WorldWideScience

Sample records for prevent starvation-induced autophagy

  1. Zinc starvation induces autophagy in yeast.

    Science.gov (United States)

    Kawamata, Tomoko; Horie, Tetsuro; Matsunami, Miou; Sasaki, Michiko; Ohsumi, Yoshinori

    2017-05-19

    Zinc is an essential nutrient for all forms of life. Within cells, most zinc is bound to protein. Because zinc serves as a catalytic or structural cofactor for many proteins, cells must maintain zinc homeostasis under severely zinc-deficient conditions. In yeast, the transcription factor Zap1 controls the expression of genes required for uptake and mobilization of zinc, but to date the fate of existing zinc-binding proteins under zinc starvation remains poorly understood. Autophagy is an evolutionarily conserved cellular degradation/recycling process in which cytoplasmic proteins and organelles are sequestered for degradation in the vacuole/lysosome. In this study, we investigated how autophagy functions under zinc starvation. Zinc depletion induced non-selective autophagy, which is important for zinc-limited growth. Induction of autophagy by zinc starvation was not directly related to transcriptional activation of Zap1. Instead, TORC1 inactivation directed zinc starvation-induced autophagy. Abundant zinc proteins, such as Adh1, Fba1, and ribosomal protein Rpl37, were degraded in an autophagy-dependent manner. But the targets of autophagy were not restricted to zinc-binding proteins. When cellular zinc is severely depleted, this non-selective autophagy plays a role in releasing zinc from the degraded proteins and recycling zinc for other essential purposes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy

    DEFF Research Database (Denmark)

    Rodríguez-Vargas, José Manuel; Ruiz-Magaña, María José; Ruiz-Ruiz, Carmen

    2012-01-01

    In response to nutrient stress, cells start an autophagy program that can lead to adaptation or death. The mechanisms underlying the signaling from starvation to the initiation of autophagy are not fully understood. In the current study we show that the absence or inactivation of PARP-1 strongly...... delays starvation-induced autophagy. We have found that DNA damage is an early event of starvation-induced autophagy as measured by ¿-H2AX accumulation and comet assay, with PARP-1 knockout cells displaying a reduction in both parameters. During starvation, ROS-induced DNA damage activates PARP-1......, leading to ATP depletion (an early event after nutrient deprivation). The absence of PARP-1 blunted AMPK activation and prevented the complete loss of mTOR activity, leading to a delay in autophagy. PARP-1 depletion favors apoptosis in starved cells, suggesting a pro-survival role of autophagy and PARP-1...

  3. [Effect of starvation-induced autophagy on cell cycle of tumor cells].

    Science.gov (United States)

    Ge, Jun-Na; Huang, Dan; Xiao, Tian; Wang, Zun; Li, Xiao-Lan; Xiao, Hui; Tao, De-Ding; Gong, Jian-Ping

    2008-08-01

    No serum starvation could induce autophagy and cell cycle arrest. Although autophagy and cell cycle have been widely explored, little is known about their relationship. This study was to observe the change of Cyclin expression during starvation-induced autophagy to discuss the effect of autophagy on cell cycle. In control group, HeLa cells were treated with d-Hanks solution (a medium with no serum). In experiment group, HeLa cells were treated with d-Hanks solution containing 3-methyladenine (3-MA, a specific inhibitor of autophagy). Cells were harvested after being starved for 0, 3, 6 and 12 h. Flow cytometry (FCM) and Weston blot were used to detect Cyclin and microtubule-associated protein 1 light chain 3(LC-3) which marked autophagy specifically. In control group, the expression of LC-3 protein was detected early after being starved for 3 h, and gradually increased along with starvation; the expression of Cyclin D3 and Cyclin E was decreased evidently after a short-time starvation (3 h) and descended to the minimum when cells were being starved for 6 h; the expression of Cyclin A and Cyclin B1 were apparently decreased after being starved for 6 h. In experiment group, LC-3 protein could not be detected during starvation when cells were exposed to 3-MA and the down-regulation of Cyclins was suppressed. Autophagy is involved in starvation-induced hydrolysis of Cyclins. The hydrolysis of Cyclin D3 and Cyclin E is quicker than that of Cyclin A and Cyclin B1.

  4. MIR376A is a regulator of starvation-induced autophagy.

    Directory of Open Access Journals (Sweden)

    Gozde Korkmaz

    Full Text Available Autophagy is a vesicular trafficking process responsible for the degradation of long-lived, misfolded or abnormal proteins, as well as damaged or surplus organelles. Abnormalities of the autophagic activity may result in the accumulation of protein aggregates, organelle dysfunction, and autophagy disorders were associated with various diseases. Hence, mechanisms of autophagy regulation are under exploration.Over-expression of hsa-miR-376a1 (shortly MIR376A was performed to evaluate its effects on autophagy. Autophagy-related targets of the miRNA were predicted using Microcosm Targets and MIRanda bioinformatics tools and experimentally validated. Endogenous miRNA was blocked using antagomirs and the effects on target expression and autophagy were analyzed. Luciferase tests were performed to confirm that 3' UTR sequences in target genes were functional. Differential expression of MIR376A and the related MIR376B was compared using TaqMan quantitative PCR.Here, we demonstrated that, a microRNA (miRNA from the DLK1/GTL2 gene cluster, MIR376A, played an important role in autophagy regulation. We showed that, amino acid and serum starvation-induced autophagy was blocked by MIR376A overexpression in MCF-7 and Huh7 cells. MIR376A shared the same seed sequence and had overlapping targets with MIR376B, and similarly blocked the expression of key autophagy proteins ATG4C and BECN1 (Beclin 1. Indeed, 3' UTR sequences in the mRNA of these autophagy proteins were responsive to MIR376A in luciferase assays. Antagomir tests showed that, endogenous MIR376A was participating to the control of ATG4C and BECN1 transcript and protein levels. Moreover, blockage of endogenous MIR376A accelerated starvation-induced autophagic activity. Interestingly, MIR376A and MIR376B levels were increased with different kinetics in response to starvation stress and tissue-specific level differences were also observed, pointing out to an overlapping but miRNA-specific biological role

  5. Kibra and aPKC regulate starvation-induced autophagy in Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Ahrum [Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Neufeld, Thomas P. [Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455 (United States); Choe, Joonho, E-mail: jchoe@kaist.ac.kr [Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of)

    2015-12-04

    Autophagy is a bulk degradation system that functions in response to cellular stresses such as metabolic stress, endoplasmic reticulum stress, oxidative stress, and developmental processes. During autophagy, cytoplasmic components are captured in double-membrane vesicles called autophagosomes. The autophagosome fuses with the lysosome, producing a vacuole known as an autolysosome. The cellular components are degraded by lysosomal proteases and recycled. Autophagy is important for maintaining cellular homeostasis, and the process is evolutionarily conserved. Kibra is an upstream regulator of the hippo signaling pathway, which controls organ size by affecting cell growth, proliferation, and apoptosis. Kibra is mainly localized in the apical membrane domain of epithelial cells and acts as a scaffold protein. We found that Kibra is required for autophagy to function properly. The absence of Kibra caused defects in the formation of autophagic vesicles and autophagic degradation. We also found that the well-known cell polarity protein aPKC interacts with Kibra, and its activity affects autophagy upstream of Kibra. Constitutively active aPKC decreased autophagic vesicle formation and autophagic degradation. We confirmed the interaction between aPKC and Kibra in S2 cells and Drosophila larva. Taken together, our data suggest that Kibra and aPKC are essential for regulating starvation-induced autophagy. - Highlights: • Loss of Kibra causes defects in autophagosome formation and autophagic degradation. • Constitutively-active aPKCs negatively regulate autophagy. • Kibra interacts with aPKC in vitro and in vivo. • Kibra regulates autophagy downstream of aPKC.

  6. Kibra and aPKC regulate starvation-induced autophagy in Drosophila

    International Nuclear Information System (INIS)

    Jin, Ahrum; Neufeld, Thomas P.; Choe, Joonho

    2015-01-01

    Autophagy is a bulk degradation system that functions in response to cellular stresses such as metabolic stress, endoplasmic reticulum stress, oxidative stress, and developmental processes. During autophagy, cytoplasmic components are captured in double-membrane vesicles called autophagosomes. The autophagosome fuses with the lysosome, producing a vacuole known as an autolysosome. The cellular components are degraded by lysosomal proteases and recycled. Autophagy is important for maintaining cellular homeostasis, and the process is evolutionarily conserved. Kibra is an upstream regulator of the hippo signaling pathway, which controls organ size by affecting cell growth, proliferation, and apoptosis. Kibra is mainly localized in the apical membrane domain of epithelial cells and acts as a scaffold protein. We found that Kibra is required for autophagy to function properly. The absence of Kibra caused defects in the formation of autophagic vesicles and autophagic degradation. We also found that the well-known cell polarity protein aPKC interacts with Kibra, and its activity affects autophagy upstream of Kibra. Constitutively active aPKC decreased autophagic vesicle formation and autophagic degradation. We confirmed the interaction between aPKC and Kibra in S2 cells and Drosophila larva. Taken together, our data suggest that Kibra and aPKC are essential for regulating starvation-induced autophagy. - Highlights: • Loss of Kibra causes defects in autophagosome formation and autophagic degradation. • Constitutively-active aPKCs negatively regulate autophagy. • Kibra interacts with aPKC in vitro and in vivo. • Kibra regulates autophagy downstream of aPKC.

  7. Starvation induced cell death in autophagy-defective yeast mutants is caused by mitochondria dysfunction.

    Directory of Open Access Journals (Sweden)

    Sho W Suzuki

    2011-02-01

    Full Text Available Autophagy is a highly-conserved cellular degradation and recycling system that is essential for cell survival during nutrient starvation. The loss of viability had been used as an initial screen to identify autophagy-defective (atg mutants of the yeast Saccharomyces cerevisiae, but the mechanism of cell death in these mutants has remained unclear. When cells grown in a rich medium were transferred to a synthetic nitrogen starvation media, secreted metabolites lowered the extracellular pH below 3.0 and autophagy-defective mutants mostly died. We found that buffering of the starvation medium dramatically restored the viability of atg mutants. In response to starvation, wild-type (WT cells were able to upregulate components of the respiratory pathway and ROS (reactive oxygen species scavenging enzymes, but atg mutants lacked this synthetic capacity. Consequently, autophagy-defective mutants accumulated the high level of ROS, leading to deficient respiratory function, resulting in the loss of mitochondria DNA (mtDNA. We also showed that mtDNA deficient cells are subject to cell death under low pH starvation conditions. Taken together, under starvation conditions non-selective autophagy, rather than mitophagy, plays an essential role in preventing ROS accumulation, and thus in maintaining mitochondria function. The failure of response to starvation is the major cause of cell death in atg mutants.

  8. Autophagy, Metabolism, and Cancer.

    Science.gov (United States)

    White, Eileen; Mehnert, Janice M; Chan, Chang S

    2015-11-15

    Macroautophagy (autophagy hereafter) captures intracellular proteins and organelles and degrades them in lysosomes. The degradation breakdown products are released from lysosomes and recycled into metabolic and biosynthetic pathways. Basal autophagy provides protein and organelle quality control by eliminating damaged cellular components. Starvation-induced autophagy recycles intracellular components into metabolic pathways to sustain mitochondrial metabolic function and energy homeostasis. Recycling by autophagy is essential for yeast and mammals to survive starvation through intracellular nutrient scavenging. Autophagy suppresses degenerative diseases and has a context-dependent role in cancer. In some models, cancer initiation is suppressed by autophagy. By preventing the toxic accumulation of damaged protein and organelles, particularly mitochondria, autophagy limits oxidative stress, chronic tissue damage, and oncogenic signaling, which suppresses cancer initiation. This suggests a role for autophagy stimulation in cancer prevention, although the role of autophagy in the suppression of human cancer is unclear. In contrast, some cancers induce autophagy and are dependent on autophagy for survival. Much in the way that autophagy promotes survival in starvation, cancers can use autophagy-mediated recycling to maintain mitochondrial function and energy homeostasis to meet the elevated metabolic demand of growth and proliferation. Thus, autophagy inhibition may be beneficial for cancer therapy. Moreover, tumors are more autophagy-dependent than normal tissues, suggesting that there is a therapeutic window. Despite these insights, many important unanswered questions remain about the exact mechanisms of autophagy-mediated cancer suppression and promotion, how relevant these observations are to humans, and whether the autophagy pathway can be modulated therapeutically in cancer. See all articles in this CCR Focus section, "Cell Death and Cancer Therapy." ©2015

  9. Emerging role of mammalian autophagy in ketogenesis to overcome starvation.

    Science.gov (United States)

    Takagi, Ayano; Kume, Shinji; Maegawa, Hiroshi; Uzu, Takashi

    2016-01-01

    Autophagy is essential for the survival of lower organisms under conditions of nutrient depletion. However, whether autophagy plays a physiological role in mammals experiencing starvation is unknown. Ketogenesis is critical for overcoming starvation in mammals. We recently revealed that hepatic and renal autophagy are involved in starvation-induced ketogenesis, by utilizing tissue-specific autophagy-deficient mouse models. The liver is the principal organ to regulate ketogenesis, and a deficiency of liver-specific autophagy partially but significantly attenuates starvation-induced ketogenesis. While deficiency of renal-specific autophagy does not affect starvation-induced ketogenesis, mice with deficiency of both liver and kidney autophagy have even lower blood ketone levels and physical activity under starvation conditions than those lacking autophagy in the liver alone. These results suggest that the kidney can compensate for impaired hepatic ketogenesis. Since ketone bodies are catabolized from fatty acids, the uptake of fatty acids, the formation of intracellular lipid droplets, and fatty acid oxidation are critical for ketogenesis. We found that starvation-induced lipid droplet formation is impaired in autophagy-deficient organs. Thus, hepatic and renal autophagy are required for starvation-induced ketogenesis. This process is essential for maintaining systemic energy homeostasis and physical activity during starvation. Our findings provide a novel insight into mammalian autophagy and the physiology of starvation.

  10. WNK1 is an unexpected autophagy inhibitor

    Science.gov (United States)

    Gallolu Kankanamalage, Sachith; Lee, A-Young; Wichaidit, Chonlarat; Lorente-Rodriguez, Andres; Shah, Akansha M.; Stippec, Steve; Whitehurst, Angelique W.; Cobb, Melanie H.

    2017-01-01

    ABSTRACT Autophagy is a cellular degradation pathway that is essential to maintain cellular physiology, and deregulation of autophagy leads to multiple diseases in humans. In a recent study, we discovered that the protein kinase WNK1 (WNK lysine deficient protein kinase 1) is an inhibitor of autophagy. The loss of WNK1 increases both basal and starvation-induced autophagy. In addition, the depletion of WNK1 increases the activation of the class III phosphatidylinositol 3-kinase (PtdIns3K) complex, which is required to induce autophagy. Moreover, the loss of WNK1 increases the expression of ULK1 (unc-51 like kinase 1), which is upstream of the PtdIns3K complex. It also increases the pro-autophagic phosphorylation of ULK1 at Ser555 and the activation of AMPK (AMP-activated protein kinase), which is responsible for that phosphorylation. The inhibition of AMPK by compound C decreases the magnitude of autophagy induction following WNK1 loss; however, it does not prevent autophagy induction. We found that the UVRAG (UV radiation resistance associated gene), which is a component of the PtdIns3K, binds to the N-terminal region of WNK1. Moreover, WNK1 partially colocalizes with UVRAG and this colocalization decreases when autophagy is stimulated in cells. The loss of WNK1 also alters the cellular distribution of UVRAG. The depletion of the downstream target of WNK1, OXSR1/OSR1 (oxidative-stress responsive 1) has no effect on autophagy, whereas the depletion of its relative STK39/SPAK (serine/threonine kinase 39) induces autophagy under nutrient-rich and starved conditions. PMID:28282258

  11. Characterization of starvation-induced dispersion in Pseudomonas putida biofilms

    DEFF Research Database (Denmark)

    Gjermansen, Morten; Ragas, Paula Cornelia; Sternberg, Claus

    2005-01-01

    that they must be able to regulate their ability to form biofilm and to dissolve biofilm. We present an investigation of a biofilm dissolution process occurring in flow-chamber-grown Pseudomonas putida biofilms. Local starvation-induced biofilm dissolution appears to be an integrated part of P. putida biofilm...

  12. Role of the insulin/Tor signaling network in starvation-induced programmed cell death in Drosophila oogenesis

    Science.gov (United States)

    Pritchett, T L; McCall, K

    2012-01-01

    Amino-acid starvation leads to an inhibition of cellular proliferation and the induction of programmed cell death (PCD) in the Drosophila ovary. Disruption of insulin signaling has been shown to inhibit the progression of oogenesis, but it is unclear whether this phenotype mimics starvation. Here, we investigate whether the insulin-mediated phosphoinositide kinase-3 pathway regulates PCD in mid oogenesis. We reasoned that under well-fed conditions, disruption of positive components of the insulin signaling pathway within the germline would mimic starvation and produce degenerating egg chambers. Surprisingly, mutants did not mimic starvation but instead produced many abnormal egg chambers in which the somatic follicle cells disappeared and the germline persisted. These abnormal egg chambers did not show an induction of caspases and lysosomes like that observed in wild-type (WT) degenerating egg chambers. Egg chambers from insulin signaling mutants were resistant to starvation-induced PCD, indicating that a complete block in insulin-signaling prevents the proper response to starvation. However, target of rapamycin (Tor) mutants did show a phenotype that mimicked WT starvation-induced PCD, indicating an insulin independent regulation of PCD via Tor signaling. These results suggest that inhibition of the insulin signaling pathway is not sufficient to regulate starvation-induced PCD in mid oogenesis. Furthermore, starvation-induced PCD is regulated by Tor signaling converging with the canonical insulin signaling pathway. PMID:22240900

  13. Perception of Arabidopsis AtPep peptides, but not bacterial elicitors, accelerates starvation-induced senescence

    Directory of Open Access Journals (Sweden)

    Kay eGully

    2015-01-01

    Full Text Available Members of the AtPep group of Arabidopsis endogenous peptides have frequently been reported to induce pattern-triggered immunity and to increase resistance to diverse pathogens by amplifying the innate immune response. Here, we made the surprising observation that dark-induced leaf senescence was accelerated by the presence of Peps. Adult leaves as well as leaf discs of Col-0 wild type plants showed a Pep-triggered early onset of chlorophyll breakdown and leaf yellowing whereas pepr1 pepr2 double mutant plants were insensitive. In addition, this response was dependent on ethylene signaling and inhibited by the addition of cytokinins. Notably, addition of the bacterial elicitors flg22 or elf18, both potent inducers of pattern-triggered immunity, did not provoke an early onset of leaf senescence.Continuous darkness leads to energy deprivation and starvation and therewith promotes leaf senescence. We found that continuous darkness also strongly induced PROPEP3 transcription. Moreover, Pep-perception led to a rapid induction of PAO, APG7 and APG8a, genes indispensable for chlorophyll degradation as well as autophagy, respectively, and all three hallmarks of starvation and senescence. Notably, addition of sucrose as a source of energy inhibited the Pep-triggered early onset of senescence. In conclusion, we report that Pep-perception accelerates dark/starvation-induced senescence via an early induction of chlorophyll degradation and autophagy. This represents a novel and unique characteristic of PEPR signaling, unrelated to pattern-triggered immunity.

  14. Emerging role of mammalian autophagy in ketogenesis to overcome starvation

    OpenAIRE

    Takagi, Ayano; Kume, Shinji; Maegawa, Hiroshi; Uzu, Takashi

    2016-01-01

    Autophagy is essential for the survival of lower organisms under conditions of nutrient depletion. However, whether autophagy plays a physiological role in mammals experiencing starvation is unknown. Ketogenesis is critical for overcoming starvation in mammals. We recently revealed that hepatic and renal autophagy are involved in starvation-induced ketogenesis, by utilizing tissue-specific autophagy-deficient mouse models. The liver is the principal organ to regulate ketogenesis, and a defici...

  15. miR-14 regulates autophagy during developmental cell death by targeting ip3-kinase 2

    Science.gov (United States)

    Nelson, Charles; Ambros, Victor; Baehrecke, Eric H.

    2014-01-01

    SUMMARY Macroautophagy (autophagy) is a lysosome-dependent degradation process that has been implicated in age-associated diseases. Autophagy is involved in both cell survival and cell death, but little is known about the mechanisms that distinguish its use during these distinct cell fates. Here, we identify the microRNA, miR-14, as being both necessary and sufficient for autophagy during developmentally regulated cell death in Drosophila. Loss of miR-14 prevented induction of autophagy during salivary gland cell death, but had no effect on starvation-induced autophagy in the fat body. Moreover, mis-expression of miR-14 was sufficient to prematurely induce autophagy in salivary glands, but not in the fat body. Importantly, miR-14 regulates this context-specific autophagy through its target, inositol 1,4,5-trisphosphate kinase 2 (ip3k2) thereby affecting inositol 1,4,5-trisphosphate (IP3) signaling and calcium levels during salivary gland cell death. This study provides the first in vivo evidence of microRNA regulation of autophagy through modulation of IP3 signaling. PMID:25306920

  16. Mouse Norovirus infection promotes autophagy induction to facilitate replication but prevents final autophagosome maturation

    Energy Technology Data Exchange (ETDEWEB)

    O’Donnell, Tanya B. [Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3010 (Australia); Hyde, Jennifer L. [School of Chemical and Biological Sciences, University of Queensland, St. Lucia, Brisbane, Queensland 4072 (Australia); Mintern, Justine D. [Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne 3010 (Australia); Mackenzie, Jason M., E-mail: jason.mackenzie@unimelb.edu.au [Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3010 (Australia)

    2016-05-15

    Autophagy is a cellular process used to eliminate intracellular pathogens. Many viruses however are able to manipulate this cellular process for their own advantage. Here we demonstrate that Mouse Norovirus (MNV) infection induces autophagy but does not appear to utilise the autophagosomal membrane for establishment and formation of the viral replication complex. We have observed that MNV infection results in lipidation and recruitment of LC3 to the autophagosome membrane but prevents subsequent fusion of the autophagosomes with lysosomes, as SQSTM1 (an autophagy receptor) accumulates and Lysosome-Associated Membrane Protein1 is sequestered to the MNV replication complex (RC) rather than to autophagosomes. We have additionally observed that chemical modulation of autophagy differentially affects MNV replication. From this study we can conclude that MNV infection induces autophagy, however suppresses the final maturation step of this response, indicating that autophagy induction contributes to MNV replication independently of RC biogenesis. - Highlights: • MNV induces autophagy in infected murine macrophages. • MNV does not utilise autophagosomal membranes for replication. • The MNV-induced autophagosomes do not fuse with lysosomes. • MNV sequesters SQSTM1 to prevent autophagy degradation and turnover. • Chemical modulation of autophagy enhances MNV replication.

  17. Tumor necrosis factor-α attenuates starvation-induced apoptosis through upregulation of ferritin heavy chain in hepatocellular carcinoma cells

    International Nuclear Information System (INIS)

    Kou, Xingrui; Zhao, Qiudong; Zhao, Xue; Li, Rong; Wei, Lixin; Wu, Mengchao; Jing, Yingying; Deng, Weijie; Sun, Kai; Han, Zhipeng; Ye, Fei; Yu, Guofeng; Fan, Qingmin; Gao, Lu

    2013-01-01

    Tumor microenviroment is characteristic of inflammation, ischemia and starvation of nutrient. TNF-α, which is an extraordinarily pleiotropic cytokine, could be an endogenous tumor promoter in some tumor types. The basic objective of this study was to investigate the effects of TNF-α on the cell viability and apoptosis of hepatocellular carcinoma cells under serum starvation, and to identify the molecular mechanisms involved. For this purpose, five different concentrations of TNF-α and two different serum settings (serum-cultured and serum-deprived) were used to investigate the effects of TNF-α on the cell viability and apoptosis of Hep3B and SMMC-7721 cells. TNF-α (10 ng/ml) attenuated serum starvation-induced apoptosis of hepatocellular carcinoma cells, and autophagy conferred this process. BAY11-7082, a specific inhibitor of NF-κB, reversed the suppression of serum starvation-induced apoptosis by TNF-α. Moreover, TNF-α-induced NF-κB transactivation was suppressed by autophagy inhibitor 3-MA. In addition, TNF-α up-regulated Ferritin heavy chain (FHC) transiently by NF-κB activation and FHC levels were correlated with the TNF-α-induced protection against serum starvation-mediated apoptosis of hepatocellular carcinoma cells. Furthermore, FHC-mediated inhibition of apoptosis depended on suppressing ROS accumulation. Our findings suggested that autophagy conferred the TNF-α protection against serum starvation-mediated apoptosis of hepatocellular carcinoma cells, the mechanism involved with the activation of the TNF-α/ NF-κB /FHC signaling pathway

  18. A Phosphate Starvation-Inducible Ribonuclease of Bacillus licheniformis.

    Science.gov (United States)

    Nguyen, Thanh Trung; Nguyen, Minh Hung; Nguyen, Huy Thuan; Nguyen, Hoang Anh; Le, Thi Hoi; Schweder, Thomas; Jürgen, Britta

    2016-08-28

    The BLi03719 protein of Bacillus licheniformis DSM13 belongs to the most abundant extracellular proteins under phosphate starvation conditions. In this study, the function of this phosphate starvation inducible protein was determined. An amino-acid sequence analysis of the BLi03719-encoding gene showed a high similarity with genes encoding the barnase of Bacillus amyloliquefaciens FZB42 and binase-like RNase of Bacillus pumilus SARF-032. The comparison of the control strain and a BLi03719-deficient strain revealed a strongly reduced extracellular ribonuclease activity of the mutant. Furthermore, this knockout mutant exhibited delayed growth with yeast RNA as an alternative phosphate and carbon source. These results suggest that BLi03719 is an extracellular ribonuclease expressed in B. licheniformis under phosphate starvation conditions. Finally, a BLi03719 mutant showed an advantageous effect on the overexpression of the heterologous amyE gene under phosphate-limited growth conditions.

  19. Mammalian autophagy is essential for hepatic and renal ketogenesis during starvation.

    Science.gov (United States)

    Takagi, Ayano; Kume, Shinji; Kondo, Motoyuki; Nakazawa, Jun; Chin-Kanasaki, Masami; Araki, Hisazumi; Araki, Shin-ichi; Koya, Daisuke; Haneda, Masakazu; Chano, Tokuhiro; Matsusaka, Taiji; Nagao, Kenji; Adachi, Yusuke; Chan, Lawrence; Maegawa, Hiroshi; Uzu, Takashi

    2016-01-06

    Autophagy is an intracellular degradation system activated, across species, by starvation. Although accumulating evidence has shown that mammalian autophagy is involved in pathogenesis of several modern diseases, its physiological role to combat starvation has not been fully clarified. In this study, we analysed starvation-induced gluconeogenesis and ketogenesis in mouse strains lacking autophagy in liver, skeletal muscle or kidney. Autophagy-deficiency in any tissue had no effect on gluconeogenesis during starvation. Though skeletal muscle- and kidney-specific autophagy-deficiency did not alter starvation-induced increases in blood ketone levels, liver-specific autophagy-deficiency significantly attenuated this effect. Interestingly, renal as well as hepatic expression of HMG-CoA synthase 2 increased with prolonged starvation. Furthermore, during starvation, mice lacking autophagy both in liver and kidney showed even lower blood ketone levels and physical activity than mice lacking autophagy only in liver. Starvation induced massive lipid droplet formation in extra-adipose tissues including liver and kidney, which was essential for ketogenesis. Moreover, this process was impaired in the autophagy-deficient liver and kidney. These findings demonstrate that hepatic and renal autophagy are essential for starvation-induced lipid droplet formation and subsequent ketogenesis and, ultimately, for maintaining systemic energy homeostasis. Our findings provide novel biological insights into adaptive mechanisms to combat starvation in mammals.

  20. Stimulation of autophagy prevents amyloid-β peptide-induced neuritic degeneration in PC12 cells.

    Science.gov (United States)

    Yang, Yi; Chen, Sicong; Zhang, Jiafeng; Li, Chentan; Sun, Yonghong; Zhang, Lihui; Zheng, Xiaoxiang

    2014-01-01

    Autophagy is a lysosomal degradative process essential for neuronal homeostasis, whereas autophagic failure has been linked to accumulating neurodegenerative disorders. However, the precise role of autophagy in axonal and dendritic degeneration in Alzheimer's disease (AD) remains unclear. In this study, we aim to investigate the precise effect of autophagy in amyloid-β peptide (Aβ)25-35-mediated neurite degeneration. Aβ35-25, the non-neurotoxic reverse sequence analogue of Aβ25-35, was used as a negative control. Our results showed that Aβ25-35 dose-dependently suppressed PC12 proliferation and induced autophagy induction in neurites (axons and dendrites). A high proportion of autophagic structures in PC12 neurites were autolysosomes after 24 h of Aβ25-35 treatment. Autophagy inhibition by 3-methyladenine (3MA), LY294002, and chloroquine (CQ) could not relieve the Aβ25-35-induced neurite degeneration, while administration of autophagy stimulator rapamycin or AR-12 efficiently suppressed neurite degeneration. Autophagosomes colocalized with fragmented mitochondria after Aβ25-35 treatment. Similar results were obtained using in vitro cultured superior cervical ganglion neurons. These findings demonstrate that autophagy stimulation may prevent neuritic degeneration following Aβ25-35 treatment. Upregulation of autophagic activity may provide a valuable approach for the treatment of axonal and dendritic dystrophy in AD patients.

  1. Isoflavones Induce BEX2-Dependent Autophagy to Prevent ATR-Induced Neurotoxicity in SH-SY5Y Cells

    Directory of Open Access Journals (Sweden)

    Peng Li

    2017-10-01

    Full Text Available Background/Aims: Atrazine (ATR is a broad-spectrum herbicide in wide use around the world. However, ATR is neurotoxic and can cause cell death in dopaminergic neurons, leading to neurodegenerative disorders. Autophagy is the basic cellular catabolic process involving the degradation of proteins and damaged organelles. Studies have shown that certain plant compounds can induce autophagy and prevent neuronal cell death. This prompted us to investigate plant compounds that might reduce the neurotoxic effects of ATR. Methods: By CCK-8 and flow cytometry, we tested the ability of five candidate compounds—isoflavones, resveratrol, quercetin, curcumin, and green tea polyphenols—to protect cells from ATR. Changes in the expression of tyrosine hydroxylase (TH and brain-expressed X-linked 2 (BEX2, autophagy-related proteins and key factors in mTOR signaling, were detected by Western blotting. Results: Isoflavones had the strongest activity against ATR-induced neuronal apoptosis. ATR reduced the expression of TH and BEX2, whereas isoflavones increased TH and BEX2 expression. In addition, ATR inhibited autophagy, whereas isoflavones induced autophagy through the accumulation of LC3-II and decreased expression of p62; this effect was abolished by 3-methyladenine (3-MA. Furthermore, BEX2 siRNA abolished isoflavone-mediated autophagy and neuroprotection in vitro. Conclusion: Isoflavones activate BEX2-dependent autophagy, protecting against ATR-induced neuronal apoptosis.

  2. Low molecular weight heparins prevent the induction of autophagy of activated neutrophils and the formation of neutrophil extracellular traps.

    Science.gov (United States)

    Manfredi, Angelo A; Rovere-Querini, Patrizia; D'Angelo, Armando; Maugeri, Norma

    2017-09-01

    The protection exerted by neutrophils against invading microbes is partially mediated via the generation of neutrophil extracellular traps (NETs). In sterile conditions NETs are damaging species, enriched in autoantigens and endowed with the ability to damage the vessel wall and bystander tissues, to promote thrombogenesis, and to impair wound healing. To identify and reposition agents that can be used to modulate the formation of NETs is a priority in the research agenda. Low molecular weight heparins (LMWH) are currently used, mostly on an empirical basis, in conditions in which NETs play a critical role, such as pregnancy complications associated to autoimmune disease. Here we report that LMWHs induce a profound change in the ability of human neutrophils to generate NETs and to mobilize the content of the primary granules in response to unrelated inflammatory stimuli, such as IL-8, PMA and HMGB1. Autophagy consistently accompanies NET generation in our system and autophagy inhibitors, 3-MA and wortmannin, prevent NET generation. Pretreatment with LMWH in vitro critically jeopardizes neutrophil ability to activate autophagy, a mechanism that might contribute to neutrophil unresponsiveness. Finally, we verified that treatment of healthy volunteers with a single prophylactic dose of parnaparin abrogated the ability of neutrophils to activate autophagy and to generate NETs. Together, these results support the contention that neutrophils, and NET generation in particular, might represent a preferential target of the anti-inflammatory action of LMWH. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Oleuropein Prevents Neuronal Death, Mitigates Mitochondrial Superoxide Production and Modulates Autophagy in a Dopaminergic Cellular Model

    Directory of Open Access Journals (Sweden)

    Imène Achour

    2016-08-01

    Full Text Available Parkinson’s disease (PD is a progressive neurodegenerative disorder, primarily affecting dopaminergic neurons in the substantia nigra. There is currently no cure for PD and present medications aim to alleviate clinical symptoms, thus prevention remains the ideal strategy to reduce the prevalence of this disease. The goal of this study was to investigate whether oleuropein (OLE, the major phenolic compound in olive derivatives, may prevent neuronal degeneration in a cellular dopaminergic model of PD, differentiated PC12 cells exposed to the potent parkinsonian toxin 6-hydroxydopamine (6-OHDA. We also investigated OLE’s ability to mitigate mitochondrial oxidative stress and modulate the autophagic flux. Our results obtained by measuring cytotoxicity and apoptotic events demonstrate that OLE significantly decreases neuronal death. OLE could also reduce mitochondrial production of reactive oxygen species resulting from blocking superoxide dismutase activity. Moreover, quantification of autophagic and acidic vesicles in the cytoplasm alongside expression of specific autophagic markers uncovered a regulatory role for OLE against autophagic flux impairment induced by bafilomycin A1. Altogether, our results define OLE as a neuroprotective, anti-oxidative and autophagy-regulating molecule, in a neuronal dopaminergic cellular model.

  4. Degradation of protein translation machinery by amino acid starvation-induced macroautophagy.

    Science.gov (United States)

    Gretzmeier, Christine; Eiselein, Sven; Johnson, Gregory R; Engelke, Rudolf; Nowag, Heike; Zarei, Mostafa; Küttner, Victoria; Becker, Andrea C; Rigbolt, Kristoffer T G; Høyer-Hansen, Maria; Andersen, Jens S; Münz, Christian; Murphy, Robert F; Dengjel, Jörn

    2017-06-03

    Macroautophagy is regarded as a nonspecific bulk degradation process of cytoplasmic material within the lysosome. However, the process has mainly been studied by nonspecific bulk degradation assays using radiolabeling. In the present study we monitor protein turnover and degradation by global, unbiased approaches relying on quantitative mass spectrometry-based proteomics. Macroautophagy is induced by rapamycin treatment, and by amino acid and glucose starvation in differentially, metabolically labeled cells. Protein dynamics are linked to image-based models of autophagosome turnover. Depending on the inducing stimulus, protein as well as organelle turnover differ. Amino acid starvation-induced macroautophagy leads to selective degradation of proteins important for protein translation. Thus, protein dynamics reflect cellular conditions in the respective treatment indicating stimulus-specific pathways in stress-induced macroautophagy.

  5. Carbon-Starvation Induces Cross-Resistance to Thermal, Acid, and Oxidative Stress in Serratia marcescens

    Science.gov (United States)

    Pittman, Joseph R.; Kline, La’Kesha C.; Kenyon, William J.

    2015-01-01

    The broad host-range pathogen Serratia marcescens survives in diverse host and non-host environments, often enduring conditions in which the concentration of essential nutrients is growth-limiting. In such environments, carbon and energy source starvation (carbon-starvation) is one of the most common forms of stress encountered by S. marcescens. Related members of the family Enterobacteriaceae are known to undergo substantial changes in gene expression and physiology in response to the specific stress of carbon-starvation, enabling non-spore-forming cells to survive periods of prolonged starvation and exposure to other forms of stress (i.e., starvation-induced cross-resistance). To determine if carbon-starvation also results in elevated levels of cross-resistance in S. marcescens, both log-phase and carbon-starved cultures, depleted of glucose before the onset of high cell-density stationary-phase, were grown in minimal media at either 30 °C or 37 °C and were then challenged for resistance to high temperature (50 °C), low pH (pH 2.8), and oxidative stress (15 mM H2O2). In general, carbon-starved cells exhibited a higher level of resistance to thermal stress, acid stress, and oxidative stress compared to log-phase cells. The extent of carbon-starvation-induced cross-resistance was dependent on incubation temperature and on the particular strain of S. marcescens. In addition, strain- and temperature-dependent variations in long-term starvation survival were also observed. The enhanced stress-resistance of starved S. marcescens cells could be an important factor in their survival and persistence in many non-host environments and within certain host microenvironments where the availability of carbon sources is suboptimal for growth. PMID:27682115

  6. Carbon-Starvation Induces Cross-Resistance to Thermal, Acid, and Oxidative Stress in Serratia marcescens

    Directory of Open Access Journals (Sweden)

    Joseph R. Pittman

    2015-10-01

    Full Text Available The broad host-range pathogen Serratia marcescens survives in diverse host and non-host environments, often enduring conditions in which the concentration of essential nutrients is growth-limiting. In such environments, carbon and energy source starvation (carbon-starvation is one of the most common forms of stress encountered by S. marcescens. Related members of the family Enterobacteriaceae are known to undergo substantial changes in gene expression and physiology in response to the specific stress of carbon-starvation, enabling non-spore-forming cells to survive periods of prolonged starvation and exposure to other forms of stress (i.e., starvation-induced cross-resistance. To determine if carbon-starvation also results in elevated levels of cross-resistance in S. marcescens, both log-phase and carbon-starved cultures, depleted of glucose before the onset of high cell-density stationary-phase, were grown in minimal media at either 30 °C or 37 °C and were then challenged for resistance to high temperature (50 °C, low pH (pH 2.8, and oxidative stress (15 mM H2O2. In general, carbon-starved cells exhibited a higher level of resistance to thermal stress, acid stress, and oxidative stress compared to log-phase cells. The extent of carbon-starvation-induced cross-resistance was dependent on incubation temperature and on the particular strain of S. marcescens. In addition, strain- and temperature-dependent variations in long-term starvation survival were also observed. The enhanced stress-resistance of starved S. marcescens cells could be an important factor in their survival and persistence in many non-host environments and within certain host microenvironments where the availability of carbon sources is suboptimal for growth.

  7. Sulforaphane-induced autophagy flux prevents prion protein-mediated neurotoxicity through AMPK pathway.

    Science.gov (United States)

    Lee, J-H; Jeong, J-K; Park, S-Y

    2014-10-10

    Prion diseases are neurodegenerative and infectious disorders that involve accumulation of misfolded scrapie prion protein, and which are characterized by spongiform degeneration. Autophagy, a major homeostatic process responsible for the degradation of cytoplasmic components, has garnered attention as the potential target for neurodegenerative diseases such as prion disease. We focused on protective effects of sulforaphane found in cruciferous vegetables on prion-mediated neurotoxicity and the mechanism of sulforaphane related to autophagy. In human neuroblastoma cells, sulforaphane protected prion protein (PrP) (106-126)-mediated neurotoxicity and increased autophagy flux marker microtubule-associated protein 1 light chain 3-II protein levels, following a decrease of p62 protein level. Pharmacological and genetical inhibition of autophagy by 3MA, wortmannin and knockdown of autophagy-related 5 (ATG5) led to block the effect of sulforaphane against PrP (106-126)-induced neurotoxicity. Furthermore we demonstrated that both sulforaphane-induced autophagy and protective effect of sulforaphane against PrP (106-126)-induced neurotoxicity are dependent on the AMP-activated protein kinase (AMPK) signaling. The present results indicated that sulforaphane of cruciferous vegetables enhanced autophagy flux led to the protection effects against prion-mediated neurotoxicity, which was regulated by AMPK signaling pathways in human neuron cells. Our data also suggest that sulforaphane has a potential value as a therapeutic tool in neurodegenerative disease including prion diseases. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Antioxidant Supplement Inhibits Skeletal Muscle Constitutive Autophagy rather than Fasting-Induced Autophagy in Mice

    Directory of Open Access Journals (Sweden)

    Zhengtang Qi

    2014-01-01

    Full Text Available In this study, we tested the hypothesis that NAC administration leads to reduced oxidative stress and thus to decreased expression of autophagy markers in young mice. Our results reveal that NAC administration results in reduced muscle mRNA levels of several autophagy markers, including Beclin-1, Atg7, LC3, Atg9, and LAMP2. However, NAC supplement fails to block the activation of skeletal muscle autophagy in response to fasting, because fasting significantly increases the mRNA level of several autophagy markers and LC3 lipidation. We further examined the effects of NAC administration on mitochondrial antioxidant capacity in fed and 24-hour fasted mice. Our results clearly show that NAC administration depresses the expression of manganese superoxide dismutase (MnSOD and TP53-induced glycolysis and apoptosis regulator (TIGAR, both of which play a predominant antioxidant role in mitochondria by reducing ROS level. In addition, we found no beneficial effect of NAC supplement on muscle mass but it can protect from muscle loss in response to fasting. Collectively, our findings indicate that ROS is required for skeletal muscle constitutive autophagy, rather than starvation-induced autophagy, and that antioxidant NAC inhibits constitutive autophagy by the regulation of mitochondrial ROS production and antioxidant capacity.

  9. Remifentanil induces autophagy and prevents hydrogen peroxide-induced apoptosis in Cos-7 cells.

    Science.gov (United States)

    Yoon, Ji-Young; Baek, Chul-Woo; Woo, Mi-Na; Kim, Eun-Jung; Yoon, Ji-Uk; Park, Chang-Hoon

    2016-09-01

    This study investigated the effect of remifentanil pretreatment on Cos-7 cells exposed to oxidative stress, and the influence of remifentanil on intracellular autophagy and apoptotic cell death. Cells were divided into 4 groups: (1) Control: non-pretreated cells were incubated in normoxia (5% CO 2 , 21% O 2 , and 74% N 2 ). (2) H 2 O 2 : non-pretreated cells were exposed to H 2 O 2 for 24 h. (3) RPC+H 2 O 2 : cells pretreated with remifentanil were exposed to H 2 O 2 for 24 h. (4) 3-MA+RPC+H 2 O 2 : cells pretreated with 3-Methyladenine (3-MA) and remifentanil were exposed to H 2 O 2 for 24 h. We determined the cell viability of each group using an MTT assay. Hoechst staining and FACS analysis of Cos-7 cells were performed to observe the effect of remifentanil on apoptosis. Autophagy activation was determined by fluorescence microscopy, MDC staining, and AO staining. The expression of autophagy-related proteins was observed using western blotting. Remifentanil pretreatment increased the viability of Cos-7 cells exposed to oxidative stress. Hoechst staining and FACS analysis revealed that oxidative stress-dependent apoptosis was suppressed by the pretreatment. Additionally, fluorescence microscopy showed that remifentanil pretreatment led to autophagy-induction in Cos-7 cells, and the expression of autophagy-related proteins was increased in the RPC+H 2 O 2 group. The study showed that remifentanil pretreatment stimulated autophagy and increased viability in an oxidative stress model of Cos-7 cells. Therefore, we suggest that apoptosis was activated upon oxidative stress, and remifentanil preconditioning increased the survival rate of the cells by activating autophagy.

  10. Inhibition of chaperone-mediated autophagy prevents glucotoxicity in the Caenorhabditis elegans mev-1 mutant by activation of the proteasome.

    Science.gov (United States)

    Eisermann, Dorothé Jenni; Wenzel, Uwe; Fitzenberger, Elena

    2017-02-26

    Chronic hyperglycemia is a hallmark of diabetes mellitus and the main cause of diabetes-associated complications. Increased intracellular glucose levels lead to damaged proteins and in consequence disturb cellular proteostasis. As an important contributor to the maintenance and restoration of proteostasis, autophagy mediates the lysosomal degradation of damaged proteins or entire cellular organelles. In the present study we used the stress-sensitive mev-1 mutant of the nematode Caenorhabditis elegans in order to assess the role of lmp-2, a homologue of the lysosome associated membrane protein type 2A, in the context of glucotoxicity, which was achieved by feeding glucose in a liquid medium. Knockdown of lmp-2 by RNA interference completely prevented the survival reduction caused by glucose under heat stress. Those effects were associated with the prevention of (1) increased lysosome formation and (2) reduction of proteasomal activity, which were observed under glucose feeding. Finally, the survival reduction due to knockdown of ubiquitin remained unaffected by the additional lmp-2 knockdown in the absence or presence of glucose. In conclusion, our study provides evidence that lmp-2, a key player in chaperone-mediated autophagy, is functional in C. elegans, too. Inhibition of lmp-2 prevents the reduction of proteasomal activity by glucose and thereby prevents also glucotoxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Leptin suppresses semi-starvation induced hyperactivity in rats: implications for anorexia nervosa.

    Science.gov (United States)

    Exner, C; Hebebrand, J; Remschmidt, H; Wewetzer, C; Ziegler, A; Herpertz, S; Schweiger, U; Blum, W F; Preibisch, G; Heldmaier, G; Klingenspor, M

    2000-09-01

    Semi-starvation induced hyperactivity (SIH) occurs in rodents upon caloric restriction. We hypothesized that SIH is triggered by the decline in leptin secretion associated with food restriction. To test this hypothesis, rats, which had established a stable level of activity, were treated with leptin or vehicle via implanted minipumps concomitantly to initiation of food restriction for 7 days. In a second experiment treatment was initiated after SIH had already set in. In contrast to the vehicle-treated rats, which increased their baseline activity level by 300%, the development of SIH was suppressed by leptin. Furthermore, leptin was able to stop SIH, after it had set in. These results underscore the assumed major role of leptin in the adaptation to semi-starvation. Because SIH has been viewed as a model for anorexia nervosa, we also assessed subjective ratings of motor restlessness in 30 patients with this eating disorder in the emaciated state associated with hypoleptinemia and after increments in leptin secretion brought upon by therapeutically induced weight gain. Hypoleptinemic patients ranked their motor restlessness higher than upon attainment of their maximal leptin level during inpatient treatment. Thus, hypoleptinemia might also contribute to the hyperactivity frequently associated with anorexia nervosa.

  12. Protein synthesis and degradation during starvation-induced cardiac atrophy in rabbits

    International Nuclear Information System (INIS)

    Samarel, A.M.; Parmacek, M.S.; Magid, N.M.; Decker, R.S.; Lesch, M.

    1987-01-01

    To determine the relative importance of protein degradation in the development of starvation-induced cardiac atrophy, in vivo fractional synthetic rates of total cardiac protein, myosin heavy chain, actin, light chain 1, and light chain 2 were measured in fed and fasted rabbits by continuous infusion of [ 3 H] leucine. In addition, the rate of left ventricular protein accumulation and loss were assessed in weight-matched control and fasted rabbits. Rates of total cardiac protein degradation were then estimated as the difference between rates of synthesis and growth. Fasting produced left ventricular atrophy by decreasing the rate of left ventricular protein synthesis (34.8 +/- 1.4, 27.3 +/- 3.0, and 19.3 +/- 1.2 mg/day of left ventricular protein synthesized for 0-, 3-, and 7-day fasted rabbits, respectively). Inhibition of contractile protein synthesis was evident by significant reductions in the fractional synthetic rates of all myofibrillar protein subunits. Although fractional rates of protein degradation increased significantly within 7 days of fasting, actual amounts of left ventricular protein degraded per day were unaffected. Thus, prolonged fasting profoundly inhibits the synthesis of new cardiac protein, including the major protein constituents of the myofibril. Both this inhibition in new protein synthesis as well as a smaller but significant reduction in the average half-lives of cardiac proteins are responsible for atrophy of the heart in response to fasting

  13. Doxycyclin ameliorates a starvation-induced germline tumor in C. elegans daf-18/PTEN mutant background.

    Science.gov (United States)

    Wolf, Tim; Qi, Wenjing; Schindler, Verena; Runkel, Eva Diana; Baumeister, Ralf

    2014-08-01

    Managing available resources is a key necessity of each organism to cope with the environment. The nematode C. elegans responds to nutritional deprivation or harsh environmental conditions with a multitude of developmental adaptations, among them a starvation-induced quiescence at early larval development (L1). daf-18, the C. elegans homolog of the human tumor suppressor gene PTEN, is essential for the maintenance of survival and germline stem cell arrest during the L1 diapause. We show here that daf-18 mutants, independently to their failure to maintain G2 arrest of the primordial germ cells, develop a gonad phenotype after refeeding. This highly penetrant gonadal phenotype is further enhanced by a mutation in shc-1, encoding a protein homologous to the human adaptor ShcA. Features of this phenotype are a tumor-like phenotype encompassing hyper-proliferation of germ cell nuclei and disruption/invasion of the basement membrane surrounding the gonad. The penetrance of this phenotype is reduced by decreasing starvation temperature. In addition, it is also ameliorated in a dose-dependent way by exposure to the antibiotic doxycyclin either during starvation or during subsequent refeeding. Since, in eukaryotic cells, doxycyclin specifically blocks mitochondrial translation, our results suggest that daf-18 and shc-1;daf-18 mutants fail to adapt mitochondrial activity to reduced nutritional availability during early larval developing. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Food searching strategy of amoeboid cells by starvation induced run length extension.

    Directory of Open Access Journals (Sweden)

    Peter J M Van Haastert

    Full Text Available Food searching strategies of animals are key to their success in heterogeneous environments. The optimal search strategy may include specialized random walks such as Levy walks with heavy power-law tail distributions, or persistent walks with preferred movement in a similar direction. We have investigated the movement of the soil amoebae Dictyostelium searching for food. Dictyostelium cells move by extending pseudopodia, either in the direction of the previous pseudopod (persistent step or in a different direction (turn. The analysis of approximately 4000 pseudopodia reveals that step and turn pseudopodia are drawn from a probability distribution that is determined by cGMP/PLA2 signaling pathways. Starvation activates these pathways thereby suppressing turns and inducing steps. As a consequence, starved cells make very long nearly straight runs and disperse over approximately 30-fold larger areas, without extending more or larger pseudopodia than vegetative cells. This 'win-stay/lose-shift' strategy for food searching is called Starvation Induced Run-length Extension. The SIRE walk explains very well the observed differences in search behavior between fed and starving organisms such as bumble-bees, flower bug, hoverfly and zooplankton.

  15. p73 regulates basal and starvation-induced liver metabolism in vivo.

    Science.gov (United States)

    He, Zhaoyue; Agostini, Massimiliano; Liu, He; Melino, Gerry; Simon, Hans-Uwe

    2015-10-20

    As a member of the p53 gene family, p73 regulates cell cycle arrest, apoptosis, neurogenesis, immunity and inflammation. Recently, p73 has been shown to transcriptionally regulate selective metabolic enzymes, such as cytochrome c oxidase subunit IV isoform 1, glucose 6-phosphate dehydrogenase and glutaminase-2, resulting in significant effects on metabolism, including hepatocellular lipid metabolism, glutathione homeostasis and the pentose phosphate pathway. In order to further investigate the metabolic effect of p73, here, we compared the global metabolic profile of livers from p73 knockout and wild-type mice under both control and starvation conditions. Our results show that the depletion of all p73 isoforms cause altered lysine metabolism and glycolysis, distinct patterns for glutathione synthesis and Krebs cycle, as well as an elevated pentose phosphate pathway and abnormal lipid accumulation. These results indicate that p73 regulates basal and starvation-induced fuel metabolism in the liver, a finding that is likely to be highly relevant for metabolism-associated disorders, such as diabetes and cancer.

  16. Role of autophagy and lysosomal drug sequestration in acquired resistance to doxorubicin in MCF-7 cells

    International Nuclear Information System (INIS)

    Guo, Baoqing; Tam, Adam; Santi, Stacey A.; Parissenti, Amadeo M.

    2016-01-01

    The roles and mechanisms involved in starvation-induced autophagy in mammalian cells have been extensively studied. However, less is known about the potential role for autophagy as a survival pathway in acquired drug resistance in cancer cells under nutrient-rich conditions. We selected MCF-7 breast tumor cells for survival in increasing concentrations of doxorubicin and assessed whether the acquisition of doxorubicin resistance was accompanied by changes in doxorubicin and lysosome localization and the activation of autophagy, as assessed by laser scanning confocal microscopy with or without immunohistochemical approaches. The ultrastructure of cells was also viewed using transmission electron microscopy. Cellular levels of autophagy and apoptosis-related proteins were assessed by immunoblotting techniques, while protein turnover was quantified using a flux assay. As cells acquired resistance to doxorubicin, the subcellular location of the drug moved from the nucleus to the perinuclear region. The location of lysosomes and autophagosomes also changed from being equally distributed throughout the cytoplasm to co-localizing with doxorubicin in the perinuclear region. There was an apparent temporal correlation between the acquisition of doxorubicin resistance and autophagy induction, as measured by increases in monodansylcadaverine staining, LC3-II production, and co-localization of LAMP1 and LC3-II immunofluorescence. Electron microscopy revealed an increase in cytoplasmic vacuoles containing mitochondria and other cellular organelles, also suggestive of autophagy. Consistent with this view, a known autophagy inhibitor (chloroquine) was highly effective in restoring doxorubicin sensitivity in doxorubicin-resistant cells. Moreover, this induction of autophagy correlated temporally with increased expression of the selective cargo receptor p62, which facilitates the delivery of doxorubicin-damaged mitochondria and other organelles to autophagosomes. Finally, we suggest

  17. A phosphate-starvation-inducible outermembrane protein of Pseudomonas fluorescens Ag1 as an immunological phosphate-starvation marker

    DEFF Research Database (Denmark)

    Leopold, Kristine; Jacobsen, Susanne; Nybroe, Ole

    1997-01-01

    A phosphate-starvation-inducible outer-membrane protein of Pseudomonas fluorescens Ag1, expressed at phosphate concentrations below0.08-0.13 mM, was purified and characterized. The purification method involved separation of outer-membrane proteins by SDS-PAGE andextraction of the protein from...... nitrocellulose or PVDF membranes after electrotransfer of proteins to the membranes. The N-terminal amino acidsequence of the purified protein, called Psi1, did not show homology to any known proteins, and in contrast to the phosphate-specific porin OprP ofP. aeruginosa its mobility in SDS-PAGE was not affected...

  18. HucMSC exosomes-delivered 14-3-3ζ enhanced autophagy via modulation of ATG16L in preventing cisplatin-induced acute kidney injury.

    Science.gov (United States)

    Jia, Haoyuan; Liu, Wanzhu; Zhang, Bin; Wang, Juanjuan; Wu, Peipei; Tandra, Nitin; Liang, Zhaofeng; Ji, Cheng; Yin, Lei; Hu, Xinyuan; Yan, Yongmin; Mao, Fei; Zhang, Xu; Yu, Jing; Xu, Wenrong; Qian, Hui

    2018-01-01

    The clinical application of cisplatin is restricted by its side effects of nephrotoxicity. Human umbilical cord mesenchymal stem cell-derived exosomes (hucMSC-ex) have an important effect in tissue injury repair. Our previous work discovered that pretreatment with human umbilical cord mesenchymal stem cell-derived exosomes (hucMSC-ex) alleviated cisplatin-induced acute kidney injury (AKI) by activating autophagy both in vitro and in vivo . In this study, we further explored the mechanisms of hucMSC-ex in autophagy for preventing cisplatin-induced nephrotoxicity. We discovered that 14-3-3ζ was contained in hucMSC-ex, and knockdown and overexpression 14-3-3ζ reduced and enhanced the autophagic activity respectively. Furthermore, Knockdown of 14-3-3ζ alleviated the preventive effect of hucMSC-ex. In contrast, overexpression of 14-3-3ζ enhanced the effect. Further results confirmed that hucMSC-ex increased ATG16L expression and that 14-3-3ζ interacted with ATG16L, promoting the localization of ATG16L at autophagosome precursors. In this study, we revealed that hucMSC-ex-delivered 14-3-3ζ interacted with ATG16L to activate autophagy. Our findings suggest that 14-3-3ζ is a novel mechanism for MSC-exosomes-activated autophagy and provides a new strategy for the prevention of cisplatin-induced nephrotoxicity.

  19. Manipulation of oil synthesis in Nannochloropsis strain NIES-2145 with a phosphorus starvation-inducible promoter from Chlamydomonas reinhardtii.

    Science.gov (United States)

    Iwai, Masako; Hori, Koichi; Sasaki-Sekimoto, Yuko; Shimojima, Mie; Ohta, Hiroyuki

    2015-01-01

    Microalgae accumulate triacylglycerols (TAGs) under conditions of nutrient stress. Phosphorus (P) starvation induces the accumulation of TAGs, and the cells under P starvation maintain growth through photosynthesis. We recently reported that P starvation-dependent overexpression of type-2 diacylglycerol acyl-CoA acyltransferase (CrDGTT4) from Chlamydomonas reinhardtii using a sulfoquinovosyldiacylglycerol synthase 2 (SQD2) promoter, which has increased activity during P starvation, enhances TAG accumulation in C. reinhardtii cells. As a result, the content of C18:1 fatty acid, a preferred substrate of CrDGTT4, is increased in TAGs. Here we isolated genes encoding SQD2 from strain NIES-2145 of the eustigmatophyte Nannochloropsis and showed that their expression, like that in C. reinhardtii, was up-regulated during P starvation. To enhance oil accumulation under P starvation, we transformed pCrSQD2-CrDGTT4 into Nannochloropsis strain NIES-2145. The transformants had a fatty acid composition that was more similar to that of C. reinhardtii, which resulted in enhanced TAG accumulation and higher 18:1(9) content. The results indicated that the P starvation-inducible promoter of C. reinhardtii was able to drive expression of the CrDGTT4 gene in Nannochloropsis strain NIES-2145 under P starvation. We conclude that the heterologous CrSQD2 promoter is effective in manipulating TAG synthesis in Nannochloropsis during P starvation.

  20. Cockayne syndrome group B protein prevents the accumulation of damaged mitochondria by promoting mitochondrial autophagy

    DEFF Research Database (Denmark)

    Scheibye-Knudsen, Morten; Ramamoorthy, Mahesh; Sykora, Peter

    2012-01-01

    Cockayne syndrome (CS) is a devastating autosomal recessive disease characterized by neurodegeneration, cachexia, and accelerated aging. 80% of the cases are caused by mutations in the CS complementation group B (CSB) gene known to be involved in DNA repair and transcription. Recent evidence...... indicates that CSB is present in mitochondria, where it associates with mitochondrial DNA (mtDNA). We report an increase in metabolism in the CSB(m/m) mouse model and CSB-deficient cells. Mitochondrial content is increased in CSB-deficient cells, whereas autophagy is down-regulated, presumably as a result...... of defects in the recruitment of P62 and mitochondrial ubiquitination. CSB-deficient cells show increased free radical production and an accumulation of damaged mitochondria. Accordingly, treatment with the autophagic stimulators lithium chloride or rapamycin reverses the bioenergetic phenotype of CSB...

  1. Conformational Flexibility Enables the Function of a BECN1 Region Essential for Starvation-Mediated Autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Yang; Ramanathan, Arvind; Glover, Karen; Stanley, Christopher; Sanishvili, Ruslan; Chakravarthy, Srinivas; Yang, Zhongyu; Colbert, Christopher L.; Sinha, Sangita C.

    2016-04-05

    BECN1 is essential for autophagy, a critical eukaryotic cellular homeostasis pathway. Here we delineate a highly conserved BECN1 domain located between previously characterized BH3 and coiled-coil domains and elucidate its structure and role in autophagy. The 2.0 angstrom sulfur-single-wavelength anomalous dispersion X-ray crystal structure of this domain demonstrates that its N-terminal half is unstructured while its C-terminal half is helical; hence, we name it the flexible helical domain (FHD). Circular dichroism spectroscopy, double electron electron resonance electron paramagnetic resonance, and small-angle X-ray scattering (SAXS) analyses confirm that the FHD is partially disordered, even in the context of adjacent BECN1 domains. Molecular dynamic simulations fitted to SAXS data indicate that the FHD transiently samples more helical conformations. FHD helicity increases in 2,2,2-trifluoroethanol, suggesting it may become more helical upon binding. Lastly, cellular studies show that conserved FHD residues are required for starvation-induced autophagy. Thus, the FHD likely undergoes a binding-associated disorder to-helix transition, and conserved residues critical for this interaction are essential for starvation-induced autophagy.

  2. VMP1 related autophagy and apoptosis in colorectal cancer cells: VMP1 regulates cell death

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Qinyi [Department of Ultrasonograph, Changshu No. 2 People’s Hospital, Changshu (China); Zhou, Hao; Chen, Yan [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou (China); Shen, Chenglong [Department of General Surgery, Changshu No. 2 People’s Hospital, Changshu (China); He, Songbing; Zhao, Hua; Wang, Liang [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou (China); Wan, Daiwei, E-mail: 372710369@qq.com [Department of Hepatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou (China); Gu, Wen, E-mail: 505339704@qq.com [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou (China)

    2014-01-17

    Highlights: •This research confirmed VMP1 as a regulator of autophagy in colorectal cancer cell lines. •We proved the pro-survival role of VMP1-mediated autophagy in colorectal cancer cell lines. •We found the interaction between VMP1 and BECLIN1 also existing in colorectal cancer cell lines. -- Abstract: Vacuole membrane protein 1 (VMP1) is an autophagy-related protein and identified as a key regulator of autophagy in recent years. In pancreatic cell lines, VMP1-dependent autophagy has been linked to positive regulation of apoptosis. However, there are no published reports on the role of VMP1 in autophagy and apoptosis in colorectal cancers. Therefore, to address this gap of knowledge, we decided to interrogate regulation of autophagy and apoptosis by VMP1. We have studied the induction of autophagy by starvation and rapamycin treatment in colorectal cell lines using electron microscopy, immunofluorescence, and immunoblotting. We found that starvation-induced autophagy correlated with an increase in VMP1 expression, that VMP1 interacted with BECLIN1, and that siRNA mediated down-regulation of VMP1-reduced autophagy. Next, we examined the relationship between VMP1-dependent autophagy and apoptosis and found that VMP1 down-regulation sensitizes cells to apoptosis and that agents that induce apoptosis down-regulate VMP1. In conclusion, similar to its reported role in other cell types, VMP1 is an important regulator of autophagy in colorectal cell lines. However, in contrast to its role in pancreatic cell lines, in colorectal cancer cells, VMP1-dependent autophagy appears to be pro-survival rather than pro-cell death.

  3. Regulation of mammalian autophagy by class II and III PI 3-kinases through PI3P synthesis.

    Science.gov (United States)

    Devereaux, Kelly; Dall'Armi, Claudia; Alcazar-Roman, Abel; Ogasawara, Yuta; Zhou, Xiang; Wang, Fan; Yamamoto, Akitsugu; De Camilli, Pietro; Di Paolo, Gilbert

    2013-01-01

    Synthesis of phosphatidylinositol-3-phosphate (PI3P) by Vps34, a class III phosphatidylinositol 3-kinase (PI3K), is critical for the initial steps of autophagosome (AP) biogenesis. Although Vps34 is the sole source of PI3P in budding yeast, mammalian cells can produce PI3P through alternate pathways, including direct synthesis by the class II PI3Ks; however, the physiological relevance of these alternate pathways in the context of autophagy is unknown. Here we generated Vps34 knockout mouse embryonic fibroblasts (MEFs) and using a higher affinity 4x-FYVE finger PI3P-binding probe found a Vps34-independent pool of PI3P accounting for (~)35% of the total amount of this lipid species by biochemical analysis. Importantly, WIPI-1, an autophagy-relevant PI3P probe, still formed some puncta upon starvation-induced autophagy in Vps34 knockout MEFs. Additional characterization of autophagy by electron microscopy as well as protein degradation assays showed that while Vps34 is important for starvation-induced autophagy there is a significant component of functional autophagy occurring in the absence of Vps34. Given these findings, class II PI3Ks (α and β isoforms) were examined as potential positive regulators of autophagy. Depletion of class II PI3Ks reduced recruitment of WIPI-1 and LC3 to AP nucleation sites and caused an accumulation of the autophagy substrate, p62, which was exacerbated upon the concomitant ablation of Vps34. Our studies indicate that while Vps34 is the main PI3P source during autophagy, class II PI3Ks also significantly contribute to PI3P generation and regulate AP biogenesis.

  4. Formation of a Snf1-Mec1-Atg1 Module on Mitochondria Governs Energy Deprivation-Induced Autophagy by Regulating Mitochondrial Respiration.

    Science.gov (United States)

    Yi, Cong; Tong, Jingjing; Lu, Puzhong; Wang, Yizheng; Zhang, Jinxie; Sun, Chen; Yuan, Kangning; Xue, Renyu; Zou, Bing; Li, Nianzhong; Xiao, Shuhua; Dai, Chong; Huang, Yuwei; Xu, Liling; Li, Lin; Chen, She; Miao, Di; Deng, Haiteng; Li, Hongliang; Yu, Li

    2017-04-10

    Autophagy is essential for maintaining glucose homeostasis, but the mechanism by which energy deprivation activates autophagy is not fully understood. We show that Mec1/ATR, a member of the DNA damage response pathway, is essential for glucose starvation-induced autophagy. Mec1, Atg13, Atg1, and the energy-sensing kinase Snf1 are recruited to mitochondria shortly after glucose starvation. Mec1 is recruited through the adaptor protein Ggc1. Snf1 phosphorylates Mec1 on the mitochondrial surface, leading to recruitment of Atg1 to mitochondria. Furthermore, the Snf1-mediated Mec1 phosphorylation and mitochondrial recruitment of Atg1 are essential for maintaining mitochondrial respiration during glucose starvation, and active mitochondrial respiration is required for energy deprivation-activated autophagy. Thus, formation of a Snf1-Mec1-Atg1 module on mitochondria governs energy deprivation-induced autophagy by regulating mitochondrial respiration. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Inducing autophagy

    DEFF Research Database (Denmark)

    Harder, Lea M; Bunkenborg, Jakob; Andersen, Jens S.

    2014-01-01

    catabolism, which has recently been found to induce autophagy in an MTOR independent way and support cancer cell survival. In this study, quantitative phosphoproteomics was applied to investigate the initial signaling events linking ammonia to the induction of autophagy. The MTOR inhibitor rapamycin was used...... as a reference treatment to emphasize the differences between an MTOR-dependent and -independent autophagy-induction. By this means 5901 phosphosites were identified of which 626 were treatment-specific regulated and 175 were coregulated. Investigation of the ammonia-specific regulated sites supported that MTOR...

  6. Modulation of pathogen recognition by autophagy

    Directory of Open Access Journals (Sweden)

    Ji Eun eOh

    2012-03-01

    Full Text Available Autophagy is an ancient biological process for maintaining cellular homeostasis by degradation of long-lived cytosolic proteins and organelles. Recent studies demonstrated that autophagy is availed by immune cells to regulate innate immunity. On the one hand, cells exert direct effector function by degrading intracellular pathogens; on the other hand, autophagy modulates pathogen recognition and downstream signaling for innate immune responses. Pathogen recognition via pattern recognition receptors induces autophagy. The function of phagocytic cells is enhanced by recruitment of autophagy-related proteins. Moreover, autophagy acts as a delivery system for viral replication complexes to migrate to the endosomal compartments where virus sensing occurs. In another case, key molecules of the autophagic pathway have been found to negatively regulate immune signaling, thus preventing aberrant activation of cytokine production and consequent immune responses. In this review, we focus on the recent advances in the role of autophagy in pathogen recognition and modulation of innate immune responses.

  7. Gadd45b prevents autophagy and apoptosis against rat cerebral neuron oxygen-glucose deprivation/reperfusion injury.

    Science.gov (United States)

    He, Guoqian; Xu, Wenming; Tong, Linyan; Li, Shuaishuai; Su, Shiceng; Tan, Xiaodan; Li, Changqing

    2016-04-01

    Autophagic (type II) cell death has been suggested to play pathogenetic roles in cerebral ischemia. Growth arrest and DNA damage response 45b (Gadd45b) has been shown to protect against rat brain ischemia injury through inhibiting apoptosis. However, the relationship between Gadd45b and autophagy in cerebral ischemia/reperfusion (I/R) injury remains uncertain. The aim of this study is to investigate the effect of Gadd45b on autophagy. We adopt the oxygen-glucose deprivation and reperfusion (OGD/R) model of rat primary cortex neurons, and lentivirus interference used to silence Gadd45b expression. Cell viability and injury assay were performed using CCK-8 and LDH kit. Autophagy activation was monitored by expression of ATG5, LC3, Beclin-1, ATG7 and ATG3. Neuron apoptosis was monitored by expression of Bcl-2, Bax, cleaved caspase3, p53 and TUNEL assay. Neuron neurites were assayed by double immunofluorescent labeling with Tuj1 and LC3B. Here, we demonstrated that the expression of Gadd45b was strongly up-regulated at 24 h after 3 h OGD treatment. ShRNA-Gadd45b increased the expression of autophagy related proteins, aggravated OGD/R-induced neuron cell apoptosis and neurites injury. ShRNA-Gadd45b co-treatment with autophagy inhibitor 3-methyladenine (3-MA) or Wortmannin partly inhibited the ratio of LC3II/LC3I, and slightly ameliorated neuron cell apoptosis under OGD/R. Furthermore, shRNA-Gadd45b inhibited the p-p38 level involved in autophagy, but increased the p-JNK level involved in apoptosis. ShRNA-Gadd45b co-treatment with p38 inhibitor obviously induced autophagy. ShRNA-Gadd45b co-treatment with JNK inhibitor alleviated neuron cell apoptosis. In conclusion, our data suggested that Gadd45b inhibited autophagy and apoptosis under OGD/R. Gadd45b may be a common regulatory protein to control autophagy and apoptosis.

  8. Asymmetric dimethylarginine attenuates serum starvation-induced apoptosis via suppression of the Fas (APO-1/CD95)/JNK (SAPK) pathway

    Science.gov (United States)

    Li, H; Zhou, Y; Zhao, A; Qiu, Y; Xie, G; Jiang, Q; Zheng, X; Zhong, W; Sun, X; Zhou, Z; Jia, W

    2013-01-01

    Asymmetric dimethylarginine (ADMA) is synthesized by protein arginine methyltransferases during methylation of protein arginine residues and released into blood upon proteolysis. Higher concentrations of ADMA in blood have been observed in patients with metabolic diseases and certain cancers. However, the role of ADMA in colon cancer has not been well investigated. ADMA serum levels in human patients diagnosed with colon cancer were found to be higher than those present in healthy subjects. ADMA treatment of LoVo cells, a human colon adenocarcinoma cell line, attenuated serum starvation-induced apoptosis and suppressed the activation of the Fas (APO-1/CD95)/JNK (SAPK) (c-Jun N terminal protein kinase/stress-activated protein kinase)pathway. ADMA also suppressed the activation of JNK triggered by death receptor ligand anti-Fas mAb and exogenous C2-ceramide. Moreover, we demonstrated that ADMA pretreatment protected LoVo cells from doxorubicin hydrochloride-induced cell death and activation of the Fas/JNK pathway. In summary, our results suggest that the elevated ADMA in colon cancer patients may contribute to the blocking of apoptosis of cancer cells in response to stress and chemotherapy. PMID:24091673

  9. Autophagy regulates the stemness of cervical cancer stem cells

    Directory of Open Access Journals (Sweden)

    Yang Y

    2017-06-01

    Full Text Available Yi Yang,1,2 Li Yu,1 Jin Li,1 Ya Hong Yuan,1 Xiao Li Wang,1 Shi Rong Yan,1 Dong Sheng Li,1 Yan Ding1 1Hubei Key Laboratory of Embryonic Stem Cell Research, 2Reproductive Center, Taihe Hospital, Hubei University of Medicine, Shiyan, People’s Republic of China Abstract: Cancer stem cells (CSCs are a rare population of multipotent cells with the capacity to self-renew. It has been reported that there are CSCs in cervical cancer cells. Pluripotency-associated (PA transcription factors such as Oct4, Sox2, Nanog and CD44 have been used to isolate CSCs subpopulations. In this study, we showed that autophagy plays an important role in the biological behavior of cervical cancer cells. The expression of the autophagy protein Beclin 1 and LC3B was higher in tumorspheres established from human cervical cancers cell lines (and CaSki than in the parental adherent cells. It was also observed that the basal and starvation-induced autophagy flux was higher in tumorspheres than in the bulk population. Autophagy could regulate the expression level of PA proteins in cervical CSCs. In addition, CRISPR/Cas 9-mediated Beclin 1 knockout enhanced the malignancy of HeLa cells, leading to accumulation of PA proteins and promoted tumorsphere formation. Our findings suggest that autophagy modulates homeostasis of PA proteins, and Beclin 1 is critical for CSC maintenance and tumor development in nude mice. This demonstrates that a prosurvival autophagic pathway is critical for CSC maintenance. Keywords: cervical cancer, autophagy, cancer stem cell, LC3, Oct4

  10. Starvation Promotes Autophagy-Associated Maturation of the Ovary in the Giant Freshwater Prawn, Macrobrachium rosenbergii

    Directory of Open Access Journals (Sweden)

    Wilairat Kankuan

    2017-05-01

    Full Text Available Limitation of food availability (starvation is known to influence the reproductive ability of animals. Autophagy is a lysosomal driven degradation process that protects the cell under metabolic stress conditions, such as during nutrient shortage. Whether, and how starvation-induced autophagy impacts on the maturation and function of reproductive organs in animals are still open questions. In this study, we have investigated the effects of starvation on histological and cellular changes that may be associated with autophagy in the ovary of the giant freshwater prawn, Macrobachium rosenbergii. To this end, the female prawns were daily fed (controls or unfed (starvation condition for up to 12 days, and the ovary tissue was analyzed at different time-points. Starvation triggered ovarian maturation, and concomitantly increased the expression of autophagy markers in vitellogenic oocytes. The immunoreactivities for autophagy markers, including Beclin1, LC3-II, and Lamp1, were enhanced in the late oocytes within the mature ovaries, especially at the vitellogenic stages. These markers co-localized with vitellin in the yolk granules within the oocytes, suggesting that autophagy induced by starvation could drive vitellin utilization, thus promoting ovarian maturation.

  11. Osteoporosis and autophagy: What is the relationship?

    Directory of Open Access Journals (Sweden)

    Rinaldo Florencio-Silva

    Full Text Available Summary Autophagy is a survival pathway wherein non-functional proteins and organelles are degraded in lysosomes for recycling and energy production. Therefore, autophagy is fundamental for the maintenance of cell viability, acting as a quality control process that prevents the accumulation of unnecessary structures and oxidative stress. Increasing evidence has shown that autophagy dysfunction is related to several pathologies including neurodegenerative diseases and cancer. Moreover, recent studies have shown that autophagy plays an important role for the maintenance of bone homeostasis. For instance, in vitro and animal and human studies indicate that autophagy dysfunction in bone cells is associated with the onset of bone diseases such as osteoporosis. This review had the purpose of discussing the issue to confirm whether a relationship between autophagy dysfunction and osteoporosis exits.

  12. Autophagy, signaling and obesity

    NARCIS (Netherlands)

    Lavallard, Vanessa J.; Meijer, Alfred J.; Codogno, Patrice; Gual, Philippe

    2012-01-01

    Autophagy is a cellular pathway crucial for development, differentiation, survival and homeostasis. Autophagy can provide protection against aging and a number of pathologies such as cancer, neurodegeneration, cardiac disease and infection. Recent studies have reported new functions of autophagy in

  13. [Study on the role of autophagy in heme oxygenase 1 preventing hepatic ischemia/reperfusion injury in rats].

    Science.gov (United States)

    Lan, Sheng; Li, Jintai; Liu, Yi

    2017-03-01

    To identify the role of autopahgy in the protective mechanism of heme oxygenase 1 (HO-1) against hepatic ischemia/reperfusion (I/R) injury. Forty healthy male Sprague-Dawley (SD) rats were randomly (random number table) divided into five groups (n = 8 in each group), namely sham group, model group, cobalt protoporphyrin (CoPP) group, zinc protoporphyrin (ZnPP) group and 6-amino-3-methylpurine (3-MA) group. Partial hepatic I/R model was established by clamping the pedicles of left and median lobes for 1 hour and reopening for 6 hours in rats, and the rats in sham group were only received celiotomp without hepatic I/R. In the CoPP group, CoPP (a HO-1 inducer, 5 mg/kg) was administered i.p 24 hours before I/R. In the ZnPP or 3-MA group, besides pretreatment with CoPP, the rats were given ZnPP (a HO-1 inhibitor, 25 mg/kg) or 3-MA (an autophagy inhibitor, 30 mg/kg) i.p 1 hour before I/R. Serum alanine aminotransferase (ALT) was determined with automatic biochemistry analyzer. The hepatic pathological scores (PS) were determined under light microscope using hematoxylin-eosin (HE) staining. The hepatocyte apoptosis index (AI) was assessed with terminal dexynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. Autophagosomes in liver tissue were counted under electron microscope. The mRNA expressions of HO-1, caspase-3, Beclin-1 and Atg-5 in the liver were determined by reverse transcription-polymerase chain reaction (RT-PCR). The HO-1 activity was also measured by the generation of bilirubin with the method of double-wave spectrophotometry. Compared with the sham group, the level of serum ALT significantly increased in the I/R group (U/L: 560.3±73.6 vs. 49.1±13.8, P ZnPP group, the activity of HO-1 was much lower than that in the CoPP group, and as a result autophagy was decreased and liver injury was increased. In the 3-MA group, although there was no difference in the activity of HO-1 compared with that in the CoPP group, autophagy was inhibited

  14. Autophagy in DNA Damage Response

    Directory of Open Access Journals (Sweden)

    Piotr Czarny

    2015-01-01

    Full Text Available DNA damage response (DDR involves DNA repair, cell cycle regulation and apoptosis, but autophagy is also suggested to play a role in DDR. Autophagy can be activated in response to DNA-damaging agents, but the exact mechanism underlying this activation is not fully understood, although it is suggested that it involves the inhibition of mammalian target of rapamycin complex 1 (mTORC1. mTORC1 represses autophagy via phosphorylation of the ULK1/2–Atg13–FIP200 complex thus preventing maturation of pre-autophagosomal structures. When DNA damage occurs, it is recognized by some proteins or their complexes, such as poly(ADPribose polymerase 1 (PARP-1, Mre11–Rad50–Nbs1 (MRN complex or FOXO3, which activate repressors of mTORC1. SQSTM1/p62 is one of the proteins whose levels are regulated via autophagic degradation. Inhibition of autophagy by knockout of FIP200 results in upregulation of SQSTM1/p62, enhanced DNA damage and less efficient damage repair. Mitophagy, one form of autophagy involved in the selective degradation of mitochondria, may also play role in DDR. It degrades abnormal mitochondria and can either repress or activate apoptosis, but the exact mechanism remains unknown. There is a need to clarify the role of autophagy in DDR, as this process may possess several important biomedical applications, involving also cancer therapy.

