WorldWideScience

Sample records for prevent macroparticle film

  1. S-shaped magnetic macroparticle filter for cathodic arc deposition

    International Nuclear Information System (INIS)

    Anders, S.; Anders, A.; Dickinson, M.R.; MacGill, R.A.; Brown, I.G.

    1996-01-01

    A new magnetic macroparticle filter design consisting of two 90 o filters forming an S-shape is described. Transport properties of this S-filter are investigated using Langmuir and deposition probes. It is shown that filter efficiency is product of the efficiencies of two 90 o filters and the deposition rate is still acceptably high to perform thin film deposition. Films of amorphous hard carbon have been deposited using a 90 o filter and the S-filter, and macroparticle content of the films are compared

  2. Effect of negative bias voltage on CrN films deposited by arc ion plating. I. Macroparticles filtration and film-growth characteristics

    International Nuclear Information System (INIS)

    Wang Qimin; Kim, Kwang Ho

    2008-01-01

    Chromium nitride (CrN) films were deposited on Si wafers by arc ion plating (AIP) at various negative bias voltages and several groups of N 2 /Ar gas flux ratios and chamber gas pressures. The authors systematically investigated the influence of negative bias voltage on the synthesis, composition, microstructure, and properties of the AIP CrN films. In this part (Part I), the investigations were mainly focused on the macroparticle distributions and film-growth characteristics. The results showed that macroparticle densities on the film surfaces decreased greatly by applying negative bias voltage, which can be affected by partial pressure of N 2 and Ar gases. From the statistical analysis of the experimental results, they proposed a new hybrid mechanism of ion bombardment and electrical repulsion. Also, the growth of the AIP CrN films was greatly altered by applying negative bias voltage. By increasing the bias voltage, the film surfaces became much smoother and the films evolved from apparent columnar microstructures to an equiaxed microstructure. The impinging high-energy Cr ions accelerated by negative bias voltages were deemed the inherent reason for the evolution of growth characteristics

  3. Angular trap for macroparticles

    International Nuclear Information System (INIS)

    Aksyonov, D.S.

    2013-01-01

    Properties of angular macroparticle traps were investigated in this work. These properties are required to design vacuum arc plasma filters. The correlation between trap geometry parameters and its ability to absorb macroparticles were found. Calculations allow one to predict the behaviour of filtering abilities of separators which contain such traps in their design. Recommendations regarding the use of angular traps in filters of different builds are given.

  4. Two-baffle trap for macroparticles

    International Nuclear Information System (INIS)

    Aksyonov, D.S.

    2014-01-01

    In this work, properties of two-baffle macroparticle traps were investigated. These properties are needed for designing and optimization of vacuum arc plasma filters. The dependencies between trap geometry parameters and its ability to absorb macroparticles were found. Calculations made allow one to predict the behaviour of filtering abilities of separators containing such traps in their design. Recommendations regarding the use of two-baffle traps in filters of different builds are given

  5. Ablation acceleration of macroparticle in spiral magnetic fields

    International Nuclear Information System (INIS)

    Ikuta, Kazunari.

    1981-05-01

    The rocket motion of macroparticles heated by energetic pulses in a spiral magnetic field was studied. The purpose of the present work is to study the ablation acceleration of a macroparticle in a spiral magnetic field with the help of the law of conservation of angular momentum. The basic equation of motion of ablatively accelerated projectile in a spiral magnetic field was derived. Any rocket which is ejecting fully ionized plasma in an intense magnetic field with rotational transform is able to have spin by the law of conservation of momentum. The effect of spiral magnetic field on macroparticle acceleration is discussed. The necessary mass ratio increase exponentially with respect to the field parameter. The spiral field should be employed with care to have only to stabilize the position of macroparticles. As conclusion, it can be said that the ablation acceleration of the projectile in a spiral field can give the accelerated body spin quite easily. (Kato, T.)

  6. Interaction of Macro-particles with LHC proton beam

    CERN Document Server

    Zimmermann, F; Xagkoni, A

    2010-01-01

    We study the interaction of macro-particles residing inside the LHC vacuum chamber, e.g. soot or thermalinsulation fragments, with the circulating LHC proton beam. The coupled equations governing the motion and charging rate of metallic or dielectric micron-size macroparticles are solved numerically to determine the time spent by such “dust” particles close to the path of the beam as well as the resulting proton-beam losses, which could lead to a quench of superconducting magnets and, thereby, to a premature beam abort.

  7. Simulation studies of macroparticles falling into the LHC Proton Beam

    CERN Document Server

    Fuster Martinez, N; Zimmermann, F; Baer, T; Giovannozzi, M; Holzer, E B; Nebot Del Busto, E; Nordt, A; Sapinski, M; Yang, Z

    2011-01-01

    We report updated simulations on the interaction of macroparticles falling from the top of the vacuum chamber into the circulating LHC proton beam. The path and charge state of micron size micro-particles are computed together with the resulting beam losses, which — if high enough — can lead to the local quench of superconducting (SC) magnets. The simulated time evolution of the beam loss is compared with observations in order to constrain some macroparticle parameters. We also discuss the possibility of a “multiple crossing” by the same macroparticle, the effect of a strong dipole field, and the dependence of peak loss rate and loss duration on beam current and on beam size.

  8. An investigation on two-phase mixture discharges: the effects of macroparticle sizes

    Energy Technology Data Exchange (ETDEWEB)

    Deng Heming; He Zhenghao; Xu Yuhang; Ma Jun; Liu Junxiang; Guo Runkai, E-mail: denghem@gmail.co [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Hubei province Wuhan 430074 (China)

    2010-06-30

    A two-phase mixture (TPM) is a mixture of gas and macroparticles of high concentration, and there has been significant interest in many technical applications and natural phenomena concerning two-phase mixture discharges (TPMDs), but until now there has been no widely accepted analysis for the propagation of discharges in TPMs. In this paper, 21 kinds of different dielectric materials are used to investigate the effects on TPMD. The diameters of macroparticles in 21 kinds of TPMs are measured by microscope, laser particle size analyzer, etc, and the volume fractions are measured by a video camera and particle image velocimetry system. Based on a direct comparison of the breakdown voltages and the percentages of the discharge path in TPMs with those in air, this work reveals that whether TPMs promote the discharge development or not depends mainly on the macroparticle sizes. These macroparticles in TPMs distort the electric field, interact with ions, electrons or photons, and produce corresponding enhancements or decreases in ionization and excitation as the streamer front encounters them, but the details of alterations on the discharge development are highly correlated with the macroparticle sizes.

  9. Effect of the size of charged spherical macroparticles on their electrostatic interaction in an equilibrium plasma

    Energy Technology Data Exchange (ETDEWEB)

    Filippov, A. V., E-mail: fav@triniti.ru; Derbenev, I. N. [State Research Center of the Russian Federation, Troitsk Institute for Innovation and Fusion Research (Russian Federation)

    2016-12-15

    The effect of the size of two charged spherical macroparticles on their electrostatic interaction in an equilibrium plasma is analyzed within the linearized Poisson–Botzmann model. It is established that, under the interaction of two charged dielectric macroparticles in an equilibrium plasma, the forces acting on each particle turn out to be generally unequal. The forces become equal only in the case of conducting macroparticles or in the case of dielectric macroparticles of the same size and charge. They also turn out to be equal when the surface potentials of the macroparticles remain constant under the variation of interparticle distances. Formulas are proposed that allow one to calculate the interaction force with a high degree of accuracy under the condition that the radii of macroparticles are much less than the screening length, which is usually satisfied in experiments with dusty plasmas.

  10. Enhanced stopping of macro-particles in particle-in-cell simulations

    International Nuclear Information System (INIS)

    May, J.; Tonge, J.; Ellis, I.; Mori, W. B.; Fiuza, F.; Fonseca, R. A.; Silva, L. O.; Ren, C.

    2014-01-01

    We derive an equation for energy transfer from relativistic charged particles to a cold background plasma appropriate for finite-size particles that are used in particle-in-cell simulation codes. Expressions for one-, two-, and three-dimensional particles are presented, with special attention given to the two-dimensional case. This energy transfer is due to the electric field of the wake set up in the background plasma by the relativistic particle. The enhanced stopping is dependent on the q 2 /m, where q is the charge and m is the mass of the relativistic particle, and therefore simulation macro-particles with large charge but identical q/m will stop more rapidly. The stopping power also depends on the effective particle shape of the macro-particle. These conclusions are verified in particle-in-cell simulations. We present 2D simulations of test particles, relaxation of high-energy tails, and integrated fast ignition simulations showing that the enhanced drag on macro-particles may adversely affect the results of these simulations in a wide range of high-energy density plasma scenarios. We also describe a particle splitting algorithm which can potentially overcome this problem and show its effect in controlling the stopping of macro-particles

  11. Systematic comparison of position and time dependent macroparticle simulations in beam dynamics studies

    Directory of Open Access Journals (Sweden)

    Ji Qiang

    2002-06-01

    Full Text Available Macroparticle simulation plays an important role in modern accelerator design and operation. Most linear rf accelerators have been designed based on macroparticle simulations using longitudinal position as the independent variable. In this paper, we have done a systematic comparison between using longitudinal position as the independent variable and using time as the independent variable in macroparticle simulations. We have found that, for an rms-matched beam, the maximum relative moment difference for second, fourth moments and beam maximum amplitudes between these two types of simulations is 0.25% in a 10 m reference transport system with physical parameters similar to the Spallation Neutron Source linac design. The maximum z-to- t transform error in the space-charge force calculation of the position dependent simulation is about 0.1% in such a system. This might cause a several percent error in a complete simulation of a linac with a length of hundreds of meters. Furthermore, the error may be several times larger in simulations of mismatched beams. However, if such errors are acceptable to the linac designer, then one is justified in using position dependent macroparticle simulations in this type of linac design application.

  12. Macroparticle generation in DC arc discharge from a WC cathode

    Science.gov (United States)

    Zhirkov, Igor; Polcik, Peter; Kolozsvári, Szilard; Rosen, Johanna

    2017-03-01

    We have studied macroparticle generation from a tungsten carbide cathode used in a dc vacuum arc discharge. Despite a relatively high decomposition/melting point (˜3100 K), there is an intensive generation of visible particles with sizes in the range 20-35 μm. Visual observations during the discharge and scanning electron microscopy of the cathode surface and of collected macroparticles indicate a new mechanism for particle formation and acceleration. Based on the W-C phase diagram, there is an intensive sublimation of carbon from the melt resulting from the cathode spot. The sublimation supports the formation of a sphere, which is accelerated upon an explosion initiated by Joule heating at the critical contact area between the sphere and the cathode body. The explosive nature of the particle acceleration is confirmed by surface features resembling the remains of a splash on the droplet surface.

  13. Experimental investigation of the longitudinal beam dynamics in a photoinjector using a two-macroparticle bunch

    Directory of Open Access Journals (Sweden)

    P. Piot

    2006-05-01

    Full Text Available We have developed a two-macroparticle bunch to explore the longitudinal beam dynamics through various components of the Fermilab/NICADD photoinjector. Such a two-macroparticle bunch is generated by splitting the ultraviolet pulse from the photocathode drive laser. The presented method allows the exploration of radio-frequency-induced compression in the 1.625 cell radio frequency gun and the booster cavity. It also allows a direct measurement of the momentum compaction of the magnetic bunch compressor. The measurements are compared with analytical and numerical models.

  14. Ultrathin diamond-like carbon films deposited by filtered carbon vacuum arcs

    International Nuclear Information System (INIS)

    Anders, Andre; Fong, Walton; Kulkarni, Ashok; Ryan, Francis W.; Bhatia, C. Singh

    2001-01-01

    Ultrathin ( and lt; 5 nm) hard carbon films are of great interest to the magnetic storage industry as the areal density approaches 100 Gbit/in(sup 2). These films are used as overcoats to protect the magnetic layers on disk media and the active elements of the read-write slider. Tetrahedral amorphous carbon films can be produced by filtered cathodic arc deposition, but the films will only be accepted by the storage industry only if the ''macroparticle'' issue has been solved. Better plasma filters have been developed over recent years. Emphasis is put on the promising twist filter system - a compact, open structure that operates with pulsed arcs and high magnetic field. Based on corrosion tests it is shown that the macroparticle reduction by the twist filter is satisfactory for this demanding application, while plasma throughput is very high. Ultrathin hard carbon films have been synthesized using S-filter and twist filter systems. Film properties such as hardness, elastic modulus, wear, and corrosion resistance have been tested

  15. Charging of nonspherical macroparticles in a plasma

    Science.gov (United States)

    Holgate, J. T.; Coppins, M.

    2016-03-01

    The current theories of macroparticle charging in a plasma are limited to spheres, and are unsuitable for the multitude of nonspherical objects existing in astrophysical, atmospheric, laboratory, and fusion plasmas. This paper extends the most widely used spherical charging theory, orbit motion limited theory, to spheroids and, as such, provides a comprehensive study of the charging of nonspherical objects in a plasma. The spherical charging theory is shown to be a reasonable approximation for a considerable range of spheroids. However, the electric potential of highly elongated spheroids can be almost twice the spherical value. Furthermore, the total charge on the spheroids increases by a significantly larger factor than their potential.

  16. Vacuum arc plasma generation and thin film deposition from a TiB{sub 2} cathode

    Energy Technology Data Exchange (ETDEWEB)

    Zhirkov, Igor, E-mail: igozh@ifm.liu.se; Petruhins, Andrejs; Naslund, Lars-Ake; Rosen, Johanna [Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Kolozsvári, Szilard; Polcik, Peter [PLANSEE Composite Materials GmbH, Siebenbürgerstraße 23, 86983 Lechbruck am See (Germany)

    2015-11-02

    We have studied the utilization of TiB{sub 2} cathodes for thin film deposition in a DC vacuum arc system. We present a route for attaining a stable, reproducible, and fully ionized plasma flux of Ti and B by removal of the external magnetic field, which leads to dissipation of the vacuum arc discharge and an increased active surface area of the cathode. Applying a magnetic field resulted in instability and cracking, consistent with the previous reports. Plasma analysis shows average energies of 115 and 26 eV, average ion charge states of 2.1 and 1.1 for Ti and B, respectively, and a plasma ion composition of approximately 50% Ti and 50% B. This is consistent with measured resulting film composition from X-ray photoelectron spectroscopy, suggesting a negligible contribution of neutrals and macroparticles to the film growth. Also, despite the observations of macroparticle generation, the film surface is very smooth. These results are of importance for the utilization of cathodic arc as a method for synthesis of metal borides.

  17. Development of carboxymethyl cellulose-chitosan hybrid micro- and macroparticles for encapsulation of probiotic bacteria.

    Science.gov (United States)

    Singh, P; Medronho, B; Alves, L; da Silva, G J; Miguel, M G; Lindman, B

    2017-11-01

    Novel carboxymethyl cellulose-chitosan (CMC-Cht) hybrid micro- and macroparticles were successfully prepared in aqueous media either by drop-wise addition or via nozzle-spray methods. The systems were either physically or chemically crosslinked using genipin as the reticulation agent. The macroparticles (ca. 2mm) formed are found to be essentially of the core-shell type, while the microparticles (ca. 5μm) are apparently homogeneous. The crosslinked particles are robust, thermally resistant and less sensitive to pH changes. On the other hand, the physical systems are pH sensitive presenting a remarkable swelling at pH 7.4, while little swelling is observed at pH 2.4. Furthermore, model probiotic bacteria (Lactobacillus rhamnosus GG) was for the first time successfully encapsulated in the CMC-Cht based particles with acceptable viability count. Overall, the systems developed are highly promising for probiotic encapsulation and potential delivery in the intestinal tract with the purpose of modulating gut microbiota and improving human health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Studies of steered arc motion and macroparticle production in PVD processing

    International Nuclear Information System (INIS)

    Craven, A.L.

    2000-03-01

    During the past decade the production industry has constantly strived to improve performance and cut costs, this has been aided by the development of high performance tools. The advancement of these tools has been accomplished by the application of hard wearing, low friction, coatings. A key process in the production of such coatings is Physical Vapour Deposition (PVD). Interest in such thin films has led to much research effort, both academic and industrial, being devoted to the area. In order that these advancements in technology continue, research into the fundamental aspects of PVD is required. This thesis describes research and experimental studies which have been performed to study the effect of 'steering' an electric arc on various aspects of its behaviour. 'Steering' of the arc is achieved by applying external magnetic fields which allow the guidance of the path of the arc. Work by earlier authors has aimed to control the arc more fully. The research presented here is based of a novel electromagnetic three coil steering array of cylindrical geometry. With such coils it is possible to vary the field profiles to a greater degree than has been previously achieved, permitting a greater range of steering arrangements/fields to be applied. The research presented is divided into two distinct areas: Firstly a number of experiments were performed to assess the effectiveness of the new steering coils on the motion of the arc. A personal computer was used here along with new arc motion monitoring electronics. This enabled the simultaneous measurement of the orbital transit times and also the degree of travel perpendicular to the steered direction of motion of the arc, as it traversed the surface of the cathode. Such information was then used to produce values for standard deviation of the arc from its steered path, velocity of the arc and a diffusion constant related to the motion of the are. Such values then allowed evaluation of the stochastic model of arc motion

  19. Development of the isotopic analysis of individual macroparticles: a study of desert dust and interplanetary dust

    International Nuclear Information System (INIS)

    Aleon, Jerome

    2001-01-01

    During this thesis a new analytical technique has been developed to allow the determination of isotopic ratios in microparticles. This technique is based on the imaging properties of the IMS 1270 ion microprobe in CRPG in Nancy. The development of quantitative isotopic imaging allows the determination of the "1"8O/"1"6O ratio of individual macroparticles having a size [fr

  20. Influence of grain charge gradients on the dynamics of macroparticles in an electrostatic trap

    Energy Technology Data Exchange (ETDEWEB)

    Vaulina, O. S., E-mail: olga.vaulina@bk.ru [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2017-03-15

    An analytical model of anomalous heating of charged dust grains (macroparticles) caused by their stochastic motion in a bounded plasma volume is proposed. Analytical expressions allowing one to describe the pumping (heating) of interacting grains with additional stochastic energy due to grain charge gradients are derived. The analytical results are verified by numerical simulation of the problem. It is shown that spatial variations in the charges of dust grains can lead to their anomalous heating in laboratory plasma.

  1. Macroparticle model for longitudinal emittance growth caused by negative mass instability in a proton synchrotron

    CERN Document Server

    MacLachlan, J A

    2004-01-01

    Both theoretical models and beam observations of negative mass instability fall short of a full description of the dynamics and the dynamical effects. Clarification by numerical modeling is now practicable because of the recent proliferation of so-called computing farms. The results of modeling reported in this paper disagree with some predictions based on a long-standing linear perturbation calculation. Validity checks on the macroparticle model are described.

  2. Study on the impurity transport in the experiments on macroparticle injection into the FT-1 Tokamak

    International Nuclear Information System (INIS)

    Zhilinskij, A.P.; Kuteev, B.V.; Larionov, M.M.; Lebedev, A.D.; Mikhajkin, S.S.; Nikiforov, V.A.; Rozhanskij, V.A.; Tsendin, L.D.

    1980-01-01

    Studied is decomposition of the impurity disturbance (Li, C, O, Si, Ti, stainless steel, Cu, Mo, W) injected by a macroparticle into the central plasma region. It is shown that the impurity are carried out from the discharge at a tau characteristic time weakly depending on their sort. The tau values are in good agreement with the theoretical predictions accounting for the poloidal plasma rotation

  3. Direct-current cathodic vacuum arc system with magnetic-field mechanism for plasma stabilization.

    Science.gov (United States)

    Zhang, H-S; Komvopoulos, K

    2008-07-01

    Filtered cathodic vacuum arc (FCVA) deposition is characterized by plasma beam directionality, plasma energy adjustment via substrate biasing, macroparticle filtering, and independent substrate temperature control. Between the two modes of FCVA deposition, namely, direct current (dc) and pulsed arc, the dc mode yields higher deposition rates than the pulsed mode. However, maintaining the dc arc discharge is challenging because of its inherent plasma instabilities. A system generating a special configuration of magnetic field that stabilizes the dc arc discharge during film deposition is presented. This magnetic field is also part of the out-of-plane magnetic filter used to focus the plasma beam and prevent macroparticle film contamination. The efficiency of the plasma-stabilizing magnetic-field mechanism is demonstrated by the deposition of amorphous carbon (a-C) films exhibiting significantly high hardness and tetrahedral carbon hybridization (sp3) contents higher than 70%. Such high-quality films cannot be produced by dc arc deposition without the plasma-stabilizing mechanism presented in this study.

  4. Direct-current cathodic vacuum arc system with magnetic-field mechanism for plasma stabilization

    International Nuclear Information System (INIS)

    Zhang, H.-S.; Komvopoulos, K.

    2008-01-01

    Filtered cathodic vacuum arc (FCVA) deposition is characterized by plasma beam directionality, plasma energy adjustment via substrate biasing, macroparticle filtering, and independent substrate temperature control. Between the two modes of FCVA deposition, namely, direct current (dc) and pulsed arc, the dc mode yields higher deposition rates than the pulsed mode. However, maintaining the dc arc discharge is challenging because of its inherent plasma instabilities. A system generating a special configuration of magnetic field that stabilizes the dc arc discharge during film deposition is presented. This magnetic field is also part of the out-of-plane magnetic filter used to focus the plasma beam and prevent macroparticle film contamination. The efficiency of the plasma-stabilizing magnetic-field mechanism is demonstrated by the deposition of amorphous carbon (a-C) films exhibiting significantly high hardness and tetrahedral carbon hybridization (sp 3 ) contents higher than 70%. Such high-quality films cannot be produced by dc arc deposition without the plasma-stabilizing mechanism presented in this study

  5. Charging and trapping of macroparticles in near-electrode regions of fluorocarbon plasmas with negative ions

    International Nuclear Information System (INIS)

    Ostrikov, K.N.; Kumar, S.; Sugai, H.

    2001-01-01

    Charging and trapping of macroparticles in the near-electrode region of fluorocarbon etching plasmas with negative ions is considered. The equilibrium charge and forces on particles are computed as a function of the local position in the plasma presheath and sheath. The ionic composition of the plasma corresponds to the etching experiments in 2.45 GHz surface-wave sustained and 13.56 MHz inductively coupled C 4 F 8 +Ar plasmas. It is shown that despite negligible negative ion currents collected by the particles, the negative fluorine ions affect the charging and trapping of particulates through modification of the sheath/presheath structure

  6. Investigation of the wavelength influence on the efficiency of macroparticles acceleration and craters creation in the PALS double targets experiment

    Czech Academy of Sciences Publication Activity Database

    Kalal, M.; Limpouch, J.; Borodziuk, S.; Kasperczuk, A.; Pisarczyk, T.; Demchenko, N. N.; Gus'kov, S. Yu.; Rozanov, V.; Rohlena, Karel; Skála, Jiří; Ullschmied, Jiří; Kondrashov, V. N.; Pisarczyk, P.

    2004-01-01

    Roč. 54, Suppl. C (2004), s. 415-420 ISSN 0011-4626. [Symposium on Plasma Physics and Technology /21./. Praha, 14.06.2004-17.06.2004] R&D Projects: GA MŠk(CZ) LN00A100 Grant - others:HPRI(XE) CT-1999-0053; IAEA(RU) 02-02-16966 Institutional research plan: CEZ:AV0Z1010921 Keywords : laser plasma * macroparticles acceleration Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.292, year: 2004

  7. Using Film Clips to Teach Teen Pregnancy Prevention: "The Gloucester 18" at a Teen Summit

    Science.gov (United States)

    Herrman, Judith W.; Moore, Christopher C.; Anthony, Becky

    2012-01-01

    Teaching pregnancy prevention to large groups offers many challenges. This article describes the use of film clips, with guided discussion, to teach pregnancy prevention. In order to analyze the costs associated with teen pregnancy, a film clip discussion session based with the film "The Gloucester 18" was the keynote of a youth summit. The lesson…

  8. Film breakers prevent migration of aqueous potassium hydroxide in fuel cells

    Science.gov (United States)

    Hess, P. D.

    1970-01-01

    Electrolyte film breakers made from polytetrafluoroethylene are installed in the reactant and water vapor removal outlets of each cell and sealed by elastomers. Use of these devices in the water vapor removal cavity outlets prevents loss of KOH solution through film migration during water removal.

  9. Disinfection efficacy of an ultraviolet light on film cassettes for preventive of the nosocomial infection

    International Nuclear Information System (INIS)

    Kweon, Dae Cheol; Jeon, Yong Woong; Cho, Am

    2001-01-01

    The bacterial infection on film cassette contact surface was examined at the diagnostic radiology department of the S. hospital. The objective of this study was to assess the contamination level on film cassette contact surface as a predictor of patient prevention from nosocomial infection and for improvement of the hospital environment. The laboratory result was identified non-pathologic bacterial in the five different cassette size of the contact surface. Film cassettes were exposed to ultraviolet light for 1, 2 and 3 minutes. Ultraviolet light disinfection is proven suitable for bacterial. The study concludes that presence of a bacterial infection will prevent a using antiseptic technique on film cassette contact surface. In addition education of nosocomial infection for radiographers will be required. In conclusion, ultraviolet is considered effective to irradiate bacterial. Additionally, two minutes are required to sterilize film cassettes

  10. Disinfection efficacy of an ultraviolet light on film cassettes for preventive of the nosocomial infection

    Energy Technology Data Exchange (ETDEWEB)

    Kweon, Dae Cheol [Seoul National Univ. Hospital, Seoul (Korea, Republic of); Jeon, Yong Woong; Cho, Am [Dongguk Univ., Seoul (Korea, Republic of)

    2001-06-01

    The bacterial infection on film cassette contact surface was examined at the diagnostic radiology department of the S. hospital. The objective of this study was to assess the contamination level on film cassette contact surface as a predictor of patient prevention from nosocomial infection and for improvement of the hospital environment. The laboratory result was identified non-pathologic bacterial in the five different cassette size of the contact surface. Film cassettes were exposed to ultraviolet light for 1, 2 and 3 minutes. Ultraviolet light disinfection is proven suitable for bacterial. The study concludes that presence of a bacterial infection will prevent a using antiseptic technique on film cassette contact surface. In addition education of nosocomial infection for radiographers will be required. In conclusion, ultraviolet is considered effective to irradiate bacterial. Additionally, two minutes are required to sterilize film cassettes.

  11. Fire prevention film spots for television ... narrator influence on knowledge and attitude changes

    Science.gov (United States)

    Gene C. Bernardi

    1973-01-01

    The relative effectiveness of 60-second films on fire prevention, with different narrators, was tested among high school students and by exposure on commercial television channels. The narrators were Smokey Bear, a Youth, and a Ranger. All three films were effective in teaching proper fire use practices to the high school classroom audience. In commercial TV showings,...

  12. Aquatic biofouling prevention by electrically charged nanocomposite polymer thin film membranes.

    Science.gov (United States)

    de Lannoy, Charles-François; Jassby, David; Gloe, Katie; Gordon, Alexander D; Wiesner, Mark R

    2013-03-19

    Electrically conductive polymer-nanocomposite (ECPNC) tight nanofiltration (NF) thin film membranes were demonstrated to have biofilm-preventing capabilities under extreme bacteria and organic material loadings. A simple route to the creation and application of these polyamide-carbon nanotube thin films is also reported. These thin films were characterized with SEM and TEM as well as FTIR to demonstrate that the carbon nanotubes are embedded within the polyamide and form ester bonds with trimesoyl chloride, one of the monomers of polyamide. These polymer nanocomposite thin film materials boast high electrical conductivity (∼400 S/m), good NaCl rejection (>95%), and high water permeability. To demonstrate these membranes' biofouling capabilities, we designed a cross-flow water filtration vessel with insulated electrical leads connecting the ECPNC membranes to an arbitrary waveform generator. In all experiments, conducted in highly bacterially contaminated LB media, flux tests were run until fluxes decreased by 45 ± 3% over initial flux. Biofilm-induced, nonreversible flux decline was observed in all control experiments and a cross-flow rinse with the feed solution failed to induce flux recovery. In contrast, flux decrease for the ECPNC membranes with an electric potential applied to their surface was only caused by deposition of bacteria rather than bacterial attachment, and flux was fully recoverable following a short rinse with the feed solution and no added cleaning agents. The prevention of biofilm formation on the ECPNC membranes was a long-term effect, did not decrease with use, and was highly reproducible.

  13. Filtered cathodic arc source

    International Nuclear Information System (INIS)

    Falabella, S.; Sanders, D.M.

    1994-01-01

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge is described. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45 degree to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles. 3 figures

  14. Formulation and characterization of polymeric films containing combinations of antiretrovirals (ARVs) for HIV prevention.

    Science.gov (United States)

    Akil, Ayman; Agashe, Hrushikesh; Dezzutti, Charlene S; Moncla, Bernard J; Hillier, Sharon L; Devlin, Brid; Shi, Yuan; Uranker, Kevin; Rohan, Lisa Cencia

    2015-02-01

    To develop polymeric films containing dual combinations of anti-HIV drug candidate tenofovir, maraviroc and dapivirine for vaginal application as topical microbicides. A solvent casting method was used to manufacture the films. Solid phase solubility was used to identify potential polymers for use in the film formulation. Physical and chemical properties (such as water content, puncture strength and in vitro release) and product stability were determined. The bioactivity of the film products against HIV was assessed using the TZM-bl assay and a cervical explant model. Polymers identified from the solid phase solubility study maintained tenofovir and maraviroc in an amorphous state and prevented drug crystallization. Three combination film products were developed using cellulose polymers and polyvinyl alcohol. The residual water content in all films was 50% of film drug content within 30 min. Stability testing confirmed that the combination film products were stable for 12 months at ambient temperature and 6 months under stressed conditions. Antiviral activity was confirmed in TZM-bl and cervical explant models. Polymeric films can be used as a stable dosage form for the delivery of antiretroviral combinations as microbicides.

  15. Micro-layers of polystyrene film preventing metal oxidation: implications in cultural heritage conservation

    Science.gov (United States)

    Giambi, Francesca; Carretti, Emiliano; Dei, Luigi; Baglioni, Piero

    2014-12-01

    Protection of surfaces directly exposed to the detrimental action of degradative agents (i.e. oxygen, air pollutants and bacteria) is one of the most important challenges in the field of conservation of works of art. Metallic objects are subjected to specific surface corrosion phenomena that, over the years, make mandatory the research of innovative materials that should avoid the direct contact between the metal surface and the weathering agents. In this paper, the set-up, characterisation and application of a new reversible material for preserving metal artefacts are reported. Micro-layers constituted of low-adhesive polystyrene (PS) films obtained from recycling waste packaging materials made of expanded PS were studied. The morphology and thickness of PS films were characterised by optical, atomic force and scanning electron microscopy (SEM). A further check on thickness was carried out by means of visible spectrophotometry doping the films with a hydrophobic dye. Thermal properties of the PS micro-layers were studied by means of differential scanning calorimetry coupled with optical microscopy. Permeability of the PS films to water vapour was also determined. The potential of the low-adhesive PS films, that enabled an easy removal in case of film deterioration, for preventing metal oxidation was investigated on brass specimens by simulating standard artificial corrosion programmes. Morphological and chemical (coupling the energy-dispersive X-rays spectrometry to SEM measurements) analyses carried out on these metal samples showed promising results in terms of surface protection against corrosion.

  16. Determination of parameters of the arc plasma of electrodynamic macro-particle accelerator by the method of simulation of surface energy losses

    Energy Technology Data Exchange (ETDEWEB)

    Djuric, Z.; Mihajlov, A.A. (Inst. of Physics, Belgrade (Yugoslavia))

    1989-01-01

    In the paper we have presented the model method of calculating electrical arc parameters in the macroparticles' electrodynamic accelerator at the given rail width and the given width between them. The method is based on energy losses simulation at the arc's boundary surfaces and is a modification of the one-dimensional version of Powell and Batteh's method. It has been shown that the proposed method is adequate for operative use and that it enables the determination of both macroscopic arc parameters - acceleration, length, electroconductivity, mean temperature and density of particles etc., as well as local arc plasma parameters. The values of these parameters are determined by numerical solutions of the self-consistent system of magnetic-hydrodynamic, material and thermodynamic equations, at the arc's given mass and muzzle voltage between rails. It has also been shown that the proposed method allows the comparison of one-, two- and three-dimensional arc approximations. In the present paper we have used the method assuming that arc plasma is at most doubly ionized and produced exclusively by copper atoms. (orig.).

  17. Bactericidal micron-thin sol-gel films prevent pin tract and periprosthetic infection.

    Science.gov (United States)

    Qu, Haibo; Knabe, Christine; Burke, Megan; Radin, Shula; Garino, Jonathan; Schaer, Thomas; Ducheyne, Paul

    2014-08-01

    Orthopedic injuries constitute the majority of wounds sustained by U.S. soldiers in recent conflicts. The risk of infection is considerable with fracture fixation devices. In this pilot study, we examined the use of unique bactericidal micron-thin sol-gel films on fracture fixation devices and their ability to prevent and eradicate infections. External fixation was studied with micron-thin sol-gel coated percutaneous pins releasing triclosan and inserted medially into rabbit tibiae. A total of 11 rabbits received percutaneous pins that were either uncoated or sol-gel/triclosan coated. Internal fracture fixation was also studied using sol-gel coated intramedullary (IM) nails releasing vancomycin in the intramedullary tibiae. Six sheep received IM nails that were coated with a sol-gel film that either contained vancomycin or did not contain vancomycin. All animals were challenged with Staphylococcus aureus around the implant. Animals were euthanized at 1 month postoperative. Rabbits receiving triclosan/sol-gel coated percutaneous pins did not show signs of infection. Uncoated percutaneous pins had a significantly higher infection rate. In the sheep study, there were no radiographic signs of osteomyelitis with vancomycin/sol-gel coated IM nails, in contrast to the observations in the control cohort. Hence, the nanostructured sol-gel controlled release technology offers the promise of a reliable and continuous delivery system of bactericidals from orthopedic devices to prevent and treat infection. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  18. Development and Characterization of a Vaginal Film Containing Dapivirine, a Non- nucleoside Reverse Transcriptase Inhibitor (NNRTI), for prevention of HIV-1 sexual transmission.

    Science.gov (United States)

    Akil, Ayman; Parniak, Michael A; Dezzuitti, Charlene S; Moncla, Bernard J; Cost, Marilyn R; Li, Mingguang; Rohan, Lisa Cencia

    2011-06-01

    Dapivirine, a non-nucleoside reverse transcriptase inhibitor, is a potent and promising anti-HIV molecule. It is currently being investigated for use as a vaginal microbicide in two dosage forms, a semi-solid gel and a silicone elastomer ring. Quick-dissolving films are promising and attractive dosage forms that may provide an alternative platform for the vaginal delivery of microbicide drug candidates. Vaginal films may provide advantages such as discreet use, no product leakage during use, lack of requirement for an applicator for insertion, rapid drug release and minimal packaging and reduced wastage. Within this study the in vitro bioactivity of dapivirine as compared to the NNRTI UC781 was further established and a quick dissolve film was developed for vaginal application of dapivirine for prevention of HIV infection. The developed film was characterized with respect to its physical and chemical attributes including water content, mechanical strength, drug release profile, permeability, compatibility with lactobacilli and bioactivity. The anti-HIV activity of the formulated dapivirine film was confirmed in in vitro and ex vivo models. Importantly the physical and chemical properties of the film as well as its bioactivity were maintained for a period of 18 months. In conclusion, a vaginal film containing dapivirine was developed and characterized. The film was shown to prevent HIV-1 infection in vitro and ex vivo and have acceptable characteristics which make this film a promising candidate for testing as vaginal microbicide.

  19. Sodium Mercaptoethane Sulfonate Reduces Collagenolytic Degradation and Synergistically Enhances Antimicrobial Durability in an Antibiotic-Loaded Biopolymer Film for Prevention of Surgical-Site Infections

    Directory of Open Access Journals (Sweden)

    Joel Rosenblatt

    2017-01-01

    Full Text Available Implant-associated surgical-site infections can have significant clinical consequences. Previously we reported a method for prophylactically disinfecting implant surfaces in surgical pockets, where an antibiotic solution containing minocycline (M and rifampin (R was applied as a solid film in a crosslinked biopolymer matrix that partially liquefied in situ to provide extended prophylaxis. Here we studied the effect of adding sodium 2-mercaptoethane sulfonate (MeSNA on durability of prophylaxis in an in vitro model of implant-associated surgical-site infection. Adding MeSNA to the M/R biopolymer, antimicrobial film extended the duration for which biofilm formation by multidrug-resistant Pseudomonas aeruginosa (MDR-PA was prevented on silicone surfaces in the model. M/R films with and without MeSNA were effective in preventing colonization by methicillin-resistant Staphylococcus aureus. Independent experiments revealed that MeSNA directly inhibited proteolytic digestion of the biopolymer film and synergistically enhanced antimicrobial potency of M/R against MDR-PA. Incubation of the MeSNA containing films with L929 fibroblasts revealed no impairment of cellular metabolic activity or viability.

  20. Cost comparison of pressure ulcer preventive dressings: hydrocolloid dressing versus transparent polyurethane film.

    Science.gov (United States)

    Dutra, R A A; Salomé, G M; Leal, L M F; Alves, M G; Moura, J P; Silva, A T; Pereira, V O S; de Brito, M J A; Ferreira, L M

    2016-11-02

    To evaluate and compare the costs of using a transparent polyurethane film (PF) and hydrocolloid dressing (HD) in the prevention of pressure ulcers (PUs). This descriptive, observational, longitudinal, comparative study was conducted in the intensive care units, coronary care unit and medical clinic of a charity hospital in Brazil. Data were collected during a 30-day study period, consisting of physical examination, assessment of risk factors for PU development and application of the Braden scale, which were performed at inclusion in the study and once daily during hospitalisation. Either PF or HD was applied bilaterally in the sacral and trochanteric regions for prevention of PUs in patients at a moderate to high risk of PUs according to the Braden scale, and costs of using PU preventive dressings were estimated. The mean total costs per dressing change per patient when using the HD and PF to prevent PUs were 413.60 BRL and 74.04 BRL, respectively. There were significant between-group differences in mean costs for all variables, except for saline solution and nurse-technician services. Results showed that the mean cost per dressing change per patient was lower when using the transparent PF than when using the HD.

  1. Plasma deposition of organosilicon polymer thin films with embedded nanosilver for prevention of microbial adhesion

    International Nuclear Information System (INIS)

    Saulou, Claire; Despax, Bernard; Raynaud, Patrice; Zanna, Sandrine; Marcus, Philippe; Mercier-Bonin, Muriel

    2009-01-01

    Composite thin films (∼170 nm) containing silver nanoclusters embedded in an organosilicon matrix were deposited by PE-CVD onto stainless steel in order to prevent microbial adhesion. The process originality relies on a dual strategy combining silver sputtering and simultaneous plasma polymerization in argon-hexamethyldisiloxane (HMDSO) plasma, using an asymmetrical RF glow discharge. The metal content in the film was controlled by varying the HMDSO flow rate. Investigation of the physico-chemical properties of the obtained films was conducted by X-ray photoelectron spectroscopy and transmission FTIR spectroscopy. Plasma-mediated coatings were composed of C, O, Si and Ag which was predominantly under metallic form, as indicated by XPS analysis. The presence of Si-H, Si-O-Si, Si-(CH) n -Si and C-H groups was established by FTIR. The yeast Saccharomyces cerevisiae was selected as the model for eukaryotic microorganisms. The maximal anti-adhesive efficiency was achieved for the organosilicon matrix alone. When nanosilver was incorporated into the organic matrix, the efficiency was reduced, especially for high metal contents. Silver antimicrobial property was assumed to be related to Ag + progressive release from the embedded nanoparticles into the surrounding medium. This release was confirmed by ICP-MS measurements. Moreover, silver-containing film antifungal activity was observed towards sessile cells.

  2. Plasma deposition of organosilicon polymer thin films with embedded nanosilver for prevention of microbial adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Saulou, Claire [Universite de Toulouse, INSA, UPS, INPT, LISBP, 135 Av. de Rangueil, F-31077 Toulouse (France); Universite de Toulouse, UPS, INPT, LAPLACE, 118 route de Narbonne, F-31062 Toulouse cedex 9 (France); Despax, Bernard; Raynaud, Patrice [Universite de Toulouse, UPS, INPT, LAPLACE, 118 route de Narbonne, F-31062 Toulouse cedex 9 (France); Zanna, Sandrine; Marcus, Philippe [LPCS, UMR CNRS/ENSCP 7045, 11 rue P. et M. Curie, 75005 Paris (France); Mercier-Bonin, Muriel, E-mail: muriel.mercier-bonin@insa-toulouse.fr [Universite de Toulouse, INSA, UPS, INPT, LISBP, 135 Av. de Rangueil, F-31077 Toulouse (France)

    2009-11-15

    Composite thin films ({approx}170 nm) containing silver nanoclusters embedded in an organosilicon matrix were deposited by PE-CVD onto stainless steel in order to prevent microbial adhesion. The process originality relies on a dual strategy combining silver sputtering and simultaneous plasma polymerization in argon-hexamethyldisiloxane (HMDSO) plasma, using an asymmetrical RF glow discharge. The metal content in the film was controlled by varying the HMDSO flow rate. Investigation of the physico-chemical properties of the obtained films was conducted by X-ray photoelectron spectroscopy and transmission FTIR spectroscopy. Plasma-mediated coatings were composed of C, O, Si and Ag which was predominantly under metallic form, as indicated by XPS analysis. The presence of Si-H, Si-O-Si, Si-(CH){sub n}-Si and C-H groups was established by FTIR. The yeast Saccharomyces cerevisiae was selected as the model for eukaryotic microorganisms. The maximal anti-adhesive efficiency was achieved for the organosilicon matrix alone. When nanosilver was incorporated into the organic matrix, the efficiency was reduced, especially for high metal contents. Silver antimicrobial property was assumed to be related to Ag{sup +} progressive release from the embedded nanoparticles into the surrounding medium. This release was confirmed by ICP-MS measurements. Moreover, silver-containing film antifungal activity was observed towards sessile cells.

  3. Polymer thin film as coating layer to prevent corrosion of metal/metal oxide film

    Science.gov (United States)

    Sarkar, Suman; Kundu, Sarathi

    2018-04-01

    Thin film of polymer is used as coating layer and the corrosion of metal/metal oxide layer is studied with the variation of the thickness of the coating layer. The thin layer of polystyrene is fabricated using spin coating method on copper oxide (CuO) film which is deposited on glass substrate using DC magnetron sputtering technique. Thickness of the polystyrene and the CuO layers are determined using X-ray reflectivity (XRR) technique. CuO thin films coated with the polystyrene layer are exposed to acetic acid (2.5 v/v% aqueous CH3COOH solution) environments and are subsequently analyzed using UV-Vis spectroscopy and atomic force microscopy (AFM). Surface morphology of the film before and after interaction with the acidic environment is determined using AFM. Results obtained from the XRR and UV-Vis spectroscopy confirm that the thin film of polystyrene acts as an anticorrosion coating layer and the strength of the coating depends upon the polymer layer thickness at a constant acid concentration.

  4. Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaowei; Zhu, Junwu; Qiu, Ling; Li, Dan [Department of Materials Engineering, ARC Centre of Excellence for Electromaterials Science, Monash University, VIC 3800 (Australia)

    2011-07-05

    A simple, bioinspired approach to effectively prevent the restacking of chemically converted graphene sheets in multilayered films is presented. The method enables the creation of a new generation of supercapacitors that combine high energy density, high power density, and high operation rates. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Use of UV-protective windows and window films to aid in the prevention of skin cancer.

    Science.gov (United States)

    Edlich, Richard F; Winters, Kathryne L; Cox, Mary Jude; Becker, Daniel G; Horowitz, Jed H; Nichter, Larry S; Britt, L D; Long, William B; Edlic, Elizabeth C

    2004-01-01

    People are exposed to ambient solar ultraviolet (UV) radiation throughout their daily routine, intentionally and unintentionally. Cumulative and excessive exposure to UV radiation is the behavioral cause to skin cancers, skin damage, premature skin aging, and sun-related eye disorders. More than one million new cases of skin cancer were diagnosed in the United States this year. UV radiates directly and diffusely scattered by the various environmental and atmospheric conditions and has access to the skin from all directions. Because of this diffuse UV radiation, a person situated under a covering, such as the roof of a car or house, is not completely protected from the sun's rays. Because shade structures do not protect effectively against UV radiation, there have been major advances in photoprotection of glass by the development of specially designed photoprotective windows and films. It is the purpose of this collective review to highlight the photoprotective windows and films that should be incorporated into residential, commercial, and school glass windows to reduce sun exposure. Low-emittence (low-E) coatings are microscopically thin, virtually invisible, metal or metallic oxide layers deposited on a window or skylight glazing surface to reduce the U-factor by suppressing radiative heat flow as well as to limit UV radiation. The exclusive Thermaflect coating uses the most advanced, double-layer soft coat technology to continue to deliver top performance for UV protection as well as prevent heat loss in the home. This product blocks 87% of UV radiation and has an Energy Star certification in all climate zones. Tints and films have been another important advance in glass photoprotection, especially in automobiles. Quality widow film products are high-tech laminates of polyester and metallized coatings bonded by distortion-free adhesives. The International Window Film Association provides members with accreditation in solar control films, safety films, and

  6. Preventing Thin Film Dewetting via Graphene Capping.

    Science.gov (United States)

    Cao, Peigen; Bai, Peter; Omrani, Arash A; Xiao, Yihan; Meaker, Kacey L; Tsai, Hsin-Zon; Yan, Aiming; Jung, Han Sae; Khajeh, Ramin; Rodgers, Griffin F; Kim, Youngkyou; Aikawa, Andrew S; Kolaczkowski, Mattew A; Liu, Yi; Zettl, Alex; Xu, Ke; Crommie, Michael F; Xu, Ting

    2017-09-01

    A monolayer 2D capping layer with high Young's modulus is shown to be able to effectively suppress the dewetting of underlying thin films of small organic semiconductor molecule, polymer, and polycrystalline metal, respectively. To verify the universality of this capping layer approach, the dewetting experiments are performed for single-layer graphene transferred onto polystyrene (PS), semiconducting thienoazacoronene (EH-TAC), gold, and also MoS 2 on PS. Thermodynamic modeling indicates that the exceptionally high Young's modulus and surface conformity of 2D capping layers such as graphene and MoS 2 substantially suppress surface fluctuations and thus dewetting. As long as the uncovered area is smaller than the fluctuation wavelength of the thin film in a dewetting process via spinodal decomposition, the dewetting should be suppressed. The 2D monolayer-capping approach opens up exciting new possibilities to enhance the thermal stability and expands the processing parameters for thin film materials without significantly altering their physical properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Development of Anti-Insect Microencapsulated Polypropylene Films Using a Large Scale Film Coating System.

    Science.gov (United States)

    Song, Ah Young; Choi, Ha Young; Lee, Eun Song; Han, Jaejoon; Min, Sea C

    2018-04-01

    Films containing microencapsulated cinnamon oil (CO) were developed using a large-scale production system to protect against the Indian meal moth (Plodia interpunctella). CO at concentrations of 0%, 0.8%, or 1.7% (w/w ink mixture) was microencapsulated with polyvinyl alcohol. The microencapsulated CO emulsion was mixed with ink (47% or 59%, w/w) and thinner (20% or 25%, w/w) and coated on polypropylene (PP) films. The PP film was then laminated with a low-density polyethylene (LDPE) film on the coated side. The film with microencapsulated CO at 1.7% repelled P. interpunctella most effectively. Microencapsulation did not negatively affect insect repelling activity. The release rate of cinnamaldehyde, an active repellent, was lower when CO was microencapsulated than that in the absence of microencapsulation. Thermogravimetric analysis exhibited that microencapsulation prevented the volatilization of CO. The tensile strength, percentage elongation at break, elastic modulus, and water vapor permeability of the films indicated that microencapsulation did not affect the tensile and moisture barrier properties (P > 0.05). The results of this study suggest that effective films for the prevention of Indian meal moth invasion can be produced by the microencapsulation of CO using a large-scale film production system. Low-density polyethylene-laminated polypropylene films printed with ink incorporating microencapsulated cinnamon oil using a large-scale film production system effectively repelled Indian meal moth larvae. Without altering the tensile and moisture barrier properties of the film, microencapsulation resulted in the release of an active repellent for extended periods with a high thermal stability of cinnamon oil, enabling commercial film production at high temperatures. This anti-insect film system may have applications to other food-packaging films that use the same ink-printing platform. © 2018 Institute of Food Technologists®.

  8. Formation and prevention of fractures in sol-gel-derived thin films

    NARCIS (Netherlands)

    Kappert, Emiel; Pavlenko, Denys; Malzbender, J.; Nijmeijer, Arian; Benes, Nieck Edwin; Tsai, Peichun Amy

    2015-01-01

    Sol–gel-derived thin films play an important role as the functional coatings for various applications that require crack-free films to fully function. However, the fast drying process of a standard sol–gel coating often induces mechanical stresses, which may fracture the thin films. An experimental

  9. Percutaneous external fixator pins with bactericidal micron-thin sol-gel films for the prevention of pin tract infection.

    Science.gov (United States)

    Qu, Haibo; Knabe, Christine; Radin, Shula; Garino, Jonathan; Ducheyne, Paul

    2015-09-01

    Risk of infection is considerable in open fractures, especially when fracture fixation devices are used to stabilize the fractured bones. Overall deep infection rates of 16.2% have been reported. The infection rate is even greater, up to 32.2%, with external fixation of femoral fractures. The use of percutaneous implants for certain clinical applications, such as percutaneous implants for external fracture fixation, still represents a challenge today. Currently, bone infections are very difficult to treat. Very potent antibiotics are needed, which creates the risk of irreversible damage to other organs, when the antibiotics are administered systemically. As such, controlled, local release is being pursued, but no such treatments are in clinical use. Herein, the use of bactericidal micron-thin sol-gel films on metallic fracture fixation pins is reported. The data demonstrates that triclosan (2,4,4'-trichloro-2'-hydroxydiphenylether), an antimicrobial agent, can be successfully incorporated into micron-thin sol-gel films deposited on percutaneous pins. The sol-gel films continuously release triclosan in vitro for durations exceeding 8 weeks (longest measured time point). The bactericidal effect of the micron-thin sol-gel films follows from both in vitro and in vivo studies. Inserting percutaneous pins in distal rabbit tibiae, there were no signs of infection around implants coated with a micron-thin sol-gel/triclosan film. Healing had progressed normally, bone tissue growth was normal and there was no epithelial downgrowth. This result was in contrast with the results in rabbits that received control, uncoated percutaneous pins, in which abundant signs of infection and epithelial downgrowth were observed. Thus, well-adherent, micron-thin sol-gel films laden with a bactericidal molecule successfully prevented pin tract infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Evaluation of polyethylene glycol/polylactic acid films in the prevention of adhesions in the rabbit adhesion formation and reformation sidewall models.

    Science.gov (United States)

    Rodgers, K; Cohn, D; Hotovely, A; Pines, E; Diamond, M P; diZerega, G

    1998-03-01

    To assess the efficacy of bioresorbable films consisting of various polyethylene glycol 6000 and polylactic acid block copolymers on the formation and reformation of adhesions in rabbit models of adhesion development between the sidewall to the adjacent cecum and bowel. The composition of the different polymers was expressed by the number of monomeric units in the block, namely, ethylene oxide (EO) and lactic acid (LA), respectively. Studies of the efficacy of EO/LA films were conducted in rabbit sidewall adhesion formation studies in the presence and absence of blood and in rabbit adhesion reformation studies. REPEL (Life Medical Sciences, Edison, NJ), a film of EO/LA ratio 3.0 manufactured under commercial conditions, was also tested in these animal models. University-based laboratory. New Zealand white rabbits. Placement of films of various EO/LA ratios at the site of injury to the parietal peritoneum. Adhesion formation and reformation. Films of various EO/LA ratios, Seprafilm (Genzyme, Cambridge, MA) and Interceed (Johnson and Johnson Medical, Arlington, TX) placed over an area of excised sidewall at the time of initial injury were highly efficacious in the prevention of adhesion formation. A film of EO/LA ratio 3.7, in contrast with Interceed, was also shown to maintain maximal efficacy in the reduction of adhesion formation in the presence of blood. Further, a film of EO/LA ratio 3.0 produced under commercial conditions, REPEL, was highly efficacious in reducing adhesion development in the rabbit models of adhesion and reformation. These studies suggest that bioresorbable EO/LA films reduced adhesion development in rabbit models of adhesion formation and reformation.

  11. Disinfection Effect of Film Cassettes by Ultraviolet Irradiation

    International Nuclear Information System (INIS)

    Kweon, Dae Cheol; Park, Peom

    2001-01-01

    A bacteria infection on film cassette contact surface was examined at the diagnostic radiology department. Studies have demonstrated a bactericidal effect of ultraviolet irradiation, and to assess the contamination level on film cassette contact surface as a predictor of patient prevent from nosocomial infection. The study showed that the laboratory result was identified non-pathologic and pathologic bacterial in the five different cassette size of the contact surface. Film cassettes were exposed to ultraviolet light for 1, 2 and 3 minutes. Ultraviolet light disinfection practices suitable for bacteria. The study concludes that presence of a bacterial infection will prevent a using antiseptic technique on film cassette contact surface. In conclusion, ultraviolet irradiate on film cassette over the surface more than 2 minutes. Ultraviolet dose of 1565 μW · s/cm 2 Win in 30 second relative to ultraviolet dose in time

  12. Preventive Political Morality and the Ontology of Evil: Some Lessons from Literature and Film

    Directory of Open Access Journals (Sweden)

    Krešimir Petković

    2012-01-01

    Full Text Available The article uses different discourses on evil from literature and film to probe Derek Edyvane's political theory that builds a preventive political ethics arguing for "sovereignty of evil". The discussion is limited to a specific evil – violence and violent crime – while its essential causes and consequences in nature and society, and the indicated politics to address it, are subsumed under the term ontology. The underlying idea is that Edyvane must first answer more precisely what evil is and how it works in order to make it sovereign. Avoiding the consequences of evil and building a political consensus around great evils presupposes the understanding of their causes. The method of inquiry that analyses fictional material is legitimated by Edyvane's own employing of art and literature in his study, but more importantly, by special quality and insight of classical films and novels that make them useful in the exploratory phase of research that procreates hypotheses to be tested. After different discourses are explored – ones that see nature, society, politics, or all of them, as roots of violent evil and imply different ideas for its control or eradication – and Edyvane's theory is tested against them, a tentative conclusion is reached that political liberalism is perhaps the best thing that we have to date.

  13. Disinfection Effect of Film Cassettes by Ultraviolet Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kweon, Dae Cheol; Park, Peom [Ajou Univ., Suwon (Korea, Republic of)

    2001-12-15

    A bacteria infection on film cassette contact surface was examined at the diagnostic radiology department. Studies have demonstrated a bactericidal effect of ultraviolet irradiation, and to assess the contamination level on film cassette contact surface as a predictor of patient prevent from nosocomial infection. The study showed that the laboratory result was identified non-pathologic and pathologic bacterial in the five different cassette size of the contact surface. Film cassettes were exposed to ultraviolet light for 1, 2 and 3 minutes. Ultraviolet light disinfection practices suitable for bacteria. The study concludes that presence of a bacterial infection will prevent a using antiseptic technique on film cassette contact surface. In conclusion, ultraviolet irradiate on film cassette over the surface more than 2 minutes. Ultraviolet dose of 1565 {mu}W {center_dot} s/cm{sup 2}Win in 30 second relative to ultraviolet dose in time.

  14. Prophylactic use of Mepitel Film prevents radiation-induced moist desquamation in an intra-patient randomised controlled clinical trial of 78 breast cancer patients

    International Nuclear Information System (INIS)

    Herst, Patries M.; Bennett, Noelle C.; Sutherland, Annie E.; Peszynski, Ruth I.; Paterson, Dean B.; Jasperse, Marieke L.

    2014-01-01

    Purpose: Safetac-based soft silicone dressings used in a management setting decrease the severity of radiation-induced acute skin reactions but do not affect moist desquamation rates. Here we investigate the prophylactic use of another Safetac product, Mepitel Film, on moist desquamation rates. Material and methods: A total of 80 breast cancer patients receiving radiation therapy were recruited between October 2012 and April 2013; 78 participants contributed data for analysis. Lateral and medial halves of the skin areas to be irradiated were randomised to Mepitel Film or aqueous cream; skin dose was measured using thermoluminescent dosimeters; skin reaction severity was assessed using RISRAS and RTOG scales. Results: Overall skin reaction severity was reduced by 92% (p < 0.0001) in favour of Mepitel Film (RISRAS). All patients developed some form of reaction in cream-treated skin which progressed to moist desquamation in 26% of patients (RTOG grades I: 28%; IIA: 46%; IIB: 18%; III: 8%). Only 44% of patients had a skin reaction under the Film, which did not progress to moist desquamation in any of the patients (RTOG grades I: 36%; IIA: 8%). Conclusions: Mepitel Film completely prevented moist desquamation and reduced skin reaction severity by 92% when used prophylactically in our cohort

  15. Hydroxyapatite-diamondlike carbon nanocomposite films

    International Nuclear Information System (INIS)

    Narayan, Roger J.

    2005-01-01

    Hydroxyapatite is a bioactive ceramic that mimics the mineral composition of natural bone. Conventional plasma-sprayed hydroxyapatite coatings demonstrate poor adhesion and poor mechanical integrity. We have developed hydroxyapatite-diamondlike carbon bilayer film. The diamondlike carbon interlayer serves to prevent metal ion release and improve adhesion of the hydroxyapatite film. These films were characterized using X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectroscopy, nanoindentation, and microscratch adhesion testing. Based on the results of this study, hydroxyapatite-diamondlike carbon bilayers demonstrate promise for use in several orthopedic implants

  16. Hydroxyapatite-diamondlike carbon nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Roger J. [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States)]. E-mail: roger.narayan@mse.gatech.edu

    2005-05-15

    Hydroxyapatite is a bioactive ceramic that mimics the mineral composition of natural bone. Conventional plasma-sprayed hydroxyapatite coatings demonstrate poor adhesion and poor mechanical integrity. We have developed hydroxyapatite-diamondlike carbon bilayer film. The diamondlike carbon interlayer serves to prevent metal ion release and improve adhesion of the hydroxyapatite film. These films were characterized using X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectroscopy, nanoindentation, and microscratch adhesion testing. Based on the results of this study, hydroxyapatite-diamondlike carbon bilayers demonstrate promise for use in several orthopedic implants.

  17. A study on contamination and disinfection of film cassette

    International Nuclear Information System (INIS)

    Kweon, Dae Cheol; Chung, Kyung Mo; Choi, Ji Won

    2000-01-01

    In July 2000, a bacteria infection on film cassette contact surface was examined at the diagnostic radiology department of the S. hospital. The objective of this study was to assess the contamination level on film cassette contact surface as a predictor of patient to prevent from nosocomial infection. The study showed that the laboratory result was identified non-pathologic bacterial in the four different cassette size of the contact surface. The study concludes that presence of a bacterial infection will prevent a using antiseptic technique on film cassette contact surface. Also the education of nosocomial infection for radiographer will be required

  18. A study on contamination and disinfection of film cassette

    Energy Technology Data Exchange (ETDEWEB)

    Kweon, Dae Cheol; Chung, Kyung Mo [Seoul National University Hospital, Seoul (Korea, Republic of); Choi, Ji Won [University of Sydney, Sydney (Australia)

    2000-04-15

    In July 2000, a bacteria infection on film cassette contact surface was examined at the diagnostic radiology department of the S. hospital. The objective of this study was to assess the contamination level on film cassette contact surface as a predictor of patient to prevent from nosocomial infection. The study showed that the laboratory result was identified non-pathologic bacterial in the four different cassette size of the contact surface. The study concludes that presence of a bacterial infection will prevent a using antiseptic technique on film cassette contact surface. Also the education of nosocomial infection for radiographer will be required.

  19. Plasma-deposited fluorocarbon polymer films on titanium for preventing cell adhesion: a surface finishing for temporarily used orthopaedic implants

    Science.gov (United States)

    Finke, B.; Testrich, H.; Rebl, H.; Walschus, U.; Schlosser, M.; Zietz, C.; Staehlke, S.; Nebe, J. B.; Weltmann, K. D.; Meichsner, J.; Polak, M.

    2016-06-01

    The design of a titanium implant surface should ideally support its later application in clinical use. Temporarily used implants have to fulfil requirements different from permanent implants: they should ensure the mechanical stabilization of the bone stock but in trauma surgery they should not be integrated into the bone because they will be removed after fracture healing. Finishing of the implant surface by a plasma-fluorocarbon-polymer (PFP) coating is a possible approach for preventing cell adhesion of osteoblasts. Two different low pressure gas-discharge plasma processes, microwave (MW 2.45 GHz) and capacitively coupled radio frequency (RF 13.56 MHz) plasma, were applied for the deposition of the PFP film using a mixture of the precursor octafluoropropane (C3F8) and hydrogen (H2). The thin films were characterized by x-ray photoelectron spectroscopy, Fourier transform infrared reflection absorption spectroscopy, and water contact angle measurements. Cell culture experiments show that cell adhesion and spreading of MG-63 osteoblasts were clearly reduced or nonexistent on these surfaces, also after 24 h of storage in the cell culture medium. In vivo data demonstrated that the local inflammatory tissue response for the PFP films deposited in MW and RF plasma were comparable to uncoated controls.

  20. Diamond film growth with modification properties of adhesion between substrate and diamond film

    Directory of Open Access Journals (Sweden)

    Setasuwon P.

    2004-03-01

    Full Text Available Diamond film growth was studied using chemical vapor deposition (CVD. A special equipment was build in-house, employing a welding torch, and substrate holder with a water-cooling system. Acetylene and oxygen were used as combustion gases and the substrate was tungsten carbide cobalt. It was found that surface treatments, such as diamond powder scratching or acid etching, increase the adhesion and prevent the film peel-off. Diamond powder scratching and combined diamond powder scratching with acid etching gave the similar diamond film structure with small grain and slightly rough surface. The diamond film obtained with both treatments has high adhesion and can withstand internal stress better than ones obtained by untreated surface or acid etching alone. It was also found that higher substrate temperature produced smoother surface and more uniform diamond grain.

  1. Abnormal breakdown characteristic in a two-phase mixture

    International Nuclear Information System (INIS)

    Ye Qizheng; Li Jin; Lu Fei

    2006-01-01

    A two-phase mixture (TPM) is a mixture of gas and macroparticles of high concentration. Based on Townsend's theory, a new cell-iterative model in analytical form for the breakdown mechanism in TPM is presented. Compared with the original cell-iterative model in our previous paper, the obstructive factor of the macroparticles that influences the electron avalanche propagation is considered, except for the macroparticles distorting the electrical field and capture of the electrons. The cell attractive parameter k is presented according to the classical continuum theory for field charging. The modified Paschen law for a TPM is presented to calculate the breakdown voltage. The breakdown voltage of the TPM, U TPM , increases gradually with an increase in the macroparticle number density (m). The voltage U TPM is lower than that of the pure gas at low m values and larger at high m values. With a decrease of the macroparticle volume fraction and the dielectric mismatch, the voltage U TPM increases gradually at low m values and decreases gradually at high m values. The voltage U TPM at pd 200 cm Torr is lower than that at pd = 760 cm Torr for low m values and larger for high m values. This kind of abnormal breakdown characteristic in the TPM occurs in the case of high macroparticle volume fraction. On the other hand, the minimum of the TPM's Paschen curve increases with increase in m. It provides the possibility and the conditions of greatly increasing the breakdown voltage in a nearly uniform field

  2. Abnormal breakdown characteristic in a two-phase mixture

    Energy Technology Data Exchange (ETDEWEB)

    Ye Qizheng; Li Jin; Lu Fei [College of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China)

    2006-05-21

    A two-phase mixture (TPM) is a mixture of gas and macroparticles of high concentration. Based on Townsend's theory, a new cell-iterative model in analytical form for the breakdown mechanism in TPM is presented. Compared with the original cell-iterative model in our previous paper, the obstructive factor of the macroparticles that influences the electron avalanche propagation is considered, except for the macroparticles distorting the electrical field and capture of the electrons. The cell attractive parameter k is presented according to the classical continuum theory for field charging. The modified Paschen law for a TPM is presented to calculate the breakdown voltage. The breakdown voltage of the TPM, U{sub TPM}, increases gradually with an increase in the macroparticle number density (m). The voltage U{sub TPM} is lower than that of the pure gas at low m values and larger at high m values. With a decrease of the macroparticle volume fraction and the dielectric mismatch, the voltage U{sub TPM} increases gradually at low m values and decreases gradually at high m values. The voltage U{sub TPM} at pd 200 cm Torr is lower than that at pd = 760 cm Torr for low m values and larger for high m values. This kind of abnormal breakdown characteristic in the TPM occurs in the case of high macroparticle volume fraction. On the other hand, the minimum of the TPM's Paschen curve increases with increase in m. It provides the possibility and the conditions of greatly increasing the breakdown voltage in a nearly uniform field.

  3. Modeling beams with elements in phase space

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1998-01-01

    Conventional particle codes represent beams as a collection of macroparticles. An alternative is to represent the beam as a collection of current carrying elements in phase space. While such a representation has limitations, it may be less noisy than a macroparticle model, and it may provide insights about the transport of space charge dominated beams which would otherwise be difficult to gain from macroparticle simulations. The phase space element model of a beam is described, and progress toward an implementation and difficulties with this implementation are discussed. A simulation of an axisymmetric beam using 1d elements in phase space is demonstrated

  4. Instabilities of collisionless current sheets revisited: The role of anisotropic heating

    International Nuclear Information System (INIS)

    Muñoz, P. A.; Kilian, P.; Büchner, J.

    2014-01-01

    In this work, we investigate the influence of the anisotropic heating on the spontaneous instability and evolution of thin Harris-type collisionless current sheets, embedded in antiparallel magnetic fields. In particular, we explore the influence of the macroparticle shape-function using a 2D version of the PIC code ACRONYM. We also investigate the role of the numerical collisionality due to the finite number of macroparticles in PIC codes. It is shown that it is appropriate to choose higher order shape functions of the macroparticles compared to a larger number of macroparticles per cell. This allows to estimate better the anisotropic electron heating due to the collisions of macroparticles in a PIC code. Temperature anisotropies can stabilize the tearing mode instability and trigger additional current sheet instabilities. We found a good agreement between the analytically derived threshold for the stabilization of the anisotropic tearing mode and other instabilities, either spontaneously developing or initially triggered ones. Numerical effects causing anisotropic heating at electron time scales become especially important for higher mass ratios (above m i /m e =180). If numerical effects are carefully taken into account, one can recover the theoretical estimated linear growth rates of the tearing instability of thin isotropic collisionless current sheets, also for higher mass ratios

  5. Prevention of redox shuttle using electropolymerized polypyrrole film in a lithium-oxygen battery

    Science.gov (United States)

    Togasaki, Norihiro; Shibamura, Ryuji; Naruse, Takuya; Momma, Toshiyuki; Osaka, Tetsuya

    2018-04-01

    Among the recent advancements in lithium-oxygen (Li-O2) chemistries, redox mediators (RMs) have been revealed to play a significant role in decreasing overpotential on charging and in improving cycling performance. However, an intrinsic problem is redox shuttle of RMs, which leads to degraded RM utilization and induces the accumulation of discharge products on the cathode surface; this remains a significant issue in the current battery cell configuration (Li anode/separator/cathode). To address this detrimental problem, herein we propose a novel Li-O2 cell incorporating a freestanding electropolymerized polypyrrole (PPy) film for the restriction of the redox-shuttle phenomenon of lithium iodide (Li anode/separator/PPy film/cathode). In this study, a PPy film, which is prepared through oxidative electropolymerization using an ionic liquid of 1-methyl-1-butylpyrrolidinium mixed with pyrrole and lithium bis(trifluoromethanesulfonyl)imide, is introduced between the cathode and the separator. From the charge-discharge voltage profile, it is confirmed that the PPy film suppresses the diffusion of the oxidized I3- to the Li anode, while allowing Li ion transport. Secondary scanning electron microscope measurements confirm that the chemical reactions between I3- and Li2O2 are facilitated by the presence of the PPy film because I3- remains near the cathode surface during the charging process. As a result, the cycling performance in the Li-O2 cells with PPy film exhibits a cycling life four times as long as that of the Li-O2 cells without PPy film.

