WorldWideScience

Sample records for prevent electrochemical reactions

  1. Electrochemical promotion of catalytic reactions

    Science.gov (United States)

    Imbihl, R.

    2010-05-01

    The electrochemical promotion of heterogeneously catalyzed reactions (EPOC) became feasible through the use of porous metal electrodes interfaced to a solid electrolyte. With the O 2- conducting yttrium stabilized zirconia (YSZ), the Na + conducting β″-Al 2O 3 (β-alumina), and several other types of solid electrolytes the EPOC effect has been demonstrated for about 100 reaction systems in studies conducted mainly in the mbar range. Surface science investigations showed that the physical basis for the EPOC effect lies in the electrochemically induced spillover of oxygen and alkali metal, respectively, onto the surface of the metal electrodes. For the catalytic promotion effect general concepts and mechanistic schemes were proposed but these concepts and schemes are largely speculative. Applying surface analytical tools to EPOC systems the proposed mechanistic schemes can be verified or invalidated. This report summarizes the progress which has been achieved in the mechanistic understanding of the EPOC effect.

  2. Electrochemical Promotion of Catalytic Reactions Using

    DEFF Research Database (Denmark)

    Petrushina, Irina; Bjerrum, Niels; Cleemann, Lars Nilausen

    2007-01-01

    This paper presents the results of a study on electrochemical promotion (EP) of catalytic reactions using Pt/C/polybenzimidazole(H3PO4)/Pt/C fuel cell performed by the Energy and Materials Science Group (Technical University of Denmark) during the last 6 years[1-4]. The development of our...

  3. Single-Atom Catalysts of Precious Metals for Electrochemical Reactions.

    Science.gov (United States)

    Kim, Jiwhan; Kim, Hee-Eun; Lee, Hyunjoo

    2018-01-10

    Single-atom catalysts (SACs), in which metal atoms are dispersed on the support without forming nanoparticles, have been used for various heterogeneous reactions and most recently for electrochemical reactions. In this Minireview, recent examples of single-atom electrocatalysts used for the oxygen reduction reaction (ORR), hydrogen oxidation reaction (HOR), hydrogen evolution reaction (HER), formic acid oxidation reaction (FAOR), and methanol oxidation reaction (MOR) are introduced. Many density functional theory (DFT) simulations have predicted that SACs may be effective for CO 2 reduction to methane or methanol production while suppressing H 2 evolution, and those cases are introduced here as well. Single atoms, mainly Pt single atoms, have been deposited on TiN or TiC nanoparticles, defective graphene nanosheets, N-doped covalent triazine frameworks, graphitic carbon nitride, S-doped zeolite-templated carbon, and Sb-doped SnO 2 surfaces. Scanning transmission electron microscopy, extended X-ray absorption fine structure measurement, and in situ infrared spectroscopy have been used to detect the single-atom structure and confirm the absence of nanoparticles. SACs have shown high mass activity, minimizing the use of precious metal, and unique selectivity distinct from nanoparticle catalysts owing to the absence of ensemble sites. Additional features that SACs should possess for effective electrochemical applications were also suggested. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Charge transfer reactions in electrochemical and chemical processes

    International Nuclear Information System (INIS)

    Krishtalik, L.I.

    1986-01-01

    This book presents information on the following topics: the Bronsted relation and the activation energy of electrode reactions; the chemical potential of an electron, absolute potential drop, and solvation energy in electrochemical kinetics; kinetic equations for discharge; the discharge of hydronium ions at a mercury cathode; the evolution of hydrogen at a silver cathode; some theoretical problems; an ion in a polar solvent; the elementary act of electron transfer; quantum and classical degrees of freedom-proton transfer; the effect of the potential and the nature of proton donors on the preexponential factor and the kinetic isotope effect; the chlorine evolution reaction at ruthenium dioxide-titanium dioxide anodes; the hydrogen evolution at certain liquid alloys; proton transfer in enzymatic hydrolysis reactions - kinetic isotope effect; and simultaneous transfer of two charges - coupling of endoergic and exoergic reactions

  5. The electrochemical Peltier heat of the standard hydrogen electrode reaction

    International Nuclear Information System (INIS)

    Fang Zheng; Wang Shaofen; Zhang Zhenghua; Qiu Guanzhou

    2008-01-01

    A method for measuring the electrochemical Peltier heat (EPH) of a single electrode reaction has been developed and an absolute scale is suggested to obtain EPH of the standard hydrogen electrode. The scale is based on φ 0 * = 0 and ΔS 0 * = 0 for any electrode reaction at zero Kelvin, in accord with the third law of thermodynamics. The relationships between entropy, enthalpy and free energy changes on this scale and on the conventional scale are derived. Calorimetric experiments were made on the Fe(CN) 6 3- /Fe(CN) 6 4- system at five different concentrations at 298.15 K, and EPH for the standard hydrogen electrode reaction is obtained. EPHs and the entropy change on the absolute scale for the studied redox are linearly related to concentration of electrolyte. The reversible electric work is almost concentration independent in the range of concentration studied

  6. A Multiple Reaction Modelling Framework for Microbial Electrochemical Technologies

    Directory of Open Access Journals (Sweden)

    Tolutola Oyetunde

    2017-01-01

    Full Text Available A mathematical model for the theoretical evaluation of microbial electrochemical technologies (METs is presented that incorporates a detailed physico-chemical framework, includes multiple reactions (both at the electrodes and in the bulk phase and involves a variety of microbial functional groups. The model is applied to two theoretical case studies: (i A microbial electrolysis cell (MEC for continuous anodic volatile fatty acids (VFA oxidation and cathodic VFA reduction to alcohols, for which the theoretical system response to changes in applied voltage and VFA feed ratio (anode-to-cathode as well as membrane type are investigated. This case involves multiple parallel electrode reactions in both anode and cathode compartments; (ii A microbial fuel cell (MFC for cathodic perchlorate reduction, in which the theoretical impact of feed flow rates and concentrations on the overall system performance are investigated. This case involves multiple electrode reactions in series in the cathode compartment. The model structure captures interactions between important system variables based on first principles and provides a platform for the dynamic description of METs involving electrode reactions both in parallel and in series and in both MFC and MEC configurations. Such a theoretical modelling approach, largely based on first principles, appears promising in the development and testing of MET control and optimization strategies.

  7. Modeling of the symmetry factor of electrochemical proton discharge via the Volmer reaction

    DEFF Research Database (Denmark)

    Björketun, Mårten E.; Tripkovic, Vladimir; Skúlason, Egill

    2013-01-01

    A scheme for evaluating symmetry factors of elementary electrode reactions using a density functional theory (DFT) based model of the electrochemical double layer is presented. As an illustration, the symmetry factor is determined for hydrogen adsorption via the electrochemical Volmer reaction...

  8. Spectroscopic and electrochemical properties of di-2-thienyl ketone thiosemicarbazone (dtktsc): electrochemical reactions with electrophiles (H+ and CO2)

    International Nuclear Information System (INIS)

    Bakir, Mohammed; Lawrence, Mark A.W.; Nelson, Peter N.; Conry, Rebecca R.

    2016-01-01

    Graphical abstract: The preparation, spectroscopic, electrochemical, and solid state structural properties of the first thiosemicarbazone derivatives of di-2-thienyl ketone (dtktsc) are reported. Electrochemical measurements revealed electro-polymerization, proton and CO 2 mediated reduction, and electro-catalytic decomposition of dtktsc. - Highlights: • The first thiosemicarbazone derivative of di-2-thienyl ketone, di-2-thienyl ketone thiosemicarbazone (dtktsc) is reported. • Spectroscopic and electrochemical measurements on dtktsc revealed strong solvent-compound interaction. • Electrochemical reduction of dtktsc is imine based. • Electrophile (H + or CO 2 ) mediated multi-electron reactions occur on the imine reduction. • Voltammetric measurements revealed electrochemical decomposition, and electro-polymerization. - Abstract: The first di-2-thienyl ketone thiosemicarbazone (dtktsc) and its di-2-thienyl ketone (dtk) hybrid (dtktsc-dtk) were isolated and characterized from the results of their elemental analyses, spectroscopic measurements and X-ray structural analyses. Spectroscopic and electrochemical measurements disclosed sensitivity of dtktsc to changes in its surroundings. Electronic absorption measurements in protophilic solvents (dmso and dmf) in the presence and absence of a base disclosed deprotonation of the thioamide (NH) proton. Variable temperature 1 H NMR measurements divulged entropy driven exchange of NH and NH 2 protons with the residual water protons. X-ray structure analyses confirmed the identities of dtktsc and dtktsc-dtk. Electrochemical measurements on dtktsc in the presence and absence of an electrophile (CO 2 or H + ) revealed irreversible redox processes pointing to electrochemical decomposition, reactions with electrophiles and electro-polymerization. On GC-electrode electro-polymerization of dtktsc occurs in CH 3 CN on oxidative scans. On reductive scans at a Pt-electrode, electro-catalytic decomposition of dtktsc occurs

  9. Characterization of surface electrochemical reactions used in electrochemical atomic layer epitaxy and digital etching

    Science.gov (United States)

    Sorenson, Thomas Allen

    Surface analytical techniques have been used to characterize electrochemical reactions to be used in semiconductor processing technologies. Studies have been performed using UHV-EC methodology to determine conditions for the surface limited dissolution of CdTe(100). Electrochemical conditions were identified which resulted in the reduction of the top layer of tellurium atoms, leaving behind a cadmium enriched surface. Attempts to find an electrochemical potential for the oxidative dissolution of the cadmium surface were complicated by the simultaneous oxidation of the compound CdTe. In situ scanning tunneling microscopy has also been used to characterize the formation of tellurium atomic layers formed on Au(111) and Au(100) by underpotential deposition. On Au(100), the following sequence of surface structures was observed prior to bulk electrodeposition: a p(2x2), a (2x✓10), a (2x4), and a (✓2x✓5). The transitions between these structures was observed by STM and mechanisms for the phase transitions are presented. The results are correlated to UHV-EC studies of tellurium UPD on Au(100). On Au(111), the following sequence of structures was observeḑ: a (✓3 x✓3), a (✓7x✓13), and a (3x3). The (✓3x✓3) was shown to exist with a network of domain walls, forming long range triangular and diamond shaped superstructures. Conversion of the (✓3x✓3) to higher coverage structure resulted in roughening of the underlying Au surface and a mechanism is hypothesized to explain this transition. The STM results are also correlated to low energy electron diffraction (LEED) results obtained by UHV-EC studies. The surface structures formed by reductive UPD of the chalcogenide elements and Se on both Au(100) and Au(111) are compared. Both elements initially resulted in structures consisting of isolated atoms separated by distances close to the reported van der Waals diameter. Higher coverage structures resulted in interatomic chalcogenide bonding and the structures

  10. Quantifying Chemical and Electrochemical Reactions in Liquids by in situ Electron Microscopy

    DEFF Research Database (Denmark)

    Canepa, Silvia

    and developing a robust imaging analysis method for quantitatively understand chemical and electrochemical process during in situ liquid electron microscopy. By using two custom-made liquid cells (an electrochemical scanning electron microscopy (EC-SEM) platform and Liquid Flow S/TEM holder) beam...... of electrochemical deposition of copper (Cu) by electrochemical liquid scanning electron microscopy (EC-SEM) was done in order to direct observe the formation of dendritic structures. Finally the shape evolution from solid to hollow structures through galvanic replacement reactions were observed for different silver...

  11. Prevention of allergic reactions in anesthetized patients.

    Science.gov (United States)

    Caffarelli, C; Stringari, G; Miraglia Del Giudice, M; Crisafulli, G; Cardinale, F; Peroni, D G; Bernardini, R

    2011-01-01

    Hypersensitivity reactions during perioperative period are increasing and may be potentially life-threatening. Therefore, major emphasis is given to prevention. We perform a review to examine which measures should be taken to prevent reactions to products used in elective and emergency surgery. Any patient with a history of previous anaphylaxis or severe reaction during anaesthesia should be referred to allergist for detection of the offending compound. However, the identification of the triggering agent is not always feasible because of the low accuracy of diagnostic tests. In these cases and when emergency surgery is required, it should be considered to replace all drugs administered before the onset of the reaction with alternatives. Furthermore, any cross-reacting agent and latex, especially in patients belonging to populations at-risk for latex allergy should be avoided. In susceptible patients, premedication with antihistamines and corticosteroids might reduce the severity of reaction to drugs or contrast material while it is unclear whether pre-treatment decreases incidence of anaphylactic reactions. There is no evidence that premedication prevents allergic reactions to latex. Overall, physicians should not rely on the efficacy of premedication.

  12. Cleavage-based hybridization chain reaction for electrochemical detection of thrombin.

    Science.gov (United States)

    Chang, Yuanyuan; Chai, Yaqin; Xie, Shunbi; Yuan, Yali; Zhang, Juan; Yuan, Ruo

    2014-09-07

    In the present work, we constructed a new label-free "inter-sandwich" electrochemical aptasensor for thrombin (TB) detection by employing a cleavage-based hybridization chain reaction (HCR). The designed single-stranded DNA (defined as binding DNA), which contained the thrombin aptamer binding sequence, a DNAzyme cleavage site and a signal reporter sequence, was first immobilized on the electrode. In the absence of a target TB, the designed DNAzymes could combine with the thrombin aptamer binding sequence via complementary base pairing, and then Cu(2+) could cleave the binding DNA. In the presence of a target TB, TB could combine with the thrombin aptamer binding sequence to predominantly form an aptamer-protein complex, which blocked the DNAzyme cleavage site and prevented the binding DNA from being cleaved by Cu(2+)-dependent DNAzyme. As a result, the signal reporter sequence could leave the electrode surface to trigger HCR with the help of two auxiliary DNA single-strands, A1 and A2. Then, the electron mediator hexaammineruthenium (III) chloride ([Ru(NH3)6](3+)) was embedded into the double-stranded DNA (dsDNA) to produce a strong electrochemical signal for the quantitative measurement of TB. For further amplification of the electrochemical signal, graphene reduced by dopamine (PDA-rGO) was introduced as a platform in this work. With this strategy, the aptasensor displayed a wide linearity in the range of 0.0001 nM to 50 nM with a low detection limit of 0.05 pM. Moreover, the resulting aptasensor exhibited good specificity and acceptable reproducibility and stability. Because of these factors, the fabrication protocol proposed in this work may be extended to clinical application.

  13. The influence of flow velocity on electrochemical reaction of metal surface

    Science.gov (United States)

    Li, Zhen; Zhang, Jiding

    2017-12-01

    In order to find out the effect of fluid flow velocity on electrochemical reaction, the electrochemical parameters of super 13Cr stainless steel in 3.5% NaCl aqueous solution were measured by a jet flow system at different flow velocities. The electrochemical characters such as open-circuit potential and polarization curve were monitored online using a three-electrode electrochemical system. The results show that the increase of wall shear stress caused by the high flow velocity leads to the rupture of passive films and the exposure of fresh metal in the corrosive media, which causes the increase of corrosion rate. Meanwhile, the corrosion rate shows a significant growth when the flow velocity is less than 0∼10.0 m/s. But it gradually decreases after reaching a maximum value.

  14. Electrochemical Li Topotactic Reaction in Layered SnP3 for Superior Li-Ion Batteries

    Science.gov (United States)

    Park, Jae-Wan; Park, Cheol-Min

    2016-10-01

    The development of new anode materials having high electrochemical performances and interesting reaction mechanisms is highly required to satisfy the need for long-lasting mobile electronic devices and electric vehicles. Here, we report a layer crystalline structured SnP3 and its unique electrochemical behaviors with Li. The SnP3 was simply synthesized through modification of Sn crystallography by combination with P and its potential as an anode material for LIBs was investigated. During Li insertion reaction, the SnP3 anode showed an interesting two-step electrochemical reaction mechanism comprised of a topotactic transition (0.7-2.0 V) and a conversion (0.0-2.0 V) reaction. When the SnP3-based composite electrode was tested within the topotactic reaction region (0.7-2.0 V) between SnP3 and LixSnP3 (x ≤ 4), it showed excellent electrochemical properties, such as a high volumetric capacity (1st discharge/charge capacity was 840/663 mA h cm-3) with a high initial coulombic efficiency, stable cycle behavior (636 mA h cm-3 over 100 cycles), and fast rate capability (550 mA h cm-3 at 3C). This layered SnP3 anode will be applicable to a new anode material for rechargeable LIBs.

  15. Evaluation of Chemical Kinetic for Mathematics Model Reduction of Cadmium Reaction Rate, Constant and Reaction Orde in to Electrochemical Process

    International Nuclear Information System (INIS)

    Prayitno

    2007-01-01

    The experiment was reduction of cadmium rate with electrochemical influenced by time process, concentration, current strength and type of electrode plate. The aim of the experiment was to know the influence, mathematic model reduction of cadmium the reaction rate, reaction rate constant and reaction orde influenced by time process, concentration, current strength and type of electrode plate. Result of research indicate the time processing if using plate of copper electrode is during 30 minutes and using plate of aluminium electrode is during 20 minutes. Condition of strong current that used in process of electrochemical is only 0.8 ampere and concentration effective is 5.23 mg/l. The most effective type Al of electrode plate for reduction from waste and the efficiency of reduction is 98 %. (author)

  16. Comparison of TiO2 photocatalysis, electrochemically assisted Fenton reaction and direct electrochemistry for simulation of phase I metabolism reactions of drugs

    NARCIS (Netherlands)

    Ruokolainen, Miina; Gül, Turan; Permentier, Hjalmar; Sikanen, Tiina; Kostiainen, Risto; Kotiaho, Tapio

    2016-01-01

    The feasibility of titanium dioxide (TiO2) photocatalysis, electrochemically assisted Fenton reaction (EC-Fenton) and direct electrochemical oxidation (EC) for simulation of phase I metabolism of drugs was studied by comparing the reaction products of buspirone, promazine, testosterone and

  17. Probing Electrochemical Reactions at a Plasma-Liquid Interface

    Science.gov (United States)

    2015-03-16

    are solvated in the presence of a strong electric field in the Debye layer of the plasma-liquid interface, and the electron reactions and transport ...for different process times and plasma currents to relate the charge passed to the rate of reaction . The experimental data was compared to the... Faradaic value to obtain an efficiency for the process (assuming that the plasma current passes 100% of the charge to the solution and all electrons reduce

  18. Optimization of reaction parameters for the electrochemical oxidation of lidocaine with a Design of Experiments approach

    NARCIS (Netherlands)

    Gul, Turan; Bischoff, Rainer; Permentier, Hjalmar

    2015-01-01

    Identification of potentially toxic oxidative drug metabolites is a crucial step in the development of new drugs. Electrochemical methods are useful to study oxidative drug metabolism, but are not widely used to synthesize metabolites for follow-up studies. Careful optimization of reaction

  19. Electrochemical promotion of catalytic reactions with Pt/C (or Pt/Ru/C)//PBI catalysts

    DEFF Research Database (Denmark)

    Petrushina, Irina; Bjerrum, Niels; Bandur, Viktor

    2007-01-01

    The paper is an overview of the results of the investigation on electrochemical promotion of three catalytic reactions: methane oxidation with oxygen, NO reduction with hydrogen at 135 degrees C and Fischer-Tropsch synthesis (FTS) at 170 degrees C in the [CH4/O-2(or NO/H-2 or CO/H-2)/Ar//Pt(or Pt...

  20. Biofuel from biomass via photo-electrochemical reactions: An overview

    Science.gov (United States)

    Ibrahim, N.; Kamarudin, S. K.; Minggu, L. J.

    2014-08-01

    Biomass is attracting a great deal of attention as a renewable energy resource to reduce carbon dioxide (CO2) emissions. Converting biomass from municipal, agricultural and livestock into biofuel and electrical power has significant environmental and economic advantages. The conversion of biomass into practical energy requires elegant designs and further investigation. Thus, biomass is a promising renewable energy source due to its low production cost and simple manufacturing processes. Biofuel (hydrogen and methanol) from biomass will be possible to be used for transportation with near-zero air pollution, involves efficient uses of land and major contribution to reduce dependence on insecure source of petroleum. Photoelectrochemical (PEC) reactions study has potential pathway for producing fuel from biomass and bio-related compound in the near future. This review highlights recent work related to the PEC conversion of biomass and bio-related compounds into useful biofuels and electricity. This review covers different types of photochemical reaction cells utilizing various types of organic and inorganic waste. It also presents recent developments in photoelectrodes, photocatalysts and electrolytes as well as the production of different types of fuel from PEC cells and highlights current developments and problems in PEC reactions.

