured.

  20. From Hubble's NGSL to Absolute Fluxes

    Science.gov (United States)

    Heap, Sara R.; Lindler, Don

    2012-01-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R-l000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18-1.00 microns. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsll. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We are therefore developing an observing procedure that should yield fluxes with uncertainties less than 1 % and will take part in an HST proposal to observe up to 15 stars using this new procedure.

  1. HUBBLE WATCHES THE RED PLANET AS MARS GLOBAL SURVEYOR BEGINS AEROBRAKING

    Science.gov (United States)

    2002-01-01

    his NASA Hubble Space Telescope picture of Mars was taken on Sept. 12, one day after the arrival of the Mars Global Surveyor (MGS) spacecraft and only five hours before the beginning of autumn in the Martian northern hemisphere. (Mars is tilted on its axis like Earth, so it has similar seasonal changes, including an autumnal equinox when the Sun crosses Mars' equator from the northern to the southern hemisphere). This Hubble picture was taken in support of the MGS mission. Hubble is monitoring the Martian weather conditions during the early phases of MGS aerobraking; in particular, the detection of large dust storms are important inputs into the atmospheric models used by the MGS mission to plan aerobraking operations. Though a dusty haze fills the giant Hellas impact basin south of the dark fin-shaped feature Syrtis Major, the dust appears to be localized within Hellas. Unless the region covered expands significantly, the dust will not be of concern for MGS aerobraking. Other early signs of seasonal transitions on Mars are apparent in the Hubble picture. The northern polar ice cap is blanketed under a polar hood of clouds that typically start forming in late northern summer. As fall progresses, sunlight will dwindle in the north polar region and the seasonal polar cap of frozen carbon dioxide will start condensing onto the surface under these clouds. Hubble observations will continue until October 13, as MGS carefully uses the drag of the Martian atmosphere to circularize its orbit about the Red Planet. After mid-October, Mars will be too close to the Sun, in angular separation, for Hubble to safely view. The image is a composite of three separately filtered colored images taken with the Wide Field Planetary Camera 2 (WFPC2). Resolution is 35 miles (57 kilometers) per pixel (picture element). The Pathfinder landing site near Ares Valles is about 2200 miles (3600 kilometers) west of the center of this image, so was not visible during this observation. Mars was 158

  2. Hubble Redshift, Explained in both a Static Universe and an Expanding/Compressing Universe

    Science.gov (United States)

    Rabounski, Dmitri

    2009-04-01

    In my recent study (2009 APS April Meeting; Progress in Phys., 1/2009), I showed that a photon loses energy with distance due to the work done against the non-holonomity/rotation field of the isotropic space (photon home space, rotating with the velocity of light). This is due to the solution E=E0exp(-H^2AT/c) for the scalar geodesic equation of a photon (the equation of energy), where deformation of space is neglected (a static universe). Here H is the angular velocity of the isotropic space (equal to the Hubble constant H0=c/A), A is the radius of the Universe, T=L/c is the time of the photon's travel. The resulting redshift z=exp(H0L/c)- (z H0/c at small distances) matches the observed Hubble law. Now I obtain the respective solutions in a deforming universe. The solutions reveal: 1) in an expanding unverse the redshift increases faster with distance than in a static case; 2) in a compressing universe the blueshift increases with distance slower than the redshift due to the space non-holonomity, so the blueshift changes to the redshift at a large distance compared to the radius of the Universe. The results have been presented in detail in Zelmanov Journal, v.2, 2009.

  3. HUBBLE AND KECK TELESCOPE OBSERVATIONS OF ACTIVE ASTEROID 288P/300163 (2006 VW139)

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Jessica [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Jewitt, David [Department Earth, Planetary and Space Sciences, UCLA, 595 Charles Young Drive East, Box 951567 Los Angeles, CA 90095-1567 (United States); Weaver, Harold [The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Mutchler, Max [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Larson, Stephen, E-mail: agarwal@mps.mpg.de [Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Blvd. Tucson AZ 85721-0092 (United States)

    2016-01-15

    We present Hubble Space Telescope (HST) and Keck 10 m telescope observations of active asteroid 288P/300163 (2006 VW139) taken to examine ejected dust. The nucleus is a C-type object with absolute magnitude H{sub V} = 17.0 ± 0.1 and estimated diameter ∼2.6 km (for assumed visual geometric albedo p{sub V} = 0.04). Variations in the brightness of the nucleus at the 10%–15% level are significant in both 2011 December and 2012 October but we possess too few data to distinguish variations caused by activity from those caused by rotation. The dust scattering cross-section in 2011 December is ∼40 km{sup 2}, corresponding to a dust mass ∼9 × 10{sup 6} kg (88 μm mean particle radius assumed). The FWHM of the debris sheet varies from ∼100 km near the nucleus to ∼1000 km 30″ (40,000 km) east of it. Dust dynamical models indicate ejection speeds between 0.06 and 0.3 m s{sup −1}, particle sizes between 10 and 300 μm and an inverse square-root relation between particle size and velocity. Overall, the data are most simply explained by prolonged, low velocity ejection of dust, starting in or before 2011 July and continuing until at least 2011 October. These properties are consistent with the sublimation of near-surface ice aided by centrifugal forces. The high spatial resolution of our HST images (52 km pixel{sup −1}) reveals details that remained hidden in previous ground-based observations, such as the extraordinarily small vertical extent of the dust sheet, ejection speeds well below the nucleus escape speed, and the possibility of a binary nucleus.

  4. HUBBLE AND KECK TELESCOPE OBSERVATIONS OF ACTIVE ASTEROID 288P/300163 (2006 VW139)

    International Nuclear Information System (INIS)

    Agarwal, Jessica; Jewitt, David; Weaver, Harold; Mutchler, Max; Larson, Stephen

    2016-01-01

    We present Hubble Space Telescope (HST) and Keck 10 m telescope observations of active asteroid 288P/300163 (2006 VW139) taken to examine ejected dust. The nucleus is a C-type object with absolute magnitude H V = 17.0 ± 0.1 and estimated diameter ∼2.6 km (for assumed visual geometric albedo p V = 0.04). Variations in the brightness of the nucleus at the 10%–15% level are significant in both 2011 December and 2012 October but we possess too few data to distinguish variations caused by activity from those caused by rotation. The dust scattering cross-section in 2011 December is ∼40 km 2 , corresponding to a dust mass ∼9 × 10 6 kg (88 μm mean particle radius assumed). The FWHM of the debris sheet varies from ∼100 km near the nucleus to ∼1000 km 30″ (40,000 km) east of it. Dust dynamical models indicate ejection speeds between 0.06 and 0.3 m s −1 , particle sizes between 10 and 300 μm and an inverse square-root relation between particle size and velocity. Overall, the data are most simply explained by prolonged, low velocity ejection of dust, starting in or before 2011 July and continuing until at least 2011 October. These properties are consistent with the sublimation of near-surface ice aided by centrifugal forces. The high spatial resolution of our HST images (52 km pixel −1 ) reveals details that remained hidden in previous ground-based observations, such as the extraordinarily small vertical extent of the dust sheet, ejection speeds well below the nucleus escape speed, and the possibility of a binary nucleus

  5. ASASSN-15LH: A SUPERLUMINOUS ULTRAVIOLET REBRIGHTENING OBSERVED BY SWIFT AND HUBBLE

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Peter J.; Yang, Yi; Wang, Lifan [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A. and M. University, Department of Physics and Astronomy, 4242 TAMU, College Station, TX 77843 (United States); Cooke, Jeff; Mould, Jeremy [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn VIC 3122 (Australia); Olaes, Melanie; Quimby, Robert M. [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); Baade, Dietrich [European Organisation for Astronomical Research in the Southern Hemisphere (ESO), Karl-Schwarzschild-Str. 2, D-85748 Garching b. München (Germany); Gehrels, Neil [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Hoeflich, Peter [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Maund, Justyn [Department of Physics and Astronomy F39 Hicks Building, Hounsfield Road Sheffield, S3 7RH (United Kingdom); Wheeler, J. Craig [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States)

    2016-09-01

    We present and discuss ultraviolet and optical photometry from the Ultraviolet/Optical Telescope, X-ray limits from the X-Ray Telescope on Swift, and imaging polarimetry and ultraviolet/optical spectroscopy with the Hubble Space Telescope , all from observations of ASASSN-15lh. It has been classified as a hydrogen-poor superluminous supernova (SLSN I), making it more luminous than any other supernova observed. ASASSN-15lh is not detected in the X-rays in individual or co-added observations. From the polarimetry we determine that the explosion was only mildly asymmetric. We find the flux of ASASSN-15lh to increase strongly into the ultraviolet, with an ultraviolet luminosity 100 times greater than the hydrogen-rich, ultraviolet-bright SLSN II SN 2008es. We find that objects as bright as ASASSN-15lh are easily detectable beyond redshifts of ∼4 with the single-visit depths planned for the Large Synoptic Survey Telescope. Deep near-infrared surveys could detect such objects past a redshift of ∼20, enabling a probe of the earliest star formation. A late rebrightening—most prominent at shorter wavelengths—is seen about two months after the peak brightness, which is itself as bright as an SLSN. The ultraviolet spectra during the rebrightening are dominated by the continuum without the broad absorption or emission lines seen in SLSNe or tidal disruption events (TDEs) and the early optical spectra of ASASSN-15lh. Our spectra show no strong hydrogen emission, showing only Ly α absorption near the redshift previously found by optical absorption lines of the presumed host. The properties of ASASSN-15lh are extreme when compared to either SLSNe or TDEs.

  6. Some statistical properties of spiral galaxies along the Hubble sequence

    Science.gov (United States)

    Ma, Jun; Zhao, Jun-liang; Zhang, Fei-peng; Peng, Qiu-he

    A statistical study has been made for the variations along the Hubble sequence, os such parameters as the degree of tightness of winding of spiral arm λ, the pitch angle μ, the flatness of the disk H/ D25 and the thickness H along the Hubble sequence for 365 spiral galaxies published in A&Ap Supplement Series. The mean values of these quantities for the various Hubble types have been obtained for the first time. The results of the statistics show clearly 1) that the Hubble classification of spiral galaxies is one which has only a qualitative and statistical significance, and 2) that the dispersion relation in the density wave theory is valid for most spiral galaxies, i.e., the arms of most spiral galaxies satisfy the requirements of being tightly wound.

  7. Hubble's Early Release Observations Student Pilot Project: Implementing Formal and Informal Collaborations

    Science.gov (United States)

    Eisenhamer, B.; Ryer, H.; McCallister, D.

    2012-08-01

    The Hubble Space Telescope's Early Release Observations (EROs) were revealed to the public on September 9, 2009, and K-12 students and educators in five states across the country were able to join the celebration. To date, students and educators in Maryland, Ohio, New York, California, and Florida have participated in the Hubble Space Telescope's ERO Pilot Project. This is an interdisciplinary project created by the Space Telecope Science Institute's (STScI) Office of Public Outreach in which students use skills from subject areas such as language arts, science, art, and technology to research the four ERO objects and create compositions. In recognition of their participation, the students' compositions are displayed at host institutions in each state (a museum, science center, school, planetarium or library) during a special public event for participating students, their families, and teachers. As part of its evaluation program, STScI's Office of Public Outreach has been conducting an evaluation of the project to determine the viability and potential of conducting large-scale, formal/informal collaborative projects in the future and to share lessons learned. Lessons learned will be applied to a new interdisciplinary project, the James Webb Space Telescope Student Innovation Project.

  8. Replacement vs. Renovation: The Reincarnation of Hubble Middle School

    Science.gov (United States)

    Ogurek, Douglas J.

    2010-01-01

    At the original Hubble Middle School, neither the views (a congested Roosevelt Road and glimpses of downtown Wheaton) nor the century-old facility that offered them was very inspiring. Built at the start of the 20th century, the 250,000-square-foot building was converted from Wheaton Central High School to Hubble Middle School in the early 1980s.…

  9. A gravitational-wave standard siren measurement of the Hubble constant

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; Aultoneal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; da Silva Costa, C. F.; Datrier, L. E. H.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; de, S.; Debra, D.; Degallaix, J.; de Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; de Pietri, R.; Dergachev, V.; De Rosa, R.; Derosa, R. T.; de Rossi, C.; Desalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; di Fiore, L.; di Giovanni, M.; di Girolamo, T.; di Lieto, A.; di Pace, S.; di Palma, I.; di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.

    2017-11-01

    On 17 August 2017, the Advanced LIGO and Virgo detectors observed the gravitational-wave event GW170817—a strong signal from the merger of a binary neutron-star system. Less than two seconds after the merger, a γ-ray burst (GRB 170817A) was detected within a region of the sky consistent with the LIGO-Virgo-derived location of the gravitational-wave source. This sky region was subsequently observed by optical astronomy facilities, resulting in the identification of an optical transient signal within about ten arcseconds of the galaxy NGC 4993. This detection of GW170817 in both gravitational waves and electromagnetic waves represents the first ‘multi-messenger’ astronomical observation. Such observations enable GW170817 to be used as a ‘standard siren’ (meaning that the absolute distance to the source can be determined directly from the gravitational-wave measurements) to measure the Hubble constant. This quantity represents the local expansion rate of the Universe, sets the overall scale of the Universe and is of fundamental importance to cosmology. Here we report a measurement of the Hubble constant that combines the distance to the source inferred purely from the gravitational-wave signal with the recession velocity inferred from measurements of the redshift using the electromagnetic data. In contrast to previous measurements, ours does not require the use of a cosmic ‘distance ladder’: the gravitational-wave analysis can be used to estimate the luminosity distance out to cosmological scales directly, without the use of intermediate astronomical distance measurements. We determine the Hubble constant to be about 70 kilometres per second per megaparsec. This value is consistent with existing measurements, while being completely independent of them. Additional standard siren measurements from future gravitational-wave sources will enable the Hubble constant to be constrained to high precision.

  10. A gravitational-wave standard siren measurement of the Hubble constant.

    Science.gov (United States)

    2017-11-02

    On 17 August 2017, the Advanced LIGO and Virgo detectors observed the gravitational-wave event GW170817-a strong signal from the merger of a binary neutron-star system. Less than two seconds after the merger, a γ-ray burst (GRB 170817A) was detected within a region of the sky consistent with the LIGO-Virgo-derived location of the gravitational-wave source. This sky region was subsequently observed by optical astronomy facilities, resulting in the identification of an optical transient signal within about ten arcseconds of the galaxy NGC 4993. This detection of GW170817 in both gravitational waves and electromagnetic waves represents the first 'multi-messenger' astronomical observation. Such observations enable GW170817 to be used as a 'standard siren' (meaning that the absolute distance to the source can be determined directly from the gravitational-wave measurements) to measure the Hubble constant. This quantity represents the local expansion rate of the Universe, sets the overall scale of the Universe and is of fundamental importance to cosmology. Here we report a measurement of the Hubble constant that combines the distance to the source inferred purely from the gravitational-wave signal with the recession velocity inferred from measurements of the redshift using the electromagnetic data. In contrast to previous measurements, ours does not require the use of a cosmic 'distance ladder': the gravitational-wave analysis can be used to estimate the luminosity distance out to cosmological scales directly, without the use of intermediate astronomical distance measurements. We determine the Hubble constant to be about 70 kilometres per second per megaparsec. This value is consistent with existing measurements, while being completely independent of them. Additional standard siren measurements from future gravitational-wave sources will enable the Hubble constant to be constrained to high precision.

  11. Gravity waves as a probe of the Hubble expansion rate during an electroweak scale phase transition

    International Nuclear Information System (INIS)

    Chung, Daniel J. H.; Zhou Peng

    2010-01-01

    Just as big bang nucleosynthesis allows us to probe the expansion rate when the temperature of the Universe was around 1 MeV, the measurement of gravity waves from electroweak scale first order phase transitions may allow us to probe the expansion rate when the temperature of the Universe was at the electroweak scale. We compute the simple transformation rule for the gravity wave spectrum under the scaling transformation of the Hubble expansion rate. We then apply this directly to the scenario of quintessence kination domination and show how gravity wave spectra would shift relative to Laser Interferometer Space Antenna and Big Bang Observer projected sensitivities.

  12. First cosmological constraints combining Planck with the recent gravitational-wave standard siren measurement of the Hubble constant

    Science.gov (United States)

    Di Valentino, Eleonora; Melchiorri, Alessandro

    2018-02-01

    The recent observations of gravitational-wave and electromagnetic emission produced by the merger of the binary neutron-star system GW170817 have opened the possibility of using standard sirens to constrain the value of the Hubble constant. While the reported bound of H0=7 0-8+12 at 68% C.L. is significantly weaker than those recently derived by observations of Cepheid variables, it does not require any form of cosmic distance ladder and can be considered as complementary and, in principle, more conservative. Here we combine, for the first time, the new measurement with the Planck cosmic microwave background (CMB) observations in a 12 parameter extended Λ CDM scenario, where the Hubble constant is weakly constrained from CMB data alone and bound to a low value H0=5 5-20+7 km /s /Mpc at 68% C.L. We point out that the non-Gaussian shape of the GW170817 bound makes lower values of the Hubble constant in worse agreement with observations than what is expected from a Gaussian form. The inclusion of the new GW170817 Hubble constant measurement therefore significantly reduces the allowed parameter space, improving the cosmological bounds on several parameters as the neutrino mass, curvature, and dark energy equation of state.

