WorldWideScience

Sample records for prevent flame quenching

  1. Flame Quenching Dynamics of High Velocity Flames in Rectangular Cross-section Channels

    KAUST Repository

    Mahuthannan, Ariff Magdoom; Lacoste, Deanna; Damazo, Jason; Kwon, Eddie; Roberts, William L.

    2017-01-01

    Understanding flame quenching for different conditions is necessary to develop safety devices like flame arrestors. In practical applications, the speed of a deflagration in the lab-fixed reference frame will be a strong function of the geometry through which the deflagration propagates. This study reports on the effect of the flame speed, at the entrance of a quenching section, on the quenching distance. A 2D rectangular channel joining two main spherical vessels is considered for studying this effect. Two different velocity regimes are investigated and referred to as configurations A, and B. For configuration A, the velocity of the flame is 20 m/s, while it is about 100 m/s for configuration B. Methane-air stoichiometric mixtures at 1 bar and 298 K are used. Simultaneous dynamic pressure measurements along with schlieren imaging are used to analyze the quenching of the flame. Risk assessment of re-ignition is also reported and analyzed.

  2. Flame Quenching Dynamics of High Velocity Flames in Rectangular Cross-section Channels

    KAUST Repository

    Mahuthannan, Ariff Magdoom

    2017-01-05

    Understanding flame quenching for different conditions is necessary to develop safety devices like flame arrestors. In practical applications, the speed of a deflagration in the lab-fixed reference frame will be a strong function of the geometry through which the deflagration propagates. This study reports on the effect of the flame speed, at the entrance of a quenching section, on the quenching distance. A 2D rectangular channel joining two main spherical vessels is considered for studying this effect. Two different velocity regimes are investigated and referred to as configurations A, and B. For configuration A, the velocity of the flame is 20 m/s, while it is about 100 m/s for configuration B. Methane-air stoichiometric mixtures at 1 bar and 298 K are used. Simultaneous dynamic pressure measurements along with schlieren imaging are used to analyze the quenching of the flame. Risk assessment of re-ignition is also reported and analyzed.

  3. Numerical simulation of the laminar hydrogen flame in the presence of a quenching mesh

    International Nuclear Information System (INIS)

    Kudriakov, S.; Studer, E.; Bin, C.

    2011-01-01

    Recent studies of J.H. Song et al., and S.Y. Yang et al. have been concentrated on mitigation measures against hydrogen risk. The authors have proposed installation of quenching meshes between compartments or around the essential equipment in order to contain hydrogen flames. Preliminary tests were conducted which demonstrated the possibility of flame extinction using metallic meshes of specific size. Considerable amount of numerical and theoretical work on flame quenching phenomenon has been performed in the second half of the last century and several techniques and models have been proposed to predict the quenching phenomenon of the laminar flame system. Most of these models appreciated the importance of heat loss to the surroundings as a primary cause of extinguishment, in particular, the heat transfer by conduction to the containing wall. The supporting simulations predict flame-quenching structure either between parallel plates (quenching distance) or inside a tube of a certain diameter (quenching diameter). In the present study the flame quenching is investigated assuming the laminar hydrogen flame propagating towards a quenching mesh using two-dimensional configuration and the earlier developed models. It is shown that due to a heat loss to a metallic grid the flame can be quenched numerically. (authors)

  4. Synthesis of ZnO particles in a quench-cooled flame reactor

    DEFF Research Database (Denmark)

    Hansen, Jens Peter; Jensen, Joakim Reimer; Livbjerg, Hans

    2001-01-01

    The quench cooling of a flame by injection of cold air was studied in a flame reactor for the formation of ZnO particles in a premixed flame with a precursor jet. A rapid temperature drop downstream from the temperature peak is advantageous for the attainment of a large specific surface area...

  5. Numerical simulation for quenching meshes with TONUS platform

    International Nuclear Information System (INIS)

    Bin, Chen; Hongxing, Yu

    2009-01-01

    For mitigation of hydrogen risks during severe accidents to protect the integrity of containment, PAR and ignitors are used in current advanced nuclear power plants. But multiple combustions induced by ignitors and consequent DDT phenomena are not practically eliminated. An innovative design call 'quenching meshes' is considered to confine hydrogen flame within one compartment by metallic meshes, so that hazardous flame propagation can be prevented. The numerical simulation results based on discretization of the full Navier-Stokes equations with global one-step reaction represented by Arrhenius laminar combustion model have shown the possibility of flame quenching 'numerically'. This is achieved via multiplication of the combustion rate expression by a Heaviside function having an ignition temperature as a parameter. Qualitative behavior of the computed flow shows that the flame velocity diminishes while passing through a quenching mesh, while qualitative analysis based on the energy balance reveals the mechanism of flame quenching. All the above analysis has been performed for a stoichiometric mixture and normal initial pressure and temperature for initial conditions. For further research we would like to suggest the investigation of the influence of the mixture composition, initial pressure and/or temperature on the quenching criteria

  6. Propriety check for quenching meshes for control of hydrogen combustion between two compartments

    International Nuclear Information System (INIS)

    Yang, S. Y.; Jeong, S. H.; Kim, H. Z.; Kim, H. D.; Hong, S. W.

    2001-01-01

    In our previous study, the quenching meshes have been proposed for the control of hydrogen combustion under nuclear severe accident. It has been investigated whether the method of installation of quenching mesh to prevent flame from propagating to the other compartment is proper or not. Schlieren photograph is used to visualize the propagation of flame between two compartments. Without the quenching mesh equipped between the compartments, it has been observed that the flame always propagates from a compartment to the other. The data on quencing distance of hydrogen premixed flames gotten in our previous study is alayzed to setup of optimum quenching mesh, too. Such experimental results establish that the quenching meshes proposed for the control of hydrogen combustion are resonably available

  7. Temperature and species measurement in a quenching boundary layer on a flat-flame burner

    Energy Technology Data Exchange (ETDEWEB)

    Fuyuto, Takayuki; Fujikawa, Taketoshi; Akihama, Kazuhiro [Toyota Central Research and Development Labs., Inc., Nagakute, Aichi (Japan); Kronemayer, Helmut [University of Duisburg-Essen, IVG, Institute for Combustion and Gasdynamics, Duisburg (Germany); BASF SE, Ludwigshafen (Germany); Lewerich, Burkhard; Dreier, Thomas; Schulz, Christof [University of Duisburg-Essen, IVG, Institute for Combustion and Gasdynamics, Duisburg (Germany); Bruebach, Jan [Technical University Darmstadt, EKT, Institute for Energy and Powerplant Technology, Darmstadt (Germany)

    2010-10-15

    A detailed understanding of transport phenomena and reactions in near-wall boundary layers of combustion chambers is essential for further reducing pollutant emissions and improving thermal efficiencies of internal combustion engines. In a model experiment, the potential of laser-induced fluorescence (LIF) was investigated for measurements inside the boundary layer connected to flame-wall interaction at atmospheric pressure. Temperature and species distributions were measured in the quenching boundary layer formed close to a cooled metal surface located parallel to the flow of a premixed methane/air flat flame. Multi-line NO-LIF thermometry provided gas-phase temperature distributions. In addition, flame species OH, CH{sub 2}O and CO were monitored by single-photon (OH, CH{sub 2}O) and two-photon (CO) excitation LIF, respectively. The temperature dependence of the OH-LIF signal intensities was corrected for using the measured gas-phase temperature distributions. The spatial line-pair resolution of the imaging system was 22 {mu}m determined by imaging microscopic line pairs printed on a resolution target. The experimental results show the expected flame quenching behavior in the boundary layer and they reveal the potential and limitations of the applied diagnostics techniques. Limitations in spatial resolution are attributed to refraction of fluorescence radiation propagating through steep temperature gradients in the boundary layer. For the present experimental arrangements, the applied diagnostics techniques are applicable as close to the wall as 200 {mu}m with measurement precision then exceeding the 15-25% limit for species detection, with estimates of double this value for the case of H{sub 2}CO due to the unknown effect of the Boltzmann fraction corrections not included in the data evaluation process. Temperature measurements are believed to be accurate within 50 K in the near-wall zone, which amounts to roughly 10% at the lower temperatures encountered in

  8. Quenching Combustible Dust Mixtures Using Electric Particulate Suspensions (EPS): A New Testing Method For Microgravity

    Science.gov (United States)

    Colver, Gerald M.; Greene, Nathanael; Shoemaker, David; Xu, Hua

    2003-01-01

    The Electric Particulate Suspension (EPS) is a combustion ignition system being developed at Iowa State University for evaluating quenching effects of powders in microgravity (quenching distance, ignition energy, flammability limits). Because of the high cloud uniformity possible and its simplicity, the EPS method has potential for "benchmark" design of quenching flames that would provide NASA and the scientific community with a new fire standard. Microgravity is expected to increase suspension uniformity even further and extend combustion testing to higher concentrations (rich fuel limit) than is possible at normal gravity. Two new combustion parameters are being investigated with this new method: (1) the particle velocity distribution and (2) particle-oxidant slip velocity. Both walls and (inert) particles can be tested as quenching media. The EPS method supports combustion modeling by providing accurate measurement of flame-quenching distance as a parameter in laminar flame theory as it closely relates to characteristic flame thickness and flame structure. Because of its design simplicity, EPS is suitable for testing on the International Space Station (ISS). Laser scans showing stratification effects at 1-g have been studied for different materials, aluminum, glass, and copper. PTV/PIV and a leak hole sampling rig give particle velocity distribution with particle slip velocity evaluated using LDA. Sample quenching and ignition energy curves are given for aluminum powder. Testing is planned for the KC-135 and NASA s two second drop tower. Only 1-g ground-based data have been reported to date.

  9. Thermal-diffusional Instability in White Dwarf Flames: Regimes of Flame Pulsation

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Guangzheng; Zhao, Yibo; Zhou, Cheng; Gao, Yang; Law, Chung K. [Center for Combustion Energy, Tsinghua University, Beijing 100084 (China); Modestov, Mikhail, E-mail: gaoyang-00@mails.tsinghua.edu.cn [Nordita, KTH Royal Institute of Technology and Stockholm University, SE-10691, Stockholm (Sweden)

    2017-05-20

    Thermal-diffusional pulsation behaviors in planar as well as outwardly and inwardly propagating white dwarf (WD) carbon flames are systematically studied. In the 1D numerical simulation, the asymptotic degenerate equation of state and simplified one-step reaction rates for nuclear reactions are used to study the flame propagation and pulsation in WDs. The numerical critical Zel’dovich numbers of planar flames at different densities ( ρ = 2, 3, and 4 × 10{sup 7} g cm{sup −3}) and of spherical flames (with curvature c = −0.01, 0, 0.01, and 0.05) at a particular density ( ρ = 2 × 10{sup 7} g cm{sup −3}) are presented. Flame front pulsation in different environmental densities and temperatures are obtained to form the regime diagram of pulsation, showing that carbon flames pulsate in the typical density of 2 × 10{sup 7} g cm{sup −3} and temperature of 0.6 × 10{sup 9} K. While being stable at higher temperatures, at relatively lower temperatures, the amplitude of the flame pulsation becomes larger. In outwardly propagating spherical flames the pulsation instability is enhanced and flames are also easier to quench due to pulsation at small radius, while the inwardly propagating flames are more stable.

  10. Analysis of Flame Extinguishment and Height in Low Frequency Acoustically Excited Methane Jet Diffusion Flame

    Science.gov (United States)

    Zong, Ruowen; Kang, Ruxue; Liu, Chen; Zhang, Zhiyang; Zhi, Youran

    2018-01-01

    The exploration of microgravity conditions in space is increasing and existing fire extinguishing technology is often inadequate for fire safety in this special environment. As a result, improving the efficiency of portable extinguishers is of growing importance. In this work, a visual study of the effects on methane jet diffusion flames by low frequency sound waves is conducted to assess the extinguishing ability of sound waves. With a small-scale sound wave extinguishing bench, the extinguishing ability of certain frequencies of sound waves are identified, and the response of the flame height is observed and analyzed. Results show that the flame structure changes with disturbance due to low frequency sound waves of 60-100 Hz, and quenches at effective frequencies in the range of 60-90 Hz. In this range, 60 Hz is considered to be the quick extinguishing frequency, while 70-90 Hz is the stable extinguishing frequency range. For a fixed frequency, the flame height decreases with sound pressure level (SPL). The flame height exhibits the greatest sensitivity to the 60 Hz acoustic waves, and the least to the 100 Hz acoustic waves. The flame height decreases almost identically with disturbance by 70-90 Hz acoustic waves.

  11. Quenching of Particle-Gas Combustible Mixtures Using Electric Particulate Suspension (EPS) and Dispersion Methods

    Science.gov (United States)

    Colver, Gerald M.; Goroshin, Samuel; Lee, John H. S.

    2001-01-01

    A cooperative study is being carried out between Iowa State University and McGill University. The new study concerns wall and particle quenching effects in particle-gas mixtures. The primary objective is to measure and interpret flame quenching distances, flammability limits, and burning velocities in particulate suspensions. A secondary objective is to measure particle slip velocities and particle velocity distribution as these influence flame propagation. Two suspension techniques will be utilized and compared: (1) electric particle suspension/EPS; and (2) flow dispersion. Microgravity tests will permit testing of larger particles and higher and more uniform dust concentrations than is possible in normal gravity.

  12. Concurrent Flame Growth, Spread and Extinction over Composite Fabric Samples in Low Speed Purely Forced Flow in Microgravity

    Science.gov (United States)

    Zhao, Xiaoyang; T'ien, James S.; Ferkul, Paul V.; Olson, Sandra L.

    2015-01-01

    As a part of the NASA BASS and BASS-II experimental projects aboard the International Space Station, flame growth, spread and extinction over a composite cotton-fiberglass fabric blend (referred to as the SIBAL fabric) were studied in low-speed concurrent forced flows. The tests were conducted in a small flow duct within the Microgravity Science Glovebox. The fuel samples measured 1.2 and 2.2 cm wide and 10 cm long. Ambient oxygen was varied from 21% down to 16% and flow speed from 40 cm/s down to 1 cm/s. A small flame resulted at low flow, enabling us to observe the entire history of flame development including ignition, flame growth, steady spread (in some cases) and decay at the end of the sample. In addition, by decreasing flow velocity during some of the tests, low-speed flame quenching extinction limits were found as a function of oxygen percentage. The quenching speeds were found to be between 1 and 5 cm/s with higher speed in lower oxygen atmosphere. The shape of the quenching boundary supports the prediction by earlier theoretical models. These long duration microgravity experiments provide a rare opportunity for solid fuel combustion since microgravity time in ground-based facilities is generally not sufficient. This is the first time that a low-speed quenching boundary in concurrent spread is determined in a clean and unambiguous manner.

  13. Flame Structure and Emissions of Strongly-Pulsed Turbulent Diffusion Flames with Swirl

    Science.gov (United States)

    Liao, Ying-Hao

    This work studies the turbulent flame structure, the reaction-zone structure and the exhaust emissions of strongly-pulsed, non-premixed flames with co-flow swirl. The fuel injection is controlled by strongly-pulsing the fuel flow by a fast-response solenoid valve such that the fuel flow is completely shut off between pulses. This control strategy allows the fuel injection to be controlled over a wide range of operating conditions, allowing the flame structure to range from isolated fully-modulated puffs to interacting puffs to steady flames. The swirl level is controlled by varying the ratio of the volumetric flow rate of the tangential air to that of the axial air. For strongly-pulsed flames, both with and without swirl, the flame geometry is strongly impacted by the injection time. Flames appear to exhibit compact, puff-like structures for short injection times, while elongated flames, similar in behaviors to steady flames, occur for long injection times. The flames with swirl are found to be shorter for the same fuel injection conditions. The separation/interaction level between flame puffs in these flames is essentially governed by the jet-off time. The separation between flame puffs decreases as swirl is imposed, consistent with the decrease in flame puff celerity due to swirl. The decreased flame length and flame puff celerity are consistent with an increased rate of air entrainment due to swirl. The highest levels of CO emissions are generally found for compact, isolated flame puffs, consistent with the rapid quenching due to rapid dilution with excess air. The imposition of swirl generally results in a decrease in CO levels, suggesting more rapid and complete fuel/air mixing by imposing swirl in the co-flow stream. The levels of NO emissions for most cases are generally below the steady-flame value. The NO levels become comparable to the steady-flame value for sufficiently short jet-off time. The swirled co-flow air can, in some cases, increase the NO

  14. Instabilities and soot formation in spherically expanding, high pressure, rich, iso-octane-air flames

    International Nuclear Information System (INIS)

    Lockett, R D

    2006-01-01

    Flame instabilities, cellular structures and soot formed in high pressure, rich, spherically expanding iso-octane-air flames have been studied experimentally using high speed Schlieren cinematography, OH fluorescence, Mie scattering and laser induced incandescence. Cellular structures with two wavelength ranges developed on the flame surface. The larger wavelength cellular structure was produced by the Landau-Darrieus hydrodynamic instability, while the short wavelength cellular structure was produced by the thermal-diffusive instability. Large negative curvature in the short wavelength cusps caused local flame quenching and fracture of the flame surface. In rich flames with equivalence ratio φ > 1.8, soot was formed in a honeycomb-like structure behind flame cracks associated with the large wavelength cellular structure induced by the hydrodynamic instability. The formation of soot precursors through low temperature pyrolysis was suggested as a suitable mechanism for the initiation of soot formation behind the large wavelength flame cracks

  15. Instabilities and soot formation in spherically expanding, high pressure, rich, iso-octane-air flames

    Energy Technology Data Exchange (ETDEWEB)

    Lockett, R D [School of Engineering and Mathematical Sciences, City University, Northampton Square, London EC1V OHB (United Kingdom)

    2006-07-15

    Flame instabilities, cellular structures and soot formed in high pressure, rich, spherically expanding iso-octane-air flames have been studied experimentally using high speed Schlieren cinematography, OH fluorescence, Mie scattering and laser induced incandescence. Cellular structures with two wavelength ranges developed on the flame surface. The larger wavelength cellular structure was produced by the Landau-Darrieus hydrodynamic instability, while the short wavelength cellular structure was produced by the thermal-diffusive instability. Large negative curvature in the short wavelength cusps caused local flame quenching and fracture of the flame surface. In rich flames with equivalence ratio {phi} > 1.8, soot was formed in a honeycomb-like structure behind flame cracks associated with the large wavelength cellular structure induced by the hydrodynamic instability. The formation of soot precursors through low temperature pyrolysis was suggested as a suitable mechanism for the initiation of soot formation behind the large wavelength flame cracks.

  16. Blow-off characteristics of turbulent premixed flames in curved-wall Jet Burner

    KAUST Repository

    Mansour, Morkous S.

    2015-08-02

    This study concerns the flame dynamics of a curved-wall jet (CWJ) stabilized turbulent premixed flame as it approaches blow-off conditions. Time resolved OH planar laser-induced fluorescence (PLIF) delineated reaction zone contours and simultaneously stereoscopic particle image velocimetry (SPIV) quantified the turbulent flow field features. Ethylene/air flames were stabilized in CWJ burner to determine the sequence of events leading to blowoff. For stably burning flames far from blowoff, flames are characterized with a recirculation zone (RZ) upstream for flame stabilization followed by an intense turbulent interaction jet (IJ) and merged-jet regions downstream; the flame front counterparts the shear layer vortices. Near blowoff, as the velocity of reactants increases, high local stretch rates exceed the extinction stretch rates instantaneously resulting in localized flame extinction along the IJ region. As Reynolds number (Re) increases, flames become shorter and are entrained by larger amounts of cold reactants. The increased strain rates together with heat loss effects result in further fragmentation of the flame, eventually leading to the complete quenching of the flame. This is explained in terms of local turbulent Karlovitz stretch factor (K) and principal flow strain rates associated with C contours. Hydrogen addition and increasing the RZ size lessen the tendency of flames to be locally extinguished.

  17. Temperature measurements in a wall stabilized steady flame using CARS

    KAUST Repository

    Sesha Giri, Krishna

    2017-01-05

    Flame quenching by heat loss to a surface continues to be an active area of combustion research. Close wall temperature measurements in an isothermal wall-stabilized flame are reported in this work. Conventional N-vibrational Coherent Anti-Stokes Raman Scattering (CARS) thermometry as close as 275 μm to a convex wall cooled with water has been carried out. The standard deviation of mean temperatures is observed to be ~6.5% for high temperatures (>2000K) and ~14% in the lower range (<500K). Methane/air and ethylene/air stoichiometric flames for various global strain rates based on exit bulk velocities are plotted and compared. CH* chemiluminescence is employed to determine the flame location relative to the wall. Flame locations are shown to move closer to the wall with increasing strain rates in addition to higher near-wall temperatures. Peak temperatures for ethylene are considerably higher (~250-300K) than peak temperatures for methane. Preheat zone profiles are similar for different strain rates across fuels. This work demonstrates close wall precise temperature measurments using CARS.

  18. Numerical Analysis of Characteristics of Cellular Counterflow Diffusion Flames near Radiative Extinction Limit

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Su Ryong [Seoul National University of Technology, Seoul (Korea, Republic of)

    2014-06-15

    Nonlinear characteristics of cellular counterflow diffusion flame near the radiative extinction limit at large Damköhler number are numerically investigated. Lewis number is assumed to be 0.5 and flame evolution is calculated by imposing an infinitesimal disturbance to a one-dimensional(1-D) steady state flame. The early stage of nonlinear development is very similar to that predicted in a linear stability analysis. The disturbance with the wavenumber of the fastest growing mode emerges and grows gradually. Eventual, an alternating pattern of reacting and quenching stripes is developed. The cellular flame temperature is higher than that of 1-D flame because of the gain of the total enthalpy. As the Damköhler number is further increased, the shape of the cell becomes circular to increase the surface area per unit reacting volume. The cellular flames do not extinguish but survive even above the 1-D steady state extinction condition.

  19. Effects of soot formation on shape of a nonpremixed laminar flame established in a shear boundary layer in microgravity

    International Nuclear Information System (INIS)

    Wang, H Y; Merino, J L Florenciano; Dagaut, P

    2011-01-01

    A numerical study was performed to give a quantitative description of a heavily sooting, nonpremixed laminar flame established in a shear boundary layer in microgravity. Controlling mechanisms of three dimensional flow, combustion, soot and radiation are coupled. Soot volume fraction were predicted by using three approaches, referred respectively to as the fuel, acetylene and PAH inception models. It is found that the PAH inception model, which is based on the formation of two and three-ringed aromatic species, reproduces correctly the experimental data from a laminar ethylene diffusion flame. The PAH inception model serves later to better understand flame quenching, flame stand-off distance and soot formation as a function of the dimensionless volume coefficient, defined as C q = V F /V ox where V F is the fuel injection velocity, and V ox air stream velocity. The present experiments showed that a blue unstable flame, negligible radiative feedback, may change to a yellow stable flame, significant radiative loss with an increase of C q ; this experimental trend was numerically reproduced. The flame quenching occurs at the trailing edge due to radiative heat loss which is significantly amplified by increasing V F or decreasing V ox , favouring soot formation. Along a semi-infinite fuel zone, the ratio, d f /d b , where d f is the flame standoff distance, and d b the boundary layer thickness, converges towards a constant value of 1.2, while soot resides always within the boundary layer far away from the flame sheet.

  20. Flame dynamics in a micro-channeled combustor

    International Nuclear Information System (INIS)

    Hussain, Taaha; Balachandran, Ramanarayanan; Markides, Christos N.

    2015-01-01

    The increasing use of Micro-Electro-Mechanical Systems (MEMS) has generated a significant interest in combustion-based power generation technologies, as a replacement of traditional electrochemical batteries which are plagued by low energy densities, short operational lives and low power-to-size and power-to-weight ratios. Moreover, the versatility of integrated combustion-based systems provides added scope for combined heat and power generation. This paper describes a study into the dynamics of premixed flames in a micro-channeled combustor. The details of the design and the geometry of the combustor are presented in the work by Kariuki and Balachandran [1]. This work showed that there were different modes of operation (periodic, a-periodic and stable), and that in the periodic mode the flame accelerated towards the injection manifold after entering the channels. The current study investigates these flames further. We will show that the flame enters the channel and propagates towards the injection manifold as a planar flame for a short distance, after which the flame shape and propagation is found to be chaotic in the middle section of the channel. Finally, the flame quenches when it reaches the injector slots. The glow plug position in the exhaust side ignites another flame, and the process repeats. It is found that an increase in air flow rate results in a considerable increase in the length (and associated time) over which the planar flame travels once it has entered a micro-channel, and a significant decrease in the time between its conversion into a chaotic flame and its extinction. It is well known from the literature that inside small channels the flame propagation is strongly influenced by the flow conditions and thermal management. An increase of the combustor block temperature at high flow rates has little effect on the flame lengths and times, whereas at low flow rates the time over which the planar flame front can be observed decreases and the time of

  1. Flame dynamics in a micro-channeled combustor

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Taaha; Balachandran, Ramanarayanan, E-mail: r.balachandran@ucl.ac.uk [Department of Mechanical Engineering, University College London, London (United Kingdom); Markides, Christos N. [Clean Energy Processes Laboratory, Department of Chemical Engineering, Imperial College London, London (United Kingdom)

    2015-01-22

    The increasing use of Micro-Electro-Mechanical Systems (MEMS) has generated a significant interest in combustion-based power generation technologies, as a replacement of traditional electrochemical batteries which are plagued by low energy densities, short operational lives and low power-to-size and power-to-weight ratios. Moreover, the versatility of integrated combustion-based systems provides added scope for combined heat and power generation. This paper describes a study into the dynamics of premixed flames in a micro-channeled combustor. The details of the design and the geometry of the combustor are presented in the work by Kariuki and Balachandran [1]. This work showed that there were different modes of operation (periodic, a-periodic and stable), and that in the periodic mode the flame accelerated towards the injection manifold after entering the channels. The current study investigates these flames further. We will show that the flame enters the channel and propagates towards the injection manifold as a planar flame for a short distance, after which the flame shape and propagation is found to be chaotic in the middle section of the channel. Finally, the flame quenches when it reaches the injector slots. The glow plug position in the exhaust side ignites another flame, and the process repeats. It is found that an increase in air flow rate results in a considerable increase in the length (and associated time) over which the planar flame travels once it has entered a micro-channel, and a significant decrease in the time between its conversion into a chaotic flame and its extinction. It is well known from the literature that inside small channels the flame propagation is strongly influenced by the flow conditions and thermal management. An increase of the combustor block temperature at high flow rates has little effect on the flame lengths and times, whereas at low flow rates the time over which the planar flame front can be observed decreases and the time of

  2. A study of Cu/ZnO/Al2O3 methanol catalysts prepared by flame combustion synthesis

    DEFF Research Database (Denmark)

    Jensen, Joakim Reimer; Johannessen, Tue; Wedel, Stig

    2003-01-01

    The flame combustion synthesis of Cu/ZnO/Al2O3 catalysts for the synthesis of methanol from CO, CO2 and H2 is investigated. The oxides are generated in a premixed flame from the acetyl-acetonate vapours of Cu, Zn and Al mixed with the fuel and air prior to combustion. The flame-generated powder...... temperature and quench-cooling of the flame tend to increase the dispersion of the phases and the specific surface area of the particles. Properties of both the ternary composition, the three binary compositions and the pure oxides are discussed. The calculation of simultaneous phase and chemical equilibrium...

  3. Experimental and numerical investigations on flame stability of methane/air mixtures in mesoscale combustors filled with fibrous porous media

    International Nuclear Information System (INIS)

    Liu, Yi; Ning, Daoguan; Fan, Aiwu; Yao, Hong

    2016-01-01

    Highlights: • Flame stability in mesoscale channels with fibrous porous media was investigated. • Standing combustion waves were observed in the channels of 6-mm and 5-mm diameter. • The standing combustion wave was not observed in the channel with a diameter of 4 mm. • Flame velocity was inversely proportional to equivalence ratio and channel diameter. • A sharp drop in the efficiency was seen for the 4-mm channel due to wall quenching. - Abstract: Flame stability of methane/air mixtures in mesoscale channels with different diameters (6 mm, 5 mm and 4 mm) filled with fibrous porous media was experimentally investigated. Standing combustion waves (namely, stationary flame) are observed under low inlet velocity and high equivalence ratio conditions. Moreover, the standing wave regime becomes narrower as the channel diameter is reduced from 6 mm to 5 mm and vanishes for the 4-mm channel. For a fixed equivalence ratio, the flame length becomes shorter at a smaller channel or a less inlet velocity. Regarding the downstream propagating wave, its propagation velocity increases with the decrease of channel diameter. Splitting flame appears at large inlet velocities. Besides, at low equivalence ratios, the downstream propagating flames grow into small flame balls and can survive until the channel exit. Numerical results demonstrate that for a smaller channel, although the total heat loss rate is reduced, its heat loss ratio is increased, which leads to a lower wall temperature level and the flame is quenched out near the wall. The combustion efficiency is decreased significantly for the 4-mm channel due to fuel leakage from the near-wall “dead space”.

  4. One-step flame synthesis of an active Pt/TiO2 catalyst for SO2 oxidation

    DEFF Research Database (Denmark)

    Johannessen, Tue; Koutsopoulos, Sotiris

    2002-01-01

    Flame synthesis as a route for production of composite metal oxides has been employed for the one-step synthesis of a supported noble metal catalyst, i.e. a Pt/TiO2 catalyst, by simultaneous combustion of Ti-isopropoxide and platinum acetylacetonate in a quench-cooled flame reactor. The average...... size of the platinum particles supported on aggregated nano-particles of TiO2 is approximately 2 nm. The high SO2-oxidation activity of the catalyst proves that platinum is not hidden in the titania matrix. The flame-produced catalyst showed catalytic activity similar to samples prepared by wet...

  5. Turbulent flame acceleration and detonation quenching and reinitiation - modelling and validation

    International Nuclear Information System (INIS)

    Fischer, M.; Kratzel, T.; Pantow, E.

    1997-01-01

    For both, the reactor safety in an accidental release of hydrogen into containment compartments and also for the industrial safety of the production, storage and transport of combustibles like hydrogen, propane, methane and others in the Petroleum, Petrochemical and Pharmaceutical Industries, it is of great interest to know how the pressure forces of fast hydrogen combustion processes can be reduced. The numerical study of highly turbulent or detonation driven flame propagation processes is relatively recent because it depends on the availability of high performance computers and specialized numerical algorithms to solve the governing equations of reactive fluid dynamic processes. Numerical simulation can be used at a number of levels to study turbulent combustion and detonations. What is needed is both, to use modelling and numerical simulation to investigate fundamental interactions, and using modelling and numerical simulation as a tool to predict turbulent flame accelerating processes and decoupling or re-initiation of detonation waves in complex geometries of technical applications. Today, modelling and simulation show good agreement with a variety of fast combustion phenomena observed in experiments. Results of reactive computational fluid dynamics codes deliver inputs to reduce experimental parameters and provide the basis for an innovative design of arresters for deflagration and detonation processes. (author)

  6. The CO/NOx emissions of swirled, strongly pulsed jet diffusion flames

    KAUST Repository

    Liao, Ying-Hao

    2014-05-28

    The CO and NOx exhaust emissions of swirled, strongly pulsed, turbulent jet diffusion flames were studied experimentally in a coflow swirl combustor. Measurements of emissions were performed on the combustor centerline using standard emission analyzers combined with an aspirated sampling probe located downstream of the visible flame tip. The highest levels of CO emissions are generally found for compact, isolated flame puffs, which is consistent with the quenching due to rapid dilution with excess air. The imposition of swirl generally results in a decrease in CO levels by up to a factor of 2.5, suggesting more rapid and compete fuel/air mixing by imposing swirl in the coflow stream. The levels of NO emissions for most cases are generally below the steady-flame value. The NO levels become comparable to the steady-flame value for sufficiently short jet-off times. The swirled coflow air can, in some cases, increase the NO emissions due to a longer combustion residence time due to the flow recirculation within the swirl-induced recirculation zone. Scaling relations, when taking into account the impact of air dilution over an injection cycle on the flame length, reveal a strong correlation between the CO emissions and the global residence time. However, the NO emissions do not successfully correlate with the global residence time. For some specific cases, a compact flame with a simultaneous decrease in both CO and NO emissions compared to the steady flames was observed. © Copyright © Taylor & Francis Group, LLC.

  7. An improved multiple flame photometric detector for gas chromatography.

    Science.gov (United States)

    Clark, Adrian G; Thurbide, Kevin B

    2015-11-20

    An improved multiple flame photometric detector (mFPD) is introduced, based upon interconnecting fluidic channels within a planar stainless steel (SS) plate. Relative to the previous quartz tube mFPD prototype, the SS mFPD provides a 50% reduction in background emission levels, an orthogonal analytical flame, and easier more sensitive operation. As a result, sulfur response in the SS mFPD spans 4 orders of magnitude, yields a minimum detectable limit near 9×10(-12)gS/s, and has a selectivity approaching 10(4) over carbon. The device also exhibits exceptionally large resistance to hydrocarbon response quenching. Additionally, the SS mFPD uniquely allows analyte emission monitoring in the multiple worker flames for the first time. The findings suggest that this mode can potentially further improve upon the analytical flame response of sulfur (both linear HSO, and quadratic S2) and also phosphorus. Of note, the latter is nearly 20-fold stronger in S/N in the collective worker flames response and provides 6 orders of linearity with a detection limit of about 2.0×10(-13)gP/s. Overall, the results indicate that this new SS design notably improves the analytical performance of the mFPD and can provide a versatile and beneficial monitoring tool for gas chromatography. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Mixture preparation by cool flames for diesel-reforming technologies

    Science.gov (United States)

    Hartmann, L.; Lucka, K.; Köhne, H.

    The separation of the evaporation from the high-temperature reaction zone is crucial for the reforming process. Unfavorable mixtures of liquid fuels, water and air lead to degradation by local hot spots in the sensitive catalysts and formation of unwanted by-products in the reformer. Furthermore, the evaporator has to work with dynamic changes in the heat transfer, residence times and educt compositions. By using exothermal pre-reactions in the form of cool flames it is possible to realize a complete and residue-free evaporation of liquid hydrocarbon mixtures. The conditions whether cool flames can be stabilised or not is related to the heat release of the pre-reactions in comparison to the heat losses of the system. Examinations were conducted in a flow reactor at atmospheric pressure and changing residence times to investigate the conditions under which stable cool flame operation is possible and auto-ignition or quenching occurs. An energy balance of the evaporator should deliver the values of heat release by cool flames in comparison to the heat losses of the system. The cool flame evaporation is applied in the design of several diesel-reforming processes (thermal and catalytic partial oxidation, autothermal reforming) with different demands in the heat management and operation range (air ratio λ, steam-to-carbon ratio, SCR). The results are discussed at the end of this paper.

  9. Visualization of the heat release zone of highly turbulent premixed jet flames

    Science.gov (United States)

    Lv, Liang; Tan, Jianguo; Zhu, Jiajian

    2017-10-01

    Visualization of the heat release zone (HRZ) of highly turbulent flames is significantly important to understand the interaction between turbulence and chemical reactions, which is the foundation to design and optimize engines. Simultaneous measurements of OH and CH2O using planar laser-induced fluorescence (PLIF) were performed to characterize the HRZ. A well-designed piloted premixed jet burner was employed to generate four turbulent premixed CH4/air jet flames, with different jet Reynolds numbers (Rejet) ranging from 4900 to 39200. The HRZ was visualized by both the gradient of OH and the pixel-by-pixel product of OH and CH2O. It is shown that turbulence has an increasing effect on the spatial structure of the flame front with an increasing height above the jet exit for the premixed jet flames, which results in the broadening of the HRZ and the increase of the wrinkling. The HRZ remains thin as the Rejet increases, whereas the preheat zone is significantly broadened and thickened. This indicates that the smallest turbulent eddies can only be able to enter the flame front rather than the HRZ in the present flame conditions. The flame quenching is observed with Rejet = 39200, which may be due to the strong entrainment of the cold air from outside of the burned gas region.

  10. A NEW DOUBLE-SLIT CURVED WALL-JET (CWJ) BURNER FOR STABILIZING TURBULENT PREMIXED AND NON-PREMIXED FLAMES

    KAUST Repository

    Mansour, Morkous S.; Chung, Suk-Ho

    2015-01-01

    Mixing characteristics in the cold flow of non-premixed cases were first examined using acetone fluorescence technique, indicating substantial transport between the fuel and air by exhibiting appreciable premixing conditions.PIV measurements revealed that velocity gradients in the shear layers at the boundaries of the annularjets generate the turbulence, enhanced with the collisions in the interaction jet, IJ,region. Turbulent mean and rms velocities were influenced significantly by Re and high rms turbulent velocities are generated within the recirculation zone improving the flame stabilization in this burner.Premixed and non-premixed flames with high equivalence ratio were found to be more resistant to local extinction and exhibited a more corrugated and folded nature, particularly at high Re. For flames with low equivalence ratio, the processes of local quenching at IJ region and of re-ignition within merged jet region maintained these flames further downstream particularly for non-premixed methane flame, revealing a strong intermittency.

  11. Flames in vortices & tulip-flame inversion

    Science.gov (United States)

    Dold, J. W.

    This article summarises two areas of research regarding the propagation of flames in flows which involve significant fluid-dynamical motion [1]-[3]. The major difference between the two is that in the first study the fluid motion is present before the arrival of any flame and remains unaffected by the flame [1, 2] while, in the second study it is the flame that is responsible for all of the fluid dynamical effects [3]. It is currently very difficult to study flame-motion in which the medium is both highly disturbed before the arrival of a flame and is further influenced by the passage of the flame.

  12. Modelling of QUENCH-03 and QUENCH-06 Experiments Using RELAP/SCDAPSIM and ASTEC Codes

    Directory of Open Access Journals (Sweden)

    Tadas Kaliatka

    2014-01-01

    Full Text Available To prevent total meltdown of the uncovered and overheated core, the reflooding with water is a necessary accident management measure. Because these actions lead to the generation of hydrogen, which can cause further problems, the related phenomena are investigated performing experiments and computer simulations. In this paper, for the experiments of loss of coolant accidents, performed in Forschungszentrum Karlsruhe, QUENCH-03 and QUENCH-06 are modelled using RELAP5/SCDAPSIM and ASTEC codes. The performed benchmark allowed analysing different modelling features. The recommendations for the model development are presented.

  13. Experimental characterization of methane inverse diffusion flame

    KAUST Repository

    Elbaz, Ayman M.

    2014-06-26

    This article presents 10-kHz images of OH-PLIF simultaneously with 2-D PIV measurements in an inverse methane diffusion flame. Under a constant fuel flow rate, the central air jet Re was varied, leading to air to fuel velocity ratio, Vr, to vary from 8.3 to 66.5. Starting from Vr = 20.7, the flame is commonly characterized by three distinct zones. The length of the lower fuel entrainment region is inversely proportional to Vr. The flames investigated resemble a string shear layer confining this zone, and converging into the second distinct region, the flame neck zone. The third region is the rest of the flame, which spreads in a jet-like manner. The inverse diffusion flames exhibit varying degrees of partial premixing, depending upon on the velocity ratio Vr, and this region of partial premixing evolves into a well-mixed reaction zone along the flame centerline. The OH distribution correlated with the changes in the mean characteristics of the flow through reduction in the local Reynolds number due to heat release. The existence of a flame suppresses or laminarizes the turbulence at early axial locations and promotes fluctuations at the flame tip for flames with Vr < 49.8. In addition, the flame jet width can be correlated to the OH distribution. In upstream regions of the flames, the breaks in OH are counterbalanced by flame closures and are governed by edge flame propagation. These local extinctions were found to occur at locations where large flow structures were impinging on the flame and are associated with a locally higher strain rate or correlated to the local high strain rates at the flame hole edges without this flow impinging. Another contributor to re-ignition was found to be growing flame kernels. As the flames approach global blow-off, these kernels become the main mechanism for re-ignition further downstream of the flames. At low Vr, laminarization within the early regions of the flame provides an effective shield, preventing the jet flow from

  14. Hydrogen-enriched non-premixed jet flames : analysis of the flame surface, flame normal, flame index and Wobbe index

    NARCIS (Netherlands)

    Ranga Dinesh, K.K.J.; Jiang, X.; Oijen, van J.A.

    2014-01-01

    A non-premixed impinging jet flame is studied using three-dimensional direct numerical simulation with detailed chemical kinetics in order to investigate the influence of fuel variability on flame surface, flame normal, flame index and Wobbe index for hydrogen-enriched combustion. Analyses indicate

  15. Turbulent structure and emissions of strongly-pulsed jet diffusion flames

    Science.gov (United States)

    Fregeau, Mathieu

    -pulsed flames was not strongly impacted by buoyancy. This lack of sensitivity to buoyancy was consistent with offsetting changes in flame puff celerity and time to burnout for the microgravity versus normal-gravity cases. The emissions of CO and NO were examined in the vicinity of the visible flame tip and at the combustor exit for strongly-pulsed flames. The highest exhaust-point emission indices of CO for compact, isolated puffs were as much as a factor of six higher than those of elongated flames with longer injection times. The amount of CO decreased substantially with a decreased amount of flame puff interaction. The higher CO levels for pulsed flames with the shortest injection times were consistent with quenching due to the very rapid mixing and dilution with excess air for the most compact flame puffs. The injection time for which steady-flame emission levels were attained was comparable to the injection time for which the visible flame length approached the flame length of steady flames. The CO emissions, for a given fuelling rate, were strongly dependent on both the injection time and jet-off time for a jet-on fraction less than approximately 50%. The NO levels were generally proportional to the fuelling rate. This work indicates that there are specific combinations of injection time and jet-off time that considerably change the fuel/air mixing, resulting in emissions comparable to those of the steady flame while the flame length is significantly shorter. This points the potential utility of the strongly-pulsed injection technique in the development of compact, low emissions combustors involving turbulent diffusion flames. (Abstract shortened by UMI.)

  16. On the role of radiation and dimensionality in predicting flow opposed flame spread over thin fuels

    Science.gov (United States)

    Kumar, Chenthil; Kumar, Amit

    2012-06-01

    In this work a flame-spread model is formulated in three dimensions to simulate opposed flow flame spread over thin solid fuels. The flame-spread model is coupled to a three-dimensional gas radiation model. The experiments [1] on downward spread and zero gravity quiescent spread over finite width thin fuel are simulated by flame-spread models in both two and three dimensions to assess the role of radiation and effect of dimensionality on the prediction of the flame-spread phenomena. It is observed that while radiation plays only a minor role in normal gravity downward spread, in zero gravity quiescent spread surface radiation loss holds the key to correct prediction of low oxygen flame spread rate and quenching limit. The present three-dimensional simulations show that even in zero gravity gas radiation affects flame spread rate only moderately (as much as 20% at 100% oxygen) as the heat feedback effect exceeds the radiation loss effect only moderately. However, the two-dimensional model with the gas radiation model badly over-predicts the zero gravity flame spread rate due to under estimation of gas radiation loss to the ambient surrounding. The two-dimensional model was also found to be inadequate for predicting the zero gravity flame attributes, like the flame length and the flame width, correctly. The need for a three-dimensional model was found to be indispensable for consistently describing the zero gravity flame-spread experiments [1] (including flame spread rate and flame size) especially at high oxygen levels (>30%). On the other hand it was observed that for the normal gravity downward flame spread for oxygen levels up to 60%, the two-dimensional model was sufficient to predict flame spread rate and flame size reasonably well. Gas radiation is seen to increase the three-dimensional effect especially at elevated oxygen levels (>30% for zero gravity and >60% for normal gravity flames).

  17. Experimental and numerical study of the accuracy of flame-speed measurements for methane/air combustion in a slot burner

    Energy Technology Data Exchange (ETDEWEB)

    Selle, L.; Ferret, B. [Universite de Toulouse, INPT, UPS, IMFT, Institut de Mecanique des Fluides de Toulouse (France); CNRS, IMFT, Toulouse (France); Poinsot, T. [Universite de Toulouse, INPT, UPS, IMFT, Institut de Mecanique des Fluides de Toulouse (France); CNRS, IMFT, Toulouse (France); CERFACS, Toulouse (France)

    2011-01-15

    Measuring the velocities of premixed laminar flames with precision remains a controversial issue in the combustion community. This paper studies the accuracy of such measurements in two-dimensional slot burners and shows that while methane/air flame speeds can be measured with reasonable accuracy, the method may lack precision for other mixtures such as hydrogen/air. Curvature at the flame tip, strain on the flame sides and local quenching at the flame base can modify local flame speeds and require corrections which are studied using two-dimensional DNS. Numerical simulations also provide stretch, displacement and consumption flame speeds along the flame front. For methane/air flames, DNS show that the local stretch remains small so that the local consumption speed is very close to the unstretched premixed flame speed. The only correction needed to correctly predict flame speeds in this case is due to the finite aspect ratio of the slot used to inject the premixed gases which induces a flow acceleration in the measurement region (this correction can be evaluated from velocity measurement in the slot section or from an analytical solution). The method is applied to methane/air flames with and without water addition and results are compared to experimental data found in the literature. The paper then discusses the limitations of the slot-burner method to measure flame speeds for other mixtures and shows that it is not well adapted to mixtures with a Lewis number far from unity, such as hydrogen/air flames. (author)

  18. Quench Tests of LHC Magnets with Beam: Studies on Beam Loss development and determination of Quench levels

    CERN Document Server

    Priebe, A; Sapinski, M

    The application of superconducting materials in the field of high energy accelerator physics not only opens the doors to the generation of the magnetic fields unattainable to normal conductors but also demands facing new challenges. A transition fromthe superconducting state, which is characterized by a resistance-free flow of the electric current, to the normal conducting state is called quenching. This process might be extremely dangerous and even lead to destruction of amagnet superconducting coil if no protecting actions are taken. Therefore, the knowledge of a magnet quench level, i.e. amount of energy which causes the transition to the resistive state, is crucial for the safety and operational efficiency of the accelerator. Regarding that, specific thresholds are incorporated to dedicated quench prevention systems in order to suppress the origin of detected energy perturbation, for example beam losses, or mitigate the consequences of the quenching process by dissipating the energy stored in the magnetic...

  19. Edge flame instability in low-strain-rate counterflow diffusion flames

    Energy Technology Data Exchange (ETDEWEB)

    Park, June Sung; Hwang, Dong Jin; Park, Jeong; Kim, Jeong Soo; Kim, Sungcho [School of Mechanical and Aerospace Engineering, Sunchon National University, 315 Maegok-dong, Suncheon, Jeonnam 540-742 (Korea, Republic of); Keel, Sang In [Environment & amp; Energy Research Division, Korea Institute of Machinery and Materials, P.O. Box 101, Yusung-gu, Taejon 305-343 (Korea, Republic of); Kim, Tae Kwon [School of Mechanical & amp; Automotive Engineering, Keimyung University, 1000 Sindang-dong, Dalseo-gu, Daegu 704-701 (Korea, Republic of); Noh, Dong Soon [Energy System Research Department, Korea Institute of Energy Research, 71-2 Jang-dong, Yusung-gu, Taejon 305-343 (Korea, Republic of)

    2006-09-15

    Experiments in low-strain-rate methane-air counterflow diffusion flames diluted with nitrogen have been conducted to study flame extinction behavior and edge flame oscillation in which flame length is less than the burner diameter and thus lateral conductive heat loss, in addition to radiative loss, could be high at low global strain rates. The critical mole fraction at flame extinction is examined in terms of velocity ratio and global strain rate. Onset conditions of the edge flame oscillation and the relevant modes are also provided with global strain rate and nitrogen mole fraction in the fuel stream or in terms of fuel Lewis number. It is observed that flame length is intimately relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation considerably. Lateral heat loss causes flame oscillation even at fuel Lewis number less than unity. Edge flame oscillations, which result from the advancing and retreating edge flame motion of the outer flame edge of low-strain-rate flames, are categorized into three modes: a growing, a decaying, and a harmonic-oscillation mode. A flame stability map based on the flame oscillation modes is also provided for low-strain-rate flames. The important contribution of lateral heat loss even to edge flame oscillation is clarified finally. (author)

  20. On the Flame Height Definition for Upward Flame Spread

    OpenAIRE

    Consalvi, Jean L; Pizzo, Yannick; Porterie, Bernard; Torero, Jose L

    2007-01-01

    Flame height is defined by the experimentalists as the average position of the luminous flame and, consequently is not directly linked with a quantitative value of a physical parameter. To determine flame heights from both numerical and theoretical results, a more quantifiable criterion is needed to define flame heights and must be in agreement with the experiments to allow comparisons. For wall flames, steady wall flame experiments revealed that flame height may be define...

  1. A state of the art report on flame acceleration and transition to detonation in hydrogen/air/diluent mixtures

    International Nuclear Information System (INIS)

    Chan, C.K.; Tennankore, K.N.

    1991-12-01

    Accidental ignition in pockets of flammable hydrogen/air/diluent mixtures will lead to a deflagration wave (slow flame). Particular conditions can accelerate this flame and cause a transition from deflagration to a detonation wave (rapid flame), with its associated spatially non-uniform and very high pressures. In this report, the differences between deflagration and detonation are outlined, and the various flame acceleration mechanisms, along with the related research results, are reviewed. The current understanding of transition to detonation as a two-step process, a local explosion followed by an amplification of the resulting blast wave into a detonation wave, is described in detail. Occurrence of a local explosion in hot spots generated by the focussing of shock waves existing ahead of a fast flame, or in high-reactivity centres generated by turbulence-induced rapid mixing of flame and unburnt gas, and the resulting local quenching of the flame, are described and relevant publications are cited. The current models for flame acceleration are listed and their limitations are identified. Also, the available qualitative criteria for assessing the likelihood of transition to detonation under given conditions are briefly discussed. The feasibility of developing a quantitative methodology for assessing this likelihood is discussed, and further more work required to complete this development is outlined. The development of a quantitative methodology is recommended

  2. Novel water-air circulation quenching process for AISI 4140 steel

    Science.gov (United States)

    Zheng, Liyun; Zheng, Dawei; Zhao, Lixin; Wang, Lihui; Zhang, Kai

    2013-11-01

    AISI 4140 steel is usually used after quenching and tempering. During the heat treatment process in industry production, there are some problems, such as quenching cracks, related to water-cooling and low hardness due to oil quenching. A water-air circulation quenching process can solve the problems of quenching cracks with water and the high cost quenching with oil, which is flammable, unsafe and not enough to obtain the required hardness. The control of the water-cooling and air-cooling time is a key factor in the process. This paper focuses on the quenching temperature, water-air cycle time and cycle index to prevent cracking for AISI 4140 steel. The optimum heat treatment parameters to achieve a good match of the strength and toughness of AISI 4140 steel were obtained by repeated adjustment of the water-air circulation quenching process parameters. The tensile strength, Charpy impact energy at -10 °C and hardness of the heat treated AISI 4140 steel after quenching and tempering were approximately 1098 MPa, 67.5 J and 316 HB, respectively.

  3. Stratified turbulent Bunsen flames : flame surface analysis and flame surface density modelling

    NARCIS (Netherlands)

    Ramaekers, W.J.S.; Oijen, van J.A.; Goey, de L.P.H.

    2012-01-01

    In this paper it is investigated whether the Flame Surface Density (FSD) model, developed for turbulent premixed combustion, is also applicable to stratified flames. Direct Numerical Simulations (DNS) of turbulent stratified Bunsen flames have been carried out, using the Flamelet Generated Manifold

  4. Stratified turbulent Bunsen flames: flame surface analysis and flame surface density modelling

    Science.gov (United States)

    Ramaekers, W. J. S.; van Oijen, J. A.; de Goey, L. P. H.

    2012-12-01

    In this paper it is investigated whether the Flame Surface Density (FSD) model, developed for turbulent premixed combustion, is also applicable to stratified flames. Direct Numerical Simulations (DNS) of turbulent stratified Bunsen flames have been carried out, using the Flamelet Generated Manifold (FGM) reduction method for reaction kinetics. Before examining the suitability of the FSD model, flame surfaces are characterized in terms of thickness, curvature and stratification. All flames are in the Thin Reaction Zones regime, and the maximum equivalence ratio range covers 0.1⩽φ⩽1.3. For all flames, local flame thicknesses correspond very well to those observed in stretchless, steady premixed flamelets. Extracted curvature radii and mixing length scales are significantly larger than the flame thickness, implying that the stratified flames all burn in a premixed mode. The remaining challenge is accounting for the large variation in (subfilter) mass burning rate. In this contribution, the FSD model is proven to be applicable for Large Eddy Simulations (LES) of stratified flames for the equivalence ratio range 0.1⩽φ⩽1.3. Subfilter mass burning rate variations are taken into account by a subfilter Probability Density Function (PDF) for the mixture fraction, on which the mass burning rate directly depends. A priori analysis point out that for small stratifications (0.4⩽φ⩽1.0), the replacement of the subfilter PDF (obtained from DNS data) by the corresponding Dirac function is appropriate. Integration of the Dirac function with the mass burning rate m=m(φ), can then adequately model the filtered mass burning rate obtained from filtered DNS data. For a larger stratification (0.1⩽φ⩽1.3), and filter widths up to ten flame thicknesses, a β-function for the subfilter PDF yields substantially better predictions than a Dirac function. Finally, inclusion of a simple algebraic model for the FSD resulted only in small additional deviations from DNS data

  5. Role of the outer-edge flame on flame extinction in nitrogen-diluted non-premixed counterflow flames with finite burner diameters

    KAUST Repository

    Chung, Yong Ho

    2013-03-01

    This study of nitrogen-diluted non-premixed counterflow flames with finite burner diameters investigates the important role of the outer-edge flame on flame extinction through experimental and numerical analyses. It explores flame stability diagrams mapping the flame extinction response of nitrogen-diluted non-premixed counterflow flames to varying global strain rates in terms of burner diameter, burner gap, and velocity ratio. A critical nitrogen mole fraction exists beyond which the flame cannot be sustained; the critical nitrogen mole fraction versus global strain rate curves have C-shapes for various burner diameters, burner gaps, and velocity ratios. At sufficiently high strain-rate flames, these curves collapse into one curve; therefore, the flames follow the one-dimensional flame response of a typical diffusion flame. Low strain-rate flames are significantly affected by radial conductive heat loss, and therefore flame length. Three flame extinction modes are identified: flame extinction through shrinkage of the outer-edge flame with or without oscillations at the outer-edge flame prior to the extinction, and flame extinction through a flame hole at the flame center. The extinction modes are significantly affected by the behavior of the outer-edge flame. Detailed explanations are provided based on the measured flame-surface temperature and numerical evaluation of the fractional contribution of each term in the energy equation. Radial conductive heat loss at the flame edge to ambience is the main mechanism of extinction through shrinkage of the outer-edge flame in low strain-rate flames. Reduction of the burner diameter can extend the flame extinction mode by shrinking the outer-edge flame in higher strain-rate flames. © 2012 Elsevier Ltd. All rights reserved.

  6. Characterizing Water Quenching Systems with a Quench Probe

    Science.gov (United States)

    Ferguson, B. Lynn; Li, Zhichao; Freborg, Andrew M.

    2014-12-01

    Quench probes have been used effectively to characterize the quality of quenchants for many years. For this purpose, a variety of commercial probes, as well as the necessary data acquisition system for determining the time-temperature data for a set of standardized test conditions, are available for purchase. The type of information obtained from such probes provides a good basis for comparing media, characterizing general cooling capabilities, and checking media condition over time. However, these data do not adequately characterize the actual production quenching process in terms of heat transfer behavior in many cases, especially when high temperature gradients are present. Faced with the need to characterize water quenching practices, including conventional and intensive practices, a quench probe was developed. This paper describes that probe, the data collection system, the data gathered for both intensive quenching and conventional water quenching, and the heat transfer coefficients determined for these processes. Process sensitivities are investigated and highlight some intricacies of quenching.

  7. Flame structure of methane inverse diffusion flame

    KAUST Repository

    Elbaz, Ayman M.

    2014-07-01

    This paper presents high speed images of OH-PLIF at 10. kHz simultaneously with 2D PIV (particle image velocimetry) measurements collected along the entire length of an inverse diffusion flame with circumferentially arranged methane fuel jets. For a fixed fuel flow rate, the central air jet Re was varied, leading to four air to fuel velocity ratios, namely Vr = 20.7, 29, 37.4 and 49.8. A double flame structure could be observed composed of a lower fuel entrainment region and an upper mixing and intense combustion region. The entrainment region was enveloped by an early OH layer, and then merged through a very thin OH neck to an annular OH layer located at the shear layer of the air jet. The two branches of this annular OH layer broaden as they moved downstream and eventfully merged together. Three types of events were observed common to all flames: breaks, closures and growing kernels. In upstream regions of the flames, the breaks were counterbalanced by flame closures. These breaks in OH signal were found to occur at locations where locally high velocity flows were impinging on the flame. As the Vr increased to 37.4, the OH layers became discontinuous over the downstream region of the flame, and these regions of low or no OH moved upstream. With further increases in Vr, these OH pockets act as flame kernels, growing as they moved downstream, and became the main mechanism for flame re-ignition. Along the flame length, the direction of the two dimensional principle compressive strain rate axis exhibited a preferred orientation of approximately 45° with respect to the flow direction. Moreover, the OH zones were associated with elongated regions of high vorticity. © 2013 Elsevier Inc.

  8. Self Induced Buoyant Blow Off in Upward Flame Spread on Thin Solid Fuels

    Science.gov (United States)

    Johnston, Michael C.; T'ien, James S.; Muff, Derek E.; Olson, Sandra L.; Ferkul, Paul V.

    2013-01-01

    ) is as follows: The observed one-sided extinction is a blow- off induced by buoyant entrainment. It is known that the flammable diffusion flame regime is bounded by quenching and blow ]off limits when varying incoming air velocity. The narrowest samples tested (between 2 and 5 cm) begin within the flammable range, but as the flame grows, the buoyancy driven air velocity increases at the neighborhood of the flame base. The initially stable flame crosses the extinguishment boundary resulting in a flame blow-off. When one-side of the flame extinguishes, the remaining side shrinks due to the reduced heat transfer to the solid. This reduces the induced velocity and the flame becomes stable. It is proposed that this may have implications to upward flame growth beyond this experiment.

  9. Scale and material effects on flame characteristics in small heat recirculation combustors of a counter-current channel type

    International Nuclear Information System (INIS)

    Lee, Min Jung; Cho, Sang Moon; Choi, Byung Il; Kim, Nam Il

    2010-01-01

    Small energy sources have been interested with the recent development of small-scale mechanical systems. With the purpose of developing a basic model of micro-combustors of heat recirculation, small combustors of a counter-current channel type were fabricated, and the premixed flame stabilization characteristics were investigated experimentally. Each combustor consists of a combustion space and a pair of counter-current channels for heat recirculation. The channel gap was less than the ordinary quenching distance of a stoichiometric methane-air premixed flame. Depending on the flame locations and structures, flame stabilization was classified into four modes: an ordinary mode, a channel mode, a radiation mode, and a well-stirred reaction mode. Base-scale combustors of stainless steel were initially examined. Additional half-scale combustors of stainless steel and quartz were fabricated and their flame stabilization conditions were compared. Consequently, a change of the material of the combustor significantly affected the flame stabilization compared to the effects of a scale-down design. A half-scale quartz combustor had a wide range of flame stabilization conditions. Surface temperatures and the composition of the emission gas were measured. At a higher flow rate, the combustor temperature increases and the light emission from the middle wall is enhanced to extend the flame stabilization conditions. The combustion efficiency and the composition of emitted gas were feasible. These results provide useful information for the design of small-scale combustors.

  10. Flame acceleration of hydrogen - air - diluent mixtures at middle scale using ENACCEF: experiments and modelling

    International Nuclear Information System (INIS)

    Fabrice Malet; Nathalie Lamoureux; Nabiha Djebaili-Chaumeix; Claude-Etienne Paillard; Pierre Pailhories; Jean-Pierre L'heriteau; Bernard Chaumont; Ahmed Bentaib

    2005-01-01

    Full text of publication follows: In the case of hypothetic severe accident on light water nuclear reactor, hydrogen would be produced during reactor core degradation and released to the reactor building which could subsequently raise a combustion hazard. A local ignition of the combustible mixture would give birth initially to a slow flame which can be accelerated due to turbulence. Depending on the geometry and the premixed combustible mixture composition, the flame can accelerate and for some conditions transit to detonation or be quenched after a certain distance. The flame acceleration is responsible for the generation of high pressure loads that could damage the reactor's building. Moreover, geometrical configuration is a major factor leading to flame acceleration. Thus, recording experimental data notably on mid-size installations is required for the numeric simulations validation before modelling realistic scales. The ENACCEF vertical facility is a 6 meters high acceleration tube aimed at representing steam generator room leading to containment dome. This setup can be equipped with obstacles of different blockage ratios and shapes in order to obtain an acceleration of the flame. Depending on the geometrical characteristics of these obstacles, different regimes of the flame propagation can be achieved. The mixture composition's influence on flame velocity and acceleration has been investigated. Using a steam physical-like diluent (40% He - 60% CO 2 ), influence of dilution on flame speed and acceleration has been investigated. The flame front has also been recorded with ultra fast ombroscopy visualization, both in the tube and in dome's the entering. The flame propagation is computed using the TONUS code. Based on Euler's equation solving code using structured finite volumes, it includes the CREBCOM flames modelling and simulates the hydrogen/air turbulent flame propagation, taking into account 3D complex geometry and reactants concentration gradients. Since

  11. Quench origins

    International Nuclear Information System (INIS)

    Devred, A.

    1990-03-01

    Quenches can be divided into two categories; conductor-limited and energy-deposited quenches. A conductor-limited quench occurs when the current in the magnet exceeds the capacity of the superconductor; it is characterized by a strong correlation with temperature. An energy-deposited quench occurs when a disturbance releases enough energy to trigger a quench; the main disturbances during magnet energization are frictional movements of the conductor due to increasing Lorentz forces. The current level of the conductor-limited quenches defines the limit of the magnet performance, and can only be surpassed by lowering the operating temperature; the occurrence of a constant current at quench during the magnetic testing is called a plateau. Usually it takes a few energy-deposited quenches of increasing currents to reach the plateau; these first few steps are called the magnet's training. The goal in designing a magnet is to be able to energize it and to reliably operate it at the design current without training. This can be achieved by optimizing the magnet's operating margin, that is, by designing and building the magnet in such a way that the sizes of the mechanical disturbances needed to trigger a quench are much larger than the achievable mechanical tolerances. (N.K.) 112 refs

  12. Strained flamelets for turbulent premixed flames II: Laboratory flame results

    Energy Technology Data Exchange (ETDEWEB)

    Kolla, H.; Swaminathan, N. [Department of Engineering, Cambridge University, Cambridge CB2 1PZ (United Kingdom)

    2010-07-15

    The predictive ability of strained flamelets model for turbulent premixed flames is assessed using Reynolds Averaged Navier Stokes (RANS) calculations of laboratory flames covering a wide range of conditions. Reactant-to-product (RtP) opposed flow laminar flames parametrised using the scalar dissipation rate of reaction progress variable are used as strained flamelets. Two turbulent flames: a rod stabilised V-flame studied by Robin et al. [Combust. Flame 153 (2008) 288-315] and a set of pilot stabilised Bunsen flames studied by Chen et al. [Combust. Flame 107 (1996) 223-244] are calculated using a single set of model parameters. The V-flame corresponds to the corrugated flamelets regime. The strained flamelet model and an unstrained flamelet model yield similar predictions which are in good agreement with experimental measurements for this flame. On the other hand, for the Bunsen flames which are in the thin reaction zones regime, the unstrained flamelet model predicts a smaller flame brush compared to experiment. The predictions of the strained flamelets model allowing for fluid-dynamics stretch induced attenuation of the chemical reaction are in good agreement with the experimental data. This model predictions of major and minor species are also in good agreement with experimental data. The results demonstrate that the strained flamelets model using the scalar dissipation rate can be used across the combustion regimes. (author)

  13. Quantum quenches with integrable pre-quench dynamics

    OpenAIRE

    Delfino, Gesualdo

    2014-01-01

    We consider the unitary time evolution of a one-dimensional quantum system which is in a stationary state for negative times and then undergoes a sudden change (quench) of a parameter of its Hamiltonian at t=0. For systems possessing a continuum limit described by a massive quantum field theory we investigate in general perturbative quenches for the case in which the theory is integrable before the quench.

  14. Quantum quenches with integrable pre-quench dynamics

    International Nuclear Information System (INIS)

    Delfino, Gesualdo

    2014-01-01

    We consider the unitary time evolution of a one-dimensional quantum system which is in a stationary state for negative times and then undergoes a sudden change (quench) of a parameter of its Hamiltonian at t = 0. For systems possessing a continuum limit described by a massive quantum field theory we investigate in general perturbative quenches for the case in which the theory is integrable before the quench. (fast track communication)

  15. Post CHF heat transfer and quenching

    International Nuclear Information System (INIS)

    Nelson, R.A.; Condie, K.G.

    1980-01-01

    This paper describes quantitatively new mechanisms in the post-CHF regime which provide understanding and predictive capability for several current two-phase forced convective heat transfer problems. These mechanisms are important in predicting rod temperature turnaround and quenching during the reflood phase of either a hypothetical loss-of-coolant accident (LOCA) or the FLECHT and Semiscale experiments. The mechanisms are also important to the blowdown phase of a LOCA or the recent Loss-of-Fluid Test (LOFT) experiments L2-2 and L2-3, which were 200% cold leg break transients. These LOFT experiments experienced total core quenching in the early part of the blowdown phase at high (1000 psia) pressures. The mechanisms are also important to certain pressurized water reactor (PWR) operational transients where the reactor may operate in the post-CHF regime for short periods of time. Accurate prediction of the post-CHF heat transfer including core quench during these transients is of prime importance to limit maximum cladding temperatures and prevent cladding deformation

  16. Flame propagation enhancement by plasma excitation of oxygen. Part II: Effects of O{sub 2}(a{sup 1}{delta}{sub g})

    Energy Technology Data Exchange (ETDEWEB)

    Ombrello, Timothy; Won, Sang Hee; Ju, Yiguang [Department of Mechanical and Aerospace Engineering, Engineering Quadrangle, Olden Street, Princeton, NJ 08544 (United States); Williams, Skip [Air Force Research Laboratory, Propulsion Directorate, 1950 Fifth Street, Wright-Patterson AFB, OH 45433 (United States)

    2010-10-15

    The isolated effect of O{sub 2}(a{sup 1}{delta}{sub g}) on the propagation of C{sub 2}H{sub 4} lifted flames was studied at reduced pressures (3.61 kPa and 6.73 kPa). The O{sub 2}(a{sup 1}{delta}{sub g}) was produced in a microwave discharge plasma and was isolated from O and O{sub 3} by NO addition to the plasma afterglow in a flow residence time on the order of 1 s. The concentrations of O{sub 2}(a{sup 1}{delta}{sub g}) and O{sub 3} were measured quantitatively through absorption by sensitive off-axis integrated-cavity-output spectroscopy and one-pass line-of-sight absorption, respectively. Under these conditions, it was found that O{sub 2}(a{sup 1}{delta}{sub g}) enhanced the propagation speed of C{sub 2}H{sub 4} lifted flames. Comparison with the results of enhancement by O{sub 3} found in part I of this investigation provided an estimation of 2-3% of flame speed enhancement for 5500 ppm of O{sub 2}(a{sup 1}{delta}{sub g}) addition from the plasma. Numerical simulation results using the current kinetic model of O{sub 2}(a{sup 1}{delta}{sub g}) over-predicts the flame propagation enhancement found in the experiments. However, the inclusion of collisional quenching rate estimations of O{sub 2}(a{sup 1}{delta}{sub g}) by C{sub 2}H{sub 4} mitigated the over-prediction. The present isolated experimental results of the enhancement of a hydrocarbon fueled flame by O{sub 2}(a{sup 1}{delta}{sub g}), along with kinetic modeling results suggest that further studies of C{sub n}H{sub m} + O{sub 2}(a{sup 1}{delta}{sub g}) collisional and reactive quenching are required in order to correctly predict combustion enhancement by O{sub 2}(a{sup 1}{delta}{sub g}). The present experimental results will have a direct impact on the development of elementary reaction rates with O{sub 2}(a{sup 1}{delta}{sub g}) at flame conditions to establish detailed plasma-flame kinetic mechanisms. (author)

  17. Quench limits

    International Nuclear Information System (INIS)

    Sapinski, M.