  1. Reaction Front Evolution during Electrochemical Lithiation of Crystalline Silicon Nanopillars

    KAUST Repository

    Lee, Seok Woo

    2012-12-01

    The high theoretical specific capacity of Si as an anode material is attractive in lithium-ion batteries, although the issues caused by large volume changes during cycling have been a major challenge. Efforts have been devoted to understanding how diffusion-induced stresses cause fracture, but recent observations of anisotropic volume expansion in single-crystalline Si nanostructures require new theoretical considerations of expansion behavior during lithiation. Further experimental investigation is also necessary to better understand the anisotropy of the lithiation process. Here, we present a method to reveal the crystalline core of partially lithiated Si nanopillars with three different crystallographic orientations by using methanol to dissolve the Li atoms from the amorphous Li-Si alloy. The exposed crystalline cores have flat {110} surfaces at the pillar sidewalls; these surfaces represent the position of the reaction front between the crystalline core and the amorphous Li-Si alloy. It was also found that an amorphous Si structure remained on the flat surfaces of the crystalline core after dissolution of the Li, which was presumed to be caused by the accumulation of Si atoms left over from the removal of Li from the Li-Si alloy. © 2012 Wiley-VCH Verlag GmbH &Co. KGaA, Weinheim.

  2. Optical, Electrochemical and Thermal Studies of Conjugated Polymers Synthesized by Eutectic Melt Reaction.

    Science.gov (United States)

    Bathula, Chinna; Buruga, Kezia; Kang, Youngjong; Khazi, Imtiyaz Ahmed M

    2017-05-01

    This paper reports on the synthesis of a novel donor-acceptor conjugated polymers, P1 and P2 by solvent free eutectic melt polymerization reaction. Triisopropylsilylethynyl(TIPS) substituted benzo[1,2-b:4,5-b']dithiophene(BDT) is used as donor, thienithiophene(TT) and thienopyrroledione(TPD) are utilized as acceptors for demonstrating eutectic polymerization. The most important fact in the solvent-free reaction between solid reactants actually proceeds through bulk liquid phases. Such liquid phases are possible due to the formation of eutectics between the reactants and product(s) and any evolution of heat. Naphthalene is explored in this reaction for forming eutectics with the reactants, resulting in desired polymers. Thermal stability, optical and electrochemical properties of these polymers were determined. Optical band gaps of the polymers were found to be 1.58 and 1.65 eV. Electrochemical studies by cyclic voltametry experiment revealed HOMO and LUMO energy levels to be -5.22, -5.60 eV, and -3.76, -4.16 eV, respectively. The polymers were thermally stable up to 285-400 °C. Thermal, optical and electrochemical studies indicated these materials to be promising candidates in organic electronic applications.

  3. Catalytic Hydrogenation Reaction of Naringin-Chalcone. Study of the Electrochemical Reaction

    Directory of Open Access Journals (Sweden)

    B. A. López de Mishima

    2000-03-01

    Full Text Available The electrocatalytic hydrogenation reaction of naringin derivated chalcone is studied. The reaction is carried out with different catalysts in order to compare with the classic catalytic hydrogenation.

  4. Electrochemical reaction rates in a dye sentisised solar cell - the iodide/tri-iodide redox system

    DEFF Research Database (Denmark)

    Bay, Lasse; West, Keld; Winter-Jensen, Bjørn

    2006-01-01

    The electrochemical reaction rate of the redox couple iodide / tri-iodide in acetonitrile is characterised by impedance spectroscopy. Different electrode materials relevant for the function of dye-sensitised solar cells (DSSC) are investigated. Preferably, the reaction with the iodide / tri......-iodide couple should be fast at the counter electrode, i.e. this electrode must have a high catalytic activity towards the redox couple, and the same reaction must be slow on the photo electrode. The catalytic activity is investigated for platinum, poly(3,4-ethylenedioxythiophene) (PEDOT), polypyrrole (PPy......), and polyaniline (PANI) - all deposited onto fluorine doped tin oxide (FTO) glass. Both Pt and PEDOT are found to have sufficiently high catalytic activities for practical use as counter electrode in DSSC. The reaction resistance on FTO and anatase confirmed the beneficial effect of a compact anatase layer on top...

  5. A review of post-column photochemical reaction systems coupled to electrochemical detection in HPLC.

    Science.gov (United States)

    Fedorowski, Jennifer; LaCourse, William R

    2010-01-04

    Post-column photochemical reaction systems have developed into a common approach for enhancing conventional methods of detection in HPLC. Photochemical reactions as a means of 'derivatization' have a significant number of advantages over chemical reaction-based methods, and a significant effort has been demonstrated to develop an efficient photochemical reactor. When coupled to electrochemical (EC) detection, the technique allows for the sensitive and selective determination of a variety of compounds (e.g., organic nitro explosives, beta-lactam antibiotics, sulfur-containing antibiotics, pesticides and insecticides). This review will focus on developments and methods using post-column photochemical reaction systems followed by EC detection in liquid chromatography. Papers are presented in chronological order to emphasize the evolution of the approach and continued importance of the application.

  6. Electrochemical characteristics of vanadium redox reactions on porous carbon electrodes for microfluidic fuel cell applications

    International Nuclear Information System (INIS)

    Lee, Jin Wook; Hong, Jun Ki; Kjeang, Erik

    2012-01-01

    Microfluidic vanadium redox fuel cells are membraneless and catalyst-free fuel cells comprising a microfluidic channel network with two porous carbon electrodes. The anolyte and catholyte for fuel cell operation are V(II) and V(V) in sulfuric acid based aqueous solution. In the present work, the electrochemical characteristics of the vanadium redox reactions are investigated on commonly used porous carbon paper electrodes and compared to a standard solid graphite electrode as baseline. Half-cell electrochemical impedance spectroscopy is applied to measure the overall ohmic resistance and resistivity of the electrodes. Kinetic parameters for both V(II) and V(V) discharging reactions are extracted from Tafel plots and compared for the different electrodes. Cyclic voltammetry techniques reveal that the redox reactions are irreversible and that the magnitudes of peak current density vary significantly for each electrode. The obtained kinetic parameters for the carbon paper are implemented into a numerical simulation and the results show a good agreement with measured polarization curves from operation of a microfluidic vanadium redox fuel cell employing the same material as flow-through porous electrodes. Recommendations for microfluidic fuel cell design and operation are provided based on the measured trends.

  7. The investigation on electrochemical reaction mechanism of CuF2 thin film with lithium

    International Nuclear Information System (INIS)

    Cui Yanhua; Xue Mingzhe; Zhou Yongning; Peng Shuming; Wang Xiaolin; Fu Zhengwen

    2011-01-01

    Crystalline CuF 2 thin films were prepared by pulsed laser deposition under room temperature. The physical and electrochemical properties of the as-deposited thin films have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), galvanostatic cycling and cyclic voltammetry (CV). Reversible capacity of 544 mAh g -1 was achieved in the potential range of 1.0-4.0 V. A reversible couple of redox peaks at 3.0 V and 3.7 V was firstly observed. By using ex situ XRD and TEM techniques, an insertion process followed by a fully conversion reaction to Cu and LiF was revealed in the lithium electrochemical reaction of CuF 2 thin film electrode. The reversible insertion reaction above 2.8 V could provide a capacity of about 125 mAh g -1 , which makes CuF 2 a potential cathode material for rechargeable lithium batteries.

  8. Kinetics of oxygen reduction reaction at electrochemically fabricated tin-palladium bimetallic electrocatalyst in acidic media

    Energy Technology Data Exchange (ETDEWEB)

    Miah, Md. Rezwan, E-mail: mrmche@yahoo.co [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Mail Box G1-5, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Masud, Jahangir [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Mail Box G1-5, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Ohsaka, Takeo, E-mail: ohsaka@echem.titech.ac.j [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Mail Box G1-5, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan)

    2010-12-15

    In the present article, oxygen reduction reaction (ORR) at electrochemically fabricated tin-palladium (Sn-Pd) bimetallic electrocatalyst-modified glassy carbon (GC) electrode (Sn-Pd/GC electrode) in acidic media is addressed. Hydrodynamic voltammetric measurements were employed with a view to evaluating various kinetic parameters of the ORR at the Sn-Pd/GC electrode. The obtained results obviously demonstrated that the Sn-Pd bimetallic electrocatalyt substantially promoted the activity of the GC electrode and drove the ORR through an exclusive one-step four-electron pathway forming H{sub 2}O as the final product.

  9. Kinetics of oxygen reduction reaction at electrochemically fabricated tin-palladium bimetallic electrocatalyst in acidic media

    International Nuclear Information System (INIS)

    Miah, Md. Rezwan; Masud, Jahangir; Ohsaka, Takeo

    2010-01-01

    In the present article, oxygen reduction reaction (ORR) at electrochemically fabricated tin-palladium (Sn-Pd) bimetallic electrocatalyst-modified glassy carbon (GC) electrode (Sn-Pd/GC electrode) in acidic media is addressed. Hydrodynamic voltammetric measurements were employed with a view to evaluating various kinetic parameters of the ORR at the Sn-Pd/GC electrode. The obtained results obviously demonstrated that the Sn-Pd bimetallic electrocatalyt substantially promoted the activity of the GC electrode and drove the ORR through an exclusive one-step four-electron pathway forming H 2 O as the final product.

  10. Sensitive electrochemical assaying of DNA methyltransferase activity based on mimic-hybridization chain reaction amplified strategy.

    Science.gov (United States)

    Zhang, Linqun; Liu, Yuanjian; Li, Ying; Zhao, Yuewu; Wei, Wei; Liu, Songqin

    2016-08-24

    A mimic-hybridization chain reaction (mimic-HCR) amplified strategy was proposed for sensitive electrochemically detection of DNA methylation and methyltransferase (MTase) activity In the presence of methylated DNA, DNA-gold nanoparticles (DNA-AuNPs) were captured on the electrode by sandwich-type assembly. It then triggered mimic-HCR of two hairpin probes to produce many long double-helix chains for numerous hexaammineruthenium (III) chloride ([Ru(NH3)6](3+), RuHex) inserting. As a result, the signal for electrochemically detection of DNA MTase activity could be amplified. If DNA was non-methylated, however, the sandwich-type assembly would not form because the short double-stranded DNAs (dsDNA) on the Au electrode could be cleaved and digested by restriction endonuclease HpaII (HapII) and exonuclease III (Exo III), resulting in the signal decrement. Based on this, an electrochemical approach for detection of M.SssI MTase activity with high sensitivity was developed. The linear range for M.SssI MTase activity was from 0.05 U mL(-1) to 10 U mL(-1), with a detection limit down to 0.03 U mL(-1). Moreover, this detecting strategy held great promise as an easy-to-use and highly sensitive method for other MTase activity and inhibition detection by exchanging the corresponding DNA sequence. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Real-time studies of battery electrochemical reactions inside a transmission electron microscope.

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Kevin; Hudak, Nicholas S.; Liu, Yang; Liu, Xiaohua H.; Fan, Hongyou; Subramanian, Arunkumar; Shaw, Michael J.; Sullivan, John Patrick; Huang, Jian Yu

    2012-01-01

    We report the development of new experimental capabilities and ab initio modeling for real-time studies of Li-ion battery electrochemical reactions. We developed three capabilities for in-situ transmission electron microscopy (TEM) studies: a capability that uses a nanomanipulator inside the TEM to assemble electrochemical cells with ionic liquid or solid state electrolytes, a capability that uses on-chip assembly of battery components on to TEM-compatible multi-electrode arrays, and a capability that uses a TEM-compatible sealed electrochemical cell that we developed for performing in-situ TEM using volatile battery electrolytes. These capabilities were used to understand lithiation mechanisms in nanoscale battery materials, including SnO{sub 2}, Si, Ge, Al, ZnO, and MnO{sub 2}. The modeling approaches used ab initio molecular dynamics to understand early stages of ethylene carbonate reduction on lithiated-graphite and lithium surfaces and constrained density functional theory to understand ethylene carbonate reduction on passivated electrode surfaces.

  12. Decoupling electrochemical reaction and diffusion processes in ionically-conductive solids on the nanometer scale.

    Science.gov (United States)

    Balke, Nina; Jesse, Stephen; Kim, Yoongu; Adamczyk, Leslie; Ivanov, Ilia N; Dudney, Nancy J; Kalinin, Sergei V

    2010-12-28

    We have developed a scanning probe microscopy approach to explore voltage-controlled ion dynamics in ionically conductive solids and decouple transport and local electrochemical reactivity on the nanometer scale. Electrochemical strain microscopy allows detection of bias-induced ionic motion through the dynamic (0.1-1 MHz) local strain. Spectroscopic modes based on low-frequency (∼1 Hz) voltage sweeps allow local ion dynamics to be probed locally. The bias dependence of the hysteretic strain response accessed through first-order reversal curve (FORC) measurements demonstrates that the process is activated at a certain critical voltage and is linear above this voltage everywhere on the surface. This suggests that FORC spectroscopic ESM data separates local electrochemical reaction and transport processes. The relevant parameters such as critical voltage and effective mobility can be extracted for each location and correlated with the microstructure. The evolution of these behaviors with the charging of the amorphous Si anode in a thin-film Li-ion battery is explored. A broad applicability of this method to other ionically conductive systems is predicted.

  13. Elementary reaction modeling of reversible CO/CO2 electrochemical conversion on patterned nickel electrodes

    Science.gov (United States)

    Luo, Yu; Shi, Yixiang; Li, Wenying; Cai, Ningsheng

    2018-03-01

    CO/CO2 are the major gas reactant/product in the fuel electrode of reversible solid oxide cells (RSOC). This study proposes a two-charge-transfer-step mechanism to describe the reaction and transfer processes of CO-CO2 electrochemical conversion on a patterned Ni electrode of RSOC. An elementary reaction model is developed to couple two charge transfer reactions, C(Ni)+O2-(YSZ) ↔ CO(Ni)+(YSZ) +2e- and CO(Ni)+O2-(YSZ) ↔ CO2(Ni)+(YSZ)+2e-, with adsorption/desorption, surface chemical reactions and surface diffusion. This model well validates in both solid oxide electrolysis cell (SOEC) and solid oxide fuel cell (SOFC) modes by the experimental data from a patterned Ni electrode with 10 μm stripe width at different pCO (0-0.25 atm), pCO2 (0-0.35 atm) and operating temperature (600-700 °C). This model indicates SOEC mode is dominated by charge transfer step C(Ni)+O2-(YSZ)↔CO(Ni)+(YSZ) +2e-, while SOFC mode by CO(Ni)+ O2-(YSZ)↔CO2(Ni)+(YSZ)+2e- on the patterned Ni electrode. The sensitivity analysis shows charge transfer step is the major rate-determining step for RSOC, besides, surface diffusion of CO and CO2 as well as CO2 adsorption also plays a significant role in the electrochemical reaction of SOEC while surface diffusion of CO and CO2 desorption could be co-limiting in SOFC.

  14. Preventing Corrosion by Controlling Cathodic Reaction Kinetics

    Science.gov (United States)

    2016-03-25

    consumption of anions in reactions with metal cations can deplete the electrolyte. However, in the atmospheric electrolyte, the electrolyte...the more active material is strongly influenced by, among other conditions such as the presence of aggressive anions , the amount of exposed surface...Our theoretical approach is to extend these free energy based models to titanium based amorphous oxides with the focus on maximizing the band gap

  15. Single-Atom Catalyst of Platinum Supported on Titanium Nitride for Selective Electrochemical Reactions.

    Science.gov (United States)

    Yang, Sungeun; Kim, Jiwhan; Tak, Young Joo; Soon, Aloysius; Lee, Hyunjoo

    2016-02-05

    As a catalyst, single-atom platinum may provide an ideal structure for platinum minimization. Herein, a single-atom catalyst of platinum supported on titanium nitride nanoparticles were successfully prepared with the aid of chlorine ligands. Unlike platinum nanoparticles, the single-atom active sites predominantly produced hydrogen peroxide in the electrochemical oxygen reduction with the highest mass activity reported so far. The electrocatalytic oxidation of small organic molecules, such as formic acid and methanol, also exhibited unique selectivity on the single-atom platinum catalyst. A lack of platinum ensemble sites changed the reaction pathway for the oxygen-reduction reaction toward a two-electron pathway and formic acid oxidation toward direct dehydrogenation, and also induced no activity for the methanol oxidation. This work demonstrates that single-atom platinum can be an efficient electrocatalyst with high mass activity and unique selectivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Boosting the Performance of the Nickel Anode in the Oxygen Evolution Reaction by Simple Electrochemical Activation

    KAUST Repository

    Shinagawa, Tatsuya

    2017-03-27

    The development of cost-effective and active water-splitting electrocatalysts that work at mild pH is an essential step towards the realization of sustainable energy and material circulation in our society. Its success requires a drastic improvement in the kinetics of the anodic half-reaction of the oxygen evolution reaction (OER), which determines the overall system efficiency to a large extent. A simple electrochemical protocol has been developed to activate Ni electrodes, by which a stable NiOOH phase was formed, which could weakly bind to alkali-metal cations. The electrochemically activated (ECA) Ni electrode reached a current of 10 mA at <1.40 V vs. the reversible hydrogen electrode (RHE) at practical operation temperatures (>75 °C) and a mild pH of ca. 10 with excellent stability (>24 h), greatly surpassing that of the state-of-the-art NiFeOx electrodes under analogous conditions. Water electrolysis was demonstrated with ECA-Ni and NiMo, which required an iR-free overall voltage of only 1.44 V to reach 10 mA cmgeo(-2) .

  17. Monitoring electrochemical reactions in situ using steady-state free precession {sup 13}C NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, Luiza M.S. [Instituto de Química de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, São Paulo 13560-070 (Brazil); Embrapa Instrumentação, Rua XV de Novembro 1452, São Carlos, São Paulo 13560-970 (Brazil); Moraes, Tiago B. [Embrapa Instrumentação, Rua XV de Novembro 1452, São Carlos, São Paulo 13560-970 (Brazil); Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, São Paulo 13566-590 (Brazil); Barbosa, Lucio L. [Departamento de Química, Universidade Federal do Espírito Santo, Avenida Fernando Ferrari 514, Vitória, Espírito Santo 29075-910 (Brazil); Mazo, Luiz H. [Instituto de Química de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, São Paulo 13560-070 (Brazil); and others

    2014-11-19

    Highlights: • Analysis of electrochemical reaction in situ by 13C NMR spectroscopy was demonstrated. • {sup 13}C NMR signals are obtained in few minutes, using steady-state free precession (SSFP) pulse sequence. • The analysis is performed in standard NMR spectrometer. • KBDM can be an alternative to Fourier Transform to process SSFP signal. - Abstract: All attempts to use in situ{sup 13}C NMR in spectroelectrochemical studies, using static cells and unlabeled substrates, have failed due to the very long average time (several hours). In this paper, we demonstrated that steady-state free precession (SSFP) pulse sequence can enhance signal to noise ratio and reduces the average time of {sup 13}C NMR signals by more than one order of magnitude. The results showed that each {sup 13}C NMR spectrum during the electrochemical reduction of 9-chloroanthracene, in a static cell, can be acquired in eleven minutes. This short averaging time allowed the analysis of the reaction every 30 min during 3 h. The phase and truncation anomalies present in SSFP spectra were minimized using Traff apodization function and Krylov basis diagonalization method (KBDM)

  18. Homogeneous Molecular Catalysis of Electrochemical Reactions: Catalyst Benchmarking and Optimization Strategies.

    Science.gov (United States)

    Costentin, Cyrille; Savéant, Jean-Michel

    2017-06-21

    Modern energy challenges currently trigger an intense interest in catalysis of redox reactions-electrochemical and photochemical-particularly those involving small molecules such as water, hydrogen, oxygen, proton, carbon dioxide. A continuously increasing number of molecular catalysts of these reactions, mostly transition metal complexes, have been proposed, rendering necessary procedures for their rational benchmarking and fueling the quest for leading principles that could inspire the design of improved catalysts. The search of "volcano plots" correlating catalysis kinetics to the stability of the key intermediate is a popular approach to the question in catalysis by surface-active sites, with as foremost example the electrochemical reduction of aqueous proton on metal surfaces. We discussed here for the first time, on theoretical and experimental grounds, the pertinence of such an approach in the field of molecular catalysis. This is the occasion to insist on the virtue of careful mechanism assignments. Particular emphasis is put on the interest of expressing the catalysts' intrinsic kinetic properties by means of catalytic Tafel plots, which relate kinetics and overpotential. We also underscore that the principle and strategies put forward for the catalytic activation of the above-mentioned small molecules are general as illustrated by catalytic applications out of this particular field.