  13. ACCOUNTING FOR COSMIC VARIANCE IN STUDIES OF GRAVITATIONALLY LENSED HIGH-REDSHIFT GALAXIES IN THE HUBBLE FRONTIER FIELD CLUSTERS

    International Nuclear Information System (INIS)

    Robertson, Brant E.; Stark, Dan P.; Ellis, Richard S.; Dunlop, James S.; McLure, Ross J.; McLeod, Derek

    2014-01-01

    Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ∼35% at redshift z ∼ 7 to ≳ 65% at z ∼ 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program

  14. Hubble 3D: A Science and Hollywood Collaboration Made (Nearly) in Heaven

    Science.gov (United States)

    Showstack, Randy

    2010-04-01

    Just 2 days after the 2010 Academy Awards® ceremony in early March bestowed Oscars® for motion picture achievements, NASA deputy administrator Lori Garver touted a new film about the Hubble Space Telescope, Hubble 3D, for best drama, special effects, screenplay, actors and actress, and director and producer. The 43-minute IMAX and Warner Brothers Pictures production, which opened in theaters on 19 March, is an example of the ability of Hollywood and the science community to partner in providing a dynamic educational and entertaining product, according to a number of people associated with the film. Sharing the red carpet at the Smithsonian National Air and Space Museum in Washington, D. C., with astronauts and others to mark the world premiere, Garver said the film shows the drama of the astronauts’ efforts to repair the telescope while traveling 17,000 miles per hour and performing grueling space walks (see Figure 1). “We have literally opened our eyes on the universe through this telescope,” she said. “This is a taxpayer-funded agency, and we are giving back to the public the very story that they paid for.”

  15. A determination of H-0 with the class gravitational lens B1608+656. II. Mass models and the Hubble constant from lensing

    NARCIS (Netherlands)

    Koopmans, LVE; Fassnacht, CD

    1999-01-01

    We present mass models of the four-image gravitational lens system B1608 + 656, based on information obtained through VLBA imaging, VLA monitoring, and Hubble Space Telescope (HST) WFPC2 and NICMOS imaging. We have determined a mass model for the lens galaxies that reproduces (1) all image positions

  16. The Carnegie–Chicago Hubble Program. III. The Distance to NGC 1365 via the Tip of the Red Giant Branch

    Science.gov (United States)

    Jang, In Sung; Hatt, Dylan; Beaton, Rachael L.; Lee, Myung Gyoon; Freedman, Wendy L.; Madore, Barry F.; Hoyt, Taylor J.; Monson, Andrew J.; Rich, Jeffrey A.; Scowcroft, Victoria; Seibert, Mark

    2018-01-01

    The Carnegie–Chicago Hubble Program (CCHP) seeks to anchor the distance scale of Type Ia supernovae via the Tip of the Red Giant Branch (TRGB) method. Based on deep Hubble Space Telescope ACS/WFC imaging, we present an analysis of the TRGB for the metal-poor halo of NGC 1365, a giant spiral galaxy in the Fornax cluster that was host to the Type Ia supernova SN 2012fr. We have measured the extinction-corrected TRGB magnitude of NGC 1365 to be F814W = 27.34 ± 0.03stat ± 0.04sys mag. In advance of future direct calibration by Gaia, we adopt a provisional I-band TRGB luminosity set at the Large Magellanic Cloud and find a true distance modulus μ 0 = 31.29 ± 0.04stat ± 0.06sys mag or D = 18.1 ± 0.3stat ± 0.5sys Mpc. This measurement is in excellent agreement with recent Cepheid-based distances to NGC 1365 and reveals no significant difference in the distances derived from stars of Populations I and II for this galaxy. We revisit the error budget for the CCHP path to the Hubble constant based on the analysis presented here, i.e., that for one of the most distant Type Ia supernova hosts within our Program, and find that a 2.5% measurement is feasible with the current sample of galaxies and TRGB absolute calibration. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #13691.

  17. The MUSE Hubble Ultra Deep Field Survey. II. Spectroscopic redshifts and comparisons to color selections of high-redshift galaxies

    Science.gov (United States)

    Inami, H.; Bacon, R.; Brinchmann, J.; Richard, J.; Contini, T.; Conseil, S.; Hamer, S.; Akhlaghi, M.; Bouché, N.; Clément, B.; Desprez, G.; Drake, A. B.; Hashimoto, T.; Leclercq, F.; Maseda, M.; Michel-Dansac, L.; Paalvast, M.; Tresse, L.; Ventou, E.; Kollatschny, W.; Boogaard, L. A.; Finley, H.; Marino, R. A.; Schaye, J.; Wisotzki, L.

    2017-11-01

    We have conducted a two-layered spectroscopic survey (1' × 1' ultra deep and 3' × 3' deep regions) in the Hubble Ultra Deep Field (HUDF) with the Multi Unit Spectroscopic Explorer (MUSE). The combination of a large field of view, high sensitivity, and wide wavelength coverage provides an order of magnitude improvement in spectroscopically confirmed redshifts in the HUDF; i.e., 1206 secure spectroscopic redshifts for Hubble Space Telescope (HST) continuum selected objects, which corresponds to 15% of the total (7904). The redshift distribution extends well beyond z> 3 and to HST/F775W magnitudes as faint as ≈ 30 mag (AB, 1σ). In addition, 132 secure redshifts were obtained for sources with no HST counterparts that were discovered in the MUSE data cubes by a blind search for emission-line features. In total, we present 1338 high quality redshifts, which is a factor of eight increase compared with the previously known spectroscopic redshifts in the same field. We assessed redshifts mainly with the spectral features [O II] at z< 1.5 (473 objects) and Lyα at 2.9

  18. GAIA and beyond: The perspective from the milliarcseconds of Hubble and Hipparcos

    Science.gov (United States)

    Hemenway, Paul D.

    1995-01-01

    Astrometry with the Hubble space telescope and Hipparcos satellite advanced the optical astrometric accuracies to the milliarcsec level. The global astrometric interferometer for astrophysics (GAIA) satellite and other proposed optical interferometry space missions would advance the optical astrometric accuracy to better than 10 microarcsec. A catalog figure of merit is defined which allows a quantitative comparison to be carried out for astrometric catalogs. Using two specific astrophysical problems, the level of the expected scientific contribution from a GAIA-type mission is assessed. The two problems are: the age of the globular clusters in relation to the age of the Universe, and the initial mass function compared with fluctuations in the star formation rate with time.

  19. Hubble: Linked Data Hub for Clinical Decision Support

    NARCIS (Netherlands)

    Hoekstra, R.; Magliacane, S.; Rietveld, L.; de Vries, G.; Wibisono, A.; Schlobach, S.; Simperl, E.; Norton, B.; Mladenic, D.; Della Valle, E.; Fundulaki, I.; Passant, A.; Troncy, R.

    2015-01-01

    The AERS datasets is one of the few remaining, large publicly available medical data sets that until now have not been published as Linked Data. It is uniquely positioned amidst other medical datasets. This paper describes the Hubble prototype system for clinical decision support that demonstrates

  20. Dynamical decomposition of galaxies across the Hubble sequence

    NARCIS (Netherlands)

    Zhu, L.; van den Bosch, R. C. E.; van de Ven, G.; Falcón-Barroso, J.; Lyubenova, M.; Meidt, S. E.; Martig, M.; Yildirim, A.

    2016-01-01

    Ongoing and upcoming integral-field spectroscopic surveys will provide stellar kinematic maps of thousands of nearby galaxies across the Hubble sequence. For the first time, we have been able to construct Schwarzschild dynamical models that fit in detail elliptical through spiral galaxies from the

  1. Short term effect of hubble-bubble smoking on voice.

    Science.gov (United States)

    Hamdan, A-L; Sibai, A; Mahfoud, L; Oubari, D; Ashkar, J; Fuleihan, N

    2011-05-01

    To investigate the short term effect of hubble-bubble smoking on voice. Prospective study. Eighteen non-dysphonic subjects (seven men and 11 women) with a history of hubble-bubble smoking and no history of cigarette smoking underwent acoustic analysis and laryngeal video-stroboscopic examination before and 30 minutes after hubble-bubble smoking. On laryngeal video-stroboscopy, none of the subjects had vocal fold erythema either before or after smoking. Five patients had mild vocal fold oedema both before and after smoking. After smoking, there was a slight increase in the number of subjects with thick mucus between the vocal folds (six, vs four before smoking) and with vocal fold vessel dilation (two, vs one before smoking). Acoustic analysis indicated a drop in habitual pitch, fundamental frequency and voice turbulence index after smoking, and an increase in noise-to-harmonics ratio. Even 30 minutes of hubble-bubble smoking can cause a drop in vocal pitch and an increase in laryngeal secretions and vocal fold vasodilation.

  2. Remarks on the low value obtained for the Hubble constant

    International Nuclear Information System (INIS)

    Jaakkola, Toivo

    1975-01-01

    Some remarks are made on the basis of the data given by Sandage and Tamman, suggesting that these authors have over-estimated the distances to the most luminous galaxies and obtained a value too low for the Hubble constant [fr

  3. Angular Momentum across the Hubble sequence from the CALIFA survey

    NARCIS (Netherlands)

    Falcón-Barroso, Jesús; Lyubenova, Mariya; van de Ven, Glenn

    We investigate the stellar angular momentum of galaxies across the Hubble sequence from the CALIFA survey. The distribution of CALIFA elliptical and lenticular galaxies in the λRe - ɛe diagram is consistent with that shown by the Atlas3D survey. Our data, however, show that the location of spiral

  4. Dust attenuation in 2 Hubble Ultra Deep Field

    Science.gov (United States)

    McLure, R. J.; Dunlop, J. S.; Cullen, F.; Bourne, N.; Best, P. N.; Khochfar, S.; Bowler, R. A. A.; Biggs, A. D.; Geach, J. E.; Scott, D.; Michałowski, M. J.; Rujopakarn, W.; van Kampen, E.; Kirkpatrick, A.; Pope, A.

    2018-03-01

    We present the results of a new study of the relationship between infrared excess (IRX≡ LIR/LUV), UV spectral slope (β) and stellar mass at redshifts 2 Hubble Ultra Deep Field (HUDF). Excluding the most heavily-obscured sources, we use a stacking analysis to show that z ≃ 2.5 star-forming galaxies in the mass range 9.25≤ log (M_{\\ast }/M_{⊙}) ≤ 10.75 are fully consistent with the IRX-β relation expected for a relatively grey attenuation curve, similar to the commonly adopted Calzetti law. Based on a large, mass complete, sample of 2 ≤ z ≤ 3 star-forming galaxies drawn from multiple surveys, we proceed to derive a new empirical relationship between β and stellar mass, making it possible to predict UV attenuation (A1600) and IRX as a function of stellar mass, for any assumed attenuation law. Once again, we find that z ≃ 2.5 star-forming galaxies follow A1600-M* and IRX-M* relations consistent with a relatively grey attenuation law, and find no compelling evidence that star-forming galaxies at this epoch follow a reddening law as steep as the Small Magellanic Cloud (SMC) extinction curve. In fact, we use a simple simulation to demonstrate that previous determinations of the IRX-β relation may have been biased toward low values of IRX at red values of β, mimicking the signature expected for an SMC-like dust law. We show that this provides a plausible mechanism for reconciling apparently contradictory results in the literature and that, based on typical measurement uncertainties, stellar mass provides a cleaner prediction of UV attenuation than β. Although the situation at lower stellar masses remains uncertain, we conclude that for 2 < z < 3 star-forming galaxies with log (M_{\\ast }/M_{⊙}) ≥ 9.75, both the IRX-β and IRX-M* relations are well described by a Calzetti-like attenuation law.

  5. Das James Webb Space Telescope

    Science.gov (United States)

    Lemke, Dietrich

    2005-07-01

    Nicht nach einem berühmten Astronomen, sondern nach einem ihrer erfolgreichen Behördenleiter hat die NASA ihr neues astronomisches Flaggschiff benannt: Im Jahre 2011 soll das James Webb Space Telescope (JWST) das Weltraumteleskop Hubble ablösen.

  6. A nuclear data approach for the Hubble constant measurements

    Directory of Open Access Journals (Sweden)

    Pritychenko Boris

    2017-01-01

    Full Text Available An extraordinary number of Hubble constant measurements challenges physicists with selection of the best numerical value. The standard U.S. Nuclear Data Program (USNDP codes and procedures have been applied to resolve this issue. The nuclear data approach has produced the most probable or recommended Hubble constant value of 67.2(69 (km/sec/Mpc. This recommended value is based on the last 20 years of experimental research and includes contributions from different types of measurements. The present result implies (14.55 ± 1.51 × 109 years as a rough estimate for the age of the Universe. The complete list of recommended results is given and possible implications are discussed.

  7. On the Luminosity Distance and the Hubble Constant

    OpenAIRE

    Yuri Heymann

    2013-01-01

    By differentiating luminosity distance with respect to time using its standard formula we find that the peculiar velocity is a time varying velocity of light. Therefore, a new definition of the luminosity distance is provided such that the peculiar velocity is equal to c. Using this definition a Hubble constant H0 = 67.3 km s−1 Mpc−1 is obtained from supernovae data.

  8. Cataclysmic variables, Hubble-Sandage variables and eta Carinae

    International Nuclear Information System (INIS)

    Bath, G.T.

    1980-01-01

    The Hubble-Sandage variables are the most luminous stars in external galaxies. They were first investigated by Hubble and Sandage (1953) for use as distance indicators. Their main characteristics are high luminosity, blue colour indices, and irregular variability. Spectroscopically they show hydrogen and helium in emission with occasionally weaker FeII and [FeII], and no Balmer jump (Humphreys 1975, 1978). In this respect they closely resemble cataclysmic variables, particularly dwarf novae. In the quiescent state dwarf novae show broad H and HeI, together with a strong UV continuum. In contrast to the spectroscopic similarities, the luminosities could hardly differ more. Rather than being the brightest stars known, quiescent dwarf novae are as faint or fainter than the sun. It is suggested that the close correspondence between the spectral appearance of the two classes combined with the difference in luminosity is well accounted for by a model of Hubble-Sandage variables in which the same physical processes are occurring, but on a larger scale. (Auth.)

  9. A Toy Cosmology Using a Hubble-Scale Casimir Effect

    Directory of Open Access Journals (Sweden)

    Michael E. McCulloch

    2014-02-01

    Full Text Available The visible mass of the observable universe agrees with that needed for a flat cosmos, and the reason for this is not known. It is shown that this can be explained by modelling the Hubble volume as a black hole that emits Hawking radiation inwards, disallowing wavelengths that do not fit exactly into the Hubble diameter, since partial waves would allow an inference of what lies outside the horizon. This model of “horizon wave censorship” is equivalent to a Hubble-scale Casimir effect. This incomplete toy model is presented to stimulate discussion. It predicts a minimum mass and acceleration for the observable universe which are in agreement with the observed mass and acceleration, and predicts that the observable universe gains mass as it expands and was hotter in the past. It also predicts a suppression of variation on the largest cosmic scales that agrees with the low-l cosmic microwave background anomaly seen by the Planck satellite.

  10. Variability search in M 31 using Principal Component Analysis and the Hubble Source Catalog

    Science.gov (United States)

    Moretti, M. I.; Hatzidimitriou, D.; Karampelas, A.; Sokolovsky, K. V.; Bonanos, A. Z.; Gavras, P.; Yang, M.

    2018-03-01

    Principal Component Analysis (PCA) is being extensively used in Astronomy but not yet exhaustively exploited for variability search. The aim of this work is to investigate the effectiveness of using the PCA as a method to search for variable stars in large photometric data sets. We apply PCA to variability indices computed for light curves of 18152 stars in three fields in M 31 extracted from the Hubble Source Catalogue. The projection of the data into the principal components is used as a stellar variability detection and classification tool, capable of distinguishing between RR Lyrae stars, long period variables (LPVs) and non-variables. This projection recovered more than 90% of the known variables and revealed 38 previously unknown variable stars (about 30% more), all LPVs except for one object of uncertain variability type. We conclude that this methodology can indeed successfully identify candidate variable stars.