    2012-01-01

    With thirteen beam induced quenches and numerous Machine Development tests, the current knowledge of LHC magnets quench limits still contains a lot of unknowns. Various approaches to determine the quench limits are reviewed and results of the tests are presented. Attempt to reconstruct a coherent picture emerging from these results is taken. The available methods of computation of the quench levels are presented together with dedicated particle shower simulations which are necessary to understand the tests. The future experiments, needed to reach better understanding of quench limits as well as limits for the machine operation are investigated. The possible strategies to set BLM (Beam Loss Monitor) thresholds are discussed. (author)

  18. One-dimensional flame instability and control of burning in fire-chamber

    Directory of Open Access Journals (Sweden)

    Victor E. Volkov

    2015-03-01

    Full Text Available The flame stability with regard to one-dimensional exponential perturbations both for the combustion in the fire-chamber and the flame propagating in closed tubes or chambers is investigated. It is proved that both stability and instability are possible for the combustion process. At the same time the one-dimensional flame instability is guaranteed near the front wall of the fire-chamber where the fuel supply is realized. Therefore the control of combustion in the fire-chamber leads to support of the flame at the maximum possible distance from the front wall of the fire-chamber to prevent the vibratory combustion or to diminish intensity of pulsations if these pulsations are inevitable.

  19. Development of low-smoke, flame-retarding cables

    International Nuclear Information System (INIS)

    Kato, H.; Kanemitsuya, K.; Furukawa, K.; Mio, K.

    1983-01-01

    A great deal of attention has been given to the potential fire hazard of combustion gases from organic materials. Although cable industries have developed flame-retarding organic materials for the insulation and jacketing of wires and cables, there was insufficient prevention of toxic gas formation during combustion. To cope with these problems associated with conventional PVC cables, the authors have directed to develop low-smoke, flame-retarding plasticized PVC formulations retaining the original mechanical, electrical and aging properties. A series of basic investigations on smoke suppression followed by an evaluation on practical cables could indicate some effective means to end these problems. This paper describes the results and discussion on smoke suppressing study of plasticized PVC as well as behavior and characteristics of the low-smoke, flame-retarding PVC wires and cables using these materials. (author)

  20. A NEW DOUBLE-SLIT CURVED WALL-JET (CWJ) BURNER FOR STABILIZING TURBULENT PREMIXED AND NON-PREMIXED FLAMES

    KAUST Repository

    Mansour, Morkous S.

    2015-06-30

    A novel double-slit curved wall-jet (CWJ) burner was proposed and employed, which utilizes the Coanda effect by supplying fuel and air as annular-inward jets over a curved surface. We investigated the stabilization characteristics and structure of methane/air, and propane/air turbulent premixed and non-premixed flames with varying global equivalence ratio, , and Reynolds number, Re. Simultaneous time-resolved measurements of particle image velocimetry and planar laser-induced fluorescence of OH radicals were conducted. The burner showed potential for stable operation for methane flames with relatively large fuel loading and overall rich conditions. These have a non-sooting nature. However, propane flames exhibit stable mode for a wider range of equivalence ratio and Re. Mixing characteristics in the cold flow of non-premixed cases were first examined using acetone fluorescence technique, indicating substantial transport between the fuel and air by exhibiting appreciable premixing conditions.PIV measurements revealed that velocity gradients in the shear layers at the boundaries of the annularjets generate the turbulence, enhanced with the collisions in the interaction jet, IJ,region. Turbulent mean and rms velocities were influenced significantly by Re and high rms turbulent velocities are generated within the recirculation zone improving the flame stabilization in this burner.Premixed and non-premixed flames with high equivalence ratio were found to be more resistant to local extinction and exhibited a more corrugated and folded nature, particularly at high Re. For flames with low equivalence ratio, the processes of local quenching at IJ region and of re-ignition within merged jet region maintained these flames further downstream particularly for non-premixed methane flame, revealing a strong intermittency.

  1. Quench origins

    International Nuclear Information System (INIS)

    Devred, A.

    1990-03-01

    In this paper, I shall discuss the quench origins. I shall first establish a method of classification and introduce the notions of conductor-limited and energy-deposited quenches. Next the paper will be devoted to the study of conductor-limited quenches, and I shall introduce the notions of plateau and of fraction of short sample. Also the paper will be devoted to the study of energy-deposited quenches, and I shall introduce the notions of training and of minimum energy deposit; I shall then review the possible causes of energy release. Lastly, I shall introduce the notion of operating margin, and I shall indicate how to optimize the operating margin in order to limit the risk of premature quenching. 112 refs., 14 figs

  2. Quench detection system of the EURATOM coil for the Large Coil Task

    International Nuclear Information System (INIS)

    Noether, G.; Gauss, S.; Maurer, W.; Siewerdt, L.; Ulbricht, A.; Wuechner, F.

    1989-01-01

    A special quench detection system has been developed for the EURATOM Large Coil Task (LCT) coil. The system is based on a bridge circuit which uses a special 'two in hand' winding technique for the pancakes of the EURATOM LCT coil. The electronic circuit was designed in a fail safe way to prevent failure of the quench detector due to failure of one of its components. A method for quick balancing of the quench detection system in a large toroidal magnet system was applied. The quench detection system worked very reliably during the experimental phase of the LCT and was within the quench detection level setting of 50 mV, i.e. the system was not sensitive to poloidal field transients at or below this level. Non-electrical methods for quench detection were also investigated. (author)

  3. Porous debris behavior modeling of QUENCH-02, QUENCH-03 and QUENCH-09 experiments

    International Nuclear Information System (INIS)

    Kisselev, A.E.; Kobelev, G.V.; Strizhov, V.F.; Vasiliev, A.D.

    2006-01-01

    The heat-up, melting, relocation, hydrogen generation phenomena, relevant for high-temperature stages both in a reactor case and small-scale integral tests like QUENCH, are governed in particular by heat and mass transfer in porous debris and molten pools which are formed in the core region. Porous debris formation and behavior in QUENCH experiments (QUENCH-02, QUENCH-03, QUENCH-09) plays a considerable role and its adequate modeling is important for thermal analysis. In particular, the analysis of QUENCH experiments shows that the major hydrogen release takes place in debris and melt regions formed in the upper part of the fuel assembly. The porous debris model was implemented in the Russian best estimate numerical code RATEG/SVECHA/HEFEST developed for modelling thermal hydraulics and severe accident phenomena in a reactor. The original approach for debris evolution is developed in the model from classical principles using a set of parameters including debris porosity; average particle diameter; temperatures and mass fractions of solid, liquid and gas phases; specific interface areas between different phases; effective thermal conductivity of each phase, including radiative heat conductivity; mass and energy fluxes through the interfaces. The debris model is based on the system of continuity, momentum and energy conservation equations, which consider the dynamics of volume-averaged velocities and temperatures of fluid, solid and gaseous phases of porous debris. The model is used for calculation of QUENCH experiments. The results obtained by the model are compared to experimental data concerning different aspects of thermal behavior: thermal hydraulics of porous debris, radiative heat transfer in a porous medium, the generalized melting and refreezing behavior of materials, hydrogen production. (author)

  4. Flame surface statistics of constant-pressure turbulent expanding premixed flames

    Science.gov (United States)

    Saha, Abhishek; Chaudhuri, Swetaprovo; Law, Chung K.

    2014-04-01

    In this paper we investigate the local flame surface statistics of constant-pressure turbulent expanding flames. First the statistics of local length ratio is experimentally determined from high-speed planar Mie scattering images of spherically expanding flames, with the length ratio on the measurement plane, at predefined equiangular sectors, defined as the ratio of the actual flame length to the length of a circular-arc of radius equal to the average radius of the flame. Assuming isotropic distribution of such flame segments we then convolute suitable forms of the length-ratio probability distribution functions (pdfs) to arrive at the corresponding area-ratio pdfs. It is found that both the length ratio and area ratio pdfs are near log-normally distributed and shows self-similar behavior with increasing radius. Near log-normality and rather intermittent behavior of the flame-length ratio suggests similarity with dissipation rate quantities which stimulates multifractal analysis.

  5. Passive quench arrest by a chimney induced deluge at every quench front

    International Nuclear Information System (INIS)

    Sydoriak, S.G.

    1984-01-01

    This chapter describes a magnet in which a growing quench stops itself spontaneously within a fraction of one winding turn because vapor in quench-heated channels generates a progressively increasing downflow of liquid in advance of each of the quench fronts. The downflow eventually becomes a deluge as the quench grows. The design of the multiple arrested quench magnet is discussed. It is shown how to construct a magnet so that if an arrested quench arises when it is at its highest operating current, peak nucleate boiling will exist in all quenching channels

  6. Fuel rod quenching with oxidation and precursory cooling

    International Nuclear Information System (INIS)

    Davidi, A.; Elias, E.; Olek, S.

    1999-01-01

    During a loss-of-coolant-accident in LWR fuel rods may be temporarily exposed thus reaching high temperature levels. The injection of cold water into the core, while providing the necessary cooling to prevent melting may also generate steam inducing exothermal oxidation of the cladding. A number of high temperature quenching experiments [I] have demonstrated that during the early phase of the quenching process, the rate of hydrogen generation increased markedly and the surface temperatures rose rapidly. These effects are believed to result from thermal stresses breaking up the oxide layer on the zircalloy cladding, thus exposing the inner surface to oxidizing atmosphere. Steam reacts exothermally with the metallic components of the newly formed surface causing temporarily local temperature escalation. The main objective of this study is to develop and assess a one-dimensional time-dependent rewetting model to address the problem of quenching of hot surfaces undergoing exothermic oxidation reactions. Addressing a time-dependent problem is an important aspect of the work since it is believed that the progression of a quench-front along a hot oxidizing surface is an unsteady process. Several studies dealing with time-dependent rewetting problems have been published, e.g. [2]-[5], but none considers oxidation reactions downstream of the quench-front. The main difficulty in solving time-dependent rewetting problems stems from the fact that either the quench-front velocity or the quench-front positions constitute a time-dependent eigenvalue of the problem. The model is applied to describe the interrelated processes of cooling and exothermic steam-metal reactions at the vapor zirconium-cladding interface during quenching of degraded fuel rods. A constant heat transfer coefficient is assumed upstream of the quenching front whereas the combined effect of oxidation and post dry-out cooling is described by prescribing a heat flux distribution of general form downstream. The

  7. Role of the outer-edge flame on flame extinction in nitrogen-diluted non-premixed counterflow flames with finite burner diameters

    KAUST Repository

    Chung, Yong Ho; Park, Daegeun; Park, Jeong; Kwon, Oh Boong; Yun, Jin Han; Keel, Sang In

    2013-01-01

    This study of nitrogen-diluted non-premixed counterflow flames with finite burner diameters investigates the important role of the outer-edge flame on flame extinction through experimental and numerical analyses. It explores flame stability diagrams

  8. Investigation of a flame holder geometry effect on flame structure in non-premixed combustion

    International Nuclear Information System (INIS)

    Hashemi, S. A.; Hajialigol, N.; Fattahi, A.; Heydari, R.; Mazaheri, K.

    2013-01-01

    In this paper the effect of flame holder geometry on flame structure is studied. The obtained numerical results using realizable k-ε and β-PDF models show a good agreement with experimental data. The results show that increasing in flame holder length decreases flame length and increases flame temperature. Additionally, it is observed that flame lengths decrease by increasing in flame holder radius and increase for larger radii. Furthermore in various radii, the flame temperature is higher for smaller flame lengths. It was found that behavior of flame structure is mainly affected by the mass flow rate of hot gases that come near the reactant by the recirculation zone.

  9. Investigation of a flame holder geometry effect on flame structure in non-premixed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hashemi, S. A.; Hajialigol, N.; Fattahi, A.; Heydari, R. [University of Kashan, Kashan (Iran, Islamic Republic of); Mazaheri, K. [University of Tarbiat Moddares, Tehran (Iran, Islamic Republic of)

    2013-11-15

    In this paper the effect of flame holder geometry on flame structure is studied. The obtained numerical results using realizable k-ε and β-PDF models show a good agreement with experimental data. The results show that increasing in flame holder length decreases flame length and increases flame temperature. Additionally, it is observed that flame lengths decrease by increasing in flame holder radius and increase for larger radii. Furthermore in various radii, the flame temperature is higher for smaller flame lengths. It was found that behavior of flame structure is mainly affected by the mass flow rate of hot gases that come near the reactant by the recirculation zone.

  10. Analysis of flame shapes in turbulent hydrogen jet flames with coaxial air

    International Nuclear Information System (INIS)

    Moon, Hee Jang

    2009-01-01

    This paper addresses the characteristics of flame shapes and flame length in three types of coaxial air flames realizable by varying coaxial air and/or fuel velocity. Forcing coaxial air into turbulent jet flames induces substantial changes in flame shapes and NOx emissions through the complex flow interferences that exist within the mixing region. Mixing enhancement driven by coaxial air results in flame volume decrease, and such a diminished flame volume finally reduces NOx emissions significantly by decreasing NOx formation zone where a fuel/air mixture burns. It is found that mixing in the vicinity of high temperature zone mainly results from the increase of diffusive flux than the convective flux, and that the increase of mass diffusion is amplified as coaxial air is increased. Besides, it is reaffirmed that nonequilibrium chemistry including HO 2 /H 2 O 2 should be taken into account for NOx prediction and scaling analysis by comparing turbulent combustion models. In addition, it is found that coaxial air can break down the self-similarity law of flames by changing mixing mechanism, and that EINOx scaling parameters based on the self-similarity law of simple jet flames may not be eligible in coaxial air flames

  11. Quench propagation in the superconducting 6 kA flexible busbars of the LHC

    International Nuclear Information System (INIS)

    Herzog, R.; Calvi, M.; Sonnemann, F.; Pelegrin-Carcelen, J.M.

    2002-01-01

    Flexible superconducting cables with currents up to 6 kA will be used to power magnets individually in the insertion regions of the LHC. In case of a quench, the currents in these circuits will decay very fast (with time constants of about 200 ms) such that relatively small copper cross sections are sufficient for these busbars. Quench propagation experiments on a prototype cable and corresponding simulations led to a detailed understanding of the quench behavior of these busbars and to recommendations for the design and application of the cable. Simulations of the quench process in a multi-strand conductor led to a detailed understanding of the way current crosses from superconducting to pure copper strands and how this affects the quench propagation velocity. At nominal current (6 kA), the quench propagation velocities are high (10 m/s) and the hot spot temperature increases rapidly. In this situation, timely quench detection and energy extraction (current reduction) are vital to prevent damage of circuit components

  12. Quench Propagation in the Superconducting 6 kA Flexible Busbars of the LHC

    CERN Document Server

    Calvi, M; Pelegrin-Carcelen, J M; Sonnemann, F

    2002-01-01

    Flexible superconducting cables with currents up to 6 kA will be used to power magnets individually in the insertion regions of the LHC. In case of a quench, the currents in these circuits will decay very fast (with time constants of about 200 ms) such that relatively small copper cross sections are sufficient for these busbars. Quench propagation experiments on a prototype cable and corresponding simulations led to a detailed understanding of the quench behavior of these busbars and to recommendations for the design and application of the cable. Simulations of the quench process in a multi-strand conductor led to a detailed understanding of the way current crosses from superconducting to pure copper strands and how this affects the quench propagation velocity. At nominal current (6 kA), the quench propagation velocities are high (10 m/s) and the hot spot temperature increases rapidly. In this situation, timely quench detection and energy extraction (current reduction) are vital to prevent damage of circuit c...

  13. Quench propagation in the superconducting 6 kA flexible busbars of the LHC

    Science.gov (United States)

    Herzog, R.; Calvi, M.; Sonnemann, F.; Pelegrin-Carcelen, J. M.

    2002-05-01

    Flexible superconducting cables with currents up to 6 kA will be used to power magnets individually in the insertion regions of the LHC. In case of a quench, the currents in these circuits will decay very fast (with time constants of about 200 ms) such that relatively small copper cross sections are sufficient for these busbars. Quench propagation experiments on a prototype cable and corresponding simulations led to a detailed understanding of the quench behavior of these busbars and to recommendations for the design and application of the cable. Simulations of the quench process in a multi-strand conductor led to a detailed understanding of the way current crosses from superconducting to pure copper strands and how this affects the quench propagation velocity. At nominal current (6 kA), the quench propagation velocities are high (10 m/s) and the hot spot temperature increases rapidly. In this situation, timely quench detection and energy extraction (current reduction) are vital to prevent damage of circuit components.

  14. A flame particle tracking analysis of turbulence–chemistry interaction in hydrogen–air premixed flames

    KAUST Repository

    Uranakara, Harshavardhana A.; Chaudhuri, Swetaprovo; Dave, Himanshu L.; Arias, Paul G.; Im, Hong G.

    2015-01-01

    Interactions of turbulence, molecular transport, and energy transport, coupled with chemistry play a crucial role in the evolution of flame surface geometry, propagation, annihilation, and local extinction/re-ignition characteristics of intensely turbulent premixed flames. This study seeks to understand how these interactions affect flame surface annihilation of lean hydrogen–air premixed turbulent flames. Direct numerical simulations (DNSs) are conducted at different parametric conditions with a detailed reaction mechanism and transport properties for hydrogen–air flames. Flame particle tracking (FPT) technique is used to follow specific flame surface segments. An analytical expression for the local displacement flame speed (Sd) of a temperature isosurface is considered, and the contributions of transport, chemistry, and kinematics on the displacement flame speed at different turbulence-flame interaction conditions are identified. In general, the displacement flame speed for the flame particles is found to increase with time for all conditions considered. This is because, eventually all flame surfaces and their resident flame particles approach annihilation by reactant island formation at the end of stretching and folding processes induced by turbulence. Statistics of principal curvature evolving in time, obtained using FPT, suggest that these islands are ellipsoidal on average enclosing fresh reactants. Further examinations show that the increase in Sd is caused by the increased negative curvature of the flame surface and eventual homogenization of temperature gradients as these reactant islands shrink due to flame propagation and turbulent mixing. Finally, the evolution of the normalized, averaged, displacement flame speed vs. stretch Karlovitz number are found to collapse on a narrow band, suggesting that a unified description of flame speed dependence on stretch rate may be possible in the Lagrangian description.

  15. A flame particle tracking analysis of turbulence–chemistry interaction in hydrogen–air premixed flames

    KAUST Repository

    Uranakara, Harshavardhana A.

    2015-11-21

    Interactions of turbulence, molecular transport, and energy transport, coupled with chemistry play a crucial role in the evolution of flame surface geometry, propagation, annihilation, and local extinction/re-ignition characteristics of intensely turbulent premixed flames. This study seeks to understand how these interactions affect flame surface annihilation of lean hydrogen–air premixed turbulent flames. Direct numerical simulations (DNSs) are conducted at different parametric conditions with a detailed reaction mechanism and transport properties for hydrogen–air flames. Flame particle tracking (FPT) technique is used to follow specific flame surface segments. An analytical expression for the local displacement flame speed (Sd) of a temperature isosurface is considered, and the contributions of transport, chemistry, and kinematics on the displacement flame speed at different turbulence-flame interaction conditions are identified. In general, the displacement flame speed for the flame particles is found to increase with time for all conditions considered. This is because, eventually all flame surfaces and their resident flame particles approach annihilation by reactant island formation at the end of stretching and folding processes induced by turbulence. Statistics of principal curvature evolving in time, obtained using FPT, suggest that these islands are ellipsoidal on average enclosing fresh reactants. Further examinations show that the increase in Sd is caused by the increased negative curvature of the flame surface and eventual homogenization of temperature gradients as these reactant islands shrink due to flame propagation and turbulent mixing. Finally, the evolution of the normalized, averaged, displacement flame speed vs. stretch Karlovitz number are found to collapse on a narrow band, suggesting that a unified description of flame speed dependence on stretch rate may be possible in the Lagrangian description.

  16. Unsteady Flame Embedding

    KAUST Repository

    El-Asrag, Hossam A.

    2011-01-01

    Direct simulation of all the length and time scales relevant to practical combustion processes is computationally prohibitive. When combustion processes are driven by reaction and transport phenomena occurring at the unresolved scales of a numerical simulation, one must introduce a dynamic subgrid model that accounts for the multiscale nature of the problem using information available on a resolvable grid. Here, we discuss a model that captures unsteady flow-flame interactions- including extinction, re-ignition, and history effects-via embedded simulations at the subgrid level. The model efficiently accounts for subgrid flame structure and incorporates detailed chemistry and transport, allowing more accurate prediction of the stretch effect and the heat release. In this chapter we first review the work done in the past thirty years to develop the flame embedding concept. Next we present a formulation for the same concept that is compatible with Large Eddy Simulation in the flamelet regimes. The unsteady flame embedding approach (UFE) treats the flame as an ensemble of locally one-dimensional flames, similar to the flamelet approach. However, a set of elemental one-dimensional flames is used to describe the turbulent flame structure directly at the subgrid level. The calculations employ a one-dimensional unsteady flame model that incorporates unsteady strain rate, curvature, and mixture boundary conditions imposed by the resolved scales. The model is used for closure of the subgrid terms in the context of large eddy simulation. Direct numerical simulation (DNS) data from a flame-vortex interaction problem is used for comparison. © Springer Science+Business Media B.V. 2011.

  17. Ferrous arrowheads and their oil quench hardening: Some early Indian evidence

    Science.gov (United States)

    Dube, R. K.

    2008-05-01

    A wide variety of ferrous arrowheads were in use in ancient India. Several typical chemical analyses of arrowheads found from archaeological excavation carried out at Kaushambi are reported in this paper. The average carbon content of these arrowheads varied from as low as 0.1 wt.% to approximately 0.9 wt.%. Literary evidence for oil quench hardening of ferrous arrowheads, as reported in famous Sanskrit epics—the Rāmāyana and the Mahābhārata—have been discussed in this paper. This type of quench hardening was intentionally adopted as it helped in preventing distortion and formation of quench cracks in arrowheads. The oil quench-hardened arrowheads were rubbed on stones to sharpen them, which also brought about tempering of martensite due to frictional heat.

  18. Quench observation using quench antennas on RHIC IR quadrupole magnets

    International Nuclear Information System (INIS)

    Ogitsu, T.; Terashima, A.; Tsuchiya, K.; Ganetis, G.; Muratore, J.; Wanderer, P.

    1995-01-01

    Quench observation using quench antennas is now being performed routinely on RHIC dipole and quadrupole magnets. Recently, a quench antenna was used on a RHIC IR magnet which is heavily instrumented with voltage taps. It was confirmed that the signals detected in the antenna coils do not contradict the voltage tap signals. The antenna also detects a sign of mechanical disturbance which could be related to a training quench. This paper summarizes signals detected in the antenna and discusses possible causes of these signals

  19. Quench observation using quench antennas on RHIC IR quadrupole magnets

    International Nuclear Information System (INIS)

    Ogitsu, T.; Terashima, A.; Tsuchiya, K.; Ganetis, G.; Muratore, J.; Wanderer, P.

    1996-01-01

    Quench observation using quench antennas is now being performed routinely on RHIC dipole and quadrupole magnets. Recently, a quench antenna was used on a RHIC IR magnet which is heavily instrumented with voltage taps. It was confirmed that the signals detected in the antenna coils do not contradict the voltage tap signals. The antenna also detects a sign of mechanical disturbance which could be related to a training quench. This paper summarizes signals detected in the antenna and discusses possible causes of these signals

  20. Quenches after LS1

    International Nuclear Information System (INIS)

    Verweij, A.P.

    2012-01-01

    In this paper I will give an overview of the different types of quenches that occur in the LHC, followed by an estimate of the number of quenches that we can expect after LS1. Beam-induced quenches and false triggering of the QPS will be the main cause of those quenches that cause a beam dump. Possibly in total up to 10-20 per year. After consolidation of the 13 kA joints, the approach for the BLM settings can be less conservative than in 2010-2012 in order to maximize beam time. This will cause some quenches but, anyhow, a beam.induced quench is not more risky than a quench provoked by false triggering. It is not easy to predict the number of BLM triggered beam dumps, needed to avoid magnet quenches, because it is not sure how to scale beam losses and UFO's from 3.5 TeV to 6.5 TeV, and it is not sure if the thresholds at 3.5 TeV are correct. Quench events will be much more massive (ex: RB quench at 6 kA → 2 MJ, RB quench at 11 kA → 6-20 MJ), and as a result cryo recuperation much longer. There will also be more ramp induced quenches after a FPA in other circuits due to higher ramp rates and smaller temperature margins (mutual coupling)

  1. Analysis of flame shapes in turbulent hydrogen jet flames with coaxial air

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Hee Jang [Korea Aerospace University, Goyang (Korea, Republic of)

    2009-06-15

    This paper addresses the characteristics of flame shapes and flame length in three types of coaxial air flames realizable by varying coaxial air and/or fuel velocity. Forcing coaxial air into turbulent jet flames induces substantial changes in flame shapes and NOx emissions through the complex flow interferences that exist within the mixing region. Mixing enhancement driven by coaxial air results in flame volume decrease, and such a diminished flame volume finally reduces NOx emissions significantly by decreasing NOx formation zone where a fuel/air mixture burns. It is found that mixing in the vicinity of high temperature zone mainly results from the increase of diffusive flux than the convective flux, and that the increase of mass diffusion is amplified as coaxial air is increased. Besides, it is reaffirmed that nonequilibrium chemistry including HO{sub 2}/H{sub 2}O{sub 2} should be taken into account for NOx prediction and scaling analysis by comparing turbulent combustion models. In addition, it is found that coaxial air can break down the self-similarity law of flames by changing mixing mechanism, and that EINOx scaling parameters based on the self-similarity law of simple jet flames may not be eligible in coaxial air flames

  2. On the dynamics of flame edges in diffusion-flame/vortex interactions

    Energy Technology Data Exchange (ETDEWEB)

    Hermanns, Miguel; Linan, Amable [Departamento de Motopropulsion y Termofluidodinamica, Universidad Politecnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid (Spain); Vera, Marcos [Area de Mecanica de Fluidos, Universidad Carlos III de Madrid, 28911 Leganes (Spain)

    2007-04-15

    We analyze the local flame extinction and reignition of a counterflow diffusion flame perturbed by a laminar vortex ring. Local flame extinction leads to the appearance of flame edges separating the burning and extinguished regions of the distorted mixing layer. The dynamics of these edges is modeled based on previous numerical results, with heat release effects fully taken into account, which provide the propagation velocity of triple and edge flames in terms of the upstream unperturbed value of the scalar dissipation. The temporal evolution of the mixing layer is determined using the classical mixture fraction approach, with both unsteady and curvature effects taken into account. Although variable density effects play an important role in exothermic reacting mixing layers, in this paper the description of the mixing layer is carried out using the constant density approximation, leading to a simplified analytical description of the flow field. The mathematical model reveals the relevant nondimensional parameters governing diffusion-flame/vortex interactions and provides the parameter range for the more relevant regime of local flame extinction followed by reignition via flame edges. Despite the simplicity of the model, the results show very good agreement with previously published experimental results. (author)

  3. Flame Speed and Self-Similar Propagation of Expanding Turbulent Premixed Flames

    Science.gov (United States)

    Chaudhuri, Swetaprovo; Wu, Fujia; Zhu, Delin; Law, Chung K.

    2012-01-01

    In this Letter we present turbulent flame speeds and their scaling from experimental measurements on constant-pressure, unity Lewis number expanding turbulent flames, propagating in nearly homogeneous isotropic turbulence in a dual-chamber, fan-stirred vessel. It is found that the normalized turbulent flame speed as a function of the average radius scales as a turbulent Reynolds number to the one-half power, where the average radius is the length scale and the thermal diffusivity is the transport property, thus showing self-similar propagation. Utilizing this dependence it is found that the turbulent flame speeds from the present expanding flames and those from the Bunsen geometry in the literature can be unified by a turbulent Reynolds number based on flame length scales using recent theoretical results obtained by spectral closure of the transformed G equation.

  4. Augmenting the Structures in a Swirling Flame via Diffusive Injection

    Directory of Open Access Journals (Sweden)

    Jonathan Lewis

    2014-01-01

    Full Text Available Small scale experimentation using particle image velocimetry investigated the effect of the diffusive injection of methane, air, and carbon dioxide on the coherent structures in a swirling flame. The interaction between the high momentum flow region (HMFR and central recirculation zone (CRZ of the flame is a potential cause of combustion induced vortex breakdown (CIVB and occurs when the HMFR squeezes the CRZ, resulting in upstream propagation. The diffusive introduction of methane or carbon dioxide through a central injector increased the size and velocity of the CRZ relative to the HMFR whilst maintaining flame stability, reducing the likelihood of CIVB occurring. The diffusive injection of air had an opposing effect, reducing the size and velocity of the CRZ prior to eradicating it completely. This would also prevent combustion induced vortex breakdown CIVB occurring as a CRZ is fundamental to the process; however, without recirculation it would create an inherently unstable flame.

  5. Trial manufacture of flame retardant and radiation resistant cables

    Energy Technology Data Exchange (ETDEWEB)

    Oshima, Yunosuke; Hagiwara, Miyuki (Japan Atomic Energy Research Inst., Takasaki, Gunma. Takasaki Radiation Chemistry Research Establishment); Oda, Eisuke

    1983-04-01

    High radiation resistance as well as incombustibility is required for the wires and cables used for nuclear facilities such as nuclear power stations. In order to give such performance to general purpose insulation materials such as ethylene-propylene copolymerized rubber, acenaphthylene bromide condensation product was developed anew. Moreover, by the use of this agent, the new flame retardant and radiation resistant cables were manufactured for trial, which are not different from ordinary plastic rubber cables in the handling such as flexibility, and withstand the radiation nearly up to 1000 Mrad. The requirement for the agent giving flame retardant and radiation resistant properties is explained. The synthesis of acenaphthylene bromide and its condensation product and the effect of giving flame retardant and radiation resistant properties are described. The test resultd of the prevention of spread of flame, the endurance in LOCA-simulating environment, and radiation resistance for the cables manufactured for trial are reported. It was confirmed that the cables of this type are suitable to the use in which the maintenance of mechanical properties after radiation exposure is required.

  6. Quark contributions to baryon magnetic moments in full, quenched, and partially quenched QCD

    International Nuclear Information System (INIS)

    Leinweber, Derek B.

    2004-01-01

    The chiral nonanalytic behavior of quark-flavor contributions to the magnetic moments of octet baryons is determined in full, quenched and partially quenched QCD, using an intuitive and efficient diagrammatic formulation of quenched and partially quenched chiral perturbation theory. The technique provides a separation of quark-sector magnetic-moment contributions into direct sea-quark loop, valence-quark, indirect sea-quark loop and quenched valence contributions, the latter being the conventional view of the quenched approximation. Both meson and baryon mass violations of SU(3)-flavor symmetry are accounted for. Following a comprehensive examination of the individual quark-sector contributions to octet baryon magnetic moments, numerous opportunities to observe and test the underlying structure of baryons and the nature of chiral nonanalytic behavior in QCD and its quenched variants are discussed. In particular, the valence u-quark contribution to the proton magnetic moment provides the optimal opportunity to directly view nonanalytic behavior associated with the meson cloud of full QCD and the quenched meson cloud of quenched QCD. The u quark in Σ + provides the best opportunity to display the artifacts of the quenched approximation

  7. Efficient Flame Detection and Early Warning Sensors on Combustible Materials Using Hierarchical Graphene Oxide/Silicone Coatings.

    Science.gov (United States)

    Wu, Qian; Gong, Li-Xiu; Li, Yang; Cao, Cheng-Fei; Tang, Long-Cheng; Wu, Lianbin; Zhao, Li; Zhang, Guo-Dong; Li, Shi-Neng; Gao, Jiefeng; Li, Yongjin; Mai, Yiu-Wing

    2018-01-23

    Design and development of smart sensors for rapid flame detection in postcombustion and early fire warning in precombustion situations are critically needed to improve the fire safety of combustible materials in many applications. Herein, we describe the fabrication of hierarchical coatings created by assembling a multilayered graphene oxide (GO)/silicone structure onto different combustible substrate materials. The resulting coatings exhibit distinct temperature-responsive electrical resistance change as efficient early warning sensors for detecting abnormal high environmental temperature, thus enabling fire prevention below the ignition temperature of combustible materials. After encountering a flame attack, we demonstrate extremely rapid flame detection response in 2-3 s and excellent flame self-extinguishing retardancy for the multilayered GO/silicone structure that can be synergistically transformed to a multiscale graphene/nanosilica protection layer. The hierarchical coatings developed are promising for fire prevention and protection applications in various critical fire risk and related perilous circumstances.

  8. Spectral analysis of colour-quenched and chemically quenched C 14 samples

    International Nuclear Information System (INIS)

    Grau Malonda, A.; Scott Guillearrd, P.E.

    1987-01-01

    Pairs of pulse height distribution curves, of C-14 samples, colour quenched and chemically quenched were obtained. The possibility to choose a counting window in order to obtain the counting efficiency curves, for both type of quenching was studied. (author). 7 figs., 7 refs

  9. Spectral analysis of colour-quenched and chemically quenched C-14 samples

    International Nuclear Information System (INIS)

    Scott, P. E.; Grau, A.

    1987-01-01

    In this paper pairs of pulse height distribution curves, of C-14 samples, colour-quenched and chemically quenched was obtained. The possibility to choose a counting window in order to obtain the counting efficiency curves, for both type of quenching was studied. (Author) 7 refs

  10. Halogenated flame retardants in the Great Lakes environment.

    Science.gov (United States)

    Venier, Marta; Salamova, Amina; Hites, Ronald A

    2015-07-21

    Flame retardants are widely used industrial chemicals that are added to polymers, such as polyurethane foam, to prevent them from rapidly burning if exposed to a small flame or a smoldering cigarette. Flame retardants, especially brominated flame retardants, are added to many polymeric products at percent levels and are present in most upholstered furniture and mattresses. Most of these chemicals are so-called "additive" flame retardants and are not chemically bound to the polymer; thus, they migrate from the polymeric materials into the environment and into people. As a result, some of these chemicals have become widespread pollutants, which is a concern given their possible adverse health effects. Perhaps because of their environmental ubiquity, the most heavily used group of brominated flame retardants, the polybrominated diphenyl ethers (PBDEs), was withdrawn from production and use during the 2004-2013 period. This led to an increasing demand for other flame retardants, including other brominated aromatics and organophosphate esters. Although little is known about the use or production volumes of these newer flame retardants, it is evident that some of these chemicals are also becoming pervasive in the environment and in humans. In this Account, we describe our research on the occurrence of halogenated and organophosphate flame retardants in the environment, with a specific focus on the Great Lakes region. This Account starts with a short introduction to the first generation of brominated flame retardants, the polybrominated biphenyls, and then presents our measurements of their replacement, the PBDEs. We summarize our data on PBDE levels in babies, bald eagles, and in air. Once these compounds came off the market, we began to measure several of the newer flame retardants in air collected on the shores of the Great Lakes once every 12 days. These new measurements focus on a tetrabrominated benzoate, a tetrabrominated phthalate, a hexabrominated diphenoxyethane

  11. Impact of flame-wall interaction on premixed flame dynamics and transfer function characteristics

    KAUST Repository

    Kedia, K.S.

    2011-01-01

    In this paper, we numerically investigate the response of a perforated-plate stabilized laminar methane-air premixed flame to imposed inlet velocity perturbations. A flame model using detailed chemical kinetics mechanism is applied and heat exchange between the burner plate and the gas mixture is incorporated. Linear transfer functions, for low mean inlet velocity oscillations, are analyzed for different equivalence ratio, mean inlet velocity, plate thermal conductivity and distance between adjacent holes. The oscillations of the heat exchange rate at the top of the burner surface plays a critical role in driving the growth of the perturbations over a wide range of conditions, including resonance. The flame response to the perturbations at its base takes the form of consumption speed oscillations in this region. Flame stand-off distance increases/decreases when the flame-wall interaction strengthens/weakens, impacting the overall dynamics of the heat release. The convective lag between the perturbations and the flame base response govern the phase of heat release rate oscillations. There is an additional convective lag between the perturbations at the flame base and the flame tip which has a weaker impact on the heat release rate oscillations. At higher frequencies, the flame-wall interaction is weaker and the heat release oscillations are driven by the flame area oscillations. The response of the flame to higher amplitude oscillations are used to gain further insight into the mechanisms. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  12. Conical quarl swirl stabilized non-premixed flames: flame and flow field interaction

    KAUST Repository

    Elbaz, Ayman M.; Roberts, William L.

    2017-01-01

    The flame-flow field interaction is studied in non-premixed methane swirl flames stabilized in quartz quarl via simultaneous measurements of the flow field using a stereo PIV and OH-PLIF at 5 KHz repetition rate. Under the same swirl intensity, two flames with different fuel jet velocity were investigated. The time-averaged flow field shows a unique flow pattern at the quarl exit, where two recirculation vortices are formed; a strong recirculation zone formed far from the quarl exit and a larger recirculation zone extending inside the quarl. However, the instantaneous images show that, the flow pattern near the quarl exit plays a vital role in the spatial location and structure of the reaction zone. In the low fuel jet velocity flame, a pair of vortical structures, located precisely at the corners of the quarl exit, cause the flame to roll up into the central region of low speed flow, where the flame sheet then tracks the axial velocity fluctuations. The vorticity field reveals a vortical structure surrounding the reaction zones, which reside on a layer of low compressive strain adjacent to that vortical structure. In the high fuel jet velocity flame, initially a laminar flame sheet resides at the inner shear layer of the main jet, along the interface between incoming fresh gas and high temperature recirculating gas. Further downstream, vortex breakdown alters the flame sheet path toward the central flame region. The lower reaction zones show good correlation to the regions of maximum vorticity and track the regions of low compressive strain associated with the inner shear layer of the jet flow. In both flames the reactions zones conform the passage of the large structure while remaining inside the low speed regions or at the inner shear layer.

  13. Conical quarl swirl stabilized non-premixed flames: flame and flow field interaction

    KAUST Repository

    Elbaz, Ayman M.

    2017-09-19

    The flame-flow field interaction is studied in non-premixed methane swirl flames stabilized in quartz quarl via simultaneous measurements of the flow field using a stereo PIV and OH-PLIF at 5 KHz repetition rate. Under the same swirl intensity, two flames with different fuel jet velocity were investigated. The time-averaged flow field shows a unique flow pattern at the quarl exit, where two recirculation vortices are formed; a strong recirculation zone formed far from the quarl exit and a larger recirculation zone extending inside the quarl. However, the instantaneous images show that, the flow pattern near the quarl exit plays a vital role in the spatial location and structure of the reaction zone. In the low fuel jet velocity flame, a pair of vortical structures, located precisely at the corners of the quarl exit, cause the flame to roll up into the central region of low speed flow, where the flame sheet then tracks the axial velocity fluctuations. The vorticity field reveals a vortical structure surrounding the reaction zones, which reside on a layer of low compressive strain adjacent to that vortical structure. In the high fuel jet velocity flame, initially a laminar flame sheet resides at the inner shear layer of the main jet, along the interface between incoming fresh gas and high temperature recirculating gas. Further downstream, vortex breakdown alters the flame sheet path toward the central flame region. The lower reaction zones show good correlation to the regions of maximum vorticity and track the regions of low compressive strain associated with the inner shear layer of the jet flow. In both flames the reactions zones conform the passage of the large structure while remaining inside the low speed regions or at the inner shear layer.

  14. Tulip flames: changes in shape of premixed flames propagating in closed tubes

    Science.gov (United States)

    Dunn-Rankin, D.; Sawyer, R. F.

    The experimental results that are the subject of this communication provide high-speed schlieren images of the closed-tube flame shape that has come to be known as the tulip flame. The schlieren images, along with in-chamber pressure records, help demonstrate the effects of chamber length, equivalence ratio, and igniter geometry on formation of the tulip flame. The pressure/time records show distinct features which correlate with flame shape changes during the transition to tulip. The measurements indicate that the basic tulip flame formation is a robust phenomenon that depends on little except the overall geometry of the combustion vessel.

  15. Theoretical analysis of the conical premixed flame response to upstream velocity disturbances considering flame speed development effects

    Directory of Open Access Journals (Sweden)

    Ghazaleh Esmaeelzade

    2017-03-01

    Full Text Available The effect of upstream velocity perturbations on the response of a premixed flame was investigated in terms of the flame transfer function dependency on excitation frequency. In this study, the assumption of constant flame speed was extended and the effect of flame speed development was considered; i.e., the flame speed would grow with the time after ignition or with the distance from a flame-holder. In the present study, the kinematics of a conical flame was investigated by linearization of the front tracking equation of flame to uniform and convected fluctuations of the flow velocity and the response was compared with that of a V-shaped flame and the experimental data in the previous studies. The results show that the effect of flame speed development could influence a decreasing gain and increase the phase of the flame response to the uniform velocity oscillations in low and moderate frequencies. Comparing the variations in the gain of flame response upon normalized frequency, show that a conical flame has lower values than the V-flame. In other words, these flames might be less susceptible to combustion instabilities than the V-flames. Furthermore, the variations in phase of the V-flames responses, which show a quasi-linear behavior with normalized frequency, have higher values than the saturated behavior in phase of the conical flame responses. Also, considering that the flame speed development induces an increase in the gain and phase of the conical flame response to the convected velocity oscillations in certain frequencies; because the developed flame front has longer length in comparison to the flame front in constant flame speed model. Therefore, the flame length may be longer than convective wavelength and the heat release would be generated in different points of the flame; consequently the flow oscillations might exert a stronger impact on the unsteady heat release fluctuations.

  16. Flame-Vortex Interactions Imaged in Microgravity - To Assess the Theory Flame Stretch

    Science.gov (United States)

    Driscoll, James F.

    2001-01-01

    The goals of this research are to: 1) Assess the Theory of Flame Stretch by operating a unique flame-vortex experiment under microgravity conditions in the NASA Glenn 2.2 Second Drop Tower (drops to identify operating conditions have been completed); 2) Obtain high speed shadowgraph images (500-1000 frames/s) using the drop rig (images were obtained at one-g, and the NASA Kodak RO camera is being mounted on the drop rig); 3) Obtain shadowgraph and PIV images at 1-g while varying the effects of buoyancy by controlling the Froude number (completed); 4) Numerically model the inwardly-propagating spherical flame that is observed in the experiment using full chemistry and the RUN 1DL code (completed); 5) Send images of the flame shape to Dr. G. Patniak at NRL who is numerically simulating the entire flame-vortex interaction of the present experiment (data transfer completed); and 6) Assess the feasibility of obtaining PIV velocity field images in the drop rig, which would be useful (but not required) for our assessment of the Theory of Flame Stretch (PIV images were obtained at one-g using same low laser power that is available from fiber optic cable in drop tower). The motivation for the work is to obtain novel measurement needed to develop a physically accurate model of turbulent combustion that can help in the control of engine pollutants. The unique experiment allows, for the first time, the detailed study of a negatively-curved (negatively stretched) flame, which is one of the five fundamental types of premixed flames. While there have been studies of flat flames, positively-curved (outwardly-propagating) cases and positively-strained (counterflow) cases, this is the first detailed study of a negatively-curved (inwardly-propagating) flame. The first set of drops in the 2.2 Second Drop Tower showed that microgravity provides more favorable conditions for achieving inwardly-propagating flames (IPFs) than 1-g. A vortex interacts with a flame and creates a spherical

  17. Flame-vortex interaction and mixing behaviors of turbulent non-premixed jet flames under acoustic forcing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Munki; Choi, Youngil; Oh, Jeongseog; Yoon, Youngbin [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea)

    2009-12-15

    This study examines the effect of acoustic excitation using forced coaxial air on the flame characteristics of turbulent hydrogen non-premixed flames. A resonance frequency was selected to acoustically excite the coaxial air jet due to its ability to effectively amplify the acoustic amplitude and reduce flame length and NO{sub x} emissions. Acoustic excitation causes the flame length to decrease by 15% and consequently, a 25% reduction in EINO{sub x} is achieved, compared to coaxial air flames without acoustic excitation at the same coaxial air to fuel velocity ratio. Moreover, acoustic excitation induces periodical fluctuation of the coaxial air velocity, thus resulting in slight fluctuation of the fuel velocity. From phase-lock PIV and OH PLIF measurement, the local flow properties at the flame surface were investigated under acoustic forcing. During flame-vortex interaction in the near field region, the entrainment velocity and the flame surface area increased locally near the vortex. This increase in flame surface area and entrainment velocity is believed to be a crucial factor in reducing flame length and NO{sub x} emission in coaxial jet flames with acoustic excitation. Local flame extinction occurred frequently when subjected to an excessive strain rate, indicating that intense mass transfer of fuel and air occurs radially inward at the flame surface. (author)

  18. Improvement of flame resistance of non-flame retardant cables by applying fire protection measures

    International Nuclear Information System (INIS)

    Takemura, Yujiro; Segoshi, Yoshinori; Jinno, Susumu; Mii, Kazuki

    2017-01-01

    The new regulatory requirements, which were put in force after the Fukushima Daiichi accident, impose the use of flame retardant cables on the plant components having safety functions for the purpose of fire protection. However, some Japanese nuclear power plants built in the early days use non-flame retardant cables that do not pass the demonstration test to check for the flame resistance. To cope with the new regulatory requirements, a fire protection measure for non-flame retardant cables was introduced to assure flame resistance of non-flame retardant cables equivalent to or higher than that of flame retardant cables. To illustrate the fire protection measure, both non-flame retardant cables and its cable tray are covered with fire protection sheet fabricated from incombustible material to form an assembly. Considering the demonstration test results, it can be concluded that flame resistance performance of non-flame retardant cables equivalent to or higher than that of flame retardant cables can be assured by forming the assembly even if an external fire outside the assembly and internal cable fire inside the assembly are assumed. This paper introduces the design of the assembly consisting of a bundle of cables and a cable tray and summarizes the results of demonstration tests. (author)

  19. Direct numerical simulations of non-premixed ethylene-air flames: Local flame extinction criterion

    KAUST Repository

    Lecoustre, Vivien R.

    2014-11-01

    Direct Numerical Simulations (DNS) of ethylene/air diffusion flame extinctions in decaying two-dimensional turbulence were performed. A Damköhler-number-based flame extinction criterion as provided by classical large activation energy asymptotic (AEA) theory is assessed for its validity in predicting flame extinction and compared to one based on Chemical Explosive Mode Analysis (CEMA) of the detailed chemistry. The DNS code solves compressible flow conservation equations using high order finite difference and explicit time integration schemes. The ethylene/air chemistry is simulated with a reduced mechanism that is generated based on the directed relation graph (DRG) based methods along with stiffness removal. The numerical configuration is an ethylene fuel strip embedded in ambient air and exposed to a prescribed decaying turbulent flow field. The emphasis of this study is on the several flame extinction events observed in contrived parametric simulations. A modified viscosity and changing pressure (MVCP) scheme was adopted in order to artificially manipulate the probability of flame extinction. Using MVCP, pressure was changed from the baseline case of 1 atm to 0.1 and 10 atm. In the high pressure MVCP case, the simulated flame is extinction-free, whereas in the low pressure MVCP case, the simulated flame features frequent extinction events and is close to global extinction. Results show that, despite its relative simplicity and provided that the global flame activation temperature is correctly calibrated, the AEA-based flame extinction criterion can accurately predict the simulated flame extinction events. It is also found that the AEA-based criterion provides predictions of flame extinction that are consistent with those provided by a CEMA-based criterion. This study supports the validity of a simple Damköhler-number-based criterion to predict flame extinction in engineering-level CFD models. © 2014 The Combustion Institute.

  20. Properties of a novel linear sulfur response mode in a multiple flame photometric detector.

    Science.gov (United States)

    Clark, Adrian G; Thurbide, Kevin B

    2014-01-24

    A new linear sulfur response mode was established in the multiple flame photometric detector (mFPD) by monitoring HSO* emission in the red spectral region above 600nm. Optimal conditions for this mode were found by using a 750nm interference filter and oxygen flows to the worker flames of this device that were about 10mL/min larger than those used for monitoring quadratic S2* emission. By employing these parameters, this mode provided a linear response over about 4 orders of magnitude, with a detection limit near 5.8×10(-11)gS/s and a selectivity of sulfur over carbon of about 3.5×10(3). Specifically, the minimum detectable masses for 10 different sulfur analytes investigated ranged from 0.4 to 3.6ng for peak half-widths spanning 4-6s. The response toward ten different sulfur compounds was examined and produced an average reproducibility of 1.7% RSD (n=10) and an average equimolarity value of 1.0±0.1. In contrast to this, a conventional single flame S2* mode comparatively yielded respective values of 6.7% RSD (n=10) and 1.1±0.4. HSO* emission in the mFPD was also found to be relatively much less affected by response quenching due to hydrocarbons compared to a conventional single flame S2* emission mode. Results indicate that this new alternative linear mFPD response mode could be beneficial for sulfur monitoring applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Michael P.; Chen, Zheng; Ju, Yiguang; Dryer, Frederick L. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2009-04-15

    The effect of nonspherical (i.e. cylindrical) bomb geometry on the evolution of outwardly propagating flames and the determination of laminar flame speeds using the conventional constant-pressure technique is investigated experimentally and theoretically. The cylindrical chamber boundary modifies the propagation rate through the interaction of the wall with the flow induced by thermal expansion across the flame (even with constant pressure), which leads to significant distortion of the flame surface for large flame radii. These departures from the unconfined case, especially the resulting nonzero burned gas velocities, can lead to significant errors in flame speeds calculated using the conventional assumptions, especially for large flame radii. For example, at a flame radius of 0.5 times the wall radius, the flame speed calculated neglecting confinement effects can be low by {proportional_to}15% (even with constant pressure). A methodology to estimate the effect of nonzero burned gas velocities on the measured flame speed in cylindrical chambers is presented. Modeling and experiments indicate that the effect of confinement can be neglected for flame radii less than 0.3 times the wall radius while still achieving acceptable accuracy (within 3%). The methodology is applied to correct the flame speed for nonzero burned gas speeds, in order to extend the range of flame radii useful for flame speed measurements. Under the proposed scaling, the burned gas speed can be well approximated as a function of only flame radius for a given chamber geometry - i.e. the correction function need only be determined once for an apparatus and then it can be used for any mixture. Results indicate that the flow correction can be used to extract flame speeds for flame radii up to 0.5 times the wall radius with somewhat larger, yet still acceptable uncertainties for the cases studied. Flow-corrected burning velocities are measured for hydrogen and syngas mixtures at atmospheric and

  2. Flame Structure and Chemiluminescence Emissions of Inverse Diffusion Flames under Sinusoidally Driven Plasma Discharges

    Directory of Open Access Journals (Sweden)

    Maria Grazia De Giorgi

    2017-03-01

    Full Text Available Reduction of nitric oxides (NOx in aircraft engines and in gas turbines by lean combustion is of great interest in the design of novel combustion systems. However, the stabilization of the flame under lean conditions is a main issue. In this context, the present work investigates the effects of sinusoidal dielectric barrier discharge (DBD on a lean inverse diffusive methane/air flame in a Bunsen-type burner under different actuation conditions. The flame appearance was investigated with fixed methane loading (mass flux, but with varying inner airflow rate. High-speed flame imaging was done by using an intensified (charge-coupled device CCD camera equipped with different optical filters in order to selectively record signals from the chemiluminescent species OH*, CH*, or CO2* to evaluate the flame behavior in presence of plasma actuation. The electrical power consumption was less than 33 W. It was evident that the plasma flame enhancement was significantly influenced by the plasma discharges, particularly at high inner airflow rates. The flame structure changes drastically when the dissipated plasma power increases. The flame area decreases due to the enhancement of mixing and chemical reactions that lead to a more anchored flame on the quartz exit with a reduction of the flame length.

  3. Dynamics and structure of stretched flames

    Energy Technology Data Exchange (ETDEWEB)

    Law, C.K. [Princeton Univ., NJ (United States)

    1993-12-01

    This program aims to gain fundamental understanding on the structure, geometry, and dynamics of laminar premixed flames, and relate these understanding to the practical issues of flame extinction and stabilization. The underlying fundamental interest here is the recent recognition that the response of premixed flames can be profoundly affected by flame stretch, as manifested by flow nonuniformity, flame curvature, and flame/flow unsteadiness. As such, many of the existing understanding on the behavior of premixed flames need to be qualitatively revised. The research program consists of three major thrusts: (1) detailed experimental and computational mapping of the structure of aerodynamically-strained planar flames, with emphasis on the effects of heat loss, nonequidiffusion, and finite residence time on the flame thickness, extent of incomplete reaction, and the state of extinction. (2) Analytical study of the geometry and dynamics of stretch-affected wrinkled flame sheets in simple configurations, as exemplified by the Bunsen flame and the spatially-periodic flame, with emphasis on the effects of nonlinear stretch, the phenomena of flame cusping, smoothing, and tip opening, and their implications on the structure and burning rate of turbulent flames. (3) Stabilization and blowoff of two-dimensional inverted premixed and stabilization and determining the criteria governing flame blowoff. The research is synergistically conducted through the use of laser-based diagnostics, computational simulation of the flame structure with detailed chemistry and transport, and mathematical analysis of the flame dynamics.

  4. Flame analysis using image processing techniques

    Science.gov (United States)

    Her Jie, Albert Chang; Zamli, Ahmad Faizal Ahmad; Zulazlan Shah Zulkifli, Ahmad; Yee, Joanne Lim Mun; Lim, Mooktzeng

    2018-04-01

    This paper presents image processing techniques with the use of fuzzy logic and neural network approach to perform flame analysis. Flame diagnostic is important in the industry to extract relevant information from flame images. Experiment test is carried out in a model industrial burner with different flow rates. Flame features such as luminous and spectral parameters are extracted using image processing and Fast Fourier Transform (FFT). Flame images are acquired using FLIR infrared camera. Non-linearities such as thermal acoustic oscillations and background noise affect the stability of flame. Flame velocity is one of the important characteristics that determines stability of flame. In this paper, an image processing method is proposed to determine flame velocity. Power spectral density (PSD) graph is a good tool for vibration analysis where flame stability can be approximated. However, a more intelligent diagnostic system is needed to automatically determine flame stability. In this paper, flame features of different flow rates are compared and analyzed. The selected flame features are used as inputs to the proposed fuzzy inference system to determine flame stability. Neural network is used to test the performance of the fuzzy inference system.

  5. Flame Motion In Gas Turbine Burner From Averages Of Single-Pulse Flame Fronts

    Energy Technology Data Exchange (ETDEWEB)

    Tylli, N.; Hubschmid, W.; Inauen, A.; Bombach, R.; Schenker, S.; Guethe, F. [Alstom (Switzerland); Haffner, K. [Alstom (Switzerland)

    2005-03-01

    Thermo acoustic instabilities of a gas turbine burner were investigated by flame front localization from measured OH laser-induced fluorescence single pulse signals. The average position of the flame was obtained from the superposition of the single pulse flame fronts at constant phase of the dominant acoustic oscillation. One observes that the flame position varies periodically with the phase angle of the dominant acoustic oscillation. (author)

  6. Flame visualization in power stations

    Energy Technology Data Exchange (ETDEWEB)

    Hulshof, H J.M.; Thus, A W; Verhage, A J.L. [KEMA - Fossil Power Plants, Arnhem (Netherlands)

    1993-01-01

    The shapes and temperature of flames in power stations, fired with powder coal and gas, have been measured optically. Spectral information in the visible and near infrared is used. Coal flames are visualized in the blue part of the spectrum, natural gas flames are viewed in the light of CH-emission. Temperatures of flames are derived from the best fit of the Planck-curve to the thermal radiation spectrum of coal and char, or to that of soot in the case of gas flames. A measuring method for the velocity distribution inside a gas flame is presented, employing pulsed alkali salt injection. It has been tested on a 100 kW natural gas flame. 3 refs., 9 figs.

  7. Extinction of laminar partially premixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, Suresh K. [Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor Street, Room 2039, MC-251, Chicago, IL 60607-7022 (United States)

    2009-12-15

    Flame extinction represents one of the classical phenomena in combustion science. It is important to a variety of combustion systems in transportation and power generation applications. Flame extinguishment studies are also motivated from the consideration of fire safety and suppression. Such studies have generally considered non-premixed and premixed flames, although fires can often originate in a partially premixed mode, i.e., fuel and oxidizer are partially premixed as they are transported to the reaction zone. Several recent investigations have considered this scenario and focused on the extinction of partially premixed flames (PPFs). Such flames have been described as hybrid flames possessing characteristics of both premixed and non-premixed flames. This paper provides a review of studies dealing with the extinction of PPFs, which represent a broad family of flames, including double, triple (tribrachial), and edge flames. Theoretical, numerical and experimental studies dealing with the extinction of such flames in coflow and counterflow configurations are discussed. Since these flames contain both premixed and non-premixed burning zones, a brief review of the dilution-induced extinction of premixed and non-premixed flames is also provided. For the coflow configuration, processes associated with flame liftoff and blowout are described. Since lifted non-premixed jet flames often contain a partially premixed or an edge-flame structure prior to blowout, the review also considers such flames. While the perspective of this review is broad focusing on the fundamental aspects of flame extinction and blowout, results mostly consider flame extinction caused by the addition of a flame suppressant, with relevance to fire suppression on earth and in space environment. With respect to the latter, the effect of gravity on the extinction of PPFs is discussed. Future research needs are identified. (author)

  8. 30 CFR 57.22104 - Open flames (I-C mines).

    Science.gov (United States)

    2010-07-01

    ....22104 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards for Methane in Metal and Nonmetal Mines Fire Prevention and Control § 57.22104 Open flames (I-C...

  9. Doubler system quench detection threshold

    International Nuclear Information System (INIS)

    Kuepke, K.; Kuchnir, M.; Martin, P.

    1983-01-01

    The experimental study leading to the determination of the sensitivity needed for protecting the Fermilab Doubler from damage during quenches is presented. The quench voltage thresholds involved were obtained from measurements made on Doubler cable of resistance x temperature and voltage x time during quenches under several currents and from data collected during operation of the Doubler Quench Protection System as implemented in the B-12 string of 20 magnets. At 4kA, a quench voltage threshold in excess of 5.OV will limit the peak Doubler cable temperature to 452K for quenches originating in the magnet coils whereas a threshold of 0.5V is required for quenches originating outside of coils

  10. Simulation of flame surface density and burning rate of a premixed turbulent flame using contour advection

    Energy Technology Data Exchange (ETDEWEB)

    Tang, B.H.Y.; Chan, C.K. [Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)

    2006-10-15

    In this paper, a 2-dimensional rod-stabilized V-shaped flame is simulated using contour advection with surgery as well as the random vortex method. Effects of turbulence on various quantities, such as flame brush thickness and flame surface density, are investigated. The flame surface density S is estimated using the Bray-Moss-Libby formulation, which involves the use of a mean orientation factor {sigma}{sub c}. As a comparison, values of S are also obtained using Shepherd's model, which employs the values of mean flame surface area and mean flame length. Local flame structure is characterized in terms of turbulent flame brush, orientation factor, and flame surface density. Profiles of S obtained using the two different models are compared and show that discrepancy is more evident with increasing turbulence intensity. (author)

  11. QUENCH: A software package for the determination of quenching curves in Liquid Scintillation counting

    International Nuclear Information System (INIS)

    Cassette, Philippe

    2016-01-01

    In Liquid Scintillation Counting (LSC), the scintillating source is part of the measurement system and its detection efficiency varies with the scintillator used, the vial and the volume and the chemistry of the sample. The detection efficiency is generally determined using a quenching curve, describing, for a specific radionuclide, the relationship between a quenching index given by the counter and the detection efficiency. A quenched set of LS standard sources are prepared by adding a quenching agent and the quenching index and detection efficiency are determined for each source. Then a simple formula is fitted to the experimental points to define the quenching curve function. The paper describes a software package specifically devoted to the determination of quenching curves with uncertainties. The experimental measurements are described by their quenching index and detection efficiency with uncertainties on both quantities. Random Gaussian fluctuations of these experimental measurements are sampled and a polynomial or logarithmic function is fitted on each fluctuation by χ"2 minimization. This Monte Carlo procedure is repeated many times and eventually the arithmetic mean and the experimental standard deviation of each parameter are calculated, together with the covariances between these parameters. Using these parameters, the detection efficiency, corresponding to an arbitrary quenching index within the measured range, can be calculated. The associated uncertainty is calculated with the law of propagation of variances, including the covariance terms. - Highlights: • The program “QUENCH” is devoted to the interpolation of quenching curves in LSC. • Functions are fitted to experimental data with uncertainties in both quenching and efficiency. • The parameters of the fitting function and the associated covariance matrix are evaluated. • The detection efficiency and uncertainty corresponding to a given quenching index is calculated.

  12. effects of various effects of various quenching media on quenching

    African Journals Online (AJOL)

    eobe

    ABSTRACT. Evaluation of palm kernel oil, cotton seed oil and olive oil as quenching media of 0.509Wt%C medium carbon steel ... Quenching is an essential element in developing the .... machine, heat treatment furnace, Avery Denison Izod.

  13. Turbulence-flame interactions in DNS of a laboratory high Karlovitz premixed turbulent jet flame

    Science.gov (United States)

    Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.

    2016-09-01

    In the present work, direct numerical simulation (DNS) of a laboratory premixed turbulent jet flame was performed to study turbulence-flame interactions. The turbulent flame features moderate Reynolds number and high Karlovitz number (Ka). The orientations of the flame normal vector n, the vorticity vector ω and the principal strain rate eigenvectors ei are examined. The in-plane and out-of-plane angles are introduced to quantify the vector orientations, which also measure the flame geometry and the vortical structures. A general observation is that the distributions of these angles are more isotropic downstream as the flame and the flow become more developed. The out-of-plane angle of the flame normal vector, β, is a key parameter in developing the correction of 2D measurements to estimate the corresponding 3D quantities. The DNS results show that the correction factor is unity at the inlet and approaches its theoretical value of an isotropic distribution downstream. The alignment characteristics of n, ω and ei, which reflect the interactions of turbulence and flame, are also studied. Similar to a passive scalar gradient in non-reacting flows, the flame normal has a tendency to align with the most compressive strain rate, e3, in the flame, indicating that turbulence contributes to the production of scalar gradient. The vorticity dynamics are examined via the vortex stretching term, which was found to be the predominant source of vorticity generation balanced by dissipation, in the enstrophy transport equation. It is found that although the vorticity preferentially aligns with the intermediate strain rate, e2, the contribution of the most extensive strain rate, e1, to vortex stretching is comparable with that of the intermediate strain rate, e2. This is because the eigenvalue of the most extensive strain rate, λ1, is always large and positive. It is confirmed that the vorticity vector is preferentially positioned along the flame tangential plane, contributing

  14. Polydisperse effects in jet spray flames

    Science.gov (United States)

    Weinberg, Noam; Greenberg, J. Barry

    2018-01-01

    A laminar jet polydisperse spray diffusion flame is analysed mathematically for the first time using an extension of classical similarity solutions for gaseous jet flames. The analysis enables a comparison to be drawn between conditions for flame stability or flame blow-out for purely gaseous flames and for spray flames. It is found that, in contrast to the Schmidt number criteria relevant to gas flames, droplet size and initial spray polydispersity play a critical role in determining potential flame scenarios. Some qualitative agreement for lift-off height is found when comparing predictions of the theory and sparse independent experimental evidence from the literature.

  15. Experiment and Simulation of Autoignition in Jet Flames and its Relevance to Flame Stabilization and Structure

    KAUST Repository

    Al-Noman, Saeed M.

    2016-01-01

    temperature coflow air were studied numerically. Several flame configurations were investigated by varying the initial temperature and fuel mole fraction. Characteristics of chemical kinetics structures for autoignited lifted flames were discussed based on the kinetic structures of homogeneous autoignition and flame propagation of premixed mixtures. Results showed that for autoignited lifted flame with tribrachial structure, a transition from autoignition to flame propagation modes occurs for reasonably stoichiometric mixtures. Characteristics of Mild combustion can be treated as an autoignited lean premixed lifted flame. Transition behavior from Mild combustion to a nozzle-attached flame was also investigated by increasing the fuel mole fraction.

  16. Laminar Flame Speeds of Gasoline Surrogates Measured with the Flat Flame Method

    KAUST Repository

    Liao, Y.-H.

    2016-01-27

    © 2016 American Chemical Society. The adiabatic, laminar flame speeds of gasoline surrogates at atmospheric pressure over a range of equivalence ratios of = 0.8-1.3 and unburned gas temperatures of 298-400 K are measured with the flat flame method, which produces a one-dimensional flat flame free of stretch. Surrogates used in the current work are the primary reference fuels (PRFs, mixtures of n-heptane and isooctane), the toluene reference fuels (TRFs, mixtures of toluene and PRFs), and the ethanol reference fuels (ERFs, mixtures of ethanol and PRFs). In general, there is good agreement between the present work and the literature data for single-component fuel and PRF mixtures. Surrogates of TRF mixtures are found to exhibit comparable flame speeds to a real gasoline, while there is discrepancy observed between isooctane and gasoline. Moreover, the laminar flame speeds of TRF mixtures with similar fractions of n-heptane are found to be insensitive to the quantity of toluene in the mixture. Mixtures of ERFs exhibit comparable flame speeds to those of TRFs with similar mole fractions of n-heptane and isooctane.

  17. Flaming on YouTube

    NARCIS (Netherlands)

    Moor, Peter J.; Heuvelman, A.; Verleur, R.

    2010-01-01

    In this explorative study, flaming on YouTube was studied using surveys of YouTube users. Flaming is defined as displaying hostility by insulting, swearing or using otherwise offensive language. Three general conclusions were drawn. First, although many users said that they themselves do not flame,

  18. A quench detection/logging system for the SSCL Magnet Test Laboratory

    International Nuclear Information System (INIS)

    Kim, K.; Coles, M.; Dryer, J.; Lambert, D.

    1993-05-01

    The quench in a magnet describes a process which occurs while the superconductivity state goes to the normal resistive state. The consequence of a quench is the conversion of the stored electromagnetic energy into heat. During this process the initiating point will reach a high temperature, which will char the insulation or melt the conductor and thereby destroy the magnet. To prevent the magnet from being lost, it is standard practice to observe several resistance and/or inductance voltages across the magnet as quench signatures -- detection. When a quench symptom is detected, protection operations are initiated: proper shutdown of the magnet excitation systems and treatment to dilute the heat energy at a spot -- protection. The temperature rise is diluted by firing heaters along the length of the magnet to insure that the dissipated energy is spread. To develop a reliable quench detection system, two distinct approaches have been tried in the past: (i) Understanding of the Noise Mechanism and Sub-system Optimization, and (ii) Escaping from the Known Electromagnetic Noises by Observing Optical Waves or Acoustic Waves. The MTL of SSCL confronts a mass-measurement of about 10,000 production magnets. To meet the testing schedule, the false quench detection rate needs to be further optimized while the true quench detection rate remains secure for the magnet measurement safety. To meet these requirements, we followed an iterative top-down approach. First we defined the signal and noise characteristics of the quench phenomena by using existing software tools to build a rapid prototype system incorporating all proven functionality of the existing system. Then we further optimize the system through iterative upgrading based on our signal and noise character findings

  19. Experiment and Simulation of Autoignition in Jet Flames and its Relevance to Flame Stabilization and Structure

    KAUST Repository

    Al-Noman, Saeed M.