  19. Optimization of electrochemical reaction for nitrogen removal from biological secondary-treated milking centre wastewater.

    Science.gov (United States)

    Won, Seung-Gun; Jeon, Dae-Yong; Rahman, Md Mukhlesur; Kwag, Jung-Hoon; Ra, Chang-Six

    2016-01-01

    In order to remove the residual nitrogen from the secondary-treated milking centre wastewater, the electrochemical reaction including NH4-N oxidation and NOx-N reduction has been known as a relatively simple technique. Through the present study, the electrochemical reactor using the Ti-coated IrO2 anode and stainless steel cathode was optimized for practical use on farm. The key operational parameters [electrode area (EA) (cm(2)/L), current density (CD) (A/cm(2)), electrolyte concentration (EC) (mg/L as NaCl), and reaction time (RT) (min)] were selected and their effects were evaluated using response surface methodology for the responses of nitrogen and colour removal efficiencies, and power consumption. The experimental design was followed for the central composite design as a fractional factorial design. As a result of the analysis of variance, the p-values of the second-order polynomial models for three responses were significantly fit to the empirical values. The nitrogen removal was significantly influenced by CD, EC, and RT (p nitrogen removal over 90%, the combination of [EA, 20 cm(2)/L; CD, 0.044 A/cm(2); EC, 3.87 g/L as NaCl; RT, 240 min] was revealed as an optimal operational condition. The investigation on cathodic reduction of NOx-N may be required with respect to nitrite and nitrate separately as a future work.

  20. Interfacial reactions between graphite electrodes and propylene carbonate-based solutions: Electrolyte-concentration dependence of electrochemical lithium intercalation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Soon-Ki [Department of Chemical Engineering, Soonchunhyang University, Asan, Chungnam 336-745 (Korea); Inaba, Minoru [Department of Molecular Science and Technology, Faculty of Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan); Iriyama, Yasutoshi; Abe, Takeshi; Ogumi, Zempachi [Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan)

    2008-01-03

    This study examines the electrochemical reactions occurring at graphite negative electrodes of lithium-ion batteries in a propylene carbonate (PC) electrolyte that contains different concentrations of lithium salts such as, LiClO{sub 4}, LiPF{sub 6} or LiN(SO{sub 2}C{sub 2}F{sub 5}){sub 2}. The electrode reactions are significantly affected by the electrolyte concentration. In concentrated solutions, lithium ions are reversibly intercalated within the graphite to form stage 1 lithium-graphite intercalation compounds (Li-GICs), regardless of the lithium salt used. On the other hand, electrolyte decomposition and exfoliation of the graphene layers occur continuously in the low-concentration range. In situ analysis with atomic force microscopy reveals that a thin film (thickness of {proportional_to}8 nm) forms on the graphite surface in a concentrated solution, e.g., 3.27 mol kg{sup -1} LiN(SO{sub 2}C{sub 2}F{sub 5}){sub 2}/PC, after the first potential cycle between 2.9 and 0 V versus Li{sup +}/Li. There is no evidence of the co-intercalation of solvent molecules in the concentrated solution. (author)

  1. A disposable electrochemical immunosensor for prolactin involving affinity reaction on streptavidin-functionalized magnetic particles

    International Nuclear Information System (INIS)

    Moreno-Guzman, Maria; Gonzalez-Cortes, Araceli; Yanez-Sedeno, Paloma; Pingarron, Jose M.

    2011-01-01

    A novel electrochemical immunosensor was developed for the determination of the hormone prolactin. The design involved the use of screen-printed carbon electrodes and streptavidin-functionalized magnetic particles. Biotinylated anti-prolactin antibodies were immobilized onto the functionalized magnetic particles and a sandwich-type immunoassay involving prolactin and anti-prolactin antibody labelled with alkaline phosphatase was employed. The resulting bio-conjugate was trapped on the surface of the screen-printed electrode with a small magnet and prolactin quantification was accomplished by differential pulse voltammetry of 1-naphtol formed in the enzyme reaction using 1-naphtyl phosphate as alkaline phosphatase substrate. All variables involved in the preparation of the immunosensor and in the electrochemical detection step were optimized. The calibration plot for prolactin exhibited a linear range between 10 and 2000 ng mL -1 with a slope value of 7.0 nA mL ng -1 . The limit of detection was 3.74 ng mL -1 . Furthermore, the modified magnetic beads-antiprolactin conjugates showed an excellent stability. The immunosensor exhibited also a high selectivity with respect to other hormones. The analytical usefulness of the immnunosensor was demonstrated by analyzing human sera spiked with prolactin at three different concentration levels.

  2. The electrochemical transfer reactions and the structure of the iron|oxide layer|electrolyte interface

    International Nuclear Information System (INIS)

    Petrović, Željka; Metikoš-Huković, Mirjana; Babić, Ranko

    2012-01-01

    The thickness, barrier (protecting) and semiconducting properties of the potentiostatically formed oxide films on the pure iron electrode in an aqueous borate buffer solution were investigated by electrochemical quartz crystal nanobalance (EQCN), electrochemical impedance spectroscopy (EIS), and Mott–Schottky (MS) analysis. The thicknesses of the prepassive Fe(II)hydroxide layer (up to monolayer) nucleated on the bare iron surface and the passive Fe(II)/Fe(III) layer (up to 2 nm), deposited on the top of the first one, were determined using in situ gravimetry. Electronic properties of iron prepassive and passive films as well as ionic and electronic transfer reactions at the film|solution interface were discussed on the basis of a band structure model of the surface oxide film and the potential distribution at the interface. The anodic oxide film formation and cathodic decomposition are coupled processes and their reversible inter-conversion is mediated by the availability of free charge carriers on the electrode|solution interface. The structure of the reversible double layer at the iron oxide|solution interface was discussed based on the concept of the specific adsorption of the imidazolium cation on the negatively charged electrode surface at pH > pH pzc .

  3. A disposable electrochemical immunosensor for prolactin involving affinity reaction on streptavidin-functionalized magnetic particles

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Guzman, Maria; Gonzalez-Cortes, Araceli [Department of Analytical Chemistry, Faculty of Chemistry, University Computense of Madrid, 28040 Madrid (Spain); Yanez-Sedeno, Paloma, E-mail: yseo@quim.ucm.es [Department of Analytical Chemistry, Faculty of Chemistry, University Computense of Madrid, 28040 Madrid (Spain); Pingarron, Jose M. [Department of Analytical Chemistry, Faculty of Chemistry, University Computense of Madrid, 28040 Madrid (Spain)

    2011-04-29

    A novel electrochemical immunosensor was developed for the determination of the hormone prolactin. The design involved the use of screen-printed carbon electrodes and streptavidin-functionalized magnetic particles. Biotinylated anti-prolactin antibodies were immobilized onto the functionalized magnetic particles and a sandwich-type immunoassay involving prolactin and anti-prolactin antibody labelled with alkaline phosphatase was employed. The resulting bio-conjugate was trapped on the surface of the screen-printed electrode with a small magnet and prolactin quantification was accomplished by differential pulse voltammetry of 1-naphtol formed in the enzyme reaction using 1-naphtyl phosphate as alkaline phosphatase substrate. All variables involved in the preparation of the immunosensor and in the electrochemical detection step were optimized. The calibration plot for prolactin exhibited a linear range between 10 and 2000 ng mL{sup -1} with a slope value of 7.0 nA mL ng{sup -1}. The limit of detection was 3.74 ng mL{sup -1}. Furthermore, the modified magnetic beads-antiprolactin conjugates showed an excellent stability. The immunosensor exhibited also a high selectivity with respect to other hormones. The analytical usefulness of the immnunosensor was demonstrated by analyzing human sera spiked with prolactin at three different concentration levels.

  4. Electrochemically Synthesized Nanoporous Molybdenum Carbide as a Durable Electrocatalyst for Hydrogen Evolution Reaction.

    Science.gov (United States)

    Kang, Jin Soo; Kim, Jin; Lee, Myeong Jae; Son, Yoon Jun; Chung, Dong Young; Park, Subin; Jeong, Juwon; Yoo, Ji Mun; Shin, Heejong; Choe, Heeman; Park, Hyun S; Sung, Yung-Eun

    2018-01-01

    Demands for sustainable production of hydrogen are rapidly increasing because of environmental considerations for fossil fuel consumption and development of fuel cell technologies. Thus, the development of high-performance and economical catalysts has been extensively investigated. In this study, a nanoporous Mo carbide electrode is prepared using a top-down electrochemical process and it is applied as an electrocatalyst for the hydrogen evolution reaction (HER). Anodic oxidation of Mo foil followed by heat treatment in a carbon monoxide (CO) atmosphere forms a nanostructured Mo carbide with excellent interconnections, and these structural characteristics lead to high activity and durability when applied to the HER. Additionally, characteristic behavior of Mo is observed; metallic Mo nanosheets form during electrochemical anodization by exfoliation along the (110) planes. These nanosheets are viable for chemical modification, indicating their feasibility in various applications. Moreover, the role of carbon shells is investigated on the surface of the electrocatalysts, whereby it is suggested that carbon shells serve as a mechanical barrier against the oxidative degradation of catalysts that accompanies unavoidable volume expansion.

  5. An exonuclease-assisted amplification electrochemical aptasensor for Hg(2+) detection based on hybridization chain reaction.

    Science.gov (United States)

    Bao, Ting; Wen, Wei; Zhang, Xiuhua; Xia, Qinghua; Wang, Shengfu

    2015-08-15

    In this work, a novel electrochemical aptasensor was developed for Hg(2+) detection based on exonuclease-assisted target recycling and hybridization chain reaction (HCR) dual signal amplification strategy. The presence of Hg(2+) induced the T-rich DNA partly folded into duplex-like structure via the Hg(2+) mediated T-Hg(2+)-T base pairs, which triggered the activity of exonuclease III (Exo III). Exo III selectively digested the double-strand DNA containing multiple T-Hg(2+)-T base pairs from its 3'-end, the released Hg(2+) participated analyte recycle. With each digestion cycle, a digestion product named as help DNA was obtained, which acted as a linkage between the capture DNA and auxiliary DNA. The presence of help DNA and two auxiliary DNA collectively facilitated successful HCR process and formed long double-stranded DNA. [Ru(NH3)6](3+) was used as redox indicator, which electrostatically bound to the double strands and produced an electrochemical signal. Exo III-assisted target recycling and HCR dual amplification significantly improved the sensitivity for Hg(2+) with a detection limit of 0.12 pM (S/N=3). Furthermore, the proposed aptasensor had a promising potential for the application of Hg(2+) detection in real aquatic sample analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Noble metal-free hydrazine fuel cell catalysts: EPOC effect in competing chemical and electrochemical reaction pathways.

    Science.gov (United States)

    Sanabria-Chinchilla, Jean; Asazawa, Koichiro; Sakamoto, Tomokazu; Yamada, Koji; Tanaka, Hirohisa; Strasser, Peter

    2011-04-13

    We report the discovery of a highly active Ni-Co alloy electrocatalyst for the oxidation of hydrazine (N(2)H(4)) and provide evidence for competing electrochemical (faradaic) and chemical (nonfaradaic) reaction pathways. The electrochemical conversion of hydrazine on catalytic surfaces in fuel cells is of great scientific and technological interest, because it offers multiple redox states, complex reaction pathways, and significantly more favorable energy and power densities compared to hydrogen fuel. Structure-reactivity relations of a Ni(60)Co(40) alloy electrocatalyst are presented with a 6-fold increase in catalytic N(2)H(4) oxidation activity over today's benchmark catalysts. We further study the mechanistic pathways of the catalytic N(2)H(4) conversion as function of the applied electrode potential using differentially pumped electrochemical mass spectrometry (DEMS). At positive overpotentials, N(2)H(4) is electrooxidized into nitrogen consuming hydroxide ions, which is the fuel cell-relevant faradaic reaction pathway. In parallel, N(2)H(4) decomposes chemically into molecular nitrogen and hydrogen over a broad range of electrode potentials. The electroless chemical decomposition rate was controlled by the electrode potential, suggesting a rare example of a liquid-phase electrochemical promotion effect of a chemical catalytic reaction ("EPOC"). The coexisting electrocatalytic (faradaic) and heterogeneous catalytic (electroless, nonfaradaic) reaction pathways have important implications for the efficiency of hydrazine fuel cells. © 2011 American Chemical Society

  7. Magnetophoretic potential at the movement of cluster products of electrochemical reactions in an inhomogeneous magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Gorobets, O. Yu., E-mail: pitbm@ukr.net; Gorobets, Yu. I., E-mail: Gorobets@imag.kiev.ua [National Technical University of Ukraine “KPI”, Peremogy Avenue 37, Kyiv 03056 (Ukraine); Institute of Magnetism NAS of Ukraine and National Academy of Sciences of Ukraine, Vernadsky Avenue, 36-b, Kyiv 03142 (Ukraine); Rospotniuk, V. P. [National Technical University of Ukraine “KPI”, Peremogy Avenue 37, Kyiv 03056 (Ukraine)

    2015-08-21

    An electric field arises from the influence of a nonuniform static magnetic field on charged colloid particles with magnetic susceptibility different from that of the surrounding liquid. It arises, for example, under the influence of a nonuniform static magnetic field in clusters of electrochemical reaction products created during metal etching, deposition, and corrosion processes without an external electric current passing through an electrolyte near a magnetized electrode surface. The corresponding potential consists of a Nernst potential of inhomogeneous distribution of concentration of colloid particles and a magnetophoretic potential (MPP). This potential has been calculated using a thermodynamic approach based on the equations of thermodynamics of nonequilibrium systems and the Onsager relations for a mass flow of correlated magnetic clusters under a gradient magnetic force in the electrolyte. The conditions under which the MPP contribution to the total electric potential may be significant are discussed with a reference to the example of a corroding spherical ferromagnetic steel electrode.

  8. Synthesis of free-standing metal sulfide nanoarrays via anion exchange reaction and their electrochemical energy storage application.

    Science.gov (United States)

    Xia, Xinhui; Zhu, Changrong; Luo, Jingshan; Zeng, Zhiyuan; Guan, Cao; Ng, Chin Fan; Zhang, Hua; Fan, Hong Jin

    2014-02-26

    Metal sulfides are an emerging class of high-performance electrode materials for solar cells and electrochemical energy storage devices. Here, a facile and powerful method based on anion exchange reactions is reported to achieve metal sulfide nanoarrays through a topotactical transformation from their metal oxide and hydroxide preforms. Demonstrations are made to CoS and NiS nanowires, nanowalls, and core-branch nanotrees on carbon cloth and nickel foam substrates. The sulfide nanoarrays exhibit superior redox reactivity for electrochemical energy storage. The self-supported CoS nanowire arrays are tested as the pseudo-capacitor cathode, which demonstrate enhanced high-rate specific capacities and better cycle life as compared to the powder counterparts. The outstanding electrochemical properties of the sulfide nanoarrays are a consequence of the preservation of the nanoarray architecture and rigid connection with the current collector after the anion exchange reactions.

  9. Electrocatalytic oxygen reduction and hydrogen evolution reactions on phthalocyanine modified electrodes: Electrochemical, in situ spectroelectrochemical, and in situ electrocolorimetric monitoring

    International Nuclear Information System (INIS)

    Koca, Atif; Kalkan, Ayfer; Bayir, Zehra Altuntas

    2011-01-01

    Highlights: → Electrochemical and in situ spectroelectrochemical characterizations of the metallophthalocyanines were performed. → The presence of O 2 influences both oxygen reduction reaction and the electrochemical behaviors of the complexes. → Homogeneous catalytic ORR process occurs via an 'inner sphere' chemical catalysis process. → CoPc and CuPc coated on a glassy carbon electrode decrease the overpotential of the working electrode for H + reduction. - Abstract: This study describes electrochemical, in situ spectroelectrochemical, and in situ electrocolorimetric monitoring of the electrocatalytic reduction of molecular oxygen and hydronium ion on the phthalocyanine-modified electrodes. For this purpose, electrochemical and in situ spectroelectrochemical characterizations of the metallophthalocyanines (MPc) bearing tetrakis-[4-((4'-trifluoromethyl)phenoxy)phenoxy] groups were performed. While CoPc gives both metal-based and ring-based redox processes, H 2 Pc, ZnPc and CuPc show only ring-based electron transfer processes. In situ electrocolorimetric method was applied to investigate the color of the electrogenerated anionic and cationic forms of the complexes. The presence of O 2 in the electrolyte system influences both oxygen reduction reaction and the electrochemical and spectral behaviors of the complexes, which indicate electrocatalytic activity of the complexes for the oxygen reduction reaction. Perchloric acid titrations monitored by voltammetry represent possible electrocatalytic activities of the complexes for hydrogen evolution reaction. CoPc and CuPc coated on a glassy carbon electrode decrease the overpotential of the working electrode for H + reduction. The nature of the metal center changes the electrocatalytic activities for hydrogen evolution reaction in aqueous solution. Although CuPc has an inactive metal center, its electrocatalytic activity is recorded more than CoPc for H + reduction in aqueous solution.

  10. An electrochemical impedance study of the oxygen evolution reaction at hydrous iron oxide in base.

    Science.gov (United States)

    Doyle, Richard L; Lyons, Michael E G

    2013-04-14

    The oxygen evolution reaction at multi-cycled iron oxy-hydroxide films in aqueous alkaline solution is discussed. Steady-state Tafel plot analysis and electrochemical impedance spectroscopy have been used to elucidate the kinetics and mechanism of oxygen evolution. Tafel slopes of ca. 60 mV dec(-1) and 40 mV dec(-1) are found at low overpotentials depending on the oxide growth conditions, with an apparent Tafel slope of ca. 120 mV dec(-1) at high overpotentials. Reaction orders of ca. 0.5 and 1.0 are observed at low and high overpotentials, again depending on the oxide growth conditions. A mechanistic scheme involving the active participation of octahedrally coordinated anionic iron oxyhydroxide surfaquo complexes, which form the porous hydrous layer, is proposed. The latter structure contains considerable quantities of water molecules which facilitate hydroxide ion discharge at the metal site during active oxygen evolution. This work brings together current research in heterogeneous electrocatalysis and homogeneous molecular catalysis for water oxidation.