  11. Hubble and ESO's VLT provide unique 3D views of remote galaxies

    Science.gov (United States)

    2009-03-01

    Astronomers have obtained exceptional 3D views of distant galaxies, seen when the Universe was half its current age, by combining the twin strengths of the NASA/ESA Hubble Space Telescope's acute eye, and the capacity of ESO's Very Large Telescope to probe the motions of gas in tiny objects. By looking at this unique "history book" of our Universe, at an epoch when the Sun and the Earth did not yet exist, scientists hope to solve the puzzle of how galaxies formed in the remote past. ESO PR Photo 10a/09 A 3D view of remote galaxies ESO PR Photo 10b/09 Measuring motions in 3 distant galaxies ESO PR Video 10a/09 Galaxies in collision For decades, distant galaxies that emitted their light six billion years ago were no more than small specks of light on the sky. With the launch of the Hubble Space Telescope in the early 1990s, astronomers were able to scrutinise the structure of distant galaxies in some detail for the first time. Under the superb skies of Paranal, the VLT's FLAMES/GIRAFFE spectrograph (ESO 13/02) -- which obtains simultaneous spectra from small areas of extended objects -- can now also resolve the motions of the gas in these distant galaxies (ESO 10/06). "This unique combination of Hubble and the VLT allows us to model distant galaxies almost as nicely as we can close ones," says François Hammer, who led the team. "In effect, FLAMES/GIRAFFE now allows us to measure the velocity of the gas at various locations in these objects. This means that we can see how the gas is moving, which provides us with a three-dimensional view of galaxies halfway across the Universe." The team has undertaken the Herculean task of reconstituting the history of about one hundred remote galaxies that have been observed with both Hubble and GIRAFFE on the VLT. The first results are coming in and have already provided useful insights for three galaxies. In one galaxy, GIRAFFE revealed a region full of ionised gas, that is, hot gas composed of atoms that have been stripped of

  12. STScI-PRC02-11b HUBBLE'S NEWEST CAMERA IMAGES MONSTROUS STAR-FORMING PILLAR OF GAS AND DUST

    Science.gov (United States)

    2002-01-01

    Resembling a nightmarish beast rearing its head from a crimson sea, this monstrous object is actually an innocuous pillar of gas and dust. Called the Cone Nebula (NGC 2264) -- so named because, in ground-based images, it has a conical shape -- this giant pillar resides in a turbulent star-forming region. This picture, taken by the newly installed Advanced Camera for Surveys (ACS) aboard NASA's Hubble Space Telescope, shows the upper 2.5 light-years of the nebula, a height that equals 23 million roundtrips to the Moon. The entire nebula is 7 light-years long. The Cone Nebula resides 2,500 light-years away in the constellation Monoceros. Radiation from hot, young stars [located beyond the top of the image] has slowly eroded the nebula over millions of years. Ultraviolet light heats the edges of the dark cloud, releasing gas into the relatively empty region of surrounding space. There, additional ultraviolet radiation causes the hydrogen gas to glow, which produces the red halo of light seen around the pillar. A similar process occurs on a much smaller scale to gas surrounding a single star, forming the bow-shaped arc seen near the upper left side of the Cone. This arc, seen previously with the Hubble telescope, is 65 times larger than the diameter of our solar system. The blue-white light from surrounding stars is reflected by dust. Background stars can be seen peeking through the evaporating tendrils of gas, while the turbulent base is pockmarked with stars reddened by dust. Over time, only the densest regions of the Cone will be left. Inside these regions, stars and planets may form. The Cone Nebula is a cousin of the M16 pillars, which the Hubble telescope imaged in 1995. Monstrous pillars of cold gas, like the Cone and M16, are common in large regions of star birth. Astronomers believe that these pillars are incubators for developing stars. ACS made this observation on April 2, 2002. The color image is constructed from three separate images taken in blue, near

  13. Refined WFC3 Source Lists from the Hubble Legacy Archive (HLA)

    Science.gov (United States)

    Lindsay, Kevin; Wolfe, M. A.; Casertano, S.; Anderson, R. E.; White, R. L.; Quick, L.; Koekemoer, A. M.

    2013-06-01

    The Hubble Legacy Archive (HLA) provides a heightened level of Hubble Space Telescope (HST) archival data products, "science-ready", to the astronomical community. We provide a general examination of the current strategy, and the steps being taken to produce source lists for the HST's Wide Field Camera 3 (WFC3) imaging data. These source lists are created from drizzled, combined, and astrometrically corrected WFC3 images. Providing both Source Extractor- and IRAF DAOPhot-based source lists requires that the HLA develop two unique sets of source list data products in order to facilitate the needs of the community. The HLA Data Release 6 (DR6) gave the community a first look at the HLA's high-level science image products for WFC3, while DR6.1 contributed a preliminary test suite of WFC3 source lists as a means of gaining user feedback. Since DR6.1, four flag-creating filters have been developed to refine both the Source Extractor and DAOPhot WFC3 source lists. These filters remove excess spurious artifact detections (e.g. saturated sources, cosmic rays, bleed line detections, etc…), so that more precise and complete data can be made available to the community. Although high-level science products are currently available for ACS and WFPC2 through the HLA interface, future plans include the adaptation of the WFC3 HLA image processing and source list creation pipelines for the processing of ACS and WFPC2 data. With the replacement of MultiDrizzle by AstroDrizzle, and the implementation of the newly developed and refined source list artifact flag filters, we expect to see an improvement in the quality of ACS and WFPC2 source lists and the relative astrometry of the image data.

  14. NEW CONSTRAINTS ON COSMIC REIONIZATION FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Brant E.; Schneider, Evan; Stark, Daniel P. [Department of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Furlanetto, Steven R. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Charlot, Stephane [UPMC-CNRS, UMR7095, Institut d' Astrophysique de Paris, F-75014, Paris (France); Ellis, Richard S.; Schenker, Matthew A. [Department of Astrophysics, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); McLure, Ross J.; Dunlop, James S.; Curtis-Lake, Emma; Rogers, Alexander B.; Bowler, Rebecca A. A.; Cirasuolo, Michele [Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Koekemoer, Anton [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Ouchi, Masami; Ono, Yoshiaki [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa City, Chiba 277-8582 (Japan)

    2013-05-01

    Understanding cosmic reionization requires the identification and characterization of early sources of hydrogen-ionizing photons. The 2012 Hubble Ultra Deep Field (UDF12) campaign has acquired the deepest infrared images with the Wide Field Camera 3 aboard Hubble Space Telescope and, for the first time, systematically explored the galaxy population deep into the era when cosmic microwave background (CMB) data indicate reionization was underway. The UDF12 campaign thus provides the best constraints to date on the abundance, luminosity distribution, and spectral properties of early star-forming galaxies. We synthesize the new UDF12 results with the most recent constraints from CMB observations to infer redshift-dependent ultraviolet (UV) luminosity densities, reionization histories, and electron scattering optical depth evolution consistent with the available data. Under reasonable assumptions about the escape fraction of hydrogen-ionizing photons and the intergalactic medium clumping factor, we find that to fully reionize the universe by redshift z {approx} 6 the population of star-forming galaxies at redshifts z {approx} 7-9 likely must extend in luminosity below the UDF12 limits to absolute UV magnitudes of M{sub UV} {approx} -13 or fainter. Moreover, low levels of star formation extending to redshifts z {approx} 15-25, as suggested by the normal UV colors of z {approx_equal} 7-8 galaxies and the smooth decline in abundance with redshift observed by UDF12 to z {approx_equal} 10, are additionally likely required to reproduce the optical depth to electron scattering inferred from CMB observations.

  15. Ultra-deep K S-band Imaging of the Hubble Frontier Fields

    Science.gov (United States)

    Brammer, Gabriel B.; Marchesini, Danilo; Labbé, Ivo; Spitler, Lee; Lange-Vagle, Daniel; Barker, Elizbeth A.; Tanaka, Masayuki; Fontana, Adriano; Galametz, Audrey; Ferré-Mateu, Anna; Kodama, Tadayuki; Lundgren, Britt; Martis, Nicholas; Muzzin, Adam; Stefanon, Mauro; Toft, Sune; van der Wel, Arjen; Vulcani, Benedetta; Whitaker, Katherine E.

    2016-09-01

    We present an overview of the “KIFF” project, which provides ultra-deep K s -band imaging of all six of the Hubble Frontier Fields clusters, Abell 2744, MACS-0416, Abell S1063, Abell 370, MACS-0717, and MACS-1149. All of these fields have recently been observed with large allocations of Directors’ Discretionary Time with the Hubble and Spitzer telescopes, covering 0.4\\lt λ \\lt 1.6 μ {{m}} and 3.6-4.5 μ {{m}}, respectively. VLT/HAWK-I integrations of the first four fields reach 5σ limiting depths of {K}s˜ 26.0 (AB, point sources) and have excellent image quality (FWHM ˜ 0.″4). The MACS-0717 and MACS-1149 fields are observable from the northern hemisphere, and shorter Keck/MOSFIRE integrations on those fields reach limiting depths of K s = 25.5 and 25.1, with a seeing FWHM of ˜ 0.″4 and 0\\buildrel{\\prime\\prime}\\over{.} 5. In all cases the K s -band mosaics cover the primary cluster and parallel HST/ACS+WFC3 fields. The total area of the K s -band coverage is 490 arcmin2. The K s -band at 2.2 μ {{m}} crucially fills the gap between the reddest HST filter (1.6 μ {{m}} ˜ H band) and the IRAC 3.6 μ {{m}} passband. While reaching the full depths of the space-based imaging is not currently feasible from the ground, the deep K s -band images provide important constraints on both the redshifts and the stellar population properties of galaxies extending well below the characteristic stellar mass across most of the age of the universe, down to and including the redshifts of the targeted galaxy clusters (z≲ 0.5). Reduced, aligned mosaics of all six survey fields are provided.

  16. Candidate high-redshift and primeval galaxies in Hubble Deep Field South

    Science.gov (United States)

    Clements, D. L.; Eales, S. A.; Baker, A. C.

    1999-09-01

    We present the results of colour selection of candidate high-redshift galaxies in Hubble Deep Field South (HDF-S) using the Lyman dropout scheme. The HDF-S data we discuss were taken in a number of different filters extending from the near-UV (F300W) to the infrared (F222M) in two different fields. This allows us to select candidates with redshifts from z~3 to z~12. We find 15 candidate z~3 objects (F300W dropouts), one candidate z~4 object (F450W dropout) and 16 candidate z~5 objects (F606W dropouts) in the ~4.7-arcmin^2 WFPC-2 field, and four candidate z~6 objects (optical dropouts) and one candidate z~8 object (F110W dropout) in the 0.84-arcmin^2 NICMOS-3 field. No F160W dropouts are found (z~12). We compare our selection technique with existing data for Hubble Deep Field North (HDF-N) and discuss alternative interpretations of the objects. We conclude that there are a number of lower redshift interlopers in the selections, including one previously identified object, and reject those objects most likely to be foreground contaminants. Even after this we conclude that the F606W dropout list is likely to still contain substantial foreground contamination. The lack of candidate very-high-redshift UV-luminous galaxies supports earlier conclusions by Lanzetta et al. We discuss the morphologies and luminosity functions of the high-redshift objects, and their cosmological implications.

  17. Cosmic variance and the measurement of the local Hubble parameter.

    Science.gov (United States)

    Marra, Valerio; Amendola, Luca; Sawicki, Ignacy; Valkenburg, Wessel

    2013-06-14

    There is an approximately 9% discrepancy, corresponding to 2.4 σ, between two independent constraints on the expansion rate of the Universe: one indirectly arising from the cosmic microwave background and baryon acoustic oscillations and one more directly obtained from local measurements of the relation between redshifts and distances to sources. We argue that by taking into account the local gravitational potential at the position of the observer this tension--strengthened by the recent Planck results--is partially relieved and the concordance of the Standard Model of cosmology increased. We estimate that measurements of the local Hubble constant are subject to a cosmic variance of about 2.4% (limiting the local sample to redshifts z > 0.010) or 1.3% (limiting it to z > 0.023), a more significant correction than that taken into account already. Nonetheless, we show that one would need a very rare fluctuation to fully explain the offset in the Hubble rates. If this tension is further strengthened, a cosmology beyond the Standard Model may prove necessary.

  18. Observational constraints on Hubble parameter in viscous generalized Chaplygin gas

    Science.gov (United States)

    Thakur, P.

    2018-04-01

    Cosmological model with viscous generalized Chaplygin gas (in short, VGCG) is considered here to determine observational constraints on its equation of state parameters (in short, EoS) from background data. These data consists of H(z)-z (OHD) data, Baryonic Acoustic Oscillations peak parameter, CMB shift parameter and SN Ia data (Union 2.1). Best-fit values of the EoS parameters including present Hubble parameter (H0) and their acceptable range at different confidence limits are determined. In this model the permitted range for the present Hubble parameter and the transition redshift (zt) at 1σ confidence limits are H0= 70.24^{+0.34}_{-0.36} and zt=0.76^{+0.07}_{-0.07} respectively. These EoS parameters are then compared with those of other models. Present age of the Universe (t0) have also been determined here. Akaike information criterion and Bayesian information criterion for the model selection have been adopted for comparison with other models. It is noted that VGCG model satisfactorily accommodates the present accelerating phase of the Universe.

  19. Observatory verification: principles and lessons learned in commissioning the Hubble Observatory following shuttle servicing

    Science.gov (United States)

    Biagetti, Carl

    2002-12-01

    The Hubble Space Telescope (HST) was designed for periodic servicing by Space Shuttle astronauts. These servicing missions enable state-of-the-art upgrades to the Observatory"s scientific capabilities, engineering upgrades and refurbishments, and, when needed, repairs. Since its launch and deployment in 1990, there have been four space shuttle missions to service the HST. (A fifth is currently scheduled for March 2004) In each case, upon completion of a servicing mission and the astronauts" release of the telescope, HST undergoes a period of intense and highly coordinated verification activities designed to commission the Observatory"s new capabilities and components for normal operations. The commissioning program following the 1990 deployment mission was known as OV/SV (orbital verification/science verification) while each of those following the subsequent Shuttle servicings has become known as servicing mission observatory verification, or SMOV. The 1990 OV/SV activities were hampered and greatly complicated by the problem of spherical aberration of the primary optics. The first servicing mission, SM1, in December 1993, is still remembered as the Hubble repair mission, having restored HST"s optics to within the original mission specifications. SMOV1 was important not only for confirming the optical fixes with spectacular early images, but also for demonstrating the effectiveness of "success-oriented" scheduling as a technique for orbital verification. The second servicing mission, SM2, in February 1997, greatly enhanced the scientific capabilities of HST but did so at the cost of greatly increased mechanical and operational complexity. The resulting SMOV2 program was accordingly the most complicated and ambitious till then and, as it turned out, the most responsive and resilient, as the newly installed instruments presented serious, unforeseen on-orbit problems. The third servicing mission, SM3a, carried out in December 1999, was essentially an emergency mission

  20. Space space space

    CERN Document Server

    Trembach, Vera

    2014-01-01

    Space is an introduction to the mysteries of the Universe. Included are Task Cards for independent learning, Journal Word Cards for creative writing, and Hands-On Activities for reinforcing skills in Math and Language Arts. Space is a perfect introduction to further research of the Solar System.

  1. The Ks-band Tully–Fisher Relation – A Determination of the Hubble ...

    Indian Academy of Sciences (India)

    The Hubble Law is a key component of cosmological theory and. 93. Page 2. 94. David G. Russell the current value of the Hubble parameter (H0) provides an important constraint on cosmological models (e.g., Spergel et al. 2003, 2006; Hinshaw et al. 2009; Dunkley et al. 2009; Komatsu et al. 2009). Determination of the ...

  2. Stable exponential cosmological solutions with zero variation of G and three different Hubble-like parameters in the Einstein-Gauss-Bonnet model with a Λ-term

    Energy Technology Data Exchange (ETDEWEB)

    Ernazarov, K.K. [RUDN University, Institute of Gravitation and Cosmology, Moscow (Russian Federation); Ivashchuk, V.D. [RUDN University, Institute of Gravitation and Cosmology, Moscow (Russian Federation); VNIIMS, Center for Gravitation and Fundamental Metrology, Moscow (Russian Federation)

    2017-06-15

    We consider a D-dimensional gravitational model with a Gauss-Bonnet term and the cosmological term Λ. We restrict the metrics to diagonal cosmological ones and find for certain Λ a class of solutions with exponential time dependence of three scale factors, governed by three non-coinciding Hubble-like parameters H > 0, h{sub 1} and h{sub 2}, corresponding to factor spaces of dimensions m > 2, k{sub 1} > 1 and k{sub 2} > 1, respectively, with k{sub 1} ≠ k{sub 2} and D = 1 + m + k{sub 1} + k{sub 2}. Any of these solutions describes an exponential expansion of 3d subspace with Hubble parameter H and zero variation of the effective gravitational constant G. We prove the stability of these solutions in a class of cosmological solutions with diagonal metrics. (orig.)