  15. Starvation Promotes Autophagy-Associated Maturation of the Ovary in the Giant Freshwater Prawn,Macrobrachium rosenbergii.

    Science.gov (United States)

    Kankuan, Wilairat; Wanichanon, Chaitip; Titone, Rossella; Engsusophon, Attakorn; Sumpownon, Chanudporn; Suphamungmee, Worawit; Morani, Federica; Masini, Matilde; Novelli, Michela; Isidoro, Ciro; Sobhon, Prasert

    2017-01-01

    Limitation of food availability (starvation) is known to influence the reproductive ability of animals. Autophagy is a lysosomal driven degradation process that protects the cell under metabolic stress conditions, such as during nutrient shortage. Whether, and how starvation-induced autophagy impacts on the maturation and function of reproductive organs in animals are still open questions. In this study, we have investigated the effects of starvation on histological and cellular changes that may be associated with autophagy in the ovary of the giant freshwater prawn, Macrobachium rosenbergii . To this end, the female prawns were daily fed (controls) or unfed (starvation condition) for up to 12 days, and the ovary tissue was analyzed at different time-points. Starvation triggered ovarian maturation, and concomitantly increased the expression of autophagy markers in vitellogenic oocytes. The immunoreactivities for autophagy markers, including Beclin1, LC3-II, and Lamp1, were enhanced in the late oocytes within the mature ovaries, especially at the vitellogenic stages. These markers co-localized with vitellin in the yolk granules within the oocytes, suggesting that autophagy induced by starvation could drive vitellin utilization, thus promoting ovarian maturation.

  16. Ethylene signalling is involved in regulation of phosphate starvation-induced gene expression and production of acid phosphatases and anthocyanin in Arabidopsis

    KAUST Repository

    Lei, Mingguang

    2010-11-30

    With the exception of root hair development, the role of the phytohormone ethylene is not clear in other aspects of plant responses to inorganic phosphate (Pi) starvation. The induction of AtPT2 was used as a marker to find novel signalling components involved in plant responses to Pi starvation. Using genetic and chemical approaches, we examined the role of ethylene in the regulation of plant responses to Pi starvation. hps2, an Arabidopsis mutant with enhanced sensitivity to Pi starvation, was identified and found to be a new allele of CTR1 that is a key negative regulator of ethylene responses. 1-aminocyclopropane-1-carboxylic acid (ACC), the precursor of ethylene, increases plant sensitivity to Pi starvation, whereas the ethylene perception inhibitor Ag+ suppresses this response. The Pi starvation-induced gene expression and acid phosphatase activity are also enhanced in the hps2 mutant, but suppressed in the ethylene-insensitive mutant ein2-5. By contrast, we found that ethylene signalling plays a negative role in Pi starvation-induced anthocyanin production. These findings extend the roles of ethylene in the regulation of plant responses to Pi starvation and will help us to gain a better understanding of the molecular mechanism underlying these responses. © 2010 The Authors. New Phytologist © 2010 New Phytologist Trust.

  17. Picroside II Shows Protective Functions for Severe Acute Pancreatitis in Rats by Preventing NF-κB-Dependent Autophagy

    Directory of Open Access Journals (Sweden)

    Xuehua Piao

    2017-01-01

    Full Text Available Picroside II, from the herb Picrorhiza scrophulariiflora Pennell, has antioxidant and anti-inflammatory activities. However, its function on severe acute pancreatitis (SAP and molecular mechanism remains unknown. The effects of picroside II on the SAP induced by cerulean were investigated. SAP rats were treated with picroside II (25 mg/kg. The severity of SAP was evaluated by using biochemical and histological analyses. Pancreatic cancer cell PANC-1 was transfected with ptfLC3 (an indicator of autophagic activity, pcDNA3.1-NF-κB (nuclear factor kappa B, and pTZU6+1-NF-κB-shRNA and then treated with picroside II. Relative molecules related with NF-κB-dependent autophagy were detected by using Western blot. Autophagic activities were observed by phase-contrast and fluorescent microscopes. Acetylated LC3 was detected by immunoprecipitation. The results showed that picroside II treatment reduced the level of ALT, AST, NF-κB, IL-1β, IL-6, TNF-α, and SIRT1 (NAD+-dependent deacetylase and increased the level of SOD and GSH. The autophagic activity was reduced when NF-κB was silenced, and the levels of TNF-α and SIRT1 were reduced. In contrast, the overexpression of NF-κB increased autophagic activity and the level of TNF-α, which activated SIRT1. SIRT1 deacetylated LC3 and increased autophagic activities. Picroside II ameliorates SAP by improving antioxidant and anti-inflammtory activities of SAP models via NF-κB-dependent autophagy.

  18. Mitochondrial ribosomal protein L41 mediates serum starvation-induced cell-cycle arrest through an increase of p21WAF1/CIP1

    International Nuclear Information System (INIS)

    Kim, Mi Jin; Yoo, Young A.; Kim, Hyung Jung; Kang, Seongman; Kim, Yong Geon; Kim, Jun Suk; Yoo, Young Do

    2005-01-01

    Ribosomal proteins not only act as components of the translation apparatus but also regulate cell proliferation and apoptosis. A previous study reported that MRPL41 plays an important role in p53-dependent apoptosis. It also showed that MRPL41 arrests the cell cycle by stabilizing p27 Kip1 in the absence of p53. This study found that MRPL41 mediates the p21 WAF1/CIP1 -mediated G1 arrest in response to serum starvation. The cells were released from serum starvation-induced G1 arrest via the siRNA-mediated blocking of MRPL41 expression. Overall, these results suggest that MRPL41 arrests the cell cycle by increasing the p21 WAF1/CIP1 and p27 Kip1 levels under the growth inhibitory conditions

  19. Differences between winter oilseed rape (Brassica napus L.) cultivars in nitrogen starvation-induced leaf senescence are governed by leaf-inherent rather than root-derived signals.

    Science.gov (United States)

    Koeslin-Findeklee, Fabian; Becker, Martin A; van der Graaff, Eric; Roitsch, Thomas; Horst, Walter J

    2015-07-01

    Nitrogen (N) efficiency of winter oilseed rape (Brassica napus L.) line-cultivars (cvs.), defined as high grain yield under N limitation, has been primarily attributed to maintained N uptake during reproductive growth (N uptake efficiency) in combination with delayed senescence of the older leaves accompanied with maintained photosynthetic capacity (functional stay-green). However, it is not clear whether genotypic variation in N starvation-induced leaf senescence is due to leaf-inherent factors and/or governed by root-mediated signals. Therefore, the N-efficient and stay-green cvs. NPZ-1 and Apex were reciprocally grafted with the N-inefficient and early-senescing cvs. NPZ-2 and Capitol, respectively and grown in hydroponics. The senescence status of older leaves after 12 days of N starvation assessed by SPAD, photosynthesis and the expression of the senescence-specific cysteine protease gene SAG12-1 revealed that the stay-green phenotype of the cvs. NPZ-1 and Apex under N starvation was primarily under the control of leaf-inherent factors. The same four cultivars were submitted to N starvation for up to 12 days in a time-course experiment. The specific leaf contents of biologically active and inactive cytokinins (CKs) and the expression of genes involved in CK homeostasis revealed that under N starvation leaves of early-senescing cultivars were characterized by inactivation of biologically active CKs, whereas in stay-green cultivars synthesis, activation, binding of and response to biologically active CKs were favoured. These results suggest that the homeostasis of biologically active CKs was the predominant leaf-inherent factor for cultivar differences in N starvation-induced leaf senescence and thus N efficiency. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. Autophagy and BNIP3 protein in tumorogenesis

    Directory of Open Access Journals (Sweden)

    Ewelina Świderek

    2013-05-01

    Full Text Available Autophagy is a process necessary for maintaining cell homeostasis in physiological conditions, as well as during certain stresses like nutrients or oxygen deprivation. Autophagy also plays an essential role in tumorigenesis. It prevents cell transformation, but on the other hand, autophagy enables existing cancer cells to adapt to harmful conditions and increased glucose demand, supports maintaining of cellular metabolism and accelerates tumor growth. Among others, it refers to Ras-transformed cells. Recent research unveiled BNIP3 protein as one of the key players involved in autophagy. Although BNIP3 is classified as proapoptotic member of BH3-only subfamily, its proapoptotic activity is questionable. However, BNIP3 demonstrates ability to induce or stimulate autophagy and its specific variant – mitophagy. This paper aims to summarize the existing body of knowledge related to the role of BNIP3 in autophagy, as well as the importance of this process in tumorigenesis. In particular, we emphasize the relation between autophagy and BNIP3 expression induced by Ras oncogene.

  1. Na+/H+ Exchanger Regulates Amino Acid-Mediated Autophagy in Intestinal Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Huiying Shi

    2017-08-01

    Full Text Available Background/Aims: Dysfunctional autophagy has been reported to be associated with aberrant intestinal metabolism. Amino acids can regulate autophagic activity in intestinal epithelial cells (IECs. Na+/H+-exchanger 3 (NHE3 has been found to participate in the absorption of amino acids in the intestine, but whether NHE3 is involved in the regulation of autophagy in IECs is unclear. Methods: In the present study, an amino acid starvation-induced autophagic model was established. Then, the effects of alanine and proline with or without the NHE inhibitor 5-(N-ethyl-N-isopropyl amiloride (EIPA were evaluated. Autophagy was examined based on the microtubule-associated light chain 3 (LC3 levels, transmission electron microscopy (TEM, tandem GFP-mCherry-LC3 construct, sequestosome-1 (SQSTM1, P62 mRNA and protein levels, and autophagy-related gene (ATG 5, 7, and 12 expression levels. The autophagic flux was evaluated as the ratio of yellow (autophagosomes to red (autolysosomes LC3 puncta. Results: Following amino acid starvation, we found the LC3-II and ATG expression levels were enhanced in the IEC-18 cells. An increase in the number of autophagic vacuoles was concomitantly observed by TEM and confocal microscopy. Based on the results, supplementation with either alanine or proline depressed autophagy in the IEC-18 cells. Consistent with the elevated LC3-II levels, ATG expression increased upon NHE3 inhibition. Moreover, the mCherry-GFP-LC3 autophagic puncta representing both autophagosomes and autolysosomes per cell increased after EIPA treatment. Conclusions: These results demonstrate that NHE (most likely NHE3 may participate in the amino acid regulation of autophagy in IECs, which would aid in the design of better treatments for intestinal inflammation.

  2. Structural transitions in conserved, ordered Beclin 1 domains essential to regulating autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Glover, Karen; Li, Yue; Mukhopadhyay, Shreya; Leuthner, Zoe; Chakravarthy, Srinivas; Colbert, Christopher L.; Sinha, Sangita C. (NDSU); (IIT)

    2017-08-10

    Beclin 1 (BECN1) is a key regulator of autophagy, a critical catabolic homeostasis pathway that involves sequestration of selected cytoplasmic components by multilayered vesicles called autophagosomes, followed by lysosomal fusion and degradation. BECN1 is a core component of class III phosphatidylinositol-3-kinase complexes responsible for autophagosome nucleation. Without heterologous binding partners, BECN1 forms an antiparallel homodimer via its coiled-coil domain (CCD). However, the last 16 CCD residues, composing an “overlap helix” (OH), have been crystallized in two mutually exclusive states: either as part of the CCD or packed against the C-terminal β-α repeated, autophagy-specific domain (BARAD). Here, using CD spectroscopy, isothermal titration calorimetry, and small-angle X-ray scattering, we show that in the homodimeric state, the OH transitions between these two different packing states, with the predominant state comprising the OH packed against the BARAD, contrary to expectations based on known BECN1 interactions with heterologous partners. We confirmed this observation by comparing the impact of mutating four residues that mediate packing of the OH against both the CCD and BARAD on structure and stability of the CCD, the OH+BARAD, and the two-domain CCD–BARAD. Last, we used cellular assays to demonstrate that mutation of these OH-interface residues abrogates starvation-induced up-regulation of autophagy but does not affect basal autophagy. In summary, we have identified a BECN1 helical region that transitions between packing as part of either one of two conserved domains (i.e. the CCD or the BARAD). Our findings have important implications for the relative stability of autophagy-inactive and autophagy-active BECN1 complexes.

  3. Basal Autophagy Is Altered in Lagotto Romagnolo Dogs with an ATG4D Mutation.

    Science.gov (United States)

    Syrjä, Pernilla; Anwar, Tahira; Jokinen, Tarja; Kyöstilä, Kaisa; Jäderlund, Karin Hultin; Cozzi, Francesca; Rohdin, Cecilia; Hahn, Kerstin; Wohlsein, Peter; Baumgärtner, Wolfgang; Henke, Diana; Oevermann, Anna; Sukura, Antti; Leeb, Tosso; Lohi, Hannes; Eskelinen, Eeva-Liisa

    2017-11-01

    A missense variant in the autophagy-related ATG4D-gene has been associated with a progressive degenerative neurological disease in Lagotto Romagnolo (LR) dogs. In addition to neural lesions, affected dogs show an extraneural histopathological phenotype characterized by severe cytoplasmic vacuolization, a finding not previously linked with disturbed autophagy in animals. Here we aimed at testing the hypothesis that autophagy is altered in the affected dogs, at reporting the histopathology of extraneural tissues and at excluding lysosomal storage diseases. Basal and starvation-induced autophagy were monitored by Western blotting and immunofluorescence of microtubule associated protein 1A/B light chain3 (LC3) in fibroblasts from 2 affected dogs. The extraneural findings of 9 euthanized LRs and skin biopsies from 4 living affected LRs were examined by light microscopy, electron microscopy, and immunohistochemistry (IHC), using antibodies against autophagosomal membranes (LC3), autophagic cargo (p62), and lysosomal membranes (LAMP2). Biochemical screening of urine and fibroblasts of 2 affected dogs was performed. Under basal conditions, the affected fibroblasts contained significantly more LC3-II and LC3-positive vesicles than did the controls. Morphologically, several cells, including serous secretory epithelium, endothelial cells, pericytes, plasma cells, and macrophages, contained cytoplasmic vacuoles with an ultrastructure resembling enlarged amphisomes, endosomes, or multivesicular bodies. IHC showed strong membranous LAMP2 positivity only in sweat glands. The results show that basal but not induced autophagy is altered in affected fibroblasts. The ultrastructure of affected cells is compatible with altered autophagic and endo-lysosomal vesicular traffic. The findings in this spontaneous disease provide insight into possible tissue-specific roles of basal autophagy.

  4. A genome-wide siRNA screen reveals multiple mTORC1 independent signaling pathways regulating autophagy under normal nutritional conditions.

    Science.gov (United States)

    Lipinski, Marta M; Hoffman, Greg; Ng, Aylwin; Zhou, Wen; Py, Bénédicte F; Hsu, Emily; Liu, Xuxin; Eisenberg, Jason; Liu, Jun; Blenis, John; Xavier, Ramnik J; Yuan, Junying

    2010-06-15

    Autophagy is a cellular catabolic mechanism that plays an essential function in protecting multicellular eukaryotes from neurodegeneration, cancer, and other diseases. However, we still know very little about mechanisms regulating autophagy under normal homeostatic conditions when nutrients are not limiting. In a genome-wide human siRNA screen, we demonstrate that under normal nutrient conditions upregulation of autophagy requires the type III PI3 kinase, but not inhibition of mTORC1, the essential negative regulator of starvation-induced autophagy. We show that a group of growth factors and cytokines inhibit the type III PI3 kinase through multiple pathways, including the MAPK-ERK1/2, Stat3, Akt/Foxo3, and CXCR4/GPCR, which are all known to positively regulate cell growth and proliferation. Our study suggests that the type III PI3 kinase integrates diverse signals to regulate cellular levels of autophagy, and that autophagy and cell proliferation may represent two alternative cell fates that are regulated in a mutually exclusive manner. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Autophagy in brain ischemia

    Directory of Open Access Journals (Sweden)

    Alicja Kost

    2011-08-01

    Full Text Available Autophagy is an intracellular process of macromolecule and organelle degradation, which plays an important role both in maintaining homeostasis and in responding to various harmful stimuli. Recent studies clearly indicate upregulation of autophagy in neurons challenged with brain ischemia. In this paper we present biosynthesis of autophagosomes as well as the role and molecular mechanisms of basal and induced neuronal autophagy. We have also reviewed recently published papers concerning the potential role of autophagy in brain ischemia. Results of both in vivo and in vitro experimental studies indicate that signaling pathways related to autophagy might become a target of new neuroprotective strategies.

  6. Autophagy in Inflammatory Diseases

    Directory of Open Access Journals (Sweden)

    Alexander J. S. Choi

    2011-01-01

    Full Text Available Autophagy provides a mechanism for the turnover of cellular organelles and proteins through a lysosome-dependent degradation pathway. During starvation, autophagy exerts a homeostatic function that promotes cell survival by recycling metabolic precursors. Additionally, autophagy can interact with other vital processes such as programmed cell death, inflammation, and adaptive immune mechanisms, and thereby potentially influence disease pathogenesis. Macrophages deficient in autophagic proteins display enhanced caspase-1-dependent proinflammatory cytokine production and the activation of the inflammasome. Autophagy provides a functional role in infectious diseases and sepsis by promoting intracellular bacterial clearance. Mutations in autophagy-related genes, leading to loss of autophagic function, have been implicated in the pathogenesis of Crohn's disease. Furthermore, autophagy-dependent mechanisms have been proposed in the pathogenesis of several pulmonary diseases that involve inflammation, including cystic fibrosis and pulmonary hypertension. Strategies aimed at modulating autophagy may lead to therapeutic interventions for diseases associated with inflammation.

  7. Autophagy in freshwater planarians.

    Science.gov (United States)

    González-Estévez, Cristina

    2008-01-01

    Planarians provide a new and emergent in vivo model organism to study autophagy. On the whole, maintaining the normal homeostatic balance in planarians requires continuous dynamic adjustment of many processes, including proliferation, apoptosis, differentiation, and autophagy. This makes them very different from other models where autophagy only occurs at very specific times and/or in very specific organs. This chapter aims to offer a general vision of planarians as a model organism, placing more emphasis on those characteristics related to autophagy and describing how autophagy fits into the processes of body remodeling during regeneration and starvation. We also define exactly what is known about autophagy in these organisms and we discuss the techniques available to study the relevant processes, as well as the techniques that are currently being developed. As such, this chapter will serve as a compilation of the techniques available to investigate autophagy in planarians.

  8. Role of autophagy in HIV infection and pathogenesis.

    Science.gov (United States)

    Nardacci, R; Ciccosanti, F; Marsella, C; Ippolito, G; Piacentini, M; Fimia, G M

    2017-05-01

    The aim of autophagy is to re-establish homeostasis in response to a variety of stress conditions. By forming double-membrane vesicles, autophagy engulfs damaged or superfluous cytoplasmic material and recycles degradation products for new synthesis or energy production. Of note, the same mechanism is used to capture pathogens and has important implications in both innate and adaptive immunity. To establish a chronic infection, pathogens have therefore evolved multiple mechanisms to evade autophagy-mediated degradation. HIV infection represents one of the best characterized systems in which autophagy is disarmed by a virus using multiple strategies to prevent the sequestration and degradation of its proteins and to establish a chronic infection. HIV alters autophagy at various stages of the process in both infected and bystander cells. In particular, the HIV proteins TAT, NEF and ENV are involved in this regulation by either blocking or stimulating autophagy through direct interaction with autophagy proteins and/or modulation of the mTOR pathway. Although the roles of autophagy during HIV infection are multiple and vary amongst the different cell types, several lines of evidence point to a potential beneficial effect of stimulating autophagy-mediated lysosomal degradation to potentiate the immune response to HIV. Characterization of the molecular mechanisms regulating selective autophagy is expected to be valuable for developing new drugs able to specifically enhance the anti-HIV response. © 2017 The Association for the Publication of the Journal of Internal Medicine.

  9. Autophagy as a Therapeutic Target in Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Yuki Tanaka

    2012-01-01

    Full Text Available Diabetic nephropathy is a serious complication of diabetes mellitus, and its prevalence has been increasing worldwide. Therefore, there is an urgent need to identify a new therapeutic target to prevent diabetic nephropathy. Autophagy is a major catabolic pathway involved in degrading and recycling macromolecules and damaged organelles to maintain intracellular homeostasis. The study of autophagy in mammalian systems is advancing rapidly and has revealed that it is involved in the pathogenesis of various metabolic or age-related diseases. The functional role of autophagy in the kidneys is also currently under intense investigation although, until recently, evidence showing the involvement of autophagy in the pathogenesis of diabetic nephropathy has been limited. We provide a systematic review of autophagy and discuss the therapeutic potential of autophagy in diabetic nephropathy to help future investigations in this field.

  10. Catalase and NO CATALASE ACTIVITY1 Promote Autophagy-Dependent Cell Death in Arabidopsis[C][W][OPEN

    Science.gov (United States)

    Hackenberg, Thomas; Juul, Trine; Auzina, Aija; Gwiżdż, Sonia; Małolepszy, Anna; Van Der Kelen, Katrien; Dam, Svend; Bressendorff, Simon; Lorentzen, Andrea; Roepstorff, Peter; Lehmann Nielsen, Kåre; Jørgensen, Jan-Elo; Hofius, Daniel; Breusegem, Frank Van; Petersen, Morten; Andersen, Stig Uggerhøj

    2013-01-01

    Programmed cell death often depends on generation of reactive oxygen species, which can be detoxified by antioxidative enzymes, including catalases. We previously isolated catalase-deficient mutants (cat2) in a screen for resistance to hydroxyurea-induced cell death. Here, we identify an Arabidopsis thaliana hydroxyurea-resistant autophagy mutant, atg2, which also shows reduced sensitivity to cell death triggered by the bacterial effector avrRpm1. To test if catalase deficiency likewise affected both hydroxyurea and avrRpm1 sensitivity, we selected mutants with extremely low catalase activities and showed that they carried mutations in a gene that we named NO CATALASE ACTIVITY1 (NCA1). nca1 mutants showed severely reduced activities of all three catalase isoforms in Arabidopsis, and loss of NCA1 function led to strong suppression of RPM1-triggered cell death. Basal and starvation-induced autophagy appeared normal in the nca1 and cat2 mutants. By contrast, autophagic degradation induced by avrRpm1 challenge was compromised, indicating that catalase acted upstream of immunity-triggered autophagy. The direct interaction of catalase with reactive oxygen species could allow catalase to act as a molecular link between reactive oxygen species and the promotion of autophagy-dependent cell death. PMID:24285797

  11. Multi-Strain Probiotics Inhibit Cardiac Myopathies and Autophagy to Prevent Heart Injury in High-Fat Diet-Fed Rats.

    Science.gov (United States)

    Lai, Chao-Hung; Tsai, Cheng-Chih; Kuo, Wei-Wen; Ho, Tsung-Jung; Day, Cecilia-Hsuan; Pai, Pei-ying; Chung, Li-Chin; Huang, Chun-Chih; Wang, Hsueh-Fang; Liao, Po-Hsiang; Huang, Chih-Yang

    2016-01-01

    High-fat diets induce obesity, leading to cardiomyocyte fibrosis and autophagy imbalance. In addition, no previous studies have indicated that probiotics have potential health effects associated with cardiac fibrosis and autophagy in obese rats. This study investigates the effects of probiotics on high-fat (HF) diet-induced obesity and cardiac fibrosis and autophagy in rat hearts. Eight-week-old male Wistar rats were separated randomly into five equally sized experimental groups: Normal diet (control) and high-fat (HF) diet groups and groups fed a high-fat diet supplemented with low (HL), medium (HM) or high (HH) doses of multi-strain probiotic powders. These experiments were designed for an 8-week trial period. The myocardial architecture of the left ventricle was evaluated using Masson's trichrome staining and immunohistochemistry staining. Key probiotics-related pathway molecules were analyzed using western blotting. Abnormal myocardial architecture and enlarged interstitial spaces were observed in HF hearts. These interstitial spaces were significantly decreased in groups provided with multi-strain probiotics compared with HF hearts. Western blot analysis demonstrated that key components of the TGF/MMP2/MMP9 fibrosis pathways and ERK5/uPA/ANP cardiac hypertrophy pathways were significantly suppressed in probiotic groups compared to the HF group. Autophagy balance is very important in cardiomyocytes. In this study, we observed that the beclin-1/LC3B/Atg7 autophagy pathway in HF was increased after probiotic supplementation was significantly decreased. Together, these results suggest that oral administration of probiotics may attenuate cardiomyocyte fibrosis and cardiac hypertrophy and the autophagy-signaling pathway in obese rats.

  12. [Morphological analysis of autophagy].

    Science.gov (United States)

    Hua, Fang; Hu, Zhuo-wei

    2016-01-01

    Autophagy is an important homeostatic cellular recycling mechanism responsible for degrading injured or dysfunctional subcellular organelles and proteins in all living cells. The process of autophagy can be divided into three relatively independent steps: the initiation of phagophore, the formation of autophagosome and the maturation/degradation stage. Different morphological characteristics and molecular marker changes can be observed at these stages. Morphological approaches are useful to produce novel knowledge that would not be achieved through other experimental methods. Here we summarize the morphological methods in monitoring autophagy, the principles in data interpretation and the cautions that should be considered in the study of autophagy.

  13. Ubiquitin-coated nanodiamonds bind to autophagy receptors for entry into the selective autophagy pathway.

    Science.gov (United States)

    Liu, Kuang-Kai; Qiu, Wei-Ru; Naveen Raj, Emmanuel; Liu, Huei-Fang; Huang, Hou-Syun; Lin, Yu-Wei; Chang, Chien-Jen; Chen, Ting-Hua; Chen, Chinpiao; Chang, Huan-Cheng; Hwang, Jenn-Kang; Chao, Jui-I

    2017-01-02

    Selective macroautophagy/autophagy plays a pivotal role in the processing of foreign pathogens and cellular components to maintain homeostasis in human cells. To date, numerous studies have demonstrated the uptake of nanoparticles by cells, but their intracellular processing through selective autophagy remains unclear. Here we show that carbon-based nanodiamonds (NDs) coated with ubiquitin (Ub) bind to autophagy receptors (SQSTM1 [sequestosome 1], OPTN [optineurin], and CALCOCO2/NDP52 [calcium binding and coiled-coil domain 2]) and are then linked to MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) for entry into the selective autophagy pathway. NDs are ultimately delivered to lysosomes. Ectopically expressed SQSTM1-green fluorescence protein (GFP) could bind to the Ub-coated NDs. By contrast, the Ub-associated domain mutant of SQSTM1 (ΔUBA)-GFP did not bind to the Ub-coated NDs. Chloroquine, an autophagy inhibitor, prevented the ND-containing autophagosomes from fusing with lysosomes. Furthermore, autophagy receptors OPTN and CALCOCO2/NDP52, involved in the processing of bacteria, were found to be involved in the selective autophagy of NDs. However, ND particles located in the lysosomes of cells did not induce mitotic blockage, senescence, or cell death. Single ND clusters in the lysosomes of cells were observed in the xenografted human lung tumors of nude mice. This study demonstrated for the first time that Ub-coated nanoparticles bind to autophagy receptors for entry into the selective autophagy pathway, facilitating their delivery to lysosomes.

  14. Membrane Recruitment of Aut7p in the Autophagy and Cytoplasm to Vacuole Targeting Pathways Requires Aut1p, Aut2p, and the Autophagy Conjugation Complex

    Science.gov (United States)

    Kim, John; Huang, Wei-Pang; Klionsky, Daniel J.

    2001-01-01

    Autophagy is a degradative pathway by which cells sequester nonessential, bulk cytosol into double-membrane vesicles (autophagosomes) and deliver them to the vacuole for recycling. Using this strategy, eukaryotic cells survive periods of nutritional starvation. Under nutrient-rich conditions, autophagy machinery is required for the delivery of a resident vacuolar hydrolase, aminopeptidase I, by the cytoplasm to vacuole targeting (Cvt) pathway. In both pathways, the vesicle formation process requires the function of the starvation-induced Aut7 protein, which is recruited from the cytosol to the forming Cvt vesicles and autophagosomes. The membrane binding of Aut7p represents an early step in vesicle formation. In this study, we identify several requirements for Aut7p membrane association. After synthesis in the cytosol, Aut7p is proteolytically cleaved in an Aut2p-dependent manner. While this novel processing event is essential for Aut7p membrane binding, Aut7p must undergo additional physical interactions with Aut1p and the autophagy (Apg) conjugation complex before recruitment to the membrane. Lack of these interactions results in a cytosolic distribution of Aut7p rather than localization to forming Cvt vesicles and autophagosomes. This study assigns a functional role for the Apg conjugation system as a mediator of Aut7p membrane recruitment. Further, we demonstrate that Aut1p, which physically interacts with components of the Apg conjugation complex and Aut7p, constitutes an additional factor required for Aut7p membrane recruitment. These findings define a series of steps that results in the modification of Aut7p and its subsequent binding to the sequestering transport vesicles of the autophagy and cytoplasm to vacuole targeting pathways. PMID:11149920

  15. Autophagy in photodynamic therapy

    African Journals Online (AJOL)

    Macroautophagy (autophagy) is crucial for cell survival during starvation and plays important roles in ... The work in this area is still limited. Keywords: Autophagy, Photodynamic therapy, Apoptosis, Cancer. Tropical Journal of Pharmaceutical Research is indexed by Science .... photodynamic dosages did not result in.

  16. Glucose-induced and nitrogen-starvation-induced peroxisome degradation are distinct processes in Hansenula polymorpha that involve both common and unique genes

    NARCIS (Netherlands)

    Bellu, Anna Rita; Kram, Anita M.; Kiel, Jan A. K. W.; Veenhuis, Marten; van der Klei, Ida J.

    In the methylotrophic yeast Hansenula polymorpha non-selective autophagy, induced by nitrogen starvation, results in the turnover of cytoplasmic components, including peroxisomes. We show that the uptake of these components occurs by invagination of the vacuolar membrane without their prior

  17. Centriolar Satellites Control GABARAP Ubiquitination and GABARAP-Mediated Autophagy.

    Science.gov (United States)

    Joachim, Justin; Razi, Minoo; Judith, Delphine; Wirth, Martina; Calamita, Emily; Encheva, Vesela; Dynlacht, Brian D; Snijders, Ambrosius P; O'Reilly, Nicola; Jefferies, Harold B J; Tooze, Sharon A

    2017-07-24

    Autophagy maintains cellular health and homeostasis during stress by delivering cytosolic material captured by autophagosomes to lysosomes for degradation. Autophagosome formation is complex: initiated by the recruitment of autophagy (Atg) proteins to the formation site, it is sustained by activation of Atg proteins to allow growth and closure of the autophagosome. How Atg proteins are translocated to the forming autophagosome is not fully understood. Transport of the ATG8 family member GABARAP from the centrosome occurs during starvation-induced autophagosome biogenesis, but how centrosomal proteins regulate GABARAP localization is unknown. We show that the centriolar satellite protein PCM1 regulates the recruitment of GABARAP to the pericentriolar material. In addition to residing on the pericentriolar material, GABARAP marks a subtype of PCM1-positive centriolar satellites. GABARAP, but not another ATG8 family member LC3B, binds directly to PCM1 through a canonical LIR motif. Loss of PCM1 results in destabilization of GABARAP, but not LC3B, through proteasomal degradation. GABARAP instability is mediated through the centriolar satellite E3 ligase Mib1, which interacts with GABARAP through its substrate-binding region and promotes K48-linked ubiquitination of GABARAP. Ubiquitination of GABARAP occurs in the N terminus, a domain associated with ATG8-family-specific functions during autophagosome formation, on residues absent in the LC3 family. Furthermore, PCM1-GABARAP-positive centriolar satellites colocalize with forming autophagosomes. PCM1 enhances GABARAP/WIPI2/p62-positive autophagosome formation and flux but has no significant effect on LC3B-positive autophagosome formation. These data suggest a mechanism for how centriolar satellites can specifically regulate an ATG8 ortholog, the centrosomal GABARAP reservoir, and centrosome-autophagosome crosstalk. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  18. Increased expression and secretion of recombinant hIFNγ through amino acid starvation-induced selective pressure on the adjacent HIS4 gene in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Razaghi Ali

    2015-12-01

    Full Text Available Transcriptional co-regulation of adjacent genes has been observed for prokaryotic and eukaryotic organisms, alike. High levels of gene adjacency were also found in a wide variety of yeast species with a high frequency of co-regulated gene sets. The aim of this research was to study how selective pressure on the Histidinol dehydrogenase gene (HIS4, using amino acid starvation, affects the level of expression and secretion of the adjacent human interferon gamma gene (hIFNγ in the recombinant Pichia pastoris GS115 strain, a histidine-deficient mutant. hIFNγ was cloned into the pPIC9 vector adjacent to the HIS4 gene, a gene essential for histidine biosynthesis, which was then transformed into P. pastoris. The transformed P. pastoris was cultured under continuous amino acid starvation in amino acid-free minimal medium for ten days, with five inoculations into unspent medium every second day. Under these conditions, only successfully transformed cells (hIFNγ -HIS4+ are able to synthesise histidine and therefore thrive. As shown by ELISA, amino acid starvation-induced selective pressure on HIS4 improved expression and secretion of the adjacent hIFNγ by 55% compared to unchallenged cells. RT-qPCR showed that there was also a positive correlation between duration of amino acid starvation and increased levels of the hIFNγ RNA transcripts. According to these results, it is suggested that these adjacent genes (hIFNγ and HIS4 in the transformed P. pastoris are transcriptionally co-regulated and their expression is synchronised. To the best of the knowledge of the authors; this is the first study demonstrating that amino acid starvationinduced selective pressure on HIS4 can alter the regulation pattern of adjacent genes in P. pastoris.

  19. Amino acid starvation induces reactivation of silenced transgenes and latent HIV-1 provirus via down-regulation of histone deacetylase 4 (HDAC4).

    Science.gov (United States)

    Palmisano, Ilaria; Della Chiara, Giulia; D'Ambrosio, Rosa Lucia; Huichalaf, Claudia; Brambilla, Paola; Corbetta, Silvia; Riba, Michela; Piccirillo, Rosanna; Valente, Sergio; Casari, Giorgio; Mai, Antonello; Martinelli Boneschi, Filippo; Gabellini, Davide; Poli, Guido; Schiaffino, Maria Vittoria

    2012-08-21

    The epigenetic silencing of exogenous transcriptional units integrated into the genome represents a critical problem both for long-term gene therapy efficacy and for the eradication of latent viral infections. We report here that limitation of essential amino acids, such as methionine and cysteine, causes selective up-regulation of exogenous transgene expression in mammalian cells. Prolonged amino acid deprivation led to significant and reversible increase in the expression levels of stably integrated transgenes transcribed by means of viral or human promoters in HeLa cells. This phenomenon was mediated by epigenetic chromatin modifications, because histone deacetylase (HDAC) inhibitors reproduced starvation-induced transgene up-regulation, and transcriptome analysis, ChIP, and pharmacological and RNAi approaches revealed that a specific class II HDAC, namely HDAC4, plays a critical role in maintaining the silencing of exogenous transgenes. This mechanism was also operational in cells chronically infected with HIV-1, the etiological agent of AIDS, in a latency state. Indeed, both amino acid starvation and pharmacological inhibition of HDAC4 promoted reactivation of HIV-1 transcription and reverse transcriptase activity production in HDAC4(+) ACH-2 T-lymphocytic cells but not in HDAC4(-) U1 promonocytic cells. Thus, amino acid deprivation leads to transcriptional derepression of silenced transgenes, including integrated plasmids and retroviruses, by a process involving inactivation or down-regulation of HDAC4. These findings suggest that selective targeting of HDAC4 might represent a unique strategy for modulating the expression of therapeutic viral vectors, as well as that of integrated HIV-1 proviruses in latent reservoirs without significant cytotoxicity.

  20. Chemical Inhibition of Autophagy

    DEFF Research Database (Denmark)

    Baek, Eric; Lin Kim, Che; Gyeom Kim, Mi

    2016-01-01

    Chinese hamster ovary (CHO) cells activate and undergo apoptosis and autophagy for various environmental stresses. Unlike apoptosis, studies on increasing the production of therapeutic proteins in CHO cells by targeting the autophagy pathway are limited. In order to identify the effects of chemical...... autophagy inhibitors on the specific productivity (qp), nine chemical inhibitors that had been reported to target three different phases of autophagy (metformin, dorsomorphin, resveratrol, and SP600125 against initiation and nucleation; 3-MA, wortmannin, and LY294002 against elongation, and chloroquine...... and bafilomycin A1 against autophagosome fusion) were used to treat three recombinant CHO (rCHO) cell lines: the Fc-fusion protein-producing DG44 (DG44-Fc) and DUKX-B11 (DUKX-Fc) and antibody-producing DG44 (DG44-Ab) cell lines. Among the nine chemical inhibitors tested, 3-MA, dorsomorphin, and SP600125...

  1. Dengue Virus and Autophagy

    Directory of Open Access Journals (Sweden)

    Nicholas S. Heaton

    2011-08-01

    Full Text Available Several independent groups have published that autophagy is required for optimal RNA replication of dengue virus (DENV. Initially, it was postulated that autophagosomes might play a structural role in replication complex formation. However, cryo-EM tomography of DENV replication complexes showed that DENV replicates on endoplasmic reticulum (ER cisternae invaginations and not on classical autophagosomes. Recently, it was reported that autophagy plays an indirect role in DENV replication by modulating cellular lipid metabolism. DENV-induced autophagosomes deplete cellular triglycerides that are stored in lipid droplets, leading to increased β-oxidation and energy production. This is the first example of a virus triggering autophagy to modulate cellular physiology. In this review, we summarize these data and discuss new questions and implications for autophagy during DENV replication.

  2. [Autophagy in the kidney].

    Science.gov (United States)

    Pallet, Nicolas

    2017-03-01

    Autophagy is a highly conserved, physiological, catabolic process, involving the lysosomal degradation of cytosolic components, including macromolecules (such as proteins and lipids) and cytosolic organelles. Autophagy is believed to be essential for the maintenance of cellular homeostasis, for a number of fundamental biological activities, and an important component of the complex response of cells to multiple forms of stress. Autophagy is involved in the pathogenesis of a number of clinically important disorders but, until recently, little was known about its connection to kidney diseases. However, there is now growing evidence that autophagy is specifically linked to the pathogenesis of important renal diseases such as acute kidney injury, diabetic nephropathy and polycystic kidney disease. However, an understanding of the precise role of autophagy in the course of kidney diseases is still in its infancy. The review points out areas of particular interest for future research, and also discusses the importance of such information on whether the pharmacologic agents that modulate autophagy are potentially usable as novel forms of treatment for various kidney diseases. © 2017 médecine/sciences – Inserm.

  3. Autophagy modulates articular cartilage vesicle formation in primary articular chondrocytes.

    Science.gov (United States)

    Rosenthal, Ann K; Gohr, Claudia M; Mitton-Fitzgerald, Elizabeth; Grewal, Rupinder; Ninomiya, James; Coyne, Carolyn B; Jackson, William T

    2015-05-22

    Chondrocyte-derived extracellular organelles known as articular cartilage vesicles (ACVs) participate in non-classical protein secretion, intercellular communication, and pathologic calcification. Factors affecting ACV formation and release remain poorly characterized; although in some cell types, the generation of extracellular vesicles is associated with up-regulation of autophagy. We sought to determine the role of autophagy in ACV production by primary articular chondrocytes. Using an innovative dynamic model with a light scatter nanoparticle counting apparatus, we determined the effects of autophagy modulators on ACV number and content in conditioned medium from normal adult porcine and human osteoarthritic chondrocytes. Healthy articular chondrocytes release ACVs into conditioned medium and show significant levels of ongoing autophagy. Rapamycin, which promotes autophagy, increased ACV numbers in a dose- and time-dependent manner associated with increased levels of autophagy markers and autophagosome formation. These effects were suppressed by pharmacologic autophagy inhibitors and short interfering RNA for ATG5. Caspase-3 inhibition and a Rho/ROCK inhibitor prevented rapamycin-induced increases in ACV number. Osteoarthritic chondrocytes, which are deficient in autophagy, did not increase ACV number in response to rapamycin. SMER28, which induces autophagy via an mTOR-independent mechanism, also increased ACV number. ACVs induced under all conditions had similar ecto-enzyme specific activities and types of RNA, and all ACVs contained LC3, an autophagosome-resident protein. These findings identify autophagy as a critical participant in ACV formation, and augment our understanding of ACVs in cartilage disease and repair. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Autophagy-related genes in Helicobacter pylori infection.

    Science.gov (United States)

    Tanaka, Shingo; Nagashima, Hiroyuki; Uotani, Takahiro; Graham, David Y; Yamaoka, Yoshio

    2017-06-01

    In vitro studies have shown that Helicobacter pylori (H. pylori) infection induces autophagy in gastric epithelial cells. However, prolonged exposure to H. pylori reduces autophagy by preventing maturation of the autolysosome. The alterations of the autophagy-related genes in H. pylori infection are not yet fully understood. We analyzed autophagy-related gene expression in H. pylori-infected gastric mucosa compared with uninfected gastric mucosa obtained from 136 Bhutanese volunteers with mild dyspeptic symptoms. We also studied single nucleotide polymorphisms (SNPs) of autophagy-related gene in 283 Bhutanese participants to identify the influence on susceptibility to H. pylori infection. Microarray analysis of 226 autophagy-related genes showed that 16 genes were upregulated (7%) and nine were downregulated (4%). We used quantitative reverse transcriptase polymerase chain reaction to measure mRNA levels of the downregulated genes (ATG16L1, ATG5, ATG4D, and ATG9A) that were core molecules of autophagy. ATG16L1 and ATG5 mRNA levels in H. pylori-positive specimens (n=86) were significantly less than those in H. pylori-negative specimens (n=50). ATG16L1 mRNA levels were inversely related to H. pylori density. We also compared SNPs of ATG16L1 (rs2241880) among 206 H. pylori-positive and 77 H. pylori-negative subjects. The odds ratio for the presence of H. pylori in the GG genotype was 0.40 (95% CI: 0.18-0.91) relative to the AA/AG genotypes. Autophagy-related gene expression profiling using high-throughput microarray analysis indicated that downregulation of core autophagy machinery genes may depress autophagy functions and possibly provide a better intracellular habit for H. pylori in gastric epithelial cells. © 2017 John Wiley & Sons Ltd.

  5. Autophagy research Lessons from metabolism

    NARCIS (Netherlands)

    Meijer, Alfred J.

    2009-01-01

    Autophagy research continues to expand exponentially. Clearly autophagy and metabolism are intimately connected; however, the rapid expansion of research into this topic inevitably brings the risk that important basic knowledge of metabolism will be overlooked when considering experimental data.

  6. Toxic metals and autophagy.

    Science.gov (United States)

    Chatterjee, Sarmishtha; Sarkar, Shuvasree; Bhattacharya, Shelley

    2014-11-17

    The earth's resources are finite, and it can no longer be considered a source of inexhaustible bounty for the human population. However, this realization has not been able to contain the human desire for rapid industrialization. The collateral to overusing environmental resources is the high-level contamination of undesirable toxic metals, leading to bioaccumulation and cellular damage. Cytopathological features of biological systems represent a key variable in several diseases. A review of the literature revealed that autophagy (PCDII), a high-capacity process, may consist of selective elimination of vital organelles and/or proteins that intiate mechanisms of cytoprotection and homeostasis in different biological systems under normal physiological and stress conditions. However, the biological system does survive under various environmental stressors. Currently, there is no consensus that specifies a particular response as being a dependable biomarker of toxicology. Autophagy has been recorded as the initial response of a cell to a toxic metal in a concentration- and time-dependent manner. Various signaling pathways are triggered through cellular proteins and/or protein kinases that can lead to autophagy, apoptosis (or necroptosis), and necrosis. Although the role of autophagy in tumorigenesis is associated with promoting tumor cell survival and/or acting as a tumor suppressive mechanism, PCDII in metal-induced toxicity has not been extensively studied. The aim of this review is to analyze the comparative cytotoxicity of metals/metalloids and nanoparticles (As, Cd, Cr, Hg, Fe, and metal-NP) in cells enduring autophagy. It is noted that metals/metalloids and nanoparticles prefer ATG8/LC3 as a potent inducer of autophagy in several cell lines or animal cells. MAP kinases, death protein kinases, PI3K, AKT, mTOR, and AMP kinase have been found to be the major components of autophagy induction or inhibition in the context of cellular responses to metals/metalloids and

  7. Autophagy in the immune response to tuberculosis: clinical perspectives.

    LENUS (Irish Health Repository)

    Ní Cheallaigh, C

    2011-06-01

    A growing body of evidence points to autophagy as an essential component in the immune response to tuberculosis. Autophagy is a direct mechanism of killing intracellular Mycobacterium tuberculosis and also acts as a modulator of proinflammatory cytokine secretion. In addition, autophagy plays a key role in antigen processing and presentation. Autophagy is modulated by cytokines; it is stimulated by T helper type 1 (Th1) cytokines such as tumour necrosis factor (TNF)-α and interferon (IFN)-γ, and is inhibited by the Th2 cytokines interleukin (IL)-4 and IL-13 and the anti-inflammatory cytokine IL-10. Vitamin D, via cathelicidin, can also induce autophagy, as can Toll-like receptor (TLR)-mediated signals. Autophagy-promoting agents, administered either locally to the lungs or systemically, could have a clinical application as adjunctive treatment of drug-resistant and drug-sensitive tuberculosis. Moreover, vaccines which effectively induce autophagy could be more successful in preventing acquisition or reactivation of latent tuberculosis.

  8. Functions of autophagy in normal and diseased liver

    Science.gov (United States)

    Czaja, Mark J.; Ding, Wen-Xing; Donohue, Terrence M.; Friedman, Scott L.; Kim, Jae-Sung; Komatsu, Masaaki; Lemasters, John J.; Lemoine, Antoinette; Lin, Jiandie D.; Ou, Jing-hsiung James; Perlmutter, David H.; Randall, Glenn; Ray, Ratna B.; Tsung, Allan; Yin, Xiao-Ming

    2013-01-01

    Autophagy has emerged as a critical lysosomal pathway that maintains cell function and survival through the degradation of cellular components such as organelles and proteins. Investigations specifically employing the liver or hepatocytes as experimental models have contributed significantly to our current knowledge of autophagic regulation and function. The diverse cellular functions of autophagy, along with unique features of the liver and its principal cell type the hepatocyte, suggest that the liver is highly dependent on autophagy for both normal function and to prevent the development of disease states. However, instances have also been identified in which autophagy promotes pathological changes such as the development of hepatic fibrosis. Considerable evidence has accumulated that alterations in autophagy are an underlying mechanism of a number of common hepatic diseases including toxin-, drug- and ischemia/reperfusion-induced liver injury, fatty liver, viral hepatitis and hepatocellular carcinoma. This review summarizes recent advances in understanding the roles that autophagy plays in normal hepatic physiology and pathophysiology with the intent of furthering the development of autophagy-based therapies for human liver diseases. PMID:23774882

  9. Recycling to discover something new: the role of autophagy in kidney disease.

    Science.gov (United States)

    Leventhal, Jeremy S; Wyatt, Christina M; Ross, Michael J

    2017-01-01

    This year, the Nobel Prize in Physiology or Medicine was awarded to Yoshinori Ohsumi for his groundbreaking work in dissecting the mechanisms of autophagy, a cellular process resulting in the organized degradation of cytoplasmic components. Ohsumi's work paved the way for subsequent studies that demonstrated critical roles for autophagy in modulating both acute and chronic kidney injury. This work may lead to future therapeutic approaches that target the autophagy system to prevent or treat kidney diseases. Published by Elsevier Inc.

  10. Autophagy in plant pathogenic fungi.

    Science.gov (United States)

    Liu, Xiao-Hong; Xu, Fei; Snyder, John Hugh; Shi, Huan-Bin; Lu, Jian-Ping; Lin, Fu-Cheng

    2016-09-01

    Autophagy is a conserved cellular process that degrades cytoplasmic constituents in vacuoles. Plant pathogenic fungi develop special infection structures and/or secrete a range of enzymes to invade their plant hosts. It has been demonstrated that monitoring autophagy processes can be extremely useful in visualizing the sequence of events leading to pathogenicity of plant pathogenic fungi. In this review, we introduce the molecular mechanisms involved in autophagy. In addition, we explore the relationship between autophagy and pathogenicity in plant pathogenic fungi. Finally, we discuss the various experimental strategies available for use in the study of autophagy in plant pathogenic fungi. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Trehalose Accumulation Triggers Autophagy during Plant Desiccation.

    Directory of Open Access Journals (Sweden)

    Brett Williams

    2015-12-01

    Full Text Available Global climate change, increasingly erratic weather and a burgeoning global population are significant threats to the sustainability of future crop production. There is an urgent need for the development of robust measures that enable crops to withstand the uncertainty of climate change whilst still producing maximum yields. Resurrection plants possess the unique ability to withstand desiccation for prolonged periods, can be restored upon watering and represent great potential for the development of stress tolerant crops. Here, we describe the remarkable stress characteristics of Tripogon loliiformis, an uncharacterised resurrection grass and close relative of the economically important cereals, rice, sorghum, and maize. We show that T. loliiformis survives extreme environmental stress by implementing autophagy to prevent Programmed Cell Death. Notably, we identified a novel role for trehalose in the regulation of autophagy in T.loliiformis. Transcriptome, Gas Chromatography Mass Spectrometry, immunoblotting and confocal microscopy analyses directly linked the accumulation of trehalose with the onset of autophagy in dehydrating and desiccated T. loliiformis shoots. These results were supported in vitro with the observation of autophagosomes in trehalose treated T. loliiformis leaves; autophagosomes were not detected in untreated samples. Presumably, once induced, autophagy promotes desiccation tolerance in T.loliiformis, by removal of cellular toxins to suppress programmed cell death and the recycling of nutrients to delay the onset of senescence. These findings illustrate how resurrection plants manipulate sugar metabolism to promote desiccation tolerance and may provide candidate genes that are potentially useful for the development of stress tolerant crops.

  12. Endosome-mediated autophagy

    Science.gov (United States)

    Kondylis, Vangelis; van Nispen tot Pannerden, Hezder E.; van Dijk, Suzanne; ten Broeke, Toine; Wubbolts, Richard; Geerts, Willie J.; Seinen, Cor; Mutis, Tuna; Heijnen, Harry F.G.

    2013-01-01

    Activation of TLR signaling has been shown to induce autophagy in antigen-presenting cells (APCs). Using high-resolution microscopy approaches, we show that in LPS-stimulated dendritic cells (DCs), autophagosomes emerge from MHC class II compartments (MIICs) and harbor both the molecular machinery for antigen processing and the autophagosome markers LC3 and ATG16L1. This ENdosome-Mediated Autophagy (ENMA) appears to be the major type of autophagy in DCs, as similar structures were observed upon established autophagy-inducing conditions (nutrient deprivation, rapamycin) and under basal conditions in the presence of bafilomycin A1. Autophagosome formation was not significantly affected in DCs expressing ATG4BC74A mutant and atg4b−/− bone marrow DCs, but the degradation of the autophagy substrate SQSTM1/p62 was largely impaired. Furthermore, we demonstrate that the previously described DC aggresome-like LPS-induced structures (DALIS) contain vesicular membranes, and in addition to SQSTM1 and ubiquitin, they are positive for LC3. LC3 localization on DALIS is independent of its lipidation. MIIC-driven autophagosomes preferentially engulf the LPS-induced SQSTM1-positive DALIS, which become later degraded in autolysosomes. DALIS-associated membranes also contain ATG16L1, ATG9 and the Q-SNARE VTI1B, suggesting that they may represent (at least in part) a membrane reservoir for autophagosome expansion. We propose that ENMA constitutes an unconventional, APC-specific type of autophagy, which mediates the processing and presentation of cytosolic antigens by MHC class II machinery, and/or the selective clearance of toxic by-products of elevated ROS/RNS production in activated DCs, thereby promoting their survival. PMID:23481895

  13. Autophagy of mitochondria: a promising therapeutic target for neurodegenerative disease.

    Science.gov (United States)

    Kamat, Pradip K; Kalani, Anuradha; Kyles, Philip; Tyagi, Suresh C; Tyagi, Neetu

    2014-11-01

    The autophagic process is the only known mechanism for mitochondrial turnover and it has been speculated that dysfunction of autophagy may result in mitochondrial error and cellular stress. Emerging investigations have provided new understanding of how autophagy of mitochondria (also known as mitophagy) is associated with cellular oxidative stress and its impact on neurodegeneration. This impaired autophagic function may be considered as a possible mechanism in the pathogenesis of several neurodegenerative disorders including Parkinson's disease, Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington disease. It can be suggested that autophagy dysfunction along with oxidative stress is considered main events in neurodegenerative disorders. New therapeutic approaches have now begun to target mitochondria as a potential drug target. This review discusses evidence supporting the notion that oxidative stress and autophagy are intimately associated with neurodegenerative disease pathogenesis. This review also explores new approaches that can prevent mitochondrial dysfunction, improve neurodegenerative etiology, and also offer possible cures to the aforementioned neurodegenerative diseases.

  14. The Impact of Autophagy on Cardiovascular Senescence and Diseases.

    Science.gov (United States)

    Sasaki, Yuichi; Ikeda, Yoshiyuki; Iwabayashi, Masaaki; Akasaki, Yuichi; Ohishi, Mitsuru

    2017-10-21

    The risk of cardiovascular disease increases with age, causing chronic disability, morbidity, and mortality in the elderly. Cardiovascular aging and disease are characterized by heart failure, cardiac ischemia-reperfusion injury, cardiomyopathy, hypertension, arterial stiffness, and atherosclerosis. As a cell ages, damaged organelles and abnormal proteins accumulate. A system for removing these cytoplasmic substrates is essential for maintaining homeostasis. Autophagy assists tissue homeostasis by forming a pathway by which these substances are degraded. Growing evidence suggests that autophagy plays a role in age-related and disease states of the cardiovascular system, and it may even be effective in preventing or treating cardiovascular disease. On the other hand, overexpression of autophagy in the heart and arteries can produce detrimental effects. We summarize the current understanding of the close relationship between autophagy and cardiovascular senescence.

  15. Calcium Homeostasis and ER Stress in Control of Autophagy in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Elżbieta Kania

    2015-01-01

    Full Text Available Autophagy is a basic catabolic process, serving as an internal engine during responses to various cellular stresses. As regards cancer, autophagy may play a tumor suppressive role by preserving cellular integrity during tumor development and by possible contribution to cell death. However, autophagy may also exert oncogenic effects by promoting tumor cell survival and preventing cell death, for example, upon anticancer treatment. The major factors influencing autophagy are Ca2+ homeostasis perturbation and starvation. Several Ca2+ channels like voltage-gated T- and L-type channels, IP3 receptors, or CRAC are involved in autophagy regulation. Glucose transporters, mainly from GLUT family, which are often upregulated in cancer, are also prominent targets for autophagy induction. Signals from both Ca2+ perturbations and glucose transport blockage might be integrated at UPR and ER stress activation. Molecular pathways such as IRE 1-JNK-Bcl-2, PERK-eIF2α-ATF4, or ATF6-XBP 1-ATG are related to autophagy induced through ER stress. Moreover ER molecular chaperones such as GRP78/BiP and transcription factors like CHOP participate in regulation of ER stress-mediated autophagy. Autophagy modulation might be promising in anticancer therapies; however, it is a context-dependent matter whether inhibition or activation of autophagy leads to tumor cell death.

  16. The interaction between DAP1 and autophagy in the context of human carcinogenesis.

    Science.gov (United States)

    Wazir, Umar; Khanzada, Zubair S; Jiang, Wen G; Sharma, Anup K; Kasem, Abdul; Mokbel, Kefah

    2014-01-01

    Autophagy is an evolutionarily-conserved catabolic process which furthers cell survival, especially in times of nutritional stress. Whilst being by itself a pro-survival mechanism, it has many areas of overlap with apoptosis. Autophagic cell death is recognised as a subset of programmed cell death, with features more typical of autophagy rather than classical apoptosis. The mechanisms preventing autophagy from unravelling into autophagic cell death are still the subject of much controversy. We discuss the current understanding of these mechanisms, including recent research regarding the role of death-associated protein-1 in autophagy and apoptosis.

  17. Mutation in ATG5 reduces autophagy and leads to ataxia with developmental delay.

    Science.gov (United States)

    Kim, Myungjin; Sandford, Erin; Gatica, Damian; Qiu, Yu; Liu, Xu; Zheng, Yumei; Schulman, Brenda A; Xu, Jishu; Semple, Ian; Ro, Seung-Hyun; Kim, Boyoung; Mavioglu, R Nehir; Tolun, Aslıhan; Jipa, Andras; Takats, Szabolcs; Karpati, Manuela; Li, Jun Z; Yapici, Zuhal; Juhasz, Gabor; Lee, Jun Hee; Klionsky, Daniel J; Burmeister, Margit

    2016-01-26

    Autophagy is required for the homeostasis of cellular material and is proposed to be involved in many aspects of health. Defects in the autophagy pathway have been observed in neurodegenerative disorders; however, no genetically-inherited pathogenic mutations in any of the core autophagy-related (ATG) genes have been reported in human patients to date. We identified a homozygous missense mutation, changing a conserved amino acid, in ATG5 in two siblings with congenital ataxia, mental retardation, and developmental delay. The subjects' cells display a decrease in autophagy flux and defects in conjugation of ATG12 to ATG5. The homologous mutation in yeast demonstrates a 30-50% reduction of induced autophagy. Flies in which Atg5 is substituted with the mutant human ATG5 exhibit severe movement disorder, in contrast to flies expressing the wild-type human protein. Our results demonstrate the critical role of autophagy in preventing neurological diseases and maintaining neuronal health.

  18. DNA damage and autophagy

    International Nuclear Information System (INIS)

    Rodriguez-Rocha, Humberto; Garcia-Garcia, Aracely; Panayiotidis, Mihalis I.; Franco, Rodrigo

    2011-01-01

    Both exogenous and endogenous agents are a threat to DNA integrity. Exogenous environmental agents such as ultraviolet (UV) and ionizing radiation, genotoxic chemicals and endogenous byproducts of metabolism including reactive oxygen species can cause alterations in DNA structure (DNA damage). Unrepaired DNA damage has been linked to a variety of human disorders including cancer and neurodegenerative disease. Thus, efficient mechanisms to detect DNA lesions, signal their presence and promote their repair have been evolved in cells. If DNA is effectively repaired, DNA damage response is inactivated and normal cell functioning resumes. In contrast, when DNA lesions cannot be removed, chronic DNA damage triggers specific cell responses such as cell death and senescence. Recently, DNA damage has been shown to induce autophagy, a cellular catabolic process that maintains a balance between synthesis, degradation, and recycling of cellular components. But the exact mechanisms by which DNA damage triggers autophagy are unclear. More importantly, the role of autophagy in the DNA damage response and cellular fate is unknown. In this review we analyze evidence that supports a role for autophagy as an integral part of the DNA damage response.

  19. Dopamine Oxidation and Autophagy

    Directory of Open Access Journals (Sweden)

    Patricia Muñoz

    2012-01-01

    Full Text Available The molecular mechanisms involved in the neurodegenerative process of Parkinson's disease remain unclear. Currently, there is a general agreement that mitochondrial dysfunction, α-synuclein aggregation, oxidative stress, neuroinflammation, and impaired protein degradation are involved in the neurodegeneration of dopaminergic neurons containing neuromelanin in Parkinson's disease. Aminochrome has been proposed to play an essential role in the degeneration of dopaminergic neurons containing neuromelanin by inducing mitochondrial dysfunction, oxidative stress, the formation of neurotoxic α-synuclein protofibrils, and impaired protein degradation. Here, we discuss the relationship between the oxidation of dopamine to aminochrome, the precursor of neuromelanin, autophagy dysfunction in dopaminergic neurons containing neuromelanin, and the role of dopamine oxidation to aminochrome in autophagy dysfunction in dopaminergic neurons. Aminochrome induces the following: (i the formation of α-synuclein protofibrils that inactivate chaperone-mediated autophagy; (ii the formation of adducts with α- and β-tubulin, which induce the aggregation of the microtubules required for the fusion of autophagy vacuoles and lysosomes.

  20. Autophagy in idiopathic pulmonary fibrosis.

    Directory of Open Access Journals (Sweden)

    Avignat S Patel

    Full Text Available Autophagy is a basic cellular homeostatic process important to cell fate decisions under conditions of stress. Dysregulation of autophagy impacts numerous human diseases including cancer and chronic obstructive lung disease. This study investigates the role of autophagy in idiopathic pulmonary fibrosis.Human lung tissues from patients with IPF were analyzed for autophagy markers and modulating proteins using western blotting, confocal microscopy and transmission electron microscopy. To study the effects of TGF-β(1 on autophagy, human lung fibroblasts were monitored by fluorescence microscopy and western blotting. In vivo experiments were done using the bleomycin-induced fibrosis mouse model.Lung tissues from IPF patients demonstrate evidence of decreased autophagic activity as assessed by LC3, p62 protein expression and immunofluorescence, and numbers of autophagosomes. TGF-β(1 inhibits autophagy in fibroblasts in vitro at least in part via activation of mTORC1; expression of TIGAR is also increased in response to TGF-β(1. In the bleomycin model of pulmonary fibrosis, rapamycin treatment is antifibrotic, and rapamycin also decreases expression of á-smooth muscle actin and fibronectin by fibroblasts in vitro. Inhibition of key regulators of autophagy, LC3 and beclin-1, leads to the opposite effect on fibroblast expression of á-smooth muscle actin and fibronectin.Autophagy is not induced in pulmonary fibrosis despite activation of pathways known to promote autophagy. Impairment of autophagy by TGF-β(1 may represent a mechanism for the promotion of fibrogenesis in IPF.

  1. Autophagy in Measles Virus Infection

    Directory of Open Access Journals (Sweden)

    Aurore Rozières

    2017-11-01

    Full Text Available Autophagy is a biological process that helps cells to recycle obsolete cellular components and which greatly contributes to maintaining cellular integrity in response to environmental stress factors. Autophagy is also among the first lines of cellular defense against invading microorganisms, including viruses. The autophagic destruction of invading pathogens, a process referred to as xenophagy, involves cytosolic autophagy receptors, such as p62/SQSTM1 (Sequestosome 1 or NDP52/CALCOCO2 (Nuclear Dot 52 KDa Protein/Calcium Binding And Coiled-Coil Domain 2, which bind to microbial components and target them towards growing autophagosomes for degradation. However, most, if not all, infectious viruses have evolved molecular tricks to escape from xenophagy. Many viruses even use autophagy, part of the autophagy pathway or some autophagy-associated proteins, to improve their infectious potential. In this regard, the measles virus, responsible for epidemic measles, has a unique interface with autophagy as the virus can induce multiple rounds of autophagy in the course of infection. These successive waves of autophagy result from distinct molecular pathways and seem associated with anti- and/or pro-measles virus consequences. In this review, we describe what the autophagy–measles virus interplay has taught us about both the biology of the virus and the mechanistic orchestration of autophagy.

  2. Ole1, fatty acid desaturase, is required for Atg9 delivery and isolation membrane expansion during autophagy in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Yuta Ogasawara

    2017-01-01

    Full Text Available Macroautophagy, a major degradation pathway of cytoplasmic components, is carried out through formation of a double-membrane structure, the autophagosome. Although the involvement of specific lipid species in the formation process remains largely obscure, we recently showed that mono-unsaturated fatty acids (MUFA generated by stearoyl-CoA desaturase 1 (SCD1 are required for autophagosome formation in mammalian cells. To obtain further insight into the role of MUFA in autophagy, in this study we analyzed the autophagic phenotypes of the yeast mutant of OLE1, an orthologue of SCD1. Δole1 cells were defective in nitrogen starvation-induced autophagy, and the Cvt pathway, when oleic acid was not supplied. Defects in elongation of the isolation membrane led to a defect in autophagosome formation. In the absence of Ole1, the transmembrane protein Atg9 was not able to reach the pre-autophagosomal structure (PAS, the site of autophagosome formation. Thus, autophagosome formation requires Ole1 during the delivery of Atg9 to the PAS/autophagosome from its cellular reservoir.

  3. Autophagy, Warburg, and Warburg Reverse Effects in Human Cancer

    Directory of Open Access Journals (Sweden)

    Claudio D. Gonzalez

    2014-01-01

    Full Text Available Autophagy is a highly regulated-cell pathway for degrading long-lived proteins as well as for clearing cytoplasmic organelles. Autophagy is a key contributor to cellular homeostasis and metabolism. Warburg hypothesized that cancer growth is frequently associated with a deviation of a set of energy generation mechanisms to a nonoxidative breakdown of glucose. This cellular phenomenon seems to rely on a respiratory impairment, linked to mitochondrial dysfunction. This mitochondrial dysfunction results in a switch to anaerobic glycolysis. It has been recently suggested that epithelial cancer cells may induce the Warburg effect in neighboring stromal fibroblasts in which autophagy was activated. These series of observations drove to the proposal of a putative reverse Warburg effect of pathophysiological relevance for, at least, some tumor phenotypes. In this review we introduce the autophagy process and its regulation and its selective pathways and role in cancer cell metabolism. We define and describe the Warburg effect and the newly suggested “reverse” hypothesis. We also discuss the potential value of modulating autophagy with several pharmacological agents able to modify the Warburg effect. The association of the Warburg effect in cancer and stromal cells to tumor-related autophagy may be of relevance for further development of experimental therapeutics as well as for cancer prevention.

  4. Overweight in elderly people induces impaired autophagy in skeletal muscle.

    Science.gov (United States)

    Potes, Yaiza; de Luxán-Delgado, Beatriz; Rodriguez-González, Susana; Guimarães, Marcela Rodrigues Moreira; Solano, Juan J; Fernández-Fernández, María; Bermúdez, Manuel; Boga, Jose A; Vega-Naredo, Ignacio; Coto-Montes, Ana

    2017-09-01

    Sarcopenia is the gradual loss of skeletal muscle mass, strength and quality associated with aging. Changes in body composition, especially in skeletal muscle and fat mass are crucial steps in the development of chronic diseases. We studied the effect of overweight on skeletal muscle tissue in elderly people without reaching obesity to prevent this extreme situation. Overweight induces a progressive protein breakdown reflected as a progressive withdrawal of anabolism against the promoted catabolic state leading to muscle wasting. Protein turnover is regulated by a network of signaling pathways. Muscle damage derived from overweight displayed by oxidative and endoplasmic reticulum (ER) stress induces inflammation and insulin resistance and forces the muscle to increase requirements from autophagy mechanisms. Our findings showed that failure of autophagy in the elderly deprives it to deal with the cell damage caused by overweight. This insufficiently efficient autophagy leads to an accumulation of p62 and NBR1, which are robust markers of protein aggregations. This impaired autophagy affects myogenesis activity. Depletion of myogenic regulatory factors (MRFs) without links to variations in myostatin levels in overweight patients suggest a possible reduction of satellite cells in muscle tissue, which contributes to declined muscle quality. This discovery has important implications that improve the understanding of aged-related atrophy caused by overweight and demonstrates how impaired autophagy is one of the main responsible mechanisms that aggravate muscle wasting. Therefore, autophagy could be an interesting target for therapeutic interventions in humans against muscle impairment diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Roles of Autophagy Induced by Natural Compounds in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    V. Naponelli

    2015-01-01

    Full Text Available Autophagy is a homeostatic mechanism through which intracellular organelles and proteins are degraded and recycled in response to increased metabolic demand or stress. Autophagy dysfunction is often associated with many diseases, including cancer. Because of its role in tumorigenesis, autophagy can represent a new therapeutic target for cancer treatment. Prostate cancer (PCa is one of the most common cancers in aged men. The evidence on alterations of autophagy related genes and/or protein levels in PCa cells suggests a potential implication of autophagy in PCa onset and progression. The use of natural compounds, characterized by low toxicity to normal tissue associated with specific anticancer effects at physiological levels in vivo, is receiving increasing attention for prevention and/or treatment of PCa. Understanding the mechanism of action of these compounds could be crucial for the development of new therapeutic or chemopreventive options. In this review we focus on the current evidence showing the capacity of natural compounds to exert their action through autophagy modulation in PCa cells.

  6. A role for autophagy in the extension of lifespan by dietary restriction in C. elegans.

    Directory of Open Access Journals (Sweden)

    Malene Hansen

    2008-02-01

    Full Text Available In many organisms, dietary restriction appears to extend lifespan, at least in part, by down-regulating the nutrient-sensor TOR (Target Of Rapamycin. TOR inhibition elicits autophagy, the large-scale recycling of cytoplasmic macromolecules and organelles. In this study, we asked whether autophagy might contribute to the lifespan extension induced by dietary restriction in C. elegans. We find that dietary restriction and TOR inhibition produce an autophagic phenotype and that inhibiting genes required for autophagy prevents dietary restriction and TOR inhibition from extending lifespan. The longevity response to dietary restriction in C. elegans requires the PHA-4 transcription factor. We find that the autophagic response to dietary restriction also requires PHA-4 activity, indicating that autophagy is a transcriptionally regulated response to food limitation. In spite of the rejuvenating effect that autophagy is predicted to have on cells, our findings suggest that autophagy is not sufficient to extend lifespan. Long-lived daf-2 insulin/IGF-1 receptor mutants require both autophagy and the transcription factor DAF-16/FOXO for their longevity, but we find that autophagy takes place in the absence of DAF-16. Perhaps autophagy is not sufficient for lifespan extension because although it provides raw material for new macromolecular synthesis, DAF-16/FOXO must program the cells to recycle this raw material into cell-protective longevity proteins.

  7. Autophagy to Survive

    Directory of Open Access Journals (Sweden)

    Muzeyyen Izmirli

    2014-06-01

    Full Text Available Autophagy is the catabolic mechanism that involves cell degradation of unnecessary or dysfunctional cellular components through the actions of lysosomes. It helps to keep the cells alive in such cases like oxidative stress, lack of nutrients and growth factors providing recycling of intracellular molecules. However, it works as a part of metabolism regulation, morphogenesis, cell differentiation, senescence, cell death and immune system. As a result of impairment of this mechanism, pathological situations arise including cancer, neurodegenerative and infectious diseases. Consequently, researches about autophagy mechanism are important for the development of novel diagnosis, follow-up and treatment modalities in health problems. [Archives Medical Review Journal 2014; 23(3.000: 411-419

  8. Chaperone-Mediated Autophagy

    Science.gov (United States)

    Bejarano, Eloy; Cuervo, Ana Maria

    2010-01-01

    Continuous renewal of intracellular components is required to preserve cellular functionality. In fact, failure to timely turnover proteins and organelles leads often to cell death and disease. Different pathways contribute to the degradation of intracellular components in lysosomes or autophagy. In this review, we focus on chaperone-mediated autophagy (CMA), a selective form of autophagy that modulates the turnover of a specific pool of soluble cytosolic proteins. Selectivity in CMA is conferred by the presence of a targeting motif in the cytosolic substrates that, upon recognition by a cytosolic chaperone, determines delivery to the lysosomal surface. Substrate proteins undergo unfolding and translocation across the lysosomal membrane before reaching the lumen, where they are rapidly degraded. Better molecular characterization of the different components of this pathway in recent years, along with the development of transgenic models with modified CMA activity and the identification of CMA dysfunction in different severe human pathologies and in aging, are all behind the recent regained interest in this catabolic pathway. PMID:20160146

  9. Ghrelin improves vascular autophagy in rats with vascular calcification.

    Science.gov (United States)

    Xu, Mingming; Liu, Lin; Song, Chenfang; Chen, Wei; Gui, Shuyan

    2017-06-15

    This study aimed to investigate whether ghrelin ameliorated vascular calcification (VC) through improving autophagy. VC model was induced by nicotine plus vitamin D 3 in rats and β-glycerophosphate in vascular smooth muscle cell (VSMC). Calcium deposition was detected by von Kossa staining or alizarin red S staining. ALP activity was also detected. Western blot was used to assess the protein expression. Ghrelin treatment attenuated the elevation of calcium deposition and ALP activity in VC model both in vivo and in vitro. Interesting, the protein levels of autophagy markers, LC3 and beclin1 were significantly upregulated by ghrelin in VC model. An autophagy inhibitor, 3-methyladenine blocks the ameliorative effect of ghrelin on VC. Furthermore, protein expressions of phosphate-AMPK were increased by ghrelin treatment both in calcified aorta and VSMC. The effect of ghrelin on autophagy induction and VC attenuation was prevented by AMPK inhibitor, compound C. Our results suggested that ghrelin improved autophagy through AMPK activation, which was resulted in VC amelioration. These data maybe throw light on prevention and therapy of VC. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. System-wide Benefits of Intermeal Fasting by Autophagy.

    Science.gov (United States)

    Martinez-Lopez, Nuria; Tarabra, Elena; Toledo, Miriam; Garcia-Macia, Marina; Sahu, Srabani; Coletto, Luisa; Batista-Gonzalez, Ana; Barzilai, Nir; Pessin, Jeffrey E; Schwartz, Gary J; Kersten, Sander; Singh, Rajat

    2017-12-05

    Autophagy failure is associated with metabolic insufficiency. Although caloric restriction (CR) extends healthspan, its adherence in humans is poor. We established an isocaloric twice-a-day (ITAD) feeding model wherein ITAD-fed mice consume the same food amount as ad libitum controls but at two short windows early and late in the diurnal cycle. We hypothesized that ITAD feeding will provide two intervals of intermeal fasting per circadian period and induce autophagy. We show that ITAD feeding modifies circadian autophagy and glucose/lipid metabolism that correlate with feeding-driven changes in circulating insulin. ITAD feeding decreases adiposity and, unlike CR, enhances muscle mass. ITAD feeding drives energy expenditure, lowers lipid levels, suppresses gluconeogenesis, and prevents age/obesity-associated metabolic defects. Using liver-, adipose-, myogenic-, and proopiomelanocortin neuron-specific autophagy-null mice, we mapped the contribution of tissue-specific autophagy to system-wide benefits of ITAD feeding. Our studies suggest that consuming two meals a day without CR could prevent the metabolic syndrome. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Autophagy: Regulation by Energy Sensing

    NARCIS (Netherlands)

    Meijer, Alfred J.; Codogno, Patrice

    2011-01-01

    Autophagy is inhibited by the mTOR signaling pathway, which is stimulated by increased amino acid levels. When cellular energy production is compromised, AMP-activated protein kinase is activated, mTOR is inhibited and autophagy is stimulated. Two recent studies have shed light on the molecular

  12. Regulation of Autophagy by Kinases

    International Nuclear Information System (INIS)

    Sridharan, Savitha; Jain, Kirti; Basu, Alakananda

    2011-01-01

    Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated protein kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK) and protein kinase C that are often deregulated in cancer and are important therapeutic targets

  13. Regulation of Autophagy by Kinases

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Savitha; Jain, Kirti; Basu, Alakananda, E-mail: alakananda.basu@unthsc.edu [Department of Molecular Biology and Immunology, Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States)

    2011-06-09

    Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated protein kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK) and protein kinase C that are often deregulated in cancer and are important therapeutic targets.

  14. Regulation of Autophagy by Kinases

    Science.gov (United States)

    Sridharan, Savitha; Jain, Kirti; Basu, Alakananda

    2011-01-01

    Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated protein kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK) and protein kinase C that are often deregulated in cancer and are important therapeutic targets. PMID:24212825

  15. Regulation of Autophagy by Kinases

    Directory of Open Access Journals (Sweden)

    Savitha Sridharan

    2011-06-01

    Full Text Available Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK and protein kinase C that are often deregulated in cancer and are important therapeutic targets.

  16. Idarubicin induces mTOR-dependent cytotoxic autophagy in leukemic cells

    Energy Technology Data Exchange (ETDEWEB)

    Ristic, Biljana [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Bosnjak, Mihajlo [Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade (Serbia); Arsikin, Katarina [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Mircic, Aleksandar; Suzin-Zivkovic, Violeta [Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade (Serbia); Bogdanovic, Andrija [Clinic for Hematology, Clinical Centre of Serbia, School of Medicine, University of Belgrade, Belgrade (Serbia); Perovic, Vladimir [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Martinovic, Tamara; Kravic-Stevovic, Tamara; Bumbasirevic, Vladimir [Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade (Serbia); Trajkovic, Vladimir, E-mail: vtrajkovic@med.bg.ac.rs [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Harhaji-Trajkovic, Ljubica, E-mail: buajk@yahoo.com [Institute for Biological Research, University of Belgrade, Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade (Serbia)

    2014-08-01

    We investigated if the antileukemic drug idarubicin induces autophagy, a process of programmed cellular self-digestion, in leukemic cell lines and primary leukemic cells. Transmission electron microscopy and acridine orange staining demonstrated the presence of autophagic vesicles and intracellular acidification, respectively, in idarubicin-treated REH leukemic cell line. Idarubicin increased punctuation/aggregation of microtubule-associated light chain 3B (LC3B), enhanced the conversion of LC3B-I to autophagosome-associated LC3B-II in the presence of proteolysis inhibitors, and promoted the degradation of the selective autophagic target p62, thus indicating the increase in autophagic flux. Idarubicin inhibited the phosphorylation of the main autophagy repressor mammalian target of rapamycin (mTOR) and its downstream target p70S6 kinase. The treatment with the mTOR activator leucine prevented idarubicin-mediated autophagy induction. Idarubicin-induced mTOR repression was associated with the activation of the mTOR inhibitor AMP-activated protein kinase and down-regulation of the mTOR activator Akt. The suppression of autophagy by pharmacological inhibitors or LC3B and beclin-1 genetic knockdown rescued REH cells from idarubicin-mediated oxidative stress, mitochondrial depolarization, caspase activation and apoptotic DNA fragmentation. Idarubicin also caused mTOR inhibition and cytotoxic autophagy in K562 leukemic cell line and leukocytes from chronic myeloid leukemia patients, but not healthy controls. By demonstrating mTOR-dependent cytotoxic autophagy in idarubicin-treated leukemic cells, our results warrant caution when considering combining idarubicin with autophagy inhibitors in leukemia therapy. - Highlights: • Idarubicin induces autophagy in leukemic cell lines and primary leukemic cells. • Idarubicin induces autophagy by inhibiting mTOR in leukemic cells. • mTOR suppression by idarubicin is associated with AMPK activation and Akt blockade.