  11. Sensitive electrochemical monitoring of nucleic acids coupling DNA nanostructures with hybridization chain reaction

    International Nuclear Information System (INIS)

    Zhuang, Junyang; Fu, Libing; Xu, Mingdi; Yang, Huanghao; Chen, Guonan; Tang, Dianping

    2013-01-01

    Graphical abstract: -- Highlights: •A new signal-on metallobioassay was developed for detection of nucleic acids. •Target-triggered long-range self-assembled DNA nanostructures are used for amplification of electronic signal. •Hybridization chain reaction is utilized for construction of long-range DNA nanostructures. -- Abstract: Methods based on metal nanotags have been developed for metallobioassay of nucleic acids, but most involve complicated labeling or stripping procedures and are unsuitable for routine use. Herein, we report the proof-of-concept of a novel and label-free metallobioassay for ultrasensitive electronic determination of human immunodeficiency virus (HIV)-related gene fragments at an ultralow concentration based on target-triggered long-range self-assembled DNA nanostructures and DNA-based hybridization chain reaction (HCR). The signal is amplified by silver nanotags on the DNA duplex. The assay mainly consists of capture probe, detection probe, and two different DNA hairpins. In the presence of target DNA, the capture probe immobilized on the sensor sandwiches target DNA with the 3′ end of detection probe. Another exposed part of detection probe at the 5′ end opens two alternating DNA hairpins in turn, and propagates a chain reaction of hybridization events to form a nicked double-helix. Finally, numerous silver nanotags are immobilized onto the long-range DNA nanostructures, each of which produces a strong electronic signal within the applied potentials. Under optimal conditions, the target-triggered long-range DNA nanostructures present good electrochemical behaviors for the detection of HIV DNA at a concentration as low as 0.5 fM. Importantly, the outstanding sensitivity can make this approach a promising scheme for development of next-generation DNA sensors without the need of enzyme labeling or fluorophore labeling

  12. A hydrogel pen for electrochemical reaction and its applications for 3D printing

    Science.gov (United States)

    Kang, Hosuk; Hwang, Seongpil; Kwak, Juhyoun

    2014-12-01

    A hydrogel pen consisting of a microscopic pyramid containing an electrolyte offers a localized electroactive area on the nanometer scale via controlled contact of the apex with a working electrode. The hydrogel pen merges the fine control of atomic force microscopy with non-linear diffusion of an ultramicroelectrode, producing a faradaic current that depends on the small electroactive area. The theoretical and experimental investigations of the mass transport behavior within the hydrogel reveal that the steady-state current from the faradaic reaction is linearly proportional to the deformed length of the hydrogel pen by contact, i.e. signal transduction of deformation to an electrochemical signal, which enables the fine control of the electroactive area in the nanometer-scale regime. Combined with electrodeposition, localized electrochemistry of the hydrogel pen results in the ability to fabricate small sizes (110 nm in diameter), tall heights (up to 30 μm), and arbitrary structures, thereby indicating an additive process in 3 dimensions by localized electrodeposition.A hydrogel pen consisting of a microscopic pyramid containing an electrolyte offers a localized electroactive area on the nanometer scale via controlled contact of the apex with a working electrode. The hydrogel pen merges the fine control of atomic force microscopy with non-linear diffusion of an ultramicroelectrode, producing a faradaic current that depends on the small electroactive area. The theoretical and experimental investigations of the mass transport behavior within the hydrogel reveal that the steady-state current from the faradaic reaction is linearly proportional to the deformed length of the hydrogel pen by contact, i.e. signal transduction of deformation to an electrochemical signal, which enables the fine control of the electroactive area in the nanometer-scale regime. Combined with electrodeposition, localized electrochemistry of the hydrogel pen results in the ability to fabricate

  13. Reversible superconductor-insulator transition in LiTi2O4 induced by Li-ion electrochemical reaction.

    Science.gov (United States)

    Yoshimatsu, K; Niwa, M; Mashiko, H; Oshima, T; Ohtomo, A

    2015-11-06

    Transition metal oxides display various electronic and magnetic phases such as high-temperature superconductivity. Controlling such exotic properties by applying an external field is one of the biggest continuous challenges in condensed matter physics. Here, we demonstrate clear superconductor-insulator transition of LiTi2O4 films induced by Li-ion electrochemical reaction. A compact electrochemical cell of pseudo-Li-ion battery structure is formed with a superconducting LiTi2O4 film as an anode. Li content in the film is controlled by applying a constant redox voltage. An insulating state is achieved by Li-ion intercalation to the superconducting film by applying reduction potential. In contrast, the superconducting state is reproduced by applying oxidation potential to the Li-ion intercalated film. Moreover, superconducting transition temperature is also recovered after a number of cycles of Li-ion electrochemical reactions. This complete reversible transition originates in difference in potentials required for deintercalation of initially contained and electrochemically intercalated Li(+) ions.

  14. Identifying the Active Surfaces of Electrochemically Tuned LiCoO2 for Oxygen Evolution Reaction

    International Nuclear Information System (INIS)

    Lu, Zhiyi; Chen, Guangxu; Li, Yanbin; Wang, Haotian; Xie, Jin

    2017-01-01

    Identification of active sites for catalytic processes has both fundamental and technological implications for rational design of future catalysts. Herein, we study the active surfaces of layered lithium cobalt oxide (LCO) for the oxygen evolution reaction (OER) using the enhancement effect of electrochemical delithiation (De-LCO). Our theoretical results indicate that the most stable (0001) surface has a very large overpotential for OER independent of lithium content. In contrast, edge sites such as the nonpolar (1120) and polar (0112) surfaces are predicted to be highly active and dependent on (de)lithiation. The effect of lithium extraction from LCO on the surfaces and their OER activities can be understood by the increase of Co 4+ sites relative to Co 3+ and by the shift of active oxygen 2p states. Experimentally, it is demonstrated that LCO nanosheets, which dominantly expose the (0001) surface show negligible OER enhancement upon delithiation. However, a noticeable increase in OER activity (~0.1 V in overpotential shift at 10 mA cm –2 ) is observed for the LCO nanoparticles, where the basal plane is greatly diminished to expose the edge sites, consistent with the theoretical simulations. In addition, we find that the OER activity of De-LCO nanosheets can be improved if we adopt an acid etching method on LCO to create more active edge sites, which in turn provides a strong evidence for the theoretical indication.

  15. Electrochemical Impedance Spectroscopy (bio)sensing through hydrogen evolution reaction induced by gold nanoparticles.

    Science.gov (United States)

    Mayorga-Martinez, Carmen C; Chamorro-Garcia, Alejandro; Merkoçi, Arben

    2015-05-15

    A new gold nanoparticle (AuNP) based detection strategy using Electrochemical Impedance Spectroscopy (EIS) through hydrogen evolution reaction (HER) is proposed. This EIS-HER method is used as an alternative to the conventional EIS based on [Fe(CN)6](3-/4-) or [Ru(NH3)6](3+/2+) indicators. The proposed method is based on the HER induced by AuNPs. EIS measurements for different amounts of AuNP are registered and the charge transfer resistance (Rct) was found to correlate and be useful for their quantification. Moreover the effect of AuNP size on electrical properties of AuNPs for HER using this sensitive technique has been investigated. Different EIS-HER signals generated in the presence of AuNPs of different sizes (2, 5, 10, 15, 20, and 50 nm) are observed, being the corresponding phenomena extendible to other nanoparticles and related catalytic reactions. This EIS-HER sensing technology is applied to a magneto-immunosandwich assay for the detection of a model protein (IgG) achieving improvements of the analytical performance in terms of a wide linear range (2-500 ng mL(-1)) with a good limit of detection (LOD) of 0.31 ng mL(-1) and high sensitivity. Moreover, with this methodology a reduction of one order of magnitude in the LOD for IgG detection, compared with a chroamperometric technique normally used was achieved. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Percentage of Patients with Preventable Adverse Drug Reactions and Preventability of Adverse Drug Reactions – A Meta-Analysis

    Science.gov (United States)

    Petzold, Max; Hägg, Staffan

    2012-01-01

    Background Numerous observational studies suggest that preventable adverse drug reactions are a significant burden in healthcare, but no meta-analysis using a standardised definition for adverse drug reactions exists. The aim of the study was to estimate the percentage of patients with preventable adverse drug reactions and the preventability of adverse drug reactions in adult outpatients and inpatients. Methods Studies were identified through searching Cochrane, CINAHL, EMBASE, IPA, Medline, PsycINFO and Web of Science in September 2010, and by hand searching the reference lists of identified papers. Original peer-reviewed research articles in English that defined adverse drug reactions according to WHO’s or similar definition and assessed preventability were included. Disease or treatment specific studies were excluded. Meta-analysis on the percentage of patients with preventable adverse drug reactions and the preventability of adverse drug reactions was conducted. Results Data were analysed from 16 original studies on outpatients with 48797 emergency visits or hospital admissions and from 8 studies involving 24128 inpatients. No studies in primary care were identified. Among adult outpatients, 2.0% (95% confidence interval (CI): 1.2–3.2%) had preventable adverse drug reactions and 52% (95% CI: 42–62%) of adverse drug reactions were preventable. Among inpatients, 1.6% (95% CI: 0.1–51%) had preventable adverse drug reactions and 45% (95% CI: 33–58%) of adverse drug reactions were preventable. Conclusions This meta-analysis corroborates that preventable adverse drug reactions are a significant burden to healthcare among adult outpatients. Among both outpatients and inpatients, approximately half of adverse drug reactions are preventable, demonstrating that further evidence on prevention strategies is required. The percentage of patients with preventable adverse drug reactions among inpatients and in primary care is largely unknown and should be

  17. Electrochemical reaction rates in a dye-sensitised solar cell - the iodide/tri-iodide redox system

    DEFF Research Database (Denmark)

    Bay, L.; West, K.; Winther-Jensen, B.

    2006-01-01

    The electrochemical reaction rate of the redox couple iodide/tri-iodide in acetonitrile is characterised by impedance spectroscopy. Different electrode materials relevant for the function of dye-sensitised solar cells (DSSC) are investigated. Preferably, the reaction with the iodide....../tri-iodide couple should be fast at the counter electrode, i.e. this electrode must have a high catalytic activity towards the redox couple, and the same reaction must be slow on the photo electrode. The catalytic activity is investigated for platinum, poly(3,4-ethylenedioxythiophene) (PEDOT), polypyrrole (PPy......), and polyaniline (PANI)-all deposited onto fluorine-doped tin oxide (FTO) glass. Both Pt and PEDOT are found to have sufficiently high catalytic activities for practical use as counter electrodes in DSSC. The reaction resistance on FTO and anatase confirmed the beneficial effect of a compact anatase layer on top...

  18. Comparison of TiO2 photocatalysis, electrochemically assisted Fenton reaction and direct electrochemistry for simulation of phase I metabolism reactions of drugs.

    Science.gov (United States)

    Ruokolainen, Miina; Gul, Turan; Permentier, Hjalmar; Sikanen, Tiina; Kostiainen, Risto; Kotiaho, Tapio

    2016-02-15

    The feasibility of titanium dioxide (TiO2) photocatalysis, electrochemically assisted Fenton reaction (EC-Fenton) and direct electrochemical oxidation (EC) for simulation of phase I metabolism of drugs was studied by comparing the reaction products of buspirone, promazine, testosterone and 7-ethoxycoumarin with phase I metabolites of the same compounds produced in vitro by human liver microsomes (HLM). Reaction products were analysed by UHPLC-MS. TiO2 photocatalysis simulated the in vitro phase I metabolism in HLM more comprehensively than did EC-Fenton or EC. Even though TiO2 photocatalysis, EC-Fenton and EC do not allow comprehensive prediction of phase I metabolism, all three methods produce several important metabolites without the need for demanding purification steps to remove the biological matrix. Importantly, TiO2 photocatalysis produces aliphatic and aromatic hydroxylation products where direct EC fails. Furthermore, TiO2 photocatalysis is an extremely rapid, simple and inexpensive way to generate oxidation products in a clean matrix and the reaction can be simply initiated and quenched by switching the UV lamp on/off. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Ultrasensitive enzyme-free electrochemical immunosensor based on hybridization chain reaction triggered double strand DNA@Au nanoparticle tag.

    Science.gov (United States)

    Ge, Yanqiu; Wu, Jie; Ju, Huangxian; Wu, Shuo

    2014-03-01

    An ultrasensitive enzyme-free electrochemical immunoassay was developed for detection of the fg/mL level carcinoembryonic antigen (CEA) by using a double strand DNA@Au nanoparticle (dsDNA@AuNP) tag and hexaammineruthenium(III) chloride (RuHex) as the electroactive indicator. The dsDNA@AuNP was synthesized by one-pot hybrid polymerization of dsDNA on initiator DNA modified AuNPs via hybridization chain reaction. The immunosensor was prepared by covalently cross-linking capture antibody on chitosan/AuNP nanocomposite modified glass carbon electrode. The AuNPs accelerated the electron transfer and led to high detection sensitivity. With a sandwich-type immunoreaction and a biotin-streptavidin affinity reaction, the dsDNA@AuNP tag was conjugated on the immunocomplex to bring a high amount of RuHex to the electrode surface via electrostatic interaction, resulting in an amplified electrochemical signal. Under optimal conditions, the proposed sensing platform showed a wide linear detection range from 10 fg/mL to 10 ng/mL along with a detection limit of 3.2 fg/mL for CEA. The immunosensor exhibited high sensitivity and good stability, showing a promising application in early cancer diagnosis and could be extended to sensitive electrochemical biosensing of other analytes. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Electrochemical Processes

    DEFF Research Database (Denmark)

    Bech-Nielsen, Gregers

    1997-01-01

    The notes describe in detail primary and secondary galvanic cells, fuel cells, electrochemical synthesis and electroplating processes, corrosion: measurments, inhibitors, cathodic and anodic protection, details of metal dissolution reactions, Pourbaix diagrams and purification of waste water from...... galvanic industries....

  1. Preventable and potentially preventable serious adverse reactions induced by oral protein kinase inhibitors through a database of adverse drug reaction reports.

    Science.gov (United States)

    Egron, Adeline; Olivier-Abbal, Pascale; Gouraud, Aurore; Babai, Samy; Combret, Sandrine; Montastruc, Jean-Louis; Bondon-Guitton, Emmanuelle

    2015-06-01

    Antineoplastic drugs are one of the pharmacological classes more frequently involved in occurrence of "serious" adverse drug reactions. However, few epidemiological data are available regarding the preventability of adverse drug reactions with ambulatory cancer chemotherapy. We assessed the rate and characteristics of "preventable" or "potentially preventable" "serious" adverse drug reactions induced by oral protein kinase inhibitors (PKIs). We performed a retrospective study with all "serious" adverse drug reactions (ADRs) recorded from 1 January 2008 to 31 December 2009 in the French Pharmacovigilance Database with the eight oral protein kinase inhibitors marketed in France: sorafenib, imatinib, erlotinib, sunitinib, dasatinib, lapatinib, nilotinib and everolimus (Afinitor®) using the French adverse drug reactions preventability scale. This study was carried out on 265 spontaneous notifications. Most of adverse drug reactions were "unpreventable" (63.8 %). Around one third were "unevaluable" due to notifications poorly documented (medical history, dosage, use of drugs as first or second intention, concomitant drugs). One (0.4 %) adverse drug reaction was "preventable" with dasatinib (subdural hematoma) and three (1.1 %) were "potentially preventable" (hepatic adverse drug reactions): two with imatinib and one with sorafenib. For these four cases, we identified some characteristics: incorrect dosages, drug interactions and off-label uses. An appropriate prescription could avoid the occurrence of 1.5 % "serious" adverse drug reactions with oral PKIs. This rate is low and further studies are needed to compare our results by using other preventability instruments and to improve the French ADRs Preventability Scale.

  2. Methanol oxidation reaction on core-shell structured Ruthenium-Palladium nanoparticles: Relationship between structure and electrochemical behavior

    Science.gov (United States)

    Kübler, Markus; Jurzinsky, Tilman; Ziegenbalg, Dirk; Cremers, Carsten

    2018-01-01

    In this work the relationship between structural composition and electrochemical characteristics of Palladium(Pd)-Ruthenium(Ru) nanoparticles during alkaline methanol oxidation reaction is investigated. The comparative study of a standard alloyed and a precisely Ru-core-Pd-shell structured catalyst allows for a distinct investigation of the electronic effect and the bifunctional mechanism. Core-shell catalysts benefit from a strong electronic effect and an efficient Pd utilization. It is found that core-shell nanoparticles are highly active towards methanol oxidation reaction for potentials ≥0.6 V, whereas alloyed catalysts show higher current outputs in the lower potential range. However, differential electrochemical mass spectrometry (DEMS) experiments reveal that the methanol oxidation reaction on core-shell structured catalysts proceeds via the incomplete oxidation pathway yielding formaldehyde, formic acid or methyl formate. Contrary, the alloyed catalyst benefits from the Ru atoms at its surface. Those are found to be responsible for high methanol oxidation activity at lower potentials as well as for complete oxidation of CH3OH to CO2 via the bifunctional mechanism. Based on these findings a new Ru-core-Pd-shell-Ru-terrace catalyst was synthesized, which combines the advantages of the core-shell structure and the alloy. This novel catalyst shows high methanol electrooxidation activity as well as excellent selectivity for the complete oxidation pathway.

  3. Electrochemical Formation of FeV (O) and Mechanism of Its Reaction with Water During O-O Bond Formation.

    Science.gov (United States)

    Pattanayak, Santanu; Chowdhury, Debarati Roy; Garai, Bikash; Singh, Kundan K; Paul, Amit; Dhar, Basab B; Gupta, Sayam Sen

    2017-03-08

    A detailed electrochemical investigation of a series of iron complexes (biuret-modified tetraamido iron macrocycles Fe III -bTAML), including the first electrochemical generation of Fe V (O), and demonstration of their efficacy as homogeneous catalysts for electrochemical water oxidation (WO) in aqueous medium are reported. Spectroelectrochemical and mass spectral studies indicated Fe V (O) as the active oxidant, formed due to two redox transitions, which were assigned as Fe IV (O)/Fe III (OH 2 ) and Fe V (O)/Fe IV (O). The spectral properties of both of these high-valent iron oxo species perfectly match those of their chemically synthesised versions, which were thoroughly characterised by several spectroscopic techniques. The O-O bond-formation step occurs by nucleophilic attack of H 2 O on Fe V (O). A kinetic isotope effect of 3.2 indicates an atom-proton transfer (APT) mechanism. The reaction of chemically synthesised Fe V (O) in CH 3 CN and water was directly probed by electrochemistry and was found to be first-order in water. The pK a value of the buffer base plays a critical role in the rate-determining step by increasing the reaction rate several-fold. The electronic effect on redox potential, WO rates, and onset overpotential was studied by employing a series of iron complexes. The catalytic activity was enhanced by the presence of electron-withdrawing groups on the bTAML framework. Changing the substituents from OMe to NO 2 resulted in an eightfold increase in reaction rate, while the overpotential increased threefold. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Surface reaction and transport in mixed conductors with electrochemically-active surfaces: a 2-D numerical study of ceria.

    Science.gov (United States)

    Ciucci, Francesco; Chueh, William C; Goodwin, David G; Haile, Sossina M

    2011-02-14

    A two-dimensional, small-bias model has been developed for describing transport through a mixed ionic and electronic conductor (MIEC) with electrochemically-active surfaces, a system of particular relevance to solid oxide fuel cells. Utilizing the h-adaptive finite-element method, we solve the electrochemical potential and flux for both ionic and electronic species in the MIEC, taking the transport properties of Sm(0.15)Ce(0.85)O(1.925-δ) (SDC15). In addition to the ionic flux that flows between the two sides of the cell, there are two types of electronic fluxes: (1) cross-plane current that flows in the same general direction as the ionic current, and (2) in-plane current that flows between the catalytically-active MIEC surface and the metal current collectors. From an evaluation of these fluxes, the macroscopic interfacial resistance is decomposed into an electrochemical reaction resistance and an electron diffusion-drift resistance, the latter associated with the in-plane electronic current. Analysis of the experimental data for the interfacial resistance for hydrogen electro-oxidation on SDC15 having either Pt or Au current collectors (W. Lai and S. M. Haile, J. Am. Ceram. Soc., 2005, 88, 2979-2997; W. C. Chueh, W. Lai and S. M. Haile, Solid State Ionics, 2008, 179, 1036-1041) indicates that surface reaction rather than electron migration is the overall rate-limiting step, and suggests furthermore that the surface reaction rate, which has not been directly measured in the literature, scales with pO2(-1/4). The penetration depth for the in-plane electronic current is estimated at 0.6 μm for the experimental conditions of interest to SDC15, and is found to attain a value as high as 4 μm within the broader range of computational conditions.

  5. Electrochemical Oxidation of Resorcinol in Aqueous Medium Using Boron-Doped Diamond Anode: Reaction Kinetics and Process Optimization with Response Surface Methodology.