  3. The MUSE Hubble Ultra Deep Field Survey. IV. Global properties of C III] emitters

    Science.gov (United States)

    Maseda, Michael V.; Brinchmann, Jarle; Franx, Marijn; Bacon, Roland; Bouwens, Rychard J.; Schmidt, Kasper B.; Boogaard, Leindert A.; Contini, Thierry; Feltre, Anna; Inami, Hanae; Kollatschny, Wolfram; Marino, Raffaella A.; Richard, Johan; Verhamme, Anne; Wisotzki, Lutz

    2017-11-01

    The C III] λλ1907, 1909 emission doublet has been proposed as an alternative to Lyman-α in redshift confirmations of galaxies at z ≳ 6 since it is not attenuated by the largely neutral intergalactic medium at these redshifts and is believed to be strong in the young, vigorously star-forming galaxies present at these early cosmic times. We present a statistical sample of 17 C III]-emitting galaxies beyond z 1.5 using 30 h deep VLT/MUSE integral field spectroscopy covering 2 square arcminutes in the Hubble Deep Field South (HDFS) and Ultra Deep Field (UDF), achieving C III] sensitivities of 2 × 10-17 erg s-1 cm-2 in the HDFS and 7 × 10-18 erg s-1 cm-2 in the UDF. The rest-frame equivalent widths range from 2 to 19 Å. These 17 galaxies represent 3% of the total sample of galaxies found between 1.5 ≲ z ≲ 4. They also show elevated star formation rates, lower dust attenuation, and younger mass-weighted ages than the general population of galaxies at the same redshifts. Combined with deep slitless grism spectroscopy from the HST/WFC3 in the UDF, we can tie the rest-frame ultraviolet C III] emission to rest-frame optical emission lines, namely [O III] λ5007, finding a strong correlation between the two. Down to the flux limits that we observe ( 1 × 10-18 erg s-1 cm-2 with the grism data in the UDF), all objects with a rest-frame [O III] λλ4959, 5007 equivalent width in excess of 250 Å, the so-called extreme emission line galaxies, have detections of C III] in our MUSE data. More detailed studies of the C III]-emitting population at these intermediate redshifts will be crucial to understand the physical conditions in galaxies at early cosmic times and to determine the utility of C III] as a redshift tracer. Based on observations made with ESO telescopes at the La Silla Paranal Observatory under program IDs 60.A-9100(C), 094.A-2089(B), 095.A-0010(A), 096.A-0045(A), and 096.A-0045(B). This work is also based on observations made with the NASA/ESA Hubble

  4. Initial Hubble Diagram Results from the Nearby Supernova Factory

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, S. [Lab. Nuclear and High-Energy Physics (LPNHE), Paris (France); Aldering, G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Antilogus, P. [Lab. Nuclear and High-Energy Physics (LPNHE), Paris (France); Aragon, C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Baltay, C. [Yale Univ., New Haven, CT (United States); Bongard, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Buton, C [Inst. of Nuclear Physics of Lyon (France); Childress, M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Copin, Y. [Inst. of Nuclear Physics of Lyon (France); Gangler, E. [Inst. of Nuclear Physics of Lyon (France); Loken, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nugent, P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pain, R. [Lab. Nuclear and High-Energy Physics (LPNHE), Paris (France); Pecontal, E. [Center of Research Astrophysics of Lyon (CRAL) (France); Pereira, R. [Lab. Nuclear and High-Energy Physics (LPNHE), Paris (France); Perlmutter, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rabinowitz, D. [Yale Univ., New Haven, CT (United States); Rigaudier, G. [Center of Research Astrophysics of Lyon (CRAL) (France); Ripoche, P. [Lab. Nuclear and High-Energy Physics (LPNHE), Paris (France); Runge, K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Scalzo, R. [Yale Univ., New Haven, CT (United States); Smadja, G. [Inst. of Nuclear Physics of Lyon (France); Tao, C. [Inst. of Nuclear Physics of Lyon (France); Thomas, R. C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wu, C. [Lab. Nuclear and High-Energy Physics (LPNHE), Paris (France)

    2017-07-06

    The use of Type Ia supernovae as distance indicators led to the discovery of the accelerating expansion of the universe a decade ago. Now that large second generation surveys have significantly increased the size and quality of the high-redshift sample, the cosmological constraints are limited by the currently available sample of ~50 cosmologically useful nearby supernovae. The Nearby Supernova Factory addresses this problem by discovering nearby supernovae and observing their spectrophotometric time development. Our data sample includes over 2400 spectra from spectral timeseries of 185 supernovae. This talk presents results from a portion of this sample including a Hubble diagram (relative distance vs. redshift) and a description of some analyses using this rich dataset.

  5. A Measurement of the Hubble Constant Using Galaxy Redshift Surveys

    Science.gov (United States)

    Wang, Yuting; Xu, Lixin; Zhao, Gong-Bo

    2017-11-01

    We perform a measurement of the Hubble constant, H 0, using the latest baryonic acoustic oscillation (BAO) measurements from galaxy surveys of 6dFGS, SDSS DR7 Main Galaxy Sample, BOSS DR12 sample, and eBOSS DR14 quasar sample, in the framework of a flat ΛCDM model. Based on the Kullback-Leibler divergence, we examine the consistency of H 0 values derived from various data sets. We find that our measurement is consistent with that derived from Planck and with the local measurement of H 0 using the Cepheids and type Ia supernovae. We perform forecasts on H 0 from future BAO measurements, and find that the uncertainty of H 0 determined by future BAO data alone, including complete eBOSS, DESI, and Euclid-like, is comparable with that from local measurements.

  6. Spectroscopic Properties of Star-Forming Host Galaxies and Type Ia Supernova Hubble Residuals in a Nearly Unbiased Sample

    Energy Technology Data Exchange (ETDEWEB)

    D' Andrea, Chris B. [Univ. of Pennsylvania, Philadelphia, PA (United States); et al.

    2011-12-20

    We examine the correlation between supernova host galaxy properties and their residuals on the Hubble diagram. We use supernovae discovered during the Sloan Digital Sky Survey II - Supernova Survey, and focus on objects at a redshift of z < 0.15, where the selection effects of the survey are known to yield a complete Type Ia supernova sample. To minimize the bias in our analysis with respect to measured host-galaxy properties, spectra were obtained for nearly all hosts, spanning a range in magnitude of -23 < M_r < -17. In contrast to previous works that use photometric estimates of host mass as a proxy for global metallicity, we analyze host-galaxy spectra to obtain gas-phase metallicities and star-formation rates from host galaxies with active star formation. From a final sample of ~ 40 emission-line galaxies, we find that light-curve corrected Type Ia supernovae are ~ 0.1 magnitudes brighter in high-metallicity hosts than in low-metallicity hosts. We also find a significant (> 3{\\sigma}) correlation between the Hubble residuals of Type Ia supernovae and the specific star-formation rate of the host galaxy. We comment on the importance of supernova/host-galaxy correlations as a source of systematic bias in future deep supernova surveys.

  7. Spectroscopic observations of Hot-Jupiters with the Hubble WFC3 camera

    Science.gov (United States)

    Damiano, M.; Morello, G.; Tsiaras, A.; Zingales, T.; Tinetti, G.

    2017-09-01

    Thousands of exoplanets have been discovered with a huge range of masses, sizes and orbits. The next step to characterize them is to study their atmosphere. The atmospheres of giant planets are mostly made of hydrogen and helium. The relevant questions therefore concern the amounts of all elements other than hydrogen and helium, i.e. the heavy elements, that are present. The atmospheres of hot Jupiters present a critical advantage compared to the planets of the Solar System: their high temperature. Unlike Jupiter and Saturn, there is no cold trap in their atmosphere for species such as H2O, CH4, NH3, CO2 etc., which condense at much colder temperatures. Observations of hot gaseous exoplanets can therefore provide a unique access to their elementary composition (especially C, O, N, S) and enable the understanding of the early stage of planetary and atmospheric formation during the nebular phase and the following few millions years. In this context Hubble Space Telescope has been a key instrument to start achieving some common behaviour among Hot Jupiters. Here I present new spectroscopic observations of hot-Jupiters' atmospheres obtained with the WFC3 camera. In this presentation I will focus on the data reduction method used and on the interpretation of the results through state of the art spectral retrieval models.

  8. Hubble Tarantula Treasury Project: Unraveling Tarantula's Web. I. Observational Overview and First Results

    Science.gov (United States)

    Sabbi, E.; Anderson, J.; Lennon, D. J.; van der Marel, R. P.; Aloisi, A.; Boyer, Martha L.; Cignoni, M.; De Marchi, G.; De Mink, S. E.; Evans, C. J.; hide

    2013-01-01

    The Hubble Tarantula Treasury Project (HTTP) is an ongoing panchromatic imaging survey of stellar populations in the Tarantula Nebula in the Large Magellanic Cloud that reaches into the sub-solar mass regime (parallel to study this remarkable region in the near-ultraviolet, optical, and near-infrared spectral regions, including narrow-band H(alpha) images. The combination of all these bands provides a unique multi-band view. The resulting maps of the stellar content of the Tarantula Nebula within its main body provide the basis for investigations of star formation in an environment resembling the extreme conditions found in starburst galaxies and in the early universe. Access to detailed properties of individual stars allows us to begin to reconstruct the temporal and spatial evolution of the stellar skeleton of the Tarantula Nebula over space and time on a sub-parsec scale. In this first paper we describe the observing strategy, the photometric techniques, and the upcoming data products from this survey and present preliminary results obtained from the analysis of the initial set of near-infrared observations.

  9. Isochrone Fitting of Hubble Photometry in UV–VIS–IR Bands

    Science.gov (United States)

    Barker, Hallie; Paust, Nathaniel E. Q.

    2018-03-01

    We present new isochrone fits to color–magnitude diagrams from Hubble Space Telescope Wide Field Camera 3 and Advanced Camera for Surveys photometry of the globular clusters M13 and M80 in five bands from the ultraviolet to near-infrared. Isochrone fits to the photometry using the Dartmouth Stellar Evolution Program (DSEP), the PAdova and TRieste Stellar Evolution Code (PARSEC), and MESA Isochrones and Stellar Tracks (MIST) are examined to study the isochrone morphology. Additionally, cluster ages, extinctions, and distances are found from the visible-infrared color–magnitude diagrams. We conduct careful qualitative analysis on the inconsistencies of the fits across twelve color combinations of the five observed bands, and find that the (F606W‑F814W) color generally produces very good fits, but that there are large discrepancies when the data is fit using colors including UV bands for all three models. We also find that the best fits in the UV are achieved using MIST isochrones, but that they require metallicities that are lower than the other two models, as well published spectroscopic values. Finally, we directly compare DSEP and PARSEC by performing isochrone-isochrone fitting, and find that, for globular cluster aged populations, similar appearing PARSEC isochrones are on average 1.5 Gyr younger than DSEP isochrones. We find that the two models become less discrepant at lower metallicities.

  10. The Luminosity Function of Star Clusters in 20 Star-forming Galaxies Based on Hubble Legacy Archive Photometry

    Science.gov (United States)

    Whitmore, Bradley C.; Chandar, Rupali; Bowers, Ariel S.; Larsen, Soeren; Lindsay, Kevin; Ansari, Asna; Evans, Jessica

    2014-04-01

    brighter than MI = -9 (log N). We also examine the magnitude of the brightest cluster versus log SFR for a sample including both dwarf galaxies and ULIRGs. This shows that the correlation extends over roughly six orders of magnitude but with scatter that is larger than for our spiral sample, probably because of the high levels of extinction in many of the LIRGs. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Also based on data obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA), and the Canadian Astronomy Data Centre (CADC/NRC/CSA). Support for Program number 11781 was provided by NASA through a grant from the Space Telescope Science Institute.

  11. Mach's Principle to Hubble's Law and Light Relativity

    Science.gov (United States)

    Zhang, Tianxi

    2018-01-01

    Discovery of the redshift-distance relation to be linear (i.e. Hubble's law) for galaxies in the end of 1920s instigated us to widely accept expansion of the universe, originated from a big bang around 14 billion years ago. Finding of the redshift-distance relation to be weaker than linear for distant type Ia supernovae nearly two decades ago further precipitated us to largely agree with recent acceleration of the universe, driven by the mysterious dark energy. The time dilation measured for supernovae has been claimed as a direct evidence for the expansion of the universe, but scientists could not explain why quasars and gamma-ray bursts had not similar time dilations. Recently, an anomaly was found in the standard template for the width of supernova light curves to be proportional to the wavelength, which exactly removed the time dilation of supernovae and hence was strongly inconsistent with the conventional redshift mechanism. In this study, we have derived a new redshift-distance relation from Mach's principle with light relativity that describes the effect of light on spacetime as well as the influence of disturbed spacetime on the light inertia or frequency. A moving object or photon, because of its continuously keeping on displacement, disturbs the rest of the entire universe or distorts/curves the spacetime. The distorted or curved spacetime then generates an effective gravitational force to act back on the moving object or photon, so that reduces the object inertia or photon frequency. Considering the disturbance of spacetime by a photon is extremely weak, we have modelled the effective gravitational force to be Newtonian and derived the new redshift-distance relation that can not only perfectly explain the redshift-distance measurement of distant type Ia supernovae but also inherently obtain Hubble's law as an approximate at small redshift. Therefore, the result obtained from this study does neither support the acceleration of the universe nor the

  12. A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT

    Energy Technology Data Exchange (ETDEWEB)

    Riess, Adam G.; Scolnic, Dan; Jones, David O. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD (United States); Macri, Lucas M.; Hoffmann, Samantha L.; Yuan, Wenlong; Brown, Peter J. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX (United States); Casertano, Stefano [Space Telescope Science Institute, Baltimore, MD (United States); Filippenko, Alexei V.; Tucker, Brad E. [Department of Astronomy, University of California, Berkeley, CA (United States); Reid, Mark J.; Challis, Peter [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Silverman, Jeffrey M. [Department of Astronomy, University of Texas, Austin, TX (United States); Chornock, Ryan [Astrophysical Institute, Department of Physics and Astronomy, Ohio University, Athens, OH (United States); Foley, Ryan J., E-mail: ariess@stsci.edu [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL (United States)

    2016-07-20

    We use the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) to reduce the uncertainty in the local value of the Hubble constant from 3.3% to 2.4%. The bulk of this improvement comes from new near-infrared (NIR) observations of Cepheid variables in 11 host galaxies of recent type Ia supernovae (SNe Ia), more than doubling the sample of reliable SNe Ia having a Cepheid-calibrated distance to a total of 19; these in turn leverage the magnitude-redshift relation based on ∼300 SNe Ia at z < 0.15. All 19 hosts as well as the megamaser system NGC 4258 have been observed with WFC3 in the optical and NIR, thus nullifying cross-instrument zeropoint errors in the relative distance estimates from Cepheids. Other noteworthy improvements include a 33% reduction in the systematic uncertainty in the maser distance to NGC 4258, a larger sample of Cepheids in the Large Magellanic Cloud (LMC), a more robust distance to the LMC based on late-type detached eclipsing binaries (DEBs), HST observations of Cepheids in M31, and new HST -based trigonometric parallaxes for Milky Way (MW) Cepheids. We consider four geometric distance calibrations of Cepheids: (i) megamasers in NGC 4258, (ii) 8 DEBs in the LMC, (iii) 15 MW Cepheids with parallaxes measured with HST /FGS, HST /WFC3 spatial scanning and/or Hipparcos , and (iv) 2 DEBs in M31. The Hubble constant from each is 72.25 ± 2.51, 72.04 ± 2.67, 76.18 ± 2.37, and 74.50 ± 3.27 km s{sup 1} Mpc{sup 1}, respectively. Our best estimate of H {sub 0} = 73.24 ± 1.74 km s{sup 1} Mpc{sup 1} combines the anchors NGC 4258, MW, and LMC, yielding a 2.4% determination (all quoted uncertainties include fully propagated statistical and systematic components). This value is 3.4 σ higher than 66.93 ± 0.62 km s{sup 1} Mpc{sup 1} predicted by ΛCDM with 3 neutrino flavors having a mass of 0.06 eV and the new Planck data, but the discrepancy reduces to 2.1 σ relative to the prediction of 69.3 ± 0.7 km s{sup 1} Mpc{sup 1} based on the

  13. FIRST-YEAR SLOAN DIGITAL SKY SURVEY-II SUPERNOVA RESULTS: HUBBLE DIAGRAM AND COSMOLOGICAL PARAMETERS

    International Nuclear Information System (INIS)

    Kessler, Richard; Frieman, Joshua A.; Becker, Andrew C.; Vanderplas, Jake; Cinabro, David; Marriner, John; Davis, Tamara M.; Dilday, Benjamin; Jha, Saurabh W.; Holtzman, Jon; Lampeitl, Hubert; Smith, Mathew; Nichol, Robert C.; Sako, Masao; Zheng Chen; Bassett, Bruce; Elson, Ed; Bender, Ralf; Depoy, Darren L.; Doi, Mamoru

    2009-01-01

    We present measurements of the Hubble diagram for 103 Type Ia supernovae (SNe) with redshifts 0.04 V = 2.18 ± 0.14 stat ± 0.48 syst , and find that the intrinsic distribution of host-galaxy extinction is well fitted by an exponential function, P(A V ) = exp(-A V /τ V ), with τ V = 0.334 ± 0.088 mag. We combine the SDSS-II measurements with new distance estimates for published SN data from the ESSENCE survey, the Supernova Legacy Survey (SNLS), the Hubble Space Telescope (HST), and a compilation of Nearby SN Ia measurements. A new feature in our analysis is the use of detailed Monte Carlo simulations of all surveys to account for selection biases, including those from spectroscopic targeting. Combining the SN Hubble diagram with measurements of baryon acoustic oscillations from the SDSS Luminous Red Galaxy sample and with cosmic microwave background temperature anisotropy measurements from the Wilkinson Microwave Anisotropy Probe, we estimate the cosmological parameters w and Ω M , assuming a spatially flat cosmological model (FwCDM) with constant dark energy equation of state parameter, w. We also consider constraints upon Ω M and Ω Λ for a cosmological constant model (ΛCDM) with w = -1 and non-zero spatial curvature. For the FwCDM model and the combined sample of 288 SNe Ia, we find w = -0.76 ± 0.07(stat) ± 0.11(syst), Ω M = 0.307 ± 0.019(stat) ± 0.023(syst) using MLCS2K2 and w = -0.96 ± 0.06(stat) ± 0.12(syst), Ω M = 0.265 ± 0.016(stat) ± 0.025(syst) using the SALT-II fitter. We trace the discrepancy between these results to a difference in the rest-frame UV model combined with a different luminosity correction from color variations; these differences mostly affect the distance estimates for the SNLS and HST SNe. We present detailed discussions of systematic errors for both light-curve methods and find that they both show data-model discrepancies in rest-frame U band. For the SALT-II approach, we also see strong evidence for redshift

  14. Micrometeoroid Impacts on the Hubble Sace Telescope Wide Field and Planetary Camera 2: Ion Beam Analysis of Subtle Impactor Traces

    Science.gov (United States)

    Grime, G. W.; Webb, R. P.; Jeynes, C.; Palitsin, V. V.; Colaux, J. L.; Kearsley, A. T.; Ross, D. K.; Anz-Meador, P.; Liou, J. C.; Opiela, J.; hide

    2014-01-01

    Recognition of origin for particles responsible for impact damage on spacecraft such as the Hubble Space Telescope (HST) relies upon postflight analysis of returned materials. A unique opportunity arose in 2009 with collection of the Wide Field and Planetary Camera 2 (WFPC2) from HST by shuttle mission STS-125. A preliminary optical survey confirmed that there were hundreds of impact features on the radiator surface. Following extensive discussion between NASA, ESA, NHM and IBC, a collaborative research program was initiated, employing scanning electron microscopy (SEM) and ion beam analysis (IBA) to determine the nature of the impacting grains. Even though some WFPC2 impact features are large, and easily seen without the use of a microscope, impactor remnants may be hard to find.