  17. Autophagy is required for stem cell mobilization by G-CSF

    DEFF Research Database (Denmark)

    Leveque-El Mouttie, Lucie; Vu, Therese; Lineburg, Katie E.

    2015-01-01

    Granulocyte colony-stimulating factor (G-CSF) is widely used clinically to prevent neutropenia after cytotoxic chemotherapy and to mobilize hematopoietic stem cells (HSCs) for transplantation. Autophagy, a process of cytoplasmic component recycling, maintains cellular homeostasis and protects...... the cell during periods of metabolic stress or nutrient deprivation. We have observed that G-CSF activates autophagy in neutrophils and HSCs from both mouse and human donors. Furthermore, G-CSF-induced neutrophil and HSC mobilization is impaired in the absence of autophagy. In contrast, autophagy...... is dispensable for direct HSC mobilization in response to the CXCR4 antagonist AMD3100. Altogether, these data demonstrate an important role for G-CSF in invoking autophagy within hematopoietic and myeloid cells and suggest that this pathway is critical for ensuring cell survival in response to clinically...

  18. Autophagy in plasma cell pathophysiology

    Directory of Open Access Journals (Sweden)

    Laura eOliva

    2014-03-01

    Full Text Available Plasma cells are the effectors responsible for antibody-mediated immunity. They differentiate from B lymphocytes through a complete remodeling of their original structure and function. Stress is a constitutive element of plasma cell differentiation. Macroautophagy, conventionally referred to as autophagy, is a conserved lysosomal recycling strategy that integrates cellular metabolism and enables adaptation to stress. In metazoa, autophagy plays diverse roles in cell differentiation. Recently, a number of autophagic functions have been recognized in innate and adaptive immunity, including clearance of intracellular pathogens, inflammasome regulation, lymphocyte ontogenesis, and antigen presentation. We identified a previously unrecognized role played by autophagy in plasma cell differentiation and activity. Following B cell activation, autophagy moderates the expression of the transcriptional repressor Blimp-1 and immunoglobulins through a selective negative control exerted on the size of the endoplasmic reticulum and its stress signaling response, including the essential plasma cell transcription factor, XBP-1. This containment of plasma cell differentiation and function, i.e., antibody production, is essential to optimize energy metabolism and viability. As a result, autophagy sustains antibody responses in vivo. Moreover, autophagy is an essential intrinsic determinant of long-lived plasma cells in their as yet poorly understood bone marrow niche. In this essay, we discuss these findings in the context of the established biological functions of autophagy, and their manifold implications for adaptive immunity and plasma cell diseases, in primis multiple myeloma.

  19. The Ca{sup 2+} channel TRPML3 specifically interacts with the mammalian ATG8 homologue GATE16 to regulate autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Suzy; Kim, Hyun Jin, E-mail: kimhyunjin@skku.edu

    2014-01-03

    Highlights: •Split-ubiquitin MY2H screen identified GATE16 as an interacting protein of TRPML3. •TRPML3 specifically binds to a mammalian ATG8 homologue GATE16, not to LC3B. •The interaction of TRPML3 with GATE16 facilitates autophagosome formation. •GATE16 is expressed in both autophagosome and extra-autophagosomal compartments. -- Abstract: TRPML3 is a Ca{sup 2+} permeable cation channel expressed in multiple intracellular compartments. Although TRPML3 is implicated in autophagy, how TRPML3 can regulate autophagy is not understood. To search interacting proteins with TRPML3 in autophagy, we performed split-ubiquitin membrane yeast two-hybrid (MY2H) screening with TRPML3-loop as a bait and identified GATE16, a mammalian ATG8 homologue. GST pull-down assay revealed that TRPML3 and TRPML3-loop specifically bind to GATE16, not to LC3B. Co-immunoprecipitation (co-IP) experiments showed that TRPML3 and TRPML3-loop pull down only the lipidated form of GATE16, indicating that the interaction occurs exclusively at the organellar membrane. The interaction of TRPML3 with GATE16 and GATE16-positive vesicle formation were increased in starvation induced autophagy, suggesting that the interaction facilitates the function of GATE16 in autophagosome formation. However, GATE16 was not required for TRPML3 trafficking to autophagosomes. Experiments using dominant-negative (DN) TRPML3(D458K) showed that GATE16 is localized not only in autophagosomes but also in extra-autophagosomal compartments, by contrast with LC3B. Since GATE16 acts at a later stage of the autophagosome biogenesis, our results suggest that TRPML3 plays a role in autophagosome maturation through the interaction with GATE16, by providing Ca{sup 2+} in the fusion process.

  20. The Role of Autophagy in the Pathogenesis of Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Kosuke Yamahara

    2013-01-01

    Full Text Available Diabetic nephropathy is a leading cause of end-stage renal disease worldwide. The multipronged drug approach targeting blood pressure and serum levels of glucose, insulin, and lipids fails to fully prevent the onset and progression of diabetic nephropathy. Therefore, a new therapeutic target to combat diabetic nephropathy is required. Autophagy is a catabolic process that degrades damaged proteins and organelles in mammalian cells and plays a critical role in maintaining cellular homeostasis. The accumulation of proteins and organelles damaged by hyperglycemia and other diabetes-related metabolic changes is highly associated with the development of diabetic nephropathy. Recent studies have suggested that autophagy activity is altered in both podocytes and proximal tubular cells under diabetic conditions. Autophagy activity is regulated by both nutrient state and intracellular stresses. Under diabetic conditions, an altered nutritional state due to nutrient excess may interfere with the autophagic response stimulated by intracellular stresses, leading to exacerbation of organelle dysfunction and diabetic nephropathy. In this review, we discuss new findings showing the relationships between autophagy and diabetic nephropathy and suggest the therapeutic potential of autophagy in diabetic nephropathy.

  1. HucMSC exosome-transported 14-3-3ζ prevents the injury of cisplatin to HK-2 cells by inducing autophagy in vitro.

    Science.gov (United States)

    Wang, Juanjuan; Jia, Haoyuan; Zhang, Bin; Yin, Lei; Mao, Fei; Yu, Jing; Ji, Cheng; Xu, Xiao; Yan, Yongmin; Xu, Wenrong; Qian, Hui

    2018-01-01

    On the basis of previous studies, exosomes secreted by human umbilical cord mesenchymal stromal cell (hucMSC-ex) could prevent and repair acute kidney injury induced by cisplatin in rats. However, its potential mechanism is still unclear. In the present study, the model with hucMSC-ex pretreated human renal tubular epithelial cell lines HK-2 that could prevent the injury of cisplatin was successfully established. First, we pretreated the HK-2 cells with hucMSC-ex for 24 h. Cisplatin was then used to injure HK-2 cells. Gain and loss of function study were used to explore the role of 14-3-3ζ. The expression level of proliferating cell nuclear antigen (PCNA) was analyzed by immunofluorescence assay and Western blot. The number of apoptotic cells was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling assay and flow cytometry analysis. The formation of autophagosomes was observed under super-resolution optical microscope. Western blot was used to analyze the expression levels of LC3B, P62, 14-3-3ζ and Bax. Pretreating cells with hucMSC-ex could prevent the injury of cisplatin by reducing the number of apoptotic cells and increasing the expression level of PCNA. Simultaneously, the autophagic level was up-regulated. The application of autophagic inhibitor 3-methyladenine (3-MA) could reverse the protective effect of hucMSC-ex. The overexpression of 14-3-3ζ enhanced the autophagic level and protected the injury of cisplatin. The knock-down of 14-3-3ζ could reduce the autophagic level and enhance the disadvantage of cisplatin. The enhanced injury of cisplatin was reversed when the knock-down of 14-3-3ζ was replenished with hucMSC-ex. 14-3-3ζ transported by hucMSC-ex may up-regulate autophagic level in HK-2 cells, which can prevent the injury of cisplatin. This discovery provides the new theoretical basis for the prevention of cisplatin-induced nephrotoxicity by hucMSC-ex. Copyright © 2017 International Society for Cellular Therapy. Published

  2. Cytotoxic Autophagy in Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Khushboo Sharma

    2014-06-01

    Full Text Available Autophagy is a process of cellular self-digestion, whereby the cell degrades subcellular materials in order to generate energy and metabolic precursors in order to prolong survival, classically under conditions of nutrient deprivation. Autophagy can also involve the degradation of damaged or aged organelles, and misfolded or damaged proteins to eliminate these components that might otherwise be deleterious to cellular survival. Consequently, autophagy has generally been considered a prosurvival response. Many, if not most chemotherapeutic drugs and radiation also promote autophagy, which is generally considered a cytoprotective response, in that its inhibition frequently promotes apoptotic cells death. Furthermore, it has been shown that conventional chemotherapeutic drugs and radiation alone rarely induce a form of autophagy that leads to cell death. However, there are multiple examples in the literature where newer chemotherapeutic agents, drug combinations or drugs in combination with radiation promote autophagic cell death. This review will describe autophagic cell death induced in breast tumor cells, lung cancer cells as well as glioblastoma, demonstrating that it cannot be concluded that stress induced autophagy is, of necessity, cytoprotective in function.

  3. Anesthetic Agents and Neuronal Autophagy. What We Know and What We Don't.

    Science.gov (United States)

    Xu, Lili; Shen, Jianjun; McQuillan, Patrick M; Hu, Zhiyong

    2018-01-01

    Ethanol is known to have both γ-Aminobutyric acid agonist and Nmethyl- D-aspartate antagonist characteristics similar to commonly used volatile anesthetic agents. Recent evidence demonstrates that autophagy can reduce the development of ethanol induced neurotoxicity. Recent studies have found that general anesthesia can cause longterm impairment of both mitochondrial morphogenesis and synaptic transmission in the developing rat brain, both of which are accompanied by enhanced autophagy activity. Autophagy may play an important role in general anesthetic mediated neurotoxicity. This review outlines the role of autophagy in the development of anesthetic related neurotoxicity and includes an explanation of the role of autophagy in neuronal cell survival and death, the relationship between anesthetic agents and neuronal autophagy, possible molecular and cellular mechanisms underlying general anesthetic agent induced activation of neuronal autophagy in the developing brain, and potential therapeutic approaches aimed at modulating autophagic pathways. In a time- and concentration-dependent pattern, general anesthetic agents can disrupt intracellular calcium homeostasis which enhances both autophagy and apoptosis activation. The degree of neural cell injury may be ultimately determined by the interplay between autophagy and apoptosis. It appears likely that the increase in calcium flux associated with some anesthetic agents disrupts lysosomal function. This results in an over-activation of endosomal- lysosomal trafficking causing mitochondrial damage, reactive oxygen species upregulation, and lipid peroxidation. Autophagy may play a role in the development of anesthetic related neurotoxicity. Understanding this may lead to strategies or therapies aimed at preventing or ameliorating general anesthetic agent mediated neurotoxicity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Lack of autophagy in the hematopoietic system leads to loss of hematopoietic stem cell function and dysregulated myeloid proliferation.

    Science.gov (United States)

    Mortensen, Monika; Watson, Alexander Scarth; Simon, Anna Katharina

    2011-09-01

    The regulated lysosomal degradation pathway of autophagy prevents cellular damage and thus protects from malignant transformation. Autophagy is also required for the maturation of various hematopoietic lineages, namely the erythroid and lymphoid ones, yet its role in adult hematopoietic stem cells (HSCs) remained unexplored. While normal HSCs sustain life-long hematopoiesis, malignant transformation of HSCs or early progenitors leads to leukemia. Mechanisms protecting HSCs from cellular damage are therefore essential to prevent hematopoietic malignancies. By conditionally deleting the essential autophagy gene Atg7 in the hematopoietic system, we found that autophagy is required for the maintenance of true HSCs and therefore also of downstream hematopoietic progenitors. Loss of autophagy in HSCs leads to the expansion of a progenitor cell population in the bone marrow, giving rise to a severe, invasive myeloproliferation, which strongly resembles human acute myeloid leukemia (AML).

  5. Autophagy in human embryonic stem cells

    NARCIS (Netherlands)

    Tra, Thien; Gong, Lan; Kao, Lin-Pin; Li, Xue-Lei; Grandela, Catarina; Devenish, Rodney J.; Wolvetang, Ernst; Prescott, Mark

    2011-01-01

    Autophagy (macroautophagy) is a degradative process that involves the sequestration of cytosolic material including organelles into double membrane vesicles termed autophagosomes for delivery to the lysosome. Autophagy is essential for preimplantation development of mouse embryos and cavitation of

  6. Enhanced myometrial autophagy in postpartum uterine involution

    Directory of Open Access Journals (Sweden)

    Keng-Fu Hsu

    2014-09-01

    Conclusion: Autophagy of myocytes may play an important role in uterine involution. These results have implications for our understanding of myometrial functional adaptations during pregnancy and the physiological role of autophagy in the uterine remodeling events in the postpartum period.

  7. Interactions between Autophagy and Inhibitory Cytokines.

    Science.gov (United States)

    Wu, Tian-Tian; Li, Wei-Min; Yao, Yong-Ming

    2016-01-01

    Autophagy is a degradative pathway that plays an essential role in maintaining cellular homeostasis. Most early studies of autophagy focused on its involvement in age-associated degeneration and nutrient deprivation. However, the immunological functions of autophagy have become more widely studied in recent years. Autophagy has been shown to be an intrinsic cellular defense mechanism in the innate and adaptive immune responses. Cytokines belong to a broad and loose category of proteins and are crucial for innate and adaptive immunity. Inhibitory cytokines have evolved to permit tolerance to self while also contributing to the eradication of invading pathogens. Interactions between inhibitory cytokines and autophagy have recently been reported, revealing a novel mechanism by which autophagy controls the immune response. In this review, we discuss interactions between autophagy and the regulatory cytokines IL-10, transforming growth factor-β, and IL-27. We also mention possible interactions between two newly discovered cytokines, IL-35 and IL-37, and autophagy.

  8. ProbioticBacillus amyloliquefaciensSC06 Induces Autophagy to Protect against Pathogens in Macrophages.

    Science.gov (United States)

    Wu, Yanping; Wang, Yang; Zou, Hai; Wang, Baikui; Sun, Qiming; Fu, Aikun; Wang, Yuanyuan; Wang, Yibing; Xu, Xiaogang; Li, Weifen

    2017-01-01

    Probiotics are increasingly applied in popularity in both humans and animals. Decades of research has revealed their beneficial effects, including the immune modulation in intestinal pathogens inhibition. Autophagy-a cellular process that involves the delivery of cytoplasmic proteins and organelles to the lysosome for degradation and recirculation-is essential to protect cells against bacterial pathogens. However, the mechanism of probiotics-mediated autophagy and its role in the elimination of pathogens are still unknown. Here, we evaluated Bacillus amyloliquefaciens SC06 (Ba)-induced autophagy and its antibacterial activity against Escherichia coli ( E. coli ) in murine macrophage cell line RAW264.7 cells. Western blotting and confocal laser scanning analysis showed that Ba activated autophagy in a dose- and time-dependent manner. Ba-induced autophagy was found to play a role in the elimination of intracellular bacteria when RAW264.7 cells were challenged with E. coli . Ba induced autophagy by increasing the expression of Beclin1 and Atg5-Atg12-Atg16 complex, but not the AKT/mTOR signaling pathway. Moreover, Ba pretreatment attenuated the activation of JNK in RAW264.7 cells during E. coli infection, further indicating a protective role for probiotics via modulating macrophage immunity. The above findings highlight a novel mechanism underlying the antibacterial activity of probiotics. This study enriches the current knowledge on probiotics-mediated autophagy, and provides a new perspective on the prevention of bacterial infection in intestine, which further the application of probiotics in food products.

  9. Autophagy collaborates with ubiquitination to downregulate oncoprotein E2A/Pbx1 in B-cell acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Yuan, N; Song, L; Lin, W; Cao, Y; Xu, F; Liu, S; Zhang, A; Wang, Z; Li, X; Fang, Y; Zhang, H; Zhao, W; Hu, S; Wang, J; Zhang, S

    2015-01-01

    B-cell acute lymphoblastic leukemia (B-ALL) accounts for the most cancer incidences in children. We present here that autophagy is downregulated in pediatric B-ALL, suggesting a possible link between autophagy failure and pediatric B-ALL leukemogenesis. With a pediatric t(1;19) B-ALL xenograft mouse model, we show here that activation of autophagy by preventive administration of rapamycin improved the survival of leukemia animals by partial restoration of hematopoietic stem/progenitor cells, whereas treatment of the animals with rapamycin caused leukemia bone marrow cell-cycle arrest. Activation of autophagy in vitro or in vivo by rapamycin or starvation downregulated oncogenic fusion protein E2A/Pbx1. Furthermore, E2A/Pbx1 was found to be colocalized with autophagy marker LC3 in autolysosomes and with ubiquitin in response to autophagy stimuli, whereas autophagy or ubiquitination inhibitor blocked these colocalizations. Together, our data suggest a collaborative action between autophagy and ubiquitination in the degradation of E2A/Pbx1, thereby revealing a novel strategy for targeted preventive or treatment therapy on the pediatric ALL

  10. Insufficient autophagy contributes to mitochondrial dysfunction, organ failure, and adverse outcome in an animal model of critical illness.

    Science.gov (United States)

    Gunst, Jan; Derese, Inge; Aertgeerts, Annelies; Ververs, Eric-Jan; Wauters, Andy; Van den Berghe, Greet; Vanhorebeek, Ilse

    2013-01-01

    Increasing evidence implicates mitochondrial dysfunction as an early, important event in the pathogenesis of critical illness-induced multiple organ failure. We previously demonstrated that prevention of hyperglycemia limits damage to mitochondria in vital organs, thereby reducing morbidity and mortality. We now hypothesize that inadequate activation of mitochondrial repair processes (clearance of damaged mitochondria by autophagy, mitochondrial fusion/fission, and biogenesis) may contribute to accumulation of mitochondrial damage, persistence of organ failure, and adverse outcome of critical illness. Prospective, randomized studies in a critically ill rabbit model. University laboratory. Three-month-old male rabbits. We studied whether vital organ mitochondrial repair pathways are differentially affected in surviving and nonsurviving hyperglycemic critically ill animals in relation to mitochondrial and organ damage. Next, we investigated the impact of preventing hyperglycemia over time and of administering rapamycin as an autophagy activator. In both liver and kidney of hyperglycemic critically ill rabbits, we observed signs of insufficient autophagy, including accumulation of p62 and a concomitant decrease in the microtubule-associated protein light-chain-3-II/microtubule-associated protein light-chain-3-I ratio. The phenotype of insufficient autophagy was more pronounced in nonsurviving than in surviving animals. Molecular markers of insufficient autophagy correlated with impaired mitochondrial function and more severe organ damage. In contrast, key players in mitochondrial fusion/fission or biogenesis were not significantly different regarding survival status. Therefore, we focused on autophagy to study the impact of preventing hyperglycemia. Both after 3 and 7 days of illness, autophagy was better preserved in normoglycemic than in hyperglycemic rabbits, which correlated with improved mitochondrial function and less organ damage. Stimulation of autophagy in

  11. Advances in Autophagy Regulatory Mechanisms

    Directory of Open Access Journals (Sweden)

    Laura E. Gallagher

    2016-05-01

    Full Text Available Autophagy plays a critical role in cell metabolism by degrading and recycling internal components when challenged with limited nutrients. This fundamental and conserved mechanism is based on a membrane trafficking pathway in which nascent autophagosomes engulf cytoplasmic cargo to form vesicles that transport their content to the lysosome for degradation. Based on this simple scheme, autophagy modulates cellular metabolism and cytoplasmic quality control to influence an unexpectedly wide range of normal mammalian physiology and pathophysiology. In this review, we summarise recent advancements in three broad areas of autophagy regulation. We discuss current models on how autophagosomes are initiated from endogenous membranes. We detail how the uncoordinated 51-like kinase (ULK complex becomes activated downstream of mechanistic target of rapamycin complex 1 (MTORC1. Finally, we summarise the upstream signalling mechanisms that can sense amino acid availability leading to activation of MTORC1.

  12. Tetrandrine induces lipid accumulation through blockade of autophagy in a hepatic stellate cell line

    Energy Technology Data Exchange (ETDEWEB)

    Miyamae, Yusaku, E-mail: ymiyamae@lif.kyoto-u.ac.jp [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Nishito, Yukina; Nakai, Naomi [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Nagumo, Yoko; Usui, Takeo [Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305-8572 (Japan); Masuda, Seiji; Kambe, Taiho [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Nagao, Masaya, E-mail: mnagao@kais.kyoto-u.ac.jp [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan)

    2016-08-12

    Macroautophagy, or autophagy, is a cellular response in which unnecessary cytoplasmic components, including lipids and organelles, are self-degraded. Recent studies closely related autophagy to activation of hepatic stellate cells (HSCs), a process critical in the pathogenesis of liver fibrosis. During HSC activation, cytoplasmic lipid droplets (LDs) are degraded as autophagic cargo, and then cells express fibrogenic genes. Thus, inhibition of autophagy in HSCs is a potential therapeutic approach for attenuating liver fibrosis. We found that tetrandrine, a bisbenzylisoquinoline alkaloid isolated from Stephania tetrandra, induced lipid accumulation, a phenotype associated with quiescent HSCs, through blockade of autophagy in the rat-derived HSC line HSC-T6. Tetrandrine inhibited autophagic flux without affecting lysosomal function. A phenotypic comparison using siRNA knockdown suggested that tetrandrine may target regulators, involved in fusion between autophagosomes and lysosomes (e.g., syntaxin 17). Moreover, perilipin 1, an LD-coated protein, co-localized specifically with LC3, a marker protein for autophagosomes, in tetrandrine-treated HSC-T6 cells. This suggests a potential role for perilipin 1 in autophagy-mediated LD degradation in HSCs. Our results identified tetrandrine as a potential tool for prevention and treatment of HSC activation. - Highlights: • Autophagy is closely related to lipid degradation in hepatic stellate cells. • Tetrandrine (Tet) causes lipid accumulation via blockade of autophagy in HSC-T6 cells. • Tet blocked autophagy without affecting lysosomal function unlike bafilomycin A{sub 1}. • Perilipin 1 was specifically co-localized with LC3 in Tet-treated cells. • Perilipin 1 may play potential roles in autophagy-mediated lipid degradation.

  13. Sonodynamic therapy induces the interplay between apoptosis and autophagy in K562 cells through ROS.

    Science.gov (United States)

    Su, Xiaomin; Wang, Pan; Yang, Shuang; Zhang, Kun; Liu, Quanhong; Wang, Xiaobing

    2015-03-01

    Sonodynamic therapy (SDT) is a relatively new approach in the treatment of various cancers including leukemia cells. The aim of this study is to investigate the occurrence of apoptosis and autophagy after treated by protoporphyrin IX (PpIX)-mediated SDT (PpIX-SDT) on human leukemia K562 cells as well as the relationship between them. Firstly, mitochondrial-dependent apoptosis was observed through morphological observation and biochemical analysis. Meanwhile, SDT was shown to induce autophagy in K562 cells, which caused an increase in EGFP-LC3 puncta cells, a conversion of LC3 II/I, formation of acidic vesicular organelles (AVOs) and co-localization between LC3 and LAMP2 (a lysosome marker). Besides, pretreatment with autophagy inhibitor 3-MA or bafilomycin A1 was shown to provide protection against autophagy and to enhance SDT-induced apoptosis and necrosis, while the apoptosis suppressor z-VAD-fmk failed to affect formation of autophagic vacuoles or partially prevented SDT-induced cytotoxicity, which suggested that SDT-induced autophagy functioned as a survival mechanism. Additionally, this study reported apparent apoptosis and autophagy with dependence on intracellular reactive oxygen species (ROS) production. Preliminary data showed that ROS scavenger N-acetylcysteine (NAC) effectively blocked the SDT induced accumulation of ROS, reversed sono-damage, cell apoptosis and autophagy. Taken together, these data indicate that autophagy may be cytoprotective in our experimental system, and the ROS caused by PpIX-SDT treatment may play an important role in initiating apoptosis and autophagy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Autophagy Negatively Regulates Transmissible Gastroenteritis Virus Replication.

    Science.gov (United States)

    Guo, Longjun; Yu, Haidong; Gu, Weihong; Luo, Xiaolei; Li, Ren; Zhang, Jian; Xu, Yunfei; Yang, Lijun; Shen, Nan; Feng, Li; Wang, Yue

    2016-03-31

    Autophagy is an evolutionarily ancient pathway that has been shown to be important in the innate immune defense against several viruses. However, little is known about the regulatory role of autophagy in transmissible gastroenteritis virus (TGEV) replication. In this study, we found that TGEV infection increased the number of autophagosome-like double- and single-membrane vesicles in the cytoplasm of host cells, a phenomenon that is known to be related to autophagy. In addition, virus replication was required for the increased amount of the autophagosome marker protein LC3-II. Autophagic flux occurred in TGEV-infected cells, suggesting that TGEV infection triggered a complete autophagic response. When autophagy was pharmacologically inhibited by wortmannin or LY294002, TGEV replication increased. The increase in virus yield via autophagy inhibition was further confirmed by the use of siRNA duplexes, through which three proteins required for autophagy were depleted. Furthermore, TGEV replication was inhibited when autophagy was activated by rapamycin. The antiviral response of autophagy was confirmed by using siRNA to reduce the expression of gene p300, which otherwise inhibits autophagy. Together, the results indicate that TGEV infection activates autophagy and that autophagy then inhibits further TGEV replication.

  15. [Autophagy in the cardiovascular system].

    Science.gov (United States)

    Kheloufi, Marouane; Rautou, Pierre-Emmanuel; Boulanger, Chantal M

    2017-03-01

    Cardiovascular diseases are the leading cause of mortality worldwide. Studies regarding the role of autophagy in cardiac and vascular tissues have opened new therapeutic avenues to treat cardiovascular disorders. Altogether, these studies point out that autophagic activity needs to be maintained at an optimal level to preserve cardiovascular function. Reaching this goal constitutes a challenge for future efficient therapeutic strategies. The present review therefore highlights recent advances in the understanding of the role of autophagy in cardiovascular pathologies. © 2017 médecine/sciences – Inserm.

  16. Autophagy, lipophagy and lysosomal lipid storage disorders.

    Science.gov (United States)

    Ward, Carl; Martinez-Lopez, Nuria; Otten, Elsje G; Carroll, Bernadette; Maetzel, Dorothea; Singh, Rajat; Sarkar, Sovan; Korolchuk, Viktor I

    2016-04-01

    Autophagy is a catabolic process with an essential function in the maintenance of cellular and tissue homeostasis. It is primarily recognised for its role in the degradation of dysfunctional proteins and unwanted organelles, however in recent years the range of autophagy substrates has also been extended to lipids. Degradation of lipids via autophagy is termed lipophagy. The ability of autophagy to contribute to the maintenance of lipo-homeostasis becomes particularly relevant in the context of genetic lysosomal storage disorders where perturbations of autophagic flux have been suggested to contribute to the disease aetiology. Here we review recent discoveries of the molecular mechanisms mediating lipid turnover by the autophagy pathways. We further focus on the relevance of autophagy, and specifically lipophagy, to the disease mechanisms. Moreover, autophagy is also discussed as a potential therapeutic target in several key lysosomal storage disorders. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Atg5-mediated autophagy deficiency in proximal tubules promotes cell cycle G2/M arrest and renal fibrosis.

    Science.gov (United States)

    Li, Huiyan; Peng, Xuan; Wang, Yating; Cao, Shirong; Xiong, Liping; Fan, Jinjin; Wang, Yihan; Zhuang, Shougang; Yu, Xueqing; Mao, Haiping

    2016-09-01

    Macroautophagy/autophagy protects against cellular stress. Renal sublethal injury-triggered tubular epithelial cell cycle arrest at G2/M is associated with interstitial fibrosis. However, the role of autophagy in renal fibrosis is elusive. Here, we hypothesized that autophagy activity in tubular epithelial cells is pivotal for inhibition of cell cycle G2/M arrest and subsequent fibrogenic response. In both renal epithelial cells stimulated by angiotensin II (AGT II) and the murine kidney after unilateral ureteral obstruction (UUO), we observed that occurrence of autophagy preceded increased production of COL1 (collagen, type I). Pharmacological enhancement of autophagy by rapamycin suppressed COL1 accumulation and renal fibrosis. In contrast, genetic ablation of autophagy by proximal tubular epithelial cell-specific deletion of Atg5, with reduction of the LC3-II protein level and degradation of SQSTM1/p62, showed marked cell cycle arrest at the G2/M phase, robust COL1 deposition, and severe interstitial fibrosis in a UUO model, as compared with wild-type mice. In vitro, AGT II exposure triggered autophagy preferentially in the G1/S phase, and increased COL1 expression in the G2/M phase in renal epithelial cells. Stimulation of Atg5-deficient primary proximal tubular cells with AGT II also resulted in elevated G2/M arrest and COL1 production. Pharmacological or genetic inhibition of autophagy increased AGT II-mediated G2/M arrest. Enhanced expression of ATG5, but not the autophagy-deficient ATG5 mutant K130R, rescued the G2/M arrest, suggesting the regulation of cell cycle progression by ATG5 is autophagy dependent. In conclusion, Atg5-mediated autophagy in proximal epithelial cells is a critical host-defense mechanism that prevents renal fibrosis by blocking G2/M arrest.

  18. Autophagy and gap junctional intercellular communication inhibition are involved in cadmium-induced apoptosis in rat liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Hui [College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009 (China); Zhuo, Liling [College of Life Science, Zaozhuang University, Zaozhuang, Shandong, 277160 (China); Han, Tao; Hu, Di; Yang, Xiaokang; Wang, Yi; Yuan, Yan; Gu, Jianhong; Bian, Jianchun; Liu, Xuezhong [College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009 (China); Liu, Zongping, E-mail: liuzongping@yzu.edu.cn [College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009 (China)

    2015-04-17

    Cadmium (Cd) is known to induce hepatotoxicity, yet the underlying mechanism of how this occurs is not fully understood. In this study, Cd-induced apoptosis was demonstrated in rat liver cells (BRL 3A) with apoptotic nuclear morphological changes and a decrease in cell index (CI) in a time- and concentration-dependent manner. The role of gap junctional intercellular communication (GJIC) and autophagy in Cd-induced apoptosis was investigated. Cd significantly induced GJIC inhibition as well as downregulation of connexin 43 (Cx43). The prototypical gap junction blocker carbenoxolone disodium (CBX) exacerbated the Cd-induced decrease in CI. Cd treatment was also found to cause autophagy, with an increase in mRNA expression of autophagy-related genes Atg-5, Atg-7, Beclin-1, and microtubule-associated protein light chain 3 (LC3) conversion from cytosolic LC3-I to membrane-bound LC3-II. The autophagic inducer rapamycin (RAP) prevented the Cd-induced CI decrease, while the autophagic inhibitor chloroquine (CQ) caused a further reduction in CI. In addition, CBX promoted Cd-induced autophagy, as well as changes in expression of Atg-5, Atg-7, Beclin-1 and LC3. CQ was found to block the Cd-induced decrease in Cx43 and GJIC inhibition, whereas RAP had opposite effect. These results demonstrate that autophagy plays a protective role during Cd-induced apoptosis in BRL 3A cells during 6 h of experiment, while autophagy exacerbates Cd-induced GJIC inhibition which has a negative effect on cellular fate. - Highlights: • GJIC and autophagy is crucial for biological processes. • Cd exposure causes GJIC inhibition and autophagy increase in BRL 3A cells. • Autophagy protects Cd induced BRL 3A cells apoptosis at an early stage. • Autophagy exacerbates Cd-induced GJIC inhibition. • GJIC plays an important role in autophagy induced cell death or survival.

  19. Autophagy Limits Endotoxemic Acute Kidney Injury and Alters Renal Tubular Epithelial Cell Cytokine Expression.

    Directory of Open Access Journals (Sweden)

    Jeremy S Leventhal

    Full Text Available Sepsis related acute kidney injury (AKI is a common in-hospital complication with a dismal prognosis. Our incomplete understanding of disease pathogenesis has prevented the identification of hypothesis-driven preventive or therapeutic interventions. Increasing evidence in ischemia-reperfusion and nephrotoxic mouse models of AKI support the theory that autophagy protects renal tubular epithelial cells (RTEC from injury. However, the role of RTEC autophagy in septic AKI remains unclear. We observed that lipopolysaccharide (LPS, a mediator of gram-negative bacterial sepsis, induces RTEC autophagy in vivo and in vitro through TLR4-initiated signaling. We modeled septic AKI through intraperitoneal LPS injection in mice in which autophagy-related protein 7 was specifically knocked out in the renal proximal tubules (ATG7KO. Compared to control littermates, ATG7KO mice developed more severe renal dysfunction (24hr BUN 100.1mg/dl +/- 14.8 vs 54.6mg/dl +/- 11.3 and parenchymal injury. After injection with LPS, analysis of kidney lysates identified higher IL-6 expression and increased STAT3 activation in kidney lysates from ATG7KO mice compared to controls. In vitro experiments confirmed an altered response to LPS in RTEC with genetic or pharmacological impairment of autophagy. In conclusion, RTEC autophagy protects against endotoxin induced injury and regulates downstream effects of RTEC TLR4 signaling.

  20. Autophagy Protects against CYP2E1/Chronic Ethanol-Induced Hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Yongke Lu

    2015-10-01

    Full Text Available Autophagy is an intracellular pathway by which lysosomes degrade and recycle long-lived proteins and cellular organelles. The effects of ethanol on autophagy are complex but recent studies have shown that autophagy serves a protective function against ethanol-induced liver injury. Autophagy was found to also be protective against CYP2E1-dependent toxicity in vitro in HepG2 cells which express CYP2E1 and in vivo in an acute alcohol/CYPE1-dependent liver injury model. The goal of the current report was to extend the previous in vitro and acute in vivo experiments to a chronic ethanol model to evaluate whether autophagy is also protective against CYP2E1-dependent liver injury in a chronic ethanol-fed mouse model. Wild type (WT, CYP2E1 knockout (KO or CYP2E1 humanized transgenic knockin (KI, mice were fed an ethanol liquid diet or control dextrose diet for four weeks. In the last week, some mice received either saline or 3-methyladenine (3-MA, an inhibitor of autophagy, or rapamycin, which stimulates autophagy. Inhibition of autophagy by 3-MA potentiated the ethanol-induced increases in serum transaminase and triglyceride levels in the WT and KI mice but not KO mice, while rapamycin prevented the ethanol liver injury. Treatment with 3-MA enhanced the ethanol-induced fat accumulation in WT mice and caused necrosis in the KI mice; little or no effect was found in the ethanol-fed KO mice or any of the dextrose-fed mice. 3-MA treatment further lowered the ethanol-decrease in hepatic GSH levels and further increased formation of TBARS in WT and KI mice, whereas rapamycin blunted these effects of ethanol. Neither 3-MA nor rapamycin treatment affected CYP2E1 catalytic activity or content or the induction CYP2E1 by ethanol. The 3-MA treatment decreased levels of Beclin-1 and Atg 7 but increased levels of p62 in the ethanol-fed WT and KI mice whereas rapamycin had the opposite effects, validating inhibition and stimulation of autophagy, respectively. These

  1. Salinomycin activates AMP-activated protein kinase-dependent autophagy in cultured osteoblastoma cells: a negative regulator against cell apoptosis.

    Directory of Open Access Journals (Sweden)

    Lun-qing Zhu

    Full Text Available The malignant osteoblastoma has poor prognosis, thus the search for novel and more efficient chemo-agents against this disease is urgent. Salinomycin induces broad anti-cancer effects both in vivo and in vitro, however, its role in osteoblastoma is still not clear.Salinomycin induced both apoptosis and autophagy in cultured U2OS and MG-63 osteoblastoma cells. Inhibition of autophagy by 3-methyladenine (3-MA, or by RNA interference (RNAi of light chain 3B (LC3B, enhanced salinomycin-induced cytotoxicity and apoptosis. Salinomycin induced a profound AMP-activated protein kinase (AMPK activation, which was required for autophagy induction. AMPK inhibition by compound C, or by AMPKα RNAi prevented salinomycin-induced autophagy activation, while facilitating cancer cell death and apoptosis. On the other hand, the AMPK agonist AICAR promoted autophagy activation in U2OS cells. Salinomycin-induced AMPK activation was dependent on reactive oxygen species (ROS production in osteoblastoma cells. Antioxidant n-acetyl cysteine (NAC significantly inhibited salinomycin-induced AMPK activation and autophagy induction.Salinomycin activates AMPK-dependent autophagy in osteoblastoma cells, which serves as a negative regulator against cell apoptosis. AMPK-autophagy inhibition might be a novel strategy to sensitize salinomycin's effect in cancer cells.

  2. Salinomycin activates AMP-activated protein kinase-dependent autophagy in cultured osteoblastoma cells: a negative regulator against cell apoptosis.

    Science.gov (United States)

    Zhu, Lun-qing; Zhen, Yun-fang; Zhang, Ya; Guo, Zhi-xiong; Dai, Jin; Wang, Xiao-dong

    2013-01-01

    The malignant osteoblastoma has poor prognosis, thus the search for novel and more efficient chemo-agents against this disease is urgent. Salinomycin induces broad anti-cancer effects both in vivo and in vitro, however, its role in osteoblastoma is still not clear. Salinomycin induced both apoptosis and autophagy in cultured U2OS and MG-63 osteoblastoma cells. Inhibition of autophagy by 3-methyladenine (3-MA), or by RNA interference (RNAi) of light chain 3B (LC3B), enhanced salinomycin-induced cytotoxicity and apoptosis. Salinomycin induced a profound AMP-activated protein kinase (AMPK) activation, which was required for autophagy induction. AMPK inhibition by compound C, or by AMPKα RNAi prevented salinomycin-induced autophagy activation, while facilitating cancer cell death and apoptosis. On the other hand, the AMPK agonist AICAR promoted autophagy activation in U2OS cells. Salinomycin-induced AMPK activation was dependent on reactive oxygen species (ROS) production in osteoblastoma cells. Antioxidant n-acetyl cysteine (NAC) significantly inhibited salinomycin-induced AMPK activation and autophagy induction. Salinomycin activates AMPK-dependent autophagy in osteoblastoma cells, which serves as a negative regulator against cell apoptosis. AMPK-autophagy inhibition might be a novel strategy to sensitize salinomycin's effect in cancer cells.

  3. Salinomycin Activates AMP-Activated Protein Kinase-Dependent Autophagy in Cultured Osteoblastoma Cells: A Negative Regulator against Cell Apoptosis

    Science.gov (United States)

    Zhang, Ya; Guo, Zhi-xiong; Dai, Jin; Wang, Xiao-dong

    2013-01-01

    Background The malignant osteoblastoma has poor prognosis, thus the search for novel and more efficient chemo-agents against this disease is urgent. Salinomycin induces broad anti-cancer effects both in vivo and in vitro, however, its role in osteoblastoma is still not clear. Key Findings Salinomycin induced both apoptosis and autophagy in cultured U2OS and MG-63 osteoblastoma cells. Inhibition of autophagy by 3-methyladenine (3-MA), or by RNA interference (RNAi) of light chain 3B (LC3B), enhanced salinomycin-induced cytotoxicity and apoptosis. Salinomycin induced a profound AMP-activated protein kinase (AMPK) activation, which was required for autophagy induction. AMPK inhibition by compound C, or by AMPKα RNAi prevented salinomycin-induced autophagy activation, while facilitating cancer cell death and apoptosis. On the other hand, the AMPK agonist AICAR promoted autophagy activation in U2OS cells. Salinomycin-induced AMPK activation was dependent on reactive oxygen species (ROS) production in osteoblastoma cells. Antioxidant n-acetyl cysteine (NAC) significantly inhibited salinomycin-induced AMPK activation and autophagy induction. Conclusions Salinomycin activates AMPK-dependent autophagy in osteoblastoma cells, which serves as a negative regulator against cell apoptosis. AMPK-autophagy inhibition might be a novel strategy to sensitize salinomycin’s effect in cancer cells. PMID:24358342

  4. SIRT5 regulation of ammonia-induced autophagy and mitophagy

    Science.gov (United States)

    Polletta, Lucia; Vernucci, Enza; Carnevale, Ilaria; Arcangeli, Tania; Rotili, Dante; Palmerio, Silvia; Steegborn, Clemens; Nowak, Theresa; Schutkowski, Mike; Pellegrini, Laura; Sansone, Luigi; Villanova, Lidia; Runci, Alessandra; Pucci, Bruna; Morgante, Emanuela; Fini, Massimo; Mai, Antonello; Russo, Matteo A; Tafani, Marco

    2015-01-01

    In liver the mitochondrial sirtuin, SIRT5, controls ammonia detoxification by regulating CPS1, the first enzyme of the urea cycle. However, while SIRT5 is ubiquitously expressed, urea cycle and CPS1 are only present in the liver and, to a minor extent, in the kidney. To address the possibility that SIRT5 is involved in ammonia production also in nonliver cells, clones of human breast cancer cell lines MDA-MB-231 and mouse myoblast C2C12, overexpressing or silenced for SIRT5 were produced. Our results show that ammonia production increased in SIRT5-silenced and decreased in SIRT5-overexpressing cells. We also obtained the same ammonia increase when using a new specific inhibitor of SIRT5 called MC3482. SIRT5 regulates ammonia production by controlling glutamine metabolism. In fact, in the mitochondria, glutamine is transformed in glutamate by the enzyme glutaminase, a reaction producing ammonia. We found that SIRT5 and glutaminase coimmunoprecipitated and that SIRT5 inhibition resulted in an increased succinylation of glutaminase. We next determined that autophagy and mitophagy were increased by ammonia by measuring autophagic proteolysis of long-lived proteins, increase of autophagy markers MAP1LC3B, GABARAP, and GABARAPL2, mitophagy markers BNIP3 and the PINK1-PARK2 system as well as mitochondrial morphology and dynamics. We observed that autophagy and mitophagy increased in SIRT5-silenced cells and in WT cells treated with MC3482 and decreased in SIRT5-overexpressing cells. Moreover, glutaminase inhibition or glutamine withdrawal completely prevented autophagy. In conclusion we propose that the role of SIRT5 in nonliver cells is to regulate ammonia production and ammonia-induced autophagy by regulating glutamine metabolism. PMID:25700560

  5. Autophagy and IL-1 family cytokines

    Directory of Open Access Journals (Sweden)

    James eHarris

    2013-04-01

    Full Text Available Autophagy is an important intracellular homeostatic mechanism for the targeting of cytosolic constituents, including organelles, for lysosomal degradation. Autophagy plays roles in numerous physiological processes, including immune cell responses to endogenous and exogenous pathogenic stimuli. Moreover, autophagy has a potentially pivotal role to play in the regulation of inflammatory responses. In particular, autophagy regulates endogenous inflammasome activators, as well as inflammasome components and pro-IL-1β. As a result, autophagy acts a key modulator of IL-1β and IL-18, as well as IL-1α, release. This review focuses specifically on the role autophagy plays in regulating the production, processing and secretion of IL-1 and IL-18 and the consequences of this important function.

  6. Feedback regulation between autophagy and PKA.

    Science.gov (United States)

    Torres-Quiroz, Francisco; Filteau, Marie; Landry, Christian R

    2015-01-01

    Protein kinase A (PKA) controls diverse cellular processes and homeostasis in eukaryotic cells. Many processes and substrates of PKA have been described and among them are direct regulators of autophagy. The mechanisms of PKA regulation and how they relate to autophagy remain to be fully understood. We constructed a reporter of PKA activity in yeast to identify genes affecting PKA regulation. The assay systematically measures relative protein-protein interactions between the regulatory and catalytic subunits of the PKA complex in a systematic set of genetic backgrounds. The candidate PKA regulators we identified span multiple processes and molecular functions (autophagy, methionine biosynthesis, TORC signaling, protein acetylation, and DNA repair), which themselves include processes regulated by PKA. These observations suggest the presence of many feedback loops acting through this key regulator. Many of the candidate regulators include genes involved in autophagy, suggesting that not only does PKA regulate autophagy but that autophagy also sends signals back to PKA.

  7. Autophagy is essential for hearing in mice.

    Science.gov (United States)

    Fujimoto, Chisato; Iwasaki, Shinichi; Urata, Shinji; Morishita, Hideaki; Sakamaki, Yuriko; Fujioka, Masato; Kondo, Kenji; Mizushima, Noboru; Yamasoba, Tatsuya

    2017-05-11

    Hearing loss is the most frequent sensory disorder in humans. Auditory hair cells (HCs) are postmitotic at late-embryonic differentiation and postnatal stages, and their damage is the major cause of hearing loss. There is no measurable HC regeneration in the mammalian cochlea, and the maintenance of cell function is crucial for preservation of hearing. Here we generated mice deficient in autophagy-related 5 (Atg5), a gene essential for autophagy, in the HCs to investigate the effect of basal autophagy on hearing acuity. Deletion of Atg5 resulted in HC degeneration and profound congenital hearing loss. In autophagy-deficient HCs, polyubiquitinated proteins and p62/SQSTM1, an autophagy substrate, accumulated as inclusion bodies during the first postnatal week, and these aggregates increased in number. These findings revealed that basal autophagy has an important role in maintenance of HC morphology and hearing acuity.

  8. Dysregulation of autophagy in murine fibroblasts resistant to HSV-1 infection.

    Directory of Open Access Journals (Sweden)

    Valerie Le Sage

    Full Text Available The mouse L cell mutant, gro29, was selected for its ability to survive infection by herpes simplex virus type 1 (HSV-1. gro29 cells are fully susceptible to HSV-1 infection, however, they produce 2000-fold less infectious virus than parental L cells despite their capacity to synthesize late viral gene products and assemble virions. Because productive HSV-1 infection is presumed to result in the death of the host cell, we questioned how gro29 cells might survive infection. Using time-lapse video microscopy, we demonstrated that a fraction of infected gro29 cells survived infection and divided. Electron microscopy of infected gro29 cells, revealed large membranous vesicles that contained virions as well as cytoplasmic constituents. These structures were reminiscent of autophagosomes. Autophagy is an ancient cellular process that, under nutrient deprivation conditions, results in the degradation and catabolism of cytoplasmic components and organelles. We hypothesized that enhanced autophagy, and resultant degradation of virions, might explain the ability of gro29 to survive HSV-1 infection. Here we demonstrate that gro29 cells have enhanced basal autophagy as compared to parental L cells. Moreover, treatment of gro29 cells with 3-methyladenine, an inhibitor of autophagy, failed to prevent the formation of autophagosome-like organelles in gro29 cells indicating that autophagy was dysregulated in these cells. Additionally, we observed robust co-localization of the virion structural component, VP26, with the autophagosomal marker, GFP-LC3, in infected gro29 cells that was not seen in infected parental L cells. Collectively, these data support a model whereby gro29 cells prevent the release of infectious virus by directing intracellular virions to an autophagosome-like compartment. Importantly, induction of autophagy in parental L cells did not prevent HSV-1 production, indicating that the relationship between autophagy, virus replication, and

  9. Atrogin-1 deficiency promotes cardiomyopathy and premature death via impaired autophagy.

    Science.gov (United States)

    Zaglia, Tania; Milan, Giulia; Ruhs, Aaron; Franzoso, Mauro; Bertaggia, Enrico; Pianca, Nicola; Carpi, Andrea; Carullo, Pierluigi; Pesce, Paola; Sacerdoti, David; Sarais, Cristiano; Catalucci, Daniele; Krüger, Marcus; Mongillo, Marco; Sandri, Marco

    2014-06-01

    Cardiomyocyte proteostasis is mediated by the ubiquitin/proteasome system (UPS) and autophagy/lysosome system and is fundamental for cardiac adaptation to both physiologic (e.g., exercise) and pathologic (e.g., pressure overload) stresses. Both the UPS and autophagy/lysosome system exhibit reduced efficiency as a consequence of aging, and dysfunction in these systems is associated with cardiomyopathies. The muscle-specific ubiquitin ligase atrogin-1 targets signaling proteins involved in cardiac hypertrophy for degradation. Here, using atrogin-1 KO mice in combination with in vivo pulsed stable isotope labeling of amino acids in cell culture proteomics and biochemical and cellular analyses, we identified charged multivesicular body protein 2B (CHMP2B), which is part of an endosomal sorting complex (ESCRT) required for autophagy, as a target of atrogin-1-mediated degradation. Mice lacking atrogin-1 failed to degrade CHMP2B, resulting in autophagy impairment, intracellular protein aggregate accumulation, unfolded protein response activation, and subsequent cardiomyocyte apoptosis, all of which increased progressively with age. Cellular proteostasis alterations resulted in cardiomyopathy characterized by myocardial remodeling with interstitial fibrosis, with reduced diastolic function and arrhythmias. CHMP2B downregulation in atrogin-1 KO mice restored autophagy and decreased proteotoxicity, thereby preventing cell death. These data indicate that atrogin-1 promotes cardiomyocyte health through mediating the interplay between UPS and autophagy/lysosome system and its alteration promotes development of cardiomyopathies.

  10. Formaldehyde exposure induces autophagy in testicular tissues of adult male rats.

    Science.gov (United States)

    Han, Shui-Ping; Zhou, Dang-Xia; Lin, Pu; Qin, Zhen; An, Lu; Zheng, Lie-Rui; Lei, Li

    2015-03-01

    Formaldehyde, a ubiquitous environmental pollutant, has long been suspected of causing adverse male reproductive effects. However, the molecular and cellular mechanisms underlying this phenomenon remain elusive. The overall aim of this study is to clarify the role of autophagy in male reproductive injuries induced by formaldehyde exposure, by which we can further understand the molecular mechanism of spermatogenesis and develop new targets for prevention and treatment of male infertility. In this study, electron microscopy, Western blot, and RT-PCR analysis were used to detect autophagy in testicular tissues. Moreover, testicular weights, histopathology, and morphometry were used to evaluate the reproductive injuries of formaldehyde exposure. We found that formaldehyde exposure-induced autophagy in testicular tissues was dose dependent. Increasing autophagosomes in spermatogenetic cells was observed by electron microscopy in formaldehyde exposure group. In addition, RT-PCR and Western blot analysis showed the transcription levels of the LC3-II, as well as the conversion from LC3-I to LC3-II, an indicator of autophagy, significantly increased in testicular tissue of formaldehyde exposure group in a dose dependent manner when compared with those in control group. Furthermore, the alterations of autophage were basically consistent with the changes in testicular weight and morphologic findings. In summary, formaldehyde exposure triggered autophagy, and autophagy may be a scathing factor responsible for male reproductive impairment induced by formaldehyde. © 2013 Wiley Periodicals, Inc.

  11. Increased activity of osteocyte autophagy in ovariectomized rats and its correlation with oxidative stress status and bone loss

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yuehua, E-mail: yuesjtu@126.com; Zheng, Xinfeng, E-mail: zxf272@126.com; Li, Bo, E-mail: libo@126.com; Jiang, Shengdan, E-mail: jiangsd@126.com; Jiang, Leisheng, E-mail: leisheng_jiang@126.com

    2014-08-15

    Highlights: • Examine autophagy level in the proximal tibia of ovariectomized rats. • Investigate whether autophagy level is associated with bone loss. • Investigate whether autophagy level is associated with oxidative stress status. - Abstract: Objectives: The objectives of the present study were to investigate ovariectomy on autophagy level in the bone and to examine whether autophagy level is associated with bone loss and oxidative stress status. Methods: 36 female Sprague–Dawley rats were randomly divided into sham-operated (Sham), and ovariectomized (OVX) rats treated either with vehicle or 17-β-estradiol. At the end of the six-week treatment, bone mineral density (BMD) and bone micro-architecture in proximal tibias were assessed by micro-CT. Serum 17β-estradiol (E2) level were measured. Total antioxidant capacity (T-AOC), superoxide dismutase (SOD) activity, catalase (CAT) activity in proximal tibia was also determined. The osteocyte autophagy in proximal tibias was detected respectively by Transmission Electron Microscopy (TEM), immunofluorescent histochemistry (IH), realtime-PCR and Western blot. In addition, the spearman correlation between bone mass, oxidative stress status, serum E2 and autophagy were analyzed. Results: Ovariectomy increased Atg5, LC3, and Beclin1 mRNA and proteins expressions while decreased p62 expression. Ovariectomy also declined the activities of T-AOC, CAT, and SOD. Treatment with E2 prevented the reduction in bone mass as well as restored the autophagy level. Furthermore, LC3-II expression was inversely correlated with T-AOC, CAT, and SOD activities. A significant inverse correlation between LC3-II expression and BV/TV, Tb.N, BMD in proximal tibias was found. Conclusions: Ovariectomy induced oxidative stress, autophagy and bone loss. Autophagy of osteocyte was inversely correlated with oxidative stress status and bone loss.

  12. The role of autophagy in cardiac hypertrophy

    Science.gov (United States)

    Li, Lanfang; Xu, Jin; He, Lu; Peng, Lijun; Zhong, Qiaoqing; Chen, Linxi; Jiang, Zhisheng

    2016-01-01

    Autophagy is conserved in nature from lower eukaryotes to mammals and is an important self-cannibalizing, degradative process that contributes to the elimination of superfluous materials. Cardiac hypertrophy is primarily characterized by excess protein synthesis, increased cardiomyocyte size, and thickened ventricular walls and is a major risk factor that promotes arrhythmia and heart failure. In recent years, cardiomyocyte autophagy has been considered to play a role in controlling the hypertrophic response. However, the beneficial or aggravating role of cardiomyocyte autophagy in cardiac hypertrophy remains controversial. The exact mechanism of cardiomyocyte autophagy in cardiac hypertrophy requires further study. In this review, we summarize the controversies associated with autophagy in cardiac hypertrophy and provide insights into the role of autophagy in the development of cardiac hypertrophy. We conclude that future studies should emphasize the relationship between autophagy and the different stages of cardiac hypertrophy, as well as the autophagic flux and selective autophagy. Autophagy will be a potential therapeutic target for cardiac hypertrophy. PMID:27084518

  13. Approaches for Studying Autophagy in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Yanfang Chen

    2017-08-01

    Full Text Available Macroautophagy (hereafter referred to as autophagy is an intracellular degradative process, well conserved among eukaryotes. By engulfing cytoplasmic constituents into the autophagosome for degradation, this process is involved in the maintenance of cellular homeostasis. Autophagy induction triggers the formation of a cup-shaped double membrane structure, the phagophore, which progressively elongates and encloses materials to be removed. This double membrane vesicle, which is called an autophagosome, fuses with lysosome and forms the autolysosome. The inner membrane of the autophagosome, along with engulfed compounds, are degraded by lysosomal enzymes, which enables the recycling of carbohydrates, amino acids, nucleotides, and lipids. In response to various factors, autophagy can be induced for non-selective degradation of bulk cytoplasm. Autophagy is also able to selectively target cargoes and organelles such as mitochondria or peroxisome, functioning as a quality control system. The modification of autophagy flux is involved in developmental processes such as resistance to stress conditions, aging, cell death, and multiple pathologies. So, the use of animal models is essential for understanding these processes in the context of different cell types throughout the entire lifespan. For almost 15 years, the nematode Caenorhabditis elegans has emerged as a powerful model to analyze autophagy in physiological or pathological contexts. This review presents a rapid overview of physiological processes involving autophagy in Caenorhabditis elegans, the different assays used to monitor autophagy, their drawbacks, and specific tools for the analyses of selective autophagy.

  14. Autophagy and the nutritional signaling pathway

    Directory of Open Access Journals (Sweden)

    Long HE,Shabnam ESLAMFAM,Xi MA,Defa LI

    2016-09-01

    Full Text Available During their growth and development, animals adapt to tremendous changes in order to survive. These include responses to both environmental and physiological changes and autophagy is one of most important adaptive and regulatory mechanisms. Autophagy is defined as an autolytic process to clear damaged cellular organelles and recycle the nutrients via lysosomic degradation. The process of autophagy responds to special conditions such as nutrient withdrawal. Once autophagy is induced, phagophores form and then elongate and curve to form autophagosomes. Autophagosomes then engulf cargo, fuse with endosomes, and finally fuse with lysosomes for maturation. During the initiation process, the ATG1/ULK1 (unc-51-like kinase 1 and VPS34 (which encodes a class III phosphatidylinositol (PtdIns 3-kinase complexes are critical in recruitment and assembly of other complexes required for autophagy. The process of autophagy is regulated by autophagy related genes (ATGs. Amino acid and energy starvation mediate autophagy by activating mTORC1 (mammalian target of rapamycin and AMP-activated protein kinase (AMPK. AMPK is the energy status sensor, the core nutrient signaling component and the metabolic kinase of cells. This review mainly focuses on the mechanism of autophagy regulated by nutrient signaling especially for the two important complexes, ULK1 and VPS34.

  15. Involvement of Autophagy in Coronavirus Replication

    Directory of Open Access Journals (Sweden)

    Paul Britton

    2012-11-01

    Full Text Available Coronaviruses are single stranded, positive sense RNA viruses, which induce the rearrangement of cellular membranes upon infection of a host cell. This provides the virus with a platform for the assembly of viral replication complexes, improving efficiency of RNA synthesis. The membranes observed in coronavirus infected cells include double membrane vesicles. By nature of their double membrane, these vesicles resemble cellular autophagosomes, generated during the cellular autophagy pathway. In addition, coronavirus infection has been demonstrated to induce autophagy. Here we review current knowledge of coronavirus induced membrane rearrangements and the involvement of autophagy or autophagy protein microtubule associated protein 1B light chain 3 (LC3 in coronavirus replication.

  16. Glycogen autophagy in glucose homeostasis.

    Science.gov (United States)

    Kotoulas, O B; Kalamidas, S A; Kondomerkos, D J

    2006-01-01

    Glycogen autophagy, the sequestration and degradation of cell glycogen in the autophagic vacuoles, is a selective, hormonally controlled and highly regulated process, representing a mechanism of glucose homeostasis under conditions of demand for the production of this sugar. In the newborn animals, this process is induced by glucagon secreted during the postnatal hypoglycemia and inhibited by insulin and parenteral glucose, which abolishes glucagon secretion. Hormonal action is mediated by the cAMP/protein kinase A (induction) and phosphoinositides/mTOR (inhibition) pathways that converge on common targets, such as the protein phosphatase 2A to regulate autophgosomal glycogen-hydrolyzing acid glucosidase and glycogen autophagy. Intralysosomal phosphate exchange reactions, which are affected by changes in the calcium levels and acid mannose 6- and acid glucose 6-phosphatase activities, can modify the intralysosomal composition in phosphorylated and nonphosphorylated glucose and promote the exit of free glucose through the lysosomal membrane. Glycogen autophagy-derived nonphosphorylated glucose assists the hyaloplasmic glycogen degradation-derived glucose 6-phosphate to combat postnatal hypoglycemia and participates in other metabolic pathways to secure the fine tuning of glucose homeostasis during the neonatal period.

  17. Autophagy Monitoring Assay II: Imaging Autophagy Induction in LLC-PK1 Cells Using GFP-LC3 Protein Fusion Construct.

    Science.gov (United States)

    Adiseshaiah, Pavan P; Skoczen, Sarah L; Rodriguez, Jamie C; Potter, Timothy M; Kota, Krishna; Stern, Stephan T

    2018-01-01

    Autophagy is a catabolic process involved in the degradation and recycling of long-lived proteins and damaged organelles for maintenance of cellular homeostasis, and it has also been proposed as a type II cell death pathway. The cytoplasmic components targeted for catabolism are enclosed in a double-membrane autophagosome that merges with lysosomes, to form autophagosomes, and are finally degraded by lysosomal enzymes. There is substantial evidence that several nanomaterials can cause autophagy and lysosomal dysfunction, either by prevention of autophagolysosome formation, biopersistence or inhibition of lysosomal enzymes. Such effects have emerged as a potential mechanism of cellular toxicity, which is also associated with various pathological conditions. In this chapter, we describe a method to monitor autophagy by fusion of the modifier protein MAP LC3 with green fluorescent protein (GFP; GFP-LC3). This method enables imaging of autophagosome formation in real time by fluorescence microscopy without perturbing the MAP LC3 protein function and the process of autophagy. With the GFP-LC3 protein fusion construct, a longitudinal study of autophagy can be performed in cells after treatment with nanomaterials.

  18. Carbamazepine suppresses calpain-mediated autophagy impairment after ischemia/reperfusion in mouse livers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Sung, E-mail: Jae.Kim@surgery.ufl.edu; Wang, Jin-Hee, E-mail: jin-hee.wang@surgery.ufl.edu; Biel, Thomas G., E-mail: Thomas.Biel@surgery.ufl.edu; Kim, Do-Sung, E-mail: do-sung.kim@surgery.med.ufl.edu; Flores-Toro, Joseph A., E-mail: Joseph.Flores-Toro@surgery.ufl.edu; Vijayvargiya, Richa, E-mail: rvijayvargiya@ufl.edu; Zendejas, Ivan, E-mail: ivan.zendejas@surgery.ufl.edu; Behrns, Kevin E., E-mail: Kevin.Behrns@surgery.ufl.edu

    2013-12-15

    Onset of the mitochondrial permeability transition (MPT) plays a causative role in ischemia/reperfusion (I/R) injury. Current therapeutic strategies for reducing reperfusion injury remain disappointing. Autophagy is a lysosome-mediated, catabolic process that timely eliminates abnormal or damaged cellular constituents and organelles such as dysfunctional mitochondria. I/R induces calcium overloading and calpain activation, leading to degradation of key autophagy-related proteins (Atg). Carbamazepine (CBZ), an FDA-approved anticonvulsant drug, has recently been reported to increase autophagy. We investigated the effects of CBZ on hepatic I/R injury. Hepatocytes and livers from male C57BL/6 mice were subjected to simulated in vitro, as well as in vivo I/R, respectively. Cell death, intracellular calcium, calpain activity, changes in autophagy-related proteins (Atg), autophagic flux, MPT and mitochondrial membrane potential after I/R were analyzed in the presence and absence of 20 μM CBZ. CBZ significantly increased hepatocyte viability after reperfusion. Confocal microscopy revealed that CBZ prevented calcium overloading, the onset of the MPT and mitochondrial depolarization. Immunoblotting and fluorometric analysis showed that CBZ blocked calpain activation, depletion of Atg7 and Beclin-1 and loss of autophagic flux after reperfusion. Intravital multiphoton imaging of anesthetized mice demonstrated that CBZ substantially reversed autophagic defects and mitochondrial dysfunction after I/R in vivo. In conclusion, CBZ prevents calcium overloading and calpain activation, which, in turn, suppresses Atg7 and Beclin-1 depletion, defective autophagy, onset of the MPT and cell death after I/R. - Highlights: • A mechanism of carbamazepine (CBZ)-induced cytoprotection in livers is proposed. • Impaired autophagy is a key event contributing to lethal reperfusion injury. • The importance of autophagy is extended and confirmed in an in vivo model. • CBZ is a potential

  19. Characterization of the autophagy marker protein Atg8 reveals atypical features of autophagy in Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Rahul Navale

    Full Text Available Conventional autophagy is a lysosome-dependent degradation process that has crucial homeostatic and regulatory functions in eukaryotic organisms. As malaria parasites must dispose a number of self and host cellular contents, we investigated if autophagy in malaria parasites is similar to the conventional autophagy. Genome wide analysis revealed a partial autophagy repertoire in Plasmodium, as homologs for only 15 of the 33 yeast autophagy proteins could be identified, including the autophagy marker Atg8. To gain insights into autophagy in malaria parasites, we investigated Plasmodium falciparum Atg8 (PfAtg8 employing techniques and conditions that are routinely used to study autophagy. Atg8 was similarly expressed and showed punctate localization throughout the parasite in both asexual and sexual stages; it was exclusively found in the pellet fraction as an integral membrane protein, which is in contrast to the yeast or mammalian Atg8 that is distributed among cytosolic and membrane fractions, and suggests for a constitutive autophagy. Starvation, the best known autophagy inducer, decreased PfAtg8 level by almost 3-fold compared to the normally growing parasites. Neither the Atg8-associated puncta nor the Atg8 expression level was significantly altered by treatment of parasites with routinely used autophagy inhibitors (cysteine (E64 and aspartic (pepstatin protease inhibitors, the kinase inhibitor 3-methyladenine, and the lysosomotropic agent chloroquine, indicating an atypical feature of autophagy. Furthermore, prolonged inhibition of the major food vacuole protease activity by E64 and pepstatin did not cause accumulation of the Atg8-associated puncta in the food vacuole, suggesting that autophagy is primarily not meant for degradative function in malaria parasites. Atg8 showed partial colocalization with the apicoplast; doxycycline treatment, which disrupts apicoplast, did not affect Atg8 localization, suggesting a role, but not exclusive, in

  20. Cannabidiol protects liver from binge alcohol-induced steatosis by mechanisms including inhibition of oxidative stress and increase in autophagy.

    Science.gov (United States)

    Yang, Lili; Rozenfeld, Raphael; Wu, Defeng; Devi, Lakshmi A; Zhang, Zhenfeng; Cederbaum, Arthur

    2014-03-01

    Acute alcohol drinking induces steatosis, and effective prevention of steatosis can protect liver from progressive damage caused by alcohol. Increased oxidative stress has been reported as one mechanism underlying alcohol-induced steatosis. We evaluated whether cannabidiol, which has been reported to function as an antioxidant, can protect the liver from alcohol-generated oxidative stress-induced steatosis. Cannabidiol can prevent acute alcohol-induced liver steatosis in mice, possibly by preventing the increase in oxidative stress and the activation of the JNK MAPK pathway. Cannabidiol per se can increase autophagy both in CYP2E1-expressing HepG2 cells and in mouse liver. Importantly, cannabidiol can prevent the decrease in autophagy induced by alcohol. In conclusion, these results show that cannabidiol protects mouse liver from acute alcohol-induced steatosis through multiple mechanisms including attenuation of alcohol-mediated oxidative stress, prevention of JNK MAPK activation, and increasing autophagy. Published by Elsevier Inc.

  1. Autophagy: A Sweet Process in Diabetes

    NARCIS (Netherlands)

    Meijer, Alfred J.; Codogno, Patrice

    2008-01-01

    Autophagy is inhibited by the insulin-amino acid-mTOR signaling pathway. Two papers in this issue of Cell Metabolism (Ebato et al., 2008; Jung et al., 2008) provide evidence that basal autophagy is necessary to maintain the architecture and function of pancreatic beta cells and that its induction in

  2. Tumor Suppression and Promotion by Autophagy

    Directory of Open Access Journals (Sweden)

    Yenniffer Ávalos

    2014-01-01

    Full Text Available Autophagy is a highly regulated catabolic process that involves lysosomal degradation of proteins and organelles, mostly mitochondria, for the maintenance of cellular homeostasis and reduction of metabolic stress. Problems in the execution of this process are linked to different pathological conditions, such as neurodegeneration, aging, and cancer. Many of the proteins that regulate autophagy are either oncogenes or tumor suppressor proteins. Specifically, tumor suppressor genes that negatively regulate mTOR, such as PTEN, AMPK, LKB1, and TSC1/2 stimulate autophagy while, conversely, oncogenes that activate mTOR, such as class I PI3K, Ras, Rheb, and AKT, inhibit autophagy, suggesting that autophagy is a tumor suppressor mechanism. Consistent with this hypothesis, the inhibition of autophagy promotes oxidative stress, genomic instability, and tumorigenesis. Nevertheless, autophagy also functions as a cytoprotective mechanism under stress conditions, including hypoxia and nutrient starvation, that promotes tumor growth and resistance to chemotherapy in established tumors. Here, in this brief review, we will focus the discussion on this ambiguous role of autophagy in the development and progression of cancer.

  3. Contribution of autophagy to antiviral immunity.

    Science.gov (United States)

    Rey-Jurado, Emma; Riedel, Claudia A; González, Pablo A; Bueno, Susan M; Kalergis, Alexis M

    2015-11-14

    Although identified in the 1960's, interest in autophagy has significantly increased in the past decade with notable research efforts oriented at understanding as to how this multi-protein complex operates and is regulated. Autophagy is commonly defined as a "self-eating" process evolved by eukaryotic cells to recycle senescent organelles and expired proteins, which is significantly increased during cellular stress responses. In addition, autophagy can also play important roles during human diseases, such as cancer, neurodegenerative and autoimmune disorders. Furthermore, novel findings suggest that autophagy contributes to the host defense against microbial infections. In this article, we review the role of macroautophagy in antiviral immune responses and discuss molecular mechanisms evolved by viral pathogens to evade this process. A role for autophagy as an effector mechanism used both, by innate and adaptive immunity is also discussed. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  4. Autophagy in endometriosis: Friend or foe?

    Science.gov (United States)

    Zhan, Lei; Li, Jun; Wei, Bing

    2018-01-01

    Endometriosis is a chronic, estrogen-dependent disease and characterized by the implantation of endometrial glands and stroma deep and haphazardly into the outside the uterine cavity. It affects an estimated 10% of the female population of reproductive age and results in obvious reduction in health-related quality of life. Unfortunately, there is no a consistent theory for the etiology of endometriosis. Furthermore, the endometriosis is hard to diagnose in early stage and the treatment methods are limited. Importantly, emerging evidence has investigated that there is a close relationship between endometriosis and autophagy. However, autophagy is a friend or foe in endometriosis is puzzling, the precise mechanism underlying autophagy in endometriosis has not been fully elucidated yet. Here, we provide an integrated view on the acquired findings of the connections between endometriosis and autophagy. We also discuss which may contribute to the abnormal level of autophagy in endometriosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Autophagy Proteins in Phagocyte Endocytosis and Exocytosis

    Directory of Open Access Journals (Sweden)

    Christian Münz

    2017-09-01

    Full Text Available Autophagy was initially described as a catabolic pathway that recycles nutrients of cytoplasmic constituents after lysosomal degradation during starvation. Since the immune system monitors products of lysosomal degradation via major histocompatibility complex (MHC class II restricted antigen presentation, autophagy was found to process intracellular antigens for display on MHC class II molecules. In recent years, however, it has become apparent that the molecular machinery of autophagy serves phagocytes in many more membrane trafficking pathways, thereby regulating immunity to infectious disease agents. In this minireview, we will summarize the recent evidence that autophagy proteins regulate phagocyte endocytosis and exocytosis for myeloid cell activation, pathogen replication, and MHC class I and II restricted antigen presentation. Selective stimulation and inhibition of the respective functional modules of the autophagy machinery might constitute valid therapeutic options in the discussed disease settings.

  6. Picornavirus Subversion of the Autophagy Pathway

    Directory of Open Access Journals (Sweden)

    William T. Jackson

    2011-08-01

    Full Text Available While autophagy has been shown to act as an anti-viral defense, the Picornaviridae avoid and, in many cases, subvert this pathway to promote their own replication. Evidence indicates that some picornaviruses hijack autophagy in order to induce autophagosome-like membrane structures for genomic RNA replication. Expression of picornavirus proteins can specifically induce the machinery of autophagy, although the mechanisms by which the viruses employ autophagy appear to differ. Many picornaviruses up-regulate autophagy in order to promote viral replication while some members of the family also inhibit degradation by autolysosomes. Here we explore the unusual relationship of this medically important family of viruses with a degradative mechanism of innate immunity.

  7. Picornavirus subversion of the autophagy pathway.

    Science.gov (United States)

    Klein, Kathryn A; Jackson, William T

    2011-09-01

    While autophagy has been shown to act as an anti-viral defense, the Picornaviridae avoid and, in many cases, subvert this pathway to promote their own replication. Evidence indicates that some picornaviruses hijack autophagy in order to induce autophagosome-like membrane structures for genomic RNA replication. Expression of picornavirus proteins can specifically induce the machinery of autophagy, although the mechanisms by which the viruses employ autophagy appear to differ. Many picornaviruses up-regulate autophagy in order to promote viral replication while some members of the family also inhibit degradation by autolysosomes. Here we explore the unusual relationship of this medically important family of viruses with a degradative mechanism of innate immunity.

  8. Hypercholesterolemia downregulates autophagy in the rat heart.

    Science.gov (United States)

    Giricz, Zoltán; Koncsos, Gábor; Rajtík, Tomáš; Varga, Zoltán V; Baranyai, Tamás; Csonka, Csaba; Szobi, Adrián; Adameová, Adriana; Gottlieb, Roberta A; Ferdinandy, Péter

    2017-03-23

    We have previously shown that efficiency of ischemic conditioning is diminished in hypercholesterolemia and that autophagy is necessary for cardioprotection. However, it is unknown whether isolated hypercholesterolemia disturbs autophagy or the mammalian target of rapamycin (mTOR) pathways. Therefore, we investigated whether isolated hypercholesterolemia modulates cardiac autophagy-related pathways or programmed cell death mechanisms such as apoptosis and necroptosis in rat heart. Male Wistar rats were fed either normal chow (NORM; n = 9) or with 2% cholesterol and 0.25% cholic acid-enriched diet (CHOL; n = 9) for 12 weeks. CHOL rats exhibited a 41% increase in plasma total cholesterol level over that of NORM rats (4.09 mmol/L vs. 2.89 mmol/L) at the end of diet period. Animals were sacrificed, hearts were excised and briefly washed out. Left ventricles were snap-frozen for determination of markers of autophagy, mTOR pathway, apoptosis, and necroptosis by Western blot. Isolated hypercholesterolemia was associated with a significant reduction in expression of cardiac autophagy markers such as LC3-II, Beclin-1, Rubicon and RAB7 as compared to controls. Phosphorylation of ribosomal S6, a surrogate marker for mTOR activity, was increased in CHOL samples. Cleaved caspase-3, a marker of apoptosis, increased in CHOL hearts, while no difference in the expression of necroptotic marker RIP1, RIP3 and MLKL was detected between treatments. This is the first comprehensive analysis of autophagy and programmed cell death pathways of apoptosis and necroptosis in hearts of hypercholesterolemic rats. Our data show that isolated hypercholesterolemia suppresses basal cardiac autophagy and that the decrease in autophagy may be a result of an activated mTOR pathway. Reduced autophagy was accompanied by increased apoptosis, while cardiac necroptosis was not modulated by isolated hypercholesterolemia. Decreased basal autophagy and elevated apoptosis may be responsible for the

  9. Autophagy regulates chlorpyrifos-induced apoptosis in SH-SY5Y cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Hyeon [Department of Pharmacology, College of Medicine, Hanyang University (Korea, Republic of); Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul (Korea, Republic of); Lee, Jeong Eun [Department of Pharmacology, College of Medicine, Hanyang University (Korea, Republic of); Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Shin, In Chul [Department of Pharmacology, College of Medicine, Hanyang University (Korea, Republic of); Koh, Hyun Chul, E-mail: hckoh@hanyang.ac.kr [Department of Pharmacology, College of Medicine, Hanyang University (Korea, Republic of); Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul (Korea, Republic of)

    2013-04-01

    Recent studies have shown that up-regulation of autophagy may be a tractable therapeutic intervention for clearing disease-causing proteins, including α-synuclein, ubiquitin, and other misfolded or aggregated proteins in pesticide-induced neurodegeneration. In a previous study, we reported that chlorpyrifos (CPF)-induced mitochondria-dependent apoptosis is mediated through reactive oxygen species in SH-SY5Y cells. In this study, we explored a novel pharmacotherapeutic approach to prevent CPF neurotoxicity involving the regulation of autophagy. We investigated the modulation of CPF-induced apoptosis according to autophagy regulation. We found that CPF induced apoptosis in SH-SY5Y cells, as demonstrated by the activation of caspase-3 and nuclear condensation. In addition, we observed that cells treated with CPF underwent autophagic cell death by monitoring the expression of LC3-II and p62. Pretreatment with the autophagy inducer rapamycin significantly enhanced the cell viability of CPF-exposed cells, and the enhancement of cell viability was partially due to alleviation of CPF-induced apoptosis via a decrease in levels of cleaved caspase-3. Specifically, rapamycin pretreatment decreased Bax and increased Bcl-2 expression in mitochondria. In addition, rapamycin significantly decreased cytochrome c release in from mitochondria into the cytosol. However, pretreatment of cells with the autophagy inhibitor, 3-methyladenine (3MA), remarkably increased CPF toxicity in these cells; this with correlated with increased expression of Bax and decreased expression of Bcl-2 in mitochondria. Our results suggest that CPF-induced cytotoxicity is modified by autophagy regulation and that rapamycin protects against CPF-induced apoptosis by enhancing autophagy. Pharmacologic induction of autophagy by rapamycin may be a useful treatment strategy in neurodegenerative disorders. - Highlights: ► Chlorpyrifos (CPF) is cytotoxic to SH-SY5Y cells ► CPF-induced cytotoxicity is mediated by

  10. Mevalonate cascade regulation of airway mesenchymal cell autophagy and apoptosis: a dual role for p53.

    Directory of Open Access Journals (Sweden)

    Saeid Ghavami

    2011-01-01

    Full Text Available Statins inhibit the proximal steps of cholesterol biosynthesis, and are linked to health benefits in various conditions, including cancer and lung disease. We have previously investigated apoptotic pathways triggered by statins in airway mesenchymal cells, and identified reduced prenylation of small GTPases as a primary effector mechanism leading to p53-mediated cell death. Here, we extend our studies of statin-induced cell death by assessing endpoints of both apoptosis and autophagy, and investigating their interplay and coincident regulation. Using primary cultured human airway smooth muscle (HASM and human airway fibroblasts (HAF, autophagy, and autophagosome formation and flux were assessed by transmission electron microscopy, cytochemistry (lysosome number and co-localization with LC3 and immunoblotting (LC3 lipidation and Atg12-5 complex formation. Chemical inhibition of autophagy increased simvastatin-induced caspase activation and cell death. Similarly, Atg5 silencing with shRNA, thus preventing Atg5-12 complex formation, increased pro-apoptotic effects of simvastatin. Simvastatin concomitantly increased p53-dependent expression of p53 up-regulated modulator of apoptosis (PUMA, NOXA, and damage-regulated autophagy modulator (DRAM. Notably both mevalonate cascade inhibition-induced autophagy and apoptosis were p53 dependent: simvastatin increased nuclear p53 accumulation, and both cyclic pifithrin-α and p53 shRNAi partially inhibited NOXA, PUMA expression and caspase-3/7 cleavage (apoptosis and DRAM expression, Atg5-12 complex formation, LC3 lipidation, and autophagosome formation (autophagy. Furthermore, the autophagy response is induced rapidly, significantly delaying apoptosis, suggesting the existence of a temporally coordinated p53 regulation network. These findings are relevant for the development of statin-based therapeutic approaches in obstructive airway disease.