    Science.gov (United States)

    Körbahti, Bahadır K; Demirbüken, Pelin

    2017-01-01

    Electrochemical oxidation of resorcinol in aqueous medium using boron-doped diamond anode (BDD) was investigated in a batch electrochemical reactor in the presence of Na 2 SO 4 supporting electrolyte. The effect of process parameters such as resorcinol concentration (100-500 g/L), current density (2-10 mA/cm 2 ), Na 2 SO 4 concentration (0-20 g/L), and reaction temperature (25-45°C) was analyzed on electrochemical oxidation using response surface methodology (RSM). The optimum operating conditions were determined as 300 mg/L resorcinol concentration, 8 mA/cm 2 current density, 12 g/L Na 2 SO 4 concentration, and 34°C reaction temperature. One hundred percent of resorcinol removal and 89% COD removal were obtained in 120 min reaction time at response surface optimized conditions. These results confirmed that the electrochemical mineralization of resorcinol was successfully accomplished using BDD anode depending on the process conditions, however the formation of intermediates and by-products were further oxidized at much lower rate. The reaction kinetics were evaluated at optimum conditions and the reaction order of electrochemical oxidation of resorcinol in aqueous medium using BDD anode was determined as 1 based on COD concentration with the activation energy of 5.32 kJ/mol that was supported a diffusion-controlled reaction.

  6. Electrochemical Oxidation of Resorcinol in Aqueous Medium Using Boron-Doped Diamond Anode: Reaction Kinetics and Process Optimization with Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Bahadır K. Körbahti

    2017-10-01

    Full Text Available Electrochemical oxidation of resorcinol in aqueous medium using boron-doped diamond anode (BDD was investigated in a batch electrochemical reactor in the presence of Na2SO4 supporting electrolyte. The effect of process parameters such as resorcinol concentration (100–500 g/L, current density (2–10 mA/cm2, Na2SO4 concentration (0–20 g/L, and reaction temperature (25–45°C was analyzed on electrochemical oxidation using response surface methodology (RSM. The optimum operating conditions were determined as 300 mg/L resorcinol concentration, 8 mA/cm2 current density, 12 g/L Na2SO4 concentration, and 34°C reaction temperature. One hundred percent of resorcinol removal and 89% COD removal were obtained in 120 min reaction time at response surface optimized conditions. These results confirmed that the electrochemical mineralization of resorcinol was successfully accomplished using BDD anode depending on the process conditions, however the formation of intermediates and by-products were further oxidized at much lower rate. The reaction kinetics were evaluated at optimum conditions and the reaction order of electrochemical oxidation of resorcinol in aqueous medium using BDD anode was determined as 1 based on COD concentration with the activation energy of 5.32 kJ/mol that was supported a diffusion-controlled reaction.

  7. Real-time detection of sub-monolayer desorption phenomena during electrochemical reactions: Instrument development and applications

    DEFF Research Database (Denmark)

    Trimarco, Daniel Bøndergaard

    This thesis presents the development of a novel analysis instrument for performing highly sensitive electrochemistry mass spectrometry (EC-MS) measurements in real-time. The instrument is based on a micofabricated membrane chip which is used to establish a direct loss-free coupling between wet...... EC-MS instrumentation. The potential for future application of the technique could be wide-spread and enable unique insight into electrochemical reaction mechanism through careful study of sub-monolayer desorbtion phenomena similar to the ones presented herein....

  8. Structurally Deformed MoS2 for Electrochemically Stable, Thermally Resistant, and Highly Efficient Hydrogen Evolution Reaction.

    Science.gov (United States)

    Chen, Yen-Chang; Lu, Ang-Yu; Lu, Ping; Yang, Xiulin; Jiang, Chang-Ming; Mariano, Marina; Kaehr, Bryan; Lin, Oliver; Taylor, André; Sharp, Ian D; Li, Lain-Jong; Chou, Stanley S; Tung, Vincent

    2017-11-01

    The emerging molybdenum disulfide (MoS 2 ) offers intriguing possibilities for realizing a transformative new catalyst for driving the hydrogen evolution reaction (HER). However, the trade-off between catalytic activity and long-term stability represents a formidable challenge and has not been extensively addressed. This study reports that metastable and temperature-sensitive chemically exfoliated MoS 2 (ce-MoS 2 ) can be made into electrochemically stable (5000 cycles), and thermally robust (300 °C) while maintaining synthetic scalability and excellent catalytic activity through physical-transformation into 3D structurally deformed nanostructures. The dimensional transition enabled by a high throughput electrohydrodynamic process provides highly accessible, and electrochemically active surface area and facilitates efficient transport across various interfaces. Meanwhile, the hierarchically strained morphology is found to improve electronic coupling between active sites and current collecting substrates without the need for selective engineering the electronically heterogeneous interfaces. Specifically, the synergistic combination of high strain load stemmed from capillarity-induced-self-crumpling and sulfur (S) vacancies intrinsic to chemical exfoliation enables simultaneous modulation of active site density and intrinsic HER activity regardless of continuous operation or elevated temperature. These results provide new insights into how catalytic activity, electrochemical-, and thermal stability can be concurrently enhanced through the physical transformation that is reminiscent of nature, in which properties of biological materials emerge from evolved dimensional transitions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Structurally Deformed MoS2 for Electrochemically Stable, Thermally Resistant, and Highly Efficient Hydrogen Evolution Reaction

    KAUST Repository

    Chen, Yen-Chang

    2017-10-12

    The emerging molybdenum disulfide (MoS2) offers intriguing possibilities for realizing a transformative new catalyst for driving the hydrogen evolution reaction (HER). However, the trade-off between catalytic activity and long-term stability represents a formidable challenge and has not been extensively addressed. This study reports that metastable and temperature-sensitive chemically exfoliated MoS2 (ce-MoS2) can be made into electrochemically stable (5000 cycles), and thermally robust (300 °C) while maintaining synthetic scalability and excellent catalytic activity through physical-transformation into 3D structurally deformed nanostructures. The dimensional transition enabled by a high throughput electrohydrodynamic process provides highly accessible, and electrochemically active surface area and facilitates efficient transport across various interfaces. Meanwhile, the hierarchically strained morphology is found to improve electronic coupling between active sites and current collecting substrates without the need for selective engineering the electronically heterogeneous interfaces. Specifically, the synergistic combination of high strain load stemmed from capillarity-induced-self-crumpling and sulfur (S) vacancies intrinsic to chemical exfoliation enables simultaneous modulation of active site density and intrinsic HER activity regardless of continuous operation or elevated temperature. These results provide new insights into how catalytic activity, electrochemical-, and thermal stability can be concurrently enhanced through the physical transformation that is reminiscent of nature, in which properties of biological materials emerge from evolved dimensional transitions.

  10. Design, development, and demonstration of a fully LabVIEW controlled in situ electrochemical Fourier transform infrared setup combined with a wall-jet electrode to investigate the electrochemical interface of nanoparticulate electrocatalysts under reaction conditions.

    Science.gov (United States)

    Nesselberger, Markus; Ashton, Sean J; Wiberg, Gustav K H; Arenz, Matthias

    2013-07-01

    We present a detailed description of the construction of an in situ electrochemical ATR-FTIR setup combined with a wall-jet electrode to investigate the electrocatalytic properties of nanoparticulate catalysts in situ under controlled mass transport conditions. The presented setup allows the electrochemical interface to be probed in combination with the simultaneous determination of reaction rates. At the same time, the high level of automation allows it to be used as a standard tool in electrocatalysis research. The performance of the setup was demonstrated by probing the oxygen reduction reaction on a platinum black catalyst in sulfuric electrolyte.

  11. Campania preventability assessment committee: a focus on the preventability of the contrast media adverse drug reactions.

    Science.gov (United States)

    Sessa, Maurizio; Rossi, Claudia; Rafaniello, Concetta; Mascolo, Annamaria; Cimmaruta, Daniela; Scavone, Cristina; Fiorentino, Sonia; Grassi, Enrico; Reginelli, Alfonso; Rotondo, Antonio; Sportiello, Liberata

    2016-12-01

    The current study aims to assess the preventability of the contrast media adverse drug reactions reported through the Campania spontaneous reporting system, identifying the possible limitations emerged in this type of evaluation. All the individual case safety reports validated by the Campania Pharmacovigilance Regional Centre from July 2012 to September 2015 were screened to select those that reported contrast media as suspected drug. Campania Preventability Assessment Committee, in collaboration with clinicians specialized in Radiology, assessed the preventability according to the P-Method, through a case-by-case approach. From July 2012 to September 2015, 13798 cases were inserted by pharmacovigilance managers in the Italian Pharmacovigilance Network database (in the geographical contest of the Campania Region), of which 67 reported contrast media as suspected drug. Five preventable cases were found. The most reported causes for preventability were the inappropriate drug use for the case clinical conditions and the absence of the preventive measure administrated prior to the contrast media administration. Several limitations were found in the evaluation of the critical criteria for the preventability assessment. Educational initiatives will be organized directly to the healthcare professionals involved in the contrast media administration, to promote an appropriate use of the contrast media.

  12. Electrochemical degradation of sulfonamides at BDD electrode: Kinetics, reaction pathway and eco-toxicity evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Fabiańska, Aleksandra; Białk-Bielińska, Anna; Stepnowski, Piotr [Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-952 Gdansk (Poland); Stolte, Stefan [Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-952 Gdansk (Poland); UFT-Centre of Environmental Research and Sustainable Technology, University of Bremen, Leobener Straße UFT, D-28359 Bremen (Germany); Siedlecka, Ewa Maria, E-mail: ewa.siedlecka@ug.edu.pl [Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-952 Gdansk (Poland)

    2014-09-15

    Highlights: • SNs were electrochemically oxidized at BDD in one compartment reactor. • The efficiency of SN degradation was the highest in effluents from municipal WWTP. • The electro-degradation SNs based on oxidation but reduction was also possible. • Electrochemical oxidation of SNs led in some cases to mixtures toxic to L. minor. - Abstract: The investigation dealt with electrochemical oxidation of five sulfonamides (SNs): sulfadiazine (SDZ), sulfathiazole (STZ), sulfamerazine (SMR), sulfamethazine (SMN) and sulfadimethoxine (SDM) in aqueous solution at boron-doped diamond (BDD) electrode. All studied sulfonamides were degraded according to a pseudo first order kinetics. The structure of SNs had no significant effect on the values of pseudo first order rate constants. Increased degradation efficiency was observed in higher temperature and in acidic pH. Due to the presence of chlorine and nitrate SNs were more effectively oxidized from municipal wastewater treatment plant (WWTP) effluents than from pure supporting electrolyte Na{sub 2}SO{sub 4}. The intermediates identified by LC–MS and GC–MS analysis suggested that the hydroxyl radicals attack mainly the S-N bond, but also the aromatic ring systems (aniline, pyrimidine or triazole) of SNs. Finally, the toxicity of the SNs solutions and effluents after electrochemical treatment was assessed through the measurement of growth inhibition of green algae (Scenedesmus vacualatus) and duckweed (Lemna minor). Toxicity of SMR, STZ, SMN solutions before and after electrochemical oxidation and SDM solution after the process in L. minor test was observed. No significant toxicity of studied SNs was observed in algae test.

  13. Modeling the Voltage Dependence of Electrochemical Reactions at Solid-Solid and Solid-Liquid Interfaces in Batteries

    Science.gov (United States)

    Leung, Kevin

    2015-03-01

    Electrochemical reactions at electrode/electrolyte interfaces are critically dependent on the total electrochemical potential or voltage. In this presentation, we briefly review ab initio molecular dynamics (AIMD)-based estimate of voltages on graphite basal and edge planes, and then apply similar concepts to solid-solid interfaces relevant to lithium ion and Li-air batteries. Thin solid films on electrode surfaces, whether naturally occuring during power cycling (e.g., undesirable lithium carbonate on Li-air cathodes) or are artificially introduced, can undergo electrochemical reactions as the applied voltage varies. Here the onset of oxidation of lithium carbonate and other oxide thin films on model gold electrode surfaces is correlated with the electronic structure in the presence/absence of solvent molecules. Our predictions help determine whether oxidation first occurs at the electrode-thin film or electrolyte-thin film interface. Finally, we will critically compare the voltage estimate methodology used in the fuel cell community with the lithium cohesive energy calibration method broadly applied in the battery community, and discuss why they may yield different predictions. This work was supported by Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DESC0001160. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Deparment of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. Electrochemical characterization of Pt-Ru-Pd catalysts for methanol oxidation reaction in direct methanol fuel cells.

    Science.gov (United States)

    Choi, M; Han, C; Kim, I T; An, J C; Lee, J J; Lee, H K; Shim, J

    2011-01-01

    PtRuPd nanoparticles on carbon black were prepared and characterized as electrocatalysts for methanol oxidation reaction in direct methanol fuel cells. Nano-sized Pd (2-4 nm) particles were deposited on Pt/C and PtRu/C (commercial products) by a simple chemical reduction process. The structural and physical information of the PtRuPd/C were confirmed by TEM and XRD, and their electrocatalytic activities were measured by cyclic voltammetry and linear sweep voltammetry. The catalysts containing Pd showed higher electrocatalytic activity for methanol oxidation reaction than the other catalysts. This might be attributed to an increase in the electrochemical surface area of Pt, which is caused by the addition of Pd; this results in increased catalyst utilization.

  15. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction.

    Science.gov (United States)

    Wang, Haotian; Lu, Zhiyi; Xu, Shicheng; Kong, Desheng; Cha, Judy J; Zheng, Guangyuan; Hsu, Po-Chun; Yan, Kai; Bradshaw, David; Prinz, Fritz B; Cui, Yi

    2013-12-03

    The ability to intercalate guest species into the van der Waals gap of 2D layered materials affords the opportunity to engineer the electronic structures for a variety of applications. Here we demonstrate the continuous tuning of layer vertically aligned MoS2 nanofilms through electrochemical intercalation of Li(+) ions. By scanning the Li intercalation potential from high to low, we have gained control of multiple important material properties in a continuous manner, including tuning the oxidation state of Mo, the transition of semiconducting 2H to metallic 1T phase, and expanding the van der Waals gap until exfoliation. Using such nanofilms after different degree of Li intercalation, we show the significant improvement of the hydrogen evolution reaction activity. A strong correlation between such tunable material properties and hydrogen evolution reaction activity is established. This work provides an intriguing and effective approach on tuning electronic structures for optimizing the catalytic activity.

  16. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction

    Science.gov (United States)

    Wang, Haotian; Lu, Zhiyi; Xu, Shicheng; Kong, Desheng; Cha, Judy J.; Zheng, Guangyuan; Hsu, Po-Chun; Yan, Kai; Bradshaw, David; Prinz, Fritz B.; Cui, Yi

    2013-01-01

    The ability to intercalate guest species into the van der Waals gap of 2D layered materials affords the opportunity to engineer the electronic structures for a variety of applications. Here we demonstrate the continuous tuning of layer vertically aligned MoS2 nanofilms through electrochemical intercalation of Li+ ions. By scanning the Li intercalation potential from high to low, we have gained control of multiple important material properties in a continuous manner, including tuning the oxidation state of Mo, the transition of semiconducting 2H to metallic 1T phase, and expanding the van der Waals gap until exfoliation. Using such nanofilms after different degree of Li intercalation, we show the significant improvement of the hydrogen evolution reaction activity. A strong correlation between such tunable material properties and hydrogen evolution reaction activity is established. This work provides an intriguing and effective approach on tuning electronic structures for optimizing the catalytic activity. PMID:24248362

  17. Investigation of chemical and electrochemical reactions mechanisms in a direct carbon fuel cell using olive wood charcoal as sustainable fuel

    Science.gov (United States)

    Elleuch, Amal; Halouani, Kamel; Li, Yongdan

    2015-05-01

    Direct carbon fuel cell (DCFC) is a high temperature fuel cell using solid carbon as fuel. The use of environmentally friendly carbon material constitutes a promising option for the DCFC future. In this context, this paper focuses on the use of biomass-derived charcoal renewable fuel. A practical investigation of Tunisian olive wood charcoal (OW-C) in planar DCFCs is conducted and good power density (105 mW cm-2) and higher current density (550 mA cm-2) are obtained at 700 °C. Analytical and predictive techniques are performed to explore the relationships between fuel properties and DCFC chemical and electrochemical mechanisms. High carbon content, carbon-oxygen groups and disordered structure, are the key parameters allowing the achieved good performance. Relatively complex chain reactions are predicted to explain the gas evolution within the anode. CO, H2 and CH4 participation in the anodic reaction is proved.

  18. Electrochemical behavior of NixW1−x materials as catalyst for hydrogen evolution reaction in alkaline media

    International Nuclear Information System (INIS)

    Oliver-Tolentino, Miguel A.; Arce-Estrada, Elsa M.; Cortés-Escobedo, Claudia A.; Bolarín-Miro, Ana M.; Sánchez-De Jesús, Félix; González-Huerta, Rosa de G.; Manzo-Robledo, Arturo

    2012-01-01

    Highlights: ► The electrochemical techniques used in this study elucidated the Ni–W surface state. ► The Ni–W materials were effective for the hydrogen evolution reaction. ► The prepared alloys exhibited higher catalytic activity than their precursors. ► The preparation method is relatively simple and effective procedure. - Abstract: In the present work, results of electrochemical evaluation, as well as morphological and structural characterization of Ni x W 1−x materials with x = 0.77, 0.64, 0.4, 0.19 and 0.07 processed by means of high energy ball milling from high purity powders are presented. Also, the electrocatalytic performance on the hydrogen evolution reaction (HER) of the Ni x W 1−x materials evaluated by linear polarization and cyclic voltammetry techniques in alkaline media at room temperature is discussed. The structural and morphological characterization of the as-prepared materials was carried out using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results indicated a small-particle clusters and solid solution formation. According to the kinetics parameters the best electrocatalytic activity was observed at Ni 64 W 36 .

  19. Electrochemically reduced graphene-oxide supported bimetallic nanoparticles highly efficient for oxygen reduction reaction with excellent methanol tolerance

    Science.gov (United States)

    Yasmin, Sabina; Cho, Sung; Jeon, Seungwon

    2018-03-01

    We report a simple and facile method for the fabrication of bimetallic nanoparticles on electrochemically reduced graphene oxide (ErGO) for electrocatalytic oxygen reduction reaction (ORR) in alkaline media. First, reduced graphene oxide supported palladium and manganese oxide nanoparticle (rGO/Pd-Mn2O3) catalyst was synthesized via a simple chemical method at room temperature; then, it was electrochemically reduced for oxidation reduction reaction (ORR) in alkaline media. The chemical composition and morphological properties of ErGO/Pd-Mn2O3 was characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). The TEM images reveals that, nano-sized Pd and Mn2O3 particles were disperse on the ErGO sheet without aggregation. The as-prepared ErGO/Pd-Mn2O3 was employed for ORR in alkaline media which shows higher ORR activity with more positive onset and half-wave potential, respectively. Remarkably, ErGO/Pd-Mn2O3 reduced oxygen via four-electron transfer pathway with negligible amount of intermediate peroxide species (HO2-). Furthermore, the higher stability and excellent methanol tolerance of the ErGO/Pd-Mn2O3 compared to commercial Pt/C (20 wt%) catalyst, indicating its suitability for fuel cells.

  20. Quasi-steady-state voltammetry of rapid electron transfer reactions at the macroscopic substrate of the scanning electrochemical microscope.

    Science.gov (United States)

    Nioradze, Nikoloz; Kim, Jiyeon; Amemiya, Shigeru

    2011-02-01

    We report on a novel theory and experiment for scanning electrochemical microscopy (SECM) to enable quasi-steady-state voltammetry of rapid electron transfer (ET) reactions at macroscopic substrates. With this powerful approach, the substrate potential is cycled widely across the formal potential of a redox couple while the reactant or product of a substrate reaction is amperometrically detected at the tip in the feedback or substrate generation/tip collection mode, respectively. The plot of tip current versus substrate potential features the retraceable sigmoidal shape of a quasi-steady-state voltammogram although a transient voltammogram is obtained at the macroscopic substrate. Finite element simulations reveal that a short tip-substrate distance and a reversible substrate reaction (except under the tip) are required for quasi-steady-state voltammetry. Advantageously, a pair of quasi-steady-state voltammograms is obtained by employing both operation modes to reliably determine all transport, thermodynamic, and kinetic parameters as confirmed experimentally for rapid ET reactions of ferrocenemethanol and 7,7,8,8-tetracyanoquinodimethane at a Pt substrate with ∼0.5 μm-radius Pt tips positioned at 90 nm-1 μm distances. Standard ET rate constants of ∼7 cm/s were obtained for the latter mediator as the largest determined for a substrate reaction by SECM. Various potential applications of quasi-steady-state voltammetry are also proposed.