  6. Prevention of redox shuttle using electropolymerized polypyrrole film in a lithium–oxygen battery

    Directory of Open Access Journals (Sweden)

    Norihiro Togasaki

    2018-04-01

    Full Text Available Among the recent advancements in lithium–oxygen (Li–O2 chemistries, redox mediators (RMs have been revealed to play a significant role in decreasing overpotential on charging and in improving cycling performance. However, an intrinsic problem is redox shuttle of RMs, which leads to degraded RM utilization and induces the accumulation of discharge products on the cathode surface; this remains a significant issue in the current battery cell configuration (Li anode/separator/cathode. To address this detrimental problem, herein we propose a novel Li–O2 cell incorporating a freestanding electropolymerized polypyrrole (PPy film for the restriction of the redox-shuttle phenomenon of lithium iodide (Li anode/separator/PPy film/cathode. In this study, a PPy film, which is prepared through oxidative electropolymerization using an ionic liquid of 1-methyl-1-butylpyrrolidinium mixed with pyrrole and lithium bis(trifluoromethanesulfonylimide, is introduced between the cathode and the separator. From the charge–discharge voltage profile, it is confirmed that the PPy film suppresses the diffusion of the oxidized I3− to the Li anode, while allowing Li ion transport. Secondary scanning electron microscope measurements confirm that the chemical reactions between I3− and Li2O2 are facilitated by the presence of the PPy film because I3− remains near the cathode surface during the charging process. As a result, the cycling performance in the Li–O2 cells with PPy film exhibits a cycling life four times as long as that of the Li–O2 cells without PPy film.

  7. Plasma distribution of cathodic ARC deposition system

    International Nuclear Information System (INIS)

    Anders, S.; Raoux, S.; Krishnan, K.; MacGill, R.A.; Brown, I.G.

    1996-01-01

    The plasma distribution using a cathodic arc plasma source with and without magnetic macroparticle filter has been determined by depositing on a transparent plastic substrate and measuring the film absorption. It was found that the width of the distribution depends on the arc current, and it also depends on the cathode material which leads to a spatial separation of the elements when an alloy cathode is used. By applying a magnetic multicusp field near the exit of the magnetic filter, it was possible to modify the plasma distribution and obtain a flat plasma profile with a constant and homogeneous elemental distribution

  8. Cost of dressings for prevention of sacral pressure ulcers.

    Science.gov (United States)

    Inoue, Kelly Cristina; Matsuda, Laura Misue

    2016-01-01

    to identify costs of dressings to prevent sacral pressure ulcers in an adult intensive care unit in Paraná, Brazil. secondary analysis study with 25 patients admitted between October 2013 and March 2014, using transparent polyurethane film (n=15) or hydrocolloid dressing (n=10) on the sacral region. The cost of each intervention was based on the unit amount used in each type of dressing, and its purchase price (transparent film = R$15.80, hydrocolloid dressing = R$68.00). the mean cost/patient was R$23.17 for use of transparent film and R$190.40 for use of hydrocolloid dressing. The main reason for changing the dressing was detachment. the transparent film was the most economically advantageous alternative to prevent sacral pressure ulcers in critical care patients. However, additional studies should be carried out including assessment of the effectiveness of both dressings.

  9. Film selection in medical radiology

    International Nuclear Information System (INIS)

    Bor, Dogan

    1988-01-01

    Importing of medical imaging films is the responsibility of Turkish Red Croscend, but some institutions have currently started to import their own films. Because of the different resources in individual departments throughout Turkey, a general purpose medical film is imported by Turkish Red Croscend. This kind of film has the advantage to tolerate some technical faults related to the exposure, dark room and processing conditions and still reveals the necessary image quality. In addition to general purpose film, many companies produce special used films which improve some film characteristics in order to have a better image. The initial results of a project already started by Turkish Atomic Energy Authority showed that some other technical reasons prevent obtaining films with optimum quality. The film is the last step of diagnostic procedure and not only gives necessary clinical information, but also visualizes all the problems related to the lock of the calibration of X-ray system and dark room processing conditions. Because of these reasons, many people hold the film responsible for every technical problem. During the selection of the best film among the different companies, institutions have to fulfill some prerequisites at the beginning and than evaluate the quantitative results obtained from measurements according to their clinical purposes. It is the subject of this paper to show how to use film parameter as a comparison to different types of films measured with light sensitometry method. The dark room and processing problems which adversely effect the results are also given. The requirements for the best film selection both for general and special purposes are also evaluated. The extent of this paper is limited only to films using radiology and does not cover the types used in other imaging areas

  10. Tribological properties of coating films for core structure of HTGR

    International Nuclear Information System (INIS)

    Ozawa, Kenji; Kikuchi, Akiyoshi; Kawakami, Haruo

    1985-01-01

    The tribological properties of the various coating films used for the in-core structures of a high temperature gas-cooled experimental reactor were examined. When the explosion sprayed films of chrome carbide were applied for preventing galling in core restraining mechanism, the hardness of substrate materials exerted influence on the strength of the coating films. Also the effect of the surface roughness of the plasma sprayed films of zirconia on the sliding characteristics of the zirconia films and PGX graphite used for support plates was clarified. The coefficient of friction and the dependence of the amount of wear on surface pressure of these materials were examined. These results have been effectively utilized for the design of the test bodies of HENDEL-T2. In helium atmosphere, oxide film is hard to be formed on metal surface, especially on the contact surface of metals exposed to high temperature, there is the possibility to cause adhesion due to mutual diffusion and galling in sliding. As the means to prevent those, ceramic coating has been attempted. Sliding test, high pressure joining test, thermal cycle test and corrosion test in helium were carried out to evaluate the properties. (Koko, I.)

  11. Contamination due to memory effects in filtered vacuum arc plasma deposition systems

    CERN Document Server

    Martins, D R; Verdonck, P; Brown, I G

    2002-01-01

    Thin film synthesis by filtered vacuum arc plasma deposition is a widely used technique with a number of important emerging technological applications. A characteristic feature of the method is that during the deposition process not only is the substrate coated by the plasma, but the plasma gun itself and the magnetic field coil and/or vacuum vessel section constituting the macroparticle filter are also coated to some extent. If then the plasma gun cathode is changed to a new element, there can be a contamination of the subsequent film deposition by sputtering from various parts of the system of the previous coating species. We have experimentally explored this effect and compared our results with theoretical estimates of sputtering from the SRIM (Stopping and Range of Ions in Matter) code. We find film contamination of order 10-4 - 10-3, and the memory of the prior history of the deposition hardware can be relatively long-lasting.

  12. Contamination due to memory effects in filtered vacuum arc plasma deposition systems

    International Nuclear Information System (INIS)

    Martins, D.R.; Salvadori, M.C.; Verdonck, P.; Brown, I.G.

    2002-01-01

    Thin film synthesis by filtered vacuum arc plasma deposition is a widely used technique with a number of important emerging technological applications. A characteristic feature of the method is that during the deposition process not only is the substrate coated by the plasma, but the plasma gun itself and the magnetic field coil and/or vacuum vessel section constituting the macroparticle filter are also coated to some extent. If then the plasma gun cathode is changed to a new element, there can be a contamination of the subsequent film deposition by sputtering from various parts of the system of the previous coating species. We have experimentally explored this effect and compared our results with theoretical estimates of sputtering from the stopping and range of ions in matter code. We find film contamination of the order of 10 -4 -10 -3 , and the memory of the prior history of the deposition hardware can be relatively long lasting

  13. Contamination due to memory effects in filtered vacuum arc plasma deposition systems

    Energy Technology Data Exchange (ETDEWEB)

    Martins, D.R.; Salvadori, M.C.; Verdonck, P.; Brown, I.G.

    2002-08-13

    Thin film synthesis by filtered vacuum arc plasma deposition is a widely used technique with a number of important emerging technological applications. A characteristic feature of the method is that during the deposition process not only is the substrate coated by the plasma, but the plasma gun itself and the magnetic field coil and/or vacuum vessel section constituting the macroparticle filter are also coated to some extent. If then the plasma gun cathode is changed to a new element, there can be a contamination of the subsequent film deposition by sputtering from various parts of the system of the previous coating species. We have experimentally explored this effect and compared our results with theoretical estimates of sputtering from the SRIM (Stopping and Range of Ions in Matter) code. We find film contamination of order 10-4 - 10-3, and the memory of the prior history of the deposition hardware can be relatively long-lasting.

  14. Fragrant starch-based films with limonene

    Directory of Open Access Journals (Sweden)

    Adrian K. Antosik

    2017-02-01

    Full Text Available Novel fragrant starch-based films with limonene were successfully prepared. Biodegradable materials of natural origin were used and the process was relatively simple and inexpensive. The effect of limonene on physicochemical properties of starch-based films (moisture absorption, solubility in water, wettability, mechanical properties were compared to glycerol plasticized system. Taking into consideration that the obtained materials could also exhibit bactericidal and fungicidal properties, the studies with Escherichia coli, Candida albicans and Aspergillus niger were performed. Such a material could potentially find application in food packaging (e.g. masking unpleasant odors, hydrophilic starch film would prevent food drying, or in agriculture (e.g. for seed encapsulated tapes.

  15. Lanthanoid titanate film structure deposited at different temperatures in vacuum

    International Nuclear Information System (INIS)

    Kushkov, V.D.; Zaslavskij, A.M.; Mel'nikov, A.V.; Zverlin, A.V.; Slivinskaya, A.Eh.

    1991-01-01

    Influence of deposition temperature on the structure of lanthanoid titanate films, prepared by the method of high-rate vacuum condensation. It is shown that formation of crystal structure, close to equilibrium samples, proceeds at 1100-1300 deg C deposition temperatures. Increase of temperature in this range promotes formation of films with higher degree of structural perfection. Amorphous films of lanthanoid titanates form at 200-1000 deg C. Deposition temperature shouldn't exceed 1400 deg C to prevent the formation of perovskite like phases in films

  16. Preventing bacterial growth on implanted device with an interfacial metallic film and penetrating X-rays.

    Science.gov (United States)

    An, Jincui; Sun, An; Qiao, Yong; Zhang, Peipei; Su, Ming

    2015-02-01

    Device-related infections have been a big problem for a long time. This paper describes a new method to inhibit bacterial growth on implanted device with tissue-penetrating X-ray radiation, where a thin metallic film deposited on the device is used as a radio-sensitizing film for bacterial inhibition. At a given dose of X-ray, the bacterial viability decreases as the thickness of metal film (bismuth) increases. The bacterial viability decreases with X-ray dose increases. At X-ray dose of 2.5 Gy, 98% of bacteria on 10 nm thick bismuth film are killed; while it is only 25% of bacteria are killed on the bare petri dish. The same dose of X-ray kills 8% fibroblast cells that are within a short distance from bismuth film (4 mm). These results suggest that penetrating X-rays can kill bacteria on bismuth thin film deposited on surface of implant device efficiently.

  17. Complete protection of a passive film on iron from breakdown in a borate buffer containing 0.1M of Cl- by coverage with an ultrathin film of two-dimensional polymer

    International Nuclear Information System (INIS)

    Aramaki, Kunitsugu; Shimura, Tadashi

    2006-01-01

    An ultrathin film of two-dimensional polymer was prepared on a passivated iron electrode by modification of a 16-hydroxyhexadecanoate ion HO(CH 2 ) 15 CO 2 - self-assembled monolayer with 1,2-bis(triethoxysilyl)ethane (C 2 H 5 O) 3 Si(CH 2 ) 2 Si(OC 2 H 5 ) 3 and octadecyltriethoxysilane C 18 H 37 Si(OC 2 H 5 ) 3 . This film prevented passive film breakdown examined by potentiodynamic anodic polarization of the coated electrode in the borate buffer solution containing 0.1M of Cl - . Neither current spikes nor the pitting potential was observed in the passive and transpassive regions of polarization curve. The anodic current density was decreased in these regions markedly, implying hindrance to permeation of Cl - and water through the film. Structure of the film was clarified by X-ray photoelectron and FTIR reflection spectroscopies and contact angle measurement with a drop of water. Electron-probe microanalysis of the passivated surface coated with the film after anodic polarization scanning up to the transpassive region revealed that the polymer film prevents pit initiation by an attack on the passive film with Cl -

  18. Screening of a moving charge in a nonequilibrium plasma

    International Nuclear Information System (INIS)

    Filippov, A. V.; Zagorodny, A. G.; Momot, A. I.; Pal', A. F.; Starostin, A. N.

    2009-01-01

    Based on the model of point sinks, we consider the problem on the screening of the charge of a moving macroparticle in a nonequilibrium plasma. The characteristic formation times of the polarization cloud around such a macroparticle have been determined by the method of a three-dimensional integral Fourier transformation in spatial variables and a Laplace transformation in time. The screening effect is shown to be enhanced with increasing macroparticle velocity. We consider the applicability conditions for the model of point sinks and establish that the domain of applicability of the results obtained expands with decreasing gas ionization rate and macroparticle size. We consider the problem of charge screening at low velocities and establish that the stationary potential of the moving charge has a dipole component that becomes dominant at large distances. We show that the direction of the force exerted on the dust particle by the induced charges generally depends on the relationship between the transport and loss coefficients of the plasma particles in a plasma. When the Langevin ion recombination coefficient β iL = 4πeμ i exceeds the electron-ion recombination coefficient β ei , this force will accelerate the dust particles in the presence of sinks. In the absence of sinks or when β ei > β iL , this force will be opposite in direction to the dust particle velocity. We also consider the problem on the energy and force of interaction between a moving charged macroparticle and the induced charges

  19. Multi-directional self-ion irradiation of thin gold films: A new strategy for achieving full texture control

    International Nuclear Information System (INIS)

    Seita, Matteo; Muff, Daniel; Spolenak, Ralph

    2011-01-01

    Highlights: → Multi-directional self-ion bombardment of Au films. → Extensive selective grain growth leads to single crystal-like films. → Texture rotation is prevented by the multi-directional irradiation process. → Texture rotation rate depends on the film initial defect density. - Abstract: Post-deposition ion bombardment can be employed to convert polycrystalline films into single crystals through a process of selective grain growth. Here we report a new technique that enables selective grain growth in self-ion bombarded gold films - a system in which the formation of large single crystal domains was prevented by the occurrence of ion-induced texture rotation. Our findings suggest that the extent of the texture rotation is a function of the ion fluence and the film initial microstructure.

  20. Magnetic anisotropies in SmCo thin films

    International Nuclear Information System (INIS)

    Chen, K.

    1993-01-01

    A systemic study of the deposition processes and magnetic properties for the Sm-Co film system has been carried out. Films of Sm-Co system with various magnetic anisotropies have been synthesized through sputter deposition in both crystalline and amorphous phases. The origins of various anisotropies have been studied. Thermalized sputter deposition process control was used to synthesize Fe enriched Sm-Co films with rhombohedral Th 2 Zn 17 type structure. The film exhibited unusually strong textures with the crystallographic c axes of the crystallites aligned in the film plane. A large anisotropy was resulted with easy axis in the film plane. A well defined and large in-the-film-plane anisotropy of exceptionally high value of 3.3 x 10 6 erg/cm 3 has been obtained in the amorphous SmCo films by applying a magnetic field in the film plane during deposition. It was found that the in-the-film-plane anisotropy depended essentially on the applied field and Sm concentration. For films not synthesized through thermallized sputtering, the easy axis of the film could reoriented. A perpendicular anisotropy was also presented in the film synthesized through thermallized sputtering deposition. A large in-plane anisotropy was obtained in films deposited above ambient temperatures. It was concluded that the surface induced short range ordering was the origin of the in-the-film-phase anisotropy observed in amorphous film deposited in the presence of a magnetic field. The formation mechanism was different from that of the short range ordering induced by field annealing. The perpendicular anisotropy was shown to be growth induced. Large in-plane anisotropy in amorphous films was resulted form partial crystallization in the film. Both the formation of growth induced structure and partial crystallization in the film prevented the formation of the pair ordering and decreased in-the-film-plane anisotropy

  1. On the distribution of metals deposited onto the limiter and the liner of tokamaks after long-term operation

    International Nuclear Information System (INIS)

    Wolff, H.; Grote, H.; Herrmann, A.; Hildebrandt, D.; Laux, M.; Pech, P.; Reiner, H.D.; Ziegenhagen, G.; Chicherov, V.M.; Grashin, S.A.; Kopecky, V.; Jakubka, K.

    1987-01-01

    Three inspections of the inner parts of the discharge vessels of T-10 and TM1-MH after long-term operation revealed that metals originating from the various construction materials are distributed inhomogeneously over the first wall of these tokamaks. This partially allows one to identify local metal sources and to indicate anisotropies of the transport. Different materials from inner structures, even if they were only used in earlier experiments, are observed at all limiter surfaces and as components of the debris consisting of macroparticles of different size, shape and elemental composition. There are metallic deposits of the form of structured films or of solidified droplets. (orig.)

  2. Simple scaling for faster tracking simulation in accelerator multiparticle dynamics

    International Nuclear Information System (INIS)

    MacLachlan, J.A.

    2001-01-01

    Macroparticle tracking is a direct and attractive approach to following the evolution of a phase space distribution. When the particles interact through short range wake fields or when inter-particle force is included, calculations of this kind require a large number of macroparticles. It is possible to reduce both the number of macroparticles required and the number of tracking steps per unit simulated time by employing a simple scaling which can be inferred directly from the single-particle equations of motion. In many cases of practical importance the speed of calculation improves with the fourth power of the scaling constant. Scaling has been implemented in an existing longitudinal tracking code; early experience supports the concept and promises major time savings. Limitations on the scaling are discussed

  3. Optimization of Chitosan Drying Temperature on The Quality and Quantity of Edible Film

    Science.gov (United States)

    Sri Wahyuni, Endah; Arifan, Fahmi

    2018-02-01

    Edible film is a thin layer (biodegradable) used to coat food and can be eaten. In addition edible film serves as a vapor transfer inhibitor, inhibits gas exchange, prevents aroma loss, prevents fat transfer, improves physical characteristics, and as an additive carrier. Edible film made of cassava starch, glycerol and chitosan. Cassava starch is used as raw material because it contains 80% starch. Glycerol serves as a plasticizer and chitosan serves to form films and membranes well. The purpose of this research is to know the characteristic test of edible film by using ANOVA analysis, where the variable of drying of the oven is temperature (70°C, 80°C, 90°C) and time for 3 hours and variables change chitosan (2 gr, 3 gr, 4 gr). The result of this research was obtained the most optimum for water content and water resistance in temperature variable 80 °C and chitosan 4 gr. The best edible films and bubbles on temperature variables are 80 °C and chitosan 4 gr.

  4. Personal suicidality in reception and identification with suicidal film characters.

    Science.gov (United States)

    Till, Benedikt; Vitouch, Peter; Herberth, Arno; Sonneck, Gernot; Niederkrotenthaler, Thomas

    2013-04-01

    The authors investigated the impact of suicidality on identity work during film exposure. Adults with low suicidality (n = 150) watched either It's My Party or The Fire Within, censored versions of these films not depicting the suicide, or the control film that concluded with a non-suicidal death. Baseline suicidality was measured with questionnaires before the movie. Identity work and identification with the protagonist were measured after the movie. Suicidality was directly associated with identity work during film dramas depicting suicide methods. The reception of suicide-related media content seems to partially depend on personal suicidality. Potential implications for suicide prevention are discussed.

  5. Multilayer TiC/TiN diffusion barrier films for copper

    International Nuclear Information System (INIS)

    Yoganand, S.N.; Raghuveer, M.S.; Jagannadham, K.; Wu, L.; Karoui, A.; Rozgonyi, G.

    2002-01-01

    TiC/TiN thin films deposited by reactive magnetron sputtering on Si (100) substrates were investigated by transmission electron microscopy for microstructure and by deep level transient spectroscopy (DLTS) for diffusion barrier against copper. TiN thin films deposited on Si substrates at a substrate temperature of 600 deg. C were textured, and TiC thin films deposited at the same temperature were polycrystalline. TiC/TiN multilayer films also showed the same characteristics with the formation of an additional interaction layer. The diffusion barrier characteristics of the TiC/TiN/Si were determined by DLTS and the results showed that the films completely prevented diffusion of copper into Si

  6. Antibacterial activity of ciprofloxacin-loaded zein microsphere films

    International Nuclear Information System (INIS)

    Fu Jianxi; Wang Huajie; Zhou Yanqing; Wang Jinye

    2009-01-01

    Our aim was to produce an antibiotic-emitting coating composed of zein microspheres for the prevention of bacterial infection on implanted devices. Ciprofloxacin-loaded zein microspheres were prepared using a phase separation procedure, with particle sizes between 0.5 and 2 μm. Drug encapsulation and drug loading varied with the amount of both zein and ciprofloxacin, and the highest encapsulation efficiency was 8.27% (2 mg/ml ciprofloxacin and 20 mg/ml zein; n = 3). A ciprofloxacin-loaded zein microsphere film (CF-MS film) was generated via solvent evaporation. Continuous drug release from a trypsin-degraded microsphere film was observed for up to 28 days. The liberation of ciprofloxacin from the trypsin-degraded film and the biodegradation of the microsphere film were highly correlated. Proliferation assay of the growth of human umbilical vein endothelial cells (HUVECs) by the MTT method showed that the microsphere film had no toxicity when compared with cells grown on Corning culture plates alone and plates with a zein film alone. Quantification of bacteria adhesion showed that adhesion on the microsphere film is significantly suppressed. In addition, according to the results of bacterial growth tests, ciprofloxacin-loaded microsphere films maintained antibacterial activity for more than 6 days. In contrast, a control medium containing a zein film allowed constant bacterial growth. These results indicate that CF-MS films might be useful as antibacterial films on implanted devices.

  7. Antibacterial activity of ciprofloxacin-loaded zein microsphere films

    Energy Technology Data Exchange (ETDEWEB)

    Fu Jianxi [Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032 (China); Henan Normal University, 46 East Construction Road, Xinxiang, Henan 453007 (China); Wang Huajie [College of Life Science and Biotechnology, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030 (China); Zhou Yanqing [Henan Normal University, 46 East Construction Road, Xinxiang, Henan 453007 (China); Wang Jinye, E-mail: jywang@mail.sioc.ac.cn [Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032 (China); College of Life Science and Biotechnology, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030 (China)

    2009-05-05

    Our aim was to produce an antibiotic-emitting coating composed of zein microspheres for the prevention of bacterial infection on implanted devices. Ciprofloxacin-loaded zein microspheres were prepared using a phase separation procedure, with particle sizes between 0.5 and 2 {mu}m. Drug encapsulation and drug loading varied with the amount of both zein and ciprofloxacin, and the highest encapsulation efficiency was 8.27% (2 mg/ml ciprofloxacin and 20 mg/ml zein; n = 3). A ciprofloxacin-loaded zein microsphere film (CF-MS film) was generated via solvent evaporation. Continuous drug release from a trypsin-degraded microsphere film was observed for up to 28 days. The liberation of ciprofloxacin from the trypsin-degraded film and the biodegradation of the microsphere film were highly correlated. Proliferation assay of the growth of human umbilical vein endothelial cells (HUVECs) by the MTT method showed that the microsphere film had no toxicity when compared with cells grown on Corning culture plates alone and plates with a zein film alone. Quantification of bacteria adhesion showed that adhesion on the microsphere film is significantly suppressed. In addition, according to the results of bacterial growth tests, ciprofloxacin-loaded microsphere films maintained antibacterial activity for more than 6 days. In contrast, a control medium containing a zein film allowed constant bacterial growth. These results indicate that CF-MS films might be useful as antibacterial films on implanted devices.

  8. Preparation and application of agar/alginate/collagen ternary blend functional food packaging films.

    Science.gov (United States)

    Wang, Long-Feng; Rhim, Jong-Whan

    2015-09-01

    Ternary blend agar/alginate/collagen (A/A/C) hydrogel films with silver nanoparticles (AgNPs) and grapefruit seed extract (GSE) were prepared. Their performance properties, transparency, tensile strength (TS), water vapor permeability (WVP), water contact angle (CA), water swelling ratio (SR), water solubility (WS), and antimicrobial activity were determined. The A/A/C film was highly transparent, and both AgNPs and GSE incorporated blend films (A/A/C(AgNPs) and A/A/C(GSE)) exhibited UV-screening effect, especially, the A/A/C(GSE) film had high UV-screening effect without sacrificing the transmittance. In addition, the A/A/C blend films formed efficient hydrogel film with the water holding capacity of 23.6 times of their weight. Both A/A/C(AgNPs) and A/A/C(GSE) composite films exhibited strong antimicrobial activity against both Gram-positive (Listeria monocytogenes) and Gram-negative (Escherichia coli) food-borne pathogenic bacteria. The test results of fresh potatoes packaging revealed that all the A/A/C ternary blend films prevented forming of condensed water on the packaged film surface, both A/A/C(AgNPs) and A/A/C(GSE) composite films prevented greening of potatoes during storage. The results indicate that the ternary blend hydrogel films incorporated with AgNPs or GSE can be used not only as antifogging packaging films for highly respiring fresh agriculture produce, but also as an active food packaging system utilizing their strong antimicrobial activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Friction behaviour of anodic oxide film on aluminum impregnated with molybdenum sulfide compounds

    Energy Technology Data Exchange (ETDEWEB)

    Maejima, M.; Saruwatari, K. [Fujikura Ltd., Tokyo (Japan); Takaya, M. [Faculty of Engineering, Chiba Institute of Technology 17-1, Tsudanuma 2-Chome, 275-0016, Narasino-shi Chiba (Japan)

    2000-10-23

    In order to improve the lubricity and wear resistance of aluminum anodic oxide films, it is necessary to ensure the film layers are dense to prevent cracking, and to harden the films as well as reduce the shear stress of the film surfaces. From this view point, lubricious, hard anodic oxide films have been studied in the past, but fully satisfactory results have yet to be realized. In this paper, we report on our study of the re-anodizing of anodic oxide film in an aqueous solution of (NH)MoS. Molybdenum sulfide and compounds filled the 20-nm diameter pores of the film, creating internal stress which compressed the film, suppressing the occurrence of cracks and reducing the friction coefficient. (orig.)

  10. Preparation and characterization of sol-gel derived TiO2 films

    International Nuclear Information System (INIS)

    Hong, Y.J.; Brungs, M.P.; Chaplin, R.P.; Sizgek, E.

    2001-01-01

    Crack-free transparent titania films have been prepared through a new sol-gel process combined with hydrogen peroxide treatment. Hydrogen peroxide and HCl were used to dissolve amorphous titania powder which is obtained by drying common sol-gel titania sol. The peroxo-titania sol produced a thicker film than the common sol-gel titania sol due to a higher degree of condensation. Film thickness could be further increased by controlled drying conditions of the amorphous titania powder or 'aging' the sol. Polyethylene glycol (PEG) and chemical additives were effective in controlling condensation rate by preventing rapid condensation during curing of the film. When these two components were incorporated, it was possible to create a 0.5μm transparent film and PEG could also control the porosity of the film. The cured film was analysed by XRD and Raman spectroscopy. In order to measure the reflective index and thickness of the titania film, an ellipsometer was used. Copyright (2001) The Australian Ceramic Society

  11. Diffusion and adhesion properties of Cu films on polyimide substrates

    International Nuclear Information System (INIS)

    Liang, T.X.; Liu, Y.Q.; Fu, Z.Q.; Luo, T.Y.; Zhang, K.Y.

    2005-01-01

    Copper thin films were prepared on polyimide (PI) substrates by physical vapor deposition (PVD) and chemical vapor deposition (CVD). Titanium nitride (TiN) diffusion barrier layers were deposited between the copper films and the PI substrates by PVD. Auger electron spectroscopy compositional depth profile showed that TiN barrier layer was very effective in preventing copper diffusion into PI substrate even after the Cu/TiN/PI samples were annealed at 300 deg. C for 5 h. For the as-deposited CVD-Cu/PI, CVD-Cu/TiN/PI, and as-deposited PVD-Cu/PI samples, the residual stress in Cu films was very small. Relatively larger residual stress existed in Cu films for PVD-Cu/TiN/PI samples. For PVD-Cu/TiN/PI samples, annealing can increase the peeling strength to the level observed without a diffusion barrier. The adhesion improvement of Cu films by annealing treatment can be attributed to lowering of the residual tensile stress in Cu films

  12. Vaginal contraceptive film gains wider acceptance.

    Science.gov (United States)

    1992-09-01

    In US health departments and family planning clinics, women are beginning to accept vaginal contraceptive film more widely. Further, direct sales of this method, which is also distributed over the counter, has increased. In fact, in 1991, vaginal contraceptive film was the top selling contraceptive in pharmacies. This 2.5 sq. inch water-soluble film is impregnated with nonoxynol-9. The woman uses her finger to insert the folded square as close as possible to the cervix 5-60 minutes before intercourse. If the time between acts of intercourse is greater than 1 hour, she must insert another square. After it dissolves, it is a firm gel removed by vaginal and cervical fluids. The company realizes that its relatively high cost (about $3.59 for 3 films) prevents some family planning providers from offering the film. It has tried to cut costs by not using extra packaging material and by manufacturing it in the US instead of ain England. A manager of the family planning clinic at R.E. Thomason County Hospital in El Paso, Texas, notes that user compliance is higher with the vaginal contraceptive film than foam. In fact, patients at the Planned Parenthood League of Middlesex County, New Jersey, favor the film because it is less messy than foam. Teenagers in El Paso prefer the film because of the privacy issue and gives them more control to protect themselves from pregnancy. A worker at the New Jersey clinic recommends the film as a backup method for women beginning to use oral contraceptives. She also suggests to patients requesting condoms to also use the film. The company makes the same recommendation. Yet, family planning workers note that some women cannot convince partners to use the condom. 90% of patients at the El Paso clinic are Hispanic, and they tend to not accept condom use. Some providers suggest using 2 applications of the film to defend against sexually transmitted diseases, but there is no evidence that double application actually does so.

  13. Deposition of indium tin oxide films on acrylic substrates by radiofrequency magnetron sputtering

    International Nuclear Information System (INIS)

    Chiou, B.S.; Hsieh, S.T.; Wu, W.F.

    1994-01-01

    Indium tin oxide (ITO) films were deposited onto acrylic substrates by rf magnetron sputtering. Low substrate temperature (< 80 C) and low rf power (< 28 W) were maintained during sputtering to prevent acrylic substrate deformation. The influence of sputtering parameters, such as rf power, target-to-substrate distance, and chamber pressure, on the film deposition rate, the electrical properties, as well as the optical properties of the deposited films was investigated. Both the refractive index and the extinction coefficient were derived. The high reflection at wavelengths greater than 3 μm made these sputtered ITO films applicable to infrared mirrors

  14. Heat treatable indium tin oxide films deposited with high power pulse magnetron sputtering

    International Nuclear Information System (INIS)

    Horstmann, F.; Sittinger, V.; Szyszka, B.

    2009-01-01

    In this study, indium tin oxide (ITO) films were prepared by high power pulse magnetron sputtering [D. J. Christie, F. Tomasel, W. D. Sproul, D. C. Carter, J. Vac. Sci. Technol. A, 22 (2004) 1415. ] without substrate heating. The ITO films were deposited from a ceramic target at a deposition rate of approx. 5.5 nm*m/min kW. Afterwards, the ITO films were covered with a siliconoxynitride film sputtered from a silicon alloy target in order to prevent oxidation of the ITO film during annealing at 650 deg. C for 10 min in air. The optical and electrical properties as well as the texture and morphology of these films were investigated before and after annealing. Mechanical durability of the annealed films was evaluated at different test conditions. The results were compared with state-of-the art ITO films which were obtained at optimized direct current magnetron sputtering conditions

  15. Chitosan films and blends for packaging material

    NARCIS (Netherlands)

    Broek, van den L.A.M.; Knoop, J.R.I.; Kappen, F.H.J.; Boeriu, C.G.

    2015-01-01

    An increased interest for hygiene in everyday life as well as in food, feed and medical issues lead to a strong interest in films and blends to prevent the growth and accumulation of harmful bacteria. A growing trend is to use synthetic and natural antimicrobial polymers, to provide non-migratory

  16. Representation of Dangerous Sexuality in Interwar Non-Fiction Sex Hygiene Films: A Franco-German Comparison.

    Science.gov (United States)

    Danet, Joël

    2015-01-01

    In the interwar period VD prevention films accompanied the introduction of new "permanent" treatments for syphilis. While they still warned the audience about the dangers of infection, these films were primarily designed to inform about these new methods for curing syphilis. These methods could only be effective if the infected patient immediately consulted a certified doctor (as opposed to a charlatan) upon experiencing the first symptoms. The objectives of the commissioners of health education films tended to go beyond simply conveying a propaganda message. They adhere to and act on the educational potential that the film medium offers to an adult audience. In addressing subjects like sexual health, the films speak to the intimate lives of the audience members, faced with characters whose sexual behaviour is meant to echo their own or that of their friends and relatives. In order to properly raise awareness, the film must escort them, help them overcome their disarray, and persuade them that they are morally able to adopt the necessary measures to avoid contagion. This paper consists in an in-depth comparative study of three anti-venereal films produced and shown between 1928 and 1931, a short but pivotal period in the development of continental European syphilis prevention films. The three films illustrate two forms of screenplay action. In the French films, the patient is identified with a tragic hero and the medical institution embodied by a providential man. Contrary to these French films, the German film tends to display a more matter-of-fact-approach, which is not meant to downplay the risks but rather to clearly identify and address the community exposed to danger and to present how the infection is taken care of once it is diagnosed. Here I consider these films together to show how different ways of conveying the same medical discourse were adopted to adjust to national cinematographic environments.

  17. Deep reduced PEDOT films support electrochemical applications: Biomimetic color front.

    Directory of Open Access Journals (Sweden)

    Toribio Fernandez OTERO

    2015-02-01

    Full Text Available Most of the literature accepts, despite many controversial results, that during oxidation/reduction films of conducting polymers move from electronic conductors to insulators. Thus, engineers and device’s designers are forced to use metallic supports to reoxidize the material for reversible device work. Electrochromic front experiments appear as main visual support of the claimed insulating nature of reduced conducting polymers. Here we present a different design of the biomimetic electrochromic front that corroborates the electronic and ionic conducting nature of deep reduced films. The direct contact PEDOT metal/electrolyte and film/electrolyte was prevented from electrolyte contact until 1cm far from the metal contact with protecting Parafilm®. The deep reduced PEDOT film supports the flow of high currents promoting reaction induced electrochromic color changes beginning 1 cm far from the metal-polymer electrical contact and advancing, through the reduced film, towards the metal contact. Reverse color changes during oxidation/reduction always are initiated at the film/electrolyte contact advancing, under the protecting film, towards the film/metal contact. Both reduced and oxidized states of the film demonstrate electronic and ionic conductivities high enough to be used for electronic applications or, as self-supported electrodes, for electrochemical devices. The electrochemically stimulated conformational relaxation (ESCR model explains those results.

  18. Production of selective membranes using plasma deposited nanochanneled thin films

    Directory of Open Access Journals (Sweden)

    Rodrigo Amorim Motta Carvalho

    2006-12-01

    Full Text Available The hydrolization of thin films obtained by tetraethoxysilane plasma polymerization results in the formation of a nanochanneled silicone like structure that could be useful for the production of selective membranes. Therefore, the aim of this work is to test the permeation properties of hydrolyzed thin films. The films were tested for: 1 permeation of polar organic compounds and/or water in gaseous phase and 2 permeation of salt in liquid phase. The efficiency of permeation was tested using a quartz crystal microbalance (QCM technique in gas phase and conductimetric analysis (CA in liquid phase. The substrates used were: silicon for characterization of the deposited films, piezoelectric quartz crystals for tests of selective membranes and cellophane paper for tests of permeation. QCM analysis showed that the nanochannels allow the adsorption and/or permeation of polar organic compounds, such as acetone and 2-propanol, and water. CA showed that the films allow salt permeation after an inhibition time needed for hydrolysis of the organic radicals within the film. Due to their characteristics, the films can be used for grains protection against microorganism proliferation during storage without preventing germination.

  19. Single crystalline metal films as substrates for graphene growth

    Energy Technology Data Exchange (ETDEWEB)

    Zeller, Patrick; Henss, Ann-Kathrin; Wintterlin, Joost [Department Chemie, Ludwig-Maximilians-Universitaet Muenchen (Germany); Weinl, Michael; Schreck, Matthias [Institut fuer Physik, Universitaet Augsburg (Germany); Speck, Florian; Ostler, Markus [Lehrstuhl fuer Technische Physik, Universitaet Erlangen-Nuernberg, Erlangen (Germany); Institut fuer Physik, Technische Universitaet Chemnitz (Germany); Seyller, Thomas [Institut fuer Physik, Technische Universitaet Chemnitz (Germany)

    2017-11-15

    Single crystalline metal films deposited on YSZ-buffered Si(111) wafers were investigated with respect to their suitability as substrates for epitaxial graphene. Graphene was grown by CVD of ethylene on Ru(0001), Ir(111), and Ni(111) films in UHV. For analysis a variety of surface science methods were used. By an initial annealing step the surface quality of the films was strongly improved. The temperature treatments of the metal films caused a pattern of slip lines, formed by thermal stress in the films, which, however, did not affect the graphene quality and even prevented wrinkle formation. Graphene was successfully grown on all three types of metal films in a quality comparable to graphene grown on bulk single crystals of the same metals. In the case of the Ni(111) films the originally obtained domain structure of rotational graphene phases could be transformed into a single domain by annealing. This healing process is based on the control of the equilibrium between graphene and dissolved carbon in the film. For the system graphene/Ni(111) the metal, after graphene growth, could be removed from underneath the epitaxial graphene layer by a pure gas phase reaction, using the reaction of CO with Ni to give gaseous Ni(CO){sub 4}. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Microstructure and properties of manganese dioxide films prepared by electrodeposition

    International Nuclear Information System (INIS)

    Jacob, G. Moses; Zhitomirsky, I.

    2008-01-01

    Nanostructured manganese dioxide films were obtained by galvanostatic, pulse and reverse pulse electrodeposition from 0.01 to 0.1 M KMnO 4 solutions. The deposition yield was investigated by in situ monitoring the deposit mass using a quartz crystal microbalance (QCM). Obtained films were studied by electron microscopy, X-ray diffraction analysis, energy dispersive spectroscopy, thermogravimetric and differential thermal analysis. The QCM and electron microscopy data were utilized for the investigation of deposition kinetics and film formation mechanism. It was shown that the deposition rate and film microstructure could be changed by variation of deposition conditions. The method allowed the fabrication of dense or porous films. The thickness of dense films was limited to ∼0.1 μm due to the insulating properties of manganese dioxide and film cracking, attributed to drying shrinkage. Porous and crack-free 1-2 μm films were obtained using galvanostatic or reverse pulse deposition from 0.02 M KMnO 4 solutions. It was shown that film porosity is beneficial for the charge transfer during deposition and crack prevention in thick films. Moreover, porous nanostructured films showed good capacitive behavior for applications in electrochemical supercapacitors. The porous nanostructured films prepared in the reverse pulse regime showed higher specific capacitance (SC) compared to the SC of the galvanostatic films. The highest SC of 279 F/g in a voltage window of 1 V was obtained in 0.1 M Na 2 SO 4 solutions at a scan rate of 2 mV/s

  1. Preparation and Characterization of Sb2Te3 Thin Films by Coevaporation

    Directory of Open Access Journals (Sweden)

    Bin Lv

    2010-01-01

    Full Text Available Deposition of Sb2Te3 thin films on soda-lime glass substrates by coevaporation of Sb and Te is described in this paper. Sb2Te3 thin films were characterized by x-ray diffraction (XRD, x-ray fluorescence (XRF, atomic force microscopy (AFM, x-ray photoelectron spectroscopy (XPS, electrical conductivity measurements, and Hall measurements. The abnormal electrical transport behavior occurred from in situ electrical conductivity measurements. The results indicate that as-grown Sb2Te3 thin films are amorphous and undergo an amorphous-crystalline transition after annealing, and the posttreatment can effectively promote the formation of Sb-Te bond and prevent oxidation of thin film surface.

  2. The films of Mitani Kōki: Intertextuality and comedy in contemporary Japanese cinema

    Directory of Open Access Journals (Sweden)

    Rie Yamasaki

    2011-01-01

    Full Text Available The purpose of this article is to investigate the importance of intertextual references in the films of one of Japan’s most successful contemporary comedy filmmakers, Mitani Kōki. Since Mitani consciously makes references to other films, intertextuality works as a key element to comprehend his works. Although the recognition of the references used in his films is not too significant to influence entertaining perspectives, the absence of these detailed intertextual components would prevent the films being recognised as ‘Mitani films’. By analysing all of his four films, this article will provide a useful example of the idea of intertextuality. In addition, this study will also focus on Japan in the 1990s, when Mitani debuted as a film director. This is an important point to be discussed, since his film-making approaches seem to be significantly related to the social background of the time.

  3. Anodic films grown on magnesium and magnesium alloys in fluoride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ono, S. [Dept. of Applied Chemistry, Kogakuin Univ., Tokyo (Japan); Masuko, N. [Dept. of Metallurgical Engineering, Chiba Inst. of Tech., Narashino, Chiba (Japan)

    2003-07-01

    Formation behavior of anodic oxide films on magnesium in fluoride electrolytes was investigated with attention to the effects of anodizing voltage and aluminum content. In the range of voltage between 2 V and 100 V, porous film was formed in alkaline fluoride solution associated with high current density at around 5 V and at breakdown voltage. The critical voltage of breakdown to allow maximum current flow was approximately 60 V and relatively independent on substrate purity. The films formed at breakdown voltage showed a lava-like porous structure similar to those obtained on aluminum and other valve metals. Barrier films or semi-barrier films, which were composed of hydrated outer layer and relatively dense inner layer, were formed at the other voltages. In the case of AZ91D, the critical voltage increased to 70 V and peculiar phenomenon at 5 V was not observed, so that only barrier films were formed at less than the breakdown voltage. These phenomena can be explained by the effects of aluminum incorporation into the film to prevent dissolution and to promote passivation of magnesium. The depth profiles of constituent elements showed that aluminum distributed in whole depth of the film. (orig.)

  4. Magnetic characterisation of longitudinal thin film media

    International Nuclear Information System (INIS)

    Dova, P.

    1998-09-01

    Magnetic characterisation techniques, as applied to longitudinal thin film media, have been investigated. These included the study of the differentials of the remanence curves, the delta-M plot and the examination of the critical volumes. Several thin film structures, which are currently used or are being considered for future media applications, have been examined using these techniques. Most of the films were Co-alloys with the exception of a set of Barium ferrite films. Both monolayer and multilayer structures were studied. It was found that the study of activation volumes provides a better insight into the reversal mechanisms of magnetic media, especially in the case of complex structures such as multilayer films and films with bicrystal microstructure. Furthermore, an evaluation study of different methods of determining critical volumes showed that the method using time dependence measurements and the micromagnetic approach is the most appropriate. The magnetic characteristics of the thin film media under investigation were correlated with their microstructure and, where possible, with their noise performance. Magnetic force microscopy was also used for acquiring quasi-domain images in the ac-demagnetised state. It was found that in all Co-alloy films the dominant intergranular coupling is magnetising in nature, the level of which is governed by the Cr content in the magnetic layer. In the case of laminated media it was found that when non-magnetic spacers are used, the nature of the interlayer coupling depends on the spacer thickness. In double layer structures with no spacer, the top layer replicates the crystallographic texture of the bottom layer, and the overall film properties are a combination of the two layers. In bicrystal films the coupling is determined by the Cr segregation in the grain boundaries. Furthermore, the presence of stacking faults in bicrystal films deteriorates their thermal stability, but can be prevented by improving the epitaxial

  5. New Biofunctional Loading of Natural Antimicrobial Agent in Biodegradable Polymeric Films for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Bakhtawar Ghafoor

    2016-01-01

    Full Text Available The study focuses on the development of novel Aloe vera based polymeric composite films and antimicrobial suture coatings. Polyvinyl alcohol (PVA, a synthetic biocompatible and biodegradable polymer, was combined with Aloe vera, a natural herb used for soothing burning effects and cosmetic purposes. The properties of these two materials were combined together to get additional benefits such as wound healing and prevention of surgical site infections. PVA and Aloe vera were mixed in a fixed quantity to produce polymer based films. The films were screened for antibacterial and antifungal activity against bacterial (E. coli, P. aeruginosa and fungal strains (Aspergillus flavus and Aspergillus tubingensis screened. Aloe vera based PVA films showed antimicrobial activity against all the strains; the lowest Aloe vera concentration (5% showed the highest activity against all the strains. In vitro degradation and release profile of these films was also evaluated. The coating for sutures was prepared, in vitro antibacterial tests of these coated sutures were carried out, and later on in vivo studies of these coated sutures were also performed. The results showed that sutures coated with Aloe vera/PVA coating solution have antibacterial effects and thus have the potential to be used in the prevention of surgical site infections and Aloe vera/PVA based films have the potential to be used for wound healing purposes.

  6. Growth and thermal oxidation of Ru and ZrO2 thin films as oxidation protective layers

    NARCIS (Netherlands)

    Coloma Ribera, R.

    2017-01-01

    This thesis focuses on the study of physical and chemical processes occurring during growth and thermal oxidation of Ru and ZrO2 thin films. Acting as oxidation resistant capping materials to prevent oxidation of layers underneath, these films have several applications, i.e., in microelectronics

  7. HIV transmission in the adult film industry--Los Angeles, California, 2004.

    Science.gov (United States)

    2005-09-23

    In April 2004, the Los Angeles County Department of Health Services (LACDHS) received reports of work-related exposure to human immunodeficiency virus (HIV) in the heterosexual segment of the adult film industry in California. This report summarizes an investigation by LACDHS into four work-related HIV-transmission cases among adult film industry workers. The investigation was initiated April 20, 2004, and joined by the California Department of Industrial Relations, Division of Occupational Safety and Health (Cal/OSHA) on April 21, 2004, and by CDC on May 18, 2004. This investigation identified important and remediable gaps in the prevention of HIV and other sexually transmitted diseases (STDs) in the adult film industry.

  8. Controlling wear failure of graphite-like carbon film in aqueous environment: Two feasible approaches

    International Nuclear Information System (INIS)

    Wang Yongxin; Wang Liping; Xue Qunji

    2011-01-01

    Friction and wear behaviors of graphite-like carbon (GLC) films in aqueous environment were investigated by a reciprocating sliding tribo-meter with ball-on-disc contact. Film structures and wear scars were studied by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and a non-contact 3D surface profiler. A comprehensive wear model of the GLC film in aqueous environment was established, and two feasible approaches to control critical factor to the corresponding wear failure were discussed. Results showed that wear loss of GLC films in aqueous environment was characterized by micro-plough and local delamination. Due to the significant material loss, local delamination of films was critical to wear failure of GLC film in aqueous environment if the film was not prepared properly. The initiation and propagation of micro-cracks within whole films closely related to the occurrence of the films delamination from the interface between interlayer and substrate. The increase of film density by adjusting the deposition condition would significantly reduce the film delamination from substrate, meanwhile, fabricating a proper interlayer between substrate and GLC films to prevent the penetration of water molecules into the interface between interlayer and substrate could effectively eliminate the delamination.

  9. Changes of tear film after trabeculectomy in glaucoma

    Directory of Open Access Journals (Sweden)

    Xue-Jun Li

    2015-07-01

    Full Text Available AIM: To learn the changes of the tear film before and after the trabeculectomy of glaucoma and explore the incidence of dry eye and the prevention and control measures.METHODS: The 36 patients(60 eyesof glaucoma were examined in detail before 3d of trabeculectomy and after the surgery at 3, 7, 14 and 30d. The examinations include lower eyelid central river of tears, break-up time(BUT, Schirmer Ⅰ test(SⅠtand staining scores of corneal fluorescein under slit lamp microscope.RESULTS:The tear meniscus height of central lower eyelid was increased and the tear film BUT was shortened at the same time, the scores of SⅠt was reduced and corneal fluorescein staining score was increased at postoperative 3 and 7d compared with that of preoperation. The tear meniscus height of central lower eyelid, tear film BUT and SIt and score of corneal fluorescein staining began to recover in most of the affected eyes after surgery 14d. At 30d after surgery, 22% of patients tear film failed to recover to the preoperative level; dry eye occured in 18% preoperative eyes with normal tear film.CONCLUSION:Trabeculectomy of glaucoma may affect the stability of the tear film and some patients showeing obvious dry eye and should be intervened and treatmented timely.

  10. Release behavior and stability of encapsulated D-limonene from emulsion-based edible films.

    Science.gov (United States)

    Marcuzzo, Eva; Debeaufort, Frédéric; Sensidoni, Alessandro; Tat, Lara; Beney, Laurent; Hambleton, Alicia; Peressini, Donatella; Voilley, Andrée

    2012-12-12

    Edible films may act as carriers of active molecules, such as flavors. This possibility confers to them the status of active packaging. Two different film-forming biopolymers, gluten and ι-carrageenans, have been compared. D-Limonene was added to the two film formulations, and its release kinetics from emulsion-based edible films was assessed with HS-SPME. Results obtained for edible films were compared with D-limonene released from the fatty matrix called Grindsted Barrier System 2000 (GBS). Comparing ι-carrageenans with gluten-emulsified film, the latter showed more interesting encapsulating properties: in fact, D-limonene was retained by gluten film during the process needed for film preparation, and it was released gradually during analysis time. D-Limonene did not show great affinity to ι-carrageenans film, maybe due to high aroma compound hydrophobicity. Carvone release from the three different matrices was also measured to verify the effect of oxygen barrier performances of edible films to prevent D-limonene oxidation. Further investigations were carried out by FT-IR and liquid permeability measurements. Gluten film seemed to better protect D-limonene from oxidation. Gluten-based edible films represent an interesting opportunity as active packaging: they could retain and release aroma compounds gradually, showing different mechanical and nutritional properties from those of lipid-based ingredients.

  11. Mechanical Robustness and Hermeticity Monitoring for MEMS Thin Film Encapsulation

    NARCIS (Netherlands)

    Santagata, F.

    2011-01-01

    Many Micro-Electro-Mechanical-Systems (MEMS) require encapsulation, to prevent delicate sensor structures being exposed to external perturbations such as dust, humidity, touching, and gas pressure. An upcoming and cost-effective way of encapsulation is zero-level packaging or thin-film

  12. Black Films and Film-Makers.

    Science.gov (United States)

    Patterson, Lindsay, Ed.

    The development of black films and the attitudes of the film industry toward black films and black actors are some of the topics examined in this anthology of essays. Section 1, "Nigger to Supernigger," contains such articles as "The Death of Rastus: Negroes in American Films" by Thomas R. Cripps and "Folk Values in a New Medium" by Alain Locke…

  13. Cracking in thin films of colloidal particles on elastomeric substrates

    Science.gov (United States)

    Smith, Michael; Sharp, James

    2012-02-01

    The drying of thin colloidal films of particles is a common industrial problem (e.g paint drying, ceramic coatings). An often undesirable side effect is the appearance of cracks. As the liquid in a suspension evaporates, particles are forced into contact both with each other and the substrate, forming a fully wetted film. Under carefully controlled conditions the observed cracks grow orthogonal to the drying front, spaced at regular intervals along it. In this work we investigated the role of the substrate in constraining the film. Atomic force microscopy, was used to image the particle arrangements on the top and bottom surfaces of films, dried on liquid and glass substrates. We present convincing evidence that the interface prevents particle rearrangements at the bottom of the film, leading to a mismatch strain between upper and lower surfaces of the film which appears to drive cracking. We show that when the modulus of the substrate becomes comparable to the stresses measured in the films, the crack spacing is significantly altered. We also show that cracks do not form on liquid substrates. These combined experiments highlight the importance of substrate constraint in the crack formation mechanism.[4pt] [1] M.I. Smith, J.S. Sharp, Langmuir 27, 8009 (2011)

  14. Modeling Microbunching from Shot Noise Using Vlasov Solvers

    International Nuclear Information System (INIS)

    Venturini, Marco; Venturini, Marco; Zholents, Alexander

    2008-01-01

    Unlike macroparticle simulations, which are sensitive to unphysical statistical fluctuations when the number of macroparticles is smaller than the bunch population, direct methods for solving the Vlasov equation are free from sampling noise and are ideally suited for studying microbunching instabilities evolving from shot noise. We review a 2D (longitudinal dynamics) Vlasov solver we have recently developed to study the microbunching instability in the beam delivery systems for x-ray FELs and present an application to FERMI(at)Elettra. We discuss, in particular, the impact of the spreader design on microbunching

  15. The experience of African American women living with HIV: creating a prevention film for teens.

    Science.gov (United States)

    Norris, Anne E; DeMarco, Rosanna

    2005-01-01

    The personal and social costs of HIV are well documented. What remains unknown is the effect of public disclosure of HIV status on the individual who is doing the disclosing. This study describes the experience of four African American women living with HIV who participated in the development of an intergenerational education intervention for African American adolescent girls. These women suggested that they be filmed discussing the "dark side" of HIV in an effort to create an intergenerational education intervention that would alter the risk-taking behavior that they observed in young women in their community. After a rough cut of the film was completed, these women viewed the film and participated in a focus group during which they discussed what it was like to reveal and revisit their own painful experiences associated with becoming infected and then living with HIV. Findings from content analysis of transcribed dialogue included the following positive themes: (a) self-acceptance by telling one's own story and hearing the stories of the other women, (b) a sense of liberation by disclosing publicly one's image and message and letting go of others' judgments, (c) feeling supported by meeting other women who share the same experience, (d) value of using the film to impact or save young people from the pain one has experienced. A negative theme emerged related to personal pain in reliving the individual's history with HIV.

  16. Pressure ulcer prevention and treatment: use of prophylactic dressings

    Directory of Open Access Journals (Sweden)

    Reid K

    2016-10-01

    Full Text Available Kathleen Reid,1 Elizabeth A Ayello,2 Afsaneh Alavi,3 1Department of Nursing Practice and Education, Bridgepoint Active Healthcare, Toronto, Canada; 2School of Nursing, Excelsior College, Albany, NY, USA; 3Department of Medicine, University of Toronto, Toronto, Canada Abstract: The management of pressure ulcers is challenging for health care providers across disciplines. Pressure ulcers have significant impact on emotional and physical wellbeing, quality of life, and health care costs. The use of wound dressings could be an important and cost-effective strategy in preventing pressure ulcers. The main types of dressings that are examined for this purpose in the literature are foam, hydrocolloid, and films. Some small studies have shown a preventative role for sacral dressings with low-shear backings, though they raise concerns about over-hydration of the skin. Further research demonstrates the application of barrier films over bony prominences to have a prophylactic effect; however, adhesive dressings can also contribute to shearing forces on the skin. There is a vast body of research that examines the use of dressings to prevent pressure ulcers; however, there is limited high-level evidence, such as randomized control trials. A 2013 Cochrane review indicated that there is a paucity of high-level evidence to support the prophylactic use of dressings to prevent pressure ulcers; this paper will examine the emerging literature and consider its relevance to pressure ulcer prevention protocols. Keywords: quality of life, hydrocolloid dressing, topical agent

  17. Effect of oxide film formation on the fatigue behavior of aluminum alloy

    International Nuclear Information System (INIS)

    Kim, Jong Cheon; Cheong, Seong Kyun

    2012-01-01

    In this study, the effects of surface oxide film formation on the fatigue behavior of 7075-T6 aluminum alloy were analyzed in terms of the corrosion time of the alloy. The aluminum material used is known to have high corrosion resistance due to the passivation phenomenon that prevents corrosion. Aluminum alloys have been widely used in various industrial applications such as aircraft component manufacturing because of their lighter weight and higher strength than other materials. Therefore, studies on the fatigue behavior of materials and passivation properties that prevent corrosion are required. The fatigue behavior in terms of the corrosion time was analyzed by using a four pointing bending machine, and the surface corrosion level of the aluminum material in terms of the corrosion time was estimated by measuring the surface were studied by scanning electron microscopy (SEM). The results indicated that corrosion actively progressed for four weeks during the initial corrosion phase, the fatigue life significantly decreased, and the surface roughness increased. However, after four weeks, the corrosion reaction tended to slow down due to the passivation phenomenon of the material. Therefore, on the basis of SEM analysis results, it was concluded that the growth of the surface oxide film was reduced after four weeks and then the oxide film on the material surface served as a protection layer and prevented further corrosion

  18. Oxidation behaviour of Ti2AIN films composed mainly of nanolaminated MAX phase.

    Science.gov (United States)

    Wang, Q M; Garkas, W; Renteria, A Flores; Leyens, C; Kim, K H

    2011-10-01

    In this paper, we reported the oxidation behaviour of Ti2AIN films on polycrystalline Al2O3 substrates. The Ti2AIN films composed mainly of nanolaminated MAX phase was obtained by first depositing Ti-Al-N films using reactive sputtering of two elemental Ti and Al targets in Ar/N2 atmosphere and subsequent vacuum annealing at 800 degrees C for 1 h. The Ti2AIN films exhibited excellent oxidation resistance and thermal stability at 600-900 degrees C in air. Very low mass gain was observed. At low temperature (600 degrees C), no oxide crystals were observed on film surface. Blade-like Theta-Al2O3 fine crystals formed on film surfaces at 700-800 degrees C. At high temperature (900 degrees C), firstly Theta-Al2O3 formed on film surface and then transformed into alpha-Al2O3. At 700-900 degrees C, a continuous Al2O3 layer formed on Ti2AIN films surface, acting as diffusion barrier preventing further oxidation attack. The mechanism of the excellent oxidation resistance of Ti2AIN films was discussed based on the experimental results.

  19. Efficacy and safety of the C-Qur™ Film Adhesion Barrier for the prevention of surgical adhesions (CLIPEUS Trial): study protocol for a randomized controlled trial.

    Science.gov (United States)

    Stommel, Martijn W J; Strik, Chema; ten Broek, Richard P G; van Goor, Harry

    2014-09-26

    Adhesions develop in over 90% of patients after intra-abdominal surgery. Adhesion barriers are rarely used despite the high morbidity caused by intra-abdominal adhesions. Only one of the currently available adhesion barriers has demonstrated consistent evidence for reducing adhesions in visceral surgery. This agent has limitations through poor handling characteristics because it is sticky on both sides. C-Qur™ Film is a novel thin film adhesion barrier and it is sticky on only one side, resulting in better handling characteristics. The objective of this study is to assess efficacy and safety of C-Qur™ Film to decrease the incidence of adhesions after colorectal surgery. This is a prospective, investigator initiated, randomized, double-blinded, multicenter trial. Eligible patients undergoing colorectal resection requiring temporary loop ileostomy or loop/split colostomy by laparotomy or hand assisted laparoscopy will be included in the trial. Before closure, patients are randomized 1:1 to either the treatment arm (C-Qur™ Film) or control arm (no adhesion barrier). Patients will return 8 to 16 weeks post-colorectal resection for take down of their ostomy. During ostomy takedown, adhesions will be evaluated for incidence, extent, and severity. The primary outcome evaluation will be assessment of adhesions to the incision site. It is hypothesized that the use of C-Qur™ Film underneath the primary incision reduces the incidence of adhesion at the incision by 30%. To demonstrate 30% reduction in the incidence of adhesions, a sample size of 84 patients (32 + 10 per group (25% drop out)) is required (two-sided test, α = 0.05, 80% power). Results of this study add to the evidence on the use of anti-adhesive barriers in open and laparoscopic 'hand-assisted' colorectal surgery. We chose incidence of adhesions to the incision site as primary outcome measure since clinical outcomes such as small bowel obstruction, secondary infertility and adhesiolysis related

  20. Preparation and characterization of chitosan–silver nanocomposite films and their antibacterial activity against Staphylococcus aureus

    International Nuclear Information System (INIS)

    Regiel, Anna; Irusta, Silvia; Arruebo, Manuel; Santamaria, Jesus; Kyzioł, Agnieszka

    2013-01-01

    In this work different variables have been analyzed in order to optimize the bactericidal properties of chitosan films loaded with silver nanoparticles. The goal was to achieve complete elimination of antibiotic resistant and biofilm forming strains of Staphylococcus aureus after short contact times. The films were produced by solution casting using chitosan as both a stabilizing and reducing agent for the in situ synthesis of embedded silver nanoparticles. We have applied an innovative approach: the influence of the chitosan molecular weight and its deacetylation degree (DD) were analyzed together with the influence of the bacterial concentration and contact time. The best results were obtained with high DD chitosan where a fast reduction was favored; leading to smaller nanoparticles (nucleation is promoted), and a sufficiently high polymer viscosity prevented the resulting nanoparticles from undesired agglomeration. In addition, for the first time, potential detachment of the silver nanoparticles from the films was evaluated and neglected, demonstrating that uncontrolled release of silver nanoparticles from the chitosan films is prevented. The influence of the ionic silver released from the films, silver loading, nanoparticle sizes, contact, and initial number of bacteria was also analyzed to elucidate the mechanism responsible for the strong bactericidal action observed. (paper)

  1. Preparation and characterization of chitosan-silver nanocomposite films and their antibacterial activity against Staphylococcus aureus

    Science.gov (United States)

    Regiel, Anna; Irusta, Silvia; Kyzioł, Agnieszka; Arruebo, Manuel; Santamaria, Jesus

    2013-01-01

    In this work different variables have been analyzed in order to optimize the bactericidal properties of chitosan films loaded with silver nanoparticles. The goal was to achieve complete elimination of antibiotic resistant and biofilm forming strains of Staphylococcus aureus after short contact times. The films were produced by solution casting using chitosan as both a stabilizing and reducing agent for the in situ synthesis of embedded silver nanoparticles. We have applied an innovative approach: the influence of the chitosan molecular weight and its deacetylation degree (DD) were analyzed together with the influence of the bacterial concentration and contact time. The best results were obtained with high DD chitosan where a fast reduction was favored; leading to smaller nanoparticles (nucleation is promoted), and a sufficiently high polymer viscosity prevented the resulting nanoparticles from undesired agglomeration. In addition, for the first time, potential detachment of the silver nanoparticles from the films was evaluated and neglected, demonstrating that uncontrolled release of silver nanoparticles from the chitosan films is prevented. The influence of the ionic silver released from the films, silver loading, nanoparticle sizes, contact, and initial number of bacteria was also analyzed to elucidate the mechanism responsible for the strong bactericidal action observed.

  2. Deposition and properties of cobalt- and ruthenium-based ultra-thin films

    Science.gov (United States)

    Henderson, Lucas Benjamin

    Future copper interconnect systems will require replacement of the materials that currently comprise both the liner layer(s) and the capping layer. Ruthenium has previously been considered as a material that could function as a single material liner, however its poor ability to prevent copper diffusion makes it incompatible with liner requirements. A recently described chemical vapor deposition route to amorphous ruthenium-phosphorus alloy films could correct this problem by eliminating the grain boundaries found in pure ruthenium films. Bias-temperature stressing of capacitor structures using 5 nm ruthenium-phosphorus film as a barrier to copper diffusion and analysis of the times-to-failure at accelerated temperature and field conditions implies that ruthenium-phosphorus performs acceptably as a diffusion barrier for temperatures above 165°C. The future problems associated with the copper capping layer are primarily due to the poor adhesion between copper and the current Si-based capping layers. Cobalt, which adheres well to copper, has been widely proposed to replace the Si-based materials, but its ability to prevent copper diffusion must be improved if it is to be successfully implemented in the interconnect. Using a dual-source chemistry of dicobaltoctacarbonyl and trimethylphosphine at temperatures from 250-350°C, amorphous cobalt-phosphorus can be deposited by chemical vapor deposition. The films contain elemental cobalt and phosphorus, plus some carbon impurity, which is incorporated in the film as both graphitic and carbidic (bonded to cobalt) carbon. When deposited on copper, the adhesion between the two materials remains strong despite the presence of phosphorus and carbon at the interface, but the selectivity for growth on copper compared to silicon dioxide is poor and must be improved prior to consideration for application in interconnect systems. A single molecule precursor containing both cobalt and phosphorus atoms, tetrakis

  3. Electronic structure of semiconductor thin films (chalcopyrites) as absorbermaterials for thin film solar cells

    International Nuclear Information System (INIS)

    Lehmann, Carsten

    2007-01-01

    The objective of this work was to determine for the first time the band structure of CuInS 2 . For this purpose a new GSMBE process with TBDS as sulphur precursor was established to prevent the use of elemental sulphur in an UHV system. Additionally to the deposited films a cleave surface was prepared. The samples were characterized in situ by XPS/UPS and LEED. XRD and SEM were used for further ex situ investigations. The band structure was determined by ARUPS using synchrotron light. CuInS(001) and CuInS 2 (112) were deposited on Si and GaAs. The deposition of CuInS 2 on GaAs showed a strong dependence on the existing surface reconstruction. A 2 x 1 reconstruction of GaAs(001) yielded CuInS 2 (001) films featuring terraces. A deposition on 2 x 2 reconstructed GaAs(111)A surfaces led to a facetted CuInS 2 surface. On sulphur-passivated non-reconstructed GaAs(111)B a deposition of chalcopyrite ordered CuInS 2 free of facets was possible. On the surface of Cu-rich CuInS 2 films CuS crystallites formed. This yields ARUPS spectra showing the electronic stucture of CuInS 2 superimposed by non-dispergative states of the polycrystalline CuS segregations. The effective hole masses were derived from the k vertical stroke vertical stroke measurements. Finally the results of this work showed that the use of a (111) substrate leads to domain formation of the deposited CuInS 2 (112) films. Thus ARUPS spectra of such films show a superposition of the band structures along different directions. (orig.)

  4. Films de quitosano con eugenol encapsulado en microcápsulas de alginato

    OpenAIRE

    CAMARA MAURI, SARA

    2017-01-01

    [EN] To prevent the accumulation of plastic waste and to extend the shelf- life of food, packaging and films obtained from biodegradable materials are currently being developed. In this work we intend to obtain chitosan films with alginate microspheres containing an active compound (eugenol) that it is released over time. The release of eugenol in different food simulants has been adjusted to different mathematical models: Peleg, Korsmeyer-Peppas and Fick. The highest and most rapid release ...

  5. Prevention of sidewall redeposition of etched byproducts in the dry Au etch process

    International Nuclear Information System (INIS)

    Aydemir, A; Akin, T

    2012-01-01

    In this paper we present a new technique of etching thin Au film in a dual frequency inductively coupled plasma (ICP) system on Si substrate to prevent the redeposition of etched Au particles over the sidewall of the masking material known as veils. First, the effect of the lithography step was investigated. Then the effects of etch chemistry and the process parameters on the redeposition of etched Au particles on the sidewall of the masking material were investigated. The redeposition effect was examined by depositing a thin Ti film over the masking material acting as a hard mask. The results showed that depositing a thin Ti film over the masking material prevents the formation of veils after etching Au in plasma environments for submicron size structures. Based on the results of this study, we propose a new technique that completely eliminates formation of veils after etching Au in plasma environments for submicron size structures. (paper)

  6. Instability of flow of liquid film over a heated surface

    International Nuclear Information System (INIS)

    Sha, W.T.