    2016-06-01

    Autoignition characteristics of pre-vaporized iso-octane, primary reference fuels, gasolines, and dimethyl ether (DME) have been investigated experimentally in a coflow with elevated temperature of air. With the coflow air at relatively low initial temperatures below autoignition temperature Tauto, an external ignition source was required to stabilize the flame. Non-autoignited lifted flames had tribrachial edge structures and their liftoff heights correlated well with the jet velocity scaled by the stoichiometric laminar burning velocity, indicating the importance of the edge propagation speed on flame stabilization balanced with local flow velocity. At high initial temperatures over Tauto, the autoignited flames were stabilized without requiring an external ignition source. The autoignited lifted flames exhibited either tribrachial edge structures or Mild combustion behaviors depending on the level of fuel dilution. For the iso-octane and n-heptane fuels, two distinct transition behaviors were observed in the autoignition regime from a nozzle-attached flame to a lifted tribrachial-edge flame and then a sudden transition to lifted Mild combustion as the jet velocity increased at a certain fuel dilution level. The liftoff data of the autoignited flames with tribrachial edges were analyzed based on calculated ignition delay times for the pre-vaporized fuels. Analysis of the experimental data suggested that ignition delay time may be much less sensitive to initial temperature under atmospheric pressure conditions as compared with predictions. For the gasoline fuels for advanced combustion engines (FACEs), and primary reference fuels (PRFs), autoignited liftoff data were correlated with Research Octane Number and Cetane Number. For the DME fuel, planar laser-induced fluorescence (PLIF) of formaldehyde (CH2O) and CH* chemiluminescence were visualized qualitatively. In the autoignition regime for both tribrachial structure and mild combustion, formaldehyde were found

  20. Metal working oils. Cutting oils, rolling oils, quenching oils, rust preventive oils; Kinzoku kakoyu. Sessakuyu, atsuenyu, yakiireyu, boseiyu

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, S. [Idemitsu Kosan Co. Ltd., Tokyo (Japan)

    1996-04-01

    With the demand against complicating working techniques for a background, foundations of the consideration for each of the lubricants in future are outlined. 1. Cutting oils: From the standpoint of speeding up and fireproofing, share of water-soluble type has come up to 30-40%. In this type, emulsifying dispersants and preservatives are combined. 2. Rolling oils: According to thinning of the standard thickness of steel plates, pressure of contacting surfaces has come up to 300 kg/mm{sup 2}(max.) and slip speed has increased too. In stainless steel plates, in order to get rid of the heat-streak (baking streak originated from wearing-out of oil film) shifting from neat oil to emulsion type is required. 3. Quenching oils: Following two systems are recent tendencies, the mineral oil system having excellent thermostability or the water system containing polyalkylneglycol etc., but the latter is expected from the viewpoint of fireproofing. 4. Rust preventive oils: As this oils do not aim at the rust prevention for long term, degreasing property is required. 20 refs., 5 figs., 1 tab.

  1. Theoretical analysis of the conical premixed flame response to upstream velocity disturbances considering flame speed development effects

    OpenAIRE

    Ghazaleh Esmaeelzade; Mohammad Reza Khani; Rouzbeh Riazi; Mohammad Hossein Sabour

    2017-01-01

    The effect of upstream velocity perturbations on the response of a premixed flame was investigated in terms of the flame transfer function dependency on excitation frequency. In this study, the assumption of constant flame speed was extended and the effect of flame speed development was considered; i.e., the flame speed would grow with the time after ignition or with the distance from a flame-holder. In the present study, the kinematics of a conical flame was investigated by linearization of ...

  2. Development of halogen-free flame-retardant cable for nuclear power plant. 2

    International Nuclear Information System (INIS)

    Matsumoto, Tetsuo; Kimura, Hitoshi; Ishii, Nobuhisa

    1997-01-01

    Halogen-free flame-retardant cables were developed for PWR nuclear power stations. It was confirmed that the developed cables possess flame retardant property, corrosion resistance, low toxicity and low smoke generation, and withstand the normal operation in the environment in PWR containment vessels for 60 years and loss of coolant accident. In the advancement of LWR technology, it is important to improve the reliability of machinery and equipment, to extend the period of continuous operation, to optimize the operation cycle and to improve the maintenance of plants. By improving halogen-free flame-retardant material and applying it to the cables for nuclear power stations, it can contribute to the above purposes. The required characteristics of these cables are explained, and the targets of development are power cables, control cables, instrumentation cables and insulated wires which do not contain halogen. The basic material is polyolefin, in which flame retardant magnesium hydroxide and the agent for improving radiation resistance are mixed. The corrosive property and toxicity of gases, smoke generation and the prevention of spread of flame when the cables burn and the durability in environment were evaluated. (K.I.)

  3. Magnet Quench 101

    OpenAIRE

    Bottura, L.

    2014-01-01

    This paper gives a broad summary of the physical phenomena associated with the quench of a superconducting magnet. This paper gives a broad summary of the physical phenomena associated with the quench of a superconducting magnet.

  4. Quenching experiments on niobium

    International Nuclear Information System (INIS)

    Schwirtlich, I.A.; Schultz, H.; Max-Planck-Institut fuer Metallforschung, Stuttgart

    1980-01-01

    High-purity niobium wire specimens have been quenched in superfluid helium from near the melting point in order to obtain information on vacancies in this material. The quenched-in resistivity Δsub(pQ) for a quench from 2600 K was very small (approximately 0.3 x 10 -12 Ω m) and near the limit of detection. It is assumed that large quenching losses are responsible for the small quenched-in resistance. From the experimental cooling curve estimates have been made for the formation and migration enthalpies (Hsub(1V)sup(F), Hsub(1V)sup(M)), where Hsub(1V)sup(M)+Hsub(1V)sup(F)=Qsub(1V)sup(SD)=3.62 ev. For Ssub(1V)sup(F), the formation entropy, two different values were assumed. (author)

  5. Understanding CO2 decomposition by thermal plasma with supersonic expansion quench

    Science.gov (United States)

    Tao, YANG; Jun, SHEN; Tangchun, RAN; Jiao, LI; Pan, CHEN; Yongxiang, YIN

    2018-04-01

    CO2 pyrolysis by thermal plasma was investigated, and a high conversion rate of 33% and energy efficiency of 17% were obtained. The high performance benefited from a novel quenching method, which synergizes the converging nozzle and cooling tube. To understand the synergy effect, a computational fluid dynamics simulation was carried out. A quick quenching rate of 107 K s‑1 could be expected when the pyrolysis gas temperature decreased from more than 3000 to 1000 K. According to the simulation results, the quenching mechanism was discussed as follows: first, the compressible fluid was adiabatically expanded in the converging nozzle and accelerated to sonic speed, and parts of the heat energy converted to convective kinetic energy; second, the sonic fluid jet into the cooling tube formed a strong eddy, which greatly enhanced the heat transfer between the inverse-flowing fluid and cooling tube. These two mechanisms ensure a quick quenching to prevent the reverse reaction of CO2 pyrolysis gas when it flows out from the thermal plasma reactor.

  6. Simulation of quenches in SSC magnets with passive quench protection

    International Nuclear Information System (INIS)

    Koepke, K.

    1985-06-01

    The relative ease of protecting an SSC magnet following a quench and the implications of quench protection on magnet reliability and operation are necessary inputs in a rational magnet selection process. As it appears likely that the magnet selection will be made prior to full scale prototype testing, an alternative means is required to ascertain the surviveability of contending magnet types. This paper attempts to provide a basis for magnet selection by calculating the peak expected quench temperatures in the 3 T Design C magnet and the 6 T Design D magnet as a function of magnet length. A passive, ''cold diode'' protection system has been assumed. The relative merits of passive versus active protection systems have been discussed in a previous report. It is therefore assumed that - given the experience gained from the Tevatron system - that an active quench protection system can be employed to protect the magnets in the eventuality of unreliable cold diode function

  7. LHC magnet quench protection system

    Science.gov (United States)

    Coull, L.; Hagedorn, D.; Remondino, V.; Rodriguez-Mateos, F.

    1994-07-01

    The quench protection system for the superconducting magnets of the CERN Large Hadron Collider (LHC) is described. The system is based on the so called 'cold diode' concept. In a group of series connected magnets if one magnet quenches then the magnetic energy of all the magnets will be dissipated in the quenched magnet so destroying it. This is avoided by by-passing the quenched magnet and then rapidly de-exciting the unquenched magnets. For the LHC machine it is foreseen to use silicon diodes situated inside the cryostat as by-pass elements - so called 'cold diodes'. The diodes are exposed to some 50 kGray of radiation during a 10 year operation life-time. The high energy density of the LHC magnets (500 kJ/m) coupled with the relatively slow propagation speed of a 'natural' quench (10 to 20 m/s) can lead to excessive heating of the zone where the quench started and to high internal voltages. It is therefore necessary to detect quickly the incipient quench and fire strip heaters which spread the quench out more quickly over a large volume of the magnet. After a quench the magnet chain must be de-excited rapidly to avoid spreading the quench to other magnets and over-heating the by-pass diode. This is done by switching high-power energy-dump resistors in series with the magnets. The LHC main ring magnet will be divided into 16 electrically separated units which has important advantages.

  8. LHC magnet quench protection system

    International Nuclear Information System (INIS)

    Coull, L.; Hagedorn, D.; Remondino, V.; Rodriguez-Mateos, F.

    1994-01-01

    The quench protection system for the superconducting magnets of the CERN Large Hadron Collider (LHC) is described. The system is based on the so called ''cold diode'' concept. In a group of series connected magnets if one magnet quenches then the magnetic energy of all the magnets will be dissipated in the quenched magnet so destroying it. This is avoided by by-passing the quenched magnet and then rapidly de-exciting the unquenched magnets. For the LHC machine it is foreseen to use silicon diodes situated inside the cryostat as by-pass elements--so called ''cold diodes''. The diodes are exposed to some 50 kGray of radiation during a 10 year operation life-time. The high energy density of the LHC magnets (500 kJ/m) coupled with the relatively slow propagation speed of a ''natural'' quench (10 to 20 m/s) can lead to excessive heating of the zone where the quench started and to high internal voltages. It is therefore necessary to detect quickly the incipient quench and fire strip heaters which spread the quench out more quickly over a large volume of the magnet. After a quench the magnet chain must be de-excited rapidly to avoid spreading the quench to other magnets and over-heating the by-pass diode. This is done by switching high-power energy-dump resistors in series with the magnets. The LHC main ring magnet will be divided into 16 electrically separated units which has important advantages

  9. QUENCH: A software package for the determination of quenching curves in Liquid Scintillation counting.

    Science.gov (United States)

    Cassette, Philippe

    2016-03-01

    In Liquid Scintillation Counting (LSC), the scintillating source is part of the measurement system and its detection efficiency varies with the scintillator used, the vial and the volume and the chemistry of the sample. The detection efficiency is generally determined using a quenching curve, describing, for a specific radionuclide, the relationship between a quenching index given by the counter and the detection efficiency. A quenched set of LS standard sources are prepared by adding a quenching agent and the quenching index and detection efficiency are determined for each source. Then a simple formula is fitted to the experimental points to define the quenching curve function. The paper describes a software package specifically devoted to the determination of quenching curves with uncertainties. The experimental measurements are described by their quenching index and detection efficiency with uncertainties on both quantities. Random Gaussian fluctuations of these experimental measurements are sampled and a polynomial or logarithmic function is fitted on each fluctuation by χ(2) minimization. This Monte Carlo procedure is repeated many times and eventually the arithmetic mean and the experimental standard deviation of each parameter are calculated, together with the covariances between these parameters. Using these parameters, the detection efficiency, corresponding to an arbitrary quenching index within the measured range, can be calculated. The associated uncertainty is calculated with the law of propagation of variances, including the covariance terms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Asymptotic analysis, direct numerical simulation and modeling of premixed turbulent flame-wall interaction; Etude asymptotique, simulation numerique directe et modelisation de l`interaction flamme turbulente premelangee-paroi

    Energy Technology Data Exchange (ETDEWEB)

    Bruneaux, G.

    1996-05-20

    Premixed turbulent flame-wall interaction is studied using theoretical and numerical analysis. Laminar interactions are first investigated through a literature review. This gives a characterization of the different configurations of interaction and justifies the use of simplified kinetic schemes to study the interaction. Calculations are then performed using Direct Numerical Simulation with a one-step chemistry model, and are compared with good agreements to asymptotic analysis. Flame-wall distances and wall heat fluxes obtained are compared successfully with those of the literature. Heat losses decrease the consumption rate, leading to extinction at the maximum of wall heat flux. It is followed by a flame retreat, when the fuel diffuses into the reaction zone, resulting in low unburnt hydrocarbon levels. Then, turbulent regime is investigated, using two types of Direct Numerical Simulations: 2D variable density and 3D constant density. Similar results are obtained: the local turbulent flame behavior is identical to a laminar interaction, and tongues of fresh gases are expelled from the wall region, near zones of quenching. In the 2D simulations, minimal flame-wall distances and maximum wall heat fluxes are similar to laminar values. However, the structure of the turbulence in the 3D calculations induces smaller flame-wall distances and higher wall heat fluxes. Finally, a flame-wall interaction model is built and validated. It uses the flamelet approach, where the flame is described in terms of consumption speed and flame surface density. This model is simplified to produce a law of the wall, which is then included in a averaged CFD code (Kiva2-MB). It is validated in an engine calculation. (author) 36 refs.

  11. A quench detection/logging system for the SSCL Magnet Test Laboratory

    International Nuclear Information System (INIS)

    Kim, K.; Coles, M.; Dryer, J.; Lambert, D.

    1994-01-01

    The quench in a magnet describes a process which occurs while the superconductivity state goes to the normal resistive state. The consequence of a quench is the conversion of the stored electromagnetic energy into heat. During this process the initiating point will reach a high temperature, which will char the insulation or melt the conductor and thereby destroy the magnet. To prevent the magnet from being lost, it is standard practice to observe several resistance and/or inductance voltages across the magnet as quench signatures - Detection. When a quench symptom is detected, protection operations are initiated: proper shutdown of the magnet excitation systems and treatment to dilute the heat energy at a spot - Protection. The temperature rise is diluted by firing heaters along the length of the magnet to ensure that the dissipated energy is spread. It is interesting that there is not a significant amount of published research on detection. To afford a more reliable quench detection system, two distinct approaches have been tried in the past: (i) Understanding of the Noise Mechanism and Sub-system Optimization, and (ii) Escaping from the Known Electromagnetic Noises by Observing Optical Waves or Acoustic Waves. The MTL of SSCL confronts a mass-measurement of about 10,000 production magnets. To meet the testing schedule, the false quench detection rate needs to be further optimized while the true quench detection rate remains secure for the magnet measurement safety. To meet these requirements, the authors followed an iterative top-down approach. First they defend the signal and noise characteristics of the quench phenomena by using existing software tools to build a rapid prototype system incorporating all proven functionality of the existing system. Then they further optimize the system through iterative upgrading based on their signal and noise character findings

  12. Architecture of a software quench management system

    International Nuclear Information System (INIS)

    Jerzy M. Nogiec et al.

    2001-01-01

    Testing superconducting accelerator magnets is inherently coupled with the proper handling of quenches; i.e., protecting the magnet and characterizing the quench process. Therefore, software implementations must include elements of both data acquisition and real-time controls. The architecture of the quench management software developed at Fermilab's Magnet Test Facility is described. This system consists of quench detection, quench protection, and quench characterization components that execute concurrently in a distributed system. Collaboration between the elements of quench detection, quench characterization and current control are discussed, together with a schema of distributed saving of various quench-related data. Solutions to synchronization and reliability in such a distributed quench system are also presented

  13. The influence of fuel-air swirl intensity on flame structures of syngas swirl-stabilized diffusion flame

    Science.gov (United States)

    Shao, Weiwei; Xiong, Yan; Mu, Kejin; Zhang, Zhedian; Wang, Yue; Xiao, Yunhan

    2010-06-01

    Flame structures of a syngas swirl-stabilized diffusion flame in a model combustor were measured using the OH-PLIF method under different fuel and air swirl intensity. The flame operated under atmospheric pressure with air and a typical low heating-value syngas with a composition of 28.5% CO, 22.5% H2 and 49% N2 at a thermal power of 34 kW. Results indicate that increasing the air swirl intensity with the same fuel, swirl intensity flame structures showed little difference except a small reduction of flame length; but also, with the same air swirl intensity, fuel swirl intensity showed great influence on flame shape, length and reaction zone distribution. Therefore, compared with air swirl intensity, fuel swirl intensity appeared a key effect on the flame structure for the model combustor. Instantaneous OH-PLIF images showed that three distinct typical structures with an obvious difference of reaction zone distribution were found at low swirl intensity, while a much compacter flame structure with a single, stable and uniform reaction zone distribution was found at large fuel-air swirl intensity. It means that larger swirl intensity leads to efficient, stable combustion of the syngas diffusion flame.

  14. Turbulent Non-Premixed Flames Stabilized on Double-Slit Curved Wall-Jet Burner with Simultaneous OH-Planar Laser-Induced Fluorescence and Particle Image Velocimetry Measurements

    KAUST Repository

    Mansour, Morkous S.

    2015-04-29

    A double-slit curved wall-jet (CWJ) burner utilizing a Coanda effect by supplying fuel and air as annular-inward jets over a curved surface was employed to investigate the stabilization characteristics and structure of propane/air turbulent non-premixed flames with varying global equivalence ratio and Reynolds number. Simultaneous time-resolved measurements of particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) of OH radicals were conducted. The burner showed a potential of stable and non-sooting operation for relatively large fuel loading and overall rich conditions. Mixing characteristics in cold flow were first examined using an acetone fluorescence technique, indicating substantial transport between the fuel and air by exhibiting appreciable premixing conditions. PIV measurements revealed that the flow field consisted of a wall-jet region leading to a recirculation zone through flow separation, an interaction jet region resulting from the collision of annular-inward jets, followed by a merged-jet region. The flames were stabilized in the recirculation zone and, in extreme cases, only a small flame seed remained in the recirculation zone. Together with the collision of the slit jets in the interaction jet region, the velocity gradients in the shear layers at the boundaries of the annular jets generate the turbulence. Turbulent mean and rms velocities were influenced by the presence of the flame, particularly in the recirculation zone. Flames with a high equivalence ratio were found to be more resistant to local extinction and exhibited a more corrugated and folded nature, particularly at high Reynolds numbers. For flames with a low equivalence ratio, local quenching and re-ignition processes maintained flames in the merged jet region, revealing a strong intermittency, which was substantiated by the increased principal strain rates for these flames. © 2015 Taylor & Francis Group, LLC.

  15. TURBULENT OXYGEN FLAMES IN TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Aspden, A. J.; Bell, J. B.; Woosley, S. E.

    2011-01-01

    In previous studies, we examined turbulence-flame interactions in carbon-burning thermonuclear flames in Type Ia supernovae. In this study, we consider turbulence-flame interactions in the trailing oxygen flames. The two aims of the paper are to examine the response of the inductive oxygen flame to intense levels of turbulence, and to explore the possibility of transition to detonation in the oxygen flame. Scaling arguments analogous to the carbon flames are presented and then compared against three-dimensional simulations for a range of Damkoehler numbers (Da 16 ) at a fixed Karlovitz number. The simulations suggest that turbulence does not significantly affect the oxygen flame when Da 16 16 >1, turbulence enhances heat transfer and drives the propagation of a flame that is narrower than the corresponding inductive flame would be. Furthermore, burning under these conditions appears to occur as part of a combined carbon-oxygen turbulent flame with complex compound structure. The simulations do not appear to support the possibility of a transition to detonation in the oxygen flame, but do not preclude it either.

  16. Flame-in-gas-shield and miniature diffusion flame hydride atomizers for atomic fluorescence spectrometry: optimization and comparison

    International Nuclear Information System (INIS)

    Marschner, Karel; Musil, Stanislav; Dědina, Jiří

    2015-01-01

    A detailed optimization of relevant experimental parameters of two hydride atomizers for atomic fluorescence spectrometry: flame-in-gas-shield atomizer with a two-channel shielding unit and a standard atomizer for atomic fluorescence spectrometry, miniature diffusion flame, was performed. Arsine, generated by the reaction with NaBH 4 in a flow injection arrangement, was chosen as the model hydride. Analytical characteristics of both the atomizers (sensitivity, noise, limits of detection) were compared. Under optimum conditions sensitivity obtained with flame-in-gas-shield atomizer was approximately twice higher than with miniature diffusion flame. The additional advantage of flame-in-gas-shield atomizer is significantly lower flame emission resulting in a better signal to noise ratio. The resulting arsenic limits of detection for miniature diffusion flame and flame-in-gas-shield atomizer were 3.8 ng l −1 and 1.0 ng l −1 , respectively. - Highlights: • We optimized and compared two hydride atomizers for atomic fluorescence spectrometry. • Miniature diffusion flame and flame-in-gas-shield atomizer were optimized. • The limit of detection for arsenic was 1.0 ng l −1

  17. Flame-in-gas-shield and miniature diffusion flame hydride atomizers for atomic fluorescence spectrometry: optimization and comparison

    Energy Technology Data Exchange (ETDEWEB)

    Marschner, Karel, E-mail: karel.marschner@biomed.cas.cz [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Charles University in Prague, Faculty of Science, Department of Analytical Chemistry, Albertov 8, 128 43 Prague (Czech Republic); Musil, Stanislav; Dědina, Jiří [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic)

    2015-07-01

    A detailed optimization of relevant experimental parameters of two hydride atomizers for atomic fluorescence spectrometry: flame-in-gas-shield atomizer with a two-channel shielding unit and a standard atomizer for atomic fluorescence spectrometry, miniature diffusion flame, was performed. Arsine, generated by the reaction with NaBH{sub 4} in a flow injection arrangement, was chosen as the model hydride. Analytical characteristics of both the atomizers (sensitivity, noise, limits of detection) were compared. Under optimum conditions sensitivity obtained with flame-in-gas-shield atomizer was approximately twice higher than with miniature diffusion flame. The additional advantage of flame-in-gas-shield atomizer is significantly lower flame emission resulting in a better signal to noise ratio. The resulting arsenic limits of detection for miniature diffusion flame and flame-in-gas-shield atomizer were 3.8 ng l{sup −1} and 1.0 ng l{sup −1}, respectively. - Highlights: • We optimized and compared two hydride atomizers for atomic fluorescence spectrometry. • Miniature diffusion flame and flame-in-gas-shield atomizer were optimized. • The limit of detection for arsenic was 1.0 ng l{sup −1}.

  18. The Role of Quench-back in the Passive Quench Protection of Long Solenoids with Coil Sub-division

    International Nuclear Information System (INIS)

    Green, Michael A.; Guo, XingLong; Wang, Li; Pan, Heng; Wu, Hong

    2009-01-01

    This paper describes how a passive quench protection system can be applied to long superconducting solenoid magnets. When a solenoid coil is long compared to its thickness, the magnet quench process will be dominated by the time needed for uench propagation along the magnet length. Quench-back will permit a long magnet to quench more rapidly in a passive way. Quenchback from a conductive (low resistivity) mandrel is essential for spreading the quench along the length of a magnet. The andrel must be inductively coupled to the magnet circuit that is being quenched. Current induced in the mandrel by di/dt in the magnet produces heat in the mandrel, which in turn causes the superconducting coil wound on the mandrel to quench. Sub-divisions often employed to reduce the voltages to ground within the coil. This paper explores when it is possible for quench-back to be employed for passive quench protection. The role of sub-division of the coil is discussed for long magnets.

  19. Flex-flame burner and combustion method

    Science.gov (United States)

    Soupos, Vasilios; Zelepouga, Serguei; Rue, David M.; Abbasi, Hamid A.

    2010-08-24

    A combustion method and apparatus which produce a hybrid flame for heating metals and metal alloys, which hybrid flame has the characteristic of having an oxidant-lean portion proximate the metal or metal alloy and having an oxidant-rich portion disposed above the oxidant lean portion. This hybrid flame is produced by introducing fuel and primary combustion oxidant into the furnace chamber containing the metal or metal alloy in a substoichiometric ratio to produce a fuel-rich flame and by introducing a secondary combustion oxidant into the furnace chamber above the fuel-rich flame in a manner whereby mixing of the secondary combustion oxidant with the fuel-rich flame is delayed for a portion of the length of the flame.

  20. Effects of quenching and partial quenching on QCD penguin matrix elements

    NARCIS (Netherlands)

    Golterman, Maarten; Pallante, Elisabetta

    2002-01-01

    We point out that chiral transformation properties of penguin operators change in the transition from unquenched to (partially) quenched QCD. The way in which this affects the lattice determination of weak matrix elements can be understood in the framework of (partially) quenched chiral perturbation

  1. A Study of the Effect of Interrupted Quenches on a Thermomechanically Processed High Carbon Steel.

    Science.gov (United States)

    1982-10-01

    steel . Successful martempering requires a cooling rate sufficient to avoid the nose of the C- curve and thus prevent significant bainite formation. When...STUDY OF THE EFFECT OF INTERRUPTED QUENCHES ON A THERMONECHANICALLY PROCESSED HIGH CARBON STEEL by Steven A. Barton October 1982 Thesis Advisor: T.R...unlimited. A Study of the Effect of Interrupted Quenches on a Thermomechanically Processed High Carbon Steel by Steven A. Barton Lieutenant, United

  2. Numerical study for flame deflector design of a space launch vehicle

    Science.gov (United States)

    Oh, Hwayoung; Lee, Jungil; Um, Hyungsik; Huh, Hwanil

    2017-04-01

    A flame deflector is a structure that prevents damage to a launch vehicle and a launch pad due to exhaust plumes of a lifting-off launch vehicle. The shape of a flame deflector should be designed to restrain the discharged gas from backdraft inside the deflector and to reflect the impact to the surrounding environment and the engine characteristics of the vehicle. This study presents the five preliminary flame deflector configurations which are designed for the first-stage rocket engine of the Korea Space Launch Vehicle-II and surroundings of the Naro space center. The gas discharge patterns of the designed flame deflectors are investigated using the 3D flow field analysis by assuming that the air, in place of the exhaust gas, forms the plume. In addition, a multi-species unreacted flow model is investigated through 2D analysis of the first-stage engine of the KSLV-II. The results indicate that the closest Mach number and temperature distributions to the reacted flow model can be achieved from the 4-species unreacted flow model which employs H2O, CO2, and CO and specific heat-corrected plume.

  3. Turbulent Jet Flames Into a Vitiated Coflow. PhD Thesis awarded Spring 2003

    Science.gov (United States)

    Holdeman, James D. (Technical Monitor); Cabra, Ricardo

    2004-01-01

    coflow or jet velocity. An explanation for this phenomenon is that entrainment of ambient air at the high lift-off heights prevents autoignition. Analysis of the results suggests that flame stabilization occurs through a combination of flame propagation, autoignition, and localized extinction processes. Proposed is an expanded view of distributed reaction combustion based on analysis of the distributions of probe volume conditions at the stabilization region of the lifted hydrogen and methane flames. Turbulent eddies the size of the flame thickness mix fuel and hot coflow across the flame front, thereby enhancing the reaction zone with autoignition of reactants at elevated temperatures; this is the reverse effect of turbulent flames in ambient air, where intense turbulence in cool mixtures result in localized extinction. Each of the three processes (i.e., flame propagation, autoignition and localized extinction) contributes to flame stabilization in varying degrees, depending on flow conditions.

  4. Quench propagation and quench detection in the TF system of JT-60SA

    International Nuclear Information System (INIS)

    Lacroix, Benoit; Duchateau, Jean-Luc; Meuris, Chantal; Ciazynski, Daniel; Nicollet, Sylvie; Zani, Louis; Polli, Gian-Mario

    2013-01-01

    Highlights: • The JT-60SA primary quench detection system will be based on voltage measurements. • The early quench propagation was studied in the JT-60SA TF conductor. • The impact of the conductor jacket on the hot spot criterion was quantified. • The detection parameters were investigated for different quench initiations. -- Abstract: In the framework of the JT-60SA project, France and Italy will provide to JAEA 18 Toroidal Field (TF) coils including NbTi cable-in-conduit conductors. During the tokamak operation, these coils could experience a quench, an incidental event corresponding to the irreversible transition from superconducting state to normal resistive state. Starting from a localized disturbance, the normal zone propagates along the conductor and dissipates a large energy due to Joule heating, which can cause irreversible damages. The detection has to be fast enough (a few seconds) to trigger the current discharge, so as to dump the stored magnetic energy into an external resistor. The JT-60SA primary quench detection system will be based on voltage measurements, which are the most rapid technology. The features of the detection system must be adjusted so as to detect the most probable quenches, while avoiding inopportune fast safety discharges. This requires a reliable simulation of the early quench propagation, performed in this study with the Gandalf code. The conductor temperature reached during the current discharge must be kept under a maximal value, according to the hot spot criterion. In the present study, a hot spot criterion temperature of 150 K was taken into account and the role of each conductor component (strands, helium and conduit) was analyzed. The detection parameters were then investigated for different hypotheses regarding the quench initiation

  5. Gravitational Effects on Cellular Flame Structure

    Science.gov (United States)

    Dunsky, C. M.; Fernandez-Pello, A. C.

    1991-01-01

    An experimental investigation has been conducted of the effect of gravity on the structure of downwardly propagating, cellular premixed propane-oxygen-nitrogen flames anchored on a water-cooled porous-plug burner. The flame is subjected to microgravity conditions in the NASA Lewis 2.2-second drop tower, and flame characteristics are recorded on high-speed film. These are compared to flames at normal gravity conditions with the same equivalence ratio, dilution index, mixture flow rate, and ambient pressure. The results show that the cellular instability band, which is located in the rich mixture region, changes little under the absence of gravity. Lifted normal-gravity flames near the cellular/lifted limits, however, are observed to become cellular when gravity is reduced. Observations of a transient cell growth period following ignition point to heat loss as being an important mechanism in the overall flame stability, dominating the stabilizing effect of buoyancy for these downwardly-propagating burner-anchored flames. The pulsations that are observed in the plume and diffusion flame generated downstream of the premixed flame in the fuel rich cases disappear in microgravity, verifying that these fluctuations are gravity related.

  6. Research on flame retardation of wool fibers

    International Nuclear Information System (INIS)

    Enomoto, Ichiro; Ametani, Kazuo; Sawai, Takeshi

    1990-01-01

    Flame retardant, vinyl phosphonate oligomer, was uniformly impregnated in wool fibers, and by irradiating low energy electron beam or cobalt-60 gamma ray, the flame retardation of fabrics was attempted, as the results, the following knowledges were obtained. At the rate of sticking of flame retardant lower than that in cotton fabrics, sufficient flame retarding property can be given. The flame retarding property withstands 30 times of washing. The lowering of strength due to the processing hardly arose. For the flame retardation, gamma-ray was more effective than electron beam. Since the accidents of burning clothes have occurred frequently, their flame retardation has been demanded. So far the flame retardation of cotton fabrics has been advanced, but this time the research on the flame retardation of wool fabrics was carried out by the same method. The experimental method is explained. As for the performance of the processed fabrics, the rate of sticking of the flame retardant, the efficiency of utilization, the flame retarding property, the endurance in washing and the tensile and tearing strength were examined. As the oxygen index was higher, the flame retarding property was higher, and in the case of the index being more than 27, the flame retarding property is sufficient, that is, the rate of sticking of 6% in serge and 5% in muslin. (K.I.)

  7. Laminar flame properties and flame acceleration prediction of hydrogen-methane mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Coudoro, K. [Inst. de Combustion, Aerothermique, Reactivite et Environnement CNRS Orleans (France); Inst. de Radioprotection et de Surete Nucleaire, DSR/SAGR, Fontenay-aux-Roses (France); Chaumeix, N. [Inst. de Combustion, Aerothermique, Reactivite et Environnement CNRS Orleans (France); Bentaib, A. [Inst. de Radioprotection et de Surete Nucleaire, DSR/SAGR, Fontenay-aux-Roses (France); Paillard, C-E. [Inst. de Combustion, Aerothermique, Reactivite et Environnement CNRS Orleans (France)

    2011-07-01

    The combustion of a binary mixture of methane and hydrogen has been studied using 2 different experimental setups: the spherical bomb to investigate the fundamental flame properties of this mixture with air, initially at 100 kPa, at different initial temperatures (300 - 363 K) and for a wide range of equivalence ratios (0.8 - 1.4); ENACCEF to investigate the flame acceleration phenomena in smooth tube for mixtures initially at ambient conditions and for equivalence ratios ranging between 0.57 and 0.84. A detailed kinetic mechanism has been used to derive the activation energies needed for the flame acceleration analysis. (author)

  8. Lifted Turbulent Jet Flames

    Science.gov (United States)

    1993-04-14

    flame length L simultaneously with h, and measuring the visible radiation I simultaneously with h. L(t) was found to be nearly uncorrelated with h(t...variation of 7i/2 /76 with ýh. These experiments included measuring the flame length L simultaneously with h, and measuring the visible radiation I...Measurements of Liftoff Height and Flame Length ... 66 4.5 Simultaneous Measurements of Liftoff Height and Radiation ....... 71 4.6 D scussion

  9. Temperature Profiles During Quenches in LHC Superconducting Dipole Magnets Protected by Quench Heaters

    OpenAIRE

    Maroussov, V; Sanfilippo, S; Siemko, A

    1999-01-01

    The efficiency of the magnet protection by quench heaters was studied using a novel method which derives the temperature profile in a superconducting magnet during a quench from measured voltage signals. In several Large Hadron Collider single aperture dipole models, temperature profiles and temperature gradients in the magnet coil have been evaluated in the case of protection by different sets of quench heaters and different powering and protection parameters. The influence of the insulation...

  10. Quench detection and behaviour in case of quench in the ITER magnet systems

    International Nuclear Information System (INIS)

    Coatanea-Gouachet, M.

    2012-02-01

    The quench of one of the ITER magnet system is an irreversible transition from superconducting to normal resistive state, of a conductor. This normal zone propagates along the cable in conduit conductor dissipating a large power. The detection has to be fast enough to dump out the magnetic energy and avoid irreversible damage of the systems. The primary quench detection in ITER is based on voltage detection, which is the most rapid detection. The very magnetically disturbed environment during the plasma scenario makes the voltage detection particularly difficult, inducing large inductive components in the coils and voltage compensations have to be designed to discriminate the resistive voltage associated with the quench. A conceptual design of the quench detection based on voltage measurements is proposed for the three majors magnet systems of ITER. For this, a clear methodology was developed. It includes the classical hot spot criterion, the quench propagation study using the commercial code Gandalf and the careful estimation of the inductive disturbances by developing the TrapsAV code. Specific solutions have been proposed for the compensation in the three ITER magnet systems and for the quench detection parameters, which are the voltage threshold (in the range of 0.1 V - 0.55 V) and the holding time (in the range of 1-1.4 s). The selected values, in particular the holding time, are sufficiently high to ensure the reliability of the system and avoid fast safety discharges not induced by a quench, which is a classical problem. (author)

  11. Near wall combustion modeling in spark ignition engines. Part B: Post-flame reactions

    International Nuclear Information System (INIS)

    Demesoukas, Sokratis; Caillol, Christian; Higelin, Pascal; Boiarciuc, Andrei; Floch, Alain

    2015-01-01

    Highlights: • Models for the post flame reactions (CO and hydrocarbons) and heat release rate are proposed. • ‘Freezing’ effect of CO kinetics is captured but equilibrium CO concentrations are low. • Reactive–diffusive processes are modeled for hydrocarbons and the last stage of combustion is captured. - Abstract: Reduced fuel consumption, low pollutant emissions and adequate output performance are key features in the contemporary design of spark ignition engines. Zero-dimensional numerical simulation is an attractive alternative to engine experiments for the evaluation of various engine configurations. Both flame front reaction and post-flame processes contribute to the heat release rate. The contribution of this work is to highlight and model the role of post-flame reactions (CO and hydrocarbons) in the heat release rate. The modeling approach to CO kinetics used two reactions considered to be dominant and thus more suitable for the description of CO chemical mechanism. Equilibrium concentrations of all the species involved were calculated by a two-zone thermodynamic model. The computed characteristic time of CO kinetics was found to be of a similar order to the results of complex chemistry simulations. The proposed model captured the ‘freezing’ effect (reaction rate is almost zero) for temperatures lower than 1800 K and followed the trends of the measured values at exhaust. However, a consistent underestimation of CO levels at the exhaust was observed. The impact of the remaining CO on the combustion efficiency is considerable especially for rich mixtures. For a remaining 0.4% CO mass fraction, the impact on combustion inefficiency is 0.1%. Unburnt hydrocarbon, which have not reacted within the flame front before quenching, diffuse in the burnt gas and react. In this work, a global reaction rate models the kinetic behavior of hydrocarbon. The diffusion process was modeled by a relaxation equation applied on the calculated kinetic concentration

  12. Deciphering jet quenching with JEWEL

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    In heavy ion collisions jets arising from the fragmentation of hard quarks and gluons experience strong modifications due to final state re-scattering. This so-called jet quenching is related to the emergence of collectivity and equilibration in QCD. I will give an introduction to jet quenching and its modeling in JEWEL, a Monte Carlo implementation of a dynamical model for jet quenching. I will then discuss examples highlighting how JEWEL can be used to elucidate the physical mechanisms relevant for jet quenching.  

  13. Flame retardancy and thermal degradation of cotton textiles based on UV-curable flame retardant coatings

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Weiyi [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzai Road, Hefei, Anhui 230026 (China); Suzhou Institute for Advanced Study, University of Science and Technology of China, 166 Ren' ai Road, Suzhou, Jiangsu 215123 (China); Jie, Ganxin [State Key Laboratory of Environmental Adaptability for Industrial Products, China National Electric Apparatus Research Institute, Guangzhou 510300 (China); Song, Lei; Hu, Shuang; Lv, Xiaoqi; Wang, Xin [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzai Road, Hefei, Anhui 230026 (China); Hu, Yuan, E-mail: yuanhu@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzai Road, Hefei, Anhui 230026 (China); Suzhou Institute for Advanced Study, University of Science and Technology of China, 166 Ren' ai Road, Suzhou, Jiangsu 215123 (China)

    2011-01-20

    The flame retardant coatings were prepared through UV-curable technique using tri(acryloyloxyethyl) phosphate (TAEP) and triglycidyl isocyanurate acrylate (TGICA). Results from FTIR-ATR spectroscopy and scanning electron microscopy (SEM) showed that flame retardant coatings were successfully coated onto the surface of cotton fabrics. The flame retardancy of the treated fabrics was studied by Micro-scale Combustion Calorimeter (MCC) and limited oxygen index (LOI). The cottons coated flame retardant coatings had the lower peak heat release rate (PHRR), heat release capacity (HRC), total heat of combustion (THC) and higher LOI value compared with untreated cotton. The results from TGA test showed that the flame retardant coatings lowered the decomposition temperature of treated fabric. The thermal decomposition of cottons was monitored by real time FTIR analysis and thermogravimetric analysis/infrared spectrometry (TGA-IR). The enhanced flame retardant action might be caused by thermal decomposition of TAEP structure, producing acidic intermediates, which could react with fabrics to alter its thermal decomposition process.

  14. On the theory of turbulent flame velocity

    OpenAIRE

    Bychkov, Vitaly; Akkerman, Vyacheslav; Petchenko, Arkady

    2012-01-01

    The renormalization ideas of self-similar dynamics of a strongly turbulent flame front are applied to the case of a flame with realistically large thermal expansion of the burning matter. In that case a flame front is corrugated both by external turbulence and the intrinsic flame instability. The analytical formulas for the velocity of flame propagation are obtained. It is demonstrated that the flame instability is of principal importance when the integral turbulent length scale is much large...

  15. Investigation of flame structure in plasma-assisted turbulent premixed methane-air flame

    Science.gov (United States)

    Hualei, ZHANG; Liming, HE; Jinlu, YU; Wentao, QI; Gaocheng, CHEN

    2018-02-01

    The mechanism of plasma-assisted combustion at increasing discharge voltage is investigated in detail at two distinctive system schemes (pretreatment of reactants and direct in situ discharge). OH-planar laser-induced fluorescence (PLIF) technique is used to diagnose the turbulent structure methane-air flame, and the experimental apparatus consists of dump burner, plasma-generating system, gas supply system and OH-PLIF system. Results have shown that the effect of pretreatment of reactants on flame can be categorized into three regimes: regime I for voltage lower than 6.6 kV; regime II for voltage between 6.6 and 11.1 kV; and regime III for voltage between 11.1 and 12.5 kV. In regime I, aerodynamic effect and slower oxidation of higher hydrocarbons generated around the inner electrode tip plays a dominate role, while in regime III, the temperature rising effect will probably superimpose on the chemical effect and amplify it. For wire-cylinder dielectric barrier discharge reactor with spatially uneven electric field, the amount of radicals and hydrocarbons are decreased monotonically in radial direction which affects the flame shape. With regard to in situ plasma discharge in flames, the discharge pattern changes from streamer type to glow type. Compared with the case of reactants pretreatment, the flame propagates further in the upstream direction. In the discharge region, the OH intensity is highest for in situ plasma assisted combustion, indicating that the plasma energy is coupled into flame reaction zone.

  16. Strained flamelets for turbulent premixed flames, I: Formulation and planar flame results

    Energy Technology Data Exchange (ETDEWEB)

    Kolla, H.; Swaminathan, N. [Department of Engineering, Cambridge University, Cambridge CB2 1PZ (United Kingdom)

    2010-05-15

    A strained flamelet model is proposed for turbulent premixed flames using scalar dissipation rate as a parameter. The scalar dissipation rate of reaction progress variable is a suitable quantity to describe the flamelet structure since it is governed by convection-diffusion-reaction balance and it is defined at every location in the flamelets, which are represented by laminar flames in reactant-to-product opposed flow configuration. The mean reaction rate is obtained by using the flamelets reaction rate and the joint pdf of the progress variable and its dissipation rate. The marginal pdf of the progress variable is presumed to be {beta}-pdf and the pdf of the conditional dissipation rate is taken to be log-normal. The conditional mean dissipation rate is obtained from modelled mean dissipation rate. This reaction rate closure is assessed using RANS calculations of statistically planar flames in the corrugated flamelets and thin reaction zones regimes. The flame speeds calculated using this closure are close to the experimental data of Abdel-Gayed et al. (1987) for flames in both the regimes. Comparisons with other reaction rate closures showed the benefits of the strained flamelets approach. (author)

  17. Prevention of the current-quench phase of a major disruption in a tokamak reactor

    International Nuclear Information System (INIS)

    Miller, J.B.

    1987-01-01

    The 2-D Tokamak Simulation Code written by the Princeton Plasma Physics Laboratory was joined to a 3-D eddy-current code, which models periodic torus sectors. The combined system was found to be an efficient and accurate method for modeling the plasma/eddy current interaction during a major disruption. For modeling large highly compartmentalized structures, artificially increasing the self-inductance and limiting the mutual inductance of current elements were necessary to enhance numerical stability. Even with these modifications, a slowly growing instability made the results unreliable after 58 ms. This model was used to demonstrate prevention of the current quench phase of a major disruption in INTOR. The average plasma temperature was reduced to 150 eV over 3 ms. The (outboard) breeding blanket structure was constructed of CuBeNi and was electrically connected between torus sectors. Disruption recovery coils were provided inboard of the inboard shield (linking the toroidal field coils). It was necessary to supply to these coils a total of 500 MW for 0.6 s and to reheat the plasma to full beta in 6 s. The calculation shows a method of recovery from the most severe disruption probable. Determining the severity of the disruption from which recovery would be cost effective is beyond the scope of this study

  18. Analytic prediction of unconfined boundary layer flashback limits in premixed hydrogen-air flames

    Science.gov (United States)

    Hoferichter, Vera; Hirsch, Christoph; Sattelmayer, Thomas

    2017-05-01

    Flame flashback is a major challenge in premixed combustion. Hence, the prediction of the minimum flow velocity to prevent boundary layer flashback is of high technical interest. This paper presents an analytic approach to predicting boundary layer flashback limits for channel and tube burners. The model reflects the experimentally observed flashback mechanism and consists of a local and global analysis. Based on the local analysis, the flow velocity at flashback initiation is obtained depending on flame angle and local turbulent burning velocity. The local turbulent burning velocity is calculated in accordance with a predictive model for boundary layer flashback limits of duct-confined flames presented by the authors in an earlier publication. This ensures consistency of both models. The flame angle of the stable flame near flashback conditions can be obtained by various methods. In this study, an approach based on global mass conservation is applied and is validated using Mie-scattering images from a channel burner test rig at ambient conditions. The predicted flashback limits are compared to experimental results and to literature data from preheated tube burner experiments. Finally, a method for including the effect of burner exit temperature is demonstrated and used to explain the discrepancies in flashback limits obtained from different burner configurations reported in the literature.

  19. Quenches in large superconducting magnets

    International Nuclear Information System (INIS)

    Eberhard, P.H.; Alston-Garnjost, M.; Green, M.A.; Lecomte, P.; Smits, R.G.; Taylor, J.D.; Vuillemin, V.

    1977-08-01

    The development of large high current density superconducting magnets requires an understanding of the quench process by which the magnet goes normal. A theory which describes the quench process in large superconducting magnets is presented and compared with experimental measurements. The use of a quench theory to improve the design of large high current density superconducting magnets is discussed

  20. Laminar Flame Speeds of Gasoline Surrogates Measured with the Flat Flame Method

    KAUST Repository

    Liao, Y.-H.; Roberts, William L.

    2016-01-01

    © 2016 American Chemical Society. The adiabatic, laminar flame speeds of gasoline surrogates at atmospheric pressure over a range of equivalence ratios of = 0.8-1.3 and unburned gas temperatures of 298-400 K are measured with the flat flame method

  1. Discharge quenching circuit for counters

    International Nuclear Information System (INIS)

    Karasik, A.S.

    1982-01-01

    A circuit for quenching discharges in gas-discharge detectors with working voltage of 3-5 kV based on transistors operating in the avalanche mode is described. The quenching circuit consists of a coordinating emitter follower, amplifier-shaper for avalanche key cascade control which changes potential on the counter electrodes and a shaper of discharge quenching duration. The emitter follower is assembled according to a widely used flowsheet with two transistors. The circuit permits to obtain a rectangular quenching pulse with front of 100 ns and an amplitude of up to 3.2 kV at duration of 500 μm-8 ms. Application of the quenching circuit described permits to obtain countering characteristics with the slope less than or equal to 0.02%/V and plateau extent greater than or equal to 300 V [ru

  2. Numerical study of laminar nonpremixed methane flames in coflow jets: Autoignited lifted flames with tribrachial edges and MILD combustion at elevated temperatures

    KAUST Repository

    M. Al-Noman, Saeed

    2016-07-07

    Autoignition characteristics of laminar nonpremixed methane jet flames in high-temperature coflow air are studied numerically. Several flame configurations are investigated by varying the initial temperature and fuel mole fraction. At a relatively low initial temperature, a non-autoignited nozzle-attached flame is simulated at relatively low jet velocity. When the initial temperature is higher than that required for autoignition, two regimes are investigated: an autoignited lifted flame with tribrachial edge structure and an autoignited lifted flame with Mild combustion. The autoignited lifted flame with tribrachial edge exhibited three branches: lean and rich premixed flame wings and a trailing diffusion flame. Characteristics of kinetic structure for autoignited lifted flames are discussed based on the kinetic structures of homogeneous autoignition and flame propagation of stoichiometric mixture. Results showed that a transition from autoignition to flame propagation modes occurs for reasonably stoichiometric mixtures. The autoignited lifted flame with Mild combustion occurs when methane fuel is highly diluted with nitrogen. The kinetic structure analysis shows that the characteristics of Mild combustion can be treated as an autoignited lean premixed lifted flame. Transition behavior from Mild combustion to nozzle-attached flame was investigated by increasing the fuel mole fraction. As the maximum flame temperature increases with decreasing liftoff height, the kinetic structure showed a transition behavior from autoignition to flame propagation of a lean premixed flame. © 2016 The Combustion Institute

  3. Flame dynamics of a meso-scale heat recirculating combustor

    Energy Technology Data Exchange (ETDEWEB)

    Vijayan, V.; Gupta, A.K. [Department of Mechanical Engineering, University of Maryland, College Park, MD 20742 (United States)

    2010-12-15

    The dynamics of premixed propane-air flame in a meso-scale ceramic combustor has been examined here. The flame characteristics in the combustor were examined by measuring the acoustic emissions and preheat temperatures together with high-speed cinematography. For the small-scale combustor, the volume to surface area ratio is small and hence the walls have significant effect on the global flame structure, flame location and flame dynamics. In addition to the flame-wall thermal coupling there is a coupling between flame and acoustics in the case of confined flames. Flame-wall thermal interactions lead to low frequency flame fluctuations ({proportional_to}100 Hz) depending upon the thermal response of the wall. However, the flame-acoustic interactions can result in a wide range of flame fluctuations ranging from few hundred Hz to few kHz. Wall temperature distribution is one of the factors that control the amount of reactant preheating which in turn effects the location of flame stabilization. Acoustic emission signals and high-speed flame imaging confirmed that for the present case flame-acoustic interactions have more significant effect on flame dynamics. Based on the acoustic emissions, five different flame regimes have been identified; whistling/harmonic mode, rich instability mode, lean instability mode, silent mode and pulsating flame mode. (author)

  4. Control of confined nonpremixed flames using a microjet

    International Nuclear Information System (INIS)

    Sinha, Ashok; Ganguly, Ranjan; Puri, Ishwar K.

    2005-01-01

    Industrial burners, such as those used in materials processing furnaces, require precise control over the flame length, width, overall shape and other physical flame attributes. The mechanism used to control the flame topology should be relatively simple, safe, and devoid of an emissions penalty. We have explored the feasibility of hydrodynamic control of confined nonpremixed flames by injecting air through a high-momentum microjet. An innovative strategy for the control of flame shape and luminosity is demonstrated based on a high-momentum coaxial microjet injected along the center of a confined nonpremixed flame burning in a coflowing oxidizer stream. The introduction of the microjet shortens a nonpremixed flame and reduces the amplitude of the buoyancy-induced flickering. For a microjet-assisted flame, the flame length is more sensitive to the fuel flowrate than for laminar or turbulent nonpremixed flames. This provides greater flexibility for the dynamic control of their flame lengths. Measurements of NO x and CO emissions show that the method is robust. Effective flame control without an emissions penalty is possible over a large range of microjet velocities that significantly alter the flame shape. Since the influence of the microjet is primarily of a hydrodynamic nature, inert microjet fluids like recirculated exhaust gas can also be used in practical devices

  5. Control of confined nonpremixed flames using a microjet

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, A.; Puri, I.K. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Engineering Science and Mechanics; Ganguly, R. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Engineering Science and Mechanics; Jadavpur Univ., Calcutta (India). Dept. of Power Engineering

    2005-06-01

    Industrial burners, such as those used in materials processing furnaces, require precise control over the flame length, width, overall shape and other physical flame attributes. The mechanism used to control the flame topology should be relatively simple, safe, and devoid of an emissions penalty. We have explored the feasibility of hydrodynamic control of confined nonpremixed flames by injecting air through a high-momentum microjet. An innovative strategy for the control of flame shape and luminosity is demonstrated based on a high-momentum coaxial microjet injected along the center of a confined nonpremixed flame burning in a coflowing oxidizer stream. The introduction of the microjet shortens a nonpremixed flame and reduces the amplitude of the buoyancy-induced flickering. For a microjet-assisted flame, the flame length is more sensitive to the fuel flowrate than for laminar or turbulent nonpremixed flames. This provides greater flexibility for the dynamic control of their flame lengths. Measurements of NO{sub x} and CO emissions show that the method is robust. Effective flame control without an emissions penalty is possible over a large range of microjet velocities that significantly alter the flame shape. Since the influence of the microjet is primarily of a hydrodynamic nature, inert microjet fluids like recirculated exhaust gas can also be used in practical devices. (Author)

  6. Impact of flame-wall interaction on premixed flame dynamics and transfer function characteristics

    KAUST Repository

    Kedia, K.S.; Altay, H.M.; Ghoniem, A.F.

    2011-01-01

    In this paper, we numerically investigate the response of a perforated-plate stabilized laminar methane-air premixed flame to imposed inlet velocity perturbations. A flame model using detailed chemical kinetics mechanism is applied and heat exchange

  7. The Quench Action

    Science.gov (United States)

    Caux, Jean-Sébastien

    2016-06-01

    We give a pedagogical introduction to the methodology of the Quench Action, which is an effective representation for the calculation of time-dependent expectation values of physical operators following a generic out-of-equilibrium state preparation protocol (for example a quantum quench). The representation, originally introduced in Caux and Essler (2013 Phys. Rev. Lett. 110 257203), is founded on a mixture of exact data for overlaps together with variational reasonings. It is argued to be quite generally valid and thermodynamically exact for arbitrary times after the quench (from short times all the way up to the steady state), and applicable to a wide class of physically relevant observables. Here, we introduce the method and its language, give an overview of some recent results, suggest a roadmap and offer some perspectives on possible future research directions.

  8. Opposed-Flow Flame Spread over Thin Solid Fuels in a Narrow Channel under Different Gravity

    Science.gov (United States)

    Zhang, Xia; Yu, Yong; Wan, Shixin; Wei, Minggang; Hu, Wen-Rui

    microgravity. This showed that the horizontal narrow channel can restrict natural convection effectively. In the vertical narrow channel, flame spread became slower as the forced gas flow speed increased. In low speed gas flows, flame spread was not near quench limit. Instead, the spread rate got its maximum value. This was entirely different from the result of microgravity and showed that the vertical narrow channel can not restrict natural convection. For the horizontal narrow channel, when the channel height lowered to 1 cm (The Grashof number was 149 using the half height as a characteristic length), the natural convection was restricted. For vertical narrow channel, a lower height was needed to restrict natural convection. References 1. NASA Technical Standard, "Flammability, Odor, Offgassing, and Compatibility Require-ments and Test Procedures for Materials in Environments That Support Combustion", NASA STD-6001, 1998. 2. Ivanov, A. V., Balashov, Ye. V., Andreeva, T. V., and et al., "Experimental Verification of Material Flammability in Space", NASA CR-1999-209405, 1999. 3. Melikhov, A. S., Bolodyan, I. A., Potyakin, V. I., and et al., "The study of polymer material combustion in simulated microgravity by physical modeling method", In: Sacksteder K, ed, "Fifth Int Microgravity Comb Workshop", NASA CP-1999-208917, 1999, 361. 4. T'ien, J. S., Shih, H.-Y., Jiang, C.-B., and et al., "Mechanisms of flame spread and smol-der wave propagation", In: Ross, H. D., ed, "Microgravity Combustion: Fire in Free Fall", Academic Press, 2001. 299. 5. Olson, S. L., Comb Sci Tech, 76, 233, 1991.

  9. Mechanistic aspects of ionic reactions in flames

    DEFF Research Database (Denmark)

    Egsgaard, H.; Carlsen, L.

    1993-01-01

    Some fundamentals of the ion chemistry of flames are summarized. Mechanistic aspects of ionic reactions in flames have been studied using a VG PlasmaQuad, the ICP-system being substituted by a simple quartz burner. Simple hydrocarbon flames as well as sulfur-containing flames have been investigated...

  10. Characteristics of Oscillating Flames in a Coaxial Confined Jet

    Directory of Open Access Journals (Sweden)

    Min Suk Cha

    2010-12-01

    Full Text Available Flame characteristics when a non-premixed n-butane jet is ejected into a coaxial cylindrical tube are investigated experimentally. Flame stability depends mainly on the characteristics of flame propagation as well as air entrainment which depend on the jet momentum and on the distance between the nozzle exit and the base of a confined tube. As flow rate increases, the flame lifts off from a nozzle attached diffusion flame and a stationary lifted flame can be stabilized. The liftoff height increases nearly linearly with the average velocity at the nozzle exit. The lifted flame has a tribrachial flame structure, which consists of a rich premixed flame, a lean premixed flame, and a diffusion flame, all extending from a single location. As flow rate further increases, periodically oscillating flames are observed inside the confined tube. Once flame oscillation occurs, the flame undergoes relatively stable oscillation such that it has nearly constant oscillation amplitude and frequency. The criteria of flame oscillation are mapped as functions of nozzle diameter, the distance between nozzle and tube, and jet velocity. This type of flame oscillation can be characterized by Strouhal number in terms of flame oscillation amplitude, frequency, and jet velocity. Buoyancy driven flame oscillation which is one of the viable mechanism for flame oscillation is modeled and the results agrees qualitatively with experimental results, suggesting that the oscillation is due to periodic blowoff and flashback under the influence of buoyancy.

  11. Quenching behaviour of hot zircaloy tube

    International Nuclear Information System (INIS)

    Chinchole, A.S.; Kulkarni, P.P.; Nayak, A.K.; Vijayan, P.K.

    2015-01-01

    The quenching process plays a very important role in case of safety of nuclear reactors. During large break Loss of Coolant Accident in a nuclear reactor, the cooling water from the system is lost. Under this condition, cold water is injected from emergency core cooling system. Quenching behaviour of such heated rod bundle is really complex. It is well known that nanofluids have better heat removal capability and high heat transfer coefficient owing to enhanced thermal properties. Alumina nano-particles result in better cooling abilities compared with the traditionally used quenching media. In this paper, the authors have carried out experiments on quenching behaviour of hot zircaloy tube with demineralized water and nanofluids. It was observed that, the tube got quenched within few seconds even with the presence of decay heat and shows slightly reduced quenching time compared with DM water. (author)

  12. Quench detection method for 2G HTS wire

    International Nuclear Information System (INIS)

    Marchevsky, M; Xie, Y-Y; Selvamanickam, V

    2010-01-01

    2G HTS conductors are increasingly used in various commercial applications and their thermal and electrical stability is an important reliability factor. Detection and prevention of quenches in 2G wire-based cables and solenoids has proven to be a difficult engineering task. This is largely due to a very slow normal zone propagation in coated conductors that leads to formation of localized hotspots while the rest of the conductor remains in the superconducting state. We propose an original method of quench and hotspot detection for 2G wires and coils that is based upon local magnetic sensing and takes advantage of 2G wire planar geometry. We demonstrate our technique experimentally and show that its sensitivity is superior to the known voltage detection scheme. A unique feature of the method is its capability to remotely detect instant degradation of the wire critical current even before a normal zone is developed within the conductor. Various modifications of the method applicable to practical device configurations are discussed.

  13. Quench detection method for 2G HTS wire

    Energy Technology Data Exchange (ETDEWEB)

    Marchevsky, M; Xie, Y-Y; Selvamanickam, V, E-mail: maxmarche@gmail.co, E-mail: yxie@superpower-inc.co [SuperPower, Inc., 450 Duane Avenue, Schenectady, NY 12304 (United States)

    2010-03-15

    2G HTS conductors are increasingly used in various commercial applications and their thermal and electrical stability is an important reliability factor. Detection and prevention of quenches in 2G wire-based cables and solenoids has proven to be a difficult engineering task. This is largely due to a very slow normal zone propagation in coated conductors that leads to formation of localized hotspots while the rest of the conductor remains in the superconducting state. We propose an original method of quench and hotspot detection for 2G wires and coils that is based upon local magnetic sensing and takes advantage of 2G wire planar geometry. We demonstrate our technique experimentally and show that its sensitivity is superior to the known voltage detection scheme. A unique feature of the method is its capability to remotely detect instant degradation of the wire critical current even before a normal zone is developed within the conductor. Various modifications of the method applicable to practical device configurations are discussed.

  14. Quench Simulation Studies: Program documentation of SPQR

    CERN Document Server

    Sonnemann, F

    2001-01-01

    Quench experiments are being performed on prototypes of the superconducting magnets and busbars to determine the adequate design and protection. Many tests can only be understood correctly with the help of quench simulations that model the thermo-hydraulic and electrodynamic processes during a quench. In some cases simulations are the only method to scale the experimental results of prototype measurements to match the situation of quenching superconducting elements in the LHC. This note introduces the theoretical quench model and the use of the simulation program SPQR (Simulation Program for Quench Research), which has been developed to compute the quench process in superconducting magnets and busbars. The model approximates the heat balance equation with the finite difference method including the temperature dependence of the material parameters. SPQR allows the simulation of longitudinal quench propagation along a superconducting cable, the transverse propagation between adjacent conductors, heat transfer i...

  15. Phenomenology and numerical calculations of lean hydrogen-air premixed flame propagation in a turbulent flow

    International Nuclear Information System (INIS)

    Faix-Gantier, A.

    2001-12-01

    This thesis concerns the study of flame propagation in a turbulent flow of lean hydrogen-air mixtures. The aim is to precise the characteristics of propagation as well as combustion and turbulence models able to take into account the peculiarities of these mixtures. This research work is related to the prevention of fire hazards associated with accidental release of hydrogen within the reactor of a nuclear power plant. In a first part, the scales (the flame velocity and thickness) associated with the laminar flame propagation in hydrogen-air mixtures are studied. A specific attention is devoted to the intrinsic instability properties of such flames. Then, the turbulence scales potentially present within a reactor are estimated in order to allow for the determination of the regimes of combustion that might be present within the reactor and among which the flamelet regime appears to be conceivable. In a second part, starting with the analysis of the propagation properties of a mean reaction zone calculated with a flamelet model, we show that, with an adequate tuning of the parameter appearing in the mean reaction rate expression, it is possible to predict numerically the turbulent flame speeds available with the literature. (author)

  16. Classical vs. evolved quenching parameters and procedures in scintillation measurements: The importance of ionization quenching

    International Nuclear Information System (INIS)

    Bagan, H.; Tarancon, A.; Rauret, G.; Garcia, J.F.

    2008-01-01

    The quenching parameters used to model detection efficiency variations in scintillation measurements have not evolved since the decade of 1970s. Meanwhile, computer capabilities have increased enormously and ionization quenching has appeared in practical measurements using plastic scintillation. This study compares the results obtained in activity quantification by plastic scintillation of 14 C samples that contain colour and ionization quenchers, using classical (SIS, SCR-limited, SCR-non-limited, SIS(ext), SQP(E)) and evolved (MWA-SCR and WDW) parameters and following three calibration approaches: single step, which does not take into account the quenching mechanism; two steps, which takes into account the quenching phenomena; and multivariate calibration. Two-step calibration (ionization followed by colour) yielded the lowest relative errors, which means that each quenching phenomenon must be specifically modelled. In addition, the sample activity was quantified more accurately when the evolved parameters were used. Multivariate calibration-PLS also yielded better results than those obtained using classical parameters, which confirms that the quenching phenomena must be taken into account. The detection limits for each calibration method and each parameter were close to those obtained theoretically using the Currie approach

  17. Turbulent premixed flames on fractal-grid-generated turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Soulopoulos, N; Kerl, J; Sponfeldner, T; Beyrau, F; Hardalupas, Y; Taylor, A M K P [Mechanical Engineering Department, Imperial College London, London SW7 2AZ (United Kingdom); Vassilicos, J C, E-mail: ns6@ic.ac.uk [Department of Aeronautics, Imperial College London, London SW7 2AZ (United Kingdom)

    2013-12-15

    A space-filling, low blockage fractal grid is used as a novel turbulence generator in a premixed turbulent flame stabilized by a rod. The study compares the flame behaviour with a fractal grid to the behaviour when a standard square mesh grid with the same effective mesh size and solidity as the fractal grid is used. The isothermal gas flow turbulence characteristics, including mean flow velocity and rms of velocity fluctuations and Taylor length, were evaluated from hot-wire measurements. The behaviour of the flames was assessed with direct chemiluminescence emission from the flame and high-speed OH-laser-induced fluorescence. The characteristics of the two flames are considered in terms of turbulent flame thickness, local flame curvature and turbulent flame speed. It is found that, for the same flow rate and stoichiometry and at the same distance downstream of the location of the grid, fractal-grid-generated turbulence leads to a more turbulent flame with enhanced burning rate and increased flame surface area. (paper)

  18. Physical and Chemical Processes in Turbulent Flames

    Science.gov (United States)

    2015-06-23

    equiangular sectors, defined as the ratio of the actual flame length to the length of a circular-arc of radius equal to the average flame radius. Assuming... flame length ratio obtained directly from the experiments, without any assumption. As explained earlier (Eq. 2.8) the length ratio, (LR=dl(G0)/dl0) is...spherically expanding flames, with the length ratio on the measurement plane, at predefined equiangular sectors, defined as the ratio of the actual flame length to

  19. Extinction of corrugated hydrogen/air flames

    International Nuclear Information System (INIS)

    Mizomoto, M.; Asaka, Y.; Ikai, S.; Law, C.K.

    1982-01-01

    Recent studies on flammability limits reveal the importance of flow nonuniformity, flame curvature, and molecular and thermal diffusivities in determining the extinguishability and the associated limits of premixed fuel/air flames. In particular, it is found that conditions which favor extinction of a lean flame may cause intensification of a rich flame. In the present study the authors have experimentally determined the extinction characteristics and limits of highly curved hydrogen/air flames as represented by the opening of bunsen flame tips. Results show that the tip opens at a constant fuel equivalence ratio of phi = 1.15, regardless of the velocity and uniformity of the upstream flow. This critical mixture concentration, while being rich, is still on the lean side of that corresponding to the maximum burning velocity (phi = 1.8), implying that for highly diffusive systems, the relevant reference concentration is that for maximum burning velocity instead of stoichiometry

  20. Radiation Effects on the Thermodiffusive Instability of Premixed Flames on a Cylindrical Porous Flame Holder

    Science.gov (United States)

    Du, Minglong; Yang, Lijun

    2017-10-01

    A linear analysis method was used to investigate the mechanics of radiation heat loss and mass transfer in the porous wall of premixed annular flames and their effect on thermodiffusive instability. The dispersion relation between the disturbance wave growth rate and wavenumber was calculated numerically. Results showed that radiation heat loss elevated the annular flame slightly away from the porous wall. In the annular flame with small Lewis numbers, radiation heat loss changed the thermodiffusive instability from a pulsating to a cellular state, while for the large Lewis numbers, only the pulsating instability was represented. Increasing radiation heat loss and the radius of the porous wall enhanced the instability of the annular flames. Heat losses decreased with the continued increase in thickness of the porous wall and the decrease in porosity. Annular flames with long-wave mode along the angular direction were more unstable than the shortwave mode.