  1. Modelling and simulation of a direct ethanol fuel cell considering multistep electrochemical reactions, transport processes and mixed potentials

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Marco [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg (Germany); Melke, Julia, E-mail: julia.melke@gmail.co [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg (Germany); Gerteisen, Dietmar [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg (Germany)

    2011-04-15

    Highlights: A DEFC model considering the mixed potential formation at cathode and anode. The low cell voltage at open circuit is due to the parasitic reaction of ethanol and oxygen. Under load, only the parasitic oxidation of ethanol is significant. Inhibiting the parasitic reactions can approximately double the current density. - Abstract: In this work a one-dimensional mathematical model of a direct ethanol fuel cell (DEFC) is presented. The electrochemical oxidation of ethanol in the catalyst layers is described by several reaction steps leading to surface coverage with adsorbed intermediates (CH{sub 3}CO, CO, CH{sub 3} and OH) and to the final products acetaldehyde, acetic acid and CO{sub 2}. A bifunctional reaction mechanism is assumed for the activation of water on a binary catalyst favouring the further oxidation of adsorbates blocking active catalyst sites. The chemical reactions are highly coupled with the charge and reactant transport. The model accounts for crossover of the reactants through the membrane leading to the phenomenon of cathode and anode mixed potentials due to the parasitic oxidation and reduction of ethanol and oxygen, respectively. Polarisation curves of a DEFC were recorded for various ethanol feed concentrations and were used as reference data for the simulation. Based on one set of model parameters the characteristic of electronic and protonic potential, the relative surface coverage and the parasitic current densities in the catalyst layers were studied.

  2. Analysis of transport phenomena and electrochemical reactions in a micro PEM fuel cell

    OpenAIRE

    Maher A.R. Sadiq Al-Baghdadi

    2014-01-01

    Micro-fuel cells are considered as promising electrochemical power sources in portable electronic devices. The presence of microelectromechanical system (MEMS) technology makes it possible to manufacture the miniaturized fuel cell systems. The majority of research on micro-scale fuel cells is aimed at micro-power applications. Performance of micro-fuel cells are closely related to many factors, such as designs and operating conditions. CFD modeling and simulation for heat and mass transport i...

  3. Reaction of Br2 with adsorbed CO on Pt, studied by the surface interrogation mode of scanning electrochemical microscopy.

    Science.gov (United States)

    Wang, Qian; Rodríguez-López, Joaquín; Bard, Allen J

    2009-12-02

    Scanning electrochemical microscopy surface interrogation (SI-SECM) in the cyclic voltammetry mode was successfully used to detect and quantify adsorbed CO on a Pt electrode by reaction with electrogenerated Br(2). The two-electrode setup used in this new technique allowed the production of Br(2) on an interrogator tip, which reported a transient positive feedback above a Pt substrate at open circuit as an indication of the reactivity of this halogen with CO((ads)). Br(-) and CO(2) are shown to be the main products of the reaction (in the absence of O(2)), which may involve the formation of bromophosgene as a hydrolyzable intermediate. Under saturation conditions, CO((ads)) was reproducibly quantified at the polycrystalline Pt surface with theta(CO) approximately = 0.5. The reaction is shown to be blocked by the action of pre-adsorbed cyanide, which demonstrates the surface character of the process. The formation of CO(2) as an end product was further tested in a bulk experiment: addition of Pt black to a mixture of Br(2) in 0.5 M H(2)SO(4) through which CO was bubbled gave a precipitate of BaCO(3) in a saturated solution of Ba(OH)(2). The use of SI-SECM allowed access to a reaction that would otherwise be difficult to prove through conventional electrochemistry on a single electrode.

  4. Reflection-mode x-ray powder diffraction cell for in situ studies of electrochemical reactions

    International Nuclear Information System (INIS)

    Roberts, G.A.; Stewart, K.D.

    2004-01-01

    The design and operation of an electrochemical cell for reflection-mode powder x-ray diffraction experiments are discussed. The cell is designed for the study of electrodes that are used in rechargeable lithium batteries. It is designed for assembly in a glove box so that air-sensitive materials, such as lithium foil electrodes and carbonate-based electrolytes with lithium salts, can be used. The cell uses a beryllium window for x-ray transmission and electrical contact. A simple mechanism for compressing the electrodes is included in the design. Sample results for the cell are shown with a Cu Kα source and a position-sensitive detector

  5. Electrochemical probing into the active sites of graphitic-layer encapsulated iron oxygen reduction reaction electrocatalysts

    DEFF Research Database (Denmark)

    Zhong, Lijie; Jensen, Jens Oluf; Cleemann, Lars Nilausen

    2017-01-01

    is still unclear compared with the well-recognized surface coordinated FeNx/C structure. Using the strong complexing effect of the iron component with anions, cyanide (CN−) in alkaline and thiocyanate (SCN−) in acidic media, the metal containing active sites are electrochemically probed. Three...... significant shifts of half-wave potentials indicating that surface Fe coordinated sites in all cases. The G@Fe catalyst showed the weakest poisoning effect (the lowest shifts of half-wave potential) compared to the Fe/N/C and FePc catalysts in both electrolytes. These results could be explained...

  6. Origin of Nanobubbles Electrochemically Formed in a Magnetic Field: Ionic Vacancy Production in Electrode Reaction

    Science.gov (United States)

    Aogaki, Ryoichi; Sugiyama, Atsushi; Miura, Makoto; Oshikiri, Yoshinobu; Miura, Miki; Morimoto, Ryoichi; Takagi, Satoshi; Mogi, Iwao; Yamauchi, Yusuke

    2016-07-01

    As a process complementing conventional electrode reactions, ionic vacancy production in electrode reaction was theoretically examined; whether reaction is anodic or cathodic, based on the momentum conservation by Newton’s second law of motion, electron transfer necessarily leads to the emission of original embryo vacancies, and dielectric polarization endows to them the same electric charge as trans- ferred in the reaction. Then, the emitted embryo vacancies immediately receive the thermal relaxation of solution particles to develop steady-state vacancies. After the vacancy production, nanobubbles are created by the collision of the vacancies in a vertical magnetic field.

  7. Modeling the Electrochemical Hydrogen Oxidation and Evolution Reactions on the Basis of Density Functional Theory Calculations

    DEFF Research Database (Denmark)

    Skulason, Egill; Tripkovic, Vladimir; Björketun, Mårten

    2010-01-01

    Density functional theory calculations have been performed for the three elementary steps―Tafel, Heyrovsky, and Volmer―involved in the hydrogen oxidation reaction (HOR) and its reverse, the hydrogen evolution reaction (HER). For the Pt(111) surface a detailed model consisting of a negatively...... charged Pt(111) slab and solvated protons in up to three water bilayers is considered and reaction energies and activation barriers are determined by using a newly developed computational scheme where the potential can be kept constant during a charge transfer reaction. We determine the rate limiting...

  8. Effect of nitrogen precursors on the electrochemical performance of nitrogen-doped reduced graphene oxide towards oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Soo, Li Ting, E-mail: nicolesoo90@gmail.com [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); Loh, Kee Shyuan, E-mail: ksloh@ukm.edu.my [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); Mohamad, Abu Bakar, E-mail: drab@ukm.edu.my [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); Daud, Wan Ramli Wan, E-mail: wramli@ukm.edu.my [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); Wong, Wai Yin, E-mail: waiyin.wwy@gmail.com [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); School of Engineering, Taylor' s University' s Lakeside Campus, No. 1, Jalan Taylor' s, 46500 Subang Jaya, Selangor (Malaysia)

    2016-08-25

    A series of nitrogen-doped reduced graphene oxides (NGs) with different ratios are synthesized by thermal annealing of graphene oxide with melamine or urea. The total nitrogen content in NG is high, with values of up to 5.88 at.%. The NG samples prepared by melamine exhibited thin transparent graphene sheets structure, with consist of higher nitrogen doping level and quaternary N content compared to those NG samples prepared from urea. Electrochemical characterizations show that NG is a promising metal-free electrocatalyst for an oxygen reduction reaction (ORR). Incorporation of nitrogen atoms into graphene basal plane can enhances its electrocatalytic activity toward ORR in alkaline media. The onset potential and mean number of electron transfers on NG 1 are −0.10 V and 3.80 respectively, which is higher than that of reduced graphene oxide (−0.15 V, 3.52). This study suggests that quaternary-N of the NG samples is the active site which determines the ORR activity Moreover, the NG samples with the transparent layer of graphene-like structure have better ORR performances than that of bulk graphite-like NG samples. - Highlights: • Synthesis of nitrogen-doped graphene (NG) via thermal annealing. • The effects of the nitrogen precursors on the synthesized NG are discussed. • Electrochemical performances of the NG are correlated to N doping and EASA. • Graphitic-N is proposed to be the active site for ORR.

  9. Electrochemical Branched-DNA Assay for Polymerase Chain Reaction-Free Detection and Quantification of Oncogenes in Messenger RNA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ai Cheng; Dai, Ziyu; Chen, Baowei; Wu, Hong; Wang, Jun; Zhang, Aiguo; Zhang, Lurong; Lim, Tit-Meng; Lin, Yuehe

    2008-12-01

    We describe a novel electrochemical branched-DNA (bDNA) assay for polymerase chain reaction (PCR)-free detection and quantification of p185 BCR-ABL leukemia fusion transcript in the population of messenger RNA (mRNA) extracted from cell lines. The bDNA amplifier carrying high loading of alkaline phosphatase (ALP) tracers was used to amplify targets signal. The targets were captured on microplate well surfaces through cooperative sandwich hybridization prior to the labeling of bDNA. The activity of captured ALP was monitored by square-wave voltammetric (SWV) analysis of the electroactive enzymatic product in the presence of 1-napthyl-phosphate. The specificity and sensitivity of assay enabled direct detection of target transcript in as little as 4.6 ng mRNA without PCR amplification. In combination with the use of a well-quantified standard, the electrochemical bDNA assay was capable of direct use for a PCR-free quantitative analysis of target transcript in total mRNA population. The approach thus provides a simple, sensitive, accurate and quantitative tool alternate to the RQ-PCR for early disease diagnosis.

  10. Sensitive electrochemical immunoassay with signal enhancement based on nanogold-encapsulated poly(amidoamine) dendrimer-stimulated hydrogen evolution reaction.

    Science.gov (United States)

    Sun, Ai-Li

    2015-12-07

    A new electrochemical immunosensor with signal enhancement was designed for sensitive detection of disease-related protein (human carbohydrate antigen 19-9, CA 19-9 used in this case). The assay was carried out on a capture antibody-modified screen-printed carbon electrode with a sandwich-type mode by using detection antibody-functionalized nanogold-encapsulated poly(amidoamine) dendrimer (AuNP-PAAD). The AuNP-PAAD was first synthesized through the in situ reduction method and functionalized with the polyclonal rabbit anti-human CA 19-9 antibody. Upon target CA 19-9 introduction, a sandwiched immunocomplex could be formed between the capture antibody and detection antibody. Accompanying the AuNP-PAAD, the electrocatalytic activity of the carried gold nanoparticles toward the hydrogen evolution reaction (HER) allowed the rapid quantification of the target analyte on the electrode. The amplified electrochemical signal mainly derived from AuNP-catalyzed HER in an acidic medium. Under optimal conditions, the immuno-HER assay displayed a wide dynamic concentration range from 0.01 to 300 U mL(-1) toward target CA 19-9 with a detection limit (LOD) of 6.3 mU mL(-1). The reproducibility, precision, specificity and stability of our strategy were acceptable. Additionally, the system was further validated by assaying 13 human serum specimens, giving well matched results obtained from the commercialized enzyme-linked immunosorbent assay (ELISA) method.

  11. Analysis of transport phenomena and electrochemical reactions in a micro PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy and Environment Foundation, Najaf, P.O.Box 39 (Iraq)

    2013-07-01

    Micro-fuel cells are considered as promising electrochemical power sources in portable electronic devices. The presence of microelectromechanical system (MEMS) technology makes it possible to manufacture the miniaturized fuel cell systems. The majority of research on micro-scale fuel cells is aimed at micro-power applications. Performance of micro-fuel cells are closely related to many factors, such as designs and operating conditions. CFD modeling and simulation for heat and mass transport in micro PEM fuel cells are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize the micro fuel cell designs before building a prototype for engineering application. In this research, full three-dimensional, non-isothermal computational fluid dynamics model of a micro proton exchange membrane (PEM) fuel cell has been developed. This comprehensive model accounts for the major transport phenomena such as convective and diffusive heat and mass transfer, electrode kinetics, transport and phase-change mechanism of water, and potential fields in a micro PEM fuel cell. The model explains many interacting, complex electrochemical, and transport phenomena that cannot be studied experimentally. Three-dimensional results of the species profiles, temperature distribution, potential distribution, and local current density distribution are presented and analysed, with the focus on the physical insight and fundamental understanding.

  12. Multi-resistive reduced graphene oxide diode with reversible surface electrochemical reaction induced carrier control.

    Science.gov (United States)

    Seo, Hyungtak; Ahn, Seungbae; Kim, Jinseo; Lee, Young-Ahn; Chung, Koo-Hyun; Jeon, Ki-Joon

    2014-07-10

    The extended application of graphene-based electronic devices requires a bandgap opening in order to realize the targeted device functionality. Since the bandgap tuning of pristine graphene is limited to 360 meV, the chemical modification of graphene is considered essential to achieve a large bandgap opening at the expense of electrical properties degradation. Reduced graphene oxide (RGO) has attracted significant interest for fabricating graphene-based semiconductors since it has several advantages over other forms of chemically modified graphene; such as tunable bandgap opening, decent electrical properties, and easy synthesis. Because of the reduced bonding nature of RGO, the role of metastable oxygen in the RGO matrix is recently highlighted and it may offer emerging ionic devices. In this study, we show that multi-resistivity RGO/n-Si diodes can be obtained by controlling the RGO thickness at a nanometer scale. This is made possible by (1) a metastable lattice-oxygen drift within bulk RGO and (2) electrochemical ambient hydroxyl (OH) formation at the RGO surface. The effect demonstrated in a p-RGO/n-Si heterojunction diode is equivalent to electrochemically driven reversible electronic manipulation and therefore provides an important basis for the application of O bistability in RGO for chemical sensors and electrocatalysis.

  13. Electrochemical lithium migration to mitigate alkali-silica reaction in existing concrete structures

    NARCIS (Netherlands)

    Silva De Souza, L.M.

    2016-01-01

    Alkali-silica reaction (ASR) is a deterioration process that affects the durability of concrete structures worldwide. During the reaction, hydroxyl and alkali ions present in the pore solution react with reactive silica from the aggregate, forming a hygroscopic ASR gel. Alternatively, the silica

  14. Using Physical Organic Chemistry To Shape the Course of Electrochemical Reactions.

    Science.gov (United States)

    Moeller, Kevin D

    2018-03-02

    While organic electrochemistry can look quite different to a chemist not familiar with the technique, the reactions are at their core organic reactions. As such, they are developed and optimized using the same physical organic chemistry principles employed during the development of any other organic reaction. Certainly, the electron transfer that triggers the reactions can require a consideration of new "wrinkles" to those principles, but those considerations are typically minimal relative to the more traditional approaches needed to manipulate the pathways available to the reactive intermediates formed downstream of that electron transfer. In this review, three very different synthetic challenges-the generation and trapping of radical cations, the development of site-selective reactions on microelectrode arrays, and the optimization of current in a paired electrolysis-are used to illustrate this point.

  15. Fe/Ni-N-CNFs electrochemical catalyst for oxygen reduction reaction/oxygen evolution reaction in alkaline media

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhuang [MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001 (China); Li, Mian [Faculty of Chemistry, Northeast Normal University, Changchun 130024 (China); Fan, Liquan; Han, Jianan [MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001 (China); Xiong, Yueping, E-mail: ypxiong@hit.edu.cn [MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2017-04-15

    Highlights: • Novel Fe/Ni-N-CNFs electrocatalysts are prepared by electrospinning technique. • The Fe1Ni1-N-CNFs catalyst exhibits the excellent ORR and OER catalytic activity. • Synergy of Fe/Ni alloy is responsible for the excellent catalytic performance. - Abstract: The novel of iron, nickel and nitrogen doped carbon nanofibers (Fe/Ni-N-CNFs) as bifunctional electrocatalysts are prepared by electrospinning technique. In alkaline media, the Fe/Ni-N-CNFs catalysts (especially for Fe1Ni1-N-CNFs) exhibit remarkable electrocatalytic performances of oxygen reduction reaction (ORR)/oxygen evolution reaction (OER). For ORR catalytic activity, Fe1Ni1-N-CNFs catalyst offers a higher onset potential of 0.903 V, a similar four-electron reaction pathway, and excellent stability. For OER catalytic activity, Fe1Ni1-N-CNFs catalyst possesses a lower onset potential of 1.528 V and a smaller charge transfer resistance of 48.14 Ω. The unparalleled catalytic activity of ORR and OER for the Fe1Ni1-N-CNFs is attributed to the 3D porous cross-linked microstructures of carbon nanofibers with Fe/Ni alloy, N dopant, and abundant M-N{sub x} and NiOOH as catalytic active sites. Thus, Fe1Ni1-N-CNFs catalyst can be acted as one of the efficient and inexpensive catalysts of metal-air batteries.

  16. Electrochemical synthesis of Mo{sub 2}C catalytical coatings for the water-gas shift reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, S.A.; Dubrovskiy, A.R. [Inst. of Chemistry, Kola Science Centre RAS, Apatity, Murmansk Region (Russian Federation); Rebrov, E.V.; Schouten, J.C. [Lab. of Chemical Reactor Engineering, Eindhoven Univ. of Tech., Eindhoven (Netherlands)

    2007-10-15

    The electroreduction of CO{sub 3}{sup 2-} ions on a molybdenum cathode in a NaCl-KCl-Li{sub 2}CO{sub 3} melt was studied by cyclic voltammetry. The electrochemical synthesis of Mo{sub 2}C on molybdenum substrates has been performed at 1123 K for 7 h with a cathodic current density of 5 mA cm{sup -2}. If molybdenum carbide is present as a thin (ca. 500 nm) film on a molybdenum substrate (Mo{sub 2}C/Mo), its catalytic activity in the water gas-shift reaction is enhanced by at least an order of magnitude compared to that of the bulk Mo{sub 2}C phase. (orig.)

  17. Electrochemical Deposition of Platinum and Palladium on Gold Nanoparticles Loaded Carbon Nanotube Support for Oxidation Reactions in Fuel Cell

    Directory of Open Access Journals (Sweden)

    Surin Saipanya

    2014-01-01

    Full Text Available Pt and Pd sequentially electrodeposited Au nanoparticles loaded carbon nanotube (Au-CNT was prepared for the electrocatalytic study of methanol, ethanol, and formic acid oxidations. All electrochemical measurements were carried out in a three-electrode cell. A platinum wire and Ag/AgCl were used as auxiliary and reference electrodes, respectively. Suspension of the Au-CNT, phosphate buffer, isopropanol, and Nafion was mixed and dropped on glassy carbon as a working electrode. By sequential deposition method, PdPtPt/Au-CNT, PtPdPd/Au-CNT, and PtPdPt/Au-CNT catalysts were prepared. Cyclic voltammograms (CVs of those catalysts in 1 M H2SO4 solution showed hydrogen adsorption and hydrogen desorption reactions. CV responses for those three catalysts in methanol, ethanol, and formic acid electrooxidations studied in 2 M CH3OH, CH3CH2OH, and HCOOH in 1 M H2SO4 show characteristic oxidation peaks. The oxidation peaks at anodic scan contribute to those organic substance oxidations while the peaks at cathodic scan are related with the reoxidation of the adsorbed carbonaceous species. Comparing all those three catalysts, it can be found that the PdPtPt/Au-CNT catalyst is good at methanol oxidation; the PtPdPt/Au-CNT effectively enhances ethanol oxidation while the PtPdPd/Au-CNT exceptionally catalyzes formic acid oxidation. Therefore, a different stoichiometry affects the electrochemical active surface area of the catalysts to achieve the catalytic oxidation reactions.