    1994-01-01

    Fundamental concepts and basic equations of a flowing thin liquid film cooling a heated surfaced by its vaporization and the effect of dry patches were treated. Stable film flow prior to the appearance of dry patches on the heated surface is maintained by a balance of various forces due to surface tension, shear stress, heat and mass transfer, and gravity. Film splitting at a critical film thickness produces dry patches due to perturbation by waves on a perfect surface, and often by surface imperfection and uneven heating. This work is primarily motivated by the design of next-generation nuclear reactors, which employ many novel passive heat-removal systems via natural circulation. These systems are design to prevent damage to the reactor core and containment without action by the reactor operators during or after a design basis accident such as a loss of coolant accident (LOCA) or a main steam-line break (MSLB) accident

  7. Method of formation of thin film component

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Chikara; Kato, Kinya

    1988-04-16

    In the production process of component which is carrying thin film device, such as thin film transistor, acid treatment is applied for etching or for preventing contamination. In case of barium borsilicate glass base, the base is affected by the acid treatment resulting the decrease of transparency. To avoid the effect, deposition of SiO/sub 2/ layer on the surface of the base is usually applied. This invention relates to the protective method of barium borosilicate surface by harnessing the effect of coexisting ion in the acid treatment bath. The method is to add 0.03-5 mol/l of phosphoric acid or its salt in the bath. By the effect of coexisting ion, barium borsilicate glass surface was protected from the damage. (2 figs)

  8. Passivation of bimetallic catalysts used in water treatment: prevention and reactivation.

    Science.gov (United States)

    Chen, Jianming; Gillham, Robert W; Gui, Lai

    2013-01-01

    With respect to degradation rates and the range in contaminants treated, bimetals such as Ni-Fe or Pd-Fe generally outperform unamended granular iron. However, the catalytic enhancement is generally short-lived, lasting from a few days to months. To take advantage of the significant benefits of bimetals, this study aims at developing an effective method for the rejuvenation of passivated bimetals and alternatively, the prevention of rapid reactivity loss of bimetals. Because the most likely cause of Ni-Fe and Pd-Fe passivation is the deposition of iron oxide films over the catalyst sites, it is hypothesized that removal of the iron oxide films will restore the lost reactivity or avoiding the deposition of iron oxide films will prevent passivation. Two organic ligands (ethylenediaminetetraacetic acid (EDTA), and [s,s]-ethylenediaminedisuccinate acid ([s,s]-EDDS)) and two acids (citric acid and sulphuric acid) were tested as possible chemical reagents for both passivation rejuvenation and prevention. Trichloroethene (TCE) and Ni-Fe were chosen as probes for chlorinated solvents and bimetals respectively. The test was carried out using small glass columns packed with Ni-Fe. TCE solution containing a single reagent at various concentrations was pumped through the Ni-Fe columns with a residence time in the Ni-Fe of about 6.6 min. TCE concentrations in the influent and effluent were measured to evaluate the performance of each chemical reagent. The results show that (i) for passivated Ni-Fe, flushing with a low concentration of acid or ligand solution without mechanical mixing can fully restore the lost reactivity; and (ii) for passivation prevention, adding a small amount of a ligand or an acid to the feed solution can successfully prevent or at least substantially reduce Ni-Fe passivation. All four chemicals tested are effective in both rejuvenation and prevention, but sulphuric acid and citric acid are considered to be the most practical reagents due to their

  9. Thickness characteristics of YBaCuO system thin films prepared by RF magnetron sputtering

    International Nuclear Information System (INIS)

    Furuhashi, Hideo; Jinno, Makoto; Takashima, Osamu; Uchida, Yoshiyuki; Maeda, Akinori; Kojima, Kenzo; Ochiai, Shizuyasu; Ohashi, Asao

    1994-01-01

    The practical use of oxide high temperature superconductors for electronics field has been advanced. The oxide high temperature superconductor thin films is very sensitive to the production conditions, and their making with good reproducibility is difficult. In this study, the method of producing the thin films having good quality with good reproducibility by RF magnetron sputtering, and the relation of the film thickness with the superconductivity characteristics of YBaCuO system thin films in the different methods of substrate washing were examined. The sputtering conditions are shown. For the purpose of preventing the worsening of the film quality due to the reverse sputtering of oxygen negative ions to the thin film surface, sputtering gas pressure was set up high at 30 Pa. The film thickness and the temperature-resistance characteristics were measured. The experimental method and the experimental results are reported. By keeping the temperature on substrate surfaces constant, the reproducibility in the production of the thin films was improved remarkably. The effect of substrate washing was large. (K.I.)

  10. Dewetting of thin films on flexible substrates via direct-write laser exposure

    Science.gov (United States)

    Ferrer, Anthony Jesus

    Microelectromechanical systems (MEMS) have enabled a wide variety of technologies both in the consumer space and in industrial/research areas. At the market level, such devices advance by the invention and innovation of production techniques. Additionally, there has been increased demand for flexible versions of such MEMS devices. Thin film patterning, represents a key technology for the realization of such flexible electronics. Patterns and methods that can be directly written into the thin film allow for design modification on the fly with the need for harsh chemicals and long etching steps. Laser-induced dewetting has the potential to create patterns in thin films at both the microscopic and nanoscopic level without wasting deposited material. This thesis presents the first demonstration of high-speed direct-write patterning of metallic thin films that uses a laser-induced dewetting phenomenon to prevent material loss. The ability to build film material with this technique is explored using various scanning geometries. Finally, demonstrations of direct-write dewetting of a variety of thin films will be presented with special consideration for high melting point metals deposited upon polymer substrates.

  11. Film quality in film mammography. Pt. 2

    International Nuclear Information System (INIS)

    Friedrich, M.; Weskamp, P.; Freie Univ. Berlin

    1976-01-01

    During consideration of three film mammographic systems, the concept of signal/noise ratio is developed as a quantitative measure of film quality. The ability to recognise detail related to detail size, film blackening and exposure geometry was studied for various systems, and the quality profiles are discussed. There is a considerable difference in quality between industrial films without screens and film-screen combinations; however, exposure geometry during mammography has a considerable effect which tends to reduce the difference. Consequently, detail sizes of 200 μ to 1,000 μ (including the majority of mammographic micro-calcifications) are shown about equally well. Contrast for the lo-dose system is somewhat less than for adequately exposed industrial film. Over-exposure with the lo-dose system, contrary to industrial film, rapidly leads to unsatisfactory results. On the other hand it is often not possible to obtain an adequate exposure when using industrial film. For these reasons it is often an advantage to examine large breasts and the dense breasts of young women with a film-screen combination which requires approximately one eighth of the dose necessary for industrial film. For small or easily compressable breasts best results are obtained, using an adequate exposure by employing industril film; radiation dose it then acceptable. (orig./ORU) [de

  12. Biocompatibility of GaSb thin films grown by RF magnetron sputtering

    Science.gov (United States)

    Nishimoto, Naoki; Fujihara, Junko; Yoshino, Katsumi

    2017-07-01

    GaSb may be suitable for biological applications, such as cellular sensors and bio-medical instrumentation because of its low toxicity compared with As (III) compounds and its band gap energy. Therefore, the biocompatibility and the film properties under physiological conditions were investigated for GaSb thin films with or without a surface coating. GaSb thin films were grown on quartz substrates by RF magnetron sputtering, and then coated with (3-mercaptopropyl) trimethoxysilane (MPT). The electrical properties, surface morphology, and crystal structure of the GaSb thin film were unaffected by the MPT coating. The cell viability assay suggested that MPT-coated GaSb thin films are biocompatible. Bare GaSb was particularly unstable in pH9 buffer. Ga elution was prevented by the MPT coating, although the Ga concentration in the pH 9 buffer was higher than that in the other solutions. The surface morphology and crystal structure were not changed by exposure to the solutions, except for the pH 9 buffer, and the thin film properties of MPT-coated GaSb exposed to distilled water and H2O2 in saline were maintained. These results indicate that MPT-coated GaSb thin films are biocompatible and could be used for temporary biomedical devices.

  13. Composite Ag/C:H:N films prepared by planar magnetron deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hlidek, P. [Charles University, Faculty of Mathematics and Physics, Praha (Czech Republic)], E-mail: hlidek@karlov.mff.cuni.cz; Hanus, J.; Biederman, H.; Slavinska, D.; Pesicka, J. [Charles University, Faculty of Mathematics and Physics, Praha (Czech Republic)

    2008-05-30

    Composite Ag/C:H:N films were deposited by means of an unbalanced magnetron operated in a gas mixture of nitrogen and n-hexane. Composition of the films was controlled by electric power delivered to the magnetron and by ratio of nitrogen and n-hexane in the working gas mixture. The films were characterized using transmission electron microscopy, by the absorption spectra in visible and near infrared regions and by Fourier transform infrared spectroscopy. Immediately after film deposition and without breaking vacuum (in situ) corresponding vibration infrared spectra were scanned and their evolution during ageing of the films was monitored. Wettability as determined from water contact angle was improved with raising nitrogen contents, i.e. with increasing the electric power and the ratio of nitrogen/n-hexane in the working gas mixture. The increased wettability is likely caused by presence of NH{sub x} groups in Ag/C:H:N films. The incorporation of nitrogen effectively prevents the formation of carboxylate groups on the silver inclusions surfaces during the aging in the open air. In addition, the oxidation mechanism of the polymer matrix is modified.

  14. Preparation and antibacterial properties of hybrid-zirconia films with silver nanoparticles

    International Nuclear Information System (INIS)

    Azócar, Ignacio; Vargas, Esteban; Duran, Nicole; Arrieta, Abel; González, Evelyn

    2012-01-01

    The antimicrobial effect of incorporating silver nanoparticles (AgNps) into zirconia matrix–polyether glycol was studied. AgNps of 4–6 nm in size were synthesized using the inverse micelles method, and different doses of metallic nanoparticles were incorporated into zirconia–polyether glycol mixtures during the ageing procedure. Atomic force microscopy (AFM) of the modified hybrid film showed a homogenous distribution of 20–80 nm diameter AgNps, indicating agglomeration of these structures during film modification; such agglomerations were greater when increasing the dosage of the colloidal system. The AgNps-hybrid films showed higher antimicrobial activity against Gram-positive bacteria than for Gram-negative bacteria. Hybrid films prepared with dioctyl sodium sulfosuccinate (AOT) stabilized AgNps presented enhanced antibacterial activity compared to that obtained through the addition of a high AgNO 3 concentration (0.3 wt%). -- Graphical abstract: Atomic Force Micrographs, top and cross section view, showing silver nanoparticles embedded in a zirconia–polyether glycol hybrid film. Highlights: ► Antibacterial activity of films (zirconia–polyether glycol) modified with silver nanoparticles. ► Biofilm formation is prevented. ► High sensibility against gram positive bacteria.

  15. Preparation and antibacterial properties of hybrid-zirconia films with silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Azocar, Ignacio, E-mail: manuel.azocar@usach.cl [Departamento de Quimica de los Materiales, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, USACH, Avenida Bernardo O' Higgins 3363, Casilla 40, Correo 33, Santiago (Chile); Vargas, Esteban [Facultad de Ingenieria, Departamento de Metalurgia, Universidad de Santiago de Chile, USACH (Chile); Duran, Nicole [Departamento de Quimica de los Materiales, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, USACH, Avenida Bernardo O' Higgins 3363, Casilla 40, Correo 33, Santiago (Chile); Arrieta, Abel [Departamento de Biologia, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, USACH (Chile); Gonzalez, Evelyn [Departamento de Quimica de los Materiales, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, USACH, Avenida Bernardo O' Higgins 3363, Casilla 40, Correo 33, Santiago (Chile); Facultad de Ingenieria, Departamento de Metalurgia, Universidad de Santiago de Chile, USACH (Chile); Departamento de Biologia, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, USACH (Chile); Departamento de Quimica Farmacologica y Toxicologica, Facultad de Ciencias Quimicas, Universidad de Chile, Sergio Livingstone Polhammer 1007, Santiago (Chile); and others

    2012-11-15

    The antimicrobial effect of incorporating silver nanoparticles (AgNps) into zirconia matrix-polyether glycol was studied. AgNps of 4-6 nm in size were synthesized using the inverse micelles method, and different doses of metallic nanoparticles were incorporated into zirconia-polyether glycol mixtures during the ageing procedure. Atomic force microscopy (AFM) of the modified hybrid film showed a homogenous distribution of 20-80 nm diameter AgNps, indicating agglomeration of these structures during film modification; such agglomerations were greater when increasing the dosage of the colloidal system. The AgNps-hybrid films showed higher antimicrobial activity against Gram-positive bacteria than for Gram-negative bacteria. Hybrid films prepared with dioctyl sodium sulfosuccinate (AOT) stabilized AgNps presented enhanced antibacterial activity compared to that obtained through the addition of a high AgNO{sub 3} concentration (0.3 wt%). -- Graphical abstract: Atomic Force Micrographs, top and cross section view, showing silver nanoparticles embedded in a zirconia-polyether glycol hybrid film. Highlights: Black-Right-Pointing-Pointer Antibacterial activity of films (zirconia-polyether glycol) modified with silver nanoparticles. Black-Right-Pointing-Pointer Biofilm formation is prevented. Black-Right-Pointing-Pointer High sensibility against gram positive bacteria.

  16. Use of an electric field in an electrostatic liquid film radiator.

    Science.gov (United States)

    Bankoff, S G; Griffing, E M; Schluter, R A

    2002-10-01

    Experimental and numerical work was performed to further the understanding of an electrostatic liquid film radiator (ELFR) that was originally proposed by Kim et al.(1) The ELFR design utilizes an electric field that exerts a normal force on the interface of a flowing film. The field lowers the pressure under the film in a space radiator and, thereby, prevents leakage through a puncture in the radiator wall. The flowing film is subject to the Taylor cone instability, whereby a cone of fluid forms underneath an electrode and sharpens until a jet of fluid is pulled toward the electrode and disintegrates into droplets. The critical potential for the instability is shown to be as much as an order of magnitude higher than that used in previous designs.(2) Furthermore, leak stoppage experiments indicate that the critical field is adequate to stop leaks in a working radiator.

  17. Multiscale Simulation of Gas Film Lubrication During Liquid Droplet Collision

    Science.gov (United States)

    Chen, Xiaodong; Khare, Prashant; Ma, Dongjun; Yang, Vigor

    2012-02-01

    Droplet collision plays an elementary role in dense spray combustion process. When two droplets approach each other, a gas film forms in between. The pressure generated within the film prevents motion of approaching droplets. This fluid mechanics is fluid film lubrication that occurs when opposing bearing surfaces are completely separated by fluid film. The lubrication flow in gas film decides the collision outcome, coalescence or bouncing. Present study focuses on gas film drainage process over a wide range of Weber numbers during equal- and unequal-sized droplet collision. The formulation is based on complete set of conservation equations for both liquid and surrounding gas phases. An improved volume-of-fluid technique, augmented by an adaptive mesh refinement algorithm, is used to track liquid/gas interfaces. A unique thickness-based refinement algorithm based on topology of interfacial flow is developed and implemented to efficiently resolve the multiscale problem. The grid size on interface is up O(10-4) of droplet size with a max resolution of 0.015 μm. An advanced visualization technique using the Ray-tracing methodology is used to gain direct insights to detailed physics. Theories are established by analyzing the characteristics of shape changing and flow evolution.

  18. Hyaluronic acid-carboxymethylcellulose film and perianastomotic adhesions in previously irradiated rats.

    Science.gov (United States)

    Bowers, D; Raybon, R B; Wheeless, C R

    1999-12-01

    Postoperative intra-abdominal adhesions are a major source of postsurgical morbidity. Pelvic irradiation increases the likelihood of adhesion development. The purpose of this study was to evaluate the effects of hyaluronic acid-carboxymethylcellulose film, which was designed as a barrier to prevent adhesions, on the healing of ileal anastomoses performed on irradiated rat bowel. Sixty-eight female Sprague-Dawley rats underwent whole pelvic irradiation with a single fraction of 1700 cGy. Twenty weeks later the rats underwent exploratory laparotomy with segmental ileal resection and reanastomosis. Eighteen of the anastomoses were wrapped in hyaluronic acid-carboxymethylcellulose film. Fifty anastomoses were not treated with any adhesion-inhibiting barrier. On the fifth postoperative day the animals underwent another laparotomy for evaluation of the anastomotic sites. At the second laparotomy 93% of the rats treated with hyaluronic acid-carboxymethylcellulose film were found to have perianastomotic abscesses. In the non-hyaluronic acid-carboxymethylcellulose film group the perianastomotic abscess rate was 24% (P hyaluronic acid-carboxymethylcellulose film was associated with a markedly increased rate of abscess formation at the operative site.

  19. Chitosan films and blends for packaging material.

    Science.gov (United States)

    van den Broek, Lambertus A M; Knoop, Rutger J I; Kappen, Frans H J; Boeriu, Carmen G

    2015-02-13

    An increased interest for hygiene in everyday life as well as in food, feed and medical issues lead to a strong interest in films and blends to prevent the growth and accumulation of harmful bacteria. A growing trend is to use synthetic and natural antimicrobial polymers, to provide non-migratory and non-depleting protection agents for application in films, coatings and packaging. In food packaging, antimicrobial effects add up to the barrier properties of the materials, to increase the shelf life and product quality. Chitosan is a natural bioactive polysaccharide with intrinsic antimicrobial activity and, due to its exceptional physicochemical properties imparted by the polysaccharide backbone, has been recognized as a natural alternative to chemically synthesized antimicrobial polymers. This, associated with the increasing preference for biofunctional materials from renewable resources, resulted in a significant interest on the potential for application of chitosan in packaging materials. In this review we describe the latest developments of chitosan films and blends as packaging material. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Influence of Polycation Composition on Electrochemical Film Formation

    Directory of Open Access Journals (Sweden)

    Sabine Schneider

    2018-04-01

    Full Text Available The effect of polyelectrolyte composition on the electrodeposition onto platinum is investigated using a counterion switching approach. Film formation of preformed polyelectrolytes is triggered by oxidation of hexacyanoferrates(II (ferrocyanide, leading to polyelectrolyte complexes, which are physically crosslinked by hexacyanoferrate(III (ferricyanide ions due to preferential ferricyanide/polycation interactions. In this study, the electrodeposition of three different linear polyelectrolytes, namely quaternized poly[2-(dimethylaminoethyl methacrylate] (i.e., poly{[2-(methacryloyloxyethyl]trimethylammonium chloride}; PMOTAC, quaternized poly[2-(dimethylaminoethyl acrylate] (i.e., poly{[2-(acryloyloxyethyl]trimethylammonium chloride}; POTAC, quaternized poly[N-(3-dimethylaminopropylmethacrylamide] (i.e., poly{[3-(methacrylamidopropyl]trimethylammonium chloride}; PMAPTAC and different statistical copolymers of these polyelectrolytes with N-(3-aminopropylmethacrylamide (APMA, are studied. Hydrodynamic voltammetry utilizing a rotating ring disk electrode (RRDE shows the highest deposition efficiency DE for PMOTAC over PMAPTAC and over POTAC. Increasing incorporation of APMA weakens the preferred interaction of the quaternized units with the hexacyanoferrate(III ions. At a sufficient APMA content, electrodeposition can thus be prevented. Additional electrochemical quartz crystal microbalance measurements reveal the formation of rigid polyelectrolyte films being highly crosslinked by the hexacyanoferrate(III ions. Results indicate a different degree of water incorporation into these polyelectrolyte films. Hence, by adjusting the polycation composition, film properties can be tuned, while different chemistries can be incorporated into these electrodeposited thin hydrogel films.

  1. Chemical structural analysis of diamondlike carbon films: I. Surface growth model

    Science.gov (United States)

    Takabayashi, Susumu; Ješko, Radek; Shinohara, Masanori; Hayashi, Hiroyuki; Sugimoto, Rintaro; Ogawa, Shuichi; Takakuwa, Yuji

    2018-02-01

    The surface growth mechanisms of diamondlike carbon (DLC) films has been clarified. DLC films were synthesized in atmospheres with a fixed methane-to-argon ratio at different temperatures up to 700 °C by the photoemission-assisted glow discharge of photoemission-assisted plasma-enhanced chemical vapor deposition. The electrical resistivity of the films decreased logarithmically as the synthesis temperature was increased. Conversely, the dielectric constant of the films increased and became divergent at high temperature. However, the very high electrical resistivity of the film synthesized at 150 °C was retained even after post-annealing treatments at temperatures up to 500 °C, and divergence of the dielectric constant was not observed. Such films exhibited excellent thermal stability and retained large amounts of hydrogen, even after post-annealing treatments. These results suggest that numerous hydrogen atoms were incorporated into the DLC films during synthesis at low temperatures. Hydrogen atoms terminate carbon dangling bonds in the films to restrict π-conjugated growth. During synthesis at high temperature, hydrogen was desorbed from the interior of the growing films and π-conjugated conductive films were formed. Moreover, hydrogen radicals were chemisorbed by carbon atoms at the growing DLC surface, leading to removal of carbon atoms from the surface as methane gas. The methane molecules decomposed into hydrocarbons and hydrogen radicals through the attack of electrons above the surface. Hydrogen radicals contributed to the etching reaction cycle of the film; the hydrocarbon radicals were polymerized by reacting with other radicals and the methane source. The polymer radicals remained above the film, preventing the supply of the methane source and disrupting the action of argon ions. At high temperatures, the resultant DLC films were rough and thin.

  2. Intrinsic ZnO films fabricated by DC sputtering from oxygen-deficient targets for Cu(In,Ga)Se2 solar cell application

    Institute of Scientific and Technical Information of China (English)

    Chongyin Yang; DongyunWan; Zhou Wang; Fuqiang Huang

    2011-01-01

    Intrinsic zinc oxide films, normally deposited by radio frequency (RF) sputtering, are fabricated by direct current (DC) sputtering. The oxygen-deficient targets are prepared via a newly developed double crucible method. The 800-nm-thick film obtaines significantly higher carrier mobility compareing with that of the 800-nm-thick ZnO film. This is achieved by the widely used RF sputtering, which favors the prevention of carrier recombination at the interfaces and reduction of the series resistance of solar cells. The optimal ZnO film is used in a Cu (In, Ga) Se2 (CIGS) solar cell with a high efficiency of 11.57%. This letter demonstrates that the insulating ZnO films can be deposited by DC sputtering from oxygen-deficient ZnO targets to lower the cost of thin film solar cells.%Intrinsic zinc oxide films,normally deposited by radio frequency (RF) sputtering,are fabricated by direct current (DC) sputtering.The oxygen-deficient targets are prepared via a newly developed double crucible method.The 800-nm-thick film obtaines significantly higher carrier mobility compareing with that of the 800-nm-thick ZnO film.This is achieved by the widely used RF sputtering,which favors the prevention of carrier recombination at the interfaces and reduction of the series resistance of solar cells.The optimal ZnO film is used in a Cu (In,Ga) Se2 (C1GS) solar cell with a high efficiency of 11.57%.This letter demonstrates that the insulating ZnO films can be deposited by DC sputtering from oxygen-deficient ZnO targets to lower the cost of thin film solar cells.High resistance transparent intrinsic zinc oxide (i-ZnO)thin film has been widely nsed as the front electrode in transparent electronics and photovoltaic devices because of its low cost and nontoxicity.Owing to its unique characteristics of high transparency and adjustable resistivity in a certain range,the use of i-ZnO thin films as diffusion barrier layers of a-Si/μc-Si,CdTe,and CIGS thin-film solar cells has been advantageous

  3. Controlling compositional homogeneity and crystalline orientation in Bi0.8Sb0.2 thermoelectric thin films

    Science.gov (United States)

    Rochford, C.; Medlin, D. L.; Erickson, K. J.; Siegal, M. P.

    2015-12-01

    Compositional-homogeneity and crystalline-orientation are necessary attributes to achieve high thermoelectric performance in Bi1-xSbx thin films. Following deposition in vacuum, and upon air exposure, we find that 50%-95% of the Sb in 100-nm thick films segregates to form a nanocrystalline Sb2O3 surface layer, leaving the film bulk as Bi-metal. However, we demonstrate that a thin SiN capping layer deposited prior to air exposure prevents Sb-segregation, preserving a uniform film composition. Furthermore, the capping layer enables annealing in forming gas to improve crystalline orientations along the preferred trigonal axis, beneficially reducing electrical resistivity.

  4. Controlling compositional homogeneity and crystalline orientation in Bi0.8Sb0.2 thermoelectric thin films

    Directory of Open Access Journals (Sweden)

    C. Rochford

    2015-12-01

    Full Text Available Compositional-homogeneity and crystalline-orientation are necessary attributes to achieve high thermoelectric performance in Bi1−xSbx thin films. Following deposition in vacuum, and upon air exposure, we find that 50%–95% of the Sb in 100-nm thick films segregates to form a nanocrystalline Sb2O3 surface layer, leaving the film bulk as Bi-metal. However, we demonstrate that a thin SiN capping layer deposited prior to air exposure prevents Sb-segregation, preserving a uniform film composition. Furthermore, the capping layer enables annealing in forming gas to improve crystalline orientations along the preferred trigonal axis, beneficially reducing electrical resistivity.

  5. Influence of film dimensions on film droplet formation.

    Science.gov (United States)

    Holmgren, Helene; Ljungström, Evert

    2012-02-01

    Aerosol particles may be generated from rupturing liquid films through a droplet formation mechanism. The present work was undertaken with the aim to throw some light on the influence of film dimensions on droplet formation with possible consequences for exhaled breath aerosol formation. The film droplet formation process was mimicked by using a purpose-built device, where fluid films were spanned across holes of known diameters. As the films burst, droplets were formed and the number and size distributions of the resulting droplets were determined. No general relation could be found between hole diameter and the number of droplets generated per unit surface area of fluid film. Averaged over all film sizes, a higher surface tension yielded higher concentrations of droplets. Surface tension did not influence the resulting droplet diameter, but it was found that smaller films generated smaller droplets. This study shows that small fluid films generate droplets as efficiently as large films, and that droplets may well be generated from films with diameters below 1 mm. This has implications for the formation of film droplets from reopening of closed airways because human terminal bronchioles are of similar dimensions. Thus, the results provide support for the earlier proposed mechanism where reopening of closed airways is one origin of exhaled particles.

  6. Correlating thermoelectric properties with microstructure in Bi0.8Sb0.2 thin films

    Science.gov (United States)

    Siegal, M. P.; Lima-Sharma, A. L.; Sharma, P. A.; Rochford, C.

    2017-04-01

    The room temperature electronic transport properties of 100 nm-thick thermoelectric Bi0.8Sb0.2 films, sputter-deposited onto quartz substrates and post-annealed in an ex-situ furnace, systematically correlate with the overall microstructural quality, improving with increasing annealing temperature until close to the melting point for the alloy composition. The optimized films have high crystalline quality with ˜99% of the grains oriented with the trigonal axis perpendicular to the substrate surface. Film resistivities and Seebeck coefficients are accurately measured by preventing deleterious surface oxide formation via a SiN capping layer and using Nd-doped Al for contacts. The resulting values are similar to single crystals and significantly better than previous reports from films and polycrystalline bulk alloys.

  7. A study of the behavior of a cathode film formed in chromium plating with radioactive tracers

    International Nuclear Information System (INIS)

    Yoshida, Katsuyoshi; Suzuki, Akihira; Doi, Kazuyuki; Arai, Katsutoshi

    1979-01-01

    The behavior and composition of a cathode film formed on a steel cathode during chromium plating were studied with radioactive tracers. A special cell with a rapid washing compartment was used for preventing the cathode film from dissolving in electrolyte after plating. The cathode film was composed of two layers. The outer layer facing to the electrolyte had a loose structure and contained more sulfuric anions than the inner layer, for sulfuric acid probably concentrated in the outer layer. This outer layer is called L-film in this paper. The L-film was easily dissolved in the electrolyte solution. The inner layer (called C-film, compact film) was stable against electrolytes and contained less anions than that of L-film. The C-film had a thickness equivalent to 5 mg/m 2 and the concentration of anions unaffected by the composition of electrolytes. The C-film was not reduced to metallic chromium, but it remained in the cathode film during and after plating. This suggests that chromic acid in the cathode film is not reduced to metallic chromium, that metallic chromium is deposited from chromium complexes reaching the cathode surface through the cathode film, and that the complexes do not play a role on the construction of the cathode film. (author)

  8. Crack formation and prevention in colloidal drops

    Science.gov (United States)

    Kim, Jin Young; Cho, Kun; Ryu, Seul-A.; Kim, So Youn; Weon, Byung Mook

    2015-08-01

    Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticles.

  9. Equilibrium helium film in the thick film limit

    International Nuclear Information System (INIS)

    Klier, J.; Schletterer, F.; Leiderer, P.; Shikin, V.

    2003-01-01

    For the thickness of a liquid or solid quantum film, like liquid helium or solid hydrogen, there exist still open questions about how the film thickness develops in certain limits. One of these is the thick film limit, i.e., the crossover from the thick film to bulk. We have performed measurements in this range using the surface plasmon resonance technique and an evaporated Ag film deposited on glass as substrate. The thickness of the adsorbed helium film is varied by changing the distance h of the bulk reservoir to the surface of the substrate. In the limiting case, when h > 0, the film thickness approaches about 100 nm following the van der Waals law in the retarded regime. The film thickness and its dependence on h is precisely determined and theoretically modeled. The equilibrium film thickness behaviour is discussed in detail. The agreement between theory and experiment is very good

  10. Attitudes and Practices on HIV Prevention among students of Higher ...

    African Journals Online (AJOL)

    As to the multivariate analysis result; sex, previous residence, religious participation, pornographic viewing, currently alcohol intake, chewing khat and cigarette smoking were found to be determinant of AAU students' attitude on HIV prevention. Similarly, age, having pocket money, pornographic film show and currently khat ...

  11. Freestanding films of crosslinked gold nanoparticles prepared via layer-by-layer spin-coating

    Science.gov (United States)

    Schlicke, Hendrik; Schröder, Jan H.; Trebbin, Martin; Petrov, Alexey; Ijeh, Michael; Weller, Horst; Vossmeyer, Tobias

    2011-07-01

    A new, extremely efficient method for the fabrication of films comprised of gold nanoparticles (GNPs) crosslinked by organic dithiols is presented in this paper. The method is based on layer-by-layer spin-coating of both components, GNPs and crosslinker, and enables the deposition of films several tens of nanometers in thickness within a few minutes. X-ray diffraction and conductance measurements reveal the proper adjustment concentration of the crosslinker solution of the critical is in order to prevent the destabilization and coalescence of particles. UV/vis spectroscopy, atomic force microscopy, and conductivity measurements indicate that films prepared via layer-by-layer spin-coating are of comparable quality to coatings prepared via laborious layer-by-layer self-assembly using immersion baths. Because spin-coated films are not bound chemically to the substrate, they can be lifted-off by alkaline underetching and transferred onto 3d-electrodes to produce electrically addressable, freely suspended films. Comparative measurements of the sheet resistances indicate that the transfer process does not compromise the film quality.

  12. Freestanding films of crosslinked gold nanoparticles prepared via layer-by-layer spin-coating

    International Nuclear Information System (INIS)

    Schlicke, Hendrik; Schroeder, Jan H; Trebbin, Martin; Petrov, Alexey; Ijeh, Michael; Weller, Horst; Vossmeyer, Tobias

    2011-01-01

    A new, extremely efficient method for the fabrication of films comprised of gold nanoparticles (GNPs) crosslinked by organic dithiols is presented in this paper. The method is based on layer-by-layer spin-coating of both components, GNPs and crosslinker, and enables the deposition of films several tens of nanometers in thickness within a few minutes. X-ray diffraction and conductance measurements reveal the proper adjustment concentration of the crosslinker solution of the critical is in order to prevent the destabilization and coalescence of particles. UV/vis spectroscopy, atomic force microscopy, and conductivity measurements indicate that films prepared via layer-by-layer spin-coating are of comparable quality to coatings prepared via laborious layer-by-layer self-assembly using immersion baths. Because spin-coated films are not bound chemically to the substrate, they can be lifted-off by alkaline underetching and transferred onto 3d-electrodes to produce electrically addressable, freely suspended films. Comparative measurements of the sheet resistances indicate that the transfer process does not compromise the film quality.

  13. Laser Cutting of Thick Diamond Films Using Low-Power Laser

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y.J.; Baik, Y.J. [Korea Institute of Science and Technology, Seoul (Korea)

    2000-02-01

    Laser cutting of thick diamond films is studied rising a low-power(10 W) copper vapor laser. Due to the existence of the saturation depth in laser cutting, thick diamond films are not easily cut by low-power lasers. In this study, we have adopted a low thermal- conductivity underlayer of alumina and a heating stage (up to 500 deg. C in air) to prevent the laser energy from consuming-out and, in turn, enhance the cutting efficiency. Aspect ratio increases twice from 3.5 to 7 when the alumina underlayer used. Adopting a heating stage also increases aspect ratio and more than 10 is obtained at higher temperatures than 400 deg. C. These results show that thick diamond films can be cut, with low-power lasers, simply by modifying the thermal property of underlayer. (author). 13 refs., 5 figs.

  14. Film beyond boundaries: film, migrant narratives and other media Film beyond boundaries: film, migrant narratives and other media

    OpenAIRE

    Anelise Reich Corseuil

    2008-01-01

    The articles here presented are representative of the debates about the various transformational aspects of film studies, fostering the discussion about the transformations and interactions between national and international narrative forms, the interrelations between film and literature, and film with other media. The critical perspectives here presented range from an emphasis on cultural materialism, dialogism, reception theory, deconstructionism, narrative studies to film aesthetics or fil...

  15. Electron beam physical vapor deposition of thin ruby films for remote temperature sensing

    International Nuclear Information System (INIS)

    Li Wei; Coppens, Zachary J.; Greg Walker, D.; Valentine, Jason G.

    2013-01-01

    Thermographic phosphors (TGPs) possessing temperature-dependent photoluminescence properties have a wide range of uses in thermometry due to their remote access and large temperature sensitivity range. However, in most cases, phosphors are synthesized in powder form, which prevents their use in high resolution micro and nanoscale thermal microscopy. In the present study, we investigate the use of electron beam physical vapor deposition to fabricate thin films of chromium-doped aluminum oxide (Cr-Al 2 O 3 , ruby) thermographic phosphors. Although as-deposited films were amorphous and exhibited weak photoluminescence, the films regained the stoichiometry and α-Al 2 O 3 crystal structure of the combustion synthesized source powder after thermal annealing. As a consequence, the annealed films exhibit both strong photoluminescence and a temperature-dependent lifetime that decreases from 2.9 ms at 298 K to 2.1 ms at 370 K. Ruby films were also deposited on multiple substrates. To ensure a continuous film with smooth surface morphology and strong photoluminescence, we use a sapphire substrate, which is thermal expansion coefficient and lattice matched to the film. These thin ruby films can potentially be used as remote temperature sensors for probing the local temperatures of micro and nanoscale structures.

  16. Defect prevention in silica thin films synthesized using AP-PECVD for flexible electronic encapsulation

    NARCIS (Netherlands)

    Elam, F.M.; Starostin, S.A.; Meshkova, A.S.; Van Der Velden-Schuermans, B.C.A.M.; Van De Sanden, M.C.M.; De Vries, H.W.

    2017-01-01

    Industrially and commercially relevant roll-to-roll atmospheric pressure-plasma enhanced chemical vapour deposition was used to synthesize smooth, 80 nm silica-like bilayer thin films comprising a dense 'barrier layer' and comparatively porous 'buffer layer' onto a flexible polyethylene 2,6

  17. Efficiency loss prevention in monolithically integrated thin film solar cells by improved front contact

    NARCIS (Netherlands)

    Deelen, J. van; Barink, M.; Klerk, L.; Voorthuijzen, P.; Hovestad, A.

    2015-01-01

    Modeling indicates a potential efficiency boost of 17% if thin-film solar panels are featured with a metallic grid. Variations of transparent conductive oxide sheet resistance, cell length, and grid dimensions are discussed. These parameters were optimized simultaneously to obtain the best result.

  18. The Development of Videos in Culturally Grounded Drug Prevention for Rural Native Hawaiian Youth

    Science.gov (United States)

    Okamoto, Scott K.; Helm, Susana; McClain, Latoya L.; Dinson, Ay-Laina

    2012-01-01

    The purpose of this study was to adapt and validate narrative scripts to be used for the video components of a culturally grounded drug prevention program for rural Native Hawaiian youth. Scripts to be used to film short video vignettes of drug-related problem situations were developed based on a foundation of pre-prevention research funded by the…

  19. Enhanced high temperature thermoelectric response of sulphuric acid treated conducting polymer thin films

    KAUST Repository

    Sarath Kumar, S. R.; Kurra, Narendra; Alshareef, Husam N.

    2015-01-01

    We report the high temperature thermoelectric properties of solution processed pristine and sulphuric acid treated poly(3, 4-ethylenedioxythiophene):poly(4-styrenesulfonate) (or PEDOT:PSS) films. The acid treatment is shown to simultaneously enhance the electrical conductivity and Seebeck coefficient of the metal-like films, resulting in a five-fold increase in thermoelectric power factor (0.052 W/m. K ) at 460 K, compared to the pristine film. By using atomic force micrographs, Raman and impedance spectra and using a series heterogeneous model for electrical conductivity, we demonstrate that acid treatment results in the removal of PSS from the films, leading to the quenching of accumulated charge-induced energy barriers that prevent hopping conduction. The continuous removal of PSS with duration of acid treatment also alters the local band structure of PEDOT:PSS, resulting in simultaneous enhancement in Seebeck coefficient.

  20. Enhanced high temperature thermoelectric response of sulphuric acid treated conducting polymer thin films

    KAUST Repository

    Sarath Kumar, S. R.

    2015-11-24

    We report the high temperature thermoelectric properties of solution processed pristine and sulphuric acid treated poly(3, 4-ethylenedioxythiophene):poly(4-styrenesulfonate) (or PEDOT:PSS) films. The acid treatment is shown to simultaneously enhance the electrical conductivity and Seebeck coefficient of the metal-like films, resulting in a five-fold increase in thermoelectric power factor (0.052 W/m. K ) at 460 K, compared to the pristine film. By using atomic force micrographs, Raman and impedance spectra and using a series heterogeneous model for electrical conductivity, we demonstrate that acid treatment results in the removal of PSS from the films, leading to the quenching of accumulated charge-induced energy barriers that prevent hopping conduction. The continuous removal of PSS with duration of acid treatment also alters the local band structure of PEDOT:PSS, resulting in simultaneous enhancement in Seebeck coefficient.

  1. Pulsed laser deposition and characterization of cellulase thin films

    Science.gov (United States)

    Cicco, N.; Morone, A.; Verrastro, M.; Viggiano, V.

    2013-08-01

    Thin films of cellulase were obtained by pulsed laser deposition (PLD) on an appropriate substrate. Glycoside hydrolase cellulase has received our attention because it emerges among the antifouling enzymes (enzymes being able to remove and prevent the formation of micro-organism biofilms) used in industry and medicine field. Pressed cellulase pellets, used as target material, were ablated with pulses of a Nd-YAG laser working at wavelength of 532 nm. In this work, we evaluated the impact of PLD technique both on molecular structure and hydrolytic activity of cellulase. Characteristic chemical bonds and morphology of deposited layers were investigated by FTIR spectroscopy and SEM respectively. The hydrolytic activity of cellulase thin films was detected by a colorimetric assay.

  2. Influence of standing-wave fields on the laser damage resistance of dielectric films

    International Nuclear Information System (INIS)

    Newnam, B.E.; Gill, D.H.; Faulkner, G.

    1973-01-01

    The influence of standing-wave electric fields on the damage resistance of dielectric thin films was evaluated for the case of 30-ps laser pulses at 1.06 μm. Single-layer films of TiO 2 , ZrO 2 , SiO 2 , and MgF 2 were deposited by state-of-the-art electron-gun evaporation on BK-7 glass substrates with uniform surface preparation. The film thicknesses ranged from one to five quarter-wave increments. The thresholds for TiO 2 films of odd quarter-wave thickness were greater than for even multiples which correlated well with the calculated internal maximum electric fields. Threshold variations for ZrO 2 films were apparent but not as distinctly periodic with film thickness. Negligible variations were obtained for SiO 2 films, again correlating with electric-field calculations. Results of additional tests allowed comparisons of thresholds for 1) back-and front-surface films for normal incidence; 2) S- and P-polarized radiation at an incidence angle of 60 0 ; and 3) circular and linear polarizations for normal incidence. The thresholds were compared with calculated standing-wave field patterns at various locations in the films. A correlation was generally found between the internal field maxima and the thresholds, but in a few coatings, defects apparently decreased or prevented any correlation. (auth)

  3. Defect prevention in silica thin films synthesized using AP-PECVD for flexible electronic encapsulation

    NARCIS (Netherlands)

    Elam, F. M.; Starostin, S. A.; Meshkova, A. S.; van der Velden, B. C. A. M.; van de Sanden, M. C. M.; de Vries, H. W.

    2017-01-01

    Industrially and commercially relevant roll-to-roll atmospheric pressure-plasma enhanced chemical vapour deposition was used to synthesize smooth, 80 nm silica-like bilayer thin films comprising a dense ‘barrier layer’ and comparatively porous ‘buffer layer’ onto a flexible polyethylene 2,6

  4. Process for the irradiation of a film-like material

    International Nuclear Information System (INIS)

    Takimoto, Kazuo; Inoue, Takashi.

    1969-01-01

    Herein provided is a process for curing a polymerizable coating applied to a strip-like material by irradiating the film with high energy radiation. A plurality of rollers are arranged on both sides of the radiation path in a rectangular configuration such that only the underside of the film contacts the rollers as it is unwound in spiral fashion from a feed bobbin and rewound by a take-up bobbin located within the rectangle. The rollers are further positioned to feed the film in a direction perpendicular to the radiation beam path and to assure that successive levels of the strip superimposed while being inwardly wound are mutually parallel, uniformly spaced and adjusted to precisely intercept the radiation beam. Such an arrangement prevents a polymerizable liquid coating applied to the surface of the strip from contacting the rollers and allows effective repetitive irradiation of the strip as it passes through successive levels of the spiral before being rewound. (Owens, K. J.)

  5. Laser process for extended silicon thin film solar cells

    International Nuclear Information System (INIS)

    Hessmann, M.T.; Kunz, T.; Burkert, I.; Gawehns, N.; Schaefer, L.; Frick, T.; Schmidt, M.; Meidel, B.; Auer, R.; Brabec, C.J.

    2011-01-01

    We present a large area thin film base substrate for the epitaxy of crystalline silicon. The concept of epitaxial growth of silicon on large area thin film substrates overcomes the area restrictions of an ingot based monocrystalline silicon process. Further it opens the possibility for a roll to roll process for crystalline silicon production. This concept suggests a technical pathway to overcome the limitations of silicon ingot production in terms of costs, throughput and completely prevents any sawing losses. The core idea behind these thin film substrates is a laser welding process of individual, thin silicon wafers. In this manuscript we investigate the properties of laser welded monocrystalline silicon foils (100) by micro-Raman mapping and spectroscopy. It is shown that the laser beam changes the crystalline structure of float zone grown silicon along the welding seam. This is illustrated by Raman mapping which visualizes compressive stress as well as tensile stress in a range of - 147.5 to 32.5 MPa along the welding area.

  6. Realization of hexagonal barium ferrite thick films on Si substrates using a screen printing technique

    International Nuclear Information System (INIS)

    Chen Yajie; Smith, Ian; Geiler, Anton L; Vittoria, Carmine; Harris, Vincent G; Zagorodnii, Volodymyr; Celinski, Zbigniew

    2008-01-01

    Hexagonal barium ferrite thick films (50-200 μm) have been deposited on Si and Al 2 O 3 /Si substrates using a screen printing technique. X-ray diffractometry, scanning electron microscopy and magnetometry were used to characterize and correlate the ferrite films' microstructure and magnetic properties. The experiments indicated that an Al 2 O 3 underlayer was effective in preventing silicon diffusion into the barium ferrite films during a final sintering treatment at temperatures above 1100 deg. C. A two-stage sintering process allowed a reasonable tradeoff between mechanical and magnetic properties. This work reveals the feasibility of fabrication of thick ferrite films on large substrates (up to 25 mm in diameter) for future planar microwave devices compatible with semiconductor integrated circuits processing

  7. Arc generation from sputtering plasma-dielectric inclusion interactions

    International Nuclear Information System (INIS)

    Wickersham, C.E. Jr.; Poole, J.E.; Fan, J.S.

    2002-01-01

    Arcing during sputter deposition and etching is a significant cause of particle defect generation during device fabrication. In this article we report on the effect of aluminum oxide inclusion size, shape, and orientation on the propensity for arcing during sputtering of aluminum targets. The size, shape, and orientation of a dielectric inclusion plays a major role in determining the propensity for arcing and macroparticle emission. In previous studies we found that there is a critical inclusion size required for arcing to occur. In this article we used high-speed videos, electric arc detection, and measurements of particle defect density on wafers to study the effect of Al 2 O 3 inclusion size, shape, and orientation on arc rate, intensity, and silicon wafer particle defect density. We found that the cross-sectional area of the inclusion exposed to the sputtering plasma is the critical parameter that determines the arc rate and rate of macroparticle emission. Analysis of the arc rate, particle defect density, and the intensity of the optical emission from the arcing plasma indicates that the critical aluminum oxide inclusion area for arcing is 0.22±0.1 mm2 when the sputtering plasma sheath dark-space λ d , is 0.51 mm. Inclusions with areas greater than this critical value readily induce arcing and macroparticle ejection during sputtering. Inclusions below this critical size do not cause arcing or macroparticle ejection. When the inclusion major axis is longer than 2λ d and lies perpendicular to the sputter erosion track tangent, the arcing activity increases significantly over the case where the inclusion major axis lies parallel to the erosion track tangent

  8. Cooking loss, tenderness, and sensory evaluation of chicken meat roasted after wrapping with edible films.

    Science.gov (United States)

    Küçüközet, Ahmet Oktay; Uslu, Mustafa Kemal

    2018-01-01

    In this study, edible films were produced from sodium caseinate and a sodium caseinate-starch mixture and with or without oleoresins (cumin and oregano oleoresin mixture). Chicken meat was wrapped in the respective films, stored at 4 ℃ for four days, and roasted at 200 ℃ for 30 min. The cooking loss, color changes, instrumental tenderness (shear force and energy) were measured. In addition, sensory evaluation was performed. All films effectively reduced cooking loss from chicken meat. The sodium caseinate-starch-based films were the most successful in preventing cooking loss. The average shear force and shear energy values of the wrapped samples were about 40% and 30% less than those of control samples, respectively. In sensory evaluation, chicken meat roasted after wrapping with the films was considered more tender and delicious than the control. Particularly, chicken meat wrapped with the films containing oleoresin mixture was assessed as the most delicious among the samples. It was shown that the cooking quality of the chicken meat could be significantly improved by pre-wrapping the meat with edible films.

  9. A single-center, prospective, randomized, open-label, clinical trial of ceramide 2-containing hydrocolloid dressings versus polyurethane film dressings for pressure ulcer prevention in high-risk surgical patients

    Directory of Open Access Journals (Sweden)

    Kohta M

    2015-11-01

    Full Text Available Masushi Kohta,1 Kazumi Sakamoto,2 Yasuhiro Kawachi,3 Tsunao Oh-i4 1Medical Engineering Laboratory, ALCARE Co, Ltd, Tokyo, 2Department of Nursing, 3Department of Dermatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, 4Department of Dermatology, Tokyo Medical University Hachioji Medical Center, Tokyo, Japan Purpose: There have been previous clinical studies regarding the impact of dressings on the prevention of pressure ulcer development. However, it remains unclear whether one type of dressing is better than any other type for preventing ulcer development during surgery. Therefore, we compared the effects of ceramide 2-containing hydrocolloid dressing with film dressings in high-risk patients with regard to reducing the incidence of pressure ulcer development during surgery. Patients and methods: A prospective, randomized, open-label, clinical trial was conducted involving patients who were at a high risk of developing pressure ulcers at a Japanese hospital. The intervention group received ceramide 2-containing hydrocolloid dressings (n=66, and the control group received film dressings (n=64. The primary end point was the incidence rate of pressure ulcer development in both groups; skin damage, such as blanchable erythema, skin discoloration, contact dermatitis, and stripped skin, was recorded as the secondary end point. The relative risk (RR and 95% confidence interval (CI were assessed to compare the probability ratios of pressure ulcer development between the groups. Results: There were significantly fewer patients who developed pressure ulcers in the intervention group than in the control group (RR, 0.37; 95% CI, 0.05–0.99; P=0.04. In the post hoc subgroup analysis, the superiority of the intervention group was more marked when patients had a lower body mass index (P=0.02, lower albumin values (P=0.07, and operation time of 3 hours or more and less than 6 hours (P=0.03. There was no evidence of any statistically significant

  10. Bovine pericardium coated with biopolymeric films as an alternative to prevent calcification: In vitro calcification and cytotoxicity results

    International Nuclear Information System (INIS)

    Nogueira, Grinia M.; Rodas, Andrea C.D.; Weska, Raquel F.; Aimoli, Cassiano G.; Higa, Olga Z.; Maizato, Marina; Leiner, Adolfo A.; Pitombo, Ronaldo N.M.; Polakiewicz, Bronislaw; Beppu, Marisa M.

    2010-01-01

    Bovine pericardium, for cardiac valve fabrication, was coated with either chitosan or silk fibroin film. In vitro calcification tests of coated and non coated bovine pericardium were performed in simulated body fluid solution in order to investigate potential alternatives to minimize calcification on implanted heart valves. Complementary, morphology was assessed by scanning electron microscopy - SEM; X-ray diffraction (XRD) and infrared spectroscopy (FTIR-ATR) were performed for structural characterization of coatings and biocompatibility of chitosan. Silk fibroin films were assayed by in vitro cytotoxicity and endothelial cell growth tests. Bovine pericardium coated with silk fibroin or chitosan did not present calcification during in vitro calcification tests, indicating that these biopolymeric coatings do not induce bovine pericardium calcification. Chitosan and silk fibroin films were characterized as non cytotoxic and silk fibroin films presented high affinity to endothelial cells. The results indicate that bovine pericardium coated with silk fibroin is a potential candidate for cardiac valve fabrication, since the affinity of silk fibroin to endothelial cells can be explored to induce the tissue endothelization and therefore, increase valve durability by increasing their mechanical resistance and protecting them against calcification.

  11. Tear film proteome in age-related macular degeneration.

    Science.gov (United States)

    Winiarczyk, Mateusz; Kaarniranta, Kai; Winiarczyk, Stanisław; Adaszek, Łukasz; Winiarczyk, Dagmara; Mackiewicz, Jerzy

    2018-06-01

    Age-related macular degeneration (AMD) is the main reason for blindness in elderly people in the developed countries. Current screening protocols have limitations in detecting the early signs of retinal degeneration. Therefore, it would be desirable to find novel biomarkers for early detection of AMD. Development of novel biomarkers would help in the prevention, diagnostics, and treatment of AMD. Proteomic analysis of tear film has shown promise in this research area. If an optimal set of biomarkers could be obtained from accessible body fluids, it would represent a reliable way to monitor disease progression and response to novel therapies. Tear films were collected on Schirmer strips from a total of 22 patients (8 with wet AMD, 6 with dry AMD, and 8 control individuals). 2D electrophoresis was used to separate tear film proteins prior to their identification with matrix-assisted laser desorption/ionization time of flight spectrometer (MALDI-TOF/TOF) and matching with functional databases. A total of 342 proteins were identified. Most of them were previously described in various proteomic studies concerning AMD. Shootin-1, histatin-3, fidgetin-like protein 1, SRC kinase signaling inhibitor, Graves disease carrier protein, actin cytoplasmic 1, prolactin-inducible protein 1, and protein S100-A7A were upregulated in the tear film samples isolated from AMD patients and were not previously linked with this disease in any proteomic analysis. The upregulated proteins supplement our current knowledge of AMD pathogenesis, providing evidence that certain specific proteins are expressed into the tear film in AMD. As far we are aware, this is the first study to have undertaken a comprehensive in-depth analysis of the human tear film proteome in AMD patients.

  12. Preparation and Application of Starch/Polyvinyl Alcohol/Citric Acid Ternary Blend Antimicrobial Functional Food Packaging Films

    Directory of Open Access Journals (Sweden)

    Zhijun Wu

    2017-03-01

    Full Text Available Ternary blend films were prepared with different ratios of starch/polyvinyl alcohol (PVA/citric acid. The films were characterized by field emission scanning electron microscopy (FE-SEM, thermogravimetric analysis, as well as Fourier transform infrared (FTIR analysis. The influence of different ratios of starch/polyvinyl alcohol (PVA/citric acid and different drying times on the performance properties, transparency, tensile strength (TS, water vapor permeability (WVP, water solubility (WS, color difference (ΔE, and antimicrobial activity of the ternary blends films were investigated. The starch/polyvinyl alcohol/citric acid (S/P/C1:1:0, S/P/C3:1:0.08, and S/P/C3:3:0.08 films were all highly transparent. The S/P/C3:3:0.08 had a 54.31 times water-holding capacity of its own weight and its mechanical tensile strength was 46.45 MPa. In addition, its surface had good uniformity and compactness. The S/P/C3:1:0.08 and S/P/C3:3:0.08 showed strong antimicrobial activity to Listeria monocytogenes and Escherichia coli, which were the food-borne pathogenic bacteria used. The freshness test results of fresh figs showed that all of the blends prevented the formation of condensed water on the surface of the film, and the S/P/C3:1:0.08 and S/P/C3:3:0.08 prevented the deterioration of figs during storage. The films can be used as an active food packaging system due to their strong antibacterial effect.

  13. Effect of ultraviolet radiation absorbing film on pollination work of foreign bumblebee [Bombus terrestris

    International Nuclear Information System (INIS)

    Nishiguchi, I.

    1999-01-01

    The transmitted light through the ultraviolet radiation absorbing (UVA) film has a preventing effect of disease and pest occurrence. To develop the agriculture harmonized with the ecosystem, we attempted to research a further possible utilization of the UVA film. Pollination work of foreign bumblebee (Bombus terrestris) in the greenhouses roofed with UVA film and with common film for agriculture was examined in growing fruit-vegetables. The bumblebees used were not acclimatized to environmental conditions of the greenhouses. They visited flowers and gathered pollen from flowered crops grown in both houses, irrespective of the kind of film covering over the greenhouse roof, and the pollen quantity gathered was far greater in crops which produced in large quantity of pollen. Thus, the bumblebees were capable to work under the condition lacking in ultraviolet radiation. This pollinating behavior is different from that of honeybees. Then we concluded that bumblebees functioned well as an efficient pollinator under the condition without ultraviolet radiation

  14. Skills methods to prevent smoking.

    Science.gov (United States)

    Schinke, S P; Gilchrist, L D; Schilling, R F; Snow, W H; Bobo, J K

    1986-01-01

    School health educators have devoted much attention to cigarette smoking. Recent years have seen the testing of interventions to prevent smoking. To date, controlled studies have not evaluated the added value of skills methods for preventing smoking. This article describes such an evaluation with sixth-grade students from two schools. Subjects were pretested and randomly assigned to receive conventional health education methods or to receive skills intervention. Both conditions included films, peer testimonials, discussions, and homework. Health education condition subjects additionally participated in oral quizzes, games, and debates. Skills condition subjects additionally learned problem-solving, self-instruction, and interpersonal communication methods. At postintervention, skills condition subjects, more than health education condition subjects, had better scores on measures of smoking-related knowledge, attitudes, and intentions. In addition, reported cigarette use, validated by biochemical data collection, was lower in the skills condition than in the health education condition at all postintervention measurements, including a 24-month follow-up. The article discusses the strengths, limits, and implications of the study for other smoking prevention efforts in schools.

  15. Multiple delta doping of single crystal cubic boron nitride films heteroepitaxially grown on (001)diamonds

    Science.gov (United States)

    Yin, H.; Ziemann, P.

    2014-06-01

    Phase pure cubic boron nitride (c-BN) films have been epitaxially grown on (001) diamond substrates at 900 °C. The n-type doping of c-BN epitaxial films relies on the sequential growth of nominally undoped (p-) and Si doped (n-) layers with well-controlled thickness (down to several nanometer range) in the concept of multiple delta doping. The existence of nominally undoped c-BN overgrowth separates the Si doped layers, preventing Si dopant segregation that was observed for continuously doped epitaxial c-BN films. This strategy allows doping of c-BN films can be scaled up to multiple numbers of doped layers through atomic level control of the interface in the future electronic devices. Enhanced electronic transport properties with higher hall mobility (102 cm2/V s) have been demonstrated at room temperature as compared to the normally continuously Si doped c-BN films.

  16. Deodorisation effect of diamond-like carbon/titanium dioxide multilayer thin films deposited onto polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, K., E-mail: ozeki@mx.ibaraki.ac.jp [Department of Mechanical Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511 (Japan); Frontier Research Center for Applied Atomic Sciences, 162-1 Shirakata, Toukai, Ibaraki 319-1106 (Japan); Hirakuri, K.K. [Applied Systems Engineering, Graduate School of Science and Engineering, Tokyo Denki University, Ishizaka, Hatoyama, Hiki, Saitama 350-0394 (Japan); Masuzawa, T. [Department of Mechanical Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511 (Japan)

    2011-04-15

    Many types of plastic containers have been used for the storage of food. In the present study, diamond-like carbon (DLC)/titanium oxide (TiO{sub 2}) multilayer thin films were deposited on polypropylene (PP) to prevent flavour retention and to remove flavour in plastic containers. For the flavour removal test, two types of multilayer films were prepared, DLC/TiO{sub 2} films and DLC/TiO{sub 2}/DLC films. The residual gas concentration of acetaldehyde, ethylene, and turmeric compounds in bottle including the DLC/TiO{sub 2}-coated and the DLC/TiO{sub 2}/DLC-coated PP plates were measured after UV radiation, and the amount of adsorbed compounds to the plates was determined. The percentages of residual gas for acetaldehyde, ethylene, and turmeric with the DLC/TiO{sub 2} coated plates were 0.8%, 65.2% and 75.0% after 40 h of UV radiation, respectively. For the DLC/TiO{sub 2}/DLC film, the percentages of residual gas for acetaldehyde, ethylene and turmeric decreased to 34.9%, 76.0% and 85.3% after 40 h of UV radiation, respectively. The DLC/TiO{sub 2}/DLC film had a photocatalytic effect even though the TiO{sub 2} film was covered with the DLC film.

  17. Deodorisation effect of diamond-like carbon/titanium dioxide multilayer thin films deposited onto polypropylene

    International Nuclear Information System (INIS)

    Ozeki, K.; Hirakuri, K.K.; Masuzawa, T.

    2011-01-01

    Many types of plastic containers have been used for the storage of food. In the present study, diamond-like carbon (DLC)/titanium oxide (TiO 2 ) multilayer thin films were deposited on polypropylene (PP) to prevent flavour retention and to remove flavour in plastic containers. For the flavour removal test, two types of multilayer films were prepared, DLC/TiO 2 films and DLC/TiO 2 /DLC films. The residual gas concentration of acetaldehyde, ethylene, and turmeric compounds in bottle including the DLC/TiO 2 -coated and the DLC/TiO 2 /DLC-coated PP plates were measured after UV radiation, and the amount of adsorbed compounds to the plates was determined. The percentages of residual gas for acetaldehyde, ethylene, and turmeric with the DLC/TiO 2 coated plates were 0.8%, 65.2% and 75.0% after 40 h of UV radiation, respectively. For the DLC/TiO 2 /DLC film, the percentages of residual gas for acetaldehyde, ethylene and turmeric decreased to 34.9%, 76.0% and 85.3% after 40 h of UV radiation, respectively. The DLC/TiO 2 /DLC film had a photocatalytic effect even though the TiO 2 film was covered with the DLC film.

  18. Film Reviews.

    Science.gov (United States)

    Lance, Larry M.; Atwater, Lynn

    1987-01-01

    Reviews four Human Sexuality films and videos. These are: "Personal Decisions" (Planned Parenthood Federation of America, 1985); "The Touch Film" (Sterling Production, 1986); "Rethinking Rape" (Film Distribution Center, 1985); "Not A Love Story" (National Film Board of Canada, 1981). (AEM)

  19. Synthesis and Characterization of Protein-Conjugated Silver Nanoparticles/Silver Salt Loaded Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) Film for Prevention of Bacterial Infections and Potential Use in Bone Tissue Engineering Applications

    Science.gov (United States)

    Bakare, Rotimi Ayotunde

    concentration (0.19and 0.31 microg) compared to commercially available gentamicin and sulfamethoxazole/trimethoprim which showed sometimes selective antimicrobial activity and antimicrobial activity at high concentration (10 microg and 23.75/1.25 microg/disc). Additionally, a clear zone of inhibition around AgCl/PHBV composite film was noticed on a modified Kirby-Bauer disk diffusion assay. Optical density results and colony forming unit measurements showed that AgCl/PHBV composite film exhibit broad bactericidal activity. Next, we evaluated the cytotoxicity of Ag/BSA nanoparticles loaded collagen immobilized PHBV films and AgCl/PHBV composite films towards MC3T3-E1 cells at the same concentration both films showed broad antimicrobial activity. By using MTT assay, we established that Ag/BSA nanoparticles loaded collagen immobilized PHBV film showed minimal, if any, cytotoxic effect towards MC3T3-E1 cells while AgCl/PHBV composite film showed significant cytotoxic effect compared to tissue culture polystyrene. Our research findings provide several formulations for preparation of scaffold, if properly tuned; it can be used as a potential biocompatible and biodegradable scaffold for the prevention of bacterial infections and promotion of cell attachment and proliferation in bone tissue engineering applications.

  20. The Evolution of Film: Rethinking Film Studies

    OpenAIRE

    Harbord, Janet P.

    2007-01-01

    How is film changing? What does it do, and what do we do with it? This book examines the reasons why we should be studying film in the twenty-first century, connecting debates from philosophy, anthropology and new media with historical concerns of film studies.

  1. Continuous manufacturing and analytical characterization of fixed-dose, multilayer orodispersible films.

    Science.gov (United States)

    Thabet, Yasmin; Lunter, Dominique; Breitkreutz, Joerg

    2018-05-30

    Various drug therapies require more than one active pharmaceutical ingredient (API) for an effective treatment. There are many advantages, e.g. to improve the compliance or pharmacodynamic response in comparison to a monotherapy or to increase the therapy safety. Until now, there are only a few products available for the paediatric population due to the lack of age appropriate dosage forms or studies proving the efficacy and safety of these products. This study aims to develop orodispersible films (ODFs) in a continuous solvent casting process as child appropriate dosage form containing both enalapril maleate (EM) and hydrochlorothiazide (HCT) separated in different film layers. Furthermore, they should be characterised and the API migration analysed by confocal Raman microscopy (CRM). ODFs were successfully produced in a continuous manufacturing process in form of double- and triple-layer formulations based on hydroxypropylcellulose (HPC) or a combination of HPC and polyvinyl alcohol (PVA). CRM revealed that both APIs migrate within the film layers shortly after manufacturing. PVA inhibits the migration inside the double-layer film, but is not able to prevent the API migration as an interlayer inside a triple-layer ODF. With increasing film layers, the content of residual solvents and the disintegration time increases (mono-layer films: processing two incompatible APIs. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Single-layer nano-carbon film, diamond film, and diamond/nano-carbon composite film field emission performance comparison

    International Nuclear Information System (INIS)

    Wang, Xiaoping; Wang, Jinye; Wang, Lijun

    2016-01-01

    A series of single-layer nano-carbon (SNC) films, diamond films, and diamond/nano-carbon (D/NC) composite films have been prepared on the highly doped silicon substrate by using microwave plasma chemical vapor deposition techniques. The films were characterised by scanning electron microscopy, Raman spectroscopy, and field emission I-V measurements. The experimental results indicated that the field emission maximum current density of D/NC composite films is 11.8–17.8 times that of diamond films. And the field emission current density of D/NC composite films is 2.9–5 times that of SNC films at an electric field of 3.0 V/μm. At the same time, the D/NC composite film exhibits the advantage of improved reproducibility and long term stability (both of the nano-carbon film within the D/NC composite cathode and the SNC cathode were prepared under the same experimental conditions). And for the D/NC composite sample, a high current density of 10 mA/cm"2 at an electric field of 3.0 V/μm was obtained. Diamond layer can effectively improve the field emission characteristics of nano-carbon film. The reason may be due to the diamond film acts as the electron acceleration layer.

  3. Prevention of Dealloying in Manganese Aluminium Bronze Propeller: Part II

    Directory of Open Access Journals (Sweden)

    Napachat Tareelap

    2014-03-01

    Full Text Available Due to the failure of manganese aluminium bronze (MAB propeller caused by dealloying corrosion as described in Part I [1], this work aims to study the prevention of dealloying corrosion using aluminium and zinc sacrificial anodes. The results indicated that both of the sacrificial anodes could prevent the propeller from dealloying. Moreover, the dealloying in seawater was less than that found in brackish water. It was possible that hydroxide ions, from cathodic reaction, reacted with calcium in seawater to form calcium carbonate film protecting the propeller from corrosion.

  4. Process and apparatus for irradiating film, and irradiated film

    International Nuclear Information System (INIS)

    1981-01-01

    A process for irradiating film is described, which consists of passing the film through an electron irradiation zone having an electron reflection surface disposed behind and generally parallel to the film; and disposing within the irradiation zone adjacent the edges of the film a lateral reflection member for reflecting the electrons toward the reflection surface to further reflect the reflected electrons towards the adjacent edges of the film. (author)

  5. Controlled release of ethylene via polymeric films for food packaging

    Science.gov (United States)

    Pisano, Roberto; Bazzano, Marco; Capozzi, Luigi Carlo; Ferri, Ada; Sangermano, Marco

    2015-12-01

    In modern fruit supply chain a common method to trigger ripening is to keep fruits inside special chambers and initiate the ripening process through administration of ethylene. Ethylene is usually administered through cylinders with inadequate control of its final concentration in the chamber. The aim of this study is the development of a new technology to accurately regulate ethylene concentration in the atmosphere where fruits are preserved: a polymeric film, containing an inclusion complex of α-cyclodextrin with ethylene, was developed. The complex was prepared by molecular encapsulation which allows the entrapment of ethylene into the cavity of α-cyclodextrin. After encapsulation, ethylene can be gradually released from the inclusion complex and its release rate can be regulated by temperature and humidity. The inclusion complex was dispersed into a thin polymeric film produced by UV-curing. This method was used because is solvent-free and involves low operating temperature; both conditions are necessary to prevent rapid release of ethylene from the film. The polymeric films were characterized with respect to thermal behaviour, crystalline structure and kinetics of ethylene release, showing that can effectively control the release of ethylene within confined volume.

  6. Investigating the Utility of the Film "War Zone" in the Prevention of Street Harassment

    Science.gov (United States)

    Darnell, Doyanne A.; Cook, Sarah L.

    2009-01-01

    Street harassment, the act of sexual harassment by strangers in public, is a common experience shared by many women. This paper reports the first experimental evaluation of the impact of a popular documentary-style film, "War Zone," on men's attitudes toward street harassment and empathy for women who experience it. The sample was an ethnically…

  7. Investigation of cosputtered W--C thin films as diffusion barriers

    International Nuclear Information System (INIS)

    Yang, H.Y.; Zhao, X.