  15. Maintaining outer space for peaceful purposes through international cooperation

    Science.gov (United States)

    Reese, George E.; Thacher, David J.; Kupperman, Helen S.

    1988-01-01

    NASA activities in support of international cooperation in space exploration and exploitation are briefly reviewed, with a focus on their compatibility with UN treaties. Particular attention is given to the provisions of the National Aeronautics and Space Act of 1958 and other applicable legislation, the over 1000 bilateral and international agreements NASA has entered into since 1958, international participation in currently ongoing NASA projects (Hubble Space Telescope, Galileo, Ulysses, Rosat, the D-2 Spacelab mission), and plans for the International Space Station.

  16. Systematics in the gamma-ray burst Hubble diagram

    Science.gov (United States)

    Cardone, V. F.; Perillo, M.; Capozziello, S.

    2011-11-01

    Because of their enormous energy release, which allows us to detect them up to a very high redshift, gamma-ray bursts (GRBs) have recently attracted a lot of interest with regards to probing the Hubble diagram (HD) deep into the matter-dominated era; thus, GRBs complement Type Ia supernovae (SNe Ia). However, with the lack of a local GRB sample, it is not easy to calibrate the scaling relations proposed as an equivalent to the Phillips law to standardize GRBs, because of the need to estimate the GRB luminosity distance in a model-independent way. We consider here three different calibration methods, based on the use of a fiducial ΛCDM model, on cosmographic parameters and on the local regression on SNe Ia. We find that the calibration coefficients and the intrinsic scatter do not significantly depend on the adopted calibration procedure. We then investigate the evolution of these parameters with the redshift. We find no statistically motivated improvement in the likelihood, so the no-evolution assumption is actually a well-founded working hypothesis. Under this assumption, we then consider possible systematics effects on the HDs introduced by the calibration method, the averaging procedure and the homogeneity of the sample, arguing against any significant bias. We nevertheless stress that a larger GRB sample with smaller uncertainties is needed to definitely conclude that the different systematics considered here have indeed a negligible impact on the HDs, thus strengthening the use of GRBs as cosmological tools.

  17. Images From Hubbles's ACS Tell A Tale Of Two Record-Breaking Galaxy Clusters

    Science.gov (United States)

    2004-01-01

    Looking back in time nearly 9 billion years, an international team of astronomers found mature galaxies in a young universe. The galaxies are members of a cluster of galaxies that existed when the universe was only 5 billion years old, or about 35 percent of its present age. This compelling evidence that galaxies must have started forming just after the big bang was bolstered by observations made by the same team of astronomers when they peered even farther back in time. The team found embryonic galaxies a mere 1.5 billion years after the birth of the cosmos, or 10 percent of the universe's present age. The "baby galaxies" reside in a still-developing cluster, the most distant proto-cluster ever found. The Advanced Camera for Surveys (ACS) aboard NASA's Hubble Space Telescope was used to make observations of the massive cluster, RDCS 1252.9-2927, and the proto-cluster, TN J1338-1942. Observations by NASA's Chandra X-ray Observatory yielded the mass and heavy element content of RDCS 1252, the most massive known cluster for that epoch. These observations are part of a coordinated effort by the ACS science team to track the formation and evolution of clusters of galaxies over a broad range of cosmic time. The ACS was built especially for studies of such distant objects. These findings further support observations and theories that galaxies formed relatively early in the history of the cosmos. The existence of such massive clusters in the early universe agrees with a cosmological model wherein clusters form from the merger of many sub-clusters in a universe dominated by cold dark matter. The precise nature of cold dark matter, however, is still not known. The first Hubble study estimated that galaxies in RDCS 1252 formed the bulk of their stars more than 11 billion years ago (at redshifts greater than 3). The results were published in the Oct. 20, 2003 issue of the Astrophysical Journal. The paper's lead author is John Blakeslee of the Johns Hopkins University in

  18. The Hubble constant estimation using 18 gravitational lensing time delays

    Science.gov (United States)

    Jaelani, Anton T.; Premadi, Premana W.

    2014-03-01

    Gravitational lens time delay method has been used to estimate the rate of cosmological expansion, called the Hubble constant, H0, independently of the standard candle method. This gravitational lensing method requires a good knowledge of the lens mass distribution, reconstructed using the lens image properties. The observed positions of the images, and the redshifts of the lens and the images serve as strong constraints to the lens equations, which are then solved as a set of simultaneous linear equations. Here we made use of a non-parametric technique to reconstruct the lens mass distribution, which is manifested in a linear equations solver named PixeLens. Input for the calculation is chosen based on prior known parameters obtained from analyzed result of the lens case observations, including time-delay, position angles of the images and the lens, and their redshifts. In this project, 18 fairly well studied lens cases are further grouped according to a number of common properties to examine how each property affects the character of the data, and therefore affects the calculation of H0. The considered lens case properties are lens morphology, number of image, completeness of time delays, and symmetry of lens mass distribution. Analysis of simulation shows that paucity of constraints on mass distribution of a lens yields wide range value of H0, which reflects the uniqueness of each lens system. Nonetheless, gravitational lens method still yields H0 within an acceptable range of value when compared to those determined by many other methods. Grouping the cases in the above manner allowed us to assess the robustness of PixeLens and thereby use it selectively. In addition, we use glafic, a parametric mass reconstruction solver, to refine the mass distribution of one lens case, as a comparison.

  19. Searching for High-redshift Galaxies in Hubble Space Telescope Deep Data

    OpenAIRE

    Calvi, Valentina

    2014-01-01

    The history of our Universe spans 13.7 billions of years and could be divided into several stages from the Big Bang up to now. Around 370 000 years after the Big Bang (z~1100) the temperature of the Universe low- ered enough for the first simple atoms to form. Matter and radiation decoupled, and the Universe became transparent to radiation. Cosmic microwave background (CMB) photons that we detect nowadays were last scattered at z~1100 and, since then, have been traveling in straight line. ...

  20. The grating carrousel mechanism of the Goddard High Resolution Spectrograph for the Hubble Space Telescope

    Science.gov (United States)

    Ebbets, Dennis; Christon, Phil; Garner, Harry

    1989-09-01

    The active optical elements of the Goddard High Resolution Spectrograph (GHRS) consist of five plane diffraction gratings, one echelle and four nondispersive mirrors. The instrument has eleven modes for ultraviolet spectroscopy and target acquistion. The gratings and mirrors are mounted on a precision mechanism which rotates to position the desired element in the optical path. The requirements for precise image location, high spectral resolution and efficient autonomous operations place stringent demands on its performance. The carrousel is rotated by a brushless dc torque motor, which produces a slew rate of six deg/sec. The 16-bit position encoder provides a granularity of approximately 20 arcsec encoder step. The active electronic control system maintains pointing stability with an rms jitter of 0.13 arcsec, which corresponds to 0.033 pixels of image motion at the detector. The repeatability is such that the image returns to within + or - 0.10 pixels of the same position over 90 percent of the time. This paper describes the mechanical and electronic design, the hardware logic and flight software algorithms which control operation.

  1. The Home Stretch Almost! Science with the Hubble and James Webb Space Telescope V

    Science.gov (United States)

    Ochs, Bill

    2017-01-01

    JWST has Made tremendous progress in the last few years. JWST Is fully immersed in integration and test, but testing JWST is a formable challenge. JWST's size, complexity, and cryogenic characteristics require a multifaceted test plan to verify mission readiness. Each of these tests are opportunities to uncover issues which must be corrected to be able to move forward. All observatory control, science planning, and science data processing operational systems are on schedule.?

  2. Latitudinal distribution of O2on ganymede: Observations with the hubble space telescope

    Science.gov (United States)

    Calvin, W.M.; Spencer, J.R.

    1997-01-01

    To help constrain the spatial variation of oxygen on Jupiter's satellite Ganymede, and hence have more clues to its mode of production and stability, we have obtained spectral data from the Faint Object Spectrograph (FOS) for a single pole-to-pole latitudinal strip, along with several Wide Field Planetary Camera 2 (WFPC2) images in three narrow band visible filters. All observations were made of the trailing hemisphere. In the FOS data we observe both visible absorptions at 0.577 and 0.627 ??m, associated with dense-phase oxygen (compressed gases, liquids, or solids). Filter options limited the WFPC2 observations to wavelengths near the weaker oxygen absorption at 0.627 ??m. These observations suggest that the dense-phase or dimer oxygen form is predominantly found in equatorial and mid-latitudes. The spectroscopic absorption feature appears in both bright and dark terrains but may be somewhat weaker in dark regions, which is consistent with the smaller mean photon path length in the surface in darker areas. Therefore, the abundance of oxygen appears more dependent on latitude and longitude constraints than surface albedo. At the highest latitudes, where the ratio spectra have a strong upturn toward the blue, the oxygen bands do not appear. This relation suggests that dimer oxygen and ozone (as seen by Galileo) have opposite trends with latitude. Possible causes include competition or variation in the preferred stable form, which depends on temperature, solar ultraviolet flux, and/or surface age; enhancement of O3at the poles due to plasma interactions; or viewing geometry effects that reduce the oxygen features at the poles when observed from Earth. The predominantly equatorial feature supports the production of O2through plasma bombardment and favors defect trapping over physical adsorption of the dimer molecules in the surface. We briefly consider the implications of Ganymede's magnetosphere for our understanding of O2and O3distribution on Ganymede. ?? 1997 Academic Press.

  3. Galactic bulges from Hubble Space Telescope NICMOS observations : Global scaling relations

    NARCIS (Netherlands)

    Balcells, Marc; Graham, Alister W.; Peletier, Reynier F.

    2007-01-01

    We investigate bulge and disk scaling relations using a volume-corrected sample of early-to intermediate-type disk galaxies in which, importantly, the biasing flux from additional nuclear components has been modeled and removed. Structural parameters are obtained from a seeing-convolved, bulge +

  4. Technical Consultation of the Hubble Space Telescope (HST) System Health Assessment: Analysis of HST Health

    Science.gov (United States)

    Gentz, Steven J.; Heard, Brent N.; Hodson, Robert F.; Pettit, Duane H.; Pandolf, John E.; Azzolini, John D.; Dennehy, Cornelius J.; Farley, Rodger E.; Kirchman, Frank J.; Spidaliere, Peter D.

    2005-01-01

    The NESC conducted an abridged independent examination of available information and personnel interviews to evaluate the current and anticipated state of the spacecraft subsystems and the parameters that describe the HST's health. These examinations included the projected timeliness of a robotic SM and whether the GSFC baseline concept is likely to provide the capability to extend the useful scientific life of the HST by an additional 5 years. The NESC team collected a broad spectrum of pertinent HST Program analyses, reports, briefings, and the results of the IPAO and the Aerospace Corporation AOA assessments as they relate to the degradation of the HST s health. This review included the state of the HST subsystems having the potential to impact the viability of the HST, but will not be serviced under the baseline robotic SM.

  5. Deep Hubble Space Telescope imaging of Sextans A. II. Cepheids and distance

    NARCIS (Netherlands)

    Dolphin, AE; Saha, A; Skillman, ED; Dohm-Palmer, RC; Tolstoy, E; Cole, AA; Gallagher, JS; Hoessel, JG; Mateo, M

    We have identified 82 short-period variable stars in Sextans A from deep Wide Field Planetary Camera 2 observations. All the periodic variables appear to be short-period Cepheids, with periods as small as 0.8 days for fundamental mode Cepheids and 0.5 days for first-overtone Cepheids. These objects

  6. Evidence for a dwarf galaxy remnant around M82 from deep Hubble Space Telescope imaging

    Science.gov (United States)

    Suwannajak, Chutipong; Sarajedini, Ata

    2018-01-01

    We present HST/ACS photometry of an over-dense region of stars in the southern halo of the edge-on galaxy M82. The structure is located at a projected distance of 5 kpc from the disk of the galaxy, and its color-magnitude diagram reveals a population of predominantly young stars, which are largely absent from the surrounding halo. Their ages are similar to those of the young stars formed in the tidal debris between M81, M82, and NGC3077 as a result of their interactions. We derive the mean metallicity of the surrounding stars, which are considered to be the halo population of M82, to be similar to that of the red giant branch (RGB) population of the halo of M81. However, the mean metallicity of the RGB in the over-dense structure is significantly more metal-rich than the halo. We theorize that this over-density existed as a dwarf galaxy prior to its interaction with M82 with the young stars forming later from the gas remaining in its main body.

  7. Hubble Space Telescope Ultraviolet Spectroscopy of Fourteen Low-Redshift Quasars

    DEFF Research Database (Denmark)

    Ganguly, Rajib; Brotherton, Michael S.; Arav, Nahum

    2007-01-01

    We present low-resolution ultraviolet spectra of 14 low redshift (z zz 1.4 Large Bright Quasar samples. By design, our objects sample luminosities in between these two surveys, and our four absorbed objects are consistent with the v ~ L^0.62 relation derived by Laor & Brandt (2002). Another quasa...

  8. The Hubble Space Telescope Snapshot Survey. IV - A summary of the search for gravitationally lensed quasars

    Science.gov (United States)

    Maoz, D.; Bahcall, J. N.; Schneider, D. P.; Bahcall, N. A.; Djorgovski, S.; Doxsey, R.; Gould, A.; Kirhakos, S.; Meylan, G.; Yanny, B.

    1993-01-01

    We report the concluding results of the HST Snapshot Survey for gravitationally lensed quasars. New observations of 153 high-luminosity z above 1 quasars are presented, bringing to 498 the total number of quasars observed in the survey. The new observations do not reveal new candidates for gravitational lensing. We present tables summarizing all of the snapshot observations, with measured V-magnitudes, accurate to 0.1 mag, for each of the quasars successfully observed. The observed frequency of lensing of quasars into multiple images is 3-6 out of 502, depending on whether one counts candidates that are not yet securely confirmed and cases in which clusters play a role. This frequency is in the range predicted by calculations with a vanishing cosmological constant, assuming galaxies can be modeled by unevolving isothermal spheres dominated in their centers by dark matter. The observed frequency is an order of magnitude lower than expected in such models when the universe is strongly dominated by a cosmological constant. This conclusion is, however, sensitive to the model assumptions and to the precise number of actual lensed quasars.

  9. The Lyman Alpha Reference Sample. II. Hubble Space Telescope Imaging Results, Integrated Properties, and Trends

    Czech Academy of Sciences Publication Activity Database

    Hayes, M.; Ostlin, G.; Duval, F.; Sandberg, A.; Guaita, L.; Melinder, J.; Adamo, A.; Schaerer, D.; Verhamme, A.; Orlitová, Ivana; Mas-Hesse, J. M.; Cannon, J.M.; Atek, H.; Kunth, D.; Laursen, P.; Oti-Floranes, H.; Pardy, S.; Rivera-Thorsen, T.; Herenz, E.Ch.

    2014-01-01

    Roč. 782, č. 1 (2014), 6/1-6/22 ISSN 0004-637X Institutional support: RVO:67985815 Keywords : cosmology: observations * galaxies: starburst Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.993, year: 2014

  10. Direct Detection of the Close Companion of Polaris With the Hubble Space Telescope

    National Research Council Canada - National Science Library

    Evans, Nancy R; Schaefer, Gail H; Bond, Howard E; Bono, Giuseppe; Karovska, Margarita; Nelan, Edmund; Sasselov, Dimitar D; Mason6, Brian D

    2008-01-01

    ... 1.04 yr later confirms orbital motion in a retrograde direction. By combining our two measures with the spectroscopic orbit of Kamper and an analysis of the Hipparcos and FK5 proper motions by Wielen et al...