  1. POLYAMIDE 6 WITH A FLAME RETARDANT ENCAPSULATED BY POLYAMIDE 66: FLAME RETARDATION, THERMO-DECOMPOSITION AND THE POTENTIAL MECHANISM

    Institute of Scientific and Technical Information of China (English)

    Wei-cheng Xiong; Li Chen; Bin Zhao; De-yi Wang; Yu-zhong Wang

    2012-01-01

    A novel encapsulated flame retardant containing phosphorus-nitrogen (MSMM-Al-P) was prepared by encapsulating with polyamide 66 (PA66-MSMM-Al-P) for the flame retardation of polyamide 6 (PA6).The structure and thermal properties of PA66-MSMM-Al-P were characterized by Fourier-transform infrared spectroscopy,X-ray photoelectron spectroscopy and thermogravimetric analysis.The flammability of PA6 containing' flame retardants (MSMMAl-P and PA66-MSMM-Al-P) was investigated by the limiting oxygen index test,vertical burning test and cone calorimeter.The flame retardancy and cone calorimetric analyses suggested a synergistic effect between PA66 and MSMM-Al-P in the flame-retardant PA6.Thermal stability of the flame-retardant PA6 was also investigated.

  2. Rapid Quench in an Electrostatic Levitator

    Science.gov (United States)

    SanSoucie, Michael P.; Rogers, Jan R.; Matson, Douglas M.

    2016-01-01

    The Electrostatic Levitation (ESL) Laboratory at the NASA Marshall Space Flight Center (MSFC) is a unique facility for investigators studying high-temperature materials. The ESL laboratory's main chamber has been upgraded with the addition of a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy, as a quench medium. Thereby allowing rapid quenching of undercooled liquid metals. Up to eight quench vessels can be loaded into a wheel inside the chamber that is indexed with control software. The system has been tested successfully with samples of zirconium, iron-cobalt alloys, titanium-zirconium-nickel alloys, and a silicon-cobalt alloy. This new rapid quench system will allow materials science studies of undercooled materials and new materials development. In this presentation, the system is described and some initial results are presented.

  3. MSFC Electrostatic Levitator (ESL) Rapid Quench System

    Science.gov (United States)

    SanSoucie, Michael P.; Craven, Paul D.; Rogers, Jan R.

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) Electrostatic Levitator (ESL) Laboratory is a unique facility for investigators studying high-temperature materials. The laboratory boasts two levitators in which samples can be levitated, heated, melted, undercooled, and resolidified, all without the interference of a container or data-gathering instrument. The ESL main chamber has been upgraded with the addition of a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy. Thereby allowing rapid quenching of undercooled liquid metals. Up to 8 quench vessels can be loaded into the quench wheel, which is indexed with LabVIEW control software. This allows up to 8 samples to be rapidly quenched before having to open the chamber. The system has been tested successfully on several zirconium samples. Future work will be done with other materials using different quench mediums. Microstructural analysis will also be done on successfully quench samples.

  4. Incendiary Discourse: Reconsidering Flaming, Authority, and Democratic Subjectivity in Computer-Mediated Communication

    Science.gov (United States)

    Oleksiak, Timothy

    2012-01-01

    This article explores the relationship between teacher authority and flaming in asynchronous online communication. Teachers who rely on what I call stabilization and universal applicability--two concepts emerging from a liberal democratic theory--may actually be preventing a full and robust understanding of the complexities of 21st-century…

  5. Flame visualization in power stations

    Energy Technology Data Exchange (ETDEWEB)

    Hulshof, H J.M.; Thus, A W; Verhage, A J.L. [KEMA Fossil Generation, Arnhem (Netherlands)

    1994-01-01

    The study on the title subject is aimed at the determination of the form of the flame and the radiation temperature of the flames of the burners in electric power plants. The adjustment of the burners in a boiler is assessed on the basis of the total performance, in which the NO[sub x]- and CO-concentrations in the flue gases are normative. By comparing the burners mutually, deviating adjustments can be observed, applying optical monitoring techniques. Measurements have been carried out of the coal flames in the unit Gelderland13 of the Dutch energy production company EPON and of the gas flames at the Claus plant A and B of the Dutch energy company EPZ. The final aim of the title study is to draft guidelines, based on the measured flame data, by means of which for every individual burner the adjustment of the fuel supply, the relation with the air supply and the swirl of the combustion air can be optimized

  6. Analysis of Flame Characteristics in a Laboratory-Scale Turbulent Lifted Jet Flame via DNS

    Directory of Open Access Journals (Sweden)

    Haiou Wang

    2013-09-01

    Full Text Available A fully compressible 3D solver for reacting flows has been developed and applied to investigate a turbulent lifted jet flame in a vitiated coflow by means of direct numerical simulation (DNS to validate the solver and analyze the flame characteristics. An eighth-order central differencing scheme is used for spatial discretization and a fourth-order Runge-Kutta method is employed for time integration. The DNS results agree well with the experimental measurements for the conditional means of reactive scalars. However, the lift-off height is under predicted. The mean axial velocity develops into a self-similar profile after x/D = 6. The normalized flame index is employed to characterize the combustion regime. It is found that at the flame base the gradients of the reactants are opposed and diffusion combustion is dominant. Further downstream, the contribution of premixed combustion increases and peaks at x/D = 8. Finally, the stabilization process is examined. The turbulent lifted flame is proved to stabilize in the lean mixtures and low scalar dissipation rate regions.

  7. Influence of Pilot Flame Parameters on the Stability of Turbulent Jet Flames

    KAUST Repository

    Guiberti, Thibault F.

    2016-11-08

    This paper presents a comprehensive study of the effects of pilot parameters on flame stability in a turbulent jet flame. The Sydney inhomogeneous piloted burner is employed as the experimental platform with two main fuels, namely, compressed natural gas and liquefied petroleum gas. Various concentrations of five gases are used in the pilot stream, hydrogen, acetylene, oxygen, nitrogen, and argon, to enable a sufficient range in exploring the following parameters: pilot heat release, temperature, burnt gas velocity, equivalence ratio, and H/C ratio. The experimental results are mainly presented in the form of blow-off limits and supported by simple calculations, which simulate various conditions of the pilot–mixture interface. It is found that increasing the pilot adiabatic flame temperature benefits the flame stability and has an even greater influence than the heat release, which is also known to enhance the blow-off limits. Conversely, increasing the pilot burnt gas velocity reduces the blow-off velocity, except for the limiting case when the jet is fully non-premixed. The H/C ratio has negligible effects, while resorting to lean pilots significantly increases the stability of globally rich partially premixed and premixed jets. Such findings are consistent with trends obtained from laminar flame calculations for rich fuel/air mixtures issuing against hot combustion products to simulate the pilot stream.

  8. Concentration quenching in Nd-doped glasses

    International Nuclear Information System (INIS)

    Stokowski, S.E.; Cook, L.; Mueller, H.; Weber, M.J.

    1984-01-01

    Fluorescence from trivalent Nd in solids is unfortunately quenched by interactions between Nd ions. Thus, laser materials with high Nd concentrations have reduced efficiencies because of this self-quenching, also known as concentration quenching. Nd self-quenching in different crystals and glasses varies considerably. We are therefore investigating this effect in a large number of materials in an effort to: (1) find those materials with long Nd fluorescent lifetimes at high Nd concentrations; and (2) elucidate the basic mechanisms of quenching and how the material structure controls its magnitude. We have concentrated on Nd-doped glasses because they provide a rich variety of structures, albeit complicated by Nd site inhomogeneities, and are easily and quickly made

  9. Turbulent Flame Speed Scaling for Positive Markstein Number Expanding Flames in Near Isotropic Turbulence

    Science.gov (United States)

    Chaudhuri, Swetaprovo; Wu, Fujia; Law, Chung

    2012-11-01

    In this work we clarify the role of Markstein diffusivity on turbulent flame speed and it's scaling, from analysis and experimental measurements on constant-pressure expanding flames propagating in near isotropic turbulence. For all C0-C4 hydrocarbon-air mixtures presented in this work and recently published C8 data from Leeds, the normalized turbulent flame speed data of individual mixtures approximately follows the recent theoretical and experimental ReT, f 0 . 5 scaling, where the average radius is the length scale and thermal diffusivity is the transport property. We observe that for a constant ReT, f 0 . 5 , the normalized turbulent flame speed decreases with increasing Mk. This could be explained by considering Markstein diffusivity as the large wavenumber, flame surface fluctuation dissipation mechanism. As originally suggested by the theory, replacing thermal diffusivity with Markstein diffusivity in the turbulence Reynolds number definition above, the present and Leeds dataset could be scaled by the new ReT, f 0 . 5 irrespective of the fuel considered, equivalence ratio, pressure and turbulence intensity for positive Mk flames. This work was supported by the Combustion Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Basic Energy Sciences under Award Number DE-SC0001198 and by the Air Force Office of Scientific Research.

  10. LES of a laboratory-scale turbulent premixed bunsen flame using FSD, PCM-FPI and thickened flame models

    NARCIS (Netherlands)

    Hernandez Perez, F.E.; Yuen, F.T.C.; Groth, C.P.T.; Gülder, O.L.

    2011-01-01

    Large-eddy simulations (LES) of a turbulent premixed Bunsen flame were carried out with three subfilter-scale (SFS) modelling approaches for turbulent premixed combustion. One approach is based on the artificially thickened flame and power-law flame wrinkling models, the second approach is based on

  11. Application of Best Estimate Approach for Modelling of QUENCH-03 and QUENCH-06 Experiments

    Directory of Open Access Journals (Sweden)

    Tadas Kaliatka

    2016-04-01

    In this article, the QUENCH-03 and QUENCH-06 experiments are modelled using ASTEC and RELAP/SCDAPSIM codes. For the uncertainty and sensitivity analysis, SUSA3.5 and SUNSET tools were used. The article demonstrates that applying the best estimate approach, it is possible to develop basic QUENCH input deck and to develop the two sets of input parameters, covering maximal and minimal ranges of uncertainties. These allow simulating different (but with the same nature tests, receiving calculation results with the evaluated range of uncertainties.

  12. Pt coating on flame-generated carbon particles

    International Nuclear Information System (INIS)

    Choi, In Dae; Lee, Dong Geun

    2008-01-01

    Carbon black, activated carbon and carbon nanotube have been used as supporting materials for precious metal catalysts used in fuel cell electrodes. One-step flame synthesis method is used to coat 2-5nm Pt dots on flame-generated carbon particles. By adjusting flame temperature, gas flow rates and resident time of particles in flame, we can obtain Pt/C nano catalyst-support composite particles. Additional injection of hydrogen gas facilitates pyrolysis of Pt precursor in flame. The size of as-incepted Pt dots increases along the flame due to longer resident time and sintering in high temperature flame. Surface coverage and dispersion of the Pt dots is varied at different sampling heights and confirmed by Transmission Electron Microscopy (TEM), Energy Dispersive Spectra (EDS) and X-Ray Diffraction (XRD). Crystallinity and surface bonding groups of carbon are investigated through X-ray Photoelectron Spectroscoy (XPS) and Raman spectroscopy

  13. Quenching and recovery experiments on molybdenum

    International Nuclear Information System (INIS)

    Schwirtlich, I.A.; Schultz, H.; Max-Planck-Institut fuer Metallforschung, Stuttgart

    1980-01-01

    Quenching experiments in superfluid helium have been performed on high-purity wire specimens obtained from a Mo single crystal with a residual resistance ratio of 40 000. Quenching from various temperatures near the melting point to 1.5 K resulted in quenched-in resistivities which are interpreted in terms of quenched-in vacancies. The following parameters were derived: Hsub(1V)sup(F) = 3.2 eV (formation enthalpy of monovacancies) and Ssub(1V)sup(F) = 1.5 k (formation entropy). The recovery of the quenched-in resistivity showed a recovery stage at 520 K, which is compatible with a migration enthalpy of Hsub(1V)sup(M) = 1.35 eV. The results are compared with recently published positron annihilation data. (author)

  14. 30 CFR 14.20 - Flame resistance.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Flame resistance. 14.20 Section 14.20 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF... § 14.20 Flame resistance. Conveyor belts for use in underground coal mines must be flame-resistant and...

  15. Structure of diffusion flames from a vertical burner

    Science.gov (United States)

    Mark A. Finney; Dan Jimenez; Jack D. Cohen; Isaac C. Grenfell; Cyle Wold

    2010-01-01

    Non-steady and turbulent flames are commonly observed to produce flame contacts with adjacent fuels during fire spread in a wide range of fuel bed depths. A stationary gas-fired burner (flame wall) was developed to begin study of flame edge variability along an analagous vertical fuel source. This flame wall is surrogate for a combustion interface at the edge of a deep...

  16. Environmental Quenching of Low-Mass Field Galaxies

    Science.gov (United States)

    Fillingham, Sean P.; Cooper, Michael C.; Boylan-Kolchin, Michael; Bullock, James S.; Garrison-Kimmel, Shea; Wheeler, Coral

    2018-04-01

    In the local Universe, there is a strong division in the star-forming properties of low-mass galaxies, with star formation largely ubiquitous amongst the field population while satellite systems are predominantly quenched. This dichotomy implies that environmental processes play the dominant role in suppressing star formation within this low-mass regime (M⋆ ˜ 105.5 - 8 M⊙). As shown by observations of the Local Volume, however, there is a non-negligible population of passive systems in the field, which challenges our understanding of quenching at low masses. By applying the satellite quenching models of Fillingham et al. (2015) to subhalo populations in the Exploring the Local Volume In Simulations (ELVIS) suite, we investigate the role of environmental processes in quenching star formation within the nearby field. Using model parameters that reproduce the satellite quenched fraction in the Local Group, we predict a quenched fraction - due solely to environmental effects - of ˜0.52 ± 0.26 within 1 systems observed at these distances are quenched via environmental mechanisms. Beyond 2 Rvir, however, dwarf galaxy quenching becomes difficult to explain through an interaction with either the Milky Way or M31, such that more isolated, field dwarfs may be self-quenched as a result of star-formation feedback.

  17. Pole solutions for flame front propagation

    CERN Document Server

    Kupervasser, Oleg

    2015-01-01

    This book deals with solving mathematically the unsteady flame propagation equations. New original mathematical methods for solving complex non-linear equations and investigating their properties are presented. Pole solutions for flame front propagation are developed. Premixed flames and filtration combustion have remarkable properties: the complex nonlinear integro-differential equations for these problems have exact analytical solutions described by the motion of poles in a complex plane. Instead of complex equations, a finite set of ordinary differential equations is applied. These solutions help to investigate analytically and numerically properties of the flame front propagation equations.

  18. Synergistic Effect of Nanosilica Aerogel with Phosphorus Flame Retardants on Improving Flame Retardancy and Leaching Resistance of Wood

    Directory of Open Access Journals (Sweden)

    Xiaodan Zhu

    2014-01-01

    Full Text Available Nanosilica (Nano-SiO2 sol fabricated by a sol-gel process was introduced into wood modification with phosphorus flame retardants to improve the flame retardancy and leaching resistance of wood. The obtained materials were characterized by scanning electron microscopy and energy dispersive spectrometer (SEM-EDS, thermogravimetric analysis (TGA, cone calorimetric (CONE, and infrared spectroscopy (FT-IR. The residual rate of flame retardants before and after leaching was determinated by a leaching resistance. The results showed that the phosphorus flame retardants and SiO2 sol could reside in the poplar wood and are widely distributed in the vessels, pits, wood timber, and the spaces between wood cells of poplar substrate. TGA and CONE results indicated that the introduction of nano-SiO2 aerogel with phosphorus flame retardants had a significantly synergistic effect on improving the flame retardancy and inhibiting the release of smoke and toxic gases. In addition, the leaching resistance test, combined with infrared analysis and EDS analysis, confirmed that the phosphorus flame retardants were able to be fixed by SiO2 aerogel in the wood.

  19. Measurements and Experimental Database Review for Laminar Flame Speed Premixed Ch4/Air Flames

    Science.gov (United States)

    Zubrilin, I. A.; Matveev, S. S.; Matveev, S. G.; Idrisov, D. V.

    2018-01-01

    Laminar flame speed (SL ) of CH4 was determined at atmospheric pressure and initial gas temperatures in range from 298 to 358 K. The heat flux method was employed to measure the flame speed in non-stretched flames. The kinetic mechanism GRI 3.0 [1] were used to simulate SL . The measurements were compared with available literature results. The data determined with the heat flux method agree with some previous burner measurements and disagree with the data from some vessel closed method and counterflow method. The GRI 3.0 mechanism was able to reproduce the present experiments. Laminar flame speed was determined at pressures range from of 1 to 20 atmospheres through mechanism GRI 3.0. Based on experimental data and calculations was obtained SL dependence on pressure and temperature. The resulting of dependence recommended use during the numerical simulation of methane combustion.

  20. Flame emission, atomic absorption and fluorescence spectrometry

    International Nuclear Information System (INIS)

    Horlick, G.

    1980-01-01

    Six hundred and thirty references are cited in this review. The information in the review is divided into 12 major areas: books, reviews, and bibliographies; fundamental studies in flames; developments in instrumentation; measurement techniques and procedure; flame emission spectrometry; flame atomic absorption spectrometry; flame molecular absorption spectrometry; electrothermal atomization atomic absorption spectroscopy; hydride generation techniques; graphite furnace atomic emission spectrometry; atomic fluorescence spectrometry; and analytical comparisons

  1. The mass dependence of dwarf satellite galaxy quenching

    International Nuclear Information System (INIS)

    Slater, Colin T.; Bell, Eric F.

    2014-01-01

    We combine observations of the Local Group with data from the NASA-Sloan Atlas to show the variation in the quenched fraction of satellite galaxies from low-mass dwarf spheroidals and dwarf irregulars to more massive dwarfs similar to the Magellanic Clouds. While almost all of the low-mass (M * ≲ 10 7 M ☉ ) dwarfs are quenched, at higher masses the quenched fraction decreases to approximately 40%-50%. This change in the quenched fraction is large and suggests a sudden change in the effectiveness of quenching that correlates with satellite mass. We combine this observation with models of satellite infall and ram pressure stripping to show that the low-mass satellites must quench within 1-2 Gyr of pericenter passage to maintain a high quenched fraction, but that many more massive dwarfs must continue to form stars today even though they likely fell into their host >5 Gyr ago. We also characterize how the susceptibility of dwarfs to ram pressure must vary as a function of mass if it is to account for the change in quenched fractions. Though neither model predicts the quenching effectiveness a priori, this modeling illustrates the physical requirements that the observed quenched fractions place on possible quenching mechanisms.

  2. The influence of flame hardening process to aluminum 7075 series on the mechanical strength and micro structure

    Science.gov (United States)

    Koin, Sudibtia Titio; Triyono, Teguh; Surojo, Eko

    2018-02-01

    The 7075 series alloys are heat treatable wrought aluminum alloys based on the Al-Zn-Mg(-Cu) system. They are widely used in high-performance structural aerospace and transportation applications. Apart from compositional, casting and thermo-mechanical processing effects, the balance of properties is also significantly influenced by the way in which the materials are heat-treated. This paper describes the effect of flame hardening process to aluminum 7075 series on the increasing hardness, tensile strength, and evolution of microstructure. A test specimen had made by machining process and flame heating. Temperature of solution heat treatment is varied on 350 °C, 400 °C, 450 °C and 500 °C. After that process a test specimen would be quenched at nitrate-nitrite liquid during 45 minutes and artificial aging at 120°C until two days. The testing specimen consist of hardness and tensile strength according to ASTM. The result showed that specimen had precipitation on microstructure lead to an increase in aluminum properties. On the temperature 450°C solution heat treatment, the aluminum properties reached the highest value, namely, hardness of 129 HVN and tensile strength 570 MPa.

  3. Sooting turbulent jet flame: characterization and quantitative soot measurements

    Science.gov (United States)

    Köhler, M.; Geigle, K. P.; Meier, W.; Crosland, B. M.; Thomson, K. A.; Smallwood, G. J.

    2011-08-01

    Computational fluid dynamics (CFD) modelers require high-quality experimental data sets for validation of their numerical tools. Preferred features for numerical simulations of a sooting, turbulent test case flame are simplicity (no pilot flame), well-defined boundary conditions, and sufficient soot production. This paper proposes a non-premixed C2H4/air turbulent jet flame to fill this role and presents an extensive database for soot model validation. The sooting turbulent jet flame has a total visible flame length of approximately 400 mm and a fuel-jet Reynolds number of 10,000. The flame has a measured lift-off height of 26 mm which acts as a sensitive marker for CFD model validation, while this novel compiled experimental database of soot properties, temperature and velocity maps are useful for the validation of kinetic soot models and numerical flame simulations. Due to the relatively simple burner design which produces a flame with sufficient soot concentration while meeting modelers' needs with respect to boundary conditions and flame specifications as well as the present lack of a sooting "standard flame", this flame is suggested as a new reference turbulent sooting flame. The flame characterization presented here involved a variety of optical diagnostics including quantitative 2D laser-induced incandescence (2D-LII), shifted-vibrational coherent anti-Stokes Raman spectroscopy (SV-CARS), and particle image velocimetry (PIV). Producing an accurate and comprehensive characterization of a transient sooting flame was challenging and required optimization of these diagnostics. In this respect, we present the first simultaneous, instantaneous PIV, and LII measurements in a heavily sooting flame environment. Simultaneous soot and flow field measurements can provide new insights into the interaction between a turbulent vortex and flame chemistry, especially since soot structures in turbulent flames are known to be small and often treated in a statistical manner.

  4. Quench simulation of SMES consisting of some superconducting coils

    International Nuclear Information System (INIS)

    Noguchi, S.; Oga, Y.; Igarashi, H.

    2011-01-01

    A chain of quenches may be caused by a quench of one element coil when SMES is consists of many element coils. To avoid the chain of quenches, the energy stored in element coil has to be quickly discharged. The cause of the chain of the quenches is the short time constant of the decreasing current of the quenched coil. In recent years, many HTS superconducting magnetic energy storage (HTS-SMES) systems are investigated and designed. They usually consist of some superconducting element coils due to storing excessively high energy. If one of them was quenched, the storage energy of the superconducting element coil quenched has to be immediately dispersed to protect the HTS-SMES system. As the result, the current of the other element coils, which do not reach to quench, increases since the magnetic coupling between the quenched element coil and the others are excessively strong. The increase of the current may cause the quench of the other element coils. If the energy dispersion of the element coil quenched was failed, the other superconducting element coil would be quenched in series. Therefore, it is necessary to investigate the behavior of the HTS-SMES after quenching one or more element coils. To protect a chain of quenches, it is also important to investigate the time constant of the coils. We have developed a simulation code to investigate the behavior of the HTS-SMES. By the quench simulation, it is indicated that a chain of quenches is caused by a quench of one element coil.

  5. Effect of burner geometry on swirl stabilized methane/air flames: A joint LES/OH-PLIF/PIV study

    KAUST Repository

    Liu, X.

    2017-07-04

    Large eddy simulation (LES) using a transported PDF model and OH-PLIF/PIV experiments were carried out to investigate the quarl effects on the structures of swirl stabilized methane/air flames. Two different quarls were investigated, one straight cylindrical quarl and one diverging conical quarl. The experiments show that the flames are significantly different with the two quarls. With the straight cylindrical quarl a compact blue flame is observed while with the diverging conical quarl the flame appears to be long and yellow indicating a sooty flame structure. The PIV results show the formation of a stronger flow recirculation inside the diverging conical quarl than that in the straight quarl. LES results reveal further details of the flow and mixing process inside the quarl. The results show that with the diverging quarl vortex breakdown occurs much earlier towards the upstream of the quarl. As a result the fuel is convected into the air flow tube and a diffusion flame is stabilized inside the air flow tube upstream the quarl. With the straight quarl, vortex breakdown occurs at a downstream location in the quarl. The scalar dissipation rate in the shear layer of the fuel jet is high, which prevents the stabilization of a diffusion flame in the proximity of the fuel nozzle; instead, a compact partially premixed flame with two distinct heat release layers is stablized in a downstream region in the quarl, which allows for the fuel and air to mix in the quarl before combustion and a lower formation rate of soot. The results showed that the Eulerian Stochastic Fields transported PDF method can well predict the details of the swirl flame dynamics.

  6. Effect of burner geometry on swirl stabilized methane/air flames: A joint LES/OH-PLIF/PIV study

    KAUST Repository

    Liu, X.; Elbaz, Ayman M.; Gong, C.; Bai, X.S.; Zheng, H.T.; Roberts, William L.

    2017-01-01

    Large eddy simulation (LES) using a transported PDF model and OH-PLIF/PIV experiments were carried out to investigate the quarl effects on the structures of swirl stabilized methane/air flames. Two different quarls were investigated, one straight cylindrical quarl and one diverging conical quarl. The experiments show that the flames are significantly different with the two quarls. With the straight cylindrical quarl a compact blue flame is observed while with the diverging conical quarl the flame appears to be long and yellow indicating a sooty flame structure. The PIV results show the formation of a stronger flow recirculation inside the diverging conical quarl than that in the straight quarl. LES results reveal further details of the flow and mixing process inside the quarl. The results show that with the diverging quarl vortex breakdown occurs much earlier towards the upstream of the quarl. As a result the fuel is convected into the air flow tube and a diffusion flame is stabilized inside the air flow tube upstream the quarl. With the straight quarl, vortex breakdown occurs at a downstream location in the quarl. The scalar dissipation rate in the shear layer of the fuel jet is high, which prevents the stabilization of a diffusion flame in the proximity of the fuel nozzle; instead, a compact partially premixed flame with two distinct heat release layers is stablized in a downstream region in the quarl, which allows for the fuel and air to mix in the quarl before combustion and a lower formation rate of soot. The results showed that the Eulerian Stochastic Fields transported PDF method can well predict the details of the swirl flame dynamics.

  7. Quenching reactions of electronically excited atoms

    International Nuclear Information System (INIS)

    Setser, D.W.

    2001-01-01

    The two-body, thermal quenching reactions of electronically excited atoms are reviewed using excited states of Ar, Kr, and Xe atoms as examples. State-specific interstate relaxation and excitation-transfer reactions with atomic colliders are discussed first. These results then are used to discuss quenching reactions of excited-state atoms with diatomic and polyatomic molecules, the latter have large cross sections, and the reactions can proceed by excitation transfer and by reactive quenching. Excited states of molecules are not considered; however, a table of quenching rate constants is given for six excited-state molecules in an appendix

  8. Blowoff dynamics of bluff body stabilized turbulent premixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, Swetaprovo; Kostka, Stanislav; Renfro, Michael W.; Cetegen, Baki M. [Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, U-3139, Storrs, CT 06269 (United States)

    2010-04-15

    This article concerns the flame dynamics of a bluff body stabilized turbulent premixed flame as it approaches lean blowoff. Time resolved chemiluminescence imaging along with simultaneous particle image velocimetry and OH planar laser-induced fluorescence were utilized in an axisymmetric bluff body stabilized, propane-air flame to determine the sequence of events leading to blowoff and provide a quantitative analysis of the experimental results. It was found that as lean blowoff is approached by reduction of equivalence ratio, flame speed decreases and the flame shape progressively changes from a conical to a columnar shape. For a stably burning conical flame away from blowoff, the flame front envelopes the shear layer vortices. Near blowoff, the columnar flame front and shear layer vortices overlap to induce high local stretch rates that exceed the extinction stretch rates instantaneously and in the mean, resulting in local flame extinction along the shear layers. Following shear layer extinction, fresh reactants can pass through the shear layers to react within the recirculation zone with all other parts of the flame extinguished. This flame kernel within the recirculation zone may survive for a few milliseconds and can reignite the shear layers such that the entire flame is reestablished for a short period. This extinction and reignition event can happen several times before final blowoff which occurs when the flame kernel fails to reignite the shear layers and ultimately leads to total flame extinguishment. (author)

  9. The Effects of a Macromolecular Charring Agent with Gas Phase and Condense Phase Synergistic Flame Retardant Capability on the Properties of PP/IFR Composites

    Science.gov (United States)

    Chen, Hongda; Wang, Jihui; Ding, Anxin; Han, Xia; Sun, Ziheng

    2018-01-01

    -retardant mechanism of the APP/PETAT IFR system. The results indicated that the efficient flame retardancy of PP/IFR composites could be attributed to the synergism of the free radical-quenching and char layer-protecting mechanisms in the gas phase and condense phase, respectively. PMID:29324716

  10. The Effects of a Macromolecular Charring Agent with Gas Phase and Condense Phase Synergistic Flame Retardant Capability on the Properties of PP/IFR Composites

    Directory of Open Access Journals (Sweden)

    Hongda Chen

    2018-01-01

    -retardant mechanism of the APP/PETAT IFR system. The results indicated that the efficient flame retardancy of PP/IFR composites could be attributed to the synergism of the free radical-quenching and char layer-protecting mechanisms in the gas phase and condense phase, respectively.

  11. The Effects of a Macromolecular Charring Agent with Gas Phase and Condense Phase Synergistic Flame Retardant Capability on the Properties of PP/IFR Composites.

    Science.gov (United States)

    Chen, Hongda; Wang, Jihui; Ni, Aiqing; Ding, Anxin; Han, Xia; Sun, Ziheng

    2018-01-11

    -retardant mechanism of the APP/PETAT IFR system. The results indicated that the efficient flame retardancy of PP/IFR composites could be attributed to the synergism of the free radical-quenching and char layer-protecting mechanisms in the gas phase and condense phase, respectively.

  12. Visualization of ionic wind in laminar jet flames

    KAUST Repository

    Park, Daegeun

    2017-07-03

    Electric field, when it is applied to hydrocarbon flames, generates ionic wind due to the electric body force on charge carrying species. Ionic wind has been shown to influence soot emission, propagation speed, and stability of flames; however, a detailed behavior of ionic wind and its effects on flames is still not clear. Here, we investigated the dynamic behaviors of flames and ionic wind in the presence of direct current (DC) and alternating current (AC) electric fields in nonpremixed and premixed jet flames with a jet nozzle placed between two parallel electrodes. We observed a skewed flame toward a lower potential electrode with DC and lower frequency AC (e.g., 10Hz) and a steady flame with higher frequencies AC (1000Hz), while we found that the ionic wind blew toward both the anode and cathode regardless of flame type (nonpremixed or premixed) or the source of the electric field (DC and AC).

  13. Quench/reflood modeling in MELCOR

    International Nuclear Information System (INIS)

    Gauntt, R.O.

    2001-01-01

    The authors describe the reactor accident simulation model MELCOR. It comprises hydrodynamic investigations on reactor core quenching, hydrogen generation in the reactor core vessel, quench front advances. Preliminary comparisons to data are reasonable but need further validation. (uke)

  14. Incidence of secondary aeration in confined flames of high pressure premixed atmospheric burner

    International Nuclear Information System (INIS)

    Cadavid Sierra, Francisco Javier; Buitrago Garcia, Jorge Enrique; Velasquez, Daniel

    2002-01-01

    In this work an experimental study about the variables that affect the secondary aeration has been applied. The relationships with phenomena that affect the proper operation of the combustion chamber are discussed in detail. These phenomena are quenching, flame stabilization and the combustion product recirculation. A flexible combustion system developed to allow variations in the volume of combustion chamber, the area of secondary air entrance, the outlet of combustion products and the thermal output is presented. Also, the system could vary the inlet of primary air, though the study is carried out with maximal working area. The experimental setup allowed to compare and to find the influence of design parameters mentioned above on the secondary aeration and also to obtain the insight that the most important design parameters were combustion product outlet and the combustion intensity

  15. Prediction of flame formation in highly preheated air combustion

    International Nuclear Information System (INIS)

    Yang, Jang Sik; Choi, Gyung Min; Kim, Duck Jool; Katsuki, Masashi

    2008-01-01

    Fundamental information about the ignition position and shape of a flame in highly preheated air combustion was obtained, and the suitability of the suggested reduced kinetic mechanism that reflects the characteristics of the highly preheated air combustion was demonstrated. Flame lift height and flame length with variations of premixed air temperature and oxygen concentration were measured by CH chemiluminescence intensity, and were computed with a reduced kinetic mechanism. Flame attached near a fuel nozzle started to lift when preheated air temperature became close to auto-ignition temperature and/or oxygen concentration reduced. The flame lift height increased but the flame length decreased with decreasing preheated air temperature and flame length reversed after a minimum value. Calculated results showed good agreement with those of experiment within tolerable error. Flame shape shifted from diffusion flame shape to partial premixed flame shape with increasing lift height and this tendency was also observed in the computation results

  16. Prediction of flame formation in highly preheated air combustion

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jang Sik; Choi, Gyung Min; Kim, Duck Jool [Pusan National University, Busan (Korea, Republic of); Katsuki, Masashi [Osaka University, Osaka (Japan)

    2008-11-15

    Fundamental information about the ignition position and shape of a flame in highly preheated air combustion was obtained, and the suitability of the suggested reduced kinetic mechanism that reflects the characteristics of the highly preheated air combustion was demonstrated. Flame lift height and flame length with variations of premixed air temperature and oxygen concentration were measured by CH chemiluminescence intensity, and were computed with a reduced kinetic mechanism. Flame attached near a fuel nozzle started to lift when preheated air temperature became close to auto-ignition temperature and/or oxygen concentration reduced. The flame lift height increased but the flame length decreased with decreasing preheated air temperature and flame length reversed after a minimum value. Calculated results showed good agreement with those of experiment within tolerable error. Flame shape shifted from diffusion flame shape to partial premixed flame shape with increasing lift height and this tendency was also observed in the computation results

  17. Premixed Flames Under Microgravity and Normal Gravity Conditions

    Science.gov (United States)

    Krikunova, Anastasia I.; Son, Eduard E.

    2018-03-01

    Premixed conical CH4-air flames were studied experimentally and numerically under normal straight, reversed gravity conditions and microgravity. Low-gravity experiments were performed in Drop tower. Classical Bunsen-type burner was used to find out features of gravity influence on the combustion processes. Mixture equivalence ratio was varied from 0.8 to 1.3. Wide range of flow velocity allows to study both laminar and weakly turbulized flames. High-speed flame chemoluminescence video-recording was used as diagnostic. The investigations were performed at atmospheric pressure. As results normalized flame height, laminar flame speed were measured, also features of flame instabilities were shown. Low- and high-frequency flame-instabilities (oscillations) have a various nature as velocity fluctuations, preferential diffusion instability, hydrodynamic and Rayleigh-Taylor ones etc., that was explored and demonstrated.

  18. Subwoofer and nanotube butterfly acoustic flame extinction

    NARCIS (Netherlands)

    Aliev, Ali E.; Mayo, Nathanael K.; Baughman, Ray H.; Mills, Brent T.; Habtour, Ed

    2017-01-01

    Nonchemical flame control using acoustic waves from a subwoofer and a lightweight carbon nanotube thermoacoustic projector was demonstrated. The intent was to manipulate flame intensity, direction and propagation. The mechanisms of flame suppression using low frequency acoustic waves were discussed.

  19. Nonpremixed flame in a counterflow under electric fields

    KAUST Repository

    Park, Daegeun

    2016-05-08

    Electrically assisted combustion has been studied in order to control or improve flame characteristics, and emphasizing efficiency and emission regulation. Many phenomenological observations have been reported on the positive impact of electric fields on flame, however there is a lack of detailed physical mechanisms for interpreting these. To clarify the effects of electric fields on flame, I have investigated flame structure, soot formation, and flow field with ionic wind electrical current responses in nonpremixed counterflow flames. The effects of direct current (DC) electric field on flame movement and flow field was also demonstrated in premixed Bunsen flames. When a DC electric field was applied to a lower nozzle, the flames moved toward the cathode side due to Lorentz force action on the positive ions, soot particles simultaneously disappeared completely and laser diagnostics was used to identify the results from the soot particles. To understand the effects of an electric field on flames, flow visualization was performed by Mie scattering to check the ionic wind effect, which is considered to play an important role in electric field assisted combustion. Results showed a bidirectional ionic wind, with a double-stagnant flow configuration, which blew from the flame (ionic source) toward both the cathode and the anode. This implies that the electric field affects strain rate and the axial location of stoichiometry, important factors in maintaining nonpremixed counterflow flames; thus, soot formation of the counterflow flame can also be affected by the electric field. In a test of premixed Bunsen flames having parallel electrodes, flame movement toward the cathode and bidirectional ionic wind were observed. Using PIV measurement it was found that a created radial velocity caused by positive ions (i.e. toward a cathode), was much faster than the velocity toward the anode. Even in a study of alternating current (AC) electric fields, bidirectional ionic wind could

  20. Flame synthesis of zinc oxide nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Merchan-Merchan, Wilson, E-mail: wmerchan-merchan@ou.edu [School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019 (United States); Farahani, Moien Farmahini [School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019 (United States)

    2013-02-01

    Highlights: Black-Right-Pointing-Pointer We report a single-step flame method for the synthesis of Zn oxide nanocrystals. Black-Right-Pointing-Pointer Diverse flame positions lead to a variation of Zn oxide nanocrystal growth. Black-Right-Pointing-Pointer The synthesized crystals have polyhedral, pipet- and needle-like shape. Black-Right-Pointing-Pointer High length-to-diameter aspect-ratio crystals appear in a higher temperature flame. Black-Right-Pointing-Pointer The crystal growth mechanism corresponds to vapor-to-solid conversion. - Abstract: Distinctive zinc oxide (ZnO) nanocrystals were synthesized on the surface of Zn probes using a counter-flow flame medium formed by methane/acetylene and oxygen-enriched air streams. The source material, a zinc wire with a purity of {approx}99.99% and diameter of 1 mm, was introduced through a sleeve into the oxygen rich region of the flame. The position of the probe/sleeve was varied within the flame medium resulting in growth variation of ZnO nanocrystals on the surface of the probe. The shape and structural parameters of the grown crystals strongly depend on the flame position. Structural variations of the synthesized crystals include single-crystalline ZnO nanorods and microprisms (ZMPs) (the ZMPs have less than a few micrometers in length and several hundred nanometers in cross section) with a large number of facets and complex axial symmetry with a nanorod protruding from their tips. The protruding rods are less than 100 nm in diameter and lengths are less than 1 {mu}m. The protruding nanorods can be elongated several times by increasing the residence time of the probe/sleeve inside the oxygen-rich flame or by varying the flame position. At different flame heights, nanorods having higher length-to-diameter aspect-ratio can be synthesized. A lattice spacing of {approx}0.26 nm was measured for the synthesized nanorods, which can be closely correlated with the (0 0 2) interplanar spacing of hexagonal ZnO (Wurtzite) cells

  1. 40 CFR 1065.675 - CLD quench verification calculations.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false CLD quench verification calculations... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.675 CLD quench verification calculations. Perform CLD quench-check calculations as follows: (a) Perform a CLD analyzer quench...

  2. Effectiveness of Flame Retardants in TufFoam.

    Energy Technology Data Exchange (ETDEWEB)

    Abelow, Alexis Elizabeth [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Nissen, April [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Massey, Lee Taylor [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Whinnery, LeRoy L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-12-01

    An investigation of polyurethane foam filled with known flame retardant fillers including hydroxides, melamine, phosphate-containing compounds, and melamine phosphates was carried out to produce a low-cost material with high flame retardant efficiency. The impact of flame retardant fillers on the physical properties such a s composite foam density, glass transition temperature, storage modulus, and thermal expansion of composite foams was investigated with the goal of synthesizing a robust rigid foam with excellent flame retardant properties.

  3. The dilution effect on the extinction of wall diffusion flame

    Directory of Open Access Journals (Sweden)

    Ghiti Nadjib

    2014-12-01

    Full Text Available The dynamic process of the interaction between a turbulent jet diffusion methane flame and a lateral wall was experimentally studied. The evolution of the flame temperature field with the Nitrogen dilution of the methane jet flame was examined. The interaction between the diffusion flame and the lateral wall was investigated for different distance between the wall and the central axes of the jet flame. The dilution is found to play the central role in the flame extinction process. The flame response as the lateral wall approaches from infinity and the increasing of the dilution rate make the flame extinction more rapid than the flame without dilution, when the nitrogen dilution rate increase the flame temperature decrease.

  4. Evaluation of steam corrosion and water quenching behavior of zirconium-silicide coated LWR fuel claddings

    Science.gov (United States)

    Yeom, Hwasung; Lockhart, Cody; Mariani, Robert; Xu, Peng; Corradini, Michael; Sridharan, Kumar

    2018-02-01

    This study investigates steam corrosion of bulk ZrSi2, pure Si, and zirconium-silicide coatings as well as water quenching behavior of ZrSi2 coatings to evaluate its feasibility as a potential accident-tolerant fuel cladding coating material in light water nuclear reactor. The ZrSi2 coating and Zr2Si-ZrSi2 coating were deposited on Zircaloy-4 flats, SiC flats, and cylindrical Zircaloy-4 rodlets using magnetron sputter deposition. Bulk ZrSi2 and pure Si samples showed weight loss after the corrosion test in pure steam at 400 °C and 10.3 MPa for 72 h. Silicon depletion on the ZrSi2 surface during the steam test was related to the surface recession observed in the silicon samples. ZrSi2 coating (∼3.9 μm) pre-oxidized in 700 °C air prevented substrate oxidation but thin porous ZrO2 formed on the coating. The only condition which achieved complete silicon immobilization in the oxide scale in aqueous environments was the formation of ZrSiO4 via ZrSi2 coating oxidation in 1400 °C air. In addition, ZrSi2 coatings were beneficial in enhancing quenching heat transfer - the minimum film boiling temperature increased by 6-8% in the three different environmental conditions tested. During repeated thermal cycles (water quenching from 700 °C to 85 °C for 20 s) performed as a part of quench tests, no spallation and cracking was observed and the coating prevented oxidation of the underlying Zircaloy-4 substrate.

  5. Single photon detection with self-quenching multiplication

    Science.gov (United States)

    Zheng, Xinyu (Inventor); Cunningham, Thomas J. (Inventor); Pain, Bedabrata (Inventor)

    2011-01-01

    A photoelectronic device and an avalanche self-quenching process for a photoelectronic device are described. The photoelectronic device comprises a nanoscale semiconductor multiplication region and a nanoscale doped semiconductor quenching structure including a depletion region and an undepletion region. The photoelectronic device can act as a single photon detector or a single carrier multiplier. The avalanche self-quenching process allows electrical field reduction in the multiplication region by movement of the multiplication carriers, thus quenching the avalanche.

  6. Quench propagation in the SSC dipole magnets

    International Nuclear Information System (INIS)

    Lopez, G.; Snitchler, G.

    1990-09-01

    The effects of quench propagation are modeled in 40mm and 50mm diameter collider dipole magnet designs. A comparative study of the cold diode (passive) and quench heater (active) protection schemes will be presented. The SSCQ modeling program accurately simulates the axial quench velocity and uses phenomenological time delays for turn-to-turn transverse propagation. The axial quench velocity is field dependent and consequently, each conductor's quench profile is tracked separately. No symmetry constraints are employed and the distribution of the temperatures along the conductor differs from the adiabatic approximation. A single magnet has a wide margin of self protection which suggests that passive protection schemes must be considered. 6 refs., 3 figs., 1 tab

  7. The structure of horizontal hydrogen-steam diffusion flames

    International Nuclear Information System (INIS)

    Chan, C.K.; Guerrero, A.

    1997-01-01

    This paper summarizes a systematic study on the stability, peak temperature and flame length of various horizontal hydrogen-steam diffusion flames in air. Results from this study are discussed in terms of their impact on hydrogen management in a nuclear containment building after a nuclear reactor accident. They show that, for a certain range of emerging hydrogen-steam compositions, a stable diffusion flame can anchor itself at the break in the primary heat transport system. The length of this flame can be up to 100 times the break diameter. This implies that creation of a stable diffusion flame at the break is a possible outcome of the deliberate ignition mitigation scheme. The high temperature and heat flux from a diffusion flame can threaten nearby equipment. However, due to the presence of steam and turbulent mixing with surrounding air, the peak temperatures of these diffusion flames are much lower than the adiabatic constant pressure combustion temperature of a stoichiometric hydrogen-air mixture. These results suggest that the threat of a diffusion flame anchored at the break may be less severe than conservative analysis would indicate. Furthermore, such a flame can remove hydrogen at the source and minimize the possibility of a global gas explosion. (author)

  8. Flame structure of methane inverse diffusion flame

    KAUST Repository

    Elbaz, Ayman M.; Roberts, William L.

    2014-01-01

    This paper presents high speed images of OH-PLIF at 10. kHz simultaneously with 2D PIV (particle image velocimetry) measurements collected along the entire length of an inverse diffusion flame with circumferentially arranged methane fuel jets. For a

  9. Ion measurements in premixed methane-oxygen flames

    KAUST Repository

    Alquaity, Awad

    2014-07-25

    Ions are formed as a result of chemi-ionization processes in combustion systems. Recently, there has been an increasing interest in understanding flame ion chemistry due to the possible application of external electric fields to reduce emissions and improve combustion efficiency by active control of combustion process. In order to predict the effect of external electric fields on combustion plasma, it is critical to gain a good understanding of the flame ion chemistry. In this work, a Molecular Beam Mass Spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane-oxygen-argon burner-stabilized flames. Lean, stoichiometric and rich flames at atmospheric pressure are used to study the dependence of ion chemistry on equivalence ratio of premixed flames. The relative ion concentration profiles are compared qualitatively with previous methane-oxygen studies and show good agreement. The relative ion concentration data obtained in the present study can be used to validate and improve ion chemistry models for methane-oxygen flames.

  10. Quenched chiral logarithms

    International Nuclear Information System (INIS)

    Sharpe, S.R.

    1992-04-01

    I develop a diagrammatic method for calculating chiral logarithms in the quenched approximation. While not rigorous, the method is based on physically reasonable assumptions, which can be tested by numerical simulations. The main results are that, at leading order in the chiral expansion, (a) there are no chiral logarithms in quenched f π m u = m d ; (b) the chiral logarithms in B K and related kaon B-parameters are, for m d = m s the same in the quenched approximation as in the full theory (c) for m π and the condensate, there are extra chiral logarithms due to loops containing the η', which lead to a peculiar non-analytic dependence of these quantities on the bare quark mass. Following the work of Gasser and Leutwyler, I discuss how there is a predictable finite volume dependence associated with each chiral logarithm. I compare the resulting predictions with numerical results: for most quantities the expected volume dependence is smaller than the errors. but for B V and B A there is an observed dependence which is consistent with the predictions

  11. Simulation of the Quench-06 experiment with Scdapsim; Simulacion del experimento Quench-06 con Scdapsim

    Energy Technology Data Exchange (ETDEWEB)

    Angel M, E. del; Nunez C, A.; Amador G, R. [CNSNS, Dr. Barragan No. 779, 03020 Mexico D.F. (Mexico)]. e-mail: edangelm@cnsns.gob.mx

    2003-07-01

    The present work describes the pattern of the called Quench installation developed and used by the National Commission of Nuclear Security and Safeguards (CNSNS) for their participation in the International Standard Problem 45 (ISP), organized by the Nuclear Energy Agency (NEA). The exercise consisted on the simulation of the denominated experiment Quench-06 carried out in the experimental installation Quench located in the Forschungszentrum laboratory in Karlsruhe, Germany. The experiment Quench-06 consisted on simulating the sudden and late injection of water in a fuel assemble for a pressurized reactor (PWR). The CNSNS uses the version bd of the SCDAPSIM code developed by the company Innovative Software Systems (ISS) to simulate this experiment. The obtained results showed that the code is able to predict the experiment partially when overestimating the hydrogen production and of the partial fused of some fuel pellets, but predicting correctly the damage in the shroud. (Author)

  12. Early structure of LPG partially premixed conically stabilized flames

    KAUST Repository

    Elbaz, Ayman M.

    2013-01-01

    This paper presents experimental investigation of LPG partially premixed turbulent flames stabilized within a conical nozzle burner under constant degree of partial premixing. The stability limits and mean flame structure are presented based on the mean gas temperature and the concentration of CO, O 2, NO, and HC at the flame early region of reaction. The investigation covered the influence of the nozzle cone angle, the jet exit velocity and the jet equivalence ratio. The stability results show that the flames with cone are more stable than those without cone. For conical stabilized flames, the stability results exhibit three different sensitivity regions between the jet velocity and equivalence ratio. The inflame measurements prove that the flame stability could be attributed to the triple flame structure at the flame leading edge. The data show that the triple flame structure is influenced by cone angle, the jet velocity and the equivalence ratio. The flame is believed to be controlled by the recirculation flow inside the cone. Increasing the cone angle induced higher air entrainment to the reaction zone as depicted by a higher O 2 concentration within the flame leading edge. Increasing the jet velocity to a certain limit enhances the intensity of combustion at the flame leading edge, while excessive increase in jet velocity reduces this intensity. At a fixed jet velocity the higher the equivalence ratio, the higher the amount of fuel diffused and engulfed to the reaction zone, the more delay of the combustion completion and the higher the emission concentrations of the flame. © 2012 Elsevier Inc.

  13. Minimum Quench Energy and Early Quench Development in NbTi Superconducting Strands

    CERN Document Server

    Breschi, M; Boselli, M; Bottura, Luca; Devred, Arnaud; Ribani, P L; Trillaud, F

    2007-01-01

    The stability of superconducting wires is a crucial task in the design of safe and reliable superconducting magnets. These magnets are prone to premature quenches due to local releases of energy. In order to simulate these energy disturbances, various heater technologies have been developed, such as coated tips, graphite pastes, and inductive coils. The experiments studied in the present work have been performed using a single-mode diode laser with an optical fiber to illuminate the superconducting strand surface. Minimum quench energies and voltage traces at different magnetic flux densities and transport currents have been measured on an LHC-type, Cu/NbTi wire bathed in pool boiling helium I. This paper deals with the numerical analysis of the experimental data. In particular, a coupled electromagnetic and thermal model has been developed to study quench development and propagation, focusing on the influence of heat exchange with liquid helium.

  14. Experimental methods for quenching structures in lunar-analog silicate melts - Variations as a function of quench media and composition

    International Nuclear Information System (INIS)

    Dyar, M.D.

    1984-01-01

    Compositions analogous to lunar green, orange, and brown glasses were synthesized under consistent conditions, then quenched into a variety of different media when the samples were removed from the furnace. Iron valence and coordination are a direct function of quench media used, spanning the range from brine/ice (most effective quench), water, butyl phthalate, silicone oil, liquid nitrogen, highly reducing CO-CO2 gas, to air (least efficient quench). In the green and brown glasses, Fe(3+) in four-fold and six-fold coordination is observed in the slowest-quenched samples Fe(2+) coordination varies directly with quench efficiency. Less pronounced changes were observed in the Ti-rich orange glass. Therefore the remote-sensed spectrum of a glass-bearing regolith on the moon may be influenced by the process by which the glass cooled, and extreme caution must be used when comparing spectra of synthetic glass analogs with real lunar glasses

  15. Computational quench model applicable to the SMES/CICC

    Science.gov (United States)

    Luongo, Cesar A.; Chang, Chih-Lien; Partain, Kenneth D.

    1994-07-01

    A computational quench model accounting for the hydraulic peculiarities of the 200 kA SMES cable-in-conduit conductor has been developed. The model is presented and used to simulate the quench on the SMES-ETM. Conclusions are drawn concerning quench detection and protection. A plan for quench model validation is presented.

  16. The quench detector on magnetic modulator for the UNK quench protection system

    International Nuclear Information System (INIS)

    Bolotin, I.M.; Enbaev, A.V.; Erokhin, A.N.; Gridasov, V.I.; Priyma, M.V.; Sychev, V.A.; Vasiliev, L.M.

    1992-01-01

    When designing and constructing superconducting high energy accelerators, the development of the Quench Detection System (QDS) for superconducting (SC) magnets becomes an important and critical problem. At present there is experience in developing such systems for the Tevatron (FNAL, USA) and HERA (Hamburg, Germany). The machines for more than 3 TeV-the UNK (Russia) and SSC (USA), which are presently under construction, have very large circumferences, 21 and 87 km, respectively. The QDS's, similar to those of the Tevatron, require a larger part of the active components of the electronic equipment be placed in the machine tunnel close to the magnets, and protected from irradiation or additional surface buildings will have to be constructed. In either case the cost of such a QDS increases. In addition the former ones reliability decreases and maintenance becomes more difficult. For such machines, a QDS in which the quench signal, in each superconducting magnet (SCM) or groups of SCM'S, is extracted with the help of a bridge circuit (BC) appears to be more suitable. The half coils of SCM's are connected as two arms of the bridge and the resistors placed in the vacuum vessels of the magnet cryostats are connected to the other two. The off-balance signal of each BC is enhanced with the help of magnetic amplifiers. This note describes the experimental prototype of a bridge-type Quench Detector (QD) based on a magnetic amplifier Magnetic Modulator (MM) type, allowing one not only to detect a quench in a SCM, but also making feasible a wider system capability, namely: to record the signals from all SC elements during a quench for further analysis of its causes; to check the presence of short circuits of the ring electromagnet bus relative to the cryostats and to localize their position

  17. Hysteresis and transition in swirling nonpremixed flames

    NARCIS (Netherlands)

    Tummers, M.J.; Hübner, A.W.; van Veen, E.H.; Hanjalic, K.; van der Meer, Theodorus H.

    2009-01-01

    Strongly swirling nonpremixed flames are known to exhibit a hysteresis when transiting from an attached long, sooty, yellow flame to a short lifted blue flame, and vice versa. The upward transition (by increasing the air and fuel flow rates) corresponds to a vortex breakdown, i.e. an abrupt change

  18. Effect of Lewis number on ball-like lean limit flames

    KAUST Repository

    Zhou, Zhen

    2017-10-13

    The lean limit flames for three different fuel compositions premixed with air, representing three different mixture Lewis numbers, stabilized inside a tube in a downward flow are examined by experiments and numerical simulations. The CH* chemiluminescence distribution in CH4–air and CH4–H2–air flames and the OH* chemiluminescence distribution in H2–air flames are recorded in the experiments. Cell-like flames are observed for the CH4–air mixture for all tested equivalence ratios. However, for CH4–H2–air and H2–air flames, ball-like lean limit flames are observed. Flame temperature fields are measured using Rayleigh scattering. The experimentally observed lean limit flames are predicted qualitatively by numerical simulation with the mixture-averaged transport model and skeletal mechanism of CH4. The results of the simulations show that the entire lean limit flames of CH4–H2–air and H2–air mixtures are located inside a recirculation zone. However, for the lean limit CH4–air flame, only the leading edge is located inside the recirculation zone. A flame structure with negative flame displacement speed is observed for the leading edges of the predicted lean limit flames with all three different fuel compositions. As compared with 1D planar flames, the fuel transport caused by convection is less significant in the present 2D lean limit flames for the three different fuel compositions. For the trailing edges of the three predicted lean limit flames, a diffusion dominated flame structure is observed.

  19. Effect of turbulence on deflagration to detonation transition

    Energy Technology Data Exchange (ETDEWEB)

    Radford, D D; Chan, C K [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.; Azad, R S [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Mechanical Engineering

    1996-12-31

    The interaction of a turbulent jet and an expanding flame kernel was examined using spark-schlieren photography and piezoelectric pressure transducers. Experiments were performed in a 9 by 9 cm, 4-m-long shock channel. Results show that an expanding flame kernel can be locally, or partially, quenched by flame stretching. The mixing of the hot combustion products, containing reactive species, with the unburnt gas in the turbulent flame-jet, created pockets of sensitized mixture. The subsequent re-ignition of the sensitized mixture could result in a local explosion. In a number of experiments the blast waves produced in the local explosion developed into detonation waves. A local explosion occurred only if there was partial quenching of the flame kernel. Partial quenching occurs when the Karlovitz-Kovaszney factor approaches unity and, therefore, it is possible to establish a set of conditions in terms of turbulent parameters for the transition to detonation. (author). 16 refs., 13 figs.

  20. Effect of turbulence on deflagration to detonation transition

    International Nuclear Information System (INIS)

    Radford, D.D.; Chan, C.K.; Azad, R.S.

    1995-01-01

    The interaction of a turbulent jet and an expanding flame kernel was examined using spark-schlieren photography and piezoelectric pressure transducers. Experiments were performed in a 9 by 9 cm, 4-m-long shock channel. Results show that an expanding flame kernel can be locally, or partially, quenched by flame stretching. The mixing of the hot combustion products, containing reactive species, with the unburnt gas in the turbulent flame-jet, created pockets of sensitized mixture. The subsequent re-ignition of the sensitized mixture could result in a local explosion. In a number of experiments the blast waves produced in the local explosion developed into detonation waves. A local explosion occurred only if there was partial quenching of the flame kernel. Partial quenching occurs when the Karlovitz-Kovaszney factor approaches unity and, therefore, it is possible to establish a set of conditions in terms of turbulent parameters for the transition to detonation. (author). 16 refs., 13 figs

  1. Effects of Buoyancy on Laminar and Turbulent Premixed V-Flame

    Science.gov (United States)

    Cheng, Robert K.; Bedat, Benoit

    1997-01-01

    Turbulent combustion occurs naturally in almost all combustion systems and involves complex dynamic coupling of chemical and fluid mechanical processes. It is considered as one of the most challenging combustion research problems today. Though buoyancy has little effect on power generating systems operating under high pressures (e.g., IC engines and turbines), flames in atmospheric burners and the operation of small to medium furnaces and boilers are profoundly affected by buoyancy. Changes in burner orientation impacts on their blow-off, flash-back and extinction limits, and their range of operation, burning rate, heat transfer, and emissions. Theoretically, buoyancy is often neglected in turbulent combustion models. Yet the modeling results are routinely compared with experiments of open laboratory flames that are obviously affected by buoyancy. This inconsistency is an obstacle to reconciling experiments and theories. Consequently, a fundamental understanding of the coupling between turbulent flames and buoyancy is significant to both turbulent combustion science and applications. The overall effect of buoyancy relates to the dynamic interaction between the flame and its surrounding, i.e., the so-called elliptical problem. The overall flame shape, its flowfield, stability, and mean and local burning rates are dictated by both upstream and downstream boundary conditions. In steady propagating premixed flames, buoyancy affects the products region downstream of the flame zone. These effects are manifested upstream through the mean and fluctuating pressure fields to influence flame stretch and flame wrinkling. Intuitively, the effects buoyancy should diminish with increasing flow momentum. This is the justification for excluding buoyancy in turbulent combustion models that treats high Reynolds number flows. The objectives of our experimental research program is to elucidate flame-buoyancy coupling processes in laminar and turbulent premixed flames, and to

  2. Flame Structure of Vitiated Fuel-Rich Inverse Diffusion Flames in a Cross-Flow (Postprint)

    Science.gov (United States)

    2011-12-01

    downstream of the slot. The flame length increases as the blowing ratio increases as a result of the greater mass of air which reacts. Ignition of...attributed to the greater penetration of the jet into the cross-stream. It is noted that the flame lengths are similar for the different blowing ratios

  3. Turbulent structure and dynamics of swirled, strongly pulsed jet diffusion flames

    KAUST Repository

    Liao, Ying-Hao

    2013-11-02

    The structure and dynamics of swirled, strongly pulsed, turbulent jet diffusion flames were examined experimentally in a co-flow swirl combustor. The dynamics of the large-scale flame structures, including variations in flame dimensions, the degree of turbulent flame puff interaction, and the turbulent flame puff celerity were determined from high-speed imaging of the luminous flame. All of the tests presented here were conducted with a fixed fuel injection velocity at a Reynolds number of 5000. The flame dimensions were generally found to be more impacted by swirl for the cases of longer injection time and faster co-flow flow rate. Flames with swirl exhibited a flame length up to 34% shorter compared to nonswirled flames. Both the turbulent flame puff separation and the flame puff celerity generally decreased when swirl was imposed. The decreased flame length, flame puff separation, and flame puff celerity are consistent with a greater momentum exchange between the flame and the surrounding co-flow, resulting from an increased rate of air entrainment due to swirl. Three scaling relations were developed to account for the impact of the injection time, the volumetric fuel-to-air flow rate ratio, and the jet-on fraction on the visible flame length. © 2013 Copyright Taylor and Francis Group, LLC.

  4. Stability and Behaviors of Methane/Propane and Hydrogen Micro Flames

    Science.gov (United States)

    Yoshimoto, Takamitsu; Kinoshita, Koichiro; Kitamura, Hideki; Tanigawa, Ryoichi

    The flame stability limits essentially define the fundamental operation of the combustion system. Recently the micro diffusion flame has been remarked. The critical conditions of the flame stability limit are highly dependent on nozzle diameter, species of fuel and so on. The micro diffusion flame of Methane/Propane and Hydrogen is formed by using the micro-scale nozzle of which inner diameter is less than 1mm. The configurations and behaviors of the flame are observed directly and visualized by the high speed video camera The criteria of stability limits are proposed for the micro diffusion flame. The objectives of the present study are to get further understanding of lifting/blow-off for the micro diffusion flame. The results obtained are as follows. (1) The behaviors of the flames are classified into some regions for each diffusion flame. (2) The micro diffusion flame of Methane/Propane cannot be sustained, when the nozzle diameter is less than 0.14 mm. (3) The diffusion flame cannot be sustained below the critical fuel flow rate. (4) The minimum flow which is formed does not depends on the average jet velocity, but on the fuel flow rate. (5) the micro flame is laminar. The flame length is decided by fuel flow rate.

  5. Quenches in the superconducting magnet CELLO

    International Nuclear Information System (INIS)

    Hassenzahl, W.V.

    1979-01-01

    The superconducting magnet CELLO was tested with currents up to 3200 A at Saclay and has been installed at DESY in Hamburg where it will be used for particle physics experiments requiring colliding beams of electrons and positrons. The testing of this unique, large, one-layer solenoid provides an excellent opportunity to evaluate the theory of quench propagation under adiabatic conditions, that is, in a coil in which the conductors are not in direct contact with helium. In an early test of this coil, quenches that occurred, gives the details of the damaged conductor, and includes an analysis of the quenches. Observed axial quench velocities are compared to the calculated values based on both measurements and calculations of the thermal conductivity of the fabricated coil

  6. Flame spread along thermally thick horizontal rods

    Science.gov (United States)

    Higuera, F. J.

    2002-06-01

    An analysis is carried out of the spread of a flame along a horizontal solid fuel rod, for which a weak aiding natural convection flow is established in the underside of the rod by the action of the axial gradient of the pressure variation that gravity generates in the warm gas surrounding the flame. The spread rate is determined in the limit of infinitely fast kinetics, taking into account the effect of radiative losses from the solid surface. The effect of a small inclination of the rod is discussed, pointing out a continuous transition between upward and downward flame spread. Flame spread along flat-bottomed solid cylinders, for which the gradient of the hydrostatically generated pressure drives the flow both along and across the direction of flame propagation, is also analysed.

  7. Wave form of current quench during disruptions in tokamaks

    International Nuclear Information System (INIS)

    Sugihara, Masayoshi; Gribov, Yuri; Shimada, Michiya; Lukash, Victor; Kawano, Yasunori; Yoshino, Ryuji; Miki, Nobuharu; Ohmori, Junji; Khayrutdinov, Rustam

    2003-01-01

    The time dependence of the current decay during the current quench phase of disruptions, which can significantly influence the electro-magnetic force on the in-vessel components due to the induced eddy currents, is investigated using data obtained in JT-60U experiments in order to derive a relevant physics guideline for the predictive simulations of disruptions in ITER. It is shown that an exponential decay can fit the time dependence of current quench for discharges with large quench rate (fast current quench). On the other hand, for discharges with smaller quench rate (slow current quench), a linear decay can fit the time dependence of current quench better than exponential. (author)

  8. Computational Enhancements for Direct Numerical Simulations of Statistically Stationary Turbulent Premixed Flames

    KAUST Repository

    Mukhadiyev, Nurzhan

    2017-05-01

    Combustion at extreme conditions, such as a turbulent flame at high Karlovitz and Reynolds numbers, is still a vast and an uncertain field for researchers. Direct numerical simulation of a turbulent flame is a superior tool to unravel detailed information that is not accessible to most sophisticated state-of-the-art experiments. However, the computational cost of such simulations remains a challenge even for modern supercomputers, as the physical size, the level of turbulence intensity, and chemical complexities of the problems continue to increase. As a result, there is a strong demand for computational cost reduction methods as well as in acceleration of existing methods. The main scope of this work was the development of computational and numerical tools for high-fidelity direct numerical simulations of premixed planar flames interacting with turbulence. The first part of this work was KAUST Adaptive Reacting Flow Solver (KARFS) development. KARFS is a high order compressible reacting flow solver using detailed chemical kinetics mechanism; it is capable to run on various types of heterogeneous computational architectures. In this work, it was shown that KARFS is capable of running efficiently on both CPU and GPU. The second part of this work was numerical tools for direct numerical simulations of planar premixed flames: such as linear turbulence forcing and dynamic inlet control. DNS of premixed turbulent flames conducted previously injected velocity fluctuations at an inlet. Turbulence injected at the inlet decayed significantly while reaching the flame, which created a necessity to inject higher than needed fluctuations. A solution for this issue was to maintain turbulence strength on the way to the flame using turbulence forcing. Therefore, a linear turbulence forcing was implemented into KARFS to enhance turbulence intensity. Linear turbulence forcing developed previously by other groups was corrected with net added momentum removal mechanism to prevent mean

  9. Diffusion Flame Extinction in a Low Strain Flow

    Science.gov (United States)

    Sutula, Jason; Jones, Joshua; Torero, Jose L.; Borlik, Jeffrey; Ezekoye, Ofodike A.

    1997-01-01

    Diffusion flames are of great interest in fire safety and many industrial processes. Many parameters significantly affect the flame structure, shape and stability, of particular importance are the constraints imposed by geometrical boundaries. Physical boundaries determine the characteristics of the flow, affect heat, fuel, and oxidizer transport from and towards the flame and can act as heat sinks or heat sources. As a result, the existence of a flame, its shape and nature are intimately related to the geometrical characteristics of the environment that surrounds it. The counter-flow configuration provides a constant strain flow, therefore, is ideal to study the structure of diffusion flames. Most studies have concentrated on the high velocity, high strain limit, since buoyantly induced instabilities will disintegrate the planar flame as the velocity decreases. Only recently, experimental studies in micro-gravity conditions have begun to explore the low strain regimes. The main objective of these on-going studies is to determine the effect of radiative heat losses and variable strain on the structure and radiation-induced extinction of diffusion flames. For these programs, size, geometry, and experimental conditions have been chosen to keep the flame unaffected by the physical boundaries. Whether is the burning of condensed or gaseous fuels, for most real situations the boundaries impose a significant effect on the nature of the flame. There is, therefore, a need to better understand the effect that geometrical constraints (i.e. flow nonperpendicular to a fuel surface, heat losses to the boundaries, etc.) might have on the final characteristics of a diffusion flame. Preliminary experiments have shown that, in the absence of gravity, and depending on the distance from the flame to the boundary, three characteristically different regimes can be observed. Close to the boundary, the flame is parabolic, very thin and blue, almost soot-less. Diffusion is the main

  10. NO concentration imaging in turbulent nonpremixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, R.W. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The importance of NO as a pollutant species is well known. An understanding of the formation characteristics of NO in turbulent hydrocarbon flames is important to both the desired reduction of pollutant emissions and the validation of proposed models for turbulent reacting flows. Of particular interest is the relationship between NO formation and the local flame zone, in which the fuel is oxidized and primary heat release occurs. Planar imaging of NO provides the multipoint statistics needed to relate NO formation to the both the flame zone and the local turbulence characteristics. Planar imaging of NO has been demonstrated in turbulent flames where NO was seeded into the flow at high concentrations (2000 ppm) to determine the gas temperature distribution. The NO concentrations in these experiments were significantly higher than those expected in typical hydrocarbon-air flames, which require a much lower detectability limit for NO measurements. An imaging technique based on laser-induced fluorescence with sufficient sensitivity to study the NO formation mechanism in the stabilization region of turbulent lifted-jet methane flames.