  18. Reaction factors for photo-electrochemical deposition of metal silver on polypyrrole as conducting polymer

    International Nuclear Information System (INIS)

    Kawakita, Jin; Boter, Jelmer M.; Shova, Neupane; Fujihira, Hiroshi; Chikyow, Toyohiro

    2015-01-01

    Composite of metal and conducting polymer is expected for electrical application by the use of their advantages. For improvement of the composite’s characteristics, it is important to control formation rate and structure of the composites obtained by simultaneous metal deposition and polymerization under photo irradiation. The purpose of this research was to reveal the effects of UV irradiation and dopant type for conducting polymer on photo-electrochemical deposition of metal. Cathodic polarization curves for silver deposition on polypyrrole doped with different types of anion at different intensity of the UV light were compared. Deposited particles were evaluated by the statistical analysis. The experimental results showed that silver deposition on polypyrrole was enhanced by UV introduction and depended on the dopant type.

  19. Electrochemical oxidation of quaternary ammonium electrolytes : Unexpected side reactions in organic electrochemistry

    NARCIS (Netherlands)

    Nouri Nigjeh, Eslam; de Vries, Marcel; Bruins, Andries P.; Bischoff, Rainer; Permentier, Hjalmar P.

    Quaternary ammonium salts are among the most widely used electrolytes in organic electrochemistry, but there is little known about their unwanted side oxidation reactions. We have, therefore, studied the constant potential oxidation products of quaternary ammonium electrolytes using mass

  20. Structural and electrochemical study of the reaction of lithium with silicon nanowires

    KAUST Repository

    Chan, Candace K.

    2009-04-01

    The structural transformations of silicon nanowires when cycled against lithium were evaluated using electrochemical potential spectroscopy and galvanostatic cycling. During the charge, the nanowires alloy with lithium to form an amorphous LixSi compound. At potentials <50 mV, a structural transformation occurs. In studies on micron-sized particles previously reported in the literature, this transformation is a crystallization to a metastable Li15Si4 phase. X-ray diffraction measurements on the Si nanowires, however, show that they are amorphous, suggesting that a different amorphous phase (LiySi) is formed. Lithium is removed from this phase in the discharge to form amorphous silicon. We have found that limiting the voltage in the charge to 70 mV results in improved efficiency and cyclability compared to charging to 10 mV. This improvement is due to the suppression of the transformation at low potentials, which alloys for reversible cycling of amorphous silicon nanowires. © 2008 Elsevier B.V. All rights reserved.

  1. Modeling coupled transport and electrochemical reaction phenomena in polymer electrolyte fuel cell electrode by Lattice Boltzmann method

    Science.gov (United States)

    Tarokh, Atefeh; Tarokh, Ali; Hejazi, Hossein; Karan, Kunal

    2015-11-01

    Fuel cells convert chemical energy of a fuel directly into electricity. The overall process is a result of coupled reaction-transport processes. The electrochemical reactions occur in porous composite catalysts layers with intermingled material phases, often made up of nano-sized particles and nano/micrometers pores. In a polymer electrolye fuel cell (PEFC) catalyst layer, the focus of this work, transport of electrons through carbon, transport of protons through ion-conducting polymer (ionomer), diffusion of gases through pores must be considered. The three different reacting species, viz. protons, electrons and reactive molecule (H2 or O2) must co-exist at the reactive interface formed by Pt catalyst surface covered by an ionomer film. We use Lattice Boltzmann Method to capture the interactions between chemistry, transport and porous medium geometries in a PEFC catalyst layer. We report the simulation results for a model but novel catalyst architecture made of a continuous carbon phase with organized pore structure. The Pt catalyst is dispersed on the internal surface of the carbon. This Pt-catalyst decorated surface is covered by a thin ionomer film. In particular, we are interested in explicitly capturing the complexity of the pore geometry and Knudsen diffusion effects.

  2. Electrochemical Study on Ligand Substitution Reactions in Oxofluoro Boron Containing Melts

    DEFF Research Database (Denmark)

    Polyakova, L.P.; Bukatova, G.A.; Polyakov, E.G.

    1997-01-01

    Linear voltammetry was used for study of the ligand substitution reactions in the process of titration of FLINAK-KBF4, melt with different oxides. At molar ratio O/B=1 complexes BF4- which are characteristic for oxygenless melt transform into BOF2- Further increasing of O/B ratio up to 2 leads to...

  3. A Study on Catalysis and Electrolyte Engineering for H2/O2 Electrochemical Reactions

    KAUST Repository

    Shinagawa, Tatsuya

    2016-09-27

    Water electrolysis conjugated with renewable energy sources potentially realizes a sustainable society. Although the current electrolyzers operate at extreme pH to maximize the electrolysis efficiency, near-neutral pH conditions may optimize the overall system operation when conjugated with renewable energy sources. In this context, a study on the electrolysis in the mild conditions is essential. The dissertation investigates the water electrolysis in various conditions, with a particular focus placed on milder conditions, to rationalize and improve its performance. Microkinetic analysis was performed for the cathodic half-reaction in conjugation with mass transport evaluation using various electrode materials. The analysis revealed a significant universal influence of electrolyte properties on the reaction performances at near-neutral pH. Investigation of the associated electrolyte properties (ion size, viscosity and activity/fugacity) rationally optimized the reaction conditions. Together with the separately performed studies on the anodic half-reaction and system configurations, the finding was successfully transferred to electrocatalytic and solar-driven water splitting systems. The presented herein is a fundamental yet crucial aspect of water electrolysis, which can advance the water electrolysis for the future.

  4. Mitoxantrone removal by electrochemical method: A comparison of homogenous and heterogenous catalytic reactions

    Directory of Open Access Journals (Sweden)

    Abbas Jafarizad

    2017-08-01

    Full Text Available Background: Mitoxantrone (MXT is a drug for cancer therapy and a hazardous pharmaceutical to the environment which must be removed from contaminated waste streams. In this work, the removal of MXT by the electro-Fenton process over heterogeneous and homogenous catalysts is reported. Methods: The effects of the operational conditions (reaction medium pH, catalyst concentration and utilized current intensity were studied. The applied electrodes were carbon cloth (CC without any processing (homogenous process, graphene oxide (GO coated carbon cloth (GO/CC (homogenous process and Fe3O4@GO nanocomposite coated carbon cloth (Fe3O4@GO/CC (heterogeneous process. The characteristic properties of the electrodes were determined by atomic force microscopy (AFM, field emission scanning electron microscopy (FE-SEM and cathode polarization. MXT concentrations were determined by using ultraviolet-visible (UV-Vis spectrophotometer. Results: In a homogenous reaction, the high concentration of Fe catalyst (>0.2 mM decreased the MXT degradation rate. The results showed that the Fe3O4@GO/CC electrode included the most contact surface. The optimum operational conditions were pH 3.0 and current intensity of 450 mA which resulted in the highest removal efficiency (96.9% over Fe3O4@GO/CC electrode in the heterogeneous process compared with the other two electrodes in a homogenous process. The kinetics of the MXT degradation was obtained as a pseudo-first order reaction. Conclusion: The results confirmed the high potential of the developed method to purify contaminated wastewaters by MXT.

  5. Probing Redox Reactions at the Nanoscale with Electrochemical Tip-Enhanced Raman Spectroscopy

    Science.gov (United States)

    2015-11-18

    imaged with a liquid N2-cooled CCD camera (Spec10:400BR, Princeton Instruments). A double-beam spectrophotometer (Cary 5000, Agilent) was used to measure...have distinctive features in their respective UV −vis absorption spectra. Most notably, the disruption of the conjugation in the central ring of NB...and near- UV regions, with prominent features at 261, 362, and 405 nm. In our EC-TERS experiment, we used 633 nm Scheme 1. Redox Reaction of NB at pH

  6. Electrochemical doping of three-dimensional graphene networks used as efficient electrocatalysts for oxygen reduction reaction

    Science.gov (United States)

    Wang, Zhijuan; Cao, Xiehong; Ping, Jianfeng; Wang, Yixian; Lin, Tingting; Huang, Xiao; Ma, Qinglang; Wang, Fuke; He, Chaobin; Zhang, Hua

    2015-05-01

    Three-dimensional graphene networks (3DGNs) doped with a mono-heteroatom of N or B, or dual-heteroatoms of N and B were fabricated, which exhibit excellent oxygen reduction reaction (ORR) performance. Importantly, the onset potential and current density of N and B co-doped 3DGNs are comparable to those of the commercial Pt (30%)/C catalyst.Three-dimensional graphene networks (3DGNs) doped with a mono-heteroatom of N or B, or dual-heteroatoms of N and B were fabricated, which exhibit excellent oxygen reduction reaction (ORR) performance. Importantly, the onset potential and current density of N and B co-doped 3DGNs are comparable to those of the commercial Pt (30%)/C catalyst. Electronic supplementary information (ESI) available: Details of the N-3DGN, B-3DGN and NB-3DGN fabrication process. Description of characterization. Rotating disk electrode linear sweep voltammograms of 3DGN and Pt (30%)/C in O2-saturated 0.1 M KOH with various rotation rates at a scan rate of 5 mV s-1. Koutecky-Levich plots of 3DGN, Pt (30%)/C, N-3DGN, B-3DGN and NB-3DGN at different electrode potentials. See DOI: 10.1039/c4nr06631f

  7. Pressure modulation, a new dynamic technique for the electrochemical determination of adsorption, reaction and activation volumes.

    Science.gov (United States)

    Loewe, T; Baltruschat, H

    2005-01-21

    A new dynamic method for the measurement of pressure dependent kinetic and thermodynamic quantities is described and its successful operation demonstrated for two example systems. The pressure was modulated with an amplitude of only +/-1 bar or less by means of a piezo-transducer. The small effect on the reaction rate, potential or charge of the electrode can be detected using the lock in technique. The determination of the reaction volume of the redox couple Fe(CN)6(4-)/Fe(CN)6(3-) served as a control of the validity of the measurement and the reliability of the experimental approach. As a first model system the adsorption of hydrogen on polycrystalline Pt was studied. A volume of adsorption of 4.8 cm3 mol(-1) was found. The partial molar volume for protons in water (upsilon+ = -5.4 cm3 mol(-)) measured by Zana and Yeager, J. Phys. Chem., 1967, 71, 521-536, was used to establish that the partial molar volume of the adsorbed hydrogen was close to zero.

  8. Electrochemical Dynamics of a Single Platinum Nanoparticle Collision Event for the Hydrogen Evolution Reaction.

    Science.gov (United States)

    Xiang, Zhi-Peng; Deng, Hai-Qiang; Peljo, Pekka; Fu, Zhi-Yong; Wang, Su-Li; Mandler, Daniel; Sun, Gong-Quan; Liang, Zhen-Xing

    2018-03-19

    Chronoamperometry was used to study the dynamics of Pt nanoparticle (NP) collision with an inert ultramicroelectrode via electrocatalytic amplification (ECA) in the hydrogen evolution reaction. ECA and dynamic light scattering (DLS) results reveal that the NP colloid remains stable only at low proton concentrations (1.0 mm) under a helium (He) atmosphere, ensuring that the collision events occur at genuinely single NP level. Amperometry of single NP collisions under a He atmosphere shows that each discrete current profile of the collision event evolves from spike to staircase at more negative potentials, while a staircase response is observed at all of the applied potentials under hydrogen-containing atmospheres. The particle size distribution estimated from the diffusion-controlled current in He agrees well with electron microscopy and DLS observations. These results shed light on the interfacial dynamics of the single nanoparticle collision electrochemistry. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Highly Durable Platinum Single-Atom Alloy Catalyst for Electrochemical Reactions

    DEFF Research Database (Denmark)

    Kim, Jiwhan; Roh, Chi-Woo; Sahoo, Suman Kalyan

    2018-01-01

    -doped tin oxide (Pt1/ATO) is synthesized by conventional incipient wetness impregnation, with up to 8 wt% Pt. The single atomic Pt structure is confirmed by high-angle annular dark field scanning tunneling electron microscopy images and extended X-ray absorption fine structure analysis results. Density......Single atomic Pt catalyst can offer efficient utilization of the expensive platinum and provide unique selectivity because it lacks ensemble sites. However, designing such a catalyst with high Pt loading and good durability is very challenging. Here, single atomic Pt catalyst supported on antimony...... functional theory calculations show that replacing Sb sites with Pt atoms in the bulk phase or at the surface of SbSn or ATO is energetically favorable. The Pt1/ATO shows superior activity and durability for formic acid oxidation reaction, compared to a commercial Pt/C catalyst. The single atomic Pt...

  10. Characterization of electrochemically deposited films from aqueous and ionic liquid cobalt precursors toward hydrogen evolution reactions

    Energy Technology Data Exchange (ETDEWEB)

    Dushatinski, Thomas; Huff, Clay; Abdel-Fattah, Tarek M., E-mail: fattah@cnu.edu

    2016-11-01

    Highlights: • Co films deposition via aqueous and ionic liquid Precursors. • Hydrogen evolution produced from reactive surfaces. • Co deposited films characterized by SEM, AFM, EDX and XRD techniques. - Abstract: Electrodepositions of cobalt films were achieved using an aqueous or an ethylene glycol based non-aqueous solution containing choline chloride (vitamin B4) with cobalt chloride hexahydrate precursor toward hydrogen evolution reactions from sodium borohydride (NaBH{sub 4}) as solid hydrogen feedstock (SHF). The resulting cobalt films had reflectivity at 550 nm of 2.2% for aqueously deposited films (ACoF) and 1.3% for non-aqueously deposited films (NCoF). Surface morphology studied by scanning electron microscopy showed a positive correlation between particle size and thickness. The film thicknesses were tunable between >100 μm and <300 μm for each film. The roughness (Ra) value measurements by Dektak surface profiling showed that the NCoF (Ra = 165 nm) was smoother than the ACoF (Ra = 418 nm). The NCoFs and ACoFs contained only α phase (FCC) crystallites. The NCoFs were crystalline while the ACoFs were largely amorphous from X-ray diffraction analysis. The NCoF had an average Vickers hardness value of 84 MPa as compared to 176 MPa for ACoF. The aqueous precursor has a single absorption maximum at 510 nm and the non-aqueous precursor had three absorption maxima at 630, 670, and 695 nm. The hydrogen evolution reactions over a 1 cm{sup 2} catalytic surface with aqueous NaBH{sub 4} solutions generated rate constants (K) = equal to 4.9 × 10{sup −3} min{sup −1}, 4.6 × 10{sup −3} min{sup −1}, and 3.3 × 10{sup −3} min{sup −1} for ACoF, NCoF, and copper substrate respectively.

  11. Electrochemical kinetics and X-ray absorption spectroscopy investigations of select chalcogenide electrocatalysts for oxygen reduction reaction applications

    International Nuclear Information System (INIS)

    Ziegelbauer, Joseph M.; Murthi, Vivek S.; O'Laoire, Cormac; Gulla, Andrea F.; Mukerjee, Sanjeev

    2008-01-01

    Transition metal-based chalcogenide electrocatalysts exhibit a promising level of performance for oxygen reduction reaction applications while offering significant economic benefits over the state of the art Pt/C systems. The most active materials are based on Ru x Se y clusters, but the toxicity of selenium will most likely limit their embrace by the marketplace. Sulfur-based analogues do not suffer from toxicity issues, but suffer from substantially less activity and stability than their selenium brethren. The structure/property relationships that result in these properties are not understood due to ambiguities regarding the specific morphologies of Ru x S y -based chalcogenides. To clarify these properties, an electrochemical kinetics study was interpreted in light of extensive X-ray diffraction, scanning electron microscopy, and in situ X-ray absorption spectroscopy evaluations. The performance characteristics of ternary M x Ru y S z /C (M = Mo, Rh, or Re) chalcogenide electrocatalysts synthesized by the now-standard low-temperature nonaqueous (NA) route are compared to commercially available (De Nora) Rh- and Ru-based systems. Interpretation of performance differences is made in regards to bulk and surface properties of these systems. In particular, the overall trends of the measured activation energies in respect to increasing overpotential and the gross energy values can be explained in regards to these differences

  12. Electrochemical Dealloying of PdCu3 Nanoparticles to Achieve Pt-like Activity for the Hydrogen Evolution Reaction.

    Science.gov (United States)

    Jana, Rajkumar; Bhim, Anupam; Bothra, Pallavi; Pati, Swapan K; Peter, Sebastian C

    2016-10-20

    Manipulating the d-band center of the metal surface and hence optimizing the free energy of hydrogen adsorption (ΔG H ) close to the optimal adsorption energy (ΔG H =0) for hydrogen evolution reaction (HER), is an efficient strategy to enhance the activity for HER. Herein, we report a oleylamine-mediated (acting as the solvent, stabilizer, and reducing agent) strategy to synthesize intermetallic PdCu 3 nanoparticles (NPs) without using any external reducing agent. Upon electrochemical cycling, PdCu 3 transforms into Pd-rich PdCu (ΔG H =0.05 eV), exhibiting remarkably enhanced activity (with a current density of 25 mA cm -2 at ∼69 mV overpotential) as an alternative to Pt for HER. The first-principle calculation suggests that formation of low coordination number Pd active sites alters the d-band center and hence optimal adsorption of hydrogen, leading to enhanced activity. This finding may provide guidelines towards the design and development of Pt-free highly active and robust electrocatalysts. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Final report on LDRD project: A phenomenological model for multicomponent transport with simultaneous electrochemical reactions in concentrated solutions

    Energy Technology Data Exchange (ETDEWEB)

    CHEN,KEN S.; EVANS,GREGORY H.; LARSON,RICHARD S.; NOBLE,DAVID R.; HOUF,WILLIAM G.

    2000-01-01

    A phenomenological model was developed for multicomponent transport of charged species with simultaneous electrochemical reactions in concentrated solutions, and was applied to model processes in a thermal battery cell. A new general framework was formulated and implemented in GOMA (a multidimensional, multiphysics, finite-element computer code developed and being enhanced at Sandia) for modeling multidimensional, multicomponent transport of neutral and charged species in concentrated solutions. The new framework utilizes the Stefan-Maxwell equations that describe multicomponent diffusion of interacting species using composition-insensitive binary diffusion coefficients. The new GOMA capability for modeling multicomponent transport of neutral species was verified and validated using the model problem of ternary gaseous diffusion in a Stefan tube. The new GOMA-based thermal battery computer model was verified using an idealized battery cell in which concentration gradients are absent; the full model was verified by comparing with that of Bernardi and Newman (1987) and validated using limited thermal battery discharge-performance data from the open literature (Dunning 1981) and from Sandia (Guidotti 1996). Moreover, a new Liquid Chemkin Software Package was developed, which allows the user to handle manly aspects of liquid-phase kinetics, thermodynamics, and transport (particularly in terms of computing properties). Lastly, a Lattice-Boltzmann-based capability was developed for modeling pore- or micro-scale phenomena involving convection, diffusion, and simplified chemistry; this capability was demonstrated by modeling phenomena in the cathode region of a thermal battery cell.

  14. Self-assembled monolayers (SAMs) of alkoxycyanobiphenyl thiols on gold--a study of electron transfer reaction using cyclic voltammetry and electrochemical impedance spectroscopy.