    1988-01-01

    Polycrystalline thin films of W--C were deposited on single-crystal Si or SiO 2 substrates by rf planar magnetron cosputtering of graphite (C) and W targets. The performance of cosputtered W 75 C 25 thin films as diffusion barriers between a Si substrate and metallic overlayers of Ag, Au, or Al was investigated. Backscattering spectrometry and x-ray diffraction are used to detect metallurgical interactions. Four-point probe measurement of resistance is employed to monitor the electrical stability of the metallization schemes upon thermal annealing in a vacuum for 30 min in temperature ranges from 500 to 700 0 C. The electrical resistivity of W 75 C 25 films is 140 μΩ cm. A W 75 C 25 layer 1100 A thick prevents metallurgical interdiffusion and reaction between Au or Ag overlayers and the Si substrates up to 700 0 C, and between an Al overlayer and the Si substrate up to 450 0 C.tential

  8. Corrosion properties of the Mg alloy coated with polypyrrole films

    International Nuclear Information System (INIS)

    Grubač, Zoran; Rončević, Ivana Škugor; Metikoš-Huković, Mirjana

    2016-01-01

    Highlights: • Electropolymerization of pyrrole on Mg-alloy surface in presence of salicylate. • Salicylate dual role in PPy deposition: passivation and electron transfer mediation. • Redox potential of salicylate corresponds to potential of PPy nucleation. • EIS and polarization corrosion studies of PPy coated Mg-alloy in Hanks’ solution. • Polypyrrole significantly slowdown Mg alloy corrosion in Hanks’ solution. - Abstract: In the present study the reactive surface of Mg alloy was coated with the nontoxic biocompatible polypyrrole (PPy) film synthesized by electrochemical oxidation from an aqueous salicylate solution. Salicylate ions prevent Mg dissolution and act as an electron transfer mediator during the PPy film nucleation, formation and growth on the alloy surface. Kinetics of the pyrrole polymerization as well as corrosion resistance of the PPy coated Mg alloy in the Hanks’ solution were investigated using dc electrochemical methods and electrochemical impedance spectroscopy (EIS). Characterization of the surface film was performed by optical and Fourier transform infrared spectroscopy (FTIR).

  9. Picosecond laser registration of interference pattern by oxidation of thin Cr films

    Energy Technology Data Exchange (ETDEWEB)

    Veiko, Vadim; Yarchuk, Michail [ITMO University, Kronverksky Ave. 49, St. Petersburg, 197101 (Russian Federation); Zakoldaev, Roman, E-mail: zakoldaev@gmail.com [ITMO University, Kronverksky Ave. 49, St. Petersburg, 197101 (Russian Federation); Gedvilas, Mindaugas; Račiukaitis, Gediminas [Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300, Vilnius (Lithuania); Kuzivanov, Michail; Baranov, Alexander [ITMO University, Kronverksky Ave. 49, St. Petersburg, 197101 (Russian Federation)

    2017-05-15

    Highlights: • Periodical patterning of thin films was achieved by combining two technologies. • Selective chemical etching was combined with laser-induced oxidation. • Formation of the protective oxide layer prevented of chromium film from etching. • 1D binary grating with the chromium stripe width of 750 nm was fabricated. - Abstract: The laser oxidation of thin metallic films followed by its selective chemical etching is a promising method for the formation of binary metal structures on the glass substrates. It is important to confirm that even a single ultrashort laser pulse irradiation is able to create the protective oxide layer that makes possible to imprint the thermochemical image. Results of the thermo-chemical treatment of thin chromium films irradiated by picosecond laser pulse utilizing two and four beam interference combined with the chemical etching are presented. The spatial resolution of this method can be high enough due to thermo-chemical sharpening and can be close to the diffraction limit. Micro-Raman spectroscopy was applied for characterization of the chemical composition of the protective oxide layers formed under atmospheric conditions on the surface of thin chromium films.

  10. Non-destructive photon activation analysis of carbon and nitrogen in thin films

    International Nuclear Information System (INIS)

    Shikano, Koji; Katoh, Masaaki; Masumoto, Kazuyoshi; Ohtsuki, Tsutomu

    1998-01-01

    Study was made on interference nuclear reactions with 12 C(γ,n) 11 C and 14 N(γ,n) 13 N reactions, interference radioactivity from the matrix, and prevention of contamination from the atmosphere. The following were made clear: Interference nuclear reactions can be neglected by controlling the radiation energy of bremsstrahlung below 30 MeV; radiation interference can be avoided by starting measurement 20-30 min after irradiation, though 29 Al is formed from Si substrate; and contamination from the atmosphere can be controlled by He gas replacement. With graphite and boron nitride used as the reference standards, carbon in silicon carbide film and nitrogen in silicon nitride film were determined with the result that their concentrations in the films were 37.03±1.28 μg/cm 2 and 52.97±2.97 μg/cm 2 , respectively. The determination limits of this method were 0.3 μg for carbon and 3 μg for nitrogen. The measurement of film thickness distribution revealed that these film samples could be used as light element reference standards for charged particle activation analysis. (N.H.)

  11. Physical property improvement of IZTO thin films using a hafnia buffer layer

    Science.gov (United States)

    Park, Jong-Chan; Kang, Seong-Jun; Choi, Byeong-Gyun; Yoon, Yung-Sup

    2018-01-01

    Hafnia (HfO2) has excellent mechanical and chemical stability, good transmittance, high dielectric constant, and radiation resistance property; thus, it can prevent impurities from permeating into the depositing films. So, we deposited hafnia films with various thicknesses in the range of 0-60 nm on polyethylene naphthalate (PEN) substrates before depositing indium-zinc-tin oxide (IZTO) thin films on them using RF magnetron sputtering, and their structural, morphological, optical, and electrical properties were evaluated. All IZTO thin films were successfully deposited without cracks or pinholes and had amorphous structures. As the thickness of the hafnia film increased to 30 nm, the overall properties improved; a surface roughness of 2.216 nm, transmittance of 82.59% at 550 nm, resistivity of 5.66 × 10-4 Ω cm, sheet resistance of 23.60 Ω/sq, and figure of merit of 6.26 × 10-3 Ω-1 were realized. These results indicate that the structure and materials studied in this research are suitable for application in flexible transparent electronic devices such as organic light emitting diodes, liquid crystal displays, touch panels, and solar cells.

  12. Indian meal moth (Plodia interpunctella)-resistant food packaging film development using microencapsulated cinnamon oil.

    Science.gov (United States)

    Kim, In-Hah; Song, Ah Young; Han, Jaejoon; Park, Ki Hwan; Min, Sea C

    2014-10-01

    Insect-resistant laminate films containing microencapsulated cinnamon oil (CO) were developed to protect food products from the Indian meal moth (Plodia interpunctella). CO microencapsulated with polyvinyl alcohol was incorporated with a printing ink and the ink mixture was applied to a low-density polyethylene (LDPE) film as an ink coating. The coated LDPE surface was laminated with a polypropylene film. The laminate film impeded the invasion of moth larvae and repelled the larvae. The periods of time during which cinnamaldehyde level in the film remained above a minimum repelling concentration, predicted from the concentration profile, were 21, 21, and 10 d for cookies, chocolate, and caramel, respectively. Coating with microencapsulated ink did not alter the tensile or barrier properties of the laminate film. Microencapsulation effectively prevented volatilization of CO. The laminate film can be produced by modern film manufacturing lines and applied to protect food from Indian meal moth damage. The LDPE-PP laminate film developed using microencapsulated cinnamon oil was effective to protect the model foods from the invasion of Indian meal moth larvae. The microencapsulated ink coating did not significantly change the tensile and barrier properties of the LDPE-PP laminate film, implying that replacement of the uncoated with coated laminate would not be an issue with current packaging equipment. The films showed the potential to be produced in commercial film production lines that usually involve high temperatures because of the improved thermal stability of cinnamon oil due to microencapsulation. The microencapsulated system may be extended to other food-packaging films for which the same ink-printing platform is used. © 2014 Institute of Food Technologists®

  13. Effect of deposition time of sputtering Ag-Cu thin film on mechanical and antimicrobial properties

    Science.gov (United States)

    Purniawan, A.; Hermastuti, R.; Purwaningsih, H.; Atmono, T. M.

    2018-04-01

    Metallic implants are important components in biomedical treatment. However, post-surgery infection often occurs after installation of implant. The infections are usually treated by antibiotics, but it still causes several secondary problems. As a prevention treatment, the surgical instruments and implants must be in a sterile condition. This action is still not optimal too because the material still can attract the bacteria. From material science point of view, it can be anticipated by developing a type of material which has antibacterial properties or called antimicrobial material. Silver (Ag) and Copper (Cu) have antimicrobial properties to prevent the infection. In this research, the influence of deposition time of Ag-Cu thin film deposition process as antimicrobial material with Physical Vapor Deposition (PVD) RF Sputtering method was analyzed. Deposition time used were for 10, 15 and 20 minutes in Argon gas pressure around 3 x 10-2 mbar in during deposition process. The morphology and surface roughness of Ag-Cu thin film were characterized using SEM and AFM. Based on the results, the deposition time influences the quality morphology that the thin films have good homogeneity and complete structure for longer deposition time. In addition, from roughness measurement results show that increase deposition time decrease the roughness of thin film. Antimicrobial performance was analyzed using Kirby Bauer Test. The results show that all of sample have good antimicrobial inhibition. Adhesion quality was evaluated using Rockwell C Indentation Test. However, the results indicate that the Ag-Cu thin film has low adhesion strength.

  14. Enhanced efficiency of plasma acceleration in the laser-induced cavity pressure acceleration scheme

    International Nuclear Information System (INIS)

    Badziak, J; Rosiński, M; Jabłoński, S; Pisarczyk, T; Chodukowski, T; Parys, P; Rączka, P; Krousky, E; Ullschmied, J; Liska, R; Kucharik, M

    2015-01-01

    Among various methods for the acceleration of dense plasmas the mechanism called laser-induced cavity pressure acceleration (LICPA) is capable of achieving the highest energetic efficiency. In the LICPA scheme, a projectile placed in a cavity is accelerated along a guiding channel by the laser-induced thermal plasma pressure or by the radiation pressure of an intense laser radiation trapped in the cavity. This arrangement leads to a significant enhancement of the hydrodynamic or electromagnetic forces driving the projectile, relative to standard laser acceleration schemes. The aim of this paper is to review recent experimental and numerical works on LICPA with the emphasis on the acceleration of heavy plasma macroparticles and dense ion beams. The main experimental part concerns the research carried out at the kilojoule sub-nanosecond PALS laser facility in Prague. Our measurements performed at this facility, supported by advanced two-dimensional hydrodynamic simulations, have demonstrated that the LICPA accelerator working in the long-pulse hydrodynamic regime can be a highly efficient tool for the acceleration of heavy plasma macroparticles to hyper-velocities and the generation of ultra-high-pressure (>100 Mbar) shocks through the collision of the macroparticle with a solid target. The energetic efficiency of the macroparticle acceleration and the shock generation has been found to be significantly higher than that for other laser-based methods used so far. Using particle-in-cell simulations it is shown that the LICPA scheme is highly efficient also in the short-pulse high-intensity regime and, in particular, may be used for production of intense ion beams of multi-MeV to GeV ion energies with the energetic efficiency of tens of per cent, much higher than for conventional laser acceleration schemes. (paper)

  15. Antifungal, Mechanical, and Physical Properties of Edible Film Containing Williopsis saturnus var. saturnus Antagonistic Yeast.

    Science.gov (United States)

    Karabulut, Gulsah; Cagri-Mehmetoglu, Arzu

    2018-03-01

    The molding of food products causing health risks is a main problem in the food industry. In this study, as an alternative solution for preventing mold growth, an antifungal edible film was developed by incorporating Williopsis saturnus var. saturnus (0; 3; 7; and 9 logs CFU/cm 2 ) into whey protein concentrate (WPC) based films. Antifungal properties of the films against Penicilium expansum and Aspergillus niger were analyzed using the disc diffusion method. Physical (barrier, solubility, color), mechanical (tensile strength and percent elongation) properties of the films as well as the survival of W. saturnus in the film were assessed during 28 days of storage at 23 °C. According to the results, the viability of W. saturnus (7 and 9 logs CFU/cm 2 ) in WPC films stored for 28 days under vacuum or non-vacuum decreased to 36% and 60%, respectively. In addition, films containing W. saturnus decreased the viability of P. expansum and A. niger by 29% and 19%, respectively. Adding yeast did not change the tensile strength (P > 0.05), but significantly decreased % elongation and increased water vapor and oxygen permeability and water solubility (P films may be useful for inhibiting mold growth on foods. © 2018 Institute of Food Technologists®.

  16. Proposal for monitoring concrete painting as a preventive maintenance tool (Abutments and pier caps).

    Science.gov (United States)

    2017-07-01

    One of the growing number of preventive bridge maintenance activities conducted by the Kentucky Transportation Cabinet (KYTC) is washing and applying thin film protective coatings to bridge abutments and piers. Previous work conducted by Kentucky Tra...

  17. Film and History.

    Science.gov (United States)

    Schaber, Robin L.

    2002-01-01

    Provides an annotated bibliography of Web sites that focus on using film to teach history. Includes Web sites in five areas: (1) film and education; (2) history of cinema; (3) film and history resources; (4) film and women; and (5) film organizations. (CMK)

  18. Compositionally graded SiCu thin film anode by magnetron sputtering for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Polat, B.D., E-mail: bpolat@itu.edu.tr [Department of Metallurgical and Materials Engineering, Istanbul Technical University, Maslak, Istanbul 34469 (Turkey); Eryilmaz, O.L. [Energy Systems Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Keleş, O., E-mail: ozgulkeles@itu.edu.tr [Department of Metallurgical and Materials Engineering, Istanbul Technical University, Maslak, Istanbul 34469 (Turkey); Erdemir, A. [Energy Systems Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Amine, K. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2015-12-01

    Compositionally graded and non-graded composite SiCu thin films were deposited by magnetron sputtering technique on Cu disks for investigation of their potentials in lithium ion battery applications. The compositionally graded thin film electrodes with 30 at.% Cu delivered a 1400 mAh g{sup −1} capacity with 80% Coulombic efficiency in the first cycle and still retained its capacity at around 600 mAh g{sup −1} (with 99.9% Coulombic efficiency) even after 100 cycles. On the other hand, the non-graded thin film electrodes with 30 at.% Cu exhibited 1100 mAh g{sup −1} as the first discharge capacity with 78% Coulombic efficiency but the cycle life of this film degraded very quickly, delivering only 250 mAh g{sup −1} capacity after 100th cycles. Not only the Cu content but also the graded film thickness were believed to be the main contributors to the much superior performance of the compositionally graded SiCu films. We also believe that the Cu-rich region of the graded film helped reduce internal stress build-up and thus prevented film delamination during cycling. In particular, the decrease of Cu content from interface region to the top of the coating reduced the possibility of stress build-up across the film during cycling, thus leading to a high electrochemical performance.b - Highlights: • Highly adherent SiCu films are deposited by magnetron sputtering. • Compositionally graded SiCu film is produced and characterized. • Decrease of Cu content diverted the propagation of stress in the anode. • Cu rich layer at the bottom improves the adherence of the film.

  19. Specific features on evaporation rate and MHD-perturbations during pellet injection in the T-10 tokamak

    International Nuclear Information System (INIS)

    Kuteev, B.V.; Sergeev, V.Yu.; Umov, A.P.

    1988-01-01

    The results of simultaneous analysis of behaviour of evaporation rates of the macroparticles injected into the T-10 tokamak plasma and MHD-perturbation signals corresponding to poloidal modes with m=1-6 are discussed. Correlation between flight of the deuterium macroparticle of the q=1 zone and fast revolution of the signal phase of the m=1 mode is detected. Perturbations of the m=2 mode signals are not high and occur in more external plasma fields than characteristic peculiarity in the m=1 mode signal. A new type of evaporation rate curves with prolonged decay is detected. Their occurrence is probably caused by fast reconstruction of the plasma profile in injection

  20. Space-charge calculation for bunched beams with 3-D ellipsoidal symmetry

    International Nuclear Information System (INIS)

    Garnett, R.W.; Wangler, T.P.

    1991-01-01

    A method for calculating 3-D space-charge forces has been developed that is suitable for bunched beams of either ions or relativistic electrons. The method is based on the analytic relations between charge-density and electric fields for a distribution with 3-D ellipsoidal symmetry in real space. At each step we use a Fourier-series representation for the smooth particle-density function obtained from the distribution of the macroparticles being tracked through the elements of the system. The resulting smooth electric fields reduce the problem of noise from artificial collisions, associated with small numbers of interacting macroparticles. Example calculations will be shown for comparison with other methods. 4 refs., 2 figs., 1 tab

  1. Artificial collisions, entropy and emittance growth in computer simulations of intense beams

    Energy Technology Data Exchange (ETDEWEB)

    Boine-Frankenheim, O., E-mail: o.boine-frankenheim@gsi.de [Institut für Theorie Elektromagnetischer Felder (TEMF), Technische Universität Darmstadt, Schloßgartenstr. 8, 64289 Darmstadt (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany); Hofmann, I. [Institut für Theorie Elektromagnetischer Felder (TEMF), Technische Universität Darmstadt, Schloßgartenstr. 8, 64289 Darmstadt (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany); Struckmeier, J.; Appel, S. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany)

    2015-01-11

    Artificial collisions during particle tracking with self-consistent space charge lead to diffusion-like, numerical effects. The artificial collisions generate a stochastic noise spectrum. As a consequence the entropy and the emittance can grow along periodic focusing structures. The growth rates depend on the number of simulation macro-particles and on the space charge tune shifts. In our study we present analytical predictions for the numerical friction and diffusion in 2D simulations. For simple focusing structures we derive a relation between the friction coefficient and the entropy growth. The scaling of the friction coefficient with the macro-particle number and the space charge tune shift is obtained from 2D simulations and compared to the analytic predictions.

  2. Tests with films and film-screens using grid-mammography

    International Nuclear Information System (INIS)

    Wolf, G.; Kallinger, G.

    1982-01-01

    A comparison was made between mammography using grid-technique with a film-screen-system and mammography without grid, and with film-screens and also using industrial films. The image-quality of grid mammography looks like the same than using conventional techniques and industrial films. The problem of soft tissue grid techniques lies in the dose requirements, which was more than using film-screen-techniques without grid. New and improved recording systems, which reduce radiation dose when using the grid technique were analyzed. (orig.) [de

  3. Contemporary Films' Mini Course on Film Study.

    Science.gov (United States)

    Schillaci, Peter

    This minicourse on film study can be a unit in English, in arts, or in the humanities. It can help to launch a film study course or complement an introduction to theater. Whatever form it takes, it helps to build a bridge to the student's media environment. Part one, the language of images, utilizes four films which demonstrate the basic elements…

  4. Team teaching fire prevention program: evaluation of an education technique

    Science.gov (United States)

    Frank L. Ryan; Frank H. Gladen; William S. Folkman

    1978-01-01

    The California Department of Forestry's Team Teaching Fire Prevention Program consists of small-group discussions, slides or films, and a visit by Smokey Bear to school classrooms. In a survey, teachers and principals who had experienced the program responded favorably to it. The conduct by team members also received approval. The limited criticisms of the Program...

  5. Notorious: Hitchcock’s good neighbor film Notorious: Hitchcock’s good neighbor film

    Directory of Open Access Journals (Sweden)

    Arlindo Castro

    2008-04-01

    Full Text Available The New York release of Alfred Hitchcock’s Notorious occurred in August 1946, one month after the Bikini atomic explosions, and one year after the bombing of Hiroshima and Nagasaki. “Is mankind dying of curiosity?” asked a double page Time magazine ad, in the same issue that published a review of the film. “Time’s Science department noted recently,” readers were told, “that people everywhere have one great Fear: will the curiosity of nuclear physicists someday set off a giant chain reaction which will flash-bum the world to a clinker?”l To overcome that fear of the nuclear apocalypse, according to the add, readers should learn more and more about “the big mysteries of our atomic age,” beginning by checking her or his score in the “Time’s Quiz on Science.” If they happened to go to Radio City Music Hall, Notorious would reassure them that the U.S. was doing well in preventing obstinate Nazis from making an atomic bomb, though at that moment of the nuclear espionage war, former Manhattan Project insider Klaus Fuchs had actually passed on to a Soviet contact in London classified information about the Manhattan Project and American atomic plans.2 Indeed, in that transitional period between World War II and the Cold War, the major political villains were still Nazis, not Communists, as exemplified by other 1946 films like Orson Welles’ The Stranger, Charles Vidor’s Gilda, and Edward Dmytryk’s Cornered. The New York release of Alfred Hitchcock’s Notorious occurred in August 1946, one month after the Bikini atomic explosions, and one year after the bombing of Hiroshima and Nagasaki. “Is mankind dying of curiosity?” asked a double page Time magazine ad, in the same issue that published a review of the film. “Time’s Science department noted recently,” readers were told, “that people everywhere have one great Fear: will the curiosity of nuclear physicists someday set off a giant chain reaction which will

  6. High-temperature fabrication of Ag(In,Ga)Se{sub 2} thin films for applications in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xianfeng [International Center for Science and Engineering Programs, Waseda University, Tokyo (Japan); Yamada, Akira [Department of Physical Electronics, Tokyo Institute of Technology, Tokyo (Japan); Kobayashi, Masakazu [Department of Electrical Engineering and Bioscience, Waseda University, Tokyo (Japan); Kagami Memorial Research Institute for Materials Science, Waseda University, Tokyo (Japan)

    2017-10-15

    Molecular beam epitaxy was used to fabricate Ag(In,Ga)Se{sub 2} (AIGS) thin films. To improve the diffusion of Ag, high-temperature deposition and high-temperature annealing methods were applied to fabricate AIGS films. The as-grown AIGS thin films were then used to make AIGS solar cells. We found that grain size and crystallinity of AIGS films were considerably improved by increasing the deposition and annealing temperature. For high-temperature deposition, temperatures over 600 C led to decomposition of the AIGS film, desorption of In, and deterioration of its crystallinity. The most appropriate deposition temperature was 590 C and a solar cell with a power conversion efficiency of 4.1% was obtained. High-temperature annealing of the AIGS thin films showed improved crystallinity as annealing temperature was increased and film decomposition and In desorption were prevented. A solar cell based on this film showed the highest conversion efficiency of 6.4% when annealed at 600 C. When the annealing temperature was further increased to 610 C, the performance of the cell deteriorated due to loss of the out-of-plane Ga gradient. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Polyether ether ketone film. Polyether ether ketone film

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, S. (Sumitomo Chemical Co. Ltd., Tokyo (Japan))

    1990-07-05

    The characteristics and the film making process of polyether ether ketone (PEEK) resin, and the characteristics and the applications of PEEK film, are described. PEEK is aromatic polyketone with super thermal resistance. Though it is a crystalline polymer of which the crystallinity is controlled to 48% in a highest degree, it has also amorphous property, thus it shows unique property. The characteristics of PEEK resin are found in thermal resistance, incombusti-bility, transparency, chemical resistance, light resistance and radiation resistance. As for the film making process, casting method by T-die is generally adopted. The general properties of PEEK film are excellent in high thermal resistance, good electrical properties, chemical resistance, hydrolysis resistance, radiation resistance and imcombusti-bility. In the application of PEEK film, new development is expected in following fields; a high performance composite, flexible print substrate with high thermal resistance, insulating tape with thermal resistance, and a general film in the nuclear energy industry. 5 figs., 5 tabs.

  8. Film “Darah dan Do’a” Sebagai Wacana Film Nasional Indonesia

    Directory of Open Access Journals (Sweden)

    Arda - Muhlisiun

    2016-09-01

    Abstract A national filmsuggestived towards the ideasof nationalidentity. It can be labelled ‘national’ because the representation of national identity pertains to it. Usmar Ismail’s film was described as a national film because it presents genuine Indonesian. Through the textual analysis that discursive-performative understanding of national films can be achieved; an understanding that has become a myth in context to Usmar Ismail’s film.In order to clarified concepts of national film as well as to illustrate the discourse of national films in Usmar Ismail’s work, this analysis used JinHee Choi’s theory of national cinema. In which national film was theorized based on territorial, functional and relational factors. The findings of this analysis showed how the concept of national film in Usmar Ismail’s film actually struggles against the dominant discourse of its time particularly in terms of Usmar Ismail’s figure as a determining factor in establishing national films in Indonesia.   Keyword : National Cinema, Usmar Ismail, Darah dan Doa

  9. In-situ x-ray absorption study of copper films in ground water solutions

    International Nuclear Information System (INIS)

    Kvashnina, K.O.; Butorin, S.M.; Modin, A.; Soroka, I.; Marcellini, M.; Nordgren, J.; Guo, J.-H.; Werme, L.

    2007-01-01

    This study illustrates how the damage from copper corrosion can be reduced by modifying the chemistry of the copper surface environment. The surface modification of oxidized copper films induced by chemical reaction with Cl - and HCO 3 - in aqueous solutions was monitored by in situ X-ray absorption spectroscopy. The results show that corrosion of copper can be significantly reduced by adding even a small amount of sodium bicarbonate. The studied copper films corroded quickly in chloride solutions, whereas the same solution containing 1.1 mM HCO 3 - prevented or slowed down the corrosion processes

  10. Sugar-Responsive Layer-by-Layer Film Composed of Phenylboronic Acid-Appended Insulin and Poly(vinyl alcohol).

    Science.gov (United States)

    Takei, Chihiro; Ohno, Yui; Seki, Tomohiro; Miki, Ryotaro; Seki, Toshinobu; Egawa, Yuya

    2018-01-01

    Previous studies have shown that reversible chemical bond formation between phenylboronic acid (PBA) and 1,3-diol can be utilized as the driving force for the preparation of layer-by-layer (LbL) films. The LbL films composed of a PBA-appended polymer and poly(vinyl alcohol) (PVA) disintegrated in the presence of sugar. This type of LbL films has been recognized as a promising approach for sugar-responsive drug release systems, but an issue preventing the practical application of LbL films is combining them with insulin. In this report, we have proposed a solution for this issue by using PBA-appended insulin as a component of the LbL film. We prepared two kinds of PBA-appended insulin derivatives and confirmed that they retained their hypoglycemic activity. The LbL films composed of PBA-appended insulin and PVA were successfully prepared through reversible chemical bond formation between the boronic acid moiety and the 1,3-diol of PVA. The LbL film disintegrated upon treatment with sugars. Based on the results presented herein, we discuss the suitability of the PBA moiety with respect to hypoglycemic activity, binding ability, and selectivity for D-glucose.

  11. Directed self-assembly of block copolymer thin films: From fundamentals science to applications

    Science.gov (United States)

    Teel, George Lewis

    A modern approach to satellite based experimentation has evolved from large, multi-instrumented satellites, to cheaper, smaller, almost disposable yet still reliable small spacecrafts. These small satellites are either sent to the International Space Station (ISS) to be dropped out into low earth orbit (LEO), or dropped off as a secondary payload into various orbits. While it is cheap to have small spacecraft accomplishing these missions, the lifetime expectancy is very short. Currently there are no commercialized propulsion systems that exist to keep them flying for prolonged periods of time. Recently researched at the Micro Propulsion and Nanotechnology Lab (MPNL), at the George Washington University (GWU), have been developments of a variety of Vacuum Arc Thrusters (VAT's) dubbed Micro-Cathode Vacuum Arc Thrusters (muCATs). muCAT's provide an inert electric means of propulsion for small spacecraft. The issue with these muCATs has been their efficiency levels and low amounts of thrust that they provide. The muCATs can provide muN levels of thrust per pulse. While being proficient for small spacecrafts, an increase in thrust is highly sought for, but the improvements must retain a small footprint and low power consumption. The topic of this thesis is the development and characterization of a new type of muCAT. The interest in this new design has been conceptualized based on experiments for plasma coating techniques. By utilizing the physics of evaporation, which has been used to decrease macroparticles (MP's) for thin film deposition, it has been theorized to also be applied to VAT technology. The concept is to increase levels of thrust with the muCAT, and provide higher levels of efficiency. This effect can be created without many additional components nor multiple additional loads to the thruster subsystem. Development of this new mechanic for thruster technology has been investigated through a variety of tests for fundamental proofs of concept. Running in two

  12. American Film Genres: Approaches to a Critical Theory of Popular Film.

    Science.gov (United States)

    Kaminsky, Stuart M.

    This book is divided into twelve sections and contains photographs from many of the films discussed. The introduction defines film genre and describes the general theories behind this book; "The Individual Film" analyzes the film "Little Caesar" as it relates to the genre of gangster films; "Comparative Forms"…

  13. Synthesizing photovoltaic thin films of high quality copper-zinc-tin alloy with at least one chalcogen species

    Science.gov (United States)

    Teeter, Glenn; Du, Hui; Young, Matthew

    2013-08-06

    A method for synthesizing a thin film of copper, zinc, tin, and a chalcogen species ("CZTCh" or "CZTSS") with well-controlled properties. The method includes depositing a thin film of precursor materials, e.g., approximately stoichiometric amounts of copper (Cu), zinc (Zn), tin (Sn), and a chalcogen species (Ch). The method then involves re-crystallizing and grain growth at higher temperatures, e.g., between about 725 and 925 degrees K, and annealing the precursor film at relatively lower temperatures, e.g., between 600 and 650 degrees K. The processing of the precursor film takes place in the presence of a quasi-equilibrium vapor, e.g., Sn and chalcogen species. The quasi-equilibrium vapor is used to maintain the precursor film in a quasi-equilibrium condition to reduce and even prevent decomposition of the CZTCh and is provided at a rate to balance desorption fluxes of Sn and chalcogens.

  14. Film beyond boundaries: film, migrant narratives and other media

    OpenAIRE

    Anelise Reich Corseuil

    2006-01-01

    The articles here presented are representative of the debates about the various transformational aspects of film studies, fostering the discussion about the transformations and interactions between national and international narrative forms, the interrelations between film and literature, and film with other media. The critical perspectives here presented range from an emphasis on cultural materialism, dialogism, reception theory, deconstructionism, narrative studies to film aesthetics or fil...

  15. Characterization of highly (110)- and (111)-oriented Pb(Zr,Ti)O3 films on BaPbO3 electrode using Ru conducting barrier

    International Nuclear Information System (INIS)

    Liang, C.-S.; Wu, J.-M.

    2005-01-01

    Highly non-(001)-oriented Pb(Zr,Ti)O 3 (PZT) films have been fabricated by rf-magnetron sputtering. The preferential (110)-oriented BaPbO 3 (BPO) deposited on Ru buffer layer induces the growth of (110)-oriented PZT film. With the aid of self-organized growth of PZT, the orientation of the film deposited on random-oriented BPO/Pt(111)/Ru(002) is (111)-preferred. The insertion of Pt layer between BPO and Ru changes the orientation of PZT from (110) to (111) and prevents the oxygen diffusion. These non-(001)-oriented PZT films possess more superior ferroelectric, fatigue, and retention properties than those of (001)-oriented PZT films

  16. Film: An Introduction.

    Science.gov (United States)

    Fell, John L.

    "Understanding Film," the opening section of this book, discusses perceptions of and responses to film and the way in which experiences with and knowledge of other media affect film viewing. The second section, "Film Elements," analyzes the basic elements of film: the use of space and time, the impact of editing, sound and color, and the effects…

  17. Photochemical oxygen reduction by zinc phthalocyanine and silver/gold nanoparticle incorporated silica thin films

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Manas; Ganesan, Vellaichamy, E-mail: velganesh@yahoo.com; Azad, Uday Pratap

    2012-12-15

    Silver or gold nanoparticles are synthesized using a borohydride reduction method and are anchored simultaneously into/onto the mercaptopropyl functionalized silica. Later, zinc phthalocyanine is adsorbed onto the above materials. Thin films of these materials are prepared by coating an aqueous colloidal suspension of the respective material onto glass plates. Visible light irradiation of these films in oxygen saturated, stirred aqueous solutions effectively reduces oxygen to hydrogen peroxide. The photocatalytic reduction of oxygen is explained on the basis of the semiconducting properties of the silica films. The back electron transfer reaction is largely prevented by means of a sacrificial electron donor, triethanolamine. - Highlights: Black-Right-Pointing-Pointer Zinc phthalocyanine adsorbed silica materials were prepared. Black-Right-Pointing-Pointer Thin films of these materials photocatalytically reduce oxygen. Black-Right-Pointing-Pointer The photocatalysis is explained based on semiconductor properties of the materials. Black-Right-Pointing-Pointer Metal nanoparticles increase the photocatalytic efficiency of the materials.

  18. Screen-film mammography

    International Nuclear Information System (INIS)

    Logan, W.W.; Janus, J.A.

    1987-01-01

    The development of screen-film mammography has resulted in the re-emergence of confidence, rather than fear, in mammography. When screen-film mammography is performed with state-of-the-art dedicated equipment utilizing vigorous breast compression and a ''soft'' x-ray beam for improved contrast, screen-film images are equivalent or superior to those of reduced-dose xeromammography and superior to those of nonscreen film mammography. Technological aids for conversion from xeromammographic or nonscreen film mammographic techniques to screen-film techniques have been described. Screen-film mammography should not be attempted until dedicated equipment has been obtained and the importance of vigorous compression has been understood

  19. Hall effect measurements of high-quality M n3CuN thin films and the electronic structure

    Science.gov (United States)

    Matsumoto, Toshiki; Hatano, Takafumi; Urata, Takahiro; Iida, Kazumasa; Takenaka, Koshi; Ikuta, Hiroshi

    2017-11-01

    The physical properties of M n3CuN were studied using thin films. We found that an annealing process was very effective to improve the film quality, the key of which was the use of Ti that prevented the formation of oxide impurities. Using these high-quality thin films, we found strong strain dependence for the ferromagnetic transition temperature (TC) and a sign change of the Hall coefficient at TC. The analysis of Hall coefficient data revealed a sizable decrease of hole concentration and a large increase of electron mobility below TC, which is discussed in relation to the electronic structure of this material.

  20. Transport in reversibly laser-modified YBa2Cu3O/sub 7-//sub x/ superconducting thin films

    International Nuclear Information System (INIS)

    Krchnavek, R.R.; Chan, S.; Rogers, C.T.; De Rosa, F.; Kelly, M.K.; Miceli, P.F.; Allen, S.J.

    1989-01-01

    A focused argon ion laser beam in a controlled ambient is used to modify the transport properties of superconducting YBa 2 Cu 3 O/sub 7-//sub x/ thin films. The laser-modified region shows a sharp transition temperature (T/sub c/≅76 K) that is reduced from the unmodified regions of the film (T/sub c/≅87 K). In situ monitoring of the room-temperature electrical resistance is used to control the laser processing and prevent formation of the semiconducting phase. The original properties of the superconducting film can be recovered by plasma oxidation indicating that the laser-induced phase is oxygen deficient

  1. Reinforced carbon nanotubes as electrically conducting and flexible films for space applications.

    Science.gov (United States)

    Atar, Nurit; Grossman, Eitan; Gouzman, Irina; Bolker, Asaf; Hanein, Yael

    2014-11-26

    Chemical vapor deposition (CVD)-grown entangled carbon nanotube (CNT) sheets are characterized by high electrical conductivity and durability to bending and folding. However, since freestanding CNT sheets are mechanically weak, they cannot be used as stand-alone flexible films. In this work, polyimide (PI) infiltration into entangled cup-stacked CNT (CSCNT) sheets was studied to form electrically conducting, robust, and flexible films for space applications. The infiltration process preserved CNTs' advantageous properties (i.e., conductivity and flexibility), prevented CNT agglomeration, and enabled CNT patterning. In particular, the CNT-PI films exhibited ohmic electrical conductance in both the lateral and vertical directions, with a sheet resistivity as low as 122 Ω/□, similar to that of as-grown CNT sheets, with minimal effect of the insulating matrix. Moreover, this high conductivity was preserved under mechanical and thermal manipulations. These properties make the reported CNT-PI films excellent candidates for applications where flexibility, thermal stability, and electrical conductivity are required. Particularly, the developed CNT-PI films were found to be durable in space environment hazards such as high vacuum, thermal cycling, and ionizing radiation, and hence they are suggested as an alternative for the electrostatic discharge (ESD) protection layer in spacecraft thermal blankets.

  2. Inactivation of Listeria in Foods Packed in Films Activated with Enterocin AS-48 plus Thymol Singly or in Combination with High-Hydrostatic Pressure Treatment

    Directory of Open Access Journals (Sweden)

    Irene Ortega Blázquez

    2017-11-01

    Full Text Available The aim of the present study was to determine the efficacy of films activated with enterocin AS-48 plus thymol singly, or in combination with high-hydrostatic pressure (HHP on the inactivation of Listeria innocua in sea bream fillets and in fruit puree stored under refrigeration for 10 days. L. innocua proliferated in control fish fillets during storage. The activated film reduced viable Listeria counts in fillets by 1.76 log cycles and prevented growth of survivors until mid-storage. Application of HHP treatment to fillets packed in films without antimicrobials reduced Listeria counts by 1.83 log cycles, but did not prevent the growth of survivors during storage. The combined treatment reduced viable counts by 1.88 log cycles and delayed growth of survivors during the whole storage period. L. innocua survived in puree during storage. The activated film reduced Listeria counts by 1.80 and 2.0 log cycles at days 0 and 3. After that point, Listeria were below the detection limit. No viable Listeria were detected in the purees after application of HHP treatment singly, or in combination with the activated film. Results from the study indicate that the efficacy of activated films against Listeria is markedly influenced by the food type.

  3. Comprehensive review on application of edible film on meat and meat products: An eco-friendly approach.

    Science.gov (United States)

    Umaraw, Pramila; Verma, Akhilesh K

    2017-04-13

    The functions of packaging materials are to prevent moisture loss, drip, reduce lipid oxidation, improve some of their sensorial properties (color, taste and smell) and provide microbial stability of foods. Edible films can be made from protein, polysaccharides and lipids or by combination of any of these to form a composite film. Nanocomposites are composite films made by incorporation of nanoparticles. Edible packaging and coating of the meat and meat products enhances the self-life by the incorporation of the active compound (such as antimicrobial and antioxidant compound) in to the packaging matrix. Incorporation of the some ingredients in the matrix may also improve the nutritional as well as sensory attributes of the packed products. Edible packaging material also reduces environmental pollution by overcoming the burden degradation as edible films are biodegradable and thus eco-friendly.

  4. Design and evaluation of buccal films as paediatric dosage form for transmucosal delivery of ondansetron.

    Science.gov (United States)

    Trastullo, Ramona; Abruzzo, Angela; Saladini, Bruno; Gallucci, Maria Caterina; Cerchiara, Teresa; Luppi, Barbara; Bigucci, Federica

    2016-08-01

    In the process of implementation and innovation of paediatric dosage forms, buccal films for transmucosal administration of drug represent one of the most interesting approach. In fact, films are able to provide an extended duration of activity allowing minimal dosage and frequency and offer an exact and flexible dose, associated with ease of handling. The objective of the present study was to develop polymeric films for the sustained release of ondansetron hydrochloride, a selective inhibitor of 5-HT3 receptors indicated in paediatrics for the prevention and treatment of nausea and vomiting caused by cytotoxic chemotherapy or radiotherapy and postoperatively. Films were prepared by casting and drying of aqueous solutions containing different weight ratios of hydroxypropylmethylcellulose (HPMC) with chitosan (CH) or sodium hyaluronate (HA) or gelatin (GEL) and characterized for their physico-chemical and functional properties. The presence of HA, GEL and CH did not improve the mucoadhesive properties of HPMC film. The inclusion of GEL and CH in HPMC film increased in vitro drug release with respect to the inclusion of HA, although films containing HA showed the highest water uptake. Moreover in agreement with the release behaviour, the inclusion of CH and GEL provided higher drug permeation through porcine buccal mucosa with respect to HPMC film and ensured linear permeation profiles of drug. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Hydrogen content and density in nanocrystalline carbon films of a predominant diamond character

    International Nuclear Information System (INIS)

    Hoffman, A.; Heiman, A.; Akhvlediani, R.; Lakin, E.; Zolotoyabko, E.; Cyterman, C.

    2003-01-01

    deposition temperatures an excess of hydrogen in the deposited layers helps to prevent the densification of the films and accumulation of microstresses and consequently the films maintains its graphitic character. At higher temperatures the hydrogen content in the films is relatively low and the film maintains its graphitic character

  6. Reactive laser-induced ablation as approach to titanium oxycarbide films

    International Nuclear Information System (INIS)

    Jandova, V.; Fajgar, R.; Dytrych, P.; Kostejn, M.; Drinek, V.; Kupcik, J.

    2015-01-01

    The IR laser-induced reactive ablation of frozen titanium ethoxide target was studied. The method involves the laser ablation of titanium ethoxide at − 140 °C in gaseous methane (4–50 Pa) atmosphere. This process leads to reactions of the ablative species with hydrocarbon in the gaseous phase. During the ablation of the frozen target excited species interact with methane molecules. The reactive ablation process leads to the formation of a smooth thin film. The thickness of prepared films depends on the number of IR pulses and their composition depends on the pressure of gaseous methane. This reactive IR ablation proceeds as a carbidation process providing nanostructured films with good adhesion to various substrates (glass, metals, KBr) depending on the carbon content in prepared films. Particles are also stabilized by layer preventing their surface oxidation in the atmosphere. The described results are important in the general context for the synthesis of reactive particles in the gas phase. The final products are characterized by spectroscopic, microscopic and diffraction techniques: SEM/EDX, HRTEM, electron diffraction, Raman spectroscopy and XPS. - Highlights: • IR laser ablation of frozen target of titanium ethoxide leads to a reduction in the gaseous methane (4-50 Pa). • Films deposited in methane have Ti/O/C stoichiometry and are oxidized in the atmosphere. • Layers deposited in methane are reduced and have less O in the topmost layers

  7. Reactive laser-induced ablation as approach to titanium oxycarbide films

    Energy Technology Data Exchange (ETDEWEB)

    Jandova, V., E-mail: jandova@icpf.cas.cz; Fajgar, R.; Dytrych, P.; Kostejn, M.; Drinek, V.; Kupcik, J.

    2015-09-01

    The IR laser-induced reactive ablation of frozen titanium ethoxide target was studied. The method involves the laser ablation of titanium ethoxide at − 140 °C in gaseous methane (4–50 Pa) atmosphere. This process leads to reactions of the ablative species with hydrocarbon in the gaseous phase. During the ablation of the frozen target excited species interact with methane molecules. The reactive ablation process leads to the formation of a smooth thin film. The thickness of prepared films depends on the number of IR pulses and their composition depends on the pressure of gaseous methane. This reactive IR ablation proceeds as a carbidation process providing nanostructured films with good adhesion to various substrates (glass, metals, KBr) depending on the carbon content in prepared films. Particles are also stabilized by layer preventing their surface oxidation in the atmosphere. The described results are important in the general context for the synthesis of reactive particles in the gas phase. The final products are characterized by spectroscopic, microscopic and diffraction techniques: SEM/EDX, HRTEM, electron diffraction, Raman spectroscopy and XPS. - Highlights: • IR laser ablation of frozen target of titanium ethoxide leads to a reduction in the gaseous methane (4-50 Pa). • Films deposited in methane have Ti/O/C stoichiometry and are oxidized in the atmosphere. • Layers deposited in methane are reduced and have less O in the topmost layers.

  8. The impact of an educational film on promoting knowledge and attitudes toward HIV in soldiers of the Serbian armed forces

    Directory of Open Access Journals (Sweden)

    Jadranin Željko

    2015-01-01

    Full Text Available Background/Aim. Millions of soldiers around the world represent one of the most vulnerable populations regarding exposure to human immunodeficiency virus (HIV infection. The programs for HIV prevention remain the most viable approach to reducing the spread of HIV infection. Very few studies have tested the effectiveness of HIV preventive interventions undertaken in military population. The aim of this study was to determine the effectiveness of educational film to transfer knowledge about HIV infection to soldiers. Methods. We performed a quasi-experimental study among 102 soldiers of the Serbian Armed Forces. The experimental intervention consisted of the HIV knowledge pre-questionnaire, watching a film on HIV knowledge, then the post-HIV knowledge questionnaire. The results of pre-and post-HIV knowledge questionnaires were compared. Results. There were 23 questions in the test. The average total score on the questionnaire before watching the film was 18.23 and after watching it was 20.14, which was statistically significant difference (p < 0.001. Conclusions. The results of the study show that viewing a film on HIV infection is an effective method of transferring knowledge about HIV to the Serbian military population.

  9. Thin films

    International Nuclear Information System (INIS)

    Strongin, M.; Miller, D.L.

    1976-01-01

    This article reviews the phenomena that occur in films from the point of view of a solid state physicist. Films form the basis for many established and developing technologies. Metal layers have always been important for optical coatings and as protective coatings. In the most sophisticated cases, films and their interaction on silicon surfaces form the basis of modern electronic technology. Films of silicon, GaAs and composites of these materials promise to lead to practical photovoltaic devices

  10. Flexible camphor diamond-like carbon coating on polyurethane to prevent Candida albicans biofilm growth.

    Science.gov (United States)

    Santos, Thaisa B; Vieira, Angela A; Paula, Luciana O; Santos, Everton D; Radi, Polyana A; Khouri, Sônia; Maciel, Homero S; Pessoa, Rodrigo S; Vieira, Lucia

    2017-04-01

    Camphor was incorporated in diamond-like carbon (DLC) films to prevent the Candida albicans yeasts fouling on polyurethane substrates, which is a material commonly used for catheter manufacturing. The camphor:DLC and DLC film for this investigation was produced by plasma enhanced chemical vapor deposition (PECVD), using an apparatus based on the flash evaporation of organic liquid (hexane) containing diluted camphor for camphor:DLC and hexane/methane, mixture for DLC films. The film was deposited at a low temperature of less than 25°C. We obtained very adherent camphor:DLC and DLC films that accompanied the substrate flexibility without delamination. The adherence of camphor:DLC and DLC films on polyurethane segments were evaluated by scratching test and bending polyurethane segments at 180°. The polyurethane samples, with and without camphor:DLC and DLC films were characterized by Raman spectroscopy, scanning electron microscopy, atomic force microscopy, and optical profilometry. Candida albicans biofilm formation on polyurethane, with and without camphor:DLC and DLC, was assessed. The camphor:DLC and DLC films reduced the biofilm growth by 99.0% and 91.0% of Candida albicans, respectively, compared to bare polyurethane. These results open the doors to studies of functionalized DLC coatings with biofilm inhibition properties used in the production of catheters or other biomedical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Luminescence study of ZnSe/PVA (polyvinyl alcohol) composite film

    Energy Technology Data Exchange (ETDEWEB)

    Lahariya, Vikas [Amity School of Applied Science, Amity University Haryana Panchgaon, Manesar, Haryana 122413 (India)

    2016-05-06

    The ZnSe nanocrystals have been prepared into poly vinyl alcohol(PVA) polymer matrix on glass using ZnCl2 and Na2SeSO3 as zinc and selenium source respectively. Poly vinyl Alcohol (PVA) used as polymer matrix cum capping agent due to their high viscosity and water solubility. It is transparent for visible region and prevents Se- ions to photo oxidation. The ZnSe/PVA composite film was deposited on glass substrate. The film was characterized by X Ray Diffraction (XRD) and UV-Visible absorption Spectroscopy and Photoluminescence. The X Ray Diffraction (XRD) study confirms the nanometer size (10 nm) particle formation within PVA matrix with cubic zinc blend crystal structure. The UV-Visible Absorption spectrum of ZnSe/PVA composite film shown blue shift in absorption edge indicating increased band gap due to quantum confinement. The calculated energy band gap from the absorption edge using Tauc relation is 3.4 eV. From the Photoluminescence study a broad peak at 435 nm has been observed in violet blue region due to recombination of surface states.

  12. Film som kunst

    DEFF Research Database (Denmark)

    Petersen, Anne Ring

    2013-01-01

    Films by artists induce scholars to work across art, film and cultural history. Accordingly, this article adopts an interdisciplinary approach to the British-Nigerian artist Yinka Shonibare’s film Un Ballo in Maschera (2004). The film is grounded in Shonibare’s unique use of African-print fabric...... in conjunction with references to European cultural and political history, but the film is also – it is alleged – rooted in Black British cinema and the transnational postcolonialism which emerged in the UK of the 1980s. The article starts with a general introduction to Shonibare’s art and the colonial...... connotations of the African-print fabric, which are also central to the critique of power in Un Ballo in Maschera. Its critical agenda is then analysed and put into historical perspective by relating the film to Black British film. A comparison with the Black Audio Film Collective’s key work Handsworth Songs...

  13. Mammographic microcalcifications: Detection with xerography, screen-film, and digitized film display

    International Nuclear Information System (INIS)

    Smathers, R.L.; Bush, E.; Drace, J.; Stevens, M.; Sommer, F.G.; Brown, B.W.; Karras, B.

    1986-01-01

    Pulverized bone specks and aluminum oxide specks were measured by hand into sizes ranging from 0.2 mm to 1.0 mm and then arranged in clusters. These clusters were superimposed on a human breast tissue phantom, and xeromammograms and screen-film mammograms of the clusters were made. The screen-film mammograms were digitized using a high-resolution laser scanner and then displayed on cathode ray tube (CRT) monitors. Six radiologists independently counted the microcalcifications on the xeromammograms, the screen-film mammograms, and the digitized film mammograms. The xeromammograms were examined with a magnifying glass; the screen-film images were examined with a magnifying glass and by hot light; and the digitized-film images were examined by electronic magnification and image processing. The bone speck size that corresponded to a mean 50% detectability level for each technique was as follows: xeromammography, 0.550 mm; digitized film, 0.573 mm; and screen-film, 0.661 mm. We postulate that electronic magnification and image processing with edge enhancement can improve the capability of screen-film mammography to enhance the detection of microcalcifications

  14. Filming eugenics: teaching the history of eugenics through film.

    Science.gov (United States)

    Ooten, Melissa; Trembanis, Sarah

    2007-01-01

    In teaching eugenics to undergraduate students and general public audiences, film should he considered as a provocative and fruitful medium that can generate important discussions about the intersections among eugenics, gender, class, race, and sexuality. This paper considers the use of two films, A Bill of Divorcement and The Lynchburg Story, as pedagogical tools for the history of eugenics. The authors provide background information on the films and suggestions for using the films to foster an active engagement with the historical eugenics movement.

  15. Surface treatment of ceramic articles

    International Nuclear Information System (INIS)

    Komvopoulos, K.; Brown, I.G.; Wei, B.; Anders, S.; Anders, A.; Bhatia, C.S.

    1998-01-01

    A process is disclosed for producing an article with improved ceramic surface properties including providing an article having a ceramic surface, and placing the article onto a conductive substrate holder in a hermetic enclosure. Thereafter a low pressure ambient is provided in the hermetic enclosure. A plasma including ions of solid materials is produced the ceramic surface of the article being at least partially immersed in a macroparticle free region of the plasma. While the article is immersed in the macroparticle free region, a bias of the substrate holder is biased between a low voltage at which material from the plasma condenses on the surface of the article and a high negative voltage at which ions from the plasma are implanted into the article. 15 figs

  16. Nuclear films

    International Nuclear Information System (INIS)

    Malone, Peter.

    1985-01-01

    This booklet is a resource for the study of feature films that highlight the theme of nuclear war. It provides basic credits and brief indication of the theme, treatment, quality and particular notable aspects; and a series of questions raised by the film. Seventy feature films and thirty documentaries are examined

  17. Film processing

    International Nuclear Information System (INIS)

    Abdul Nassir Ibrahim; Azali Muhammad; Ab. Razak Hamzah; Abd. Aziz Mohamed; Mohamad Pauzi Ismail

    2008-01-01

    The processing was made not only to show what are in the film but also to produce radiograph with high quality where the information gathered really presented level of the quality of the object inspected. Besides that, good procedure will make the film with good quality can keep the film in long time for reference. Here, more detailed on how the dark room functioned and its design. So, the good procedure while processed the film will be discussed detailed in this chapter from entering the dark room to exit from there.

  18. Effects of vacuum processing erbium dideuteride/ditritide films deposited on chromium underlays on copper substrates

    International Nuclear Information System (INIS)

    Provo, J.L.

    1978-01-01

    Thin films of erbium dideuteride/ditritide were experimentally produced on chromium underlays deposited on copper substrates. The chromium underlay is required to prevent erbium occluder/copper substrate alloying which inhibits hydriding. Data taken has shown that vacuum processing affects the erbium/chromium/copper interaction. With an in situ process in which underlay/occluder films are vacuum deposited onto copper substrates and hydrided with no air exposure between these steps, data indicates a minimum of 1500A of chromium is required for optimum hydriding. If films are vacuum deposited as above and air-exposed before hydriding, a minimum of 3000A of chromium was shown to be required for equivalent hydriding. Data suggests that the activation step (600 0 C for 1 hour) required for hydriding the film of the second type is responsible for the difference observed. Such underlay thickness parameters are important, with regard to heat transfer considerations in thin hydride targets used for neutron generation

  19. Antibacterial effects of silver-doped hydroxyapatite thin films sputter deposited on titanium

    International Nuclear Information System (INIS)

    Trujillo, Nathan A.; Oldinski, Rachael A.; Ma, Hongyan; Bryers, James D.; Williams, John D.; Popat, Ketul C.

    2012-01-01

    Since many orthopedic implants fail as a result of loosening, wear, and inflammation caused by repeated loading on the joints, coatings such as hydroxyapatite (HAp) on titanium with a unique topography have been shown to improve the interface between the implant and the natural tissue. Another serious problem with long-term or ideally permanent implants is infection. It is important to prevent initial bacterial colonization as existing colonies have the potential to become encased in an extracellular matrix polymer (biofilm) that is resistant to antibacterial agents. In this study, plasma-based ion implantation was used to examine the effects of pre-etching on plain titanium. Topographical changes to the titanium samples were examined and compared via scanning electron microscopy. Hydroxyapatite and silver-doped hydroxyapatite thin films were then sputter deposited on titanium substrates etched at − 700 eV. For silver-doped films, two concentrations of silver (∼ 0.5 wt.% and ∼ 1.5 wt.%) were used. Silver concentrations in the film were determined using energy dispersive X-ray spectroscopy. Hydroxyapatite film thicknesses were determined by measuring the surface profile using contact profilometry. Staphylococcus epidermidis and Pseudomonas aeruginosa adhesion studies were performed on plain titanium, titanium coated with hydroxyapatite, titanium coated with ∼ 0.5 wt.% silver-doped hydroxyapatite, and titanium coated with ∼ 1.5 wt.% silver-doped hydroxyapatite. Results indicate that less bacteria adhered to surfaces containing hydroxyapatite and silver; further, as the hydroxyapatite films delaminated, silver ions were released which killed bacteria in suspension. - Highlights: ► We have developed a combination of plasma-based ion implantation and ion beam sputter deposition technique. ► Silver-doped hydroxyapatite thin films on titanium were developed. ► The thin films showed the ability to control the concentration of silver that is doped within the

  20. Automatic film loader for X-ray spot film device

    International Nuclear Information System (INIS)

    1975-01-01

    A light tight tunnel extends over the top of a diagnostic X-ray table. A film cassette is mounted for reciprocating in the tunnel between an X-ray exposure position and a position in which the cassette is unloaded or loaded with film automatically. Unexposed films are dispensed one at a time into the cassette from a feed magazine at one end of the tunnel. After exposure, the film is ejected from the cassette into a receiving magazine at the same end of the tunnel. (Auth.)

  1. Low-Temperature Soft-Cover Deposition of Uniform Large-Scale Perovskite Films for High-Performance Solar Cells.

    Science.gov (United States)

    Ye, Fei; Tang, Wentao; Xie, Fengxian; Yin, Maoshu; He, Jinjin; Wang, Yanbo; Chen, Han; Qiang, Yinghuai; Yang, Xudong; Han, Liyuan

    2017-09-01

    Large-scale high-quality perovskite thin films are crucial to produce high-performance perovskite solar cells. However, for perovskite films fabricated by solvent-rich processes, film uniformity can be prevented by convection during thermal evaporation of the solvent. Here, a scalable low-temperature soft-cover deposition (LT-SCD) method is presented, where the thermal convection-induced defects in perovskite films are eliminated through a strategy of surface tension relaxation. Compact, homogeneous, and convection-induced-defects-free perovskite films are obtained on an area of 12 cm 2 , which enables a power conversion efficiency (PCE) of 15.5% on a solar cell with an area of 5 cm 2 . This is the highest efficiency at this large cell area. A PCE of 15.3% is also obtained on a flexible perovskite solar cell deposited on the polyethylene terephthalate substrate owing to the advantage of presented low-temperature processing. Hence, the present LT-SCD technology provides a new non-spin-coating route to the deposition of large-area uniform perovskite films for both rigid and flexible perovskite devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Increased Dapivirine tissue accumulation through vaginal film codelivery of dapivirine and Tenofovir.

    Science.gov (United States)

    Akil, Ayman; Devlin, Brid; Cost, Marilyn; Rohan, Lisa Cencia

    2014-05-05

    The HIV-1 replication inhibitor dapivirine (DPV) is one of the most promising drug candidates being used in topical microbicide products for prevention of HIV-1 sexual transmission. To be able to block HIV-1 replication, DPV must have access to the viral reverse transcriptase enzyme. The window for DPV to access the enzyme happens during the HIV-1 cellular infection cycle. Thus, in order for DPV to exert its anti-HIV activity, it must be present in the mucosal tissue or cells where HIV-1 infection occurs. A dosage form containing DPV must be able to deliver the drug to the tissue site of action. Polymeric films are solid dosage forms that dissolve and release their payload upon contact with fluids. Films have been used as vaginal delivery systems of topical microbicide drug candidates including DPV. For use in topical microbicide products containing DPV, polymeric films must prove their ability to deliver DPV to the target tissue site of action. Ex vivo exposure studies of human ectocervical tissue to DPV film revealed that DPV was released from the film and did diffuse into the tissue in a concentration dependent manner indicating a process of passive diffusion. Analysis of drug distribution in the tissue revealed that DPV accumulated mostly at the basal layer of the epithelium infiltrating the upper part of the stroma. Furthermore, as a combination microbicide product, codelivery of DPV and TFV from a polymeric film resulted in a significant increase in DPV tissue concentration [14.21 (single entity film) and 31.03 μg/g (combination film)], whereas no impact on TFV tissue concentration was found. In vitro release experiments showed that this observation was due to a more rapid DPV release from the combination film as compared to the single entity film. In conclusion, the findings of this study confirm the ability of polymeric films to deliver DPV and TFV to human ectocervical tissue and show that codelivery of the two agents has a significant impact on DPV

  3. Water-evaporation reduction by duplex films: application to the human tear film.

    Science.gov (United States)

    Cerretani, Colin F; Ho, Nghia H; Radke, C J

    2013-09-01

    Water-evaporation reduction by duplex-oil films is especially important to understand the physiology of the human tear film. Secreted lipids, called meibum, form a duplex film that coats the aqueous tear film and purportedly reduces tear evaporation. Lipid-layer deficiency is correlated with the occurrence of dry-eye disease; however, in-vitro experiments fail to show water-evaporation reduction by tear-lipid duplex films. We review the available literature on water-evaporation reduction by duplex-oil films and outline the theoretical underpinnings of spreading and evaporation kinetics that govern behavior of these systems. A dissolution-diffusion model unifies the data reported in the literature and identifies dewetting of duplex films into lenses as a key challenge to obtaining significant evaporation reduction. We develop an improved apparatus for measuring evaporation reduction by duplex-oil films including simultaneous assessment of film coverage, stability, and temperature, all under controlled external mass transfer. New data reported in this study fit into the larger body of work conducted on water-evaporation reduction by duplex-oil films. Duplex-oil films of oxidized mineral oil/mucin (MOx/BSM), human meibum (HM), and bovine meibum (BM) reduce water evaporation by a dissolution-diffusion mechanism, as confirmed by agreement between measurement and theory. The water permeability of oxidized-mineral-oil duplex films agrees with those reported in the literature, after correction for the presence of mucin. We find that duplex-oil films of bovine and human meibum at physiologic temperature reduce water evaporation only 6-8% for a 100-nm film thickness pertinent to the human tear film. Comparison to in-vivo human tear-evaporation measurements is inconclusive because evaporation from a clean-water surface is not measured and because the mass-transfer resistance is not characterized. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Effect of film size on drainage of foam and emulsion films

    International Nuclear Information System (INIS)

    Malhotra, A.K.; Wasan, D.T.

    1987-01-01

    All available theoretical analyses for the drainage of thin plane-parallel liquid films, such as those existing between two approaching liquid droplets or bubbles in the coalescence process, predict essentially the same dependence of rate of thinning of the intervening film on its size as is described by the Reynolds equation - that is, drainage time increases with the square of the film radius. Recently, the authors reported experimental data for both foam and emulsion films which showed that the measured drainage times increase with about a 0.8 power of the film radius, a value much smaller than the theoretically predicted value of 2.0. Here they present a hydrodynamic analysis to predict the experimentally observed effect of film size on the kinetics of thinning of emulsion and foam films. They extend the applicability of the Reynolds model by accounting for the flow in the Plateau borders as well as the London-van der Waals forces in the thin film phase. Their theoretical predictions are in good agreement with the experimental data on the dependence of drainage time of both foam and emulsion films on their radii

  5. Large third-order optical nonlinearity in vertically oriented mesoporous silica thin films embedded with Ag nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Min; Liu, Qiming, E-mail: qmliu@whu.edu.cn [Wuhan University, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology (China)

    2016-12-15

    Taking advantage of the channel confinement of mesoporous films to prevent the agglomeration of Ag nanoparticles to achieve large third-order optical nonlinearity in amorphous materials, Ag-loaded composite mesoporous silica film was prepared by the electrochemical deposition method on ITO substrate. Ag ions were firstly transported into the channels of mesoporous film by the diffusion and binding force of channels, which were reduced to nanoparticles by applying suitable voltage. The existence and uniform distribution of Ag nanoparticles ranging in 1–10 nm in the mesoporous silica thin films were exhibited by UV spectrophotometer, X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) measurements. The third-order optical nonlinearity induced by Ag nanoparticles was studied by the Z-scan technique. Due to the local field surface plasmon resonance, the maximum third-order nonlinear optical susceptibility of Ag-loaded composite mesoporous silica film is 1.53×10{sup −10} esu, which is 1000 times larger than that of the Ag-contained chalcogenide glasses which showed large nonlinearity in amorphous materials.

  6. Superconducting thin films

    International Nuclear Information System (INIS)

    Hebard, A.F.; Vandenberg, J.M.

    1982-01-01

    This invention relates to granular metal and metal oxide superconducting films formed by ion beam sputter deposition. Illustratively, the films comprise irregularly shaped, randomly oriented, small lead grains interspersed in an insulating lead oxide matrix. The films are hillock-resistant when subjected to thermal cycling and exhibit unusual josephson-type switching characteristics. Depending on the oxygen content, a film may behave in a manner similar to that of a plurality of series connected josephson junctions, or the film may have a voltage difference in a direction parallel to a major surface of the film that is capable of being switched from zero voltage difference to a finite voltage difference in response to a current larger than the critical current

  7. As Film Goes Byte: The Change From Analog to Digital Film Perception

    OpenAIRE

    Loertscher, Miriam Laura; Weibel, David; Spiegel, Simon; Flueckiger, Barbara; Mennel, Pierre; Mast, Fred; Iseli, Christian

    2016-01-01

    The digital revolution changed film production in many ways. Until the end of the 20th century, most film professionals and critics preferred celluloid film. However, no previous empirical study compared complete narrative films recorded with analog and digital cinematography. Three short narrative films were produced with an analog and a digital camera attached to a 3D rig in order to control all optical parameters. In postproduction, a third version of a digital film was created to mimic th...

  8. As Film Goes Byte: The Change From Analog to Digital Film Perception.

    OpenAIRE

    Loertscher M. L. Weibel D. Spiegel S. Flueckiger B. Mennel P. Mast F. W. & Iseli C.

    2016-01-01

    The digital revolution changed film production in many ways. Until the end of the 20th century most film professionals and critics preferred celluloid film. However no previous empirical study compared complete narrative films recorded with analog and digital cinematography. Three short narrative films were produced with an analog and a digital camera attached to a 3D rig in order to control all optical parameters. In postproduction a third version of a digital film was created to mimic the a...

  9. Demens Film

    DEFF Research Database (Denmark)

    Jensen, Anders Møller

    2012-01-01

    Vi vil skabe film til mennesker med demens – ikke film om demens sygdommen eller beretninger om livet og hverdagen med en kronisk lidelse. Filmene skal medvirke til at frembringe en behagelig stemning omkring og hos mennesker med demens, så hverdagen bliver så tryg som mulig. Filmene skal samtidig...... var at afgrænse og prioritere projektet, samt komme med anbefalinger omkring hvad der er vigtigt, i forbindelse med produktion af film målrettet mennesker med demens. Resultat af ekspertgruppen sammenfattes i denne rapport. Projektet gennemføres som et samarbejde mellem Retrospect Film...

  10. Formation of thin film like assembly of exfoliated C3N4 nanoflakes by solvent non-evaporative method using centrifuge

    Science.gov (United States)

    Tejasvi, Ravi; Basu, Suddhasatwa

    2017-12-01

    A simple method for depositing a thin film of nanomaterial on a substrate using centrifugation technique has been developed, whereby solvent evaporation is prevented and solvent reuse is possible. The centrifuge technique of deposition yields uniform, smooth thin film irrespective of substrate surface texture. The deposited TiO2/eC3N4 film studied, through field emission scanning electron microscope, atomic force microscope, and optical surface profilometer, shows variation in surface roughness on the basis of centrifugation speeds. Initially film coverage improves and surface roughness decreases with the increase in rpm of the centrifuge and the surface roughness slightly increases with further increase in rpm. The photoelectrochemical studies of TiO2/eC3N4 films suggest that the centrifuge technique forms better heterojunctions compared to that by spin coating technique leading to enhanced photoelectrochemical water splitting.

  11. Evaluation of high myopia complications prevention program in university freshmen.

    Science.gov (United States)

    Tseng, Gow-Lieng; Chen, Cheng-Yu

    2016-10-01

    High myopia is a global eye health problem because of its high incidence of sight-threatening complications. Due to the role of awareness, self-examination, and preventive behavior in prevention of morbidity of high myopia complications, promoting knowledge, capabilities, and attitude of high myopic personnel are required in this regard.In this quasi-experiment study, 31 freshmen with high myopia in a national university were enrolled in 2014. The data were collected by validated and reliable questionnaire based on health belief model (HBM) and self-efficacy theory. The intervention program consisted of 1 educational session lasting 150 minutes by lecturing of high myopia complications, virtual reality experiencing, similarity modeling, and quibbling a film made on high myopia complications preventive concepts.Implementing the educational program showed immediate effect in knowledge, perceived susceptibility, perceived severity, self-efficacy, and preventive behavior intention. While 6 weeks after the educational program, significant increases were observed in cues to action, self-efficacy, and preventive behavior intention.This article provided that, after a single session, there was positive improvement in high myopia complication prevention behavior intention among participants. These positive effects confirmed the efficacy of the education program and will probably induce behavior change.