  11. Guttiferone K induces autophagy and sensitizes cancer cells to nutrient stress-induced cell death.

    Science.gov (United States)

    Wu, Man; Lao, Yuanzhi; Xu, Naihan; Wang, Xiaoyu; Tan, Hongsheng; Fu, Wenwei; Lin, Zhixiu; Xu, Hongxi

    2015-09-15

    Medicinal plants have long been an excellent source of pharmaceutical agents. Autophagy, a catabolic degradation process through lysosomes, plays an important role in tumorigenesis and cancer therapy. Through a screen designed to identify autophagic regulators from a library of natural compounds, we found that Guttiferone K (GUTK) can activate autophagy in several cancer cell lines. The objective of this study is to investigate the mechanism by which GUTK sensitizes cancer cells to cell death in nutrient starvation condition. Cell death analysis was performed by propidium iodide staining with flow cytometry or Annexin V-FITC/PI staining assay. DCFH-DA staining was used for intracellular ROS measurement. Protein levels were analyzed by western blot analysis. Cell viability was measured by MTT assay. Exposure to GUTK was observed to markedly induce GFP-LC3 puncta formation and activate the accumulation of LC3-II and the degradation of p62 in HeLa cells, suggesting that GUTK is an autophagy inducer. Importantly, hydroxychloroquine, an autophagy inhibitor, was found to significantly prevent GUTK-induced cell death in nutrient starvation conditions, suggesting that the cell death observed is largely dependent on autophagy. We further provide evidence that GUTK inhibits Akt phosphorylation, thereby inhibiting the mTOR pathway in cancer cells during nutrient starvation. In addition, GUTK causes the accumulation of reactive oxygen species (ROS) and the phosphorylation of JNK in EBSS, which may mediate both autophagy and apoptosis. These data indicate that GUTK sensitizes cancer cells to nutrient stress-induced cell death though Akt/mTOR dependent autophagy pathway. Copyright © 2015 The Authors. Published by Elsevier GmbH.. All rights reserved.

  12. Autophagy and apoptosis in planarians.

    Science.gov (United States)

    González-Estévez, Cristina; Saló, Emili

    2010-03-01

    Adult planarians are capable of undergoing regeneration and body remodelling in order to adapt to physical damage or extreme environmental conditions. Moreover, most planarians can tolerate long periods of starvation and during this time, they shrink from an adult size to, and sometimes beyond, the initial size at hatching. Indeed, these properties have made them a classic model to study stem cells and regeneration. Under such stressful conditions, food reserves from the gastrodermis and parenchyma are first used up and later the testes, copulatory organs and ovaries are digested. More surprisingly, when food is again made available to shrunken individuals, they grow back to adult size and all their reproductive structures reappear. These cycles of growth and shrinkage may occur over long periods without any apparent impairment to the individual, or to its future maturation and breeding capacities. This plasticity resides in a mesoderm tissue known as the parenchyma, which is formed by several differentiated non-proliferating cell types and only one mitotically active cell type, the neoblasts, which represent approximately 20-30% of the cells in the parenchyma. Neoblasts are generally thought to be somatic stem-cells that participate in the normal continuous turnover of all cell types in planarians. Hence, planarians are organisms that continuously adapt their bodies (morphallaxis) to different environmental stresses (i.e.: injury or starvation). This adaptation involves a variety of processes including proliferation, differentiation, apoptosis and autophagy, all of which are perfectly orchestrated and tightly regulated to remodel or restore the body pattern. While neoblast biology and body re-patterning are currently the subject of intense research, apoptosis and autophagy remain much less studied. In this review we will summarize our current understanding and hypotheses regarding where and when apoptosis and autophagy occur and fulfil an essential role in

  13. Not all autophagy is equal

    OpenAIRE

    Czyzyk-Krzeska, Maria F.; Meller, Jarek; Plas, David R.

    2012-01-01

    Autophagy is an important mechanism in cancer cell survival and tumor growth and plays both pro- and anti-oncogenic roles. However, the biochemical basis for these diverse functions is not well understood. Our work provides new evidence for the existence of two separate autophagic programs regulated in an opposite manner by the von Hippel-Lindau tumor suppressor (VHL). These programs, marked by differential requirements for LC3B vs. LC3C, play tumor-promoting and tumor-suppressing roles in re...

  14. Amino acids, independent of insulin, attenuate skeletal muscle autophagy in neonatal pigs during endotoxemia

    Science.gov (United States)

    Sepsis induces loss of skeletal muscle mass by activating the ubiquitin proteasome (UPS) and autophagy systems. Although muscle protein synthesis in healthy neonatal piglets is responsive to amino acids (AA) stimulation, it is not known if AA can prevent the activation of muscle protein degradation ...

  15. Autophagy in human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Thien Tra

    Full Text Available Autophagy (macroautophagy is a degradative process that involves the sequestration of cytosolic material including organelles into double membrane vesicles termed autophagosomes for delivery to the lysosome. Autophagy is essential for preimplantation development of mouse embryos and cavitation of embryoid bodies. The precise roles of autophagy during early human embryonic development, remain however largely uncharacterized. Since human embryonic stem cells constitute a unique model system to study early human embryogenesis we investigated the occurrence of autophagy in human embryonic stem cells. We have, using lentiviral transduction, established multiple human embryonic stem cell lines that stably express GFP-LC3, a fluorescent marker for the autophagosome. Each cell line displays both a normal karyotype and pluripotency as indicated by the presence of cell types representative of the three germlayers in derived teratomas. GFP expression and labelling of autophagosomes is retained after differentiation. Baseline levels of autophagy detected in cultured undifferentiated hESC were increased or decreased in the presence of rapamycin and wortmannin, respectively. Interestingly, autophagy was upregulated in hESCs induced to undergo differentiation by treatment with type I TGF-beta receptor inhibitor SB431542 or removal of MEF secreted maintenance factors. In conclusion we have established hESCs capable of reporting macroautophagy and identify a novel link between autophagy and early differentiation events in hESC.

  16. Autophagy in lung disease pathogenesis and therapeutics

    Directory of Open Access Journals (Sweden)

    Stefan W. Ryter

    2015-04-01

    Full Text Available Autophagy, a cellular pathway for the degradation of damaged organelles and proteins, has gained increasing importance in human pulmonary diseases, both as a modulator of pathogenesis and as a potential therapeutic target. In this pathway, cytosolic cargos are sequestered into autophagosomes, which are delivered to the lysosomes where they are enzymatically degraded and then recycled as metabolic precursors. Autophagy exerts an important effector function in the regulation of inflammation, and immune system functions. Selective pathways for autophagic degradation of cargoes may have variable significance in disease pathogenesis. Among these, the autophagic clearance of bacteria (xenophagy may represent a crucial host defense mechanism in the pathogenesis of sepsis and inflammatory diseases. Our recent studies indicate that the autophagic clearance of mitochondria, a potentially protective program, may aggravate the pathogenesis of chronic obstructive pulmonary disease by activating cell death programs. We report similar findings with respect to the autophagic clearance of cilia components, which can contribute to airways dysfunction in chronic lung disease. In certain diseases such as pulmonary hypertension, autophagy may confer protection by modulating proliferation and cell death. In other disorders, such as idiopathic pulmonary fibrosis and cystic fibrosis, impaired autophagy may contribute to pathogenesis. In lung cancer, autophagy has multiple consequences by limiting carcinogenesis, modulating therapeutic effectiveness, and promoting tumor cell survival. In this review we highlight the multiple functions of autophagy and its selective autophagy subtypes that may be of significance to the pathogenesis of human disease, with an emphasis on lung disease and therapeutics.

  17. Autophagy in Mycobacterium tuberculosis and HIV infections

    Directory of Open Access Journals (Sweden)

    Lucile eEspert

    2015-06-01

    Full Text Available Human Immunodeficiency Virus (HIV and Mycobacterium tuberculosis (M.tb are among the most lethal human pathogens worldwide, each being responsible for around 1.5 million deaths annually. Moreover, synergy between acquired immune deficiency syndrome (AIDS and tuberculosis (TB has turned HIV/M.tb co-infection into a major public health threat in developing countries. In the past decade, autophagy, a lysosomal catabolic process, has emerged as a major host immune defense mechanism against infectious agents like M.tb and HIV. Nevertheless, in some instances, autophagy machinery appears to be instrumental for HIV infection. Finally, there is mounting evidence that both pathogens deploy various countermeasures to thwart autophagy. This mini-review proposes an overview of the roles and regulations of autophagy in HIV and M.tb infections with an emphasis on microbial factors. We also discuss the role of autophagy manipulation in the context of HIV/M.tb co-infection. In future, a comprehensive understanding of autophagy interaction with these pathogens will be critical for development of autophagy-based prophylactic and therapeutic interventions for AIDS and TB.

  18. Regulation of Autophagy by High Glucose in Human Retinal Pigment Epithelium

    Directory of Open Access Journals (Sweden)

    Jin Yao

    2014-01-01

    Full Text Available Background: Autophagy is a self-degradative process that is important for balancing sources of energy at critical times in development and in response to nutrient stress. Retinal pigment epithelium (RPE works as the outer blood retina barrier and is vulnerable to energy stress-induced injury. However, the effect of high glucose treatment on autophagy is still unclear in RPE. Methods: Transmission electron microscopy was used to detect the generation of autophagosome. Small interfering RNA (siRNA and MTT was used to determine the effect of autophagy on cell viability. Western blots and immunohistochemistry were used to detect the expression pattern of autophagic markers, including LC3 and p62. Results: High glucose treatment results in a significant increase in the generation of autophagosome and altered expression of LC3 and p62. High glucose-induced autophagy is independent of mTOR signaling, but is mainly regulated via ROS-mediated ER stress signaling. Conclusion: In the scenario of high glucose-induced oxidative stress, autophagy may be required for the removal of damaged proteins, and provide a default mechanism to prevent high glucose-induced injury in RPE.

  19. β-Elemene-induced autophagy protects human gastric cancer cells from undergoing apoptosis

    International Nuclear Information System (INIS)

    Liu, Jing; Zhang, Ye; Qu, Jinglei; Xu, Ling; Hou, Kezuo; Zhang, Jingdong; Qu, Xiujuan; Liu, Yunpeng

    2011-01-01

    β-Elemene, a compound found in an herb used in traditional Chinese medicine, has shown promising anti-cancer effects against a broad spectrum of tumors. The mechanism by which β-elemene kills cells remains unclear. The aim of the present study is to investigate the anti-tumor effect of β-elemene on human gastric cancer cells and the molecular mechanism involved. β-Elemene inhibited the viability of human gastric cancer MGC803 and SGC7901 cells in a dose-dependent manner. The suppression of cell viability was due to the induction of apoptosis. A robust autophagy was observed in the cells treated with β-elemene; it was characterized by the increase of punctate LC3 dots, the cellular morphology, and the increased levels of LC3-II protein. Further study showed that β-elemene treatment up-regulated Atg5-Atg12 conjugated protein but had little effect on other autophagy-related proteins. PI3K/Akt/mTOR/p70S6K1 activity was inhibited by β-elemene. Knockdown of Beclin 1 with small interfering RNA, or co-treatment with the autophagy inhibitor, 3-methyladenine or chlorochine enhanced significantly the antitumor effects of β-elemene. Our data provides the first evidence that β-elemene induces protective autophagy and prevents human gastric cancer cells from undergoing apoptosis. A combination of β-elemene with autophagy inhibitor might thus be a useful therapeutic option for advanced gastric cancer

  20. Autophagy and Mammalian Viruses: Roles in Immune Response, Viral Replication, and Beyond.

    Science.gov (United States)

    Paul, P; Münz, C

    2016-01-01

    Autophagy is an important cellular catabolic process conserved from yeast to man. Double-membrane vesicles deliver their cargo to the lysosome for degradation. Hence, autophagy is one of the key mechanisms mammalian cells deploy to rid themselves of intracellular pathogens including viruses. However, autophagy serves many more functions during viral infection. First, it regulates the immune response through selective degradation of immune components, thus preventing possibly harmful overactivation and inflammation. Additionally, it delivers virus-derived antigens to antigen-loading compartments for presentation to T lymphocytes. Second, it might take an active part in the viral life cycle by, eg, facilitating its release from cells. Lastly, in the constant arms race between host and virus, autophagy is often hijacked by viruses and manipulated to their own advantage. In this review, we will highlight key steps during viral infection in which autophagy plays a role. We have selected some exemplary viruses and will describe the molecular mechanisms behind their intricate relationship with the autophagic machinery, a result of host-pathogen coevolution. © 2016 Elsevier Inc. All rights reserved.

  1. Autophagy induced by snakehead fish vesiculovirus inhibited its replication in SSN-1 cell line.

    Science.gov (United States)

    Wang, Yao; Chen, Nan; Hegazy, Abeer M; Liu, Xiaodan; Wu, Zhixin; Liu, Xueqin; Zhao, Lijuan; Qin, Qiwei; Lan, Jiangfeng; Lin, Li

    2016-08-01

    Autophagy plays an important role in host protection against pathogen infection through activating innate and adaptive immunity. In the present study, we observed that the infection of snakehead fish vesiculovirus (SHVV) could induce apparent autophagy in striped snakehead fish cell line (SSN-1), including clear double-membrane vesicles, fluorescent punctate pattern of microtubule-associated protein 1 light chain 3B (SSN-LC3B) and the conversion of SSN-LC3B-Ⅰ to SSN-LC3B-Ⅱ. Furthermore, we verified that autophagy inhibited the replication of SHVV by assessing mRNA and protein level of nucleoprotein as well as virus titer in the supernatant. These results will shed a new light on the prevention of the infection of SHVV. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Autophagy. A strategy for cell survival

    Directory of Open Access Journals (Sweden)

    Mónica A. Costas

    2017-08-01

    Full Text Available Autophagy is a process of recycling parts of the cell. As described in this review, it occurs naturally in order to preserve cells from the accumulation of toxins, damaged molecules and organelles, and to allow processes of tissue development and differentiation. In the course of autophagy, the processing of the substrates to be recycled generates ATP, thus providing an alternative source of energy in stress situations. In this sense, under hostile conditions such as hypoxia or lack of nutrients, the autophagy process can be exacerbated leading to cell death. Some alterations in its functioning may involve the development of various pathologies, including liver damage, cancer and neurodegenerative diseases

  3. The dual role of autophagy under hypoxia-involvement of interaction between autophagy and apoptosis.

    Science.gov (United States)

    Li, Mengmeng; Tan, Jin; Miao, Yuyang; Lei, Ping; Zhang, Qiang

    2015-06-01

    Hypoxia is one of severe cellular stress and it is well known to be associated with a worse outcome since a lack of oxygen accelerates the induction of apoptosis. Autophagy, an important and evolutionarily conserved mechanism for maintaining cellular homeostasis, is closely related to the apoptosis caused by hypoxia. Generally autophagy blocks the induction of apoptosis and inhibits the activation of apoptosis-associated caspase which could reduce cellular injury. However, in special cases, autophagy or autophagy-relevant proteins may help to induce apoptosis, which could aggravate cell damage under hypoxia condition. In addition, the activation of apoptosis-related proteins-caspase can also degrade autophagy-related proteins, such as Atg3, Atg4, Beclin1 protein, inhibiting autophagy. Although the relationship between autophagy and apoptosis has been known for rather complex for more than a decade, the underlying regulatory mechanisms have not been clearly understood. This short review discusses and summarizes the dual role of autophagy and the interaction and molecular regulatory mechanisms between autophagy and apoptosis under hypoxia.

  4. Alcohol modulates autophagy and apoptosis in pig liver tissue.

    Science.gov (United States)

    Potz, Brittany A; Lawandy, Isabella J; Clements, Richard T; Sellke, Frank W

    2016-06-01

    Autophagy serves as a cellular protective mechanism against alcohol-induced tissue injury but excessive autophagy can also be detrimental leading to apoptosis. Our laboratory has previously shown that moderate alcohol consumption alters expression of proteins in the insulin signaling pathway and worsens glucose metabolism in the liver in a swine model of metabolic syndrome. We examined the effect of alcohol consumption on apoptosis and autophagy signaling in the liver in our clinically relevant animal model of chronic hypercholesterolemia. Twenty-six Yorkshire swine were fed a high-fat diet for 4 wks and were then split into three groups: hypercholesterolemic diet alone (HCC, n = 9), hypercholesterolemic diet with vodka (hypercholesterolemic vodka [HCV], n = 9), and hypercholesterolemic diet with wine (hypercholesterolemic wine [HCW], n = 8) for 7 wks. Animals underwent euthanasia, and liver tissue samples were harvested for analysis. Liver tissue was analyzed via Western blot analysis. Protein density data were normalized to GAPDH and is reported as fold-change values ± standard error of the mean compared to the high-cholesterol diet control group. A Kruskal-Wallis test with a Dunn's multiple comparison test was used to compare the means among groups. The HCV group showed significant increases in several proapoptotic proteins (including caspase 3, caspase 8, caspase 9, and cleaved caspase 9) compared with the HCC group. There was a decrease in the proapoptotic protein (BAD) and an increase in anti-apoptotic signal (B-cell lymphoma-2) in the HCW group compared with HCC control. There were increases in pro-survival proteins (AKT, p-AKT, mTOR, p-mTOR) in the HCW and the HCV group compared with control (HCC). There were decreases in autophagy protein LCB-3 in the HCW and HCV compared with the control. We found that moderate alcohol consumption altered protein expression related to apoptosis and autophagy signaling in pig liver in the setting of

  5. Autophagy as an emerging therapy target for ovarian carcinoma

    Science.gov (United States)

    Zhan, Lei; Zhang, Yu; Wang, Wenyan; Song, Enxue; Fan, Yijun; Li, Jun; Wei, Bing

    2016-01-01

    Autophagy is a conserved cellular self-digestion pathway for maintenance of homeostasis under basal and stressed conditions. Autophagy plays pivotal roles in the pathogenesis of many diseases, such as aging-related diseases, autoimmune diseases, cardiovascular diseases, and cancers. Of special note is that accumulating data suggest an intimate relationship between autophagy and ovarian carcinoma. Autophagy is well identified to act as either as a tumor-suppressor or as a tumor-promoter in ovarian carcinoma. The exact function of autophagy in ovarian carcinoma is highly dependent on the circumstances of cancer including hypoxic, nutrient-deficient, chemotherapy and so on. However, the mechanism underlying autophagy associated with ovarian carcinoma remains elusive, the precise role of autophagy in ovarian carcinoma also remains undetermined. In this review, we tried to sum up and discuss recent research achievements of autophagy in ovarian cancer. Moreover, waves of novel therapies ways for ovarian carcinoma based on the functions of autophagy were collected. PMID:27825125

  6. Lipopolysaccharide (LPS)-Induced Autophagy Is Responsible for Enhanced Osteoclastogenesis.

    Science.gov (United States)

    Sul, Ok-Joo; Park, Hyun-Jung; Son, Ho-Jung; Choi, Hye-Seon

    2017-11-30

    We hypothesized that inflammation affects number and activity of osteoclasts (OCs) via enhancing autophagy. Lipopolysaccharide (LPS) induced autophagy, osteoclastogenesis, and cytoplasmic reactive oxygen species (ROS) in bone marrow-derived macrophages that were pre-stimulated with receptor activator of nuclear factor-κB ligand. An autophagy inhibitor, 3-methyladenine (3-MA) decreased LPS-induced OC formation and bone resorption, indicating that autophagy is responsible for increasing number and activity of OCs upon LPS stimulus. Knockdown of autophagy-related protein 7 attenuated the effect of LPS on OC-specific genes, supporting a role of LPS as an autophagy inducer in OC. Removal of ROS decreased LPS-induced OC formation as well as autophagy. However, 3-MA did not affect LPS-induced ROS levels, suggesting that ROS act upstream of phosphatidylinositol-4,5-bisphosphate 3-kinase in LPS-induced autophagy. Our results suggest the possible use of autophagy inhibitors targeting OCs to reduce inflammatory bone loss.

  7. Prevention

    Science.gov (United States)

    ... Error processing SSI file About Heart Disease & Stroke Prevention Heart disease and stroke are an epidemic in ... secondhand smoke. Barriers to Effective Heart Disease & Stroke Prevention Many people with key risk factors for heart ...

  8. Toxoplasma gondii autophagy-related protein ATG9 is crucial for the survival of parasites in their host.

    Science.gov (United States)

    Nguyen, Hoa Mai; El Hajj, Hiba; El Hajj, Rana; Tawil, Nadim; Berry, Laurence; Lebrun, Maryse; Bordat, Yann; Besteiro, Sébastien

    2017-06-01

    Autophagy is a conserved, life-promoting, catabolic process involved in the recycling of nonessential cellular components in response to stress. The parasite Toxoplasma gondii is an early-diverging eukaryote in which part of the autophagy machinery is not exclusively involved in a catabolic process but instead has been repurposed for an original function in organelle inheritance during cell division. This function, depending essentially on protein TgATG8 and its membrane conjugation system, is crucial for parasite survival and prevented an in depth study of autophagy in the mutants generated so far in Toxoplasma. Thus, in order to decipher the primary function of canonical autophagy in the parasites, we generated a cell line deficient for TgATG9, a protein thought to be involved in the early steps of the autophagy process. Although the protein proved to be dispensable for the development of these obligate intracellular parasites in vitro, the absence of TgATG9 led to a reduced ability to sustain prolonged extracellular stress. Importantly, depletion of the protein significantly reduced parasites survival in macrophages and markedly attenuated their virulence in mice. Altogether, this shows TgATG9 is important for the fate of Toxoplasma in immune cells and contributes to the overall virulence of the parasite, possibly through an involvement in a canonical autophagy pathway. © 2016 John Wiley & Sons Ltd.

  9. Autophagy: More Than a Nonselective Pathway

    Directory of Open Access Journals (Sweden)

    Fulvio Reggiori

    2012-01-01

    Full Text Available Autophagy is a catabolic pathway conserved among eukaryotes that allows cells to rapidly eliminate large unwanted structures such as aberrant protein aggregates, superfluous or damaged organelles, and invading pathogens. The hallmark of this transport pathway is the sequestration of the cargoes that have to be degraded in the lysosomes by double-membrane vesicles called autophagosomes. The key actors mediating the biogenesis of these carriers are the autophagy-related genes (ATGs. For a long time, it was assumed that autophagy is a bulk process. Recent studies, however, have highlighted the capacity of this pathway to exclusively eliminate specific structures and thus better fulfil the catabolic necessities of the cell. We are just starting to unveil the regulation and mechanism of these selective types of autophagy, but what it is already clearly emerging is that structures targeted to destruction are accurately enwrapped by autophagosomes through the action of specific receptors and adaptors. In this paper, we will briefly discuss the impact that the selective types of autophagy have had on our understanding of autophagy.

  10. Extracellular Vesicles and Autophagy in Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Tianyang Gao

    2016-01-01

    Full Text Available Osteoarthritis (OA is a type of chronic joint disease that is characterized by the degeneration and loss of articular cartilage and hyperplasia of the synovium and subchondral bone. There is reasonable knowledge about articular cartilage physiology, biochemistry, and chondrocyte metabolism. However, the etiology and pathogenesis of OA remain unclear and need urgent clarification to guide the early diagnosis and treatment of OA. Extracellular vesicles (EVs are small membrane-linking particles that are released from cells. In recent decades, several special biological properties have been found in EV, especially in terms of cartilage. Autophagy plays a critical role in the regulation of cellular homeostasis. Likewise, more and more research has gradually focused on the effect of autophagy on chondrocyte proliferation and function in OA. The synthesis and release of EV are closely associated with autophagy. At the same time, both EV and autophagy play a role in OA development. Based on the mechanism of EV and autophagy in OA development, EV may be beneficial in the early diagnosis of OA; on the other hand, the combination of EV and autophagy-related regulatory drugs may provide insight into possible OA therapeutic strategies.

  11. Kinases Involved in Both Autophagy and Mitosis

    Directory of Open Access Journals (Sweden)

    Zhiyuan Li

    2017-08-01

    Full Text Available Both mitosis and autophagy are highly regulated dynamic cellular processes and involve various phosphorylation events catalysed by kinases, which play vital roles in almost all physiological and pathological conditions. Mitosis is a key event during the cell cycle, in which the cell divides into two daughter cells. Autophagy is a process in which the cell digests its own cellular contents. Although autophagy regulation has mainly been studied in asynchronous cells, increasing evidence indicates that autophagy is in fact tightly regulated in mitosis. Here in this review, we will discuss kinases that were originally identified to be involved in only one of either mitosis or autophagy, but were later found to participate in both processes, such as CDKs (cyclin-dependent kinases, Aurora kinases, PLK-1 (polo-like kinase 1, BUB1 (budding uninhibited by benzimidazoles 1, MAPKs (mitogen-activated protein kinases, mTORC1 (mechanistic target of rapamycin complex 1, AMPK (AMP-activated protein kinase, PI3K (phosphoinositide-3 kinase and protein kinase B (AKT. By focusing on kinases involved in both autophagy and mitosis, we will get a more comprehensive understanding about the reciprocal regulation between the two key cellular events, which will also shed light on their related therapeutic investigations.

  12. Apicomplexan autophagy and modulation of autophagy in parasite-infected host cells

    Directory of Open Access Journals (Sweden)

    Perle Laté de Laté

    2017-02-01

    Full Text Available Apicomplexan parasites are responsible for a number of important human pathologies. Obviously, as Eukaryotes they share a number of cellular features and pathways with their respective host cells. One of them is autophagy, a process involved in the degradation of the cell's own components. These intracellular parasites nonetheless seem to present a number of original features compared to their very evolutionarily distant host cells. In mammals and other metazoans, autophagy has been identified as an important contributor to the defence against microbial pathogens. Thus, host autophagy also likely plays a key role in the control of apicomplexan parasites, although its potential manipulation and subversion by intracellular parasites creates a complex interplay in the regulation of host and parasite autophagy. In this mini-review, we summarise current knowledge on autophagy in both parasites and their host cells, in the context of infection by three Apicomplexa: Plasmodium, Toxoplasma, and Theileria.

  13. Distinct surveillance pathway for immunopathology during acute infection via autophagy and SR-BI

    Science.gov (United States)

    Pfeiler, Susanne; Khandagale, Avinash B.; Magenau, Astrid; Nichols, Maryana; Heijnen, Harry F. G.; Rinninger, Franz; Ziegler, Tilman; Seveau, Stephanie; Schubert, Sören; Zahler, Stefan; Verschoor, Admar; Latz, Eicke; Massberg, Steffen; Gaus, Katharina; Engelmann, Bernd

    2016-01-01

    The mechanisms protecting from immunopathology during acute bacterial infections are incompletely known. We found that in response to apoptotic immune cells and live or dead Listeria monocytogenes scavenger receptor BI (SR-BI), an anti-atherogenic lipid exchange mediator, activated internalization mechanisms with characteristics of macropinocytosis and, assisted by Golgi fragmentation, initiated autophagic responses. This was supported by scavenger receptor-induced local increases in membrane cholesterol concentrations which generated lipid domains particularly in cell extensions and the Golgi. SR-BI was a key driver of beclin-1-dependent autophagy during acute bacterial infection of the liver and spleen. Autophagy regulated tissue infiltration of neutrophils, suppressed accumulation of Ly6C+ (inflammatory) macrophages, and prevented hepatocyte necrosis in the core of infectious foci. Perifocal levels of Ly6C+ macrophages and Ly6C− macrophages were unaffected, indicating predominant regulation of the focus core. SR-BI-triggered autophagy promoted co-elimination of apoptotic immune cells and dead bacteria but barely influenced bacterial sequestration and survival or inflammasome activation, thus exclusively counteracting damage inflicted by immune responses. Hence, SR-BI- and autophagy promote a surveillance pathway that partially responds to products of antimicrobial defenses and selectively prevents immunity-induced damage during acute infection. Our findings suggest that control of infection-associated immunopathology can be based on a unified defense operation. PMID:27694929

  14. Hypoxia inducible factor 1α contributes to regulation of autophagy in retinal detachment

    Science.gov (United States)

    Shelby, Shameka J.; Angadi, Pavan S.; Zheng, Qiong-Duon; Yao, Jingyu; Jia, Lin; Zacks, David N.

    2015-01-01

    Photoreceptor (PR) cells receive oxygen and nutritional support from the underlying retinal pigment epithelium (RPE). Retinal detachment results in PR hypoxia and their time-dependent death. Detachment also activates autophagy within the PR, which serves to reduce the rate of PR apoptosis. In this study, we test the hypothesis that autophagy activation in the PR results, at least in part, from the detachment-induced activation of hypoxia-inducible factors (HIF). Retina-RPE separation was created in Brown-Norway rats and C57BL/6J mice by injection of 1% hyaluronic acid into the subretinal space. Retinas were harvested and assayed for HIF protein levels. Cultured 661W photoreceptor cells were subjected to hypoxic conditions and assayed for induction of HIF and autophagy. The requirement of HIF-1α and HIF-2α in regulating photoreceptor autophagy was tested using siRNA in vitro and in vivo. We observed increased levels of HIF-1α and HIF-2α within 1 day post-detachment, as well as increased levels of BNIP3, a downstream target of HIF-1α that contributes to autophagy activation. Exposing 661W cells to hypoxia resulted in increased HIF-1α and HIF-2α levels and increase in conversion of LC3-I to LC3-II. Silencing of HIF-1α, but not HIF-2α, reduced the hypoxia-induced increase in LC3-II formation and increased cell death in 661W cells. Silencing of HIF-1α in rat retinas prevented the detachment-induced increase in BNIP3 and LC3-II, resulting in increased PR cell death. Our data support the hypothesis that HIF-1α, but not HIF-2α, serves as an early response signal to induce autophagy and reduce photoreceptor cell death. PMID:26093278

  15. Autophagy as a target for cancer therapy: new developments

    International Nuclear Information System (INIS)

    Carew, Jennifer S; Kelly, Kevin R; Nawrocki, Steffan T

    2012-01-01

    Autophagy is an evolutionarily conserved lysosomal degradation pathway that eliminates cytosolic proteins, macromolecules, organelles, and protein aggregates. Activation of autophagy may function as a tumor suppressor by degrading defective organelles and other cellular components. However, this pathway may also be exploited by cancer cells to generate nutrients and energy during periods of starvation, hypoxia, and stress induced by chemotherapy. Therefore, induction of autophagy has emerged as a drug resistance mechanism that promotes cancer cell survival via self-digestion. Numerous preclinical studies have demonstrated that inhibition of autophagy enhances the activity of a broad array of anticancer agents. Thus, targeting autophagy may be a global anticancer strategy that may improve the efficacy of many standard of care agents. These results have led to multiple clinical trials to evaluate autophagy inhibition in combination with conventional chemotherapy. In this review, we summarize the anticancer agents that have been reported to modulate autophagy and discuss new developments in autophagy inhibition as an anticancer strategy

  16. Characterization of early autophagy signaling by quantitative phosphoproteomics

    DEFF Research Database (Denmark)

    Rigbolt, Kristoffer Tg; Zarei, Mostafa; Sprenger, Adrian

    2014-01-01

    Under conditions of nutrient shortage autophagy is the primary cellular mechanism ensuring availability of substrates for continuous biosynthesis. Subjecting cells to starvation or rapamycin efficiently induces autophagy by inhibiting the MTOR signaling pathway triggering increased autophagic flux...

  17. Autophagy suppresses host adaptive immune responses toward Borrelia burgdorferi

    NARCIS (Netherlands)

    Buffen, Kathrin; Oosting, Marije; Li, Yang; Kanneganti, Thirumala-Devi; Netea, Mihai G.; Joosten, Leo A. B.

    Inhibition of autophagy increases the severity of murine Lyme arthritis and human adaptive immune responses against B. burgdorferi. We have previously demonstrated that inhibition of autophagy increased the Borrelia burgdorferi induced innate cytokine production in vitro, but little is known

  18. Autophagy: A double-edged sword in Alzheimer's disease

    Indian Academy of Sciences (India)

    2012-01-08

    Jan 8, 2012 ... Nonetheless, compelling data also reveal an unfavorable function of autophagy in facilitating the production of intracellular Aβ. ..... Effect on autophagy. Mode of action in autophagic regulation. References. Lithium. IMPase inhibitor. Activator of autophagy. Reduces inositol and IP3 levels. Sarkar et al. 2005.

  19. Autophagy and Retromer Components in Plant Innate Immunity

    DEFF Research Database (Denmark)

    Munch, David

    -hormone salicylic acid. Here, I present data that make it clear that NPR1 does not directly regulate autophagy, but instead control stress responses that indirectly activate autophagy. The observations presented will also clarify why autophagy has been described as being both a pro-death and pro-life pathway under...

  20. Prevention

    Science.gov (United States)

    ... Contact Aging & Health A to Z Find a Geriatrics Healthcare Professional Medications & Older Adults Making Your Wishes ... Prevention Hearing Loss Heart Attack High Blood Pressure Nutrition Osteoporosis Shingles Skin Cancer Related News Quitting Smoking, ...

  1. Autophagy and Liver Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Raffaele Cursio

    2015-01-01

    Full Text Available Liver ischemia-reperfusion (I-R injury occurs during liver resection, liver transplantation, and hemorrhagic shock. The main mode of liver cell death after warm and/or cold liver I-R is necrosis, but other modes of cell death, as apoptosis and autophagy, are also involved. Autophagy is an intracellular self-digesting pathway responsible for removal of long-lived proteins, damaged organelles, and malformed proteins during biosynthesis by lysosomes. Autophagy is found in normal and diseased liver. Although depending on the type of ischemia, warm and/or cold, the dynamic process of liver I-R results mainly in adenosine triphosphate depletion and in production of reactive oxygen species (ROS, leads to both, a local ischemic insult and an acute inflammatory-mediated reperfusion injury, and results finally in cell death. This process can induce liver dysfunction and can increase patient morbidity and mortality after liver surgery and hemorrhagic shock. Whether autophagy protects from or promotes liver injury following warm and/or cold I-R remains to be elucidated. The present review aims to summarize the current knowledge in liver I-R injury focusing on both the beneficial and the detrimental effects of liver autophagy following warm and/or cold liver I-R.

  2. Targeting Autophagy in ALK-Associated Cancers

    Directory of Open Access Journals (Sweden)

    Julie Frentzel

    2017-11-01

    Full Text Available Autophagy is an evolutionarily conserved catabolic process, which is used by the cells for cytoplasmic quality control. This process is induced following different kinds of stresses e.g., metabolic, environmental, or therapeutic, and acts, in this framework, as a cell survival mechanism. However, under certain circumstances, autophagy has been associated with cell death. This duality has been extensively reported in solid and hematological cancers, and has been observed during both tumor development and cancer therapy. As autophagy plays a critical role at the crossroads between cell survival and cell death, its involvement and therapeutic modulation (either activation or inhibition are currently intensively studied in cancer biology, to improve treatments and patient outcomes. Over the last few years, studies have demonstrated the occurrence of autophagy in different Anaplastic Lymphoma Kinase (ALK-associated cancers, notably ALK-positive anaplastic large cell lymphoma (ALCL, non-small cell lung carcinoma (NSCLC, Neuroblastoma (NB, and Rhabdomyosarcoma (RMS. In this review, we will first briefly describe the autophagic process and how it can lead to opposite outcomes in anti-cancer therapies, and we will then focus on what is currently known regarding autophagy in ALK-associated cancers.

  3. Phosphatidylethanolamine positively regulates autophagy and longevity.

    Science.gov (United States)

    Rockenfeller, P; Koska, M; Pietrocola, F; Minois, N; Knittelfelder, O; Sica, V; Franz, J; Carmona-Gutierrez, D; Kroemer, G; Madeo, F

    2015-03-01

    Autophagy is a cellular recycling program that retards ageing by efficiently eliminating damaged and potentially harmful organelles and intracellular protein aggregates. Here, we show that the abundance of phosphatidylethanolamine (PE) positively regulates autophagy. Reduction of intracellular PE levels by knocking out either of the two yeast phosphatidylserine decarboxylases (PSD) accelerated chronological ageing-associated production of reactive oxygen species and death. Conversely, the artificial increase of intracellular PE levels, by provision of its precursor ethanolamine or by overexpression of the PE-generating enzyme Psd1, significantly increased autophagic flux, both in yeast and in mammalian cell culture. Importantly administration of ethanolamine was sufficient to extend the lifespan of yeast (Saccharomyces cerevisiae), mammalian cells (U2OS, H4) and flies (Drosophila melanogaster). We thus postulate that the availability of PE may constitute a bottleneck for functional autophagy and that organismal life or healthspan could be positively influenced by the consumption of ethanolamine-rich food.

  4. Lipophagy: Connecting Autophagy and Lipid Metabolism

    Directory of Open Access Journals (Sweden)

    Rajat Singh

    2012-01-01

    Full Text Available Lipid droplets (LDs, initially considered “inert” lipid deposits, have gained during the last decade the classification of cytosolic organelles due to their defined composition and the multiplicity of specific cellular functions in which they are involved. The classification of LD as organelles brings along the need for their regulated turnover and recent findings support the direct contribution of autophagy to this turnover through a process now described as lipophagy. This paper focuses on the characteristics of this new type of selective autophagy and the cellular consequences of the mobilization of intracellular lipids through this process. Lipophagy impacts the cellular energetic balance directly, through lipid breakdown and, indirectly, by regulating food intake. Defective lipophagy has been already linked to important metabolic disorders such as fatty liver, obesity and atherosclerosis, and the age-dependent decrease in autophagy could underline the basis for the metabolic syndrome of aging.

  5. Autophagy in health and disease: focus on the cardiovascular system.

    Science.gov (United States)

    Mialet-Perez, Jeanne; Vindis, Cécile

    2017-12-12

    Autophagy is a highly conserved mechanism of lysosome-mediated protein and organelle degradation that plays a crucial role in maintaining cellular homeostasis. In the last few years, specific functions for autophagy have been identified in many tissues and organs. In the cardiovascular system, autophagy appears to be essential to heart and vessel homeostasis and function; however defective or excessive autophagy activity seems to contribute to major cardiovascular disorders including heart failure (HF) or atherosclerosis. Here, we review the current knowledge on the role of cardiovascular autophagy in physiological and pathophysiological conditions. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  6. Emerging role of autophagy in kidney function, diseases and aging

    Science.gov (United States)

    Huber, Tobias B.; Edelstein, Charles L.; Hartleben, Björn; Inoki, Ken; Jiang, Man; Koya, Daisuke; Kume, Shinji; Lieberthal, Wilfred; Pallet, Nicolas; Quiroga, Alejandro; Ravichandran, Kameswaran; Susztak, Katalin; Yoshida, Sei; Dong, Zheng

    2012-01-01

    Autophagy is a highly conserved process that degrades cellular long-lived proteins and organelles. Accumulating evidence indicates that autophagy plays a critical role in kidney maintenance, diseases and aging. Ischemic, toxic, immunological, and oxidative insults can cause an induction of autophagy in renal epithelial cells modifying the course of various kidney diseases. This review summarizes recent insights on the role of autophagy in kidney physiology and diseases alluding to possible novel intervention strategies for treating specific kidney disorders by modifying autophagy. PMID:22692002

  7. Role of autophagy in MHC class I-restricted antigen presentation.

    Science.gov (United States)

    Van Kaer, Luc; Parekh, Vrajesh V; Postoak, J Luke; Wu, Lan

    2017-11-08

    Major histocompatibility complex (MHC) class I molecules present peptide antigens to MHC class I-restricted CD8 + T lymphocytes. The peptides loaded onto MHC class I molecules are typically derived from cytosolic antigens, which includes both self and foreign proteins. In addition to this classical MHC class I antigen presentation pathway, some cell types, especially dendritic cells can present antigens from exogenous sources to MHC class I-restricted CD8 + T cells, in a process called cross-presentation. A variety of cellular processes, including endocytosis, vesicle trafficking, and autophagy, play critical roles in these antigen presentation pathways. In this review article, we discuss the role of autophagy, an intracellular degradation system that delivers cytoplasmic constituents to lysosomes, in MHC class I-restricted antigen presentation. A mechanistic understanding of the role of autophagy-related proteins in MHC class I restricted antigen presentation may guide future efforts in manipulating autophagy to prevent or treat human disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Bacteria-Containing Vacuoles: Subversion of Cellular Membrane Traffic and Autophagy.

    Science.gov (United States)

    Tang, Bor Luen

    2015-01-01

    Intracellular bacterial pathogens drive the formation of host membrane-derived pseudo-organelles that facilitate their replication, survival, or dormancy. The formation and maintenance of these bacteria-containing vacuoles (BCVs) are dependent on the bacteria's ability to usurp the host's intracellular membrane system, in particular dynamic compartments involved in exo-/endocytic membrane traffic and autophagy. Bacteria are typically internalized by phagocytosis, and the compartment matures through endosomal fusion. The bacteria-containing phagosome/endosome often becomes the base for BCV formation. Diverse strategies used by different bacterial pathogens prevent the BCV from being destroyed via the endolysosomal pathway. Furthermore, bacterial survival or proliferation in BCVs could be augmented by host membrane transport processes subverted by secreted bacterial factors, which facilitate the acquisition of membrane sources and nutrients. BCVs may be targeted for destruction by autophagy, and various facultative and obligate intracellular bacteria have evolved ways to evade or even exploit autophagy. Here we review examples of bacterial subversion of host cellular membrane transport and autophagy machinery for a productive invasion.

  9. Modulation of autophagy as a strategy for development of new vaccine candidates against tuberculosis.

    Science.gov (United States)

    Flores-Valdez, Mario Alberto; Segura-Cerda, Cristian Alfredo; Gaona-Bernal, Jorge

    2018-03-13

    Effective prevention of tuberculosis (Tb) would undoubtedly be of paramount relevance in the control of its global burden, which resulted in more than 6 million new cases in 2016. Research aimed to improve the current vaccine, Bacillus Calmette- Guérin (BCG), or directed to develop new candidates, has taken into account the interaction between the host and Mycobacterium tuberculosis (Mtb). Recently, autophagy, an intracellular process of the host, has been shown to act as a mechanism that contributes to bacilli clearance in vitro and in vivo. Stimulation of autophagy, if correctly balanced, is an approach that has the potential to enhance the immune response of the host, and offers new avenues for developing immunogens that may give an improved protection upon immunization, given that in fact, some recent rBCG vaccine candidates have been shown to modulate autophagy. In this Discussion, we analyze the role of autophagy in the context of mycobacterial infection, its modulation via mycobacterial elements, and the management of host response as an alternative to develop new, hopefully improved, Tb-vaccine candidates. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Prevention

    DEFF Research Database (Denmark)

    Halken, S; Høst, A

    2001-01-01

    , breastfeeding should be encouraged for 4-6 months. In high-risk infants a documented extensively hydrolysed formula is recommended if exclusive breastfeeding is not possible for the first 4 months of life. There is no evidence for preventive dietary intervention neither during pregnancy nor lactation...... populations. These theories remain to be documented in proper, controlled and prospective studies. Breastfeeding and the late introduction of solid foods (>4 months) is associated with a reduced risk of food allergy, atopic dermatitis, and recurrent wheezing and asthma in early childhood. In all infants....... Preventive dietary restrictions after the age of 4-6 months are not scientifically documented....

  11. Myocardial Autophagy after Severe Burn in Rats

    Science.gov (United States)

    Zhang, Qiong; Shi, Xiao-hua; Huang, Yue-sheng

    2012-01-01

    Background Autophagy plays a major role in myocardial ischemia and hypoxia injury. The present study investigated the effects of autophagy on cardiac dysfunction in rats after severe burn. Methods Protein expression of the autophagy markers LC3 and Beclin 1 were determined at 0, 1, 3, 6, and 12 h post-burn in Sprague Dawley rats subjected to 30% total body surface area 3rd degree burns. Autophagic, apoptotic, and oncotic cell death were evaluated in the myocardium at each time point by immunofluorescence. Changes of cardiac function were measured in a Langendorff model of isolated heart at 6 h post-burn, and the autophagic response was measured following activation by Rapamycin and inhibition by 3-methyladenine (3-MA). The angiotensin converting enzyme inhibitor enalaprilat, the angiotensin receptor I blocker losartan, and the reactive oxygen species inhibitor diphenylene iodonium (DPI) were also applied to the ex vivo heart model to examine the roles of these factors in post-burn cardiac function. Results Autophagic cell death was first observed in the myocardium at 3 h post-burn, occurring in 0.008 ± 0.001% of total cardiomyocytes, and continued to increase to a level of 0.022 ± 0.005% by 12 h post-burn. No autophagic cell death was observed in control hearts. Compared with apoptosis, autophagic cell death occurred earlier and in larger quantities. Rapamycin enhanced autophagy and decreased cardiac function in isolated hearts 6 h post-burn, while 3-MA exerted the opposite response. Enalaprilat, losartan, and DPI all inhibited autophagy and enhanced heart function. Conclusion Myocardial autophagy is enhanced in severe burns and autophagic cell death occurred early at 3 h post-burn, which may contribute to post-burn cardiac dysfunction. Angiotensin II and reactive oxygen species may play important roles in this process by regulating cell signaling transduction. PMID:22768082

  12. Autophagy in breast cancer and its implications for therapy

    Science.gov (United States)

    Jain, Kirti; Paranandi, Krishna S; Sridharan, Savitha; Basu, Alakananda

    2013-01-01

    Autophagy is an evolutionarily conserved process of cellular self-digestion that serves as a mechanism to clear damaged organelles and recycle nutrients. Since autophagy can promote cell survival as well as cell death, it has been linked to different human pathologies, including cancer. Although mono-allelic deletion of autophagy-related gene BECN1 in breast tumors originally indicated a tumor suppressive role for autophagy in breast cancer, the intense research during the last decade suggests a role for autophagy in tumor progression. It is now recognized that tumor cells often utilize autophagy to survive various stresses, such as oncogene-induced transformation, hypoxia, endoplasmic reticulum (ER) stress and extracellular matrix detachment. Induction of autophagy by tumor cells may also contribute to tumor dormancy and resistance to anticancer therapies, thus making autophagy inhibitors promising drug candidates for breast cancer treatment. The scientific endeavors continue to define a precise role for autophagy in breast cancer. In this article, we review the current literature on the role of autophagy during the development and progression of breast cancer, and discuss the potential of autophagy modulators for breast cancer treatment. PMID:23841025

  13. Inhibition of autophagy initiation potentiates chemosensitivity in mesothelioma.

    Science.gov (United States)

    Follo, Carlo; Cheng, Yao; Richards, William G; Bueno, Raphael; Broaddus, Virginia Courtney

    2018-03-01

    The benefits of inhibiting autophagy in cancer are still controversial, with differences in outcome based on the type of tumor, the context and the particular stage of inhibition. Here, we investigated the impact of inhibiting autophagy at different stages on chemosensitivity using 3-dimensional (3D) models of mesothelioma, including ex vivo human tumor fragment spheroids. As shown by LC3B accumulation, we successfully inhibited autophagy using either an early stage ULK1/2 inhibitor (MRT 68921) or a late stage inhibitor (hydroxychloroquine). We found that inhibition of autophagy at the early stage, but not at late stage, potentiated chemosensitivity. This effect was seen only in those spheroids with high autophagy and active initiation at steady state. Inhibition of autophagy alone, at either early or late stage, did not cause cell death, showing that the inhibitors were non-toxic and that mesothelioma did not depend on autophagy at baseline, at least over 24 h. Using ATG13 puncta analysis, we found that autophagy initiation identified tumors that are more chemosensitive at baseline and after autophagy inhibition. Our results highlight a potential role of autophagy initiation in supporting mesothelioma cells during chemotherapy. Our work also highlights the importance of testing the inhibition of different stages in order to uncover the role of autophagy and the potential of its modulation in the treatment of cancer. © 2017 Wiley Periodicals, Inc.

  14. Autophagy: one more Nobel Prize for yeast

    Directory of Open Access Journals (Sweden)

    Andreas Zimmermann

    2016-12-01

    Full Text Available The recent announcement of the 2016 Nobel Prize in Physiology or Medicine, awarded to Yoshinori Ohsumi for the discoveries of mechanisms governing autophagy, underscores the importance of intracellular degradation and recycling. At the same time, it further cements yeast, in which this field decisively developed, as a prolific model organism. Here we provide a quick historical overview that mirrors both the importance of autophagy as a conserved and essential process for cellular life and death as well as the crucial role of yeast in its mechanistic characterization.

  15. ZnPP reduces autophagy and induces apoptosis, thus aggravating liver ischemia/reperfusion injury in vitro.

    Science.gov (United States)

    Wang, Yun; Xiong, Xuanxuan; Guo, Hao; Wu, Mingbo; Li, Xiangcheng; Hu, Yuanchao; Xie, Guangwei; Shen, Jian; Tian, Qingzhong

    2014-12-01

    There is growing evidence indicating that autophagy plays a protective role in liver ischemia/reperfusion (IR) injury. Heme oxygenase-1 (HO-1) can also prevent liver IR injury by limiting inflammation and inducing an anti-apoptotic response. Autophagy also plays a crucial role in liver IR injury. The aim of the present study was to investigate the role of HO-1 in liver IR injury and the association between HO-1, autophagy and apoptotic pathways. IR simulation was performed using buffalo rat liver (BRL) cells, and HO-1 activity was either induced by hemin (HIR group) or inhibited by zinc protoporphyrin (ZnPP) (ZIR group). In the HIR and ZIR group, the expression of HO-1 and autophagy-related genes [light chain 3-Ⅱ (LC3-Ⅱ)] was assessed by RT-qPCR and the protein expression of caspases, autophagy-related genes and genes associated with apoptotic pathways (Bax) was detected by western blot anlaysis. The results of RT-PCR revealed the genetically decreased expression of HO-1 and autophagy-related genes in the ZIR group. Similar results were obtained by western blot analysis and immunofluorescence. An ultrastructural analysis revealed a lower number of autophagosomes in the ZIR group; in the HIR group, the number of autophagosomes was increased. The expression of Bax and cytosolic cytochrome c was increased, while that of Bcl-2 was decreased following treatment of the cells with ZnPP prior to IR simulation; the oppostie occurred in the HIR group. Cleaved caspase-3, caspase-9 and poly(ADP-ribose) polymerase (PARP) protein were activated in the IR and ZIR groups. The disruption of mitochondrial membrane potential was also observed in the ZIR group. In general, the downregulation of HO-1 reduced autophagy and activated the mitochondrial apoptotic pathway.

  16. Role of autophagy in development and progression of acute pancreatitis

    Directory of Open Access Journals (Sweden)

    YANG Shuli

    2014-08-01

    Full Text Available Acute pancreatitis is considered an autodigestive disorder in which inappropriate activation of trypsinogen to trypsin within pancreatic acinar cells leads to the development of pancreatitis. Autophagy is an evolutionarily preserved degradation process of cytoplasmic cellular constituents, and it is one of the early pathological processes in acute pancreatitis. Autophagic flux is impaired in acute pancreatitis, which mediates the key pathologic responses of this disease. Impaired autophagy, dysfunction of lysosomes, and dysregulation of autophagy suggest a disorder of the endolysosomal pathway in acute pancreatitis. The role of autophagy in acute pancreatitis is discussed from the aspects of autophagic process, autophagy and activation of trypsinogen, impaired autophagy and acute pancreatitis, and defective autophagy promoting inflammation.

  17. Molecular Interactions of Autophagy with the Immune System and Cancer

    Directory of Open Access Journals (Sweden)

    Yunho Jin

    2017-08-01

    Full Text Available Autophagy is a highly conserved catabolic mechanism that mediates the degradation of damaged cellular components by inducing their fusion with lysosomes. This process provides cells with an alternative source of energy for the synthesis of new proteins and the maintenance of metabolic homeostasis in stressful environments. Autophagy protects against cancer by mediating both innate and adaptive immune responses. Innate immune receptors and lymphocytes (T and B are modulated by autophagy, which represent innate and adaptive immune responses, respectively. Numerous studies have demonstrated beneficial roles for autophagy induction as well as its suppression of cancer cells. Autophagy may induce either survival or death depending on the cell/tissue type. Radiation therapy is commonly used to treat cancer by inducing autophagy in human cancer cell lines. Additionally, melatonin appears to affect cancer cell death by regulating programmed cell death. In this review, we summarize the current understanding of autophagy and its regulation in cancer.

  18. Porcine Epidemic Diarrhea Virus Induces Autophagy to Benefit Its Replication

    Directory of Open Access Journals (Sweden)

    Xiaozhen Guo

    2017-03-01

    Full Text Available The new porcine epidemic diarrhea (PED has caused devastating economic losses to the swine industry worldwide. Despite extensive research on the relationship between autophagy and virus infection, the concrete role of autophagy in porcine epidemic diarrhea virus (PEDV infection has not been reported. In this study, autophagy was demonstrated to be triggered by the effective replication of PEDV through transmission electron microscopy, confocal microscopy, and Western blot analysis. Moreover, autophagy was confirmed to benefit PEDV replication by using autophagy regulators and RNA interference. Furthermore, autophagy might be associated with the expression of inflammatory cytokines and have a positive feedback loop with the NF-κB signaling pathway during PEDV infection. This work is the first attempt to explore the complex interplay between autophagy and PEDV infection. Our findings might accelerate our understanding of the pathogenesis of PEDV infection and provide new insights into the development of effective therapeutic strategies.

  19. LC3B is indispensable for selective autophagy of p62 but not basal autophagy

    International Nuclear Information System (INIS)

    Maruyama, Yoko; Sou, Yu-Shin; Kageyama, Shun; Takahashi, Takao; Ueno, Takashi; Tanaka, Keiji; Komatsu, Masaaki; Ichimura, Yoshinobu

    2014-01-01

    Highlights: • Knockdown of LC3 or GABARAP families did not affect the basal autophagy. • LC3B has a higher affinity for the autophagy-specific substrate, p62, than GABARAPs. • siRNA-mediated knockdown of LC3B, but not that of GABARAPs, resulted in significant accumulation of p62. - Abstract: Autophagy is a unique intracellular protein degradation system accompanied by autophagosome formation. Besides its important role through bulk degradation in supplying nutrients, this system has an ability to degrade certain proteins, organelles, and invading bacteria selectively to maintain cellular homeostasis. In yeasts, Atg8p plays key roles in both autophagosome formation and selective autophagy based on its membrane fusion property and interaction with autophagy adaptors/specific substrates. In contrast to the single Atg8p in yeast, mammals have 6 homologs of Atg8p comprising LC3 and GABARAP families. However, it is not clear these two families have different or similar functions. The aim of this study was to determine the separate roles of LC3 and GABARAP families in basal/constitutive and/or selective autophagy. While the combined knockdown of LC3 and GABARAP families caused a defect in long-lived protein degradation through lysosomes, knockdown of each had no effect on the degradation. Meanwhile, knockdown of LC3B but not GABARAPs resulted in significant accumulation of p62/Sqstm1, one of the selective substrate for autophagy. Our results suggest that while mammalian Atg8 homologs are functionally redundant with regard to autophagosome formation, selective autophagy is regulated by specific Atg8 homologs

  20. LC3B is indispensable for selective autophagy of p62 but not basal autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Yoko [Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506 (Japan); Department of Pediatrics, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Sou, Yu-Shin; Kageyama, Shun [Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506 (Japan); Takahashi, Takao [Department of Pediatrics, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Ueno, Takashi [Division of Proteomics and Biomolecular Science, Center for Biomedical Research Resources, Juntendo University Graduate School of Medicine, Tokyo 113-8421 (Japan); Tanaka, Keiji [Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506 (Japan); Komatsu, Masaaki, E-mail: komatsu-ms@igakuken.or.jp [Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506 (Japan); Department of Biochemistry, School of Medicine, Niigata University, Niigata 951-8510 (Japan); Ichimura, Yoshinobu, E-mail: ichimura-ys@igakuken.or.jp [Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506 (Japan)

    2014-03-28

    Highlights: • Knockdown of LC3 or GABARAP families did not affect the basal autophagy. • LC3B has a higher affinity for the autophagy-specific substrate, p62, than GABARAPs. • siRNA-mediated knockdown of LC3B, but not that of GABARAPs, resulted in significant accumulation of p62. - Abstract: Autophagy is a unique intracellular protein degradation system accompanied by autophagosome formation. Besides its important role through bulk degradation in supplying nutrients, this system has an ability to degrade certain proteins, organelles, and invading bacteria selectively to maintain cellular homeostasis. In yeasts, Atg8p plays key roles in both autophagosome formation and selective autophagy based on its membrane fusion property and interaction with autophagy adaptors/specific substrates. In contrast to the single Atg8p in yeast, mammals have 6 homologs of Atg8p comprising LC3 and GABARAP families. However, it is not clear these two families have different or similar functions. The aim of this study was to determine the separate roles of LC3 and GABARAP families in basal/constitutive and/or selective autophagy. While the combined knockdown of LC3 and GABARAP families caused a defect in long-lived protein degradation through lysosomes, knockdown of each had no effect on the degradation. Meanwhile, knockdown of LC3B but not GABARAPs resulted in significant accumulation of p62/Sqstm1, one of the selective substrate for autophagy. Our results suggest that while mammalian Atg8 homologs are functionally redundant with regard to autophagosome formation, selective autophagy is regulated by specific Atg8 homologs.

  1. Anti-Vascular Endothelial Growth Factors Protect Retinal Pigment Epithelium Cells Against Oxidation by Modulating Nitric Oxide Release and Autophagy

    Directory of Open Access Journals (Sweden)

    Stefano De Cillà

    2017-07-01

    Full Text Available Background/Aims: the anti-vascular endothelial growth factors (VEGF, Aflibercept and Ranibizumab, are used for the treatment of macular degeneration. Here we examined the involvement of nitric oxide (NO, mitochondria function and of apoptosis/autophagy in their antioxidant effects in human retinal pigment epithelium cells (RPE. Methods: RPE were exposed to Ranibizumab/Aflibercept in the absence or presence of NO synthase (NOS inhibitor and of autophagy activator/blocker, rapamicyn/3-methyladenine. Specific kits were used for cell viability, NO and reactive oxygen species detection and mitochondrial membrane potential measurement, whereas Western Blot was performed for apoptosis/ autophagy markers and other kinases detection. Results: In RPE cultured in physiological conditions, Aflibercept/Ranibizumab increased NO release in a dose and time-dependent way. Opposite results were obtained in RPE pretreated with hydrogen peroxide. Moreover, both the anti-VEGF agents were able to prevent the fall of cell viability and of mitochondrial membrane potential. Those effects were reduced by the NOS inhibitor and 3-methyladenine and were potentiated by rapamycin. Finally, Aflibercept and Ranibizumab counteracted the changes of apoptosis/autophagy markers, NOS, Phosphatidylinositol-3-Kinase/Protein Kinase B and Extracellular signal–regulated kinases 1/2 caused by peroxidation. Conclusion: Aflibercept and Ranibizumab protect RPE against peroxidation through the modulation of NO release, apoptosis and autophagy.

  2. Autophagy regulation revealed by SapM-induced block of autophagosome-lysosome fusion via binding RAB7

    International Nuclear Information System (INIS)

    Hu, Dong; Wu, Jing; Wang, Wan; Mu, Min; Zhao, Runpeng; Xu, Xuewei; Chen, Zhaoquan; Xiao, Jian; Hu, Fengyu; Yang, Yabo; Zhang, Rongbo

    2015-01-01

    The mechanism underlying autophagy alteration by mycobacterium tuberculosis remains unclear. Our previous study shows LpqH, a lipoprotein of mycobacterium tuberculosis, can cause autophagosomes accumulation in murine macrophages. It is well known that SapM, another virulence factor, plays an important role in blocking phagosome-endosome fusion. However, the mechanism that SapM interferes with autophagy remains poorly defined. In this study, we report that SapM suppresses the autophagy flux by blocking autophagosome fusion with lysosome. Exposure to SapM results in accumulations of autophagosomes and decreased co-localization of autophagosome with lysosome. Molecularly, Rab7, a small GTPase, is blocked by SapM through its CT domain and is prevented from involvement of autophagosome-lysosome fusion. In conclusion, our study reveals that SapM takes Rab7 as a previously unknown target to govern a distinct molecular mechanism underlying autophagosome-lysosome fusion, which may bring light to a new thought about developing potential drugs or vaccines against tuberculosis. - Highlights: • A mechanism for disrupting autophagosome-lysosome fusion induced by SapM. • Rab7 is involved in SapM-inhibited autophagy. • SapM interacts with Rab7 by CT-domain. • CT-domain is indispensable to SapM-inhibited autophagy

  3. Autophagy regulation revealed by SapM-induced block of autophagosome-lysosome fusion via binding RAB7

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dong, E-mail: austhudong@126.com [Institute of Infection and Immunology, Department of Medical Immunology, Medical School, Anhui University of Science and Technology, Huainan (China); Wu, Jing, E-mail: wujing8008@126.com [Institute of Infection and Immunology, Department of Medical Immunology, Medical School, Anhui University of Science and Technology, Huainan (China); Wang, Wan; Mu, Min; Zhao, Runpeng; Xu, Xuewei; Chen, Zhaoquan [Institute of Infection and Immunology, Department of Medical Immunology, Medical School, Anhui University of Science and Technology, Huainan (China); Xiao, Jian [School of Pharmacy, Wenzhou Medical College, Wenzhou (China); Hu, Fengyu; Yang, Yabo [Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou (China); Zhang, Rongbo, E-mail: lory456@126.com [Institute of Infection and Immunology, Department of Medical Immunology, Medical School, Anhui University of Science and Technology, Huainan (China)

    2015-05-29

    The mechanism underlying autophagy alteration by mycobacterium tuberculosis remains unclear. Our previous study shows LpqH, a lipoprotein of mycobacterium tuberculosis, can cause autophagosomes accumulation in murine macrophages. It is well known that SapM, another virulence factor, plays an important role in blocking phagosome-endosome fusion. However, the mechanism that SapM interferes with autophagy remains poorly defined. In this study, we report that SapM suppresses the autophagy flux by blocking autophagosome fusion with lysosome. Exposure to SapM results in accumulations of autophagosomes and decreased co-localization of autophagosome with lysosome. Molecularly, Rab7, a small GTPase, is blocked by SapM through its CT domain and is prevented from involvement of autophagosome-lysosome fusion. In conclusion, our study reveals that SapM takes Rab7 as a previously unknown target to govern a distinct molecular mechanism underlying autophagosome-lysosome fusion, which may bring light to a new thought about developing potential drugs or vaccines against tuberculosis. - Highlights: • A mechanism for disrupting autophagosome-lysosome fusion induced by SapM. • Rab7 is involved in SapM-inhibited autophagy. • SapM interacts with Rab7 by CT-domain. • CT-domain is indispensable to SapM-inhibited autophagy.

  4. Emerging connections between RNA and autophagy

    DEFF Research Database (Denmark)

    Frankel, Lisa B; Lubas, Michal; Lund, Anders H

    2017-01-01

    of studies have focused on protein, lipid and carbohydrate catabolism via autophagy, accumulating data supports the view that several types of RNA and associated ribonucleoprotein complexes are specifically recruited to phagophores (precursors to autophagosomes) and subsequently degraded in the lysosome/vacuole...

  5. Autophagy: Regulation and role in disease

    NARCIS (Netherlands)

    Meijer, Alfred J.; Codogno, Patrice

    2009-01-01

    Autophagy, a lysosomal process involved in the maintenance of cellular homeostasis, is responsible for the turnover of long-lived proteins and organelles that are either damaged or functionally redundant. The process is tightly controlled by the insulin-amino acid-mammalian target of the

  6. Autophagy in the light of sphingolipid metabolism

    DEFF Research Database (Denmark)

    Harvald, Eva Bang; Olsen, Anne Sofie Braun; Færgeman, Nils J.

    2015-01-01

    moieties of biomembranes, lipids including sphingolipids are increasingly being recognized as central regulators of a number of important cellular processes, including autophagy. In the present review we describe how sphingolipids, with special emphasis on ceramides and sphingosine-1-phosphate, can act...

  7. Cardiac-Specific Overexpression of Catalase Attenuates Lipopolysaccharide-Induced Myocardial Contractile Dysfunction: Role of Autophagy

    Science.gov (United States)

    Turdi, Subat; Han, Xuefeng; Huff, Anna F.; Roe, Nathan D.; Hu, Nan; Gao, Feng; Ren, Jun

    2012-01-01

    Lipopolysaccharide (LPS) from Gram-negative bacteria is a major initiator of sepsis, leading to cardiovascular collapse. Accumulating evidence has indicated a role of reactive oxygen species (ROS) in cardiovascular complication in sepsis. This study was designed to examine the effect of cardiac-specific overexpression of catalase in LPS-induced cardiac contractile dysfunction and the underlying mechanism(s) with a focus on autophagy. Catalase transgenic and wild-type FVB mice were challenged with LPS (6 mg/kg) and cardiac function was evaluated. Levels of oxidative stress, autophagy, apoptosis and protein damage were examined using fluorescence microscopy, Western blot, TUNEL assay, caspase-3 activity and carbonyl formation. Kaplan-Meier curve was constructed for survival following LPS treatment. Our results revealed a lower mortality in catalase mice compared with FVB mice following LPS challenge. LPS injection led to depressed cardiac contractile capacity as evidenced by echocardiography and cardiomyocyte contractile function, the effect of which was ablated by catalase overexpression. LPS treatment induced elevated TNF-α level, autophagy, apoptosis (TUNEL, caspase-3 activation, cleaved caspase-3), production of ROS and O2−, and protein carbonyl formation, the effects of which were significantly attenuated by catalase overexpression. Electron microscopy revealed focal myocardial damage characterized by mitochondrial injury following LPS treatment, which was less severe in catalase mice. Interestingly, LPS-induced cardiomyocyte contractile dysfunction was prevented by antioxidant NAC and the autophagy inhibitor 3-methyladenine. Taken together, our data revealed that catalase protects against LPS-induced cardiac dysfunction and mortality, which may be associated with inhibition of oxidative stress and autophagy. PMID:22902401

  8. Cardiac-specific overexpression of catalase attenuates lipopolysaccharide-induced myocardial contractile dysfunction: role of autophagy.

    Science.gov (United States)

    Turdi, Subat; Han, Xuefeng; Huff, Anna F; Roe, Nathan D; Hu, Nan; Gao, Feng; Ren, Jun

    2012-09-15

    Lipopolysaccharide (LPS) from gram-negative bacteria is a major initiator of sepsis, leading to cardiovascular collapse. Accumulating evidence has indicated a role of reactive oxygen species (ROS) in cardiovascular complications in sepsis. This study was designed to examine the effect of cardiac-specific overexpression of catalase in LPS-induced cardiac contractile dysfunction and the underlying mechanism(s) with a focus on autophagy. Catalase transgenic and wild-type FVB mice were challenged with LPS (6 mg/kg) and cardiac function was evaluated. Levels of oxidative stress, autophagy, apoptosis, and protein damage were examined using fluorescence microscopy, Western blot, TUNEL assay, caspase-3 activity, and carbonyl formation. A Kaplan-Meier curve was constructed for survival after LPS treatment. Our results revealed a lower mortality in catalase mice compared with FVB mice after LPS challenge. LPS injection led to depressed cardiac contractile capacity as evidenced by echocardiography and cardiomyocyte contractile function, the effect of which was ablated by catalase overexpression. LPS treatment induced elevated TNF-α level, autophagy, apoptosis (TUNEL, caspase-3 activation, cleaved caspase-3), production of ROS and O(2)(-), and protein carbonyl formation, the effects of which were significantly attenuated by catalase overexpression. Electron microscopy revealed focal myocardial damage characterized by mitochondrial injury after LPS treatment, which was less severe in catalase mice. Interestingly, LPS-induced cardiomyocyte contractile dysfunction was prevented by the antioxidant N-acetylcysteine and the autophagy inhibitor 3-methyladenine. Taken together, our data revealed that catalase protects against LPS-induced cardiac dysfunction and mortality, which may be associated with inhibition of oxidative stress and autophagy. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Impairment of autophagy: From hereditary disorder to drug intoxication

    International Nuclear Information System (INIS)

    Aki, Toshihiko; Funakoshi, Takeshi; Unuma, Kana; Uemura, Koichi

    2013-01-01

    At first, the molecular mechanism of autophagy was unveiled in a unicellular organism Saccharomyces cerevisiae (budding yeast), followed by the discovery that the basic mechanism of autophagy is conserved in multicellular organisms including mammals. Although autophagy was considered to be a non-selective bulk protein degradation system to recycle amino acids during periods of nutrient starvation, it is also believed to be an essential mechanism for the selective elimination of proteins/organelles that are damaged under pathological conditions. Research advances made using autophagy-deficient animals have revealed that impairments of autophagy often underlie the pathogenesis of hereditary disorders such as Danon, Parkinson's, Alzheimer's, and Huntington's diseases, and amyotrophic lateral sclerosis. On the other hand, there are many reports that drugs and toxicants, including arsenic, cadmium, paraquat, methamphetamine, and ethanol, induce autophagy during the development of their toxicity on many organs including heart, brain, lung, kidney, and liver. Although the question as to whether autophagic machinery is involved in the execution of cell death or not remains controversial, the current view of the role of autophagy during cell/tissue injury is that it is an important, often essential, cytoprotective reaction; disturbances in cytoprotective autophagy aggravate cell/tissue injuries. The purpose of this review is to provide (1) a gross summarization of autophagy processes, which are becoming more important in the field of toxicology, and (2) examples of important studies reporting the involvement of perturbations in autophagy in cell/tissue injuries caused by acute as well as chronic intoxication

  10. Defective regulation of adipose tissue autophagy in obesity.

    Science.gov (United States)

    Nuñez, C E; Rodrigues, V S; Gomes, F S; Moura, R F de; Victorio, S C; Bombassaro, B; Chaim, E A; Pareja, J C; Geloneze, B; Velloso, L A; Araujo, E P

    2013-11-01

    Autophagy is a highly regulated process that has an important role in the control of a wide range of cellular functions, such as organelle recycling, nutrient availability and tissue differentiation. A recent study has shown an increased autophagic activity in the adipose tissue of obese subjects, and a role for autophagy in obesity-associated insulin resistance was proposed. Body mass reduction is the most efficient approach to tackle insulin resistance in over-weight subjects; however, the impact of weight loss in adipose tissue autophagy is unknown. Adipose tissue autophagy was evaluated in mice and humans. First, a mouse model of diet-induced obesity and diabetes was maintained on a 15-day, 40% caloric restriction. At baseline, markers of autophagy were increased in obese mice as compared with lean controls. Upon caloric restriction, autophagy increased in the lean mice, whereas it decreased in the obese mice. The reintroduction of ad libitum feeding was sufficient to rapidly reduce autophagy in the lean mice and increase autophagy in the obese mice. In the second part of the study, autophagy was evaluated in the subcutaneous adipose tissue of nine obese-non-diabetic and six obese-diabetic subjects undergoing bariatric surgery for body mass reduction. Specimens were collected during the surgery and approximately 1 year later. Markers of systemic inflammation, such as tumor necrosis factor-1α, interleukin (IL)-6 and IL-1β were evaluated. As in the mouse model, human obesity was associated with increased autophagy, and body mass reduction led to an attenuation of autophagy in the adipose tissue. Obesity and caloric overfeeding are associated with the defective regulation of autophagy in the adipose tissue. The studies in obese-diabetic subjects undergoing improved metabolic control following calorie restriction suggest that autophagy and inflammation are regulated independently.

  11. Analysis of Autophagy Genes in Microalgae: Chlorella as a Potential Model to Study Mechanism of Autophagy

    Science.gov (United States)

    Jiang, Qiao; Zhao, Li; Dai, Junbiao; Wu, Qingyu

    2012-01-01

    Background Microalgae, with the ability to mitigate CO2 emission and produce carbohydrates and lipids, are considered one of the most promising resources for producing bioenergy. Recently, we discovered that autophagy plays a critical role in the metabolism of photosynthetic system and lipids production. So far, more than 30-autophagy related (ATG) genes in all subtypes of autophagy have been identified. However, compared with yeast and mammals, in silico and experimental research of autophagy pathways in microalgae remained limited and fragmentary. Principal Findings In this article, we performed a genome-wide analysis of ATG genes in 7 microalgae species and explored their distributions, domain structures and evolution. Eighteen “core autophagy machinery” proteins, four mammalian-specific ATG proteins and more than 30 additional proteins (including “receptor-adaptor” complexes) in all subtypes of autophagy were analyzed. Data revealed that receptor proteins in cytoplasm-to-vacuole targeting and mitophagy seem to be absent in microalgae. However, most of the “core autophagy machinery” and mammalian-specific proteins are conserved among microalgae, except for the ATG9-cycling system in Chlamydomonas reinhardtii and the second ubiquitin-like protein conjugation complex in several algal species. The catalytic and binding residues in ATG3, ATG5, ATG7, ATG8, ATG10 and ATG12 are also conserved and the phylogenetic tree of ATG8 coincides well with the phylogenies. Chlorella contains the entire set of the core autophagy machinery. In addition, RT-PCR analysis verified that all crucial ATG genes tested are expressed during autophagy in both Chlorella and Chlamydomonas reinhardtii. Finally, we discovered that addition of 3-Methyladenine (a PI3K specific inhibitor) could suppress the formation of autophagic vacuoles in Chlorella. Conclusions Taken together, Chlorella may represent a potential model organism to investigate autophagy pathways in photosynthetic

  12. Autophagy contributes to degradation of Hirano bodies.

    Science.gov (United States)

    Kim, Dong-Hwan; Davis, Richard C; Furukawa, Ruth; Fechheimer, Marcus

    2009-01-01

    Hirano bodies are actin-rich inclusions reported most frequently in the hippocampus in association with a variety of conditions including neurodegenerative diseases, and aging. We have developed a model system for formation of Hirano bodies in Dictyostelium and cultured mammalian cells to permit detailed studies of the dynamics of these structures in living cells. Model Hirano bodies are frequently observed in membrane-enclosed vesicles in mammalian cells consistent with a role of autophagy in the degradation of these structures. Clearance of Hirano bodies by an exocytotic process is supported by images from electron microscopy showing extracellular release of Hirano bodies, and observation of Hirano bodies in the culture medium of Dictyostelium and mammalian cells. An autophagosome marker protein Atg8-GFP, was co-localized with model Hirano bodies in wild type Dictyostelium cells, but not in atg5(-) or atg1-1 autophagy mutant strains. Induction of model Hirano bodies in Dictyostelium with a high level expression of 34 kDa DeltaEF1 from the inducible discoidin promoter resulted in larger Hirano bodies and a cessation of cell doubling. The degradation of model Hirano bodies still occurred rapidly in autophagy mutant (atg5(-)) Dictyostelium, suggesting that other mechanisms such as the ubiquitin-mediated proteasome pathway could contribute to the degradation of Hirano bodies. Chemical inhibition of the proteasome pathway with lactacystin, significantly decreased the turnover of Hirano bodies in Dictyostelium providing direct evidence that autophagy and the proteasome can both contribute to degradation of Hirano bodies. Short term treatment of mammalian cells with either lactacystin or 3-methyl adenine results in higher levels of Hirano bodies and a lower level of viable cells in the cultures, supporting the conclusion that both autophagy and the proteasome contribute to degradation of Hirano bodies.

  13. Suppression of autophagy exacerbates Mefloquine-mediated cell death.

    Science.gov (United States)

    Shin, Ji Hyun; Park, So Jung; Jo, Yoon Kyung; Kim, Eun Sung; Kang, Hee; Park, Ji-Ho; Lee, Eunjoo H; Cho, Dong-Hyung

    2012-05-02

    Mefloquine is an effective treatment drug for malaria. However, it can cause several adverse side effects, and the precise mechanism associated with the adverse neurological effects of Mefloquine is not clearly understood. In this study, we investigated the effect of Mefloquine on autophagy in neuroblastoma cells. Mefloquine treatment highly induced the formation of autophagosomes and the conversion of LC3I into LC3II. Moreover, Mefloquine-induced autophagy was efficiently suppressed by an autophagy inhibitor and by down regulation of ATG6. The autophagy was also completely blocked in ATG5 deficient mouse embryonic fibroblast cells. Moreover, suppression of autophagy significantly intensified Mefloquine-mediated cytotoxicity in SH-SY5Y cells. Our findings suggest that suppression of autophagy may exacerbate Mefloquine toxicity in neuroblastoma cells. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Autophagy as a potential target for sarcoma treatment.