  11. Near-field local flame extinction of Oxy-Syngas non-premixed jet flames : a DNS study

    NARCIS (Netherlands)

    Ranga Dinesh, K.K.J.; Oijen, van J.A.; Luo, Kai; Jiang, X.

    2014-01-01

    An investigation of the local flame extinction of H2/CO oxy-syngas and syngas-air nonpremixed jet flames was carried out using three-dimensional direct numerical simulations (DNS) with detailed chemistry by using flamelet generated manifold chemistry (FGM). The work has two main objectives: identify

  12. Tomographic reconstruction of OH* chemiluminescence in two interacting turbulent flames

    International Nuclear Information System (INIS)

    Worth, Nicholas A; Dawson, James R

    2013-01-01

    The tomographic reconstruction of OH* chemiluminescence was performed on two interacting turbulent premixed bluff-body stabilized flames under steady flow conditions and acoustic excitation. These measurements elucidate the complex three-dimensional (3D) vortex–flame interactions which have previously not been accessible. The experiment was performed using a single camera and intensifier, with multiple views acquired by repositioning the camera, permitting calculation of the mean and phase-averaged volumetric OH* distributions. The reconstructed flame structure and phase-averaged dynamics are compared with OH planar laser-induced fluorescence and flame surface density measurements for the first time. The volumetric data revealed that the large-scale vortex–flame structures formed along the shear layers of each flame collide when the two flames meet, resulting in complex 3D flame structures in between the two flames. With a fairly simple experimental setup, it is shown that the tomographic reconstruction of OH* chemiluminescence in forced flames is a powerful tool that can yield important physical insights into large-scale 3D flame dynamics that are important in combustion instability. (paper)

  13. Chaotic radiation/turbulence interactions in flames

    Energy Technology Data Exchange (ETDEWEB)

    Menguec, M.P.; McDonough, J.M.

    1998-11-01

    In this paper, the authors present a review of their recent efforts to model chaotic radiation-turbulence interactions in flames. The main focus is to characterize soot volume fraction fluctuations in turbulent diffusion flames, as they strongly contribute to these interaction. The approach is based on the hypothesis that the fluctuations of properties in turbulent flames are deterministic in nature, rather than random. The authors first discuss the theoretical details and then they briefly outline the experiments conducted to measure the scattered light signals from fluctuating soot particles along the axis of an ethylene-air diffusion flame. They compare the power spectra and time series obtained from experiments against the ad-hoc and rigorous models derived using a series of logistic maps. These logistic maps can be used in simulation of the fluctuations in these type of flames, without extensive computational effort or sacrifice of physical detail. Availability of accurate models of these kinds allows investigation of radiation-turbulence interactions at a more fundamental level than it was previously possible.

  14. Flame front. Evaluation of camera based flame front control in grate furnaces regarding operation and emissions; Flamfront. Utvaerdering av drift och miljoe med hjaelp av kamerabaserad flamfrontsstyrning i rosterpannor

    Energy Technology Data Exchange (ETDEWEB)

    Bubholz, Monika; Myringer, Aase; Nordgren, Daniel

    2007-09-15

    This project aims at showing the usability of camera based flame front control in grate furnaces regarding increased possibilities to use fuels with fluctuating moisture/quality with stable/improved levels of emissions and ash quality. A furnace camera and the human eye make the detection of the flame front movements. Further, the flame front was fixed due to an increase/decrease of the speed of the fuel feeding system. The result is to be generalised for all grate furnaces with a movable grate. During the spring 2007 two weeks of tests were executed at E.ON Heat's plant Hammargaarden at Kungsbacka. Dry and wet fuel pulses of approximately 10 m3, with moisture content of approximately 40 and 60 weights percent, were induced to the grate. At the same time, tries to ward off the flame front movement were carried through. The most important result of the tests were the following: The results is based on a relatively small number of tests and it should be considered to be more of an indication of the usefulness of the control strategy that has been investigated rather than definitive results. The results indicate that the economical and environmental benefits from using a system involving only visual detecting followed by warding off a movement of the flame front mechanically are small, and most likely hard to pay off. It is important to start to ward off the flame front as soon as it seems to be moving. In this way the flame front can be kept stable and often improved emission levels follow. A slight tendency to lower CO-emissions was observed when dry fuel pulses were warded off. When no warding off of dry fuel pulses took place, the combustion took place close to the lower part of the fuel-feeding wall. This was prevented when the dry fuel pulses were warded off. The content of unburnt carbon in ash at wet fuel pulses was lower when warding off in comparison with cases where no warding off took place. An important element of future work is, apart from using a

  15. Studies on halogen quenching through the Stern-Volmer plot

    International Nuclear Information System (INIS)

    Takiue, Makoto; Ishikawa, Hiroaki.

    1978-01-01

    The quenching effect for halogenated benzenes, methanes and ethanes have been investigated. The halogen quenching was accurately measured using the internal conversion electrons emitted from 113 Sn-sup(113m)In. From the quenching constants determined by the Stern-Volmer plots with respect to various halogen quenchers, the following results have been obtained. (1) The quenching constants increase with the number of halogen substituents, so as linearly in halogenated benzenes and exponentially in halogenated methanes and ethanes. Even the isomers of halogenides have different quenching constants. (2) There is a linearity between logarithm of the quenching constant and a polarographic half-wave reduction potential. (3) Electron excitation provides larger quenching constants than UV excitation for halogenated methanes. Based on these results, the mechanism of halogen quenching have been discussed in connection with the exciplex formation. (auth.)

  16. Characterization of high-pressure, underexpanded hydrogen-jet flames

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, R.W.; Houf, W.G.; Williams, T.C. [Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551 (United States); Bourne, B.; Colton, J. [SRI International, 333 Ravenwood Ave., Menlo Park, CA 94025 (United States)

    2007-08-15

    Measurements were performed to characterize the dimensional and radiative properties of large-scale, vertical hydrogen-jet flames. This data is relevant to the safety scenario of a sudden leak in a high-pressure hydrogen containment vessel and will provide a technological basis for determining hazardous length scales associated with unintended hydrogen releases at storage and distribution centers. Jet flames originating from high-pressure sources up to 413 bar (6000 psi) were studied to verify the application of correlations and scaling laws based on lower-pressure subsonic and choked-flow jet flames. These higher pressures are expected to be typical of the pressure ranges in future hydrogen storage vessels. At these pressures the flows exiting the jet nozzle are categorized as underexpanded jets in which the flow is choked at the jet exit. Additionally, the gas behavior departs from that of an ideal-gas and alternate formulations for non-ideal gas must be introduced. Visible flame emission was recorded on video to evaluate flame length and structure. Radiometer measurements allowed determination of the radiant heat flux characteristics. The flame length results show that lower-pressure engineering correlations, based on the Froude number and a non-dimensional flame length, also apply to releases up to 413 bar (6000 psi). Similarly, radiative heat flux characteristics of these high-pressure jet flames obey scaling laws developed for low-pressure, smaller-scale flames and a wide variety of fuels. The results verify that such correlations can be used to a priori predict dimensional characteristics and radiative heat flux from a wide variety of hydrogen-jet flames resulting from accidental releases. (author)

  17. Quenching behaviour for a singular predator–prey model

    International Nuclear Information System (INIS)

    Ducrot, Arnaud; Guo, Jong-Shenq

    2012-01-01

    In this paper, we study the quenching behaviour for a system of two reaction–diffusion equations arising in the modelling of the spatio-temporal interaction of prey and predator populations in fragile environment. We first provide some sufficient conditions on the initial data to have finite time quenching. Then we classify the initial data to distinguish type I quenching and type II quenching, by introducing a delicate energy functional along with the help of some a priori estimates. Finally, we present some results on the quenching set. It can be a singleton, the whole domain, or a compact subset of the domain

  18. New optical method for heat flux measurements in stagnation point laminar methane/air flames and hydrogen/methane/air flames using thermographic phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Elmnefi, Mohamed Salem

    2010-11-24

    In the present study, a new optical method was implemented to study the heat transfer from flat stagnation point flames which can be regarded as one-dimensional in the central part. Premixed methane-air flames and hydrogen-methane-air flames were investigated. The effects of burner-to-plate distance and the fresh gas mixture velocity on heat transfer were examined. Experiments were performed using light induced phosphorescence from thermographic phosphors to study the wall temperatures and heat fluxes of nearly one-dimensional flat premixed flames impinging upward normally on a horizontal water cooled circular flat plate. The investigated flames were stoichiometric, lean and rich laminar methane/air flames with different equivalence ratios of {phi} =1, {phi} = 0.75 and {phi} = 1.25 and stoichiometric laminar hydrogen/methane/air flames. Mixtures of air with 10, 25, 50 and 75 % hydrogen in methane (CH{sub 4}) as well as a pure hydrogen flames at ambient pressure were investigated. The central part of this plate was an alumina ceramic plate coated from both sides with chromium doped alumina (ruby) and excited with a Nd:YAG laser or a green light emitting diode (LED) array to measure the wall temperature from both sides and thus the heat flux rate from the flame. The outlet velocity of the gases was varied from 0.1 m/s to 1.2 m/s. The burner to plate distance ranged from 0.5 to 2 times the burner exit diameter (d = 30 mm).The accuracy of the method was evaluated. The measured heat flux indicate the change of the flame stabilization mechanism from a burner stabilized to a stagnation plate stabilized flame. The results were compared to modeling results of a one dimensional stagnation point flow, with a detailed reaction mechanism. In order to prove the model, also measured gas phase temperatures by OH LIF for a stoichiometric stagnation point flame were discussed. It turns out that the flame stabilization mechanism and with it the heat fluxes change from low to high

  19. Recent measurements of flame acceleration in semiconfined geometries

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Arab, T.W. (King Fahd Univ. of Petroleum and Minerals, Dhahran (SA). Mechanical Engineering Dept.); Enayet, M.M.; Kamel, M.M. (Cairo Univ., Giza (EG). Mechanical Power Engineering Dept.)

    1991-04-01

    Turbulent premixed combustion under certain conditions may lead to large flame speeds sufficient to cause significant damage to nearby structures. Experiments, both large and small scale, have confirmed that obstructions cause severe flame acceleration to occur. In these cases, flame speeds as high as 800 ms{sup -1} may be achieved. In this work experimental investigation of some factors affecting flame acceleration in a semiconfined channel has been carried out. The experimental facility and the developed ionization gap measuring technique are also described. It has been found that the presence of obstacles, degree of confinement, height of fuel-air cloud (FAC), as well as fuel concentration gradient in the FAC have profound effects on the rate at which the flame accelerates. Finally, consideration of the flame acceleration as a possible mechanism for the transition to detonation will be discussed. (author).

  20. Isomer-specific combustion chemistry in allene and propyne flames

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Nils; Miller, James A. [Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551 (United States); Westmoreland, Phillip R. [Department of Chem. Engineering, University of Massachusetts, Amherst, MA 01003 (United States); Kasper, Tina [Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551 (United States); Department of Chemistry, Bielefeld University, D-33615 Bielefeld (Germany); Kohse-Hoeinghaus, Katharina [Department of Chemistry, Bielefeld University, D-33615 Bielefeld (Germany); Wang, Juan; Cool, Terrill A. [School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853 (United States)

    2009-11-15

    A combined experimental and modeling study is performed to clarify the isomer-specific combustion chemistry in flames fueled by the C{sub 3}H{sub 4} isomers allene and propyne. To this end, mole fraction profiles of several flame species in stoichiometric allene (propyne)/O{sub 2}/Ar flames are analyzed by means of a chemical kinetic model. The premixed flames are stabilized on a flat-flame burner under a reduced pressure of 25 Torr (=33.3 mbar). Quantitative species profiles are determined by flame-sampling molecular-beam mass spectrometry, and the isomer-specific flame compositions are unraveled by employing photoionization with tunable vacuum-ultraviolet synchrotron radiation. The temperature profiles are measured by OH laser-induced fluorescence. Experimental and modeled mole fraction profiles of selected flame species are discussed with respect to the isomer-specific combustion chemistry in both flames. The emphasis is put on main reaction pathways of fuel consumption, of allene and propyne isomerization, and of isomer-specific formation of C{sub 6} aromatic species. The present model includes the latest theoretical rate coefficients for reactions on a C{sub 3}H{sub 5} potential [J.A. Miller, J.P. Senosiain, S.J. Klippenstein, Y. Georgievskii, J. Phys. Chem. A 112 (2008) 9429-9438] and for the propargyl recombination reactions [Y. Georgievskii, S.J. Klippenstein, J.A. Miller, Phys. Chem. Chem. Phys. 9 (2007) 4259-4268]. Larger peak mole fractions of propargyl, allyl, and benzene are observed in the allene flame than in the propyne flame. In these flames virtually all of the benzene is formed by the propargyl recombination reaction. (author)

  1. Flame Length

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Flame length was modeled using FlamMap, an interagency fire behavior mapping and analysis program that computes potential fire behavior characteristics. The tool...

  2. Log-Normality and Multifractal Analysis of Flame Surface Statistics

    Science.gov (United States)

    Saha, Abhishek; Chaudhuri, Swetaprovo; Law, Chung K.

    2013-11-01

    The turbulent flame surface is typically highly wrinkled and folded at a multitude of scales controlled by various flame properties. It is useful if the information contained in this complex geometry can be projected onto a simpler regular geometry for the use of spectral, wavelet or multifractal analyses. Here we investigate local flame surface statistics of turbulent flame expanding under constant pressure. First the statistics of local length ratio is experimentally obtained from high-speed Mie scattering images. For spherically expanding flame, length ratio on the measurement plane, at predefined equiangular sectors is defined as the ratio of the actual flame length to the length of a circular-arc of radius equal to the average radius of the flame. Assuming isotropic distribution of such flame segments we convolute suitable forms of the length-ratio probability distribution functions (pdfs) to arrive at corresponding area-ratio pdfs. Both the pdfs are found to be near log-normally distributed and shows self-similar behavior with increasing radius. Near log-normality and rather intermittent behavior of the flame-length ratio suggests similarity with dissipation rate quantities which stimulates multifractal analysis. Currently at Indian Institute of Science, India.

  3. Heater induced quenches in SSC [Superconducting Super Collider] model dipoles

    International Nuclear Information System (INIS)

    Hassenzahl, W.V.

    1986-10-01

    A 1-m long SSC dipole constructed at the Lawrence Berkeley laboratory was subjected to a series of heater induced quenches to determine: axial quench propagation velocities, transverse quench propagation, and conductor temperature rise. Quenches were produced by 3 heaters at different locations in the magnet and at several currents. The results of these studies are described and are compared to previously published theoretical studies of quenches on the SSC dipoles. These results are shown to be in agreement with the calculations of the program ''QUENCH'', which includes an increase of the quench velocity during the first few milliseconds of the quench

  4. Dynamics of premixed hydrogen/air flames in mesoscale channels

    Energy Technology Data Exchange (ETDEWEB)

    Pizza, Gianmarco [Paul Scherrer Institute, Combustion Research, CH-5232, Villigen PSI (Switzerland); Aerothermochemistry and Combustion Systems Laboratory, Swiss Federal Institute of Technology, CH-8092, Zurich (Switzerland); Frouzakis, Christos E.; Boulouchos, Konstantinos [Aerothermochemistry and Combustion Systems Laboratory, Swiss Federal Institute of Technology, CH-8092, Zurich (Switzerland); Mantzaras, John [Paul Scherrer Institute, Combustion Research, CH-5232, Villigen PSI (Switzerland); Tomboulides, Ananias G. [Department of Engineering and Management of Energy Resources, University of Western Macedonia, 50100 Kozani (Greece)

    2008-10-15

    Direct numerical simulation with detailed chemistry and transport is used to study the stabilization and dynamics of lean ({phi}=0.5) premixed hydrogen/air atmospheric pressure flames in mesoscale planar channels. Channel heights of h=2, 4, and 7 mm, and inflow velocities in the range 0.3{<=}U{sub IN}{<=}1100cm/ s are investigated. Six different burning modes are identified: mild combustion, ignition/extinction, closed steady symmetric flames, open steady symmetric flames, oscillating and, finally, asymmetric flames. Chaotic behavior of cellular flame structures is observed for certain values of U{sub IN}. Stability maps delineating the regions of the different flame types are finally constructed. (author)

  5. Strain-based quench detection for a solenoid superconducting magnet

    International Nuclear Information System (INIS)

    Wang Xingzhe; Guan Mingzhi; Ma Lizhen

    2012-01-01

    In this paper, we present a non-electric quench detection method based on the strain gauge measurement of a superconducting solenoid magnet at cryogenic temperature under an intense magnetic field. Unlike the traditional voltage measurement of quench detection, the strain-based detection method utilizes low-temperature strain gauges, which evidently reduce electromagnetic noise and breakdown, to measure the magneto/thermo-mechanical behavior of the superconducting magnet during excitation. The magnet excitation, quench tests and trainings were performed on a prototype 5 T superconducting solenoid magnet. The transient strains and their abrupt changes were compared with the current, magnetic field and temperature signals collected during excitation and quench tests to indicate that the strain gauge measurements can detect the quench feature of the superconducting magnet. The proposed method is expected to be able to detect the quench of a superconducting coil independently or utilized together with other electrical methods. In addition, the axial quench propagation velocity of the solenoid is evaluated by the quench time lags among different localized strains. The propagation velocity is enhanced after repeated quench trainings. (paper)

  6. A planar micro-flame ionization detector with an integrated guard electrode

    International Nuclear Information System (INIS)

    Kuipers, W J; Müller, J

    2008-01-01

    The flame ionization detector (FID) quantifies small concentrations of organic compounds by flame ionization of hydrocarbons and measurement of the resulting ion current. The ion current represents the number of carbon atoms in the sample gas. The miniaturization of the FID by MEMS technology (µFID) is expected to increase its use, because of reduced oxyhydrogen consumption. This loosens safety precautions and makes portable applications possible. In contrast to a former µFID design, the current planar µFID is designed to prevent environmental air from entering the system and deteriorating the measurement signal. The oxyhydrogen flame burns in the silicon plane of an almost completely encapsulating glass–silicon–glass sandwich. Only a small opening remains for removal of the exhaust gas from the system. In between the detector electrodes, a guard electrode is integrated to intercept and by-pass leak currents past the picoammeter, which then only measures the ion current. Due to the design of the guard electrode, small leak currents are still measured by the picoammeter. Yet, these leak currents can be corrected for to obtain the ion current. Measurements of the ion current as a function of the applied voltage and the sample gas flow show expected FID behaviour

  7. Flame Retardant Polyamide Fibres: The Challenge of Minimising Flame Retardant Additive Contents with Added Nanoclays

    Directory of Open Access Journals (Sweden)

    Richard Horrocks

    2016-08-01

    Full Text Available This work shows that halogen-free, flame retarded polyamide 6 (PA6, fabrics may be produced in which component fibres still have acceptable tensile properties and low levels (preferably ≤10 wt % of additives by incorporating a nanoclay along with two types of flame retardant formulations. The latter include (i aluminium diethyl phosphinate (AlPi at 10 wt %, known to work principally in the vapour phase and (ii ammonium sulphamate (AS/dipentaerythritol (DP system present at 2.5 and 1 wt % respectively, believed to be condense phase active. The nanoclay chosen is an organically modified montmorillonite clay, Cloisite 25A. The effect of each additive system is analysed in terms of its ability to maximise both filament tensile properties relative to 100% PA6 and flame retardant behaviour of knitted fabrics in a vertical orientation. None of the AlPi-containing formulations achieved self-extinguishability, although the presence of nanoclay promoted lower burning and melt dripping rates. The AS/DP-containing formulations with total flame retardant levels of 5.5 wt % or less showed far superior properties and with nanoclay, showed fabric extinction times ≤ 39 s and reduced melt dripping. The tensile and flammability results, supported by thermogravimetric analysis, have been interpreted in terms of the mechanism of action of each flame retardant/nanoclay type.

  8. Ignition and flame-growth modeling on realistic building and landscape objects in changing environments

    Science.gov (United States)

    Mark A. Dietenberger

    2010-01-01

    Effective mitigation of external fires on structures can be achieved flexibly, economically, and aesthetically by (1) preventing large-area ignition on structures by avoiding close proximity of burning vegetation; and (2) stopping flame travel from firebrands landing on combustible building objects. Using bench-scale and mid-scale fire tests to obtain flammability...

  9. Preparation of Flame Retardant Modified with Titanate for Asphalt Binder

    Directory of Open Access Journals (Sweden)

    Bo Li

    2014-01-01

    Full Text Available Improving the compatibility between flame retardant and asphalt is a difficult task due to the complex nature of the materials. This study explores a low dosage compound flame retardant and seeks to improve the compatibility between flame retardants and asphalt. An orthogonal experiment was designed taking magnesium hydroxide, ammonium polyphosphate, and melamine as factors. The oil absorption and activation index were tested to determine the effect of titanate on the flame retardant additive. The pavement performance test was conducted to evaluate the effect of the flame retardant additive. Oxygen index test was conducted to confirm the effect of flame retardant on flame ability of asphalt binder. The results of this study showed that the new composite flame retardant is more effective in improving the compatibility between flame retardant and asphalt and reducing the limiting oxygen index of asphalt binder tested in this study.

  10. Two-dimensional simulations of steady perforated-plate stabilized premixed flames

    KAUST Repository

    Altay, H. Murat

    2010-03-17

    The objective of this work is to examine the impact of the operating conditions and the perforated-plate design on the steady, lean premixed flame characteristics. We perform two-dimensional simulations of laminar flames using a reduced chemical kinetics mechanism for methane-air combustion, consisting of 20 species and 79 reactions. We solve the heat conduction problem within the plate, allowing heat exchange between the gas mixture and the solid plate. The physical model is based on a zero-Mach-number formulation of the axisymmetric compressible conservation equations. The results suggest that the flame consumption speed, the flame structure, and the flame surface area depend significantly on the equivalence ratio, mean inlet velocity, the distance between the perforated-plate holes and the plate thermal conductivity. In the case of an adiabatic plate, a conical flame is formed, anchored near the corner of the hole. When the heat exchange between themixture and the plate is finite, the flame acquires a Gaussian shape stabilizing at a stand-off distance, that grows with the plate conductivity. The flame tip is negatively curved; i.e. concave with respect to the reactants. Downstream of the plate, the flame base is positively curved; i.e. convex with respect to the reactants, stabilizing above a stagnation region established between neighboring holes. As the plate\\'s thermal conductivity increases, the heat flux to the plate decreases, lowering its top surface temperature. As the equivalence ratio increases, the flame moves closer to the plate, raising its temperature, and lowering the flame stand-off distance. As the mean inlet velocity increases, the flame stabilizes further downstream, the flame tip becomes sharper, hence raising the burning rate at that location. The curvature of the flame base depends on the distance between the neighboring holes; and the flame there is characterized by high concentration of intermediates, like carbon monoxide. © 2010 Taylor

  11. Flame-Retardant and Thermal Degradation Mechanism of Caged Phosphate Charring Agent with Melamine Pyrophosphate for Polypropylene

    Directory of Open Access Journals (Sweden)

    Xuejun Lai

    2015-01-01

    Full Text Available An efficient caged phosphate charring agent named PEPA was synthesized and combined with melamine pyrophosphate (MPP to flame-retard polypropylene (PP. The effects of MPP/PEPA on the flame retardancy and thermal degradation of PP were investigated by limiting oxygen index (LOI, vertical burning test (UL-94, cone calorimetric test (CCT, and thermogravimetric analysis (TGA. It was found that PEPA showed an outstanding synergistic effect with MPP in flame retardant PP. When the content of PEPA was 13.3 wt% and MPP was 6.7 wt%, the LOI value of the flame retardant PP was 33.0% and the UL-94 test was classed as a V-0 rating. Meanwhile, the peak heat release rate (PHRR, average heat release rate (AV-HRR, and average mass loss rate (AV-MLR of the mixture were significantly reduced. The flame-retardant and thermal degradation mechanism of MPP/PEPA was investigated by TGA, Fourier transform infrared spectroscopy (FTIR, TG-FTIR, and scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDXS. It revealed that MPP/PEPA could generate the triazine oligomer and phosphorus-containing compound radicals which changed the thermal degradation behavior of PP. Meanwhile, a compact and thermostable intumescent char was formed and covered on the matrix surface to prevent PP from degrading and burning.

  12. SDSS-IV MaNGA: faint quenched galaxies - I. Sample selection and evidence for environmental quenching

    Science.gov (United States)

    Penny, Samantha J.; Masters, Karen L.; Weijmans, Anne-Marie; Westfall, Kyle B.; Bershady, Matthew A.; Bundy, Kevin; Drory, Niv; Falcón-Barroso, Jesús; Law, David; Nichol, Robert C.; Thomas, Daniel; Bizyaev, Dmitry; Brownstein, Joel R.; Freischlad, Gordon; Gaulme, Patrick; Grabowski, Katie; Kinemuchi, Karen; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Daniel; Roman-Lopes, Alexandre; Pan, Kaike; Simmons, Audrey; Wake, David A.

    2016-11-01

    Using kinematic maps from the Sloan Digital Sky Survey (SDSS) Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, we reveal that the majority of low-mass quenched galaxies exhibit coherent rotation in their stellar kinematics. Our sample includes all 39 quenched low-mass galaxies observed in the first year of MaNGA. The galaxies are selected with Mr > -19.1, stellar masses 109 M⊙ 1.9. They lie on the size-magnitude and σ-luminosity relations for previously studied dwarf galaxies. Just six (15 ± 5.7 per cent) are found to have rotation speeds ve, rot 5 × 1010 M⊙), supporting the hypothesis that galaxy-galaxy or galaxy-group interactions quench star formation in low-mass galaxies. The local bright galaxy density for our sample is ρproj = 8.2 ± 2.0 Mpc-2, compared to ρproj = 2.1 ± 0.4 Mpc-2 for a star-forming comparison sample, confirming that the quenched low-mass galaxies are preferentially found in higher density environments.

  13. Quenching of p-Cyanophenylalanine Fluorescence by Various Anions.

    Science.gov (United States)

    Pazos, Ileana M; Roesch, Rachel M; Gai, Feng

    2013-03-20

    To expand the spectroscopic utility of the non-natural amino acid p -cyanophenylalanine (Phe CN ), we examine the quenching efficiencies of a series of commonly encountered anions toward its fluorescence. We find that iodide exhibits an unusually large Stern-Volmer quenching constant, making it a convenient choice in Phe CN fluorescence quenching studies. Indeed, using the villin headpiece subdomain as a testbed we demonstrate that iodide quenching of Phe CN fluorescence offers a convenient means to reveal protein conformational heterogeneity. Furthermore, we show that the amino group of Phe CN strongly quenches its fluorescence, suggesting that Phe CN could be used as a local pH sensor.

  14. Aerodynamic features of flames in premixed gases

    Science.gov (United States)

    Oppenheim, A. K.

    1984-01-01

    A variety of experimentally established flame phenomena in premixed gases are interpreted by relating them to basic aerodynamic properties of the flow field. On this basis the essential mechanism of some well known characteristic features of flames stabilized in the wake of a bluff-body or propagating in ducts are revealed. Elementary components of the flame propagation process are shown to be: rotary motion, self-advancement, and expansion. Their consequences are analyzed under a most strict set of idealizations that permit the flow field to be treated as potential in character, while the flame is modelled as a Stefan-like interface capable of exerting a feed-back effect upon the flow field. The results provide an insight into the fundamental fluid-mechanical reasons for the experimentally observed distortions of the flame front, rationalizing in particular its ability to sustain relatively high flow velocities at amazingly low normal burning speeds.

  15. Properties of plasma flames sustained by microwaves and burning hydrocarbon fuels

    International Nuclear Information System (INIS)

    Hong, Yong Cheol; Uhm, Han Sup

    2006-01-01

    Plasma flames made of atmospheric microwave plasma and a fuel-burning flame were presented and their properties were investigated experimentally. The plasma flame generator consists of a fuel injector and a plasma flame exit connected in series to a microwave plasma torch. The plasma flames are sustained by injecting hydrocarbon fuels into a microwave plasma torch in air discharge. The microwave plasma torch in the plasma flame system can burn a hydrocarbon fuel by high-temperature plasma and high atomic oxygen density, decomposing the hydrogen and carbon containing fuel. We present the visual observations of the sustained plasma flames and measure the gas temperature using a thermocouple device in terms of the gas-fuel mixture and flow rate. The plasma flame volume of the hydrocarbon fuel burners was more than approximately 30-50 times that of the torch plasma. While the temperature of the torch plasma flame was only 868 K at a measurement point, that of the diesel microwave plasma flame with the addition of 0.019 lpm diesel and 30 lpm oxygen increased drastically to about 2280 K. Preliminary experiments for methane plasma flame were also carried out, measuring the temperature profiles of flames along the radial and axial directions. Finally, we investigated the influence of the microwave plasma on combustion flame by observing and comparing OH molecular spectra for the methane plasma flame and methane flame only

  16. Flame oscillations in tubes with nonslip at the walls

    Energy Technology Data Exchange (ETDEWEB)

    Akkerman, V' yacheslav; Bychkov, Vitaly; Petchenko, Arkady [Institute of Physics, Umeaa University, SE-901 87 Umeaa (Sweden); Eriksson, Lars-Erik [Department of Applied Mechanics, Chalmers University of Technology, 412 96 Goeteborg (Sweden)

    2006-06-15

    A laminar premixed flame front propagating in a two-dimensional tube is considered with nonslip at the walls and with both ends open. The problem of flame propagation is solved using direct numerical simulations of the complete set of hydrodynamic equations including thermal conduction, diffusion, viscosity, and chemical kinetics. As a result, it is shown that flame interaction with the walls leads to the oscillating regime of burning. The oscillations involve variations of the curved flame shape and the velocity of flame propagation. The oscillation parameters depend on the characteristic tube width, which controls the Reynolds number of the flow. In narrow tubes the oscillations are rather weak, while in wider tubes they become stronger with well-pronounced nonlinear effects. The period of oscillations increases for wider tubes, while the average flame length scaled by the tube diameter decreases only slightly with increasing tube width. The average flame length calculated in the present work is in agreement with that obtained in the experiments. Numerical results reduce the gap between the theory of turbulent flames and the experiments on turbulent combustion in tubes. (author)

  17. Dependence of flame length on cross sections of burners

    Energy Technology Data Exchange (ETDEWEB)

    Hackeschmidt, M.

    1983-06-01

    This article analyzes the relation between the shape of burner muzzle and the resulting flame jet in a combustion chamber. Geometrical shapes of burner muzzles, either square, circular or triangular are compared as well as proportions of flame dimensions. A formula for calculating flame lengths is derived, for which the mathematical value 'contact profile radius' for burner muzzle shape is introduced. The formula for calculating flame lengths allows a partial replacement of the empirical flame mixing factor according to N.Q. Toai, 1981. The geometrical analysis does not include thermodynamic and reaction kinetic studies, which may be necessary for evaluating heterogenous (coal dust) combustion flames with longer burning time. (12 refs.)

  18. Experimental study of a premixed oscillating flame stabilized inside the tube

    Energy Technology Data Exchange (ETDEWEB)

    Choi, B.I.; Shin, H.D. [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-04-01

    An experimental study of premixed oscillating flame stabilized inside the tube has been conducted in order to examine the kinematic behavior of premixed flame under the flow oscillation and flame/flow interaction. Flow oscillation is accomplished by an acoustic excitation. Oscillating nature of flow has been studied with and without the flame using velocity and pressure measurements by a LDV and microphone, respectively Kinematic behavior of the oscillating flame is examined using triggered ICCD camera system. Velocity oscillation and flame oscillation is the same frequency as that produced by the acoustic excitation and flame shape has a similarity at various phase of oscillation. Upstream velocity field near the flame zone is greatly influenced by the flame oscillation. This is the typical example of flame/flow interaction. (author). 9 refs., 7 figs.

  19. Formation and stabilization of multiple ball-like flames at Earth gravity

    KAUST Repository

    Zhou, Zhen

    2018-03-20

    Near-limit low-Lewis-number premixed flame behavior is studied experimentally and numerically for flames of H–CH–air mixtures that are located in a 55 mm diameter tube and below a perforated plate in a downward mixture flow. A combustion regime diagram is experimentally identified in terms of equivalence ratio and ratio of H to CH (variation of fuel Lewis number). Planar flames, cell-like flames, distorted cap-like flames, and arrays of ball-like flames are progressively observed in the experiments as the equivalence ratio is decreased. The experimentally observed ball-like lean limit flames experience chaotic motion, which is accompanied by sporadic events of flame splitting and extinction, while the total number of simultaneously burning flamelets remains approximately the same. In separate experiments, the multiple ball-like lean limit flames are stabilized by creating a slightly non-uniform mixture flow field. The CH* chemiluminescence distributions of the lean limit flames are recorded, showing that the ball-like lean limit flame front becomes more uniform in intensity and its shape approaches a spherical one with the increase of H content in the fuel. Numerical simulations are performed for single representative flames of the array of stabilized flamelets observed in the experiments. The simulated ball-like lean limit flame is further contrasted with the single ball-like flame that forms in a narrow tube (13.5 mm inner diameter) with an iso-thermal wall. The numerical results show that the ball-like lean limit flames present in the array of ball-like flames are more affected by the buoyancy-induced recirculation zone, compared with that in the narrow tube, revealing why the shape of the ball-like flame in the array deviates more from a spherical one. All in all, the wall confinement is not crucial for the formation of ball-like flames at terrestrial gravity.

  20. Quench simulation in the thin superconducting solenoid

    International Nuclear Information System (INIS)

    Tominaka, T.; Takasaki, M.; Wake, M.; Yamada, R.

    1983-07-01

    The propagation velocities of a normal zone were calculated for a 1 mdiameter x 1 m superconducting solenoid and for a 3 mdiameter x 5 m thin solenoid based on a simple model using the one-dimensional thermal equation. The quench back effect can be observed in certain conditions. The quench of the large thin solenoid was also simulated by using the computer program 'QUENCH'. (author)

  1. Variation of Quench Propagation Velocities in YBCO Cables

    CERN Document Server

    Härö, E.; Stenvall, A.; 10.1007/s10948-015-2976-y

    2015-01-01

    changes during the quench. Due to the large temperature margin between the operation and the current sharing temperatures, the normal zone does not propagate with the temperature front. This means that the temperature will rise in a considerably larger volume when compared to the quenched volume. Thus, the evolution of the temperature distribution below current sharing temperature Tcs after the quench onset affects the normal zone propagation velocity in HTS more than in LTS coils. This can be seen as an acceleration of the quench propagation velocities while the quench evolves when margin to Tcs is high. In this paper we scrutinize quench propagation in a stack of YBCO cables with an in-house finite element method software which solves the heat diffusion equation. We compute the longitudinal and transverse normal zone propagation velocities at various distances from the hot spot to demonstrate the distance-variation...

  2. A dichotomy in satellite quenching around L* galaxies

    Science.gov (United States)

    Phillips, John I.; Wheeler, Coral; Boylan-Kolchin, Michael; Bullock, James S.; Cooper, Michael C.; Tollerud, Erik J.

    2014-01-01

    We examine the star formation properties of bright (˜0.1 L*) satellites around isolated ˜L* hosts in the local Universe using spectroscopically confirmed systems in the Sloan Digital Sky Survey Data Release 7. Our selection method is carefully designed with the aid of N-body simulations to avoid groups and clusters. We find that satellites are significantly more likely to be quenched than a stellar mass-matched sample of isolated galaxies. Remarkably, this quenching occurs only for satellites of hosts that are themselves quenched: while star formation is unaffected in the satellites of star-forming hosts, satellites around quiescent hosts are more than twice as likely to be quenched than stellar-mass-matched field samples. One implication of this is that whatever shuts down star formation in isolated, passive L* galaxies also play at least an indirect role in quenching star formation in their bright satellites. The previously reported tendency for `galactic conformity' in colour/morphology may be a by-product of this host-specific quenching dichotomy. The Sérsic indices of quenched satellites are statistically identical to those of field galaxies with the same specific star formation rates, suggesting that environmental and secular quenching give rise to the same morphological structure. By studying the distribution of pairwise velocities between the hosts and satellites, we find dynamical evidence that passive host galaxies reside in dark matter haloes that are ˜45 per cent more massive than those of star-forming host galaxies of the same stellar mass. We emphasize that even around passive hosts, the mere fact that galaxies become satellites does not typically result in star formation quenching: we find that only ˜30 per cent of ˜0.1L* galaxies that fall in from the field are quenched around passive hosts, compared with ˜0 per cent around star-forming hosts.

  3. Autoignited lifted flames of dimethyl ether in heated coflow air

    KAUST Repository

    Al-Noman, Saeed M.

    2018-05-16

    Autoignited lifted flames of dimethyl ether (DME) in laminar nonpremixed jets with high-temperature coflow air have been studied experimentally. When the initial temperature was elevated to over 860 K, an autoignition occurred without requiring an external ignition source. A planar laser-induced fluorescence (PLIF) technique for formaldehyde (CH2O) visualized qualitatively the zone of low temperature kinetics in a premixed flame. Two flame configurations were investigated; (1) autoignited lifted flames with tribrachial edge having three distinct branches of a lean and a rich premixed flame wings with a trailing diffusion flame and (2) autoignited lifted flames with mild combustion when the fuel was highly diluted. For the autoignited tribrachial edge flames at critical autoignition conditions, exhibiting repetitive extinction and re-ignition phenomena near a blowout condition, the characteristic flow time (liftoff height scaled with jet velocity) was correlated with the square of the ignition delay time of the stoichiometric mixture. The liftoff heights were also correlated as a function of jet velocity times the square of ignition delay time. Formaldehydes were observed between the fuel nozzle and the lifted flame edge, emphasizing a low-temperature kinetics for autoignited lifted flames, while for a non-autoignited lifted flame, formaldehydes were observed near a thin luminous flame zone.For the autoignited lifted flames with mild combustion, especially at a high temperature, a unique non-monotonic liftoff height behavior was observed; decreasing and then increasing liftoff height with jet velocity. This behavior was similar to the binary mixture fuels of CH4/H2 and CO/H2 observed previously. A transient homogeneous autoignition analysis suggested that such decreasing behavior with jet velocity can be attributed to partial oxidation characteristics of DME in producing appreciable amounts of CH4/CO/H2 ahead of the edge flame region.

  4. Linear response of stretch-affected premixed flames to flow oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.Y.; Law, C.K. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Lieuwen, T. [School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2009-04-15

    The linear response of 2D wedge-shaped premixed flames to harmonic velocity disturbances was studied, allowing for the influence of flame stretch manifested as variations in the local flame speed along the wrinkled flame front. Results obtained from analyzing the G-equation show that the flame response is mainly characterized by a Markstein number {sigma}{sub C}, which measures the curvature effect of the wrinkles, and a Strouhal number, St{sub f}, defined as the angular frequency of the disturbance normalized by the time taken for the disturbance to propagate the flame length. Flame stretch is found to become important when the disturbance frequency satisfies {sigma}{sub C}St{sub f}{sup 2}{proportional_to} O(1), i.e. St{sub f}{proportional_to} O({sigma}{sub C}{sup -1/2}). Specifically, for disturbance frequencies below this order, stretch effects are small and the flame responds as an unstretched one. When the disturbance frequencies are of this order, the transfer function, defined as the ratio of the normalized fluctuation of the heat release rate to that of the velocity, is contributed mostly from fluctuations of the flame surface area, which is now affected by stretch. Finally, as the disturbance frequency increases to St{sub f}{proportional_to} O({sigma}{sub C}{sup -1}), i.e. {sigma}{sub C}St{sub f}{proportional_to} O(1), the direct contribution from the stretch-affected flame speed fluctuation to the transfer function becomes comparable to that of the flame surface area. The present study phenomenologically explains the experimentally observed filtering effect in which the flame wrinkles developed at the flame base decay along the flame surface for large frequency disturbances as well as for thermal-diffusively stable and weakly unstable mixtures. (author)

  5. Autoignited lifted flames of dimethyl ether in heated coflow air

    KAUST Repository

    Al-Noman, Saeed M.; Choi, Byung Chul; Chung, Suk-Ho

    2018-01-01

    Autoignited lifted flames of dimethyl ether (DME) in laminar nonpremixed jets with high-temperature coflow air have been studied experimentally. When the initial temperature was elevated to over 860 K, an autoignition occurred without requiring an external ignition source. A planar laser-induced fluorescence (PLIF) technique for formaldehyde (CH2O) visualized qualitatively the zone of low temperature kinetics in a premixed flame. Two flame configurations were investigated; (1) autoignited lifted flames with tribrachial edge having three distinct branches of a lean and a rich premixed flame wings with a trailing diffusion flame and (2) autoignited lifted flames with mild combustion when the fuel was highly diluted. For the autoignited tribrachial edge flames at critical autoignition conditions, exhibiting repetitive extinction and re-ignition phenomena near a blowout condition, the characteristic flow time (liftoff height scaled with jet velocity) was correlated with the square of the ignition delay time of the stoichiometric mixture. The liftoff heights were also correlated as a function of jet velocity times the square of ignition delay time. Formaldehydes were observed between the fuel nozzle and the lifted flame edge, emphasizing a low-temperature kinetics for autoignited lifted flames, while for a non-autoignited lifted flame, formaldehydes were observed near a thin luminous flame zone.For the autoignited lifted flames with mild combustion, especially at a high temperature, a unique non-monotonic liftoff height behavior was observed; decreasing and then increasing liftoff height with jet velocity. This behavior was similar to the binary mixture fuels of CH4/H2 and CO/H2 observed previously. A transient homogeneous autoignition analysis suggested that such decreasing behavior with jet velocity can be attributed to partial oxidation characteristics of DME in producing appreciable amounts of CH4/CO/H2 ahead of the edge flame region.

  6. Effect of Lewis number on ball-like lean limit flames

    KAUST Repository

    Zhou, Zhen; Shoshin, Yuriy; Hernandez Perez, Francisco; van Oijen, Jeroen A.; de Goey, Laurentius P.H.

    2017-01-01

    –air and H2–air flames, ball-like lean limit flames are observed. Flame temperature fields are measured using Rayleigh scattering. The experimentally observed lean limit flames are predicted qualitatively by numerical simulation with the mixture

  7. Quantum Quenches in a Spinor Condensate

    International Nuclear Information System (INIS)

    Lamacraft, Austen

    2007-01-01

    We discuss the ordering of a spin-1 condensate when quenched from its paramagnetic phase to its ferromagnetic phase by reducing the magnetic field. We first elucidate the nature of the equilibrium quantum phase transition. Quenching rapidly through this transition reveals XY ordering either at a specific wave vector, or the ''light-cone'' correlations familiar from relativistic theories, depending on the end point of the quench. For a quench proceeding at a finite rate the ordering scale is governed by the Kibble-Zurek mechanism. The creation of vortices through growth of the magnetization fluctuations is also discussed. The long-time dynamics again depends on the end point, conserving the order parameter in a zero field, but not at a finite field, with differing exponents for the coarsening of magnetic order. The results are discussed in the light of a recent experiment by Sadler et al

  8. Superconducting synchrotron power supply and quench protection scheme

    International Nuclear Information System (INIS)

    Stiening, R.; Flora, R.; Lauckner, R.; Tool, G.

    1978-01-01

    The power supply and quench protection scheme for the proposed Fermilab 6 km circumference superconducting synchrotron is described. Specifically, the following points are discussed: (1) the 46 MW thyristor power supply; (2) the 3 x 10 8 J emergency energy dump; (3) the distributed microprocessing system for the detection of quenches; (4) the thyristor network for shunting current around quenched magnets; and (5) the heaters internal to the magnets which cause rapid propagation of quenches. Test results on prototype systems are given

  9. Charge-induced secondary atomization in diffusion flames of electrostatic sprays

    Science.gov (United States)

    Gomez, Alessandro; Chen, Gung

    1994-01-01

    The combustion of electrostatic sprays of heptane in laminar counterflow diffusion flames was experimentally studied by measuring droplet size and velocity distributions, as well as the gas-phase temperature. A detailed examination of the evolution of droplet size distribution as droplets approach the flame shows that, if substantial evaporation occurs before droplets interact with the flame, an initially monodisperse size distribution becomes bimodal. A secondary sharp peak in the size histogram develops in correspondence of diameters about one order of magnitude smaller than the mean. No evaporation mechanism can account for the development of such bimodality, that can be explained only in terms of a disintegration of droplets into finer fragments of size much smaller than that of the parent. Other evidence in support of this interpretation is offered by the measurements of droplet size-velocity correlation and velocity component distributions, showing that, as a consequence of the ejection process, the droplets responsible for the secondary peak have velocities uncorrelated with the mean flow. The fission is induced by the electric charge. When a droplet evaporates, in fact, the electric charge density on the droplet surface increases while the droplet shrinks, until the so-called Rayleigh limit is reached at which point the repulsion of electric charges overcomes the surface tension cohesive force, ultimately leading to a disintegraton into finer fragments. We report on the first observation of such fissions in combustion environments. If, on the other hand, insufficient evaporation has occurred before droplets enter the high temperature region, there appears to be no significant evidence of bimodality in their size distribution. In this case, in fact, the concentration of flame chemi-ions or, in the case of positively charged droplets, electrons may be sufficient for them to neutralize the charge on the droplets and to prevent disruption.

  10. Flame spread over inclined electrical wires with AC electric fields

    KAUST Repository

    Lim, Seung J.

    2017-07-21

    Flame spread over polyethylene-insulated electrical wires was studied experimentally with applied alternating current (AC) by varying the inclination angle (θ), applied voltage (VAC), and frequency (fAC). For the baseline case with no electric field applied, the flame spread rate and the flame width of downwardly spreading flames (DSFs) decreased from the horizontal case for −20° ≤ θ < 0° and maintained near constant values for −90° ≤ θ < −20°, while the flame spread rate increased appreciably as the inclination angle of upwardly spreading flames (USFs) increased. When an AC electric field was applied, the behavior of flame spread rate in DSFs (USFs) could be classified into two (three) sub-regimes characterized by various functional dependences on VAC, fAC, and θ. In nearly all cases of DSFs, a globular molten polyethylene formed ahead of the spreading flame edge, occasionally dripping onto the ground. In these cases, an effective flame spread rate was defined to represent the burning rate by measuring the mass loss due to dripping. This effective spread rate was independent of AC frequency, while it decreased linearly with voltage and was independent of the inclination angle. In DSFs, when excessively high voltage and frequency were applied, the dripping led to flame extinction during propagation and the extinction frequency correlated well with applied voltage. In USFs, when high voltage and frequency were applied, multiple globular molten PEs formed at several locations, leading to ejections of multiple small flame segments from the main flame, thereby reducing the flame spread rate, which could be attributed to the electrospray phenomenon.

  11. Leading-Edge Velocities and Lifted Methane Jet Flame Stability

    Directory of Open Access Journals (Sweden)

    W. Wang

    2010-01-01

    Full Text Available Current interest exists in understanding reaction-zone dynamics and mechanisms with respect to how they counterpropagate against incoming reactants. Images of flame position and flow-field morphology are presented from flame chemiluminescence and particle image velocimetry (PIV measurements. In the present study, PIV experiments were carried out to measure the methane jet lifted-flame flow-field velocities in the vicinity of the flame leading edge. Specifically, velocity fields within the high-temperature zone were examined in detail, which complements previous studies, whose prime focus is the flow-field upstream of the high-temperature boundary. PIV data is used not only to determine the velocities, but, along with chemiluminescence images, to also indicate the approximate location of the reaction zone (further supported by/through the leading-edge flame velocity distributions. The velocity results indirectly support the concept that the flame is anchored primarily through the mechanism of partially premixed flame propagation.

  12. Synthesis of Nano-Particles in Flames

    DEFF Research Database (Denmark)

    Johannessen, Tue

    flame burner and a premixed burner with a precursor jet. The experimental setups and results are shown and discussed in detail. Alumina powder with specific surface area between 45 m2/g and 190 m2/g was obtained.Temperature and flow fields of the flame processes are analysed by numerical simulations...... energy expression.Furthermore, the model is validated by comparison with experimental data of the flame synthesis of titania by combustion of TiCl4 previously presented by Pratsinis et al. (1996).The combination of particle dynamics and CFD simulations has proved to be an efficient method......The scope of this work is to investigate the synthesis of aluminum oxide particles in flames from the combustion of an aluminum alkoxide precursor.A general introduction to particles formation in the gas phase is presented with emphasis on the mechanisms that control the particle morphology after...

  13. Nanocellular foam with solid flame retardant

    Science.gov (United States)

    Chen, Liang; Kelly-Rowley, Anne M.; Bunker, Shana P.; Costeux, Stephane

    2017-11-21

    Prepare nanofoam by (a) providing an aqueous solution of a flame retardant dissolved in an aqueous solvent, wherein the flame retardant is a solid at 23.degree. C. and 101 kiloPascals pressure when in neat form; (b) providing a fluid polymer composition selected from a solution of polymer dissolved in a water-miscible solvent or a latex of polymer particles in a continuous aqueous phase; (c) mixing the aqueous solution of flame retardant with the fluid polymer composition to form a mixture; (d) removing water and, if present, solvent from the mixture to produce a polymeric composition having less than 74 weight-percent flame retardant based on total polymeric composition weight; (e) compound the polymeric composition with a matrix polymer to form a matrix polymer composition; and (f) foam the matrix polymer composition into nanofoam having a porosity of at least 60 percent.

  14. Soot Formation in Freely-Propagating Laminar Premixed Flames

    Science.gov (United States)

    Lin, K.-C.; Hassan, M. I.; Faeth, G. M.

    1997-01-01

    Soot formation within hydrocarbon-fueled flames is an important unresolved problem of combustion science. Thus, the present study is considering soot formation in freely-propagating laminar premixed flames, exploiting the microgravity environment to simplify measurements at the high-pressure conditions of interest for many practical applications. The findings of the investigation are relevant to reducing emissions of soot and continuum radiation from combustion processes, to improving terrestrial and spacecraft fire safety, and to developing methods of computational combustion, among others. Laminar premixed flames are attractive for studying soot formation because they are simple one-dimensional flows that are computationally tractable for detailed numerical simulations. Nevertheless, studying soot-containing burner-stabilized laminar premixed flames is problematical: spatial resolution and residence times are limited at the pressures of interest for practical applications, flame structure is sensitive to minor burner construction details so that experimental reproducibility is not very good, consistent burner behavior over the lengthy test programs needed to measure soot formation properties is hard to achieve, and burners have poor durability. Fortunately, many of these problems are mitigated for soot-containing, freely-propagating laminar premixed flames. The present investigation seeks to extend work in this laboratory for various soot processes in flames by observing soot formation in freely-propagating laminar premixed flames. Measurements are being made at both Normal Gravity (NG) and MicroGravity (MG), using a short-drop free-fall facility to provide MG conditions.

  15. Influence of temperature to quenching on liquid scintillation measurement

    CERN Document Server

    Kato, T

    2003-01-01

    The amount of quench is measured with liquid scintillation spectrometer changing the temperature of the sample. The range of the changed temperature is between 0 deg C and 35 deg C. The measurement is carried out for three kinds of unquenched standard, two quenched standards and fifteen kinds of scintillation cocktail and the mixed sample. It is confirmed that the amount of quench increases for all samples as the temperature rises. The influence of the changed amount of quench to the quench correction is examined. (author)

  16. Unsteady Flame Embedding (UFE) Subgrid Model for Turbulent Premixed Combustion Simulations

    KAUST Repository

    El-Asrag, Hossam

    2010-01-04

    We present a formulation for an unsteady subgrid model for premixed combustion in the flamelet regime. Since chemistry occurs at the unresolvable scales, it is necessary to introduce a subgrid model that accounts for the multi-scale nature of the problem using the information available on the resolved scales. Most of the current models are based on the laminar flamelet concept, and often neglect the unsteady effects. The proposed model\\'s primary objective is to encompass many of the flame/turbulence interactions unsteady features and history effects. In addition it provides a dynamic and accurate approach for computing the subgrid flame propagation velocity. The unsteady flame embedding approach (UFE) treats the flame as an ensemble of locally one-dimensional flames. A set of elemental one dimensional flames is used to describe the turbulent flame structure at the subgrid level. The stretched flame calculations are performed on the stagnation line of a strained flame using the unsteady filtered strain rate computed from the resolved- grid. The flame iso-surface is tracked using an accurate high-order level set formulation to propagate the flame interface at the coarse resolution with minimum numerical diffusion. In this paper the solver and the model components are introduced and used to investigate two unsteady flames with different Lewis numbers in the thin reaction zone regime. The results show that the UFE model captures the unsteady flame-turbulence interactions and the flame propagation speed reasonably well. Higher propagation speed is observed for the lower than unity Lewis number flame because of the impact of differential diffusion.

  17. Quench simulations for superconducting elements in the LHC accelerator

    Science.gov (United States)

    Sonnemann, F.; Schmidt, R.

    2000-08-01

    The design of the protection system for the superconducting elements in an accelerator such as the large Hadron collider (LHC), now under construction at CERN, requires a detailed understanding of the thermo-hydraulic and electrodynamic processes during a quench. A numerical program (SPQR - simulation program for quench research) has been developed to evaluate temperature and voltage distributions during a quench as a function of space and time. The quench process is simulated by approximating the heat balance equation with the finite difference method in presence of variable cooling and powering conditions. The simulation predicts quench propagation along a superconducting cable, forced quenching with heaters, impact of eddy currents induced by a magnetic field change, and heat transfer through an insulation layer into helium, an adjacent conductor or other material. The simulation studies allowed a better understanding of experimental quench data and were used for determining the adequate dimensioning and protection of the highly stabilised superconducting cables for connecting magnets (busbars), optimising the quench heater strip layout for the main magnets, and studying quench back by induced eddy currents in the superconductor. After the introduction of the theoretical approach, some applications of the simulation model for the LHC dipole and corrector magnets are presented and the outcome of the studies is compared with experimental data.

  18. Flame acceleration in the early stages of burning in tubes

    Energy Technology Data Exchange (ETDEWEB)

    Bychkov, Vitaly; Fru, Gordon; Petchenko, Arkady [Institute of Physics, Umeaa University, S-901 87 Umeaa (Sweden); Akkerman, V' yacheslav [Institute of Physics, Umeaa University, S-901 87 Umeaa (Sweden); Nuclear Safety Institute (IBRAE) of Russian Academy of Sciences, B. Tulskaya 52, 115191 Moscow (Russian Federation); Eriksson, Lars-Erik [Department of Applied Mechanics, Chalmers University of Technology, 412 96 Goeteborg (Sweden)

    2007-09-15

    Acceleration of premixed laminar flames in the early stages of burning in long tubes is considered. The acceleration mechanism was suggested earlier by Clanet and Searby [Combust. Flame 105 (1996) 225]. Acceleration happens due to the initial ignition geometry at the tube axis when a flame develops to a finger-shaped front, with surface area growing exponentially in time. Flame surface area grows quite fast but only for a short time. The analytical theory of flame acceleration is developed, which determines the growth rate, the total acceleration time, and the maximal increase of the flame surface area. Direct numerical simulations of the process are performed for the complete set of combustion equations. The simulations results and the theory are in good agreement with the previous experiments. The numerical simulations also demonstrate flame deceleration, which follows acceleration, and the so-called ''tulip flames''. (author)

  19. Experimental Studies of Hydrocarbon Flame Phenomena: Enabling Combustion Control

    Science.gov (United States)

    2016-07-30

    flames," Physics of Fluids , vol. 7, no. 6, pp. 1447-54, 1995. [8] K. Lyons, " Toward an understanding of the stabilization mechanisms of lifted...Experimental Studies of Hydrocarbon Flame Phenomena: Enabling Combustion Control This report summarizes the research accomplished in the project...34Experimental Studies of Hydrocarbon Flame Phenomena: Enabling Combustion Control". The main areas of activity are: a) electrostatic flame and flow

  20. Xanthophyll cycle-dependent quenching of photosystem II chlorophyll a fluorescence: Formation of a quenching complex with a short fluorescence lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, A.M.; Hazlett, T.L.; Govindjee [Univ. of Illinois, Urbana, IL (United States)

    1995-03-14

    Excess light triggers protective nonradiative dissipation of excitation energy in photosystem II through the formation of a trans-thylakoid pH gradient that in turn stimulates formation of zeaxanthin and antheraxanthin. These xanthophylls when combined with protonation of antenna pigment-protein complexes may increase nonradiative dissipation and, thus, quench chlorophyll a fluorescence. Here we measured, in parallel, the chlorophyll a fluorescence lifetime and intensity to understand the mechanism of this process. Increasing the xanthophyll concentration in the presence of a pH gradient (quenched conditions) decreases the fractional intensity of a fluorescence lifetime component centered at {approx}2 ns and increases a component at {approx}0.4 ns. Uncoupling the pH gradient (unquenched conditions) eliminates the 0.4-ns component. Changes in the xanthophyll concentration do not significantly affect the fluorescence lifetimes in either the quenched or unquenched sample conditions. However, there are differences in fluorescence lifetimes between the quenched and unquenched states that are due to pH-related, but nonxanthophyll-related, processes. Quenching of the maximal fluorescence intensity correlates with both the xanthophyll concentration and the fractional intensity of the 0.4-ns component. The unchanged fluorescence lifetimes and the proportional quenching of the maximal and dark-level fluorescence intensities indicate that the xanthophyllact on antenna, not reaction center processes. Further, the fluorescence quenching is interpreted as the combined effect of the pH gradient and xanthophyll concentration, resulting in the formation of a quenching complex with a short ({approx}0.4 ns) fluorescence lifetime. 33 refs., 6 figs., 2 tabs.

  1. Quenching of the He/sub μ/ +(2s) atom

    International Nuclear Information System (INIS)

    Russell, J.E.

    1986-01-01

    Quenching of the metastable 2s state of the He/sub μ/ + atom in helium gas is discussed. The first part of the discussion, which is devoted entirely to processes occurring after the He/sub μ/ + has become bound to one or more ordinary helium atoms, is based partly on Cohen's calculations of rates of vibrational quenching and partly on estimates obtained in the present paper of rates of Burbidge--de Borde quenching and Ruderman quenching. It is concluded that Burbidge--de Borde quenching or Ruderman quenching, or both, are likely to be more effective than Cohen quenching if the vibrational level of the bound system is low. A recent experiment by von Arb et al. is then analyzed in the light of this conclusion. The analysis is based on the reported absence, or near absence, of Auger electrons accompanying 2s quenching. While it is agreed that the Cohen mechanism occurring in the molecular ion HeHe/sub μ/ + remains the most likely explanation of the experiment, it is concluded that the quenching occurs in comparatively high levels. It is then argued that this conclusion is in accord with some theoretical investigations of three-body association reactions and also with some elementary considerations regarding the relaxation of highly excited diatomic molecules, and it is further concluded that the quenching is most likely to occur in states with very low rotational quantum number and vibrational quantum number 8≤v≤14

  2. PIV Measurements in Weakly Buoyant Gas Jet Flames

    Science.gov (United States)

    Sunderland, Peter B.; Greenbberg, Paul S.; Urban, David L.; Wernet, Mark P.; Yanis, William

    2001-01-01

    Despite numerous experimental investigations, the characterization of microgravity laminar jet diffusion flames remains incomplete. Measurements to date have included shapes, temperatures, soot properties, radiative emissions and compositions, but full-field quantitative measurements of velocity are lacking. Since the differences between normal-gravity and microgravity diffusion flames are fundamentally influenced by changes in velocities, it is imperative that the associated velocity fields be measured in microgravity flames. Velocity measurements in nonbuoyant flames will be helpful both in validating numerical models and in interpreting past microgravity combustion experiments. Pointwise velocity techniques are inadequate for full-field velocity measurements in microgravity facilities. In contrast, Particle Image Velocimetry (PIV) can capture the entire flow field in less than 1% of the time required with Laser Doppler Velocimetry (LDV). Although PIV is a mature diagnostic for normal-gravity flames , restrictions on size, power and data storage complicate these measurements in microgravity. Results from the application of PIV to gas jet flames in normal gravity are presented here. Ethane flames burning at 13, 25 and 50 kPa are considered. These results are presented in more detail in Wernet et al. (2000). The PIV system developed for these measurements recently has been adapted for on-rig use in the NASA Glenn 2.2-second drop tower.

  3. Quench dynamics in SRF cavities: can we locate the quench origin with 2nd sound?

    International Nuclear Information System (INIS)

    Maximenko, Yulia; Segatskov, Dmitri A.

    2011-01-01

    A newly developed method of locating quenches in SRF cavities by detecting second-sound waves has been gaining popularity in SRF laboratories. The technique is based on measurements of time delays between the quench as determined by the RF system and arrival of the second-sound wave to the multiple detectors placed around the cavity in superfluid helium. Unlike multi-channel temperature mapping, this approach requires only a few sensors and simple readout electronics; it can be used with SRF cavities of almost arbitrary shape. One of its drawbacks is that being an indirect method it requires one to solve an inverse problem to find the location of a quench. We tried to solve this inverse problem by using a parametric forward model. By analyzing the data we found that the approximation where the second-sound emitter is a near-singular source does not describe the physical system well enough. A time-dependent analysis of the quench process can help us to put forward a more adequate model. We present here our current algorithm to solve the inverse problem and discuss the experimental results.

  4. Stability analysis of confined V-shaped flames in high-velocity streams.

    Science.gov (United States)

    El-Rabii, Hazem; Joulin, Guy; Kazakov, Kirill A

    2010-06-01

    The problem of linear stability of confined V-shaped flames with arbitrary gas expansion is addressed. Using the on-shell description of flame dynamics, a general equation governing propagation of disturbances of an anchored flame is obtained. This equation is solved analytically for V-flames anchored in high-velocity channel streams. It is demonstrated that dynamics of the flame disturbances in this case is controlled by the memory effects associated with vorticity generated by the perturbed flame. The perturbation growth rate spectrum is determined, and explicit analytical expressions for the eigenfunctions are given. It is found that the piecewise linear V structure is unstable for all values of the gas expansion coefficient. Despite the linearity of the basic pattern, however, evolutions of the V-flame disturbances are completely different from those found for freely propagating planar flames or open anchored flames. The obtained results reveal strong influence of the basic flow and the channel walls on the stability properties of confined V-flames.

  5. Determination and Scaling of Thermo Acoustic Characteristics of Premixed Flames

    Directory of Open Access Journals (Sweden)

    P. R. Alemela

    2010-06-01

    Full Text Available The paper investigates the determination and the scaling of thermo acoustical characteristics of lean premixed flames as used in gas turbine combustion systems. In the first part, alternative methods to characterize experimentally the flame dynamics are outlined and are compared on the example of a scaled model of an industrial gas turbine burner. Transfer matrix results from the most general direct method are contrasted with data obtained from the hybrid method, which is based on Rankine-Hugoniot relations and the experimental flame transfer function obtained from OH*-chemiluminescence measurements. Also the new network model based regression method is assessed, which is based on a n – τ – σ dynamic flame model. The results indicate very good consistency between the three techniques, providing a global check of the methods/tools used for analyzing the thermo acoustic mechanisms of flames. In the second part, scaling rules are developed that allow to calculate the dynamic flame characteristics at different operation points. Towards this a geometric flame length model is formulated. Together with the other operational data of the flame it provides the dynamic flame model parameters at these points. The comparison between the measured and modeled flame lengths as well as the n – τ – σ parameters shows an excellent agreement.

  6. Chemical kinetic model uncertainty minimization through laminar flame speed measurements

    Science.gov (United States)

    Park, Okjoo; Veloo, Peter S.; Sheen, David A.; Tao, Yujie; Egolfopoulos, Fokion N.; Wang, Hai

    2016-01-01

    Laminar flame speed measurements were carried for mixture of air with eight C3-4 hydrocarbons (propene, propane, 1,3-butadiene, 1-butene, 2-butene, iso-butene, n-butane, and iso-butane) at the room temperature and ambient pressure. Along with C1-2 hydrocarbon data reported in a recent study, the entire dataset was used to demonstrate how laminar flame speed data can be utilized to explore and minimize the uncertainties in a reaction model for foundation fuels. The USC Mech II kinetic model was chosen as a case study. The method of uncertainty minimization using polynomial chaos expansions (MUM-PCE) (D.A. Sheen and H. Wang, Combust. Flame 2011, 158, 2358–2374) was employed to constrain the model uncertainty for laminar flame speed predictions. Results demonstrate that a reaction model constrained only by the laminar flame speed values of methane/air flames notably reduces the uncertainty in the predictions of the laminar flame speeds of C3 and C4 alkanes, because the key chemical pathways of all of these flames are similar to each other. The uncertainty in model predictions for flames of unsaturated C3-4 hydrocarbons remain significant without considering fuel specific laminar flames speeds in the constraining target data set, because the secondary rate controlling reaction steps are different from those in the saturated alkanes. It is shown that the constraints provided by the laminar flame speeds of the foundation fuels could reduce notably the uncertainties in the predictions of laminar flame speeds of C4 alcohol/air mixtures. Furthermore, it is demonstrated that an accurate prediction of the laminar flame speed of a particular C4 alcohol/air mixture is better achieved through measurements for key molecular intermediates formed during the pyrolysis and oxidation of the parent fuel. PMID:27890938

  7. Behaviors of tribrachial edge flames and their interactions in a triple-port burner

    KAUST Repository

    Yamamoto, Kazuhiro

    2015-05-01

    In a triple-port burner, various non-premixed flames have been observed previously. Especially for the case with two lifted flames, such configuration could be suitable in studying interaction between two tribrachial flames. In the present study, the flame characteristics have been investigated numerically by adopting a reduced kinetic mechanism in the triple-port burner. Four different types of flame configurations, including two attached flames, inner lifted/outer attached flames, inner attached/outer lifted flames, and twin lifted flames, were successfully simulated depending on the flow conditions. The representative edge propagation speed of a single lifted flame or an upstream lifted flame in the case of twin lifted flames increased as the liftoff height became higher. In the twin lifted flames, the inner lifted flame was affected appreciably when the other flame was located further upstream such that the lifted flame located further downstream encountered the axial velocity acceleration induced by the gas expansion from the lifted flame located upstream, while thermal effects were not observed since the temperature of the incoming flow toward the lifted flame was not affected. A unique flip-flop behavior between the inner and outer flames, observed experimentally previously, was successfully captured in the simulation such that the inner lifted flame became attached to the nozzle as the liftoff height of the outer lifted flame grew higher with an increase in the outer air velocity.

  8. Calculating Quench Propagation with ANSYS(regsign)

    International Nuclear Information System (INIS)

    Caspi, S.; Chiesa, L.; Ferracin, P.; Gourlay, S.A.; Hafalia, R.; Hinkins, R.; Lietzke, A.F.; Prestemon, S.

    2002-01-01

    A commercial Finite-Element-Analysis program, ANSYS(reg s ign), is widely used in structural and thermal analysis. With the program's ability to include non-linear material properties and import complex CAD files, one can generate coil geometries and simulate quench propagation in superconducting magnets. A 'proof-of-principle' finite element model was developed assuming a resistivity that increases linearly from zero to its normal value at a temperature consistent with the assumed B magnetic field. More sophisticated models could easily include finer-grained coil, cable, structural, and circuit details. A quench is provoked by raising the temperature of an arbitrary superconducting element above its T c . The time response to this perturbation is calculated using small time-steps to allow convergence between steps. Snapshots of the temperature and voltage distributions allow examination of longitudinal and turn-to-turn quench propagation, quench-front annihilation, and cryo-stability. Modeling details are discussed, and a computed voltage history was compared with measurements from a recent magnet test.