  12. Atomic-Oxygen-Durable and Electrically-Conductive CNT-POSS-Polyimide Flexible Films for Space Applications.

    Science.gov (United States)

    Atar, Nurit; Grossman, Eitan; Gouzman, Irina; Bolker, Asaf; Murray, Vanessa J; Marshall, Brooks C; Qian, Min; Minton, Timothy K; Hanein, Yael

    2015-06-10

    In low Earth orbit (LEO), hazards such as atomic oxygen (AO) or electrostatic discharge (ESD) degrade polymeric materials, specifically, the extensively used polyimide (PI) Kapton. We prepared PI-based nanocomposite films that show both AO durability and ESD protection by incorporating polyhedral oligomeric silsesquioxane (POSS) and carbon nanotube (CNT) additives. The unique methods that are reported prevent CNT agglomeration and degradation of the CNT properties that are common in dispersion-based processes. The influence of the POSS content on the electrical, mechanical, and thermo-optical properties of the CNT-POSS-PI films was investigated and compared to those of control PI and CNT-PI films. CNT-POSS-PI films with 5 and 15 wt % POSS content exhibited sheet resistivities as low as 200 Ω/□, and these resistivities remained essentially unchanged after exposure to AO with a fluence of ∼2.3 × 10(20) O atoms cm(-2). CNT-POSS-PI films with 15 wt % POSS content exhibited an erosion yield of 4.8 × 10(-25) cm(3) O atom(-1) under 2.3 × 10(20) O atoms cm(-2) AO fluence, roughly one order of magnitude lower than that of pure PI films. The durability of the conductivity of the composite films was demonstrated by rolling film samples with a tight radius up to 300 times. The stability of the films to thermal cycling and ionizing radiation was also demonstrated. These properties make the prepared CNT-POSS-PI films with 15 wt % POSS content excellent candidates for applications where AO durability and electrical conductivity are required for flexible and thermally stable materials. Hence, they are suggested here for LEO applications such as the outer layers of spacecraft thermal blankets.

  13. Ag films deposited on Si and Ti: How the film-substrate interaction influences the nanoscale film morphology

    Science.gov (United States)

    Ruffino, F.; Torrisi, V.

    2017-11-01

    Submicron-thick Ag films were sputter deposited, at room temperature, on Si, covered by the native SiO2 layer, and on Ti, covered by the native TiO2 layer, under normal and oblique deposition angle. The aim of this work was to study the morphological differences in the grown Ag films on the two substrates when fixed all the other deposition parameters. In fact, the surface diffusivity of the Ag adatoms is different on the two substrates (higher on the SiO2 surface) due to the different Ag-SiO2 and Ag-TiO2 atomic interactions. So, the effect of the adatoms surface diffusivity, as determined by the adatoms-substrate interaction, on the final film morphology was analyzed. To this end, microscopic analyses were used to study the morphology of the grown Ag films. Even if the homologous temperature prescribes that the Ag film grows on both substrates in the zone I described by the structure zone model some significant differences are observed on the basis of the supporting substrate. In the normal incidence condition, on the SiO2/Si surface a dense close-packed Ag film exhibiting a smooth surface is obtained, while on the TiO2/Ti surface a more columnar film morphology is formed. In the oblique incidence condition the columnar morphology for the Ag film occurs both on SiO2/Si and TiO2/Ti but a higher porous columnar film is obtained on TiO2/Ti due to the lower Ag diffusivity. These results indicate that the adatoms diffusivity on the substrate as determined by the adatom-surface interaction (in addition to the substrate temperature) strongly determines the final film nanostructure.

  14. Use of collagen film as a dural substitute: preliminary animal studies.

    Science.gov (United States)

    Collins, R L; Christiansen, D; Zazanis, G A; Silver, F H

    1991-02-01

    Cadaver grafts, laminated metallic materials, and synthetic fabrics have been evaluated as dural substitutes. Use of cadaver tissues is limited by fear of transmission of infectious disease while use of synthetic materials is associated with implant encapsulation and foreign body reactions. The purpose of this study is to evaluate the use of collagen film as a dural substitute. Collagen films prepared from bovine skin were used to replace the dura of rabbits and histological observations were made at 16, 28, 42, and 56 days postimplantation. Controls consisted of dura that was removed and then reattached. Control dura showed no signs of inflammation or adhesion to underlying tissue at 16 and 28 days postimplantation. By 56 days postimplantation, extensive connective tissue deposition was observed in close proximity to adjacent bone as well as pia arachnoid adhesions. Implanted collagen film behaved in a similar manner to control dura showing minimal inflammatory response at all time periods. At 56 days postimplantation collagen film appeared strongly infiltrated by connective tissue cells that deposited new collagen. The results of this study suggest that a reconstituted type I collagen film crosslinked with cyanamide acts as a temporary barrier preventing loss of fluid and adhesion formation. It is replaced after approximately 2 months with host collagen with limited inflammatory and fibrotic complications. Further studies are needed to completely characterize the new connective tissue formed as well as long-term biocompatibility and functioning of a reconstituted collagen dural substitute.

  15. Low-temperature liquid phase deposited TiO{sub 2} films on stainless steel for photogenerated cathodic protection applications

    Energy Technology Data Exchange (ETDEWEB)

    Lei, C.X.; Zhou, H. [College of Materials, Xiamen University, Xiamen 361005 (China); Feng, Z.D., E-mail: zdfeng@xmu.edu.cn [College of Materials, Xiamen University, Xiamen 361005 (China); Zhu, Y.F.; Du, R.G. [College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)

    2011-06-01

    The low-temperature synthesis of anatase TiO{sub 2} films was an imperative requirement for their application to corrosion prevention of metals. In this paper, a liquid phase deposition (LPD) technique was developed to prepare TiO{sub 2} films on SUS304 stainless steel (304SS) at a relatively low temperature (80 deg. C). The as-prepared films were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photon spectroscopy (XPS). It was observed that a dense and crack-free anatase TiO{sub 2} film with a thickness about 300 nm was obtained. The film contained some fluorine and nitrogen elements, and the amounts of these impurities were greatly decreased upon calcination. Under the white light illumination, the electrode potential of TiO{sub 2} coated 304SS rapidly shifted to a more negative direction. Moreover, the photopotential of TiO{sub 2}/304SS electrode showed more negative values with increased film thickness. In conclusion, the photogenerated cathodic protection of 304SS was achieved by the low-temperature LPD-derived TiO{sub 2} film.

  16. The Photocatalytic Activity and Compact Layer Characteristics of TiO2 Films Prepared Using Radio Frequency Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    H. C. Chang

    2014-01-01

    Full Text Available TiO2 compact layers are used in dye-sensitized solar cells (DSSCs to prevent charge recombination between the electrolyte and the transparent conductive substrate (indium tin oxide, ITO; fluorine-doped tin oxide, FTO. Thin TiO2 compact layers are deposited onto ITO/glass by means of radio frequency (rf magnetron sputtering, using deposition parameters that ensure greater photocatalytic activity and increased DSSC conversion efficiency. The photoinduced decomposition of methylene blue (MB and the photoinduced hydrophilicity of the TiO2 thin films are also investigated. The photocatalytic performance characteristics for the deposition of TiO2 films are improved by using the Grey-Taguchi method. The average transmittance in the visible region exceeds 85% for all samples. The XRD patterns of the TiO2 films, for sol-gel with spin coating of porous TiO2/TiO2 compact/ITO/glass, show a good crystalline structure. In contrast, without the TiO2 compact layer (only porous TiO2, the peak intensity of the anatase (101 plane in the XRD patterns for the TiO2 film has a lower value, which demonstrates inferior crystalline quality. With a TiO2 compact layer to prevent charge recombination, a higher short-circuit current density is obtained. The DSSC with the FTO/glass and Pt counter electrode demonstrates the energy conversion efficiency increased.

  17. Preventing dewetting during rapid-thermal annealing of FePt films with enhanced L10 ordering by introducing Ag cap-layers

    International Nuclear Information System (INIS)

    Hsiao, S.N.; Wu, S.C.; Liu, S.H.; Tsai, J.L.; Chen, S.K.; Chang, Y.C.; Lee, H.Y.

    2015-01-01

    High-order FePt continuous films with a strong (001) texture were fabricated on a glass substrate by introducing Ag layers and rapid thermal annealing (RTA). The dewetting of the (001)-textured FePt was suppressed during RTA with high heating rates (>80 K/s). The Ag cap layers not only increased the in-plane tensile stress, but also improved the (001) anisotropy and L1 0 ordering of the FePt layers. All continuous Ag/FePt bilayer films possessed strong perpendicular anisotropies and high-ordered states irrespective of the Ag layer thickness. - Highlights: • Dewetting of (001) FePt fims were suppressed by introducing Ag cap layers. • Ag layers enhanced in-plane tensile stress, (001) texture and L1 0 ordering. • Irrespective of Ag thickness, the Ag/FePt films exhibited strong (001) texture

  18. Development of neutron diffuse scattering analysis code by thin film and multilayer film

    International Nuclear Information System (INIS)

    Soyama, Kazuhiko

    2004-01-01

    To research surface structure of thin film and multilayer film by neutron, a neutron diffuse scattering analysis code using DWBA (Distorted-Wave Bron Approximation) principle was developed. Subjects using this code contain the surface and interface properties of solid/solid, solid/liquid, liquid/liquid and gas/liquid, and metal, magnetism and polymer thin film and biomembran. The roughness of surface and interface of substance shows fractal self-similarity and its analytical model is based on DWBA theory by Sinha. The surface and interface properties by diffuse scattering are investigated on the basis of the theoretical model. The calculation values are proved to be agreed with the experimental values. On neutron diffuse scattering by thin film, roughness of surface of thin film, correlation function, neutron propagation by thin film, diffuse scattering by DWBA theory, measurement model, SDIFFF (neutron diffuse scattering analysis program by thin film) and simulation results are explained. On neutron diffuse scattering by multilayer film, roughness of multilayer film, principle of diffuse scattering, measurement method and simulation examples by MDIFF (neutron diffuse scattering analysis program by multilayer film) are explained. (S.Y.)To research surface structure of thin film and multilayer film by neutron, a neutron diffuse scattering analysis code using DWBA (Distorted-Wave Bron Approximation) principle was developed. Subjects using this code contain the surface and interface properties of solid/solid, solid/liquid, liquid/liquid and gas/liquid, and metal, magnetism and polymer thin film and biomembran. The roughness of surface and interface of substance shows fractal self-similarity and its analytical model is based on DWBA theory by Sinha. The surface and interface properties by diffuse scattering are investigated on the basis of the theoretical model. The calculation values are proved to be agreed with the experimental values. On neutron diffuse scattering

  19. Film beyond boundaries: film, migrant narratives and other media Film beyond boundaries: film, migrant narratives and other media

    Directory of Open Access Journals (Sweden)

    Anelise Reich Corseuil

    2008-04-01

    Full Text Available The articles here presented are representative of the debates about the various transformational aspects of film studies, fostering the discussion about the transformations and interactions between national and international narrative forms, the interrelations between film and literature, and film with other media. The critical perspectives here presented range from an emphasis on cultural materialism, dialogism, reception theory, deconstructionism, narrative studies to film aesthetics or film genre, and can be grouped in three major interrelated areas of film studies: adaptation studies, representation and aesthetics, and film and other media. All of them enable a critical perspective as regards the fluidity of the boundaries separating film from other media, such as literature, television, DVDs, and video games, as newer narrative forms that are incorporated by film, and the transformations in terms of aesthetics and forms of representation in contemporary film and media (the transgeneric nature of film, the interrelations between national and international cinemas, and the demands for a broader perception of the overwhelming mediations of the image in our contemporary society. Moreover, the articles are inserted within recent critical debates on adaptation, digital media and national and transnational cinema (Naremore, Sobchack, Druckery and Williams. All articles combine important theoretical concerns with the analysis of specific films. Robert Stam's “Teoria e Prática da Adaptação: da Fidelidade à Intertextualidade” (“Theory and the practice of adaptation: from fidelity to intertextuality” offers a rich perspective on the issue of adaptation in its relationship with critical theory. He analyses the changing critical views on adaptation, which go from the priority given to the canonic literary text, as an origin, to a more fluid, intertextual and dialogical approach to film adaptation. Drawing from Bakhtin's concept of

  20. Polyox and carrageenan based composite film dressing containing anti-microbial and anti-inflammatory drugs for effective wound healing.

    Science.gov (United States)

    Boateng, Joshua S; Pawar, Harshavardhan V; Tetteh, John

    2013-01-30

    Polyethylene oxide (Polyox) and carrageenan based solvent cast films have been formulated as dressings for drug delivery to wounds. Films plasticised with glycerol were loaded with streptomycin (30%, w/w) and diclofenac (10%, w/w) for enhanced healing effects in chronic wounds. Blank and drug loaded films were characterised by texture analysis (for mechanical and mucoadhesive properties), scanning electron microscopy, differential scanning calorimetry, X-ray diffraction and Fourier transform infrared spectroscopy. In addition, swelling, in vitro drug release and antibacterial studies were conducted to further characterise the films. Both blank and drug loaded films showed a smooth, homogeneous surface morphology, excellent transparency, high elasticity and acceptable tensile (mechanical) properties. The drug loaded films showed a high capacity to absorb simulated wound fluid and significant mucoadhesion force which is expected to allow effective adherence to and protection of the wound. The films showed controlled release of both streptomycin and diclofenac for 72 h. These drug loaded films produced higher zones of inhibition against Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli compared to the individual drugs zones of inhibition. Incorporation of streptomycin can prevent and treat chronic wound infections whereas diclofenac can target the inflammatory phase of wound healing to relieve pain and swelling. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Danish independent film, or how to make films without public funding

    DEFF Research Database (Denmark)

    Hansen, Kim Toft

    Studying independent film in Denmark is a new and interesting way to analyse power relations in Danish film productions. The sheer magnitude of Danish indiefilms is in itself a very convincing voice to be heard. Throughout the past almost two decades we have seen a developing challenge to the typ......Studying independent film in Denmark is a new and interesting way to analyse power relations in Danish film productions. The sheer magnitude of Danish indiefilms is in itself a very convincing voice to be heard. Throughout the past almost two decades we have seen a developing challenge...... known as – Danish independent film is the American director Robert Rodriguez and especially his book Rebel without a crew (1995). The book is a diary of his first successful feature film production El mariachi (1992) and, basically, here he outlines a very different do-it-yourself-method of film...

  2. Contributions of Film Introductions and Film Summaries to Learning from Instructional Films.

    Science.gov (United States)

    Lathrop, C. W., Jr.; Norford, C. A.

    An exploratory study of the contribution to learning of typical introductory and summarizing sequences in instructional films underlined the need for further experimental work to determine what kinds of introductory and concluding sequences are most useful in promoting learning from films. The first part of the study was concerned with film…

  3. Epidemiologic investigation of a cluster of workplace HIV infections in the adult film industry: Los Angeles, California, 2004.

    Science.gov (United States)

    Taylor, Melanie M; Rotblatt, Harlan; Brooks, John T; Montoya, Jorge; Aynalem, Getahun; Smith, Lisa; Kenney, Kerry; Laubacher, Lori; Bustamante, Tony; Kim-Farley, Robert; Fielding, Jonathan; Bernard, Bruce; Daar, Eric; Kerndt, Peter R

    2007-01-15

    Adult film production is a legal, multibillion dollar industry in California. In response to reports of human immunodeficiency virus (HIV) transmission by an adult film worker, we sought to determine the extent of HIV infection among exposed workers and to identify means of improving worker safety. The Los Angeles County Department of Health Services initiated an outbreak investigation that included interviews of infected workers to elicit information about recent sex partners, review of the testing agency's medical records and laboratory results, molecular analysis of HIV isolates from the 4 infected workers, and a risk assessment of HIV transmission in the adult film industry. Many adult film workers participate in a monthly program of screening for HIV infection by means of polymerase chain reaction-based technology to detect HIV DNA in blood. A male performer tested negative for HIV on 12 February 2004 and 17 March 2004, then tested positive for HIV on 9 April 2004. During the period between the negative test results, he experienced a flulike illness after performing unprotected vaginal and anal intercourse for an adult film produced outside the United States by a US company. After returning to California, he performed unprotected sex acts for adult films with 13 female partners who had all tested negative for HIV in the preceding 30 days; 3 subsequently tested positive for HIV (a 23% attack rate). Contact tracing identified no reasonable sources of infection other than the male index patient. Although current testing methods may shorten the window period to diagnosis of new HIV infection, they fail to prevent occupational acquisition of HIV in this setting. A California Occupational Safety and Health Administration-approved written health and safety program that emphasizes primary prevention is needed for this industry.

  4. Assessing the antimicrobial activity of zinc oxide thin films using disk diffusion and biofilm reactor

    International Nuclear Information System (INIS)

    Gittard, Shaun D.; Perfect, John R.; Monteiro-Riviere, Nancy A.; Wei Wei; Jin Chunming; Narayan, Roger J.

    2009-01-01

    The electronic and chemical properties of semiconductor materials may be useful in preventing growth of microorganisms. In this article, in vitro methods for assessing microbial growth on semiconductor materials will be presented. The structural and biological properties of silicon wafers coated with zinc oxide thin films were evaluated using atomic force microscopy, X-ray photoelectron spectroscopy, and MTT viability assay. The antimicrobial properties of zinc oxide thin films were established using disk diffusion and CDC Biofilm Reactor studies. Our results suggest that zinc oxide and other semiconductor materials may play a leading role in providing antimicrobial functionality to the next-generation medical devices

  5. Films and dark room

    International Nuclear Information System (INIS)

    Abdul Nassir Ibrahim; Azali Muhammad; Ab. Razak Hamzah; Abd. Aziz Mohamed; Mohamad Pauzi Ismail

    2008-01-01

    After we know where the radiographic come from, then we must know about the film and also dark room. So, this chapter 5 discusses the two main components for radiography work that is film and dark room, places to process the film. Film are structured with three structured that are basic structured, emulsion and protection structured. So, this film can be classified either with their speed, screen and standard that used. The process to wash the film must be done in dark room otherwise the radiographer cannot get what are they inspected. The processing of film will be discussed briefly in next chapter.

  6. «La vida alegre». How Important is Condom Used for Sexually Transmitted Diseases Prevention

    Directory of Open Access Journals (Sweden)

    Emilio PINTOR HOLGUÍN

    2015-10-01

    Full Text Available Action takes place in Spain in the mid?eighties (1987 with the change in Spanish society and the appearance of the first cases of AIDS in our country. From a comical sight, the adventures of a dermatologist particularly interested on sexually transmitted diseases prevention; especially in patients with risk behaviors, such as homosexuals, prostitutes and drug addicts injecting. The entire film revolves around the importance of condom use in preventing all sexually transmitted diseases.

  7. ANALISIS SUDUT PANDANG KAMERA (Studi kasus: Film Jelangkung dan Film The Ring 1

    Directory of Open Access Journals (Sweden)

    Listia Natadjaja

    2005-01-01

    Full Text Available Horror movie is one of the strengths of Indonesian film industry; however it is not so popular in the International market. Thus%2C an analysis is needed to determine what the strengths are of another horror movie that has achieved global recognition. This analysis trie s to examine film angles that could be one of the important factors in audio visual in creating horror movies. The Ring 1 is chosen as a comparison to Indonesian horror movie. The Ring 1 has the most world recognition%2C and it has been re-made by Korean and American horror movie makers. Jelangkung is chosen because it is the pioneer of horror movies in Indonesia and has inspired other movies in the same genre. Both films are analyzed from the camera angle aspect which gives the horror effect. Abstract in Bahasa Indonesia : Film horor merupakan salah satu kekuatan perfilman layar lebar di Indonesia.%2C akan tetapi film horor Indonesia kurang dapat menyebar di pasaran Internasional. Oleh karena itu%2C suatu analisis diperlukan untuk mengetahui apakah kekuatan-kekuatan yang dimiliki oleh film horor negara-negara lain yang banyak digemari masyarakat global terutama dari sudut pandang kamera yang merupakan salah satu faktor penting dalam menciptakan kesan horor pada suatu film. Film The Ring 1 dipilih sebagai pedoman perbandingan film horor Indonesia%2C karena film The Ring 1 adalah film horor yang sangat banyak diminati oleh masyarakat di seluruh dunia%2C bahkan telah diremake oleh Korea dan USA. Film Horor Indonesia yang dipilih adalah film Jelangkung yang pertama kali muncul pada film layar lebar dan menjadi cikal bakal munculnya banyak film layar lebar di Indonesia dengan genre yang sama. Analisa kedua film ini ditinjau dari sudut pandang kamera yang dapat menampilkan kesan horor. horror movie%2C camera angle%2C Indonesia%2C Japan.

  8. Electrochromic nanocomposite films

    Science.gov (United States)

    Milliron, Delia; Llordes, Anna; Buonsanti, Raffaella; Garcia, Guillermo

    2018-04-10

    The present invention provides an electrochromic nanocomposite film. In an exemplary embodiment, the electrochromic nanocomposite film, includes (1) a solid matrix of oxide based material and (2) transparent conducting oxide (TCO) nanostructures embedded in the matrix. In a further embodiment, the electrochromic nanocomposite film farther includes a substrate upon which the matrix is deposited. The present invention also provides a method of preparing an electrochromic nanocomposite film.

  9. Defining Documentary Film

    DEFF Research Database (Denmark)

    Juel, Henrik

    2006-01-01

    A discussion of various attemts at defining documentary film regarding form, content, truth, stile, genre or reception - and a propoposal of a positive list of essential, but non-exclusive characteristica of documentary film......A discussion of various attemts at defining documentary film regarding form, content, truth, stile, genre or reception - and a propoposal of a positive list of essential, but non-exclusive characteristica of documentary film...

  10. Film Noir Style Genealogy

    OpenAIRE

    Rietuma, Dita

    2012-01-01

    Annotation for the Doctoral Work Film Noir Style Genealogy (The Genealogy of the Film Noir Style) The doctoral work topic Film Noir Style Genealogy encompasses traditionally approved world film theory views on the concept of film noir and its related cinematographic heritage, and an exploration of its evolution and distinctive style, including – the development of film noir in the USA, Europe, and also in Latvia, within the context of both socio-political progression and the paradigm of m...

  11. ZnO film deposition on Al film and effects of deposition temperature on ZnO film growth characteristics

    International Nuclear Information System (INIS)

    Yoon, Giwan; Yim, Munhyuk; Kim, Donghyun; Linh, Mai; Chai, Dongkyu

    2004-01-01

    The effects of the deposition temperature on the growth characteristics of the ZnO films were studied for film bulk acoustic wave resonator (FBAR) device applications. All films were deposited using a radio frequency magnetron sputtering technique. It was found that the growth characteristics of ZnO films have a strong dependence on the deposition temperature from 25 to 350 deg. C. ZnO films deposited below 200 deg. C exhibited reasonably good columnar grain structures with highly preferred c-axis orientation while those above 200 deg. C showed very poor columnar grain structures with mixed-axis orientation. This study seems very useful for future FBAR device applications

  12. Corrosion prevention of iron with novel organic inhibitor of hydroxamic acid and UV irradiation

    International Nuclear Information System (INIS)

    Deng Huihua; Nanjo, Hiroshi; Qian, Pu; Xia Zhengbin; Ishikawa, Ikuo; Suzuki, Toshishige M.

    2008-01-01

    Corrosion prevention by self-assembled monolayers (SAM) of monomer and polymer inhibitor on iron covered with air-formed oxide films was investigated by cyclic voltammetry in borate buffer solution. Anti-corrosion efficiency of the SAM-coated Fe electrodes depends on UV irradiation duration on Fe electrodes prior to coating and inhibitor concentration to form SAM. The 1-h UV-irradiated Fe electrodes coated with SAM exhibits the most effective corrosion resistance despite the anti-corrosion efficiency of air-formed films on Fe was linearly increased with UV irradiation. The addition of monomer in polymer solution improves the stability and corrosion resistance of SAM

  13. Science Fiction on Film.

    Science.gov (United States)

    Burmester, David

    1985-01-01

    Reviews science fiction films used in a science fiction class. Discusses feature films, short science fiction films, short story adaptations, original science fiction pieces and factual science films that enrich literature. (EL)

  14. Thin Film Microbatteries

    International Nuclear Information System (INIS)

    Dudney, Nancy J.

    2008-01-01

    Thin film batteries are built layer by layer by vapor deposition. The resulting battery is formed of parallel plates, much as an ordinary battery construction, just much thinner. The figure (Fig. 1) shows an example of a thin film battery layout where films are deposited symmetrically onto both sides of a supporting substrate. The full stack of films is only 10 to 15 (micro)m thick, but including the support at least doubles the overall battery thickness. When the support is thin, the entire battery can be flexible. At least six companies have commercialized or are very close to commercializing such all-solid-state thin film batteries and market research predicts a growing market and a variety of applications including sensors, RFID tags, and smarter cards. In principle with a large deposition system, a thin film battery might cover a square meter, but in practice, most development is targeting individual cells with active areas less than 25 cm 2 . For very small battery areas, 2 , microfabrication processes have been developed. Typically the assembled batteries have capacities from 0.1 to 5 mAh. The operation of a thin film battery is depicted in the schematic diagram (Fig. 2). Very simply, when the battery is allowed to discharge, a Li + ion migrates from the anode to the cathode film by diffusing through the solid electrolyte. When the anode and cathode reactions are reversible, as for an intercalation compound or alloy, the battery can be recharged by reversing the current. The difference in the electrochemical potential of the lithium determines the cell voltage. Most of the thin films used in current commercial variations of this thin film battery are deposited in vacuum chambers by RF and DC magnetron sputtering and by thermal evaporation onto unheated substrates. In addition, many publications report exploring a variety of other physical and chemical vapor deposition processes, such as pulsed laser deposition, electron cyclotron resonance sputtering, and

  15. One-step aerosol synthesis of nanoparticle agglomerate films: simulation of film porosity and thickness

    International Nuclear Information System (INIS)

    Maedler, Lutz; Lall, Anshuman A; Friedlander, Sheldon K

    2006-01-01

    A method is described for designing nanoparticle agglomerate films with desired film porosity and film thickness. Nanoparticle agglomerates generated in aerosol reactors can be directly deposited on substrates to form uniform porous films in one step, a significant advance over existing technologies. The effect of agglomerate morphology and deposition mechanism on film porosity and thickness are discussed. Film porosity was calculated for a given number and size of primary particles that compose the agglomerates, and fractal dimension. Agglomerate transport was described by the Langevin equation of motion. Deposition enhancing forces such as thermophoresis are incorporated in the model. The method was validated for single spherical particles using previous theoretical studies. An S-shape film porosity dependence on the particle Peclet number typical for spherical particles was also observed for agglomerates, but films formed from agglomerates had much higher porosities than films from spherical particles. Predicted film porosities compared well with measurements reported in the literature. Film porosities increased with the number of primary particles that compose an agglomerate and higher fractal dimension agglomerates resulted in denser films. Film thickness as a function of agglomerate deposition time was calculated from the agglomerate deposition flux in the presence of thermophoresis. The calculated film thickness was in good agreement with measured literature values. Thermophoresis can be used to reduce deposition time without affecting the film porosity

  16. Neutron reflectivity of electrodeposited thin magnetic films

    International Nuclear Information System (INIS)

    Cooper, Joshaniel F.K.; Vyas, Kunal N.; Steinke, Nina-J.; Love, David M.; Kinane, Christian J.; Barnes, Crispin H.W.

    2014-01-01

    Highlights: • Electrodeposited magnetic bi-layers were measured by polarised neutron reflectivity. • When growing a CoNiCu alloy from a single bath a Cu rich region is initially formed. • This Cu rich region is formed in the first layer but not subsequent ones. • Ni deposition is inhibited in thin film growth and Co deposits anomalously. • Alloy magnetism and neutron scattering length give a self-consistent model. - Abstract: We present a polarised neutron reflectivity (PNR) study of magnetic/non-magnetic (CoNiCu/Cu) thin films grown by single bath electrodeposition. We find that the composition is neither homogeneous with time, nor consistent with bulk values. Instead an initial, non-magnetic copper rich layer is formed, around 2 nm thick. This layer is formed by the deposition of the dilute, but rapidly diffusing, Cu 2+ ions near the electrode surface at the start of growth, before the region is depleted and the deposition becomes mass transport limited. After the region has been depleted, by growth etc., this layer does not form and thus may be prevented by growing a copper buffer layer immediately preceding the magnetic layer growth. As has been previously found, cobalt deposits anomalously compared to nickel, and even inhibits Ni deposition in thin films. The layer magnetisation and average neutron scattering length are fitted independently but both depend upon the alloy composition. Thus these parameters can be used to check for model self-consistency, increasing confidence in the derived composition

  17. Self-assembled graphene/azo polyelectrolyte multilayer film and its application in electrochemical energy storage device.

    Science.gov (United States)

    Wang, Dongrui; Wang, Xiaogong

    2011-03-01

    Graphene/azo polyelectrolyte multilayer films were fabricated through electrostatic layer-by-layer (LbL) self-assembly, and their performance as electrochemical capacitor electrode was investigated. Cationic azo polyelectrolyte (QP4VP-co-PCN) was synthesized through radical polymerization, postpolymerization azo coupling reaction, and quaternization. Negatively charged graphene nanosheets were prepared by a chemically modified method. The LbL films were obtained by alternately dipping a piece of the pretreated substrates in the QP4VP-co-PCN and nanosheet solutions. The processes were repeated until the films with required numbers of bilayers were obtained. The self-assembly and multilayer surface morphology were characterized by UV-vis spectroscopy, AFM, SEM, and TEM. The performance of the LbL films as electrochemical capacitor electrode was estimated using cyclic voltammetry. Results show that the graphene nanosheets are densely packed in the multilayers and form random graphene network. The azo polyelectrolyte cohesively interacts with the nanosheets in the multilayer structure, which prevents agglomeration of graphene nanosheets. The sheet resistance of the LbL films decreases with the increase of the layer numbers and reaches the stationary value of 1.0 × 10(6) Ω/square for the film with 15 bilayers. At a scanning rate of 50 mV/s, the LbL film with 9 bilayers shows a gravimetric specific capacitance of 49 F/g in 1.0 M Na(2)SO(4) solution. The LbL films developed in this work could be a promising type of the electrode materials for electric energy storage devices.

  18. The Formation Mechanism and Corrosion Resistance of a Composite Phosphate Conversion Film on AM60 Alloy.

    Science.gov (United States)

    Chen, Jun; Lan, Xiangna; Wang, Chao; Zhang, Qinyong

    2018-03-08

    Magnesium alloy AM60 has high duc and toughness, which is expected to increase in demand for automotive applications. However, it is too active, and coatings have been extensively studied to prevent corrosion. In this work, a Ba-containing composite phosphate film has been prepared on the surface of AM60. The composition and formation mechanism of the film have been investigated using a scanning electronic microscope equipped with energy dispersive X-ray spectroscopy, Fourier transform infrared, X-ray photoelectron spectroscopy, and X-ray diffractometry tests. The corrosion resistance of the film has been measured by electrochemical and immersion tests. The results show that the deposition film has fully covered the substrate but there are some micro-cracks. The structure of the film is complex, and consists of MgHPO₄·3H₂O, MnHPO₄·2.25H₂O, BaHPO₄·3H₂O, BaMg₂(PO₄)₂, Mg₃(PO₄)₂·22H₂O, Ca₃(PO₄)₂·xH₂O, and some amorphous phases. The composite phosphate film has better anticorrosion performance than the AM60 and can protect the bare alloy from corrosion for more than 12 h in 0.6 M NaCl.

  19. Cellulose-glycerol-polyvinyl alcohol composite films for food packaging: Evaluation of water adsorption, mechanical properties, light-barrier properties and transparency.

    Science.gov (United States)

    Cazón, Patricia; Vázquez, Manuel; Velazquez, Gonzalo

    2018-09-01

    Nowadays consumers are aware of environmental problems. As an alternative to petrochemical polymers for food packaging, researchers have been focused on biopolymeric materials as raw material. The aim of this study was to evaluate mechanical properties (toughness, burst strength and distance to burst), water adsorption, light-barrier properties and transparency of composite films based on cellulose, glycerol and polyvinyl alcohol. Scanning electron microscopy, spectral analysis (FT-IR and UV-VIS-NIR) and differential scanning calorimetry were performed to explain the morphology, structural and thermal properties of the films. Results showed that polyvinyl alcohol enhances the toughness of films up to 44.30 MJ/m 3 . However, toughness decreases when glycerol concentration is increased (from 23.41 to 10.55 MJ/m 3 ). Water adsorption increased with increasing polyvinyl alcohol concentration up to 222%. Polyvinyl alcohol increased the film thickness. The films showed higher burst strength (up to 12014 g) than other biodegradable films. The films obtained have optimal values of transparency like those values of synthetic polymers. Glycerol produced a UV protective effect in the films, an important effect for food packaging to prevent lipid oxidative deterioration. Results showed that it is feasible to obtain cellulose-glycerol-polyvinyl alcohol composite films with improved properties. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Electronic structure of semiconductor thin films (chalcopyrites) as absorbermaterials for thin film solar cells; Elektronische Struktur duenner Halbleiterfilme (Chalkopyrite) als Absorbermaterialien fuer Duennschichtsolarzellen

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, Carsten

    2007-12-11

    The objective of this work was to determine for the first time the band structure of CuInS{sub 2}. For this purpose a new GSMBE process with TBDS as sulphur precursor was established to prevent the use of elemental sulphur in an UHV system. Additionally to the deposited films a cleave surface was prepared. The samples were characterized in situ by XPS/UPS and LEED. XRD and SEM were used for further ex situ investigations. The band structure was determined by ARUPS using synchrotron light. CuInS(001) and CuInS{sub 2}(112) were deposited on Si and GaAs. The deposition of CuInS{sub 2} on GaAs showed a strong dependence on the existing surface reconstruction. A 2 x 1 reconstruction of GaAs(001) yielded CuInS{sub 2}(001) films featuring terraces. A deposition on 2 x 2 reconstructed GaAs(111)A surfaces led to a facetted CuInS{sub 2} surface. On sulphur-passivated non-reconstructed GaAs(111)B a deposition of chalcopyrite ordered CuInS{sub 2} free of facets was possible. On the surface of Cu-rich CuInS{sub 2} films CuS crystallites formed. This yields ARUPS spectra showing the electronic stucture of CuInS{sub 2} superimposed by non-dispergative states of the polycrystalline CuS segregations. The effective hole masses were derived from the k {sub vertical} {sub stroke} {sub vertical} {sub stroke} measurements. Finally the results of this work showed that the use of a (111) substrate leads to domain formation of the deposited CuInS{sub 2}(112) films. Thus ARUPS spectra of such films show a superposition of the band structures along different directions. (orig.)

  1. Plain film, CT and MRI sensibility in the evaluation of intraorbital foreign bodies in an in vitro model of the orbit and in pig eyes

    International Nuclear Information System (INIS)

    Lagalla, R.; Manfre, L.; Caronia, A.; Bencivinni, F.; Duranti, C.; Ponte, F.

    2000-01-01

    Detection and characterization of intraorbital foreign bodies (IFB) is fundamental in acute trauma setting, preventing inflammatory sequelae or complications related to IFB movements when a MRI study is planned. Papers concerning plain film and CT sensibility in IFB detection show controversial results. For this reason we investigated plain film, CT and MRI sensibility in the evaluation of IFB. For an in vitro model, specimens of dry and fresh wood, glass, iron, plastic and graphite were immersed in animal lard and in a 0.9 % sodium chloride plus 3.5 g/dl human serum albumin solution. Specimens of different size and nature where also implanted into enucleated pig eyes. Air bubbles were introduced also. Plain film, CT and MRI investigation were performed. Plain films underestimated intraocular IFB as plastic, fresh or dry wooden IFB were not demonstrated. The CT study was always able to depict and differentiate IFB according to the attenuation values. Severe artefacts prevented demonstration of iron, glass and graphite IFB on MRI, whereas plastic or wooden IFB were always detected. Despite radiographs have been suggested as a prerequisite for MR imaging, because our results showed plain film to underestimate radiolucent IFB, we suggest CT as the modality of choice when IFB has to be ruled out. (orig.)

  2. Films--Too Good for Words. A Directory of Nonnarrated 16mm Films.

    Science.gov (United States)

    Parlato, Salvatore J., Jr.

    A nonnarrated film is one that communicates pictorially on the strength of its visual unity, continuity, and coherence without relying on narration or dialogue. This directory lists 1,000 such 16mm films, mostly curriculum-oriented educational films, in three main parts. The first part describes films under subject headings such as the arts, other…

  3. Characterization and antimicrobial properties of food packaging methylcellulose films containing stem extract of Ginja cherry.

    Science.gov (United States)

    Campos, Débora; Piccirillo, Clara; Pullar, Robert C; Castro, Paula Ml; Pintado, Maria M E

    2014-08-01

    Food contamination and spoilage is a problem causing growing concern. To avoid it, the use of food packaging with appropriate characteristics is essential; ideally, the packaging should protect food from external contamination and exhibit antibacterial properties. With this aim, methylcellulose (MC) films containing natural extracts from the stems of Ginja cherry, an agricultural by-product, were developed and characterized. The antibacterial activity of films was screened by the disc diffusion method and quantified using the viable cell count assay. The films inhibited the growth of both Gram-positive and Gram-negative strains (Listeria innocua, methicillin-sensitive Staphylococcus aureus, methicillin-resistant S. aureus, Salmonella Enteritidis, Escherichia coli). For the films with lower extract content, effectiveness against the microorganisms depended on the inoculum concentration. Scanning electron microscope images of the films showed that those containing the extracts had a smooth and continuous structure. UV-visible spectroscopy showed that these materials do not transmit light in the UV. This study shows that MC films containing agricultural by-products, in this case Ginja cherry stem extract, could be used to prevent food contamination by relevant bacterial strains and degradation by UV light. Using such materials in food packaging, the shelf life of food products could be extended while utilizing an otherwise wasted by-product. © 2013 Society of Chemical Industry.

  4. Molecular characterization of organic electronic films.

    Science.gov (United States)

    DeLongchamp, Dean M; Kline, R Joseph; Fischer, Daniel A; Richter, Lee J; Toney, Michael F

    2011-01-18

    Organic electronics have emerged as a viable competitor to amorphous silicon for the active layer in low-cost electronics. The critical performance of organic electronic materials is closely related to their morphology and molecular packing. Unlike their inorganic counterparts, polymers combine complex repeat unit structure and crystalline disorder. This combination prevents any single technique from being able to uniquely solve the packing arrangement of the molecules. Here, a general methodology for combining multiple, complementary techniques that provide accurate unit cell dimensions and molecular orientation is described. The combination of measurements results in a nearly complete picture of the organic film morphology. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Buy, Borrow, or Steal? Film Access for Film Studies Students

    Science.gov (United States)

    Rodgers, Wendy

    2018-01-01

    Libraries offer a mix of options to serve the film studies curriculum: streaming video, DVDs on Reserve, and streaming DVDs through online classrooms. Some professors screen films and lend DVDs to students. But how do students obtain the films required for their courses? How would they prefer to do so? These are among the questions explored using…

  6. Framing Persoalan Indonesia Melalui Film Dokumenter Model Direct Cinema (Studi Pada Film-film Dokumenter Terbaik, Program Eagle Award Competitions Di Metro TV)

    OpenAIRE

    Styo Wibowo, Novin Farid

    2013-01-01

    FRAMING PERSOALAN INDONESIA MELALUI FILM DOKUMENTER MODELDIRECT CINEMA(STUDI PADA FILM-FILM DOKUMENTER TERBAIK, PROGRAM EAGLEAWARD COMPETITIONS DI METRO TV)Frames Indonesia Issues Through Direct Cinema DocumentaryFilm On Television (Framing Analysis of the 3 Best Documentary Film, Eagle AwardCompetitions Program at Metro TV)Novin Farid Styo WibowoJurusan Ilmu Komunikasi, Fakultas Ilmu Sosial dan Ilmu PolitikUniversitas Muhammadiyah MalangEmail : TThe research disc...

  7. Chitosan films incorporated with nettle (Urtica dioica L.) extract-loaded nanoliposomes: I. Physicochemical characterisation and antimicrobial properties.

    Science.gov (United States)

    Haghju, Sara; Beigzadeh, Sara; Almasi, Hadi; Hamishehkar, Hamed

    2016-07-17

    The objective of this study was to characterise and compare physical, mechanical and antimicrobial properties of chitosan-based films, containing free or nanoencapsulated nettle (Urtica dioica L.) extract (NE) at concentrations of 0, 0.5, 1 and 1.5% w/w. Nanoliposomes were prepared using soy-lecithin by thin-film hydration and sonication method to generate an average size of 107-136 nm with 70% encapsulation efficiency. The information on FT-IR reflected that some new interaction have occurred between chitosan and nanoliposomes. Despite the increasing yellowness and decreasing whiteness indexes, the nanoliposomes incorporation improved the thermal properties and mechanical stiffness and caused to decrease water vapour permeability (WVP), moisture uptake and water solubility. The possible antimicrobial activity of the films containing NE-loaded nanoliposomes against Staphylococcus aureus was decreased in comparison to free NE-incorporated films, which could be due to the inhibition effect of the encapsulation that prevents the release of NE from the matrix.

  8. Uniformly irradiated polymer film

    International Nuclear Information System (INIS)

    Fowler, S.L.

    1979-01-01

    Irradiated film having substantial uniformity in the radiation dosage profile is produced by irradiating the film within a trough having lateral deflection blocks disposed adjacent the film edges for deflecting electrons toward the surface of the trough bottom for further deflecting the electrons toward the film edge

  9. Film in concert

    OpenAIRE

    2017-01-01

    From the very beginning of cinema, music always played an important role in the history of filmmaking. Nonetheless, film music is judged by critics as a kind of low-grade art form. However, the majority of film score composers enjoyed a classical education and composed as well for the silver screen as for the concert hall. Film music also has its roots in the musical era of romanticism. Therefore, symphonic film scores can be regarded as program music in a broader sense. These scores were inf...

  10. Micro-patterning of NdFeB and SmCo magnet films for integration into micro-electro-mechanical-systems

    International Nuclear Information System (INIS)

    Walther, A.; Marcoux, C.; Desloges, B.; Grechishkin, R.; Givord, D.; Dempsey, N.M.

    2009-01-01

    The integration of high-performance RE-TM (NdFeB and SmCo) hard magnetic films into micro-electro-mechanical-systems (MEMS) requires their patterning at the micron scale. In this paper we report on the applicability of standard micro-fabrication steps (film deposition onto topographically patterned substrates, wet etching and planarization) to the patterning of 5-8 μm thick RE-TM films. While NdFeB comprehensively fills micron-scaled trenches in patterned substrates, SmCo deposits are characterized by poor filling of the trench corners, which poses a problem for further processing by planarization. The magnetic hysteresis loops of both the NdFeB and SmCo patterned films are comparable to those of non-patterned films prepared under the same deposition/annealing conditions. A micron-scaled multipole magnetic field pattern is directly produced by the unidirectional magnetization of the patterned films. NdFeB and SmCo show similar behavior when wet etched in an amorphous state: etch rates of approximately 1.25 μm/min and vertical side walls which may be attributed to a large lateral over-etch of typically 20 μm. Chemical-mechanical-planarization (CMP) produced material removal rates of 0.5-3 μm/min for amorphous NdFeB. Ar ion etching of such films followed by the deposition of a Ta layer prior to film crystallization prevented degradation in magnetic properties compared to non-patterned films

  11. Micro-patterning of NdFeB and SmCo magnet films for integration into micro-electro-mechanical-systems

    Energy Technology Data Exchange (ETDEWEB)

    Walther, A. [CEA Leti-MINATEC, 17 rue des Martyrs, 38054 Grenoble (France); Institut Neel, CNRS-UJF, 25 rue des Martyrs, 38042 Grenoble (France); Marcoux, C.; Desloges, B. [CEA Leti-MINATEC, 17 rue des Martyrs, 38054 Grenoble (France); Grechishkin, R. [Laboratory of Magnetoelectronics, Tver State University, 170000 Tver (Russian Federation); Givord, D. [Institut Neel, CNRS-UJF, 25 rue des Martyrs, 38042 Grenoble (France); Dempsey, N.M. [Institut Neel, CNRS-UJF, 25 rue des Martyrs, 38042 Grenoble (France)], E-mail: nora.dempsey@grenoble.cnrs.fr

    2009-03-15

    The integration of high-performance RE-TM (NdFeB and SmCo) hard magnetic films into micro-electro-mechanical-systems (MEMS) requires their patterning at the micron scale. In this paper we report on the applicability of standard micro-fabrication steps (film deposition onto topographically patterned substrates, wet etching and planarization) to the patterning of 5-8 {mu}m thick RE-TM films. While NdFeB comprehensively fills micron-scaled trenches in patterned substrates, SmCo deposits are characterized by poor filling of the trench corners, which poses a problem for further processing by planarization. The magnetic hysteresis loops of both the NdFeB and SmCo patterned films are comparable to those of non-patterned films prepared under the same deposition/annealing conditions. A micron-scaled multipole magnetic field pattern is directly produced by the unidirectional magnetization of the patterned films. NdFeB and SmCo show similar behavior when wet etched in an amorphous state: etch rates of approximately 1.25 {mu}m/min and vertical side walls which may be attributed to a large lateral over-etch of typically 20 {mu}m. Chemical-mechanical-planarization (CMP) produced material removal rates of 0.5-3 {mu}m/min for amorphous NdFeB. Ar ion etching of such films followed by the deposition of a Ta layer prior to film crystallization prevented degradation in magnetic properties compared to non-patterned films.

  12. Ultrathin protective films of two-dimensional polymers on passivated iron against corrosion in 0.1M NaCl

    International Nuclear Information System (INIS)

    Aramaki, Kunitsugu; Shimura, Tadashi

    2005-01-01

    Prevention of iron corrosion in an aerated 0.1M NaCl solution was investigated by polarization and mass-loss measurements of a passivated iron electrode covered with ultrathin and ordered films of two-dimensional polymers. The films were prepared on the passivated electrode by modification of a 16-hydroxyhexadecanoate ion HO(CH 2 ) 15 CO 2 - self-assembled monolayer with 1,2-bis(triethoxysilyl)ethane (C 2 H 5 O) 3 Si(CH 2 ) 2 Si(OC 2 H 5 ) 3 and alkyltriethoxysilane C n H 2n+1 Si(OC 2 H 5 ) 3 (n=8 or 18). Because crevice corrosion occurred at the initial stage of immersion in the solution preferentially, the edge of electrode covered with the polymer film was coated with epoxy resin. The open-circuit potentials of the covered electrodes in the solution were maintained high, more than -0.2V/SCE for several hours, indicating that no breakdown of the passive film occurred on the surface. The protective efficiencies of the films were extremely high, more than 99.9% unless the passive film was broken down. The efficiencies after immersion for 24h almost agreed with those obtained by mass-loss measurements. X-ray photoelectron spectroscopy and electron-probe microanalysis of the passivated surface covered with the polymer film after immersion in the solution for 4h revealed that pit initiation on the passive film was suppressed by coverage with the polymer film completely

  13. Quality of YBCO thin films grown on LAO substrates exposed to the film deposition - film removal processes

    Energy Technology Data Exchange (ETDEWEB)

    Blagoev, B; Nurgaliev, T [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Mozhaev, P B [Institute of Physics and Technology, Russian Academy of Sciences, 117218 Moscow (Russian Federation); Sardela, M; Donchev, T [Materials Research Laboratory, University of Illinois, 104 South Goodwin Ave., Urbana, IL 61801 (United States)], E-mail: blago_sb@yahoo.com

    2008-05-01

    The characteristics are investigated of high temperature superconducting YBa{sub 2}Cu{sub 3}O{sub 7} (YBCO) films grown on LaAlO{sub 3} (LAO) substrates being exposed a different number of times to YBCO film deposition and acid-solution-based cleaning procedures. Possible mechanisms of degradation of the substrate surface quality reflecting on the growing YBCO film parameters are discussed and analyzed.

  14. Evaluation and mitigation of potential errors in radiochromic film dosimetry due to film curvature at scanning.

    Science.gov (United States)

    Palmer, Antony L; Bradley, David A; Nisbet, Andrew

    2015-03-08

    This work considers a previously overlooked uncertainty present in film dosimetry which results from moderate curvature of films during the scanning process. Small film samples are particularly susceptible to film curling which may be undetected or deemed insignificant. In this study, we consider test cases with controlled induced curvature of film and with film raised horizontally above the scanner plate. We also evaluate the difference in scans of a film irradiated with a typical brachytherapy dose distribution with the film naturally curved and with the film held flat on the scanner. Typical naturally occurring curvature of film at scanning, giving rise to a maximum height 1 to 2 mm above the scan plane, may introduce dose errors of 1% to 4%, and considerably reduce gamma evaluation passing rates when comparing film-measured doses with treatment planning system-calculated dose distributions, a common application of film dosimetry in radiotherapy. The use of a triple-channel dosimetry algorithm appeared to mitigate the error due to film curvature compared to conventional single-channel film dosimetry. The change in pixel value and calibrated reported dose with film curling or height above the scanner plate may be due to variations in illumination characteristics, optical disturbances, or a Callier-type effect. There is a clear requirement for physically flat films at scanning to avoid the introduction of a substantial error source in film dosimetry. Particularly for small film samples, a compression glass plate above the film is recommended to ensure flat-film scanning. This effect has been overlooked to date in the literature.

  15. Spectator's trust as an indicator of film authorship: Is Vinterberg a film auteur?

    NARCIS (Netherlands)

    van der Pol, G.

    2015-01-01

    In this article, the Trust Model is presented as a new theory to tackle the old film theoretical problem of distinguishing film directors from film auteurs. The model proposes that in certain films, the spectator becomes problematically engaged to the fiction and to certain characters. During the

  16. Getting into Film.

    Science.gov (United States)

    London, Mel

    This book describes the various aspects of the film industry and the many jobs related to filmmaking, stressing that no "formula" exists for finding a successful career in the film industry. Chapters provide information on production, writing for film, cinematography, editing, music, sound, animation and graphics, acting and modeling, the "unsung…

  17. The Sponsored Film.

    Science.gov (United States)

    Klein, Walter J.

    For public relations professionals and would-be sponsors of films, this book provides guidelines for understanding the film medium and its potential as a persuasive force in industry, government, organizations, and religious orders. For filmmakers, it brings together practical information needed to survive in the sponsored-film industry and to…

  18. Preventing light-induced degradation in multicrystalline silicon

    Science.gov (United States)

    Lindroos, J.; Boulfrad, Y.; Yli-Koski, M.; Savin, H.

    2014-04-01

    Multicrystalline silicon (mc-Si) is currently dominating the silicon solar cell market due to low ingot costs, but its efficiency is limited by transition metals, extended defects, and light-induced degradation (LID). LID is traditionally associated with a boron-oxygen complex, but the origin of the degradation in the top of the commercial mc-Si brick is revealed to be interstitial copper. We demonstrate that both a large negative corona charge and an aluminum oxide thin film with a built-in negative charge decrease the interstitial copper concentration in the bulk, preventing LID in mc-Si.

  19. Prevention of passive film breakdown on iron in a borate buffer solution containing chloride ion by coverage with a self-assembled monolayer of hexadecanoate ion

    International Nuclear Information System (INIS)

    Aramaki, Kunitsugu; Shimura, Tadashi

    2003-01-01

    Breakdown of a passive film on iron in a borate buffer solution (pH 8.49) containing 0.1 M of Cl - was suppressed by coverage of the passive film surface with a self-assembled monolayer (SAM) of hexadecanoate ion C 15 H 31 CO 2 - (C 16 A - ). The pitting potential of an iron electrode previously passivated in the borate buffer at 0.50 V/SCE increased by treatment in an aqueous solution of sodium hexadecanoate for many hours, indicating protection of the passive film from breakdown caused by an attack on defects of the film with Cl - . No breakdown occurred over the potential range of the passive region by coverage with the SAM of C 16 A - in some cases. Structures of the passive film and the monolayer were characterized by X-ray photoelectron and Fourier transform infrared reflection spectroscopies and contact angle measurement with a drop of water

  20. 100-nm thick single-phase wurtzite BAlN films with boron contents over 10%

    KAUST Repository

    Li, Xiaohang; Wang, Shuo; Liu, Hanxiao; Ponce, Fernando A.; Detchprohm, Theeradetch; Dupuis, Russell D.

    2017-01-01

    Growing thicker BAlN films while maintaining single-phase wurtzite structure and boron content over 10% has been challenging. In this study, we report on the growth of 100 nm-thick single-phase wurtzite BAlN films with boron contents up to 14.4% by MOCVD. Flow-modulated epitaxy was employed to increase diffusion length of group-III atoms and reduce parasitic reactions between the metalorganics and NH3. A large growth efficiency of ∼2000 μm mol−1 was achieved as a result. Small B/III ratios up to 17% in conjunction with high temperatures up to 1010 °C were utilized to prevent formation of the cubic phase and maintain wurtzite structure.

  1. 100-nm thick single-phase wurtzite BAlN films with boron contents over 10%

    KAUST Repository

    Li, Xiaohang

    2017-01-11

    Growing thicker BAlN films while maintaining single-phase wurtzite structure and boron content over 10% has been challenging. In this study, we report on the growth of 100 nm-thick single-phase wurtzite BAlN films with boron contents up to 14.4% by MOCVD. Flow-modulated epitaxy was employed to increase diffusion length of group-III atoms and reduce parasitic reactions between the metalorganics and NH3. A large growth efficiency of ∼2000 μm mol−1 was achieved as a result. Small B/III ratios up to 17% in conjunction with high temperatures up to 1010 °C were utilized to prevent formation of the cubic phase and maintain wurtzite structure.

  2. Antimicrobial and anti-biofilm properties of polypropylene meshes coated with metal-containing DLC thin films.

    Science.gov (United States)

    Cazalini, Elisa M; Miyakawa, Walter; Teodoro, Guilherme R; Sobrinho, Argemiro S S; Matieli, José E; Massi, Marcos; Koga-Ito, Cristiane Y

    2017-06-01

    A promising strategy to reduce nosocomial infections related to prosthetic meshes is the prevention of microbial colonization. To this aim, prosthetic meshes coated with antimicrobial thin films are proposed. Commercial polypropylene meshes were coated with metal-containing diamond-like carbon (Me-DLC) thin films by the magnetron sputtering technique. Several dissimilar metals (silver, cobalt, indium, tungsten, tin, aluminum, chromium, zinc, manganese, tantalum, and titanium) were tested and compositional analyses of each Me-DLC were performed by Rutherford backscattering spectrometry. Antimicrobial activities of the films against five microbial species (Candida albicans, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Enterococcus faecalis) were also investigated by a modified Kirby-Bauer test. Results showed that films containing silver and cobalt have inhibited the growth of all microbial species. Tungsten-DLC, tin-DLC, aluminum-DLC, zinc-DLC, manganese-DLC, and tantalum-DLC inhibited the growth of some strains, while chromium- and titanium-DLC weakly inhibited the growth of only one tested strain. In-DLC film showed no antimicrobial activity. The effects of tungsten-DLC and cobalt-DLC on Pseudomonas aeruginosa biofilm formation were also assessed. Tungsten-DLC was able to significantly reduce biofilm formation. Overall, the experimental results in the present study have shown new approaches to coating polymeric biomaterials aiming antimicrobial effect.

  3. Blue electroluminescence nanodevice prototype based on vertical ZnO nanowire/polymer film on silicon substrate

    International Nuclear Information System (INIS)

    He Ying; Wang Junan; Chen Xiaoban; Zhang Wenfei; Zeng Xuyu; Gu Qiuwen

    2010-01-01

    We present a polymer-complexing soft template technique to construct the ZnO-nanowire/polymer light emitting device prototype that exhibits blue electrically driven emission with a relatively low-threshold voltage at room temperature in ambient atmosphere, and the ZnO-nanowire-based LED's emission wavelength is easily tuned by controlling the applied-excitation voltage. The nearly vertically aligned ZnO-nanowires with polymer film were used as emissive layers in the devices. The method uses polymer as binder in the LED device and dispersion medium in the luminescence layer, which stabilizes the quasi-arrays of ZnO nanowires embedding in a thin polymer film on silicon substrate and passivates the surface of ZnO nanocrystals, to prevent the quenching of luminescence. Additionally, the measurements of electrical properties showed that ZnO-nanowire/polymer film could significantly improve the conductivity of the film, which could be attributed to an increase in both Hall mobility and carrier concentration. The results indicated that the novel technique is a low-cost process for ZnO-based UV or blue light emission and reduces the requirement for achieving robust p-doping of ZnO film. It suggests that such ZnO-nanowire/polymer-based LEDs will be suitable for the electro-optical application.

  4. Ceramic Composite Thin Films

    Science.gov (United States)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  5. Fabrication of amorphous Si and C anode films via co-sputtering for an all-solid-state battery

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.S. [Department of Materials Science and Engineering, Yonsei University Shinchondong, 262 Seongsanno, Seodaemoongu, Seoul 120-749 (Korea, Republic of); Department of Environment and Energy Engineering, Gachon University, Seongnamdaero 1342, 461-710 Gyeonggi-do (Korea, Republic of); Lee, S.H. [Department of Environment and Energy Engineering, Gachon University, Seongnamdaero 1342, 461-710 Gyeonggi-do (Korea, Republic of); Woo, S.P. [Department of Materials Science and Engineering, Yonsei University Shinchondong, 262 Seongsanno, Seodaemoongu, Seoul 120-749 (Korea, Republic of); Department of Environment and Energy Engineering, Gachon University, Seongnamdaero 1342, 461-710 Gyeonggi-do (Korea, Republic of); Kim, H.S. [Department of Mechanical Engineering, Gachon University, Seongnamdaero 1342, 461-710 Gyeonggi-do (Korea, Republic of); Yoon, Y.S., E-mail: benedicto@gachon.ac.kr [Department of Environment and Energy Engineering, Gachon University, Seongnamdaero 1342, 461-710 Gyeonggi-do (Korea, Republic of)

    2014-08-01

    In this study, a combination of silicon and carbon as the anode material for an all-solid-state battery has been investigated to overcome their individual deficiencies. The capacity of silicon thin films with an input power of 60 W shows dramatic failure after 38 cycles due to serious volume expansion. In contrast, C thin films at 60 W show high stability of cyclic performance and capacity retention. The amorphous silicon and carbon composite reduced the volume expansion of silicon during long term cycles and enhanced the low specific capacity of the carbon. This resistance of the volume expansion might be expected from the cushion effect caused by the carbon, which was confirmed by scanning electron microscope images after a 100 cycle test. These results indicate that amorphous silicon and carbon composite thin films have a high possibility as the stable anode material for an all-solid-state battery. - Highlights: • Amorphous Si/C nanocomposite thin films have been prepared by co-sputtering. • Carbon can act as a cushion effect to prevent volume expansion of Si. • Amorphous Si/C nanocomposite thin films show structure stability at 100 cycles. • Capacity of the amorphous Si/C nanocomposite thin films was enhanced considerably.

  6. Carbon nanotubes (CNTs) based strain sensors for a wearable monitoring and biofeedback system for pressure ulcer prevention and rehabilitation.

    Science.gov (United States)

    Boissy, Patrick; Genest, Jonathan; Patenaude, Johanne; Poirier, Marie-Sol; Chenel, Vanessa; Béland, Jean-Pierre; Legault, Georges-Auguste; Bernier, Louise; Tapin, Danielle; Beauvais, Jacques

    2011-01-01

    This paper presents an overview of the functioning principles of CNTs and their electrical and mechanical properties when used as strain sensors and describes a system embodiment for a wearable monitoring and biofeedback platform for use in pressure ulcer prevention and rehabilitation. Two type of CNTs films (multi-layered CNTs film vs purified film) were characterized electrically and mechanically for potential use as source material. The loosely woven CNTs film (multi-layered) showed substantial less sensitivity than the purified CNTs film but had an almost linear response to stress and better mechanical properties. CNTs have the potential to achieve a much higher sensitivity to strain than other piezoresistors based on regular of conductive particles such as commercially available resistive inks and could become an innovative source material for wearable strain sensors. We are currently continuing the characterization of CNTs based strain sensors and exploring their use in a design for 3-axis strain sensors.

  7. Solid thin film materials for use in thin film charge-coupled devices

    International Nuclear Information System (INIS)

    Lynch, S.J.

    1983-01-01

    Solid thin films deposited by vacuum deposition were evaluated to ascertain their effectiveness for use in the manufacturing of charge-coupled devices (CCDs). Optical and electrical characteristics of tellurium and Bi 2 Te 3 solid thin films were obtained in order to design and to simulate successfully the operation of thin film (TF) CCDs. In this article some of the material differences between single-crystal material and the island-structured thin film used in TFCCDs are discussed. The electrical parameters were obtained and tabulated, e.g. the mobility, conductivity, dielectric constants, permittivity, lifetime of holes and electrons in the thin films and drift diffusion constants. The optical parameters were also measured and analyzed. After the design was complete, experimental TFCCDs were manufactured and were successfully operated utilizing the aforementioned solid thin films. (Auth.)

  8. [Application of biodegradable plastic film to reduce plastic film residual pollution in Chinese agriculture].

    Science.gov (United States)

    Yan, Changrong; He, Wenqing; Xue, Yinghao; Liu, Enke; Liu, Qin

    2016-06-25

    Plastic film has become an important agriculture production material in recent years. Over the past three decades, the amount and application area of plastic film have increased steadily, and in 2014, which are 1.4 million tons and more than 180 million hm² respectively. It plays a key role for ensuring the supply of agricultural goods in China. Meanwhile, plastic film residual pollution becomes more and more serious, and in some regions, the amount of plastic film residues has reached over 250 kg/hm². In part of the Northwest region, soil structure of farmland has been destroyed by plastic film residues and then crop growth and farming operations were suppressed. It is recognized as a good choice to replace plastic film with biodegradable plastic film, an effective measure to solve the plastic film residue pollution. Now, it is in a critical stage of study and assessment of biodegradable plastic film in China and fortunately some biodegradable plastic films show effects in the production of potatoes, peanuts and tobacco. Overall, a series of challenges has still been faced by the biodegradable plastic film, mainly including improving the quality of biodegradable plastic products, such as tensile strength, flexibility, improving the controllability of rupture and degradation, enhancing the ability of increasing soil temperature and preserving soil moisture, and to satisfy the demand of crops production with mulching. In addition, it is essential to reduce the cost of the biodegradable film and promote the application of biodegradable film on large-scale. With the development of biodegradable plastic technology and agricultural production environment, the application of the biodegradable film will have a good future.

  9. IAEA film library

    International Nuclear Information System (INIS)

    1959-01-01

    Most of the scientific and technical films shown during the Second Geneva Conference for the Peaceful Uses of Atomic Energy were donated to IAEA by the producing countries at the end of the Conference. They will form the basic stock for the Agency's loan service intended to provide atomic energy institutions in Member States with film material. A detailed catalogue of the films, classified according to subject and giving conditions of loan or purchase, is now being prepared. In addition to this, information on all films produced in Member Countries dealing with the peaceful uses cf atomic energy is being assembled. The documentary information contained in the films in IAEA's possession relates to the following subjects: national programmes; nuclear physics; accelerators; plasma and fusion; reactors (power, research, material testing and experimental); prospecting and mining; ore dressing; metallurgy; production of fuel elements; treatment of irradiated fuel elements; protection against radiation; detection and counting; uses of radiation in medicine, biochemistry, agriculture and industry; industrial application of nuclear explosions. Most of the commentaries are in the language of the producing country. A few films are available in a choice of two languages. The films donated to the Agency total 82, two of which have been produced in Canada, 13 in France, one in India, one in Romania, one in Spain, 14 in the United Kingdom, one in the Union of South Africa, 47 in the United States of America and two in the USSR: they are mostly illustrations of papers presented at the Second Geneva Conference. In arranging for the circulation of scientific and technical films IAEA wishes to help meet some of the training and information needs of Member States. It is hoped that all organizations producing films on the peaceful uses of atomic energy will entrust copies to the IAEA with a view to their widest possible circulation. In the meantime, the Agency's films have been given

  10. IAEA film library

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-01-15

    Most of the scientific and technical films shown during the Second Geneva Conference for the Peaceful Uses of Atomic Energy were donated to IAEA by the producing countries at the end of the Conference. They will form the basic stock for the Agency's loan service intended to provide atomic energy institutions in Member States with film material. A detailed catalogue of the films, classified according to subject and giving conditions of loan or purchase, is now being prepared. In addition to this, information on all films produced in Member Countries dealing with the peaceful uses cf atomic energy is being assembled. The documentary information contained in the films in IAEA's possession relates to the following subjects: national programmes; nuclear physics; accelerators; plasma and fusion; reactors (power, research, material testing and experimental); prospecting and mining; ore dressing; metallurgy; production of fuel elements; treatment of irradiated fuel elements; protection against radiation; detection and counting; uses of radiation in medicine, biochemistry, agriculture and industry; industrial application of nuclear explosions. Most of the commentaries are in the language of the producing country. A few films are available in a choice of two languages. The films donated to the Agency total 82, two of which have been produced in Canada, 13 in France, one in India, one in Romania, one in Spain, 14 in the United Kingdom, one in the Union of South Africa, 47 in the United States of America and two in the USSR: they are mostly illustrations of papers presented at the Second Geneva Conference. In arranging for the circulation of scientific and technical films IAEA wishes to help meet some of the training and information needs of Member States. It is hoped that all organizations producing films on the peaceful uses of atomic energy will entrust copies to the IAEA with a view to their widest possible circulation. In the meantime, the Agency's films have been given

  11. Film: Genres and Genre Theory

    DEFF Research Database (Denmark)

    Bondebjerg, Ib

    2015-01-01

    Genre is a concept used in film studies and film theory to describe similarities between groups of films based on aesthetic or broader social, institutional, cultural, and psychological aspects. Film genre shares similarities in form and style, theme, and communicative function. A film genre...

  12. Magnetic shield effect simulation of superconducting film shield covering directly coupled HTS dc-SQUID magnetometer

    International Nuclear Information System (INIS)

    Terauchi, N.; Noguchi, S.; Igarashi, H.

    2011-01-01

    A superconducting film shield over a SQUID ring improves the robustness of the SQUID with respect to magnetic noise. Supercurrent in the SQUID magnetometer and the superconducting film shield were simulated. The superconducting film shield reduces the influence of the external magnetic field on the SQUID ring. An HTS SQUID is a high sensitive magnetic sensor. In recent years, the HTS SQUID is widely used in various applications. In some applications, high robustness with respect to magnetic noise is required to realize stable operation at outside of a magnetic shielding room. The target of this paper is a directly coupled HTS dc-SQUID magnetometer. To enhance the robustness of the SQUID magnetometer, use of a superconducting thin film shield has been proposed. The magnetic field directly penetrating the SQUID ring causes the change of the critical current of Josephson junction, and then the SQUID magnetometer transitions into inoperative state. In order to confirm the magnetic shield effect of the superconducting film shield, electromagnetic field simulation with 3D edge finite element method was performed. To simulate the high temperature superconductor, E-J characteristics and c-axis anisotropy are considered. To evaluate the effect of the superconducting film shield, an external magnetic field which is supposed to be a magnetic noise is applied. From the simulation results, the time transition of the magnetic flux penetrating the SQUID ring is investigated and the effect of the superconducting film shield is confirmed. The amplitude of the magnetic flux penetrating the SQUID ring can be reduced to about one-sixth since the superconducting film shield prevents the magnetic noise from directly penetrating the SQUID ring.

  13. Development of orodispersible polymer films with focus on the solid state characterization of crystalline loperamide.

    Science.gov (United States)

    Woertz, Christina; Kleinebudde, Peter

    2015-08-01

    The formulation of active pharmaceutical ingredients (API) as orodispersible films is gaining interest among novel oral drug delivery systems due to their small size, enhanced flexibility and improved patient compliance. The aim of this work was the preparation and characterization of orodispersible films containing loperamide hydrochloride (LPH) as model drug. As loperamide hydrochloride is poorly soluble in water it was used in crystalline form with a loading of 2mg/6cm(2) film. Hydroxypropyl methylcellulose (HPMC) and different types of hydroxypropyl cellulose (HPC) in different concentrations were used as film forming polymers whereas arabic gum, xanthan gum and tragacanth served as thickening agents. Films were characterized with respect to the content uniformity, morphology, thermal behavior and crystallinity. Suspensions were investigated regarding their viscosity using a rotational rheometer and the crystal structure of the Active Pharmaceutical Ingredient (API) was analyzed using polarized light microscopy. The development of flexible, non-brittle and homogeneous films of LPH was feasible. Two polymorphic forms of LPH appeared in the film formulations dependent on the utilized polymer. While in presence of HPMC the original polymorphic form I remained stable in suspension and films, the polymorphic form II occurred in presence of HPC. Both polymorphic forms were prepared separately and a solid state characterization was performed. Polymorph I showed isometric crystals whereas polymorph II showed needle shaped crystals. Tragacanth was able to prevent the transformation to polymorph II, if it was dissolved first before HPC. When HPC was added first to the suspension, the conversion to form II occurred irreversibly also after further addition of tragacanth. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Evaluation of the uncertainty in an EBT3 film dosimetry system utilizing net optical density.