    Science.gov (United States)

    Min, Li; Choy, Edwin; Pollock, Raphael E; Tu, Chongqi; Hornicek, Francis; Duan, Zhenfeng

    2017-08-01

    Autophagy is a constitutively active, evolutionary conserved, catabolic process for maintaining homeostasis in cellular stress responses and cell survival. Although its mechanism has not been fully illustrated, recent work on autophagy in various types of sarcomas has demonstrated that autophagy exerts an important role in sarcoma cell growth and proliferation, in pro-survival response to therapies and stresses, and in therapeutic resistance of sarcoma. Thus, the autophagic process is being seen as a possibly novel therapeutic target of sarcoma. Additionally, some co-regulators of autophagy have also been investigated as promising biomarkers for the diagnosis and prognosis of sarcoma. In this review, we summarize contemporary advances in the role of autophagy in sarcoma and discuss the potential of autophagy as a new target for sarcoma treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Autophagy Facilitates Salmonella Replication in HeLa Cells

    Science.gov (United States)

    Yu, Hong B.; Croxen, Matthew A.; Marchiando, Amanda M.; Ferreira, Rosana B. R.; Cadwell, Ken; Foster, Leonard J.; Finlay, B. Brett

    2014-01-01

    ABSTRACT Autophagy is a process whereby a double-membrane structure (autophagosome) engulfs unnecessary cytosolic proteins, organelles, and invading pathogens and delivers them to the lysosome for degradation. We examined the fate of cytosolic Salmonella targeted by autophagy and found that autophagy-targeted Salmonella present in the cytosol of HeLa cells correlates with intracellular bacterial replication. Real-time analyses revealed that a subset of cytosolic Salmonella extensively associates with autophagy components p62 and/or LC3 and replicates quickly, whereas intravacuolar Salmonella shows no or very limited association with p62 or LC3 and replicates much more slowly. Replication of cytosolic Salmonella in HeLa cells is significantly decreased when autophagy components are depleted. Eventually, hyperreplication of cytosolic Salmonella potentiates cell detachment, facilitating the dissemination of Salmonella to neighboring cells. We propose that Salmonella benefits from autophagy for its cytosolic replication in HeLa cells. PMID:24618251

  16. Epigenetic modifications as regulatory elements of autophagy in cancer.

    Science.gov (United States)

    Sui, Xinbing; Zhu, Jing; Zhou, Jichun; Wang, Xian; Li, Da; Han, Weidong; Fang, Yong; Pan, Hongming

    2015-05-01

    Epigenetic modifications have been considered as hallmarks of cancer and play an important role in tumor initiation and development. Epigenetic mechanisms, including DNA methylation, histone modifications, and microRNAs, may regulate cell cycle and apoptosis, as well as macroautophagy (hereafter referred to as autophagy). Autophagy, as a crucial cellular homeostatic mechanism, performs a dual role, having pro-survival or pro-death properties. A variety of signaling pathways including epigenetic control have been implicated in the upregulation or downregulation of autophagy. However, the role of epigenetic regulation in autophagy is still less well acknowledged. Recent studies have linked epigenetic control to the autophagic process. Some epigenetic modifiers are also involved in the regulation of autophagy and potentiate the efficacy of traditional therapeutics. Thus, understanding the novel functions of epigenetic control in autophagy may allow us to develop potential therapeutic approaches for cancer treatment. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Autophagy Is a Protective Response to the Oxidative Damage to Endplate Chondrocytes in Intervertebral Disc: Implications for the Treatment of Degenerative Lumbar Disc

    Directory of Open Access Journals (Sweden)

    Ke Chen

    2017-01-01

    Full Text Available Low back pain (LBP is the leading cause of disability in the elderly. Intervertebral disc degeneration (IDD was considered as the main cause for LBP. Degeneration of cartilaginous endplate was a crucial harmful factor during the initiation and development of IDD. Oxidative stress was implicated in IDD. However, the underlying molecular mechanism for the degeneration of cartilaginous endplate remains elusive. Herein, we found that oxidative stress could induce apoptosis and autophagy in endplate chondrocytes evidenced by western blot analysis, flow cytometry, immunofluorescence staining, GFP-LC3B transfection, and MDC staining. In addition, we also found that the apoptosis of endplate chondrocytes was significantly increased after the inhibition of autophagy by bafilomycin A1 shown by flow cytometry. Furthermore, mTOR pathway upstream autophagy was greatly suppressed suggested by western blot assay. In conclusion, our study strongly revealed that oxidative stress could increase autophagy and apoptosis of endplate chondrocytes in intervertebral disc. The increase of autophagy activity could prevent endplate chondrocytes from apoptosis. The autophagy in endplate chondrocytes induced by oxidative stress was mTOR dependent. These findings might shed some new lights on the mechanism for IDD and provide new strategies for the treatments of IDD.

  18. Brucella Melitensis 16M Regulates the Effect of AIR Domain on Inflammatory Factors, Autophagy, and Apoptosis in Mouse Macrophage through the ROS Signaling Pathway.

    Directory of Open Access Journals (Sweden)

    Tiansen Li

    Full Text Available Brucellosis is a highly contagious zoonosis caused by Brucella. Brucella can invade and persist inside host cells, which results in chronic infection. We constructed AIR interference and overexpression lentiviruses to acquire AIR interference, overexpression, and rescue stable expression cell lines. We also established a Brucella melitensis 16M-infected macrophage model, which was treated with either the vehicle control or NAC (ROS scavenger N-acetylcysteine (NAC for 0, 3, 6, 12, and 24 h. Confocal laser microscopy, transmission electron microscopy, fluorescence quantitative PCR, flow cytometry, ELISA, and Western blot were used to detect inflammation, cell autophagy and apoptosis-related protein expression levels, ROS levels, and the distribution of mitochondria. It was found that after interference and overexpression of AIR, ROS release was significantly changed, and mitochondria became abnormally aggregated. B. melitensis 16M activated the NLRP3/AIM2 inflammatory complex, and induced RAW264.7 cells to secrete IL-1β and IL-18 through the ROS pathway. B. melitensis 16M also altered autophagy-related gene expression, increased autophagy activity, and induced cell apoptosis through the ROS pathway. The results showed that after B. melitensis 16M infection, ROS induced apoptosis, inflammation, and autophagy while AIR inhibited autophagosome maturation and autophagy initiation. Autophagy negatively regulated the activation of inflammasomes and prevented inflammation from occurring. In addition, mitophagy could promote cell apoptosis.

  19. SIRT1 protects cardiac cells against apoptosis induced by zearalenone or its metabolites α- and β-zearalenol through an autophagy-dependent pathway

    International Nuclear Information System (INIS)

    Ben Salem, Intidhar; Boussabbeh, Manel; Da Silva, Julie Pires; Guilbert, Arnaud; Bacha, Hassen; Abid-Essefi, Salwa; Lemaire, Christophe

    2017-01-01

    Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin produced by several species of Fusarium in cereals and agricultural products. The major ZEN metabolites are α-zearalenol (α-ZOL) and β-zearalenol (β-ZOL). In the present study, we investigated the underlying mechanism of the toxicity induced by ZEN, α-ZOL and β-ZOL in cardiac cells (H9c2). We show that treatment with ZEN or its metabolites induces the activation of the mitochondrial pathway of apoptosis as characterized by an increase in ROS generation, a loss of mitochondrial transmembrane potential (ΔΨm) and an activation of caspases. Besides, we demonstrate that these mycotoxins promote the activation of autophagy before the onset of apoptosis. Indeed, we observed that a short-time (6 h) treatment with ZEN, α-ZOL or β-ZOL, increased the level of Beclin-1 and LC3-II and induced the accumulation of the CytoID® autophagy detection probe. Moreover, the inhibition of autophagy by Chloroquine significantly increased cell death induced by ZEN, α-ZOL or β-ZOL, suggesting that the activation of autophagy serves as a cardioprotective mechanism against these mycotoxins. In addition, we found that the inhibition (EX527) or the knockdown of SIRT1 (siRNA) significantly increased apoptosis induced by ZEN or its derivatives, whereas SIRT1 activation with RSV greatly prevents the cytotoxic effects of these mycotoxins. By contrast, when autophagy was inhibited by CQ, the activation of SIRT1 by RSV had no protection against the cardiotoxicity of ZEN or its metabolites, suggesting that SIRT1 protects cardiac cells by an autophagy-dependent pathway. - Highlights: • ZEN, α- and β-ZOL induce the mitochondrial pathway of apoptosis in cardiac cells. • Inhibition of autophagy enhanced ZEN-, α-ZOL- and β-ZOL-induced apoptosis. • SIRT1 activates autophagy to protect cells from ZEN, α- and β-ZOL-induced toxicity.

  20. Molecular mechanisms of autophagy and its role in cancer development

    Directory of Open Access Journals (Sweden)

    Kathleen Salazar-Ramírez

    2016-07-01

    The role of autophagy in the treatment of cancer is described as a “double-edged sword”, which reflects its involvement in tumor suppression, survival and subsequent proliferation of tumor cells. Recent advances are useful for planning appropriate adjustments to inhibit or promote autophagy in order to obtain therapeutic efficacy in cancer patients. The objectives of this review are to clarify the role of autophagy in cancer and to highlight the need for more research in the field.

  1. Elemene Injection Induced Autophagy Protects Human Hepatoma Cancer Cells from Starvation and Undergoing Apoptosis

    Directory of Open Access Journals (Sweden)

    Yan Lin

    2014-01-01

    Full Text Available Elemene, a compound found in an herb used in traditional Chinese medicine, has shown promising anticancer effects against a broad spectrum of tumors. In an in vivo experiment, we found that apatinib, a tyrosine kinase inhibitor that selectively inhibits VEGFR2, combined with elemene injection (Ele for the treatment of H22 solid tumor in mice resulted in worse effectiveness than apatinib alone. Moreover, Ele could protect HepG2 cells from death induced by serum-free starvation. Further data on the mechanism study revealed that Ele induced protective autophagy and prevented human hepatoma cancer cells from undergoing apoptosis. Proapoptosis effect of Ele was enhanced when proautophagy effect was inhibited by hydroxychloroquine. Above all, Ele has the effect of protecting cancer cells from death either in apatinib induced nutrient deficient environment or in serum-free induced starvation. A combination of elemene injection with autophagy inhibitor might thus be a useful therapeutic option for hepatocellular carcinoma.

  2. Elemene injection induced autophagy protects human hepatoma cancer cells from starvation and undergoing apoptosis.

    Science.gov (United States)

    Lin, Yan; Wang, Keming; Hu, Chunping; Lin, Lin; Qin, Shukui; Cai, Xueting

    2014-01-01

    Elemene, a compound found in an herb used in traditional Chinese medicine, has shown promising anticancer effects against a broad spectrum of tumors. In an in vivo experiment, we found that apatinib, a tyrosine kinase inhibitor that selectively inhibits VEGFR2, combined with elemene injection (Ele) for the treatment of H22 solid tumor in mice resulted in worse effectiveness than apatinib alone. Moreover, Ele could protect HepG2 cells from death induced by serum-free starvation. Further data on the mechanism study revealed that Ele induced protective autophagy and prevented human hepatoma cancer cells from undergoing apoptosis. Proapoptosis effect of Ele was enhanced when proautophagy effect was inhibited by hydroxychloroquine. Above all, Ele has the effect of protecting cancer cells from death either in apatinib induced nutrient deficient environment or in serum-free induced starvation. A combination of elemene injection with autophagy inhibitor might thus be a useful therapeutic option for hepatocellular carcinoma.

  3. Biophysical characterization of Atg11, a scaffold protein essential for selective autophagy in yeast.

    Science.gov (United States)

    Suzuki, Hironori; Noda, Nobuo N

    2018-01-01

    Autophagy is an intracellular degradation system in which the formation of an autophagosome is a key event. In budding yeast, autophagosomes are generated from the preautophagosomal structure (PAS), in which Atg11 and Atg17 function as scaffolds essential for selective and nonselective types of autophagy, respectively. Structural studies have been extensively performed on Atg17, but not on Atg11, preventing us from understanding the selective type of the PAS. Here, we purified and characterized Atg11. Biophysical analyses, including analytical ultracentrifugation and CD, showed that Atg11 behaves as an elongated homodimer abundant in α-helices in solution. Moreover, truncation analyses suggested that Atg11 has a parallel coiled-coil architecture, in contrast to the antiparallel dimeric architecture of Atg17.

  4. Autophagy is required for IL-2-mediated fibroblast growth

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Rui [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219 (United States); Tang, Daolin, E-mail: tangd2@upmc.edu [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219 (United States); Lotze, Michael T., E-mail: lotzemt@upcm.edu [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219 (United States); Zeh III, Herbert J., E-mail: zehh@upmc.edu [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219 (United States)

    2013-02-15

    Autophagy is an evolutionarily conserved pathway responsible for delivery of cytoplasmic material into the lysosomal degradation pathway to enable vesicular exocytosis. Interleukin (IL)-2 is produced by T-cells and its activity is important for immunoregulation. Fibroblasts are an immune competent cell type, playing a critical role in wound healing, chronic inflammation, and tumor development. Although autophagy plays an important role in each of these processes, whether it regulates IL-2 activity in fibroblasts is unknown. Here, we show that autophagy is required for IL-2-induced cell growth in fibroblasts. IL-2 significantly induced autophagy in mouse embryonic fibroblasts (MEFs) and primary lung fibroblasts. Autophagy inhibitors (e.g., 3-methylamphetamine and bafilomycin A1) or knockdown of ATG5 and beclin 1 blocked clinical grade IL-2-induced autophagy. Moreover, IL-2 induced HMGB1 cytoplasmic translocation in MEFs and promoted interaction between HMGB1 and beclin1, which is required for autophagy induction. Pharmacological and genetic inhibition of autophagy inhibited IL-2-induced cell proliferation and enhanced IL-2-induced apoptosis. These findings suggest that autophagy is an important pro-survival regulator for IL-2-induced cell growth in fibroblasts.

  5. The Mucosal Immune System and Its Regulation by Autophagy.

    Science.gov (United States)

    Kabat, Agnieszka M; Pott, Johanna; Maloy, Kevin J

    2016-01-01

    The gastrointestinal tract presents a unique challenge to the mucosal immune system, which has to constantly monitor the vast surface for the presence of pathogens, while at the same time maintaining tolerance to beneficial or innocuous antigens. In the intestinal mucosa, specialized innate and adaptive immune components participate in directing appropriate immune responses toward these diverse challenges. Recent studies provide compelling evidence that the process of autophagy influences several aspects of mucosal immune responses. Initially described as a "self-eating" survival pathway that enables nutrient recycling during starvation, autophagy has now been connected to multiple cellular responses, including several aspects of immunity. Initial links between autophagy and host immunity came from the observations that autophagy can target intracellular bacteria for degradation. However, subsequent studies indicated that autophagy plays a much broader role in immune responses, as it can impact antigen processing, thymic selection, lymphocyte homeostasis, and the regulation of immunoglobulin and cytokine secretion. In this review, we provide a comprehensive overview of mucosal immune cells and discuss how autophagy influences many aspects of their physiology and function. We focus on cell type-specific roles of autophagy in the gut, with a particular emphasis on the effects of autophagy on the intestinal T cell compartment. We also provide a perspective on how manipulation of autophagy may potentially be used to treat mucosal inflammatory disorders.

  6. DNA damage response and Autophagy: a meaningful partnership

    Directory of Open Access Journals (Sweden)

    ARISTIDES G ELIOPOULOS

    2016-11-01

    Full Text Available Autophagy and the DNA damage response (DDR are biological processes essential for cellular and organismal homeostasis. Herein we summarize and discuss emerging evidence linking DDR to autophagy. We highlight published data suggesting that autophagy is activated by DNA damage and is required for several functional outcomes of DDR signaling, including repair of DNA lesions, senescence, cell death, and cytokine secretion. Uncovering the mechanisms by which autophagy and DDR are intertwined provides novel insight into the pathobiology of conditions associated with accumulation of DNA damage, including cancer and aging, and novel concepts for the development of improved therapeutic strategies against these pathologies.

  7. Inhibition of Cellular Autophagy Deranges Dengue Virion Maturation

    Science.gov (United States)

    Mateo, Roberto; Nagamine, Claude M.; Spagnolo, Jeannie; Méndez, Ernesto; Rahe, Michael; Gale, Michael; Yuan, Junying

    2013-01-01

    Autophagy is an important component of the innate immune response, directly destroying many intracellular pathogens. However, some pathogens, including several RNA viruses, subvert the autophagy pathway, or components of the pathway, to facilitate their replication. In the present study, the effect of inhibiting autophagy on the growth of dengue virus was tested using a novel inhibitor, spautin-1 (specific and potent autophagy inhibitor 1). Inhibition of autophagy by spautin-1 generated heat-sensitive, noninfectious dengue virus particles, revealing a large effect of components of the autophagy pathway on viral maturation. A smaller effect on viral RNA accumulation was also observed. Conversely, stimulation of autophagy resulted in increased viral titers and pathogenicity in the mouse. We conclude that the presence of functional autophagy components facilitates viral RNA replication and, more importantly, is required for infectious dengue virus production. Pharmacological inhibition of host processes is an attractive antiviral strategy to avoid selection of treatment-resistant variants, and inhibitors of autophagy may prove to be valuable therapeutics against dengue virus infection and pathogenesis. PMID:23175363

  8. AMPK regulates autophagy by phosphorylating BECN1 at threonine 388

    Science.gov (United States)

    Zhang, Deyi; Wang, Wei; Sun, Xiujie; Xu, Daqian; Wang, Chenyao; Zhang, Qian; Wang, Huafei; Luo, Wenwen; Chen, Yan; Chen, Huaiyong; Liu, Zhixue

    2016-01-01

    ABSTRACT Macroautophagy/autophagy is a conserved catabolic process that recycles cytoplasmic material during low energy conditions. BECN1/Beclin1 (Beclin 1, autophagy related) is an essential protein for function of the class 3 phosphatidylinositol 3-kinase (PtdIns3K) complexes that play a key role in autophagy nucleation and elongation. Here, we show that AMP-activated protein kinase (AMPK) regulates autophagy by phosphorylating BECN1 at Thr388. Phosphorylation of BECN1 is required for autophagy upon glucose withdrawal. BECN1T388A, a phosphorylation defective mutant, suppresses autophagy through decreasing the interaction between PIK3C3 (phosphatidylinositol 3-kinase catalytic subunit type 3) and ATG14 (autophagy-related 14). The BECN1T388A mutant has a higher affinity for BCL2 than its wild-type counterpart; the mutant is more prone to dimer formation. Conversely, a BECN1 phosphorylation mimic mutant, T388D, has stronger binding to PIK3C3 and ATG14, and promotes higher autophagy activity than the wild-type control. These findings uncover a novel mechanism of autophagy regulation. PMID:27304906

  9. Regulation of autophagy by cytosolic acetyl-coenzyme A

    DEFF Research Database (Denmark)

    Mariño, Guillermo; Pietrocola, Federico; Eisenberg, Tobias

    2014-01-01

    levels inhibited maladaptive autophagy in a model of cardiac pressure overload. Depletion of AcCoA reduced the activity of the acetyltransferase EP300, and EP300 was required for the suppression of autophagy by high AcCoA levels. Altogether, our results indicate that cytosolic AcCoA functions...... proteins, as well as the induction of autophagy, a homeostatic process of self-digestion. Multiple distinct manipulations designed to increase or reduce cytosolic AcCoA led to the suppression or induction of autophagy, respectively, both in cultured human cells and in mice. Moreover, maintenance of high AcCoA...

  10. Interplay between Autophagy, Exosomes and HIV-1 Associated Neurological Disorders: New Insights for Diagnosis and Therapeutic Applications

    Directory of Open Access Journals (Sweden)

    Chet Raj Ojha

    2017-07-01

    Full Text Available The autophagy–lysosomal pathway mediates a degradative process critical in the maintenance of cellular homeostasis as well as the preservation of proper organelle function by selective removal of damaged proteins and organelles. In some situations, cells remove unwanted or damaged proteins and RNAs through the release to the extracellular environment of exosomes. Since exosomes can be transferred from one cell to another, secretion of unwanted material to the extracellular environment in exosomes may have an impact, which can be beneficial or detrimental, in neighboring cells. Exosome secretion is under the influence of the autophagic system, and stimulation of autophagy can inhibit exosomal release and vice versa. Neurons are particularly vulnerable to degeneration, especially as the brain ages, and studies indicate that imbalances in genes regulating autophagy are a common feature of many neurodegenerative diseases. Cognitive and motor disease associated with severe dementia and neuronal damage is well-documented in the brains of HIV-infected individuals. Neurodegeneration seen in the brain in HIV-1 infection is associated with dysregulation of neuronal autophagy. In this paradigm, we herein provide an overview on the role of autophagy in HIV-associated neurodegenerative disease, focusing particularly on the effect of autophagy modulation on exosomal release of HIV particles and how this interplay impacts HIV infection in the brain. Specific autophagy–regulating agents are being considered for therapeutic treatment and prevention of a broad range of human diseases. Various therapeutic strategies for modulating specific stages of autophagy and the current state of drug development for this purpose are also evaluated.

  11. Dihydrocapsaicin (DHC), a saturated structural analog of capsaicin, induces autophagy in human cancer cells in a catalase-regulated manner.

    Science.gov (United States)

    Oh, Seon Hee; Kim, Young Soon; Lim, Sung Chul; Hou, Yi Feng; Chang, In Youb; You, Ho Jin

    2008-11-01

    Although capsaicin, a pungent component of red pepper, is known to induce apoptosis in several types of cancer cells, the mechanisms underlying capsaicin-induced cytotoxicity are unclear. Here, we showed that dihydrocapsaicin (DHC), an analog of capsaicin, is a potential inducer of autophagy. DHC was more cytotoxic than capsaicin in HCT116, MCF-7 and WI38 cell lines. Capsaicin and DHC did not affect the sub-G(1) apoptotic peak, but induced G(0)/G(1) arrest in HCT116 and MCF-7 cells. DHC caused the artificial autophagosome marker GFP-LC3 to redistribute and upregulated expression of autophagy-related proteins. Blocking of autophagy by 3-methyladenine (3MA) as well as siRNA Atg5 induced a high level of caspase-3 activation. Although pretreatment with zVAD completely inhibited caspase-3 activation by 3MA, it did not prevent cell death. DHC-induced autophagy was enhanced by zVAD pretreatment, as shown by increased accumulation of LC3-II protein. DHC attenuated basal ROS levels through catalase induction; this effect was enhanced by antioxidants, which increased both LC3-II expression and caspase-3 activation. The catalase inhibitor 3-amino-1,2,4-triazole (3AT) abrogated DHC-induced expression of LC3-II, overexpression of the catalase gene increased expression of LC3-II protein, and knockdown decreased it. Additionally, DHC-induced autophagy was independent of p53 status. Collectively, DHC activates autophagy in a p53-independent manner and that may contribute to cytotoxicity of DHC.

  12. Quiltophagy--autophagy as folk art.

    Science.gov (United States)

    Crumrine, Barbara M; Klionsky, Daniel J

    2015-01-01

    Over the years macroautophagy (hereafter autophagy) has been depicted artistically through painting, music, dance, videos, and poetry. A unifying idea behind these different aesthetic approaches is that people learn in different ways. Thus, some learners may be engaged by a detailed, but static, painting, whereas others may find insight through the dynamic visualization provided by a dance. While each of these formats has advantages, they also have a common weakness--whether delivered through watercolor on a canvas, words on a paper, or movement captured in a video, they are all 2-dimensional. Yet, some people are tactile learners. In this paper, a quilter describes a project she created with the goal of demonstrating autophagy using a 3-dimensional approach, in which different fiber textures could be used to elaborate certain parts of the process.

  13. MicroRNA regulation of Autophagy

    DEFF Research Database (Denmark)

    Frankel, Lisa B; Lund, Anders H

    2012-01-01

    recently contributed to our understanding of the molecular mechanisms of the autophagy machinery, yet several gaps remain in our knowledge of this process. The discovery of microRNAs (miRNAs) established a new paradigm of post-transcriptional gene regulation and during the past decade these small non......-coding RNAs have been closely linked to virtually all known fundamental biological pathways. Deregulation of miRNAs can contribute to the development of human diseases, including cancer, where they can function as bona fide oncogenes or tumor suppressors.In this review, we highlight recent advances linking mi......RNAs to regulation of the autophagy pathway. This regulation occurs both through specific core pathway components as well as through less well-defined mechanisms. Although this field is still in its infancy, we are beginning to understand the potential implications of these initial findings, both from a pathological...

  14. Activation of RARα induces autophagy in SKBR3 breast cancer cells and depletion of key autophagy genes enhances ATRA toxicity.

    Science.gov (United States)

    Brigger, D; Schläfli, A M; Garattini, E; Tschan, M P

    2015-08-27

    All-trans retinoic acid (ATRA), a pan-retinoic acid receptor (RAR) agonist, is, along with other retinoids, a promising therapeutic agent for the treatment of a variety of solid tumors. On the one hand, preclinical studies have shown promising anticancer effects of ATRA in breast cancer; on the other hand, resistances occurred. Autophagy is a cellular recycling process that allows the degradation of bulk cellular contents. Tumor cells may take advantage of autophagy to cope with stress caused by anticancer drugs. We therefore wondered if autophagy is activated by ATRA in mammary tumor cells and if modulation of autophagy might be a potential novel treatment strategy. Indeed, ATRA induces autophagic flux in ATRA-sensitive but not in ATRA-resistant human breast cancer cells. Moreover, using different RAR agonists as well as RARα-knockdown breast cancer cells, we demonstrate that autophagy is dependent on RARα activation. Interestingly, inhibition of autophagy in breast cancer cells by either genetic or pharmacological approaches resulted in significantly increased apoptosis under ATRA treatment and attenuated epithelial differentiation. In summary, our findings demonstrate that ATRA-induced autophagy is mediated by RARα in breast cancer cells. Furthermore, inhibition of autophagy results in enhanced apoptosis. This points to a potential novel treatment strategy for a selected group of breast cancer patients where ATRA and autophagy inhibitors are applied simultaneously.

  15. Autophagy: A brief overview in perspective of dermatology

    Directory of Open Access Journals (Sweden)

    Rahul Nagar

    2017-01-01

    Full Text Available Autophagy, literally meaning “self-eating,” is an intracellular catabolic process of delivering cytosol and/or its specific content to the lysosomes for degradation.The resulting macromolecular constituents are recycled and utilized again by the cells. Basal level autophagy plays an important role in cellular homeostasis through the elimination of the old or damaged organelles, as well as aggregated intracellular proteins. Autophagy refers to sequestration of intact organelles along with a portion of cytosol, into a double-or multi-membrane structure known as phagophore, which elongates, and after closure, forms a vesicular structure known as the autophagosome. Subsequently, the mature autophagosome fuses with a lysosome, thereby forming a single membrane structure, an autolysosome. Autophagy plays a critical role in inflammation, autoimmunity and cellular differentiation. Skin serves as the first line of defense against a variety of environmental insults and autophagy is thought to be a form of an endogenous defense mechanism against such environmental derangements. Autophagy has been linked with keratinocyte differentiation and melanocyte survival, as well as with the pathogenesis of diverse skin disorders including systemic lupus erythematosus, systemic sclerosis, psoriasis, vitiligo, infectious skin diseases and cancer. Autophagy has been one of the most studied phenomena in cell biology and pathophysiology, and given its broad clinical implications, has become a major target for drug discovery. The last decade has seen a substantial upsurge in autophagy-related research and publications; still, the dermatology literature appears to be less initiated. Autophagy will probably change our understanding of dermatological disorders/medicines. Hence, a basic knowledge of autophagy is a prerequisite to understand the developments in the field of autophagy-related research.

  16. H2O2 treatment or serum deprivation induces autophagy and apoptosis in naked mole-rat skin fibroblasts by inhibiting the PI3K/Akt signaling pathway.

    Science.gov (United States)

    Zhao, Shanmin; Li, Li; Wang, Shiyong; Yu, Chenlin; Xiao, Bang; Lin, Lifang; Cong, Wei; Cheng, Jishuai; Yang, Wenjing; Sun, Wei; Cui, Shufang

    2016-12-20

    Naked mole-rats (NMR; Heterocephalus glaber) display extreme longevity and resistance to cancer. Here, we examined whether autophagy contributes to the longevity of NMRs by assessing the effects of the PI3K/Akt pathway inhibitor LY294002 and the autophagy inhibitor chloroquine (CQ) on autophagy and apoptosis in NMR skin fibroblasts. Serum starvation, H2O2 treatment, and LY294002 treatment all increased the LC3-II/LC3-I ratio and numbers of double-membraned autophagosomes and autophagic vacuoles, and decreased levels of p70S6K, p-AktSer473, and p-AktThr308. By contrast, CQ treatment decreased p70S6K, AktSer473, and AktThr308 levels. The Bax/Bcl-2 ratio increased after 12 h of exposure to LY294002 or CQ. These data show that inhibiting the Akt pathway promotes autophagy and apoptosis in NMR skin fibroblasts. Furthermore, LY294002 or CQ treatment decreased caspase-3, p53, and HIF1-α levels, suggesting that serum starvation or H2O2 treatment increase autophagy and apoptosis in NMR skin fibroblasts by inhibiting the PI3K/Akt pathway. CQ-induced inhibition of late autophagy stages also prevented Akt activation and induced apoptosis. Finally, the HIF-1α and p53 pathways were involved in serum starvation- or H2O2-induced autophagy in NMR skin fibroblasts.

  17. Crosstalk of ER stress-mediated autophagy and ER-phagy: Involvement of UPR and the core autophagy machinery.

    Science.gov (United States)

    Song, Shuling; Tan, Jin; Miao, Yuyang; Zhang, Qiang

    2018-05-01

    Endoplasmic reticulum (ER) stress, a common cellular stress response, is closely related to the activation of autophagy that is an important and evolutionarily conserved mechanism for maintaining cellular homeostasis. Autophagy induced by ER stress mainly includes the ER stress-mediated autophagy and ER-phagy. The ER stress-mediated autophagy is characterized by the generation of autophagosomes that include worn-out proteins, protein aggregates, and damaged organelles. While the autophagosomes of ER-phagy selectively include ER membranes, and the double membranes also derive, at least in part, from the ER. The signaling pathways of IRE1α, PERK, ATF6, and Ca 2+ are necessary for the activation of ER stress-mediated autophagy, while the receptor-mediated selective ER-phagy degrades the ER is Atg40/FAM134B. The ER stress-mediated autophagy and ER-phagy not only have differences, but also have connections. The activation of ER-phagy requires the core autophagy machinery, and the ER-phagy may be a branch of ER stress-mediated autophagy that selectively targets the ER. However, the determined factors that control the changeover switch between ER stress-mediated autophagy and ER-phagy are largely obscure, which may be associated with the type of cells and the extent of stimulation. This review summarized the crosstalk between ER stress-mediated autophagy and ER-phagy and their signaling networks. Additionally, we discussed the possible factors that influence the type of autophagy induced by ER stress. © 2017 Wiley Periodicals, Inc.

  18. Autophagy Inhibition Dysregulates TBK1 Signaling and Promotes Pancreatic Inflammation.

    Science.gov (United States)

    Yang, Shenghong; Imamura, Yu; Jenkins, Russell W; Cañadas, Israel; Kitajima, Shunsuke; Aref, Amir; Brannon, Arthur; Oki, Eiji; Castoreno, Adam; Zhu, Zehua; Thai, Tran; Reibel, Jacob; Qian, Zhirong; Ogino, Shuji; Wong, Kwok K; Baba, Hideo; Kimmelman, Alec C; Pasca Di Magliano, Marina; Barbie, David A

    2016-06-01

    Autophagy promotes tumor progression downstream of oncogenic KRAS, yet also restrains inflammation and dysplasia through mechanisms that remain incompletely characterized. Understanding the basis of this paradox has important implications for the optimal targeting of autophagy in cancer. Using a mouse model of cerulein-induced pancreatitis, we found that loss of autophagy by deletion of Atg5 enhanced activation of the IκB kinase (IKK)-related kinase TBK1 in vivo, associated with increased neutrophil and T-cell infiltration and PD-L1 upregulation. Consistent with this observation, pharmacologic or genetic inhibition of autophagy in pancreatic ductal adenocarcinoma cells, including suppression of the autophagy receptors NDP52 or p62, prolonged TBK1 activation and increased expression of CCL5, IL6, and several other T-cell and neutrophil chemotactic cytokines in vitro Defective autophagy also promoted PD-L1 upregulation, which is particularly pronounced downstream of IFNγ signaling and involves JAK pathway activation. Treatment with the TBK1/IKKε/JAK inhibitor CYT387 (also known as momelotinib) not only inhibits autophagy, but also suppresses this feedback inflammation and reduces PD-L1 expression, limiting KRAS-driven pancreatic dysplasia. These findings could contribute to the dual role of autophagy in oncogenesis and have important consequences for its therapeutic targeting. Cancer Immunol Res; 4(6); 520-30. ©2016 AACR. ©2016 American Association for Cancer Research.

  19. Signalling and autophagy regulation in health, aging and disease

    NARCIS (Netherlands)

    Meijer, Alfred J.; Codogno, Patrice

    2006-01-01

    It has become clear in recent years that autophagy not only serves to produce amino acids for ongoing protein synthesis and to produce substrates for energy production when cells become starved but autophagy is also able to eliminate defective cell structures and for this reason the process may be

  20. Autophagy and its implication in human oral diseases.

    Science.gov (United States)

    Tan, Ya-Qin; Zhang, Jing; Zhou, Gang

    2017-02-01

    Macroautophagy/autophagy is a conserved lysosomal degradation process essential for cell physiology and human health. By regulating apoptosis, inflammation, pathogen clearance, immune response and other cellular processes, autophagy acts as a modulator of pathogenesis and is a potential therapeutic target in diverse diseases. With regard to oral disease, autophagy can be problematic either when it is activated or impaired, because this process is involved in diverse functions, depending on the specific disease and its level of progression. In particular, activated autophagy functions as a cytoprotective mechanism under environmental stress conditions, which regulates tumor growth and mediates resistance to anticancer treatment in established tumors. During infections and inflammation, activated autophagy selectively delivers microbial antigens to the immune systems, and is therefore connected to the elimination of intracellular pathogens. Impaired autophagy contributes to oxidative stress, genomic instability, chronic tissue damage, inflammation and tumorigenesis, and is involved in aberrant bacterial clearance and immune priming. Hence, substantial progress in the study of autophagy provides new insights into the pathogenesis of oral diseases. This review outlines the mechanisms of autophagy, and highlights the emerging roles of this process in oral cancer, periapical lesions, periodontal diseases, and oral candidiasis.

  1. Role of Autophagy in Cisplatin Resistance in Ovarian Cancer Cells*

    Science.gov (United States)

    Wang, Juan; Wu, Gen Sheng

    2014-01-01

    Cisplatin-based treatment is the first line chemotherapy for several cancers including ovarian cancer. The development of cisplatin resistance results in treatment failure, but the underlying mechanisms are not fully understood. Here we show that the induction of autophagy plays an important role in cisplatin resistance in ovarian cancer cells. Specifically, we show that cisplatin resistance is correlated with autophagy induction in a panel of ovarian cancer cells but not in immortalized human ovarian surface epithelial cells. Mechanistically, cisplatin treatment activates ERK and subsequently promotes autophagy. The inhibition of ERK activation with MEK inhibitors or knockdown of ERK expression with siRNA decreases cisplatin-induced autophagy and subsequently sensitizes ovarian cancer cells to cisplatin-induced apoptosis. In ovarian cancer cells that have developed acquired cisplatin resistance, both ERK activation and autophagy induction are increased. Importantly, knockdown of ERK or inhibition of autophagy promotes cisplatin-induced apoptosis in acquired cisplatin-resistant cells. Collectively, our data indicate that ERK-mediated autophagy can lead to cisplatin resistance and suggest that cisplatin resistance can be overcome by inhibition of autophagy in ovarian cancer cells. PMID:24794870

  2. The Nobel Prize for understanding autophagy, a cellular mechanism ...

    Indian Academy of Sciences (India)

    This processof autophagy (self-eating) maintains cellular homeostasis and helps the cell and the organism to surviveduring periods of stress, such as starvation, by recycling the cellular components to generate amino acidsand nutrients needed for producing energy. Autophagy and ubiquitin-proteasome system are the two ...

  3. Autophagy-dependent secretion: contribution to tumor progression

    Directory of Open Access Journals (Sweden)

    Tom Keulers

    2016-11-01

    Full Text Available Autophagy is best known as a lysosomal degradation and recycling pathway to maintain cellular homeostasis. During autophagy, cytoplasmic content is recognized and packed in autophagic vacuoles, or autophagosomes, and targeted for degradation. However, during the last years, it has become evident that the role of autophagy is not restricted to degradation alone but also mediates unconventional forms of secretion. Furthermore, cells with defects in autophagy apparently are able to reroute their cargo, like mitochondria, to the extracellular environment; effects that contribute to an array of pathologies. In this review we discuss the current knowledge of the physiological roles of autophagy-dependent secretion, i.e. the effect on inflammation and insulin/ hormone secretion. Finally, we focus on the effects of autophagy-dependent secretion on the tumour microenvironment and tumour progression. The autophagy mediated secreted factors may stimulate cellular proliferation via auto- and paracrine signaling. The autophagy mediated release of immune modulating proteins change the immunosuppresive tumor microenvironment and may promote an invasive phenotype. These effects may be either direct or indirect through facilitating formation of the mobilized vesicle, aid in anterograde trafficking or alterations in homeostasis and/or autonomous cell signaling.

  4. Autophagy: A Potential Link between Obesity and Insulin Resistance

    NARCIS (Netherlands)

    Codogno, Patrice; Meijer, Alfred J.

    2010-01-01

    Dysregulation of autophagy contributes to aging and to diseases such as neurodegeneration, cardiomyopathy, and cancer. The paper by Yang et al. (2010) in this issue of Cell Metabolism indicates that defective autophagy may also underlie impaired insulin sensitivity in obesity and that upregulating

  5. Autophagy Is Required for Neutrophil-Mediated Inflammation

    Directory of Open Access Journals (Sweden)

    Abhisek Bhattacharya

    2015-09-01

    Full Text Available Autophagy, an intracellular degradation and energy recycling mechanism, is emerging as an important regulator of immune responses. However, the role of autophagy in regulating neutrophil functions is not known. We investigated neutrophil biology using myeloid-specific autophagy-deficient mice and found that autophagy deficiency reduced neutrophil degranulation in vitro and in vivo. Mice with autophagy deficiency showed reduced severity of several neutrophil-mediated inflammatory and autoimmune disease models, including PMA-induced ear inflammation, LPS-induced breakdown of blood-brain barrier, and experimental autoimmune encephalomyelitis. NADPH oxidase-mediated reactive oxygen species generation was also reduced in autophagy-deficient neutrophils, and inhibition of NADPH oxidase reduced neutrophil degranulation, suggesting NADPH oxidase to be a player at the intersection of autophagy and degranulation. Overall, this study establishes autophagy as an important regulator of neutrophil functions and neutrophil-mediated inflammation in vivo.

  6. Autophagy Primes Neutrophils for Neutrophil Extracellular Trap Formation during Sepsis.

    Science.gov (United States)

    Park, So Young; Shrestha, Sanjeeb; Youn, Young-Jin; Kim, Jun-Kyu; Kim, Shin-Yeong; Kim, Hyun Jung; Park, So-Hee; Ahn, Won-Gyun; Kim, Shin; Lee, Myung Goo; Jung, Ki-Suck; Park, Yong Bum; Mo, Eun-Kyung; Ko, Yousang; Lee, Suh-Young; Koh, Younsuck; Park, Myung Jae; Song, Dong-Keun; Hong, Chang-Won

    2017-09-01

    Neutrophils are key effectors in the host's immune response to sepsis. Excessive stimulation or dysregulated neutrophil functions are believed to be responsible for sepsis pathogenesis. However, the mechanisms regulating functional plasticity of neutrophils during sepsis have not been fully determined. We investigated the role of autophagy in neutrophil functions during sepsis in patients with community-acquired pneumonia. Neutrophils were isolated from patients with sepsis and stimulated with phorbol 12-myristate 13-acetate (PMA). The levels of reactive oxygen species generation, neutrophil extracellular trap (NET) formation, and granule release, and the autophagic status were evaluated. The effect of neutrophil autophagy augmentation was further evaluated in a mouse model of sepsis. Neutrophils isolated from patients who survived sepsis showed an increase in autophagy induction, and were primed for NET formation in response to subsequent PMA stimulation. In contrast, neutrophils isolated from patients who did not survive sepsis showed dysregulated autophagy and a decreased response to PMA stimulation. The induction of autophagy primed healthy neutrophils for NET formation and vice versa. In a mouse model of sepsis, the augmentation of autophagy improved survival via a NET-dependent mechanism. These results indicate that neutrophil autophagy primes neutrophils for increased NET formation, which is important for proper neutrophil effector functions during sepsis. Our study provides important insights into the role of autophagy in neutrophils during sepsis.

  7. Host-pathogen interactions and subversion of autophagy.

    Science.gov (United States)

    McEwan, David G

    2017-12-12

    Macroautophagy ('autophagy'), is the process by which cells can form a double-membraned vesicle that encapsulates material to be degraded by the lysosome. This can include complex structures such as damaged mitochondria, peroxisomes, protein aggregates and large swathes of cytoplasm that can not be processed efficiently by other means of degradation. Recycling of amino acids and lipids through autophagy allows the cell to form intracellular pools that aid survival during periods of stress, including growth factor deprivation, amino acid starvation or a depleted oxygen supply. One of the major functions of autophagy that has emerged over the last decade is its importance as a safeguard against infection. The ability of autophagy to selectively target intracellular pathogens for destruction is now regarded as a key aspect of the innate immune response. However, pathogens have evolved mechanisms to either evade or reconfigure the autophagy pathway for their own survival. Understanding how pathogens interact with and manipulate the host autophagy pathway will hopefully provide a basis for combating infection and increase our understanding of the role and regulation of autophagy. Herein, we will discuss how the host cell can identify and target invading pathogens and how pathogens have adapted in order to evade destruction by the host cell. In particular, we will focus on interactions between the mammalian autophagy gene 8 (ATG8) proteins and the host and pathogen effector proteins. © 2017 The Author(s).

  8. FGF2 Attenuates Neural Cell Death via Suppressing Autophagy after Rat Mild Traumatic Brain Injury.

    Science.gov (United States)

    Tang, Chonghui; Shan, Yudong; Hu, Yilan; Fang, Zhanjian; Tong, Yun; Chen, Mengdan; Wei, Xiaojie; Fu, Xiaojun; Xu, Xinlong

    2017-01-01

    Traumatic brain injury (TBI) can lead to physical and cognitive deficits, which are caused by the secondary injury process. Effective pharmacotherapies for TBI patients are still lacking. Fibroblast growth factor-2 (FGF2) is an important neurotrophic factor that can stimulate neurogenesis and angiogenesis and has been shown to have neuroprotective effects after brain insults. Previous studies indicated that FGF2's neuroprotective effects might be related to its function of regulating autophagy. The present study investigated FGF2's beneficial effects in the early stage of rat mild TBI and the underlying mechanisms. One hundred and forty-four rats were used for creating controlled cortical impact (CCI) models to simulate the pathological damage after TBI. Our results indicated that pretreatment of FGF2 played a neuroprotective role in the early stage of rat mild TBI through alleviating brain edema, reducing neurological deficits, preventing tissue loss, and increasing the number of surviving neurons in injured cortex and the ipsilateral hippocampus. FGF2 could also protect cells from various forms of death such as apoptosis or necrosis through inhibition of autophagy. Finally, autophagy activator rapamycin could abolish the protective effects of FGF2. This study extended our understanding of FGF2's neuroprotective effects and shed lights on the pharmacological therapy after TBI.

  9. Hongjingtian Injection Attenuates Myocardial Oxidative Damage via Promoting Autophagy and Inhibiting Apoptosis

    Directory of Open Access Journals (Sweden)

    Shujing Zhang

    2017-01-01

    Full Text Available Natural products with antioxidative activities are widely applied to prevent and treat various oxidative stress related diseases, including ischemic heart disease. However, the cellular and molecular mechanisms of those therapies are still needed to be illustrated. In this study, we characterized the cardioprotective effects of Hongjingtian Injection (HJT, an extensively used botanical drug for treating coronary heart disease. The H/R-induced profound elevation of oxidative stress was suppressed by HJT. HJT also attenuates oxidative injury by promoting cell viability, intracellular ATP contents, and mitochondrial oxygen consumption. Validation experiments indicated that HJT inhibited H/R-induced apoptosis and regulated the expression of apoptosis-associated proteins Bcl-2 and cleaved caspase3. Interestingly, HJT significantly regulated the expression of autophagy-related proteins LC3, Beclin, and mTOR as well as ERK and AKT. We provide evidence that the mechanism involves activation of AKT/Beclin-1, AKT, and ERK/mTOR pathway in cardiomyocyte autophagy. Histological and physiological evaluation revealed that HJT significantly decreased the infarct area of the heart, improved cardiac function, and increased the expression of LC3B in a rat model of coronary occlusion. From the obtained data, we proposed that HJT diminished myocardial oxidative damage through regulating the balance of autophagy and apoptosis and reducing oxidative stress.

  10. Inhibition of autophagy as a treatment strategy for p53 wild-type acute myeloid leukemia

    NARCIS (Netherlands)

    Folkerts, Hendrik; Hilgendorf, Susan; Wierenga, Albertus T J; Jaques, Jennifer; Mulder, André B; Coffer, Paul J; Schuringa, Jan Jacob; Vellenga, Edo

    2017-01-01

    Here we have explored whether inhibition of autophagy can be used as a treatment strategy for acute myeloid leukemia (AML). Steady-state autophagy was measured in leukemic cell lines and primary human CD34(+) AML cells with a large variability in basal autophagy between AMLs observed. The autophagy

  11. Autophagy in Drosophila: From Historical Studies to Current Knowledge

    Science.gov (United States)

    Mulakkal, Nitha C.; Nagy, Peter; Takats, Szabolcs; Tusco, Radu; Juhász, Gábor; Nezis, Ioannis P.

    2014-01-01

    The discovery of evolutionarily conserved Atg genes required for autophagy in yeast truly revolutionized this research field and made it possible to carry out functional studies on model organisms. Insects including Drosophila are classical and still popular models to study autophagy, starting from the 1960s. This review aims to summarize past achievements and our current knowledge about the role and regulation of autophagy in Drosophila, with an outlook to yeast and mammals. The basic mechanisms of autophagy in fruit fly cells appear to be quite similar to other eukaryotes, and the role that this lysosomal self-degradation process plays in Drosophila models of various diseases already made it possible to recognize certain aspects of human pathologies. Future studies in this complete animal hold great promise for the better understanding of such processes and may also help finding new research avenues for the treatment of disorders with misregulated autophagy. PMID:24949430

  12. Monitoring Autophagy in the Model Green Microalga Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    María Esther Pérez-Pérez

    2017-10-01

    Full Text Available Autophagy is an intracellular catabolic system that delivers cytoplasmic constituents and organelles in the vacuole. This degradative process is mediated by a group of proteins coded by autophagy-related (ATG genes that are widely conserved from yeasts to plants and mammals. Homologs of ATG genes have been also identified in algal genomes including the unicellular model green alga Chlamydomonas reinhardtii. The development of specific tools to monitor autophagy in Chlamydomonas has expanded our current knowledge about the regulation and function of this process in algae. Recent findings indicated that autophagy is regulated by redox signals and the TOR network in Chlamydomonas and revealed that this process may play in important role in the control of lipid metabolism and ribosomal protein turnover in this alga. Here, we will describe the different techniques and approaches that have been reported to study autophagy and autophagic flux in Chlamydomonas.

  13. The role of autophagy in modulation of neuroinflammation in microglia.

    Science.gov (United States)

    Su, P; Zhang, J; Wang, D; Zhao, F; Cao, Z; Aschner, M; Luo, W

    2016-04-05

    Microglia have multiple functions in regulating homeostasis in the central nervous system (CNS), and microglial inflammation is thought to play a role in the etiology of the neurodegenerative diseases. When endogenous or exogenous stimuli trigger disorders in microenvironmental homeostasis in CNS, microglia critically determine the fate of other neural cells. Recently, it was reported that autophagy might influence inflammation and activation of microglia. Though the interaction between autophagy and macrophages has been reported and reviewed in length, the role of autophagy in microglia has yet to be reviewed. Herein, we will highlight recent advances on the emerging role of autophagy in microglia, focusing on the regulation of autophagy during microglial inflammation, and the possible mechanism involved. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Modulation of Autophagy-Like Processes by Tumor Viruses

    Directory of Open Access Journals (Sweden)

    Karl Munger

    2012-06-01

    Full Text Available Autophagy is an intracellular degradation pathway for long-lived proteins and organelles. This process is activated above basal levels upon cell intrinsic or environmental stress and dysregulation of autophagy has been linked to various human diseases, including those caused by viral infection. Many viruses have evolved strategies to directly interfere with autophagy, presumably to facilitate their replication or to escape immune detection. However, in some cases, modulation of autophagy appears to be a consequence of the virus disturbing the cell’s metabolic signaling networks. Here, we summarize recent advances in research at the interface of autophagy and viral infection, paying special attention to strategies that human tumor viruses have evolved.

  15. Bim Inhibits Autophagy by Recruiting Beclin 1 to Microtubules

    Science.gov (United States)

    Luo, Shouqing; Garcia-Arencibia, Moises; Zhao, Rui; Puri, Claudia; Toh, Pearl P.C.; Sadiq, Oana; Rubinsztein, David C.

    2012-01-01

    Summary Bim is a proapoptotic BH3-only Bcl-2 family member. In response to death stimuli, Bim dissociates from the dynein light chain 1 (DYNLL1/LC8), where it is inactive, and can then initiate Bax/Bak-mediated mitochondria-dependent apoptosis. We found that Bim depletion increases autophagosome synthesis in cells and in vivo, and this effect is inhibited by overexpression of cell death-deficient Bim. Bim inhibits autophagy by interacting with Beclin 1, an autophagy regulator, and this interaction is facilitated by LC8. Bim bridges the Beclin 1-LC8 interaction and thereby inhibits autophagy by mislocalizing Beclin 1 to the dynein motor complex. Starvation, an autophagic stimulus, induces Bim phosphorylation, which abrogates LC8 binding to Bim, leading to dissociation of Bim and Beclin 1. Our data suggest that Bim switches locations between apoptosis-inactive/autophagy-inhibitory and apoptosis-active/autophagy-permissive sites. PMID:22742832

  16. Subversion of the cellular autophagy pathway by viruses.

    Science.gov (United States)

    Kirkegaard, Karla

    2009-01-01

    Autophagy is a cellular process that creates double-membraned vesicles, engulfs and degrades cytoplasmic material, and generates and recycles nutrients. A recognized participant in the innate immune response to microbial infection, a functional autophagic response can help to control the replication of many viruses. However, for several viruses, there is functional and mechanistic evidence that components of the autophagy pathway act as host factors in viral replicative cycles, viral dissemination, or both. Investigating the mechanisms by which viruses subvert or imitate autophagy, as well as the mechanisms by which they inhibit autophagy, will reveal cell biological tools and processes that will be useful for understanding the many functional ramifications of the double-membraned vesicle formation and cytosolic entrapment unique to the autophagy pathway.

  17. Drp-1 dependent mitochondrial fragmentation and protective autophagy in dopaminergic SH-SY5Y cells overexpressing alpha-synuclein.

    Science.gov (United States)

    Martinez, Jimena Hebe; Alaimo, Agustina; Gorojod, Roxana Mayra; Porte Alcon, Soledad; Fuentes, Federico; Coluccio Leskow, Federico; Kotler, Mónica Lidia

    2018-04-01

    Parkinson's disease is a neurodegenerative movement disorder caused by the loss of dopaminergic neurons from substantia nigra. It is characterized by the accumulation of aggregated α-synuclein as the major component of the Lewy bodies. Additional common features of this disease are the mitochondrial dysfunction and the activation/inhibition of autophagy both events associated to the intracellular accumulation of α-synuclein. The mechanism by which these events contribute to neural degeneration remains unknown. In the present work we investigated the effect of α-synuclein on mitochondrial dynamics and autophagy/mitophagy in SH-SY5Y cells, an in vitro model of Parkinson disease. We demonstrated that overexpression of wild type α-synuclein causes moderated toxicity, ROS generation and mitochondrial dysfunction. In addition, α-synuclein induces the mitochondrial fragmentation on a Drp-1-dependent fashion. Overexpression of the fusion protein Opa-1 prevented both mitochondrial fragmentation and cytotoxicity. On the other hand, cells expressing α-synuclein showed activated autophagy and particularly mitophagy. Employing a genetic strategy we demonstrated that autophagy is triggered in order to protect cells from α-synuclein-induced cell death. Our results clarify the role of Opa-1 and Drp-1 in mitochondrial dynamics and cell survival, a controversial α-synuclein research issue. The findings presented point to the relevance of mitochondrial homeostasis and autophagy in the pathogenesis of PD. Better understanding of the molecular interaction between these processes could give rise to novel therapeutic methods for PD prevention and amelioration. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Quinoline-based antimalarial drugs: a novel class of autophagy inhibitors.

    Science.gov (United States)

    Golden, Encouse B; Cho, Hee-Yeon; Hofman, Florence M; Louie, Stan G; Schönthal, Axel H; Chen, Thomas C

    2015-03-01

    Chloroquine (CQ) is a quinoline-based drug widely used for the prevention and treatment of malaria. More recent studies have provided evidence that this drug may also harbor antitumor properties, whereby CQ possesses the ability to accumulate in lysosomes and blocks the cellular process of autophagy. Therefore, the authors of this study set out to investigate whether CQ analogs, in particular clinically established antimalaria drugs, would also be able to exert antitumor properties, with a specific focus on glioma cells. Toward this goal, the authors treated different glioma cell lines with quinine (QN), quinacrine (QNX), mefloquine (MFQ), and hydroxychloroquine (HCQ) and investigated endoplasmic reticulum (ER) stress-induced cell death, autophagy, and cell death. All agents blocked cellular autophagy and exerted cytotoxic effects on drug-sensitive and drug-resistant glioma cells with varying degrees of potency (QNX > MFQ > HCQ > CQ > QN). Furthermore, all quinoline-based drugs killed glioma cells that were highly resistant to temozolomide (TMZ), the current standard of care for patients with glioma. The cytotoxic mechanism involved the induction of apoptosis and ER stress, as indicated by poly(ADP-ribose) polymerase (PARP) cleavage and CHOP/GADD153. The induction of ER stress and resulting apoptosis could be confirmed in the in vivo setting, in which tumor tissues from animals treated with quinoline-based drugs showed increased expression of CHOP/GADD153, along with elevated TUNEL staining, a measure of apoptosis. Thus, the antimalarial compounds investigated in this study hold promise as a novel class of autophagy inhibitors for the treatment of newly diagnosed TMZ-sensitive and recurrent TMZ-resistant gliomas.

  19. Skeletal muscle homeostasis in Duchenne muscular dystrophy: modulating autophagy as a promising therapeutic strategy

    Directory of Open Access Journals (Sweden)

    Clara eDe Palma

    2014-07-01

    Full Text Available Muscular dystrophies are a group of genetic and heterogeneous neuromuscular disorders characterised by the primary wasting of skeletal muscle. In Duchenne muscular dystrophy (DMD, the most severe form of these diseases, the mutations in the dystrophin gene lead to muscle weakness and wasting, exhaustion of muscular regenerative capacity and chronic local inflammation leading to substitution of myofibres by connective and adipose tissue. DMD patients suffer of continuous and progressive skeletal muscle damage followed by complete paralysis and death, usually by respiratory and/or cardiac failure. No cure is yet available, but several therapeutic approaches aiming at reversing the ongoing degeneration have been investigated in preclinical and clinical settings. The autophagy is an important proteolytic system of the cell and has a crucial role in the removal of proteins, aggregates and organelles. Autophagy is constantly active in skeletal muscle and its role in tissue homeostasis is complex: at high levels it can be detrimental and contribute to muscle wasting; at low levels it can cause weakness and muscle degeneration, due to the unchecked accumulation of damaged proteins and organelles. The causal relationship between DMD pathogenesis and dysfunctional autophagy has been recently investigated. At molecular levels, the Akt axis is one of the key disregulated pathways, although the molecular events are not completely understood.The aim of this review is to describe and discuss the clinical relevance of the recent advances dissecting autophagy and its signalling pathway in DMD. The picture might pave the way for the development of interventions that are able to boost muscle growth and/or prevent muscle wasting.

  20. P2X7 Receptor Activation Modulates Autophagy in SOD1-G93A Mouse Microglia

    Directory of Open Access Journals (Sweden)

    Paola Fabbrizio

    2017-08-01

    Full Text Available Autophagy and inflammation play determinant roles in the pathogenesis of Amyotrophic Lateral Sclerosis (ALS, an adult-onset neurodegenerative disease characterized by deterioration and final loss of upper and lower motor neurons (MN priming microglia to sustain neuroinflammation and a vicious cycle of neurodegeneration. Given that extracellular ATP through P2X7 receptor constitutes a neuron-to-microglia alarm signal implicated in ALS, and that P2X7 affects autophagy in immune cells, we have investigated if autophagy can be directly triggered by P2X7 activation in primary microglia from superoxide dismutase 1 (SOD1-G93A mice. We report that P2X7 enhances the expression of the autophagic marker microtubule-associated protein 1 light chain 3 (LC3-II, via mTOR pathway and concomitantly with modulation of anti-inflammatory M2 microglia markers. We also demonstrate that the autophagic target SQSTM1/p62 is decreased in SOD1-G93A microglia after a short stimulation of P2X7, but increased after a sustained challenge. These effects are prevented by the P2X7 antagonist A-804598, and the autophagy/phosphoinositide-3-kinase inhibitor wortmannin (WM. Finally, a chronic in vivo treatment with A-804598 in SOD1-G93A mice decreases the expression of SQSTM1/p62 in lumbar spinal cord at end stage of disease. These data identify the modulation of the autophagic flux as a novel mechanism by which P2X7 activates ALS-microglia, to be considered for further investigations in ALS.

  1. Pravastatin Protects Against Avascular Necrosis of Femoral Head via Autophagy.

    Science.gov (United States)

    Liao, Yun; Zhang, Ping; Yuan, Bo; Li, Ling; Bao, Shisan

    2018-01-01

    Autophagy serves as a stress response and may contribute to the pathogenesis of avascular necrosis of the femoral head induced by steroids. Statins promote angiogenesis and ameliorate endothelial functions through apoptosis inhibition and necrosis of endothelial progenitor cells, however the process used by statins to modulate autophagy in avascular necrosis of the femoral head remains unclear. This manuscript determines whether pravastatin protects against dexamethasone-induced avascular necrosis of the femoral head by activating endothelial progenitor cell autophagy. Pravastatin was observed to enhance the autophagy activity in endothelial progenitor cells, specifically by upregulating LC3-II/Beclin-1 (autophagy related proteins), and autophagosome formation in vivo and in vitro . An autophagy inhibitor, 3-MA, reduced pravastatin protection in endothelial progenitor cells exposed to dexamethasone by attenuating pravastatin-induced autophagy. Adenosine monophosphate-activated protein kinase (AMPK) is a key autophagy regulator by sensing cellular energy changes, and indirectly suppressing activation of the mammalian target of rapamycin (mTOR). We found that phosphorylation of AMPK was upregulated however phosphorylation of mTOR was downregulated in pravastatin-treated endothelial progenitor cells, which was attenuated by AMPK inhibitor compound C. Furthermore, liver kinase B1 (a phosphorylase of AMPK) knockdown eliminated pravastatin regulated autophagy protein LC3-II in endothelial progenitor cells in vitro . We therefore demonstrated pravastatin rescued endothelial progenitor cells from dexamethasone-induced autophagy dysfunction through the AMPK-mTOR signaling pathway in a liver kinase B1-dependent manner. Our results provide useful information for the development of novel therapeutics for management of glucocorticoids-induced avascular necrosis of the femoral head.

  2. Sirt3-Mediated Autophagy Contributes to Resveratrol-Induced Protection against ER Stress in HT22 Cells

    Directory of Open Access Journals (Sweden)

    Wen-Jun Yan

    2018-02-01

    Full Text Available Endoplasmic reticulum (ER stress occurring in stringent conditions is critically involved in neuronal survival and death. Resveratrol is a non-flavonoid polyphenol that has neuroprotective effects against many neurological disorders. Here, we investigated the potential protective effects of resveratrol in an in vitro ER stress model mimicked by tunicamycin (TM treatment in neuronal HT22 cells. We found that TM dose-dependently decreased cell viability and increased apoptosis, which were both significantly attenuated by resveratrol treatment. Resveratrol markedly reduced the expression or activation of ER stress-associated factors, including GRP78, CHOP, and caspase-12. The results of immunocytochemistry and western blot showed that resveratrol promoted autophagy in TM-treated cells, as evidenced by increased LC3II puncta number, bcelin1 expression and LC3II/LC3I ratio. Pretreatment with the autophagy inhibitor chloroquine could reduce the protective effects of resveratrol. In addition, the expression of Sirt3 protein and its downstream enzyme activities were significantly increased in resveratrol-treated HT22 cells. To confirm the involvement of Sirt3-mediated mechanisms, siRNA transfection was used to knockdown Sirt3 expression in vitro. The results showed that downregulation of Sirt3 could partially prevented the autophagy and protection induced by resveratrol after TM treatment. Our study demonstrates a pivotal role of Sirt3-mediated autophagy in mediating resveratrol-induced protection against ER stress in vitro, and suggests the therapeutic values of resveratrol in ER stress-associated neuronal injury conditions.

  3. Curcumin Suppresses Proliferation and Migration of MDA-MB-231 Breast Cancer Cells through Autophagy-Dependent Akt Degradation

    Science.gov (United States)

    Zhang, Yemin; Zhou, Yu; Li, Mingxin; Wang, Changhua

    2016-01-01

    Previous studies have evidenced that the anticancer potential of curcumin (diferuloylmethane), a main yellow bioactive compound from plant turmeric was mediated by interfering with PI3K/Akt signaling. However, the underlying molecular mechanism is still poorly understood. This study experimentally revealed that curcumin treatment reduced Akt protein expression in a dose- and time-dependent manner in MDA-MB-231 breast cancer cells, along with an activation of autophagy and suppression of ubiquitin-proteasome system (UPS) function. The curcumin-reduced Akt expression, cell proliferation, and migration were prevented by genetic and pharmacological inhibition of autophagy but not by UPS inhibition. Additionally, inactivation of AMPK by its specific inhibitor compound C or by target shRNA-mediated silencing attenuated curcumin-activated autophagy. Thus, these results indicate that curcumin-stimulated AMPK activity induces activation of the autophagy-lysosomal protein degradation pathway leading to Akt degradation and the subsequent suppression of proliferation and migration in breast cancer cell. PMID:26752181

  4. Calpain Inhibition Is Protective in Machado-Joseph Disease Zebrafish Due to Induction of Autophagy.

    Science.gov (United States)

    Watchon, Maxinne; Yuan, Kristy C; Mackovski, Nick; Svahn, Adam J; Cole, Nicholas J; Goldsbury, Claire; Rinkwitz, Silke; Becker, Thomas S; Nicholson, Garth A; Laird, Angela S

    2017-08-09

    The neurodegenerative disease Machado-Joseph disease (MJD), also known as spinocerebellar ataxin-3, affects neurons of the brain and spinal cord, disrupting control of the movement of muscles. We have successfully established the first transgenic zebrafish ( Danio rerio ) model of MJD by expressing human ataxin-3 protein containing either 23 glutamines (23Q, wild-type) or 84Q (MJD-causing) within neurons. Phenotypic characterization of the zebrafish (male and female) revealed that the ataxin-3-84Q zebrafish have decreased survival compared with ataxin-3-23Q and develop ataxin-3 neuropathology, ataxin-3 cleavage fragments and motor impairment. Ataxin-3-84Q zebrafish swim shorter distances than ataxin-3-23Q zebrafish as early as 6 days old, even if expression of the human ataxin-3 protein is limited to motor neurons. This swimming phenotype provides a valuable readout for drug treatment studies. Treating the EGFP-ataxin-3-84Q zebrafish with the calpain inhibitor compound calpeptin decreased levels of ataxin-3 cleavage fragments, but also removed all human ataxin-3 protein (confirmed by ELISA) and prevented the early MJD zebrafish motor phenotype. We identified that this clearance of ataxin-3 protein by calpeptin treatment resulted from an increase in autophagic flux (indicated by decreased p62 levels and increased LC3II). Cotreatment with the autophagy inhibitor chloroquine blocked the decrease in human ataxin-3 levels and the improved movement produced by calpeptin treatment. This study demonstrates that this first transgenic zebrafish model of MJD is a valuable tool for testing potential treatments for MJD. Calpeptin treatment is protective in this model of MJD and removal of human ataxin-3 through macro-autophagy plays an important role in this beneficial effect. SIGNIFICANCE STATEMENT We have established the first transgenic zebrafish model of the neurodegenerative disease MJD, and identified relevant disease phenotypes, including impaired movement from an early

  5. Autophagy and leucine promote chronological longevity and respiration proficiency during calorie restriction in yeast

    OpenAIRE

    Aris, John P.; Alvers, Ashley L.; Ferraiuolo, Roy A.; Fishwick, Laura K.; Hanvivatpong, Amanda; Hu, Doreen; Kirlew, Christine; Leonard, Michael T.; Losin, Kyle J.; Marraffini, Michelle; Seo, Arnold Y.; Swanberg, Veronica; Westcott, Jennifer L.; Wood, Michael S.; Leeuwenburgh, Christiaan

    2013-01-01

    We have previously shown that autophagy is required for chronological longevity in the budding yeast Saccharomyces cerevisiae. Here we examine the requirements for autophagy during extension of chronological life span (CLS) by calorie restriction (CR). We find that autophagy is upregulated by two CR interventions that extend CLS: water wash CR and low glucose CR. Autophagy is required for full extension of CLS during water wash CR under all growth conditions tested. In contrast, autophagy was...

  6. Iron starvation induces apoptosis in Rhizopus oryzae in vitro.

    Science.gov (United States)

    Shirazi, Fazal; Kontoyiannis, Dimitrios P; Ibrahim, Ashraf S

    2015-01-01

    Mortality associated with mucormycosis remains high despite current antifungals. Iron-starvation strategies have been shown to have promising activity against Mucorales. We hypothesized that iron starvation enhances apoptosis in Rhizopus oryzae. Apoptosis was characterized in R. oryzae transformed with RNAi plasmid targeting FTR1 expression (iron permease mutant) or empty plasmid grown in iron rich (0.125% FeCl3) and iron depleted media (YNB+1mM ferrozine and 1 mM ascorbic acid). Increased apoptosis was observed with dihydrorhodamine-123 and rhodamine-123 staining in the iron starved mutant FTR1 when compared to empty plasmid, followed by increased extracellular ATP levels. In addition, DNA fragmentation and metacaspase activity were prominent in FTR1. In contrast, Rhizopus strains grown in iron-rich medium displayed minimal apoptosis. Our results demonstrate a metacaspase dependent apoptotic process in iron deprived condition and further support the role of iron starvation strategies as an adjunct treatment for mucormycosis, a mechanism by which iron starvation affects R. oryzae.

  7. Autophagy in proximal tubules protects against acute kidney injury.

    Science.gov (United States)

    Jiang, Man; Wei, Qingqing; Dong, Guie; Komatsu, Masaaki; Su, Yunchao; Dong, Zheng

    2012-12-01

    Autophagy is induced in renal tubular cells during acute kidney injury; however, whether this is protective or injurious remains controversial. We address this question by pharmacologic and genetic blockade of autophagy using mouse models of cisplatin- and ischemia-reperfusion-induced acute kidney injury. Chloroquine, a pharmacological inhibitor of autophagy, blocked autophagic flux and enhanced acute kidney injury in both models. Rapamycin, however, activated autophagy and protected against cisplatin-induced acute kidney injury. We also established a renal proximal tubule-specific autophagy-related gene 7-knockout mouse model shown to be defective in both basal and cisplatin-induced autophagy in kidneys. Compared with wild-type littermates, these knockout mice were markedly more sensitive to cisplatin-induced acute kidney injury as indicated by renal functional loss, tissue damage, and apoptosis. Mechanistically, these knockout mice had heightened activation of p53 and c-Jun N terminal kinase, the signaling pathways contributing to cisplatin acute kidney injury. Proximal tubular cells isolated from the knockout mice were more sensitive to cisplatin-induced apoptosis than cells from wild-type mice. In addition, the knockout mice were more sensitive to renal ischemia-reperfusion injury than their wild-type littermates. Thus, our results establish a renoprotective role of tubular cell autophagy in acute kidney injury where it may interfere with cell killing mechanisms.

  8. Laser stimulation can activate autophagy in HeLa cells

    International Nuclear Information System (INIS)

    Wang, Yisen; Hu, Minglie; Wang, Chingyue; Lan, Bei; Cao, Youjia; He, Hao

    2014-01-01

    For decades, lasers have been a daily tool in most biological research for fluorescent excitation by confocal or multiphoton microscopy. More than 20 years ago, cell photodamage caused by intense laser stimulation was noticed by generating reactive oxygen species, which was then thought as the main damage effect by photons. In this study, we show that laser stimulation can induce autophagy, an important cell lysosomal pathway responding to immune stimulation and starvation, without any biochemical treatment. Two different types of laser stimulations are found to be capable of activating autophagy: continuous scanning by continuous-wave visible lasers and a short-time flash of femtosecond laser irradiation. The autophagy generation is independent from wavelength, power, and scanning duration of the visible lasers. In contrast, the power of femtosecond laser is very critical to autophagy because the multiphoton excited Ca 2+ dominates autophagy signaling. In general, we show here the different mechanisms of autophagy generation by such laser stimulation, which correspond to confocal microscopy and cell surgery, respectively. Those results can help further understanding of photodamage and autophagy signaling.

  9. Nanomaterials and Autophagy: New Insights in Cancer Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Panzarini, Elisa; Inguscio, Valentina; Tenuzzo, Bernardetta Anna; Carata, Elisabetta; Dini, Luciana, E-mail: luciana.dini@unisalento.it [Department of Biological and Environmental Science and Technology (Di.S.Te.B.A.), University of Salento, Lecce 73100 (Italy)

    2013-03-21

    Autophagy represents a cell’s response to stress. It is an evolutionarily conserved process with diversified roles. Indeed, it controls intracellular homeostasis by degradation and/or recycling intracellular metabolic material, supplies energy, provides nutrients, eliminates cytotoxic materials and damaged proteins and organelles. Moreover, autophagy is involved in several diseases. Recent evidences support a relationship between several classes of nanomaterials and autophagy perturbation, both induction and blockade, in many biological models. In fact, the autophagic mechanism represents a common cellular response to nanomaterials. On the other hand, the dynamic nature of autophagy in cancer biology is an intriguing approach for cancer therapeutics, since during tumour development and therapy, autophagy has been reported to trigger both an early cell survival and a late cell death. The use of nanomaterials in cancer treatment to deliver chemotherapeutic drugs and target tumours is well known. Recently, autophagy modulation mediated by nanomaterials has become an appealing notion in nanomedicine therapeutics, since it can be exploited as adjuvant in chemotherapy or in the development of cancer vaccines or as a potential anti-cancer agent. Herein, we summarize the effects of nanomaterials on autophagic processes in cancer, also considering the therapeutic outcome of synergism between nanomaterials and autophagy to improve existing cancer therapies.

  10. Laser stimulation can activate autophagy in HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yisen; Hu, Minglie; Wang, Chingyue [Ultrafast Laser Laboratory, Key Laboratory of Optoelectronic Information Technology (Ministry of Education), College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin (China); Lan, Bei; Cao, Youjia [Key Laboratory of Microbial Functional Genomics of Ministry of Education, College of Life Sciences, Nankai University, Tianjin (China); He, Hao, E-mail: haohe@tju.edu.cn [Ultrafast Laser Laboratory, Key Laboratory of Optoelectronic Information Technology (Ministry of Education), College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin (China); Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai (China)

    2014-10-27

    For decades, lasers have been a daily tool in most biological research for fluorescent excitation by confocal or multiphoton microscopy. More than 20 years ago, cell photodamage caused by intense laser stimulation was noticed by generating reactive oxygen species, which was then thought as the main damage effect by photons. In this study, we show that laser stimulation can induce autophagy, an important cell lysosomal pathway responding to immune stimulation and starvation, without any biochemical treatment. Two different types of laser stimulations are found to be capable of activating autophagy: continuous scanning by continuous-wave visible lasers and a short-time flash of femtosecond laser irradiation. The autophagy generation is independent from wavelength, power, and scanning duration of the visible lasers. In contrast, the power of femtosecond laser is very critical to autophagy because the multiphoton excited Ca{sup 2+} dominates autophagy signaling. In general, we show here the different mechanisms of autophagy generation by such laser stimulation, which correspond to confocal microscopy and cell surgery, respectively. Those results can help further understanding of photodamage and autophagy signaling.

  11. Distinct Contributions of Autophagy Receptors in Measles Virus Replication.

    Science.gov (United States)

    Petkova, Denitsa S; Verlhac, Pauline; Rozières, Aurore; Baguet, Joël; Claviere, Mathieu; Kretz-Remy, Carole; Mahieux, Renaud; Viret, Christophe; Faure, Mathias

    2017-05-22

    Autophagy is a potent cell autonomous defense mechanism that engages the lysosomal pathway to fight intracellular pathogens. Several autophagy receptors can recognize invading pathogens in order to target them towards autophagy for their degradation after the fusion of pathogen-containing autophagosomes with lysosomes. However, numerous intracellular pathogens can avoid or exploit autophagy, among which is measles virus (MeV). This virus induces a complete autophagy flux, which is required to improve viral replication. We therefore asked how measles virus interferes with autophagy receptors during the course of infection. We report that in addition to NDP52/CALCOCO₂ and OPTINEURIN/OPTN, another autophagy receptor, namely T6BP/TAXIBP1, also regulates the maturation of autophagosomes by promoting their fusion with lysosomes, independently of any infection. Surprisingly, only two of these receptors, NDP52 and T6BP, impacted measles virus replication, although independently, and possibly through physical interaction with MeV proteins. Thus, our results suggest that a restricted set of autophagosomes is selectively exploited by measles virus to replicate in the course of infection.

  12. Autophagy and Alzheimer's Disease: From Molecular Mechanisms to Therapeutic Implications.

    Science.gov (United States)

    Uddin, Md Sahab; Stachowiak, Anna; Mamun, Abdullah Al; Tzvetkov, Nikolay T; Takeda, Shinya; Atanasov, Atanas G; Bergantin, Leandro B; Abdel-Daim, Mohamed M; Stankiewicz, Adrian M

    2018-01-01

    Alzheimer's disease (AD) is the most common cause of progressive dementia in the elderly. It is characterized by a progressive and irreversible loss of cognitive abilities and formation of senile plaques, composed mainly of amyloid β (Aβ), and neurofibrillary tangles (NFTs), composed of tau protein, in the hippocampus and cortex of afflicted humans. In brains of AD patients the metabolism of Aβ is dysregulated, which leads to the accumulation and aggregation of Aβ. Metabolism of Aβ and tau proteins is crucially influenced by autophagy. Autophagy is a lysosome-dependent, homeostatic process, in which organelles and proteins are degraded and recycled into energy. Thus, dysfunction of autophagy is suggested to lead to the accretion of noxious proteins in the AD brain. In the present review, we describe the process of autophagy and its importance in AD. Additionally, we discuss mechanisms and genes linking autophagy and AD, i.e., the mTOR pathway, neuroinflammation, endocannabinoid system, ATG7, BCL2, BECN1, CDK5, CLU, CTSD, FOXO1, GFAP, ITPR1, MAPT, PSEN1, SNCA, UBQLN1 , and UCHL1 . We also present pharmacological agents acting via modulation of autophagy that may show promise in AD therapy. This review updates our knowledge on autophagy mechanisms proposing novel therapeutic targets for the treatment of AD.

  13. Autophagy and senescence: a partnership in search of definition.

    Science.gov (United States)

    Gewirtz, David A

    2013-05-01

    Autophagy and senescence share a number of characteristics, which suggests that both responses could serve to collaterally protect the cell from the toxicity of external stress such as radiation and chemotherapy and internal forms of stress such as telomere shortening and oncogene activation. Studies of oncogene activation in normal fibroblasts as well as exposure of tumor cells to chemotherapy have indicated that autophagy and senescence are closely related but not necessarily interdependent responses; specifically, interference with autophagy delays but does not abrogate senescence. The literature relating to this topic is inconclusive, with some reports appearing to be consistent with a direct relationship between autophagy and senescence and others indicative of an inverse relationship. Before this question can be resolved, additional studies will be necessary where autophagy is clearly inhibited by genetic silencing and where the temporal responses of both autophagy and senescence are monitored, preferably in cells that are intrinsically incapable of apoptosis or where apoptosis is suppressed. Understanding the nature of this relationship may provide needed insights relating to cytoprotective as well as potential cytotoxic functions of both autophagy and senescence.

  14. Autophagy as an Emerging Common Pathomechanism in Inherited Peripheral Neuropathies

    Directory of Open Access Journals (Sweden)

    Mansour Haidar

    2017-05-01

    Full Text Available The inherited peripheral neuropathies (IPNs comprise a growing list of genetically heterogeneous diseases. With mutations in more than 80 genes being reported to cause IPNs, a wide spectrum of functional consequences is expected to follow this genotypic diversity. Hence, the search for a common pathomechanism among the different phenotypes has become the holy grail of functional research into IPNs. During the last decade, studies on several affected genes have shown a direct and/or indirect correlation with autophagy. Autophagy, a cellular homeostatic process, is required for the removal of cell aggregates, long-lived proteins and dead organelles from the cell in double-membraned vesicles destined for the lysosomes. As an evolutionarily highly conserved process, autophagy is essential for the survival and proper functioning of the cell. Recently, neuronal cells have been shown to be particularly vulnerable to disruption of the autophagic pathway. Furthermore, autophagy has been shown to be affected in various common neurodegenerative diseases of both the central and the peripheral nervous system including Alzheimer’s, Parkinson’s, and Huntington’s diseases. In this review we provide an overview of the genes involved in hereditary neuropathies which are linked to autophagy and we propose the disruption of the autophagic flux as an emerging common pathomechanism. We also shed light on the different steps of the autophagy pathway linked to these genes. Finally, we review the concept of autophagy being a therapeutic target in IPNs, and the possibilities and challenges of this pathway-specific targeting.