  11. The Hubble Space Telescope advanced camera for surveys coma cluster survey. I. Survey objectives and design

    NARCIS (Netherlands)

    Carter, David; Goudfrooij, Paul; Mobasher, Bahram; Ferguson, Henry C.; Puzia, Thomas H.; Aguerri, Alfonso L.; Balcells, Marc; Batcheldor, Dan; Bridges, Terry J.; Davies, Jonathan I.; Erwin, Peter; Graham, Alister W.; Guzmán, Rafael; Hammer, Derek; Hornschemeier, Ann; Hoyos, Carlos; Hudson, Michael J.; Huxor, Avon; Jogee, Shardha; Komiyama, Yutaka; Lotz, Jennifer; Lucey, John R.; Marzke, Ronald O.; Merritt, David; Miller, Bryan W.; Miller, Neal A.; Mouhcine, Mustapha; Okamura, Sadanori; Peletier, Reynier F.; Phillipps, Steven; Poggianti, Bianca M.; Sharples, Ray M.; Smith, Russell J.; Trentham, Neil; Tully, R. Brent; Valentijn, Edwin; Verdoes Kleijn, Gijs

    2008-01-01

    We describe the HST ACS Coma Cluster Treasury survey, a deep two-passband imaging survey of one of the nearest rich clusters of galaxies, the Coma Cluster (Abell 1656). The survey was designed to cover an area of 740 arcmin2 in regions of different density of both galaxies and intergalactic medium

  12. Accelerated cosmological expansion without tension in the Hubble parameter. Fast evolution of the Hubble parameter H(z)

    Science.gov (United States)

    van Putten, Maurice H. P. M.

    2018-01-01

    The H0-tension problem poses a confrontation of dark energy driving latetime cosmological expansion measured by the Hubble parameter H(z) over an extended range of redshifts z. Distinct values H0 ≃ 73 km s-1 Mpcs-1 and H0 ≃ 68 km s-1 Mpcs-1 obtain from surveys of the Local Universe and, respectively, ΛCBM analysis of the CMB. These are representative of accelerated expansion with H'(0) ≃ 0 by and, respectively, H'(0) > 0 in ΛCDM, where is a fundamental frequency of the cosmological horizon in a Friedmann-Robertson-Walker universe with deceleration parameter q(z) = -1 + (1+z)H-1 H'(z). Explicit solution H(z) = H0 and, respectively, H(z) = H0 are here compared with recent data on H(z) over 0 ≲ z ≲ 2.The first is found to be free of tension with H0 from local surveys, while the latter is disfavored at 2:7σ A further confrontation obtains in galaxy dynamics by a finite sensitivity of inertia to background cosmology in weak gravity, putting an upper bound of m ≲ 10-30 eV on the mass of dark matter. A C0 onset to weak gravity at the de Sitter scale of acceleration adS = cH(z), where c denotes the velocity of light, can be seen in galaxy rotation curves covering 0 ≲ z ≲ 2 Weak gravity in galaxy dynamics hereby provides a proxy for cosmological evolution.

  13. The Hubble Frontier Fields: Engaging Multiple Audiences in Exploring the Cosmic Frontier

    Science.gov (United States)

    Lawton, Brandon L.; Smith, Denise A.; Summers, Frank; Ryer, Holly; Slivinski, Carolyn; Lotz, Jennifer M.

    2017-06-01

    The Hubble Frontier Fields is a multi-cycle program of six deep-field observations of strong-lensing galaxy clusters taken in parallel with six deep “blank fields.” The three-year long collaborative program began in late 2013 and is led by observations from NASA’s Great Observatories. The observations, now complete, allow astronomers to look deeper into the universe than ever before, and potentially uncover galaxies that are as much as 100 times fainter than what the telescopes can typically observe. The Frontier Fields science program is ideal for informing audiences about scientific advances and topics in STEM. The study of galaxy properties, statistics, optics, and Einstein’s theory of general relativity naturally leverages off of the science returns of the Frontier Fields program. As a result, the Space Telescope Science Institute’s Office of Public Outreach (OPO) has engaged multiple audiences over the past three years to follow the progress of the Frontier Fields.For over two decades, the STScI outreach program has sought to bring the wonders of the universe to the public and engage audiences in the adventure of scientific discovery. In addition, we are leveraging the reach of the new NASA’s Universe of Learning education program to bring the science of the Frontier Fields to informal education audiences. The main underpinnings of the STScI outreach program and the Universe of Learning education program are scientist-educator development teams, partnerships, and an embedded program evaluation component. OPO is leveraging the infrastructure of these education and outreach programs to bring the Frontier Fields science program to the education community and the public in a cost-effective way.This talk will feature highlights over the past three years of the program. We will highlight OPO’s strategies and infrastructure that allows for the quick delivery of groundbreaking science to the education community and public.

  14. Observational constraint on spherical inhomogeneity with CMB and local Hubble parameter

    Science.gov (United States)

    Tokutake, Masato; Ichiki, Kiyotomo; Yoo, Chul-Moon

    2018-03-01

    We derive an observational constraint on a spherical inhomogeneity of the void centered at our position from the angular power spectrum of the cosmic microwave background (CMB) and local measurements of the Hubble parameter. The late time behaviour of the void is assumed to be well described by the so-called Λ-Lemaȋtre-Tolman-Bondi (ΛLTB) solution. Then, we restrict the models to the asymptotically homogeneous models each of which is approximated by a flat Friedmann-Lemaȋtre-Robertson-Walker model. The late time ΛLTB models are parametrized by four parameters including the value of the cosmological constant and the local Hubble parameter. The other two parameters are used to parametrize the observed distance-redshift relation. Then, the ΛLTB models are constructed so that they are compatible with the given distance-redshift relation. Including conventional parameters for the CMB analysis, we characterize our models by seven parameters in total. The local Hubble measurements are reflected in the prior distribution of the local Hubble parameter. As a result of a Markov-Chains-Monte-Carlo analysis for the CMB temperature and polarization anisotropies, we found that the inhomogeneous universe models with vanishing cosmological constant are ruled out as is expected. However, a significant under-density around us is still compatible with the angular power spectrum of CMB and the local Hubble parameter.

  15. The MUSE Hubble Ultra Deep Field Survey. IX. Evolution of galaxy merger fraction since z ≈ 6

    Science.gov (United States)

    Ventou, E.; Contini, T.; Bouché, N.; Epinat, B.; Brinchmann, J.; Bacon, R.; Inami, H.; Lam, D.; Drake, A.; Garel, T.; Michel-Dansac, L.; Pello, R.; Steinmetz, M.; Weilbacher, P. M.; Wisotzki, L.; Carollo, M.

    2017-11-01

    We provide, for the first time, robust observational constraints on the galaxy major merger fraction up to z ≈ 6 using spectroscopic close pair counts. Deep Multi Unit Spectroscopic Explorer (MUSE) observations in the Hubble Ultra Deep Field (HUDF) and Hubble Deep Field South (HDF-S) are used to identify 113 secure close pairs of galaxies among a parent sample of 1801 galaxies spread over a large redshift range (0.2 < z < 6) and stellar masses (107-1011 M⊙), thus probing about 12 Gyr of galaxy evolution. Stellar masses are estimated from spectral energy distribution (SED) fitting over the extensive UV-to-NIR HST photometry available in these deep Hubble fields, adding Spitzer IRAC bands to better constrain masses for high-redshift (z ⩾ 3) galaxies. These stellar masses are used to isolate a sample of 54 major close pairs with a galaxy mass ratio limit of 1:6. Among this sample, 23 pairs are identified at high redshift (z ⩾ 3) through their Lyα emission. The sample of major close pairs is divided into five redshift intervals in order to probe the evolution of the merger fraction with cosmic time. Our estimates are in very good agreement with previous close pair counts with a constant increase of the merger fraction up to z ≈ 3 where it reaches a maximum of 20%. At higher redshift, we show that the fraction slowly decreases down to about 10% at z ≈ 6. The sample is further divided into two ranges of stellar masses using either a constant separation limit of 109.5 M⊙ or the median value of stellar mass computed in each redshift bin. Overall, the major close pair fraction for low-mass and massive galaxies follows the same trend. These new, homogeneous, and robust estimates of the major merger fraction since z ≈ 6 are in good agreement with recent predictions of cosmological numerical simulations. Based on observations made with ESO telescopes at the La Silla-Paranal Observatory under programmes 094.A-0289(B), 095.A-0010(A), 096.A-0045(A) and 096.A-0045

  16. The Galaxies Hubble Sequence Through CosmicTimes: Applying Parameter Optimization And Constraints From The Abundance Matching Technique To The 'Next Generation' of Large Cosmological Simulations.

    Science.gov (United States)

    Governato, Fabio

    The physical processes shaping the galaxies 'Hubble Sequence' are still poorly understood. Are gas outflows generated by Supernovae the main mechanism responsible for regulating star formation and the establishing the stellar mass - metallicity relation? What fraction of stars now in spheroids was originated in mergers? How does the environment of groups and clusters affect the evolution of galaxy satellites? The PI will study these problems analyzing a new set of state of the art hydro simulations of uniform cosmological volumes. This project has already been awarded a computational budget of 200 million CPU hours (but has only limited seed funding for science, hence this proposal). The best simulations will match the force and spatial resolution of the current best 'zoomed in' runs, as 'Eris' and will yield the first large statistical sample (1500+) of internally resolved galaxy systems with stellar masses ranging from from 10^7 to 10^10.5 solar masses. These simulations will allow us, for the very first time on such a large statistical set, to fully map the thermodynamical history of the baryons of internally resolved galaxies and identify the relative importance of the processes that shape their evolution as a function of stellar mass and cosmic time. As a novel, significant improvement over previous works we will introduce a new, unbiased statistical approach to the exploration of parameter space to optimize the model for star formation (SF) and feedback from supernovae and super massive back holes. This approach will also be used to evaluate the effects of resolution. The simulations will be run using ChaNGa, an improved version of Gasoline. Our flagship run will model a large volume of space (15.6k cubic Mpc) using 25 billion resolution elements. ChaNGa currently scales up to 35,000 cores and include a new version of the SPH implementation that drastically improves the description of temperature/density discontinuities and Kelvin-Helmholtz instabilities (and

  17. Near-UV Sources in the Hubble Ultra Deep Field: The Catalog

    Science.gov (United States)

    Gardner, Jonathan P.; Voyrer, Elysse; de Mello, Duilia F.; Siana, Brian; Quirk, Cori; Teplitz, Harry I.

    2009-01-01

    The catalog from the first high resolution U-band image of the Hubble Ultra Deep Field, taken with Hubble s Wide Field Planetary Camera 2 through the F300W filter, is presented. We detect 96 U-band objects and compare and combine this catalog with a Great Observatories Origins Deep Survey (GOODS) B-selected catalog that provides B, V, i, and z photometry, spectral types, and photometric redshifts. We have also obtained Far-Ultraviolet (FUV, 1614 Angstroms) data with Hubble s Advanced Camera for Surveys Solar Blind Channel (ACS/SBC) and with Galaxy Evolution Explorer (GALEX). We detected 31 sources with ACS/SBC, 28 with GALEX/FUV, and 45 with GALEX/NUV. The methods of observations, image processing, object identification, catalog preparation, and catalog matching are presented.

  18. NEAR-ULTRAVIOLET SOURCES IN THE HUBBLE ULTRA DEEP FIELD: THE CATALOG

    International Nuclear Information System (INIS)

    Voyer, Elysse N.; De Mello, Duilia F.; Quirk, Cori; Siana, Brian; Gardner, Jonathan P.; Teplitz, Harry I.

    2009-01-01

    The catalog from the first high-resolution U-band image of the Hubble Ultra Deep Field, taken with Hubble's Wide-Field Planetary Camera 2 through the F300W filter, is presented. We detect 96 U-band objects and compare and combine this catalog with a Great Observatories Origins Deep Survey B-selected catalog that provides B, V, i, and z photometry, spectral types, and photometric redshifts. We have also obtained far-ultraviolet (FUV, 1614 A) data with Hubble's Advanced Camera for Surveys Solar Blind Channel (ACS/SBC) and with GALEX. We detected 31 sources with ACS/SBC, 28 with GALEX/FUV, and 45 with GALEX/NUV. The methods of observations, image processing, object identification, catalog preparation, and catalog matching are presented.

  19. The MUSE Hubble Ultra Deep Field Survey. III. Testing photometric redshifts to 30th magnitude

    Science.gov (United States)

    Brinchmann, J.; Inami, H.; Bacon, R.; Contini, T.; Maseda, M.; Chevallard, J.; Bouché, N.; Boogaard, L.; Carollo, M.; Charlot, S.; Kollatschny, W.; Marino, R. A.; Pello, R.; Richard, J.; Schaye, J.; Verhamme, A.; Wisotzki, L.

    2017-11-01

    We tested the performance of photometric redshifts for galaxies in the Hubble Ultra Deep field down to 30th magnitude. We compared photometric redshift estimates from three spectral fitting codes from the literature (EAZY, BPZ and BEAGLE) to high quality redshifts for 1227 galaxies from the MUSE integral field spectrograph. All these codes can return photometric redshifts with bias |(zMUSE-pz) / (1 + zMUSE)| 3 they are systematically biased high by up to (zMUSE-pz) / (1 + zMUSE) = 0.05, an offset that can in part be explained by adjusting the amount of intergalactic absorption applied. In agreement with previous studies we find little difference in the performance of the different codes, but in contrast to those we find that adding extensive ground-based and IRAC photometry actually can worsen photo-z performance for faint galaxies. We find an outlier fraction, defined through |(zMUSE-pz) / (1 + zMUSE)| > 0.15, of 8% for BPZ and 10% for EAZY and BEAGLE, and show explicitly that this is a strong function of magnitude. While this outlier fraction is high relative to numbers presented in the literature for brighter galaxies, they are very comparable to literature results when the depth of the data is taken into account. Finally, we demonstrate that while a redshift might be of high confidence, the association of a spectrum to the photometric object can be very uncertain and lead to a contamination of a few percent in spectroscopic training samples that do not show up as catastrophic outliers, a problem that must be tackled in order to have sufficiently accurate photometric redshifts for future cosmological surveys.

  20. Space traveller to see stars born 13bn years ago

    CERN Multimedia

    Radford, T

    2004-01-01

    British scientists are working on the James Webb telescope, successor to tje Hubble space telescope. A supersensitive camera called Miri - mid infrared instrument - being built by an international team, will be a key part of the European and American instrument (1 page)

  1. Space exploration and colonization - Towards a space faring society

    Science.gov (United States)

    Hammond, Walter E.

    1990-01-01

    Development trends of space exploration and colonization since 1957 are reviewed, and a five-phase evolutionary program planned for the long-term future is described. The International Geosphere-Biosphere program which is intended to provide the database on enviromental changes of the earth as a global system is considered. Evolution encompasses the anticipated advantages of such NASA observation projects as the Hubble Space Telescope, the Gamma Ray Observatory, the Advanced X-Ray Astrophysics Facility, and the Cosmic Background Explorer. Attention is given to requirements for space colonization, including development of artificial gravity and countermeasures to mitigate zero gravity problems; robotics and systems aimed to minimize human exposure to the space environment; the use of nuclear propulsion; and international collaboration on lunar-Mars projects. It is recommended that nuclear energy sources be developed for both propulsion and as extraterrestrial power plants.

  2. Placental complications after a previous cesarean section

    OpenAIRE

    Milošević Jelena; Lilić Vekoslav; Tasić Marija; Radović-Janošević Dragana; Stefanović Milan; Antić Vladimir

    2009-01-01

    Introduction The incidence of cesarean section has been rising in the past 50 years. With the increased number of cesarean sections, the number of pregnancies with the previous cesarean section rises as well. The aim of this study was to establish the influence of the previous cesarean section on the development of placental complications: placenta previa, placental abruption and placenta accreta, as well as to determine the influence of the number of previous cesarean sections on the complic...

  3. From space down to Earth: An interview with Kathryn Sullivan

    Science.gov (United States)

    Balcerak, Ernie

    2011-10-01

    As the first American woman to walk in space, Kathryn Sullivan has had direct experience with space weather. Sullivan flew on three NASA shuttle missions. On her first, on space shuttle Challenger in 1984, she experienced extravehicular activity (EVA) during a 3-hour-long spacewalk. She also flew on the 1990 space shuttle Discovery flight that deployed the Hubble Space Telescope and the 1992 Spacelab mission dedicated to NASA's Mission to Planet Earth. She has logged a total of 532 hours in space.

  4. THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY. I. BRIGHT UV STARS IN THE BULGE OF M31

    International Nuclear Information System (INIS)

    Rosenfield, Philip; Johnson, L. Clifton; Dalcanton, Julianne J.; Williams, Benjamin F.; Gilbert, Karoline M.; Girardi, Léo; Bressan, Alessandro; Lang, Dustin; Guhathakurta, Puragra; Dorman, Claire E.; Howley, Kirsten M.; Lauer, Tod R.; Olsen, Knut A. G.; Bell, Eric F.; Bianchi, Luciana; Caldwell, Nelson; Dolphin, Andrew; Kalirai, Jason; Larsen, Søren S.; Rix, Hans-Walter

    2012-01-01

    As part of the Panchromatic Hubble Andromeda Treasury multi-cycle program, we observed a 12' × 6.'5 area of the bulge of M31 with the WFC3/UVIS filters F275W and F336W. From these data we have assembled a sample of ∼4000 UV-bright, old stars, vastly larger than previously available. We use updated Padova stellar evolutionary tracks to classify these hot stars into three classes: Post-AGB stars (P-AGB), Post-Early AGB (PE-AGB) stars, and AGB-manqué stars. P-AGB stars are the end result of the asymptotic giant branch (AGB) phase and are expected in a wide range of stellar populations, whereas PE-AGB and AGB-manqué (together referred to as the hot post-horizontal branch; HP-HB) stars are the result of insufficient envelope masses to allow a full AGB phase, and are expected to be particularly prominent at high helium or α abundances when the mass loss on the red giant branch is high. Our data support previous claims that most UV-bright sources in the bulge are likely hot (extreme) horizontal branch (EHB) stars and their progeny. We construct the first radial profiles of these stellar populations and show that they are highly centrally concentrated, even more so than the integrated UV or optical light. However, we find that this UV-bright population does not dominate the total UV luminosity at any radius, as we are detecting only the progeny of the EHB stars that are the likely source of the UV excess. We calculate that only a few percent of main-sequence stars in the central bulge can have gone through the HP-HB phase and that this percentage decreases strongly with distance from the center. We also find that the surface density of hot UV-bright stars has the same radial variation as that of low-mass X-ray binaries. We discuss age, metallicity, and abundance variations as possible explanations for the observed radial variation in the UV-bright population.