    Science.gov (United States)

    Marroquin, Elsa Y León; Herrera González, José A; Camacho López, Miguel A; Barajas, José E Villarreal; García-Garduño, Olivia A

    2016-09-08

    Radiochromic film has become an important tool to verify dose distributions for intensity-modulated radiotherapy (IMRT) and quality assurance (QA) procedures. A new radiochromic film model, EBT3, has recently become available, whose composition and thickness of the sensitive layer are the same as those of previous EBT2 films. However, a matte polyester layer was added to EBT3 to prevent the formation of Newton's rings. Furthermore, the symmetrical design of EBT3 allows the user to eliminate side-orientation dependence. This film and the flatbed scanner, Epson Perfection V750, form a dosimetry system whose intrinsic characteristics were studied in this work. In addition, uncertainties associated with these intrinsic characteristics and the total uncertainty of the dosimetry system were determined. The analysis of the response of the radiochromic film (net optical density) and the fitting of the experimental data to a potential function yielded an uncertainty of 2.6%, 4.3%, and 4.1% for the red, green, and blue channels, respectively. In this work, the dosimetry system presents an uncertainty in resolving the dose of 1.8% for doses greater than 0.8 Gy and less than 6 Gy for red channel. The films irradiated between 0 and 120 Gy show differences in the response when scanned in portrait or landscape mode; less uncertainty was found when using the portrait mode. The response of the film depended on the position on the bed of the scanner, contributing an uncertainty of 2% for the red, 3% for the green, and 4.5% for the blue when placing the film around the center of the bed of scanner. Furthermore, the uniformity and reproducibility radiochromic film and reproducibility of the response of the scanner contribute less than 1% to the overall uncertainty in dose. Finally, the total dose uncertainty was 3.2%, 4.9%, and 5.2% for red, green, and blue channels, respectively. The above uncertainty values were obtained by mini-mizing the contribution to the total dose uncertainty

  15. Meteor Film Recording with Digital Film Cameras with large CMOS Sensors

    Science.gov (United States)

    Slansky, P. C.

    2016-12-01

    In this article the author combines his professional know-how about cameras for film and television production with his amateur astronomy activities. Professional digital film cameras with high sensitivity are still quite rare in astronomy. One reason for this may be their costs of up to 20 000 and more (camera body only). In the interim, however,consumer photo cameras with film mode and very high sensitivity have come to the market for about 2 000 EUR. In addition, ultra-high sensitive professional film cameras, that are very interesting for meteor observation, have been introduced to the market. The particular benefits of digital film cameras with large CMOS sensors, including photo cameras with film recording function, for meteor recording are presented by three examples: a 2014 Camelopardalid, shot with a Canon EOS C 300, an exploding 2014 Aurigid, shot with a Sony alpha7S, and the 2016 Perseids, shot with a Canon ME20F-SH. All three cameras use large CMOS sensors; "large" meaning Super-35 mm, the classic 35 mm film format (24x13.5 mm, similar to APS-C size), or full format (36x24 mm), the classic 135 photo camera format. Comparisons are made to the widely used cameras with small CCD sensors, such as Mintron or Watec; "small" meaning 12" (6.4x4.8 mm) or less. Additionally, special photographic image processing of meteor film recordings is discussed.

  16. The role of surface roughness on dislocation bending and stress evolution in low mobility AlGaN films during growth

    Science.gov (United States)

    Bardhan, Abheek; Mohan, Nagaboopathy; Chandrasekar, Hareesh; Ghosh, Priyadarshini; Sridhara Rao, D. V.; Raghavan, Srinivasan

    2018-04-01

    The bending and interaction of threading dislocations are essential to reduce their density for applications involving III-nitrides. Bending of dislocation lines also relaxes the compressive growth stress that is essential to prevent cracking on cooling down due to tensile thermal expansion mismatch stress while growing on Si substrates. It is shown in this work that surface roughness plays a key role in dislocation bending. Dislocations only bend and relax compressive stresses when the lines intersect a smooth surface. These films then crack. In rough films, dislocation lines which terminate at the bottom of the valleys remain straight. Compressive stresses are not relaxed and the films are relatively crack-free. The reasons for this difference are discussed in this work along with the implications on simultaneously meeting the requirements of films being smooth, crack free and having low defect density for device applications.

  17. The effect of dual complexing agents of lactic and citric acids on the formation of sol-gel derived Ag–PbTiO3 percolative thin film

    International Nuclear Information System (INIS)

    Su, Yanbo; Hu, Tao; Tang, Liwen; Weng, Wenjian; Han, Gaorong; Ma, Ning; Du, Piyi

    2014-01-01

    Controlling the formation of conductive particles to be nano-scale is important for achieving percolation effect in metal dispersed thin film composite to contribute extraordinary dielectric properties required for miniaturization of electronic devices. In this paper, lactic acid (LA) and citric acid (CA) were used as dual complexing agents to prepare a typical Ag nanoparticle dispersed PbTiO 3 (PTO) composite thin film by using a sol-gel method. The phase structure of the thin film and the coordination effect between complexing agent and metallic ions were investigated. It revealed that LA coordinated with Ti 4+ and Pb 2+ and CA coordinated with Ag + . Lead was fixed inside the gel network by LA and restricted to evaporate during heat treatment thus the pyrochlore phase was prevented from forming in the thin film. Ag + was coordinated by CA and the diffusion and thus aggregation of silver during gelation and annealing process were weakened. Silver nanoparticles dispersed in the PTO matrix formed with dual complexing agents of LA and CA introduced during the preparation process. The composite thin film of perfect perovskite phase with silver nanoparticles embedded was obtained at the molar ratio of LA/lead = 0.5 and CA/lead = 0.5. The dielectric constant of the thin film with silver nanoparticles is 5 times higher than that without silver nanoparticles. - Highlights: • Ag nanoparticle–PbTiO 3 percolative film with high dielectric property is prepared. • Evaporation of lead was prevented by coordinating Pb with lactic acid agent. • Dual complexing agents contribute block and pinning effects to form Ag nanoparticles

  18. Quality changes of 'Sanguinello' oranges wrapped with different plastic films under simulated marketing conditions.

    Science.gov (United States)

    D'Aquino, S; Malinconico, M; Avella, M; Di Lorenzo, M L; Mura; Palma, A

    2013-01-01

    significant. No decay was detected in fruit treated with IMZ. 'Sanguinello' oranges can be stored under retail conditions for a month by the only means of film wrapping without important changes in chemical, eating and marketing quality provided fruit are treated with an effective fungicide to prevent decay and that in-package gas composition is not markedly changed with respect to air.

  19. Demens Film

    DEFF Research Database (Denmark)

    Ridder, Hanne Mette Ochsner

    2012-01-01

    I forbindelse med opstarten af Demens Film projektet har der været nedsat en ekspertgruppe, som er kommet med en række anbefalinger omkring film til mennesker med demens. Anbefalingerne skal bruges i de næste faser af projektet. Deltagerne i ekspertgruppen var sammensat af en bred gruppe...... fagpersoner inde for forskellige fagområder. Læs mere om gruppens anbefalinger og sammensætning af ekspertgruppen i den kort rapport som er offentlig tilgængelig. Læs Ekspertgruppe anbefalingerne til Demens Film projekt....

  20. Effect of diffraction and film-thickness gradients on wafer-curvature measurements of thin-film stress

    International Nuclear Information System (INIS)

    Breiland, W.G.; Lee, S.R.; Koleske, D.D.

    2004-01-01

    When optical measurements of wafer curvature are used to determine thin-film stress, the laser beams that probe the sample are usually assumed to reflect specularly from the curved surface of the film and substrate. Yet, real films are not uniformly thick, and unintended thickness gradients produce optical diffraction effects that steer the laser away from the ideal specular condition. As a result, the deflection of the laser in wafer-curvature measurements is actually sensitive to both the film stress and the film-thickness gradient. We present a Fresnel-Kirchhoff optical diffraction model of wafer-curvature measurements that provides a unified description of these combined effects. The model accurately simulates real-time wafer-curvature measurements of nonuniform GaN films grown on sapphire substrates by vapor-phase epitaxy. During thin-film growth, thickness gradients cause the reflected beam to oscillate asymmetrically about the ideal position defined by the stress-induced wafer curvature. This oscillating deflection has the same periodicity as the reflectance of the growing film, and the deflection amplitude is a function of the film-thickness gradient, the mean film thickness, the wavelength distribution of the light source, the illuminated spot size, and the refractive indices of the film and substrate. For typical GaN films grown on sapphire, misinterpretation of these gradient-induced oscillations can cause stress-measurement errors that approach 10% of the stress-thickness product; much greater errors occur in highly nonuniform films. Only transparent films can exhibit substantial gradient-induced deflections; strongly absorbing films are immune

  1. Film-thickness and composition dependence of epitaxial thin-film PZT-based

    NARCIS (Netherlands)

    Nguyen, Duc Minh; Dekkers, Jan M.; Vu, Hung Ngoc; Rijnders, Augustinus J.H.M.

    2013-01-01

    The transverse piezoelectric coefficient e31,f and mass-sensitivity were measured on piezoelectric cantilevers based on epitaxial PZT thin-films with film-thicknesses ranging from 100 to 2000 nm. The highest values of e31,f and mass-sensitivity were observed at a film thickness of 500–750 nm, while

  2. Australian Film Studies.

    Science.gov (United States)

    Breen, Myles P.

    Although Australia had a vigorous film industry in the silent film era, it was stifled in the 1930s when United States and British interests bought up the Australian distribution channels and closed down the indigenous industry. However, the industry and film study have undergone a renaissance since the advent of the Labor government in 1972,…

  3. Radiochromic film dosimetry

    International Nuclear Information System (INIS)

    Xu Zhiyong

    2002-01-01

    Radiochromic film dosimetry was developed to measure ionization irradiation dose for industry and medicine. At this time, there are no comprehensive guideline on the medical application, calibration method and densitometer system for medicine. The review gives update on Radiochromic film dosimetry used for medicine, including principles, film model and material, characteristics, calibration method, scanning densitometer system and medical application

  4. P-type CuxS thin films: Integration in a thin film transistor structure

    International Nuclear Information System (INIS)

    Nunes de Carvalho, C.; Parreira, P.; Lavareda, G.; Brogueira, P.; Amaral, A.

    2013-01-01

    Cu x S thin films, 80 nm thick, are deposited by vacuum thermal evaporation of sulfur-rich powder mixture, Cu 2 S:S (50:50 wt.%) with no intentional heating of the substrate. The process of deposition occurs at very low deposition rates (0.1–0.3 nm/s) to avoid the formation of Cu or S-rich films. The evolution of Cu x S films surface properties (morphology/roughness) under post deposition mild annealing in air at 270 °C and their integration in a thin film transistor (TFT) are the main objectives of this study. Accordingly, Scanning Electron Microscopy studies show Cu x S films with different surface morphologies, depending on the post deposition annealing conditions. For the shortest annealing time, the Cu x S films look to be constructed of grains with large dimension at the surface (approximately 100 nm) and consequently, irregular shape. For the longest annealing time, films with a fine-grained surface are found, with some randomly distributed large particles bound to this fine-grained surface. Atomic Force Microscopy results indicate an increase of the root-mean-square roughness of Cu x S surface with annealing time, from 13.6 up to 37.4 nm, for 255 and 345 s, respectively. The preliminary integration of Cu x S films in a TFT bottom-gate type structure allowed the study of the feasibility and compatibility of this material with the remaining stages of a TFT fabrication as well as the determination of the p-type characteristic of the Cu x S material. - Highlights: • Surface properties of annealed Cu x S films. • Variation of conductivity with annealing temperatures of Cu x S films. • Application of evaporated Cu x S films in a thin film transistor (TFT) structure. • Determination of Cu x S p-type characteristic from TFT behaviour

  5. Thin film processes II

    CERN Document Server

    Kern, Werner

    1991-01-01

    This sequel to the 1978 classic, Thin Film Processes, gives a clear, practical exposition of important thin film deposition and etching processes that have not yet been adequately reviewed. It discusses selected processes in tutorial overviews with implementation guide lines and an introduction to the literature. Though edited to stand alone, when taken together, Thin Film Processes II and its predecessor present a thorough grounding in modern thin film techniques.Key Features* Provides an all-new sequel to the 1978 classic, Thin Film Processes* Introduces new topics, and sever

  6. The Formation Mechanism and Corrosion Resistance of a Composite Phosphate Conversion Film on AM60 Alloy

    Science.gov (United States)

    Lan, Xiangna; Wang, Chao; Zhang, Qinyong

    2018-01-01

    Magnesium alloy AM60 has high duc and toughness, which is expected to increase in demand for automotive applications. However, it is too active, and coatings have been extensively studied to prevent corrosion. In this work, a Ba-containing composite phosphate film has been prepared on the surface of AM60. The composition and formation mechanism of the film have been investigated using a scanning electronic microscope equipped with energy dispersive X-ray spectroscopy, Fourier transform infrared, X-ray photoelectron spectroscopy, and X-ray diffractometry tests. The corrosion resistance of the film has been measured by electrochemical and immersion tests. The results show that the deposition film has fully covered the substrate but there are some micro-cracks. The structure of the film is complex, and consists of MgHPO4·3H2O, MnHPO4·2.25H2O, BaHPO4·3H2O, BaMg2(PO4)2, Mg3(PO4)2·22H2O, Ca3(PO4)2·xH2O, and some amorphous phases. The composite phosphate film has better anticorrosion performance than the AM60 and can protect the bare alloy from corrosion for more than 12 h in 0.6 M NaCl. PMID:29518038

  7. Thin film formation at the air-water interface and on solid substrates of soluble axial substituted cis-bis-decanoate tin phthalocyanine

    Energy Technology Data Exchange (ETDEWEB)

    Campos-Teran, Jose, E-mail: jcampos@correo.cua.uam.mx [Departamento de Procesos y Tecnologia, DCNI, Universidad Autonoma Metropolitana-Cuajimalpa, Artificios 40-sexto piso, Col. Hidalgo, D. F., 001120 (Mexico); Garza, Cristina [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, P. O. Box 20-364, D. F., 01000 (Mexico); Beltran, Hiram I. [Departamento de Ciencias Naturales, DCNI, Universidad Autonoma Metropolitana-Cuajimalpa, Artificios 40-sexto piso, Col. Hidalgo, D. F., 001120 (Mexico); Castillo, Rolando [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, P. O. Box 20-364, D. F., 01000 (Mexico)

    2012-01-01

    Herein we study thin films of a recent kind of soluble axial substituted cis-bis-decanoate-tin{sup IV} phthalocyanine (PcSn10) at the air/water interface, which were compressed isothermally and observed with Brewster Angle Microscopy. The air/water interfacial behavior of the films suggests that there are strong interactions among the PcSn10 molecules, which produces multilayers and 3D self-assemblies that prevent the formation of a Langmuir monolayer. Langmuir-Blodgett deposits of these films on both mica (negatively charged) and mild steel (positively charged) surfaces were developed. Information about the morphology of the film was obtained by using atomic force microscopy. We found structural differences in the PcSn10 thin films deposited on both substrates, suggesting that a combination of {pi}-{pi}, {sigma}-{pi} and Van der Waals interactions are the leading factors for the deposition, and consequently, for the control of supramolecular order. Our findings provide insights in the design of phthalocyanine molecules for the development of highly ordered and reproducible thin films.

  8. Thin film formation at the air–water interface and on solid substrates of soluble axial substituted cis-bis-decanoate tin phthalocyanine

    International Nuclear Information System (INIS)

    Campos-Terán, José; Garza, Cristina; Beltrán, Hiram I.; Castillo, Rolando

    2012-01-01

    Herein we study thin films of a recent kind of soluble axial substituted cis-bis-decanoate-tin IV phthalocyanine (PcSn10) at the air/water interface, which were compressed isothermally and observed with Brewster Angle Microscopy. The air/water interfacial behavior of the films suggests that there are strong interactions among the PcSn10 molecules, which produces multilayers and 3D self-assemblies that prevent the formation of a Langmuir monolayer. Langmuir–Blodgett deposits of these films on both mica (negatively charged) and mild steel (positively charged) surfaces were developed. Information about the morphology of the film was obtained by using atomic force microscopy. We found structural differences in the PcSn10 thin films deposited on both substrates, suggesting that a combination of π–π, σ–π and Van der Waals interactions are the leading factors for the deposition, and consequently, for the control of supramolecular order. Our findings provide insights in the design of phthalocyanine molecules for the development of highly ordered and reproducible thin films.

  9. Film Music. Factfile No. 8.

    Science.gov (United States)

    Elsas, Diana, Ed.; And Others

    Organizations listed here with descriptive information include film music clubs and music guilds and associations. These are followed by a representative list of schools offering film music and/or film sound courses. Sources are listed for soundtrack recordings, sound effects/production music, films on film music, and oral history programs. The…

  10. Film boiling heat transfer and vapour film collapse for various geometries

    International Nuclear Information System (INIS)

    Jouhara, H.I.; Axcell, B.P.

    2005-01-01

    Full text of publication follows: Film boiling heat transfer has application to the safe operation of water-cooled nuclear reactors under fault conditions and it has been studied using nickel-plated copper specimens in transient and steady state experiments. In the transient tests the specimens were held in a water flow; in the steady state investigation a specimen was mounted in an essentially quiescent pool of water. The transient investigation was conducted on two spheres with different diameters, two cylindrical specimens of different lengths in parallel flow, a short cylinder in cross flow and two flat plates with different lengths. The heat transfer coefficient, vapour film thickness (which was estimated from the heat transfer coefficient) and heat flux followed a similar behaviour with changing experimental conditions for all specimens studied. The heat transfer coefficient increased and the vapour film thickness and heat flux decreased as the specimen temperature decreased. As the water subcooling increased the heat transfer coefficient and the heat flux increased while the vapour film thickness decreased. The water velocity was found to have little influence on the film boiling heat transfer results except for the short cylinder in cross flow. The sphere diameter was found to affect the heat transfer results; the heat transfer coefficient and the heat flux were larger, for the larger sphere. No significant effect of the cylinder length on the heat transfer data was observed. However, the heat transfer coefficient was higher (and the average vapour film thinner) for the longer plate than for the shorter plate. Three vapour/liquid interface types were observed namely: 'smooth', 'rippled' and 'turbulent' depending largely on specimen and water temperatures. For all specimens, the maximum heat transfer coefficient, minimum heat flux and minimum film boiling temperature, occurring just before vapour film collapse, were found to increase as the water subcooling

  11. Single bunch beam breakup in linacs and BNS damping

    International Nuclear Information System (INIS)

    Toyomasu, Takanori

    1991-12-01

    We study a single-bunch beam breakup (BBU) problem by a macro-particle model. We consider both the BBU solution and the Landau damping solution which includes the Balakin-Novokhatsky-Smirnov (BNS) damping. In the BBU solution, we get an analytic solution which includes both the Chao-Richter-Yao solution and the two-particle model solution and which agrees well with simulation. The solution can also be used in a multi-bunch case. In the Landau damping solution, we can be see the mechanism of Landau damping formally and can get some insights into BNS damping. We confirm that a two-particle model criterion for BNS damping is a good one. We expect that the two-particle model criterion is represented by the first order interaction in Landau damping solution of a macro-particle model. (author)

  12. Antikken på film

    DEFF Research Database (Denmark)

    Krasilnikoff, Jens

    2012-01-01

    Review af forskning om den græsk-romerske oldtid på film. Dertil en skitse til videre arbejde med antikken på film ud fra et historiefagligt og kulturhistorisk udgangspunkt.......Review af forskning om den græsk-romerske oldtid på film. Dertil en skitse til videre arbejde med antikken på film ud fra et historiefagligt og kulturhistorisk udgangspunkt....

  13. Lars von Triers film

    DEFF Research Database (Denmark)

    Nielsen, Lisbeth Overgaard

    2007-01-01

    Afhandlingen undersøger Lars von Triers filmæstetik, som den kommer til udtryk i spillefilmene fra perioden 1984-2007. Afhandlingen analyserer de enkelte films stil, virkningsstrategi og betydningsdannelse.......Afhandlingen undersøger Lars von Triers filmæstetik, som den kommer til udtryk i spillefilmene fra perioden 1984-2007. Afhandlingen analyserer de enkelte films stil, virkningsstrategi og betydningsdannelse....

  14. Film sheet cassette

    International Nuclear Information System (INIS)

    1981-01-01

    A novel film sheet cassette is described for handling CAT photographic films under daylight conditions and facilitating their imaging. A detailed description of the design and operation of the cassette is given together with appropriate illustrations. The resulting cassette is a low-cost unit which is easily constructed and yet provides a sure light-tight seal for the interior contents of the cassette. The individual resilient fingers on the light-trap permit the ready removal of the slide plate for taking pictures. The stippled, non-electrostatic surface of the pressure plate ensures an air layer and free slidability of the film for removal and withdrawal of the film sheet. The advantage of the daylight system is that a darkroom need not be used for inserting and removing the film in and out of the cassette resulting in a considerable time saving. (U.K.)

  15. Experience of using film-forming compositions for radiation situation improvement during initial period after the Chernobyl' accident

    International Nuclear Information System (INIS)

    Karataev, B.A.; Konstantinov, E.A.; Sorokin, N.M.; Finogenov, V.A.

    1989-01-01

    Film-formiing (FF) compositions were used for radioactive contamination localization, for decontaminating surfaces of rooms and equipment and for their prevention from secondary contamination after decontamination. The FF compounds were used also for isolating reinforced-concrete plates after their laying at the operating site of the Chernobyl' NPP

  16. The Impact of Morphology and Composition on the Resistivity and Oxidation Resistance of Metal Nanostructure Films

    Science.gov (United States)

    Stewart, Ian Edward

    that more closely reflect experimental data collected from the nanowire transparent conductors. In our analysis, we find that Cu NW-based transparent conductors are capable of achieving comparable electrical performance to Ag NW transparent conductors with similar dimensions. We also synthesize high aspect ratio Cu NWs (as high as 5700 in an aqueous based synthesis taking less than 30 minutes) and show that this increase in aspect ratio can result results in transparent conducting films with a transmittance >95% at a sheet resistance <100 O sq-1, optoelectronic properties similar to that for ITO. Two of the major barriers preventing the further use of Cu NWs in printed electronics are the necessity to anneal the nanowires under H2 at higher temperatures and copper's susceptibility to oxidation. The former issue is solved by removing the insulating oxide along the Cu NWs with acetic acid and pressing the nanowires together to make H2 annealing obsolete. Finally, several methods of preventing copper oxidation in the context of transparent conductors were successfully developed such as electroplating zinc, tin, and indium and electrolessly plating benzotriazole (BTAH), nickel, silver, gold, and platinum. While all of the shells lessened or prevented oxidation both in dry and humid conditions, it was found that a thin layer of silver confers identical optoelectronic properties to the Cu NWs as pure Ag NWs. These results are expected provide motivation to replace pure silver and ITO in printed electronics.

  17. Thin films for precision optics

    International Nuclear Information System (INIS)

    Araujo, J.F.; Maurici, N.; Castro, J.C. de

    1983-01-01

    The technology of producing dielectric and/or metallic thin films for high precision optical components is discussed. Computer programs were developed in order to calculate and register, graphically, reflectance and transmittance spectra of multi-layer films. The technology of vacuum evaporation of several materials was implemented in our thin-films laboratory; various films for optics were then developed. The possibility of first calculate film characteristics and then produce the film is of great advantage since it reduces the time required to produce a new type of film and also reduces the cost of the project. (C.L.B.) [pt

  18. Inhibiting properties of benzimidazole films for Cu(II)/Cu(I) reduction in chloride media studied by RDE and EQCN techniques

    Energy Technology Data Exchange (ETDEWEB)

    Scendo, M. [Institute of Chemistry, Saint Cross Academy, ul. Checinska 5, 25020 Kielce (Poland)]. E-mail: scendo@pu.kielce.pl; Hepel, M. [Department of Chemistry, State University of New York, Potsdam, NY 13676, USA (United States)

    2007-08-15

    The effects of benzimidazole (BIM) and 2-methylbenzimidazole (MBIM) on the electroreduction of Cu(II) on a rotating Pt disk electrode in chloride media were investigated. These studies were undertaken in conjunction with earlier observation that these imidazole derivatives act as inhibitors of copper corrosion processes and are non-toxic. We have found that BIM and MBIM also form adsorption films on Pt, which are able to inhibit one-electron reduction of Cu(II) to Cu(I) and prevent the development of convective diffusion limiting current wave. The inhibition was found to be controlled by field-assisted mass transfer in the film. The ingress of Cu(II) species into the film was detected using the EQCN technique. The EQCN measurements indicate that small fraction of Cu(I) formed in the film by reduction of Cu(II) is retained in the film, most likely in the form of CuCl. The uptake of CuCl by inhibitor films diminishes in strongly inhibiting films (e.g., in acidic medium). The inhibition effectiveness of Cu(II) reduction process by Pt vertical bar BIM and Pt vertical bar MBIM films increases strongly with increasing acidity of the medium in the pH range from 3.0 to 1.0. The mechanism of this remarkable pH effect has been proposed. It is based on charge and pH-induced film restructuring, including changes in orientation and protonation of BIM molecules in the film.

  19. Thin-film photovoltaic technology

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, R.N. [National Renewable Energy Laboratory, Golden, CO (United States)

    2010-07-01

    The high material and processing costs associated with single-crystal and polycrystalline silicon wafers that are commonly used in photovoltaic cells render these modules expensive. This presentation described thin-film solar cell technology as a promising alternative to silicon solar cell technology. Cadmium telluride (CdTe) thin films along with copper, indium, gallium, and selenium (CIGS) thin films have become the leaders in this field. Their large optical absorption coefficient can be attributed to a direct energy gap that allows the use of thin layers (1-2 {mu}m) of active material. The efficiency of thin-film solar cell devices based on CIGS is 20 per cent, compared to 16.7 per cent for thin-film solar cell devices based on CdTe. IBM recently reported an efficiency of 9.7 per cent for a new type of inorganic thin-film solar cell based on a Cu{sub 2}ZnSn(S, Se){sub 4} compound. The efficiency of an organic thin-film solar cell is 7.9 per cent. This presentation included a graph of PV device efficiencies and discussed technological advances in non-vacuum deposited, CIGS-based thin-film solar cells. 1 fig.

  20. Robust Superhydrophobic Carbon Nanotube Film with Lotus Leaf Mimetic Multiscale Hierarchical Structures.

    Science.gov (United States)

    Wang, Pengwei; Zhao, Tianyi; Bian, Ruixin; Wang, Guangyan; Liu, Huan

    2017-12-26

    Superhydrophobic carbon nanotube (CNT) films have demonstrated many fascinating performances in versatile applications, especially for those involving solid/liquid interfacial processes, because of their ability to affect the material/energy transfer at interfaces. Thus, developing superhydrophobic CNTs has attracted extensive research interests in the past decades, and it could be achieved either by surface coating of low-free energy materials or by constructing micro/nanohierarchical structures via various complicated processes. So far, developing a simple approach to fabricate stable superhydrophobic CNTs remains a challenge because the capillary force induced coalescence frequently happens when interacting with liquid. Herein, drawing inspirations from the lotus leaf, we proposed a simple one-step chemical vapor deposition approach with programmable controlled gas flow to directly fabricate a CNT film with rather stable superhydrophobicity, which can effectively prevent even small water droplets from permeating into the film. The robust superhydrophobicity was attributable to typical lotus-leaf-like micro/nanoscale hierarchical surface structures of the CNT film, where many microscale clusters composed of entangled nanotubes randomly protrude out of the under-layer aligned nanotubes. Consequently, dual-scale air pockets were trapped within each microscale CNT cluster and between, which could largely reduce the liquid/solid interface, leading to a Cassie state. Moreover, the superhydrophobicity of the CNT film showed excellent durability after long time exposure to air and even to corrosive liquids with a wide range of pH values. We envision that the approach developed is advantageous for versatile physicochemical interfacial processes, such as drag reduction, electrochemical catalysis, anti-icing, and biosensors.

  1. Re-building Daniell Cell with a Li-ion exchange Film

    OpenAIRE

    Dong, Xiaoli; Wang, Yonggang; Xia, Yongyao

    2014-01-01

    Daniell cell (i.e. Zn-Cu battery) is widely used in chemistry curricula to illustrate how batteries work, although it has been supplanted in the late 19th century by more modern battery designs because of Cu2+-crossover-induced self-discharge and un-rechargeable characteristic. Herein, it is re-built by using a ceramic Li-ion exchange film to separate Cu and Zn electrodes for preventing Cu2+-crossover between two electrodes. The re-built Zn-Cu battery can be cycled for 150 times without capac...

  2. Religion og film

    DEFF Research Database (Denmark)

    Hvithamar, Annika; Eskjær, Mikkel Fugl

    2007-01-01

    Artiklen søger at stipulere en ramme for analyse af religion og film. Dels ved at række ud over den blotte konstatering af tilstedeværelse af religiøse elementer i film, dels ved at anslå en række temaer, der kan anvendes til analyse af sådanne film (individualisering, (de-)sekularisering, banal...

  3. High-quality AlN films grown on chemical vapor-deposited graphene films

    Directory of Open Access Journals (Sweden)

    Chen Bin-Hao

    2016-01-01

    Full Text Available We report the growth of high-quality AlN films on graphene. The graphene films were synthesized by CVD and then transferred onto silicon substrates. Epitaxial aluminum nitride films were deposited by DC magnetron sputtering on both graphene as an intermediate layer and silicon as a substrate. The structural characteristics of the AlN films and graphene were investigated. Highly c-axis-oriented AlN crystal structures are investigated based on the XRDpatterns observations.

  4. High-temperature stability of thermoelectric Ca3Co4O9 thin films

    DEFF Research Database (Denmark)

    Brinks, P.; Van Nong, Ngo; Pryds, Nini

    2015-01-01

    An enhanced thermal stability in thermoelectric Ca3Co4O9 thin films up to 550 °C in an oxygen rich environment was demonstrated by high-temperature electrical and X-ray diffraction measurements. In contrast to generally performed heating in helium gas, it is shown that an oxygen/helium mixture...... provides sufficient thermal contact, while preventing the previously disregarded formation of oxygen vacancies. Combining thermal cycling with electrical measurements proves to be a powerful tool to study the real intrinsic thermoelectric behaviour of oxide thin films at elevated temperatures. © 2015 AIP...

  5. "Kuleshov on Film": A Spectator-Centered Film Theory.

    Science.gov (United States)

    Curran, Trisha

    This paper describes some of the theories of cinematography of Soviet film theorist and filmmaker Lev Kuleshov. It points out that for him, film was communication portraying people's activities emanating from the environment. It explains that he was especially interested in audience response, particularly that of the proletariat, and that he felt…

  6. In-situ observation of equilibrium transitions in Ni films; agglomeration and impurity effects.

    Science.gov (United States)

    Thron, Andrew M; Greene, Peter; Liu, Kai; van Benthem, Klaus

    2014-02-01

    Dewetting of ultra-thin Ni films deposited on SiO2 layers was observed, in cross-section, by in situ scanning transmission electron microscopy. Holes were observed to nucleate by voids which formed at the Ni/SiO2 interface rather than at triple junctions at the free surface of the Ni film. Ni islands were observed to retract, in attempt to reach equilibrium on the SiO2 layer. SiO2 layers with 120 nm thickness were found to limit in situ heating experiments due to poor thermal conductivity of SiO2. The formation of graphite was observed during the agglomeration of ultra-thin Ni films. Graphite was observed to wet both the free surface and the Ni/SiO2 interface of the Ni islands. Cr forms surface oxide layers on the free surface of the SiO2 layer and the Ni islands. Cr does not prevent the dewetting of Ni, however it will likely alter the equilibrium shape of the Ni islands. © 2013 Published by Elsevier B.V.

  7. Radiochromic film dosimetry. Considerations on precision and accuracy for EBT2 and EBT3 type films

    Energy Technology Data Exchange (ETDEWEB)

    Dreindl, Ralf [Medical Univ. of Vienna/Vienna General Hospital (Austria). Dept. of Radiooncology; EBG MedAustron GmbH, Wiener Neustadt (Austria); Georg, Dietmar; Stock, Markus [Medical Univ. of Vienna/Vienna General Hospital (Austria). Dept. of Radiooncology; Medical Univ. of Vienna (Austria). Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology

    2014-09-01

    Gafchromic {sup registered} EBT2 film is a widely used dosimetric tool for quality assurance in radiation therapy. In 2012 EBT3 was presented as a replacement for EBT2 films. The symmetric structure of EBT3 films to reduce face-up/down dependency as well as the inclusion of a matte film surface to frustrate Newton Ring artifacts present the most prominent improvements of EBT3 films. The aim of this study was to investigate the characteristics of EBT3 films, to benchmark the films against the known EBT2-features and to evaluate the dosimetric behavior over a time period greater than 6 months. All films were irradiated to clinical photon beams (6MV, 10MV and 18MV) on an Elekta Synergy Linac equipped with a Beam Modulator MLC in solid water phantom slabs. Film digitalization was done with a flatbed transparency scanner (Type Epson Expression 1680 Pro). MATLAB {sup registered} was used for further statistical calculations and image processing. The investigations on post-irradiation darkening, film orientation, film uniformity and energy dependency resulted in negligible differences between EBT2 and EBT3 film. A minimal improvement in face-up/down dependence was found for EBT3. The matte film surface of EBT3 films turned out to be a practical feature as Newton rings could be eliminated completely. Considering long-term behavior (> 6 months) a shift of the calibration curve for EBT2 and EBT3 films due to changes in the dynamic response of the active component was observed. In conclusion, the new EBT3 film yields comparable results to its predecessor EBT2. The general advantages of radiochromic film dosimeters are completed by high film homogeneity, low energy dependence for the observed energy range and a minimized face-up/down dependence. EBT2 dosimetry-protocols can also be used for EBT3 films, but the inclusion of periodical recalibration-interval (e.g. once a quarter) is recommended for protocols of both film generations. (orig.)

  8. Radiochromic film dosimetry: considerations on precision and accuracy for EBT2 and EBT3 type films.

    Science.gov (United States)

    Dreindl, Ralf; Georg, Dietmar; Stock, Markus

    2014-05-01

    Gafchromic® EBT2 film is a widely used dosimetric tool for quality assurance in radiation therapy. In 2012 EBT3 was presented as a replacement for EBT2 films. The symmetric structure of EBT3 films to reduce face-up/down dependency as well as the inclusion of a matte film surface to frustrate Newton Ring artifacts present the most prominent improvements of EBT3 films. The aim of this study was to investigate the characteristics of EBT3 films, to benchmark the films against the known EBT2-features and to evaluate the dosimetric behavior over a time period greater than 6 months. All films were irradiated to clinical photon beams (6 MV, 10 MV and 18 MV) on an Elekta Synergy Linac equipped with a Beam Modulator MLC in solid water phantom slabs. Film digitalization was done with a flatbed transparency scanner (Type Epson Expression 1680 Pro). MATLAB® was used for further statistical calculations and image processing. The investigations on post-irradiation darkening, film orientation, film uniformity and energy dependency resulted in negligible differences between EBT2 and EBT3 film. A minimal improvement in face-up/down dependence was found for EBT3. The matte film surface of EBT3 films turned out to be a practical feature as Newton rings could be eliminated completely. Considering long-term behavior (> 6 months) a shift of the calibration curve for EBT2 and EBT3 films due to changes in the dynamic response of the active component was observed. In conclusion, the new EBT3 film yields comparable results to its predecessor EBT2. The general advantages of radiochromic film dosimeters are completed by high film homogeneity, low energy dependence for the observed energy range and a minimized face-up/down dependence. EBT2 dosimetry-protocols can also be used for EBT3 films, but the inclusion of periodical recalibration-interval (e.g. once a quarter) is recommended for protocols of both film generations. Copyright © 2013. Published by Elsevier GmbH.

  9. Radiochromic film dosimetry. Considerations on precision and accuracy for EBT2 and EBT3 type films

    International Nuclear Information System (INIS)

    Dreindl, Ralf; Georg, Dietmar; Stock, Markus; Medical Univ. of Vienna

    2014-01-01

    Gafchromic registered EBT2 film is a widely used dosimetric tool for quality assurance in radiation therapy. In 2012 EBT3 was presented as a replacement for EBT2 films. The symmetric structure of EBT3 films to reduce face-up/down dependency as well as the inclusion of a matte film surface to frustrate Newton Ring artifacts present the most prominent improvements of EBT3 films. The aim of this study was to investigate the characteristics of EBT3 films, to benchmark the films against the known EBT2-features and to evaluate the dosimetric behavior over a time period greater than 6 months. All films were irradiated to clinical photon beams (6MV, 10MV and 18MV) on an Elekta Synergy Linac equipped with a Beam Modulator MLC in solid water phantom slabs. Film digitalization was done with a flatbed transparency scanner (Type Epson Expression 1680 Pro). MATLAB registered was used for further statistical calculations and image processing. The investigations on post-irradiation darkening, film orientation, film uniformity and energy dependency resulted in negligible differences between EBT2 and EBT3 film. A minimal improvement in face-up/down dependence was found for EBT3. The matte film surface of EBT3 films turned out to be a practical feature as Newton rings could be eliminated completely. Considering long-term behavior (> 6 months) a shift of the calibration curve for EBT2 and EBT3 films due to changes in the dynamic response of the active component was observed. In conclusion, the new EBT3 film yields comparable results to its predecessor EBT2. The general advantages of radiochromic film dosimeters are completed by high film homogeneity, low energy dependence for the observed energy range and a minimized face-up/down dependence. EBT2 dosimetry-protocols can also be used for EBT3 films, but the inclusion of periodical recalibration-interval (e.g. once a quarter) is recommended for protocols of both film generations. (orig.)

  10. [Oral films as perspective dosage form].

    Science.gov (United States)

    Walicová, Veronika; Gajdziok, Jan

    Oral films, namely buccal mucoadhesive films and orodispersible films represent innovative formulations for administration of a wide range of drugs. Oral films show many advantageous properties and are intended for systemic drug delivery or for local treatment of the oral mucosa. In both cases, the film represents a thin layer, which could be intended to adhere to the oral mucosa by means of mucoadhesion; or to rapid dissolution and subsequent swallowing without the need of liquid intake, in the case of orodispersible films. Main constitutive excipients are film-forming polymers, which must in the case of mucoadhesive forms remain on the mucosa within the required time interval. Oral films are currently available on the pharmaceutical market and could compete with conventional oral dosage forms in the future. oral cavity oral films buccal mucoadhesive films orodispersible films film-forming polymers.

  11. Dimensional scaling of perovskite ferroelectric thin films

    Science.gov (United States)

    Keech, Ryan R.

    Dimensional size reduction has been the cornerstone of the exponential improvement in silicon based logic devices for decades. However, fundamental limits in the device physics were reached ˜2003, halting further reductions in clock speed without significant penalties in power consumption. This has motivated the research into next generation transistors and switching devices to reinstate the scaling laws for clock speed. This dissertation aims to support the scaling of devices that are based on ferroelectricity and piezoelectricity and to provide a roadmap for the corresponding materials performance. First, a scalable growth process to obtain highly {001}-oriented lead magnesium niobate - lead titanate (PMN-PT) thin films was developed, motivated by the high piezoelectric responses observed in bulk single crystals. It was found that deposition of a 2-3 nm thick PbO buffer layer on {111} Pt thin film bottom electrodes, prior to chemical solution deposition of PMN-PT reduces the driving force for Pb diffusion from the PMN-PT to the bottom electrode, and facilitates nucleation of {001}-oriented perovskite grains. Energy dispersive spectroscopy demonstrated that up to 10% of the Pb from a PMN-PT precursor solution may diffuse into the bottom electrode. PMN-PT grains with a mixed {101}/{111} orientation in a matrix of Pb-deficient pyrochlore phase were then promoted near the interface. When this is prevented, phase pure films with {001} orientation with Lotgering factors of 0.98-1.0, can be achieved. The resulting films of only 300 nm in thickness exhibit longitudinal effective d33,f coefficients of ˜90 pm/V and strain values of ˜1% prior to breakdown. 300 nm thick epitaxial and polycrystalline lead magnesium niobate - lead titanate (70PMN-30PT) blanket thin films were studied for the relative contributions to property thickness dependence from interfacial and grain boundary low permittivity layers. Epitaxial PMN-PT films were grown on SrRuO 3 /(001)SrTiO3, while

  12. Measurement of liquid film in microchannels using a laser focus displacement meter

    Science.gov (United States)

    Hazuku, Tatsuya; Fukamachi, Norihiro; Takamasa, Tomoji; Hibiki, Takashi; Ishii, Mamoru

    2005-06-01

    This paper presents a new method for measuring the interfacial displacement of a liquid film in microchannels using a laser focus displacement meter (LFD). The purpose of the study is to clarify the effectiveness of the new method for obtaining detailed information concerning interfacial displacement, especially in the case of a thin liquid film, in microchannels and minichannels. To prevent the tube wall signal from disturbing that of the gas liquid interface, a fluorocarbon tube with a water box was used; the refraction index of this device is the same as that for water. With this method, accurate instantaneous measurements of the interfacial displacement of the liquid film were achieved. The error caused by refraction of the laser beam passing through the acrylic water box and fluorocarbon tube was estimated analytically and experimentally. The formulated analytical equation can estimate the real interface displacement by using the measured displacement in a fluorocarbon tube of 25 μm to 2.0 mm I.D. A preliminary test using fluorocarbon tubes of 1 mm and 2 mm I.D. showed that the corrected interface displacement calculated by the equation agreed with the real displacement to within a 1% margin of error. It was also confirmed that the LFD in the system could measure a liquid film of 0.25 μm at the thinnest. We made simultaneous measurements of the interface in fluorocarbon tubes of 0.5 mm and 1 mm I.D. using the LFD and a high-speed video camera with a microscope. These showed that the LFD could measure the interface of a liquid film with high spatial and temporal resolution during annular, slug, and piston flow regimes. The data also clarified the existence of a thin liquid film of less than 1 μm in thickness in the slug and annular flow regimes.

  13. Measurement of liquid film in microchannels using a laser focus displacement meter

    Energy Technology Data Exchange (ETDEWEB)

    Hazuku, Tatsuya; Fukamachi, Norihiro; Takamasa, Tomoji [Tokyo University of Marine Science and Technology, Faculty of Marine Technology, Etchujima, Koto, Tokyo (Japan); Hibiki, Takashi [Kyoto University, Research Reactor Institute, Kumatori, Sennan, Osaka (Japan); Ishii, Mamoru [Purdue University, School of Nuclear Engineering, West Lafayette, IN (United States)

    2005-06-01

    This paper presents a new method for measuring the interfacial displacement of a liquid film in microchannels using a laser focus displacement meter (LFD). The purpose of the study is to clarify the effectiveness of the new method for obtaining detailed information concerning interfacial displacement, especially in the case of a thin liquid film, in microchannels and minichannels. To prevent the tube wall signal from disturbing that of the gas-liquid interface, a fluorocarbon tube with a water box was used; the refraction index of this device is the same as that for water. With this method, accurate instantaneous measurements of the interfacial displacement of the liquid film were achieved. The error caused by refraction of the laser beam passing through the acrylic water box and fluorocarbon tube was estimated analytically and experimentally. The formulated analytical equation can estimate the real interface displacement by using the measured displacement in a fluorocarbon tube of 25 {mu}m to 2.0 mm I.D. A preliminary test using fluorocarbon tubes of 1 mm and 2 mm I.D. showed that the corrected interface displacement calculated by the equation agreed with the real displacement to within a 1% margin of error. It was also confirmed that the LFD in the system could measure a liquid film of 0.25 {mu}m at the thinnest. We made simultaneous measurements of the interface in fluorocarbon tubes of 0.5 mm and 1 mm I.D. using the LFD and a high-speed video camera with a microscope. These showed that the LFD could measure the interface of a liquid film with high spatial and temporal resolution during annular, slug, and piston flow regimes. The data also clarified the existence of a thin liquid film of less than 1 {mu}m in thickness in the slug and annular flow regimes. (orig.)

  14. Macroparticle acceleration by laser induced ablation pressure

    International Nuclear Information System (INIS)

    Burgess, M.D.J.; Motz, H.; Rumsby, P.T.

    1976-01-01

    In this paper it is shown that the theoretical scaling of plasma pressure is very closely obeyed using ordinary Q-switched laser pulses, resulting in velocities of over 2 x 10 4 cm s -1 . The problems associated with increasing this velocity whilst still not rupturing the pellet have also been examined and an experiment to determine the results described. (orig.) [de

  15. Stabilization of N,N′-bis(3-methylphenyl)-N,N′-bis(phenyl)benzidine thin film morphology with UV light

    Energy Technology Data Exchange (ETDEWEB)

    Tomović, A.Ž.; Markešević, N. [Institute of Physics, University of Belgrade, Pregrevica 118, 11000 Belgrade (Serbia); Scarpellini, M.; Bovio, S. [Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMAINA), Università di Milano, Via Celoria 16, 20133 Milan (Italy); Lucenti, E. [Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMAINA), Università di Milano, Via Celoria 16, 20133 Milan (Italy); Institute of Molecular Science and Technology of CNR, via Golgi 19, 20133 Milan (Italy); Milani, P. [Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMAINA), Università di Milano, Via Celoria 16, 20133 Milan (Italy); Zikic, R. [Institute of Physics, University of Belgrade, Pregrevica 118, 11000 Belgrade (Serbia); Jovanović, V.P., E-mail: vladimir.jovanovic@ipb.ac.rs [Institute of Physics, University of Belgrade, Pregrevica 118, 11000 Belgrade (Serbia); Srdanov, V.I. [Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMAINA), Università di Milano, Via Celoria 16, 20133 Milan (Italy)

    2014-07-01

    Owing to their low glass transition temperature, T{sub g}, amorphous thin films of N,N′-bis(3-methylphenyl)-N,N′-bis(phenyl)benzidine (TPD) undergo morphological changes even at room temperature. It has been noticed previously that exposure to UV light can increase apparent T{sub g} of TPD films and thus stabilize their morphology. However, the reason behind increase in structural stability was not examined at the time. Here we present evidence that TPD molecules undergo photo-oxidation in air when exposed to λ ≈ 350 nm radiation and that less than 5% of the photo-oxidized species are needed to prevent dewetting of thin TPD films. We propose that photo-oxidized TPD species bind strongly to both ordinary TPD molecules and to terminal hydroxyl groups at the substrate surface, which decreases mobility of TPD molecules and makes thin TPD film less prone to morphology changes. - Highlights: • We made variable thickness TPD films and exposed them to UV light under ambient conditions. • Mass spectroscopy and proton NMR measurements of irradiated and pristine TPD films • TPD molecules undergo oxidation process under UV light irradiation. • Dipole–dipole interactions may be responsible for stabilization of morphological changes.

  16. Efficient protein-repelling thin films regulated by chain mobility of low-Tg polymers with increased stability via crosslinking

    Science.gov (United States)

    Zhang, Jinghui; Huang, Zhiwei; Liu, Dan

    2017-12-01

    Polymer thin films are generally employed as coatings on implants to prevent protein adsorption. Polymer chain mobility and surface softness have been found to contribute to the protein resistance, but also bring film instability in a liquid protein medium. We investigated the protein resistance ability of three low-Tg polymers, including hydrophobic polymers polyisoprene (PI), poly(n-butyl methacrylate) (PnBMA) and hydrophilic polyethylene oxide (PEO), by overcoming the instability issue with crosslinking. We found that the Tgs of PI and PEO can be increased to around 0 °C after crosslinking. The remained strong chain mobility of both films can still resist protein adsorption regardless the hydrophobicity, yet greatly increases the film stability under an aqueous circumstance. The PnBMA film increased its Tg to around room temperature after crosslinking, which deteriorated the protein-resistance ability having the surface covered by BSA molecules. Our results support that the chain mobility of a polymer film plays an important role in resisting protein adsorption due to the increased entropy associated with more mobile polymer chains. By tune the degree of crosslinking, the stability of polymer in aqueous environment can be increased while the protein resistant ability can be remained. Our results provide a new strategy to design polymer materials for effective antifouling.

  17. Nanoencapsulation of Rose-Hip Oil Prevents Oil Oxidation and Allows Obtainment of Gel and Film Topical Formulations.

    Science.gov (United States)

    Contri, Renata V; Kulkamp-Guerreiro, Irene C; da Silva, Sheila Janine; Frank, Luiza A; Pohlmann, Adriana R; Guterres, Silvia S

    2016-08-01

    The rose-hip oil holds skin regenerating properties with applications in the dermatological and cosmetic area. Its nanoencapsulation might favor the oil stability and its incorporation into hydrophilic formulations, besides increasing the contact with the skin and prolonging its effect. The aim of the present investigation was to develop suitable rose-hip-oil-loaded nanocapsules, to verify the nanocapsule effect on the UV-induced oxidation of the oil and to obtain topical formulations by the incorporation of the nanocapsules into chitosan gel and film. The rose-hip oil (500 or 600 μL), polymer (Eudragit RS100®, 100 or 200 mg), and acetone (50 or 100 mL) contents were separately varied aiming to obtain an adequate size distribution. The results led to a combination of the factors acetone and oil. The developed formulation showed average diameter of 158 ± 6 nm with low polydispersity, pH of 5.8 ± 0.9, zeta potential of +9.8 ± 1.5 mV, rose-hip oil content of 54 ± 1 μL/mL and tendency to reversible creaming. No differences were observed in the nanocapsules properties after storage. The nanoencapsulation of rose-hip oil decreased the UVA and UVC oxidation of the oil. The chitosan gel and film containing rose-hip-oil-loaded nanocapsules showed suitable properties for cutaneous use. In conclusion, it was possible to successfully obtain rose-hip-oil-loaded nanocapsules and to confirm the nanocapsules effect in protecting the oil from the UV rays. The chitosan gel and film were considered interesting alternatives for incorporating the nanoencapsulated rose-hip oil, combining the advantages of the nanoparticles to the advantages of chitosan.

  18. Evolution of optical constants of silicon dioxide on silicon from ultrathin films to thick films

    Energy Technology Data Exchange (ETDEWEB)

    Cai Qingyuan; Zheng Yuxiang; Mao Penghui; Zhang Rongjun; Zhang Dongxu; Liu Minghui; Chen Liangyao, E-mail: yxzheng@fudan.edu.c [Key Laboratory of Micro and Nano Photonic Structures, Ministry of Education, Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China)

    2010-11-10

    A series of SiO{sub 2} films with thickness range 1-600 nm have been deposited on crystal silicon (c-Si) substrates by electron beam evaporation (EBE) method. Variable-angle spectroscopic ellipsometry (VASE) in combination with a two-film model (ambient-oxide-interlayer substrate) was used to determine the optical constants and thicknesses of the investigated films. The refractive indices of SiO{sub 2} films thicker than 60 nm are close to those of bulk SiO{sub 2}. For the thin films deposited at the rate of {approx}1.0 nm s{sup -1}, the refractive indices increase with decreasing thickness from {approx}60 to {approx}10 nm and then drop sharply with decreasing thickness below {approx}10 nm. However, for thin films deposited at the rates of {approx}0.4 and {approx}0.2 nm s{sup -1}, the refractive indices monotonically increase with decreasing thickness below 60 nm. The optical constants of the ultrathin film depend on the morphology of the film, the stress exerted on the film, as well as the stoichiometry of the oxide film.

  19. Evolution of optical constants of silicon dioxide on silicon from ultrathin films to thick films

    International Nuclear Information System (INIS)

    Cai Qingyuan; Zheng Yuxiang; Mao Penghui; Zhang Rongjun; Zhang Dongxu; Liu Minghui; Chen Liangyao

    2010-01-01

    A series of SiO 2 films with thickness range 1-600 nm have been deposited on crystal silicon (c-Si) substrates by electron beam evaporation (EBE) method. Variable-angle spectroscopic ellipsometry (VASE) in combination with a two-film model (ambient-oxide-interlayer substrate) was used to determine the optical constants and thicknesses of the investigated films. The refractive indices of SiO 2 films thicker than 60 nm are close to those of bulk SiO 2 . For the thin films deposited at the rate of ∼1.0 nm s -1 , the refractive indices increase with decreasing thickness from ∼60 to ∼10 nm and then drop sharply with decreasing thickness below ∼10 nm. However, for thin films deposited at the rates of ∼0.4 and ∼0.2 nm s -1 , the refractive indices monotonically increase with decreasing thickness below 60 nm. The optical constants of the ultrathin film depend on the morphology of the film, the stress exerted on the film, as well as the stoichiometry of the oxide film.

  20. Effect of gamma-irradiation of bovine serum albumin solution on the formation of zigzag film textures

    Science.gov (United States)

    Glibitskiy, Dmitriy M.; Gorobchenko, Olga A.; Nikolov, Oleg T.; Cheipesh, Tatiana A.; Roshal, Alexander D.; Zibarov, Artem M.; Shestopalova, Anna V.; Semenov, Mikhail A.; Glibitskiy, Gennadiy M.

    2018-03-01

    Formation of patterns on the surface of dried films of saline biopolymer solutions is influenced by many factors, including particle size and structure. Proteins may be modified under the influence of ionizing radiation. By irradiating protein solutions with gamma rays, it is possible to affect the formation of zigzag (Z) structures on the film surface. In our study, the films were obtained by desiccation of bovine serum albumin (BSA) solutions, which were irradiated by a 60Co gamma-source at doses ranging from 1 Gy to 12 kGy. The analysis of the resulting textures on the surface of the films was carried out by calculating the specific length of Z-structures. The results are compared against the absorption and fluorescence spectroscopy and dynamic light scattering (DLS) data. Gamma-irradiation of BSA solutions in the 1-200 Gy range practically does not influence the amount of Z-structures on the film surface. The decrease in fluorescence intensity and increase in absorbance intensity point to the destruction of BSA structure at 2 and 12 kGy, and DLS shows a more than 160% increase in particle size as a result of BSA aggregation at 2 kGy. This prevents the formation of Z-structures, which is reflected in the decrease of their specific length.

  1. Deposition and Characterization of Hermetic, Biocompatible Thin Film Coatings for Implantable, Electrically Active Devices

    Science.gov (United States)

    Sweitzer, Robyn K.

    Retinal prostheses may be used to support patients suffering from Age-related macular degeneration or retinitis pigmentosa. A hermetic encapsulation of the poly(imide )-based prosthesis is important in order to prevent the leakage of water and ions into the electric circuitry embedded in the poly(imide) matrix. The deposition of amorphous aluminum oxide (by sputtering) and diamond like carbon (by pulsed laser ablation and vacuum arc vapor deposition) were studied for the application in retinal prostheses. The resulting thin films were characterized for composition, thickness, adhesion and smoothness by scanning electron microscopy-energy dispersive spectroscopy, atomic force microscopy, profilometry and light microscopy. Electrical stability was evaluated and found to be good. The as-deposited films prevented incursion of salinated fluids into the implant over two (2) three month trials soaking in normal saline at body temperature, Biocompatibility was tested in vivo by implanting coated specimen subretinally in the eye of Yucatan pigs. While amorphous aluminum oxide is more readily deposited with sufficient adhesion quality, biocompatibility studies showed a superior behavior of diamond-like carbon. Amorphous aluminum oxide had more adverse effects and caused more severe damage to the retinal tissue.

  2. Fabrication of nitrogen-containing diamond-like carbon film by filtered arc deposition as conductive hard-coating film

    Science.gov (United States)

    Iijima, Yushi; Harigai, Toru; Isono, Ryo; Imai, Takahiro; Suda, Yoshiyuki; Takikawa, Hirofumi; Kamiya, Masao; Taki, Makoto; Hasegawa, Yushi; Tsuji, Nobuhiro; Kaneko, Satoru; Kunitsugu, Shinsuke; Habuchi, Hitoe; Kiyohara, Shuji; Ito, Mikio; Yick, Sam; Bendavid, Avi; Martin, Phil

    2018-01-01

    Diamond-like carbon (DLC) films, which are amorphous carbon films, have been used as hard-coating films for protecting the surface of mechanical parts. Nitrogen-containing DLC (N-DLC) films are expected as conductive hard-coating materials. N-DLC films are expected in applications such as protective films for contact pins, which are used in the electrical check process of integrated circuit chips. In this study, N-DLC films are prepared using the T-shaped filtered arc deposition (T-FAD) method, and film properties are investigated. Film hardness and film density decreased when the N content increased in the films because the number of graphite structures in the DLC film increased as the N content increased. These trends are similar to the results of a previous study. The electrical resistivity of N-DLC films changed from 0.26 to 8.8 Ω cm with a change in the nanoindentation hardness from 17 to 27 GPa. The N-DLC films fabricated by the T-FAD method showed high mechanical hardness and low electrical resistivity.

  3. Double angle seal forming lubricant film

    Science.gov (United States)

    Ernst, William D.

    1984-01-01

    A lubricated piston rod seal which inhibits gas leaking from a high pressure chamber on one side of the seal to a low pressure chamber on the other side of the seal. A liquid is supplied to the surface of the piston rod on the low pressure side of the seal. This liquid acts as lubricant for the seal and provides cooling for the rod. The seal, which can be a plastic, elastomer or other material with low elastic modulus, is designed to positively pump lubricant through the piston rod/seal interface in both directions when the piston rod is reciprocating. The capacity of the seal to pump lubricant from the low pressure side to the high pressure side is less than its capacity to pump lubricant from the high pressure side to the low pressure side which ensures that there is zero net flow of lubricant to the high pressure side of the seal. The film of lubricant between the seal and the rod minimizes any sliding contact and prevents the leakage of gas. Under static conditions gas leakage is prevented by direct contact between the seal and the rod.

  4. Ferroelectric ultrathin perovskite films

    Science.gov (United States)

    Rappe, Andrew M; Kolpak, Alexie Michelle

    2013-12-10

    Disclosed herein are perovskite ferroelectric thin-film. Also disclosed are methods of controlling the properties of ferroelectric thin films. These films can be used in a variety materials and devices, such as catalysts and storage media, respectively.

  5. Important considerations for radiochromic film dosimetry with flatbed CCD scanners and EBT GAFCHROMIC[reg] film

    International Nuclear Information System (INIS)

    Lynch, Bart D.; Kozelka, Jakub; Ranade, Manisha K.; Li, Jonathan G.; Simon, William E.; Dempsey, James F.

    2006-01-01

    In this study, we present three significant artifacts that have the potential to negatively impact the accuracy and precision of film dosimetry measurements made using GAFCHROMIC[reg] EBT radiochromic film when read out with CCD flatbed scanners. Films were scanned using three commonly employed instruments: a Macbeth TD932 spot densitometer, an Epson Expression 1680 CCD array scanner, and a Microtek ScanMaker i900 CCD array scanner. For the two scanners we assessed the variation in optical density (OD) of GAFCHROMIC EBT film with scanning bed position, angular rotation of the film with respect to the scan line direction, and temperature inside the scanner due to repeated scanning. Scanning uniform radiochromic films demonstrated a distinct bowing effect in profiles in the direction of the CCD array with a nonuniformity of up to 17%. Profiles along a direction orthogonal to the CCD array demonstrated a 7% variation. A strong angular dependence was found in measurements made with the flatbed scanners; the effect could not be reproduced with the spot densitometer. An IMRT quality assurance film was scanned twice rotating the film 90 deg. between the scans. For films scanned on the Epson scanner, up to 12% variation was observed in unirradiated EBT films rotated between 0 deg. and 90 deg. , which decreased to approximately 8% for EBT films irradiated to 300 cGy. Variations of up to 80% were observed for films scanned with the Microtek scanner. The scanners were found to significantly increase the film temperature with repeated scanning. Film temperature between 18 and 33 deg. C caused OD changes of approximately 7%. Considering these effects, we recommend adherence to a strict scanning protocol that includes: maintaining the orientation of films scanned on flatbed scanners, limiting scanning to the central portion of the scanner bed, and limiting the number of consecutive scans to minimize changes in OD caused by film heating

  6. Characteristics of ITO films with oxygen plasma treatment for thin film solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Seob [Department of Photoelectronics Information, Chosun College of Science and Technology, Gwangju (Korea, Republic of); Kim, Eungkwon [Digital Broadcasting Examination, Korean Intellectual Property Office, Daejeon, Suwon 440-746 (Korea, Republic of); Hong, Byungyou [School of Electronic and Electrical Engineering, Sungkyunkwan University, Cheoncheon-dong, 300, Jangan-gu, Suwon 440-746 (Korea, Republic of); Lee, Jaehyoeng, E-mail: jaehyeong@skku.edu [School of Electronic and Electrical Engineering, Sungkyunkwan University, Cheoncheon-dong, 300, Jangan-gu, Suwon 440-746 (Korea, Republic of)

    2013-12-15

    Graphical abstract: The effect of O{sub 2} plasma treatment on the surface and the work function of ITO films. - Highlights: • ITO films were prepared on the glass substrate by RF magnetron sputtering method. • Effects of O{sub 2} plasma treatment on the properties of ITO films were investigated. • The work function of ITO film was changed from 4.67 to 5.66 eV by plasma treatment. - Abstract: The influence of oxygen plasma treatment on the electro-optical and structural properties of indium-tin-oxide films deposited by radio frequency magnetron sputtering method were investigated. The films were exposed at different O{sub 2} plasma powers and for various durations by using the plasma enhanced chemical vapor deposition (PECVD) system. The resistivity of the ITO films was almost constant, regardless of the plasma treatment conditions. Although the optical transmittance of ITO films was little changed by the plasma power, the prolonged treatment slightly increased the transmittance. The work function of ITO film was changed from 4.67 eV to 5.66 eV at the plasma treatment conditions of 300 W and 60 min.

  7. Study of the role of film flows in three-phase displacement mechanisms in porous media; Etude du role des ecoulements par film dans les mecanismes de deplacement triphasique en milieux poreux

    Energy Technology Data Exchange (ETDEWEB)

    Bataillon, D

    1996-12-11

    The determination of the role of liquid films in three phase flows in porous media is very important for enhanced oil recovery by gas injection in a petroleum reservoir. The existence of liquid films (water, oil), their thickness and their stability, control the distribution of fluids and the displacement of these fluids in the reservoir. The target of this research is to obtain, from experimental observations, the microscopic rules of flow by films taking into account the elementary mechanisms controlling the displacement of fluids. For this, a method of liquid film flow thickness measurement is developed in a quartz Hele-Shaw cell. It is based on infrared spectrometry, used for the first time to our knowledge for such an application, which gives the possibility to follow the drainage kinetics of oil and water in the presence of gas. When the thick oil film is initially stable on water in the presence of gas, it slowly drains until it reaches a constant thickness of about 20 nm. This film may breaks down into micro droplets of less than few micrometers in diameter. When this thick oil film is not initially stable, it immediately breaks down into droplets of 10 to 20 {mu}m in diameter prevents any oil flow. For spreading conditions, the initial oil thickness of about 200 nm is calculated form the Ca capillary number. The flow kinetics of this film is then determined when macroscopic forces are predominant. Finally, for the estimation of the stabilisation thickness, disjoining pressure isotherms, based on long-scale intermolecular forces (VdW), are calculated for pure n-alkanes. In order to study the macroscopic flow parameters, gravity drainage experiments are carried out in a 2D glass network (micro-model). Measurements of oil production (weight) and residual saturations (image analysis) show clearly the influence of the initial stability of oil, coating water in the presence of gas, on the flow mechanisms. (author) 73 refs.

  8. Structural and magnetic properties of NdFeB and NdFeB/Fe films with Mo addition

    Energy Technology Data Exchange (ETDEWEB)

    Urse, M; Grigoras, M; Lupu, N; Chiriac, H, E-mail: urse@phys-iasi.ro [National Institute of R and D for Technical Physics, 47 Mangeron Blvd., 700050 Iasi (Romania)

    2011-07-06

    The influence of the Mo addition on the microstructure and magnetic properties of Nd-Fe-B and Nd-Fe-B/Fe films was studied. The coercivity is a key parameter in the control of technical performances of Nd-Fe-B films. A small amount of about 1 at.% Mo can enhance the coercivity of Nd-Fe-B film by controlling the growth of soft and hard magnetic grains. A coercivity of 22.1 kOe, a remanence ratio, M{sub r}/M{sub s}, of 0.83 and a maximum energy product of 8 MGOe were obtained for Ta/[NdFeBMo(1at.%)(540nm)/Ta films annealed at 650{sup 0}C for 20 minutes due to Mo precipitates formed at the Nd{sub 2}Fe{sub 14}B phase boundaries which prevent the nucleation and expansion of the magnetic domains. Simultaneous use of Mo as addition and the stratification of Nd-Fe-B-Mo films using Fe as spacer layer are important tools for the improvement of the hard magnetic properties of Nd-Fe-B films. The Ta/[NdFeBMo(1at.%)(180nm)/Fe(1nm)]x3/Ta multilayer film annealed at 620{sup 0}C exhibits an increase in the coercivity from 12.1 kOe to 22.8 kOe, in the remanence ratio from 0.77 to 0.80, and in the maximum energy product from 4.5 to 7.1 MGOe in comparison with Ta/Nd-Fe-B/Ta film. As compared to Ta/Nd-Fe-B/Ta film, the Ta/[NdFeBMo(1at.%)(180nm)/Fe(1nm)]x3/Ta film presents a decrease in the crystallization temperature of about 30{sup 0}C.

  9. Host thin films incorporating nanoparticles

    Science.gov (United States)

    Qureshi, Uzma

    The focus of this research project was the investigation of the functional properties of thin films that incorporate a secondary nanoparticulate phase. In particular to assess if the secondary nanoparticulate material enhanced a functional property of the coating on glass. In order to achieve this, new thin film deposition methods were developed, namely use of nanopowder precursors, an aerosol assisted transport technique and an aerosol into atmospheric pressure chemical vapour deposition system. Aerosol assisted chemical vapour deposition (AACVD) was used to deposit 8 series of thin films on glass. Five different nanoparticles silver, gold, ceria, tungsten oxide and zinc oxide were tested and shown to successfully deposit thin films incorporating nanoparticles within a host matrix. Silver nanoparticles were synthesised and doped within a titania film by AACVD. This improved solar control properties. A unique aerosol assisted chemical vapour deposition (AACVD) into atmospheric pressure chemical vapour deposition (APCVD) system was used to deposit films of Au nanoparticles and thin films of gold nanoparticles incorporated within a host titania matrix. Incorporation of high refractive index contrast metal oxide particles within a host film altered the film colour. The key goal was to test the potential of nanopowder forms and transfer the suspended nanopowder via an aerosol to a substrate in order to deposit a thin film. Discrete tungsten oxide nanoparticles or ceria nanoparticles within a titanium dioxide thin film enhanced the self-cleaning and photo-induced super-hydrophilicity. The nanopowder precursor study was extended by deposition of zinc oxide thin films incorporating Au nanoparticles and also ZnO films deposited from a ZnO nanopowder precursor. Incorporation of Au nanoparticles within a VO: host matrix improved the thermochromic response, optical and colour properties. Composite VC/TiC and Au nanoparticle/V02/Ti02 thin films displayed three useful

  10. Readdressing the issue of low-temperature resistivity minimum in La{sub 0.7}Ca{sub 0.3}MnO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sagdeo, P.R. [Indian Institute of Technology Indore, Indore (India); Sagdeo, Archna [Raja Ramanna Centre for Advanced Technology, Indore (India)

    2013-11-15

    We have investigated the origin of low-temperature resistivity minima observed in epitaxial thin films of La{sub 0.7}Ca{sub 0.3}MnO{sub 3} (thicknesses - 300 Aa and 3000 Aa) using electrical and magneto-transport property measurements. We observe considerably smaller hysteresis in the magnetoresistance measurements for the thicker film than the thinner film. 300 Aa film shows meta-stability in the resistivity measurements at low temperature and for this film the sample current 'I' shows large effect on the resistivity and its minima temperature. These observations suggest that the strain induces electronic intra grain inhomogeneity in these samples and these inhomogeneities consist of regions of different resistive phases. It appears that the high resistive phase prevents the transport of charge carriers between two low resistive regions thus giving rise to the resistivity minimum in these samples. (orig.)