  15. The regulation of autophagy differentially affects Trypanosoma cruzi metacyclogenesis

    Science.gov (United States)

    Vanrell, María Cristina; Losinno, Antonella Denisse; Cueto, Juan Agustín; Balcazar, Darío; Fraccaroli, Laura Virginia; Carrillo, Carolina

    2017-01-01

    Autophagy is a cellular process required for the removal of aged organelles and cytosolic components through lysosomal degradation. All types of eukaryotic cells from yeasts to mammalian cells have the machinery to activate autophagy as a result of many physiological and pathological situations. The most frequent stimulus of autophagy is starvation and the result, in this case, is the fast generation of utilizable food (e.g. amino acids and basic nutrients) to maintain the vital biological processes. In some organisms, starvation also triggers other associated processes such as differentiation. The protozoan parasite Trypanosoma cruzi undergoes a series of differentiation processes throughout its complex life cycle. Although not all autophagic genes have been identified in the T. cruzi genome, previous works have demonstrated the presence of essential autophagic-related proteins. Under starvation conditions, TcAtg8, which is the parasite homolog of Atg8/LC3 in other organisms, is located in autophagosome-like vesicles. In this work, we have characterized the autophagic pathway during T. cruzi differentiation from the epimastigote to metacyclic trypomastigote form, a process called metacyclogenesis. We demonstrated that autophagy is stimulated during metacyclogenesis and that the induction of autophagy promotes this process. Moreover, with exception of bafilomycin, other classical autophagy modulators have similar effects on T. cruzi autophagy. We also showed that spermidine and related polyamines can positively regulate parasite autophagy and differentiation. We concluded that both polyamine metabolism and autophagy are key processes during T. cruzi metacyclogenesis that could be exploited as drug targets to avoid the parasite cycle progression. PMID:29091711

  16. The regulation of autophagy differentially affects Trypanosoma cruzi metacyclogenesis.

    Directory of Open Access Journals (Sweden)

    María Cristina Vanrell

    2017-11-01

    Full Text Available Autophagy is a cellular process required for the removal of aged organelles and cytosolic components through lysosomal degradation. All types of eukaryotic cells from yeasts to mammalian cells have the machinery to activate autophagy as a result of many physiological and pathological situations. The most frequent stimulus of autophagy is starvation and the result, in this case, is the fast generation of utilizable food (e.g. amino acids and basic nutrients to maintain the vital biological processes. In some organisms, starvation also triggers other associated processes such as differentiation. The protozoan parasite Trypanosoma cruzi undergoes a series of differentiation processes throughout its complex life cycle. Although not all autophagic genes have been identified in the T. cruzi genome, previous works have demonstrated the presence of essential autophagic-related proteins. Under starvation conditions, TcAtg8, which is the parasite homolog of Atg8/LC3 in other organisms, is located in autophagosome-like vesicles. In this work, we have characterized the autophagic pathway during T. cruzi differentiation from the epimastigote to metacyclic trypomastigote form, a process called metacyclogenesis. We demonstrated that autophagy is stimulated during metacyclogenesis and that the induction of autophagy promotes this process. Moreover, with exception of bafilomycin, other classical autophagy modulators have similar effects on T. cruzi autophagy. We also showed that spermidine and related polyamines can positively regulate parasite autophagy and differentiation. We concluded that both polyamine metabolism and autophagy are key processes during T. cruzi metacyclogenesis that could be exploited as drug targets to avoid the parasite cycle progression.

  17. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Cheng-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Graduate Institute of Pharmaceutical Science and Technology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan (China); Kuan, Yu-Hsiang [Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Ou, Yen-Chuan; Li, Jian-Ri [Division of Urology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Wu, Chih-Cheng [Department of Anesthesiology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Department of Financial and Computational Mathematics, Providence University, Taichung 433, Taiwan (China); Pan, Pin-Ho [Department of Pediatrics, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan (China); Chen, Wen-Ying [Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Huang, Hsuan-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Chen, Chun-Jung, E-mail: cjchen@vghtc.gov.tw [Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan (China); Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Center for General Education, Tunghai University, Taichung 407, Taiwan (China); Department of Nursing, HungKuang University, Taichung 433, Taiwan (China)

    2014-09-10

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK.

  18. The regulation of autophagy differentially affects Trypanosoma cruzi metacyclogenesis.

    Science.gov (United States)

    Vanrell, María Cristina; Losinno, Antonella Denisse; Cueto, Juan Agustín; Balcazar, Darío; Fraccaroli, Laura Virginia; Carrillo, Carolina; Romano, Patricia Silvia

    2017-11-01

    Autophagy is a cellular process required for the removal of aged organelles and cytosolic components through lysosomal degradation. All types of eukaryotic cells from yeasts to mammalian cells have the machinery to activate autophagy as a result of many physiological and pathological situations. The most frequent stimulus of autophagy is starvation and the result, in this case, is the fast generation of utilizable food (e.g. amino acids and basic nutrients) to maintain the vital biological processes. In some organisms, starvation also triggers other associated processes such as differentiation. The protozoan parasite Trypanosoma cruzi undergoes a series of differentiation processes throughout its complex life cycle. Although not all autophagic genes have been identified in the T. cruzi genome, previous works have demonstrated the presence of essential autophagic-related proteins. Under starvation conditions, TcAtg8, which is the parasite homolog of Atg8/LC3 in other organisms, is located in autophagosome-like vesicles. In this work, we have characterized the autophagic pathway during T. cruzi differentiation from the epimastigote to metacyclic trypomastigote form, a process called metacyclogenesis. We demonstrated that autophagy is stimulated during metacyclogenesis and that the induction of autophagy promotes this process. Moreover, with exception of bafilomycin, other classical autophagy modulators have similar effects on T. cruzi autophagy. We also showed that spermidine and related polyamines can positively regulate parasite autophagy and differentiation. We concluded that both polyamine metabolism and autophagy are key processes during T. cruzi metacyclogenesis that could be exploited as drug targets to avoid the parasite cycle progression.

  19. Fentanyl induces autophagy via activation of the ROS/MAPK pathway and reduces the sensitivity of cisplatin in lung cancer cells.

    Science.gov (United States)

    Yao, Jiaqi; Ma, Chi; Gao, Wei; Liang, Jinxiao; Liu, Chang; Yang, Hongfang; Yan, Qiu; Wen, Qingping

    2016-12-01

    Cancer pain is the most common complication of lung carcinoma. Opioid agonist fentanyl is widely used for relieving pain in cancer patients, and cisplatin (DDP)‑based chemotherapy is commonly used for the treatment of advanced lung cancer; these two drugs are always used together in lung carcinoma patients. However, the mechanisms and related biological pathways by which fentanyl influences cisplatin sensitivity are relatively poorly reported. Here, we found that fentanyl reduces the sensitivity of cisplatin in human lung cancer cells and induces autophagy. Fentanyl induced reactive oxygen species (ROS) generation and JNK activation. N-acetyl‑L‑cysteine is a ROS scavenger and antioxidant, and the inhibition of JNK with SP600125 prevented fentanyl‑induced autophagy. We also found that 3-methyladenine (3-MA; an autophagy inhibitor) increased the sensitivity of DDP and weakened the inhibition of fentanyl. In conclusion, fentanyl reduces the sensitivity of cisplatin in lung cancer cells through the ROS-JNK-autophagy pathway, whereas the autophagy inhibitor 3-MA may weaken this effect.

  20. Zymophagy: Selective Autophagy of Secretory Granules

    Directory of Open Access Journals (Sweden)

    Maria I. Vaccaro

    2012-01-01

    Full Text Available Timing is everything. That's especially true when it comes to the activation of enzymes created by the pancreas to break down food. Pancreatic enzymes are packed in secretory granules as precursor molecules called zymogens. In physiological conditions, those zymogens are activated only when they reach the gut, where they get to work releasing and distributing nutrients that we need to survive. If this process fails and the enzymes are prematurely activated within the pancreatic cell, before they are released from the gland, they break down the pancreas itself causing acute pancreatitis. This is a painful disease that ranges from a mild and autolimited process to a severe and lethal condition. Recently, we demonstrated that the pancreatic acinar cell is able to switch on a refined mechanism that could explain the autolimited form of the disease. This is a novel selective form of autophagy named zymophagy, a cellular process to specifically detect and degrade secretory granules containing activated enzymes before they can digest the organ. In this work, we revise the molecules and mechanisms that mediate zymophagy, a selective autophagy of secretory granules.

  1. ER stress, autophagy, and RNA viruses

    Directory of Open Access Journals (Sweden)

    Jia-Rong eJheng

    2014-08-01

    Full Text Available Endoplasmic reticulum (ER stress is a general term for representing the pathway by which various stimuli affect ER functions. ER stress induces the evolutionarily conserved signaling pathways, called the unfolded protein response (UPR, which compromises the stimulus and then determines whether the cell survives or dies. In recent years, ongoing research has suggested that these pathways may be linked to the autophagic response, which plays a key role in the cell’s response to various stressors. Autophagy performs a self-digestion function, and its activation protects cells against certain pathogens. However, the link between the UPR and autophagy may be more complicated. These two systems may act dependently, or the induction of one system may interfere with the other. Experimental studies have found that different viruses modulate these mechanisms to allow them to escape the host immune response or, worse, to exploit the host’s defense to their advantage; thus, this topic is a critical area in antiviral research. In this review, we summarize the current knowledge about how RNA viruses, including influenza virus, poliovirus, coxsackievirus, enterovirus 71, Japanese encephalitis virus, hepatitis C virus, and dengue virus, regulate these processes. We also discuss recent discoveries and how these will produce novel strategies for antiviral treatment.

  2. Autophagy in HCV Infection: Keeping Fat and Inflammation at Bay

    Directory of Open Access Journals (Sweden)

    Tiziana Vescovo

    2014-01-01

    Full Text Available Hepatitis C virus (HCV infection is one of the main causes of chronic liver disease. Viral persistence and pathogenesis rely mainly on the ability of HCV to deregulate specific host processes, including lipid metabolism and innate immunity. Recently, autophagy has emerged as a cellular pathway, playing a role in several aspects of HCV infection. This review summarizes current knowledge on the molecular mechanisms that link the HCV life cycle with autophagy machinery. In particular, we discuss the role of HCV/autophagy interaction in dysregulating inflammation and lipid homeostasis and its potential for translational applications in the treatment of HCV-infected patients.

  3. Multiscale and Multimodal Approaches to Study Autophagy in Model Plants

    Directory of Open Access Journals (Sweden)

    Jessica Marion

    2018-01-01

    Full Text Available Autophagy is a catabolic process used by eukaryotic cells to maintain or restore cellular and organismal homeostasis. A better understanding of autophagy in plant biology could lead to an improvement of the recycling processes of plant cells and thus contribute, for example, towards reducing the negative ecological consequences of nitrogen-based fertilizers in agriculture. It may also help to optimize plant adaptation to adverse biotic and abiotic conditions through appropriate plant breeding or genetic engineering to incorporate useful traits in relation to this catabolic pathway. In this review, we describe useful protocols for studying autophagy in the plant cell, taking into account some specificities of the plant model.

  4. The nuclear receptor NR4A1 induces a form of cell death dependent on autophagy in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Jimena Bouzas-Rodríguez

    Full Text Available The control of cell death is a biological process essential for proper development, and for preventing devastating pathologies like cancer and neurodegeneration. On the other hand, autophagy regulation is essential for protein and organelle degradation, and its dysfunction is associated with overlapping pathologies like cancer and neurodegeneration, but also for microbial infection and aging. In the present report we show that two evolutionarily unrelated receptors--Neurokinin 1 Receptor (NK(1R, a G-protein coupled receptor, and Insulin-like Growth Factor 1 Receptor (IGF1R, a tyrosine kinase receptor--both induce non-apoptotic cell death with autophagic features and requiring the activity of the autophagic core machinery proteins PI3K-III, Beclin-1 and Atg7. Remarkably, this form of cell death occurs in apoptosis-competent cells. The signal transduction pathways engaged by these receptors both converged on the activation of the nuclear receptor NR4A1, which has previously been shown to play a critical role in some paradigms of apoptosis and in NK(1R-induced cell death. The activity of NR4A1 was necessary for IGF1R-induced cell death, as well as for a canonical model of cell death by autophagy induced by the presence of a pan-caspase inhibitor, suggesting that NR4A1 is a general modulator of this kind of cell death. During cell death by autophagy, NR4A1 was transcriptionally competent, even though a fraction of it was present in the cytoplasm. Interestingly, NR4A1 interacts with the tumor suppressor p53 but not with Beclin-1 complex. Therefore the mechanism to promote cell death by autophagy might involve regulation of gene expression, as well as protein interactions. Understanding the molecular basis of autophagy and cell death mediation by NR4A1, should provide novel insights and targets for therapeutic intervention.

  5. mir-30d Regulates multiple genes in the autophagy pathway and impairs autophagy process in human cancer cells

    International Nuclear Information System (INIS)

    Yang, Xiaojun; Zhong, Xiaomin; Tanyi, Janos L.; Shen, Jianfeng; Xu, Congjian; Gao, Peng; Zheng, Tim M.; DeMichele, Angela; Zhang, Lin

    2013-01-01

    Highlights: ► Gene set enrichment analysis indicated mir-30d might regulate the autophagy pathway. ► mir-30d represses the expression of BECN1, BNIP3L, ATG12, ATG5 and ATG2. ► BECN1, BNIP3L, ATG12, ATG5 and ATG2 are direct targets of mir-30d. ► mir-30d inhibits autophagosome formation and LC3B-I conversion to LC3B-II. ► mir-30d regulates the autophagy process. -- Abstract: In human epithelial cancers, the microRNA (miRNA) mir-30d is amplified with high frequency and serves as a critical oncomir by regulating metastasis, apoptosis, proliferation, and differentiation. Autophagy, a degradation pathway for long-lived protein and organelles, regulates the survival and death of many cell types. Increasing evidence suggests that autophagy plays an important function in epithelial tumor initiation and progression. Using a combined bioinformatics approach, gene set enrichment analysis, and miRNA target prediction, we found that mir-30d might regulate multiple genes in the autophagy pathway including BECN1, BNIP3L, ATG12, ATG5, and ATG2. Our further functional experiments demonstrated that the expression of these core proteins in the autophagy pathway was directly suppressed by mir-30d in cancer cells. Finally, we showed that mir-30d regulated the autophagy process by inhibiting autophagosome formation and LC3B-I conversion to LC3B-II. Taken together, our results provide evidence that the oncomir mir-30d impairs the autophagy process by targeting multiple genes in the autophagy pathway. This result will contribute to understanding the molecular mechanism of mir-30d in tumorigenesis and developing novel cancer therapy strategy

  6. Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation

    Science.gov (United States)

    Fritzen, Andreas M.; Madsen, Agnete B.; Kleinert, Maximilian; Treebak, Jonas T.; Lundsgaard, Anne‐Marie; Jensen, Thomas E.; Richter, Erik A.; Wojtaszewski, Jørgen; Kiens, Bente

    2016-01-01

    Key points Regulation of autophagy in human muscle in many aspects differs from the majority of previous reports based on studies in cell systems and rodent muscle.An acute bout of exercise and insulin stimulation reduce human muscle autophagosome content.An acute bout of exercise regulates autophagy by a local contraction‐induced mechanism.Exercise training increases the capacity for formation of autophagosomes in human muscle.AMPK activation during exercise seems insufficient to regulate autophagosome content in muscle, while mTORC1 signalling via ULK1 probably mediates the autophagy‐inhibiting effect of insulin. Abstract Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one‐legged exercise, one‐legged exercise training and subsequent insulin stimulation in exercised and non‐exercised human muscle. Acute one‐legged exercise decreased (Pexercise in human muscle. The decrease in LC3‐II/LC3‐I ratio did not correlate with activation of 5′AMP activated protein kinase (AMPK) trimer complexes in human muscle. Consistently, pharmacological AMPK activation with 5‐aminoimidazole‐4‐carboxamide riboside (AICAR) in mouse muscle did not affect the LC3‐II/LC3‐I ratio. Four hours after exercise, insulin further reduced (Pexercised and non‐exercised leg in humans. This coincided with increased Ser‐757 phosphorylation of Unc51 like kinase 1 (ULK1), which is suggested as a mammalian target of rapamycin complex 1 (mTORC1) target. Accordingly, inhibition of mTOR signalling in mouse muscle prevented the ability of insulin to reduce the LC3‐II/LC3‐I ratio. In response to 3 weeks of one‐legged exercise training, the LC3‐II/LC3‐I ratio decreased (Pexercise and insulin stimulation reduce muscle autophagosome content, while exercise

  7. The lack of autophagy triggers precocious activation of Notch signaling during Drosophila oogenesis.

    Science.gov (United States)

    Barth, Julia M I; Hafen, Ernst; Köhler, Katja

    2012-12-05

    The proper balance of autophagy, a lysosome-mediated degradation process, is indispensable for oogenesis in Drosophila. We recently demonstrated that egg development depends on autophagy in the somatic follicle cells (FC), but not in the germline cells (GCs). However, the lack of autophagy only affects oogenesis when FCs are autophagy-deficient but GCs are wild type, indicating that a dysfunctional signaling between soma and germline may be responsible for the oogenesis defects. Thus, autophagy could play an essential role in modulating signal transduction pathways during egg development. Here, we provide further evidence for the necessity of autophagy during oogenesis and demonstrate that autophagy is especially required in subsets of FCs. Generation of autophagy-deficient FCs leads to a wide range of phenotypes that are similar to mutants with defects in the classical cell-cell signaling pathways in the ovary. Interestingly, we observe that loss of autophagy leads to a precocious activation of the Notch pathway in the FCs as monitored by the expression of Cut and Hindsight, two downstream effectors of Notch signaling. Our findings point to an unexpected function for autophagy in the modulation of the Notch signaling pathway during Drosophila oogenesis and suggest a function for autophagy in proper receptor activation. Egg development is affected by an imbalance of autophagy between signal sending (germline) and signal receiving cell (FC), thus the lack of autophagy in the germline is likely to decrease the amount of active ligand and accordingly compensates for increased signaling in autophagy-defective follicle cells.

  8. The Protective Effects of Κ-Opioid Receptor Stimulation in Hypoxic Pulmonary Hypertension Involve Inhibition of Autophagy Through the AMPK-MTOR Pathway

    Directory of Open Access Journals (Sweden)

    Yaguang Zhou

    2017-12-01

    Full Text Available Background/Aims: In a previous study, we showed that κ-opioid receptor stimulation with the selective agonist U50,488H ameliorated hypoxic pulmonary hypertension (HPH. However, the roles that pulmonary arterial smooth muscle cell (PASMC proliferation, apoptosis, and autophagy play in κ-opioid receptor-mediated protection against HPH are still unknown. The goal of the present study was to investigate the role of autophagy in U50,488H-induced HPH protection and the underlying mechanisms. Methods: Rats were exposed to 10% oxygen for three weeks to induce HPH. After hypoxia, the mean pulmonary arterial pressure (mPAP and the right ventricular pressure (RVP were measured. Cell viability was monitored using the Cell Counting Kit-8 (CCK-8 assay. Cell apoptosis was detected by flow cytometry and Western blot. Autophagy was assessed by means of the mRFP-GFP-LC3 adenovirus transfection assay and by Western blot. Results: Inhibition of autophagy by the administration of chloroquine prevented the development of HPH in the rat model, as evidenced by significantly reduced mPAP and RVP, as well as decreased autophagy. U50,488H mimicked the effects of chloroquine, and the effects of U50,488H were blocked by nor-BNI, a selective κ-opioid receptor antagonist. In vitro experiments showed that the inhibition of autophagy by chloroquine was associated with decreased proliferation and increased apoptosis of PASMCs. Under hypoxia, U50,488H also significantly inhibited autophagy, reduced proliferation and increased apoptosis of PASMCs. These effects of U50,488H were blocked by nor-BNI. Moreover, exposure to hypoxic conditions significantly increased AMPK phosphorylation and reduced mTOR phosphorylation, and these effects were abrogated by U50,488H. The effects of U50,488H on PASMC autophagy were inhibited by AICAR, a selective AMPK agonist, or by rapamycin, a selective mTOR inhibitor. Conclusion: Our data provide evidence for the first time that κ-opioid receptor

  9. Globular Adiponectin Attenuated H2O2-Induced Apoptosis in Rat Chondrocytes by Inducing Autophagy Through the AMPK/ mTOR Pathway.

    Science.gov (United States)

    Hu, Junzheng; Cui, Weiding; Ding, Wenxiao; Gu, Yanqing; Wang, Zhen; Fan, Weimin

    2017-01-01

    Chondrocyte apoptosis is closely related to the development and progression of osteoarthritis. Global adiponectin (gAPN), secreted from adipose tissue, possesses potent anti-inflammatory and antiapoptotic properties in various cell types. This study aimed to investigate the role of autophagy induced by gAPN in the suppression of H2O2-induced apoptosis and the potential mechanism of gAPN-induced autophagy in chondrocytes. H2O2 was used to induce apoptotic injury in rat chondrocytes. CCK-8 assay was performed to determine the viability of cells treated with different concentrations of gAPN with or without H2O2. Cell apoptosis was detected by flow cytometry and TUNEL staining. Mitochondrial membrane potential was examined using JC-1 fluorescence staining assay. The autophagy inhibitors 3-MA and Bafilomycin A1 were used to treat cells and then evaluate the effect of gAPN-induced autophagy. To determine the downstream pathway, chondrocytes were preincubated with the AMPK inhibitor Compound C. Beclin-1, LC3B, P62 and apoptosis-related proteins were identified by Western blot analysis. H2O2 (400 µM)-induced chondrocytes apoptosis and caspase-3 activation were attenuated by gAPN (0.5 µg/mL). gAPN increased Bcl-2 expression and decreased Bax expression. The loss of mitochondrial membrane potential induced by H2O2 was also abolished by gAPN. Furthermore, the antiapoptotic effect of gAPN was related to gAPN-induced autophagy by increased formation of Beclin-1 and LC3B and P62 degradation. In particular, the inhibition of gAPN-induced autophagy by 3-MA prevented the protective effect of gAPN on apoptosis induced by H2O2. Moreover, gAPN increased p-AMPK expression and decreased p-mTOR expression. Compound C partly suppressed the expression of autophagy-related proteins and restored the expression of p-mTOR suppressed by gAPN. Thus, the AMPK/mTOR pathway played an important role in the induction of autophagy and protection of H2O2-induced chondrocytes apoptosis by gAPN. g

  10. Autophagy in Skeletal Muscle Homeostasis and in Muscular Dystrophies

    Directory of Open Access Journals (Sweden)

    Paolo Bonaldo

    2012-07-01

    Full Text Available Skeletal muscles are the agent of motion and one of the most important tissues responsible for the control of metabolism. The maintenance of muscle homeostasis is finely regulated by the balance between catabolic and anabolic process. Macroautophagy (or autophagy is a catabolic process that provides the degradation of protein aggregation and damaged organelles through the fusion between autophagosomes and lysosomes. Proper regulation of the autophagy flux is fundamental for the homeostasis of skeletal muscles during physiological situations and in response to stress. Defective as well as excessive autophagy is harmful for muscle health and has a pathogenic role in several forms of muscle diseases. This review will focus on the role of autophagy in muscle homeostasis and diseases.

  11. Glucocorticoids induce autophagy in rat bone marrow mesenchymal stem cells

    DEFF Research Database (Denmark)

    Wang, L.; Fan, J.; Lin, Y. S.

    2015-01-01

    and their responses to diverse stimuli, however, the role of autophagy in glucocorticoidinduced damage to bone marrow mesenchymal stem cells (BMSCs) remains unclear. The current study confirmed that glucocorticoid administration impaired the proliferation of BMSCs. Transmission electron microscopy...

  12. Autophagy as a mediator of life and death in plants.

    Science.gov (United States)

    Üstün, Suayib; Hafrén, Anders; Hofius, Daniel

    2017-12-01

    Autophagy is a major pathway for degradation and recycling of cytoplasmic material, including individual proteins, aggregates, and entire organelles. Autophagic processes serve mainly survival functions in cellular homeostasis, stress adaptation and immune responses but can also have death-promoting activities in different eukaryotic organisms. In plants, the role of autophagy in the regulation of programmed cell death (PCD) remained elusive and a subject of debate. More recent evidence, however, has resulted in the consensus that autophagy can either promote or restrict different forms of PCD. Here, we present latest advances in understanding the molecular mechanisms and functions of plant autophagy and discuss their implications for life and death decisions in the context of developmental and pathogen-induced PCD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Autophagy as a Therapeutic Target in Cardiovascular Disease

    Science.gov (United States)

    Nemchenko, Andriy; Chiong, Mario; Turer, Aslan; Lavandero, Sergio; Hill, Joseph A.

    2011-01-01

    The epidemic of heart failure continues apace, and development of novel therapies with clinical efficacy has lagged. Now, important insights into the molecular circuitry of cardiovascular autophagy have raised the prospect that this cellular pathway of protein quality control may be a target of clinical relevance. Whereas basal levels of autophagy are required for cell survival, excessive levels – or perhaps distinct forms of autophagic flux – contribute to disease pathogenesis. Our challenge will be to distinguish mechanisms that drive adaptive versus maladaptive autophagy and to manipulate those pathways for therapeutic gain. Recent evidence suggests this may be possible. Here, we review the fundamental biology of autophagy and its role in a variety of forms of cardiovascular disease. We discuss ways in which this evolutionarily conserved catabolic mechanism can be manipulated, discuss studies presently underway in heart disease, and provide our perspective on where this exciting field may lead in the future. PMID:21723289

  14. Autophagy Regulates Colistin-Induced Apoptosis in PC-12 Cells

    Science.gov (United States)

    Zhang, Ling; Zhao, Yonghao; Ding, Wenjian; Jiang, Guozheng; Lu, Ziyin; Li, Li; Wang, Jinli

    2015-01-01

    Colistin is a cyclic cationic polypeptide antibiotic with activity against multidrug-resistant Gram-negative bacteria. Our recent study demonstrated that colistin induces apoptosis in primary chick cortex neurons and PC-12 cells. Although apoptosis and autophagy have different impacts on cell fate, there is a complex interaction between them. Autophagy plays an important role as a homeostasis regulator by removing excessive or unnecessary proteins and damaged organelles. The aim of the present study was to investigate the modulation of autophagy and apoptosis regulation in PC-12 cells in response to colistin treatment. PC-12 cells were exposed to colistin (125 to 250 μg/ml), and autophagy was detected by visualization of monodansylcadaverine (MDC)-labeled vacuoles, LC3 (microtubule-associated protein 1 light chain 3) immunofluorescence microscopic examination, and Western blotting. Apoptosis was measured by flow cytometry, Hoechst 33258 staining, and Western blotting. Autophagosomes were observed after treatment with colistin for 12 h, and the levels of LC3-II gene expression were determined; observation and protein levels both indicated that colistin induced a high level of autophagy. Colistin treatment also led to apoptosis in PC-12 cells, and the level of caspase-3 expression increased over the 24-h period. Pretreatment of cells with 3-methyladenine (3-MA) increased colistin toxicity in PC-12 cells remarkably. However, rapamycin treatment significantly increased the expression levels of LC3-II and beclin 1 and decreased the rate of apoptosis of PC-12 cells. Our results demonstrate that colistin induced autophagy and apoptosis in PC-12 cells and that the latter was affected by the regulation of autophagy. It is very likely that autophagy plays a protective role in the reduction of colistin-induced cytotoxicity in neurons. PMID:25645826

  15. Are mitochondrial reactive oxygen species required for autophagy?

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jianfei, E-mail: jjf73@pitt.edu [Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh (United States); Maeda, Akihiro; Ji, Jing [Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh (United States); Baty, Catherine J.; Watkins, Simon C. [Center for Biologic Imaging, Department of Cell Biology and Physiology, University of Pittsburgh (United States); Greenberger, Joel S. [Department of Radiation Oncology, University of Pittsburgh (United States); Kagan, Valerian E., E-mail: kagan@pitt.edu [Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh (United States)

    2011-08-19

    Highlights: {yields} Autophageal and apoptotic pathways were dissected in cytochrome c deficient cells. {yields} Staurosporine (STS)-induced autophagy was not accompanied by ROS generation. {yields} Autophagy was detectable in mitochondrial DNA deficient {rho}{sup 0} cells. {yields} Mitochondrial ROS are not required for the STS-induced autophagy in HeLa cells. -- Abstract: Reactive oxygen species (ROS) are said to participate in the autophagy signaling. Supporting evidence is obscured by interference of autophagy and apoptosis, whereby the latter heavily relies on ROS signaling. To dissect autophagy from apoptosis we knocked down expression of cytochrome c, the key component of mitochondria-dependent apoptosis, in HeLa cells using shRNA. In cytochrome c deficient HeLa1.2 cells, electron transport was compromised due to the lack of electron shuttle between mitochondrial respiratory complexes III and IV. A rapid and robust LC3-I/II conversion and mitochondria degradation were observed in HeLa1.2 cells treated with staurosporine (STS). Neither generation of superoxide nor accumulation of H{sub 2}O{sub 2} was detected in STS-treated HeLa1.2 cells. A membrane permeable antioxidant, PEG-SOD, plus catalase exerted no effect on STS-induced LC3-I/II conversion and mitochondria degradation. Further, STS caused autophagy in mitochondria DNA-deficient {rho}{sup o} HeLa1.2 cells in which both electron transport and ROS generation were completely disrupted. Counter to the widespread view, we conclude that mitochondrial ROS are not required for the induction of autophagy.

  16. Thermogenic activation represses autophagy in brown adipose tissue.

    Science.gov (United States)

    Cairó, M; Villarroya, J; Cereijo, R; Campderrós, L; Giralt, M; Villarroya, F

    2016-10-01

    Brown adipose tissue (BAT) thermogenesis is an adaptive process, essential for energy expenditure and involved in the control of obesity. Obesity is associated with abnormally increased autophagy in white adipose tissue. Autophagy has been proposed as relevant for brown-vs-white adipocyte differentiation; however, its role in the response of BAT to thermogenic activation is unknown. The effects of thermogenic activation on autophagy in BAT were analyzed in vivo by exposing mice to 24 h cold condition. The effects of norepinephrine (NE), cAMP and modulators of lysosomal activity were determined in differentiated brown adipocytes in the primary culture. Transcript expression was quantified by real-time PCR, and specific proteins were determined by immunoblot. Transmission electron microscopy, as well as confocal microscopy analysis after incubation with specific antibodies or reagents coupled to fluorescent emission, were performed in BAT and cultured brown adipocytes, respectively. Autophagy is repressed in association with cold-induced thermogenic activation of BAT in mice. This effect was mimicked by NE action in brown adipocytes, acting mainly through a cAMP-dependent protein kinase A pathway. Inhibition of autophagy in brown adipocytes leads to an increase in UCP1 protein and uncoupled respiration, suggesting a repressing role for autophagy in relation to the activity of BAT thermogenic machinery. Under basal conditions, brown adipocytes show signs of active lipophagy, which is suppressed by a cAMP-mediated thermogenic stimulus. Our results show a noradrenergic-mediated inverse relationship between autophagy and thermogenic activity in BAT and point toward autophagy repression as a component of brown adipocyte adaptive mechanisms to activate thermogenesis.

  17. p53-Mediated Molecular Control of Autophagy in Tumor Cells

    Directory of Open Access Journals (Sweden)

    Maria Mrakovcic

    2018-03-01

    Full Text Available Autophagy is an indispensable mechanism of the eukaryotic cell, facilitating the removal and renewal of cellular components and thereby balancing the cell’s energy consumption and homeostasis. Deregulation of autophagy is now regarded as one of the characteristic key features contributing to the development of tumors. In recent years, the suppression of autophagy in combination with chemotherapeutic treatment has been approached as a novel therapy in cancer treatment. However, depending on the type of cancer and context, interference with the autophagic machinery can either promote or disrupt tumorigenesis. Therefore, disclosure of the major signaling pathways that regulate autophagy and control tumorigenesis is crucial. To date, several tumor suppressor proteins and oncogenes have emerged as eminent regulators of autophagy whose depletion or mutation favor tumor formation. The mammalian cell “janitor” p53 belongs to one of these tumor suppressors that are most commonly mutated in human tumors. Experimental evidence over the last decade convincingly reports that p53 can act as either an activator or an inhibitor of autophagy depending on its subcellular localization and its mode of action. This finding gains particular significance as p53 deficiency or mutant variants of p53 that accumulate in the cytoplasm of tumor cells enable activation of autophagy. Accordingly, we recently identified p53 as a molecular hub that regulates autophagy and apoptosis in histone deacetylase inhibitor-treated uterine sarcoma cells. In light of this novel experimental evidence, in this review, we focus on p53 signaling as a mediator of the autophagic pathway in tumor cells.

  18. Characterization of a novel autophagy-specific gene, ATG29

    International Nuclear Information System (INIS)

    Kawamata, Tomoko; Kamada, Yoshiaki; Suzuki, Kuninori; Kuboshima, Norihiro; Akimatsu, Hiroshi; Ota, Shinichi; Ohsumi, Mariko; Ohsumi, Yoshinori

    2005-01-01

    Autophagy is a process whereby cytoplasmic proteins and organelles are sequestered for bulk degradation in the vacuole/lysosome. At present, 16 ATG genes have been found that are essential for autophagosome formation in the yeast Saccharomyces cerevisiae. Most of these genes are also involved in the cytoplasm to vacuole transport pathway, which shares machinery with autophagy. Most Atg proteins are colocalized at the pre-autophagosomal structure (PAS), from which the autophagosome is thought to originate, but the precise mechanism of autophagy remains poorly understood. During a genetic screen aimed to obtain novel gene(s) required for autophagy, we identified a novel ORF, ATG29/YPL166w. atg29Δ cells were sensitive to starvation and induction of autophagy was severely retarded. However, the Cvt pathway operated normally. Therefore, ATG29 is an ATG gene specifically required for autophagy. Additionally, an Atg29-GFP fusion protein was observed to localize to the PAS. From these results, we propose that Atg29 functions in autophagosome formation at the PAS in collaboration with other Atg proteins

  19. Integrative metabolomics as emerging tool to study autophagy regulation

    Directory of Open Access Journals (Sweden)

    Sarah Stryeck

    2017-07-01

    Full Text Available Recent technological developments in metabolomics research have enabled in-depth characterization of complex metabolite mixtures in a wide range of biological, biomedical, environmental, agricultural, and nutritional research fields. Nuclear magnetic resonance spectroscopy and mass spectrometry are the two main platforms for performing metabolomics studies. Given their broad applicability and the systemic insight into metabolism that can be ob-tained it is not surprising that metabolomics becomes increasingly popular in basic biological research. In this review, we provide an overview on key me-tabolites, recent studies, and future opportunities for metabolomics in stud-ying autophagy regulation. Metabolites play a pivotal role in autophagy regulation and are therefore key targets for autophagy research. Given the recent success of metabolomics, it can be expected that metabolomics ap-proaches will contribute significantly to deciphering the complex regulatory mechanisms involved in autophagy in the near future and promote under-standing of autophagy and autophagy-related diseases in living cells and or-ganisms.

  20. Impaired Podocyte Autophagy Exacerbates Proteinuria in Diabetic Nephropathy.

    Science.gov (United States)

    Tagawa, Atsuko; Yasuda, Mako; Kume, Shinji; Yamahara, Kosuke; Nakazawa, Jun; Chin-Kanasaki, Masami; Araki, Hisazumi; Araki, Shin-Ichi; Koya, Daisuke; Asanuma, Katsuhiko; Kim, Eun-Hee; Haneda, Masakazu; Kajiwara, Nobuyuki; Hayashi, Kazuyuki; Ohashi, Hiroshi; Ugi, Satoshi; Maegawa, Hiroshi; Uzu, Takashi

    2016-03-01

    Overcoming refractory massive proteinuria remains a clinical and research issue in diabetic nephropathy. This study was designed to investigate the pathogenesis of massive proteinuria in diabetic nephropathy, with a special focus on podocyte autophagy, a system of intracellular degradation that maintains cell and organelle homeostasis, using human tissue samples and animal models. Insufficient podocyte autophagy was observed histologically in patients and rats with diabetes and massive proteinuria accompanied by podocyte loss, but not in those with no or minimal proteinuria. Podocyte-specific autophagy-deficient mice developed podocyte loss and massive proteinuria in a high-fat diet (HFD)-induced diabetic model for inducing minimal proteinuria. Interestingly, huge damaged lysosomes were found in the podocytes of diabetic rats with massive proteinuria and HFD-fed, podocyte-specific autophagy-deficient mice. Furthermore, stimulation of cultured podocytes with sera from patients and rats with diabetes and massive proteinuria impaired autophagy, resulting in lysosome dysfunction and apoptosis. These results suggest that autophagy plays a pivotal role in maintaining lysosome homeostasis in podocytes under diabetic conditions, and that its impairment is involved in the pathogenesis of podocyte loss, leading to massive proteinuria in diabetic nephropathy. These results may contribute to the development of a new therapeutic strategy for advanced diabetic nephropathy. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  1. The role of autophagy in microbial infection and immunity

    Directory of Open Access Journals (Sweden)

    Desai M

    2015-01-01

    Full Text Available Mayura Desai,1 Rong Fang,2 Jiaren Sun11Department of Microbiology and Immunology, 2Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX, USAAbstract: The autophagy pathway represents an evolutionarily conserved cell recycling process that is activated in response to nutrient deprivation and other stress signals. Over the years, it has been linked to an array of cellular functions. Equally, a wide range of cell-intrinsic, as well as extracellular, factors have been implicated in the induction of the autophagy pathway. Microbial infections represent one such factor that can not only activate autophagy through specific mechanisms but also manipulate the response to the invading microbe's advantage. Moreover, in many cases, particularly among viruses, the pathway has been shown to be intricately involved in the replication cycle of the pathogen. Conversely, autophagy also plays a role in combating the infection process, both through direct destruction of the pathogen and as one of the key mediating factors in the host defense mechanisms of innate and adaptive immunity. Further, the pathway also plays a role in controlling the pathogenesis of infectious diseases by regulating inflammation. In this review, we discuss various interactions between pathogens and the cellular autophagic response and summarize the immunological functions of the autophagy pathway.Keywords: autophagy, xenophagy, antiviral, antibacterial

  2. Tenovin-6 impairs autophagy by inhibiting autophagic flux.

    Science.gov (United States)

    Yuan, Hongfeng; Tan, Brandon; Gao, Shou-Jiang

    2017-02-09

    Tenovin-6 has attracted significant interest because it activates p53 and inhibits sirtuins. It has anti-neoplastic effects on multiple hematopoietic malignancies and solid tumors in both in vitro and in vivo studies. Tenovin-6 was recently shown to impair the autophagy pathway in chronic lymphocytic leukemia cells and pediatric soft tissue sarcoma cells. However, whether tenovin-6 has a general inhibitory effect on autophagy and whether there is any involvement with SIRT1 and p53, both of which are regulators of the autophagy pathway, remain unclear. In this study, we have demonstrated that tenovin-6 increases microtubule-associated protein 1 light chain 3 (LC3-II) level in diverse cell types in a time- and dose-dependent manner. Mechanistically, the increase of LC3-II by tenovin-6 is caused by inhibition of the classical autophagy pathway via impairing lysosomal function without affecting the fusion between autophagosomes and lysosomes. Furthermore, we have revealed that tenovin-6 activation of p53 is cell type dependent, and tenovin-6 inhibition of autophagy is not dependent on its regulatory functions on p53 and SIRT1. Our results have shown that tenovin-6 is a potent autophagy inhibitor, and raised the precaution in interpreting results where tenovin-6 is used as an inhibitor of SIRT1.

  3. Retinoid receptor signaling and autophagy in acute promyelocytic leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Orfali, Nina [Cork Cancer Research Center, University College Cork, Cork (Ireland); Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA. (United States); McKenna, Sharon L. [Cork Cancer Research Center, University College Cork, Cork (Ireland); Cahill, Mary R. [Department of Hematology, Cork University Hospital, Cork (Ireland); Gudas, Lorraine J., E-mail: ljgudas@med.cornell.edu [Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA. (United States); Mongan, Nigel P., E-mail: nigel.mongan@nottingham.ac.uk [Faculty of Medicine and Health Science, School of Veterinary Medicine and Science, University of Nottingham, LE12 5RD (United Kingdom); Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA. (United States)

    2014-05-15

    Retinoids are a family of signaling molecules derived from vitamin A with well established roles in cellular differentiation. Physiologically active retinoids mediate transcriptional effects on cells through interactions with retinoic acid (RARs) and retinoid-X (RXR) receptors. Chromosomal translocations involving the RARα gene, which lead to impaired retinoid signaling, are implicated in acute promyelocytic leukemia (APL). All-trans-retinoic acid (ATRA), alone and in combination with arsenic trioxide (ATO), restores differentiation in APL cells and promotes degradation of the abnormal oncogenic fusion protein through several proteolytic mechanisms. RARα fusion-protein elimination is emerging as critical to obtaining sustained remission and long-term cure in APL. Autophagy is a degradative cellular pathway involved in protein turnover. Both ATRA and ATO also induce autophagy in APL cells. Enhancing autophagy may therefore be of therapeutic benefit in resistant APL and could broaden the application of differentiation therapy to other cancers. Here we discuss retinoid signaling in hematopoiesis, leukemogenesis, and APL treatment. We highlight autophagy as a potential important regulator in anti-leukemic strategies. - Highlights: • Normal and aberrant retinoid signaling in hematopoiesis and leukemia is reviewed. • We suggest a novel role for RARα in the development of X-RARα gene fusions in APL. • ATRA therapy in APL activates transcription and promotes onco-protein degradation. • Autophagy may be involved in both onco-protein degradation and differentiation. • Pharmacologic autophagy induction may potentiate ATRA's therapeutic effects.

  4. Cytoplasmic sphingosine-1-phosphate pathway modulates neuronal autophagy.

    Science.gov (United States)

    Moruno Manchon, Jose Felix; Uzor, Ndidi-Ese; Dabaghian, Yuri; Furr-Stimming, Erin E; Finkbeiner, Steven; Tsvetkov, Andrey S

    2015-10-19

    Autophagy is an important homeostatic mechanism that eliminates long-lived proteins, protein aggregates and damaged organelles. Its dysregulation is involved in many neurodegenerative disorders. Autophagy is therefore a promising target for blunting neurodegeneration. We searched for novel autophagic pathways in primary neurons and identified the cytosolic sphingosine-1-phosphate (S1P) pathway as a regulator of neuronal autophagy. S1P, a bioactive lipid generated by sphingosine kinase 1 (SK1) in the cytoplasm, is implicated in cell survival. We found that SK1 enhances flux through autophagy and that S1P-metabolizing enzymes decrease this flux. When autophagy is stimulated, SK1 relocalizes to endosomes/autophagosomes in neurons. Expression of a dominant-negative form of SK1 inhibits autophagosome synthesis. In a neuron model of Huntington's disease, pharmacologically inhibiting S1P-lyase protected neurons from mutant huntingtin-induced neurotoxicity. These results identify the S1P pathway as a novel regulator of neuronal autophagy and provide a new target for developing therapies for neurodegenerative disorders.

  5. Autophagy as a Possible Underlying Mechanism of Nanomaterial Toxicity

    Directory of Open Access Journals (Sweden)

    Vanessa Cohignac

    2014-07-01

    Full Text Available The rapid development of nanotechnologies is raising safety concerns because of the potential effects of engineered nanomaterials on human health, particularly at the respiratory level. Since the last decades, many in vivo studies have been interested in the pulmonary effects of different classes of nanomaterials. It has been shown that some of them can induce toxic effects, essentially depending on their physico-chemical characteristics, but other studies did not identify such effects. Inflammation and oxidative stress are currently the two main mechanisms described to explain the observed toxicity. However, the exact underlying mechanism(s still remain(s unknown and autophagy could represent an interesting candidate. Autophagy is a physiological process in which cytoplasmic components are digested via a lysosomal pathway. It has been shown that autophagy is involved in the pathogenesis and the progression of human diseases, and is able to modulate the oxidative stress and pro-inflammatory responses. A growing amount of literature suggests that a link between nanomaterial toxicity and autophagy impairment could exist. In this review, we will first summarize what is known about the respiratory effects of nanomaterials and we will then discuss the possible involvement of autophagy in this toxicity. This review should help understand why autophagy impairment could be taken as a promising candidate to fully understand nanomaterials toxicity.

  6. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity

    Directory of Open Access Journals (Sweden)

    Stern Stephan T

    2012-06-01

    Full Text Available Abstract The study of the potential risks associated with the manufacture, use, and disposal of nanoscale materials, and their mechanisms of toxicity, is important for the continued advancement of nanotechnology. Currently, the most widely accepted paradigms of nanomaterial toxicity are oxidative stress and inflammation, but the underlying mechanisms are poorly defined. This review will highlight the significance of autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Most endocytic routes of nanomaterial cell uptake converge upon the lysosome, making the lysosomal compartment the most common intracellular site of nanoparticle sequestration and degradation. In addition to the endo-lysosomal pathway, recent evidence suggests that some nanomaterials can also induce autophagy. Among the many physiological functions, the lysosome, by way of the autophagy (macroautophagy pathway, degrades intracellular pathogens, and damaged organelles and proteins. Thus, autophagy induction by nanoparticles may be an attempt to degrade what is perceived by the cell as foreign or aberrant. While the autophagy and endo-lysosomal pathways have the potential to influence the disposition of nanomaterials, there is also a growing body of literature suggesting that biopersistent nanomaterials can, in turn, negatively impact these pathways. Indeed, there is ample evidence that biopersistent nanomaterials can cause autophagy and lysosomal dysfunctions resulting in toxicological consequences.

  7. Role of Autophagy in HIV Pathogenesis and Drug Abuse.

    Science.gov (United States)

    Cao, Lu; Glazyrin, Alexey; Kumar, Santosh; Kumar, Anil

    2017-10-01

    Autophagy is a highly regulated process in which excessive cytoplasmic materials are captured and degraded during deprivation conditions. The unique nature of autophagy that clears invasive microorganisms has made it an important cellular defense mechanism in a variety of clinical situations. In recent years, it has become increasingly clear that autophagy is extensively involved in the pathology of HIV-1. To ensure survival of the virus, HIV-1 viral proteins modulate and utilize the autophagy pathway so that biosynthesis of the virus is maximized. At the same time, the abuse of illicit drugs such as methamphetamine, cocaine, morphine, and alcohol is thought to be a significant risk factor for the acquirement and progression of HIV-1. During drug-induced toxicity, autophagic activity has been proved to be altered in various cell types. Here, we review the current literature on the interaction between autophagy, HIV-1, and drug abuse and discuss the complex role of autophagy during HIV-1 pathogenesis in co-exposure to illicit drugs.

  8. Cell "self-eating" (autophagy) mechanism in Alzheimer's disease.

    Science.gov (United States)

    Funderburk, Sarah F; Marcellino, Bridget K; Yue, Zhenyu

    2010-01-01

    The autophagy pathway is the major degradation pathway of the cell for long-lived proteins and organelles. Dysfunction of autophagy has been linked to several neurodegenerative disorders that are associated with an accumulation of misfolded protein aggregates. Alzheimer's disease, the most common neurodegenerative disorder, is characterized by 2 aggregate forms, tau tangles and amyloid-beta plaques. Autophagy has been linked to Alzheimer's disease pathogenesis through its merger with the endosomal-lysosomal system, which has been shown to play a role in the formation of the latter amyloid-beta plaques. However, the precise role of autophagy in Alzheimer's disease pathogenesis is still under contention. One hypothesis is that aberrant autophagy induction results in an accumulation of autophagic vacuoles containing amyloid-beta and the components necessary for its generation, whereas other evidence points to impaired autophagic clearance or even an overall reduction in autophagic activity playing a role in Alzheimer's disease pathogenesis. In this review, we discuss the current evidence linking autophagy to Alzheimer's disease as well as the uncertainty over the exact role and level of autophagic regulation in the pathogenic mechanism of Alzheimer's disease. (c) 2010 Mount Sinai School of Medicine.

  9. Autophagy inhibitors as a potential antiamoebic treatment for Acanthamoeba keratitis.

    Science.gov (United States)

    Moon, Eun-Kyung; Kim, So-Hee; Hong, Yeonchul; Chung, Dong-Il; Goo, Youn-Kyoung; Kong, Hyun-Hee

    2015-07-01

    Acanthamoeba cysts are resistant to extreme physical and chemical conditions. Autophagy is an essential pathway for encystation of Acanthamoeba cells. To evaluate the possibility of an autophagic Acanthamoeba encystation mechanism, we evaluated autophagy inhibitors, such as 3-methyladenine (3MA), LY294002, wortmannin, bafilomycin A, and chloroquine. Among these autophagy inhibitors, the use of 3MA and chloroquine showed a significant reduction in the encystation ratio in Acanthamoeba cells. Wortmannin also inhibited the formation of mature cysts, while LY294002 and bafilomycin A did not affect the encystation of Acanthamoeba cells. Transmission electron microscopy revealed that 3MA and wortmannin inhibited autophagy formation and that chloroquine interfered with the formation of autolysosomes. Inhibition of autophagy or autolysosome formation resulted in a significant block in the encystation in Acanthamoeba cells. Clinical treatment with 0.02% polyhexamethylene biguanide (PHMB) showed high cytopathic effects on Acanthamoeba trophozoites and cysts; however, it also revealed high cytopathic effects on human corneal epithelial cells. In this study, we investigated effects of the combination of a low (0.00125%) concentration of PHMB with each of the autophagy inhibitors 3MA, wortmannin, and chloroquine on Acanthamoeba and human corneal epithelial cells. These new combination treatments showed low cytopathic effects on human corneal cells and high cytopathic effects on Acanthamoeba cells. Taken together, these results provide fundamental information for optimizing the treatment of Acanthamoeba keratitis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Targeting autophagy in cancer management – strategies and developments

    International Nuclear Information System (INIS)

    Ozpolat, Bulent; Benbrook, Doris M

    2015-01-01

    Autophagy is a highly regulated catabolic process involving lysosomal degradation of intracellular components, damaged organelles, misfolded proteins, and toxic aggregates, reducing oxidative stress and protecting cells from damage. The process is also induced in response to various conditions, including nutrient deprivation, metabolic stress, hypoxia, anticancer therapeutics, and radiation therapy to adapt cellular conditions for survival. Autophagy can function as a tumor suppressor mechanism in normal cells and dysregulation of this process (ie, monoallelic Beclin-1 deletion) may lead to malignant transformation and carcinogenesis. In tumors, autophagy is thought to promote tumor growth and progression by helping cells to adapt and survive in metabolically-challenged and harsh tumor microenvironments (ie, hypoxia and acidity). Recent in vitro and in vivo studies in preclinical models suggested that modulation of autophagy can be used as a therapeutic modality to enhance the efficacy of conventional therapies, including chemo and radiation therapy. Currently, more than 30 clinical trials are investigating the effects of autophagy inhibition in combination with cytotoxic chemotherapies and targeted agents in various cancers. In this review, we will discuss the role, molecular mechanism, and regulation of autophagy, while targeting this process as a novel therapeutic modality, in various cancers

  11. High intensity aerobic exercise training improves chronic intermittent hypoxia-induced insulin resistance without basal autophagy modulation.

    Science.gov (United States)

    Pauly, Marion; Assense, Allan; Rondon, Aurélie; Thomas, Amandine; Dubouchaud, Hervé; Freyssenet, Damien; Benoit, Henri; Castells, Josiane; Flore, Patrice

    2017-03-03

    Chronic intermittent hypoxia (IH) associated with obstructive sleep apnea (OSA) is a major risk factor for cardiovascular and metabolic diseases (insulin resistance: IR). Autophagy is involved in the pathophysiology of IR and high intensity training (HIT) has recently emerged as a potential therapy. We aimed to confirm IH-induced IR in a tissue-dependent way and to explore the preventive effect of HIT on IR-induced by IH. Thirty Swiss 129 male mice were randomly assigned to Normoxia (N), Intermittent Hypoxia (IH: 21-5% FiO 2 , 30 s cycle, 8 h/day) or IH associated with high intensity training (IH HIT). After 8 days of HIT (2*24 min, 50 to 90% of Maximal Aerobic Speed or MAS on a treadmill) mice underwent 14 days IH or N. We found that IH induced IR, characterized by a greater glycemia, an impaired insulin sensitivity and lower AKT phosphorylation in adipose tissue and liver. Nevertheless, MAS and AKT phosphorylation were greater in muscle after IH. IH associated with HIT induced better systemic insulin sensitivity and AKT phosphorylation in liver. Autophagy markers were not altered in both conditions. These findings suggest that HIT could represent a preventive strategy to limit IH-induced IR without change of basal autophagy.

  12. SIRT1 protects cardiac cells against apoptosis induced by zearalenone or its metabolites α- and β-zearalenol through an autophagy-dependent pathway.

    Science.gov (United States)

    Ben Salem, Intidhar; Boussabbeh, Manel; Pires Da Silva, Julie; Guilbert, Arnaud; Bacha, Hassen; Abid-Essefi, Salwa; Lemaire, Christophe

    2017-01-01

    Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin produced by several species of Fusarium in cereals and agricultural products. The major ZEN metabolites are α-zearalenol (α-ZOL) and β-zearalenol (β-ZOL). In the present study, we investigated the underlying mechanism of the toxicity induced by ZEN, α-ZOL and β-ZOL in cardiac cells (H9c2). We show that treatment with ZEN or its metabolites induces the activation of the mitochondrial pathway of apoptosis as characterized by an increase in ROS generation, a loss of mitochondrial transmembrane potential (ΔΨm) and an activation of caspases. Besides, we demonstrate that these mycotoxins promote the activation of autophagy before the onset of apoptosis. Indeed, we observed that a short-time (6h) treatment with ZEN, α-ZOL or β-ZOL, increased the level of Beclin-1 and LC3-II and induced the accumulation of the CytoID® autophagy detection probe. Moreover, the inhibition of autophagy by Chloroquine significantly increased cell death induced by ZEN, α-ZOL or β-ZOL, suggesting that the activation of autophagy serves as a cardioprotective mechanism against these mycotoxins. In addition, we found that the inhibition (EX527) or the knockdown of SIRT1 (siRNA) significantly increased apoptosis induced by ZEN or its derivatives, whereas SIRT1 activation with RSV greatly prevents the cytotoxic effects of these mycotoxins. By contrast, when autophagy was inhibited by CQ, the activation of SIRT1 by RSV had no protection against the cardiotoxicity of ZEN or its metabolites, suggesting that SIRT1 protects cardiac cells by an autophagy-dependent pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Angiogenesis impairment in diabetes: role of methylglyoxal-induced receptor for advanced glycation endproducts, autophagy and vascular endothelial growth factor receptor 2.

    Directory of Open Access Journals (Sweden)

    Hongtao Liu

    Full Text Available Diabetes impairs physiological angiogenesis by molecular mechanisms that are not fully understood. Methylglyoxal (MGO, a metabolite of glycolysis, is increased in patients with diabetes. This study defined the role of MGO in angiogenesis impairment and tested the mechanism in diabetic animals. Endothelial cells and mouse aortas were subjected to Western blot analysis of vascular endothelial growth factor receptor 2 (VEGFR2 protein levels and angiogenesis evaluation by endothelial cell tube formation/migration and aortic ring assays. Incubation with MGO reduced VEGFR2 protein, but not mRNA, levels in a time and dose dependent manner. Genetic knockdown of the receptor for advanced glycation endproducts (RAGE attenuated the reduction of VEGFR2. Overexpression of Glyoxalase 1, the enzyme that detoxifies MGO, reduced the MGO-protein adducts and prevented VEGFR2 reduction. The VEGFR2 reduction was associated with impaired angiogenesis. Suppression of autophagy either by inhibitors or siRNA, but not of the proteasome and caspase, normalized both the VEGFR2 protein levels and angiogenesis. Conversely, induction of autophagy either by rapamycin or overexpression of LC3 and Beclin-1 reduced VEGFR2 and angiogenesis. MGO increased endothelial LC3B and Beclin-1, markers of autophagy, which were accompanied by an increase of both autophagic flux (LC3 punctae and co-immunoprecipitation of VEGFR2 with LC3. Pharmacological or genetic suppression of peroxynitrite (ONOO(- generation not only blocked the autophagy but also reversed the reduction of VEGFR2 and angiogenesis. Like MGO-treated aortas from normglycemic C57BL/6J mice, aortas from diabetic db/db and Akita mice presented reductions of angiogenesis or VEGFR2. Administration of either autophagy inhibitor ex vivo or superoxide scavenger in vivo abolished the reductions. Taken together, MGO reduces endothelial angiogenesis through RAGE-mediated, ONOO(-dependent and autophagy-induced VEGFR2 degradation, which

  14. Autophagy is essential for the differentiation of porcine PSCs into insulin-producing cells.

    Science.gov (United States)

    Ren, Lipeng; Yang, Hong; Cui, Yanhua; Xu, Shuanshuan; Sun, Fen; Tian, Na; Hua, Jinlian; Peng, Sha

    2017-07-01

    Porcine pancreatic stem cells (PSCs) are seed cells with potential use for diabetes treatment. Stem cell differentiation requires strict control of protein turnover and lysosomal digestion of organelles. Autophagy is a highly conserved process that controls the turnover of organelles and proteins within cells and contributes to the balance of cellular components. However, whether autophagy plays roles in PSC differentiation remains unknown. In this study, we successfully induced porcine PSCs into insulin-producing cells and found that autophagy was activated during the second induction stage. Inhibition of autophagy in the second stage resulted in reduced differentiational efficiency and impaired glucose-stimulated insulin secretion. Moreover, the expression of active β-catenin increased while autophagy was activated but was suppressed when autophagy was inhibited. Therefore, autophagy is essential to the formation of insulin-producing cells, and the effects of autophagy on differentiation may be regulated by canonical Wnt signalling pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The Effects of Kaempferol-Inhibited Autophagy on Osteoclast Formation.

    Science.gov (United States)

    Kim, Chang-Ju; Shin, Sang-Hun; Kim, Bok-Joo; Kim, Chul-Hoon; Kim, Jung-Han; Kang, Hae-Mi; Park, Bong-Soo; Kim, In-Ryoung

    2018-01-02

    Kaempferol, a flavonoid compound, is derived from the rhizome of Kaempferia galanga L ., which is used in traditional medicine in Asia. Autophagy has pleiotropic functions that are involved in cell growth, survival, nutrient supply under starvation, defense against pathogens, and antigen presentation. There are many studies dealing with the inhibitory effects of natural flavonoids in bone resorption. However, no studies have explained the relationship between the autophagic and inhibitory processes of osteoclastogenesis by natural flavonoids. The present study was undertaken to investigate the inhibitory effects of osteoclastogenesis through the autophagy inhibition process stimulated by kaempferol in murin macrophage (RAW 264.7) cells. The cytotoxic effect of Kaempferol was investigated by MTT assay. The osteoclast differentiation and autophagic process were confirmed via tartrate-resistant acid phosphatase (TRAP) staining, pit formation assay, western blot, and real-time PCR. Kaempferol controlled the expression of autophagy-related factors and in particular, it strongly inhibited the expression of p62/SQSTM1. In the western blot and real time-PCR analysis, when autophagy was suppressed with the application of 3-Methyladenine (3-MA) only, osteoclast and apoptosis related factors were not significantly affected. However, we found that after cells were treated with kaempferol, these factors inhibited autophagy and activated apoptosis. Therefore, we presume that kaempferol-inhibited autophagy activated apoptosis by degradation of p62/SQSTM1. Further study of the p62/SQSTM1 gene as a target in the autophagy mechanism, may help to delineate the potential role of kaempferol in the treatment of bone metabolism disorders.

  16. Sinomenine Hydrochloride Protects against Polymicrobial Sepsis via Autophagy

    Directory of Open Access Journals (Sweden)

    Yu Jiang

    2015-01-01

    Full Text Available Sepsis, a systemic inflammatory response to infection, is the major cause of death in intensive care units (ICUs. The mortality rate of sepsis remains high even though the treatment and understanding of sepsis both continue to improve. Sinomenine (SIN is a natural alkaloid extracted from Chinese medicinal plant Sinomenium acutum, and its hydrochloride salt (Sinomenine hydrochloride, SIN-HCl is widely used to treat rheumatoid arthritis (RA. However, its role in sepsis remains unclear. In the present study, we investigated the role of SIN-HCl in sepsis induced by cecal ligation and puncture (CLP in BALB/c mice and the corresponding mechanism. SIN-HCl treatment improved the survival of BALB/c mice that were subjected to CLP and reduced multiple organ dysfunction and the release of systemic inflammatory mediators. Autophagy activities were examined using Western blotting. The results showed that CLP-induced autophagy was elevated, and SIN-HCl treatment further strengthened the autophagy activity. Autophagy blocker 3-methyladenine (3-MA was used to investigate the mechanism of SIN-HCl in vitro. Autophagy activities were determined by examining the autophagosome formation, which was shown as microtubule-associated protein light chain 3 (LC3 puncta with green immunofluorescence. SIN-HCl reduced lipopolysaccharide (LPS-induced inflammatory cytokine release and increased autophagy in peritoneal macrophages (PM. 3-MA significantly decreased autophagosome formation induced by LPS and SIN-HCl. The decrease of inflammatory cytokines caused by SIN-HCl was partially aggravated by 3-MA treatment. Taken together, our results indicated that SIN-HCl could improve survival, reduce organ damage, and attenuate the release of inflammatory cytokines induced by CLP, at least in part through regulating autophagy activities.

  17. The protective effect of autophagy on mouse spermatocyte derived cells exposure to 1800MHz radiofrequency electromagnetic radiation.

    Science.gov (United States)

    Liu, Kaijun; Zhang, Guowei; Wang, Zhi; Liu, Yong; Dong, Jianyun; Dong, Xiaomei; Liu, Jinyi; Cao, Jia; Ao, Lin; Zhang, Shaoxiang

    2014-08-04

    The increasing exposure to radiofrequency (RF) radiation emitted from mobile phone use has raised public concern regarding the biological effects of RF exposure on the male reproductive system. Autophagy contributes to maintaining intracellular homeostasis under environmental stress. To clarify whether RF exposure could induce autophagy in the spermatocyte, mouse spermatocyte-derived cells (GC-2) were exposed to 1800MHz Global System for Mobile Communication (GSM) signals in GSM-Talk mode at specific absorption rate (SAR) values of 1w/kg, 2w/kg or 4w/kg for 24h, respectively. The results indicated that the expression of LC3-II increased in a dose- and time-dependent manner with RF exposure, and showed a significant change at the SAR value of 4w/kg. The autophagosome formation and the occurrence of autophagy were further confirmed by GFP-LC3 transient transfection assay and transmission electron microscopy (TEM) analysis. Furthermore, the conversion of LC3-I to LC3-II was enhanced by co-treatment with Chloroquine (CQ), indicating autophagic flux could be enhanced by RF exposure. Intracellular ROS levels significantly increased in a dose- and time-dependent manner after cells were exposed to RF. Pretreatment with anti-oxidative NAC obviously decreased the conversion of LC3-I to LC3-II and attenuated the degradation of p62 induced by RF exposure. Meanwhile, phosphorylated extracellular-signal-regulated kinase (ERK) significantly increased after RF exposure at the SAR value of 2w/kg and 4w/kg. Moreover, we observed that RF exposure did not increase the percentage of apoptotic cells, but inhibition of autophagy could increase the percentage of apoptotic cells. These findings suggested that autophagy flux could be enhanced by 1800MHz GSM exposure (4w/kg), which is mediated by ROS generation. Autophagy may play an important role in preventing cells from apoptotic cell death under RF exposure stress. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Dysregulated autophagy in the RPE is associated with increased susceptibility to oxidative stress and AMD.

    Science.gov (United States)

    Mitter, Sayak K; Song, Chunjuan; Qi, Xiaoping; Mao, Haoyu; Rao, Haripriya; Akin, Debra; Lewin, Alfred; Grant, Maria; Dunn, William; Ding, Jindong; Bowes Rickman, Catherine; Boulton, Michael

    2014-01-01

    Autophagic dysregulation has been suggested in a broad range of neurodegenerative diseases including age-related macular degeneration (AMD). To test whether the autophagy pathway plays a critical role to protect retinal pigmented epithelial (RPE) cells against oxidative stress, we exposed ARPE-19 and primary cultured human RPE cells to both acute (3 and 24 h) and chronic (14 d) oxidative stress and monitored autophagy by western blot, PCR, and autophagosome counts in the presence or absence of autophagy modulators. Acute oxidative stress led to a marked increase in autophagy in the RPE, whereas autophagy was reduced under chronic oxidative stress. Upregulation of autophagy by rapamycin decreased oxidative stress-induced generation of reactive oxygen species (ROS), whereas inhibition of autophagy by 3-methyladenine (3-MA) or by knockdown of ATG7 or BECN1 increased ROS generation, exacerbated oxidative stress-induced reduction of mitochondrial activity, reduced cell viability, and increased lipofuscin. Examination of control human donor specimens and mice demonstrated an age-related increase in autophagosome numbers and expression of autophagy proteins. However, autophagy proteins, autophagosomes, and autophagy flux were significantly reduced in tissue from human donor AMD eyes and 2 animal models of AMD. In conclusion, our data confirm that autophagy plays an important role in protection of the RPE against oxidative stress and lipofuscin accumulation and that impairment of autophagy is likely to exacerbate oxidative stress and contribute to the pathogenesis of AMD.

  19. Swimming attenuates d-galactose-induced brain aging via suppressing miR-34a-mediated autophagy impairment and abnormal mitochondrial dynamics.

    Science.gov (United States)

    Kou, Xianjuan; Li, Jie; Liu, Xingran; Chang, Jingru; Zhao, Qingxia; Jia, Shaohui; Fan, Jingjing; Chen, Ning

    2017-06-01

    microRNAs (miRNAs) have been reported to be involved in many neurodegenerative diseases. To explore the regulatory role of miR-34a in aging-related diseases such as Alzheimer's disease (AD) during exercise intervention, we constructed a rat model with d-galactose (d-gal)-induced oxidative stress and cognitive impairment coupled with dysfunctional autophagy and abnormal mitochondrial dynamics, determined the mitigation of cognitive impairment of d-gal-induced aging rats during swimming intervention, and evaluated miR-34a-mediated functional status of autophagy and abnormal mitochondrial dynamics. Meanwhile, whether the upregulation of miR-34a can lead to dysfunctional autophagy and abnormal mitochondrial dynamics was confirmed in human SH-SY5Y cells with silenced miR-34a by the transfection of a miR-34a inhibitor. Results indicated that swimming intervention could significantly attenuate cognitive impairment, prevent the upregulation of miR-34a, mitigate the dysfunctional autophagy, and inhibit the increase of dynamin-related protein 1 (DRP1) in d-gal-induced aging model rats. In contrast, the miR-34a inhibitor in cell model not only attenuated D-gal-induced the impairment of autophagy but also decreased the expression of DRP1 and mitofusin 2 (MFN2). Therefore, swimming training can delay brain aging of d-gal-induced aging rats through attenuating the impairment of miR-34a-mediated autophagy and abnormal mitochondrial dynamics, and miR-34a could be the novel therapeutic target for aging-related diseases such as AD. NEW & NOTEWORTHY In the present study, we have found that the upregulation of miR-34a is the hallmark of aging or aging-related diseases, which can result in dysfunctional autophagy and abnormal mitochondrial dynamics. In contrast, swimming intervention can delay the aging process by rescuing the impaired functional status of autophagy and abnormal mitochondrial dynamics via the suppression of miR-34a. Copyright © 2017 the American Physiological Society.

  20. Autophagy and Non-Alcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Vanessa J. Lavallard

    2014-01-01

    Full Text Available Autophagy, or cellular self-digestion, is a catabolic process that targets cell constituents including damaged organelles, unfolded proteins, and intracellular pathogens to lysosomes for degradation. Autophagy is crucial for development, differentiation, survival, and homeostasis. Important links between the regulation of autophagy and liver complications associated with obesity, non-alcoholic fatty liver disease (NAFLD, have been reported. The spectrum of these hepatic abnormalities extends from isolated steatosis to non-alcoholic steatohepatitis (NASH, steatofibrosis, which sometimes leads to cirrhosis, and hepatocellular carcinoma. NAFLD is one of the three main causes of cirrhosis and increases the risk of liver-related death and hepatocellular carcinoma. The pathophysiological mechanisms of the progression of a normal liver to steatosis and then more severe disease are complex and still unclear. The regulation of the autophagic flux, a dynamic response, and the knowledge of the role of autophagy in specific cells including hepatocytes, hepatic stellate cells, immune cells, and hepatic cancer cells have been extensively studied these last years. This review will provide insight into the current understanding of autophagy and its role in the evolution of the hepatic complications associated with obesity, from steatosis to hepatocellular carcinoma.

  1. Autophagy and non-alcoholic fatty liver disease.

    Science.gov (United States)

    Lavallard, Vanessa J; Gual, Philippe

    2014-01-01

    Autophagy, or cellular self-digestion, is a catabolic process that targets cell constituents including damaged organelles, unfolded proteins, and intracellular pathogens to lysosomes for degradation. Autophagy is crucial for development, differentiation, survival, and homeostasis. Important links between the regulation of autophagy and liver complications associated with obesity, non-alcoholic fatty liver disease (NAFLD), have been reported. The spectrum of these hepatic abnormalities extends from isolated steatosis to non-alcoholic steatohepatitis (NASH), steatofibrosis, which sometimes leads to cirrhosis, and hepatocellular carcinoma. NAFLD is one of the three main causes of cirrhosis and increases the risk of liver-related death and hepatocellular carcinoma. The pathophysiological mechanisms of the progression of a normal liver to steatosis and then more severe disease are complex and still unclear. The regulation of the autophagic flux, a dynamic response, and the knowledge of the role of autophagy in specific cells including hepatocytes, hepatic stellate cells, immune cells, and hepatic cancer cells have been extensively studied these last years. This review will provide insight into the current understanding of autophagy and its role in the evolution of the hepatic complications associated with obesity, from steatosis to hepatocellular carcinoma.

  2. Enhanced Autophagy in Polycystic Kidneys of AQP11 Null Mice

    Directory of Open Access Journals (Sweden)

    Yasuko Tanaka

    2016-11-01

    Full Text Available Aquaporin-11 (AQP11 is an intracellular water channel expressed at the endoplasmic reticulum (ER of the proximal tubule. Its gene disruption in mice leads to intracellular vacuole formation at one week and the subsequent development of polycystic kidneys by three weeks. As the damaged proximal tubular cells with intracellular vacuoles form cysts later, we postulated that autophagy may play a role in the cyst formation and examined autophagy activity before and after cyst development in AQP11(−/− kidneys. PCR analysis showed the increased expression of the transcript encoding LC3 (Map1lc3b as well as other autophagy-related genes in AQP11(−/− mice. Using green fluorescent protein (GFP-LC3 transgenic mice and AQP11(−/− mice, we found that the number of GFP-LC3–positive puncta was increased in the proximal tubule of AQP11(−/− mice before the cyst formation. Interestingly, they were also observed in the cyst-lining epithelial cell. Further PCR analyses revealed the enhanced expression of apoptosis-related and ER stress–related caspase genes before and after the cyst formation, which may cause the enhanced autophagy. These results suggest the involvement of autophagy in the development and maintenance of kidney cysts in AQP11(−/− mice.

  3. Ammonia Induces Autophagy through Dopamine Receptor D3 and MTOR

    Science.gov (United States)

    Li, Zhiyuan; Ji, Xinmiao; Wang, Wenchao; Liu, Juanjuan; Liang, Xiaofei; Wu, Hong; Liu, Jing; Eggert, Ulrike S.; Liu, Qingsong

    2016-01-01

    Hyperammonemia is frequently seen in tumor microenvironments as well as in liver diseases where it can lead to severe brain damage or death. Ammonia induces autophagy, a mechanism that tumor cells may use to protect themselves from external stresses. However, how cells sense ammonia has been unclear. Here we show that culture medium alone containing Glutamine can generate milimolar of ammonia at 37 degrees in the absence of cells. In addition, we reveal that ammonia acts through the G protein-coupled receptor DRD3 (Dopamine receptor D3) to induce autophagy. At the same time, ammonia induces DRD3 degradation, which involves PIK3C3/VPS34-dependent pathways. Ammonia inhibits MTOR (mechanistic target of Rapamycin) activity and localization in cells, which is mediated by DRD3. Therefore, ammonia has dual roles in autophagy: one to induce autophagy through DRD3 and MTOR, the other to increase autophagosomal pH to inhibit autophagic flux. Our study not only adds a new sensing and output pathway for DRD3 that bridges ammonia sensing and autophagy induction, but also provides potential mechanisms for the clinical consequences of hyperammonemia in brain damage, neurodegenerative diseases and tumors. PMID:27077655

  4. Autophagy is required for ectoplasmic specialization assembly in sertoli cells

    Science.gov (United States)

    Liu, Chao; Wang, Hongna; Shang, Yongliang; Liu, Weixiao; Song, Zhenhua; Zhao, Haichao; Wang, Lina; Jia, Pengfei; Gao, Fengyi; Xu, Zhiliang; Yang, Lin; Gao, Fei; Li, Wei

    2016-01-01

    ABSTRACT The ectoplasmic specialization (ES) is essential for Sertoli-germ cell communication to support all phases of germ cell development and maturity. Its formation and remodeling requires rapid reorganization of the cytoskeleton. However, the molecular mechanism underlying the regulation of ES assembly is still largely unknown. Here, we show that Sertoli cell-specific disruption of autophagy influenced male mouse fertility due to the resulting disorganized seminiferous tubules and spermatozoa with malformed heads. In autophagy-deficient mouse testes, cytoskeleton structures were disordered and ES assembly was disrupted. The disorganization of the cytoskeleton structures might be caused by the accumulation of a negative cytoskeleton organization regulator, PDLIM1, and these defects could be partially rescued by Pdlim1 knockdown in autophagy-deficient Sertoli cells. Altogether, our works reveal that the degradation of PDLIM1 by autophagy in Sertoli cells is important for the proper assembly of the ES, and these findings define a novel role for autophagy in Sertoli cell-germ cell communication. PMID:26986811

  5. Regorafenib delays the proliferation of hepatocellular carcinoma by inducing autophagy.

    Science.gov (United States)

    Han, Rui; Li, Shixin

    2018-04-02

    The aim of the present study was to investigate the effects of regorafenib on hepatocellular carcinoma autophagy, thereby supressing the malignancy of HCC. First, HepG2 and Hep3B cell autophagy was investigated using GFP-LC3 transfection after the treatment of regorafenib. Then, the activation of Akt/mTOR signaling was analyzed using western blot. Our data showed that liver cancer cell autophagy was significantly induced by 20 μM regorafenib using GFP-LC3 transfection. Meanwhile, regorafenib-induced cell death could largely be abolished by 3-MA or CQ treatment, suggesting that regorafenib-induced HepG2 cell death was partially dependent on autophagy. Moreover, the activation of Akt/mTOR signaling was inhibited by regorafenib pre-incubation. MTT assay showed the combination use of regorafenib and CDDP led to a stronger growth inhibitory effect on HepG2 and Hep3B cells. In summary, regorafenib may acts an adjunctive therapy for liver cancer patients via modulating autophagy-dependent cell death even when apoptosis resistance is induced in cancer cells.

  6. Autophagy response in the liver of pigeon exposed to avermectin.

    Science.gov (United States)

    Wang, Xian-Song; Liu, Ci; Khoso, Pervez Ahmed; Zheng, Weijia; Li, Ming; Li, Shu

    2017-05-01

    Pesticide residues are an important aspect of environmental pollution. Environmental avermectin residues have produced adverse effects in organisms. Many pesticides exert their toxic effects via the mechanism of autophagy. The purpose of this study was to examine the changes in autophagy levels and in autophagy-related genes, including LC3, Beclin 1, Dynein, ATG5, TORC1, and TORC2, resulting from exposure to subchronic levels of AVM in liver tissue in the king pigeon model. We observed abundant autophagic vacuoles with extensively degraded organelles, autophagosomal vacuoles, secondary lysosomes, and double-membrane structures in the liver. The expression levels of the autophagy-related genes LC3-I, LC3-II, Beclin 1, ATG5, and Dynein were up-regulated; however, TORC1 and TORC2 expression levels were down-regulated. These changes occurred in a concentration-dependent manner after AVM exposure for 30, 60, and 90 days in pigeons. Taken together, these results suggested that AVM increased the autophagic flux and that upregulation of autophagy might be closely related to the hepatotoxicity of AVM in birds.

  7. Targeting autophagy in obesity: from pathophysiology to management.

    Science.gov (United States)

    Zhang, Yingmei; Sowers, James R; Ren, Jun

    2018-04-23

    Obesity poses a severe threat to human health, including the increased prevalence of hypertension, insulin resistance, diabetes mellitus, cancer, inflammation, sleep apnoea and other chronic diseases. Current therapies focus mainly on suppressing caloric intake, but the efficacy of this approach remains poor. A better understanding of the pathophysiology of obesity will be essential for the management of obesity and its complications. Knowledge gained over the past three decades regarding the aetiological mechanisms underpinning obesity has provided a framework that emphasizes energy imbalance and neurohormonal dysregulation, which are tightly regulated by autophagy. Accordingly, there is an emerging interest in the role of autophagy, a conserved homeostatic process for cellular quality control through the disposal and recycling of cellular components, in the maintenance of cellular homeostasis and organ function by selectively ridding cells of potentially toxic proteins, lipids and organelles. Indeed, defects in autophagy homeostasis are implicated in metabolic disorders, including obesity, insulin resistance, diabetes mellitus and atherosclerosis. In this Review, the alterations in autophagy that occur in response to nutrient stress, and how these changes alter the course of obesogenesis and obesity-related complications, are discussed. The potential of pharmacological modulation of autophagy for the management of obesity is also addressed.

  8. In Situ Immunofluorescent Staining of Autophagy in Muscle Stem Cells

    KAUST Repository

    Castagnetti, Francesco

    2017-06-13

    Increasing evidence points to autophagy as a crucial regulatory process to preserve tissue homeostasis. It is known that autophagy is involved in skeletal muscle development and regeneration, and the autophagic process has been described in several muscular pathologies and agerelated muscle disorders. A recently described block of the autophagic process that correlates with the functional exhaustion of satellite cells during muscle repair supports the notion that active autophagy is coupled with productive muscle regeneration. These data uncover the crucial role of autophagy in satellite cell activation during muscle regeneration in both normal and pathological conditions, such as muscular dystrophies. Here, we provide a protocol to monitor the autophagic process in the adult Muscle Stem Cell (MuSC) compartment during muscle regenerative conditions. This protocol describes the setup methodology to perform in situ immunofluorescence imaging of LC3, an autophagy marker, and MyoD, a myogenic lineage marker, in muscle tissue sections from control and injured mice. The methodology reported allows for monitoring the autophagic process in one specific cell compartment, the MuSC compartment, which plays a central role in orchestrating muscle regeneration.

  9. Corrosion-Activated Chemotherapeutic Function of Nanoparticulate Platinum as a Cisplatin Resistance-Overcoming Prodrug with Limited Autophagy Induction.