  5. Determination of the gravitational Hubble constant Hsub(g) from the low frequency 'atmospherics'

    International Nuclear Information System (INIS)

    Muheim, J.T.

    1983-01-01

    The author discusses the universal recession of the galaxy or the cluster of galaxies, performs calculations and looks at theoretical aspects of the determination of the Hubble constant. A strong comparison is possible to solid-state physics. The model produced yields some important consequences, and fundamental characteristics of the recession are given. (A.N.K.)

  6. The variance of the locally measured Hubble parameter explained with different estimators

    DEFF Research Database (Denmark)

    Odderskov, Io; Hannestad, Steen; Brandbyge, Jacob

    2017-01-01

    We study the expected variance of measurements of the Hubble constant, H0, as calculated in either linear perturbation theory or using non-linear velocity power spectra derived from N-body simulations. We compare the variance with that obtained by carrying out mock observations in the N-body simu......We study the expected variance of measurements of the Hubble constant, H0, as calculated in either linear perturbation theory or using non-linear velocity power spectra derived from N-body simulations. We compare the variance with that obtained by carrying out mock observations in the N......-body simulations, and show that the estimator typically used for the local Hubble constant in studies based on perturbation theory is different from the one used in studies based on N-body simulations. The latter gives larger weight to distant sources, which explains why studies based on N-body simulations tend...... of the percent determination of the Hubble constant in the local universe....

  7. Discovery of Hubble's Law as a Series of Type III Errors

    Science.gov (United States)

    Belenkiy, Ari

    2015-01-01

    Recently much attention has been paid to the history of the discovery of Hubble's law--the linear relation between the rate of recession of the remote galaxies and distance to them from Earth. Though historians of cosmology now mention several names associated with this law instead of just one, the motivation of each actor of that remarkable…

  8. Stellar kinematics across the Hubble sequence in the CALIFA survey : general properties and aperture corrections

    NARCIS (Netherlands)

    Falcón-Barroso, J.; Lyubenova, M.; van de Ven, G.; Mendez-Abreu, J.; Aguerri, J. A. L.; García-Lorenzo, B.; Bekeraité, S.; Sánchez, S. F.; Husemann, B.; García-Benito, R.; Mast, D.; Walcher, C. J.; Zibetti, S.; Barrera-Ballesteros, J. K.; Galbany, L.; Sánchez-Blázquez, P.; Singh, R.; van den Bosch, R. C. E.; Wild, V.; Zhu, L.; Bland-Hawthorn, J.; Cid Fernandes, R.; de Lorenzo-Cáceres, A.; Gallazzi, A.; González Delgado, R. M.; Marino, R. A.; Márquez, I.; Pérez, E.; Pérez, I.; Roth, M. M.; Rosales-Ortega, F. F.; Ruiz-Lara, T.; Wisotzki, L.; Ziegler, B.; Califa Collaboration,

    We present the stellar kinematic maps of a large sample of galaxies from the integral-field spectroscopic survey CALIFA. The sample comprises 300 galaxies displaying a wide range of morphologies across the Hubble sequence, from ellipticals to late-type spirals. This dataset allows us to

  9. Preoperative screening: value of previous tests.

    Science.gov (United States)

    Macpherson, D S; Snow, R; Lofgren, R P

    1990-12-15

    To determine the frequency of tests done in the year before elective surgery that might substitute for preoperative screening tests and to determine the frequency of test results that change from a normal value to a value likely to alter perioperative management. Retrospective cohort analysis of computerized laboratory data (complete blood count, sodium, potassium, and creatinine levels, prothrombin time, and partial thromboplastin time). Urban tertiary care Veterans Affairs Hospital. Consecutive sample of 1109 patients who had elective surgery in 1988. At admission, 7549 preoperative tests were done, 47% of which duplicated tests performed in the previous year. Of 3096 previous results that were normal as defined by hospital reference range and done closest to the time of but before admission (median interval, 2 months), 13 (0.4%; 95% CI, 0.2% to 0.7%), repeat values were outside a range considered acceptable for surgery. Most of the abnormalities were predictable from the patient's history, and most were not noted in the medical record. Of 461 previous tests that were abnormal, 78 (17%; CI, 13% to 20%) repeat values at admission were outside a range considered acceptable for surgery (P less than 0.001, frequency of clinically important abnormalities of patients with normal previous results with those with abnormal previous results). Physicians evaluating patients preoperatively could safely substitute the previous test results analyzed in this study for preoperative screening tests if the previous tests are normal and no obvious indication for retesting is present.

  10. Automatic electromagnetic valve for previous vacuum

    International Nuclear Information System (INIS)

    Granados, C. E.; Martin, F.

    1959-01-01

    A valve which permits the maintenance of an installation vacuum when electric current fails is described. It also lets the air in the previous vacuum bomb to prevent the oil ascending in the vacuum tubes. (Author)

  11. Concomitant and previous osteoporotic vertebral fractures.

    Science.gov (United States)

    Lenski, Markus; Büser, Natalie; Scherer, Michael

    2017-04-01

    Background and purpose - Patients with osteoporosis who present with an acute onset of back pain often have multiple fractures on plain radiographs. Differentiation of an acute osteoporotic vertebral fracture (AOVF) from previous fractures is difficult. The aim of this study was to investigate the incidence of concomitant AOVFs and previous OVFs in patients with symptomatic AOVFs, and to identify risk factors for concomitant AOVFs. Patients and methods - This was a prospective epidemiological study based on the Registry of Pathological Osteoporotic Vertebral Fractures (REPAPORA) with 1,005 patients and 2,874 osteoporotic vertebral fractures, which has been running since February 1, 2006. Concomitant fractures are defined as at least 2 acute short-tau inversion recovery (STIR-) positive vertebral fractures that happen concomitantly. A previous fracture is a STIR-negative fracture at the time of initial diagnostics. Logistic regression was used to examine the influence of various variables on the incidence of concomitant fractures. Results - More than 99% of osteoporotic vertebral fractures occurred in the thoracic and lumbar spine. The incidence of concomitant fractures at the time of first patient contact was 26% and that of previous fractures was 60%. The odds ratio (OR) for concomitant fractures decreased with a higher number of previous fractures (OR =0.86; p = 0.03) and higher dual-energy X-ray absorptiometry T-score (OR =0.72; p = 0.003). Interpretation - Concomitant and previous osteoporotic vertebral fractures are common. Risk factors for concomitant fractures are a low T-score and a low number of previous vertebral fractures in cases of osteoporotic vertebral fracture. An MRI scan of the the complete thoracic and lumbar spine with STIR sequence reduces the risk of under-diagnosis and under-treatment.

  12. Neutral Buoyancy Simulator- NB38 -Space Telescope

    Science.gov (United States)

    1980-01-01

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Pictured is MSFC's Neutral Buoyancy Simulator (NBS) that served as the test center for shuttle astronauts training for Hubble related missions. Shown are astronauts Bruce McCandless and Sharnon Lucid being fitted for their space suits prior to entering the NBS to begin training on the space telescope axial scientific instrument changeout.

  13. Uterine rupture without previous caesarean delivery

    DEFF Research Database (Denmark)

    Thisted, Dorthe L. A.; H. Mortensen, Laust; Krebs, Lone

    2015-01-01

    OBJECTIVE: To determine incidence and patient characteristics of women with uterine rupture during singleton births at term without a previous caesarean delivery. STUDY DESIGN: Population based cohort study. Women with term singleton birth, no record of previous caesarean delivery and planned...... vaginal delivery (n=611,803) were identified in the Danish Medical Birth Registry (1997-2008). Medical records from women recorded with uterine rupture during labour were reviewed to ascertain events of complete uterine rupture. Relative Risk (RR) and adjusted Relative Risk Ratio (aRR) of complete uterine...... rupture with 95% confidence intervals (95% CI) were ascertained according to characteristics of the women and of the delivery. RESULTS: We identified 20 cases with complete uterine rupture. The incidence of complete uterine rupture among women without previous caesarean delivery was about 3...

  14. Stereotype locally convex spaces

    Energy Technology Data Exchange (ETDEWEB)

    Akbarov, S S

    2000-08-31

    We give complete proofs of some previously announced results in the theory of stereotype (that is, reflexive in the sense of Pontryagin duality) locally convex spaces. These spaces have important applications in topological algebra and functional analysis.

  15. Stereotype locally convex spaces

    Science.gov (United States)

    Akbarov, S. S.

    2000-08-01

    We give complete proofs of some previously announced results in the theory of stereotype (that is, reflexive in the sense of Pontryagin duality) locally convex spaces. These spaces have important applications in topological algebra and functional analysis.

  16. THE UV CONTINUUM OF z > 1 STAR-FORMING GALAXIES IN THE HUBBLE ULTRAVIOLET ULTRADEEP FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Kurczynski, Peter; Gawiser, Eric [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Rafelski, Marc [NASA Postdoctoral Program Fellow, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Teplitz, Harry I. [Infrared Processing and Analysis Center, MS 100-22, Caltech, Pasadena, CA 91125 (United States); Acquaviva, Viviana [New York City College of Technology, Brooklyn, NY 11201 (United States); Brown, Thomas M.; Coe, Dan; Grogin, Norman A.; Koekemoer, Anton M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); De Mello, Duilia F. [Laboratory for Observational Cosmology, Astrophysics Science Division, Code 665, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Finkelstein, Steven L. [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States); Lee, Kyoung-soo [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States); Scarlata, Claudia [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Siana, Brian D. [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States)

    2014-09-20

    We estimate the UV continuum slope, β, for 923 galaxies in the range 1 < z < 8 in the Hubble Ultradeep Field (HUDF). These data include 460 galaxies at 1 < z < 2 down to an absolute magnitude M{sub UV}=−14(∼0.006 L{sub z=1}{sup ∗};0.02 L{sub z=0}{sup ∗}), comparable to dwarf galaxies in the local universe. We combine deep HST/UVIS photometry in F225W, F275W, F336W wavebands (UVUDF) with recent data from HST/WFC3/IR (HUDF12). Galaxies in the range 1 < z < 2 are significantly bluer than local dwarf galaxies. We find their mean (median) values <β > = – 1.382(– 1.830) ± 0.002 (random) ± 0.1 (systematic). We find comparable scatter in β (standard deviation = 0.43) to local dwarf galaxies and 30% larger scatter than z > 2 galaxies. We study the trends of β with redshift and absolute magnitude for binned sub-samples and find a modest color-magnitude relation, dβ/dM = –0.11 ± 0.01, and no evolution in dβ/dM with redshift. A modest increase in dust reddening with redshift and luminosity, ΔE(B – V) ∼ 0.1, and a comparable increase in the dispersion of dust reddening at z < 2, appears likely to explain the observed trends. At z > 2, we find trends that are consistent with previous works; combining our data with the literature in the range 1 < z < 8, we find a color evolution with redshift, dβ/dz = –0.09 ± 0.01 for low luminosity (0.05 L{sub z=3}{sup ∗}), and dβ/dz = –0.06 ± 0.01 for medium luminosity (0.25 L{sub z=3}{sup ∗}) galaxies.

  17. INTRODUCTION Previous reports have documented a high ...

    African Journals Online (AJOL)

    pregnancy if they were married, educated, had dental insurance, previously used dental services when not pregnant, or had knowledge about the possible connection between oral health and pregnancy outcome8. The purpose of this study was to explore the factors determining good oral hygiene among pregnant women ...

  18. Empowerment perceptions of educational managers from previously ...

    African Journals Online (AJOL)

    The perceptions of educational manag ers from previously disadvantaged primary and high schools in the Nelson Mandela Metropole regarding the issue of empowerment are outlined and the perceptions of educational managers in terms of various aspects of empowerment at different levels reflected. A literature study ...

  19. Management of choledocholithiasis after previous gastrectomy.

    Science.gov (United States)

    Anwer, S; Egan, R; Cross, N; Guru Naidu, S; Somasekar, K

    2017-09-01

    Common bile duct stones in patients with a previous gastrectomy can be a technical challenge because of the altered anatomy. This paper presents the successful management of two such patients using non-traditional techniques as conventional endoscopic retrograde cholangiopancreatography was not possible.

  20. Laboratory Grouping Based on Previous Courses.

    Science.gov (United States)

    Doemling, Donald B.; Bowman, Douglas C.

    1981-01-01

    In a five-year study, second-year human physiology students were grouped for laboratory according to previous physiology and laboratory experience. No significant differences in course or board examination performance were found, though correlations were found between predental grade-point averages and grouping. (MSE)

  1. The Properties of Galaxies in the First Billion Years, as Revealed by the Hubble Ultra Deep Field 2012

    Science.gov (United States)

    Dunlop, James; McLure, R.; Rogers, S.; Ono, Y.; Ouchi, M.; Koekemoer, A. M.; Ellis, R. S.; Schenker, M.; Robertson, B. E.; UDF12 Team

    2013-01-01

    The Hubble Space Telescope (HST) Ultra Deep Field 2012 (UDF12) provides the deepest near-infrared imaging to date of the high redshift Universe. By effectively doubling the depth of the Wide Field Camera 3 near-infrared imaging in the UDF, with valuable diagnostic imaging through a new additional filter, the UDF12 program considerably enhances our understanding of the rest-frame UV properties of star-forming galaxies in the crucial redshift range z=7-10 when the reionization process is ending. We present the first unbiased measurements of the UV continuum slopes of galaxies at z=7 (and the first meaningful measures at z=8), thereby setting new constraints on the age, metallicity and ionizing photon escape fractions for early galaxies . We also present new results on the sizes of these primeval galaxies with more accuracy than hitherto, and set new constraints on their stellar masses. These new measurements of the physical properties of the emerging population of young galaxies are compared with the predictions of the latest theoretical models of galaxy formation.

  2. Recent space nuclear power systems

    International Nuclear Information System (INIS)

    Takizuka, Takakazu; Yasuda, Hideshi; Hishida, Makoto

    1991-01-01

    For the advance of mankind into the space, the power sources of large output are indispensable, and it has been considered that atomic energy is promising as compared with solar energy and others. Accordingly in USA and USSR, the development of the nuclear power generation systems for space use has been carried out since considerable years ago. In this report, the general features of space nuclear reactors are shown, and by taking the system for the SP-100 project being carried out in USA as the example, the contents of the recent design regarding the safety as an important factor are discussed. Moreover, as the examples of utilizing space nuclear reactors, the concepts of the power source for the base on the moon, the sources of propulsive power for the rockets used for Mars exploration and others, the remote power transmission system by laser in the space and so on are explained. In September, 1988, the launching of a space shuttle of USA was resumed, and the Jupiter explorer 'Galileo' and the space telescope 'Hubble' were successfully launched. The space station 'Mir' of USSR has been used since February, 1986. The history of the development of the nuclear power generation systems for space use is described. (K.I.)

  3. Previously unknown organomagnesium compounds in astrochemical context

    OpenAIRE

    Ruf, Alexander

    2018-01-01

    We describe the detection of dihydroxymagnesium carboxylates (CHOMg) in astrochemical context. CHOMg was detected in meteorites via ultrahigh-resolving chemical analytics and represents a novel, previously unreported chemical class. Thus, chemical stability was probed via quantum chemical computations, in combination with experimental fragmentation techniques. Results propose the putative formation of green-chemical OH-Grignard-type molecules and triggered fundamental questions within chemica...

  4. [Placental complications after a previous cesarean section].

    Science.gov (United States)

    Milosević, Jelena; Lilić, Vekoslav; Tasić, Marija; Radović-Janosević, Dragana; Stefanović, Milan; Antić, Vladimir

    2009-01-01

    The incidence of cesarean section has been rising in the past 50 years. With the increased number of cesarean sections, the number of pregnancies with the previous cesarean section rises as well. The aim of this study was to establish the influence of the previous cesarean section on the development of placental complications: placenta previa, placental abruption and placenta accreta, as well as to determine the influence of the number of previous cesarean sections on the complication development. The research was conducted at the Clinic of Gynecology and Obstetrics in Nis covering 10-year-period (from 1995 to 2005) with 32358 deliveries, 1280 deliveries after a previous cesarean section, 131 cases of placenta previa and 118 cases of placental abruption. The experimental groups was presented by the cases of placenta previa or placental abruption with prior cesarean section in obstetrics history, opposite to the control group having the same conditions but without a cesarean section in medical history. The incidence of placenta previa in the control group was 0.33%, opposite to the 1.86% incidence after one cesarean section (pcesarean sections and as high as 14.28% after three cesarean sections in obstetric history. Placental abruption was recorded as placental complication in 0.33% pregnancies in the control group, while its incidence was 1.02% after one cesarean section (pcesarean sections. The difference in the incidence of intrapartal hysterectomy between the group with prior cesarean section (0.86%) and without it (0.006%) shows a high statistical significance (pcesarean section is an important risk factor for the development of placental complications.