  11. Preventing dewetting during rapid-thermal annealing of FePt films with enhanced L1{sub 0} ordering by introducing Ag cap-layers

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, S.N., E-mail: pmami.hsiao@gmail.com [Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Wu, S.C. [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Liu, S.H. [Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Tsai, J.L., E-mail: tsaijl@dragon.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Chen, S.K. [Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Chang, Y.C. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Lee, H.Y. [Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30077, Taiwan (China)

    2015-11-15

    High-order FePt continuous films with a strong (001) texture were fabricated on a glass substrate by introducing Ag layers and rapid thermal annealing (RTA). The dewetting of the (001)-textured FePt was suppressed during RTA with high heating rates (>80 K/s). The Ag cap layers not only increased the in-plane tensile stress, but also improved the (001) anisotropy and L1{sub 0} ordering of the FePt layers. All continuous Ag/FePt bilayer films possessed strong perpendicular anisotropies and high-ordered states irrespective of the Ag layer thickness. - Highlights: • Dewetting of (001) FePt fims were suppressed by introducing Ag cap layers. • Ag layers enhanced in-plane tensile stress, (001) texture and L1{sub 0} ordering. • Irrespective of Ag thickness, the Ag/FePt films exhibited strong (001) texture.

  12. Film models for transport phenomena with fog formation: The classical film model

    NARCIS (Netherlands)

    Brouwers, Jos; Chesters, A.K.

    1992-01-01

    In the present analysis the classical film model (or film theory) is reviewed and extended. First, on the basis of a thorough analysis, the governing equations of diffusion, energy and momentum of a stagnant film are derived and solved. Subsequently, the well-known correction factors for the effect

  13. Film models for transport phenomena with fog formation: the classical film model

    NARCIS (Netherlands)

    Brouwers, H.J.H.; Chesters, A.K.

    1992-01-01

    In the present analysis the classical film model (or film theory) is reviewed and extended. First, on the basis of a thorough analysis, the governing equations of diffusion, energy and momentum of a stagnant film are derived and solved. Subsequently, the well-known correction factors for the effect

  14. Family Porn - the zodiac-film

    DEFF Research Database (Denmark)

    Thorsen, Christian Isak

    2015-01-01

    This article addresses the highly popular Danish Zodiac films, a series of six films made between 1973 and 1978. What was extraordinary about the films was their combination of traditional popular comedy and hard-core porn. Analysing the films� combination of comedy and pornography from a histori......This article addresses the highly popular Danish Zodiac films, a series of six films made between 1973 and 1978. What was extraordinary about the films was their combination of traditional popular comedy and hard-core porn. Analysing the films� combination of comedy and pornography from...

  15. Film studies the basics

    CERN Document Server

    Villarejo, Amy

    2013-01-01

    Film Studies: The Basics is a compelling guide to the study of cinema in all its forms. This second edition has been thoroughly revised and updated to take account of recent scholarship, the latest developments in the industry and the explosive impact of new technologies. Core topics covered include:   The history, technology and art of cinema Theories of stardom, genre and film-making The movie industry from Hollywood to Bollywood Who does what on a film set   Complete with film stills, end-of-chapter summaries and a substantial glossary, Film Studies: The Basics is the ideal introduction to those new to the study of cinema.

  16. Pyrolyzed thin film carbon

    Science.gov (United States)

    Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor); Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor)

    2010-01-01

    A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.

  17. Epitaxial Pb(Zr,Ti)O3 thin films for a MEMS application

    International Nuclear Information System (INIS)

    Nguyen, Minh D; Vu, Hung N; Blank, Dave H A; Rijnders, Guus

    2011-01-01

    This research presents the deposition and device fabrication of epitaxial Pb(Zr,Ti)O 3 (PZT) thin films for applications in microelectromechanical systems (MEMS). A piezoelectric micro-membrane is described as an example. Using the pulsed laser deposition (PLD) technique and the MEMS microfabrication process, the piezo-membranes with diameters ranging from 200 to 500 μm were obtained. The displacement of piezo-membranes increased from 5.1 to 17.5 nm V −1 with a piezoelectric-membrane diameter in the range of 200–500 μm. Furthermore, the effect of PZT film-thickness on the mechanical properties has been investigated. By using the conductive-oxide SrRuO 3 (SRO) layers as the electrodes, the degradation of both ferroelectric and piezoelectric properties is prevented up to 10 10 switching cycles

  18. Layered Cu-based electrode for high-dielectric constant oxide thin film-based devices

    International Nuclear Information System (INIS)

    Fan, W.; Saha, S.; Carlisle, J.A.; Auciello, O.; Chang, R.P.H.; Ramesh, R.

    2003-01-01

    Ti-Al/Cu/Ta multilayered electrodes were fabricated on SiO 2 /Si substrates by ion beam sputtering deposition, to overcome the problems of Cu diffusion and oxidation encountered during the high dielectric constant (κ) materials integration. The Cu and Ta layers remained intact through the annealing in oxygen environment up to 600 deg. C. The thin oxide layer, formed on the Ti-Al surface, effectively prevented the oxygen penetration toward underneath layers. Complex oxide (Ba x Sr 1-x )TiO 3 (BST) thin films were grown on the layered Ti-Al/Cu/Ta electrodes using rf magnetron sputtering. The deposited BST films exhibited relatively high permittivity (150), low dielectric loss (0.007) at zero bias, and low leakage current -8 A/cm 2 at 100 kV/cm

  19. Ellipsometry of anodic film growth

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.G.

    1978-08-01

    An automated computer interpretation of ellisometer measurements of anodic film growth was developed. Continuous mass and charge balances were used to utilize more fully the time dependence of the ellipsometer data and the current and potential measurements. A multiple-film model was used to characterize the growth of films which proceeds via a dissolution--precipitation mechanism; the model also applies to film growth by adsorption and nucleation mechanisms. The characteristic parameters for film growth describe homogeneous and heterogeneous crystallization rates, film porosities and degree of hydration, and the supersaturation of ionic species in the electrolyte. Additional descriptions which may be chosen are patchwise film formation, nonstoichiometry of the anodic film, and statistical variations in the size and orientation of secondary crystals. Theories were developed to describe the optical effects of these processes. An automatic, self-compensating ellipsometer was used to study the growth in alkaline solution of anodic films on silver, cadmium, and zinc. Mass-transport conditions included stagnant electrolyte and forced convection in a flow channel. Multiple films were needed to characterize the optical properties of these films. Anodic films grew from an electrolyte supersatuated in the solution-phase dissolution product. The degree of supersaturation depended on transport conditions and had a major effect on the structure of the film. Anodic reaction rates were limited by the transport of charge carriers through a primary surface layer. The primary layers on silver, zinc, and cadmium all appeared to be nonstoichiometric, containing excess metal. Diffusion coefficients, transference numbers, and the free energy of adsorption of zinc oxide were derived from ellipsometer measurements. 97 figures, 13 tables, 198 references.

  20. An Experimental Study of the Effect of Viscosity on Bouncing Soap Droplets onto a Horizontal Soap Film

    Science.gov (United States)

    Gunter, Amy-Lee; Ng, Hoi Dick

    2012-11-01

    This experimental study aims to investigate the phenomenon of a bouncing soap droplet on a horizontal soap film, and how this behavior is affected by variations in the glycerol content of the solution for both the droplet and film. Direct visualization of the bouncing dynamics using high-speed photography allows determination of droplet size and rebound height as the viscosity is varied. In addition, the upper and lower limits of the mixture composition at which the viscosity of the fluid prevents the droplet from bouncing are determined. A thorough examination of this fluid trampoline was recently conducted by Gilet and Bush, the focus of which was to compare the effect of vibration in the soap film [T. Gilet and J.W.M. Bush, J. Fluid Mech. 625: 167-203, 2009]. A small amount of attention was given to the effect of viscosity changes in the droplet and film, and this work aims to expand on those findings. This work is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

  1. Personnel photographic film dosimetry

    International Nuclear Information System (INIS)

    Keirim-Markus, I.B.

    1981-01-01

    Technology of personnel photographic film dosimetry (PPD) based on the photographic effect of ionizing radiation is described briefly. Kinds of roentgen films used in PPD method are enumerated, compositions of a developer and fixing agents for these films are given [ru

  2. Influence of annealing atmosphere on structural and superconducting properties of MgB{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gregor, M., E-mail: gregor@fmph.uniba.sk; Plecenik, T.; Sobota, R.; Brndiarova, J.; Roch, T.; Satrapinskyy, L.; Kus, P.; Plecenik, A.

    2014-09-01

    Highlights: • Superconducting MgB{sub 2} thin film were deposited by co-deposition using the thermal and e-beam evaporation. • Ex situ annealing process was done using various atmospheres. • Influence of annealing atmosphere and temperature on superconducting and structural properties were studied. • Possible mechanisms of the formation and crystallization of MgB{sub 2} thin film are discussed. - Abstract: Influence of an ex situ annealing temperature and atmosphere on chemical composition and structural and superconducting properties of MgB{sub 2} thin films deposited by vacuum evaporation has been investigated. The annealing has been done in Ar, N{sub 2} and Ar + 5%H{sub 2} atmospheres at pressure of 700 Pa and temperature varying from 700 to 800 °C. It has been shown that annealing in Ar and N{sub 2} atmosphere at 700–800 °C produces relatively thick MgO layer on the surface of the films, while creation of such layer is highly reduced if the annealing is done in reducing Ar + 5%H{sub 2} atmosphere. The XPS and XRD results suggest that the MgO layer prevents out-diffusion of Mg from the film during the annealing, what assures better stoichiometry of the films as well as creation of larger MgB{sub 2} grains. The films with the highest amount of MgO on the surface, annealed in nitrogen atmosphere, thus paradoxically exhibited the highest critical temperature of T{sub c0} = 34.8 K with very sharp transition width of 0.1 K.

  3. Solvent vapor annealing in the molecular regime drastically improves carrier transport in small-molecule thin-film transistors

    KAUST Repository

    Khan, Hadayat Ullah

    2013-04-10

    We demonstrate a new way to investigate and control the solvent vapor annealing of solution-cast organic semiconductor thin films. Solvent vapor annealing of spin-cast films of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-Pn) is investigated in situ using quartz crystal microbalance with dissipation (QCM-D) capability, allowing us to monitor both solvent mass uptake and changes in the mechanical rigidity of the film. Using time-resolved grazing incidence wide angle X-ray scattering (GIWAXS) and complementary static atomic force microscopy (AFM), we demonstrate that solvent vapor annealing in the molecular regime can cause significant performance improvements in organic thin film transistors (OTFTs), whereas allowing the solvent to percolate and form a liquid phase results in catastrophic reorganization and dewetting of the film, making the process counterproductive. Using these lessons we devise processing conditions which prevent percolation of the adsorbed solvent vapor molecules for extended periods, thus extending the benefits of solvent vapor annealing and improving carrier mobility by nearly two orders of magnitude. Ultimately, it is demonstrated that QCM-D is a very powerful sensor of the state of the adsorbed solvent as well as the thin film, thus making it suitable for process development as well as in-line process monitoring both in laboratory and in future manufacturing settings. © 2013 American Chemical Society.

  4. Solvent vapor annealing in the molecular regime drastically improves carrier transport in small-molecule thin-film transistors

    KAUST Repository

    Khan, Hadayat Ullah; Li, Ruipeng; Ren, Yi; Chen, Long; Payne, Marcia M.; Bhansali, Unnat Sampatraj; Smilgies, Detlef Matthias; Anthony, John Edward; Amassian, Aram

    2013-01-01

    We demonstrate a new way to investigate and control the solvent vapor annealing of solution-cast organic semiconductor thin films. Solvent vapor annealing of spin-cast films of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-Pn) is investigated in situ using quartz crystal microbalance with dissipation (QCM-D) capability, allowing us to monitor both solvent mass uptake and changes in the mechanical rigidity of the film. Using time-resolved grazing incidence wide angle X-ray scattering (GIWAXS) and complementary static atomic force microscopy (AFM), we demonstrate that solvent vapor annealing in the molecular regime can cause significant performance improvements in organic thin film transistors (OTFTs), whereas allowing the solvent to percolate and form a liquid phase results in catastrophic reorganization and dewetting of the film, making the process counterproductive. Using these lessons we devise processing conditions which prevent percolation of the adsorbed solvent vapor molecules for extended periods, thus extending the benefits of solvent vapor annealing and improving carrier mobility by nearly two orders of magnitude. Ultimately, it is demonstrated that QCM-D is a very powerful sensor of the state of the adsorbed solvent as well as the thin film, thus making it suitable for process development as well as in-line process monitoring both in laboratory and in future manufacturing settings. © 2013 American Chemical Society.

  5. Quantitative film radiography

    International Nuclear Information System (INIS)

    Devine, G.; Dobie, D.; Fugina, J.; Hernandez, J.; Logan, C.; Mohr, P.; Moss, R.; Schumacher, B.; Updike, E.; Weirup, D.

    1991-01-01

    We have developed a system of quantitative radiography in order to produce quantitative images displaying homogeneity of parts. The materials that we characterize are synthetic composites and may contain important subtle density variations not discernible by examining a raw film x-radiograph. In order to quantitatively interpret film radiographs, it is necessary to digitize, interpret, and display the images. Our integrated system of quantitative radiography displays accurate, high-resolution pseudo-color images in units of density. We characterize approximately 10,000 parts per year in hundreds of different configurations and compositions with this system. This report discusses: the method; film processor monitoring and control; verifying film and processor performance; and correction of scatter effects

  6. More than films and dragon awards

    DEFF Research Database (Denmark)

    Redvall, Eva Novrup

    2012-01-01

    This article discusses how the largest film festival in the Nordic countries, the Göteborg International Film Festival (GIFF), is much more than a setting for bringing quality films to local audiences.With retrospectives, an extensive programme of seminars and master classes, a film lab for upcom......This article discusses how the largest film festival in the Nordic countries, the Göteborg International Film Festival (GIFF), is much more than a setting for bringing quality films to local audiences.With retrospectives, an extensive programme of seminars and master classes, a film lab...

  7. Radiographic film orientation in radiotherapy dosimetry

    International Nuclear Information System (INIS)

    Suchowerska, N.; Davison, A.; Drew, J.; Metcalfe, P.

    1996-01-01

    Since the discovery of x-rays, film has been used as a detection medium for radiation. More recently radiographic film has become established as a practical tool for the measurement of dose distribution in radiotherapy. The accuracy and reproducibility of film dosimetry depends on photon energy, processing conditions and film plane orientation. The relationship between photon energy, processing conditions and film dosimetry accuracy has been studied. The role of film plane orientation is still controversial. The current work aims to clarify the effects film plane orientation has on film dosimetry. Poster 205. (author)

  8. Oxide ultrathin films science and technology

    CERN Document Server

    Pacchioni, Gianfranco

    2012-01-01

    A wealth of information in one accessible book. Written by international experts from multidisciplinary fields, this in-depth exploration of oxide ultrathin films covers all aspects of these systems, starting with preparation and characterization, and going on to geometrical and electronic structure, as well as applications in current and future systems and devices. From the Contents: Synthesis and Preparation of Oxide Ultrathin Films Characterization Tools of Oxide Ultrathin Films Ordered Oxide Nanostructures on Metal Surfaces Unusual Properties of Oxides and Other Insulators in the Ultrathin Limit Silica and High-K Dielectrics Thin Films in Microelectronics Oxide Passive Films and Corrosion Protection Oxide Films as Catalytic Materials and as Models of Real Catalysts Oxide Films in Spintronics Oxide Ultrathin Films in Solid Oxide Fuel Cells Transparent Conducting and Chromogenic Oxide Films as Solar Energy Materials Oxide Ultrathin Films in Sensor Applications Ferroelectricity in Ultrathin Film Capacitors T...

  9. Film beyond boundaries: film, migrant narratives and other media

    Directory of Open Access Journals (Sweden)

    Anelise Reich Corseuil

    2006-04-01

    Full Text Available The articles here presented are representative of the debates about the various transformational aspects of film studies, fostering the discussion about the transformations and interactions between national and international narrative forms, the interrelations between film and literature, and film with other media. The critical perspectives here presented range from an emphasis on cultural materialism, dialogism, reception theory, deconstructionism, narrative studies to film aesthetics or film genre, and can be grouped in three major interrelated areas of film studies: adaptation studies, representation and aesthetics, and film and other media. All of them enable a critical perspective as regards the fluidity of the boundaries separating film from other media, such as literature, television, DVDs, and video games, as newer narrative forms that are incorporated by film, and the transformations in terms of aesthetics and forms of representation in contemporary film and media (the transgeneric nature of film, the interrelations between national and international cinemas, and the demands for a broader perception of the overwhelming mediations of the image in our contemporary society. Moreover, the articles are inserted within recent critical debates on adaptation, digital media and national and transnational cinema (Naremore, Sobchack, Druckery and Williams. All articles combine important theoretical concerns with the analysis of specific films. Robert Stam's “Teoria e Prática da Adaptação: da Fidelidade à Intertextualidade” (“Theory and the practice of adaptation: from fidelity to intertextuality” offers a rich perspective on the issue of adaptation in its relationship with critical theory. He analyses the changing critical views on adaptation, which go from the priority given to the canonic literary text, as an origin, to a more fluid, intertextual and dialogical approach to film adaptation. Drawing from Bakhtin's concept of dialogism

  10. Shanghai and Globalization through the Lens of Film Noir: Lou Ye’s 2000 Film, Suzhou River

    Directory of Open Access Journals (Sweden)

    Hongwei Lu

    2010-10-01

    Full Text Available In the 1990s, the film industry in China decentralized with the bankruptcy of the state-owned studio system. Privatized independent film companies took over where the government had left off and a more independent film culture emerged. Although obstacles such as political censorship, financial pressures, and Hollywood infiltration were still in the way for Chinese filmmakers, privatization of the film industry was under way. As a result of this process, new film productions of controversial subject matter came into being. In 1998 one of China’s first independent film production companies—Dream Factory—was founded. Dream Factory’s first production, in association with Berlin-based German producer Philippe Bober, was the 'Suzhou River, 'directed by its founder Lou Ye'.'1 The 2000 film, though winning prizes at international film festivals such as the Rotterdam Film Festival and the Paris Film Festival, has been banned by the Chinese government since its production.

  11. Prevention of radiogenic cancers through changes in procedure

    International Nuclear Information System (INIS)

    Matthews, I.P.

    1988-01-01

    A report is given of a comprehensive study of radiographic practice carried out between 1983-86 in 18 district general hospitals throughout Wales. Results are presented for the range of variation in exposure-area product (EAP) for each type of radiographic examination, the mean EAPs for various projections of each examination and the inter-departmental variation in choices of projections and film size for examination of the cervical spine. It is estimated that 80% of the radiogenic cancers associated with these examinations could be prevented through implementation of suitable guidelines to reduce inter-departmental variation in patients' exposure. (UK)

  12. thin films

    Indian Academy of Sciences (India)

    microscopy (SEM) studies, respectively. The Fourier transform ... Thin films; chemical synthesis; hydrous tin oxide; FTIR; electrical properties. 1. Introduction ... dehydrogenation of organic compounds (Hattori et al 1987). .... SEM images of (a) bare stainless steel and (b) SnO2:H2O thin film on stainless steel substrate at a ...

  13. Into films

    DEFF Research Database (Denmark)

    Tan, Ed S.; Doicaru, Miruna M.; Hakemulder, Frank

    2017-01-01

    Most film viewers know the experience of being deeply absorbed in the story of a popular film. It seems that at such moments they lose awareness of watching a movie. And yet it is highly unlikely that they completely ignore the fact that they watch a narrative and technological construction. Perh...

  14. Demagnetization in photomagnetic films

    Energy Technology Data Exchange (ETDEWEB)

    Pajerowski, Daniel M., E-mail: daniel@pajerowski.com [NIST Center for Neutron Research, Gaithersburg, Maryland 20899 (United States); Hallock, Scott J. [NIST Center for Neutron Research, Gaithersburg, Maryland 20899 (United States); Winston Churchill High School, Potomac, Maryland 20854 (United States)

    2012-05-15

    We present a model for demagnetization in photomagnetic films, and investigate different regimes for the magnetizing process using finite element analysis. It is found that the demagnetizing factor may depend strongly upon the high-spin fraction of the film, and the specifics of the dependence are dictated by the microscopic morphology of the photomagnetic domains. This picture allows for facile interpretation of existing data on photomagnetic films, and can even explain an observed photoinduced decrease in low-field magnetization concurrent with increase in high-spin fraction. As a whole, these results reiterate the need to consider demagnetizing effects in photomagnetic films. - Highlights: Black-Right-Pointing-Pointer Finite element methods are used to examine demagnetization in photomagnetic films. Black-Right-Pointing-Pointer Under the right conditions, photomagnetic films may show a photoinduced decrease. Black-Right-Pointing-Pointer Demagnetization in photomagnets will be important to consider in possible devices.

  15. Student film clinches top prize in film competition

    OpenAIRE

    Elliott, Jean

    2006-01-01

    Virginia Tech senior Tim Leaton earned the top prize in the widely acclaimed Film Your Issue (FYI) competition - an eight-week paid internship at Disney Studios in Los Angeles. Leaton's one-minute film, "Orphans in Africa," won the nationwide contest, an initiative to encourage young Americans, age 18 to 26, to engage in social issues and add their voices to the public dialogue.

  16. Heritage film set : the protection and care of historic filming locations

    OpenAIRE

    Flynn, Clare

    2016-01-01

    Taking part in filming can offer considerable benefits to the historic properties involved, including increased visitor numbers, public awareness, and funding that can facilitate the ongoing care and conservation of the featured properties. However, film shoots are also intrusive events that introduce serious threats to the historic built fabric of these properties. This dissertation will investigate how the conservation integrity of heritage sites and properties is maintained when film shoot...

  17. Film Censorship Policy During Park Chung Hee’s Military Regime (1960–1979 and Hostess Films

    Directory of Open Access Journals (Sweden)

    Molly Hyo Kim

    2018-04-01

    Full Text Available Park Chung-hee’s military government (1960-1979 purportedly used film censorship to distract the public from political consciousness by controlling political materials in films while condoning censorship control on sexual content. As a result, the production of soft-core adult films soared and became popular among Korean audiences. One such film genre that thrived during this period, so-called hostess films (prostitute films, is worthy of attention for the films’ foregrounding issues of class, poverty and other social issues that the state censorship board heavily regulated. In viewing such dynamics between state censorship and film, this article aims to unravel the questions of how the state was willing to turn a blind eye to the explicit sexualization of women in hostess films when film censorship was at its peak and why the social and political aspects of this group of films about female sexual workers were not considered socially relevant by the censorship board, through scrutinizing the interplay between Park’s state censorship and hostess films. Furthermore, it offers an analysis of a hostess film, The Rose that Swallowed Thorn (Cheong, 1979, as a case study to show how it strategically orchestrates visual and thematic elements to circumvent censorship enforcement.

  18. Mechanical, physico-chemical, and antimicrobial properties of gelatin-based film incorporated with catechin-lysozyme

    Directory of Open Access Journals (Sweden)

    Rawdkuen Saroat

    2012-11-01

    Full Text Available Abstract Background Microbial activity is a primary cause of deterioration in many foods and is often responsible for reduced quality and safety. Food-borne illnesses associated with E. coli O157:H7, S. aureus, S. enteritidis and L. monocytogenes are a major public health concern throughout the world. A number of methods have been employed to control or prevent the growth of these microorganisms in food. Antimicrobial packaging is one of the most promising active packaging systems for effectively retarding the growth of food spoilage and pathogenic microorganisms. The aim of this study was to determine the mechanical, physico-chemical properties and inhibitory effects of the fish gelatin films against selected food spoilage microorganisms when incorporated with catechin-lysozyme. Results The effect of the catechin-lysozyme combination addition (CLC: 0, 0.125, 0.25, and 0.5%, w/v on fish gelatin film properties was monitored. At the level of 0.5% addition, the CLC showed the greatest elongation at break (EAB at 143.17% with 0.039 mm thickness, and the lowest water vapor permeability (WVP at 6.5 x 10−8 g·mm·h-1·cm-2·Pa-1, whereas the control showed high tensile strength (TS and the highest WVP. Regarding color attributes, the gelatin film without CLC addition gave the highest lightness (L* 91.95 but lowest in redness (a*-1.29 and yellowness (b* 2.25 values. The light transmission of the film did not significantly decrease and nor did film transparency (p>0.05 with increased CLC. Incorporating CLC could not affect the film microstructure. The solubility of the gelatin based film incorporated with CLC was not affected, especially at a high level of addition (p>0.05. Inhibitory activity of the fish gelatin film against E.coli, S.aureus, L. innocua and S. cerevisiae was concentration dependent. Conclusions These findings suggested that CLC incorporation can improve mechanical, physico-chemical, and antimicrobial properties of the resulting films

  19. Organic Photovoltaic Devices Based on Oriented n-Type Molecular Films Deposited on Oriented Polythiophene Films.

    Science.gov (United States)

    Mizokuro, Toshiko; Tanigaki, Nobutaka; Miyadera, Tetsuhiko; Shibata, Yousei; Koganezawa, Tomoyuki

    2018-04-01

    The molecular orientation of π-conjugated molecules has been reported to significantly affect the performance of organic photovoltaic devices (OPVs) based on molecular films. Hence, the control of molecular orientation is a key issue toward the improvement of OPV performance. In this research, oriented thin films of an n-type molecule, 3,4,9,10-Perylenetetracarboxylic Bisbenzimida-zole (PTCBI), were formed by deposition on in-plane oriented polythiophene (PT) films. Orientation of the PTCBI films was evaluated by polarized UV-vis spectroscopy and 2D-Grazing incidence X-ray diffraction. Results indicated that PTCBI molecules on PT film exhibit nearly edge-on and in-plane orientation (with molecular long axis along the substrate), whereas PTCBI molecules without PT film exhibit neither. OPVs composed of PTCBI molecular film with and without PT were fabricated and evaluated for correlation of orientation with performance. The OPVs composed of PTCBI film with PT showed higher power conversion efficiency (PCE) than that of film without PT. The experiment indicated that in-plane orientation of PTCBI molecules absorbs incident light more efficiently, leading to increase in PCE.

  20. Radiochromic film dosimetry

    International Nuclear Information System (INIS)

    Soares, Christopher G.

    2006-01-01

    The object of this paper is to give a new user some practical information on the use of radiochromic films for medical applications. While various aspects of radiochromic film dosimetry for medical applications have been covered in some detail in several other excellent review articles which have appeared in the last few years [Niroomand-Rad, A., Blackwell, C.R., Coursey, B.M., Gall, K.P., McLaughlin, W.L., Meigooni, A.S., Nath, R., Rodgers, J.E., Soares, C.G., 1998. Radiochromic dosimetry: recommendations of the AAPM Radiation Therapy Committee Task Group 55. Med. Phys. 25, 2093-2115; Dempsey, J.F., Low, D.A., Mutic, S., Markman, J., Kirov, A.S., Nussbaum, G.H., Williamson, J.F., 2000. Validation of a precision radiochromic film dosimetry system for quantitative two-dimensional imaging of acute exposure dose distributions. Med. Phys. 27, 2462-2475; Butson, M.J., Yu, P.K.N., Cheung, T., Metcalfe, P., 2003. Radiochromic film for medical radiation dosimetry. Mater. Sci. Eng. R41, 61-120], it is the intent of the present author to present material from a more user-oriented and practical standpoint. That is, how the films work will be stressed much less than how to make the films work well. The strength of radiochromic films is most evident in applications where there is a very high dose gradient and relatively high absorbed dose rates. These conditions are associated with brachytherapy applications, measurement of small fields, and at the edges (penumbra regions) of larger fields

  1. US/Russian Joint Film Test

    Science.gov (United States)

    Slater, Richard

    1996-01-01

    A joint U.S./Russian film test was conducted during MIR Mission 18 to evaluate the effects of radiation on photographic film during long-duration space flights. Two duplicate sets of film were flown on this MIR mission: one set was processed and evaluated by the NASA/JSC Photographic Laboratory, and the other by the RKK Energia's Photographic Laboratory in Moscow. This preliminary report includes only the results of the JSC evaluation (excluding the SN-10 film which was not available for evaluation at the time this report was written). The final report will include an evaluation by JSC of the SN-10 film and an evaluation of the test data by the RKK Energia. ISC's evaluation of the test data showed the positive film flown was damaged very little when exposed to approximately 8 rads of radiation. Two of the three negative films were significantly damaged and the third film was damaged only moderately.

  2. Film Censorship Policy During Park Chung Hee’s Military Regime (1960–1979) and Hostess Films

    OpenAIRE

    Molly Hyo Kim

    2018-01-01

    Park Chung-hee’s military government (1960-1979) purportedly used film censorship to distract the public from political consciousness by controlling political materials in films while condoning censorship control on sexual content. As a result, the production of soft-core adult films soared and became popular among Korean audiences. One such film genre that thrived during this period, so-called hostess films (prostitute films), is worthy of attention for the films’ foregrounding issues of cla...

  3. Synthesis and spectral properties of preorganized BODIPYs in solutions and Langmuir-Schaefer films

    Science.gov (United States)

    Marfin, Yuriy S.; Usoltsev, Sergey D.; Kazak, Alexandr V.; Smirnova, Antonina I.; Rumyantsev, Evgeniy V.; Molchanov, Evgeniy E.; Kuznetsov, Vladimir V.; Chumakov, Alexey S.; Glukhovskoy, Evgeny G.

    2017-12-01

    structure of BODIPYs and therefore the structurization in thin films. Moreover, the combination of the rigid phenyl moiety with long alkyl chains in one compound completely suppresses the aggregation of molecules maintaining the intense fluorescence in thin films. On the basis of used range of experimental and calculation methods the intralayer and interlayer structures were proposed. Intermolecular hydrogen bond formation and π-π staking of the BODIPY cores were found to be the structure forming forces during the films manufacturing, resulting the differences in crystallinity of the materials. While the alkyl-substituents prevent the type of interactions and suppress the association of the dyes and formation of excimers. Compounds under investigation show a manifestation of the intense solvatochromic properties which allow their application as sensors, including naked eye sensorics for solution polarity. Besides, the obtained results broaden prospective of functional materials usage based on BODIPY thin films as components of optoelectronics.

  4. High-throughput characterization of film thickness in thin film materials libraries by digital holographic microscopy

    International Nuclear Information System (INIS)

    Lai Yiuwai; Hofmann, Martin R; Ludwig, Alfred; Krause, Michael; Savan, Alan; Thienhaus, Sigurd; Koukourakis, Nektarios

    2011-01-01

    A high-throughput characterization technique based on digital holography for mapping film thickness in thin-film materials libraries was developed. Digital holographic microscopy is used for fully automatic measurements of the thickness of patterned films with nanometer resolution. The method has several significant advantages over conventional stylus profilometry: it is contactless and fast, substrate bending is compensated, and the experimental setup is simple. Patterned films prepared by different combinatorial thin-film approaches were characterized to investigate and demonstrate this method. The results show that this technique is valuable for the quick, reliable and high-throughput determination of the film thickness distribution in combinatorial materials research. Importantly, it can also be applied to thin films that have been structured by shadow masking.

  5. High-throughput characterization of film thickness in thin film materials libraries by digital holographic microscopy.

    Science.gov (United States)

    Lai, Yiu Wai; Krause, Michael; Savan, Alan; Thienhaus, Sigurd; Koukourakis, Nektarios; Hofmann, Martin R; Ludwig, Alfred

    2011-10-01

    A high-throughput characterization technique based on digital holography for mapping film thickness in thin-film materials libraries was developed. Digital holographic microscopy is used for fully automatic measurements of the thickness of patterned films with nanometer resolution. The method has several significant advantages over conventional stylus profilometry: it is contactless and fast, substrate bending is compensated, and the experimental setup is simple. Patterned films prepared by different combinatorial thin-film approaches were characterized to investigate and demonstrate this method. The results show that this technique is valuable for the quick, reliable and high-throughput determination of the film thickness distribution in combinatorial materials research. Importantly, it can also be applied to thin films that have been structured by shadow masking.

  6. Thin Cu film resistivity using four probe techniques: Effect of film thickness and geometrical shapes

    Science.gov (United States)

    Choudhary, Sumita; Narula, Rahul; Gangopadhyay, Subhashis

    2018-05-01

    Precise measurement of electrical sheet resistance and resistivity of metallic thin Cu films may play a significant role in temperature sensing by means of resistivity changes which can further act as a safety measure of various electronic devices during their operation. Four point probes resistivity measurement is a useful approach as it successfully excludes the contact resistance between the probes and film surface of the sample. Although, the resistivity of bulk samples at a particular temperature mostly depends on its materialistic property, however, it may significantly differ in the case of thin films, where the shape and thickness of the sample can significantly influence on it. Depending on the ratio of the film thickness to probe spacing, samples are usually classified in two segments such as (i) thick films or (ii) thin films. Accordingly, the geometric correction factors G can be related to the sample resistivity r, which has been calculated here for thin Cu films of thickness up to few 100 nm. In this study, various rectangular shapes of thin Cu films have been used to determine the shape induced geometric correction factors G. An expressions for G have been obtained as a function of film thickness t versus the probe spacing s. Using these expressions, the correction factors have been plotted separately for each cases as a function of (a) film thickness for fixed linear probe spacing and (b) probe distance from the edge of the film surface for particular thickness. Finally, we compare the experimental results of thin Cu films of various rectangular geometries with the theoretical reported results.

  7. Film, Neuroaesthetics, and Empathy

    DEFF Research Database (Denmark)

    Grodal, Torben Kragh; Kramer, Mette

    2014-01-01

    The article analyzes the link between film viewing and human 'ultra-sociality' (Boyd and Richardson 1998), describing how empathy is supported by mirror resonances but also modified by appraisal mechanisms and how emotions are communicated, It further discusses how 'attainment' to film builds...... on mother-child communication and also how film genres of attachment use such attainment, especially by means of close-ups of human faces and shot-reverse shots. Finally it deals with how films boost development of cognitive and emotional intelligence...

  8. Atomic-Layer-Deposition of Indium Oxide Nano-films for Thin-Film Transistors.

    Science.gov (United States)

    Ma, Qian; Zheng, He-Mei; Shao, Yan; Zhu, Bao; Liu, Wen-Jun; Ding, Shi-Jin; Zhang, David Wei

    2018-01-09

    Atomic-layer-deposition (ALD) of In 2 O 3 nano-films has been investigated using cyclopentadienyl indium (InCp) and hydrogen peroxide (H 2 O 2 ) as precursors. The In 2 O 3 films can be deposited preferentially at relatively low temperatures of 160-200 °C, exhibiting a stable growth rate of 1.4-1.5 Å/cycle. The surface roughness of the deposited film increases gradually with deposition temperature, which is attributed to the enhanced crystallization of the film at a higher deposition temperature. As the deposition temperature increases from 150 to 200 °C, the optical band gap (E g ) of the deposited film rises from 3.42 to 3.75 eV. In addition, with the increase of deposition temperature, the atomic ratio of In to O in the as-deposited film gradually shifts towards that in the stoichiometric In 2 O 3 , and the carbon content also reduces by degrees. For 200 °C deposition temperature, the deposited film exhibits an In:O ratio of 1:1.36 and no carbon incorporation. Further, high-performance In 2 O 3 thin-film transistors with an Al 2 O 3 gate dielectric were achieved by post-annealing in air at 300 °C for appropriate time, demonstrating a field-effect mobility of 7.8 cm 2 /V⋅s, a subthreshold swing of 0.32 V/dec, and an on/off current ratio of 10 7 . This was ascribed to passivation of oxygen vacancies in the device channel.

  9. Evaluation of the uncertainty in an EBT3 film dosimetry system utilizing net optical density

    Science.gov (United States)

    Marroquin, Elsa Y. León; Herrera González, José A.; Camacho López, Miguel A.; Barajas, José E. Villarreal

    2016-01-01

    Radiochromic film has become an important tool to verify dose distributions for intensity‐modulated radiotherapy (IMRT) and quality assurance (QA) procedures. A new radiochromic film model, EBT3, has recently become available, whose composition and thickness of the sensitive layer are the same as those of previous EBT2 films. However, a matte polyester layer was added to EBT3 to prevent the formation of Newton's rings. Furthermore, the symmetrical design of EBT3 allows the user to eliminate side‐orientation dependence. This film and the flatbed scanner, Epson Perfection V750, form a dosimetry system whose intrinsic characteristics were studied in this work. In addition, uncertainties associated with these intrinsic characteristics and the total uncertainty of the dosimetry system were determined. The analysis of the response of the radiochromic film (net optical density) and the fitting of the experimental data to a potential function yielded an uncertainty of 2.6%, 4.3%, and 4.1% for the red, green, and blue channels, respectively. In this work, the dosimetry system presents an uncertainty in resolving the dose of 1.8% for doses greater than 0.8 Gy and less than 6 Gy for red channel. The films irradiated between 0 and 120 Gy show differences in the response when scanned in portrait or landscape mode; less uncertainty was found when using the portrait mode. The response of the film depended on the position on the bed of the scanner, contributing an uncertainty of 2% for the red, 3% for the green, and 4.5% for the blue when placing the film around the center of the bed of scanner. Furthermore, the uniformity and reproducibility radiochromic film and reproducibility of the response of the scanner contribute less than 1% to the overall uncertainty in dose. Finally, the total dose uncertainty was 3.2%, 4.9%, and 5.2% for red, green, and blue channels, respectively. The above uncertainty values were obtained by minimizing the contribution to the total dose

  10. Particle Control in Phase Space by Global K-Means Clustering

    DEFF Research Database (Denmark)

    Frederiksen, Jacob Trier; Lapenta, G.; Pessah, M. E.

    2015-01-01

    We devise and explore an iterative optimization procedure for controlling particle populations in particle-in-cell (PIC) codes via merging and splitting of computational macro-particles. Our approach, is to compute an optimal representation of the global particle phase space structure while decre...

  11. Underwater 3D filming

    Directory of Open Access Journals (Sweden)

    Roberto Rinaldi

    2014-12-01

    Full Text Available After an experimental phase of many years, 3D filming is now effective and successful. Improvements are still possible, but the film industry achieved memorable success on 3D movie’s box offices due to the overall quality of its products. Special environments such as space (“Gravity” and the underwater realm look perfect to be reproduced in 3D. “Filming in space” was possible in “Gravity” using special effects and computer graphic. The underwater realm is still difficult to be handled. Underwater filming in 3D was not that easy and effective as filming in 2D, since not long ago. After almost 3 years of research, a French, Austrian and Italian team realized a perfect tool to film underwater, in 3D, without any constrains. This allows filmmakers to bring the audience deep inside an environment where they most probably will never have the chance to be.

  12. In-situ observation of equilibrium transitions in Ni films; agglomeration and impurity effects

    Energy Technology Data Exchange (ETDEWEB)

    Thron, Andrew M., E-mail: AMThron@lbl.gov [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States); Greene, Peter; Liu, Kai [Department of Physics, University of California, Davis, CA 95616 (United States); Benthem, Klaus van [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States)

    2014-02-01

    Dewetting of ultra-thin Ni films deposited on SiO{sub 2} layers was observed, in cross-section, by in situ scanning transmission electron microscopy. Holes were observed to nucleate by voids which formed at the Ni/SiO{sub 2} interface rather than at triple junctions at the free surface of the Ni film. Ni islands were observed to retract, in attempt to reach equilibrium on the SiO{sub 2} layer. SiO{sub 2} layers with 120 nm thickness were found to limit in situ heating experiments due to poor thermal conductivity of SiO{sub 2}. The formation of graphite was observed during the agglomeration of ultra-thin Ni films. Graphite was observed to wet both the free surface and the Ni/SiO{sub 2} interface of the Ni islands. Cr forms surface oxide layers on the free surface of the SiO{sub 2} layer and the Ni islands. Cr does not prevent the dewetting of Ni, however it will likely alter the equilibrium shape of the Ni islands. - Highlights: • In Situ observation of dewetting in ultra-thin Ni films sputtered on SiO{sub 2} layers. • Dewetting is observed in an edge-on position by in situ STEM. • Characterization of interface structure pre and post in situ annealing by STEM and EELS. • Analyze the effects of Cr{sub 1−x}O{sub x} and graphite impurities on the Ni film agglomeration. • Examine influence of the SiO{sub 2} layers on the dewetting process.

  13. Investigation of Al2O3 barrier film properties made by atomic layer deposition onto fluorescent tris-(8-hydroxyquinoline) aluminium molecular films

    International Nuclear Information System (INIS)

    Maindron, Tony; Aventurier, Bernard; Ghazouani, Ahlem; Jullien, Tony; Rochat, Névine; Simon, Jean-Yves; Viasnoff, Emilie

    2013-01-01

    Al 2 O 3 films have been deposited at 85 °C by atomic layer deposition onto single 100 nm thick tris-(8-hydroxyquinoline) aluminium (AlQ 3 ) films made onto silicon wafers. It has been found that a thick ALD-deposited Al 2 O 3 layer (> 11 nm) greatly prevents the photo-oxidation of AlQ 3 films when exposed to continuous UV irradiation (350 mW/cm 2 ). Thin Al 2 O 3 thicknesses (< 11 nm) on the contrary yield lower barrier performances. Defects in the Al 2 O 3 layer have been easily observed as non-fluorescent AlQ 3 singularities, or black spots, under UV light on the system Si/AlQ 3 /Al 2 O 3 stored into laboratory conditions (22 °C/50% Relative Humidity (RH)) for long time scale (∼ 2000 h). Accelerated aging conditions in a climatic chamber (85 °C/85% RH) also allow faster visualization of the same defects (168 h). The black spot density grows upon time and the black spot density occurrence rates have been calculated to be 0.024 h −1 ·cm −2 and 0.243 h −1 ·cm −2 respectively for the two testing conditions. A detailed investigation of these defects did show that they cannot be ascribed to the presence of a detectable particle. In that sense they are presumably the consequence of the existence of nanometre-scaled defects which cannot be detected onto fresh samples. Interestingly, an additional overcoating of ebeam-deposited SiO 2 onto the Si/AlQ 3 /Al 2 O 3 sample helps to decrease drastically the black spot density occurrence rates down to 0.004 h −1 ·cm −2 and 0.04 h −1 ·cm −2 respectively for 22 °C/50% RH and 85 °C/85% RH testing conditions. These observations highlight the moisture sensitivity of low temperature ALD-deposited Al 2 O 3 films and confirm the general idea that a single Al 2 O 3 ALD film performs as an ultra-high barrier but needs to be overprotected from water condensation by an additional moisture-stable layer. - Highlights: • Thin Al 2 O 3 films have been deposited by atomic layer deposition onto organic films.

  14. Effect of LiNO3 on corrosion prevention of aluminum wastes after their land disposal

    International Nuclear Information System (INIS)

    Matsuo, Toshiaki; Matsuda, Masami; Hironaga, Michihiko; Horikawa, Yoshihiko.

    1996-01-01

    After their land disposal, LiNO 3 added to cement solidified miscellaneous wastes inhibits hydrogen gas generation due to alkaline corrosion of aluminum contained in the wastes. We considered the presence of an Li-Al preservation film prevents hydrogen gas generation, and then, we assumed a scenario in which the amount of LiNO 3 included in the waste packages is lowered by underground water penetration, resulting in dissolution of the Li-Al preservation film. This dissolution allows the alkaline underground water to reach and corrode the aluminum materials. The loss of Na 2 O and K 2 O in cement by underground water penetration lowers the pH, so that the aluminum corrosion in the waste packages with LiNO 3 , expected when the Li-Al preservation film dissolves, is less than that without LiNO 3 . To test this scenario, we measured solubility of the Li-Al preservation film, Li + ion concentration, pH variation by underground water penetration, and aluminum corrosion when the Li-Al preservation film had dissolved. The measured solubility of the Li-Al preservation film was 3x10 -4 M at 283 K. At that time, pH was lowered from 12.9-13.0 to 12.2-12.3. As a result, with LiNO 3 addition the aluminum corrosion amount was reduced to 10% of that without LiNO 3 addition, because of the pH decrease. (author)

  15. Film-thickness dependence of structure formation in ultra-thin polymer blend films

    CERN Document Server

    Gutmann, J S; Stamm, M

    2002-01-01

    We investigated the film-thickness dependence of structure formation in ultra-thin polymer blend films prepared from solution. As a model system we used binary blends of statistical poly(styrene-co-p-bromostyrene) copolymers of different degrees of bromination. Ultra-thin-film samples differing in miscibility and film thickness were prepared via spin coating of common toluene solutions onto silicon (100) substrates. The resulting morphologies were investigated with scanning force microscopy, reflectometry and grazing-incidence scattering techniques using both X-rays and neutrons in order to obtain a picture of the sample structure at and below the sample surface. (orig.)

  16. Electroless plating of low-resistivity Cu–Mn alloy thin films with self-forming capacity and enhanced thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Sung-Te, E-mail: stchen@mail.hust.edu.tw [Department of Electronic Engineering, Hsiuping University of Science and Technology, Dali 412, Taichung, Taiwan (China); Chen, Giin-Shan [Department of Materials Science and Engineering, Feng Chia University, Seatwen 407, Taichung, Taiwan (China)

    2015-11-05

    Previous studies have typically used sputter deposition to fabricate Cu–Mn alloy thin films with concentrated solute additions which have exceeded several atomic percentages, and the electrical resistivity values of the resultant films from previous studies are relatively high, ranging from 2.5 to 3.5 μΩ-cm. Herein, we proposed a different approach by using electroless process to plate dilute Cu–Mn (0.1 at.%) alloy thin films on dielectric layers (SiO{sub 2}). Upon forming-gas annealing, the Mn incorporated into Cu–Mn films was segregated toward the SiO{sub 2} side, eventually converting itself into a few atomic layer thickness at the Cu/SiO{sub 2} interface, and forming films with a low level of resistivity the same as that of pure Cu films (2.0 μΩ-cm). The interfacial layer served as not only a diffusion barrier, but also an adhesion promoter that prevented the film’s agglomeration during annealing at elevated temperatures. The mechanism for the dual-function performance by the Mn addition was elucidated by interfacial bonding analysis, as well as dynamic (adhesive strength) and thermodynamic (surface-tension) measurements. - Highlights: • Electroless plating is proposed to grow dilute (0.1%) Cu–Mn films on SiO{sub 2} layers. • Adequate annealing results in a self-forming of MnO{sub x} at the Cu/SiO{sub 2} interface. • The role of interfacial MnO{sub x} as a barrier and adhesion promoter is demonstrated. • The treated dilute film has a low ρ level of pure Cu, in contrast to concentrated films. • Its potential as a single entity replacement of Cu interconnect is presented.

  17. Molecular tailoring of interfaces for thin film on substrate systems

    Science.gov (United States)

    Grady, Martha Elizabeth

    Thin film on substrate systems appear most prevalently within the microelectronics industry, which demands that devices operate in smaller and smaller packages with greater reliability. The reliability of these multilayer film systems is strongly influenced by the adhesion of each of the bimaterial interfaces. During use, microelectronic components undergo thermo-mechanical cycling, which induces interfacial delaminations leading to failure of the overall device. The ability to tailor interfacial properties at the molecular level provides a mechanism to improve thin film adhesion, reliability and performance. This dissertation presents the investigation of molecular level control of interface properties in three thin film-substrate systems: photodefinable polyimide films on passivated silicon substrates, self-assembled monolayers at the interface of Au films and dielectric substrates, and mechanochemically active materials on rigid substrates. For all three materials systems, the effect of interfacial modifications on adhesion is assessed using a laser-spallation technique. Laser-induced stress waves are chosen because they dynamically load the thin film interface in a precise, noncontacting manner at high strain rates and are suitable for both weak and strong interfaces. Photodefinable polyimide films are used as dielectrics in flip chip integrated circuit packages to reduce the stress between silicon passivation layers and mold compound. The influence of processing parameters on adhesion is examined for photodefinable polyimide films on silicon (Si) substrates with three different passivation layers: silicon nitride (SiNx), silicon oxynitride (SiOxNy), and the native silicon oxide (SiO2). Interfacial strength increases when films are processed with an exposure step as well as a longer cure cycle. Additionally, the interfacial fracture energy is assessed using a dynamic delamination protocol. The high toughness of this interface (ca. 100 J/m2) makes it difficult

  18. Effect of micro-patterned fluorine-doped tin oxide films on electrochromic properties of Prussian blue films

    International Nuclear Information System (INIS)

    Lee, Kyuha; Kim, A-Young; Park, Ji Hun; Jung, Hun-Gi; Choi, Wonchang; Lee, Hwa Young; Lee, Joong Kee

    2014-01-01

    Graphical abstract: - Highlights: • PB-based ECD employed micro-patterned FTO electrode was fabricated. • Effect of interface morphology on electrochromic characteristics was examined. • Electrochromic properties were enhanced by employing a patterned interface. - Abstract: The effect of interface morphology on electrochromic characteristics was examined for an electrochromic device (ECD). Micro-patterned fluorine-doped tin oxide (FTO) films were fabricated using a photolithography process. Prussian blue (PB) films were then deposited on the patterned FTO films. The surface areas of both PB films and FTO films were increased by patterning. ECDs were assembled using patterned PB/FTO films as the electrochromic electrode, bare FTO films as the counter electrode, and an electrolyte containing LiClO 4 salt. The increased effective surface area of the patterned PB/FTO electrode boosted the mobility of ions at the interphase between the electrolyte and PB electrode, and the electron transfer between PB films and FTO films. As a result, electrochromic properties such as transmittance and response time were significantly improved by employing the patterned FTO films as the transparent conductive oxide layer of the electrochromic electrode

  19. [Spectroscopic study on film formation mechanism and structure of composite silanes-V-Zr passive film].

    Science.gov (United States)

    Wang, Lei; Liu, Chang-sheng; Shi, Lei; An, Cheng-qiang

    2015-02-01

    A composite silanes-V-Zr passive film was overlayed on hot-dip galvanized steel. Attenuated total reflection Fourier transformed infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectrometer (XPS) and radio frequency glow discharge optical emission spectrometry (rf-GD-OES) were used to characterize the molecular structure of the silanes-V-Zr passive film. The mechanism of film formation was discussed: The results show that the silane molecules are crosslinked as the main film former and inorganic inhibitor is even distributed in the film. The fitting peak of 100.7 eV in XPS single Si2p energy range spectra of the composite silanes-V-Zr passive film and the widening and strengthening of the Si--O infrared absorption peak at 1100 cm(-1) indicate that the silanes were adsorbed on the surface of zinc with chemical bond of Si--O--Zn, and the silane molecules were connected with each other by bond of Si--O--Si. Two characteristic absorption peaks of amide at 1650 and 1560 cm(-1) appear in the infrared spectroscopy of the composite silanes-V-Zr passive film, and a characteristic absorption peak of epoxy groups at 910 cm(-1) disappears in the infrared spectroscopy of the passive film. The results indicate that gamma-APT can be prepared through nucleophilic ring-opening of ethylene oxide in gamma-GPT molecule to form C--N covalent bonds. The rf-GD-OES results indicate that there is a oxygen enriched layer in 0.3 microm depth of the composite silanes-V-Zr passive film. Moreover, ZrF4, ZrO2 and some inorganic matter obtained by the reaction during the forming processof the composite silanes-V-Zr passive film are distributed evenly throughout the film. According to the film composition, the physical processes and chemical reactions during the film forming process were studied by using ATR-FTIR. Based on this, the film forming mechanism was proposed.

  20. Beam measurements of the SPS longitudinal impedance

    CERN Document Server

    Lasheen, A

    2017-01-01

    Longitudinal instabilities are one of the main limitationsin the CERN SPS to reach the beam parameters requiredfor the High Luminosity LHC project. In preparation tothe SPS upgrade, possible remedies are studied by perform-ing macroparticle simulations using the machine impedancemodel obtained from electromagnetic simulations and mea-surements. To benchmark the impedance model, the resultsof simulations are compared with various beam measure-ments. In this study, the reactive part of the impedance wasprobed by measuring the quadrupole frequency shift withintensity, obtained from bunch length oscillations at mis-matched injection into the SPS. This method was appliedover many last years to follow up the evolution of the SPSimpedance, injecting bunches with the same bunch length.A novel approach, giving significantly more information,consists in varying the injected bunch length. The compari-son of these measurements with macroparticle simulationsallowed to test the existing model and identify some missingSPS i...

  1. Fire resistant films for aircraft applications

    Science.gov (United States)

    Kourtides, D. A.

    1983-01-01

    Alternative sandwich panel decorative films were investigated as replacements for the polyvinyl fluoride currently used in aircraft interiors. Candidate films were studied for flammability, smoke emission, toxic gas emission, flame spread, and suitability as a printing surface for the decorative acrylic ink system. Several of the candidate films tested were flame modified polyvinyl fluoride, polyvinylidene fluoride, polyimide, polyamide, polysulfone, polyphenylsulfone, polyethersulfone, polybenzimidazole, polycarbonate, polyparabanic acid, polyphosphazene, polyetheretherketon, and polyester. The films were evaluated as pure films only, films silk-screened with an acrylic ink, and films adhered to a phenolic fiberglass substrate. Films which exhibited the highest fire resistant properties included PEEK polyetheretherketon, Aramid polyamide, and ISO-BPE polyester.

  2. Predicting film genres with implicit ideals

    Directory of Open Access Journals (Sweden)

    Andrew McGregor Olney

    2013-01-01

    Full Text Available We present a new approach to defining film genre based on implicit ideals. When viewers rate the likability of a film, they indirectly express their ideal of what a film should be. Across six studies we investigate the category structure that emerges from likability ratings and the category structure that emerges from the features of film. We further compare these data-driven category structures with human annotated film genres. We conclude that film genres are structured more around ideals than around features of film. This finding lends experimental support to the notion that film genres are set of shifting, fuzzy, and highly contextualized psychological categories.

  3. Predicting film genres with implicit ideals.

    Science.gov (United States)

    Olney, Andrew McGregor

    2012-01-01

    We present a new approach to defining film genre based on implicit ideals. When viewers rate the likability of a film, they indirectly express their ideal of what a film should be. Across six studies we investigate the category structure that emerges from likability ratings and the category structure that emerges from the features of film. We further compare these data-driven category structures with human annotated film genres. We conclude that film genres are structured more around ideals than around features of film. This finding lends experimental support to the notion that film genres are set of shifting, fuzzy, and highly contextualized psychological categories.

  4. Thin-film solar cells

    International Nuclear Information System (INIS)

    Aberle, Armin G.

    2009-01-01

    The rapid progress that is being made with inorganic thin-film photovoltaic (PV) technologies, both in the laboratory and in industry, is reviewed. While amorphous silicon based PV modules have been around for more than 20 years, recent industrial developments include the first polycrystalline silicon thin-film solar cells on glass and the first tandem solar cells based on stacks of amorphous and microcrystalline silicon films ('micromorph cells'). Significant thin-film PV production levels are also being set up for cadmium telluride and copper indium diselenide.

  5. Effects of gamma irradiation on Commercial Food Packaging films

    International Nuclear Information System (INIS)

    Cabalar, P.J.; Abad, L.V.; Laurio, C.

    2015-01-01

    Gamma Radiation is a well-known technology to inactivate bacterial pathogens in food products. Currently, there is a growing interest in this technology considering its advantage of being a non-thermal process and the convenience of food being pre-packaged in its final form before treatment that prevents possible recontamination. The process of irradiating pre-packaged food requires that appropriate packaging materials are chosen as this would play a vital role in the quality assessment and safety evaluation of the irradiated products. Irradiation can cause changes to the packaging materials that might affect its integrity and functionality as a barrier e.g. to chemical or microbial contamination. Likewise, components of packaging materials that have been irradiated may migrate to food as a result of irradiation. Hence, this study was conducted to screen locally available commercial packaging films and determine its effect with radiation. Commercials packaging films made up of PET / FOIL / PE, Plain PET 12 / Foil 7 / PE 100, VMPET 12 / PE 70, OPP 20 / Foil 6.5 / PE 40, PET 12 / CPS 40, PET 12 / PE 50, Laminated PET / PE, Nylon / PE, and Nylon 15 / PE 50 were investigated for its effect with gamma radiation at 10 kGy. Their mechanical and thermal properties generally did not show any changes after irradiation except for OPP 20/ Foil 6.5 / PE 40. Gel Permeation Chromatography of leachates from water samples detected the presence of high molecular weight radiolytic products especially from laminated PET/PE films. Radiation effects were minimal for VMPET12/PE70, Nylon/PE and Nylon 15/PE 50 films. Preliminary results, using the stable isotope technique, to study the leachates in the water samples in contact with the packaging materials reveal an indicative increase in δ"1"8O"0/_0_0 and δD 0/_0_0.(author)

  6. Film Scriptwriting: A Practical Manual.

    Science.gov (United States)

    Swain, Dwight V.

    Dealing with both documentary and feature films, this book is a guide to using particular tools and procedures in developing ideas and concepts for writing film scripts. Part one deals with the factual, or documentary, film and discusses the proposal outline, film treatment, sequence outline, shooting script, and narration writing. Part two…

  7. Fabrication and Film Qualification of Sr Modified Pb(Ca) TiO3 Thin Films

    International Nuclear Information System (INIS)

    Naw Hla Myat San; Khin Aye Thwe; Than Than Win; Yin Maung Maung; Ko Ko Kyaw Soe

    2011-12-01

    Strontium and calcium - modified lead titanate (Pb0.7 Ca0.15 Sr0.15 ) TiO3 (PCST)thin films were prepared by using spin coating technique. Phase transition of PCST was interpreted by means of Er-T characteristics. Process temperature dependence on micro-structure of PCST film was studied. Charge conduction mechanism of PCST thin film was also investigated for film qualification.

  8. Professor Camillo Negro's Neuropathological Films.

    Science.gov (United States)

    Chiò, Adriano; Gianetto, Claudia; Dagna, Stella

    2016-01-01

    Camillo Negro, Professor in Neurology at the University of Torino, was a pioneer of scientific film. From 1906 to 1908, with the help of his assistant Giuseppe Roasenda and in collaboration with Roberto Omegna, one of the most experienced cinematographers in Italy, he filmed some of his patients for scientific and educational purposes. During the war years, he continued his scientific film project at the Military Hospital in Torino, filming shell-shocked soldiers. In autumn 2011, the Museo Nazionale del Cinema, in partnership with the Faculty of Neurosciences of the University of Torino, presented a new critical edition of the neuropathological films directed by Negro. The Museum's collection also includes 16 mm footage probably filmed in 1930 by Doctor Fedele Negro, Camillo's son. One of these films is devoted to celebrating the effects of the so-called "Bulgarian cure" on Parkinson's disease.

  9. Chemical films and monolayers on the water surface and their interactions with ultraviolet radiation: a pilot investigation

    International Nuclear Information System (INIS)

    Schouten, Peter; Lemckert, Charles; Underhill, Ian; Turner, Geoff; Turnbull, David; Parisi, Alfio; Downs, Nathan

    2011-01-01

    Over the past 50 years numerous types of chemical films and monolayers have been deployed on top of a wide variety of water reserves in an endeavour to reduce evaporation. To date very little knowledge has been assimilated on how these chemical films and monolayers, once applied to a water surface, influence the underwater UV light field and, in turn, the delicate ecosystems that exist in aquatic environments. This manuscript presents underwater UV exposure profiles weighted to the DNA damage action spectrum measured under an octadecanol/hexadecanol/lime chemical film mixture, a silicone-based chemical film and an octadecanol monolayer applied to the water surface. UV transmission and absorption properties were also evaluated for each of these chemical films and monolayers. From this it was found that when chemical films/monolayers are applied to surface water they can reduce the penetration of biologically effective UV into the water column by up to 85% at a depth as small as 1 cm. This could have a positive influence on the aquatic ecosystem, as harmful UV radiation may be prevented from reaching and consequently damaging a variety of life forms or it could have a negative effect by potentially stopping aquatic organisms from adapting to solar ultraviolet radiation over extended application intervals. Additionally, there is currently no readily applicable system or technique available to readily detect or visualize chemical films and monolayers on the water surface. To overcome this problem a new method of monolayer and chemical film visualization, using a UV camera system, is detailed and tested and its applicability for usage in both laboratory-based trials and real-world operations is evaluated

  10. Chemical films and monolayers on the water surface and their interactions with ultraviolet radiation: a pilot investigation

    Science.gov (United States)

    Schouten, Peter; Lemckert, Charles; Turnbull, David; Parisi, Alfio; Downs, Nathan; Underhill, Ian; Turner, Geoff

    2011-06-01

    Over the past 50 years numerous types of chemical films and monolayers have been deployed on top of a wide variety of water reserves in an endeavour to reduce evaporation. To date very little knowledge has been assimilated on how these chemical films and monolayers, once applied to a water surface, influence the underwater UV light field and, in turn, the delicate ecosystems that exist in aquatic environments. This manuscript presents underwater UV exposure profiles weighted to the DNA damage action spectrum measured under an octadecanol/hexadecanol/lime chemical film mixture, a silicone-based chemical film and an octadecanol monolayer applied to the water surface. UV transmission and absorption properties were also evaluated for each of these chemical films and monolayers. From this it was found that when chemical films/monolayers are applied to surface water they can reduce the penetration of biologically effective UV into the water column by up to 85% at a depth as small as 1 cm. This could have a positive influence on the aquatic ecosystem, as harmful UV radiation may be prevented from reaching and consequently damaging a variety of life forms or it could have a negative effect by potentially stopping aquatic organisms from adapting to solar ultraviolet radiation over extended application intervals. Additionally, there is currently no readily applicable system or technique available to readily detect or visualize chemical films and monolayers on the water surface. To overcome this problem a new method of monolayer and chemical film visualization, using a UV camera system, is detailed and tested and its applicability for usage in both laboratory-based trials and real-world operations is evaluated.

  11. Process for forming thin film, heat treatment process of thin film sheet, and heat treatment apparatus therefor

    International Nuclear Information System (INIS)

    Watanabe, S.

    1984-01-01

    The invention provides a process for forming a magnetic thin film on a base film, a heat treatment process of a thin film sheet consisting of the base film and the magnetic thin film, and an apparatus for performing heat treatment of the thin film sheet. Tension applied to the thin film sheet is substantially equal to that applied to the base film when the magnetic thin film is formed thereon. Then, the thin film sheet is treated with heat. The thin film sheet is heated with a given temperature gradient to a reactive temperature at which heat shrinkage occurs, while the tension is being applied thereto. Thereafter, the thin film sheet to which the tension is still applied is cooled with substantially the same temperature gradient as applied in heating. The heat treatment apparatus has a film driving unit including a supply reel, a take-up reel, a drive source and guide rollers; a heating unit including heating plates, heater blocks and a temperature controller for heating the sheet to the reactive temperature; and a heat insulating unit including a thermostat and another temperature controller for maintaining the sheet at the nonreactive temperature which is slightly lower than the reactive temperature

  12. Use of buffy coat thick films in detecting malaria parasites in patients with negative conventional thick films.

    Science.gov (United States)

    Duangdee, Chatnapa; Tangpukdee, Noppadon; Krudsood, Srivicha; Wilairatana, Polrat

    2012-04-01

    To determine the frequency of malaria parasite detection from the buffy coat blood films by using capillary tube in falciparum malaria patients with negative conventional thick films. Thirty six uncomplicated falciparum malaria patients confirmed by conventional thick and thin films were included in the study. The patients were treated with artemisinin combination therapy at Hospital for Tropical Diseases, Bangkok, Thailand for 28 day. Fingerpricks for conventional blood films were conducted every 6 hours until negative parasitemia, then daily fingerpricks for parasite checks were conducted until the patients were discharged from hospital. Blood samples were also concurrently collected in 3 heparinized capillary tubes at the same time of fingerpricks for conventional blood films when the prior parasitemia was negative on thin films and parasitemia was lower than 50 parasites/200 white blood cells by thick film. The first negative conventional thick films were compared with buffy coat thick films for parasite identification. Out of 36 patients with thick films showing negative for asexual forms of parasites, buffy coat films could detect remaining 10 patients (27.8%) with asexual forms of Plasmodium falciparum. The study shows that buffy coat thick films are useful and can detect malarial parasites in 27.8% of patients whose conventional thick films show negative parasitemia.

  13. Antibiotic-containing hyaluronic acid gel as an antibacterial carrier: Usefulness of sponge and film-formed HA gel in deep infection.

    Science.gov (United States)

    Matsuno, Hiroaki; Yudoh, Kazuo; Hashimoto, Masamichi; Himeda, Yasukazu; Miyoshi, Teruzo; Yoshida, Kaoru; Kano, Syogo

    2006-03-01

    We have developed a novel bioabsorbable antibacterial carrier using hyaluronic acid (HA) gel for prevention and treatment of orthopedic infections. In this study, we investigated the in vivo antibacterial effects of two forms of this new material, an HA gel sponge and an HA gel film. A titanium cylinder was inserted into the intramedullary cavity of each rabbit femur, along with an HA gel sponge or HA gel film containing antibiotics. The HA gel sponge contained gentamycin, vancomycin, tobramycin, or minomycin. The HA gel film contained gentamycin or vancomycin. After 0, 7, and 14 days, the rabbit bone marrow was collected, and the antibacterial activity of the HA gel was determined by agar diffusion test. As a control, we used Septocoll, a commercially available antibacterial carrier. Both the HA gel sponge and HA gel film exhibited antibacterial activity. The present results indicate that HA gel containing antibiotics is a clinically useful bioabsorbable antibacterial carrier. Copyright 2006 Orthopaedic Research Society.

  14. Heteroepitaxial growth of SiC films by carbonization of polyimide Langmuir-Blodgett films on Si

    Directory of Open Access Journals (Sweden)

    Goloudina S.I.

    2017-01-01

    Full Text Available High quality single crystal SiC films were prepared by carbonization of polyimide Langmuir-Blodgett films on Si substrate. The films formed after annealing of the polyimide films at 1000°C, 1100°C, 1200°C were studied by Fourier transform-infrared (FTIR spectroscopy, X-ray diffraction (XRD, Raman spectroscopy, transmission electon microscopy (TEM, transmission electron diffraction (TED, and scanning electron microscopy (SEM. XRD study and HRTEM cross-section revealed that the crystalline SiC film begins to grow on Si (111 substrate at 1000°C. According to the HRTEM cross-section image five planes in 3C-SiC (111 film are aligned with four Si(111 planes at the SiC/Si interface. It was shown the SiC films (35 nm grown on Si(111 at 1200°C have mainly cubic 3C-SiC structure with a little presence of hexagonal polytypes. Only 3C-SiC films (30 nm were formed on Si (100 substrate at the same temperature. It was shown the SiC films (30-35 nm are able to cover the voids in Si substrate with size up to 10 μm.

  15. Representasi Perempuan Dalam Film (Analisis Semiotika Representasi Perempuan Dalam Film “Fifty Shades of Grey”)

    OpenAIRE

    Aviomeita, Friska

    2016-01-01

    This study entitled "Representation of Women In Film ( Roland Barthes Semiotics Analysis In the film Fifty Shades of Grey ) " . The purpose of this study to find out how women are represented in the film " Fifty Shades of Grey " by denotation , connotation and myths . Film has always influenced and shaped the public based on the contents of the message behind it. Messages or values contained in the film may affect the audience. In this study, researchers used several theorie...