    Science.gov (United States)

    Cheng, Hsien-Jen; Wu, Te-Haw; Chien, Chih-Te; Tu, Hai-Wei; Cha, Ting-Shan; Lin, Shu-Yi

    2016-11-01

    Despite nanoparticulate platinum (nano-Pt) has been validated to be acting as a platinum-based prodrug for anticancer therapy, the key factor in controlling its cytotoxicity remains to be clarified. In this study, it is found that the corrosion susceptibility of nano-Pt can be triggered by inducing the oxidization of superficial Pt atoms, which can kill both cisplatin-sensitive/resistance cancer cells. Direct evidence in the oxidization of superficial Pt atoms is validated to observe the formation of platinum oxides by X-ray absorption spectroscopy. The cytotoxicity is originated from the dissolution of nano-Pt followed by the release of highly toxic Pt ions during the corrosion process. Additionally, the limiting autophagy induction by nano-Pt might prevent cancer cells from acquiring autophagy-related drug resistance. With such advantages, the possibility of further autophagy-related drug resistance could be substantially reduced or even eliminated in cancer cells treated with nano-Pt. Moreover, nano-Pt is demonstrated to kill cisplatin-resistant cancer cells not only by inducing apoptosis but also by inducing necrosis for pro-inflammatory/inflammatory responses. Thus, nano-Pt treatment might bring additional therapeutic benefits by regulating immunological responses in tumor microenvironment. These findings support the idea that utilizing nano-Pt for its cytotoxic effects might potentially benefit patients with cisplatin resistance in clinical chemotherapy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Inhibition of acrolein-induced autophagy and apoptosis by a glycosaminoglycan from Sepia esculenta ink in mouse Leydig cells.

    Science.gov (United States)

    Gu, Yi-Peng; Yang, Xiao-Mei; Luo, Ping; Li, Yan-Qun; Tao, Ye-Xing; Duan, Zhen-Hua; Xiao, Wei; Zhang, Da-Yan; Liu, Hua-Zhong

    2017-05-01

    In our recent reports, a squid ink polysaccharide (SIP) was found having preventive activity against cyclophosphamide induced damage in mouse testis and ovary. Here we further reveal the regulative mechanism of SIP against chemical toxicity on testis. Leydig cells exposed to acrolein (ACR) underwent apoptosis at 12h and 24h. Before apoptosis, cells occurred autophagy that was confirmed by high autophagic rate and Beclin-1 protein content at 3h. PI3K/Akt and p38 MAPK signal pathways involved in the regulatory mechanisms. These outcomes of ACR were recovered completely by SIP, which was demonstrated by attenuated disruption of redox equilibrium and increased testosterone production, through suppressing ACR-caused autophagy and apoptosis regulated by PI3K/Akt and p38 MAPK signal pathways in Leydig cells. Summarily, autophagy occurred before apoptosis caused by ACR-activated p38 MAPK and PI3K/Akt pathways were blocked by SIP, resulting in survival and functional maintenance of Leydig cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. New Insights into the Role of Mitochondrial Dynamics and Autophagy during Oxidative Stress and Aging in the Heart

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Ikeda

    2014-01-01

    Full Text Available The heart is highly sensitive to the aging process. In the elderly, the heart tends to become hypertrophic and fibrotic. Stiffness increases with ensuing systolic and diastolic dysfunction. Aging also affects the cardiac response to stress. At the molecular level, the aging process is associated with accumulation of damaged proteins and organelles, partially due to defects in protein quality control systems. The accumulation of dysfunctional and abnormal mitochondria is an important pathophysiological feature of the aging process, which is associated with excessive production of reactive oxygen species. Mitochondrial fusion and fission and mitochondrial autophagy are crucial mechanisms for maintaining mitochondrial function and preserving energy production. In particular, mitochondrial fission allows for selective segregation of damaged mitochondria, which are afterward eliminated by autophagy. Unfortunately, recent evidence indicates that mitochondrial dynamics and autophagy are progressively impaired over time, contributing to the aging process. This suggests that restoration of these mechanisms could delay organ senescence and prevent age-associated cardiac diseases. Here, we discuss the current understanding of the close relationship between mitochondrial dynamics, mitophagy, oxidative stress, and aging, with a particular focus on the heart.

  12. Axonal protection by short-term hyperglycemia with involvement of autophagy in TNF-induced optic nerve degeneration

    Directory of Open Access Journals (Sweden)

    Kana eSase

    2015-10-01

    Full Text Available Previous reports showed that short-term hyperglycemia protects optic nerve axons in a rat experimental hypertensive glaucoma model. In this study, we investigated whether short-term hyperglycemia prevents tumor necrosis factor (TNF-induced optic nerve degeneration in rats and examined the role of autophagy in this axon change process. In phosphate-buffered saline-treated rat eyes, no significant difference in axon number between the normoglycemic (NG and streptozotocin-induced hyperglycemic (HG groups was seen at 2weeks. Substantial degenerative changes in the axons were noted 2 weeks after intravitreal injection of TNF in the NG group. However, the HG group showed significant protective effects on axons against TNF-induced optic nerve degeneration compared with the NG group. This protective effect was significantly inhibited by 3-methyladenine, an autophagy inhibitor. Immunoblot analysis showed that the LC3-II level in the optic nerve was increased in the HG group compared with the NG group. Increased p62 protein levels in the optic nerve after TNF injection was observed in the NG group, and this increase was inhibited in the HG group. Electron microscopy showed that autophagosomes were increased in optic nerve axons in the HG group. Immunohistochemical study showed that LC3 was colocalized with nerve fibers in the retina and optic nerve in both the NG and HG groups. Short-term hyperglycemia protects axons against TNF-induced optic nerve degeneration. This axonal-protective effect may be associated with autophagy machinery.

  13. Well begun is half done: Rubella virus perturbs autophagy signaling, thereby facilitating the construction of viral replication compartments.

    Science.gov (United States)

    Orosz, László; Megyeri, Klára

    2016-04-01

    The rubella virus is the causative agent of postnatal German measles and the congenital rubella syndrome. The majority of the rubella virus replication complexes originate from the endomembrane system. The rubella virus perturbs the signaling pathways regulating the formation of autophagic membranes in the infected cells, including the Ras/Raf/MEK/ERK and PI3K/Akt pathways. It is widely accepted that these pathways inhibit autophagy. In contrast, the class III PI3K enzymes are essential for autophagy initiation. By manipulating the Ras/Raf/MEK/ERK, class I PI3K/Akt and class III PI3K axes of signal transduction, the rubella virus may differentially regulate the autophagic cascade, with consequent stimulation of the initiation and strong suppression of the later phases. Dysregulation of autophagy by this virus can have a significant impact on the construction of replication compartments by regulating membrane trafficking. We hypothesize that the rubella virus perturbs the autophagic process in order to prevent the degradation of the virus progeny, and to ensure its replication by hijacking omegasomes for the construction of the replication complexes. The virus is therefore able to utilize an antiviral mechanism to its own advantage. Therapeutic modalities targeting the autophagic process may help to ameliorate the serious consequences of the congenital rubella syndrome. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. SnRK1 activates autophagy via the TOR signaling pathway in Arabidopsis thaliana.

    Science.gov (United States)

    Soto-Burgos, Junmarie; Bassham, Diane C

    2017-01-01

    Autophagy is a degradation process in which cells break down and recycle their cytoplasmic contents when subjected to environmental stress or during cellular remodeling. The Arabidopsis thaliana SnRK1 complex is a protein kinase that senses changes in energy levels and triggers downstream responses to enable survival. Its mammalian ortholog, AMPK, and yeast ortholog, Snf-1, activate autophagy in response to low energy conditions. We therefore hypothesized that SnRK1 may play a role in the regulation of autophagy in response to nutrient or energy deficiency in Arabidopsis. To test this hypothesis, we determined the effect of overexpression or knockout of the SnRK1 catalytic subunit KIN10 on autophagy activation by abiotic stresses, including nutrient deficiency, salt, osmotic, oxidative, and ER stress. While wild-type plants had low basal autophagy activity in control conditions, KIN10 overexpression lines had increased autophagy under these conditions, indicating activation of autophagy by SnRK1. A kin10 mutant had a basal level of autophagy under control conditions similar to wild-type plants, but activation of autophagy by most abiotic stresses was blocked, indicating that SnRK1 is required for autophagy induction by a wide variety of stress conditions. In mammals, TOR is a negative regulator of autophagy, and AMPK acts to activate autophagy both upstream of TOR, by inhibiting its activity, and in a parallel pathway. Inhibition of Arabidopsis TOR leads to activation of autophagy; inhibition of SnRK1 did not block this activation. Furthermore, an increase in SnRK1 activity was unable to induce autophagy when TOR was also activated. These results demonstrate that SnRK1 acts upstream of TOR in the activation of autophagy in Arabidopsis.

  15. TOR-Dependent and -Independent Pathways Regulate Autophagy in Arabidopsis thaliana.

    Science.gov (United States)

    Pu, Yunting; Luo, Xinjuan; Bassham, Diane C

    2017-01-01

    Autophagy is a critical process for recycling of cytoplasmic materials during environmental stress, senescence and cellular remodeling. It is upregulated under a wide range of abiotic stress conditions and is important for stress tolerance. Autophagy is repressed by the protein kinase target of rapamycin (TOR), which is activated in response to nutrients and in turn upregulates cell growth and translation and inhibits autophagy. Down-regulation of TOR in Arabidopsis thaliana leads to constitutive autophagy and to decreased growth, but the relationship to stress conditions is unclear. Here, we assess the extent to which TOR controls autophagy activation by abiotic stress. Overexpression of TOR inhibited autophagy activation by nutrient starvation, salt and osmotic stress, indicating that activation of autophagy under these conditions requires down-regulation of TOR activity. In contrast, TOR overexpression had no effect on autophagy induced by oxidative stress or ER stress, suggesting that activation of autophagy by these conditions is independent of TOR function. The plant hormone auxin has been shown previously to up-regulate TOR activity. To confirm the existence of two pathways for activation of autophagy, dependent on the stress conditions, auxin was added exogenously to activate TOR, and the effect on autophagy under different conditions was assessed. Consistent with the effect of TOR overexpression, the addition of the auxin NAA inhibited autophagy during nutrient deficiency, salt and osmotic stress, but not during oxidative or ER stress. NAA treatment was unable to block autophagy induced by a TOR inhibitor or by a mutation in the TOR complex component RAPTOR1B , indicating that auxin is upstream of TOR in the regulation of autophagy. We conclude that repression of auxin-regulated TOR activity is required for autophagy activation in response to a subset of abiotic stress conditions.

  16. TOR-Dependent and -Independent Pathways Regulate Autophagy in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Yunting Pu

    2017-07-01

    Full Text Available Autophagy is a critical process for recycling of cytoplasmic materials during environmental stress, senescence and cellular remodeling. It is upregulated under a wide range of abiotic stress conditions and is important for stress tolerance. Autophagy is repressed by the protein kinase target of rapamycin (TOR, which is activated in response to nutrients and in turn upregulates cell growth and translation and inhibits autophagy. Down-regulation of TOR in Arabidopsis thaliana leads to constitutive autophagy and to decreased growth, but the relationship to stress conditions is unclear. Here, we assess the extent to which TOR controls autophagy activation by abiotic stress. Overexpression of TOR inhibited autophagy activation by nutrient starvation, salt and osmotic stress, indicating that activation of autophagy under these conditions requires down-regulation of TOR activity. In contrast, TOR overexpression had no effect on autophagy induced by oxidative stress or ER stress, suggesting that activation of autophagy by these conditions is independent of TOR function. The plant hormone auxin has been shown previously to up-regulate TOR activity. To confirm the existence of two pathways for activation of autophagy, dependent on the stress conditions, auxin was added exogenously to activate TOR, and the effect on autophagy under different conditions was assessed. Consistent with the effect of TOR overexpression, the addition of the auxin NAA inhibited autophagy during nutrient deficiency, salt and osmotic stress, but not during oxidative or ER stress. NAA treatment was unable to block autophagy induced by a TOR inhibitor or by a mutation in the TOR complex component RAPTOR1B, indicating that auxin is upstream of TOR in the regulation of autophagy. We conclude that repression of auxin-regulated TOR activity is required for autophagy activation in response to a subset of abiotic stress conditions.

  17. Contribution of Hippocampal 5-HT3 Receptors in Hippocampal Autophagy and Extinction of Conditioned Fear Responses after a Single Prolonged Stress Exposure in Rats.

    Science.gov (United States)

    Wu, Zhong-Min; Yang, Li-Hua; Cui, Rong; Ni, Gui-Lian; Wu, Feng-Tian; Liang, Yong

    2017-05-01

    One of the hypotheses about the pathogenesis of posttraumatic stress disorder (PTSD) is the dysfunction of serotonin (5-HT) neurotransmission. While certain 5-HT receptor subtypes are likely critical for the symptoms of PTSD, few studies have examined the role of 5-HT 3 receptor in the development of PTSD, even though 5-HT 3 receptor is critical for contextual fear extinction and anxiety-like behavior. Therefore, we hypothesized that stimulation of 5-HT 3 receptor in the dorsal hippocampus (DH) could prevent hippocampal autophagy and the development of PTSD-like behavior in animals. To this end, we infused SR57227, selective 5-HT 3 agonist, into the DH after a single prolonged stress (SPS) treatment in rats. Three weeks later, we evaluated the effects of this pharmacological treatment on anxiety-related behaviors and extinction of contextual fear memory. We also accessed hippocampal autophagy and the expression of 5-HT 3A subunit, Beclin-1, LC3-I, and LC3-II in the DH. We found that SPS treatment did not alter anxiety-related behaviors but prolonged the extinction of contextual fear memory, and such a behavioral phenomenon was correlated with increased hippocampal autophagy, decreased 5-HT 3A expression, and increased expression of Beclin-1 and LC3-II/LC3-I ratio in the DH. Furthermore, intraDH infusions of SR57227 dose-dependently promoted the extinction of contextual fear memory, prevented hippocampal autophagy, and decreased expression of Beclin-1 and LC3-II/LC3-I ratio in the DH. These results indicated that 5-HT 3 receptor in the hippocampus may play a critical role in the pathogenesis of hippocampal autophagy, and is likely involved in the pathophysiology of PTSD.

  18. Endotoxemia Engages the RhoA Kinase Pathway to Impair Cardiac Function By Altering Cytoskeleton, Mitochondrial Fission, and Autophagy.

    Science.gov (United States)

    Preau, Sebastien; Delguste, Florian; Yu, Yichi; Remy-Jouet, Isabelle; Richard, Vincent; Saulnier, Fabienne; Boulanger, Eric; Neviere, Remi

    2016-04-01

    The RhoA/ROCK pathway controls crucial biological processes involved in cardiovascular pathophysiology, such as cytoskeleton dynamics, vascular smooth muscle contraction, and inflammation. In this work, we tested whether Rho kinase inhibition would beneficially impact cardiac cytoskeleton organization, bioenergetics, and autophagy in experimental endotoxemia induced by lipopolysaccharides (LPSs) in mice. Fasudil, a potent ROCK inhibitor, prevented LPS-induced cardiac inflammation, oxidative stress, cytoskeleton disarray, and mitochondrial injury. ROCK inhibition prevented phosphorylation of cofilin and dynamin-related protein-1, which promotes stabilization-polymerization of F-actin and mediates mitochondrial fission, respectively. Pyr1, which exclusively alters actin dynamics, prevented LPS-induced myocardial dysfunction, suggesting that beneficial impact of ROCK inhibition was not mainly related to pleiotropic effects of fasudil on cardiac inflammation and oxidative stress. Fasudil reduced mitochondrial fragmentation, stimulated initiation of autophagy, and elicited cardioprotection in LPS heart. Mdivi-1, a potent mitochondria fission inhibitor, converted cardioprotective autophagy to an inefficient form due to cargo loading failure in which autophagic vacuoles fail to trap cytosolic cargo, despite their formation at enhanced rates and lysosomal elimination. In experimental endotoxemia, cardioprotection by RhoA/ROCK inhibition may be related to changes in actin cytoskeleton reorganization and mitochondrial homeostasis. Improvement of LPS-induced mitochondrial dysfunction by fasudil was attributed to inhibition of ROCK-dependent Drp1 phosphorylation and activation of autophagic processes that can limit mitochondrial fragmentation and enhance degradation of damaged mitochondria, respectively. Fasudil prevented LPS-induced heart oxidative stress, abnormal F-actin distribution, and oxidative phosphorylation, which concur to improve cardiac contractile and

  19. Regorafenib impairs mitochondrial functions, activates AMP-activated protein kinase, induces autophagy, and causes rat hepatocyte necrosis.

    Science.gov (United States)

    Weng, Zuquan; Luo, Yong; Yang, Xi; Greenhaw, James J; Li, Haibo; Xie, Liming; Mattes, William B; Shi, Qiang

    2015-01-02

    The tyrosine kinase inhibitor regorafenib was approved by regulatory agencies for cancer treatment, albeit with strong warnings of severe hepatotoxicity included in the product label. The basis of this toxicity is unknown; one possible mechanism, that of mitochondrial damage, was tested. In isolated rat liver mitochondria, regorafenib directly uncoupled oxidative phosphorylation (OXPHOS) and promoted calcium overload-induced swelling, which were respectively prevented by the recoupler 6-ketocholestanol (KC) and the mitochondrial permeability transition (MPT) pore blocker cyclosporine A (CsA). In primary hepatocytes, regorafenib uncoupled OXPHOS, disrupted mitochondrial inner membrane potential (MMP), and decreased cellular ATP at 1h, and triggered MPT at 3h, which was followed by necrosis but not apoptosis at 7h and 24h, all of which were abrogated by KC. The combination of the glycolysis enhancer fructose plus the mitochondrial ATPase synthase inhibitor oligomycin A abolished regorafenib induced necrosis at 7h. This effect was not seen at 24h nor with the fructose or oligomycin A separately. CsA in combination with trifluoperazine, both MPT blockers, showed similar effects. Two compensatory mechanisms, activation of AMP-activated protein kinase (AMPK) to ameliorate ATP shortage and induction of autophagy to remove dysfunctional mitochondria, were found to be mobilized. Hepatocyte necrosis was enhanced either by the AMPK inhibitor Compound C or the autophagy inhibitor chloroquine, while autophagy inducer rapamycin was strongly cytoprotective. Remarkably, all toxic effects were observed at clinically-relevant concentrations of 2.5-15μM. These data suggest that uncoupling of OXPHOS and the resulting ATP shortage and MPT induction are the key mechanisms for regorafenib induced hepatocyte injury, and AMPK activation and autophagy induction serve as pro-survival pathways against such toxicity. Published by Elsevier Ireland Ltd.

  20. Short Telomeres Induce p53 and Autophagy and Modulate Age-Associated Changes in Cardiac Progenitor Cell Fate.

    Science.gov (United States)

    Matsumoto, Collin; Jiang, Yan; Emathinger, Jacqueline; Quijada, Pearl; Nguyen, Nathalie; De La Torre, Andrea; Moshref, Maryam; Nguyen, Jonathan; Levinson, Aimee B; Shin, Minyoung; Sussman, Mark A; Hariharan, Nirmala

    2018-02-14

    Aging severely limits myocardial repair and regeneration. Delineating the impact of age-associated factors such as short telomeres is critical to enhance the regenerative potential of cardiac progenitor cells (CPCs). We hypothesized that short telomeres activate p53 and induce autophagy to elicit the age-associated change in CPC fate. We isolated CPCs and compared mouse strains with different telomere lengths for phenotypic characteristics of aging. Wild mouse strain Mus musculus castaneus (CAST) possessing short telomeres exhibits early cardiac aging with cardiac dysfunction, hypertrophy, fibrosis, and senescence, as compared with common lab strains FVB and C57 bearing longer telomeres. CAST CPCs with short telomeres demonstrate altered cell fate as characterized by cell cycle arrest, senescence, basal commitment, and loss of quiescence. Elongation of telomeres using a modified mRNA for telomerase restores youthful properties to CAST CPCs. Short telomeres induce autophagy in CPCs, a catabolic protein degradation process, as evidenced by reduced p62 and increased accumulation of autophagic puncta. Pharmacological inhibition of autophagosome formation reverses the cell fate to a more youthful phenotype. Mechanistically, cell fate changes induced by short telomeres are partially p53 dependent, as p53 inhibition rescues senescence and commitment observed in CAST CPCs, coincident with attenuation of autophagy. In conclusion, short telomeres activate p53 and autophagy to tip the equilibrium away from quiescence and proliferation toward differentiation and senescence, leading to exhaustion of CPCs. This study provides the mechanistic basis underlying age-associated cell fate changes that will enable identification of molecular strategies to prevent senescence of CPCs. Stem Cells 2018. © AlphaMed Press 2018.

  1. SPBP Is a Sulforaphane Induced Transcriptional Coactivator of NRF2 Regulating Expression of the Autophagy Receptor p62/SQSTM1

    Science.gov (United States)

    Darvekar, Sagar Ramesh; Elvenes, Julianne; Brenne, Hanne Britt; Johansen, Terje; Sjøttem, Eva

    2014-01-01

    Organisms exposed to oxidative stress respond by orchestrating a stress response to prevent further damage. Intracellular levels of antioxidant agents increase, and damaged components are removed by autophagy induction. The KEAP1-NRF2 signaling pathway is the main pathway responsible for cell defense against oxidative stress and for maintaining the cellular redox balance at physiological levels. Sulforaphane, an isothiocyanate derived from cruciferous vegetables, is a potent inducer of KEAP1-NRF2 signaling and antioxidant response element driven gene expression. In this study, we show that sulforaphane enhances the expression of the transcriptional coregulator SPBP. The expression curve peaks 6–8 hours post stimulation, and parallels the sulforaphane-induced expression of NRF2 and the autophagy receptor protein p62/SQSTM1. Reporter gene assays show that SPBP stimulates the expression of p62/SQSTM1 via ARE elements in the promoter region, and siRNA mediated knock down of SPBP significantly decreases the expression of p62/SQSTM1 and the formation of p62/SQSTM1 bodies in HeLa cells. Furthermore, SPBP siRNA reduces the sulforaphane induced expression of NRF2, and the expression of the autophagy marker protein LC3B. Both these proteins contain ARE-like elements in their promoter regions. Over-expressed SPBP and NRF2 acts synergistically on the p62/SQSTM1 promoter and colocalize in nuclear speckles in HeLa cells. Collectively, these results suggest that SPBP is a coactivator of NRF2, and hence may be important for securing enhanced and sustained expression of NRF2 induced genes such as proteins involved in selective autophagy. PMID:24416372

  2. SPBP is a sulforaphane induced transcriptional coactivator of NRF2 regulating expression of the autophagy receptor p62/SQSTM1.

    Directory of Open Access Journals (Sweden)

    Sagar Ramesh Darvekar

    Full Text Available Organisms exposed to oxidative stress respond by orchestrating a stress response to prevent further damage. Intracellular levels of antioxidant agents increase, and damaged components are removed by autophagy induction. The KEAP1-NRF2 signaling pathway is the main pathway responsible for cell defense against oxidative stress and for maintaining the cellular redox balance at physiological levels. Sulforaphane, an isothiocyanate derived from cruciferous vegetables, is a potent inducer of KEAP1-NRF2 signaling and antioxidant response element driven gene expression. In this study, we show that sulforaphane enhances the expression of the transcriptional coregulator SPBP. The expression curve peaks 6-8 hours post stimulation, and parallels the sulforaphane-induced expression of NRF2 and the autophagy receptor protein p62/SQSTM1. Reporter gene assays show that SPBP stimulates the expression of p62/SQSTM1 via ARE elements in the promoter region, and siRNA mediated knock down of SPBP significantly decreases the expression of p62/SQSTM1 and the formation of p62/SQSTM1 bodies in HeLa cells. Furthermore, SPBP siRNA reduces the sulforaphane induced expression of NRF2, and the expression of the autophagy marker protein LC3B. Both these proteins contain ARE-like elements in their promoter regions. Over-expressed SPBP and NRF2 acts synergistically on the p62/SQSTM1 promoter and colocalize in nuclear speckles in HeLa cells. Collectively, these results suggest that SPBP is a coactivator of NRF2, and hence may be important for securing enhanced and sustained expression of NRF2 induced genes such as proteins involved in selective autophagy.

  3. The Marine Natural Product Manzamine A Targets Vacuolar ATPases and Inhibits Autophagy in Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Amy E. Wright

    2013-09-01

    Full Text Available Manzamine A, a member of the manzamine alkaloids, was originally isolated from marine sponges of the genus Haliclona. It was recently shown to have activity against pancreatic cancer cells, but the precise mechanism of action remained unclear. To further our understanding of the mechanism of action of manzamine A, chemogenomic profiling in the yeast S. cerevisiae was performed, suggesting that manzamine A is an uncoupler of vacuolar ATPases. Fluorescence microscopy confirmed this effect on yeast vacuoles, where manzamine A produced a phenotype very similar to that of the established v-ATPase inhibitor bafilomycin A1. In pancreatic cancer cells, 10 µM manzamine A affected vacuolar ATPase activity and significantly increased the level of autophagosome marker LC3-II and p62/SQSTM1 as observed by western blot analysis. Treatment with manzamine A in combination with bafilomycin A1 (inhibitor of autophagosome-lysosome fusion did not change the levels of LC3-II when compared to cells treated with bafilomycin A1 alone, suggesting that manzamine A is a potential inhibitor of autophagy by preventing autophagosome turnover. As autophagy is essential for pancreatic tumor growth, blocking this pathway with manzamine A suggests a promising strategy for the treatment of pancreatic cancer.

  4. Azithromycin blocks autophagy and may predispose cystic fibrosis patients to mycobacterial infection

    Science.gov (United States)

    Renna, Maurizio; Schaffner, Catherine; Brown, Karen; Shang, Shaobin; Tamayo, Marcela Henao; Hegyi, Krisztina; Grimsey, Neil J.; Cusens, David; Coulter, Sarah; Cooper, Jason; Bowden, Anne R.; Newton, Sandra M.; Kampmann, Beate; Helm, Jennifer; Jones, Andrew; Haworth, Charles S.; Basaraba, Randall J.; DeGroote, Mary Ann; Ordway, Diane J.; Rubinsztein, David C.; Floto, R. Andres

    2011-01-01

    Azithromycin is a potent macrolide antibiotic with poorly understood antiinflammatory properties. Long-term use of azithromycin in patients with chronic inflammatory lung diseases, such as cystic fibrosis (CF), results in improved outcomes. Paradoxically, a recent study reported that azithromycin use in patients with CF is associated with increased infection with nontuberculous mycobacteria (NTM). Here, we confirm that long-term azithromycin use by adults with CF is associated with the development of infection with NTM, particularly the multi-drug-resistant species Mycobacterium abscessus, and identify an underlying mechanism. We found that in primary human macrophages, concentrations of azithromycin achieved during therapeutic dosing blocked autophagosome clearance by preventing lysosomal acidification, thereby impairing autophagic and phagosomal degradation. As a consequence, azithromycin treatment inhibited intracellular killing of mycobacteria within macrophages and resulted in chronic infection with NTM in mice. Our findings emphasize the essential role for autophagy in the host response to infection with NTM, reveal why chronic use of azithromycin may predispose to mycobacterial disease, and highlight the dangers of inadvertent pharmacological blockade of autophagy in patients at risk of infection with drug-resistant pathogens. PMID:21804191

  5. Roles of autophagy in male reproductive development in plants

    Directory of Open Access Journals (Sweden)

    Shigeru eHanamata

    2014-09-01

    Full Text Available Autophagy, a major catabolic pathway in eukaryotic cells, is essential in development, maintenance of cellular homeostasis, immunity and programmed cell death (PCD in multicellular organisms. In plant cells, autophagy plays roles in recycling of proteins and metabolites including lipids, and is involved in many physiological processes such as abiotic and biotic stress responses. However, its roles during reproductive development had remained poorly understood. Quantitative live cell imaging techniques for the autophagic flux and genetic studies in several plant species have recently revealed significant roles of autophagy in developmental processes, regulation of PCD and lipid metabolism. We here review the novel roles of autophagic fluxes in plant cells, and discuss their possible significance in PCD and metabolic regulation, with particular focus on male reproductive development during the pollen maturation.

  6. ATG8 Expansion: A Driver of Selective Autophagy Diversification?

    Science.gov (United States)

    Kellner, Ronny; De la Concepcion, Juan Carlos; Maqbool, Abbas; Kamoun, Sophien; Dagdas, Yasin F

    2017-03-01

    Selective autophagy is a conserved homeostatic pathway that involves engulfment of specific cargo molecules into specialized organelles called autophagosomes. The ubiquitin-like protein ATG8 is a central player of the autophagy network that decorates autophagosomes and binds to numerous cargo receptors. Although highly conserved across eukaryotes, ATG8 diversified from a single protein in algae to multiple isoforms in higher plants. We present a phylogenetic overview of 376 ATG8 proteins across the green plant lineage that revealed family-specific ATG8 clades. Because these clades differ in fixed amino acid polymorphisms, they provide a mechanistic framework to test whether distinct ATG8 clades are functionally specialized. We propose that ATG8 expansion may have contributed to the diversification of selective autophagy pathways in plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor

    Science.gov (United States)

    Dagdas, Yasin F; Belhaj, Khaoula; Maqbool, Abbas; Chaparro-Garcia, Angela; Pandey, Pooja; Petre, Benjamin; Tabassum, Nadra; Cruz-Mireles, Neftaly; Hughes, Richard K; Sklenar, Jan; Win, Joe; Menke, Frank; Findlay, Kim; Banfield, Mark J; Kamoun, Sophien; Bozkurt, Tolga O

    2016-01-01

    Plants use autophagy to safeguard against infectious diseases. However, how plant pathogens interfere with autophagy-related processes is unknown. Here, we show that PexRD54, an effector from the Irish potato famine pathogen Phytophthora infestans, binds host autophagy protein ATG8CL to stimulate autophagosome formation. PexRD54 depletes the autophagy cargo receptor Joka2 out of ATG8CL complexes and interferes with Joka2's positive effect on pathogen defense. Thus, a plant pathogen effector has evolved to antagonize a host autophagy cargo receptor to counteract host defenses. DOI: http://dx.doi.org/10.7554/eLife.10856.001 PMID:26765567

  8. 3-Anhydro-6-hydroxy-ophiobolin A, a fungal sesterterpene from Bipolaris oryzae induced autophagy and promoted the degradation of α-synuclein in PC12 cells.

    Science.gov (United States)

    Xue, Danfeng; Wang, Quanxin; Chen, Ziheng; Cai, Lei; Bao, Li; Qi, Qiuyue; Liu, Lei; Wang, Xiaohui; Jin, Haijing; Wang, Jun; Wu, Hao; Liu, Hongwei; Chen, Quan

    2015-04-01

    Autophagy is defined as an evolutionarily conserved process responsible for degradation of the cytoplasmic components including protein aggregates via the lysosomal machinery. Increasing evidence has linked defective autophagic degradation of protein aggregates with the pathogenesis of neurodegenerative disorders, and it is suggested that promotion of autophagy is regarded as a potential therapeutic for these diseases including Parkinson's disease (PD). Here we identified, 3-anhydro-6-hydroxy-ophiobolin A (X15-2), an ophiobolin derivative from Bipolaris oryzae that can strongly induce autophagic degradation of α-synuclein, the major constituent of Lewy bodies. We showed that X15-2 induced autophagy is dependent on both Beclin1 and Beclin2. Knockout of ATG5 by CRISPER/Cas9 prevented X15-2 induced autophagy and degradation of α-synuclein. Mechanistically, we showed that X15-2 induces ROS and the activation of JNK signaling for the autophagic degradation of α-synuclein in PC12 cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Koelreuteria Formosana Extract Induces Growth Inhibition and Cell Death in Human Colon Carcinoma Cells via G2/M Arrest and LC3-II Activation-Dependent Autophagy.

    Science.gov (United States)

    Horng, Chi-Ting; Wu, Yueh-Jung; Chen, Pei-Ni; Chu, Shu-Chen; Tsai, Chun-Miao; Hsieh, Yih-Shou

    2017-01-01

    Autophagy is a self-destructive process that degrades cytoplasmic constituents. In our previous study, Koelreuteria formosana ethanolic extract (KFEE), which is obtained from natural plants endemic to Taiwan, has inhibited cell metastasis in renal carcinoma cells. However, the anticancer effects of KFEE on colon cancer remain unclear. In this study, KFEE exerted a strong cytotoxic effect on DLD-1 and COLO 205 human colorectal cancer cell lines. KFEE effectively inhibited cancer cell proliferation, induced G2/M-phase arrest associated with downregulaton of cyclin E, cyclin B and cdc25C and upregulation of p21, and induced cell death by activating autophagy but did not cause apoptotic cell death. Exposed KFEE cells showed increased levels of acridine orange, autophagic vacuoles, and LC3-II proteins, which are specific autophagic markers. Bcl-2, p-Akt, and p-mTOR levels, which have been implicated in autophagic downregulation, were decreased after KFEE treatment. Autophagy inhibitor 3-methyladenosine and bafilomycin-A1 and genetic silencing of LC3 attenuated KFEE-induced growth inhibition. These findings suggested that KFEE causes cytostatic effect through autophagy. In xenograft studies, oral administration of KFEE had significantly inhibited the tumor growth in nude mice that had received subcutaneous injection of DLD-1 cells. KFEE is a promising candidate in phytochemical-based, mechanistic, and pathway-targeted cancer prevention strategies.

  10. Shock Wave Therapy Promotes Cardiomyocyte Autophagy and Survival during Hypoxia

    Directory of Open Access Journals (Sweden)

    Ling Du

    2017-06-01

    Full Text Available Background: Autophagy plays an important role in cardiovascular disease. Controversy still exists regarding the effect of autophagy on ischemic/hypoxic myocardium. Cardiac shock wave therapy (CSWT is an effective alternative treatment for refractory ischemic heart disease. Whether CSWT can regulate cardiomyocyte autophagy under hypoxic conditions is not clear. We established a myocardial hypoxia model using the H9c2 cell line and performed shock waves (SWs treatment to evaluate the effect of SW on autophagy. Methods: The H9c2 cells were incubated under hypoxic conditions, and SW treatment was then performed at energies of 0.02, 0.05, or 0.10 mJ/mm2. The cell viability and intracellular ATP level were examined. Western blot analysis was used to assess the expression of LC3B, AMPK, mTOR, Beclin-1, Sirt1, and HIF-1α. Autophagic vacuoles were visualized by monodansylcadaverine staining. Results: After the 24-hour hypoxic period, cardiomyocyte viability and ATP levels were decreased and autophagy was significantly increased in H9c2 cells. SW treatment with an energy of 0.05 mJ/mm2 significantly increased the cellular viability, ATP level, LC3B-II/I, and number of autophagic vacuoles. In addition, phosphorylated AMPK and Sirt1 were increased and phosphorylated mTOR and HIF-1α were decreased after SW treatment. Conclusion: SW treatment can potentially promote cardiomyocyte autophagy during hypoxia and protect cardiomyocyte function by regulating the AMPK/mTOR pathway.

  11. Tuning flux: autophagy as a target of heart disease therapy

    Science.gov (United States)

    Xie, Min; Morales, Cyndi R.; Lavandero, Sergio; Hill, Joseph A.

    2013-01-01

    Purpose of review Despite maximum medical and mechanical support therapy, heart failure remains a relentlessly progressive disorder with substantial morbidity and mortality. Autophagy, an evolutionarily conserved process of cellular cannibalization, has been implicated in virtually all forms of cardiovascular disease. Indeed, its role is context dependent, antagonizing or promoting disease depending on the circumstance. Here, we review current understanding of the role of autophagy in the pathogenesis of heart failure and explore this pathway as a target of therapeutic intervention. Recent findings In preclinical models of heart disease, cardiomyocyte autophagic flux is activated; indeed, its role in disease pathogenesis is the subject of intense investigation to define mechanism. Similarly, in failing human heart of a variety of etiologies, cardiomyocyte autophagic activity is upregulated, and therapy, such as with mechanical support systems, elicits declines in autophagy activity. However, when suppression of autophagy is complete, rapid and catastrophic cell death occurs, consistent with a model in which basal autophagic flux is required for proteostasis. Thus, a narrow zone of ‘optimal’ autophagy seems to exist. The challenge moving forward is to tune the stress-triggered autophagic response within that ‘sweet spot’ range for therapeutic benefit. Summary Whereas we have known for some years of the participation of lysosomal mechanisms in heart disease, it is only recently that upstream mechanisms (autophagy) are being explored. The challenge for the future is to dissect the underlying circuitry and titrate the response into an optimal, proteostasis-promoting range in hopes of mitigating the ever-expanding epidemic of heart failure. PMID:21415729

  12. Crosstalk between autophagy and inflammatory signalling pathways: balancing defence and homeostasis.

    Science.gov (United States)

    Cadwell, Ken

    2016-11-01

    Autophagy has broad functions in immunity, ranging from cell-autonomous defence to coordination of complex multicellular immune responses. The successful resolution of infection and avoidance of autoimmunity necessitates efficient and timely communication between autophagy and pathways that sense the immune environment. The recent literature indicates that a variety of immune mediators induce or repress autophagy. It is also becoming increasingly clear that immune signalling cascades are subject to regulation by autophagy, and that a return to homeostasis following a robust immune response is critically dependent on this pathway. Importantly, examples of non-canonical forms of autophagy in mediating immunity are pervasive. In this article, the progress in elucidating mechanisms of crosstalk between autophagy and inflammatory signalling cascades is reviewed. Improved mechanistic understanding of the autophagy machinery offers hope for treating infectious and inflammatory diseases.

  13. Autophagy-regulating protease Atg4: structure, function, regulation and inhibition

    Science.gov (United States)

    Maruyama, Tatsuro; Noda, Nobuo N

    2018-01-01

    Autophagy is an intracellular degradation system that contributes to cellular homeostasis through degradation of various targets such as proteins, organelles and microbes. Since autophagy is related to various diseases such as infection, neurodegenerative diseases and cancer, it is attracting attention as a new therapeutic target. Autophagy is mediated by dozens of autophagy-related (Atg) proteins, among which Atg4 is the sole protease that regulates autophagy through the processing and deconjugating of Atg8. As the Atg4 activity is essential and highly specific to autophagy, Atg4 is a prospective target for developing autophagy-specific inhibitors. In this review article, we summarize our current knowledge of the structure, function and regulation of Atg4 including efforts to develop Atg4-specific inhibitors. PMID:28901328

  14. Prohibitin 1 modulates mitochondrial stress-related autophagy in human colonic epithelial cells.

    Directory of Open Access Journals (Sweden)

    Arwa S Kathiria

    Full Text Available Autophagy is an adaptive response to extracellular and intracellular stress by which cytoplasmic components and organelles, including damaged mitochondria, are degraded to promote cell survival and restore cell homeostasis. Certain genes involved in autophagy confer susceptibility to Crohn's disease. Reactive oxygen species and pro-inflammatory cytokines such as tumor necrosis factor α (TNFα, both of which are increased during active inflammatory bowel disease, promote cellular injury and autophagy via mitochondrial damage. Prohibitin (PHB, which plays a role in maintaining normal mitochondrial respiratory function, is decreased during active inflammatory bowel disease. Restoration of colonic epithelial PHB expression protects mice from experimental colitis and combats oxidative stress. In this study, we investigated the potential role of PHB in modulating mitochondrial stress-related autophagy in intestinal epithelial cells.We measured autophagy activation in response to knockdown of PHB expression by RNA interference in Caco2-BBE and HCT116 WT and p53 null cells. The effect of exogenous PHB expression on TNFα- and IFNγ-induced autophagy was assessed. Autophagy was inhibited using Bafilomycin A(1 or siATG16L1 during PHB knockdown and the affect on intracellular oxidative stress, mitochondrial membrane potential, and cell viability were determined. The requirement of intracellular ROS in siPHB-induced autophagy was assessed using the ROS scavenger N-acetyl-L-cysteine.TNFα and IFNγ-induced autophagy inversely correlated with PHB protein expression. Exogenous PHB expression reduced basal autophagy and TNFα-induced autophagy. Gene silencing of PHB in epithelial cells induces mitochondrial autophagy via increased intracellular ROS. Inhibition of autophagy during PHB knockdown exacerbates mitochondrial depolarization and reduces cell viability.Decreased PHB levels coupled with dysfunctional autophagy renders intestinal epithelial cells

  15. The lack of autophagy triggers precocious activation of Notch signaling during Drosophila oogenesis

    Directory of Open Access Journals (Sweden)

    Barth Julia MI

    2012-12-01

    Full Text Available Abstract Background The proper balance of autophagy, a lysosome-mediated degradation process, is indispensable for oogenesis in Drosophila. We recently demonstrated that egg development depends on autophagy in the somatic follicle cells (FC, but not in the germline cells (GCs. However, the lack of autophagy only affects oogenesis when FCs are autophagy-deficient but GCs are wild type, indicating that a dysfunctional signaling between soma and germline may be responsible for the oogenesis defects. Thus, autophagy could play an essential role in modulating signal transduction pathways during egg development. Results Here, we provide further evidence for the necessity of autophagy during oogenesis and demonstrate that autophagy is especially required in subsets of FCs. Generation of autophagy-deficient FCs leads to a wide range of phenotypes that are similar to mutants with defects in the classical cell-cell signaling pathways in the ovary. Interestingly, we observe that loss of autophagy leads to a precocious activation of the Notch pathway in the FCs as monitored by the expression of Cut and Hindsight, two downstream effectors of Notch signaling. Conclusion Our findings point to an unexpected function for autophagy in the modulation of the Notch signaling pathway during Drosophila oogenesis and suggest a function for autophagy in proper receptor activation. Egg development is affected by an imbalance of autophagy between signal sending (germline and signal receiving cell (FC, thus the lack of autophagy in the germline is likely to decrease the amount of active ligand and accordingly compensates for increased signaling in autophagy-defective follicle cells.

  16. The Nobel Prize for understanding autophagy, a cellular mechanism ...

    Indian Academy of Sciences (India)

    The Nobel Prize in Physiology or Medicine, 2016, was awarded to Prof Yoshinori Ohsumi from TokyoInstitute of Technology, Yokohoma, Japan, for his work that helped in understanding the molecularmechanisms of autophagy, a process used by most eukaryotic cells to degrade a portion of cytoplasmincluding damaged ...

  17. Functions of autophagy in plant carbon and nitrogen metabolism

    Directory of Open Access Journals (Sweden)

    Chenxia eRen

    2014-06-01

    Full Text Available Carbon and nitrogen are essential components for plant growth. Although models of plant carbon and nitrogen metabolisms have long been established, certain gaps remain unfilled, such as how plants are able to maintain a flexible nocturnal starch turnover capacity over various light cycles, or how nitrogen remobilization is achieved during the reproductive growth stage. Recent advances in plant autophagy have shed light on such questions. Not only does autophagy contribute to starch degradation at night, but it participates in the degradation of chloroplast proteins and even chloroplasts after prolonged carbon starvation, thus help maintain the free amino acid pool and provide substrate for respiration. The induction of autophagy under these conditions may involve transcriptional regulation. Large-scale transcriptome analyses revealed that ATG8e belongs to a core carbon signaling response shared by Arabidopsis accessions, and the transcription of Arabidopsis ATG7 is tightly co-regulated with genes functioning in chlorophyll degradation and leaf senescence. In the reproductive phase, autophagy is essential for bulk degradation of leaf proteins, thus contributes to Nitrogen Use Efficiency (NUE both under normal and low-nitrogen conditions.

  18. Pseudomonas toxin pyocyanin triggers autophagy: Implications for pathoadaptive mutations.

    Science.gov (United States)

    Yang, Zhong-Shan; Ma, Lan-Qing; Zhu, Kun; Yan, Jin-Yuan; Bian, Li; Zhang, Ke-Qin; Zou, Cheng-Gang

    2016-06-02

    Pseudomonas aeruginosa can establish life-long chronic infection in patients with cystic fibrosis by generating genetic loss-of-function mutations, which enhance fitness of the bacterium in the airways. However, the precise role of the pathoadaptive mutations in persistence in chronic airways infection remains largely unknown. Here we demonstrate that pyocyanin, a well-described P. aeruginosa virulence factor that plays an important role in the initial infection, promotes autophagy in bronchial epithelial cells. Disruption of phzM, which is required for pyocyanin biosynthesis, leads to a significant reduction in autophagy in Beas-2B cells and lung tissues. Pyocyanin-induced autophagy is mediated by the EIF2AK4/GCN2-EIF2S1/eIF2α-ATF4 pathway. Interestingly, rats infected with the phzMΔ mutant strain have high mortality rate and numbers of colony-forming units, compared to those infected with wild-type (WT) P. aeruginosa PA14 strain, during chronic P. aeruginosa infection. In addition, the phzMΔ mutant strain induces more extensive alveolar wall thickening than the WT strain in the pulmonary airways of rats. As autophagy plays an essential role in suppressing bacterial burden, our findings provide a detailed understanding of why reduction of pyocyanin production in P. aeruginosa in chronic airways infections has been associated with better host adaptation and worse outcomes in cystic fibrosis.

  19. Chlorogenic acid alleviates autophagy and insulin resistance by ...

    Indian Academy of Sciences (India)

    49

    with hypertension, obesity, dyslipidemia and type 2 diabetes (Lim et al, 2015). A prevalent hypothesis for NAFLD development points out that insulin resistance, as the. “first-hit” to the liver, elicits the onset of second hits, such as oxidative stress, inflammation, apoptosis, and autophagy (Polyzos et al, 2012). Indeed, insulin.

  20. Inhibition of mammalian S6 kinase by resveratrol suppresses autophagy

    Science.gov (United States)

    Armour, Sean M.; Baur, Joseph A.; Hsieh, Sherry N.; Land-Bracha, Abigail; Thomas, Sheila M.; Sinclair, David A.

    2009-01-01

    Resveratrol is a plant-derived polyphenol that promotes health and disease resistance in rodent models, and extends lifespan in lower organisms. A major challenge is to understand the biological processes and molecular pathways by which resveratrol induces these beneficial effects. Autophagy is a critical process by which cells turn over damaged components and maintain bioenergetic requirements. Disruption of the normal balance between pro- and anti-autophagic signals is linked to cancer, liver disease, and neurodegenerative disorders. Here we show that resveratrol attenuates autophagy in response to nutrient limitation or rapamycin in multiple cell lines through a pathway independent of a known target, SIRT1. In a large-scalein vitro kinase screen we identified p70 S6 kinase (S6K1) as a target of resveratrol. Blocking S6K1 activity by expression of a dominant-negative mutant or RNA interference is sufficient to disrupt autophagy to a similar extent as resveratrol. Furthermore, co-administration of resveratrol with S6K1 knockdown does not produce an additive effect. These data indicate that S6K1 is important for the full induction of autophagy in mammals and raise the possibility that some of the beneficial effects of resveratrol are due to modulation of S6K1 activity. PMID:20157535

  1. Lipid Storage and Autophagy in Melanoma Cancer Cells

    Directory of Open Access Journals (Sweden)

    Claudia Giampietri

    2017-06-01

    Full Text Available Cancer stem cells (CSC represent a key cellular subpopulation controlling biological features such as cancer progression in all cancer types. By using melanospheres established from human melanoma patients, we compared less differentiated melanosphere-derived CSC to differentiating melanosphere-derived cells. Increased lipid uptake was found in melanosphere-derived CSC vs. differentiating melanosphere-derived cells, paralleled by strong expression of lipogenic factors Sterol Regulatory Element-Binding Protein-1 (SREBP-1 and Peroxisome Proliferator-Activated Receptor-γ (PPAR-γ. An inverse relation between lipid-storing phenotype and autophagy was also found, since microtubule-associated protein 1A/1B-Light Chain 3 (LC3 lipidation is reduced in melanosphere-derived CSC. To investigate upstream autophagy regulators, Phospho-AMP activated Protein Kinase (P-AMPK and Phospho-mammalian Target of Rapamycin (P-mTOR were analyzed; lower P-AMPK and higher P-mTOR expression in melanosphere-derived CSC were found, thus explaining, at least in part, their lower autophagic activity. In addition, co-localization of LC3-stained autophagosome spots and perilipin-stained lipid droplets was demonstrated mainly in differentiating melanosphere-derived cells, further supporting the role of autophagy in lipid droplets clearance. The present manuscript demonstrates an inverse relationship between lipid-storing phenotype and melanoma stem cells differentiation, providing novel indications involving autophagy in melanoma stem cells biology.

  2. Exocyst and autophagy-related membrane trafficking in plants

    Czech Academy of Sciences Publication Activity Database

    Pečenková, Tamara; Marković, Vedrana; Sabol, P.; Kulich, I.; Žárský, Viktor

    2018-01-01

    Roč. 69, č. 1 (2018), s. 47-57 ISSN 0022-0957 R&D Projects: GA ČR(CZ) GA15-14886S Institutional support: RVO:61389030 Keywords : Autophagy * endomembranes * exocyst * plant defence * secretory transport * ups Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cell biology Impact factor: 5.830, year: 2016

  3. Autophagy: A double-edged sword in Alzheimer's disease

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... This article briefly summarizes seminal discoveries that are shedding new light on the critical and unique roles of autophagy in AD and potential therapeutic ... those of the staff, the journals, various programmes, and Current Science, has changed from 'ias.ernet.in' (or 'academy.ias.ernet.in') to 'ias.ac.in'.

  4. Inhibition of mammalian S6 kinase by resveratrol suppresses autophagy.

    Science.gov (United States)

    Armour, Sean M; Baur, Joseph A; Hsieh, Sherry N; Land-Bracha, Abigail; Thomas, Sheila M; Sinclair, David A

    2009-06-03

    Resveratrol is a plant-derived polyphenol that promotes health and disease resistance in rodent models, and extends lifespan in lower organisms. A major challenge is to understand the biological processes and molecular pathways by which resveratrol induces these beneficial effects. Autophagy is a critical process by which cells turn over damaged components and maintain bioenergetic requirements. Disruption of the normal balance between pro- and anti-autophagic signals is linked to cancer, liver disease, and neurodegenerative disorders. Here we show that resveratrol attenuates autophagy in response to nutrient limitation or rapamycin in multiple cell lines through a pathway independent of a known target, SIRT1. In a large-scalein vitro kinase screen we identified p70 S6 kinase (S6K1) as a target of resveratrol. Blocking S6K1 activity by expression of a dominant-negative mutant or RNA interference is sufficient to disrupt autophagy to a similar extent as resveratrol. Furthermore, co-administration of resveratrol with S6K1 knockdown does not produce an additive effect. These data indicate that S6K1 is important for the full induction of autophagy in mammals and raise the possibility that some of the beneficial effects of resveratrol are due to modulation of S6K1 activity.

  5. Checks and Balances between Autophagy and Inflammasomes during Infection

    Science.gov (United States)

    Seveau, Stephanie; Turner, Joanne; Gavrilin, Mikhail A.; Torrelles, Jordi B.; Hall-Stoodley, Luanne; Yount, Jacob S.; Amer, Amal O.

    2017-01-01

    Autophagy and inflammasome complex assembly are physiological processes that control homeostasis, inflammation, and immunity. Autophagy is a ubiquitous pathway that degrades cytosolic macromolecules or organelles, as well as intracellular pathogens. Inflammasomes are multi-protein complexes that assemble in the cytosol of cells upon detection of pathogen- or danger-associated molecular patterns. A critical outcome of inflammasome assembly is the activation of the serine protease caspase-1, which activates the pro-inflammatory cytokine precursors pro-IL-1β and pro-IL-18. Studies on chronic inflammatory diseases, heart diseases, Alzheimer's disease, and multiple sclerosis revealed that autophagy and inflammasomes intersect and regulate each other. In the context of infectious diseases, however, less is known about the interplay between autophagy and inflammasome assembly, although it is becoming evident that pathogens have evolved multiple strategies to inhibit and/or subvert these pathways and to take advantage of their intricate crosstalk. An improved appreciation of these pathways and their subversion by diverse pathogens is expected to help in the design of anti-infective therapeutic interventions. PMID:29162504

  6. The yeast autophagy protease Atg4 is regulated by thioredoxin.

    Science.gov (United States)

    Pérez-Pérez, María Esther; Zaffagnini, Mirko; Marchand, Christophe H; Crespo, José L; Lemaire, Stéphane D

    2014-01-01

    Autophagy is a membrane-trafficking process whereby double-membrane vesicles called autophagosomes engulf and deliver intracellular material to the vacuole for degradation. Atg4 is a cysteine protease with an essential function in autophagosome formation. Mounting evidence suggests that reactive oxygen species may play a role in the control of autophagy and could regulate Atg4 activity but the precise mechanisms remain unclear. In this study, we showed that reactive oxygen species activate autophagy in the model yeast Saccharomyces cerevisiae and unraveled the molecular mechanism by which redox balance controls Atg4 activity. A combination of biochemical assays, redox titrations, and site-directed mutagenesis revealed that Atg4 is regulated by oxidoreduction of a single disulfide bond between Cys338 and Cys394. This disulfide has a low redox potential and is very efficiently reduced by thioredoxin, suggesting that this oxidoreductase plays an important role in Atg4 regulation. Accordingly, we found that autophagy activation by rapamycin was more pronounced in a thioredoxin mutant compared with wild-type cells. Moreover, in vivo studies indicated that Cys338 and Cys394 are required for the proper regulation of autophagosome biogenesis, since mutation of these cysteines resulted in increased recruitment of Atg8 to the phagophore assembly site. Thus, we propose that the fine-tuning of Atg4 activity depending on the intracellular redox state may regulate autophagosome formation.

  7. Chlorogenic acid alleviates autophagy and insulin resistance by ...

    Indian Academy of Sciences (India)

    49

    diet-fed rats exhibited an increase in body weight, glucose tolerance, liver injury, insulin resistance, as well as autophagy and C-Jun N-terminal kinase (JNK) pathway. Nevertheless, all these effects were alleviated by CG treatment. Moreover, angiotensin treatment in CG group activated the JNK pathway, and promoted.

  8. Retinoid receptor signaling and autophagy in acute promyelocytic leukemia.

    LENUS (Irish Health Repository)

    Orfali, Nina

    2014-05-15

    Retinoids are a family of signaling molecules derived from vitamin A with well established roles in cellular differentiation. Physiologically active retinoids mediate transcriptional effects on cells through interactions with retinoic acid (RARs) and retinoid-X (RXR) receptors. Chromosomal translocations involving the RARα gene, which lead to impaired retinoid signaling, are implicated in acute promyelocytic leukemia (APL). All-trans-retinoic acid (ATRA), alone and in combination with arsenic trioxide (ATO), restores differentiation in APL cells and promotes degradation of the abnormal oncogenic fusion protein through several proteolytic mechanisms. RARα fusion-protein elimination is emerging as critical to obtaining sustained remission and long-term cure in APL. Autophagy is a degradative cellular pathway involved in protein turnover. Both ATRA and ATO also induce autophagy in APL cells. Enhancing autophagy may therefore be of therapeutic benefit in resistant APL and could broaden the application of differentiation therapy to other cancers. Here we discuss retinoid signaling in hematopoiesis, leukemogenesis, and APL treatment. We highlight autophagy as a potential important regulator in anti-leukemic strategies.

  9. System-wide Benefits of Intermeal Fasting by Autophagy

    NARCIS (Netherlands)

    Martinez-Lopez, Nuria; Tarabra, Elena; Toledo, Miriam; Garcia-Macia, Marina; Sahu, Srabani; Coletto, Luisa; Batista-Gonzalez, Ana; Barzilai, Nir; Pessin, Jeffrey E.; Schwartz, Gary J.; Kersten, Sander; Singh, Rajat

    2017-01-01

    Autophagy failure is associated with metabolic insufficiency. Although caloric restriction (CR) extends healthspan, its adherence in humans is poor. We established an isocaloric twice-a-day (ITAD) feeding model wherein ITAD-fed mice consume the same food amount as ad libitum controls but at two

  10. Advanced glycation end products receptor RAGE controls myocardial dysfunction and oxidative stress in high-fat fed mice by sustaining mitochondrial dynamics and autophagy-lysosome pathway.

    Science.gov (United States)

    Yu, Yichi; Wang, Lei; Delguste, Florian; Durand, Arthur; Guilbaud, Axel; Rousselin, Clementine; Schmidt, Ann Marie; Tessier, Frédéric; Boulanger, Eric; Neviere, Remi

    2017-11-01

    Oxidative stress and mitochondrial dysfunction are recognized as major contributors of cardiovascular damage in diabetes and high fat diet (HFD) fed mice. Blockade of receptor for advanced glycation end products (RAGE) attenuates vascular oxidative stress and development of atherosclerosis. We tested whether HFD-induced myocardial dysfunction would be reversed in RAGE deficiency mice, in association with changes in oxidative stress damage, mitochondrial respiration, mitochondrial fission and autophagy-lysosomal pathway. Cardiac antioxidant capacity was upregulated in RAGE - / - mice under normal diet as evidenced by increased superoxide dismutase and sirtuin mRNA expressions. Mitochondrial fragmentation and mitochondrial fission protein Drp1 and Fis1 expressions were increased in RAGE - / - mice. Autophagy-related protein expressions and cathepsin-L activity were increased in RAGE - / - mice suggesting sustained autophagy-lysosomal flux. HFD induced mitochondrial respiration defects, cardiac contractile dysfunction, disrupted mitochondrial dynamics and autophagy inhibition, which were partially prevented in RAGE - / - mice. Our results suggest that cardioprotection against HFD in RAGE - / - mice include reactivation of autophagy, as inhibition of autophagic flux by chloroquine fully abrogated beneficial myocardial effects and its stimulation by rapamycin improved myocardial function in HFD wild type mice. As mitochondrial fission is necessary to mitophagy, increased fragmentation of mitochondrial network in HFD RAGE - / - mice may have facilitated removal of damaged mitochondria leading to better mitochondrial quality control. In conclusion, modulation of RAGE pathway may improve mitochondrial damage and myocardial dysfunction in HFD mice. Attenuation of cardiac oxidative stress and maintenance of healthy mitochondria population ensuring adequate energy supply may be involved in myocardial protection against HFD. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Green tea polyphenol treatment attenuates atherosclerosis in high-fat diet-fed apolipoprotein E-knockout mice via alleviating dyslipidemia and up-regulating autophagy.

    Directory of Open Access Journals (Sweden)

    Shibin Ding

    Full Text Available Green tea polyphenol (GTP is a polyphenol source from green tea that has drawn wide attention owing to epidemiological evidence of its beneficial effects in the prevention of cardiovascular disease; the underlying molecular mechanisms of these effects are not well understood. This study aimed to investigate the effects of GTP treatment on autophagy regulation in the vessel wall and lipid metabolism of HFD-fed male ApoE-knockout mice.Adult male ApoE-knockout mice (n = 30 fed with a high-fat diet (HFD were treated with either vehicle or GTP (3.2 or 6.4 g/L administered via drinking water for 15 weeks, and C57BL/6J mice fed with standard chow diet (STD were used as the control group. Metabolic parameters, expression of key mRNAs and proteins of hepatic lipid metabolism and autophagy in the vessel wall of mice were determined after the 15-week treatment.A HFD induced atherosclerosis formation and lipid metabolism disorders as well as reduced autophagy expression in the vessel wall of ApoE-knockout mice, but GTP treatment alleviated the lipid metabolism disorders, decreased the oxLDL levels in serum, and increased the mRNA and protein expressions of hepatic PPARα and autophagy markers (LC3, Beclin1 and p62 in the vessel wall of ApoE-knockout mice.Our findings suggest that GTP supplementation showed marked suppression of atherogenesis through improved lipid metabolism as well as through a direct impact on oxLDL and autophagy flux in the vessel wall.

  12. Notch1 regulates PTEN expression to exacerbate renal tubulointerstitial fibrosis in diabetic nephropathy by inhibiting autophagy via interactions with Hes1.

    Science.gov (United States)

    Liu, XingMei; Zhang, YingYing; Shi, MingJun; Wang, YuanYuan; Zhang, Fan; Yan, Rui; Liu, LingLing; Xiao, Ying; Guo, Bing

    2018-03-18

    Diabetic nephropathy (DN) is a serious clinical microvascular complication of diabetes mellitus. DN is characterized by the accumulation of extracellular matrix, resulting in progressive fibrosis leading to the loss of renal function. Notch1 and phosphatase and tensin homolog deleted on chromosome ten (PTEN) signaling have been associated with fibrosis. Autophagy serves as an essential regulator of tubular cellular homeostasis. However, how these molecules control the balance between fibrosis and autophagy, the main homeostatic mechanism regulating fibrosis, is not well understood. This association was confirmed using Notch1-siRNA in vitro, which prevented the increase in Hes1 and restored PTEN expression. In contrast, transfection with pHAGE-Hes1 repressed PTEN promoter-driven luciferase activity, implying a direct relationship between Hes1 and PTEN. The expression of Notch1 and Hes1 was increased in diabetic db/db mice by western blotting; in contrast, the expression of PTEN was decreased. Importantly, the dysregulation of these signaling molecules was associated with an increase in extracellular matrix proteins (Collagen-I and III) and the inhibition of autophagy. Similar results were evident in response to high glucose concentrations in vitro in the NRK-52e cells. Therefore, the high glucose concentrations present in diabetes promote fibrosis through the Notch1 pathway via Hes1, while inhibiting the PTEN and autophagy. In conclusion, the inhibition of PTEN by Notch1/Hes1 in response to high glucose concentration inhibits autophagy, which is associated with the progression of fibrosis. Therefore, these signaling molecules may represent novel therapeutic targets in diabetic nephropathy. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Downregulation of ATG14 by EGR1-MIR152 sensitizes ovarian cancer cells to cisplatin-induced apoptosis by inhibiting cyto-protective autophagy

    Science.gov (United States)

    He, Jun; Yu, Jing-Jie; Xu, Qing; Wang, Lin; Zheng, Jenny Z; Liu, Ling-Zhi; Jiang, Bing-Hua

    2015-01-01

    Cisplatin is commonly used in ovarian cancer treatment by inducing apoptosis in cancer cells as a result of lethal DNA damage. However, the intrinsic and acquired resistance to cisplatin in cancer cells remains a big challenge for improving overall survival. The cyto-protective functions of autophagy in cancer cells have been suggested as a potential mechanism for chemoresistance. Here, we reported MIR152 as a new autophagy-regulating miRNA that plays a role in cisplatin-resistance. We showed that MIR152 expression was dramatically downregulated in the cisplatin-resistant cell lines A2780/CP70, SKOV3/DDP compared with their respective parental cells, and in ovarian cancer tissues associated with cisplatin-resistance. Overexpression of MIR152 sensitized cisplatin-resistant ovarian cancer cells by reducing cisplatin-induced autophagy, enhancing cisplatin-induced apoptosis and inhibition of cell proliferation. A mouse subcutaneous xenograft tumor model using A2780/CP70 cells with overexpressing MIR152 was established and displayed decreased tumor growth in response to cisplatin. We also identified that ATG14 is a functional target of MIR152 in regulating autophagy inhibition. Furthermore, we found that EGR1 (early growth response 1) regulated the MIR152 gene at the transcriptional level. Ectopic expression of EGR1 enhanced efficacy of chemotherapy in A2780/CP70 cells. More importantly, these findings were relevant to clinical cases. Both EGR1 and MIR152 expression levels were significantly lower in ovarian cancer tissues with high levels of ERCC1 (excision repair cross-complementation group 1), a marker for cisplatin-resistance. Collectively, these data provide insights into novel mechanisms for acquired cisplatin-resistance. Activation of EGR1 and MIR152 may be a useful therapeutic strategy to overcome cisplatin-resistance by preventing cyto-protective autophagy in ovarian cancer. PMID:25650716

  14. Nobiletin attenuates adverse cardiac remodeling after acute myocardial infarction in rats via restoring autophagy flux.

    Science.gov (United States)

    Wu, Xiaoqian; Zheng, Dechong; Qin, Yuyan; Liu, Zumei; Zhang, Guiping; Zhu, Xiaoyan; Zeng, Lihuan; Liang, Zhenye

    2017-10-14

    Our previous study showed that autophagy flux was impaired with sustained heart ischemia, which exacerbated adverse cardiac remodeling after acute myocardial infarction (AMI). Here we investigated whether Nobiletin, a citrus polymethoxylated flavonoids, could restore the autophagy flux and improve cardiac prognosis after AMI. AMI was induced by ligating left anterior descending (LAD) coronary artery in rats. Nobiletin improved the post-infarct cardiac dysfunction significantly and attenuated adverse cardiac remodeling. Meanwhile, Nobiletin protected H9C2 cells against oxygen glucose deprivation (OGD) in vitro. The impaired autophagy flux due to ischemia was ameliorated after Nobiletin treatment by testing the autophagy substrate, LC3BⅡ and P62 protein level both in vivo and in vitro. GFP-mRFP-LC3 adenovirus transfection also supported that Nobiletin restored the impaired autophagy flux. Specifically, the autophagy flux inhibitor, chloroquine, but not 3 MA, alleviated Nobiletin-mediated protection against OGD. Notably, Nobiletin does not affect the activation of classical upstream autophagy signaling pathways. However, Nobiletin increased the lysosome acidation which also supported that Nobiletin accelerated autophagy flux. Taken together, our findings suggested that Nobiletin restored impaired autophagy flux and protected against acute myocardial infarction, suggesting a potential role of autophagy flux in Nobiletin-mediated myocardial protection. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Trehalose-mediated autophagy impairs the anti-viral function of human primary airway epithelial cells.

    Directory of Open Access Journals (Sweden)

    Qun Wu

    Full Text Available Human rhinovirus (HRV is the most common cause of acute exacerbations of chronic lung diseases including asthma. Impaired anti-viral IFN-λ1 production and increased HRV replication in human asthmatic airway epithelial cells may be one of the underlying mechanisms leading to asthma exacerbations. Increased autophagy has been shown in asthmatic airway epithelium, but the role of autophagy in anti-HRV response remains uncertain. Trehalose, a natural glucose disaccharide, has been recognized as an effective autophagy inducer in mammalian cells. In the current study, we used trehalose to induce autophagy in normal human primary airway epithelial cells in order to determine if autophagy directly regulates the anti-viral response against HRV. We found that trehalose-induced autophagy significantly impaired IFN-λ1 expression and increased HRV-16 load. Inhibition of autophagy via knockdown of autophagy-related gene 5 (ATG5 effectively rescued the impaired IFN-λ1 expression by trehalose and subsequently reduced HRV-16 load. Mechanistically, ATG5 protein interacted with retinoic acid-inducible gene I (RIG-I and IFN-β promoter stimulator 1 (IPS-1, two critical molecules involved in the expression of anti-viral interferons. Our results suggest that induction of autophagy in human primary airway epithelial cells inhibits the anti-viral IFN-λ1 expression and facilitates HRV infection. Intervention of excessive autophagy in chronic lung diseases may provide a novel approach to attenuate viral infections and associated disease exacerbations.

  16. The Role of Autophagy in Nanoparticles-Induced Toxicity and Its Related Cellular and Molecular Mechanisms.

    Science.gov (United States)

    Li, Yubin; Ju, Dianwen

    2018-01-01

    In the past decades, nanoparticles have been widely used in industry and pharmaceutical fields for drug delivery, anti-pathogen, and diagnostic imaging purposes because of their unique physicochemical characteristics such as special ultrastructure, dispersity, and effective cellular uptake properties. But the nanotoxicity has been raised over the extensive applications of nanoparticles. Researchers have elucidated series of mechanisms in nanoparticles-induced toxicity, including apoptosis, necrosis, oxidative stress, and autophagy. Among upon mechanisms, autophagy was recently recognized as an important cell death style in various nanoparticles-induced toxicity, but the role of autophagy and its related cellular and molecular mechanisms during nanoparticles-triggered toxicity were still confusing. In the chapter, we briefly introduced the general process of autophagy, summarized the different roles of autophagy in various nanoparticle-treated different in vitro/in vivo models, and deeply analyzed the physicochemical and biochemical (cellular and molecular) mechanisms of autophagy during nanoparticles-induced toxicity through listing and summarizing representative examples. Physicochemical mechanisms mainly include dispersity, size, charge, and surface chemistry; cellular mechanisms primarily focus on lysosome impairment, mitochondria dysfunction, mitophagy, endoplasmic reticulum stress and endoplasmic reticulum autophagy; while molecular mechanisms were mainly including autophagy related signaling pathways, hypoxia-inducible factor, and oxidative stress. This chapter highlighted the important role of autophagy as a critical mechanism in nanoparticles-induced toxicity, and the physicochemical and biochemical mechanisms of autophagy triggered by nanoparticles might be useful for establishing a guideline for the evaluation of nanotoxicology, designing and developing new biosafety nanoparticles in the future.

  17. Assessment of Autophagy in Neurons and Brain Tissue

    Science.gov (United States)

    Benito-Cuesta, Irene; Diez, Héctor; Ordoñez, Lara; Wandosell, Francisco

    2017-01-01

    Autophagy is a complex process that controls the transport of cytoplasmic components into lysosomes for degradation. This highly conserved proteolytic system involves dynamic and complex processes, using similar molecular elements and machinery from yeast to humans. Moreover, autophagic dysfunction may contribute to a broad spectrum of mammalian diseases. Indeed, in adult tissues, where the capacity for regeneration or cell division is low or absent (e.g., in the mammalian brain), the accumulation of proteins/peptides that would otherwise be recycled or destroyed may have pathological implications. Indeed, such changes are hallmarks of pathologies, like Alzheimer’s, Prion or Parkinson’s disease, known as proteinopathies. However, it is still unclear whether such dysfunction is a cause or an effect in these conditions. One advantage when analysing autophagy in the mammalian brain is that almost all the markers described in different cell lineages and systems appear to be present in the brain, and even in neurons. By contrast, the mixture of cell types present in the brain and the differentiation stage of such neurons, when compared with neurons in culture, make translating basic research to the clinic less straightforward. Thus, the purpose of this review is to describe and discuss the methods available to monitor autophagy in neurons and in the mammalian brain, a process that is not yet fully understood, focusing primarily on mammalian macroautophagy. We will describe some general features of neuronal autophagy that point to our focus on neuropathologies in which macroautophagy may be altered. Indeed, we centre this review around the hypothesis that enhanced autophagy may be able to provide therapeutic benefits in some brain pathologies, like Alzheimer’s disease, considering this pathology as one of the most prevalent proteinopathies. PMID:28832529

  18. Genome-wide analysis of autophagy-related genes in banana highlights MaATG8s in cell death and autophagy in immune response to Fusarium wilt.

    Science.gov (United States)

    Wei, Yunxie; Liu, Wen; Hu, Wei; Liu, Guoyin; Wu, Chunjie; Liu, Wei; Zeng, Hongqiu; He, Chaozu; Shi, Haitao

    2017-08-01

    MaATG8s play important roles in hypersensitive-like cell death and immune response, and autophagy is essential for disease resistance against Foc in banana. Autophagy is responsible for the degradation of damaged cytoplasmic constituents in the lysosomes or vacuoles. Although the effects of autophagy have been extensively revealed in model plants, the possible roles of autophagy-related gene in banana remain unknown. In this study, 32 MaATGs were identified in the draft genome, and the profiles of several MaATGs in response to fungal pathogen Fusarium oxysporum f. sp. cubense (Foc) were also revealled. We found that seven MaATG8s were commonly regulated by Foc. Through transient expression in Nicotiana benthamiana leaves, we highlight the novel roles of MaATG8s in conferring hypersensitive-like cell death, and MaATG8s-mediated hypersensitive response-like cell death is dependent on autophagy. Notablly, autophagy inhibitor 3-methyladenine (3-MA) treatment resulted in decreased disease resistance in response to Foc4, and the effect of 3-MA treatment could be rescued by exogenous salicylic acid, jasmonic acid and ethylene, indicating the involvement of autophagy-mediated plant hormones in banana resistance to Fusarium wilt. Taken together, this study may extend our understanding the putative role of MaATG8s in hypersensitive-like cell death and the essential role of autophagy in immune response against Foc in banana.

  19. BRAF associated autophagy exploitation: BRAF and autophagy inhibitors synergise to efficiently overcome resistance of BRAF mutant colorectal cancer cells.

    Science.gov (United States)

    Goulielmaki, Maria; Koustas, Evangelos; Moysidou, Eirini; Vlassi, Margarita; Sasazuki, Takehiko; Shirasawa, Senji; Zografos, George; Oikonomou, Eftychia; Pintzas, Alexander

    2016-02-23

    Autophagy is the basic catabolic mechanism that involves cell degradation of unnecessary or dysfunctional cellular components. Autophagy has a controversial role in cancer--both in protecting against tumor progression by isolation of damaged organelles, or by potentially contributing to cancer growth. The impact of autophagy in RAS induced transformation still remains to be further analyzed based on the differential effect of RAS isoforms and tumor cell context. In the present study, the effect of KRAS/BRAF/PIK3CA oncogenic pathways on the autophagic cell properties and on main components of the autophagic machinery like p62 (SQSTM1), Beclin-1 (BECN1) and MAP1LC3 (LC3) in colon cancer cells was investigated. This study provides evidence that BRAF oncogene induces the expression of key autophagic markers, like LC3 and BECN1 in colorectal tumor cells. Herein, PI3K/AKT/MTOR inhibitors induce autophagic tumor properties, whereas RAF/MEK/ERK signalling inhibitors reduce expression of autophagic markers. Based on the ineffectiveness of BRAFV600E inhibitors in BRAFV600E bearing colorectal tumors, the BRAF related autophagic properties in colorectal cancer cells are further exploited, by novel combinatorial anti-cancer protocols. Strong evidence is provided here that pre-treatment of autophagy inhibitor 3-MA followed by its combination with BRAFV600E targeting drug PLX4720 can synergistically sensitize resistant colorectal tumors. Notably, colorectal cancer cells are very sensitive to mono-treatments of another autophagy inhibitor, Bafilomycin A1. The findings of this study are expected to provide novel efficient protocols for treatment of otherwise resistant colorectal tumors bearing BRAFV600E, by exploiting the autophagic properties induced by BRAF oncogene.

  20. Research advances in the role of autophagy in liver cells and regulation of MAPK pathway

    Directory of Open Access Journals (Sweden)

    JIANG Na

    2016-05-01

    Full Text Available Autophagy is a highly conservative cellular process in eukaryotes that plays an important role in nutrition and energy metabolism in the liver. It can promote the autophagy of hepatocytes and protect the hepatocytes against the adverse external stimulation, but excessive autophagy can cause autophagic cell death of hepatocytes. Hepatic stellate cells (HSC play an important role in the development and progression of liver fibrosis. Autophagy can provide energy for their activation, but may also lead to their death. This article introduces the relationship of autophagy with hepatocytes/HSC and the mitogen-activated protein kinase pathway, and points out that in-depth studies on the relationship between autophagy and pathway regulation during liver fibrosis can provide new targets for developing antifibrotic drugs.

  1. Primary cilium and autophagy: The avengers of cell-size regulation.

    Science.gov (United States)

    Orhon, Idil; Dupont, Nicolas; Codogno, Patrice

    2016-11-01

    The maintenance of cellular homeostasis in response to extracellular stresses by autophagy is vital for the health of various tissues. Extracellular stimuli may include nutrient starvation, endoplasmic reticulum stress, hypoxia, cytotoxic agents, or mechanical stress. The primary cilium (PC) is a microtubule-based sensory organelle that regulates the integration of various extracellular stimuli. The interconnection between macroautophagy/autophagy and the PC is beginning to be illuminated. In this punctum, we discuss our recent study of PC-dependent autophagy in response to fluid flow in kidney epithelial cells. Urinary flow in kidney tubules creates a shear stress that regulates epithelial cell volume. PC-mediated autophagy is necessary for the regulation of cell size. The signal from the PC is transduced by the activation of STK11/LKB1 and by MTOR inhibition. Our results clarify the physiological role of PC-dependent autophagy in the kidney and suggest that autophagy manipulation may provide a route to the treatment of ciliopathies.

  2. Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome

    DEFF Research Database (Denmark)

    Morselli, Eugenia; Mariño, Guillermo; Bennetzen, Martin V

    2011-01-01

    Autophagy protects organelles, cells, and organisms against several stress conditions. Induction of autophagy by resveratrol requires the nicotinamide adenine dinucleotide-dependent deacetylase sirtuin 1 (SIRT1). In this paper, we show that the acetylase inhibitor spermidine stimulates autophagy...... independent of SIRT1 in human and yeast cells as well as in nematodes. Although resveratrol and spermidine ignite autophagy through distinct mechanisms, these compounds stimulate convergent pathways that culminate in concordant modifications of the acetylproteome. Both agents favor convergent deacetylation...... and acetylation reactions in the cytosol and in the nucleus, respectively. Both resveratrol and spermidine were able to induce autophagy in cytoplasts (enucleated cells). Moreover, a cytoplasm-restricted mutant of SIRT1 could stimulate autophagy, suggesting that cytoplasmic deacetylation reactions dictate...

  3. [Advances in the research of effects of regulation of cell autophagy on wound healing].

    Science.gov (United States)

    Li, M; Liu, D W

    2017-10-20

    As one of the self-protection mechanism, autophagy widely exists in eukaryotic cells. It plays an important role in maintaining cells survival, update, material recycling, and tissue homeostasis. A series of researches discovered that autophagy played dual function in fibrotic diseases. The induction of autophagy can promote the degradation of collagen on one hand, on the other hand, the regulation of autophagy through microRNA, transforming growth factor β, and other factors can promote the occurrence of fibrosis. In wound healing, autophagy may participate in the pathophysiological processes of inflammation, reepithlialization, and wound remodeling. The regulation of cell autophagy may become an effective way and the new target for treatment of wound and pathological scar.

  4. Autophagy downregulation contributes to insulin resistance mediated injury in insulin receptor knockout podocytes in vitro

    Directory of Open Access Journals (Sweden)

    Ying Xu

    2016-04-01

    Full Text Available It is unknown whether autophagy activity is altered in insulin resistant podocytes and whether autophagy could be a therapeutic target for diabetic nephropathy (DN. Here we used shRNA transfection to knockdown the insulin receptor (IR gene in cultured human immortalized podocytes as an in vitro insulin resistant model. Autophagy related proteins LC3, Beclin, and p62 as well as nephrin, a podocyte injury marker, were assessed using western blot and immunofluorescence staining. Our results show that autophagy is suppressed when podocytes lose insulin sensitivity and that treatment of rapamycin, an mTOR specific inhibitor, could attenuate insulin resistance induced podocytes injury via autophagy activation. The present study deepens our understanding of the role of autophagy in the pathogenesis of DN.