  5. Testing the Interacting Dark Energy Model with Cosmic Microwave Background Anisotropy and Observational Hubble Data

    Directory of Open Access Journals (Sweden)

    Weiqiang Yang

    2017-07-01

    Full Text Available The coupling between dark energy and dark matter provides a possible approach to mitigate the coincidence problem of the cosmological standard model. In this paper, we assumed the interacting term was related to the Hubble parameter, energy density of dark energy, and equation of state of dark energy. The interaction rate between dark energy and dark matter was a constant parameter, which was, Q = 3 H ξ ( 1 + w x ρ x . Based on the Markov chain Monte Carlo method, we made a global fitting on the interacting dark energy model from Planck 2015 cosmic microwave background anisotropy and observational Hubble data. We found that the observational data sets slightly favored a small interaction rate between dark energy and dark matter; however, there was not obvious evidence of interaction at the 1 σ level.

  6. DESTINY, The Dark Energy Space Telescope

    Science.gov (United States)

    Pasquale, Bert A.; Woodruff, Robert A.; Benford, Dominic J.; Lauer, Tod

    2007-01-01

    We have proposed the development of a low-cost space telescope, Destiny, as a concept for the NASA/DOE Joint Dark Energy Mission. Destiny is a 1.65m space telescope, featuring a near-infrared (0.85-1.7m) survey camera/spectrometer with a moderate flat-field field of view (FOV). Destiny will probe the properties of dark energy by obtaining a Hubble diagram based on Type Ia supernovae and a large-scale mass power spectrum derived from weak lensing distortions of field galaxies as a function of redshift.

  7. Space doubt

    OpenAIRE

    Rega, Joseph Mark

    2003-01-01

    Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro de Comunicação e Expressão. Programa de Pós-Graduação em Inglês e Literatura Correspondente. The recent surge in cyberspace science fiction follows previous trends within the genre, i.e. those connected with future city-space and outer space, and is an inevitable result of economic forces. There has always been a close relationship between capitalism and spatial expansion, compelled by technological innovations that ha...

  8. Evolution Of The Galaxy Major Merger Rate Since Z 6 In The Muse Hubble Ultra Deep Field Survey.

    Science.gov (United States)

    Ventou, E.; Contini, T.; MUSE-GTO Collaboration

    2017-06-01

    Over the past two decades, strong evidence that galaxies have undergone a significant evolution over cosmic time were found. Do galaxy mergers, one of the main driving mechanisms behind the growth of galaxies, played a key role in their evolution at significant look-back time? Due to the difficulty to identify these violent interactions between galaxies at high redshifts, the major merger rate, involving two galaxies of similar masses, was constrained so far up to redshift z 3, from previous studies of spectrocopic pair counts. Thanks to MUSE, which is perfectly suited to identify close pairs of galaxies with secure spectroscopic redshifts, we are now able to extend such studies up to z 6. I will present the results obtained from deep (10-30h) MUSE observations in the Hubble Ultra Deep Field. We provide the first constraints on the galaxy major merger evolution over 12 Gyrs (0.2 < z < 6) and over a broad range of stellar masses, showing that there is a flattening of the major merger rate evolution at very high redshift.

  9. Making Data Mobile: The Hubble Deep Field Academy iPad app

    Science.gov (United States)

    Eisenhamer, Bonnie; Cordes, K.; Davis, S.; Eisenhamer, J.

    2013-01-01

    Many school districts are purchasing iPads for educators and students to use as learning tools in the classroom. Educators often prefer these devices to desktop and laptop computers because they offer portability and an intuitive design, while having a larger screen size when compared to smart phones. As a result, we began investigating the potential of adapting online activities for use on Apple’s iPad to enhance the dissemination and usage of these activities in instructional settings while continuing to meet educators’ needs. As a pilot effort, we are developing an iPad app for the “Hubble Deep Field Academy” - an activity that is currently available online and commonly used by middle school educators. The Hubble Deep Field Academy app features the HDF-North image while centering on the theme of how scientists use light to explore and study the universe. It also includes features such as embedded links to vocabulary, images and videos, teacher background materials, and readings about Hubble’s other deep field surveys. It is our goal is to impact students’ engagement in STEM-related activities, while enhancing educators’ usage of NASA data via new and innovative mediums. We also hope to develop and share lessons learned with the E/PO community that can be used to support similar projects. We plan to test the Hubble Deep Field Academy app during the school year to determine if this new activity format is beneficial to the education community.

  10. Prospects of the local Hubble parameter measurement using gravitational waves from double neutron stars

    Science.gov (United States)

    Seto, Naoki; Kyutoku, Koutarou

    2018-04-01

    Following the detection of the GW170817 signal and its associated electromagnetic emissions, we discuss the prospects of the local Hubble parameter measurement using double neutron stars (DNSs). The kilonova emissions of GW170817, AT 2017gfo, are genuinely unique in terms of the rapid evolution of colour and magnitude, and we expect that, for a good fraction ≳ 50 per cent of the DNS events within ˜200 Mpc, we could identify their host galaxies, using their kilonovae. At present, the estimated DNS merger rate (1.5^{+3.2}_{-1.2})× 10^{-6} Mpc^{-3 yr^{-1}} has a large uncertainty. But, if it is at the high end, we could measure the local Hubble parameter HL with the level of ΔHL/HL ˜ 0.049 (1σ level), after the third observational run (O3). This accuracy is four times better than that obtained from GW170817 alone, and we will be able to examine the Hubble tension at 1.8σ level.

  11. Hubble gets new ESA-supplied solar arrays

    Science.gov (United States)

    1993-12-01

    Derek Eaton, ESA project manager, was overjoyed with the success of the day's spacewalk. "To build two such massive arrays some years apart to such tight tolerances and have one replace the other with so few problems is a tribute to the design and manufacturing skills of ESA and British Aerospace, the prime contractor for the arrays", he said. "The skill of Kathy and Tom contributed greatly to this success". The astronauts began their spacewalk at 09h30 p.m. CST (04h30 a.m. CET, Monday). Their first task was to jettison the troublesome solar array that failed to retract yesterday. Perched on the end of the shuttle's robot arm, 7.5 metres above the cargo bay, Thornton carefully released the array. ESA astronaut Claude Nicollier then pulled the arm away from the free-floating panel and mission commander Dick Covey fired the shuttle's thrusters to back away. Endeavour and the discarded array are moving apart at a rate of 18.5 kilometres each 90-minute orbit of the Earth. The array is expected to burn up in the Earth's atmosphere harmlessly within a year or so. The astronauts had no problems installing the new arrays and stowing the left-hand wing in the cargo bay for the return to Earth. The new arrays will remain rolled-up against the side of the telescope until the fifth spacewalk on Wednesday/Thursday. The telescope itself will be deployed on Saturday. The telescope's first set of arrays flexed in orbit because of the sudden swing in temperature as the craft moved in and out of sunlight. The movement, or "jitter", affected the telescope's pointing system and disrupted observations at times. The Space Telescope Operations Control Centre largely compensated for the problem with special software but this occupied a large amount of computer memory. The new arrays incorporate three major changes to eliminate the problem. The metal bi-stem booms, which support the solar blankets, is protected from extreme temperature changes by a concertina-style sleeve made up of one

  12. Views from Space

    Science.gov (United States)

    Kitmacher, Gary H.

    2002-01-01

    Only in the last century have human beings flown in space and men and machines have explored the worlds of our solar system. Robots have gone to most of the our neighboring worlds, the valleys of Mars and the clouds and moons of Jupiter. Instruments like the Hubble Space Telescope have looked into deep space. Those of us on the earth have been able to participate as vicarious explorers through the records, and experiences and the photographs that have been returned. At the beginning of the space program hardly anyone thought of photographs from space as anything more than a branch of industrial photography. There were pictures of the spaceships, and launches and of astronauts in training, but these were all pictures taken on the ground. When John Glenn became America's first man in orbit, bringing a camera was an afterthought. An Ansco Autoset was purchased in a drug store and hastily modified so the astronaut could use it more easily while in his pressure suit. In 1962, everything that Glenn did was deemed an experiment. At the beginning of the program, no one knew for certain whether weightlessness would prevent a man from seeing, or from breathing, or from eating and swallowing. Photography was deemed nothing more than a recreational extra. Not only was little expected of those first pictures taken from space, but there was serious concern that taking pictures of other nations from orbit would be seen as an act of ill will and even one of war- as sovereign sensitive nations would resent having pictures taken by Americans orbiting overhead. A few years earlier, in 1957, in reaction to the Soviet launch of the first Sputnik satellite, scientists told congressman of the necessity of orbiting our own robot spacecraft-they predicted that one day we would take daily pictures of the world's weather. Congressman were incredulous. But space photography developed quickly. For security purposes, spy satellites took over many of the responsibilities we had depended upon

  13. Books average previous decade of economic misery.

    Science.gov (United States)

    Bentley, R Alexander; Acerbi, Alberto; Ormerod, Paul; Lampos, Vasileios

    2014-01-01

    For the 20(th) century since the Depression, we find a strong correlation between a 'literary misery index' derived from English language books and a moving average of the previous decade of the annual U.S. economic misery index, which is the sum of inflation and unemployment rates. We find a peak in the goodness of fit at 11 years for the moving average. The fit between the two misery indices holds when using different techniques to measure the literary misery index, and this fit is significantly better than other possible correlations with different emotion indices. To check the robustness of the results, we also analysed books written in German language and obtained very similar correlations with the German economic misery index. The results suggest that millions of books published every year average the authors' shared economic experiences over the past decade.

  14. Induced vaginal birth after previous caesarean section

    Directory of Open Access Journals (Sweden)

    Akylbek Tussupkaliyev

    2016-11-01

    Full Text Available Introduction The rate of operative birth by Caesarean section is constantly rising. In Kazakhstan, it reaches 27 per cent. Research data confirm that the percentage of successful vaginal births after previous Caesarean section is 50–70 per cent. How safe the induction of vaginal birth after Caesarean (VBAC remains unclear. Methodology The studied techniques of labour induction were amniotomy of the foetal bladder with the vulsellum ramus, intravaginal administration of E1 prostaglandin (Misoprostol, and intravenous infusion of Oxytocin-Richter. The assessment of rediness of parturient canals was conducted by Bishop’s score; the labour course was assessed by a partogram. The effectiveness of labour induction techniques was assessed by the number of administered doses, the time of onset of regular labour, the course of labour and the postpartum period and the presence of complications, and the course of the early neonatal period, which implied the assessment of the child’s condition, described in the newborn development record. The foetus was assessed by medical ultrasound and antenatal and intranatal cardiotocography (CTG. Obtained results were analysed with SAS statistical processing software. Results The overall percentage of successful births with intravaginal administration of Misoprostol was 93 per cent (83 of cases. This percentage was higher than in the amniotomy group (relative risk (RR 11.7 and was similar to the oxytocin group (RR 0.83. Amniotomy was effective in 54 per cent (39 of cases, when it induced regular labour. Intravenous oxytocin infusion was effective in 94 per cent (89 of cases. This percentage was higher than that with amniotomy (RR 12.5. Conclusions The success of vaginal delivery after previous Caesarean section can be achieved in almost 70 per cent of cases. At that, labour induction does not decrease this indicator and remains within population boundaries.

  15. Optimization of hydraulic machinery by exploiting previous successful designs

    Energy Technology Data Exchange (ETDEWEB)

    Kyriacou, S A; Giannakoglou, K C [National Technical University of Athens, Parallel CFD and Optimization Unit, PO Box 64069, Athens 15710 (Greece); Weissenberger, S; Grafenberger, P, E-mail: stelios.Kyriacou@gmail.co [Andritz HYDRO, RD, Lunzerstrasse 78, 4031 Linz (Austria)

    2010-08-15

    A design-optimization method for hydraulic machinery is proposed. Optimal designs are obtained using the appropriate CFD evaluation software driven by an evolutionary algorithm which is also assisted by artificial neural networks used as surrogate evaluation models or metamodels. As shown in a previous IAHR paper by the same authors, such an optimization method substantially reduces the CPU cost, since the metamodels can discard numerous non-promising candidate solutions generated during the evolution, at almost negligible CPU cost, without evaluating them by means of the costly CFD tool. The present paper extends the optimization method of the previous paper by making it capable to accommodate and exploit pieces of useful information archived during previous relevant successful designs. So, instead of parameterizing the geometry of the hydraulic machine components, which inevitably leads to many design variables, enough to slow down the design procedure, in the proposed method all new designs are expressed as weighted combinations of the archived ones. The archived designs act as the design space bases. The role of the optimization algorithms is to find the set (or sets, for more than one objectives, where the Pareto front of non-dominated solutions is sought) of weight values, corresponding to the hydraulic machine configuration(s) with optimal performance. Since the number of weights is much less that the number of design variables of the conventional shape parameterization, the design space dimension reduces and the CPU cost of the metamodel-assisted evolutionary algorithm is much lower. The design of a Francis runner is used to demonstrate the capabilities of the proposed method.

  16. Atomic and molecular data for space astronomy - Needs, analysis, and availability; 21st IAU General Assembly, Buenos Aires, Argentina, July 23-Aug. 1, 1991, Selected Papers

    Science.gov (United States)

    Smith, Peter L. (Editor); Wiese, Wolfgang L. (Editor)

    1992-01-01

    The present volume on atomic and molecular spectroscopic data for space astrophysics discusses scientific problems and laboratory data needs associated with the Hubble Space Telescope, atomic data needed for far ultraviolet astronomy with HUT and FUSE and for analysis of EUV and X-ray spectra, and data for observations of interstellar medium with the Hubble Space Telescope. Attention is also given to atomic and molecular data for analysis of IR spectra from ISO and SIRTF, atomic data from the opacity project, sources of atomic spectroscopic data for astrophysics, and summary of current molecular data bases.

  17. In Defense of an Accelerating Universe: Model Insensitivity of the Hubble Diagram

    Science.gov (United States)

    Ringermacher, Harry I.; Mead, Lawrence R.

    2018-01-01

    A recently published paper by Nielsen, Guffanti & Sarkar (. Sci. Rep. 6, 35596, Oct. 2016) argues that the evidence for cosmic acceleration is marginal and that a coasting universe - the “Milne Universe” - fits the same supernovae data in a Hubble diagram nearly as well. Other papers have since jumped on the bandwagon. The Milne Universe has negative spatial curvature, but is Riemann-flat. Nevertheless, we confirm that the Milne model fits the data just as well as LCDM. We show that this unexpected result points to a weakness in the Hubble diagram rather than to a failure in LCDM. It seems the Hubble diagram is insensitive to spatial curvature. To be specific, the spatial curvature dependences of the comoving radius in the luminosity distance nearly exactly cancel the energy density differences. That is, r(LCDM) = sinh[r(Milne)]. By transforming the distance modulus vs. redshift data to scale factor vs. cosmological time data, for each curvature, k = {+1, 0, -1}, the curvature dependence of the data is effectively separated thus permitting a more precise fit of the Omega parameters to the scale factor data to decide the correct model. Here we present the data and both models in a scale factor vs. cosmological time plot. The difference of the means of the k = 0 and k =-1 data separate at a 2-sigma confidence level. The LCDM fit to the k = 0 data are consistent with an accelerating universe to 99% confidence. The Milne universe fits the k =-1 data to no better than about 70% confidence. This is consistent with independent CMB and BAO observations supporting a flat universe.

  18. Levels of maximum end-expiratory carbon monoxide and certain cardiovascular parameters following hubble-bubble smoking.

    Science.gov (United States)

    Shafagoj, Yanal A; Mohammed, Faisal I

    2002-08-01

    The physiological effects of cigarette smoking have been widely studied, however, little is known regarding the effects of smoking hubble-bubble. We examined the acute effects of hubble-bubble smoking on heart rate, systolic, diastolic, and mean arterial blood pressure and maximum end-expiratory carbon monoxide. This study was carried out in the student laboratory, School of Medicine, Department of Physiology, University of Jordan, Amman, Jordan, during the summer of 1999. In 18 healthy habitual hubble-bubble smokers, heart rate, blood pressure, and maximum end-expiratory carbon monoxide was measured before, during and post smoking of one hubble-bubble run (45 minutes). Compared to base line (time zero), at the end of smoking heart rate, systolic blood pressure, diastolic blood pressure, mean arterial blood pressure, and maximum end-expiratory carbon monoxide were increased 16 2.4 beats per minute, 6.7 2.5 mm Hg, 4.4 1.6 mm Hg, 5.2 1.7 mm Hg, and 14.2 1.8 ppm, (mean standard error of mean, Phubble-bubble smoking elicits a modest increase in heart rate, systolic blood pressure, diastolic blood pressure, mean arterial blood pressure and maximum end-expiratory carbon monoxide in healthy hubble-bubble smokers.

  19. HUBBLE TARANTULA TREASURY PROJECT. III. PHOTOMETRIC CATALOG AND RESULTING CONSTRAINTS ON THE PROGRESSION OF STAR FORMATION IN THE 30 DORADUS REGION

    Energy Technology Data Exchange (ETDEWEB)

    Sabbi, E.; Anderson, J.; Cignoni, M.; Marel, R. P. van der; Panagia, N.; Sana, H.; Alois