  9. System and method for quench protection of a superconductor

    Science.gov (United States)

    Huang, Xianrui; Sivasubramaniam, Kiruba Haran; Bray, James William; Ryan, David Thomas

    2008-03-11

    A system and method for protecting a superconductor from a quench condition. A quench protection system is provided to protect the superconductor from damage due to a quench condition. The quench protection system comprises a voltage detector operable to detect voltage across the superconductor. The system also comprises a frequency filter coupled to the voltage detector. The frequency filter is operable to couple voltage signals to a control circuit that are representative of a rise in superconductor voltage caused by a quench condition and to block voltage signals that are not. The system is operable to detect whether a quench condition exists in the superconductor based on the voltage signal received via the frequency filter and to initiate a protective action in response.

  10. Experimental Investigation of Turbulent Flames in Hypersonic Flows

    Science.gov (United States)

    2015-09-01

    the flow direction and (b) typical flame length scales seen in the OH-PLIF image with Mach 4.5 freestream (high turbulence) at P0 = 0.65 bar, T0...flame structures (3 mm) are observed at the upstream location of area 1 where the combustion localization first appears. The typical flame length scale

  11. Bar quenching in gas-rich galaxies

    Science.gov (United States)

    Khoperskov, S.; Haywood, M.; Di Matteo, P.; Lehnert, M. D.; Combes, F.

    2018-01-01

    Galaxy surveys have suggested that rapid and sustained decrease in the star-formation rate (SFR), "quenching", in massive disk galaxies is frequently related to the presence of a bar. Optical and near-IR observations reveal that nearly 60% of disk galaxies in the local universe are barred, thus it is important to understand the relationship between bars and star formation in disk galaxies. Recent observational results imply that the Milky Way quenched about 9-10 Gyr ago, at the transition between the cessation of the growth of the kinematically hot, old, metal-poor thick disk and the kinematically colder, younger, and more metal-rich thin disk. Although perhaps coincidental, the quenching episode could also be related to the formation of the bar. Indeed the transfer of energy from the large-scale shear induced by the bar to increasing turbulent energy could stabilize the gaseous disk against wide-spread star formation and quench the galaxy. To explore the relation between bar formation and star formation in gas rich galaxies quantitatively, we simulated gas-rich disk isolated galaxies. Our simulations include prescriptions for star formation, stellar feedback, and for regulating the multi-phase interstellar medium. We find that the action of stellar bar efficiently quenches star formation, reducing the star-formation rate by a factor of ten in less than 1 Gyr. Analytical and self-consistent galaxy simulations with bars suggest that the action of the stellar bar increases the gas random motions within the co-rotation radius of the bar. Indeed, we detect an increase in the gas velocity dispersion up to 20-35 km s-1 at the end of the bar formation phase. The star-formation efficiency decreases rapidly, and in all of our models, the bar quenches the star formation in the galaxy. The star-formation efficiency is much lower in simulated barred compared to unbarred galaxies and more rapid bar formation implies more rapid quenching.

  12. Effects of wind velocity and slope on flame properties

    Science.gov (United States)

    David R. Weise; Gregory S. Biging

    1996-01-01

    Abstract: The combined effects of wind velocity and percent slope on flame length and angle were measured in an open-topped, tilting wind tunnel by burning fuel beds composed of vertical birch sticks and aspen excelsior. Mean flame length ranged from 0.08 to 1.69 m; 0.25 m was the maximum observed flame length for most backing fires. Flame angle ranged from -46o to 50o...

  13. Pulsating Instability of Turbulent Thermonuclear Flames in Type Ia Supernovae

    Science.gov (United States)

    Poludnenko, Alexei Y.

    2014-01-01

    Presently, one of the main explosion scenarios of type Ia supernovae (SNIa), aimed at explaining both "normal" and subluminous events, is the thermonuclear incineration of a white-dwarf in a single-degenerate system. The underlying engine of such explosions is the turbulent thermonuclear flame. Modern, large-scale, multidimensional simulations of SNIa cannot resolve the internal flame structure, and instead must include a subgrid-scale prescription for the turbulent-flame properties. As a result, development of robust, parameter-free, large-scale models of SNIa crucially relies on the detailed understanding of the turbulent flame properties during each stage of the flame evolution. Due to the complexity of the flame dynamics, such understanding must be validated by the first-principles direct numerical simulations (DNS). In our previous work, we showed that sufficiently fast turbulent flames are inherently susceptible to the development of detonations, which may provide the mechanism for the deflagration-to-detonation transition (DDT) in the delayed-detonation model of SNIa. Here we extend this study by performing detailed analysis of the turbulent flame properties at turbulent intensities below the critical threshold for DDT. We carried out a suite of 3D DNS of turbulent flames for a broad range of turbulent intensities and system sizes using a simplified, single-step, Arrhenius-type reaction kinetics. Our results show that at the later stages of the explosion, as the turbulence intensity increases prior to the possible onset of DDT, the flame front will become violently unstable. We find that the burning rate exhibits periodic pulsations with the energy release rate varying by almost an order of magnitude. Furthermore, such flame pulsations can produce pressure waves and shocks as the flame speed approaches the critical Chapman-Jouguet deflagration speed. Finally, in contrast with the current theoretical understanding, such fast turbulent flames can propagate at

  14. Laser Doppler thermometry in flat flames

    NARCIS (Netherlands)

    Maaren, van A.; Goey, de L.P.H.

    1994-01-01

    Laser Doppler Velocimetry measurements are performed in flat flames, stabilized on a newly developed flat-flame burner. It is shown that the velocity component perpendicular to the main flow direction, induced by expansion in the reaction zone and buoyancy in the burnt gas, is significant. A method

  15. Optimization of a quench detection system for superconducting magnets

    International Nuclear Information System (INIS)

    Borlein, M.

    2004-12-01

    Subject of this report is the detection of a quench in a superconducting magnet. For the safe operation of superconducting magnets one of the most important issues is the quench detection system which controls the superconducting state of the magnet and triggers a safety discharge if necessary. If it comes to a breakdown of the superconductivity (quench), the magnet has to be discharged very quickly to avoid any damage or danger for the magnet or its environment. First an introducing overview is given. Next different methods of quench detection will be presented, partially on the basis of existing quench detection systems and the applicability of these methods in different states of the magnet operation will be shown. The different quench detection methods are compared and evaluated partially by using test experiments described in the appendix. As an application example this report contains a proposal for the quench detection system for the Wendelstein 7-X facility, actually built by the Institute for Plasma Physics, Garching [de

  16. Quench simulations for superconducting elements in the LHC accelerator

    CERN Document Server

    Sonnemann, F

    2000-01-01

    The design of he protection system for he superconducting elements in an accel- erator such as the Large Hadron Collider (LHC),now under construction at CERN, requires a detailed understanding of the hermo-hydraulic and electrodynamic pro- cesses during a quench.A numerical program (SPQR -Simulation Program for Quench Research)has been developed o evaluate temperature and voltage dis ri- butions during a quench as a func ion of space and ime.The quench process is simulated by approximating the heat balance equation with the finite di fference method in presence of variable cooling and powering conditions.The simulation predicts quench propagation along a superconducting cable,forced quenching with heaters,impact of eddy curren s induced by a magnetic field change,and heat trans- fer hrough an insulation layer in o helium,an adjacen conductor or other material. The simulation studies allowed a better understanding of experimental quench data and were used for determining the adequ...

  17. ITER Side Correction Coil Quench model and analysis

    Science.gov (United States)

    Nicollet, S.; Bessette, D.; Ciazynski, D.; Duchateau, J. L.; Gauthier, F.; Lacroix, B.

    2016-12-01

    Previous thermohydraulic studies performed for the ITER TF, CS and PF magnet systems have brought some important information on the detection and consequences of a quench as a function of the initial conditions (deposited energy, heated length). Even if the temperature margin of the Correction Coils is high, their behavior during a quench should also be studied since a quench is likely to be triggered by potential anomalies in joints, ground fault on the instrumentation wires, etc. A model has been developed with the SuperMagnet Code (Bagnasco et al., 2010) for a Side Correction Coil (SCC2) with four pancakes cooled in parallel, each of them represented by a Thea module (with the proper Cable In Conduit Conductor characteristics). All the other coils of the PF cooling loop are hydraulically connected in parallel (top/bottom correction coils and six Poloidal Field Coils) are modeled by Flower modules with equivalent hydraulics properties. The model and the analysis results are presented for five quench initiation cases with/without fast discharge: two quenches initiated by a heat input to the innermost turn of one pancake (case 1 and case 2) and two other quenches initiated at the innermost turns of four pancakes (case 3 and case 4). In the 5th case, the quench is initiated at the middle turn of one pancake. The impact on the cooling circuit, e.g. the exceedance of the opening pressure of the quench relief valves, is detailed in case of an undetected quench (i.e. no discharge of the magnet). Particular attention is also paid to a possible secondary quench detection system based on measured thermohydraulic signals (pressure, temperature and/or helium mass flow rate). The maximum cable temperature achieved in case of a fast current discharge (primary detection by voltage) is compared to the design hot spot criterion of 150 K, which includes the contribution of helium and jacket.

  18. Characterization of plasma current quench at JET

    International Nuclear Information System (INIS)

    Riccardo, V; Barabaschi, P; Sugihara, M

    2005-01-01

    Eddy currents generated during the fastest disruption current decays represent the most severe design condition for medium and small size in-vessel components of most tokamaks. Best-fit linear and instantaneous plasma current quench rates have been extracted for a set of recent JET disruptions. Contrary to expectations, the current quench rate spectrum of high and low thermal energy disruptions is not substantially different. For most of the disruptions with the highest instantaneous current quench rate an exponential fit of the early phase of the current decay provides a more accurate estimate of the maximum current decay velocity. However, this fit is only suitable to model the fastest events, for which the current quench is dominated by radiation losses rather than the plasma motion

  19. Mode Selection in Flame-Vortex driven Combustion Instabilities

    KAUST Repository

    Speth, Ray

    2011-01-04

    In this paper, we investigate flame-vortex interaction in a lean premixed, laboratory scale, backward-facing step combustor. Two series of tests were conducted, using propane/hydrogen mixtures and carbon monoxide/hydrogen mixtures as fuels, respectively. Pressure measurements and high speed particle imaging velocimetry (PIV) were employed to generate pressure response curves as well as the images of the velocity field and the flame brush. We demonstrate that the step combustor exhibits several operating modes depending on the inlet conditions and fuel composition, characterized by the amplitude and frequency of pressure oscillations along with distinct dynamic flame shapes. We propose a model in which the combustor\\'s selection of the acoustic mode is governed by a combustion-related time delay inversely proportional to the flame speed. Our model predicts the transition between distinct operating modes. We introduce non-dimensional parameters characterizing the flame speed and stretch rate, and develop a relationship between these quantities at the operating conditions corresponding to each mode transition. Based on this relationship, we show that numerically-calculated density-weighted strained flame speed can be used to collapse the combustion dynamics data over the full range of conditions (inlet temperature, fuel composition, and equivalence ratio). Finally, we validate our strain flame based model by measuring the strain rate using the flame image and the velocity field from the PIV measurement. Our results show that the measured strain rates lie in the same range as the critical values at the transitions among distinct modes as those predicted by our model.

  20. Richtmyer-Meshkov instability in shock-flame interactions

    Science.gov (United States)

    Massa, Luca; Pallav Jha Collaboration

    2011-11-01

    Shock-flame interactions occur in supersonic mixing and detonation formation. Therefore, their analysis is important to explosion safety, internal combustion engine performance, and supersonic combustor design. The fundamental process at the basis of the interaction is the Richtmyer-Meshkov instability supported by the density difference between burnt and fresh mixtures. In the present study we analyze the effect of reactivity on the Richtmyer- Meshkov instability with particular emphasis on combustion lengths that typify the scaling between perturbation growth and induction. The results of the present linear analysis study show that reactivity changes the perturbation growth rate by developing a non-zero pressure gradient at the flame surface. The baroclinic torque based on the density gradient across the flame acts to slow down the instability growth for high wave numbers. A non-hydrodynamic flame representation leads to the definition of an additional scaling Peclet number, the effects of which are investigated. It is found that an increased flame-contact separation destabilizes the contact discontinuity by augmenting the tangential shear.

  1. Flame Retardants Used in Flexible Polyurethane Foam

    Science.gov (United States)

    The partnership project on flame retardants in furniture seeks to update the health and environmental profiles of flame-retardant chemicals that meet fire safety standards for upholstered consumer products with polyurethane foam

  2. Quench behavior of a superconducting accelerator magnet

    International Nuclear Information System (INIS)

    McInturff, A.D.; Sampson, W.B.; Garber, M.; Dahl, P.F.

    1980-01-01

    Data are presented on the minimum energy required to cause quenches to propagate in an accelerator dipole magnet. The amount of stored energy dissipated into the magnet was measured as a function of dipole excitation current. This in turn determines the maximum coil temperature reached in a given magnet. Quench velocities in the longitudinal direction of the conductor were as high as 11m/sec. The azimuthal velocities or turn to turn velocities were found to be a function of the number of fiberglass layers of insulation that the quench had to cross and were on the order of a few tens of centimeters/sec. The field shape of a given magnet was found to be unchanged for more than 100 quenches. The coil to coil connection and inter-coil splice resistances were found to be less than a namo-ohm and therefore of litle consequence in the cryogenic load considerations. No definitive answers were found on how to decrease the rate of training (130 Gauss/Quench average) required from 4.OT to 5.1T

  3. Acoustic Signature from Flames as a Combustion Diagnostic Tool

    Science.gov (United States)

    1983-11-01

    empirical visual flame length had to be input to the computer for the inversion method to give good results. That is, if the experiment cnd inversion...method were asked to yield the flame length , poor results were obtained. Since this wa3 part of the information sought for practical application of the...to small experimental uncertainty. The method gave reasonably good results for the open flame but substantial input (the flame length ) had to be

  4. PREMIXED FLAME PROPAGATION AND MORPHOLOGY IN A CONSTANT VOLUME COMBUSTION CHAMBER

    Energy Technology Data Exchange (ETDEWEB)

    Hariharan, A; Wichman, IS

    2014-06-04

    This work presents an experimental and numerical investigation of premixed flame propagation in a constant volume rectangular channel with an aspect ratio of six (6) that serves as a combustion chamber. Ignition is followed by an accelerating cusped finger-shaped flame-front. A deceleration of the flame is followed by the formation of a "tulip"-shaped flame-front. Eventually, the flame is extinguished when it collides with the cold wall on the opposite channel end. Numerical computations are performed to understand the influence of pressure waves, instabilities, and flow field effects causing changes to the flame structure and morphology. The transient 2D numerical simulation results are compared with transient 3D experimental results. Issues discussed are the appearance of oscillatory motions along the flame front and the influences of gravity on flame structure. An explanation is provided for the formation of the "tulip" shape of the premixed flame front.

  5. Quenching phenomena in natural circulation loop

    International Nuclear Information System (INIS)

    Umekawa, Hisashi; Ozawa, Mamoru; Ishida, Naoki

    1995-01-01

    Quenching phenomena has been investigated experimentally using circulation loop of liquid nitrogen. During the quenching under natural circulation, the heat transfer mode changes from film boiling to nucleate boiling, and at the same time flux changes with time depending on the vapor generation rate and related two-phase flow characteristics. Moreover, density wave oscillations occur under a certain operating condition, which is closely related to the dynamic behavior of the cooling curve. The experimental results indicates that the occurrence of the density wave oscillation induces the deterioration of effective cooling of the heat surface in the film and the transition boiling regions, which results in the decrease in the quenching velocity

  6. Quenching phenomena in natural circulation loop

    Energy Technology Data Exchange (ETDEWEB)

    Umekawa, Hisashi; Ozawa, Mamoru [Kansai Univ., Osaka (Japan); Ishida, Naoki [Daihatsu Motor Company, Osaka (Japan)

    1995-09-01

    Quenching phenomena has been investigated experimentally using circulation loop of liquid nitrogen. During the quenching under natural circulation, the heat transfer mode changes from film boiling to nucleate boiling, and at the same time flux changes with time depending on the vapor generation rate and related two-phase flow characteristics. Moreover, density wave oscillations occur under a certain operating condition, which is closely related to the dynamic behavior of the cooling curve. The experimental results indicates that the occurrence of the density wave oscillation induces the deterioration of effective cooling of the heat surface in the film and the transition boiling regions, which results in the decrease in the quenching velocity.

  7. Liftoff characteristics of partially premixed flames under normal and microgravity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lock, Andrew J.; Briones, Alejandro M.; Aggarwal, Suresh K. [Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Qin, Xiao [Department of Mechanical & amp; Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Puri, Ishwar K. [Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Hegde, Uday [National Center for Microgravity Research, Cleveland, OH 44135 (United States)

    2005-11-01

    An experimental and computational investigation on the liftoff characteristics of laminar partially premixed flames (PPFs) under normal (1-g) and microgravity ({mu}-g) conditions is presented. Lifted methane-air PPFs were established in axisymmetric coflowing jets using nitrogen dilution and various levels of partial premixing. The {mu}-g experiments were conducted in the 2.2-s drop tower at the NASA Glenn Research Center. A time-accurate, implicit algorithm that uses a detailed description of the chemistry and includes radiation effects is used for the simulations. The predictions are validated through a comparison of the flame reaction zone topologies, liftoff heights, lengths, and oscillation frequencies. The effects of equivalence ratio, gravity, jet velocity, and radiation on flame topology, liftoff height, flame length, base structure, and oscillation frequency are characterized. Both the simulations and measurements indicate that under identical conditions, a lifted {mu}-g PPF is stabilized closer to the burner compared with the 1-g flame, and that the liftoff heights of both 1-g and {mu}-g flames decrease with increasing equivalence ratio and approach their respective nonpremixed flame limits. The liftoff height also increases as the jet velocity is increased. In addition, the flame base structure transitions from a triple- to a double-flame structure as the flame liftoff height decreases. A modified flame index is developed to distinguish between the rich premixed, lean premixed, and nonpremixed reaction zones near the flame base. The 1-g lifted flames exhibit well-organized oscillations due to buoyancy-induced instability, while the corresponding {mu}-g flames exhibit steady-state behavior. The effect of thermal radiation is to slightly decrease the liftoff heights of both 1-g and {mu}-g flames under coflow conditions.

  8. Flame kernel generation and propagation in turbulent partially premixed hydrocarbon jet

    KAUST Repository

    Mansour, Mohy S.

    2014-04-23

    Flame development, propagation, stability, combustion efficiency, pollution formation, and overall system efficiency are affected by the early stage of flame generation defined as flame kernel. Studying the effects of turbulence and chemistry on the flame kernel propagation is the main aim of this work for natural gas (NG) and liquid petroleum gas (LPG). In addition the minimum ignition laser energy (MILE) has been investigated for both fuels. Moreover, the flame stability maps for both fuels are also investigated and analyzed. The flame kernels are generated using Nd:YAG pulsed laser and propagated in a partially premixed turbulent jet. The flow field is measured using 2-D PIV technique. Five cases have been selected for each fuel covering different values of Reynolds number within a range of 6100-14400, at a mean equivalence ratio of 2 and a certain level of partial premixing. The MILE increases by increasing the equivalence ratio. Near stoichiometric the energy density is independent on the jet velocity while in rich conditions it increases by increasing the jet velocity. The stability curves show four distinct regions as lifted, attached, blowout, and a fourth region either an attached flame if ignition occurs near the nozzle or lifted if ignition occurs downstream. LPG flames are more stable than NG flames. This is consistent with the higher values of the laminar flame speed of LPG. The flame kernel propagation speed is affected by both turbulence and chemistry. However, at low turbulence level chemistry effects are more pronounced while at high turbulence level the turbulence becomes dominant. LPG flame kernels propagate faster than those for NG flame. In addition, flame kernel extinguished faster in LPG fuel as compared to NG fuel. The propagation speed is likely to be consistent with the local mean equivalence ratio and its corresponding laminar flame speed. Copyright © Taylor & Francis Group, LLC.

  9. The quench detection system of Wendelstein 7-X

    International Nuclear Information System (INIS)

    Birus, Dietrich; Schneider, Matthias; Rummel, Thomas; Fricke, Marko

    2011-01-01

    The Quench Detection System of Wendelstein W7-X has been developed, pretested and manufactured during the last four years. This safety subsystem of the superconducting magnet power supply will guarantee the safe operating of the whole magnet system. The main targets of the Quench Detection System are the complete data acquisition of all the voltages along the superconducting components, i.e. non planar and planar coils, and bus bars, the evaluation of this data and the control of the magnet system safety discharges. The Quench Detection System is generating control commands for the magnet power supply control system and the electrical status of the superconducting components of W7-X. The Quench Detection System consists of nearly 580 Quench Detection Units (QDU) located in 10 QD-subsystems, 8 racks in each, one host system and two special interfaces for evaluation of the quench control commands and the failure signals. The operating software suite of the QD System allows the configuration, the operation and the maintenance of the whole system.

  10. (Talk) Investigating The Star Formation Quenching Across Cosmic Time - A Methodology To Select Galaxies Just After The Quenching Of Star Formation

    Science.gov (United States)

    Citro, Annalisa; Pozzetti, Lucia; Quai, Salvatore; Moresco, Michele; Vallini, Livia; Cimatti, Andrea

    2017-06-01

    We propose a method aimed at identifing galaxies in the short evolutionary phase in which they quench their star-formation (SF). We rely on high- to low-ionization emission line ratios, which rapidly disappear after the SF halt due to the softening of the UV ionizing radiation. In particular, we focus on [O III] 5007/Halpha and [Ne III] 3869/[O II] 3727, simulating their time evolution by means of the CLOUDY photoionization code. We find that these two emission line ratios are able to trace the quenching on very short time-scales (i.e. 10-80 Myr), depending on if a sharp or a smoother SF quenching is assumed. We adopt the [N II] 6584/[O II] 3727 ratio as metallicity diagnostic to mitigate the metallicity degeneracy which affects our method. Using a Sloan Digital Sky Survey galaxy sample, we identify 11 examples of extreme quenching candidates within the [O III] 5007/Halpha vs. [N II] 6584/[O II] 3727 plane, characterized by faint [Ne III] 3869, blue dust-corrected spectra and blue (u-r) colours, as expected if the quenching occurred in the recent past. Our results also suggest that the observed fractions of quenching candidates can be used to constrain the quenching mechanism at work and its time-scales.

  11. Fast Hydrogen-Air Flames for Turbulence Driven Deflagration to Detonation Transition

    Science.gov (United States)

    Chambers, Jessica; Ahmed, Kareem

    2016-11-01

    Flame acceleration to Detonation produces several combustion modes as the Deflagration-to-Detonation Transition (DDT) is initiated, including fast deflagration, auto-ignition, and quasi-detonation. Shock flame interactions and turbulence levels in the reactant mixture drive rapid flame expansion, formation of a leading shockwave and post-shock conditions. An experimental study to characterize the developing shock and flame front behavior of propagating premixed hydrogen-air flames in a square channel is presented. To produce each flame regime, turbulence levels and flame propagation velocity are controlled using perforated plates in several configurations within the experimental facility. High speed optical diagnostics including Schlieren and Particle Image Velocimetry are used to capture the flow field. In-flow pressure measurements acquired post-shock, detail the dynamic changes that occur in the compressed gas directly ahead of the propagating flame. Emphasis on characterizing the turbulent post-shock environment of the various flame regimes helps identify the optimum conditions to initiate the DDT process. The study aims to further the understanding of complex physical mechanisms that drive transient flame conditions for detonation initiation. American Chemical Society.

  12. Quenching and recovery experiments on tungsten

    International Nuclear Information System (INIS)

    Rasch, K.D.; Siegel, R.W.; Schultz, H.

    1976-01-01

    A short summary is given of new results concerning transmission electron microscopy and resistivity measurements on quenched tungsten. These results give evidence for the first time that the quenching and annealing of high purity tungsten leads to vacancy--defect clustering resulting in small voids observable in the electron microscope. 21 references

  13. Flame stability and heat transfer analysis of methane-air mixtures in catalytic micro-combustors

    International Nuclear Information System (INIS)

    Chen, Junjie; Song, Wenya; Xu, Deguang

    2017-01-01

    Highlights: • The mechanisms of heat and mass transfer for loss of stability were elucidated. • Stability diagrams were constructed and design recommendations were made. • Flame characteristics were examined to determine extinction and blowout limits. • Heat loss greatly affects extinction whereas wall materials greatly affect blowout. • Radiation causes the flame to shift downstream. - Abstract: The flame stability and heat transfer characteristics of methane-air mixtures in catalytic micro-combustors were studied, using a two-dimensional computational fluid dynamics (CFD) model with detailed chemistry and transport. The effects of wall thermal conductivity, surface emissivity, fuel, flow velocity, and equivalence ratio were explored to provide guidelines for optimal design. Furthermore, the underlying mechanisms of heat and mass transfer for loss of flame stability were elucidated. Finally, stability diagrams were constructed and design recommendations were made. It was found that the heat loss strongly affects extinction, whereas the wall thermal conductivity greatly affects blowout. The presence of homogeneous chemistry extends blowout limits, especially for inlet velocities higher than 6 m/s. Increasing transverse heat transfer rate reduces stability, whereas increasing transverse mass transfer rate improves stability. Surface radiation behaves similarly to the heat conduction within the walls, but opposite trends are observed. High emissivity causes the flame to shift downstream. Methane exhibits much broader blowout limits. For a combustor with gap size of 0.8 mm, a residence time higher than 3 ms is required to prevent breakthrough, and inlet velocities lower than 0.8 m/s are the most desirable operation regime. Further increase of the wall thermal conductivity beyond 80 W/(m·K) could not yield an additional increase in stability.

  14. Gravity Effects Observed In Partially Premixed Flames

    Science.gov (United States)

    Puri, Ishwar K.; Aggarwal, Suresh K.; Lock, Andrew J.; Gauguly, Ranjan; Hegde, Uday

    2003-01-01

    Partially premixed flames (PPFs) contain a rich premixed fuel air mixture in a pocket or stream, and, for complete combustion to occur, they require the transport of oxidizer from an appropriately oxidizer-rich (or fuel-lean) mixture that is present in another pocket or stream. Partial oxidation reactions occur in fuel-rich portions of the mixture and any remaining unburned fuel and/or intermediate species are consumed in the oxidizer-rich portions. Partial premixing, therefore, represents that condition when the equivalence ratio (phi) in one portion of the flowfield is greater than unity, and in another section its value is less than unity. In general, for combustion to occur efficiently, the global equivalence ratio is in the range fuel-lean to stoichiometric. These flames can be established by design by placing a fuel-rich mixture in contact with a fuel-lean mixture, but they also occur otherwise in many practical systems, which include nonpremixed lifted flames, turbulent nonpremixed combustion, spray flames, and unwanted fires. Other practical applications of PPFs are reported elsewhere. Although extensive experimental studies have been conducted on premixed and nonpremixed flames under microgravity, there is a absence of previous experimental work on burner stabilized PPFs in this regard. Previous numerical studies by our group employing a detailed numerical model showed gravity effects to be significant on the PPF structure. We report on the results of microgravity experiments conducted on two-dimensional (established on a Wolfhard-Parker slot burner) and axisymmetric flames (on a coannular burner) that were investigated in a self-contained multipurpose rig. Thermocouple and radiometer data were also used to characterize the thermal transport in the flame.

  15. High-Field Quench Behavior and Protection of $Bi_2 Sr_2 Ca Cu_2 O_x$ Coils: Minimum and Maximum Quench Detection Voltages

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Tengming [Fermilab; Ye, Liyang [NCSU, Raleigh; Turrioni, Daniele [Fermilab; Li, Pei [Fermilab

    2015-01-01

    Small insert coils have been built using a multifilamentary Bi2Sr2CaCu2Ox round wire, and characterized in background fields to explore the quench behaviors and limits of Bi2Sr2CaCu2Ox superconducting magnets, with an emphasis on assessing the impact of slow normal zone propagation on quench detection. Using heaters of various lengths to initiate a small normal zone, a coil was quenched safely more than 70 times without degradation, with the maximum coil temperature reaching 280 K. Coils withstood a resistive voltage of tens of mV for seconds without quenching, showing the high stability of these coils and suggesting that the quench detection voltage shall be greater than 50 mV to not to falsely trigger protection. The hot spot temperature for the resistive voltage of the normal zone to reach 100 mV increases from ~40 K to ~80 K with increasing the operating wire current density Jo from 89 A/mm2 to 354 A/mm2 whereas for the voltage to reach 1 V, it increases from ~60 K to ~140 K, showing the increasing negative impact of slow normal zone propagation on quench detection with increasing Jo and the need to limit the quench detection voltage to < 1 V. These measurements, coupled with an analytical quench model, were used to access the impact of the maximum allowable voltage and temperature upon quench detection on the quench protection, assuming to limit the hot spot temperature to <300 K.

  16. Galaxies in the act of quenching star formation

    Science.gov (United States)

    Quai, Salvatore; Pozzetti, Lucia; Citro, Annalisa; Moresco, Michele; Cimatti, Andrea

    2018-04-01

    Detecting galaxies when their star-formation is being quenched is crucial to understand the mechanisms driving their evolution. We identify for the first time a sample of quenching galaxies selected just after the interruption of their star formation by exploiting the [O III] λ5007/Hα ratio and searching for galaxies with undetected [O III]. Using a sample of ˜174000 star-forming galaxies extracted from the SDSS-DR8 at 0.04 ≤ z growth of the quiescent population at these redshifts. Their main properties (i.e. star-formation rate, colours and metallicities) are comparable to those of the star-forming population, coherently with the hypothesis of recent quenching, but preferably reside in higher-density environments.Most candidates have morphologies similar to star-forming galaxies, suggesting that no morphological transformation has occurred yet. From a survival analysis we find a low fraction of candidates (˜ 0.58% of the star-forming population), leading to a short quenching timescale of tQ ˜ 50 Myr and an e-folding time for the quenching history of τQ ˜ 90 Myr, and their upper limits of tQ < 0.76 Gyr and τQ <1.5 Gyr, assuming as quenching galaxies 50% of objects without [O III] (˜7.5%).Our results are compatible with a 'rapid' quenching scenario of satellites galaxies due to the final phase of strangulation or ram-pressure stripping. This approach represents a robust alternative to methods used so far to select quenched galaxies (e.g. colours, specific star-formation rate, or post-starburst spectra).

  17. Spatial and radiative properties of an open-flame hydrogen plume

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, R.W.; Houf, W.G. [Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551 (United States); Bourne, B.; Colton, J. [SRI International, 333 Ravenwood Ave., Menlo Park, CA 94025 (United States)

    2006-08-15

    Considerable effort is being directed toward updating safety codes and standards in preparation for production, distribution, and retail of hydrogen as a consumer energy source. In the present study, measurements were performed in large-scale, vertical flames to characterize the dimensional and radiative properties of an ignited hydrogen jet. These data are relevant to the safety scenario of a sudden leak in a high-pressure hydrogen containment vessel. Specifically, the data will provide a technological basis for determining hazardous length scales associated with unintended releases at hydrogen storage and distribution centers. Visible and infrared video and ultraviolet flame luminescence imaging were used to evaluate flame length, diameter and structure. Radiometer measurements allowed determination of the radiant heat flux from the flame. The results show that flame length increases with total jet mass flow rate and jet nozzle diameter. When plotted as a function of Froude number, which measures the relative importance of jet momentum and buoyancy, the measured flame lengths for a range of operating conditions collapse onto the same curve. Good comparison with hydrocarbon jet flame lengths is found, demonstrating that the non-dimensional correlations are valid for a variety of fuel types. The radiative heat flux measurements for hydrogen flames show good agreement with non-dimensional correlations and scaling laws developed for a range of fuels and flame conditions. This result verifies that such correlations can be used to predict radiative heat flux from a wide variety of hydrogen flames and establishes a basis for predicting a priori the characteristics of flames resulting from accidental releases. (author)

  18. White Flame Energy switches to backhoes

    Energy Technology Data Exchange (ETDEWEB)

    Fiscor, S.

    2005-06-01

    The mountaintop coal operator, White Flame Energy has switched to different truck-shovel arrangement. Along with many surface mining operations throughout central Appalachia, the company is using hoe-configured hydraulic excavators as opposed to the traditional front-shovel arrangements. Located in Varney, WV, White Flame Energy uses two Terex O & K mining shovels, an RH170 and an RH 200, which have the capacity to move 2 million cu yards per month from five seams, primarily the Coalburg, Stockton, and No 5 Block and associated rider seams. The article records conversations on the operations with Mike Vines, the general manager, and Don Nicewonder, the owner of White Flame Energy. 2 photos.

  19. Numerical Study of Quench Protection for Fast-Ramping Accelerator Magnets

    CERN Document Server

    Schwerg, N; Mess, K-N; Russenschuck, S

    2009-01-01

    The quench module of the ROXIE field computation program has been presented at previous conferences. In this paper we discuss recently implemented features that allow quench simulation of fast-ramping superconducting magnets. As the reliability of quench detection during the ramps depends on the signal to noise ratio, we simulate the influence of detection thresholds and the propagation of undetected quenches during the ramps. We also study the effect of an increased copper content and the feasibility of a self-protected magnet surviving a powering cycle with an undetected quench and without quench heater firing or energy-extraction system.

  20. Quench antenna for superconducting particle accelerator magnets

    International Nuclear Information System (INIS)

    Ogitsu, T.; Devred, A.; Kim, K.

    1993-10-01

    We report on the design, fabrication, and test of an assembly of stationary pickup coils which can be used to localize quench origins. After describing the pickup coils configuration, we develop a simple model of current redistribution which allows interpretation of the measured voltages and determination of the turn of the magnet coil in which the quench started. The technique is illustrated by analyzing the data from a quench of a 5-cm-aperture, 15-m-long SSC dipole magnet prototype

  1. Turbulent Flame Propagation Characteristics of High Hydrogen Content Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Seitzman, Jerry [Georgia Inst. of Technology, Atlanta, GA (United States); Lieuwen, Timothy [Georgia Inst. of Technology, Atlanta, GA (United States)

    2014-09-30

    This final report describes the results of an effort to better understand turbulent flame propagation, especially at conditions relevant to gas turbines employing fuels with syngas or hydrogen mixtures. Turbulent flame speeds were measured for a variety of hydrogen/carbon monoxide (H2/CO) and hydrogen/methane (H2/CH4) fuel mixtures with air as the oxidizer. The measurements include global consumption speeds (ST,GC) acquired in a turbulent jet flame at pressures of 1-10 atm and local displacement speeds (ST,LD) acquired in a low-swirl burner at atmospheric pressure. The results verify the importance of fuel composition in determining turbulent flame speeds. For example, different fuel-air mixtures having the same unstretched laminar flame speed (SL,0) but different fuel compositions resulted in significantly different ST,GC for the same turbulence levels (u'). This demonstrates the weakness of turbulent flame speed correlations based simply on u'/SL,0. The results were analyzed using a steady-steady leading points concept to explain the sensitivity of turbulent burning rates to fuel (and oxidizer) composition. Leading point theories suggest that the premixed turbulent flame speed is controlled by the flame front characteristics at the flame brush leading edge, or, in other words, by the flamelets that advance farthest into the unburned mixture (the so-called leading points). For negative Markstein length mixtures, this is assumed to be close to the maximum stretched laminar flame speed (SL,max) for the given fuel-oxidizer mixture. For the ST,GC measurements, the data at a given pressure were well-correlated with an SL,max scaling. However the variation with pressure was not captured, which may be due to non-quasi-steady effects that are not included in the current model. For the ST,LD data, the leading points model again faithfully captured the variation of turbulent flame speed over a wide range of fuel-compositions and turbulence intensities. These

  2. Experimental study of the stabilization process of a non-premixed flame via the destabilization analysis of the blue ring flame

    Energy Technology Data Exchange (ETDEWEB)

    Pinguet, Guillaume; Escudie, Dany [Centre de Thermique de Lyon (CETHIL) UMR 5008 CNRS-INSA-UCBL, INSA de Lyon, 20 av. A. Einstein, 69621 Villeurbanne cedex (France)

    2007-04-15

    The flame stabilization phenomenon remains a crucial issue. The experimental study of flame stabilization behind a tulip-shaped flame-holder is addressed in this paper. The process leading to the transition between specific modes - the blue ring flame and the instable ring - of a non-premixed flame stabilized on a tulip-shaped bluff-body is detailed. The aim of this study is to provide an accurate description of the destabilization of specific combustion modes, which enables a further understanding of the entire stabilization mechanism. The aerodynamic and mixing fields are described by laser Doppler anemometry and concentration measurements by sampling probe respectively. The behaviour of shear layers developing at the wake and jet boundaries are characterized by means of a spectral analysis of the fluctuating radial velocity. Results show that the destabilization process is related to the intensification of hot gas recirculation, inducing an upheaval of the dynamical condition of stabilization and a transition of mixing phenomena. (author)

  3. Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D)

    International Nuclear Information System (INIS)

    Pitsch, H.; Steiner, H.

    2000-01-01

    The Lagrangian Flamelet Model is formulated as a combustion model for large-eddy simulations of turbulent jet diffusion flames. The model is applied in a large-eddy simulation of a piloted partially premixed methane/air diffusion flame (Sandia flame D). The results of the simulation are compared to experimental data of the mean and RMS of the axial velocity and the mixture fraction and the unconditional and conditional averages of temperature and various species mass fractions, including CO and NO. All quantities are in good agreement with the experiments. The results indicate in accordance with experimental findings that regions of high strain appear in layer like structures, which are directed inwards and tend to align with the reaction zone, where the turbulence is fully developed. The analysis of the conditional temperature and mass fractions reveals a strong influence of the partial premixing of the fuel. (c) 2000 American Institute of Physics

  4. Analysis of industrial flame characteristics and constancy study using image processing technique

    Directory of Open Access Journals (Sweden)

    Bibhuti Bhusan Samantaray

    2015-12-01

    Full Text Available The study of characterizing and featuring different kinds of flames has become more important than ever in order to increase combustion efficiency and decrease particulate emissions, especially since the study of industrial flames requires more attention. In the present work, different kinds of combustion flames have been characterized by means of digital image processing (DIP in a 500 kW PF pilot swirl burner. A natural gas flame and a set of pulverized fuel flames of coal and biomass have been comparatively analyzed under co-firing conditions. Through DIP, statistical and spectral features of the flame have been extracted and graphically represented as two-dimensional distributions covering the root flame area. Their study and comparison leads to different conclusions about the flame behavior and the effect of co-firing coal and biomass in pulverized fuel flames. Higher oscillation levels in co-firing flames versus coal flames and variations in radiation regimen were noticed when different biomasses are blended with coal and brought under attention.

  5. Ion measurements in premixed methane-oxygen flames

    KAUST Repository

    Alquaity, Awad; Hourani, Nadim; Chahine, May; Selim, Hatem; Sarathy, Mani; Farooq, Aamir

    2014-01-01

    Mass Spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane-oxygen-argon burner-stabilized flames. Lean, stoichiometric and rich flames at atmospheric pressure are used to study the dependence of ion chemistry

  6. Fluorescence quenching of fluorescein by Merocyanine 540 in liposomes

    International Nuclear Information System (INIS)

    Toprak, Mahmut; Meryem Aydin, Burcu; Arik, Mustafa; Onganer, Yavuz

    2011-01-01

    The fluorescence quenching of fluorescein (FL) by merociyanine 540 (MC540) was examined in L-egg lecithin phosphatidycholine (PC) liposomes using spectroscopic methods. The type of quenching mechanism (dynamic or static) was evaluated using the Stern-Volmer plots. Findings were also supported by the temperature studies and florescence decay measurements. The Stern-Volmer equation was utilized to calculate bimolecular quenching constants (K q ). Furthermore, the bimolecular quenching constant of the quencher in the liposomes (K SV ), partition coefficient (K p ), binding constant (K), and corresponding thermodynamic parameters ΔH, ΔS, and ΔG were calculated. The quenching property was also used in determining quantitatively (K p ) the partition coefficient of Merociyanini 540 in PC liposome.The obtained data indicated that static quenching occurred in the system and the K SV values decreased with increasing lipid concentration. In addition, thermodynamic analysis suggested that van der Waals interactions and hydrogen bonding were the main acting forces between fluorescein and merociyanine 540 molecules in the medium. - Highlights: → Fluorescence quenching of FL by MC540 in liposome system was analyzed. → Fluorescence quenching mechanism of FL by MC540 was consistent with the static model. → Binding FL to MC540 was spontaneous and carried out by hydrogen bond and van der Waals forces.

  7. Quorum Quenching Revisited—From Signal Decays to Signalling Confusion

    Directory of Open Access Journals (Sweden)

    Kok-Gan Chan

    2012-04-01

    Full Text Available In a polymicrobial community, while some bacteria are communicating with neighboring cells (quorum sensing, others are interrupting the communication (quorum quenching, thus creating a constant arms race between intercellular communication. In the past decade, numerous quorum quenching enzymes have been found and initially thought to inactivate the signalling molecules. Though this is widely accepted, the actual roles of these quorum quenching enzymes are now being uncovered. Recent evidence extends the role of quorum quenching to detoxification or metabolism of signalling molecules as food and energy source; this includes “signalling confusion”, a term coined in this paper to refer to the phenomenon of non-destructive modification of signalling molecules. While quorum quenching has been explored as a novel anti-infective therapy targeting, quorum sensing evidence begins to show the development of resistance against quorum quenching.

  8. FPGA-based quench detection system for super-FRS super-ferric dipole prototype

    International Nuclear Information System (INIS)

    Yang Tongjun; Wu Wei; Yao Qinggao; Yuan Ping; He Yuan; Han Shaofei; Ma Lizhen

    2011-01-01

    The quench detection system for Super-FRS super-ferric dipole prototype magnet of FAIR has been designed and built. The balance bridge was used to detect quench signal. In order to avoid blind zone of quench detection, two independent bridges were used. NI PXI-7830R FPGA was used to implement filter to quench signal and algorithm of quench decision and to produce quench trigger signal. Pre-sample technique was used in quench data acquisition. The data before and after quench could be recorded for analysis later. The test result indicated that the quench of the dipole's superconducting coil could be reliably detected by the quench detection module. (authors)

  9. Quantification of extinction mechanism in counterflow premixed flames

    International Nuclear Information System (INIS)

    Choi, Sang Kyu; Cho, Eun Seong; Chung, Suk Ho

    2014-01-01

    The extinction mechanisms of stretched premixed flames have been investigated numerically for the fuels of CH 4 , C 3 H 8 , H 2 , CO and for the mixture fuels of CH 4 +H 2 and CO+H 2 by adopting symmetric double premixed flames in a counterflow configuration. The local equilibrium temperature concept was used as a measure of energy loss or gain in order to quantify the extinction mechanism by preferential diffusion and/or incomplete reaction. The energy loss ratio from preferential diffusion arising from non-unity Lewis number and the loss ratio from incomplete reaction were calculated at various equivalence ratios near flame extinction. The results showed that the extinction of lean H 2 , CH 4 , CH 4 +H 2 , CO+H 2 , and rich C 3 H 8 premixed flames was caused by incomplete reaction due to insufficient reaction time, indicating that the effective Lewis number was smaller than unity, while the effect of preferential diffusion resulted in energy gain. However, the extinction of rich H 2 , CH 4 , CH 4 +H 2 , CO+H 2 , and lean C 3 H 8 premixed flames was affected by the combined effects of preferential diffusion and incomplete reaction indicating that the effective Lewis number was larger than unity. In CO premixed flames, incomplete reaction was dominant in both lean and rich cases due to the effective Lewis number close to unity. The effect of H 2 mixing to CO is found to be quite significant as compared to CH 4 +H 2 cases, which can alter the flame behavior of CO flames to that of H 2 .

  10. Transition of carbon nanostructures in heptane diffusion flames

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wei-Chieh [National Cheng Kung University, Department of Mechanical Engineering (China); Hou, Shuhn-Shyurng [Kun Shan University, Department of Mechanical Engineering (China); Lin, Ta-Hui, E-mail: thlin@mail.ncku.edu.tw [National Cheng Kung University, Department of Mechanical Engineering (China)

    2017-02-15

    The flame synthesis has high potential in industrial production of carbon nanostructure (CNS). Unfortunately, the complexity of combustion chemistry leads to less controlling of synthesized products. In order to improve the understanding of the relation between flames and CNSs synthesized within, experiments were conducted through heptane flames in a stagnation-point liquid-pool system. The operating parameters for the synthesis include oxygen supply, sampling position, and sampling time. Two kinds of nanostructures were observed, carbon nanotube (CNT) and carbon nano-onion (CNO). CNTs were synthesized in a weaker flame near extinction. CNOs were synthesized in a more sooty flame. The average diameter of CNTs formed at oxygen concentration of 15% was in the range of 20–30 nm. For oxygen concentration of 17%, the average diameter of CNTs ranged from 24 to 27 nm, while that of CNOs was around 28 nm. For oxygen concentration of 19%, the average diameter of CNOs produced at the sampling position 0.5 mm below the flame front was about 57 nm, while the average diameters of CNOs formed at the sampling positions 1–2.5 mm below the flame front were in the range of 20–25 nm. A transition from CNT to CNO was observed by variation of sampling position in a flame. We found that the morphology of CNS is directly affected by the presence of soot layer due to the carbonaceous environment and the growth mechanisms of CNT and CNO. The sampling time can alter the yield of CNSs depending on the temperature of sampling position, but the morphology of products is not affected.

  11. Quantification of extinction mechanism in counterflow premixed flames

    KAUST Repository

    Choi, Sangkyu

    2014-09-01

    The extinction mechanisms of stretched premixed flames have been investigated numerically for the fuels of CH4, C3H8, H2, CO and for the mixture fuels of CH4+H2 and CO+H2 by adopting symmetric double premixed flames in a counterflow configuration. The local equilibrium temperature concept was used as a measure of energy loss or gain in order to quantify the extinction mechanism by preferential diffusion and/or incomplete reaction. The energy loss ratio from preferential diffusion arising from non-unity Lewis number and the loss ratio from incomplete reaction were calculated at various equivalence ratios near flame extinction. The results showed that the extinction of lean H2, CH4, CH4+H2, CO+H2, and rich C3H8 premixed flames was caused by incomplete reaction due to insufficient reaction time, indicating that the effective Lewis number was smaller than unity, while the effect of preferential diffusion resulted in energy gain. However, the extinction of rich H2, CH4, CH4+H2, CO+H2, and lean C3H8 premixed flames was affected by the combined effects of preferential diffusion and incomplete reaction indicating that the effective Lewis number was larger than unity. In CO premixed flames, incomplete reaction was dominant in both lean and rich cases due to the effective Lewis number close to unity. The effect of H2 mixing to CO is found to be quite significant as compared to CH4+H2 cases, which can alter the flame behavior of CO flames to that of H2.

  12. Measurements of turbulent premixed flame dynamics using cinema stereoscopic PIV

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, Adam M.; Driscoll, James F. [University of Michigan, Department of Aerospace Engineering, Ann Arbor, MI (United States); Ceccio, Steven L. [University of Michigan, Department of Mechanical Engineering, Ann Arbor, MI (United States)

    2008-06-15

    A new experimental method is described that provides high-speed movies of turbulent premixed flame wrinkling dynamics and the associated vorticity fields. This method employs cinema stereoscopic particle image velocimetry and has been applied to a turbulent slot Bunsen flame. Three-component velocity fields were measured with high temporal and spatial resolutions of 0.9 ms and 140{mu}m, respectively. The flame-front location was determined using a new multi-step method based on particle image gradients, which is described. Comparisons are made between flame fronts found with this method and simultaneous CH-PLIF images. These show that the flame contour determined corresponds well to the true location of maximum gas density gradient. Time histories of typical eddy-flame interactions are reported and several important phenomena identified. Outwardly rotating eddy pairs wrinkle the flame and are attenuated at they pass through the flamelet. Significant flame-generated vorticity is produced downstream of the wrinkled tip. Similar wrinkles are caused by larger groups of outwardly rotating eddies. Inwardly rotating pairs cause significant convex wrinkles that grow as the flame propagates. These wrinkles encounter other eddies that alter their behavior. The effects of the hydrodynamic and diffusive instabilities are observed and found to be significant contributors to the formation and propagation of wrinkles. (orig.)

  13. Onset of Darrieus-Landau Instability in Expanding Flames

    Science.gov (United States)

    Mohan, Shikhar; Matalon, Moshe

    2017-11-01

    The effect of small amplitude perturbations on the propagation of circular flames in unconfined domains is investigated, computationally and analytically, within the context of the hydrodynamic theory. The flame, treated as a surface of density discontinuity separating fresh combustible mixture from the burnt gas, propagates at a speed dependent upon local curvature and hydrodynamic strain. For mixtures with Lewis numbers above criticality, thermodiffusive effects have stabilizing influences which largely affect the flame at small radii. The amplitude of these disturbances initially decay and only begin to grow once a critical radius is reached. This instability is hydrodynamic in nature and is a consequence of thermal expansion. Through linear stability analysis, predictions of critical flame radius at the onset of instability are obtained as functions of Markstein length and thermal expansion coefficients. The flame evolution is also examined numerically where the motion of the interface is tracked via a level-set method. Consistent with linear stability results, simulations show the flame initially remaining stable and the existence of a particular mode that will be first to grow and later determine the cellular structure observed experimentally at the onset of instability.

  14. Processing of the quench detection signals in W7-X

    International Nuclear Information System (INIS)

    Birus, Dietrich; Schneider, Matthias; Rummel, Thomas; Fricke, Marko; Petry, Klaus; Ebersoldt, Andreas

    2009-01-01

    The Wendelstein 7-X (W7-X) project uses superconductive coils for generation of the magnetic field to keep the plasma. One of the important safety systems is the protection against quench events. The quench detection system of W7-X protects the superconducting coils, the superconducting bus bar sections and the high temperature superconductor of the current leads against the damage because of a quench and against the high stress by a fast discharge of the magnet system. Therefore, the present design of the quench detection system (QDS) uses a two-stage safety concept for discharging the magnetic system. This paper describes the present design of the system assembly from the quench detection unit (QDU) for the detection of the quench to the quench detection interface (QDI) to implement the two-stage safety concept.

  15. Heating the quenched Eguchi-Kawai model

    Energy Technology Data Exchange (ETDEWEB)

    Klinkhamer, F.R. (Rijksuniversiteit Leiden (Netherlands). Sterrewacht)

    1983-05-30

    We consider the Eguchi-Kawaii reduction, in the momentum-quenched prescription, of the SU(N) lattice gauge theory for N -> infinite and address the problem of how finite temperature might be incorporated. This is of interest in order to establish quark deconfinement at high temperatures. We also show that different quenching procedures may be inequivalent.

  16. FLAME facility: The effect of obstacles and transverse venting on flame acceleration and transition on detonation for hydrogen-air mixtures at large scale

    International Nuclear Information System (INIS)

    Sherman, M.P.; Tieszen, S.R.; Benedick, W.B.

    1989-04-01

    This report describes research on flame acceleration and deflagration-to-detonation transition (DDT) for hydrogen-air mixtures carried out in the FLAME facility, and describes its relevance to nuclear reactor safety. Flame acceleration and DDT can generate high peak pressures that may cause failure of containment. FLAME is a large rectangular channel 30.5 m long, 2.44 m high, and 1.83 m wide. It is closed on the ignition end and open on the far end. The three test variables were hydrogen mole fraction (12--30%), degree of transverse venting (by moving steel top plates---0%, 13%, and 50%), and the absence or presence of certain obstacles in the channel (zero or 33% blockage ratio). The most important variable was the hydrogen mole fraction. The presence of the obstacles tested greatly increased the flame speeds, overpressures, and tendency for DDT compared to similar tests without obstacles. Different obstacle configurations could have greater or lesser effects on flame acceleration and DDT. Large degrees of transverse venting reduced the flame speeds, overpressures, and possibility of DDT. For small degrees of transverse venting (13% top venting), the flame speeds and overpressures were higher than for no transverse venting with reactive mixtures (>18% H 2 ), but they were lower with leaner mixtures. The effect of the turbulence generated by the flow out the vents on increasing flame speed can be larger than the effect of venting gas out of the channel and hence reducing the overpressure. With no obstacles and 50% top venting, the flame speeds and overpressures were low, and there was no DDT. For all other cases, DDT was observed above some threshold hydrogen concentration. DDT was obtained at 15% H 2 with obstacles and no transverse venting. 67 refs., 62 figs

  17. Formation and stabilization of multiple ball-like flames at Earth gravity

    KAUST Repository

    Zhou, Zhen; Shoshin, Yuriy; Hernandez Perez, Francisco; van Oijen, Jeroen A.; de Goey, Laurentius P.H.

    2018-01-01

    diagram is experimentally identified in terms of equivalence ratio and ratio of H to CH (variation of fuel Lewis number). Planar flames, cell-like flames, distorted cap-like flames, and arrays of ball-like flames are progressively observed

  18. Exciplex formation accompanied with excitation quenching.

    Science.gov (United States)

    Fedorenko, Stanislav G; Burshtein, Anatoly I

    2010-04-08

    The competence of the reversible exciplex formation and parallel quenching of excitation (by electron or energy transfer) was considered using a non-Markovian pi-forms approach, identical to integral encounter theory (IET). General equations accounting for the reversible quenching and exciplex formation are derived in the contact approximation. Their general solution was obtained and adopted to the most common case when the ground state particles are in great excess. Particular cases of only photoionization or just exciplex formation separately studied earlier by means of IET are reproduced. In the case of the irreversible excitation quenching, the theory allows specifying the yields of the fluorescence and exciplex luminescence, as well as the long time kinetics of excitation and exciplex decays, in the absence of quenching. The theory distinguishes between the alternative regimes of (a) fast equilibration between excitations and exciplexes followed by their decay with a common average rate and (b) the fastest and deep excitation decay followed by the weaker and slower delayed fluorescence, backed by exciplex dissociation.

  19. Measurements of a high-luminosity flame structure by a shuttered PIV system

    International Nuclear Information System (INIS)

    Li, Yueh-Heng; Wu, Chih-Yung; Chen, Bi-Chian; Chao, Yei-Chin

    2008-01-01

    It is difficult to measure the velocity distribution inside a high-luminosity flame by using the particle image velocimetry (PIV) system with a double-shutter mode CCD camera. The second raw image of the PIV image pair is usually contaminated by flame emission. The main cause of the problem is an excess exposure time which lets the flame emission overlap the particle image in the second frame. If the flame-contamination problem is not significant, for example in faint flames, digital image processing can improve the image to an acceptable level. Nevertheless, when the PIV technique is applied to high-luminosity flames, the second raw particle image would be contaminated by flame emission. In this paper, incorporating a mechanical shutter in the PIV system with a double-shutter CCD camera is proposed to improve PIV measurements in high-luminosity flames. Measurements in faint, high-luminosity as well as very bright flames were tested. The results show that the present setup can accurately resolve the flow velocity field inside the flame cone, through the flame and in the post flame zone for all the flame conditions analyzed. The velocity distributions and streamline patterns measured by the present equipment are reasonable and meaningful

  20. Stabilization and structure of n-heptane tribrachial flames in axisymmetric laminar jets

    KAUST Repository

    Bisetti, Fabrizio

    2015-01-01

    A set of tribrachial flames of n-heptane/air is simulated with finite rate chemistry and detailed transport in a realistic laminar jet configuration for which experimental data are available. The flames differ by the temperature of the unburnt mixture and stabilization height, which controls the mixture fraction gradient ahead of the flame front. The simulations reproduce the lift-off heights in the experiments, showing that the flame stabilizes further downstream as the unburnt temperature decreases. For the lowest unburnt temperature, resulting in a weak mixture fraction gradient at the tribrachial point, positive stretch along the rich premixed wing leads to an increase in the rate of chemical reaction in the whole flame. The tribrachial flame burning velocity exceeds that in the unstretched, one-dimensional flame. For the highest temperature, the flame stabilizes closest to the nozzle. Large flame tilt, large mixture fraction gradient, and small radius of curvature lead to a reduction in the heat release rate and the flame propagates slower than its one-dimensional counterpart. The observed behavior is explained with a detailed analysis of the flame geometry, differential diffusion effects, flame stretch, and transport of heat and mass from the burnt gases to the flame front. © 2014 The Combustion Institute.

  1. Validation of Quench Simulation and Simulation of the TWIN Solenoid

    CERN Document Server

    Pots, Rosalinde Hendrika

    2015-01-01

    For the Future Circular Collider at CERN a multi-purpose detector is proposed. The 6T TWIN Solenoid, a very large magnet system with a stored energy of 53 GJ, is being designed. It is important to protect the magnet against quenches in the system. Therefore several existing quench protection systems are evaluated and simulations have be performed on quenches in the TWIN Solenoid. The simulations on quenches in the TWIN Solenoid have been performed with promising results; the hotspot temperatures do not exceed 120 K and layer to layer voltages stay below 500 V. Adding quench heaters to the system might improve the quench protection system further.

  2. Humphrey Davy and the Safety Lamp: The Use of Metal Gauze as a Flame Barrier

    Science.gov (United States)

    Mills, Allan

    2015-01-01

    The "safety lamp" invented by Humphrey Davy in 1815 utilised the cooling effect of metal gauze to prevent the flame of a candle or oil lamp (essential for illumination in mines) from passing through such a screen. It is therefore rendered unable to ignite any potentially explosive mixture of air and methane in the atmosphere surrounding…

  3. Brominated flame retardants: occurrence, dietary intake and risk assessment

    NARCIS (Netherlands)

    Winter-Sorkina R de; Bakker MI; Wolterink G; Zeijlmaker MJ; SIR

    2006-01-01

    Brominated flame retardants have entered the human food chain. For the time being the occurrence of these chemicals in Dutch food does not pose a human health risk. However, this might easily change at increasing contents of flame retardants in Dutch food. The monitoring of brominated flame

  4. A New Perspective on the Flame Describing Function of a Matrix Flame

    Directory of Open Access Journals (Sweden)

    Maria Heckl

    2015-06-01

    Full Text Available This paper considers a fundamental thermoacoustic test rig developed by Noiray (“Linear and nonlinear analysis of combustion instabilities, application to multipoint injection systems and control strategies”, PhD thesis, École Centrale Paris, 2007 and models it with an entirely analytical approach. The test rig is treated as a system of two coupled elements: an acoustic resonator and a flame with oscillating rate of heat release. We describe the acoustics of the combustion rig in terms of modes, and derive a governing equation for one such mode. This turns out to be the equation for a damped harmonic oscillator, forced by the heat release rate from the flame. In order to model the heat release rate, and in particular its nonlinear aspects, we develop a generalised nτ-law with amplitude-dependent coefficients and multiple time-lag. The coefficients are determined from Noiray's measured flame describing function. Stability predictions are made by evaluating the sign of the damping coefficient in the governing equation. These predictions are in excellent qualitative agreement with the measured stability behaviour. Finally, the physical mechanisms of the amplitude-dependence are explored.

  5. Automatic, non-intrusive, flame detection in pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, M.D.; Mehta, S.A.; Moore, R.G. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering; Al-Himyary, T.J. [Al-Himyary Consulting Inc., Calgary, AB (Canada)

    2004-07-01

    Flames have been known to occur within small diameter pipes operating under conditions of high turbulent flow. Although there are several methods of flame detection, few offer remote, non-line-of-site detection. In particular, combustion cannot be detected in cases where flammable mixtures are carried in flare lines, storage tank vents, air drilling or improperly designed purging operations. Combustion noise is being examined as a means to address this problem. A study was conducted in which flames within a small diameter tube were automatically detected using high speed pressure measurements and a newly developed algorithm. Commercially available, high-pressure, dynamic-pressure transducers were used for the measurements. The results of an experimental study showed that combustion noise can be distinguished from other sources of noise by its inverse power law relationship with frequency. This paper presented a newly developed algorithm which provides early detection of flames when combined with high-speed pressure measurements. The algorithm can also separate combustion noise automatically from other sources of noise when combined with other filters. In this study, the noise generated by a fluttering check valve was attenuated using a stop band filter. This detection method was found to be very reliable under the conditions tests, as long as there was no flow restriction between the sensor and the flame. A flow restriction would have resulted in the detection of only the strongest flame noise. It was shown that acoustic flame detection can be applied successfully in flare stacks, industrial burners and turbine combustors. It can be 15 times more sensitive than optical or electrical methods in diagnosing combustion problems with lean burning combustors. It may also be the only method available in applications that require remote, non-line-of-sight detection. 11 refs., 3 tabs., 15 figs.

  6. Hydrodynamic model of hydrogen-flame propagation in reactor vessels

    International Nuclear Information System (INIS)

    Baer, M.R.; Ratzel, A.C.

    1982-01-01

    A hydrodynamic model for hydrogen flame propagation in reactor geometries is presented. This model is consistent with the theory of slow combustion in which the gasdynamic field equations are treated in the limit of small Mach numbers. To the lowest order, pressure is spatially uniform. The flame is treated as a density and entropy discontinuity which propagates at prescribed burning velocities, corresponding to laminar or turbulent flames. Radiation cooling of the burned combustion gases and possible preheating of the unburned gases during propagation of the flame is included using a molecular gas-band thermal radiation model. Application of this model has been developed for 1-D variable area flame propagation. Multidimensional effects induced by hydrodynamics and buoyancy are introduced as a correction to the burn velocity (which reflects a modification of planar flame surface to a distorted surface) using experimentally measured pressure-rise time data for hydrogen/air deflagrations in cylindrical vessels

  7. Chemical processes in the HNF flame

    NARCIS (Netherlands)

    Ermolin, N.E.; Zarko, V.E.; Keizers, H.L.J.

    2006-01-01

    Results of modeling the HNF flame structure are presented. From an analysis of literature data on the thermal decomposition and combustion of HNF, it is concluded that the dissociative vaporization of HNF proceeds via the route HNFliq → (N2H4)g + (HC(NO 2)3)g. The flame structure is modeled using a

  8. Investigation of an overheated PWR-type fuel rod simulator bundle cooled down by steam. Pt. 1: experimental and calculational results of the QUENCH-04 test. Pt. 2: application of the SVECHA/QUENCH code to the analysis of the QUENCH-01 and QUENCH-04 bundle tests

    International Nuclear Information System (INIS)

    Sepold, L.; Hofmann, P.; Homann, C.

    2002-04-01

    The QUENCH experiments are to investigate the hydrogen source term that results from the water injection into an uncovered core of a light-water reactor (LWR). The test bundle is made of 21 fuel rod simulators with a length of approximately 2.5 m. 20 fuel rod simulators are heated over a length of 1024 mm, the one unheated fuel rod simulator is located in the center of the test bundle. Heating is carried out electrically using 6-mm-diameter tungsten heating elements installed in the center of the rods and surrounded by annular ZrO 2 pellets. The rod cladding is identical to that used in LWRs: Zircaloy-4, 10.75 mm outside diameter, 0.725 mm wall thickness. The test bundle is instrumented with thermocouples attached to the cladding and the shroud at 17 different elevations with an axial distance between the thermocouples of 100 mm. During the entire test up to the cooldown phase, superheated steam together with the argon as carrier gas enters the test bundle at the bottom end and leaves the test section at the top together with the hydrogen that is produced in the zirconium-steam reaction. The hydrogen is analyzed by three different instruments: two mass spectrometers and a ''Caldos 7 G'' hydrogen measuring device (based on the principle of heat conductivity). Part I of this report describes the results of test QUENCH-04 performed in the QUENCH test facility at the Forschungszentrum Karlsruhe on June 30, 1999. The objective of the experiment QUENCH-04 was to investigate the reaction of the non-preoxidized rod cladding on cooldown by steam rather than quenching by water. Part II of the present report deals with the results of the SVECHA/QUENCH (S/Q) code application to the FZK QUENCH bundle tests. The adaptation of the S/Q code to such kind of calculations is described. The numerical procedure of the recalculation of the temperature test data, and the preparation for the S/Q code input is presented. In particular, the results of the QUENCH-01 and QUENCH-04 test

  9. Characteristics of diffusion flames with accelerated motion

    Directory of Open Access Journals (Sweden)

    Lou Bo

    2016-01-01

    Full Text Available The aim of this work is to present an experiment to study the characteristics of a laminar diffusion flame under acceleration. A Bunsen burner (nozzle diameter 8 mm, using liquefied petroleum gas as its fuel, was ignited under acceleration. The temperature field and the diffusion flame angle of inclination were visualised with the assistance of the visual display technology incorporated in MATLAB™. Results show that the 2-d temperature field under different accelerations matched the variation in average temperatures: they both experience three variations at different time and velocity stages. The greater acceleration has a faster change in average temperature with time, due to the accumulation of combustion heat: the smaller acceleration has a higher average temperature at the same speed. No matter what acceleration was used, in time, the flame angle of inclination increased, but the growth rate decreased until an angle of 90°: this could be explained by analysis of the force distribution within the flame. It is also found that, initially, the growth rate of angle with velocity under the greater acceleration was always smaller than that at lower accelerations; it was also different in flames with uniform velocity fire conditions.

  10. Forced convective post CHF heat transfer and quenching

    International Nuclear Information System (INIS)

    Nelson, R.A.

    1980-01-01

    This paper discusses mechanisms in the post-CHF region which provide understanding and qualitative prediction capability for several current forced convective heat transfer problems. In the area of nuclear reactor safety, the mechanisms are important in the prediction of fuel rod quenches for the reflood phase, blowdown phase, and possibly some operational transients with dryout. Results using the mechanisms to investigate forced convective quenching are presented. Data reduction of quenching experiments is discussed, and the way in which the quenching transient may affect the results of different types of quenching experiments is investigated. This investigation provides an explanation of how minimum wall superheats greater than the homogeneous nucleation temperature result, as well as how these may appear to be either hydrodynamically or thermodynamically controlled. Finally, the results of a parametric study of the effects of the mechanisms upon the LOFT L2-3 hotpin calculation are presented

  11. Heating the quenched Eguchi-Kawai model

    International Nuclear Information System (INIS)

    Klinkhamer, F.R.

    1983-01-01

    We consider the Eguchi-Kawaii reduction, in the momentum-quenched prescription, of the SU(N) lattice gauge theory for N -> infinite and address the problem of how finite temperature might be incorporated. This is of interest in order to establish quark deconfinement at high temperatures. We also show that different quenching procedures may be inequivalent. (orig.)

  12. Experimental investigation of combustion instabilities in lean swirl-stabilized partially-premixed flames in single- and multiple-burner setup

    Directory of Open Access Journals (Sweden)

    Christian Kraus

    2016-03-01

    Full Text Available In the present work, combustion instabilities of a modular combustor are investigated. The combustor operates with partially premixed, swirl-stabilized flames and can be operated in single- and different multiple-burner setups. The design parameters of the combustor prevent large-scale flame–flame interactions in the multiple-burner arrangements. The objective is to investigate how the interaction of the swirl jets affects the thermoacoustic stability of the combustor. Results of measurements of pressure oscillations and high-speed OH*-chemiluminescence imaging for the single-burner setup and two multiple-burner setups are discussed. Additionally, results of investigations with different flame characteristics are presented. These are achieved by varying the ratio of the mass flow rates through the swirlers of the double-concentric swirl nozzle. Several unstable modes with high pressure amplitudes are observed in the single-burner setup as well as in the multiple-burner setups. Numerical studies of the acoustic behavior of the combustor setups were performed that indicate that the different geometries show similar acoustic behaviors. The results lead to the conclusion that the interaction of the swirl jets in the multiple-burner setups affects the thermoacoustic response spectrum of the flame even in the absence of large-scale flame–flame interactions. Based on the findings in earlier studies, it is concluded that the differences in the flame response characteristics are induced by the reduction of the swirl intensity in the multiple-burner arrangements, which is caused by the exchange of momentum between the adjacent swirl jets.