  16. A method for probing the effects of conformal nanoscale coatings on fatigue crack initiation in electroplated Ni films

    International Nuclear Information System (INIS)

    Straub, T.; Baumert, E.K.; Eberl, C.; Pierron, O.N.

    2012-01-01

    This paper describes an experimental technique to identify robust nanoscale coatings for improving the long-term reliability of metallic microelectromechanical systems. More specifically, the influence of nanoscale alumina coatings on the fatigue crack initiation process in 20 μm thick electrodeposited Ni films was investigated in a mild (30 °C, 50% RH) and harsh (80 °C, 90% RH) environment. Atomic-layer-deposited alumina layers, with thicknesses of 5 and 25 nm, were coated on Ni fatigue micro-resonators, and the fatigue degradation behavior in the very high cycle fatigue regime was compared to that of uncoated structures. Evidence based on post-test scanning electron microscopy and resonant frequency evolution plots shows that the coatings do not prevent the formation of fatigue extrusions and micro-cracks. However, their formation is likely delayed for the 25 nm thick alumina-coated Ni films. - Highlights: ► Effect of alumina coatings (5 and 25 nm thick) on fatigue initiation in nickel films ► Fatigue tests were performed at 30 °C, 50% relative humidity (RH) and 80 °C, 90% RH. ► Coatings did not prevent fatigue extrusions and micro-cracks. ► 25 nm coatings likely delayed the formation of fatigue extrusions and micro-cracks. ► The technique can be used to identify reliable nanoscale coatings.

  17. Films from the Couch: Film Theory and Psychoanalysis

    Directory of Open Access Journals (Sweden)

    Pedro Sangro Colón

    2008-10-01

    Full Text Available   Different disciplines have contributed to weaving a theory of psychoanalysis in the cinema: ranging from the loans from anthropology and experimental psychology, to proposals belonging to the specific sphere of film theory, such as Filmology, Text Analysis or Feminist Theory in films. In all cases, the aim is to establish a relationship between the significance structure that governs the cinema and psychology, so as to confirm that the cinema’s system of representation is modelled on our unconscious psychological apparatus, as was explained by the psychoanalyst Jacques Lacan, among others. The arrival of psychoanalysis in film thought forges the idea that considers the cinema as an auxiliary psychological device capable of making us subjects and submerging us in the emotions in play in the conflicts proposed by any audiovisual story.

  18. Effect of packaging films on the microflora of gamma irradiated vienna sausages

    International Nuclear Information System (INIS)

    Ito, Hitoshi; Watanabe, Hiroshi; Aoki, Shohei; Sato, Tomotaro

    1977-01-01

    Slime production of radurized VS (vienna sausage) was prevented largely in a package of O 2 gas unpermeable films such as K-cellophane and EG-Q more than cellophane-polyethylene film when packed with N 2 gas and stored at 10 0 C, 90% r.h. All of the total microbial count in non-irradiated VS packed in every film reached 1 x 10 6 per gram after 2 to 3 days storage, and slime production was observed at this level. In the case of radurized VS, the total count reached 1 x 10 6 per gram after 4 to 5 days at 300 krad and after 7 to 8 days at 500 krad in cellophane-polyethylene, while it prolonged for 7 to 9 days at 300 krad and for more than 13 or 15 days at 500 krad in K-cellophane or EG-Q. The main microorganisms occurring in non-irradiated VS packed with N 2 or CO 2 gas in K-cellophane or EG-Q were lactic acid bacteria, and the growth of other organisms such as MA (an Intermediate type of Moraxella-Acinetobacter), yeasts and Micrococcus was suppressed under these conditions. The growth of surviving organisms consisting of MA and yeasts in radurized VS was also suppressed. A small amount of off-flavor detected after irradiation at 500 krad disappeared in cellophane-polyethylene after 7 days storage. But it remained in the O 2 gas unpermeable films. (auth.)

  19. Predictors of Horror Film Attendance and Appeal: An Analysis of the Audience for Frightening Films.

    Science.gov (United States)

    Tamborini, Ron; Stiff, James

    1987-01-01

    Analyzes the appeal of horror films. Develops a model that finds that important factors in the horror film's appeal are the audience's desire to experience the satisfying resolutions and to see the destruction usually found in these films and the sensation-seeking personality traits of audience members for these films. (NKA)

  20. Texture control and growth mechanism of WSe{sub 2} film prepared by rapid selenization of W film

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongchao [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Chongyi Zhangyuan Tungsten Industry Corporation Limited, Ganzhou 341300 (China); Gao, Di; Li, Kun; Pang, Mengde; Xie, Senlin [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Liu, Rutie, E-mail: llrrtt@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Zou, Jianpeng [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China)

    2017-02-01

    Highlights: • We present a highly efficient method for preparing WSe{sub 2} film by rapid selenization. • The W film phase composition has little effect on WSe{sub 2} film orientation. • W film density is a critical factor that influences the WSe{sub 2} orientation. • A growth model was proposed for two kinds of WSe{sub 2} film textures. - Abstract: The tungsten diselenide (WSe{sub 2}) films with different orientation present unique properties suitable for specific applications, such as WSe{sub 2} with a C-axis⊥substrate for optoelectronics and WSe{sub 2} with a C-axis // substrate for electrocatalysts. Orientation control of WSe{sub 2} is essential for realizing the practical applications. In this letter, a WSe{sub 2} film has been prepared via rapid selenization of a magnetron-sputtered tungsten (W) film. The influence of the magnetron-sputtered W film on WSe{sub 2} film growth was studied systematically. Scanning electron microscopy, X-ray diffractometry and high-resolution transmission electron microscopy were used to evaluate the morphology, microstructure and phase composition of the W and WSe{sub 2} films. The substrate temperature has a significant effect on the W film phase composition, but little effect on the WSe{sub 2} film orientation. The WSe{sub 2} orientation can be controlled by changing the W film microstructure. A dense W film that is deposited at low pressure is conducive to the formation of WSe{sub 2} with a C-axis⊥substrate, whereas a porous W film deposited at high pressure favors the formation of WSe{sub 2} with a C-axis // substrate. A growth model for the WSe{sub 2} film with different texture has been proposed based on the experimental results. The direction of selenium (Se) vapor diffusion differs at the top and side surfaces. This is a key factor for the preparation of anisotropic WSe{sub 2} films. Highly oriented WSe{sub 2} films with a C-axis⊥substrate grow from the dense W film deposited at low pressure because Se vapor

  1. Properties of Chitosan-Laminated Collagen Film

    Directory of Open Access Journals (Sweden)

    Vera Lazić

    2012-01-01

    Full Text Available The objective of this study is to determine physical, mechanical and barrier properties of chitosan-laminated collagen film. Commercial collagen film, which is used for making collagen casings for dry fermented sausage production, was laminated with chitosan film layer in order to improve the collagen film barrier properties. Different volumes of oregano essential oil per 100 mL of filmogenic solution were added to chitosan film layer: 0, 0.2, 0.4, 0.6 and 0.8 mL to optimize water vapour barrier properties. Chitosan layer with 0.6 or 0.8 % of oregano essential oil lowered the water vapour transmission rate to (1.85±0.10·10–6 and (1.78±0.03·10–6 g/(m2·s·Pa respectively, compared to collagen film ((2.51±0.05·10–6 g/(m2·s·Pa. However, chitosan-laminated collagen film did not show improved mechanical properties compared to the collagen one. Tensile strength decreased from (54.0±3.8 MPa of the uncoated collagen film to (36.3±4.0 MPa when the film was laminated with 0.8 % oregano essential oil chitosan layer. Elongation at break values of laminated films did not differ from those of collagen film ((18.4±2.7 %. Oxygen barrier properties were considerably improved by lamination. Oxygen permeability of collagen film was (1806.8±628.0·10–14 cm3/(m·s·Pa and values of laminated films were below 35·10–14 cm3/(m·s·Pa. Regarding film appearance and colour, lamination with chitosan reduced lightness (L and yellowness (+b of collagen film, while film redness (+a increased. These changes were not visible to the naked eye.

  2. Effect of Different Packaging Films on Storability of Mushroom (Agaricus bisporus

    Directory of Open Access Journals (Sweden)

    R. Aminzadeh

    2014-02-01

    Full Text Available The button mushroom is rich food full of nutrient but compared with other fruits and vegetables, mushroom has a higher respiration rate and due to the lack of protective layer to prevent water loss, decay occurs quickly. It seems that suitable coating film is the one way for increase the storage life of mushroom. Therefore present research was carried out as split plot design in farme of CRD to find the best coating film in order to increase the storage life. In this research, the treatments were: control (package with Selefon, Poly Ethylene (PE with 40 and 65 micron thickness, Biaxially Oriented Polypropylene (BOPP with 25, 35 and 40 micron thickness, Cast PolyPropylen (CPP with 25 and 40 micron thickness, Poly Ester (PET with 12 and 24 micron thickness and Poly Vinyl Chloride (PVC with 30 micron thickness. The samples were estimated after 0, 10, 15, 20 and 25 days storage at 1°C and 90 % RH in 3 replications. The results showed that the types of plastic coating had significant effects on all measured characteristics as campared to that of control. Highest firmness value, Soluble Solid Content (SSC, titratable acidity, acidity (pH, and lowest weight less and decay were observed in packet mushroom with the coating film: BOPP and CPP and the lowest amounts were observed in the mushroom packed with control, PVC, PET and PE films. The effects of time on all of the measured during the storage period, were significant too.

  3. Handbook of thin film technology

    CERN Document Server

    Frey, Hartmut

    2015-01-01

    “Handbook of Thin Film Technology” covers all aspects of coatings preparation, characterization and applications. Different deposition techniques based on vacuum and plasma processes are presented. Methods of surface and thin film analysis including coating thickness, structural, optical, electrical, mechanical and magnetic properties of films are detailed described. The several applications of thin coatings and a special chapter focusing on nanoparticle-based films can be found in this handbook. A complete reference for students and professionals interested in the science and technology of thin films.

  4. [Psychopathology and film: a valuable interaction?].

    Science.gov (United States)

    van Duppen, Z; Summa, M; Fuchs, T

    2015-01-01

    Film or film fragments are often used in psychopathology education. However, so far there have been very few articles that have discussed the benefits and limitations of using films to explain or illustrate psychopathology. Although numerous films involves psychopathology in varying degrees, it is not clear how we can use films for psychopathology education. To examine the advantages, limitations and possible methods of using film as a means of increasing our knowledge and understanding of psychiatric illnesses. We discuss five examples that illustrate the interaction of film and psychopathology. On the one hand we explain how the psychopathological concepts are used in each film and on the other hand we explain which aspects of each film are valuable aids for teaching psychopathology. The use of film makes it possible to introduce the following topics in psychopathological teaching programme: holistic psychiatric reasoning, phenomenology and the subjective experience, the recognition of psychopathological prototypes and the importance of context. There is undoubtedly an analogy between the method we have chosen for teaching psychopathology with the help of films and the holistic approach of the psychiatrist and his or her team. We believe psychopathology education can benefit from films and we would recommend our colleagues to use it in this way.

  5. Film dosimetry in conformal radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Danciu, C; Proimos, B S [Patras Univ. (Greece). Dept. of Medical Physics

    1995-12-01

    Dosimetry, through a film sandwiched in a transverse cross-section of a solid phantom, is a method of choice in Conformal Radiotherapy because: (a) the blackness (density) of the film at each point offers a measure of the total dose received at that point, and (b) the film is easily calibrated by exposing a film strip in the same cross-section, through a stationary field. The film must therefore have the following properties: (a) it must be slow, in order not to be overexposed, even at a therapeutic dose of 200 cGy, and (b) the response of the film (density versus dose curve) must be independent of the photon energy spectrum. A few slow films were compared. It was found that the Kodak X-Omat V for therapy verification was the best choice. To investigate whether the film response was independent of the photon energy, response curves for six depths, starting from the depth of maximum dose to the depth of 25 cm, in solid phantom were derived. The vertical beam was perpendicular to the anterior surface of the phantom, which was at the distance of 100 cm from the source and the field was 15x15 cm at that distance. This procedure was repeated for photon beams emitted by a Cobalt-60 unit, two 6 MV and 15 MV Linear Accelerators, as well as a 45 MV Betatron. For each of those four different beams the film response was the same for all six depths. The results, as shown in the diagrams, are very satisfactory. The response curve under a geometry similar to that actually applied, when the film is irradiated in a transverse cross-section of the phantom, was derived. The horizontal beam was almost parallel (angle of 85) to the plane of the film. The same was repeated with the central ray parallel to the film (angle 90) and at a distance of 1.5 cm from the horizontal film. The field size was again 15x15 at the lateral entrance surface of the beam. The response curves remained the same, as when the beam was perpendicular to the films.

  6. Radiation grafting on natural films

    International Nuclear Information System (INIS)

    Lacroix, M.; Khan, R.; Senna, M.; Sharmin, N.; Salmieri, S.; Safrany, A.

    2014-01-01

    Different methods of polymer grafting using gamma irradiation are reported in the present study for the preparation of newly functionalized biodegradable films, and some important properties related to their mechanical and barrier properties are described. Biodegradable films composed of zein and poly(vinyl alcohol) (PVA) were gamma-irradiated in presence of different ratios of acrylic acid (AAc) monomer for compatibilization purpose. Resulting grafted films (zein/PVA-g-AAc) had their puncture strength (PS=37–40 N mm −1 ) and puncture deformation (PD=6.5–9.8 mm) improved for 30% and 50% PVA in blend, with 5% AAc under 20 kGy. Methylcellulose (MC)-based films were irradiated in the presence of 2-hydroxyethyl methacrylate (HEMA) or silane, in order to determine the effect of monomer grafting on the mechanical properties of films. It was found that grafted films (MC-g-HEMA and MC-g-silane) using 35% monomer performed higher mechanical properties with PS values of 282–296 N mm −1 and PD of 5.0–5.5 mm under 10 kGy. Compatibilized polycaprolactone (PCL)/chitosan composites were developed via grafting silane in chitosan films. Resulting trilayer grafted composite film (PCL/chitosan-g-silane/PCL) presented superior tensile strength (TS=22 MPa) via possible improvement of interfacial adhesion (PCL/chitosan) when using 25% silane under 10 kGy. Finally, MC-based films containing crystalline nanocellulose (CNC) as a filling agent were prepared and irradiated in presence of trimethylolpropane trimethacrylate (TMPTMA) as a grafted plasticizer. Grafted films (MC-g-TMPTMA) presented superior mechanical properties with a TS of 47.9 MPa and a tensile modulus (TM) of 1792 MPa, possibly due to high yield formation of radicals to promote TMPTMA grafting during irradiation. The addition of CNC led to an additional improvement of the barrier properties, with a significant 25% reduction of water vapor permeability (WVP) of grafted films. - Highlights: • Irradiation of zein

  7. Engineering Graphene Films from Coal

    Science.gov (United States)

    Vijapur, Santosh H.

    Graphene is a unique material with remarkable properties suitable for a wide array of applications. Chemical vapor deposition (CVD) is a simple technique for synthesis of large area and high quality graphene films on various metal substrates. Among the metal substrates, copper has been shown to be an excellent support for the growth of graphene films. Traditionally, hydrocarbon gases are used for the graphene synthesis via CVD. Unconventional solid carbon sources such as various polymers and food waste have also shown great potential for synthesis of graphene films. Coal is one such carbon enriched and abundantly available unconventional source. Utilization of coal as a carbon source to synthesize large area, transparent, and high quality few-layer graphene films via CVD has been demonstrated in the present work. Hydrocarbon gases are released as products of coal pyrolysis at temperatures ≥400 °C. This study hypothesized that, these hydrocarbon gases act as precursors for the synthesis of graphene films on the copper substrate. Hence, atmospheric pressure CVD and low temperature of 400 °C were utilized initially for the production of graphene films. These conditions were suitable for the formation of amorphous carbon (a-C) films but not crystalline graphene films that were the objective of this work. The synthesized a-C films on the copper substrate were shown to be uniform and transparent with large surface area. The thickness and surface roughness of the a-C films were determined to have typical values of 5 nm and 0.55 nm, respectively. The a-C film has >95 % optical transmittance and sheet resistivity of 0.6 MO sq-1. These values are comparable to other carbon thin films synthesized at higher temperatures. Further, the a-C films were transferred onto any type of substrate such as silicon wafer and titanium foil, and can be utilized for diverse applications. However, crystalline graphene films were not produced by implementing atmospheric pressure CVD and low

  8. Effect of micro-patterned fluorine-doped tin oxide films on electrochromic properties of Prussian blue films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyuha [Center for Energy Convergence Research, Green City Technology Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Kim, A-Young [Center for Energy Convergence Research, Green City Technology Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Department of Material Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Park, Ji Hun; Jung, Hun-Gi; Choi, Wonchang; Lee, Hwa Young [Center for Energy Convergence Research, Green City Technology Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Lee, Joong Kee, E-mail: leejk@kist.re.kr [Center for Energy Convergence Research, Green City Technology Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of)

    2014-09-15

    Graphical abstract: - Highlights: • PB-based ECD employed micro-patterned FTO electrode was fabricated. • Effect of interface morphology on electrochromic characteristics was examined. • Electrochromic properties were enhanced by employing a patterned interface. - Abstract: The effect of interface morphology on electrochromic characteristics was examined for an electrochromic device (ECD). Micro-patterned fluorine-doped tin oxide (FTO) films were fabricated using a photolithography process. Prussian blue (PB) films were then deposited on the patterned FTO films. The surface areas of both PB films and FTO films were increased by patterning. ECDs were assembled using patterned PB/FTO films as the electrochromic electrode, bare FTO films as the counter electrode, and an electrolyte containing LiClO{sub 4} salt. The increased effective surface area of the patterned PB/FTO electrode boosted the mobility of ions at the interphase between the electrolyte and PB electrode, and the electron transfer between PB films and FTO films. As a result, electrochromic properties such as transmittance and response time were significantly improved by employing the patterned FTO films as the transparent conductive oxide layer of the electrochromic electrode.

  9. Corrosion Prevention of Cold Rolled Steel Using Water Dispersible Lignosulfonic Acid Doped Polyaniline

    Science.gov (United States)

    Viswanathan, Tito (Inventor)

    2007-01-01

    The invention provides coatings useful for preventing corrosion of metals. The coatings comprise a film-forming resin and conductive polymers comprising linearly conjugated x-systems and residues of sulfonated lignin or a sulfonated polyflavonoid or derivatives of solfonated lignin or a sulfonated polyflavonoid. The invention also provides a latex formulation of the coatings, and articles of manufacture comprising a metal substrate and a coating in contact with the metal substrate.

  10. One Film, or Many?: The Multiple Texts of the Colonial Korean Film "Volunteer"

    Directory of Open Access Journals (Sweden)

    Jaekil Seo

    2012-12-01

    Full Text Available Until recently, studies on films from colonial Korea in the Japanese empire had to rely primarily on secondary texts, such as memoirs, journal and newspaper articles, and film reviews. The recent discovery of original film texts from archives in Japan, China, Russia, and elsewhere and their availability on DVD format, prompted an important turning point in the scholarship. However, juxtaposing these newly released DVD versions with other archival sources exposes significant differences among the existing versions of texts. For instance, a newly discovered script reveals that important segments are missing in the recently released DVD version of the propaganda film "Volunteer." There also exist important discrepancies in the dialogue among the original film script, the actual film version, the synopsis, and the Japanese subtitles. Some of the Korean-language dialogue, which might be interpreted as exhibiting some ambivalence toward Japanese imperial policies, was completely silenced through strategic omissions in the Japanese-language subtitles targeting Japanese audiences. Some Japanese-language translations of the script also exhibit drastic changes from the original Korean-language dialogue. Piecing together such fragmented and fraught linguistic dissonance found in the colonial archives, we can conjecture that viewers from the colony and the metropole of "Volunteer" may have consumed very different versions of the film. This article aims to examine the significance of such dissonance, which has only recently become audible in so-called films of transcolonial coproduction.

  11. Plasma-polymerized SiOx deposition on polymer film surfaces for preparation of oxygen gas barrier polymeric films

    International Nuclear Information System (INIS)

    Inagaki, N.

    2003-01-01

    SiOx films were deposited on surfaces of three polymeric films, PET, PP, and Nylon; and their oxygen gas barrier properties were evaluated. To mitigate discrepancies between the deposited SiOx and polymer film, surface modification of polymer films was done, and how the surface modification could contribute to was discussed from the viewpoint of apparent activation energy for the permeation process. The SiOx deposition on the polymer film surfaces led to a large decrease in the oxygen permeation rate. Modification of polymer film surfaces by mans of the TMOS or Si-COOH coupling treatment in prior to the SiOx deposition was effective in decreasing the oxygen permeation rate. The cavity model is proposed as an oxygen permeation process through the SiOx-deposited Nylon film. From the proposed model, controlling the interface between the deposited SiOx film and the polymer film is emphasized to be a key factor to prepare SiOx-deposited polymer films with good oxygen gas barrier properties. (author)

  12. Film Editing Handbook; Technique of 16mm Film Cutting.

    Science.gov (United States)

    Churchill, Hugh B.

    Designed to help the film student with the complexities of 16mm film cutting, this handbook catalogs the mechanical procedures of both picture and sound cutting and supplies step-by-step explanations of these procedures. Because the handbook was organized so that it could be used while working at the cutting bench, common cutting problems and…

  13. Free-standing graphene films prepared via foam film method for great capacitive flexible supercapacitors

    Science.gov (United States)

    Zhu, Yucan; Ye, Xingke; Tang, Zhonghua; Wan, Zhongquan; Jia, Chunyang

    2017-11-01

    Recently, graphene films have always attracted attention due to their excellent characteristics in energy storage. In this work, a novel graphene oxide (GO) film with excellent mechanical properties, whose thickness was regulated simply via changing the concentration of the surfactant, was successfully prepared by foam film method. After chemical reduction, the reduced GO (rGO) films have excellent electrical conductivity of ∼172 S cm-1. Moreover, the supercapacitors based on the rGO films exhibit satisfied capacitive performance of ∼56 mF cm-2 at 0.2 mA cm-2 in 6 M KOH aqueous solution. Meanwhile, the flexible all solid state supercapacitors (FSSCs) based on the rGO films also show great volumetric capacitance of ∼2810 mF cm-3 at 12 mA cm-3 (∼1607 mF cm-3 at 613 mA cm-3) with polyvinyl alcohol-KOH gel electrolyte. Besides, after 10000 cycles and continuously bent to 180° for 300 times, the volumetric capacitance of the FSSC remains at 81.4% and 90.4% of its initial capacitance value, respectively. Therefore, the free-standing rGO films prepared via foam film method could be considered as promising electrode materials for high performance flexible supercapacitors.

  14. Quantitative analysis of tear film fluorescence and discomfort during tear film instability and thinning.

    Science.gov (United States)

    Begley, Carolyn; Simpson, Trefford; Liu, Haixia; Salvo, Eliza; Wu, Ziwei; Bradley, Arthur; Situ, Ping

    2013-04-12

    The purpose of this study was to test the association between tear film fluorescence changes during tear break-up (TBU) or thinning and the concurrent ocular sensory response. Sixteen subjects kept one eye open as long as possible (MBI), indicated their discomfort level continuously, and rated ocular sensations of irritation, stinging, burning, pricking, and cooling using visual analog scales (VAS). Fluorescence of the tear film was quantified by a pixel-based analysis of the median pixel intensity (PI), TBU, and percentage of dark pixels (DarkPix) over time. A cutoff of 5% TBU was used to divide subjects into either break-up (BU) or minimal break-up (BUmin) groups. Tear film fluorescence decreased (median PI) and the percentage of TBU and DarkPix increased in all trials, with the rate significantly greater in the BU than the BUmin group (Mann-Whitney U test, P film thinning best explains decreasing tear film fluorescence during trials. This was highly correlated with increasing ocular discomfort, suggesting that both tear film thinning and TBU stimulate underlying corneal nerves, although TBU produced more rapid stimulation. Slow increases in tear film hyperosmolarity may cause the gradual increase in discomfort during slow tear film thinning, whereas the sharp increases in discomfort during TBU suggest a more complex stimulus.

  15. FOREIGN LANGUAGE FILMS IN LOUISIANA DEPOSITORIES.

    Science.gov (United States)

    BABINEAUX, AUDREY

    THIS MANUAL IS AN ANNOTATED LIST OF 16-MILLIMETER EDUCATIONAL FOREIGN LANGUAGE FILMS (BOTH LINGUISTIC AND CULTURAL) WHICH WERE PURCHASED WITH STATE AND FEDERAL FUNDS AND PLACED IN LOUISIANA'S NINE FILM LIBRARIES. FILMS ARE ARRANGED ALPHABETICALLY BY LANGUAGES. FILMS IN THE TARGET LANGUAGE ARE LISTED SEPARATELY FROM FILMS WITH ENGLISH NARRATION. A…

  16. Olympic Training Film Profiles. Volume III.

    Science.gov (United States)

    1971

    Approximately 250 instructional films are described in Volume Three (1970-1971) of this review. After an introduction which considers film discussions from the instructor's point of view and offers some ideas for conducting a film showing and ordering the films, profiles of the films are presented grouped under such areas as management…

  17. Nopal cactus film

    Science.gov (United States)

    Toxqui-López, S.; Olivares-Pérez, A.; Fuentes-Tapia, I.; Conde-Cuatzo, María. G.

    2017-03-01

    Nopal mucilage potentially has certain properties required for the preparation biofilms which can be used as holographic replication recording medium. In this study, mucilage from nopal was extracted and characterized by its ability to form films under different concentration with polyvinyl alcohol. The transmission holographic diffraction gratings (master) were replicated into nopal films. The results showed good diffraction efficiencies. Mucilage from nopal could represent a good option for the development of films to replication holographic, owing to; its low cost and its compatibility with the environmental.

  18. FEMINIST FILM THEORY

    OpenAIRE

    Wijaya, Haris

    2015-01-01

    The developing of film industry has brought us into a complexity of art and business. If the first movie audiences were delighted to see that it was possible to record a moving scene on film; today we debate the desirability behind every movie, rather than just the possibility of capturing an image. Film has already become entertainment tool and communication media with quite powerful effect to influence people at the early 20th century. The problem that happens now is there are not many wome...

  19. Gammel Sherlock Holmes-film fundet - igen

    DEFF Research Database (Denmark)

    Lauridsen, Palle Schantz

    2017-01-01

    Om genfunden af en forsvundet Sherlock Holmes-film fra 1911, produceret af Nordisk Films Kompagni......Om genfunden af en forsvundet Sherlock Holmes-film fra 1911, produceret af Nordisk Films Kompagni...

  20. Fiction Film Dialogue vs Documentary Film Dialogue: Genre Peculiarities of Translation

    Directory of Open Access Journals (Sweden)

    Вера Евгеньевна Горшкова

    2016-12-01

    Full Text Available The article gives an analysis of the film dialogue translation depending on the genre peculiarities of a spoken word medium, i. e. of a fiction film and of a documentary. The latter is traditionally disregarded by linguists and translators due to an established opinion that it lacks an overt literary aesthetic component. Thus it makes a documentary much easier to translate and its text gets closer to the information text the translation dominant of which is to render its information component. The article analyses an universal character of image-sense applied to different cinematographic genres. This thesis is demonstrated with examples from fiction and documentary film dialogues such as The Artist, Il y a longtemps que je t’aime, Espionne pendant la seconde guerre mondiale translated into French and Russian. It is highlighted that particular verbal components/utterances quite often get especially crucial in the context of the film dialogue increasing its poetic function and creating a complete image-sense. Such lexical units as personal pronouns «ты» and «вы» (you as the 2nd person singular in Russian and the 2nd person plural, respectively have no small share in the above process as their adequate translation contributes to the audience's integral perception of the film as an aesthetic phenomenon. It is postulated that a documentary that deals with «the creative elaboration of the reality» has a lot in common with a fiction film in the regard of its compliance with the director's intention, the presentation of the sequence of events and their respective interpretation in the film. In this regard the adequate rendering of the image-sense of a documentary is especially vital in the analysis of events separated in time. That supposition can be backed up by a translation project carried out on the material of the film dialogue translation of the documentary «Espionne pendant la seconde guerre mondiale» from French into Russian.

  1. A „Hybrid“ Thin-Film pH Sensor with Integrated Thick-Film Reference

    OpenAIRE

    Simonis, Anette; Krings, Thomas; Lüth, Hans; Wang, Joseph; Schöning, Michael J.

    2001-01-01

    A reference electrode fabricated by means of thick-film technique is deposited onto a silicon substrate and combined with a thin-film pH sensor to a “hybrid†chip system. To evaluate the suitability of this combination, first investigations were carried out. The characteristics of the thin-film pH sensor were studied towards the thick-film Ag/AgCl reference electrode. Measurements were performed in the capacitance/voltage (C/V) and constant capacitance (Concap) mode for different pH ...

  2. Soap Films as 1D waveguides

    Directory of Open Access Journals (Sweden)

    Emile Olivier

    2014-01-01

    Full Text Available Laser light is injected in a free standing horizontal draining soap film through the glass frame sustaining the film. Two propagation regimes are clearly identified depending on the film thickness. At the beginning of the drainage, the soap film behaves as a multimode-one dimensional optofiuidic waveguide. In particular, we observe that the injected light creates a bottleneck in the film and part of the injected light is refracted leading to whiskers. At the end of the drainage where the film thickness is below 1μm, there is a strong selection among the various possible optical modes in the film, and part of the light is defiected. This leads to a self selection of the mode propagation inside the film.

  3. Thermogravimetric analysis of fuel film evaporation

    Institute of Scientific and Technical Information of China (English)

    HU Zongjie; LI Liguang; YU Shui

    2006-01-01

    Thermogravimetric analysis (TGA) was compared with the petrochemical distillation measurement method to better understand the characteristics of fuel film evaporation at different wall tem- peratures. The film evaporation characteristics of 90# gasoline, 93# gasoline and 0# diesel with different initial thicknesses were investigated at different environmental fluxes and heating rates. The influences of heating rate, film thickness and environmental flux on fuel film evaporation for these fuels were found. The results showed that the environmental conditions in TGA were similar to those for fuel films in the internal combustion engines, so data from TGA were suitable for the analysis of fuel film evaporation. TGA could simulate the key influencing factors for fuel film evaporation and could investigate the basic quantificational effect of heating rate and film thickness. To get a rapid and sufficient fuel film evaporation, sufficiently high wall temperature is necessary. Evaporation time decreases at a high heating rate and thin film thickness, and intense gas flow is important to promoting fuel film evaporation. Data from TGA at a heating rate of 100℃/min are fit to analyze the diesel film evaporation during cold-start and warming-up. Due to the tense molecular interactions, the evaporation sequence could not be strictly divided according to the boiling points of each component for multicomponent dissolved mixture during the quick evaporation process, and the heavier components could vaporize before reaching their boiling points. The 0# diesel film would fully evaporate when the wall temperature is beyond 250℃.

  4. Surface modification and properties of Bombyx mori silk fibroin films by antimicrobial peptide

    International Nuclear Information System (INIS)

    Bai Liqiang; Zhu Liangjun; Min Sijia; Liu Lin; Cai Yurong; Yao Juming

    2008-01-01

    The Bombyx mori silk fibroin films (SFFs) were modified by a Cecropin B (CB) antimicrobial peptide, (NH 2 )-NGIVKAGPAIAVLGEAAL-CONH 2 , using the carbodiimide chemistry method. In order to avoid the dissolution of films during the modification procedure, the SFFs were first treated with 60% (v/v) ethanol aqueous solution, resulting a structural transition from unstable silk I to silk II. The investigation of modification conditions showed that the surface-modified SFFs had the satisfied antimicrobial activity and durability when they were activated by EDC.HCl/NHS solution followed by a treatment in CB peptide/PBS buffer (pH 6.5 or 8) solution at ambient temperature for 2 h. Moreover, the surface-modified SFFs showed the smaller contact angle due to the hydrophilic antimicrobial peptides coupled on the film surface, which is essential for the cell adhesion and proliferation. AFM results indicated that the surface roughness of SFFs was considerably increased after the modification by the peptides. The elemental composition analysis results also suggested that the peptides were tightly coupled to the surface of SFFs. This approach may provide a new option to engineer the surface-modified implanted materials preventing the biomaterial-centered infection (BCI)

  5. Nanohole 3D-size tailoring through polystyrene bead combustion during thin film deposition

    International Nuclear Information System (INIS)

    Peng Xiaofeng; Kamiya, Itaru

    2009-01-01

    A novel approach is presented for nanohole 3D-size tailoring. The process starts with a monolayer of polystyrene (PS) beads spun coat on silicon wafer as a template. The holes can be directly prepared through combustion of PS beads by oxygen plasma during metal or oxide thin film deposition. The incoming particles are prevented from adhering on PS beads by H 2 O and CO 2 generated from the combustion of the PS beads. The hole depth generally depends on the film thickness. The hole diameter can be tailored by the PS bead size, film deposition rate, and also the combustion speed of the PS beads. In this work, a series of holes with depth of 4-24 nm and diameter of 10-36 nm has been successfully prepared. The hole wall materials can be selected from metals such as Au or Pt and oxides such as SiO 2 or Al 2 O 3 . These templates could be suitable for the preparation and characterization of novel nanodevices based on single quantum dots or single molecules, and could be extended to the studies of a wide range of coating materials and substrates with controlled hole depth and diameters.

  6. Surface modification and properties of Bombyx mori silk fibroin films by antimicrobial peptide

    Energy Technology Data Exchange (ETDEWEB)

    Bai Liqiang [Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Xiasha Higher Education Park, Hangzhou 310018 (China); Zhu Liangjun; Min Sijia [College of Animal Sciences, Zhejiang University, Hangzhou 310029 (China); Liu Lin; Cai Yurong [Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Xiasha Higher Education Park, Hangzhou 310018 (China); Yao Juming [Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Xiasha Higher Education Park, Hangzhou 310018 (China)], E-mail: yaoj@zstu.edu.cn

    2008-03-15

    The Bombyx mori silk fibroin films (SFFs) were modified by a Cecropin B (CB) antimicrobial peptide, (NH{sub 2})-NGIVKAGPAIAVLGEAAL-CONH{sub 2}, using the carbodiimide chemistry method. In order to avoid the dissolution of films during the modification procedure, the SFFs were first treated with 60% (v/v) ethanol aqueous solution, resulting a structural transition from unstable silk I to silk II. The investigation of modification conditions showed that the surface-modified SFFs had the satisfied antimicrobial activity and durability when they were activated by EDC.HCl/NHS solution followed by a treatment in CB peptide/PBS buffer (pH 6.5 or 8) solution at ambient temperature for 2 h. Moreover, the surface-modified SFFs showed the smaller contact angle due to the hydrophilic antimicrobial peptides coupled on the film surface, which is essential for the cell adhesion and proliferation. AFM results indicated that the surface roughness of SFFs was considerably increased after the modification by the peptides. The elemental composition analysis results also suggested that the peptides were tightly coupled to the surface of SFFs. This approach may provide a new option to engineer the surface-modified implanted materials preventing the biomaterial-centered infection (BCI)

  7. The comparative evaluation of film-screen combinations

    International Nuclear Information System (INIS)

    Choi, Gyung Ja; Choi, Syng Kyu

    1988-01-01

    This study was to compare the quality of image by different screen and film combinations. Using the sensitometer measured the speed and average gradient of blue sensitive films and orthochromatic films. The films was combined with rare earth screen LR, Lm, LF and conventional screen OM, OH, XOR, OKa and exposed the stepwedge to impulse 2, 3, 4, 6, 10, 15, 24, 38, 60 and measured the density. The following results were obtained: 1. The density of film and film-screen combinations showed significant difference, then in film-screen combinations was significantly different by the screens than films. 2. The speed of blue sensitive films was little different, the TMG of orthochromatic films producted high speed, and the AX films was high average gradient. 3. The relative speed of film-screen combinations showed significant difference, and was high in the OKa of the conventional screens and in the LR of the rare earth screens, especially that of LR screen in the combination with blue sensitive films was high. 4. The average gradient of film-screen combinations showed no significant difference, and was high in the OKa screen and LR/OG combination, and that of OKa/AX combination was highest. 5. The latitude of film-screen combinations showed significant difference by screens, and was high in the LM screen in combination with blue sensitive films and in the OM screen in combination with orthochromatic films. 6. The subject contrast of film-screen combinations showed significant difference by screen, and was high in the LR screen in combination with blue sensitive AX film and orthochromatic TMG film.

  8. Glimmering Utopias: 50 Years of African Film Flimmernde Utopien: 50 Jahre afrikanischer Film

    Directory of Open Access Journals (Sweden)

    Cassis Kilian

    2010-01-01

    Full Text Available The history of African film began in the 1960s with the independence of the colonies. Despite all kinds of political and economic difficulties, numerous films have been made since then, featuring wide-ranging processes of consolidation, differentiation and transformation which were characteristic of post-colonial sub-Saharan Africa. However, these feature films should not merely be viewed as back references to specifically African problems. The glimmering fictions are imagination spaces. They preserve ideas about how the post-colonial circumstances should be approached. Seen from this perspective, the history of African film may be studied as a history of African utopias. Die Geschichte des afrikanischen Films begann mit der Unabhängigkeit in den 1960er Jahren. Seitdem sind trotz aller politischen und ökonomischen Probleme zahlreiche Filme entstanden. Sie geben umfassende Konsolidierungs-, Differenzierungs- und Transformationsprozesse wieder, die für das postkoloniale subsaharische Afrika charakteristisch waren. Die Spielfilme sollten allerdings nicht nur als Rückschau auf spezifische Probleme Afrikas interpretiert werden. Diese flimmernden Phantasien stellen Imaginationsräume dar; in ihnen sind Ideen enthalten, wie den Bedingungen der postkolonialen Gesellschaften begegnet werden könnte. Aus dieser Sicht heraus könnte die Geschichte des afrikanischen Films auch als Geschichte afrikanischer Utopien erforscht werden.

  9. Discovery in Film, Book Two.

    Science.gov (United States)

    Gordon, Malcolm W.

    Approximately 80 16 millimeter (16mm) short films are reviewed in this introduction and guide which attempts to be comprehensive in touching the major areas and styles of 16mm films now being produced. An attempt is made to describe as carefully as possible the style and content of each film and suggest ways in which the films might be used. Films…

  10. Dosimetric characterization of GafChromic EBT film and its implication on film dosimetry quality assurance

    International Nuclear Information System (INIS)

    Fuss, Martina; Sturtewagen, Eva; Wagter, Carlos De; Georg, Dietmar

    2007-01-01

    The suitability of radiochromic EBT film was studied for high-precision clinical quality assurance (QA) by identifying the dose response for a wide range of irradiation parameters typically modified in highly-conformal treatment techniques. In addition, uncertainties associated with varying irradiation conditions were determined. EBT can be used for dose assessment of absorbed dose levels as well as relative dosimetry when compared to absolute absorbed dose calibrated using ionization chamber results. For comparison, a silver halide film (Kodak EDR-2) representing the current standard in film dosimetry was included. As an initial step a measurement protocol yielding accurate and precise results was established for a flatbed transparency scanner (Epson Expression 1680 Pro) that was utilized as a film reading instrument. The light transmission measured by the scanner was found to depend on the position of the film on the scanner plate. For three film pieces irradiated with doses of 0 Gy, ∼1 Gy and ∼7 Gy, the pixel values measured in portrait or landscape mode differed by 4.7%, 6.2% and 10.0%, respectively. A study of 200 film pieces revealed an excellent sheet-to-sheet uniformity. On a long time scale, the optical development of irradiated EBT film consisted of a slow but steady increase of absorbance which was not observed to cease during 4 months. Sensitometric curves of EBT films obtained under reference conditions (SSD = 95 cm, FS = 5 x 5 cm 2 , d = 5 cm) for 6, 10 and 25 MV photon beams did not show any energy dependence. The average separation between all curves was only 0.7%. The variation of the depth d (range 2-25 cm) in the phantom did not affect the dose response of EBT film. Also the influence of the radiation field size (range 3 x 3-40 x 40 cm 2 ) on the sensitometric curve was not significant. For EDR-2 films maximum differences between the calibration curves reached 7-8% for X6MV and X25MV. Radiochromic EBT film, in combination with a flatbed

  11. Morphological Influence of Solution-Processed Zinc Oxide Films on Electrical Characteristics of Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Hyeonju Lee

    2016-10-01

    Full Text Available We report on the morphological influence of solution-processed zinc oxide (ZnO semiconductor films on the electrical characteristics of ZnO thin-film transistors (TFTs. Different film morphologies were produced by controlling the spin-coating condition of a precursor solution, and the ZnO films were analyzed using atomic force microscopy, X-ray diffraction, X-ray photoemission spectroscopy, and Hall measurement. It is shown that ZnO TFTs have a superior performance in terms of the threshold voltage and field-effect mobility, when ZnO crystallites are more densely packed in the film. This is attributed to lower electrical resistivity and higher Hall mobility in a densely packed ZnO film. In the results of consecutive TFT operations, a positive shift in the threshold voltage occurred irrespective of the film morphology, but the morphological influence on the variation in the field-effect mobility was evident. The field-effect mobility in TFTs having a densely packed ZnO film increased continuously during consecutive TFT operations, which is in contrast to the mobility decrease observed in the less packed case. An analysis of the field-effect conductivities ascribes these results to the difference in energetic traps, which originate from structural defects in the ZnO films. Consequently, the morphological influence of solution-processed ZnO films on the TFT performance can be understood through the packing property of ZnO crystallites.

  12. c-Axis correlated extended defects and critical current in YBa2Cu3Ox films grown on Au and Ag-nano dot decorated substrates

    International Nuclear Information System (INIS)

    Mikheenko, P.; Sarkar, A.; Dang, V.-S.; Tanner, J.L.; Abell, J.S.; Crisan, A.

    2009-01-01

    We report measurements of critical current in YBa 2 Cu 3 O x films deposited on SrTiO 3 substrates decorated with silver and gold nanodots. An increase in critical current in these films, in comparison with the films deposited on non-decorated substrates, has been achieved. We argue that this increase comes from the c-axis correlated extended defects formed in the films and originated from the nanodots. Additionally to creating extended defects, the nanodots pin them and prevent their exit from the sample during the film growth, thus keeping a high density of defects and providing a lower rate of decrease of the critical current with the thickness of the films. The best pinning is achieved in the samples with silver nanodots by optimising their deposition temperature. The nanodots grown at a temperature of a few hundred deg. C have a small diameter of a few nanometres and a high surface density of 10 11 -10 12 particles/cm 2 . We give evidence of c-axis correlated extended defects in YBa 2 Cu 3 O x films by planar and cross-sectional atomic force microscopy, transmission electron microscopy and angle-dependent transport measurements of critical current.

  13. A novel surface plasmon resonance biosensor based on the PDA-AgNPs-PDA-Au film sensing platform for horse IgG detection

    Science.gov (United States)

    Wang, Ning; Zhang, Di; Deng, Xinyu; Sun, Ying; Wang, Xinghua; Ma, Pinyi; Song, Daqian

    2018-02-01

    Herein we report a novel polydopamine-silver nanoparticle-polydopamine-gold (PDA-AgNPs-PDA-Au) film based surface plasmon resonance (SPR) biosensor for horse IgG detection. The PDA-AgNPs-PDA-Au film sensing platform was built on Au-film via layer-by-layer self-assembly. Ag ion was reduced in situ to AgNPs in presence of PDA. The top PDA layer can prevent AgNPs from being oxidized and connect with antibody via Schiff alkali reaction directly. The morphology and thickness of the modified gold film were characterized using scanning electron microscope and Talystep. Experimental results show that the PDA-AgNPs-PDA-Au film sensing platform is stable, regenerative and sensitive for horse IgG detection. The detection limit of horse IgG obtained with the present biosensor is 0.625 μg mL- 1, which is 2-fold and 4-fold lower than that obtained with biosensor based on PDA modified Au film and conventional biosensor based on MPA, respectively. Furthermore, when challenged to real serum samples, our sensor exhibited excellent specificity to horse IgG, suggesting its potential for industrial application.

  14. Functional Layer-by-Layer Thin Films of Inducible Nitric Oxide (NO) Synthase Oxygenase and Polyethylenimine: Modulation of Enzyme Loading and NO-Release Activity.

    Science.gov (United States)

    Gunasekera, Bhagya; Abou Diwan, Charbel; Altawallbeh, Ghaith; Kalil, Haitham; Maher, Shaimaa; Xu, Song; Bayachou, Mekki

    2018-03-07

    Nitric oxide (NO) release counteracts platelet aggregation and prevents the thrombosis cascade in the inner walls of blood vessels. NO-release coatings also prevent thrombus formation on the surface of blood-contacting medical devices. Our previous work has shown that inducible nitric oxide synthase (iNOS) films release NO fluxes upon enzymatic conversion of the substrate l-arginine. In this work, we report on the modulation of enzyme loading in layer-by-layer (LbL) thin films of inducible nitric oxide synthase oxygenase (iNOSoxy) on polyethylenimine (PEI). The layer of iNOSoxy is electrostatically adsorbed onto the PEI layer. The pH of the iNOSoxy solution affects the amount of enzyme adsorbed. The overall negative surface charge of iNOSoxy in solution depends on the pH and hence determines the density of adsorbed protein on the positively charged PEI layer. We used buffered iNOSoxy solutions adjusted to pHs 8.6 and 7.0, while saline PEI solution was used at pH 7.0. Atomic force microscopy imaging of the outermost layer shows higher protein adsorption with iNOSoxy at pH 8.6 than with a solution of iNOSoxy at pH 7.0. Graphite electrodes with PEI/iNOSoxy films show higher catalytic currents for nitric oxide reduction mediated by iNOSoxy. The higher enzyme loading translates into higher NO flux when the enzyme-modified surface is exposed to a solution containing the substrate and a source of electrons. Spectrophotometric assays showed higher NO fluxes with iNOSoxy/PEI films built at pH 8.6 than with films built at pH 7.0. Fourier transform infrared analysis of iNOSoxy adsorbed on PEI at pH 8.6 and 7.0 shows structural differences of iNOSoxy in films, which explains the observed changes in enzymatic activity. Our findings show that pH provides a strategy to optimize the NOS loading and enzyme activity in NOS-based LbL thin films, which enables improved NO release with minimum layers of PEI/NOS.

  15. Silent Film in the German Classroom.

    Science.gov (United States)

    Caldwell, David

    In addition to using films in the German classroom to introduce students to German culture and history, it is important to show and study the film as film. This procedure emphasizes the importance of the film as a part of creative arts in Germany and demands student participation in observation and discussion. Many German silent films are…

  16. Direct-current substrate bias effects on amorphous silicon sputter-deposited films for thin film transistor fabrication

    International Nuclear Information System (INIS)

    Jun, Seung-Ik; Rack, Philip D.; McKnight, Timothy E.; Melechko, Anatoli V.; Simpson, Michael L.

    2005-01-01

    The effect that direct current (dc) substrate bias has on radio frequency-sputter-deposited amorphous silicon (a-Si) films has been investigated. The substrate bias produces a denser a-Si film with fewer defects compared to unbiased films. The reduced number of defects results in a higher resistivity because defect-mediated conduction paths are reduced. Thin film transistors (TFTs) that were completely sputter deposited were fabricated and characterized. The TFT with the biased a-Si film showed lower leakage (off-state) current, higher on/off current ratio, and higher transconductance (field effect mobility) than the TFT with the unbiased a-Si film

  17. Intermetallic semiconducting films

    CERN Document Server

    Wieder, H H

    1970-01-01

    Intermetallic Semiconducting Films introduces the physics and technology of AшВv compound films. This material is a type of a polycrystalline semiconductor that is used for galvanomagnetic device applications. Such material has a high electron mobility that is ideal for generators and magnetoresistors. The book discusses the available references on the preparation and identification of the material. An assessment of its device applications and other possible use is also enumerated. The book describes the structures and physical parts of different films. A section of the book covers the three t

  18. X-ray film

    International Nuclear Information System (INIS)

    Arndt, U.W.; Gilmore, D.J.; Wonacott, A.J.

    1977-01-01

    The performance of film as an X-ray detector is discussed and its behaviour is compared with that of a perfect Poissonian detector. The efficiency of microdensitometry as a method of extracting the information recorded on the film is discussed. More emphasis is placed in the precision of microdensitometric measurements than on the more obvious characteristic of film speed. The effects of chemical fog and background on the precision of the measurements is considered and it is concluded that the final limit to precision is set by the chemical fog. (B.D.)

  19. Radiation grafting on natural films

    Science.gov (United States)

    Lacroix, M.; Khan, R.; Senna, M.; Sharmin, N.; Salmieri, S.; Safrany, A.

    2014-01-01

    Different methods of polymer grafting using gamma irradiation are reported in the present study for the preparation of newly functionalized biodegradable films, and some important properties related to their mechanical and barrier properties are described. Biodegradable films composed of zein and poly(vinyl alcohol) (PVA) were gamma-irradiated in presence of different ratios of acrylic acid (AAc) monomer for compatibilization purpose. Resulting grafted films (zein/PVA-g-AAc) had their puncture strength (PS=37-40 N mm-1) and puncture deformation (PD=6.5-9.8 mm) improved for 30% and 50% PVA in blend, with 5% AAc under 20 kGy. Methylcellulose (MC)-based films were irradiated in the presence of 2-hydroxyethyl methacrylate (HEMA) or silane, in order to determine the effect of monomer grafting on the mechanical properties of films. It was found that grafted films (MC-g-HEMA and MC-g-silane) using 35% monomer performed higher mechanical properties with PS values of 282-296 N mm-1 and PD of 5.0-5.5 mm under 10 kGy. Compatibilized polycaprolactone (PCL)/chitosan composites were developed via grafting silane in chitosan films. Resulting trilayer grafted composite film (PCL/chitosan-g-silane/PCL) presented superior tensile strength (TS=22 MPa) via possible improvement of interfacial adhesion (PCL/chitosan) when using 25% silane under 10 kGy. Finally, MC-based films containing crystalline nanocellulose (CNC) as a filling agent were prepared and irradiated in presence of trimethylolpropane trimethacrylate (TMPTMA) as a grafted plasticizer. Grafted films (MC-g-TMPTMA) presented superior mechanical properties with a TS of 47.9 MPa and a tensile modulus (TM) of 1792 MPa, possibly due to high yield formation of radicals to promote TMPTMA grafting during irradiation. The addition of CNC led to an additional improvement of the barrier properties, with a significant 25% reduction of water vapor permeability (WVP) of grafted films.

  20. Mechanisms of oxygen permeation through plastic films and barrier coatings

    Science.gov (United States)

    Wilski, Stefan; Wipperfürth, Jens; Jaritz, Montgomery; Kirchheim, Dennis; Mitschker, Felix; Awakowicz, Peter; Dahlmann, Rainer; Hopmann, Christian

    2017-10-01

    Oxygen and water vapour permeation through plastic films in food packaging or other applications with high demands on permeation are prevented by inorganic barrier films. Most of the permeation occurs through small defects (visualized by etching with reactive oxygen in a capacitively coupled plasma and subsequent SEM imaging. In this work, defects in SiO x -coatings deposited by plasma-enhanced chemical vapour deposition on polyethylene terephthalate (PET) are investigated and the mass transport through the polymer is simulated in a 3D approach. Calculations of single defects showed that there is no linear correlation between the defect area and the resulting permeability. The influence of adjacent defects in different distances was observed and led to flow reduction functions depending on the defect spacing and defect area. A critical defect spacing where no interaction between defects occurs was found and compared to other findings. According to the superposition principle, the permeability of single defects was added up and compared to experimentally determined oxygen permeation. The results showed the same trend of decreasing permeability with decreasing defect densities.

  1. Ion beam assisted film growth

    CERN Document Server

    Itoh, T

    2012-01-01

    This volume provides up to date information on the experimental, theoretical and technological aspects of film growth assisted by ion beams.Ion beam assisted film growth is one of the most effective techniques in aiding the growth of high-quality thin solid films in a controlled way. Moreover, ion beams play a dominant role in the reduction of the growth temperature of thin films of high melting point materials. In this way, ion beams make a considerable and complex contribution to film growth. The volume will be essential reading for scientists, engineers and students working in thi

  2. Teaching Culture Through Films

    Institute of Scientific and Technical Information of China (English)

    徐婷

    2016-01-01

    Cultural teaching is an issue which is associated with complexity and paradox and also it is a big challenge for faculty. Teaching culture through films has become an important way of cross-cultural teaching This paper focuses on the reasons for teaching culture through films, the value and how it works. And finally it leads out the prospects of cultural teaching through films.

  3. Ion beam-based characterization of multicomponent oxide thin films and thin film layered structures

    International Nuclear Information System (INIS)

    Krauss, A.R.; Rangaswamy, M.; Lin, Yuping; Gruen, D.M.; Schultz, J.A.; Schmidt, H.K.; Chang, R.P.H.

    1992-01-01

    Fabrication of thin film layered structures of multi-component materials such as high temperature superconductors, ferroelectric and electro-optic materials, and alloy semiconductors, and the development of hybrid materials requires understanding of film growth and interface properties. For High Temperature Superconductors, the superconducting coherence length is extremely short (5--15 Angstrom), and fabrication of reliable devices will require control of film properties at extremely sharp interfaces; it will be necessary to verify the integrity of thin layers and layered structure devices over thicknesses comparable to the atomic layer spacing. Analytical techniques which probe the first 1--2 atomic layers are therefore necessary for in-situ characterization of relevant thin film growth processes. However, most surface-analytical techniques are sensitive to a region within 10--40 Angstrom of the surface and are physically incompatible with thin film deposition and are typically restricted to ultra high vacuum conditions. A review of ion beam-based analytical methods for the characterization of thin film and multi-layered thin film structures incorporating layers of multicomponent oxides is presented. Particular attention will be paid to the use of time-of-flight techniques based on the use of 1- 15 key ion beams which show potential for use as nondestructive, real-time, in-situ surface diagnostics for the growth of multicomponent metal and metal oxide thin films

  4. Incorporation in Langmuir-Blodgett films of an amphiphilic derivative of fullerene C{sub 60} and oligo-para-phenylenevinylene

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Venicio, V. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (UNAM), Circuito Exterior, CU, C.P. 04510, D.F. (Mexico); Gutierrez-Nava, M. [CIATEQ, A.C., Centro de Tecnologia Avanzada, Circuito de la Industria Poniente Lote: 11, Mza. 3, No. 11, Colonia Parque Industrial Ex Hacienda Dona Rosa, Lerma C.P. 52004, Estado de Mexico (Mexico); Amelines-Sarria, O. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (UNAM), Circuito Exterior, CU, C.P. 04510, D.F. (Mexico); Alvarez-Zauco, E. [Facultad de Ciencias, UNAM, Circuito Exterior, C.U., C.P. 04510, D.F. (Mexico); Basiuk, V.A. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (UNAM), Circuito Exterior, CU, C.P. 04510, D.F. (Mexico); Carreon-Castro, M.P., E-mail: pilar@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (UNAM), Circuito Exterior, CU, C.P. 04510, D.F. (Mexico)

    2012-12-30

    Langmuir (L) and Langmuir-Blodgett (LB) films of fullerene C{sub 60}-oligo-para-phenylenevinylene (OPV) derivative with six C{sub 12}H{sub 25} aliphatic chains were characterized. For the Langmuir films, isotherms of surface pressure versus molecular area, compression/expansion cycles (hysteresis curves) and Brewster angle microscopic images were obtained. We performed molecular mechanics and density functional theory calculations to determine the molecular and electronic structure of our compound at a water-air interface. We found agreement between experimental and theoretical values for the molecular surface area. LB films of up to ten layers were obtained on glass substrates, and were characterized by ultraviolet-visible spectroscopy. We observed that the absorbance at a wavelength of 326 nm grows almost linearly as a function of the number of layers. Films on glass-indium tin oxide were characterized by atomic force microscopy. We also observed a uniform deposition over the whole area of the scanned substrate. We demonstrated that the fullerene C{sub 60}-OPV derivative is able to form both L and LB films preventing fullerene aggregation with its aliphatic chains. We suggest that, due to its electron-acceptor properties, the C{sub 60}-OPV derivative could be used for organic-photovoltaic and organic-electronic applications. - Highlights: Black-Right-Pointing-Pointer We performed isotherm and hysteresis studies of fullerene derivative compound. Black-Right-Pointing-Pointer We found that the theoretical and experimental molecular areas agree. Black-Right-Pointing-Pointer We deposited Langmuir-Blodgett (LB) films on glass-indium tin oxide. Black-Right-Pointing-Pointer LB films were characterized using UV-visible spectroscopy. Black-Right-Pointing-Pointer We observed the morphology of the LB films through atomic force microscopy.

  5. Evaluation of hemocompatibility and endothelialization of hybrid poly(vinyl alcohol) (PVA)/gelatin polymer films.

    Science.gov (United States)

    Ino, Julia M; Sju, Ervi; Ollivier, Véronique; Yim, Evelyn K F; Letourneur, Didier; Le Visage, Catherine

    2013-11-01

    Engineered grafts are still needed for small diameter blood vessels reconstruction. Ideal materials would prevent thrombosis and intimal hyperplasia by displaying hemocompatibility and mechanical properties close to those of native vessels. In this study, poly(vinyl alcohol) (PVA)/gelatin blends were investigated as a potential vascular support scaffold. We modified a chemically crosslinked PVA hydrogel by incorporation of gelatin to improve endothelial cell attachment with a single-step method. A series of crosslinked PVA/gelatin films with specific ratios set at 100:0, 99:1, 95:5, and 90:10 (w/w) were prepared and their mechanical properties were examined by uniaxial tensile testing. Tubes, obtained from sutured films, were found highly compliant (3.1-4.6%) and exhibited sufficient mechanical strength to sustain hemodynamic strains. PVA-based hydrogels maintained low level of platelet adhesion and low thrombogenic potential. Endothelial cell adhesion and proliferation were drastically improved on PVA/gelatin films with a feed gelatin content as low as 1% (w/w), leading to the formation of a confluent endothelium. Hydrogels with higher gelatin content did not sustain complete endothelialization because of modifications of the film surface, including phase segregation and formation of microdomains. Thus, PVA/gelatin (99:1, w/w) hydrogels appear as promising materials for the design of endothelialized vascular materials with long-term patency. Copyright © 2013 Wiley Periodicals, Inc.

  6. NMR characterization of thin films

    Science.gov (United States)

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  7. NMR characterization of thin films

    Science.gov (United States)

    Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2008-11-25

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  8. Surface Modification of Solution-Processed ZrO2 Films through Double Coating for Pentacene Thin-Film Transistors

    Science.gov (United States)

    Kwon, Jin-Hyuk; Bae, Jin-Hyuk; Lee, Hyeonju; Park, Jaehoon

    2018-03-01

    We report the modification of surface properties of solution-processed zirconium oxide (ZrO2) dielectric films achieved by using double-coating process. It is proven that the surface properties of the ZrO2 film are modified through the double-coating process; the surface roughness decreases and the surface energy increases. The present surface modification of the ZrO2 film contributes to an increase in grain size of the pentacene film, thereby increasing the field-effect mobility and decreasing the threshold voltage of the pentacene thin-film transistors (TFTs) having the ZrO2 gate dielectric. Herein, the molecular orientation of pentacene film is also studied based on the results of contact angle and X-ray diffraction measurements. Pentacene molecules on the double-coated ZrO2 film are found to be more tilted than those on the single-coated ZrO2 film, which is attributed to the surface modification of the ZrO2 film. However, no significant differences are observed in insulating properties between the single-and the double-coated ZrO2 dielectric films. Consequently, the characteristic improvements of the pentacene TFTs with the double-coated ZrO2 gate dielectric film can be understood through the increase in pentacene grain size and the reduction in grain boundary density.

  9. Music as word: Film music - superlibretto?

    Directory of Open Access Journals (Sweden)

    Ćirić Marija

    2013-01-01

    Full Text Available The aim of his paper is to prove that film music can be understood as authentic narrative force: film music as word / discourse and its superlibretto status. Superlibretto is the status of music in a film which is constructing its own (aural reality and is narrating, speaking its own text which creates a wholesome film meaning. The existence of superlibretto is substantiated by fundamental theoretic concepts of film music and practically proven by analyses of examples taken from the opus of Serbian film composer Zoran Simjanović.

  10. Selective inorganic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M.L.F.; Weisenbach, L.A.; Anderson, M.T. [Sandia National Laboratories, Albuquerque, NM (United States)] [and others

    1995-05-01

    This project is developing inorganic thin films as membranes for gas separation applications, and as discriminating coatings for liquid-phase chemical sensors. Our goal is to synthesize these coatings with tailored porosity and surface chemistry on porous substrates and on acoustic and optical sensors. Molecular sieve films offer the possibility of performing separations involving hydrogen, air, and natural gas constituents at elevated temperatures with very high separation factors. We are focusing on improving permeability and molecular sieve properties of crystalline zeolitic membranes made by hydrothermally reacting layered multicomponent sol-gel films deposited on mesoporous substrates. We also used acoustic plate mode (APM) oscillator and surface plasmon resonance (SPR) sensor elements as substrates for sol-gel films, and have both used these modified sensors to determine physical properties of the films and have determined the sensitivity and selectivity of these sensors to aqueous chemical species.

  11. Conceiving Landscape through Film

    DEFF Research Database (Denmark)

    Farsø, Mads; Munck Petersen, Rikke

    2015-01-01

    This article shows how the media of film can be integrated, explored and can add value to architectural design studios and practice. It elucidates how film may offer an alternative position in architecture, where landscapes and cities are thought, planned and developed in closer relation...... to their spatial and sensory effects on humans. It underscores that the film camera can work as a kind of amplifier of how we, with our bodies, perceive space and project space. In the “Landscape Film” Studio at University of Copenhagen the film medium was tested as a combined registration and design tool...... for a new Nature Park south of Copenhagen. The final studio films and designs show how resonate recordings of sound, time and a bodily presence may simulate an Einfühling that inspires an alternative architecture of relations: the ambient, the changeable and the volatile. They also emphasize that an ability...

  12. The Possibility of Film Criticism.

    Science.gov (United States)

    Poague, Leland; Cadbury, William

    1989-01-01

    Examines the role of critical language in film criticism. Compares and contrasts Monroe Beardsley's philosophy on film aesthetics with the New Criticism. Outlines some of the contributions Beardsley has made to the study of film criticism. (KM)

  13. Application of a tablet film coating model to define a process-imposed transition boundary for robust film coating.

    Science.gov (United States)

    van den Ban, Sander; Pitt, Kendal G; Whiteman, Marshall

    2018-02-01

    A scientific understanding of interaction of product, film coat, film coating process, and equipment is important to enable design and operation of industrial scale pharmaceutical film coating processes that are robust and provide the level of control required to consistently deliver quality film coated product. Thermodynamic film coating conditions provided in the tablet film coating process impact film coat formation and subsequent product quality. A thermodynamic film coating model was used to evaluate film coating process performance over a wide range of film coating equipment from pilot to industrial scale (2.5-400 kg). An approximate process-imposed transition boundary, from operating in a dry to a wet environment, was derived, for relative humidity and exhaust temperature, and used to understand the impact of the film coating process on product formulation and process control requirements. This approximate transition boundary may aid in an enhanced understanding of risk to product quality, application of modern Quality by Design (QbD) based product development, technology transfer and scale-up, and support the science-based justification of critical process parameters (CPPs).

  14. Surface Properties of a Novel Poly(vinyl alcohol Film Prepared by Heterogeneous Saponification of Poly(vinyl acetate Film

    Directory of Open Access Journals (Sweden)

    Seong Baek Yang

    2017-10-01

    Full Text Available Almost general poly(vinyl alcohol (PVA films were prepared by the processing of a PVA solution. For the first time, a novel poly(vinyl alcohol (PVA film was prepared by the saponification of a poly(vinyl acetate (PVAc film in a heterogenous medium. Under the same saponification conditions, the influence of saponification time on the degree of saponification (DS was studied for the preparation of the saponified PVA film, and it was found that the DS varied with time. Optical microscopy was used to confirm the characteristics and surface morphology of the saponified PVA film, revealing unusual black globules in the film structure. The contact angle of the films was measured to study the surface properties, and the results showed that the saponified PVA film had a higher contact angle than the general PVA film. To confirm the transformation of the PVAc film to the PVA film, 1H nuclear magnetic resonance spectroscopy, X-ray diffraction measurements, differential scanning calorimetry, and Fourier-transform infrared spectroscopy were employed.

  15. Electrical initiation of an energetic nanolaminate film

    Science.gov (United States)

    Tringe, Joseph W.; Gash, Alexander E.; Barbee, Jr., Troy W.

    2010-03-30

    A heating apparatus comprising an energetic nanolaminate film that produces heat when initiated, a power source that provides an electric current, and a control that initiates the energetic nanolaminate film by directing the electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature. Also a method of heating comprising providing an energetic nanolaminate film that produces heat when initiated, and initiating the energetic nanolaminate film by directing an electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature.

  16. Radiochromic film and polarization effects

    International Nuclear Information System (INIS)

    Yu, P.K.N.; Cheung, T.; Butson, M.J.; Cancer Services, Wollongong, NSW; Inwood, D.

    2004-01-01

    Full text: A new high sensitivity radiochromic film has been tested for its polarization properties. Gafchromic HS film has been shown to produce a relatively small (less than 3%) variation in measured optical density measured at 660nm wavelength when the light source is fully linear polarized and the film is rotated through 360 deg angle. Similar variations are seen when the detector is linearly polarized. If both light source and detector is linearly polarised variations in measured optical density can reach 15% when the film is rotated through 360 deg angle. This seems to be due to a phase shift in polarised light caused by the radiochromic film resulting in the polarised light source becoming out of phase with the polarised detector. Gafchromic HS radiochromic film produces a minimal polarization response with varying angle of rotation however we recommend that a polarization test be performed on a densitometry system to establish the extent of its polarization properties before accuracy dosimetry is performed with radiochromic HS film. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  17. Den danske independent film

    DEFF Research Database (Denmark)

    Hansen, Kim Toft

    2014-01-01

    at producere film, og derved er filmproduktion potentielt gjort tilgængelig for en større gruppe personer som både afsender og modtager. For det fjerde implicerer diskussionen af de to film også genre- og stilmæssige spørgsmål om dansk filmkultur, fordi indiefilmen både i film og uden for filmene italesætter...

  18. Introduction to Film Making.

    Science.gov (United States)

    Davis, Robert E.

    This booklet is intended for teachers who are now teaching units in film production as part of a program in communication or who wish to begin work with filmmaking in such a program. The first section is intended to serve as a brief introduction to film theory, while a major portion of the rest of the booklet is devoted to film projects which may…

  19. Renaissance of the Film.

    Science.gov (United States)

    Bellone, Julius, Ed.

    The post-World War II period was one of the liveliest in the history of the cinema. This is a collection of 33 critical articles on some of the best films of the perd. Most of the essays explicate the themes and symbols of the films. The essays deal with these films: "The Apu Trilogy,""L'Avventura,""Balthazar,""Blow-Up,""Bonnie and Clyde," Citizen…

  20. Radially resolved simulation of a high-gain free electron laser amplifier

    International Nuclear Information System (INIS)

    Fawley, W.M.; Prosnitz, D.; Doss, S.; Gelinas, R.

    1983-01-01

    The results of a two-dimensional simulation of a high-gain free electron laser (FEL) amplifier is presented. The simulation solves the inhomogeneous paraxial wave equation. The source term is radially resolved and is obtained by tracking the interaction of the laser field with localized macroparticles