  5. Autophagy, programmed cell death and reactive oxygen species in sexual reproduction in plants.

    Science.gov (United States)

    Kurusu, Takamitsu; Kuchitsu, Kazuyuki

    2017-05-01

    Autophagy is one of the major cellular processes of recycling of proteins, metabolites and intracellular organelles, and plays crucial roles in the regulation of innate immunity, stress responses and programmed cell death (PCD) in many eukaryotes. It is also essential in development and sexual reproduction in many animals. In plants, although autophagy-deficient mutants of Arabidopsis thaliana show phenotypes in abiotic and biotic stress responses, their life cycle seems normal and thus little had been known until recently about the roles of autophagy in development and reproduction. Rice mutants defective in autophagy show sporophytic male sterility and immature pollens, indicating crucial roles of autophagy during pollen maturation. Enzymatic production of reactive oxygen species (ROS) by respiratory burst oxidase homologues (Rbohs) play multiple roles in regulating anther development, pollen tube elongation and fertilization. Significance of autophagy and ROS in the regulation of PCD of transient cells during plant sexual reproduction is discussed in comparison with animals.

  6. Renal endoplasmic reticulum stress is coupled to impaired autophagy in a mouse model of GSD Ia.

    Science.gov (United States)

    Farah, Benjamin L; Landau, Dustin J; Wu, Yajun; Sinha, Rohit A; Loh, Alwin; Bay, Boon-Huat; Koeberl, Dwight D; Yen, Paul M

    2017-11-01

    GSD Ia (von Gierke Disease, Glycogen Storage Disease Type Ia) is a devastating genetic disorder with long-term sequelae, such as non-alcoholic fatty liver disease and renal failure. Down-regulated autophagy is involved in the development of hepatic metabolic dysfunction in GSD Ia; however, the role of autophagy in the renal pathology is unknown. Here we show that autophagy is impaired and endoplasmic reticulum (ER) stress is increased in the kidneys of a mouse model of GSD Ia. Induction of autophagy by rapamycin also reduces this ER stress. Taken together, these results show an additional role for autophagy down-regulation in the pathogenesis of GSD Ia, and provide further justification for the use of autophagy modulators in GSD Ia. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Autophagy sustains the replication of porcine reproductive and respiratory virus in host cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qinghao; Qin, Yixian; Zhou, Lei; Kou, Qiuwen; Guo, Xin; Ge, Xinna [Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agribiotechnology, China Agricultural University, Beijing (China); Yang, Hanchun, E-mail: yanghanchun1@cau.edu.cn [Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agribiotechnology, China Agricultural University, Beijing (China); Hu, Hongbo, E-mail: hongbo@cau.edu.cn [College of Food Science and Nutritional Engineering, China Agricultural University, Beijing (China)

    2012-08-01

    In this study, we confirmed the autophagy induced by porcine reproductive and respiratory syndrome virus (PRRSV) in permissive cells and investigated the role of autophagy in the replication of PRRSV. We first demonstrated that PRRSV infection significantly results in the increased double-membrane vesicles, the accumulation of LC3 fluorescence puncta, and the raised ratio of LC3-II/{beta}-actin, in MARC-145 cells. Then we discovered that induction of autophagy by rapamycin significantly enhances the viral titers of PRRSV, while inhibition of autophagy by 3-MA and silencing of LC3 gene by siRNA reduces the yield of PRRSV. The results showed functional autolysosomes can be formed after PRRSV infection and the autophagosome-lysosome-fusion inhibitor decreases the virus titers. We also examined the induction of autophagy by PRRSV infection in pulmonary alveolar macrophages. These findings indicate that autophagy induced by PRRSV infection plays a role in sustaining the replication of PRRSV in host cells.

  8. Degradation of misfolded proteins by autophagy: is it a strategy for Huntington's disease treatment?

    Science.gov (United States)

    Lin, Fang; Qin, Zheng-Hong

    2013-01-01

    Autophagy is a degradation pathway for long-lived cytoplasmic proteins, protein complexes, or damaged organelles. The accumulation and aggregation of misfolded proteins are hallmarks of several neurodegenerative diseases. Many researchers have reported that autophagy degrades disease-causing misfolded and aggregated proteins, including mutant huntingtin (Htt) in Huntington's disease, mutant synuclein in familial Parkingson's disease, mutant Cu, Zn-Superoxide dismutase (SOD1) in familial amyotrophic lateral sclerosis. In this review, we will bring up new evidence to elucidate the involvement of autophagy in degradation of mutant Htt, discuss the mechanisms regulating the degradation of mutant Htt by autophagy and the therapeutic effects of drugs that enhance autophagy to improve clearance of mutant Htt. We propose that enhancement of autophagy by drugs may be a strategy to treat or retard progression of Huntington's disease.

  9. Lutein Induces Autophagy via Beclin-1 Upregulation in IEC-6 Rat Intestinal Epithelial Cells.

    Science.gov (United States)

    Chang, Chi-Jen; Lin, Ji-Fan; Hsiao, Chien-Yu; Chang, Hsun-Hao; Li, Hsin-Ju; Chang, Hsun-Hsien; Lee, Gon-Ann; Hung, Chi-Feng

    2017-01-01

    Lutein is a carotenoid with anti-oxidant properties. Autophagy, an evolutionarily conserved catabolic cellular pathway for coping with stress conditions, is responsive to reactive oxygen species (ROS) and degrades damaged organelles. We previously demonstrated that lutein can induce anti-oxidant enzymes to relieve methotrexate-induced ROS stress. We therefore hypothesized that lutein, which activates ROS-scavenging enzymes, can also induce autophagy for cell survival. In this study, we demonstrated that lutein treatment attenuated the reduction in cell viability caused by H 2 O 2 . Lutein dose-dependently induced the processing of microtubule-associated protein light chain 3 (LC3)-II, an autophagy marker protein, and accumulation of LC3-positive puncta in rat intestinal IEC-6 cells. Furthermore, (a) direct observation of autophagosome formation through transmission electron microscopy, (b) upregulation of autophagy-related genes including ATG4A, ATG5, ATG7, ATG12, and beclin-1 (BENC1), and (c) increased BECN1/Bcl-2 ratio confirmed the induction of autophagy by lutein. The results revealed that bafilomycin-A1-induced inhibition of autophagy reduced cell viability and increased apoptosis in lutein-treated cells, indicating a protective role of lutein-induced autophagy. Lutein treatment also activated adenosine monophosphate-activated protein kinase (AMPK), c-Jun N-terminal kinase (JNK), and p-38, but had no effects on the induction of extracellular signal-related kinase or inhibition of mTOR; however, the inhibition of activated AMPK, JNK, or p-38 did not attenuate lutein-induced autophagy. Finally, increased BECN1 expression levels were detected in lutein-treated cells, and BECN1 knockdown abolished autophagy induction. These results suggest that lutein-induced autophagy was mediated by the upregulation of BECN1 in IEC-6 cells. We are the first to demonstrate that lutein induces autophagy. Elevated autophagy in lutein-treated IEC-6 cells may have a protective role

  10. Impact of cellular autophagy on viruses: Insights from hepatitis B virus and human retroviruses.

    Science.gov (United States)

    Tang, Sai-Wen; Ducroux, Aurelie; Jeang, Kuan-Teh; Neuveut, Christine

    2012-10-30

    Autophagy is a protein degradative process important for normal cellular metabolism. It is apparently used also by cells to eliminate invading pathogens. Interestingly, many pathogens have learned to subvert the cell's autophagic process. Here, we review the interactions between viruses and cells in regards to cellular autophagy. Using findings from hepatitis B virus and human retroviruses, HIV-1 and HTLV-1, we discuss mechanisms used by viruses to usurp cellular autophagy in ways that benefit viral replication.

  11. Effects of aerobic training on markers of autophagy in the elderly

    OpenAIRE

    Mej?as-Pe?a, Yubisay; Rodriguez-Miguelez, Paula; Fernandez-Gonzalo, Rodrigo; Mart?nez-Fl?rez, Susana; Almar, Mar; de Paz, Jos? A.; Cuevas, Mar?a J.; Gonz?lez-Gallego, Javier

    2016-01-01

    Autophagy is a molecular process essential for the maintenance of cellular homeostasis, which appears to (i) decline with age and (ii) respond to physical exercise. In addition, recent evidence suggests a crosstalk between autophagy and toll-like receptor (TLR)-associated inflammatory responses. This study assessed the effects of aerobic exercise training on autophagy and TLR signaling in older subjects. Twenty-nine healthy women and men (age, 69.7???1.0?year) were randomized to a training (T...

  12. Kaempferol induces hepatocellular carcinoma cell death via endoplasmic reticulum stress-CHOP-autophagy signaling pathway

    OpenAIRE

    Guo, Haiqing; Lin, Wei; Zhang, Xiangying; Zhang, Xiaohui; Hu, Zhongjie; Li, Liying; Duan, Zhongping; Zhang, Jing; Ren, Feng

    2017-01-01

    Kaempferol is a flavonoid compound that has gained widespread attention due to its antitumor functions. However, the underlying mechanisms are still not clear. The present study investigated the effect of kaempferol on hepatocellular carcinoma and its underlying mechanisms. Kaempferol induced autophagy in a concentration- and time-dependent manner in HepG2 or Huh7 cells, which was evidenced by the significant increase of autophagy-related genes. Inhibition of autophagy pathway, through 3-meth...

  13. Impaired Autophagy in the Lipid-Storage Disorder Niemann-Pick Type C1 Disease

    OpenAIRE

    Sarkar, Sovan; Carroll, Bernadette; Buganim, Yosef; Maetzel, Dorothea; Ng, Alex H.M.; Cassady, John P.; Cohen, Malkiel A.; Chakraborty, Souvik; Wang, Haoyi; Spooner, Eric; Ploegh, Hidde; Gsponer, Joerg; Korolchuk, Viktor I.; Jaenisch, Rudolf

    2013-01-01

    Autophagy dysfunction has been implicated in misfolded protein accumulation and cellular toxicity in several diseases. Whether alterations in autophagy also contribute to the pathology of lipid-storage disorders is not clear. Here, we show defective autophagy in Niemann-Pick type C1 (NPC1) disease associated with cholesterol accumulation, where the maturation of autophagosomes is impaired because of defective amphisome formation caused by failure in SNARE machinery, whereas the lysosomal prot...

  14. Intermedin suppresses pressure overload cardiac hypertrophy through activation of autophagy.

    Science.gov (United States)

    Chen, Huali; Wang, Xue; Tong, Mingming; Wu, Dan; Wu, Sisi; Chen, Jiaxiang; Wang, Xiaoxiao; Wang, Xulei; Kang, Yu; Tang, Hong; Tang, Chaoshu; Jiang, Wei

    2013-01-01

    Left ventricular hypertrophy is a maladaptive response to pressure overload and an important risk factor for heart failure. Intermedin (IMD), a multi-functional peptide, plays important roles in cardiovascular protection. In this study, we revealed an autophagy-dependent mechanism involved in IMD's protection against cardiac remodeling and cardiomyocyte death in heart hypertrophy. We observed that transverse aortic contraction (TAC) induction, Ang II or ISO exposure induced remarkable increase in the expression of endogenous IMD and its receptor components, CRLR, RAMP1 and RAMP3, in mouse hearts and H9c2 cell cultures, respectively. Furthermore, the heart size, heart weight/body weight ratios, cardiomyocyte size and apoptosis, interstitial collagen, hypertrophic markers including ANP and BNP expression were also significantly increased, which were effectively suppressed by IMD supplementation. In addition, IMD induced capillary angiogenesis and improved functions in hypertrophic hearts. We further observed that IMD induced strong autophagy in hypertrophic hearts and cultured cells, which was paralleling with the decrease in cardiomyocyte size and apoptosis. Furthermore, an autophagy inhibitor, 3-MA, was used to block the IMD-augmented autophagy level, and then the protection of IMD on cardiomyocyte hypertrophy and apoptosis was almost abrogated. We also observed that IMD supplementation stirred intracellular cAMP production, and augmented the ERK1/2 phosphorylation induced by Ang II/ISO exposure in H9c2 cells. In addition, we inhibited PI3K, PKA and MAPK/ERK1/2 signaling pathways by using wortamannin, H89 and PD98059, respectively, in H9c2 cells co-incubating with both IMD and Ang II or ISO, and observed that these inhibitors effectively reduced IMD-augmented autophagy level, but only H89 and PD98059 pre-incubation abrogated the anti-apoptotic action of IMD. These results indicate that the endogenous IMD and its receptor complexes are induced in hypertrophic

  15. Intermedin suppresses pressure overload cardiac hypertrophy through activation of autophagy.

    Directory of Open Access Journals (Sweden)

    Huali Chen

    Full Text Available Left ventricular hypertrophy is a maladaptive response to pressure overload and an important risk factor for heart failure. Intermedin (IMD, a multi-functional peptide, plays important roles in cardiovascular protection. In this study, we revealed an autophagy-dependent mechanism involved in IMD's protection against cardiac remodeling and cardiomyocyte death in heart hypertrophy. We observed that transverse aortic contraction (TAC induction, Ang II or ISO exposure induced remarkable increase in the expression of endogenous IMD and its receptor components, CRLR, RAMP1 and RAMP3, in mouse hearts and H9c2 cell cultures, respectively. Furthermore, the heart size, heart weight/body weight ratios, cardiomyocyte size and apoptosis, interstitial collagen, hypertrophic markers including ANP and BNP expression were also significantly increased, which were effectively suppressed by IMD supplementation. In addition, IMD induced capillary angiogenesis and improved functions in hypertrophic hearts. We further observed that IMD induced strong autophagy in hypertrophic hearts and cultured cells, which was paralleling with the decrease in cardiomyocyte size and apoptosis. Furthermore, an autophagy inhibitor, 3-MA, was used to block the IMD-augmented autophagy level, and then the protection of IMD on cardiomyocyte hypertrophy and apoptosis was almost abrogated. We also observed that IMD supplementation stirred intracellular cAMP production, and augmented the ERK1/2 phosphorylation induced by Ang II/ISO exposure in H9c2 cells. In addition, we inhibited PI3K, PKA and MAPK/ERK1/2 signaling pathways by using wortamannin, H89 and PD98059, respectively, in H9c2 cells co-incubating with both IMD and Ang II or ISO, and observed that these inhibitors effectively reduced IMD-augmented autophagy level, but only H89 and PD98059 pre-incubation abrogated the anti-apoptotic action of IMD. These results indicate that the endogenous IMD and its receptor complexes are induced in

  16. Autophagy Mediates Interleukin-1β Secretion in Human Neutrophils

    Directory of Open Access Journals (Sweden)

    Leonardo Iula

    2018-02-01

    Full Text Available Interleukin-1β (IL-1β, a major pro-inflammatory cytokine, is a leaderless cytosolic protein whose secretion does not follow the classical endoplasmic reticulum-to-Golgi pathway, and for which a canonical mechanism of secretion remains to be established. Neutrophils are essential players against bacterial and fungi infections. These cells are rapidly and massively recruited from the circulation into infected tissues and, beyond of displaying an impressive arsenal of toxic weapons effective to kill pathogens, are also an important source of IL-1β in infectious conditions. Here, we analyzed if an unconventional secretory autophagy mechanism is involved in the exportation of IL-1β by these cells. Our findings indicated that inhibition of autophagy with 3-methyladenine and Wortmannin markedly reduced IL-1β secretion induced by LPS + ATP, as did the disruption of the autophagic flux with Bafilomycin A1 and E64d. These compounds did not noticeable affect neutrophil viability ruling out that the effects on IL-1β secretion were due to cell death. Furthermore, VPS34IN-1, a specific autophagy inhibitor, was still able to reduce IL-1β secretion when added after it was synthesized. Moreover, siRNA-mediated knockdown of ATG5 markedly reduced IL-1β secretion in neutrophil-differentiated PLB985 cells. Upon LPS + ATP stimulation, IL-1β was incorporated to an autophagic compartment, as was revealed by its colocalization with LC3B by confocal microscopy. Overlapping of IL-1β-LC3B in a vesicular compartment peaked before IL-1β increased in culture supernatants. On the other hand, stimulation of autophagy by cell starvation augmented the colocalization of IL-1β and LC3B and then promoted neutrophil IL-1β secretion. In addition, specific ELISAs indicated that although both IL-1β and pro-IL-1β are released to culture supernatants upon neutrophil stimulation, autophagy only promotes IL-1β secretion. Furthermore, the serine proteases inhibitor

  17. Persistent activation of autophagy in kidney tubular cells promotes renal interstitial fibrosis during unilateral ureteral obstruction

    Science.gov (United States)

    Livingston, Man J.; Ding, Han-Fei; Huang, Shuang; Hill, Joseph A.; Yin, Xiao-Ming; Dong, Zheng

    2016-01-01

    ABSTRACT Renal fibrosis is the final, common pathway of end-stage renal disease. Whether and how autophagy contributes to renal fibrosis remains unclear. Here we first detected persistent autophagy in kidney proximal tubules in the renal fibrosis model of unilateral ureteral obstruction (UUO) in mice. UUO-associated fibrosis was suppressed by pharmacological inhibitors of autophagy and also by kidney proximal tubule-specific knockout of autophagy-related 7 (PT-Atg7 KO). Consistently, proliferation and activation of fibroblasts, as indicated by the expression of ACTA2/α-smooth muscle actin and VIM (vimentin), was inhibited in PT-Atg7 KO mice, so was the accumulation of extracellular matrix components including FN1 (fibronectin 1) and collagen fibrils. Tubular atrophy, apoptosis, nephron loss, and interstitial macrophage infiltration were all inhibited in these mice. Moreover, these mice showed a specific suppression of the expression of a profibrotic factor FGF2 (fibroblast growth factor 2). In vitro, TGFB1 (transforming growth factor β 1) induced autophagy, apoptosis, and FN1 accumulation in primary proximal tubular cells. Inhibition of autophagy suppressed FN1 accumulation and apoptosis, while enhancement of autophagy increased TGFB1-induced-cell death. These results suggest that persistent activation of autophagy in kidney proximal tubules promotes renal interstitial fibrosis during UUO. The profibrotic function of autophagy is related to the regulation on tubular cell death, interstitial inflammation, and the production of profibrotic factors. PMID:27123926

  18. Alpha-lipoic acid protects cardiomyocytes against hypoxia/reoxygenation injury by inhibiting autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xueming; Chen, Aihua, E-mail: aihuachen2012@sina.com; Yang, Pingzhen; Song, Xudong; Liu, Yingfeng; Li, Zhiliang; Wang, Xianbao; Wang, Lizi; Li, Yunpeng

    2013-11-29

    Highlights: •We observed the cell viability and death subjected to H/R in H9c2 cardiomyocytes. •We observed the degree of autophagy subjected to H/R in H9c2 cardiomyocytes. •LA inhibited the degree of autophagy in parallel to the enhanced cell survival. •LA inhibited the autophagy in parallel to the decreased total cell death. •We concluded that LA protected cardiomyocytes against H/R by inhibiting autophagy. -- Abstract: Hypoxia/reoxygenation (H/R) is an important in vitro model for exploring the molecular mechanisms and functions of autophagy during myocardial ischemia/reperfusion (I/R). Alpha-lipoic acid (LA) plays an important role in the etiology of cardiovascular disease. Autophagy is widely implicated in myocardial I/R injury. We assessed the degree of autophagy by pretreatment with LA exposed to H/R in H9c2 cell based on the expression levels of Beclin-1, LC3II/LC3I, and green fluorescent protein-labeled LC3 fusion proteins. Autophagic vacuoles were confirmed in H9c2 cells exposed to H/R using transmission electron microscopy. Our findings indicated that pretreatment with LA inhibited the degree of autophagy in parallel to the enhanced cell survival and decreased total cell death in H9c2 cells exposed to H/R. We conclude that LA protects cardiomyocytes against H/R injury by inhibiting autophagy.

  19. Multiple Roles of Autophagy in the Sorafenib Resistance of Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Ting Sun

    2017-11-01

    Full Text Available Hepatocellular carcinoma (HCC is the second leading cause of cancer-related death worldwide, and prognosis remains unsatisfactory since the disease is often diagnosed at the advanced stages. Currently, the multikinase inhibitor sorafenib is the only drug approved for the treatment of advanced HCC. However, primary or acquired resistance to sorafenib develops, generating a roadblock in HCC therapy. Autophagy is an intracellular lysosomal pathway involved in protein and organelle degradation, with an astonishing number of connections to human disease and physiology. Current understanding of the role of autophagy in the progression of cancer and the response to cancer therapy remains controversial. Sorafenib is able to induce autophagy in HCC, but the effect of autophagy is indistinct. Some studies established that sorafenib-induced autophagy serves as a pro-survival response. However, other studies found that sorafenib-induced autophagy improves the lethality of sorafenib against HCC cells. The mechanisms underlying autophagy and sorafenib resistance remain elusive. The purpose of this review is to summarize the progress of research focused on autophagy and sorafenib resistance and to update current knowledge of how cellular autophagy impacts sorafenib sensitivity in HCC treatment.

  20. The role of autophagy in THP-1 macrophages resistance to HIV- vpr-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hua-ying, E-mail: zhouhuaying_2004@126.com; Zheng, Yu-huang; He, Yan; Chen, Zi; He, Bo

    2017-02-01

    Macrophages are resistant to cell death and are one of HIV reservoirs. HIV viral protein Vpr has the potential to promote infection of and survival of macrophages, which could be a highly significant factor in the development and/or maintenance of macrophage viral reservoirs. However, the impact of vpr on macrophages resistance to apoptosis is yet to be comprehended. Autophagy is a cell survival mechanism under stress state. In this study, we investigated whether autophagy is involved in macrophages resistant to vpr-induced apoptosis. Using the THP1 macrophages, we studied the interconnection between macrophages resistance to apoptosis and autophagy. We found that vpr is able to trigger autophagy in transfected THP-1 macrophages confirmed by electron microscopy (EM) and western blot analysis, and inhibition of autophagy with 3MA increased vpr-induced apoptosis. The results indicate that autophagy may be responsible for maintenance of macrophage HIV reservoirs. - Highlights: • HIV Vpr is able to trigger autophagy in transfected THP-1 macrophages. • Autophagy inhibition increases vpr-transfected THP1-macrophages apoptosis. • Autophagy is involved in THP-1 macrophages resistant to vpr-induced apoptosis.

  1. Autophagy regulated by miRNAs in colorectal cancer progression and resistance

    Directory of Open Access Journals (Sweden)

    Andrew Fesler

    2017-01-01

    Full Text Available The catabolic process of autophagy is an essential cellular function that allows for the breakdown and recycling of cellular macromolecules. In recent years, the impact of epigenetic regulation of autophagy by noncoding miRNAs has been recognized in human cancer. In colorectal cancer, autophagy plays critical roles in cancer progression as well as resistance to chemotherapy, and recent evidence demonstrates that miRNAs are directly involved in mediating these functions. In this review, we focus on the recent advancements in the field of miRNA regulation of autophagy in colorectal cancer.

  2. GOLGA2 loss causes fibrosis with autophagy in the mouse lung and liver.

    Science.gov (United States)

    Park, Sungjin; Kim, Sanghwa; Kim, Min Jung; Hong, Youngeun; Lee, Ah Young; Lee, Hyunji; Tran, Quangdon; Kim, Minhee; Cho, Hyeonjeong; Park, Jisoo; Kim, Kwang Pyo; Park, Jongsun; Cho, Myung-Haing

    2018-01-01

    Autophagy is a biological recycling process via the self-digestion of organelles, proteins, and lipids for energy-consuming differentiation and homeostasis. The Golgi serves as a donor of the double-membraned phagophore for autophagosome assembly. In addition, recent studies have demonstrated that pulmonary and hepatic fibrosis is accompanied by autophagy. However, the relationships among Golgi function, autophagy, and fibrosis are unclear. Here, we show that the deletion of GOLGA2, encoding a cis-Golgi protein, induces autophagy with Golgi disruption. The induction of autophagy leads to fibrosis along with the reduction of subcellular lipid storage (lipid droplets and lamellar bodies) by autophagy in the lung and liver. GOLGA2 knockout mice clearly demonstrated fibrosis features such as autophagy-activated cells, densely packed hepatocytes, increase of alveolar macrophages, and decrease of alveolar surfactant lipids (dipalmitoylphosphatidylcholine). Therefore, we confirmed the associations among Golgi function, fibrosis, and autophagy. Moreover, GOLGA2 knockout mice may be a potentially valuable animal model for studying autophagy-induced fibrosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Impaired Autophagy in the Lipid-Storage Disorder Niemann-Pick Type C1 Disease

    Directory of Open Access Journals (Sweden)

    Sovan Sarkar

    2013-12-01

    Full Text Available Autophagy dysfunction has been implicated in misfolded protein accumulation and cellular toxicity in several diseases. Whether alterations in autophagy also contribute to the pathology of lipid-storage disorders is not clear. Here, we show defective autophagy in Niemann-Pick type C1 (NPC1 disease associated with cholesterol accumulation, where the maturation of autophagosomes is impaired because of defective amphisome formation caused by failure in SNARE machinery, whereas the lysosomal proteolytic function remains unaffected. Expression of functional NPC1 protein rescues this defect. Inhibition of autophagy also causes cholesterol accumulation. Compromised autophagy was seen in disease-affected organs of Npc1 mutant mice. Of potential therapeutic relevance is that HP-β-cyclodextrin, which is used for cholesterol-depletion treatment, impedes autophagy, whereas stimulating autophagy restores its function independent of amphisome formation. Our data suggest that a low dose of HP-β-cyclodextrin that does not perturb autophagy, coupled with an autophagy inducer, may provide a rational treatment strategy for NPC1 disease.

  4. Impaired autophagy in the lipid-storage disorder Niemann-Pick type C1 disease.

    Science.gov (United States)

    Sarkar, Sovan; Carroll, Bernadette; Buganim, Yosef; Maetzel, Dorothea; Ng, Alex H M; Cassady, John P; Cohen, Malkiel A; Chakraborty, Souvik; Wang, Haoyi; Spooner, Eric; Ploegh, Hidde; Gsponer, Joerg; Korolchuk, Viktor I; Jaenisch, Rudolf

    2013-12-12

    Autophagy dysfunction has been implicated in misfolded protein accumulation and cellular toxicity in several diseases. Whether alterations in autophagy also contribute to the pathology of lipid-storage disorders is not clear. Here, we show defective autophagy in Niemann-Pick type C1 (NPC1) disease associated with cholesterol accumulation, where the maturation of autophagosomes is impaired because of defective amphisome formation caused by failure in SNARE machinery, whereas the lysosomal proteolytic function remains unaffected. Expression of functional NPC1 protein rescues this defect. Inhibition of autophagy also causes cholesterol accumulation. Compromised autophagy was seen in disease-affected organs of Npc1 mutant mice. Of potential therapeutic relevance is that HP-β-cyclodextrin, which is used for cholesterol-depletion treatment, impedes autophagy, whereas stimulating autophagy restores its function independent of amphisome formation. Our data suggest that a low dose of HP-β-cyclodextrin that does not perturb autophagy, coupled with an autophagy inducer, may provide a rational treatment strategy for NPC1 disease. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Autophagy and Macropinocytosis: Keeping an Eye on the Corneal/Limbal Epithelia.

    Science.gov (United States)

    Peng, Han; Park, Jong Kook; Lavker, Robert M

    2017-01-01

    Autophagy and macropinocytosis are processes that are vital for cellular homeostasis, and help cells respond to stress and take up large amounts of material, respectively. The limbal and corneal epithelia have the machinery necessary to carry out both processes; however, autophagy and macropinocytosis are relatively understudied in these two epithelia. In this Perspectives, we describe the basic principles behind macropinocytosis and autophagy, discuss how these two processes are regulated in the limbal and corneal epithelia, consider how these two processes impact on the physiology of limbal and corneal epithelia, and elaborate on areas of future research in autophagy and macropinocytosis as related to the limbal/corneal epithelia.

  6. Autophagy and leucine promote chronological longevity and respiration proficiency during calorie restriction in yeast.

    Science.gov (United States)

    Aris, John P; Alvers, Ashley L; Ferraiuolo, Roy A; Fishwick, Laura K; Hanvivatpong, Amanda; Hu, Doreen; Kirlew, Christine; Leonard, Michael T; Losin, Kyle J; Marraffini, Michelle; Seo, Arnold Y; Swanberg, Veronica; Westcott, Jennifer L; Wood, Michael S; Leeuwenburgh, Christiaan; Dunn, William A

    2013-10-01

    We have previously shown that autophagy is required for chronological longevity in the budding yeast Saccharomyces cerevisiae. Here we examine the requirements for autophagy during extension of chronological life span (CLS) by calorie restriction (CR). We find that autophagy is upregulated by two CR interventions that extend CLS: water wash CR and low glucose CR. Autophagy is required for full extension of CLS during water wash CR under all growth conditions tested. In contrast, autophagy was not uniformly required for full extension of CLS during low glucose CR, depending on the atg allele and strain genetic background. Leucine status influenced CLS during CR. Eliminating the leucine requirement in yeast strains or adding supplemental leucine to growth media extended CLS during CR. In addition, we observed that both water wash and low glucose CR promote mitochondrial respiration proficiency during aging of autophagy-deficient yeast. In general, the extension of CLS by water wash or low glucose CR was inversely related to respiration deficiency in autophagy-deficient cells. Also, autophagy is required for full extension of CLS under non-CR conditions in buffered media, suggesting that extension of CLS during CR is not solely due to reduced medium acidity. Thus, our findings show that autophagy is: (1) induced by CR, (2) required for full extension of CLS by CR in most cases (depending on atg allele, strain, and leucine availability) and, (3) promotes mitochondrial respiration proficiency during aging under CR conditions. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Autophagy protects intestinal epithelial cells against deoxynivalenol toxicity by alleviating oxidative stress via IKK signaling pathway.

    Science.gov (United States)

    Tang, Yulong; Li, Jianjun; Li, Fengna; Hu, Chien-An A; Liao, Peng; Tan, Kunrong; Tan, Bie; Xiong, Xia; Liu, Gang; Li, Tiejun; Yin, Yulong

    2015-12-01

    Autophagy is an intracellular process of homeostatic degradation that promotes cell survival under various stressors. Deoxynivalenol (DON), a fungal toxin, often causes diarrhea and disturbs the homeostasis of the intestinal system. To investigate the function of intestinal autophagy in response to DON and associated mechanisms, we firstly knocked out ATG5 (autophagy-related gene 5) in porcine intestinal epithelial cells (IPEC-J2) using CRISPR-Cas9 technology. When treated with DON, autophagy was induced in IPEC-J2 cells but not in IPEC-J2.Atg5ko cells. The deficiency in autophagy increased DON-induced apoptosis in IPEC-J2.atg5ko cells, in part, through the generation of reactive oxygen species (ROS). The cellular stress response can be restored in IPEC-J2.atg5ko cells by overexpressing proteins involved in protein folding. Interestingly, we found that autophagy deficiency downregulated the expression of endoplasmic reticulum folding proteins BiP and PDI when IPEC-J2.atg5ko cells were treated with DON. In addition, we investigated the molecular mechanism of autophagy involved in the IKK, AMPK, and mTOR signaling pathway and found that Bay-117082 and Compound C, specific inhibitors for IKK and AMPK, respectively, inhibited the induction of autophagy. Taken together, our results suggest that autophagy is pivotal for protection against DON in pig intestinal cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Hijacker of the Antitumor Immune Response: Autophagy Is Showing Its Worst Facet.

    Science.gov (United States)

    Viry, Elodie; Noman, Muhammad Zaeem; Arakelian, Tsolère; Lequeux, Audrey; Chouaib, Salem; Berchem, Guy; Moussay, Etienne; Paggetti, Jérôme; Janji, Bassam

    2016-01-01

    Macroautophagy (hereafter referred to as autophagy) is a housekeeping process constitutively executed at basal level in all cells to promote cellular homeostasis by regulating organelle and protein turnover. However, autophagy deregulation caused by several stress factors, such as hypoxia, is prevalent in many cancers. It is now well established that autophagy can act as tumor suppressor or tumor promoter depending on tumor type, stage, and genetic context. In developed tumors, autophagy promotes the survival of cancer cells and therefore operates as a cell resistance mechanism. Emerging evidence point to the prominent role of autophagy in disabling the antitumor immune response by multiple overlapping mechanisms leading to tumor escape from immune cell attack mediated by both natural killer cells and cytotoxic T-lymphocytes. Such a role has inspired significant interest in applying anti-autophagy therapies as an entirely new approach to overcome tumor escape from immune surveillance, which constitutes so far a major challenge in developing more effective cancer immunotherapies. In this review, we will summarize recent reports describing how tumor cells, by activating autophagy, manage to hijack the immune system. In particular, we will focus on the emerging role of hypoxia-induced autophagy in shaping the antitumor immune response and in allowing tumor cells to outmaneuver an effective immune response and escape immunosurveillance. In keeping with this, we strongly believe that autophagy represents an attractive future therapeutic target to develop innovative and effective cancer immunotherapeutic approaches.

  9. Role of autophagy in disease resistance and hypersensitive response-associated cell death

    DEFF Research Database (Denmark)

    Hofius, Daniel; Munch, David; Bressendorff, Simon

    2011-01-01

    Ancient autophagy pathways are emerging as key defense modules in host eukaryotic cells against microbial pathogens. Apart from actively eliminating intracellular intruders, autophagy is also responsible for cell survival, for example by reducing the deleterious effects of endoplasmic reticulum...... documented, but how autophagy contributes to plant innate immunity and cell death is not that clear. A few research reports have appeared recently to shed light on the roles of autophagy in plant-pathogen interactions and in disease-associated host cell death. We present a first attempt to reconcile...

  10. Autophagy: an adaptive metabolic response to stress shaping the antitumor immunity.

    Science.gov (United States)

    Viry, Elodie; Paggetti, Jerome; Baginska, Joanna; Mgrditchian, Takouhie; Berchem, Guy; Moussay, Etienne; Janji, Bassam

    2014-11-01

    Several environmental-associated stress conditions, including hypoxia, starvation, oxidative stress, fast growth and cell death suppression, modulate both cellular metabolism and autophagy to enable cancer cells to rapidly adapt to environmental stressors, maintain proliferation and evade therapies. It is now widely accepted that autophagy is essential to support cancer cell growth and metabolism and that metabolic reprogramming in cancer can also favor autophagy induction. Therefore, this complex interplay between autophagy and tumor cell metabolism will provide unique opportunities to identify new therapeutic targets. As the regulation of the autophagic activity is related to metabolism, it is important to elucidate the exact molecular mechanism which drives it and the functional consequence of its activation in the context of cancer therapy. In this review, we will summarize the role of autophagy in shaping the cellular response to an abnormal tumor microenvironment and discuss some recent results on the molecular mechanism by which autophagy plays such a role in the context of the anti-tumor immune response. We will also describe how autophagy activation can behave as a double-edged sword, by activating the immune response in some circumstances, and impairing the anti-tumor immunity in others. These findings imply that defining the precise context-specific role for autophagy in cancer is critical to guide autophagy-based therapeutics which are becoming key strategies to overcome tumor resistance to therapies. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Protein kinase C β inhibits autophagy and sensitizes cervical cancer Hela cells to cisplatin.

    Science.gov (United States)

    Li, Na; Zhang, Wei

    2017-04-28

    Recently, autophagy has been indicated to play an essential role in various biological events, such as the response of cervical cancer cells to chemotherapy. However, the exact signalling mechanism that regulates autophagy during chemotherapy remains unclear. In the present study, we investigated the regulation by cisplatin on protein kinase C β (PKC β), on B-cell lymphoma 2 (Bcl-2) and on apoptosis in cervical cancer Hela cells. And then we examined the regulation by cisplatin on autophagy and the role of autophagy on the chemotherapy in Hela cells. In addition, the regulation of the PKC β on the autophagy was also investigated. Our results indicated that cisplatin promoted PKC β in Hela cells. The PKC β inhibitor reduced the cisplatin-induced apoptosis, whereas increased the cisplatin-induced autophagy in Hela cells. On the other side, the PKC β overexpression aggravated the cisplatin-induced apoptosis, whereas down-regulated the cisplatin-induced autophagy. Taken together, our study firstly recognized the involvement of PKC β in the cytotoxicity of cisplatin via inhibiting autophagy in cervical cancer cells. We propose that PKC β would sensitize cervical cancer cells to chemotherapy via reducing the chemotherapy induced autophagy in cancer cells. © 2017 The Author(s).

  12. Autophagy in acute leukemias: a double-edged sword with important therapeutic implications.

    Science.gov (United States)

    Evangelisti, Cecilia; Evangelisti, Camilla; Chiarini, Francesca; Lonetti, Annalisa; Buontempo, Francesca; Neri, Luca M; McCubrey, James A; Martelli, Alberto M

    2015-01-01

    Macroautophagy, usually referred to as autophagy, is a degradative pathway wherein cytoplasmatic components such as aggregated/misfolded proteins and organelles are engulfed within double-membrane vesicles (autophagosomes) and then delivered to lysosomes for degradation. Autophagy plays an important role in the regulation of numerous physiological functions, including hematopoiesis, through elimination of aggregated/misfolded proteins, and damaged/superfluous organelles. The catabolic products of autophagy (amino acids, fatty acids, nucleotides) are released into the cytosol from autophagolysosomes and recycled into bio-energetic pathways. Therefore, autophagy allows cells to survive starvation and other unfavorable conditions, including hypoxia, heat shock, and microbial pathogens. Nevertheless, depending upon the cell context and functional status, autophagy can also serve as a death mechanism. The cohort of proteins that constitute the autophagy machinery function in a complex, multistep biochemical pathway which has been partially identified over the past decade. Dysregulation of autophagy may contribute to the development of several disorders, including acute leukemias. In this kind of hematologic malignancies, autophagy can either act as a chemo-resistance mechanism or have tumor suppressive functions, depending on the context. Therefore, strategies exploiting autophagy, either for activating or inhibiting it, could find a broad application for innovative treatment of acute leukemias and could significantly contribute to improved clinical outcomes. These aspects are discussed here after a brief introduction to the autophagic molecular machinery and its roles in hematopoiesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Combination of graphene oxide–silver nanoparticle nanocomposites and cisplatin enhances apoptosis and autophagy in human cervical cancer cells

    Directory of Open Access Journals (Sweden)

    Yuan YG

    2017-09-01

    Full Text Available Yu-Guo Yuan,1,2 Sangiliyandi Gurunathan3 1College of Veterinary Medicine/Animal Science and Technology/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; 2Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China; 3Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, Republic of Korea Background: Cisplatin (Cis is a widely used chemotherapeutic drug for treating a variety of cancers, due to its ability to induce cell death in cancer cells significantly. Recently, graphene and its modified nanocomposites have gained much interest in cancer therapy, due to their unique physicochemical properties. The objective of this study was to investigate the combination effect of Cis and a reduced graphene oxide–silver nanoparticle nanocomposite (rGO-AgNPs in human cervical cancer (HeLa cells.Materials and methods: We synthesized AgNPs, rGO, and rGO-AgNP nanocomposites using C-phycocyanin. The synthesized nanomaterials were characterized using various analytical techniques. The anticancer properties of the Cis, rGO-AgNPs, and combination of Cis and rGO-AgNPs were evaluated using a series of cellular assays, such as cell viability, cell proliferation, LDH leakage, reactive oxygen species generation, and cellular levels of oxidative and antioxidative stress markers such as malondialdehyde, glutathione, SOD, and CAT. The expression of proapoptotic, antiapoptotic, and autophagy genes were measured using real-time reverse-transcription polymerase chain reaction.Results: The synthesized AgNPs were well dispersed, homogeneous, and spherical, with an average size of 10 nm and uniformly distributed on graphene sheets. Cis, GO, rGO, AgNPs, and rGO-AgNPs inhibited cell viability in a dose-dependent manner. The combination of Cis

  14. MiR-23a-5p modulates mycobacterial survival and autophagy during mycobacterium tuberculosis infection through TLR2/MyD88/NF-κB pathway by targeting TLR2.

    Science.gov (United States)

    Gu, Xing; Gao, Yan; Mu, De-Guang; Fu, En-Qing

    2017-05-15

    Autophagy plays a pivotal role in activating the antimicrobial host defense against Mycobacterium tuberculosis (M.tb.). The emerging roles of microRNAs (miRNAs) in regulating immune responses have attracted increasing attention in recent years. Appreciating the potential of host-directed therapies designed to control autophagy during mycobacterial infection, we focused on the influence of miR-23a-5p on the activation of macrophage autophagy during M.tb. infection in bone marrow-derived macrophages (BMDMs) and murine RAW264.7 cells. Here, we demonstrated that M.tb.-infection of macrophages lead to markedly enhanced expression of miR-23a-5p in a time- and dose-dependent manner. Furthermore, forced expression of miR-23a-5p accelerated the survival rate of intracellular mycobacteria, while transfection with miR-23a-5p inhibitors attenuated mycobacterial survival. More importantly, overexpression of miR-23a-5p dramatically prevented M.tb.-induced activation of autophagy in macrophages, whereas inhibitors of miR-23a-5p remarkably accelerated M.tb.-induced autophagy. Mechanistically, miR-23a-5p is able to modulate TLR2/MyD88/NF-κB signaling activity by targeting TLR2 in RAW264.7 cells in response to M.tb.-infection. Collectively, these findings demonstrated that miR-23a-5p modulated the innate host defense by promoting mycobacteria survival and inhibiting the activation of autophagy against M.tb. through TLR2/MyD88/NF-κB pathway by targeting TLR2, which may provide a promising therapeutic target for tuberculosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Membrane proteomics of phagosomes suggests a connection to autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Shui, Wenqing; Sheu, Leslie; Liu, Jun; Smart, Brian; Petzold, Christopher J.; Hsieh, Tsung-yen; Pitcher, Austin; Keasling*, Jay D.; Bertozzi*, Carolyn R.

    2008-11-25

    Phagocytosis is the central process by which macrophage cellsinternalize and eliminate infectious microbes as well as apoptoticcells. During maturation, phagosomes containing engulfed particlesfuse with various endosomal compartments through theaction of regulatory molecules on the phagosomal membrane. Inthis study, we performed a proteomic analysis of the membranefraction from latex bead-containing (LBC) phagosomes isolatedfrom macrophages. The profile, which comprised 546 proteins,suggests diverse functions of the phagosome and potential connectionsto secretory processes, toll-like receptor signaling, andautophagy. Many identified proteins were not previously knownto reside in the phagosome. We characterized several proteins inLBC phagosomes that change in abundance on induction of autophagy,a process that has been previously implicated in the hostdefense against microbial pathogens. These observations suggestcrosstalk between autophagy and phagocytosis that may be relevantto the innate immune response of macrophages.

  16. THE ROLE OF AUTOPHAGY AND ANGIOGENESIS IN COLORECTAL CANCER

    Directory of Open Access Journals (Sweden)

    K. V. Rachkovsky

    2017-01-01

    Full Text Available The purpose of the study was a review of available data on the role of autophagy and angiogenesis in the development, progression and prognosis of colorectal cancer. Material and methods. Databases searched were Medline, Cochrane Library and Elibrary. Of 340 studies, 48 were used to write a systematic review. Results. To date, there is a variety of prognostic markers used in the study of pathogenesis, diagnosis and treatment of colorectal cancer. The review describes the molecular mechanisms of the participation of various proteins of autophagy and angiogenesis in the pathogenesis and progression of colorectal cancer, and the potential importance of their use in clinical practice is presented. Conclusion. Many of the existing markers can be used not only in assessing the prognosis, but also sensitivity to chemotherapy. However, the contradictory results of studies with respect to certain proteins require further study, validation, and subsequent introduction into practice. 

  17. Autophagy and Retromer Components in Plant Innate Immunity

    DEFF Research Database (Denmark)

    Munch, David

    Innate immunity depends on the recognition of pathogens and subsequent regulation of complex interactions that ultimately leads to production of compounds to deter microbial innovation. This thesis presents different aspects of immunity-associated cell death with focus on autophagy in the plant...... metabolism and its role in plant innate immunity will be presented. A homolog of ACD11 in humans is FOUR-PHOSPHATE ADAPTOR PROTEIN2 (FAPP2) and it has also been shown to be involved in cell death regulation in human Jurkat T cells. The data presented here show that FAPP2 does not appear to be involved......, a component of the retromer complex, was discovered as a relatively weak suppressor. Here I show redundancy between the three VPS35 homologs present in Arabidopsis in regulation of immunity-associated cell death, with a focus on the catabolic pathway autophagy. In addition a role for ACD11 in sphingolipid...

  18. Autophagy--A free meal in sickness-associated anorexia.

    Science.gov (United States)

    van Niekerk, Gustav; Loos, Ben; Nell, Theo; Engelbrecht, Anna-Mart

    2016-01-01

    Activation of the immune system is metabolically costly, yet a hallmark of an infection is a reduction in appetite with a subsequent reduction in metabolite provision. What is the functional value of decreasing nutrient intake when an infection imposes large demands on metabolic parameters? Here, we propose that sickness-associated anorexia (SAA) upregulates the ancient process of autophagy systemically, thereby profoundly controlling not only immune- but also nonimmune-competent cells. This allows an advanced impact on the resolution of an infection through direct pathogen killing, enhancement of epitope presentation and the contribution toward the clearance of noxious factors. By rendering a 'free meal,' autophagy is thus most fundamentally harnessed during an anorexic response in order to promote both host tolerance and resistance. These findings strongly suggest a reassessment of numerous SAA-related clinical applications and a re-evaluation of current efforts in patient care.

  19. Diabetes and the Brain: Oxidative Stress, Inflammation, and Autophagy

    Directory of Open Access Journals (Sweden)

    María Muriach

    2014-01-01

    Full Text Available Diabetes mellitus is a common metabolic disorder associated with chronic complications including a state of mild to moderate cognitive impairment, in particular psychomotor slowing and reduced mental flexibility, not attributable to other causes, and shares many symptoms that are best described as accelerated brain ageing. A common theory for aging and for the pathogenesis of this cerebral dysfunctioning in diabetes relates cell death to oxidative stress in strong association to inflammation, and in fact nuclear factor κB (NFκB, a master regulator of inflammation and also a sensor of oxidative stress, has a strategic position at the crossroad between oxidative stress and inflammation. Moreover, metabolic inflammation is, in turn, related to the induction of various intracellular stresses such as mitochondrial oxidative stress, endoplasmic reticulum (ER stress, and autophagy defect. In parallel, blockade of autophagy can relate to proinflammatory signaling via oxidative stress pathway and NFκB-mediated inflammation.

  20. More Insight into BDNF against Neurodegeneration: Anti-Apoptosis, Anti-Oxidation, and Suppression of Autophagy

    Directory of Open Access Journals (Sweden)

    Shang-Der Chen

    2017-03-01

    Full Text Available In addition to its well-established neurotrophic action, brain-derived neurotrophic factor (BDNF also possesses other neuroprotective effects including anti-apoptosis, anti-oxidation, and suppression of autophagy. We have shown before that BDNF triggers multiple mechanisms to confer neuronal resistance against 3-nitropropionic acid (3-NP-induced mitochondrial dysfunction in primary rat cortical cultures. The beneficial effects of BDNF involve the induction of anti-oxidative thioredoxin with the resultant expression of anti-apoptotic B-cell lymphoma 2 (Bcl-2 as well as erythropoietin (EPO-dependent stimulation of sonic hedgehog (SHH. We further revealed that BDNF may bring the expression of sulfiredoxin, an ATP-dependent antioxidant enzyme, to offset mitochondrial inhibition in cortical neurons. Recently, we provided insights into another novel anti-oxidative mechanism of BDNF, which involves the augmentation of sestrin2 expression to endow neuronal resistance against oxidative stress induced by 3-NP; BDNF induction of sestrin2 entails the activation of a pathway involving nitric oxide (NO, cyclic guanosine monophosphate (cGMP-dependent protein kinase (PKG, and nuclear factor-κB (NF-κB. Apart from anti-apoptosis and anti-oxidation, we demonstrated in our most recent study that BDNF may activate the mammalian target of rapamycin (mTOR with resultant activation of transcription factor c-Jun, thereby stimulating the expression of p62/sequestosome-1 to suppress heightened autophagy as a result of 3-NP exposure. Together, our results provide in-depth insight into multi-faceted protective mechanisms of BDNF against mitochondrial dysfunction commonly associated with the pathogenesis of many chronic neurodegenerative disorders. Delineation of the protective signaling pathways elicited by BDNF would endow a rationale to develop novel therapeutic regimens to halt or prevent the progression of neurodegeneration.

  1. Prognostic impact of autophagy biomarkers for cutaneous melanoma.

    Directory of Open Access Journals (Sweden)

    Diana Yao Li Tang

    2016-11-01

    Full Text Available Prognosis and survival for malignant melanoma is highly dependent on early diagnosis and treatment. While the American Joint Committee on Cancer (AJCC criteria provides a means of staging melanomas and guiding treatment approaches, it is unable to identify the risk of disease progression of early stage tumours or provide reliable stratification for novel adjuvant therapies. The demand for credible prognostic/companion biomarkers able to identify high risk melanoma subgroups as well as guide more effective personalised/precision based therapy is therefore of paramount importance. Autophagy, the principle lysosomal-mediated process for the degradation/recycling of cellular debris, is a hot topic in cancer medicine and observations of its deregulation in melanoma have brought its potential as a prognostic biomarker to the forefront of current research. Key regulatory proteins, including Atg8/microtubule-associated light chain 3 (LC3 and BECN1 (Beclin 1 have been proposed as potential prognostic biomarkers. However, given the dynamic nature of autophagy, their expression in vitro does not translate to their use as a prognostic biomarker for melanoma in vivo. We have recently identified the expression levels of Sequestosome1/SQSTM1 (p62 and activating molecule in Beclin 1 regulated autophagy protein 1 (AMBRA1 as novel independent prognostic biomarkers for early stage melanomas. While increasing followed by subsequent decreasing levels of p62 expression reflects the paradoxical role of autophagy in melanoma, expression levels additionally define a novel prognostic biomarker for AJCC stage II tumours. Conversely, loss of AMBRA1 in the epidermis overlying primary melanomas defines a novel prognostic biomarker for AJCC stage I tumours. Collectively, the definition of AMBRA1 and p62 as prognostic biomarkers for early stage melanomas provides novel and accurate means through which to identify tumours at risk of disease progression, facilitating earlier

  2. Autophagy, inflammation and innate immunity in inflammatory myopathies.

    Directory of Open Access Journals (Sweden)

    Cristina Cappelletti

    Full Text Available Autophagy has a large range of physiological functions and its dysregulation contributes to several human disorders, including autoinflammatory/autoimmune diseases such as inflammatory myopathies (IIMs. In order to better understand the pathogenetic mechanisms of these muscular disorders, we sought to define the role of autophagic processes and their relation with the innate immune system in the three main subtypes of IIM, specifically sporadic inclusion body myositis (sIBM, polymyositis (PM, dermatomyositis (DM and juvenile dermatomyositis (JDM. We found that although the mRNA transcript levels of the autophagy-related genes BECN1, ATG5 and FBXO32 were similar in IIM and controls, autophagy activation in all IIM subgroups was suggested by immunoblotting results and confirmed by immunofluorescence. TLR4 and TLR3, two potent inducers of autophagy, were highly increased in IIM, with TLR4 transcripts significantly more expressed in PM and DM than in JDM, sIBM and controls, and TLR3 transcripts highly up-regulated in all IIM subgroups compared to controls. Co-localization between autophagic marker, LC3, and TLR4 and TLR3 was observed not only in sIBM but also in PM, DM and JDM muscle tissues. Furthermore, a highly association with the autophagic processes was observed in all IIM subgroups also for some TLR4 ligands, endogenous and bacterial HSP60, other than the high-mobility group box 1 (HMGB1. These findings indicate that autophagic processes are active not only in sIBM but also in PM, DM and JDM, probably in response to an exogenous or endogenous 'danger signal'. However, autophagic activation and regulation, and also interaction with the innate immune system, differ in each type of IIM. Better understanding of these differences may lead to new therapies for the different IIM types.

  3. Overcoming Autophagy to Induce Apoptosis in Castration Resistant Prostate Cancer

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-12-1-0529 TITLE: Overcoming Autophagy to Induce Apoptosis in Castration Resistant Prostate Cancer PRINCIPAL...survival mechanism and led cells to undergo apoptosis . Survival mechanisms elicited by CRPC C4-2B cells when treated with Enza may be blocked by...Targeting cancer cell metabolism: the combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells. Cancer

  4. Erythroid precursors from patients with low-risk myelodysplasia demonstrate ultrastructural features of enhanced autophagy of mitochondria

    NARCIS (Netherlands)

    Houwerzijl, E. J.; Pol, H-W D.; Blom, N. R.; van der Want, J. J. L.; de Wolf, J. Thm; Vellenga, E.

    Recent studies in erythroid cells have shown that autophagy is an important process for the physiological clearance of mitochondria during terminal differentiation. However, autophagy also plays an important role in removing damaged and dysfunctional mitochondria. Defective mitochondria and impaired

  5. Alix differs from ESCRT proteins in the control of autophagy

    International Nuclear Information System (INIS)

    Petiot, Anne; Strappazzon, Flavie; Chatellard-Causse, Christine; Blot, Beatrice; Torch, Sakina; Jean-Marc Verna; Sadoul, Remy

    2008-01-01

    Alix/AIP1 is a cytosolic protein that regulates cell death through mechanisms that remain unclear. Alix binds to two protein members of the so-called Endosomal Sorting Complex Required for Transport (ESCRT), which facilitates membrane fission events during multivesicular endosome formation, enveloped virus budding and cytokinesis. Alix itself has been suggested to participate in these cellular events and is thus often considered to function in the ESCRT pathway. ESCRT proteins were recently implicated in autophagy, a process involved in bulk degradation of cytoplasmic constituents in lysosomes, which can also participate in cell death. In this study, we shown that, unlike ESCRT proteins, Alix is not involved in autophagy. These results strongly suggest that the capacity of several mutants of Alix to block both caspase-dependent and independent cell death does not relate to their capacity to modulate autophagy. Furthermore, they reinforce the conclusion of other studies demonstrating that the role of Alix is different from that of classical ESCRT proteins

  6. Autophagy induction by histone deacetylase inhibitors inhibits HIV type 1.

    Science.gov (United States)

    Campbell, Grant R; Bruckman, Rachel S; Chu, Yen-Lin; Spector, Stephen A

    2015-02-20

    Histone deacetylase inhibitors (HDACi) are being evaluated in a "shock-and-kill" therapeutic approach to reverse human immunodeficiency virus type-1 (HIV) latency from CD4(+) T cells. Using this approach, HDACi have induced HIV RNA synthesis in latently infected cells from some patients. The hope is that the increase in viral production will lead to killing of the infected cell either by the virus itself or by the patient's immune system, a "sterilizing cure." Although administered within the context of combination antiretroviral therapy, the infection of bystander cells remains a concern. In this study, we investigated the effect of HDACi (belinostat, givinostat, panobinostat, romidepsin, and vorinostat) on the productive infection of macrophages. We demonstrate that the HDACi tested do not alter the initial susceptibility of macrophages to HIV infection. However, we demonstrate that HDACi decrease HIV release from macrophages in a dose-dependent manner (belinostat the canonical autophagy pathway. This mechanism involves unc-51-like autophagy-activating kinase 1 (ULK1) and the inhibition of the mammalian target of rapamycin and requires the formation of autophagosomes and their maturation into autolysosomes in the absence of increased cell death. These data provide further evidence in support of a role for autophagy in the control of HIV infection and suggest that careful consideration of off-target effects will be essential if HDACi are to be a component of a multipronged approach to eliminate latently infected cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Mitochondria mediate septin cage assembly to promote autophagy of Shigella.

    Science.gov (United States)

    Sirianni, Andrea; Krokowski, Sina; Lobato-Márquez, Damián; Buranyi, Stephen; Pfanzelter, Julia; Galea, Dieter; Willis, Alexandra; Culley, Siân; Henriques, Ricardo; Larrouy-Maumus, Gerald; Hollinshead, Michael; Sancho-Shimizu, Vanessa; Way, Michael; Mostowy, Serge

    2016-07-01

    Septins, cytoskeletal proteins with well-characterised roles in cytokinesis, form cage-like structures around cytosolic Shigella flexneri and promote their targeting to autophagosomes. However, the processes underlying septin cage assembly, and whether they influence S. flexneri proliferation, remain to be established. Using single-cell analysis, we show that the septin cages inhibit S. flexneri proliferation. To study mechanisms of septin cage assembly, we used proteomics and found mitochondrial proteins associate with septins in S. flexneri-infected cells. Strikingly, mitochondria associated with S. flexneri promote septin assembly into cages that entrap bacteria for autophagy. We demonstrate that the cytosolic GTPase dynamin-related protein 1 (Drp1) interacts with septins to enhance mitochondrial fission. To avoid autophagy, actin-polymerising Shigella fragment mitochondria to escape from septin caging. Our results demonstrate a role for mitochondria in anti-Shigella autophagy and uncover a fundamental link between septin assembly and mitochondria. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  8. Midgut morphological changes and autophagy during metamorphosis in sand flies.

    Science.gov (United States)

    Malta, Juliana; Heerman, Matthew; Weng, Ju Lin; Fernandes, Kenner M; Martins, Gustavo Ferreira; Ramalho-Ortigão, Marcelo

    2017-06-01

    During metamorphosis, holometabolous insects undergo significant remodeling of their midgut and become able to cope with changes in dietary requirements between larval and adult stages. At this stage, insects must be able to manage and recycle available food resources in order to develop fully into adults, especially when no nutrients are acquired from the environment. Autophagy has been previously suggested to play a crucial role during metamorphosis of the mosquito. Here, we investigate the overall morphological changes of the midgut of the sand fly during metamorphosis and assess the expression profiles of the autophagy-related genes ATG1, ATG6, and ATG8, which are associated with various steps of the autophagic process. Morphological changes in the midgut start during the fourth larval instar, with epithelial degeneration followed by remodeling via the differentiation of regenerative cells in pre-pupal and pupal stages. The changes in the midgut epithelium are paired with the up-regulation of ATG1, ATG6 and ATG8 during the larva-adult transition. Vein, a putative epidermal growth factor involved in regulating epithelial midgut regeneration, is also up-regulated. Autophagy has further been confirmed in sand flies via the presence of autophagosomes residing within the cytoplasmic compartment of the pupal stages. An understanding of the underlying mechanisms of this process should aid the future management of this neglected tropical vector.

  9. Regulation of endoplasmic reticulum turnover by selective autophagy.

    Science.gov (United States)

    Khaminets, Aliaksandr; Heinrich, Theresa; Mari, Muriel; Grumati, Paolo; Huebner, Antje K; Akutsu, Masato; Liebmann, Lutz; Stolz, Alexandra; Nietzsche, Sandor; Koch, Nicole; Mauthe, Mario; Katona, Istvan; Qualmann, Britta; Weis, Joachim; Reggiori, Fulvio; Kurth, Ingo; Hübner, Christian A; Dikic, Ivan

    2015-06-18

    The endoplasmic reticulum (ER) is the largest intracellular endomembrane system, enabling protein and lipid synthesis, ion homeostasis, quality control of newly synthesized proteins and organelle communication. Constant ER turnover and modulation is needed to meet different cellular requirements and autophagy has an important role in this process. However, its underlying regulatory mechanisms remain unexplained. Here we show that members of the FAM134 reticulon protein family are ER-resident receptors that bind to autophagy modifiers LC3 and GABARAP, and facilitate ER degradation by autophagy ('ER-phagy'). Downregulation of FAM134B protein in human cells causes an expansion of the ER, while FAM134B overexpression results in ER fragmentation and lysosomal degradation. Mutant FAM134B proteins that cause sensory neuropathy in humans are unable to act as ER-phagy receptors. Consistently, disruption of Fam134b in mice causes expansion of the ER, inhibits ER turnover, sensitizes cells to stress-induced apoptotic cell death and leads to degeneration of sensory neurons. Therefore, selective ER-phagy via FAM134 proteins is indispensable for mammalian cell homeostasis and controls ER morphology and turnover in mice and humans.

  10. Spectral imaging-based methods for quantifying autophagy and apoptosis.

    Science.gov (United States)

    Dolloff, Nathan G; Ma, Xiahong; Dicker, David T; Humphreys, Robin C; Li, Lin Z; El-Deiry, Wafik S

    2011-08-15

    Spectral imaging systems are capable of detecting and quantifying subtle differences in light quality. In this study we coupled spectral imaging with fluorescence and white light microscopy to develop new methods for quantifying autophagy and apoptosis. For autophagy, we employed multispectral imaging to examine spectral changes in the fluorescence of LC3-GFP, a chimeric protein commonly used to track autophagosome formation. We found that punctate autophagosome-associated LC3-GFP exhibited a spectral profile that was distinctly different from diffuse cytosolic LC3-GFP. We then exploited this shift in spectral quality to quantify the amount of autophagosome-associated signal in single cells. Hydroxychloroquine (CQ), an anti-malarial agent that increases autophagosomal number, significantly increased the punctate LC3-GFP spectral signature, providing proof-of-principle for this approach. For studying apoptosis, we employed the Prism and Reflector Imaging Spectroscopy System (PARISS) hyperspectral imaging system to identify a spectral signature for active caspase-8 immunostaining in ex vivo tumor samples. This system was then used to rapidly quantify apoptosis induced by lexatumumab, an agonistic TRAIL-R2/DR5 antibody, in histological sections from a preclinical mouse model. We further found that the PARISS could accurately distinguish apoptotic tumor regions in hematoxylin and eosin-stained sections, which allowed us to quantify death receptor-mediated apoptosis in the absence of an apoptotic marker. These spectral imaging systems provide unbiased, quantitative and fast means for studying autophagy and apoptosis and complement the existing methods in their respective fields.

  11. Autophagy, Innate Immunity and Tissue Repair in Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Pu Duann

    2016-05-01

    Full Text Available Kidney is a vital organ with high energy demands to actively maintain plasma hemodynamics, electrolytes and water homeostasis. Among the nephron segments, the renal tubular epithelium is endowed with high mitochondria density for their function in active transport. Acute kidney injury (AKI is an important clinical syndrome and a global public health issue with high mortality rate and socioeconomic burden due to lack of effective therapy. AKI results in acute cell death and necrosis of renal tubule epithelial cells accompanied with leakage of tubular fluid and inflammation. The inflammatory immune response triggered by the tubular cell death, mitochondrial damage, associative oxidative stress, and the release of many tissue damage factors have been identified as key elements driving the pathophysiology of AKI. Autophagy, the cellular mechanism that removes damaged organelles via lysosome-mediated degradation, had been proposed to be renoprotective. An in-depth understanding of the intricate interplay between autophagy and innate immune response, and their roles in AKI pathology could lead to novel therapies in AKI. This review addresses the current pathophysiology of AKI in aspects of mitochondrial dysfunction, innate immunity, and molecular mechanisms of autophagy. Recent advances in renal tissue regeneration and potential therapeutic interventions are also discussed.

  12. Isoliquiritigenin Induces Autophagy and Inhibits Ovarian Cancer Cell Growth

    Directory of Open Access Journals (Sweden)

    Hsin-Yuan Chen

    2017-09-01

    Full Text Available Ovarian cancer is one of the commonest gynecologic malignancies, which has a poor prognosis for patients at the advanced stage. Isoliquiritigenin (ISL, an active flavonoid component of the licorice plant, previously demonstrated antioxidant, anti-inflammatory, and tumor suppressive effects. In this study, we investigated the antitumor effect of ISL on human ovarian cancer in vitro using the human ovarian cancer cell lines, OVCAR5 and ES-2, as model systems. Our results show that ISL significantly inhibited the viability of cancer cells in a concentration- and time-dependent manner. Flow cytometry analysis indicated that ISL induced G2/M phase arrest. Furthermore, the expression of cleaved PARP, cleaved caspase-3, Bax/Bcl-2 ratio, LC3B-II, and Beclin-1 levels were increased in western blot analysis. To clarify the role of autophagy and apoptosis in the effect of ISL, we used the autophagy inhibitor—3-methyladenine (3-MA to attenuate the punctate fluorescence staining pattern of the p62/sequestosome 1 (SQSTM1, red fluorescence and LC3 (green fluorescence proteins after ISL treatment, and 3-MA inhibited the cytotoxicity of ISL. These findings provide new information about the link between ISL-induced autophagy and apoptosis and suggest that ISL is a candidate agent for the treatment of human ovarian cancer.

  13. MOLECULAR DETERMINANTS OF SELECTIVE CLEARANCE OF PROTEIN INCLUSIONS BY AUTOPHAGY

    Science.gov (United States)

    Wong, Esther; Bejarano, Eloy; Rakshit, Moumita; Lee, Karen; Hanson, Hugo H.; Zaarur, Nava; Phillips, Greg R.; Sherman, Michael Y.; Cuervo, Ana Maria

    2012-01-01

    Protein quality control is essential for cellular survival. Failure to eliminate pathogenic proteins leads to their intracellular accumulation in the form of protein aggregates. Autophagy can recognize protein aggregates and degrade them in lysosomes. However, some aggregates escape the autophagic surveillance. Here we analyze the autophagic degradation of different types of aggregates of synphilin-1 (Sph1), a protein often found in pathogenic protein inclusions. We show that small Sph1 aggregates and large aggresomes are differentially targeted by constitutive and inducible autophagy. Furthermore, we identify a region in Sph1 necessary for its own basal and inducible aggrephagy, and sufficient for the degradation of other pro-aggregating proteins. Although the presence of this peptide is sufficient for basal aggrephagy, inducible aggrephagy requires its ubiquitination, which diminishes protein mobility on the surface of the aggregate and favors the recruitment and assembly of the protein complexes required for autophagosome formation. Our study reveals different mechanisms for cells to cope with aggregate proteins via autophagy and supports the idea that autophagic susceptibility of prone-to-aggregate proteins may not depend on the nature of the aggregating proteins per se but on their dynamic properties in the aggregate. PMID:23212369

  14. Eyeing autophagy and macropinocytosis in the corneal/limbal epithelia.

    Science.gov (United States)

    Peng, Han; Park, Jong Kook; Lavker, Robert M

    2017-05-04

    Macroautophagy/autophagy is vital for cellular homeostasis and helps cells respond to various stress situations. Macropinocytosis enables cells to nonselectively engulf and take up large volumes of fluid and is known to supply amino acids to cells. The stem cell-enriched limbal epithelium has the machinery necessary to carry out both autophagy and macropinocytosis; however, both processes are relatively understudied in this tissue. We have demonstrated that these processes are linked via MIR103-MIR107, a microRNA family that is limbal epithelial-preferred. Loss of MIR103-MIR107 causes the accumulation of large vacuoles that originate, in part, from a dysregulation in macropinocytosis via activation of SRC-RAS signaling. We found that these vacuoles were autophagic in nature and retained in cells due to inappropriate regulation of end-stage autophagy. Specifically, MIR103-MIR107 regulates diacylglycerol-PRKC/protein kinase C and CDK5 (cyclin dependent kinase 5) signaling, which enables DNM1 (dynamin 1) to function in vacuole clearance.

  15. Macrophage migration inhibitory factor induces vascular leakage via autophagy

    Directory of Open Access Journals (Sweden)

    Hong-Ru Chen

    2015-01-01

    Full Text Available Vascular leakage is an important feature of acute inflammatory shock, which currently has no effective treatment. Macrophage migration inhibitory factor (MIF is a pro-inflammatory cytokine that can induce vascular leakage and plays an important role in the pathogenesis of shock. However, the mechanism of MIF-induced vascular leakage is still unclear. In this study, using recombinant MIF (rMIF, we demonstrated that MIF induced disorganization and degradation of junction proteins and increased the permeability of human endothelial cells in vitro. Western blotting analysis showed that rMIF treatment induced LC3 conversion and p62 degradation. Inhibition of autophagy with a PI3K inhibitor (3-MA, a ROS scavenger (NAC or autophagosomal-lysosomal fusion inhibitors (bafilomycin A1 and chloroquine rescued rMIF-induced vascular leakage, suggesting that autophagy mediates MIF-induced vascular leakage. The potential involvement of other signaling pathways was also studied using different inhibitors, and the results suggested that MIF-induced vascular leakage may occur through the ERK pathway. In conclusion, we showed that MIF triggered autophagic degradation of endothelial cells, resulting in vascular leakage. Inhibition of MIF-induced autophagy may provide therapeutic targets against vascular leakage in inflammatory shock.

  16. Targeted deletion of Atg5 reveals differential roles of autophagy in keratin K5-expressing epithelia

    Energy Technology Data Exchange (ETDEWEB)

    Sukseree, Supawadee [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria); Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok (Thailand); Rossiter, Heidemarie; Mildner, Michael [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria); Pammer, Johannes [Institute of Clinical Pathology, Medical University of Vienna, Vienna (Austria); Buchberger, Maria; Gruber, Florian [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria); Watanapokasin, Ramida [Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok (Thailand); Tschachler, Erwin [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria); Eckhart, Leopold, E-mail: leopold.eckhart@meduniwien.ac.at [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer We generated mice lacking Atg5 and autophagy in keratin K5-positive epithelia. Black-Right-Pointing-Pointer Suppression of autophagy in thymic epithelium was not associated with signs of autoimmunity. Black-Right-Pointing-Pointer Autophagy was required for normal terminal differentiation of preputial gland cells. Black-Right-Pointing-Pointer Autophagy-deficient cells of the preputial glands degraded nuclear DNA prematurely. -- Abstract: Autophagy contributes to the homeostasis of many tissues, yet its role in epithelia is incompletely understood. A recent report proposed that Atg5-dependent autophagy in thymic epithelial cells is essential for their function in the negative selection of self-reactive T-cells and, thus, for the suppression of tissue inflammation. Here we crossed mice carrying floxed alleles of the Atg5 gene with mice expressing the Cre recombinase under the control of the keratin K5 promoter to suppress autophagy in all K5-positive epithelia. The efficiency of autophagy abrogation was confirmed by immunoanalyses of LC3, which was converted to the autophagy-associated LC3-II form in normal but not Atg5-deficient cells, and of p62, which accumulated in Atg5-deficient cells. Mice carrying the epithelium-specific deletion of Atg5 showed normal weight gain, absence of tissue inflammation, and a normal morphology of the thymic epithelium. By contrast, autophagy-deficient epithelial cells of the preputial gland showed aberrant eosinophilic staining in histology and premature degradation of nuclear DNA during terminal differentiation. Taken together, the results of this study suggest that autophagy is dispensable for the suppression of autoimmunity by thymic epithelial cells but essential for normal differentiation of the preputial gland in mice.

  17. Autophagy facilitates multidrug resistance development through inhibition of apoptosis in breast cancer cells.

    Science.gov (United States)

    Sun, W L; Lan, D; Gan, T Q; Cai, Z W

    2015-01-01

    Acquired multidrug resistance (MDR) is the main mechanism of chemotherapeutic drugs resistance. Nevertheless, the mechanisms of MDR are complex and still not very clear. Recently, including our previous study, several studies have revealed that macroautophagy (here referred to as autophagy) induced by anti-cancer drugs in breast cancer cells may facilitate the development of resistance to epirubicin (EPI), paclitaxel (PTX), tamoxifen or herceptin. Whereas there are a few studies on the relationship between autophagy and MDR, especially the studies designed directly employing induced resistant breast cancer cells. Based on previous study, we explored the relationship between autophagy and MDR. The results showed that induced EPI-resistant MCF-7er and SK-BR-3er cells were simultaneously resistant to PTX and vinorelbine (NVB), which demonstrated that the cells obtained MDR phenotype. Furthermore, PTX and NVB could also induce autophagy in MCF-7er and SK-BR-3er cells, and the induced autophagy protected the cells from apoptosis, which facilitated the development of resistance to PTX and NVB. Thus, autophagy promoted the development of MDR in breast cancer cells through inhibition of apoptosis. In addition, we found that P-glycoprotein (Pgp) was overexpressed in MCF-7er and SK-Br-3er cells. And we preliminarily investigated the relationship between autophagy and P-glycoprotein (Pgp). The results showed that the expression of the protein did not obviously change despite the inhibition of autophagy. Therefore, the role of Pgp in the development of MDR might be independent of autophahy. Also this finding implies that autophagy might be a target to overcome MDR in breast cancer cells, and clinical use autophagy inhibitors might be one of the important strategies for overcoming MDR in breast cancer therapy. Autophagy, apoptosis, multidrug resistance, breast cancer, chemotherapy.

  18. Autophagy Plays an Essential Role in Mediating Regression of Hypertrophy during Unloading of the Heart

    Science.gov (United States)

    Hariharan, Nirmala; Ikeda, Yoshiyuki; Hong, Chull; Alcendor, Ralph R.; Usui, Soichiro; Gao, Shumin; Maejima, Yasuhiro; Sadoshima, Junichi

    2013-01-01

    Autophagy is a bulk degradation mechanism for cytosolic proteins and organelles. The heart undergoes hypertrophy in response to mechanical load but hypertrophy can regress upon unloading. We hypothesize that autophagy plays an important role in mediating regression of cardiac hypertrophy during unloading. Mice were subjected to transverse aortic constriction (TAC) for 1 week, after which the constriction was removed (DeTAC). Regression of cardiac hypertrophy was observed after DeTAC, as indicated by reduction of LVW/BW and cardiomyocyte cross-sectional area. Indicators of autophagy, including LC3-II expression, p62 degradation and GFP-LC3 dots/cell, were significantly increased after DeTAC, suggesting that autophagy is induced. Stimulation of autophagy during DeTAC was accompanied by upregulation of FoxO1. Upregulation of FoxO1 and autophagy was also observed in vitro when cultured cardiomyocytes were subjected to mechanical stretch followed by incubation without stretch (de-stretch). Transgenic mice with cardiac-specific overexpression of FoxO1 exhibited smaller hearts and upregulation of autophagy. Overexpression of FoxO1 in cultured cardiomyocytes significantly reduced cell size, an effect which was attenuated when autophagy was inhibited. To further examine the role of autophagy and FoxO1 in mediating the regression of cardiac hypertrophy, beclin1+/− mice and cultured cardiomyocytes transduced with adenoviruses harboring shRNA-beclin1 or shRNA-FoxO1 were subjected to TAC/stretch followed by DeTAC/de-stretch. Regression of cardiac hypertrophy achieved after DeTAC/de-stretch was significantly attenuated when autophagy was suppressed through downregulation of beclin1 or FoxO1. These results suggest that autophagy and FoxO1 play an essential role in mediating regression of cardiac hypertrophy during mechanical unloading. PMID:23308102

  19. Oxidative damage and autophagy in the human trabecular meshwork as related with ageing.

    Directory of Open Access Journals (Sweden)

    Alessandra Pulliero

    Full Text Available Autophagy is an intracellular lysosomal degradation process induced under stress conditions. Autophagy also plays a major role in ocular patho-physiology. Molecular aging does occur in the trabecular meshwork, the main regulator of aqueous humor outflow, and trabecular meshwork senescence is accompanied by increased oxidative stress. However, the role of autophagy in trabecular meshwork patho-physiology has not yet been examined in vivo in human ocular tissues. The purpose of the herein presented study is to evaluate autophagy occurrence in ex-vivo collected human trabecular meshwork specimens and to evaluate the relationship between autophagy, oxidative stress, and aging in this tissue. Fresh trabecular meshwork specimens were collected from 28 healthy corneal donors devoid of ocular pathologies and oxidative DNA damage, and LC3 and p62 protein expression analyzed. In a subset of 10 subjects, further to trabecular meshwork proteins, the amounts of cathepesin L and ubiquitin was analyzed by antibody microarray in aqueous humor. Obtained results demonstrate that autophagy activation, measured by LC3II/I ratio, is related with. oxidative damage occurrence during aging in human trabecular meshwork. The expression of autophagy marker p62 was lower in subjects older than 60 years as compared to younger subjects. These findings reflect the occurrence of an agedependent increase in the autophagy as occurring in the trabecular meshwork. Furthermore, we showed that aging promotes trabecular-meshwork senescence due to increased oxidative stress paralleled by autophagy increase. Indeed, both oxidative DNA damage and autophagy were more abundant in subjects older than 60 years. These findings shed new light on the role of oxidative damage and autophagy during trabecular-meshwork aging.

  20. RITA plus 3-MA overcomes chemoresistance of head and neck cancer cells via dual inhibition of autophagy and antioxidant systems

    Directory of Open Access Journals (Sweden)

    Daiha Shin

    2017-10-01

    Condensed abstract: This study revealed a novel RITA resistant mechanism associated with the sustained induction of autophagy, p62 overexpression, and Keap1-Nrf2 antioxidant system activation. The combined treatment of RITA with the autophagy inhibitor 3-methyladenine overcomes RITA resistance via dual inhibition of autophagy and antioxidant systems in vitro and in vivo.

  1. Modulating polyplex-mediated gene transfection by small-molecule regulators of autophagy.

    Science.gov (United States)

    Zhong, Xiao; Panus, David; Ji, Weihang; Wang, Chun

    2015-03-02

    Nonviral gene transfection mediated by cationic polymer/DNA polyplexes often imposes stress and toxicity to cells. To better understand the relationship between cellular stress responses and polyplex-mediated transfection, polyplex-induced early autophagy in mouse fibroblasts was characterized and the impact of autophagy modulation on transgene expression evaluated. Transmission electron microscopy revealed the formation of double-membraned autophagosome in the cytoplasm of polyplex-transfected cells. Immunofluorescence staining and microscopy revealed intracellular LC3 punctation that was characteristic of early autophagy activation. Elevated expression of autophagosome-associated LC3 II protein was also detected by Western blot. When cells were treated with small-molecule modulators of autophagy, polyplex-mediated gene transfection efficiency was significantly affected. 3-Methyladenine (3-MA), an early autophagy inhibitor, reduced transfection efficiency, whereas rapamycin, an autophagy inducer, enhanced transgene expression. Importantly, the observed functional impact on gene transfection by autophagy modulation was decoupled from that of other modes of cellular stress response (apoptosis/necrosis). Treatment of cells by 3-MA or rapamycin did not affect the level of intracellular reactive oxygen species (ROS) but did decrease or increase, respectively, nuclear localization of polyplex-delivered plasmid DNA. These findings suggest new possibilities of enhancing polyplex-mediated gene delivery by codelivery of small-molecule regulators of autophagy.

  2. LAMP3 is involved in tamoxifen resistance in breast cancer cells through the modulation of autophagy

    NARCIS (Netherlands)

    A. Nagelkerke (Anika); A.M. Sieuwerts (Anieta); J. Bussink (Johan); F.C. Sweep (Fred); M.P. Look (Maxime); J.A. Foekens (John); J.W.M. Martens (John); P.N. Span (Paul)

    2014-01-01

    textabstractLysosome-associated membrane protein 3 (LAMP3) is a member of the LAMP-family of