  13. Buoyant Unstable Behavior of Initially Spherical Lean Hydrogen-Air Premixed Flames

    Directory of Open Access Journals (Sweden)

    Zuo-Yu Sun

    2014-07-01

    Full Text Available Buoyant unstable behavior in initially spherical lean hydrogen-air premixed flames within a center-ignited combustion vessel have been studied experimentally under a wide range of pressures (including reduced, normal, and elevated pressures. The experimental observations show that the flame front of lean hydrogen-air premixed flames will not give rise to the phenomenon of cellular instability when the equivalence ratio has been reduced to a certain value, which is totally different from the traditional understanding of the instability characteristics of lean hydrogen premixed flames. Accompanied by the smoothened flame front, the propagation mode of lean hydrogen premixed flames transitions from initially spherical outwardly towards upwardly when the flames expand to certain sizes. To quantitatively investigate such buoyant instability behaviors, two parameters, “float rate (ψ” and “critical flame radius (Rcr”, have been proposed in the present article. The quantitative results demonstrate that the influences of initial pressure (Pint on buoyant unstable behaviors are different. Based on the effects of variation of density difference and stretch rate on the flame front, the mechanism of such buoyant unstable behaviors has been explained by the competition between the stretch force and the results of gravity and buoyancy, and lean hydrogen premixed flames will display buoyant unstable behavior when the stretch effects on the flame front are weaker than the effects of gravity and buoyancy.

  14. Quench start localization in full-length SSC R ampersand D dipoles

    International Nuclear Information System (INIS)

    Devred, A.; Chapman, M.; Cortella, J.; Desportes, A.; Kaugerts, J.; Kirk, T.; Mirk, K.; Schermer, R.; Tompkins, J.C.; Turner, J.; Bleadon, M.; Brown, B.C.; Hanft, R.; Kuchnir, M.; Lamm, M.; Mantsch, P.; Mazur, P.O.; Orris, D.; Peoples, J.; Strait, J.; Tool, G.; Caspi, S.; Gilbert, W.; Meuser, R.; Peters, C.; Rechen, J.; Royet, J.; Scanlan, R.; Taylor, C.; Zbasnik, J.

    1989-04-01

    Full-length SSC R ampersand D dipole magnets instrumented with four voltage taps on each turn of the inner quarter coils have been tested. These voltage taps enable accurate location of the point at which the quenches start and detailed studies of quench development in the coil. Attention here is focused on localizing the quench source. After recalling the basic mechanism of a quench (why it occurs and how it propagates), the method of quench origin analysis is described: the quench propagation velocity on the turn where the quench occurs is calculated, and the quench location is then verified by reiterating the analysis on the adjacent turns. Last, the velocity value, which appears to be higher than previously measured, is discussed

  15. Instability and electrical response of small laminar coflow diffusion flames under AC electric fields: Toroidal vortex formation and oscillating and spinning flames

    KAUST Repository

    Xiong, Yuan; Chung, Suk-Ho; Cha, Min

    2016-01-01

    Dynamical and electrical responses of a small coflow diffusion flame were investigated by applying a high-voltage alternating current (AC), to a fuel jet nozzle. High-speed imaging and electrical diagnostics were adopted to capture flame dynamics and electrical signals, such as voltage (V ), frequency (f ) and current (I ). In the V -f domain of 0-5kV and 0-5kHz, AC-driven instabilities, resulting in various flame modes such as an oscillation, pinch-off and spinning of flames were identified. Characteristic frequency of each mode was determined and a visualization of near-nozzle flow structures suggested a close causality of initial counter-rotating vortices (inner and outer toroidal vortices - ITV and OTV), to the other observed flame. An axisymmetric ITV shedding was identified within oscillating and pinch-off modes, while asymmetric ITV shedding was identified with the spinning mode. Integrated electric power over several AC periods correlated well with variation in the flame surface area for these instabilities, demonstrating that measured electric power is a potential indicator of combustion instabilities in electric-field-assisted combustion.

  16. Instability and electrical response of small laminar coflow diffusion flames under AC electric fields: Toroidal vortex formation and oscillating and spinning flames

    KAUST Repository

    Xiong, Yuan

    2016-06-24

    Dynamical and electrical responses of a small coflow diffusion flame were investigated by applying a high-voltage alternating current (AC), to a fuel jet nozzle. High-speed imaging and electrical diagnostics were adopted to capture flame dynamics and electrical signals, such as voltage (V ), frequency (f ) and current (I ). In the V -f domain of 0-5kV and 0-5kHz, AC-driven instabilities, resulting in various flame modes such as an oscillation, pinch-off and spinning of flames were identified. Characteristic frequency of each mode was determined and a visualization of near-nozzle flow structures suggested a close causality of initial counter-rotating vortices (inner and outer toroidal vortices - ITV and OTV), to the other observed flame. An axisymmetric ITV shedding was identified within oscillating and pinch-off modes, while asymmetric ITV shedding was identified with the spinning mode. Integrated electric power over several AC periods correlated well with variation in the flame surface area for these instabilities, demonstrating that measured electric power is a potential indicator of combustion instabilities in electric-field-assisted combustion.

  17. Aromatics oxidation and soot formation in flames

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J.B.; Pope, C.J.; Shandross, R.A.; Yadav, T. [Massachusetts Institute of Technology, Cambridge (United States)

    1993-12-01

    This project is concerned with the kinetics and mechanisms of aromatics oxidation and soot and fullerenes formation in flames. The scope includes detailed measurements of profiles of stable and radical species concentrations in low-pressure one-dimensional premixed flames. Intermediate species identifications and mole fractions, fluxes, and net reaction rates calculated from the measured profiles are used to test postulated reaction mechanisms. Particular objectives are to identify and to determine or confirm rate constants for the main benzene oxidation reactions in flames, and to characterize fullerenes and their formation mechanisms and kinetics.

  18. Gas concentration and temperature in acoustically excited Delft turbulent jet flames

    Energy Technology Data Exchange (ETDEWEB)

    Ana Maura A. Rocha; Joao A. Carvalho Jr.; Pedro T. Lacava [Sao Paulo State University, Guaratingueta (Brazil)

    2008-11-15

    This paper shows the experimental results for changes in the flame structure when acoustic fields are applied in natural gas Delft turbulent diffusion flames. The acoustic field (pulsating combustion) generates zones of intense mixture of reactants in the flame region, promoting a more complete combustion and, consequently, lower pollutant emissions, increase in convective heat transfer rates, and lower fuel consumption. The results show that the presence of the acoustic field changes drastically the flame structure, mainly in the burner natural frequencies. However, for higher acoustic amplitudes, or acoustic pressures, a hydrogen pilot flame is necessary in order to keep the main flame anchored. In the flame regions where the acoustic field is more intense, premixed flame characteristics were observed. Besides, the pulsating regime modifies the axial and radial combustion structure, which could be verified by the radial distribution of concentrations of O{sub 2}, CO, CO{sub 2}, and NOx, and by the temperature profile. The experiments also presented the reduction of flame length with the increase of acoustic amplitude. 30 refs., 15 figs., 3 tabs.

  19. Quantification of extinction mechanism in counterflow premixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sang Kyu [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of); Cho, Eun Seong [Doosan Heavy Industries and Construction, Changwon (Korea, Republic of); Chung, Suk Ho [Abdullah University of Science and Technology, Thuwal (Saudi Arabia)

    2014-09-15

    The extinction mechanisms of stretched premixed flames have been investigated numerically for the fuels of CH{sub 4}, C{sub 3}H{sub 8}, H{sub 2}, CO and for the mixture fuels of CH{sub 4}+H{sub 2} and CO+H{sub 2} by adopting symmetric double premixed flames in a counterflow configuration. The local equilibrium temperature concept was used as a measure of energy loss or gain in order to quantify the extinction mechanism by preferential diffusion and/or incomplete reaction. The energy loss ratio from preferential diffusion arising from non-unity Lewis number and the loss ratio from incomplete reaction were calculated at various equivalence ratios near flame extinction. The results showed that the extinction of lean H{sub 2} , CH{sub 4}, CH{sub 4}+H{sub 2}, CO+H{sub 2}, and rich C{sub 3}H{sub 8} premixed flames was caused by incomplete reaction due to insufficient reaction time, indicating that the effective Lewis number was smaller than unity, while the effect of preferential diffusion resulted in energy gain. However, the extinction of rich H{sub 2}, CH{sub 4}, CH{sub 4}+H{sub 2}, CO+H{sub 2}, and lean C{sub 3}H{sub 8} premixed flames was affected by the combined effects of preferential diffusion and incomplete reaction indicating that the effective Lewis number was larger than unity. In CO premixed flames, incomplete reaction was dominant in both lean and rich cases due to the effective Lewis number close to unity. The effect of H{sub 2} mixing to CO is found to be quite significant as compared to CH{sub 4}+H{sub 2} cases, which can alter the flame behavior of CO flames to that of H{sub 2}.

  20. Flame image monitoring and analysis in combustion management

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, D [CEZ, a.s. Elektrarna Detmarovice, Detmarovice (Czech Republic); Huttunen, A J; Nihtinen, J J [Imatran Voima Oy, IVO Technology Centre, Vantaa (Finland)

    1998-12-31

    When NO{sub x} emissions are reduced with new low-NO{sub x} burners and infurnace modifications in old pulverised fuel boilers, many changes in the firing conditions may occur. Depending on coal quality and the original furnace design, low-NO{sub x} burners, overtire air, low-excess-air firing and other primary modifications in various combinations may cause flame instability, increased slagging, increased minimum load and other difficulties in controlling the burning process. To find and solve these problems quicker, a new type of burner management system for pulverised fuel and oil-fired boilers was developed by Imatran Voima Oy. The DIMAC combustion management system monitors and analyses individually each burner or burner level. There are special software for wall and corner fired boilers. The DIMAC system is comprised of two functional subsystems: flame monitoring and flame analysis. The DIMAC enables the power plant operators to minimise NO{sub x} emissions and optimise the burning efficiency with varying coal qualities and boiler loads at the same time so that slagging, unburnt carbon in fly ash and flame stability stay in acceptable limits. It also guarantees that burners operate in good safety conditions in each burner level. The DIMAC system monitors perpendicularly each individual burner and evaluates flame parameters. Real-time flame monitoring and analysis allows the operator to directly see the effect of changing fuel distribution on flame pattern and flame stability. Based on data from the DIMAC references the system can improve boiler efficiency by 0.2 - 0.5 per cent unit as a result of more efficient control of the burning process. At the same time, the NO{sub x} formation can be reduced by 10 - 20 % 2 refs.

  1. Flame image monitoring and analysis in combustion management

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, D. [CEZ, a.s. Elektrarna Detmarovice, Detmarovice (Czech Republic); Huttunen, A.J.; Nihtinen, J.J. [Imatran Voima Oy, IVO Technology Centre, Vantaa (Finland)

    1997-12-31

    When NO{sub x} emissions are reduced with new low-NO{sub x} burners and infurnace modifications in old pulverised fuel boilers, many changes in the firing conditions may occur. Depending on coal quality and the original furnace design, low-NO{sub x} burners, overtire air, low-excess-air firing and other primary modifications in various combinations may cause flame instability, increased slagging, increased minimum load and other difficulties in controlling the burning process. To find and solve these problems quicker, a new type of burner management system for pulverised fuel and oil-fired boilers was developed by Imatran Voima Oy. The DIMAC combustion management system monitors and analyses individually each burner or burner level. There are special software for wall and corner fired boilers. The DIMAC system is comprised of two functional subsystems: flame monitoring and flame analysis. The DIMAC enables the power plant operators to minimise NO{sub x} emissions and optimise the burning efficiency with varying coal qualities and boiler loads at the same time so that slagging, unburnt carbon in fly ash and flame stability stay in acceptable limits. It also guarantees that burners operate in good safety conditions in each burner level. The DIMAC system monitors perpendicularly each individual burner and evaluates flame parameters. Real-time flame monitoring and analysis allows the operator to directly see the effect of changing fuel distribution on flame pattern and flame stability. Based on data from the DIMAC references the system can improve boiler efficiency by 0.2 - 0.5 per cent unit as a result of more efficient control of the burning process. At the same time, the NO{sub x} formation can be reduced by 10 - 20 % 2 refs.

  2. Partially quenched gauge theories and an application to staggered fermions

    International Nuclear Information System (INIS)

    Bernard, C.W.; Golterman, M.F.L.

    1994-01-01

    We extend our Lagrangian technique for chiral perturbation theory for quenched QCD to include theories in which only some of the quarks are quenched. We discuss the relationship between the partially quenched theory and a theory in which only the unquenched quarks are present. We also investigate the peculiar infrared divergences associated with the η' in the quenched approximation, and find the conditions under which such divergences can appear in a partially quenched theory. We then apply our results to staggered fermion QCD in which the square root of the fermion determinant is taken, using the observation that this should correspond to a theory with four quarks, two of which are quenched

  3. Effect of Low Frequency Burner Vibrations on the Characteristics of Jet Diffusion Flames

    Directory of Open Access Journals (Sweden)

    C. Kanthasamy

    2012-03-01

    Full Text Available Mechanical vibrations introduced in diffusion flame burners significantly affect the flame characteristics. In this experimental study, the effects of axial vibrations on the characteristics of laminar diffusion flames are investigated systematically. The effect of the frequency and amplitude of the vibrations on the flame height oscillations and flame stability is brought out. The amplitude of flame height oscillations is found to increase with increase in both frequency and amplitude of burner vibrations. Vibrations are shown to enhance stability of diffusion flames. Although flame lifts-off sooner with vibrations, stability of the flame increases.

  4. Quenching of liquid scintillator fluorescence by chloroalkanes and chloroalkenes

    International Nuclear Information System (INIS)

    Hariharan, Chithra; Mishra, A.K.

    2000-01-01

    The fluorescence quenching of 2,5-diphenyloxazole (PPO) by a series of chloroalkanes and chloroalkenes including carbon tetrachloride, chloroform, dichloroethane, tetrachloroethane, dichloroethylene, trichloroethylene and tetrachloroethylene was studied in toluene as solvent at room temperature. CCl 4 was found to be the most efficient quencher in the series. The quenching was found to be appreciable and a positive deviation from linearity was observed in the Stern-Volmer (SV) plots for all the quenchers in the concentration range studied. From the studies of effect of temperature, solvent viscosity and excitation wavelength dependence for the PPO-CCl 4 system, it was inferred that non-linearity is due to the presence of a minor static quenching component in an overall dynamic quenching. The static (K S ) and the dynamic (K D ) quenching constants were calculated from the modified SV equation using quadratic least square fits. Fluorescence quenching experiments with CCl 4 were done for four other scintillators (POPOP, α-NPO, BBO and PBBO). The mechanism of quenching was established to be via charge-transfer, with the direction of transfer being from the scintillators to the chloroalkanes and chloroalkenes

  5. 30 CFR 75.600-1 - Approved cables; flame resistance.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Approved cables; flame resistance. 75.600-1 Section 75.600-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... cables; flame resistance. Cables shall be accepted or approved by MSHA as flame resistant. [57 FR 61223...

  6. Impact of co-flow air on buoyant diffusion flames flicker

    Energy Technology Data Exchange (ETDEWEB)

    Gohari Darabkhani, H., E-mail: h.g.darabkhani@gmail.com [School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Sackville Street, Manchester M13 9PL (United Kingdom); Wang, Q.; Chen, L.; Zhang, Y. [Mechanical Engineering Department, University of Sheffield, Mapping Street, Sheffield S1 3JD (United Kingdom)

    2011-08-15

    Highlights: {yields} We present the co-flow effects on flickering behaviour of diffusion flames. {yields} Co-flow air is shown to fully suppress the buoyancy driven flame oscillations. {yields} Schlieren and PIV illustrate the shift of outer vortices beyond the flame zone. {yields} Stability controlling parameter as a ratio of air to fuel velocities is presented. {yields} Equation for linear increase in flickering frequency by co-flow air is presented. - Abstract: This paper describes experimental investigation of co-flow air velocity effects on the flickering behaviour of laminar non-lifted methane diffusion flames. Chemiluminescence, high-speed photography, schlieren and Particle Imaging Velocimetry (PIV), have been used to study the changes in the flame/vortex interactions as well as the flame flickering frequency and magnitude by the co-flow air. Four cases of methane flow rates at different co-flow air velocities are investigated. It has been observed that the flame dynamics and stability of co-flow diffusion flames are strongly affected by the co-flow air velocity. When the co-flow velocity has reached a certain value the buoyancy driven flame oscillation was completely suppressed. The schlieren and PIV imaging have revealed that the co-flow of air is able to push the initiation point of the outer toroidal vortices beyond the visible flame to create a very steady laminar flow region in the reaction zone. Then the buoyancy driven instability is only effective in the plume of hot gases above the visible flame. It is observed that a higher co-flow rate is needed in order to suppress the flame flickering at a higher fuel flow rate. Therefore the ratio of the air velocity to the fuel velocity, {gamma}, is a stability controlling parameter. The velocity ratio, {gamma}, was found to be 0.72 for the range of tested flow rates. The dominant flickering frequency was observed to increase linearly with the co-flow rate (a) as; f = 0.33a + 11. The frequency amplitudes

  7. Investigation of thermal quenching and abnormal thermal quenching in mixed valence Eu co-doped LaAlO{sub 3} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jingjing [Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384 (China); Zhao, Yang [China academy of civil aviation science and technology, Beijing 100028 (China); Mao, Zhiyong, E-mail: mzhy1984@163.com [Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384 (China); Wang, Dajian [Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384 (China); Bie, Lijian, E-mail: ljbie@tjut.edu.cn [Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384 (China)

    2017-06-15

    Temperature dependent luminescence of mixed valence Eu co-doped LaAlO{sub 3} phosphors are deeply investigated in this work. Different temperature properties of Eu{sup 2+} and Eu{sup 3+} luminescence are observed as the phosphor excited by different incident light. Eu{sup 3+} luminescence shows normal thermal quenching when excited at 320 nm and abnormal thermal quenching as the excitation light changed into 365 nm, while Eu{sup 2+} luminescence exhibits a normal thermal quenching independent on the incident excitation lights. The origin of these novel normal/abnormal thermal quenching phenomena are analyzed and discussed by the excitation-emission processes in terms of the configuration coordinate model. The presented important experimental and analysis results give insights into the temperature properties of phosphors.

  8. Characteristics of transitional and turbulent jet diffusion flames in microgravity

    Science.gov (United States)

    Bahadori, Yousef M.; Small, James F., Jr.; Hegde, Uday G.; Zhou, Liming; Stocker, Dennis P.

    1995-01-01

    This paper presents the ground-based results obtained to date in preparation of a proposed space experiment to study the role of large-scale structures in microgravity transitional and turbulent gas-jet diffusion flames by investigating the dynamics of vortex/flame interactions and their influence on flame characteristics. The overall objective is to gain an understanding of the fundamental characteristics of transitional and turbulent gas-jet diffusion flames. Understanding of the role of large-scale structures on the characteristics of microgravity transitional and turbulent flames will ultimately lead to improved understanding of normal-gravity turbulent combustion.

  9. Combustion characteristics of natural gas-hydrogen hybrid fuel turbulent diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghafour, S.A.A.; El-dein, A.H.E.; Aref, A.A.R. [Mechanical Power Engineering Department, Faculty of Engineering, Suez Canal University, Port-Said (Egypt)

    2010-03-15

    Combustion characteristics of natural gas - hydrogen hybrid fuel were investigated experimentally in a free jet turbulent diffusion flame flowing into a slow co-flowing air stream. Experiments were carried out at a constant jet exit Reynolds number of 4000 and with a wide range of NG-H{sub 2} mixture concentrations, varied from 100%NG to 50%NG-50% H{sub 2} by volume. The effect of hydrogen addition on flame stability, flame length, flame structure, exhaust species concentration and pollutant emissions was conducted. Results showed that, hydrogen addition sustains a progressive improvement in flame stability and reduction in flame length, especially for relatively high hydrogen concentrations. Hydrogen-enriched flames found to have a higher combustion temperatures and reactivity than natural gas flame. Also, it was found that hydrogen addition to natural gas is an ineffective strategy for NO and CO reduction in the studied range, while a significant reduction in the %CO{sub 2} molar concentration by about 30% was achieved. (author)

  10. The Effects of Buoyancy on Characteristics of Turbulent Nonpremixed Jet Flames

    Science.gov (United States)

    Idicheria, Cherian; Boxx, Isaac; Clemens, Noel

    2002-11-01

    This work addresses the influence of buoyant forces on the underlying structure of turbulent nonpremixed jet flames. Buoyancy effects are investigated by studying transitional and turbulent propane and ethylene flames (Re_D=2500-10500) at normal, low and microgravity conditions. The reduced gravity experiments are conducted by dropping a combustion rig in the University of Texas 1.25-second drop tower and the NASA Glenn 2.2-second drop tower. The diagnostic employed is high-speed luminosity imaging using a CCD camera. The images obtained are used to compare flame length, mean, RMS and flame tip oscillation characteristics The results showed that, in contrast to previous studies, the high Reynolds number flames at all gravity levels were essentially identical. Furthermore, the parameter ξL (Becker and Yamazaki, 1978) is sufficient for quantifying the effects of buoyancy on the flame characteristics. The large-scale structure and flame tip dynamics are essentially identical to those of purely momentum driven flames provided ξL is less than approximately 3.

  11. The LHC quench protection system

    CERN Multimedia

    2009-01-01

    The new quench protection system (QPS) has the crucial roles of providing an early warning for any part of the superconducting coils and busbars that develop high resistance, as well as triggering the switch-off of the machine. Over 2000 new detectors will be installed around the LHC to make sure every busbar segment between magnets is monitored and protected. One of the major consolidation activities for the LHC is the addition of two new detectors to the quench protection system. A magnet quench occurs when part of the superconducting cable becomes normally-conducting. When the protection system detects an increased resistance the huge amount of energy stored in the magnet chains is safely extracted and ‘dumped’ into specially designed resistors. In the case of the main dipole chain, the stored energy in a single LHC sector is roughly the same as the kinetic energy of a passenger jet at cruising speed. The first new detector is designed to monitor the superconducting...

  12. GRAVITATIONALLY UNSTABLE FLAMES: RAYLEIGH-TAYLOR STRETCHING VERSUS TURBULENT WRINKLING

    International Nuclear Information System (INIS)

    Hicks, E. P.; Rosner, R.

    2013-01-01

    In this paper, we provide support for the Rayleigh-Taylor-(RT)-based subgrid model used in full-star simulations of deflagrations in Type Ia supernovae explosions. We use the results of a parameter study of two-dimensional direct numerical simulations of an RT unstable model flame to distinguish between the two main types of subgrid models (RT or turbulence dominated) in the flamelet regime. First, we give scalings for the turbulent flame speed, the Reynolds number, the viscous scale, and the size of the burning region as the non-dimensional gravity (G) is varied. The flame speed is well predicted by an RT-based flame speed model. Next, the above scalings are used to calculate the Karlovitz number (Ka) and to discuss appropriate combustion regimes. No transition to thin reaction zones is seen at Ka = 1, although such a transition is expected by turbulence-dominated subgrid models. Finally, we confirm a basic physical premise of the RT subgrid model, namely, that the flame is fractal, and thus self-similar. By modeling the turbulent flame speed, we demonstrate that it is affected more by large-scale RT stretching than by small-scale turbulent wrinkling. In this way, the RT instability controls the flame directly from the large scales. Overall, these results support the RT subgrid model.

  13. Quench propagation across the copper wedges in SSC dipoles

    International Nuclear Information System (INIS)

    Ghosh, A.K.; Robins, K.E.; Sampson, W.B.

    1986-01-01

    The effect of copper wedges on quench propagation in SSC windings has been studied. The results indicate that the turn-to-turn quench transit time for conductors separated by an insulated copper wedge can be predicted with reasonable accuracy from the bulk quench properties and the mean wedge thickness

  14. Effects of quenching and partial quenching on penguin matrix elements

    NARCIS (Netherlands)

    Golterman, Maarten; Pallante, Elisabetta

    2001-01-01

    In the calculation of non-leptonic weak decay rates, a "mismatch" arises when the QCD evolution of the relevant weak hamiltonian down to hadronic scales is performed in unquenched QCD, but the hadronic matrix elements are then computed in (partially) quenched lattice QCD. This mismatch arises

  15. Quench protection and safety of the ATLAS central solenoid

    CERN Document Server

    Makida, Y; Haruyama, T; ten Kate, H H J; Kawai, M; Kobayashi, T; Kondo, T; Kondo, Y; Mizumaki, S; Olesen, G; Sbrissa, E; Yamamoto, A; Yamaoka, H

    2002-01-01

    Fabrication of the ATLAS central solenoid was completed and the performance test has been carried out. The solenoid was successfully charged up to 8.4 kA, which is 10% higher than the normal operational current of 7.6 kA. Two methods for quench protection, pure aluminum strips accelerating quench propagation and quench protection heaters distributing normal zones, are applied in order to safely dissipate the stored energy. In this paper, quench characteristics and protection methods of the ATLAS central solenoid are described. (14 refs).

  16. The Coherent Flame Model for Turbulent Chemical Reactions

    Science.gov (United States)

    1977-01-01

    numerical integration of the resulting differential equations. The model predicts the flame length and superficial comparison with experiments suggest a...value for the single universal constant. The theory correctly predicts the change of flame length with changes in stoich- iometric ratio for the...indicate the X will be some where between 0.1 and 0.5. Figure 13 is presented to show the effect of equivalence ratio, , on the flame length when the

  17. Potential human exposure to halogenated flame-retardants in elevated surface dust and floor dust in an academic environment

    International Nuclear Information System (INIS)

    Allgood, Jaime M.; Jimah, Tamara; McClaskey, Carolyn M.; La Guardia, Mark J.; Hammel, Stephanie C.; Zeineddine, Maryam M.; Tang, Ian W.; Runnerstrom, Miryha G.; Ogunseitan, Oladele A.

    2017-01-01

    Most households and workplaces all over the world possess furnishings and electronics, all of which contain potentially toxic flame retardant chemicals to prevent fire hazards. Indoor dust is a recognized repository of these types of chemicals including polybrominated diphenyl ethers (PBDEs) and non-polybrominated diphenyl ethers (non-PBDEs). However, no previous U.S. studies have differentiated concentrations from elevated surface dust (ESD) and floor dust (FD) within and across microenvironments. We address this information gap by measuring twenty-two flame-retardant chemicals in dust on elevated surfaces (ESD; n=10) and floors (FD; n=10) from rooms on a California campus that contain various concentrations of electronic products. We hypothesized a difference in chemical concentrations in ESD and FD. Secondarily, we examined whether or not this difference persisted: (a) across the studied microenvironments and (b) in rooms with various concentrations of electronics. A Wilcoxon signed-rank test demonstrated that the ESD was statistically significantly higher than FD for BDE-47 (p=0.01), BDE-99 (p=0.01), BDE-100 (p=0.01), BDE-153 (p=0.02), BDE-154 (p=0.02), and 3 non-PBDEs including EH-TBB (p=0.02), BEH-TEBP (p=0.05), and TDCIPP (p=0.03). These results suggest different levels and kinds of exposures to flame-retardant chemicals for individuals spending time in the sampled locations depending on the position of accumulated dust. Therefore, further research is needed to estimate human exposure to flame retardant chemicals based on how much time and where in the room individuals spend their time. Such sub-location estimates will likely differ from assessments that assume continuous unidimensional exposure, with implications for improved understanding of potential health impacts of flame retardant chemicals. - Highlights: • Brominated flame retardants used in electronic products accumulate in room dust • Various chemical moieties of flame retardants leach

  18. Potential human exposure to halogenated flame-retardants in elevated surface dust and floor dust in an academic environment

    Energy Technology Data Exchange (ETDEWEB)

    Allgood, Jaime M.; Jimah, Tamara [Department of Population Health & Disease Prevention, Program in Public Health, University of California, Irvine, CA 92697-3957 (United States); McClaskey, Carolyn M. [Department of Cognitive Sciences, School of Social Sciences, University of California, Irvine, CA 92697-5100 (United States); La Guardia, Mark J. [Department of Aquatic Health Sciences, Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA 23062 (United States); Hammel, Stephanie C.; Zeineddine, Maryam M.; Tang, Ian W.; Runnerstrom, Miryha G. [Department of Population Health & Disease Prevention, Program in Public Health, University of California, Irvine, CA 92697-3957 (United States); Ogunseitan, Oladele A., E-mail: Oladele.Ogunseitan@uci.edu [Department of Population Health & Disease Prevention, Program in Public Health, University of California, Irvine, CA 92697-3957 (United States)

    2017-02-15

    Most households and workplaces all over the world possess furnishings and electronics, all of which contain potentially toxic flame retardant chemicals to prevent fire hazards. Indoor dust is a recognized repository of these types of chemicals including polybrominated diphenyl ethers (PBDEs) and non-polybrominated diphenyl ethers (non-PBDEs). However, no previous U.S. studies have differentiated concentrations from elevated surface dust (ESD) and floor dust (FD) within and across microenvironments. We address this information gap by measuring twenty-two flame-retardant chemicals in dust on elevated surfaces (ESD; n=10) and floors (FD; n=10) from rooms on a California campus that contain various concentrations of electronic products. We hypothesized a difference in chemical concentrations in ESD and FD. Secondarily, we examined whether or not this difference persisted: (a) across the studied microenvironments and (b) in rooms with various concentrations of electronics. A Wilcoxon signed-rank test demonstrated that the ESD was statistically significantly higher than FD for BDE-47 (p=0.01), BDE-99 (p=0.01), BDE-100 (p=0.01), BDE-153 (p=0.02), BDE-154 (p=0.02), and 3 non-PBDEs including EH-TBB (p=0.02), BEH-TEBP (p=0.05), and TDCIPP (p=0.03). These results suggest different levels and kinds of exposures to flame-retardant chemicals for individuals spending time in the sampled locations depending on the position of accumulated dust. Therefore, further research is needed to estimate human exposure to flame retardant chemicals based on how much time and where in the room individuals spend their time. Such sub-location estimates will likely differ from assessments that assume continuous unidimensional exposure, with implications for improved understanding of potential health impacts of flame retardant chemicals. - Highlights: • Brominated flame retardants used in electronic products accumulate in room dust • Various chemical moieties of flame retardants leach

  19. Method and apparatus for generating highly luminous flame

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, G.M.

    1992-05-12

    A combustion process and apparatus are provided for generating a variable high temperature, highly luminous flame with low NOx emission by burning gaseous and liquid materials with oxygen and air. More particularly, the invention provides a process in which there is initial control of fuel, oxygen, and air flows and the delivery of the oxidizers to a burner as two oxidizing gases having different oxygen concentrations (for example, pure oxygen and air, or oxygen and oxygen-enriched air). A first oxidizing gas containing a high oxygen concentration is injected as a stream into the central zone of a combustion tunnel or chamber, and part of the fuel (preferably the major part) is injected into the central pyrolysis zone to mix with the first oxidizing gas to create a highly luminous high-temperature flame core containing microparticles of carbon of the proper size for maximum luminosity and high temperature, and a relatively small amount of hydrocarbon radicals. In addition, part of the fuel (preferably the minor part) is injected in a plurality of streams about the flame core to mix with a second oxidizing gas (containing a lower oxygen concentration than the first oxidizing gas) and injecting the second oxidizing mixture about the flame core and the minor fuel flow to mix with the minor fuel flow. This creates a plurality of fuel-lean (oxygen-rich) flames which are directed toward the luminous flame core to form a final flame pattern having high temperature, high luminosity, and low NOx content. 6 figs.

  20. Measurements of Turbulent Flame Speed and Integral Length Scales in a Lean Stationary Premixed Flame

    OpenAIRE

    Klingmann, Jens; Johansson, Bengt

    1998-01-01

    Turbulent premixed natural gas - air flame velocities have been measured in a stationary axi-symmetric burner using LDA. The flame was stabilized by letting the flow retard toward a stagnation plate downstream of the burner exit. Turbulence was generated by letting the flow pass through a plate with drilled holes. Three different hole diameters were used, 3, 6 and 10 mm, in order to achieve different turbulent length scales. Turbulent integral length scales were measured using two-point LD...

  1. NASA MSFC Electrostatic Levitator (ESL) Rapid Quench System

    Science.gov (United States)

    SanSoucie, Michael P.; Craven, Paul D.

    2014-01-01

    Electrostatic levitation, a form of containerless processing, is an important tool in materials research. Levitated specimens are free from contact with a container; therefore, heterogeneous nucleation on container walls is not possible. This allows studies of deeply undercooled melts. Furthermore, studies of high-temperature, highly reactive materials are also possible. Studies of the solidification and crystallization of undercooled melts is vital to the understanding of microstructure development, particularly the formation of alloys with unique properties by rapid solidification. The NASA Marshall Space Flight Center (MSFC) Electrostatic Levitator (ESL) lab has recently been upgraded to allow for rapid quenching of levitated materials. The ESL Rapid Quench System uses a small crucible-like vessel that can be partially filled with a low melting point material, such as a Gallium alloy, as a quench medium. An undercooled sample can be dropped into the vessel to rapidly quench the sample. A carousel with nine vessels sits below the bottom electrode assembly. This system allows up to nine rapid quenches before having to break vacuum and remove the vessels. This new Rapid Quench System will allow materials science studies of undercooled materials and new materials development. In this presentation, the system is described and initial results are presented.

  2. On the rapid melt quenching

    International Nuclear Information System (INIS)

    Usatyuk, I.I.; Novokhatskij, I.A.; Kaverin, Yu.F.

    1994-01-01

    Specific features of instrumentation of traditionally employed method of melt spinning (rapid quenching), its disadvantages being discussed, were analyzed. The necessity of the method upgrading as applied to the problems of studying fine structure of molten metals and glasses was substantiated. The principle flowsheet of experimental facility for extremely rapid quenching of the melts of metals is described, specificity of its original functional units being considered. The sequence and character of all the principal stages of the method developed were discussed. 18 refs.; 3 figs

  3. 40 CFR 86.327-79 - Quench checks; NOX analyzer.

    Science.gov (United States)

    2010-07-01

    ... any flow rate into the reaction chamber. This includes, but is not limited to, sample capillary, ozone... Quench checks; NOX analyzer. (a) Perform the reaction chamber quench check for each model of high vacuum reaction chamber analyzer prior to initial use. (b) Perform the reaction chamber quench check for each new...

  4. Quench detection, protection and simulation studies on SST-1 magnets

    International Nuclear Information System (INIS)

    Sharma, Aashoo N.; Khristi, Yohan; Pradhan, Subrata; Doshi, Kalpesh; Prasad, Upendra; Banaudha, Moni; Varmora, Pankaj; Praghi, Bhadresh R.

    2015-01-01

    Steady-state Superconducting Tokamak-1 (SST-1) is India's first tokamak with superconducting toroidal field (TF) and Poloidal Field (PF) magnets. These magnets are made with NbTi based Cable-In-Conduit-Conductors. The quench characteristic of SST-1 CICC has been extensively studied both analytically and using simulation codes. Dedicated experiments like model coil test program, TF coil test program and laboratory experiments were conducted to fully characterize the performance of the CICC and the magnets made using this CICC. Results of quench experiments performed during these tests have been used to design the SST-1 quench detection and protection system. Simulation results of TF coil quenches and slow propagation quench of TF busbars have been used to further optimize these systems during the SST-1 tokamak operation. Redundant hydraulic based quench detection is also proposed for the TF coil quench detection. This paper will give the overview of these development and simulation activities. (author)

  5. Systems and methods for controlling flame instability

    KAUST Repository

    Cha, Min Suk

    2016-07-21

    A system (62) for controlling flame instability comprising: a nozzle (66) coupled to a fuel supply line (70), an insulation housing (74) coupled to the nozzle, a combustor (78) coupled to the nozzle via the insulation housing, where the combustor is grounded (80), a pressure sensor (82) coupled to the combustor and configured to detect pressure in the combustor, and an instability controlling assembly coupled to the pressure sensor and to an alternating current power supply (86), where, the instability controlling assembly can control flame instability of a flame in the system based on pressure detected by the pressure sensor.

  6. Experimental studies of flame stability limits of biogas flame

    International Nuclear Information System (INIS)

    Dai Wanneng; Qin Chaokui; Chen Zhiguang; Tong Chao; Liu Pengjun

    2012-01-01

    Highlights: ► Premixed biogas flame stability for RTBs was studied on different conditions. ► An unusual “float off” phenomenon was observed. ► Decrease of port diameter or gas temperature or methane content motivates lifting. ► Increase of methane content or gas temperature or port diameter motivates yellow tipping. ► Lifting curves become straight lines when semi-logarithmic graph paper is applied. - Abstract: Flame stability of premixed biogas flame for Reference Test Burner (RTB) was investigated. In this study, six kinds of test gases were used to simulate biogas in which CO 2 volume fraction varied from 30% to 45%. A series of experiments were conducted on two RTBs with different port diameters and at different outlet unburned mixture temperatures. It was found that the lifting and yellow tipping limits show similar trends regardless of the biogas components, port diameters and mixture temperatures. A “float off” phenomenon could be observed at low gas flow rate and low primary air ratio. Low mixture temperature, small ports and high CO 2 concentration in biogas can lead to the unstable condition of “float off”. The lifting limits are enhanced with an increase of port diameter or mixture temperature and with a decrease of CO 2 concentration. The yellow tipping limits are extended with an increase of CO 2 concentration and with a decrease of mixture temperature or port diameter. In addition, the lifting limit curve becomes a straight line when semi-logarithmic graph paper is applied. The intercept increases with a decrease of the CO 2 concentration in biogas and with an increase of port diameter or gas temperature.

  7. Short initial length quench on CICC of ITER TF coils

    Energy Technology Data Exchange (ETDEWEB)

    Nicollet, S.; Ciazynski, D.; Duchateau, J.-L.; Lacroix, B. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Bessette, D.; Rodriguez-Mateos, F. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Coatanea-Gouachet, M. [ELC Engineering, 350 chemin du Verladet, F-13290 Les Milles (France); Gauthier, F. [Soditech Ingenierie, 4 bis allée des Gabians, ZI La Frayère, 06150 Cannes (France)

    2014-01-29

    Previous quench studies performed for the International Thermonuclear Experimental Reactor (ITER) Toroidal Field (TF) Coils have led to identify two extreme families of quench: first 'severe' quenches over long initial lengths in high magnetic field, and second smooth quenches over short initial lengths in low field region. Detailed analyses and results on smooth quench propagation and detectability on one TF Cable In Conduit Conductor (CICC) with a lower propagation velocity are presented here. The influence of the initial quench energy is shown and results of computations with either a Fast Discharge (FD) of the magnet or without (failure of the voltage quench detection system) are reported. The influence of the central spiral of the conductor on the propagation velocity is also detailed. In the cases of a regularly triggered FD, the hot spot temperature criterion of 150 K (with helium and jacket) is fulfilled for an initial quench length of 1 m, whereas this criterion is exceed (Tmax ≈ 200 K) for an extremely short length of 5 cm. These analyses were carried out using both the Supermagnet(trade mark, serif) and Venecia codes and the comparisons of the results are also discussed.

  8. Short initial length quench on CICC of ITER TF coils

    International Nuclear Information System (INIS)

    Nicollet, S.; Ciazynski, D.; Duchateau, J.-L.; Lacroix, B.; Bessette, D.; Rodriguez-Mateos, F.; Coatanea-Gouachet, M.; Gauthier, F.

    2014-01-01

    Previous quench studies performed for the International Thermonuclear Experimental Reactor (ITER) Toroidal Field (TF) Coils have led to identify two extreme families of quench: first 'severe' quenches over long initial lengths in high magnetic field, and second smooth quenches over short initial lengths in low field region. Detailed analyses and results on smooth quench propagation and detectability on one TF Cable In Conduit Conductor (CICC) with a lower propagation velocity are presented here. The influence of the initial quench energy is shown and results of computations with either a Fast Discharge (FD) of the magnet or without (failure of the voltage quench detection system) are reported. The influence of the central spiral of the conductor on the propagation velocity is also detailed. In the cases of a regularly triggered FD, the hot spot temperature criterion of 150 K (with helium and jacket) is fulfilled for an initial quench length of 1 m, whereas this criterion is exceed (Tmax ≈ 200 K) for an extremely short length of 5 cm. These analyses were carried out using both the Supermagnet(trade mark, serif) and Venecia codes and the comparisons of the results are also discussed

  9. Validation of ASTECV2.1 based on the QUENCH-08 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-García-Toraño, Ignacio, E-mail: ignacio.torano@kit.edu [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology (INR), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Sánchez-Espinoza, Víctor-Hugo; Stieglitz, Robert [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology (INR), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Stuckert, Juri [Karlsruhe Institute of Technology, Institute for Applied Materials-Applied Materials Physics (IAM-AWP), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Laborde, Laurent; Belon, Sébastien [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Nuclear Safety Division/Safety Research/Severe Accident Department, Saint Paul Lez Durance 13115 (France)

    2017-04-01

    Highlights: • ASTECV2.1 can reproduce QUENCH-08 experimental trends e.g. hydrogen generation. • Radial temperature gradient and heat transfer through argon gap are underestimated. • Mesh sizes lower than 55 mm needed to capture the strong axial temperature gradient. • Minor variations of external electrical resistance strongly affect bundle heat-up. • Modelling of a bypass and inclusion of currents partially overcome discrepancies. - Abstract: The Fukushima accidents have shown that further improvements of Severe Accident Management Guidelines (SAMGs) are still necessary. Hence, the enhancement of severe accident codes and their validation based on integral experiments is pursued worldwide. In particular, the capabilities of the European integral severe accident ASTECV2.1 code are being extended within the CESAM project through the improvement of physical models, code numerics and an extensive code validation. Among the different strategies encompassed in the plant SAMGs, one of the most important ones to prevent core damage is the injection of water into the overheated core (reflooding). However, under certain conditions, reflooding may trigger a sharp hydrogen generation that may jeopardize the containment. Within this work, ASTECV2.1 models describing the early in-vessel phase of the severe accident and its termination by core reflooding are validated against data from the QUENCH test facility. The QUENCH-08, involving the injection of 15 g/s (about 0.6 g/s/rod) of saturated steam at a bundle temperature of 2073 K, has been selected for this comparison. Results show that ASTECV2.1 is able to reproduce the experimental temperatures and oxide thicknesses at representative bundle locations. The predicted total hydrogen generation (76 g) is similar to the experimental one (84 g). In addition, the choices of an axial mesh size lower than 55 mm and of an external electrical resistance of a 7 mΩ/rod have been justified with parametric analyses. Finally, new

  10. Effects of optical diagnostic techniques on the accuracy of laminar flame speeds measured from Bunsen flames: OH* chemiluminescence, OH-PLIF and acetone/kerosene-PLIF

    Science.gov (United States)

    Wu, Yi; Modica, Vincent; Yu, Xilong; Li, Fei; Grisch, Frédéric

    2018-01-01

    The effects of optical diagnostic techniques on the accuracy of laminar flame speed measured from Bunsen flames were investigated. Laminar flame speed measurements were conducted for different fuel/air mixtures including CH4/air, acetone/air and kerosene (Jet A-1)/air in applying different optical diagnostic techniques, i.e. OH* chemiluminescence, OH-PLIF and acetone/kerosene-PLIF. It is found that the OH* chemiluminescence imaging technique cannot directly derive the location of the outer edge of the fresh gases and it is necessary to correct the position of the OH* peak to guarantee the accuracy of the measurements. OH-PLIF and acetone/kerosene-PLIF respectively are able to measure the disappearance of the fresh gas contour and the appearance of the reaction zone. It shows that the aromatic-PLIF technique gives similar laminar flame speed values when compared with those obtained from corrected OH* chemiluminescence images. However, discrepancies were observed between the OH-PLIF and the aromatic-PLIF techniques, in that OH-PLIF slightly underestimates laminar flame speeds by up to 5%. The difference between the flame contours obtained from different optical techniques are further analysed and illustrated with 1D flame structure simulation using detailed kinetic mechanisms.

  11. Shear layer flame stabilization sensitivities in a swirling flow

    Directory of Open Access Journals (Sweden)

    Christopher Foley

    2017-03-01

    Full Text Available A variety of different flame configurations and heat release distributions exist in high swirl, annular flows, due to the existence of inner and outer shear layers as well a vortex breakdown bubble. Each of these different configurations, in turn, has different thermoacoustic sensitivities and influences on combustor emissions, nozzle durability, and liner heating. This paper presents findings on the sensitivities of the outer shear layer- stabilized flames to a range of parameters, including equivalence ratio, bulkhead temperature, flow velocity, and preheat temperature. There is significant hysteresis for flame attachment/detachment from the outer shear layer and this hysteresis is also described. Results are also correlated with extinction stretch rate calculations based on detailed kinetic simulations. In addition, we show that the bulkhead temperature near the flame attachment point has significant impact on outer shear layer detachment. This indicates that understanding the heat transfer between the edge flame stabilized in the shear layer and the nozzle hardware is needed in order to predict shear layer flame stabilization limits. Moreover, it shows that simulations cannot simply assume adiabatic boundary conditions if they are to capture these transitions. We also show that the reference temperature for correlating these transitions is quite different for attachment and local blow off. Finally, these results highlight the deficiencies in current understanding of the influence of fluid mechanic parameters (e.g. velocity, swirl number on shear layer flame attachment. For example, they show that the seemingly simple matter of scaling flame transition points with changes in flow velocities is not understood.

  12. Ion structure and sequence of ion formation in acetylene flames

    Energy Technology Data Exchange (ETDEWEB)

    Larionova, I.A.; Fialkov, B.S.; Kalinich, K.YA.; Fialkov, A.B.; Ospanov, B.S.

    1993-06-01

    Results of a study of the ion composition of acetylene-air flames burning at low pressures are reported. Data on ion formation are compared for flames of saturated hydrocarbons, oxygen-containing fuels, and acetylene. It is shown that the characteristics of ion formation in the flame front and directly ahead of it are similar to those observed in flames of other fuels. These characteristics, however, are different in the low-temperature region. 9 refs.

  13. Smooth and fast versus instantaneous quenches in quantum field theory

    Science.gov (United States)

    Das, Sumit R.; Galante, Damián A.; Myers, Robert C.

    2015-08-01

    We examine in detail the relationship between smooth fast quantum quenches, characterized by a time scale δ t, and instantaneous quenches, within the framework of exactly solvable mass quenches in free scalar field theory. Our earlier studies [1, 2] highlighted that the two protocols remain distinct in the limit δ t → 0 because of the relation of the quench rate to the UV cut-off, i.e., 1 /δ t ≪ Λ always holds in the fast smooth quenches while 1 /δ t ˜ Λ for instantaneous quenches. Here we study UV finite quantities like correlators at finite spatial distances and the excess energy produced above the final ground state energy. We show that at late times and large distances (compared to the quench time scale) the smooth quench correlator approaches that for the instantaneous quench. At early times, we find that for small spatial separation and small δ t, the correlator scales universally with δ t, exactly as in the scaling of renormalized one point functions found in earlier work. At larger separation, the dependence on δ t drops out. The excess energy density is finite (for finite mδ t) and scales in a universal fashion for all d. However, the scaling behaviour produces a divergent result in the limit mδ t → 0 for d ≥ 4, just as in an instantaneous quench, where it is UV divergent for d ≥ 4. We argue that similar results hold for arbitrary interacting theories: the excess energy density produced is expected to diverge for scaling dimensions Δ > d/2.

  14. Solvent refined coal reactor quench system

    Science.gov (United States)

    Thorogood, Robert M.

    1983-01-01

    There is described an improved SRC reactor quench system using a condensed product which is recycled to the reactor and provides cooling by evaporation. In the process, the second and subsequent reactors of a series of reactors are cooled by the addition of a light oil fraction which provides cooling by evaporation in the reactor. The vaporized quench liquid is recondensed from the reactor outlet vapor stream.

  15. History of Giant Resonances and Quenching

    CERN Document Server

    Arima, A

    1999-01-01

    The history of nuclear magnetic moments and Gamow-Teller transitions is reviewed. The importance of configuration mixing and core polarization to explain the quenching phenomena is shown, and discussed in the context of the recent measurement of the Gamow-Teller strength in sup 9 sup 0 Nb. It is confirmed that the contribution of the DELTA-hole excitation to the quenching of spin matrix elements is small.

  16. Experimental Characterization of Soot Formation in Diffusion Flames and Explosive Fireballs

    Science.gov (United States)

    2012-04-01

    profiles for the opposed jet burner using Unicorn and Chemkin Pro, ethylene/air flame, Wang-Colket mechanism. .............................33 Figure...35 Figure 31. Flame simulations using UNICORN (Katta et al...two-dimensional (2-D) flame simulation computer code UNICORN (Katta et al., 2006) with those obtained using the one- dimensional (1-D) flame

  17. Characterization of plasma current quench during disruptions at HL-2A

    Science.gov (United States)

    Zhu, Jinxia; Zhang, Yipo; Dong, Yunbo; HL-2A Team

    2017-05-01

    The most essential assumptions of physics for the evaluation of electromagnetic forces on the plasma-facing components due to a disruption-induced eddy current are characteristics of plasma current quenches including the current quench rate or its waveforms. The characteristics of plasma current quenches at HL-2A have been analyzed during spontaneous disruptions. Both linear decay and exponential decay are found in the disruptions with the fastest current quenches. However, there are two stages of current quench in the slow current quench case. The first stage with an exponential decay and the second stage followed by a rapid linear decay. The faster current quench rate corresponds to the faster movement of plasma displacement. The parameter regimes on the current quench time and the current quench rates have been obtained from disruption statistics at HL-2A. There exists no remarkable difference for distributions obtained between the limiter and the divertor configuration. This data from HL-2A provides basic data of the derivation of design criteria for a large-sized machine during the current decay phase of the disruptions.

  18. Nano Precipitation and Hardening of Die-Quenched 6061 Aluminum Alloy.

    Science.gov (United States)

    Utsunomiya, Hiroshi; Tada, Koki; Matsumoto, Ryo; Watanabe, Katsumi; Matsuda, Kenji

    2018-03-01

    Die quenching is applied to an age-hardenable aluminium alloys to obtain super-saturated solid solution. The application is advantageous because it can reduce number of manufacturing processes, and may increase strength by strain aging. If die quenching is realized in forging as well as sheet forming, it may widen industrial applicability further. In this study, Al-Mg-Si alloy AA6061 8 mm-thick billets were reduced 50% in height without cracks by die-quench forging. Supersaturated solid solution was successfully obtained. The die-quenched specimen shows higher hardness with nano precipitates at shorter aging time than the conventional water-quenched specimen.

  19. A study on quench phenomena during reflood phase, 1

    International Nuclear Information System (INIS)

    Murao, Yoshio; Sudoh, Takashi

    1977-03-01

    Based on the observation with an outside-heated quartz tube experiment of the reflood phase, three quench modes for bottom flooding are proposed : 1) liquid column type, 2) dryout type, 3) droplet-rewetting type. Using Blair's correlation for quench velocity, the approximate correlation for maximum liquid superheat, the assumption that the heat transfer upstream of the quench front is a function of the local liquid subcooling and the data of PWR-FLECHT experiments, the correlation for quench velocity of the liquid column type and of the dryout type are obtained. The quench temperature for the droplet-rewetting type is also derived. These relations are compared with the results of PWR-FLECHT Group 1 experiments and of Piggott and Porthouse's experiments. The agreements among them are fairly good. (auth.)

  20. Thermo-hydraulic Quench Propagation at the LHC Superconducting Magnet String

    CERN Document Server

    Rodríguez-Mateos, F; Serio, L

    1998-01-01

    The superconducting magnets of the LHC are protected by heaters and cold by-pass diodes. If a magnet quenches, the heaters on this magnet are fired and the magnet chain is de-excited in about two minu tes by opening dump switches in parallel to a resistor. During the time required for the discharge, adjacent magnets might quench due to thermo-hydraulic propagation in the helium bath and/or heat con duction via the bus bar. The number of quenching magnets depends on the mechanisms for the propagation. In this paper we report on quench propagation experiments from a dipole magnet to an adjacent ma gnet. The mechanism for the propagation is hot helium gas expelled from the first quenching magnet. The propagation changes with the pressure opening settings of the quench relief valves.

  1. Calculating Quenching Weights

    CERN Document Server

    Salgado, C A; Salgado, Carlos A.; Wiedemann, Urs Achim

    2003-01-01

    We calculate the probability (``quenching weight'') that a hard parton radiates an additional energy fraction due to scattering in spatially extended QCD matter. This study is based on an exact treatment of finite in-medium path length, it includes the case of a dynamically expanding medium, and it extends to the angular dependence of the medium-induced gluon radiation pattern. All calculations are done in the multiple soft scattering approximation (Baier-Dokshitzer-Mueller-Peign\\'e-Schiff--Zakharov ``BDMPS-Z''-formalism) and in the single hard scattering approximation (N=1 opacity approximation). By comparison, we establish a simple relation between transport coefficient, Debye screening mass and opacity, for which both approximations lead to comparable results. Together with this paper, a CPU-inexpensive numerical subroutine for calculating quenching weights is provided electronically. To illustrate its applications, we discuss the suppression of hadronic transverse momentum spectra in nucleus-nucleus colli...

  2. The role of quench rate in colloidal gels.

    Science.gov (United States)

    Royall, C Patrick; Malins, Alex

    2012-01-01

    Interactions between colloidal particles have hitherto usually been fixed by the suspension composition. Recent experimental developments now enable the control of interactions in situ. Here we use Brownian dynamics simulations to investigate the effect of controlling interactions upon gelation, by "quenching" the system from an equilibrium fluid to a gel. We find that, contrary to the normal case of an instantaneous quench, where the local structure of the gel is highly disordered, controlled quenching results in a gel with a much higher degree of local order. Under sufficiently slow quenching, local crystallisation is found, which is strongly enhanced when a monodisperse system is used. The higher the degree of local order, the smaller the mean squared displacement, indicating an enhancement of gel stability.

  3. Topological Rényi entropy after a quantum quench.

    Science.gov (United States)

    Halász, Gábor B; Hamma, Alioscia

    2013-04-26

    We present an analytical study on the resilience of topological order after a quantum quench. The system is initially prepared in the ground state of the toric-code model, and then quenched by switching on an external magnetic field. During the subsequent time evolution, the variation in topological order is detected via the topological Rényi entropy of order 2. We consider two different quenches: the first one has an exact solution, while the second one requires perturbation theory. In both cases, we find that the long-term time average of the topological Rényi entropy in the thermodynamic limit is the same as its initial value. Based on our results, we argue that topological order is resilient against a wide range of quenches.

  4. Quench Protection of SC Quadrupole Magnets

    Science.gov (United States)

    Feher, S.; Bossert, R.; Dimarco, J.; Mitchell, D.; Lamm, M. J.; Limon, P. J.; Mazur, P.; Nobrega, F.; Orris, D.; Ozelis, J. P.; Strait, J. B.; Tompkins, J. C.; Zlobin, A. V.; McInturff, A. D.

    1997-05-01

    The energy stored in a superconducting accelerator magnet is dissipated after a quench in the coil normal zones, heating the coil and generating a turn to turn and coil to ground voltage drop. Quench heaters are used to protect the superconducting magnet by greatly increasing the coil normal zone thus allowing the energy to be dissipated over a larger conductor volume. Such heaters will be required for the Fermilab/LBNL design of the high gradient quads (HGQ) designed for the LHC interaction regions. As a first step, heaters were installed and tested in several Tevatron low-β superconducting quadrupoles. Experimental studies in normal and superfluid helium are presented which show the heater-induced quench response as a function of magnet excitation current, magnet temperature and peak heater energy density.

  5. A comparative experimental and computational study of methanol, ethanol, and n-butanol flames

    Energy Technology Data Exchange (ETDEWEB)

    Veloo, Peter S.; Wang, Yang L.; Egolfopoulos, Fokion N. [Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089-1453 (United States); Westbrook, Charles K. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2010-10-15

    Laminar flame speeds and extinction strain rates of premixed methanol, ethanol, and n-butanol flames were determined experimentally in the counterflow configuration at atmospheric pressure and elevated unburned mixture temperatures. Additional measurements were conducted also to determine the laminar flame speeds of their n-alkane/air counterparts, namely methane, ethane, and n-butane in order to compare the effect of alkane and alcohol molecular structures on high-temperature flame kinetics. For both propagation and extinction experiments the flow velocities were determined using the digital particle image velocimetry method. Laminar flame speeds were derived through a non-linear extrapolation approach based on direct numerical simulations of the experiments. Two recently developed detailed kinetics models of n-butanol oxidation were used to simulate the experiments. The experimental results revealed that laminar flame speeds of ethanol/air and n-butanol/air flames are similar to those of their n-alkane/air counterparts, and that methane/air flames have consistently lower laminar flame speeds than methanol/air flames. The laminar flame speeds of methanol/air flames are considerably higher compared to both ethanol/air and n-butanol/air flames under fuel-rich conditions. Numerical simulations of n-butanol/air freely propagating flames, revealed discrepancies between the two kinetic models regarding the consumption pathways of n-butanol and its intermediates. (author)

  6. The mass dependence of satellite quenching in Milky Way-like haloes

    Science.gov (United States)

    Phillips, John I.; Wheeler, Coral; Cooper, Michael C.; Boylan-Kolchin, Michael; Bullock, James S.; Tollerud, Erik

    2015-02-01

    Using the Sloan Digital Sky Survey, we examine the quenching of satellite galaxies around isolated Milky Way-like hosts in the local Universe. We find that the efficiency of satellite quenching around isolated galaxies is low and roughly constant over two orders of magnitude in satellite stellar mass (M⋆ = 108.5-1010.5 M⊙), with only ˜20 per cent of systems quenched as a result of environmental processes. While largely independent of satellite stellar mass, satellite quenching does exhibit clear dependence on the properties of the host. We show that satellites of passive hosts are substantially more likely to be quenched than those of star-forming hosts, and we present evidence that more massive haloes quench their satellites more efficiently. These results extend trends seen previously in more massive host haloes and for higher satellite masses. Taken together, it appears that galaxies with stellar masses larger than about 108 M⊙ are uniformly resistant to environmental quenching, with the relative harshness of the host environment likely serving as the primary driver of satellite quenching. At lower stellar masses (<108 M⊙), however, observations of the Local Group suggest that the vast majority of satellite galaxies are quenched, potentially pointing towards a characteristic satellite mass scale below which quenching efficiency increases dramatically.

  7. A STELLAR MASS THRESHOLD FOR QUENCHING OF FIELD GALAXIES

    International Nuclear Information System (INIS)

    Geha, M.; Blanton, M. R.; Yan, R.; Tinker, J. L.

    2012-01-01

    We demonstrate that dwarf galaxies (10 7 stellar 9 M ☉ , –12 > M r > –18) with no active star formation are extremely rare ( Hα stellar 9 M ☉ below which quenched galaxies do not exist in the field. Below this threshold, we find that none of the 2951 field dwarf galaxies are quenched; all field dwarf galaxies show evidence for recent star formation. Correcting for volume effects, this corresponds to a 1σ upper limit on the quenched fraction of 0.06%. In more dense environments, quenched galaxies account for 23% of the dwarf population over the same stellar mass range. The majority of quenched dwarf galaxies (often classified as dwarf elliptical galaxies) are within 2 virial radii of a massive galaxy, and only a few percent of quenched dwarf galaxies exist beyond 4 virial radii. Thus, for galaxies with stellar mass less than 1.0 × 10 9 M ☉ , ending star formation requires the presence of a more massive neighbor, providing a stringent constraint on models of star formation feedback.

  8. New Fast Response Thin Film-Based Superconducting Quench Detectors

    CERN Document Server

    Dudarev, A; van de Camp, W; Ravaioli, E; Teixeira, A; ten Kate, H H J

    2014-01-01

    Quench detection on superconducting bus bars and other devices with a low normal zone propagation velocity and low voltage build-up is quite difficult with conventional quench detection techniques. Currently, on ATLAS superconducting bus bar sections, superconducting quench detectors (SQD) are mounted to detect quench events. A first version of the SQD essentially consists of an insulated superconducting wire glued to a superconducting bus line or windings, which in the case of a quench rapidly builds up a relatively high resistance that can be easily and quietly detected. We now introduce a new generation of drastically improved SQDs. The new version makes the detection of quenches simpler, more reliable, and much faster. Instead of a superconducting wire, now a superconducting thin film is used. The layout of the sensor shows a meander like pattern that is etched out of a copper coated 25 mu m thick film of Nb-Ti glued in between layers of Kapton. Since the sensor is now much smaller and thinner, it is easi...

  9. Understanding and predicting soot generation in turbulent non-premixed jet flames.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hai (University of Southern California, Los Angeles, CA); Kook, Sanghoon; Doom, Jeffrey; Oefelein, Joseph Charles; Zhang, Jiayao; Shaddix, Christopher R.; Schefer, Robert W.; Pickett, Lyle M.

    2010-10-01

    This report documents the results of a project funded by DoD's Strategic Environmental Research and Development Program (SERDP) on the science behind development of predictive models for soot emission from gas turbine engines. Measurements of soot formation were performed in laminar flat premixed flames and turbulent non-premixed jet flames at 1 atm pressure and in turbulent liquid spray flames under representative conditions for takeoff in a gas turbine engine. The laminar flames and open jet flames used both ethylene and a prevaporized JP-8 surrogate fuel composed of n-dodecane and m-xylene. The pressurized turbulent jet flame measurements used the JP-8 surrogate fuel and compared its combustion and sooting characteristics to a world-average JP-8 fuel sample. The pressurized jet flame measurements demonstrated that the surrogate was representative of JP-8, with a somewhat higher tendency to soot formation. The premixed flame measurements revealed that flame temperature has a strong impact on the rate of soot nucleation and particle coagulation, but little sensitivity in the overall trends was found with different fuels. An extensive array of non-intrusive optical and laser-based measurements was performed in turbulent non-premixed jet flames established on specially designed piloted burners. Soot concentration data was collected throughout the flames, together with instantaneous images showing the relationship between soot and the OH radical and soot and PAH. A detailed chemical kinetic mechanism for ethylene combustion, including fuel-rich chemistry and benzene formation steps, was compiled, validated, and reduced. The reduced ethylene mechanism was incorporated into a high-fidelity LES code, together with a moment-based soot model and models for thermal radiation, to evaluate the ability of the chemistry and soot models to predict soot formation in the jet diffusion flame. The LES results highlight the importance of including an optically-thick radiation

  10. FLAMES IN TYPE Ia SUPERNOVA: DEFLAGRATION-DETONATION TRANSITION IN THE OXYGEN-BURNING FLAME

    International Nuclear Information System (INIS)

    Woosley, S. E.; Kerstein, A. R.; Aspden, A. J.

    2011-01-01

    The flame in a Type Ia supernova is a conglomerate structure that, depending on density, may involve separate regions of carbon, oxygen, and silicon burning, all propagating in a self-similar, subsonic front. The separation between these three burning regions increases as the density declines until eventually, below about 2 x 10 7 g cm -3 , only carbon burning remains active, the other two burning phases having 'frozen out' on stellar scales. Between 2 and 3 x 10 7 g cm -3 , however, there remains an energetic oxygen-burning region that trails the carbon burning by an amount that is sensitive to the turbulence intensity. As the carbon flame makes a transition to the distributed regime (Karlovitz number ∼> 10), the characteristic separation between the carbon- and oxygen-burning regions increases dramatically, from a fraction of a meter to many kilometers. The oxygen-rich mixture between the two flames is created at a nearly constant temperature, and turbulence helps to maintain islands of well-mixed isothermal fuel as the temperature increases. The delayed burning of these regions can be supersonic and could initiate a detonation.

  11. Flame Driving of Longitudinal Instabilities in Liquid Fueled Dump Combustors

    Science.gov (United States)

    1988-10-01

    for the first * natural frequency of 80 Hz. As the flame length is much smaller than the acoustic wavelength at 80 Hz the pressure is constant over...release at different locations along the flame. The reason for this is that the flame length is equivalent to several vortical wavelengths as is evident...pressure minimum there was a large radla- flame length . In all cases, it was ?ound that the tion signal at the driving frequency. On the theory

  12. Bidirectional ionic wind in nonpremixed counterflow flames with DC electric fields

    KAUST Repository

    Park, Daegeun

    2016-05-05

    Under an electric field, ions in the reaction zone of a flame generate a bulk flow motion called ionic wind. Because the majority of ions are positive, ionic wind is commonly considered to be unidirectional toward the cathode. A more thorough understanding of the effects of electric fields on flames could be obtained by clarifying the role of minor negative ions in the ionic wind. Here, we report on the effects of direct current on nonpremixed counterflow flames by visualizing the ionic wind. We found that the original flow field separates near the flame when it locates at a flow stagnation plane, resulting in a double-stagnant flow configuration. This evidences a bidirectional ionic wind blowing from the flame to both the cathode and the anode due to the positive and the negative ions, respectively. Meanwhile, an electric body force pulls the flame toward the cathode. Thus, the electric field affects the strain rate and the axial location of the stoichiometry, which are important for characterizing nonpremixed counterflow flames. In addition, measurement of the electric current density roughly showed a nearly saturated current when these flames restabilized under relatively high voltage. Detailed explanations of flame behavior, electric currents, and flow characteristics of various fuels are discussed in this study.

  13. Quenched Chiral Perturbation Theory to one loop

    NARCIS (Netherlands)

    Colangelo, G.; Pallante, E.

    The divergences of the generating functional of quenched Chiral Perturbation theory (qCHPT) to one loop are computed in closed form. We show how the quenched chiral logarithms can be reabsorbed in the renormalization of the B0 parameter of the leading order Lagrangian. Finally, we do the chiral

  14. Temperature profile evolution in quenching high-Tc ...

    Indian Academy of Sciences (India)

    Abstract. Irreversible normal zones leading to quench is an important aspect of high-temperature superconductors (HTS) in all practical applications. As a consequence of quench, transport current gets diverted to the matrix stabilizer material of the high-Tc composite and causes Joule heating till the original conditions are ...

  15. Large-eddy simulation of a bluff-body stabilised turbulent premixed flame using the transported flame surface density approach

    Science.gov (United States)

    Lee, Chin Yik; Cant, Stewart

    2017-07-01

    A premixed propane-air flame stabilised on a triangular bluff body in a model jet-engine afterburner configuration is investigated using large-eddy simulation (LES). The reaction rate source term for turbulent premixed combustion is closed using the transported flame surface density (TFSD) model. In this approach, there is no need to assume local equilibrium between the generation and destruction of subgrid FSD, as commonly done in simple algebraic closure models. Instead, the key processes that create and destroy FSD are accounted for explicitly. This allows the model to capture large-scale unsteady flame propagation in the presence of combustion instabilities, or in situations where the flame encounters progressive wrinkling with time. In this study, comprehensive validation of the numerical method is carried out. For the non-reacting flow, good agreement for both the time-averaged and root-mean-square velocity fields are obtained, and the Karman type vortex shedding behaviour seen in the experiment is well represented. For the reacting flow, two mesh configurations are used to investigate the sensitivity of the LES results to the numerical resolution. Profiles for the velocity and temperature fields exhibit good agreement with the experimental data for both the coarse and dense mesh. This demonstrates the capability of LES coupled with the TFSD approach in representing the highly unsteady premixed combustion observed in this configuration. The instantaneous flow pattern and turbulent flame behaviour are discussed, and the differences between the non-reacting and reacting flow are described through visualisation of vortical structures and their interaction with the flame. Lastly, the generation and destruction of FSD are evaluated by examining the individual terms in the FSD transport equation. Localised regions where straining, curvature and propagation are each dominant are observed, highlighting the importance of non-equilibrium effects of FSD generation and

  16. A LES-CMC formulation for premixed flames including differential diffusion

    Science.gov (United States)

    Farrace, Daniele; Chung, Kyoungseoun; Bolla, Michele; Wright, Yuri M.; Boulouchos, Konstantinos; Mastorakos, Epaminondas

    2018-05-01

    A finite volume large eddy simulation-conditional moment closure (LES-CMC) numerical framework for premixed combustion developed in a previous studyhas been extended to account for differential diffusion. The non-unity Lewis number CMC transport equation has an additional convective term in sample space proportional to the conditional diffusion of the progress variable, that in turn accounts for diffusion normal to the flame front and curvature-induced effects. Planar laminar simulations are first performed using a spatially homogeneous non-unity Lewis number CMC formulation and validated against physical-space fully resolved reference solutions. The same CMC formulation is subsequently used to numerically investigate the effects of curvature for laminar flames having different effective Lewis numbers: a lean methane-air flame with Leeff = 0.99 and a lean hydrogen-air flame with Leeff = 0.33. Results suggest that curvature does not affect the conditional heat release if the effective Lewis number tends to unity, so that curvature-induced transport may be neglected. Finally, the effect of turbulence on the flame structure is qualitatively analysed using LES-CMC simulations with and without differential diffusion for a turbulent premixed bluff body methane-air flame exhibiting local extinction behaviour. Overall, both the unity and the non-unity computations predict the characteristic M-shaped flame observed experimentally, although some minor differences are identified. The findings suggest that for the high Karlovitz number (from 1 to 10) flame considered, turbulent mixing within the flame weakens the differential transport contribution by reducing the conditional scalar dissipation rate and accordingly the conditional diffusion of the progress variable.

  17. Numerical modelling of ion transport in flames

    KAUST Repository

    Han, Jie

    2015-10-20

    This paper presents a modelling framework to compute the diffusivity and mobility of ions in flames. The (n, 6, 4) interaction potential is adopted to model collisions between neutral and charged species. All required parameters in the potential are related to the polarizability of the species pair via semi-empirical formulas, which are derived using the most recently published data or best estimates. The resulting framework permits computation of the transport coefficients of any ion found in a hydrocarbon flame. The accuracy of the proposed method is evaluated by comparing its predictions with experimental data on the mobility of selected ions in single-component neutral gases. Based on this analysis, the value of a model constant available in the literature is modified in order to improve the model\\'s predictions. The newly determined ion transport coefficients are used as part of a previously developed numerical approach to compute the distribution of charged species in a freely propagating premixed lean CH4/O2 flame. Since a significant scatter of polarizability data exists in the literature, the effects of changes in polarizability on ion transport properties and the spatial distribution of ions in flames are explored. Our analysis shows that changes in polarizability propagate with decreasing effect from binary transport coefficients to species number densities. We conclude that the chosen polarizability value has a limited effect on the ion distribution in freely propagating flames. We expect that the modelling framework proposed here will benefit future efforts in modelling the effect of external voltages on flames. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/13647830.2015.1090018. © 2015 Taylor & Francis.

  18. Smooth and fast versus instantaneous quenches in quantum field theory

    International Nuclear Information System (INIS)

    Das, Sumit R.; Galante, Damián A.; Myers, Robert C.

    2015-01-01

    We examine in detail the relationship between smooth fast quantum quenches, characterized by a time scale δt, and instantaneous quenches, within the framework of exactly solvable mass quenches in free scalar field theory. Our earlier studies http://dx.doi.org/10.1103/PhysRevLett.112.171601 and http://dx.doi.org/10.1007/JHEP02(2015)167 highlighted that the two protocols remain distinct in the limit δt→0 because of the relation of the quench rate to the UV cut-off, i.e., 1/δt≪Λ always holds in the fast smooth quenches while 1/δt∼Λ for instantaneous quenches. Here we study UV finite quantities like correlators at finite spatial distances and the excess energy produced above the final ground state energy. We show that at late times and large distances (compared to the quench time scale) the smooth quench correlator approaches that for the instantaneous quench. At early times, we find that for small spatial separation and small δt, the correlator scales universally with δt, exactly as in the scaling of renormalized one point functions found in earlier work. At larger separation, the dependence on δt drops out. The excess energy density is finite (for finite mδt) and scales in a universal fashion for all d. However, the scaling behaviour produces a divergent result in the limit mδt→0 for d≥4, just as in an instantaneous quench, where it is UV divergent for d≥4. We argue that similar results hold for arbitrary interacting theories: the excess energy density produced is expected to diverge for scaling dimensions Δ>d/2.

  19. Soot emissions from turbulent diffusion flames burning simple alkane fuels

    Energy Technology Data Exchange (ETDEWEB)

    Canteenwalla, P.M.; Johnson, M.R. [Carleton Univ., Ottawa, ON (Canada). Dept. of Mechanical and Aerospace Engineering; Thomson, K.A.; Smallwood, G.J. [National Research Council of Canada, Ottawa, ON (Canada). Inst. for Chemical Process and Environmental Technology

    2007-07-01

    A classic problem in combustion involves measurement and prediction of soot emissions from turbulent diffusion flames. Very high-sensitivity measurements of particulate matter (PM) from very low-sooting diffusion flames burning methane and other simple alkane fuels have been enabled from recent advances in laser-induced incandescence (LII). In order to quantify soot emissions from a lab-scale turbulent diffusion flame burner, this paper presented a study that used LII to develop a sampling protocol. The purpose of the study was to develop an experimentally based model to predict PM emissions from flares used in industry using soot emissions from lab-scale flares. Quantitative results of mass of soot emitted per mass of fuel burned were presented across a range of flow conditions and fuels. The experiment used digital imaging to measure flame lengths and estimate flame residence times. Comparisons were also made between current measurements and results of previous researchers for soot in the overfire region. The study also considered the validity applicability of buoyancy based models for predicting and scaling soot emissions. The paper described the experimental setup including sampling system and flame length imaging. Background information on soot yield and a comparison of flame residence time definitions were provided. The results and discussion of results were also presented. It was concluded that the results highlighted the subjective nature of flame length measurements. 10 refs., 4 figs.

  20. Unsteady Flame Embedding

    KAUST Repository

    El-Asrag, Hossam A.; Ghoniem, Ahmed F.

    2011-01-01

    simulation, one must introduce a dynamic subgrid model that accounts for the multiscale nature of the problem using information available on a resolvable grid. Here, we discuss a model that captures unsteady flow-flame interactions- including extinction, re

  1. Fluorescence quenching of Rhodamine B base by two amines

    Science.gov (United States)

    Bakkialakshmi, S.; Selvarani, P.; Chenthamarai, S.

    2013-03-01

    Fluorescence quenching of Rhodamine B base (RhB) in DMF solution has been studied at different concentrations of the amine Triethyl amine (TEA) and n-butyl amine (NBA) at room temperature. It has been observed that the fluorescence intensity of RhB decrease with increase in the concentration of the TEA and NBA. It has been observed that the quenching due to amines proceeds via dynamic quenching process. The rate constants for the quenching process have been calculated using Stern-Volmer equation. Time resolved fluorescence study and 1H NMR spectral study have also been carried out and discussed.

  2. Criterion for the onset of quench for low-flow reflood

    International Nuclear Information System (INIS)

    Hsu, Y.Y.; Young, M.W.

    1982-07-01

    This study provides a criterion for the onset of quench for low flow reflood. The criterion is a combination of two conditions: T/sub clad/ < T/sub limiting quench/ where T = Temperature, and α < 0.95 where α = void fraction. This criterion was obtained by examining temperature data from tests simulating PWR reflood, such as FLECHT, THTF, PBF, CCTF, and FEBA tests, with void fraction data from CCTF, FEBA, and FLECHT low flood tests. The data show that quenching initiated at α = 0.95 and that the majority of quench occurred at void fractions near 0.85. The results show that rods can be completely quenched by entrained droplets even if the collapsed liquid level does not advance. A thorough discussion of the analysis which supports this quench criterion is given in the text of this report

  3. Characterization of oil based nanofluid for quench medium

    Science.gov (United States)

    Mahiswara, E. P.; Harjanto, S.; Putra, W. N.; Ramahdita, G.; Yahya, S. S.; Kresnodrianto

    2018-01-01

    The choice of quench medium depends on the hardenability of the metal alloy, the thickness of the component, and the geometry of the component. Some of these will determine the cooling rate required to obtain the desired microstructure and material properties. Improper quench media will cause the material to become brittle, suffers from geometric distortion, or having a high undesirable residual stresses in the components. In heat treatment industries, oil and water are frequently used as the quench media. Recently, nanofluid as a quench medium has also been studied using several different fluids as the solvent. Examples of frequently used solvents include polymers, vegetable oils, and mineral oil. In this research, laboratory-grade carbon powder were used as nanoparticle. Oil was used as the fluid base in this research as the main observation focus. To obtain nanoscale carbon particles, planetary ball mill was used to ground laboratory grade carbon powder to decrease the particle size. This method was used to lower the cost for nanoparticle synthesis. Milling speed and duration were set at 500 rpm and 15 hours. Field Emission Scanning Electron Microscope (FE-SEM), and Energy Dispersive X-Ray (EDX) measurement were carried out to determine the particle size, material identification, particle morphology, and surface change of samples. The carbon nanoparticle content in nanofluid quench mediums for this research were varied at 0.1%, 0.2%, 0.3%, 0.4, and 0.5 % volume. Furthermore, these mediums were used to quench JIS S45C or AISI 1045 carbon steel samples which annealed at 1000°C. Hardness testing and metallography observation were then conducted to further examine the effect of different quench medium in steel samples.

  4. Effect of Electric Field on Outwardly Propagating Spherical Flame

    KAUST Repository

    Mannaa, Ossama

    2012-06-01

    The thesis comprises effects of electric fields on a fundamental study of spheri­cal premixed flame propagation.Outwardly-propagating spherical laminar premixed flames have been investigated in a constant volume combustion vessel by applying au uni-directional electric potential.Direct photography and schlieren techniques have been adopted and captured images were analyzed through image processing. Unstretched laminar burning velocities under the influence of electric fields and their associated Markstein length scales have been determined from outwardly prop­agating spherical flame at a constant pressure. Methane and propane fuels have been tested to assess the effect of electric fields on the differential diffusion of the two fuels.The effects of varying equivalence ratios and applied voltages have been in­vestigated, while the frequency of AC was fixed at 1 KHz. Directional propagating characteristics were analyzed to identify the electric filed effect. The flame morphology varied appreciably under the influence of electric fields which in turn affected the burning rate of mixtures.The flame front was found to propagate much faster toward to the electrode at which the electric fields were supplied while the flame speeds in the other direction were minimally influenced. When the voltage was above 7 KV the combustion is markedly enhanced in the downward direction since intense turbulence is generated and as a result the mixing process or rather the heat and mass transfer within the flame front will be enhanced.The com­bustion pressure for the cases with electric fields increased rapidly during the initial stage of combustion and was relatively higher since the flame front was lengthened in the downward direction.

  5. Experimental study on flame pattern formation and combustion completeness in a radial microchannel

    Science.gov (United States)

    Fan, Aiwu; Minaev, Sergey; Kumar, Sudarshan; Liu, Wei; Maruta, Kaoru

    2007-12-01

    Combustion behavior in a radial microchannel with a gap of 2.0 mm and a diameter of 50 mm was experimentally investigated. In order to simulate the heat recirculation, which is an essential strategy in microscale combustion devices, positive temperature gradients along the radial flow direction were given to the microchannel by an external heat source. A methane-air mixture was supplied from the center of the top plate through a 4.0 mm diameter delivery tube. A variety of flame patterns, including a stable circular flame and several unstable flame patterns termed unstable circular flame, single and double pelton-like flames, traveling flame and triple flame, were observed in the experiments. The regime diagram of all these flame patterns is presented in this paper. Some characteristics of the various flame patterns, such as the radii of stable and unstable circular flames, major combustion products and combustion efficiencies of all these flame patterns, were also investigated. Furthermore, the effect of the heat recirculation on combustion stability was studied by changing the wall temperature levels.

  6. Structural aspects of coaxial oxy-fuel flames

    Science.gov (United States)

    Ditaranto, M.; Sautet, J. C.; Samaniego, J. M.

    Oxy-fuel combustion has been proven to increase thermal efficiency and to have a potential for NOx emission reduction. The study of 25-kW turbulent diffusion flames of natural gas with pure oxygen is undertaken on a coaxial burner with quarl. The structural properties are analysed by imaging the instantaneous reaction zone by OH* chemiluminescence and measuring scalar and velocity profiles. The interaction between the flame front and the shear layers present in the coaxial jets depends on the momentum ratio which dictates the turbulent structure development. Flame length and NOx emission sensitivity to air leaks in the combustion chamber are also investigated.

  7. Color quench correction for low level Cherenkov counting.

    Science.gov (United States)

    Tsroya, S; Pelled, O; German, U; Marco, R; Katorza, E; Alfassi, Z B

    2009-05-01

    The Cherenkov counting efficiency varies strongly with color quenching, thus correction curves must be used to obtain correct results. The external (152)Eu source of a Quantulus 1220 liquid scintillation counting (LSC) system was used to obtain a quench indicative parameter based on spectra area ratio. A color quench correction curve for aqueous samples containing (90)Sr/(90)Y was prepared. The main advantage of this method over the common spectra indicators is its usefulness also for low level Cherenkov counting.

  8. Characterization of water based nanofluid for quench medium

    Science.gov (United States)

    Kresnodrianto; Harjanto, S.; Putra, W. N.; Ramahdita, G.; Yahya, S. S.; Mahiswara, E. P.

    2018-04-01

    Quenching has been a valuable method in steel hardening method especially in industrial scale. The hardenability of the metal alloys, the thickness of the component, and the geometry is some factors that can affect the choice of quench medium. Improper quench media can cause the material to become too brittle, suffers some geometric distortion, and undesirable residual stress that will cause some effect on the mechanical property and fracture mechanism of a component. Recently, nanofluid as a quench medium has been used for better quenching performance and has been studied using several different fluids and nanoparticles. Some of frequently used solvents include polymers, vegetable oils, and mineral oil, and nanoparticles frequently used include CuO, ZnO, and Alumina. In this research, laboratory-grade carbon powder were used as nanoparticle. Water was used as the fluid base in this research as the main observation focus. Carbon particles were obtain using a top-down method, whereas planetary ball mill was used to ground laboratory grade carbon powder to decrease the particle size. Milling speed and duration were set at 500 rpm and 15 hours. Field Emission Scanning Electron Microscope (FE-SEM), and Energy Dispersive X-Ray (EDX) measurement were carried out to determine the particle size, material identification, particle morphology, and surface change of samples. Nanofluid was created by mixing percentage of carbon nanoparticles with water using ultrasonic vibration for 280s. The carbon nanoparticle content in nanofluid quench mediums for this research were varied at 0.1%, 0.2%, 0.3%, 0.4, and 0.5 % volume. Furthermore, these mediums were used to quench JIS S45C or AISI 1045 carbon steel samples which austenized at 1000°C. Hardness testing and metallography observation were then conducted to further check the effect of different quench medium in steel samples. Preliminary characterizations showed that carbon particles dimension after milling was still in sub

  9. Characteristics of current quenches during disruptions in the J-TEXT tokamak

    International Nuclear Information System (INIS)

    Zhang, Y; Chen, Z Y; Fang, D; Jin, W; Huang, Y H; Wang, Z J; Yang, Z J; Chen, Z P; Ding, Y H; Zhang, M; Zhuang, G

    2012-01-01

    Characteristics of tokamak current quenches are an important issue for the determination of electro-magnetic forces that act on the in-vessel components and vacuum vessel during major disruptions. The characteristics of current quenches in spontaneous disruptions in the J-TEXT tokamak have been investigated. It is shown that the waveforms for the fastest current quenches are more accurately fitted by linear current decays than exponential, although neither is a good fit in many slower cases. The minimum current quench time is about 2.4 ms for the J-TEXT tokamak. The maximum instantaneous current quench rate is more than seven times the average current quench rate in J-TEXT. (paper)

  10. Thread angle dependency on flame spread shape over kenaf/polyester combined fabric

    Science.gov (United States)

    Azahari Razali, Mohd; Sapit, Azwan; Nizam Mohammed, Akmal; Nor Anuar Mohamad, Md; Nordin, Normayati; Sadikin, Azmahani; Faisal Hushim, Mohd; Jaat, Norrizam; Khalid, Amir

    2017-09-01

    Understanding flame spread behavior is crucial to Fire Safety Engineering. It is noted that the natural fiber exhibits different flame spread behavior than the one of the synthetic fiber. This different may influences the flame spread behavior over combined fabric. There is a research has been done to examined the flame spread behavior over kenaf/polyester fabric. It is seen that the flame spread shape is dependent on the thread angle dependency. However, the explanation of this phenomenon is not described in detail in that research. In this study, explanation about this phenomenon is given in detail. Results show that the flame spread shape is dependent on the position of synthetic thread. For thread angle, θ = 0°, the polyester thread is breaking when the flame approach to the thread and the kenaf thread tends to move to the breaking direction. This behavior produces flame to be ‘V’ shape. However, for thread angle, θ = 90°, the polyester thread melts while the kenaf thread decomposed and burned. At this angle, the distance between kenaf threads remains constant as flame approaches.

  11. Smoldering and Flame Resistant Textiles via Conformal Barrier Formation.

    Science.gov (United States)

    Zammarano, Mauro; Cazzetta, Valeria; Nazaré, Shonali; Shields, J Randy; Kim, Yeon Seok; Hoffman, Kathleen M; Maffezzoli, Alfonso; Davis, Rick

    2016-12-07

    A durable and flexible silicone-based backcoating (halogen free) is applied to the backside of an otherwise smoldering-prone and flammable fabric. When exposed to fire, cyclic siloxanes (produced by thermal decomposition of the backcoating) diffuse through the fabric in the gas phase. The following oxidation of the cyclic siloxanes forms a highly conformal and thermally stable coating that fully embeds all individual fibers and shields them from heat and oxidation. As a result, the combustion of the fabric is prevented. This is a novel fire retardant mechanism that discloses a powerful approach towards textiles and multifunctional flexible materials with combined smoldering/flaming ignition resistance and fire-barrier properties.

  12. Automatic quench compensation for liquid scintillation counting system

    International Nuclear Information System (INIS)

    Nather, R.E.

    1978-01-01

    A method of automatic quench compensation is provided, where a reference measure of quench is taken on a sample prior to taking a sample count. The measure of quench is then compared with a reference voltage source which has been established to vary in proportion to the variation of the measure of quench with the level of a system parameter required to restore at least one isotope spectral energy endpoint substantially to a selected counting window discriminator level in order to determine the amount of adjustment of the system parameter required to restore the endpoint. This is followed by the appropriate adjustment of the system parameter required to restore the relative position of the discriminator windows and the sample spectrum and is followed in turn by taking a sample count

  13. Opposed-flow Flame Spread Over Solid Fuels in Microgravity: the Effect of Confined Spaces

    Science.gov (United States)

    Wang, Shuangfeng; Hu, Jun; Xiao, Yuan; Ren, Tan; Zhu, Feng

    2015-09-01

    Effects of confined spaces on flame spread over thin solid fuels in a low-speed opposing flow is investigated by combined use of microgravity experiments and computations. The flame behaviors are observed to depend strongly on the height of the flow tunnel. In particular, a non-monotonic trend of flame spread rate versus tunnel height is found, with the fastest flame occurring in the 3 cm high tunnel. The flame length and the total heat release rate from the flame also change with tunnel height, and a faster flame has a larger length and a higher heat release rate. The computation analyses indicate that a confined space modifies the flow around the spreading flame. The confinement restricts the thermal expansion and accelerates the flow in the streamwise direction. Above the flame, the flow deflects back from the tunnel wall. This inward flow pushes the flame towards the fuel surface, and increases oxygen transport into the flame. Such a flow modification explains the variations of flame spread rate and flame length with tunnel height. The present results suggest that the confinement effects on flame behavior in microgravity should be accounted to assess accurately the spacecraft fire hazard.

  14. Multiple mechanisms quench passive spiral galaxies

    Science.gov (United States)

    Fraser-McKelvie, Amelia; Brown, Michael J. I.; Pimbblet, Kevin; Dolley, Tim; Bonne, Nicolas J.

    2018-02-01

    We examine the properties of a sample of 35 nearby passive spiral galaxies in order to determine their dominant quenching mechanism(s). All five low-mass (M⋆ environments. We postulate that cluster-scale gas stripping and heating mechanisms operating only in rich clusters are required to quench low-mass passive spirals, and ram-pressure stripping and strangulation are obvious candidates. For higher mass passive spirals, while trends are present, the story is less clear. The passive spiral bar fraction is high: 74 ± 15 per cent, compared with 36 ± 5 per cent for a mass, redshift and T-type matched comparison sample of star-forming spiral galaxies. The high mass passive spirals occur mostly, but not exclusively, in groups, and can be central or satellite galaxies. The passive spiral group fraction of 74 ± 15 per cent is similar to that of the comparison sample of star-forming galaxies at 61 ± 7 per cent. We find evidence for both quenching via internal structure and environment in our passive spiral sample, though some galaxies have evidence of neither. From this, we conclude no one mechanism is responsible for quenching star formation in passive spiral galaxies - rather, a mixture of mechanisms is required to produce the passive spiral distribution we see today.

  15. Causes of Cracking in Quenching of the Parts Made of Steels and Cast Iron and Recommendations for Their Removal: A Review

    Science.gov (United States)

    Kuznetsov, A. A.; Rudnev, V. I.

    2017-12-01

    The domestic and foreign experience on revealing the causes of quenching cracking and its prevention is generalized. We consider the works performed on the machine parts made of carbon and alloyed pearlitic steel and quenchable cast irons.

  16. Effect of Oxygen Enrichment in Propane Laminar Diffusion Flames under Microgravity and Earth Gravity Conditions

    Science.gov (United States)

    Bhatia, Pramod; Singh, Ravinder

    2017-06-01

    Diffusion flames are the most common type of flame which we see in our daily life such as candle flame and match-stick flame. Also, they are the most used flames in practical combustion system such as industrial burner (coal fired, gas fired or oil fired), diesel engines, gas turbines, and solid fuel rockets. In the present study, steady-state global chemistry calculations for 24 different flames were performed using an axisymmetric computational fluid dynamics code (UNICORN). Computation involved simulations of inverse and normal diffusion flames of propane in earth and microgravity condition with varying oxidizer compositions (21, 30, 50, 100 % O2, by mole, in N2). 2 cases were compared with the experimental result for validating the computational model. These flames were stabilized on a 5.5 mm diameter burner with 10 mm of burner length. The effect of oxygen enrichment and variation in gravity (earth gravity and microgravity) on shape and size of diffusion flames, flame temperature, flame velocity have been studied from the computational result obtained. Oxygen enrichment resulted in significant increase in flame temperature for both types of diffusion flames. Also, oxygen enrichment and gravity variation have significant effect on the flame configuration of normal diffusion flames in comparison with inverse diffusion flames. Microgravity normal diffusion flames are spherical in shape and much wider in comparison to earth gravity normal diffusion flames. In inverse diffusion flames, microgravity flames were wider than earth gravity flames. However, microgravity inverse flames were not spherical in shape.

  17. NOx emission characteristics in turbulent hydrogen jet flames with coaxial air

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Hee Jang [Korea Aerospace University, Goyang (Korea, Republic of); Park, Yang Ho; Yoon, Young Bin [Seoul National University, Seoul (Korea, Republic of)

    2009-06-15

    The characteristics of NOx emissions in pure hydrogen nonpremixed jet flames with coaxial air are analyzed numerically for a wide range of coaxial air conditions. Among the models tested in simple nonpremixed jet flame, the one-half power scaling law could be reproduced only by the Model C using the HO{sub 2}/H{sub 2}O{sub 2} reaction, implying the importance of chemical nonequilibrium effect. The flame length is reduced significantly by augmenting coaxial air, and could be represented as a function of the ratio of coaxial air to fuel velocity. Predicted EINOx scaling showed a good concordance with experimental data, and the overall one-half power scaling was observed in coaxial flames with Model C when flame residence time was defined with flame volume instead of a cubic of the flame length. Different level of oxygen mass fraction at the stoichiometric surface was observed as coaxial air was increased. These different levels imply that the coaxial air strengthens the nonequilibrium effect

  18. NOx emission characteristics in turbulent hydrogen jet flames with coaxial air

    International Nuclear Information System (INIS)

    Moon, Hee Jang; Park, Yang Ho; Yoon, Young Bin

    2009-01-01

    The characteristics of NOx emissions in pure hydrogen nonpremixed jet flames with coaxial air are analyzed numerically for a wide range of coaxial air conditions. Among the models tested in simple nonpremixed jet flame, the one-half power scaling law could be reproduced only by the Model C using the HO 2 /H 2 O 2 reaction, implying the importance of chemical nonequilibrium effect. The flame length is reduced significantly by augmenting coaxial air, and could be represented as a function of the ratio of coaxial air to fuel velocity. Predicted EINOx scaling showed a good concordance with experimental data, and the overall one-half power scaling was observed in coaxial flames with Model C when flame residence time was defined with flame volume instead of a cubic of the flame length. Different level of oxygen mass fraction at the stoichiometric surface was observed as coaxial air was increased. These different levels imply that the coaxial air strengthens the nonequilibrium effect

  19. Flame kernel generation and propagation in turbulent partially premixed hydrocarbon jet

    KAUST Repository

    Mansour, Mohy S.; Elbaz, Ayman M.; Zayed, M. F.

    2014-01-01

    Flame development, propagation, stability, combustion efficiency, pollution formation, and overall system efficiency are affected by the early stage of flame generation defined as flame kernel. Studying the effects of turbulence and chemistry

  20. Laminar Flame Velocity and Temperature Exponent of Diluted DME-Air Mixture

    Science.gov (United States)

    Naseer Mohammed, Abdul; Anwar, Muzammil; Juhany, Khalid A.; Mohammad, Akram

    2017-03-01

    In this paper, the laminar flame velocity and temperature exponent diluted dimethyl ether (DME) air mixtures are reported. Laminar premixed mixture of DME-air with volumetric dilutions of carbon dioxides (CO2) and nitrogen (N2) are considered. Experiments were conducted using a preheated mesoscale high aspect-ratio diverging channel with inlet dimensions of 25 mm × 2 mm. In this method, flame velocities are extracted from planar flames that were stabilized near adiabatic conditions inside the channel. The flame velocities are then plotted against the ratio of mixture temperature and the initial reference temperature. A non-linear power law regression is observed suitable. This regression analysis gives the laminar flame velocity at the initial reference temperature and temperature exponent. Decrease in the laminar flame velocity and increase in temperature exponent is observed for CO2 and N2 diluted mixtures. The addition of CO2 has profound influence when compared to N2 addition on both flame velocity and temperature exponent. Numerical prediction of the similar mixture using a detailed reaction mechanism is obtained. The computational mechanism predicts higher magnitudes for laminar flame velocity and smaller magnitudes of temperature exponent compared to experimental data.

  1. Measurements of Positively Charged Ions in Premixed Methane-Oxygen Atmospheric Flames

    KAUST Repository

    Alquaity, Awad

    2016-08-22

    Cations and anions are formed as a result of chemi-ionization processes in combustion systems. Electric fields can be applied to reduce emissions and improve combustion efficiency by active control of the combustion process. Detailed flame ion chemistry models are needed to understand and predict the effect of external electric fields on combustion plasmas. In this work, a molecular beam mass spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane–oxygen argon burner-stabilized atmospheric flames. Lean and stoichiometric flames are considered to assess the dependence of ion chemistry on flame stoichiometry. Relative ion concentration profiles are compared with numerical simulations using various temperature profiles, and good qualitative agreement was observed for the stoichiometric flame. However, for the lean flame, numerical simulations misrepresent the spatial distribution of selected ions greatly. Three modifications are suggested to enhance the ion mechanism and improve the agreement between experiments and simulations. The first two modifications comprise the addition of anion detachment reactions to increase anion recombination at low temperatures. The third modification involves restoring a detachment reaction to its original irreversible form. To our knowledge, this work presents the first detailed measurements of cations and flame temperature in canonical methane–oxygen-argon atmospheric flat flames. The positive ion profiles reported here may be useful to validate and improve ion chemistry models for methane-oxygen flames.

  2. Numerical Study of Quench Protection for Fast-Ramping Accelerator Magnets

    OpenAIRE

    Schwerg, N; Auchman, B; Mess, K-N; Russenschuck, S

    2009-01-01

    The quench module of the ROXIE field computation program has been presented at previous conferences. In this paper we discuss recently implemented features that allow quench simulation of fast-ramping superconducting magnets. As the reliability of quench detection during the ramps depends on the signal to noise ratio, we simulate the influence of detection thresholds and the propagation of undetected quenches during the ramps. We also study the effect of an increased copper content and the fe...

  3. Propagation of a premixed flame in a divided-chamber combustor

    Science.gov (United States)

    Cattolica, R. J.; Barr, P. K.; Mansour, N. N.

    1989-01-01

    Experimental observations on the propagation of lean premixed ethylene-air flames in a divided-chamber combustion vessel have been compared with the results of numerical simulations based on a flame sheet-vortex dynamics model in axisymmetric coordinates. Flame speeds were found to increase from 10-24 cm/s as the equivalence ratio was varied from 0.5-0.65 in the experiments. Using the associated increase in gas velocity with equivalence ratio, the estimated Reynolds number in the experiment was changed from 1870 to 8090. Good agreement between experimental and theoretical results was obtained for the prechamber flame propagation rates and for the spatial and temporal development of the flame in the main combustion chamber at the lowest Reynolds number.

  4. Quench detection on a superconducting radio-frequency cavity

    OpenAIRE

    Lai, Ru-Yu; Spirn, Daniel

    2017-01-01

    We study quench detection in superconducting accelerator cavities cooled with He-II. A rigorous mathematical formula is derived to localize the quench position from dynamical data over a finite time interval at a second sound detector.

  5. Revisiting the Role of Xanthophylls in Nonphotochemical Quenching

    NARCIS (Netherlands)

    van Oort, Bart; Roy, Laura M; Xu, Pengqi; Lu, Yinghong; Karcher, Daniel; Bock, Ralph; Croce, Roberta

    2018-01-01

    Photoprotective nonphotochemical quenching (NPQ) of absorbed solar energy is vital for survival of photosynthetic organisms, and NPQ modifications significantly improve plant productivity. However, the exact NPQ quenching mechanism is obscured by discrepancies between reported mechanisms, involving

  6. The blow-off mechanism of a bluff-body stabilized laminar premixed flame

    KAUST Repository

    Kedia, Kushal S.

    2015-04-01

    © 2014 The Combustion Institute. The objective of this work is to investigate the dynamics leading to blow-off of a laminar premixed flame stabilized on a confined bluff-body using high fidelity numerical simulations. We used unsteady, fully resolved, two-dimensional simulations with detailed chemical kinetics and species transport for methane-air combustion. The flame-wall interaction between the hot reactants and the heat conducting bluff-body was accurately captured by incorporating the conjugate heat exchange between them. Simulations showed a shear-layer stabilized flame just downstream of the bluff-body, with a recirculation zone formed by the products of combustion. The flame was negatively stretched along its entire length, primarily dominated by the normal component of the strain. Blow-off was approached by decreasing the mixture equivalence ratio, at a fixed Reynolds number, of the incoming flow. A flame is stable (does not undergo blow-off) when (1) flame displacement speed is equal to the flow speed and (2) the gradient of the flame displacement speed normal to its surface is higher than the gradient of the flow speed along the same direction. As the equivalence ratio is reduced, the difference between the former and the latter shrinks until the dynamic stability condition (2) is violated, leading to blow-off. Blow-off initiates at a location where this is first violated along the flame. Our results showed that this location was far downstream from the flame anchoring zone, near the end of the recirculation zone. Blow-off started by flame pinching separating the flame into an upstream moving (carried within the recirculation zone) and a downstream convecting (detached from the recirculation zone) flame piece. Within the range of operating conditions investigated, the conjugate heat exchange with the bluff-body had no impact on the flame blow-off.

  7. Hotspot temperature calculation and quench analysis on ITER busbar

    International Nuclear Information System (INIS)

    Rong, J.; Huang, X.Y.; Song, Y.T.; Wu, S.T.

    2014-01-01

    Highlights: • The hotspot temperature is calculated in the case of different extra copper in this paper. • The MQE (minimum quench energy) is carried out as the external heating to trigger a quench in busbar. • The temperature changes after quench is analyzed by Gandalf code in the case of different extra copper and no helium. • The normal length is carried out in the case of different extra copper by Gandalf code. - Abstract: This paper describes the analysis of ITER feeder busbar, the hotspot temperature of busbar is calculated by classical method in the case of 0%, 50%, 75% and 100% extra copper (copper strands). The quench behavior of busbar is simulated by 1-D Gandalf code, and the MQE (minimum quench energy) is estimated in classical method as initial external heat in Gandalf input file. The temperature and the normal length of conductor are analyzed in the case of 0%, 50% and 100% extra copper and no helium. By hotspot temperature, conductor temperature and normal length are contrasted in different extra copper cases, it is shown that the extra copper play an important role in quench protecting

  8. Numerical simulation of quench protection for a 1.5 T persistent mode MgB2 conduction-cooled MRI magnet

    Science.gov (United States)

    Deissler, Robert J.; Baig, Tanvir; Poole, Charles; Amin, Abdullah; Doll, David; Tomsic, Michael; Martens, Michael

    2017-02-01

    The active quench protection of a 1.5 T MgB2 conduction-cooled MRI magnet operating in persistent current mode is considered. An active quench protection system relies on the detection of the resistive voltage developed in the magnet, which is used to trigger the external energizing of quench heaters located on the surfaces of all ten coil bundles. A numerical integration of the heat equation is used to determine the development of the temperature profile and the maximum temperature in the coil at the origin, or ‘hot spot’, of the quench. Both n-value of the superconductor and magnetoresistance of the wire are included in the simulations. An MgB2 wire manufactured by Hyper Tech Research, Inc. was used as the basis to model the wire for the simulations. With the proposed active quench protection system, the maximum temperature was limited to 200 K or less, which is considered low enough to prevent damage to the magnet. By substituting Glidcop for the Monel in the wire sheath or by increasing the thermal conductivity of the insulation, the margin for safe operation was further increased, the maximum temperature decreasing by more than 40 K. The strain on the MgB2 filaments is calculated using ANSYS, verifying that the stress and strain limits in the MgB2 superconductor and epoxy insulation are not exceeded.

  9. Mode Selection in Flame-Vortex driven Combustion Instabilities

    KAUST Repository

    Speth, Ray; Hong, Seung Hyuck; Shanbogue, Santosh; Ghoniem, Ahmed

    2011-01-01

    is governed by a combustion-related time delay inversely proportional to the flame speed. Our model predicts the transition between distinct operating modes. We introduce non-dimensional parameters characterizing the flame speed and stretch rate, and develop a

  10. Beam steering effects in turbulent high pressure flames

    Energy Technology Data Exchange (ETDEWEB)

    Hemmerling, B; Kaeppeli, B [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The propagation of a laser beam through a flame is influenced by variations of the optical density. Especially in turbulent high pressure flames this may seriously limit the use of laser diagnostic methods. (author) 1 fig., 2 refs.

  11. Density of kinks just after a quench in an underdamped system

    OpenAIRE

    Dziarmaga, Jacek

    1998-01-01

    A quench in an underdamped one dimensional $\\phi^4$ model is studied by analytical methods. The density of kinks just after the transition is proportional to the square root of the rate of the quench for slow quenches. If the quench is shorter that the relaxation time, then the density scales like the third root of the rate.

  12. A nonlinear wave equation in nonadiabatic flame propagation

    International Nuclear Information System (INIS)

    Booty, M.R.; Matalon, M.; Matkowsky, B.J.

    1988-01-01

    The authors derive a nonlinear wave equation from the diffusional thermal model of gaseous combustion to describe the evolution of a flame front. The equation arises as a long wave theory, for values of the volumeric heat loss in a neighborhood of the extinction point (beyond which planar uniformly propagating flames cease to exist), and for Lewis numbers near the critical value beyond which uniformly propagating planar flames lose stability via a degenerate Hopf bifurcation. Analysis of the equation suggests the possibility of a singularity developing in finite time

  13. Enhancement of flame development by microwave-assisted spark ignition in constant volume combustion chamber

    KAUST Repository

    Wolk, Benjamin

    2013-07-01

    The enhancement of laminar flame development using microwave-assisted spark ignition has been investigated for methane-air mixtures at a range of initial pressures and equivalence ratios in a 1.45. l constant volume combustion chamber. Microwave enhancement was evaluated on the basis of several parameters including flame development time (FDT) (time for 0-10% of total net heat release), flame rise time (FRT) (time for 10-90% of total net heat release), total net heat release, flame kernel growth rate, flame kernel size, and ignitability limit extension. Compared to a capacitive discharge spark, microwave-assisted spark ignition extended the lean and rich ignition limits at all pressures investigated (1.08-7.22. bar). The addition of microwaves to a capacitive discharge spark reduced FDT and increased the flame kernel size for all equivalence ratios tested and resulted in increases in the spatial flame speed for sufficiently lean flames. Flame enhancement is believed to be caused by (1) a non-thermal chemical kinetic enhancement from energy deposition to free electrons in the flame front and (2) induced flame wrinkling from excitation of flame (plasma) instability. The enhancement of flame development by microwaves diminishes as the initial pressure of the mixture increases, with negligible flame enhancement observed above 3. bar. © 2013 The Combustion Institute.

  14. Verification of the three-dimensional FLAME code

    International Nuclear Information System (INIS)

    Mays, C.W.

    1976-08-01

    FLAME calculations are compared with operating data from Oconee Unit 1 and with two independent three-dimensional PDQ07 calculations for a feed-and-bleed plant containing lumped burnable poison. The Oconee 1 comparisons consider both steady-state and transient data. The steady-state calculations are compared with operating data from two cycles of operation. The comparisons with PDQ07 calculations are for a design transient. Direct comparisons are made between calculations and measurements for the Oconee 1 analyses. No uncertainty is applied to measured power densities. The difference in measured and calculated total peak for 95% of the assemblies considered in these comparisons is less than 5.3%. Based on these analyses, it is concluded that FLAME can calculate the total peak to within 5.3% for both steady-state and transient plant conditions. The maximum deviation in the total peak calculated by FLAME and one of the PDQ07 calculations is 5.6%. The maximum deviation with the other PDQ07 calculation is 2.5%. It is concluded that the FLAME calculations gave the most conservative results of the three

  15. Cool diffusion flames of butane isomers activated by ozone in the counterflow

    KAUST Repository

    Alfazazi, Adamu

    2018-02-02

    Ignition in low temperature combustion engines is governed by a coupling between low-temperature oxidation kinetics and diffusive transport. Therefore, a detailed understanding of the coupled effects of heat release, low-temperature oxidation chemistry, and molecular transport in cool flames is imperative to the advancement of new combustion concepts. This study provides an understanding of the low temperature cool flame behavior of butane isomers in the counterflow configuration through the addition of ozone. The initiation and extinction limits of butane isomers’ cool flames have been investigated under a variety of strain rates. Results revealed that, with ozone addition, establishment of butane cool diffusion flames was successful at low and moderate strain rates. iso-Butane has lower reactivity than n-butane, as shown by higher fuel mole fractions needed for cool flame initiation and lower extinction strain rate limits. Ozone addition showed a significant influence on the initiation and sustenance of cool diffusion flames; as ozone-less cool diffusion flame of butane isomers could not be established even at high fuel mole fractions. The structure of a stable n-butane cool diffusion flame was qualitatively examined using a time of flight mass spectrometer. Numerical simulations were performed using a detailed chemical kinetic model and molecular transport to simulate the extinction limits of the cool diffusion flames of the tested fuels. The model qualitatively captured experimental trends for both fuels and ozone levels, but over-predicted extinction limits of the flames. Reactions involving low-temperature species predominantly govern extinction limits of cool flames. The simulations were used to understand the effects of methyl branching on the behavior of n-butane and iso-butane cool diffusion flames.

  16. Turbulent structure and dynamics of swirled, strongly pulsed jet diffusion flames

    KAUST Repository

    Liao, Ying-Hao; Hermanson, James C.

    2013-01-01

    The structure and dynamics of swirled, strongly pulsed, turbulent jet diffusion flames were examined experimentally in a co-flow swirl combustor. The dynamics of the large-scale flame structures, including variations in flame dimensions, the degree

  17. Self-quenching streamer discharge in a wire chamber

    International Nuclear Information System (INIS)

    Alekseev, G.D.; Kruglov, V.V.; Khazins, D.M.

    1982-01-01

    A summary is given of the investigation of a new mode of operation of a wire chamber involving a self-quenching streamer discharge. The history of the question is briefly discussed. The main characteristics of the self-quenching mode and the influence of the composition and pressure of the gas mixture and the geometrical parameters of the chamber on the characteristics are described. The mechanism of a self-quenching streamer discharge is analyzed. Detectors working in this mode are described, and the prospects for its future use are discussed

  18. Simulation of jet quenching at RHIC and LHC

    International Nuclear Information System (INIS)

    Lokhtin, I P; Snigirev, A M

    2007-01-01

    A model to simulate the jet quenching effect in ultrarelativistic heavy ion collisions is presented. The model is the fast Monte Carlo tool implemented to modify a standard PYTHIA jet event. The model has been generalized to the case of the 'full' heavy ion event (the superposition of soft, hydro-type state and hard multi-jets) using a simple and fast simulation procedure for soft particle production. The model is capable of reproducing the main features of the jet quenching pattern at RHIC and is applied to analyse novel jet quenching features at LHC

  19. First experience with the new Coupling Loss Induced Quench system

    CERN Document Server

    Ravaioli, E; Dudarev, A V; Kirby, G; Sperin, K A; ten Kate, H H J; Verweij, A P

    2014-01-01

    New-generation high-field superconducting magnets pose a challenge relating to the protection of the coil winding pack in the case of a quench. The high stored energy per unit volume calls for a very efficient quench detection and fast quench propagation in order to avoid damage due to overheating. A new protection system called Coupling-Loss Induced Quench (CLIQ) was recently, developed and tested at CERN. This method provokes a fast change in the magnet transport current by means of a capacitive discharge. The resulting change in the local magnetic field induces inter-filament and inter-strand coupling losses which heat up the superconductor and eventually initiate a quench in a large fraction of the coil winding pack. The method is extensively tested on a Nb-Ti single-wire test solenoid magnet in the CERN Cryogenic Laboratory in order to assess its performance, optimize its operating parameters, and study new electrical configurations. Each parameter is thoroughly analyzed and its impact on the quench effi...

  20. Trapping and aerogelation of nanoparticles in negative gravity hydrocarbon flames

    International Nuclear Information System (INIS)

    Chakrabarty, Rajan K.; Novosselov, Igor V.; Beres, Nicholas D.; Moosmüller, Hans; Sorensen, Christopher M.; Stipe, Christopher B.

    2014-01-01

    We report the experimental realization of continuous carbon aerogel production using a flame aerosol reactor by operating it in negative gravity (−g; up-side-down configuration). Buoyancy opposes the fuel and air flow forces in −g, which eliminates convectional outflow of nanoparticles from the flame and traps them in a distinctive non-tipping, flicker-free, cylindrical flame body, where they grow to millimeter-size aerogel particles and gravitationally fall out. Computational fluid dynamics simulations show that a closed-loop recirculation zone is set up in −g flames, which reduces the time to gel for nanoparticles by ≈10 6  s, compared to positive gravity (upward rising) flames. Our results open up new possibilities of one-step gas-phase synthesis of a wide variety of aerogels on an industrial scale.

  1. Trapping and aerogelation of nanoparticles in negative gravity hydrocarbon flames

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarty, Rajan K., E-mail: rajan.chakrabarty@gmail.com [Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130 (United States); Laboratory for Aerosol Science, Spectroscopy, and Optics, Desert Research Institute, Nevada System of Higher Education, Reno, Nevada 89512 (United States); Novosselov, Igor V. [Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195 (United States); Enertechnix Inc., Maple Valley, Washington 98068 (United States); Beres, Nicholas D.; Moosmüller, Hans [Laboratory for Aerosol Science, Spectroscopy, and Optics, Desert Research Institute, Nevada System of Higher Education, Reno, Nevada 89512 (United States); Sorensen, Christopher M. [Condensed Matter Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506 (United States); Stipe, Christopher B. [TSI Incorporated, 500 Cardigan Rd, Shoreview, Minnesota 55126 (United States)

    2014-06-16

    We report the experimental realization of continuous carbon aerogel production using a flame aerosol reactor by operating it in negative gravity (−g; up-side-down configuration). Buoyancy opposes the fuel and air flow forces in −g, which eliminates convectional outflow of nanoparticles from the flame and traps them in a distinctive non-tipping, flicker-free, cylindrical flame body, where they grow to millimeter-size aerogel particles and gravitationally fall out. Computational fluid dynamics simulations show that a closed-loop recirculation zone is set up in −g flames, which reduces the time to gel for nanoparticles by ≈10{sup 6} s, compared to positive gravity (upward rising) flames. Our results open up new possibilities of one-step gas-phase synthesis of a wide variety of aerogels on an industrial scale.

  2. Development of PIV for Microgravity Diffusion Flames

    Science.gov (United States)

    Greenberg, Paul S.; Wernet, Mark P.; Yanis, William; Urban, David L.; Sunderland, Peter B.

    2003-01-01

    Results are presented from the application of Particle Image Velocimetry(PIV) to the overfire region of a laminar gas jet diffusion flame in normal gravity. A methane flame burning in air at 0.98 bar was considered. The apparatus demonstrated here is packaged in a drop rig designed for use in the 2.2 second drop tower.

  3. Observations of environmental quenching in groups in the 11 Gyr since z = 2.5: Different quenching for central and satellite galaxies

    International Nuclear Information System (INIS)

    Tal, Tomer; Illingworth, Garth D.; Magee, Daniel; Dekel, Avishai; Oesch, Pascal; Van Dokkum, Pieter G.; Leja, Joel; Momcheva, Ivelina; Nelson, Erica J.; Muzzin, Adam; Franx, Marijn; Brammer, Gabriel B.; Marchesini, Danilo; Patel, Shannon G.; Quadri, Ryan F.; Rix, Hans-Walter; Skelton, Rosalind E.; Wake, David A.; Whitaker, Katherine E.

    2014-01-01

    We present direct observational evidence for star formation quenching in galaxy groups in the redshift range 0 < z < 2.5. We utilize a large sample of nearly 6000 groups, selected by fixed cumulative number density from three photometric catalogs, to follow the evolving quiescent fractions of central and satellite galaxies over roughly 11 Gyr. At z ∼ 0, central galaxies in our sample range in stellar mass from Milky Way/M31 analogs (M * /M ☉ = 6.5 × 10 10 ) to nearby massive ellipticals (M * /M ☉ = 1.5 × 10 11 ). Satellite galaxies in the same groups reach masses as low as twice that of the Large Magellanic Cloud (M * /M ☉ = 6.5 × 10 9 ). Using statistical background subtraction, we measure the average rest-frame colors of galaxies in our groups and calculate the evolving quiescent fractions of centrals and satellites over seven redshift bins. Our analysis shows clear evidence for star formation quenching in group halos, with a different quenching onset for centrals and their satellite galaxies. Using halo mass estimates for our central galaxies, we find that star formation shuts off in centrals when typical halo masses reach between 10 12 and 10 13 M ☉ , consistent with predictions from the halo quenching model. In contrast, satellite galaxies in the same groups most likely undergo quenching by environmental processes, whose onset is delayed with respect to their central galaxy. Although star formation is suppressed in all galaxies over time, the processes that govern quenching are different for centrals and satellites. While mass plays an important role in determining the star formation activity of central galaxies, quenching in satellite galaxies is dominated by the environment in which they reside.

  4. Observations of environmental quenching in groups in the 11 Gyr since z = 2.5: Different quenching for central and satellite galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Tal, Tomer; Illingworth, Garth D.; Magee, Daniel [UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Dekel, Avishai [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Oesch, Pascal; Van Dokkum, Pieter G.; Leja, Joel; Momcheva, Ivelina; Nelson, Erica J. [Yale University Astronomy Department, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Muzzin, Adam; Franx, Marijn [Leiden Observatory, Leiden University, NL-2300 RA Leiden (Netherlands); Brammer, Gabriel B. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Marchesini, Danilo [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Patel, Shannon G.; Quadri, Ryan F. [Carnegie Observatories, Pasadena, CA 91101 (United States); Rix, Hans-Walter [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Skelton, Rosalind E. [South African Astronomical Observatory, Observatory Road, Cape Town (South Africa); Wake, David A. [Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53706 (United States); Whitaker, Katherine E., E-mail: tal@ucolick.org [Astrophysics Science Division, Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-07-10

    We present direct observational evidence for star formation quenching in galaxy groups in the redshift range 0 < z < 2.5. We utilize a large sample of nearly 6000 groups, selected by fixed cumulative number density from three photometric catalogs, to follow the evolving quiescent fractions of central and satellite galaxies over roughly 11 Gyr. At z ∼ 0, central galaxies in our sample range in stellar mass from Milky Way/M31 analogs (M{sub *}/M{sub ☉} = 6.5 × 10{sup 10}) to nearby massive ellipticals (M{sub *}/M{sub ☉} = 1.5 × 10{sup 11}). Satellite galaxies in the same groups reach masses as low as twice that of the Large Magellanic Cloud (M{sub *}/M{sub ☉} = 6.5 × 10{sup 9}). Using statistical background subtraction, we measure the average rest-frame colors of galaxies in our groups and calculate the evolving quiescent fractions of centrals and satellites over seven redshift bins. Our analysis shows clear evidence for star formation quenching in group halos, with a different quenching onset for centrals and their satellite galaxies. Using halo mass estimates for our central galaxies, we find that star formation shuts off in centrals when typical halo masses reach between 10{sup 12} and 10{sup 13} M{sub ☉}, consistent with predictions from the halo quenching model. In contrast, satellite galaxies in the same groups most likely undergo quenching by environmental processes, whose onset is delayed with respect to their central galaxy. Although star formation is suppressed in all galaxies over time, the processes that govern quenching are different for centrals and satellites. While mass plays an important role in determining the star formation activity of central galaxies, quenching in satellite galaxies is dominated by the environment in which they reside.

  5. Flame retardancy and thermal properties of epoxy acrylate resin/alpha-zirconium phosphate nanocomposites used for UV-curing flame retardant films

    International Nuclear Information System (INIS)

    Xing Weiyi; Jie Ganxin; Song Lei; Wang Xin; Lv Xiaoqi; Hu Yuan

    2011-01-01

    This paper reported the UV-curing flame retardant film, which consisted of epoxy acrylate resin (EA) used as an oligomer, tri(acryloyloxyethyl) phosphate (TAEP) and triglycidyl isocyanurate acrylate (TGICA) used as flame retardant (FR). The flame retardancy and thermal properties of films were reinforced by using alpha-zirconium phosphate (α-Zr (HPO 4 ) 2 H 2 O, α-ZrP). The morphology of nanocomposite film was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results showed that the organophilic α-ZrP (OZrP) layers were dispersed well in epoxy acrylate resin. Microscale Combustion Calorimeter (MCC), thermogravimetric analysis (TGA) and thermogravimetric analysis/infrared spectrometry (TGA-IR) were used to characterize the flame retardant property and thermal stability. It was found that the incorporation of TAEP and TGICA can reduce the flammability of EA. Moreover, further reductions were observed due to the addition of OZrP. The char residue for systems with or without OZrP was also explored by scanning electron microscopy (SEM).

  6. Study on quench effects in liquid scintillation counting during tritium measurements

    International Nuclear Information System (INIS)

    Ivana Jakonic; Jovana Nikolov; Natasa Todorovic; Miroslav Veskovic; Branislava Tenjovic

    2014-01-01

    Quench effects can cause a serious reduction in counting efficiency for a given sample/cocktail mixture in liquid scintillation counting (LSC) experiments. This paper presents a simple experiment performed in order to test the influence of quenching on the LSC efficiency of 3 H. The aim of this study was to investigate the behavior of several quench agents with different quench strengths (nitromethane, nitric acid, acetone, dimethyl-sulfoxide) added in different amounts to tritiated water in order to obtain standard sets for quench calibration curves. The OptiPhase HiSafe 2 and OptiPhase HiSafe 3 scintillation cocktails were used in this study in order to compare their quench resistance. Measurements were performed using a low-level LS counter (Wallac, Quantulus 1220). (author)

  7. Quench detection of superconducting magnet by dual-core optical fiber

    International Nuclear Information System (INIS)

    Tsukamoto, O.; Kawai, K.; Kokubun, Y.; Takao, T.

    1988-01-01

    A quench-detecting technique using two single-mode optical cores in one fiber has been developed. The technique can detect quench from a temperature rise of 1.0 K at 4.2 K. An electromagnetic force-stress to the fiber did not deteriorate quench detection sensitivity. A quench detector using this method was immune from electromagnetic noise and free from troubles caused by high voltage tension. Problems arising when applying this method to a large scale magnet and possible improvements in the instrumentation are discussed

  8. Numerical study of laminar nonpremixed methane flames in coflow jets: Autoignited lifted flames with tribrachial edges and MILD combustion at elevated temperatures

    KAUST Repository

    M. Al-Noman, Saeed; Choi, Sang Kyu; Chung, Suk-Ho

    2016-01-01

    Autoignition characteristics of laminar nonpremixed methane jet flames in high-temperature coflow air are studied numerically. Several flame configurations are investigated by varying the initial temperature and fuel mole fraction. At a relatively

  9. Simplified hydrodynamic model of hydrogen-flame propagation in reactor vessels

    International Nuclear Information System (INIS)

    Baer, M.R.; Ratzel, A.C.

    1983-01-01

    The model is consistent with the theory of slow combustion in which the gasdynamic field equations are treated in the limit of small Mach numbers. To the lowest order, pressure is spatially uniform. The flame is treated as a density and entropy discontinuity which propagates at prescribed burning velocities, corresponding to laminar or turbulent flames. Radiation cooling of the burned combustion gases and possible preheating of the unburned gases during propagation of the flame is included using a molecular gas-band thermal radiation model. Application of this model has been developed for 1-D variable-area flame propagation. Multidimensional effects induced by hydrodynamics and buoyancy are corrected for. This model of flame propagation reduces to differential equations which describes the temporal variations of vessel pressure, burned volume and gas entropy. The thermodynamic state of the burned gas immediately following the flame is determined using an isobaric Hugoniot relation. At other locations the burned-gas thermodynamic states are determined using a Lagrangian particle tracking method. Results of a computer code using the method are presented. 11 figures

  10. Experimental studies of flame stability and emission characteristics of simple LPG jet diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    D.Y. Kiran; D.P. Mishra [Indian Institute of Technology Kanpur, Kanpur (India). Combustion Laboratory, Department of Aerospace Engineering

    2007-07-15

    In the present study, experiments were carried out to measure the lift-off height, H{sub L}; flame length, L{sub f} and blow-off velocity for a simple LPG (liquefied petroleum gas) jet diffusion flames. It is observed that lift-off height is proportional to the fuel exit velocity, U{sub f}. A semi-empirical correlation between lift-off height and global strain rate, U{sub f}/D{sub f} is proposed. Two regimes identified either as buoyancy or momentum dominated were characterized by Froude number, Fr. For momentum dominated jet diffusion flames, L{sub f}/D{sub f} remains almost constant and therefore is independent of the Froude number. The NOx emissions, expressed in terms of emission index, EINOx is found to decrease with U{sub f}. This decreasing trend is consistent with the concept that increasing jet velocity reduces the residence time as reported in the literature. The present data is also compared with the available data of propane gas and found to be in good agreement well particularly in trend wise. Besides these data, EINOx scaling law is also reported in the present study. 20 refs., 8 figs.

  11. Toward Eco Product Development with Qualitative and CAE Design Process - Case Study of Flame Guiding Module

    Science.gov (United States)

    Chen, W. L.; Chao, F. L.

    2018-04-01

    Sustainable products become increasingly important for company in addressing eco-performance to satisfy global environmental regulations. Case study of flame guiding module reviewed design process and concerns related to the torch design. For enhancing flame height, the torch was embedded with an airflow guidance structure. The design process and design methodologies were investigated as an eco-design case study. Combine qualitative and CAE simulation were proposed to fulfil its main and auxiliary functions including reduction of impact during use. The design guidelines help prevent mistake arrangements, CAE helps understand combustion phenomenon. The flow field simulation enables fine tune of geometric design. Functional test and measurement are carried out to confirm the product features. On Eco-performance, we choose 5 items for evaluation the status of previous and redesign module, namely function need, low impact material, few manufacturing steps, low energy consumption, and safety. The radar diagram indicates that eco-performance of redesign module is better. Life cycle assessment calculated the carbon footprint of the manufacturing and processing stage with Eco-it. By using recycled steel in the flame module, it reduces raw material stage carbon footprint significantly.

  12. High-field quench behavior and dependence of hot spot temperature on quench detection voltage threshold in a Bi2Sr2CaCu2Ox coil

    International Nuclear Information System (INIS)

    Shen, Tengming; Ye, Liyang; Turrioni, Daniele; Li, Pei

    2015-01-01

    Small insert solenoids have been built using a multifilamentary Ag/Bi 2 Sr 2 CaCu 2 O x round wire insulated with a mullite sleeve (∼100 μm in thickness) and characterized in background fields to explore the quench behaviors and limits of Bi 2 Sr 2 CaCu 2 O x superconducting magnets, with an emphasis on assessing the impact of slow normal zone propagation on quench detection. Using heaters of various lengths to initiate a small normal zone, a coil was quenched safely more than 70 times without degradation, with the maximum coil temperature reaching 280 K. Coils withstood a resistive voltage of tens of mV for seconds without quenching, showing the high stability of these coils and suggesting that the quench detection voltage should be greater than 50 mV in order not to falsely trigger protection. The hot spot temperature for the resistive voltage of the normal zone to reach 100 mV increased from ∼40–∼80 K while increasing the operating wire current density J o from 89 A mm −2 to 354 A mm −2 , whereas for the voltage to reach 1 V, it increased from ∼60–∼140 K. This shows the increasing negative impact of slow normal zone propagation on quench detection with increasing J o and the need to limit the quench detection voltage to <1 V. These measurements, coupled with an analytical quench model, were used to assess the impact of the maximum allowable detection voltage and temperature upon quench detection on the quench protection, assuming a limit of the hot spot temperature to <300 K. (paper)

  13. A study of point defects in quenched stainless steels

    International Nuclear Information System (INIS)

    Kheloufi, Khelifa.

    1977-07-01

    Thin foils of stainless steels (18%Cr, 14%Ni) containing boron (50x10 -6 ) and stabilised with titanium have been quenched at different rates in order to observe secondary defects by transmission electron microscopy. A rapid quenching in gallium has not given any secondary defects either before or after annealing. But samples quenched from temperatures greater than 800 0 C-900 0 C exhibit a dislocation density approximately 10 9 cm/cm 3 . A vacancy concentration less than 10 -6 has been observed by positron annihilation technique. After a moderate quenching, any secondary defects has been observed. It is thus clear that boron does not favour the secondary defects formation as does phosphorus [fr

  14. Comparison of the quench experiments CORA-12, CORA-13, CORA-17

    International Nuclear Information System (INIS)

    Hagen, S.; Hofmann, P.; Noack, V.; Sepold, L.; Schanz, G.; Schumacher, G.

    1996-08-01

    The CORA quench experiments 12, 13 (PWR) und 17 (BWR) are in agreement with the inpile tests LOFT LP-FP-2 and PBF SFD-ST and the TMI accident: Flooding of hot Zircaloy clad fuel rods does not result in an immediate cooldown of the bundle, but produces a remarkable temporary temperature increase connected to a strong peak in hydrogen production. For the preparation of new quench bundle tests, necessary for the understanding of the mechanisms governing the quench process and support for validation of future quench models in SFD codes the three tests are compared to each other and to the relevant non-quench tests CORA-29 (PWR) and CORA-16 (BWR). The PWR tests CORA-12 and CORA-13 are of the same geometrical arrangement and test conduct. An exception is the shorter time between power shutdown and quench initiation for CORA 13, resulting in a higher temperature of the bundle at start of quenching. The BWR test CORA-17 used B 4 C absorber and Zircaloy channel box walls, but was in respect to the delay time between power shutdown and start of quenching similar to test CORA-12. (orig./GL) [de

  15. Quench detection electronics testing protocol for SST-1 magnets

    International Nuclear Information System (INIS)

    Banaudha, Moni; Varmora, Pankaj; Parghi, Bhadresh; Prasad, Upendra

    2017-01-01

    Quench Detection (QD) system consisting 204 signal channels has been successfully installed and working well during plasma experiment of SST-1 Tokamak. QD system requires testing, validation and maintenance in every SST-1 campaign for better reliability and maintainability of the system. Standalone test of each channel of the system is essential for hard-ware validation. The standard Testing Protocol follow in every campaign which validate each section of QD electronics as well as voltage tap signal cables which are routed inside the cryostat and then extended outside of the SST-1 machine up-to the magnet control room. Fiber link for Quench signal transmission to the SST-1 magnet power supply is also test and validate before every plasma campaign. Precise instrument used as a dummy source of quench signal and for manual quench generation to test the each channel and Master Quench Logic. Each signal Integrated with the magnet DAQ system, signal observed at 1Hz and 50Hz configuration to validate the logging data, compare with actual and previous test data. This paper describes the testing protocol follow in every campaign to validate functionality of QD electronics, limitation of testing, test results and overall integration of the quench detection system for SST-1 magnet. (author)

  16. Simulation of the Quench-06 experiment with Scdapsim

    International Nuclear Information System (INIS)

    Angel M, E. del; Nunez C, A.; Amador G, R.

    2003-01-01

    The present work describes the pattern of the called Quench installation developed and used by the National Commission of Nuclear Security and Safeguards (CNSNS) for their participation in the International Standard Problem 45 (ISP), organized by the Nuclear Energy Agency (NEA). The exercise consisted on the simulation of the denominated experiment Quench-06 carried out in the experimental installation Quench located in the Forschungszentrum laboratory in Karlsruhe, Germany. The experiment Quench-06 consisted on simulating the sudden and late injection of water in a fuel assemble for a pressurized reactor (PWR). The CNSNS uses the version bd of the SCDAPSIM code developed by the company Innovative Software Systems (ISS) to simulate this experiment. The obtained results showed that the code is able to predict the experiment partially when overestimating the hydrogen production and of the partial fused of some fuel pellets, but predicting correctly the damage in the shroud. (Author)

  17. Event-by-event jet quenching

    Energy Technology Data Exchange (ETDEWEB)

    Fries, R.J.; Rodriguez, R.; Ramirez, E.

    2010-08-14

    High momentum jets and hadrons can be used as probes for the quark gluon plasma (QGP) formed in nuclear collisions at high energies. We investigate the influence of fluctuations in the fireball on jet quenching observables by comparing propagation of light quarks and gluons through averaged, smooth QGP fireballs with event-by-event jet quenching using realistic inhomogeneous fireballs. We find that the transverse momentum and impact parameter dependence of the nuclear modification factor R{sub AA} can be fit well in an event-by-event quenching scenario within experimental errors. However the transport coefficient {cflx q} extracted from fits to the measured nuclear modification factor R{sub AA} in averaged fireballs underestimates the value from event-by-event calculations by up to 50%. On the other hand, after adjusting {cflx q} to fit R{sub AA} in the event-by-event analysis we find residual deviations in the azimuthal asymmetry v{sub 2} and in two-particle correlations, that provide a possible faint signature for a spatial tomography of the fireball. We discuss a correlation function that is a measure for spatial inhomogeneities in a collision and can be constrained from data.

  18. Event-by-event jet quenching

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, R. [Cyclotron Institute and Physics Department, Texas A and M University, College Station, TX 77843 (United States); Fries, R.J., E-mail: rjfries@comp.tamu.ed [Cyclotron Institute and Physics Department, Texas A and M University, College Station, TX 77843 (United States); RIKEN/BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973 (United States); Ramirez, E. [Physics Department, University of Texas El Paso, El Paso, TX 79968 (United States)

    2010-09-27

    High momentum jets and hadrons can be used as probes for the quark gluon plasma (QGP) formed in nuclear collisions at high energies. We investigate the influence of fluctuations in the fireball on jet quenching observables by comparing propagation of light quarks and gluons through averaged, smooth QGP fireballs with event-by-event jet quenching using realistic inhomogeneous fireballs. We find that the transverse momentum and impact parameter dependence of the nuclear modification factor R{sub AA} can be fit well in an event-by-event quenching scenario within experimental errors. However the transport coefficient q extracted from fits to the measured nuclear modification factor R{sub AA} in averaged fireballs underestimates the value from event-by-event calculations by up to 50%. On the other hand, after adjusting q to fit R{sub AA} in the event-by-event analysis we find residual deviations in the azimuthal asymmetry v{sub 2} and in two-particle correlations, that provide a possible faint signature for a spatial tomography of the fireball. We discuss a correlation function that is a measure for spatial inhomogeneities in a collision and can be constrained from data.

  19. Quenching of spin-flip quadrupole transitions

    International Nuclear Information System (INIS)

    Castel, B.; Blunden, P.; Okuhara, Y.

    1985-01-01

    An increasing amount of experimental data indicates that spin-flip quadrupole transitions exhibit quenching effects similar to those reported earlier in (p,n) reactions involving l = 0 and l = 1 transitions. We present here two model calculations suggesting that the E2 spin-flip transitions are more affected than their M1 and M3 counterparts by the tensor and spin-orbit components of the nuclear force and should exhibit the largest quenching. We also review the experimental evidence corroborating our observations

  20. The effect of quenched disorder in neutral theories

    International Nuclear Information System (INIS)

    Borile, Claudio; Maritan, Amos; Muñoz, Miguel A

    2013-01-01

    We study systems with two symmetric absorbing states, such as the voter model and its variations, which have been broadly used as minimal neutral models in genetics, population ecology, sociology, etc. We analyze the effects of a key ingredient inevitably present in most real applications: random-field-like quenched disorder. In accord with simulations and previous findings, coexistence between the two competing states/opinions turns out to be strongly favored by disorder in the standard voter model; actually, a disorder-induced phase transition is generated for any finite system size in the presence of an arbitrarily small spontaneous-inversion rate (preventing absorbing states from being stable). For nonlinear versions of the voter model a general theory (by Al Hammal et al) explains that the spontaneous breaking of the up/down symmetry and an absorbing state phase transition can occur either together or separately, giving rise to two different scenarios. Here, we show that the presence of quenched disorder in nonlinear voter models does not allow the separation of the up–down (Ising-like) symmetry breaking from the active-to-absorbing phase transition in low-dimensional systems: both phenomena can occur only simultaneously, as a consequence of the well-known Imry–Ma argument generalized to these non-equilibrium problems. When the two phenomena occur in unison, resulting in a genuinely non-equilibrium (‘generalized voter’) transition, the Imry–Ma argument is violated and the symmetry can be spontaneously broken even in low dimensions. (paper)