    Science.gov (United States)

    Ganesh, V; Pal, Santanu Kumar; Kumar, Sandeep; Lakshminarayanan, V

    2006-04-01

    Self-assembled monolayers (SAMs) of liquid crystalline thiol-terminated alkoxycyanobiphenyl molecules with different alkyl chain lengths on Au surface have been studied for the first time using electrochemical techniques such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The barrier property of the SAM-modified surfaces was evaluated using two different redox probes, namely potassium ferro/ferri cyanide and hexaammineruthenium(III) chloride. It was found that for short-length alkyl chain thiol (C5) the electron transfer reaction of hexaammineruthenium(III) chloride takes place through tunneling mechanism. In contrast, redox reaction of potassium ferro/ferri cyanide is almost completely blocked by the SAM-modified Au surface. From the impedance data, a surface coverage value of >99.9% was calculated for all the thiol molecules.

  15. Heterogeneous Molecular Catalysis of Electrochemical Reactions: Volcano Plots and Catalytic Tafel Plots.

    Science.gov (United States)

    Costentin, Cyrille; Savéant, Jean-Michel

    2017-06-14

    We analyze here, in the framework of heterogeneous molecular catalysis, the reasons for the occurrence or nonoccurrence of volcanoes upon plotting the kinetics of the catalytic reaction versus the stabilization free energy of the primary intermediate of the catalytic process. As in the case of homogeneous molecular catalysis or catalysis by surface-active metallic sites, a strong motivation of such studies relates to modern energy challenges, particularly those involving small molecules, such as water, hydrogen, oxygen, proton, and carbon dioxide. This motivation is particularly pertinent for what concerns heterogeneous molecular catalysis, since it is commonly preferred to homogeneous molecular catalysis by the same molecules if only for chemical separation purposes and electrolytic cell architecture. As with the two other catalysis modes, the main drawback of the volcano plot approach is the basic assumption that the kinetic responses depend on a single descriptor, viz., the stabilization free energy of the primary intermediate. More comprehensive approaches, investigating the responses to the maximal number of experimental factors, and conveniently expressed as catalytic Tafel plots, should clearly be preferred. This is more so in the case of heterogeneous molecular catalysis in that additional transport factors in the supporting film may additionally affect the current-potential responses. This is attested by the noteworthy presence of maxima in catalytic Tafel plots as well as their dependence upon the cyclic voltammetric scan rate.

  16. Single step synthesis of gold-amino acid composite, with the evidence of the catalytic hydrogen atom transfer (HAT) reaction, for the electrochemical recognition of Serotonin

    Science.gov (United States)

    Choudhary, Meenakshi; Siwal, Samarjeet; Nandi, Debkumar; Mallick, Kaushik

    2016-03-01

    A composite architecture of amino acid and gold nanoparticles has been synthesized using a generic route of 'in-situ polymerization and composite formation (IPCF)' [1,2]. The formation mechanism of the composite has been supported by a model hydrogen atom (H•≡H++e-) transfer (HAT) type of reaction which belongs to the proton coupled electron transfer (PCET) mechanism. The 'gold-amino acid composite' was used as a catalyst for the electrochemical recognition of Serotonin.

  17. ADVERSE REACTIONS TO VACCINES AND WAYS OF ITS PREVENTION

    Directory of Open Access Journals (Sweden)

    Yelyseyeva I. V

    2011-04-01

    Full Text Available The overview concerns allergic reaction on vaccines and possible ways of increasing safety of immunization on basis of use of local specific immunotherapies (SIT experience, particularly the sublingual route. The use of chemically altered allergens, allergoids; alternative routes of administration, particularly the sublingual route; use of novel adjuvants, such as CpG oligonucleotides and mycobacterial vaccines; other approaches, such as allergenic peptides, relevant T-cell epitope peptide immunotherapy; DNA vaccination, recombinant and engineered allergens, chimeric molecules and combined therapy are all approaches that have yielded positive results to increase safety of SIT and improve its efficacy.

  18. Venom immunotherapy for preventing allergic reactions to insect stings : a systematic review and health economic analysis

    NARCIS (Netherlands)

    Boyle, R.; Elremeli, M.; Cherry, M.; Oude Elberink, J.N.G.; Bulsara, M.; Mahon, J.; Daniels, M.; Hockenhull, J.

    2012-01-01

    Background Venom immunotherapy (VIT) is commonly used for preventing further allergic reactions to insect stings in people who have had a sting reaction. The efficacy and safety of this treatment has not previously been assessed by a high-quality systematic review. Objectives To assess the effects

  19. Nickel-induced hypersensitivity: etiology, immune reactions, prevention and therapy.

    Science.gov (United States)

    Hostýnek, Jurij J

    2002-08-01

    As a contact allergen causing type I and type IV hypersensitivity, mediated by reagins and allergen-specific T lymphocytes, expressed in a wide range of cutaneous eruptions following dermal or systemic exposure, nickel has acquired the distinction of being among the most frequent causes of hypersensitivity, occupationally as well as among the general population. In synoptic form the many effects that nickel has on the organism are presented, to provide a comprehensive picture of the aspects of that metal with many biologically noxious, but metallurgically indispensable characteristics. This paper reviews the epidemiology, the prognosis for occupational and non-occupational nickel allergic hypersensitivity (NAH), the many types of exposure and the resulting immune responses, immunotoxicity and rate of diffusion through the skin. Alternatives towards prevention and remediation, topical and systemic, for this pervasive and increasing form of morbidity resulting from multiple types of exposure are discussed. Merits and limitations of preventive measures in industry and private life are considered, as well as the effectiveness of topical and systemic therapy in treating NAH.

  20. Sensitization to nickel: etiology, epidemiology, immune reactions, prevention, and therapy.

    Science.gov (United States)

    Hostynek, Jurij J

    2006-01-01

    Nickel is a contact allergen causing Type I and Type IV hypersensitivity, mediated by reagins and allergen-specific T lymphocytes, expressing in a wide range of cutaneous eruptions following dermal or systemic exposure. As such, nickel is the most frequent cause of hypersensitivity, occupational as well as among the general population. In synoptic form, the many effects that nickel has on the organism are presented to provide a comprehensive picture of the aspects of that metal with many biologically noxious, but metallurgically indispensable characteristics. This paper reviews the epidemiology, the prognosis for occupational and non-occupational nickel allergic hypersensitivity, the types of exposure and resulting immune responses, the rate of diffusion through the skin, and immunotoxicity. Alternatives toward prevention and remediation, topical and systemic, for this pervasive and increasing form of morbidity are discussed. The merits and limitations of preventive measures in industry and private life are considered, as well as the effectiveness of topical and systemic therapy in treating nickel allergic hypersensitivity.

  1. Durability investigation of Calvaria Bridge and electrochemical realkalinisation as a preventive measure

    Directory of Open Access Journals (Sweden)

    Meda NEDELCU

    2014-12-01

    Full Text Available The purpose of this study is to investigate the performance of reinforced concrete structures during their service life. Environmental attacks, such as the atmospheric carbon dioxide and the deicing chloride salts ingression, may seriously affect both the concrete section and the embedded reinforcement and may lead to failure, if immediate measures are not taken. Therefore, a case study of a real structure, the Calvaria Bridge, an intense traffic node in Cluj-Napoca, Romania, was performed, with emphasis on the effects of durability aspects on the structural performance of the elements, namely in terms of deflection. A modern repair method, electrochemical realkalinisation, was also tested in the laboratory, in order to provide a proper intervention solution to the structure, for the concrete elements affected by the ingress of carbon dioxide and thus, by carbonation.

  2. Organic reactions for the electrochemical and photochemical production of chemical fuels from CO2--The reduction chemistry of carboxylic acids and derivatives as bent CO2 surrogates.

    Science.gov (United States)

    Luca, Oana R; Fenwick, Aidan Q

    2015-11-01

    The present review covers organic transformations involved in the reduction of CO2 to chemical fuels. In particular, we focus on reactions of CO2 with organic molecules to yield carboxylic acid derivatives as a first step in CO2 reduction reaction sequences. These biomimetic initial steps create opportunities for tandem electrochemical/chemical reductions. We draw parallels between long-standing knowledge of CO2 reactivity from organic chemistry, organocatalysis, surface science and electrocatalysis. We point out some possible non-faradaic chemical reactions that may contribute to product distributions in the production of solar fuels from CO2. These reactions may be accelerated by thermal effects such as resistive heating and illumination. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. On the Theory of Oxidation-Reduction Reactions Involving Electron Transfer. V. Comparison and Properties of Electrochemical and Chemical Rate Constants

    Science.gov (United States)

    Marcus, R. A.

    1962-01-01

    Using a theory of electron transfers which takes cognizance of reorganization of the medium outside the inner coordination shell and of changes of bond lengths inside it, relations between electrochemical and related chemical rate constants are deduced and compared with the experimental data. A correlation is found, without the use of arbitrary parameters. Effects of weak complexes with added electrolytes are included under specified conditions. The deductions offer a way of coordinating a variety of data in the two fields, internally as well as with each those in another. For example, the rate of oxidation or reduction of a series of related reactants by one reagent is correlated with that of another and with that of the corresponding electrochemical oxidation-reduction reaction, under certain specified conditions. These correlations may also provide a test for distinguishing an electron from an atom transfer mechanism. (auth)

  4. Electrochemical behaviours of Eu(III/E(II and Ce(IV/Ce(III in H3PO4-H2O media : solvation and complexation reactions

    Directory of Open Access Journals (Sweden)

    Belqat B.

    2018-01-01

    Full Text Available Many kinds of rare earth elements (REE such as europium and cerium have been make them essential elements in many high-tech components. The electrochemical studies can be presented as an interesting indication for europium and cerium extraction from phosphoric solutions, including solvation and complexation reactions. The normal redox potentials of Eu3+/Eu2+ and Ce4+/Ce3+ systems have been determined in H3PO4-H2O media with various phosphoric acid concentration. The solvation of these elements in phosphoric media is characterized by their transfer activity coefficients "f" calculated from the corresponding normal redox potentials. The corresponding solvation increases with increasing the H3PO4 concentration. For each REE, the electrochemical properties depend on its number of charges and on its basic properties. Results suggest that solvation and complexation of REE phosphates are important in controlling REE concentration.

  5. The prevention of anaphylactoid reactions to iodinated radiological contrast media: a systematic review

    Directory of Open Access Journals (Sweden)

    Carter Andrew

    2006-04-01

    Full Text Available Abstract Background Anaphylactoid reactions to iodinated contrast media are relatively common and potentially life threatening. Opinion is divided as to the utility of medications for preventing these reactions. We performed a systematic review to assess regimes for the prevention of anaphylactoid reactions to iodinated contrast media. Methods Searches for studies were conducted in the Medline, EMBASE, CINAHL and CENTRAL databases. Bibliographies of included studies and review articles were examined and experts were contacted. Randomised clinical trials that examined agents given prior to iodinated contrast material for the prevention of anaphylactoid reactions were included in the review. The validity of the included studies was examined using a component approach. Results Six studies met the inclusion criteria, but only one of these fulfilled all of the validity criteria. There were four studies that examined the use of H1 antihistamines, each was used to prevent anaphylactoid reactions to ionic contrast. The random effects pooled relative risk demonstrated a significant reduction in the overall rate of anaphylactoid reactions (RR = 0.4, 95% CI 0.18-0.9, p = 0.027. There were insufficient studies to produce a pooled statistic for the use of corticosteroids, however regimes of steroids (methylprednisolone 32 mg given at least six hours and again two hours prior to the administration of contrast suggested a reduction in the incidence of anaphylactoid reactions. Conclusion In conclusion, there are few high quality randomised clinical trials that have addressed the question of the optimal methods to prevent allergic type reactions to iodinated radiological contrast media. Allowing for these limitations, the results suggest that H1 antihistamines given immediately prior to the administration of ionic contrast may be useful in preventing reactions to ionic contrast and are suggestive of a protective effect of corticosteroids when given in two doses

  6. Exploring the kinetic and thermodynamic aspects of four-electron electrochemical reactions: electrocatalysis of oxygen evolution by metal oxides and biological systems.

    Science.gov (United States)

    Wang, Vincent C-C

    2016-08-10

    Finding fundamental and general mechanisms for electrochemical reactions, such as the oxygen evolution reaction (OER) from water and reduction of CO2, plays vital roles in developing the desired electrocatalysts for facilitating solar fuel production. Recently, density functional theory (DFT) calculations have shown that there is a universal scaling relation of adsorption energy between key intermediate species, HO(ad) and HOO(ad), on the surface of metal oxides as OER electrocatalysts. In this paper, a kinetic and thermodynamic model for the four-electron electrochemical reaction based on previous OER mechanisms proposed by DFT calculations is developed to further investigate the electrocatalytic properties over a wide range of metal oxides and photosystem II. The OER activity of metal oxides (i.e. electrocatalytic current) calculated from the DFT-calculated equilibrium potentials with kinetic properties, such as the rate constants for interfacial electron transfer and catalytic turnover, can lead to a volcano-shaped trend that agrees with the results observed in experiments. In addition, the kinetic aspects of the impact on the electrocatalysts are evaluated. Finally, comparing the results of metal oxides and photosystem II, and fitting experimental voltammograms give further insights into kinetic and thermodynamic roles. Here, the general guidelines for designing OER electrocatalysts with unified kinetic and thermodynamic properties are presented.

  7. Sensitive electrochemical detection of telomerase activity using spherical nucleic acids gold nanoparticles triggered mimic-hybridization chain reaction enzyme-free dual signal amplification.

    Science.gov (United States)

    Wang, Wen-Jing; Li, Jing-Jing; Rui, Kai; Gai, Pan-Pan; Zhang, Jian-Rong; Zhu, Jun-Jie

    2015-03-03

    We report an electrochemical sensor for telomerase activity detection based on spherical nucleic acids gold nanoparticles (SNAs AuNPs) triggered mimic-hybridization chain reaction (mimic-HCR) enzyme-free dual signal amplification. In the detection strategy, SNAs AuNPs and two hairpin probes were employed. SNAs AuNPs as the primary amplification element, not only hybridized with the telomeric repeats on the electrode to amplify signal but also initiated the subsequent secondary amplification, mimic-hybridization chain reaction of two hairpin probes. If the cells' extracts were positive for telomerase activity, SNAs AuNPs could be captured on the electrode. The carried initiators could trigger an alternative hybridization reaction of two hairpin probes that yielded nicked double helices. The signal was further amplified enzyme-free by numerous hexaammineruthenium(III) chloride ([Ru(NH3)6](3+), RuHex) inserting into double-helix DNA long chain by electrostatic interaction, each of which could generate an electrochemical signal at appropriate potential. With this method, a detection limit of down to 2 HeLa cells and a dynamic range of 10-10,000 cells were achieved. Telomerase activities of different cell lines were also successfully evaluated.

  8. Electrochemical Chloride extraction using external electrodes?

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Pedersen, Anne Juul

    2006-01-01

    Electrochemical methods for the removal of chloride from concrete have been developed and the methods are primarily designed for situations where corrosion has started due to an increased chloride concentration in the vicinity of the reinforcement. In these methods the reinforcement is used as th......, it is possible to use external electrodes and not use of the reinforcement as cathode thus avoiding side effects....... as the cathode. However, some unwanted side effects can occur, including alkali-silica reaction and in some cases hydrogen embrittlement. It is also suggested also to use electrochemical chloride extraction in a preventive way in constructions where chloride induced corrosion is likely to be a problem after...

  9. Sagittal Plane Knee Biomechanics and Vertical Ground Reaction Forces Are Modified Following ACL Injury Prevention Programs

    OpenAIRE

    Padua, Darin A.; DiStefano, Lindsay J.

    2009-01-01

    Context: Injuries to the anterior cruciate ligament (ACL) occur because of excessive loading on the knee. ACL injury prevention programs can influence sagittal plane ACL loading factors and vertical ground reaction force (VGRF). Objective: To determine the influence of ACL injury prevention programs on sagittal plane knee biomechanics (anterior tibial shear force, knee flexion angle/moments) and VGRF. Data Sources: The PubMed database was searched for studies published between January 1988 an...

  10. Ultrasensitive electrochemical detection of microRNA-21 combining layered nanostructure of oxidized single-walled carbon nanotubes and nanodiamonds by hybridization chain reaction.

    Science.gov (United States)

    Liu, Lingzhi; Song, Chao; Zhang, Zhang; Yang, Juan; Zhou, Lili; Zhang, Xing; Xie, Guoming

    2015-08-15

    Measurement of microRNA (miRNA) levels in body fluids is a crucial tool for the early diagnosis and prognosis of cancers. In this study, we developed an electrochemical assay to detect miRNA-21 by fabricating the electrode with layer-by-layer assembly of oxidized single-walled carbon nanotubes and nanodiamonds. Tetrahedron-structured probes with free-standing probe on the top served as receptors to hybridize with target miRNA directly. The probes were immobilized on the deposited gold nanoparticles through a well-established strong Au-S bond. The electrochemical signal was mainly derived from an ultrasensitive pattern by combining hybridization chain reaction with DNA-functionalized AuNPs, which provided DNAzyme to catalyze H2O2 reduction. Differential pulse voltammetry was applied to record the electrochemical signals, which was increased linearly with the target miRNA-21, and the linear detection range was 10 fM to 1.0 nM. The limit of detection reached 1.95 fM (S/N=3), and the proposed biosensor exhibited good reproducibility and stability, as well as high sensitivity. Hence, this biosensor has a promising potential in clinical application. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Using surface-enhanced Raman spectroscopy and electrochemically driven melting to discriminate Yersinia pestis from Y. pseudotuberculosis based on single nucleotide polymorphisms within unpurified polymerase chain reaction amplicons.

    Science.gov (United States)

    Papadopoulou, Evanthia; Goodchild, Sarah A; Cleary, David W; Weller, Simon A; Gale, Nittaya; Stubberfield, Michael R; Brown, Tom; Bartlett, Philip N

    2015-02-03

    The development of sensors for the detection of pathogen-specific DNA, including relevant species/strain level discrimination, is critical in molecular diagnostics with major impacts in areas such as bioterrorism and food safety. Herein, we use electrochemically driven denaturation assays monitored by surface-enhanced Raman spectroscopy (SERS) to target single nucleotide polymorphisms (SNPs) that distinguish DNA amplicons generated from Yersinia pestis, the causative agent of plague, from the closely related species Y. pseudotuberculosis. Two assays targeting SNPs within the groEL and metH genes of these two species have been successfully designed. Polymerase chain reaction (PCR) was used to produce Texas Red labeled single-stranded DNA (ssDNA) amplicons of 262 and 251 bases for the groEL and metH targets, respectively. These amplicons were used in an unpurified form to hybridize to immobilized probes then subjected to electrochemically driven melting. In all cases electrochemically driven melting was able to discriminate between fully homologous DNA and that containing SNPs. The metH assay was particularly challenging due to the presence of only a single base mismatch in the middle of the 251 base long PCR amplicon. However, manipulation of assay conditions (conducting the electrochemical experiments at 10 °C) resulted in greater discrimination between the complementary and mismatched DNA. Replicate data were collected and analyzed for each duplex on different days, using different batches of PCR product and different sphere segment void (SSV) substrates. Despite the variability introduced by these differences, the assays are shown to be reliable and robust providing a new platform for strain discrimination using unpurified PCR samples.

  12. Acute allergic reaction to oral quinine for malarial prevention: A case report

    Directory of Open Access Journals (Sweden)

    Sora Yasri

    2016-01-01

    Full Text Available Quinine is a classical antimalarial drug that is used worldwide. It is also used for pre-exposure of malaria before visiting to the jungle in the endemic area of malaria. In this article, the authors reported a case of acute allergic reaction to oral quinine for malarial prevention.

  13. MOF-derived Cu-Pd/nanoporous carbon composite as an efficient catalyst for hydrogen evolution reaction: A comparison between hydrothermal and electrochemical synthesis

    Science.gov (United States)

    Mandegarzad, Sakineh; Raoof, Jahan Bakhsh; Hosseini, Sayed Reza; Ojani, Reza

    2018-04-01

    In this study, a novel catalyst based on Cu-Pd bimetallic nanoparticles supported on nanoporous carbon composite (NPCC) is successfully fabricated through three-step process and used as an electrocatalyst towards hydrogen evolution reaction (HER). At the first step, MOF-199 is synthesized via two distinct strategies; (1) hydrothermal (HT) and (2) electrochemical (EC). Next, the synthesized MOF-199 is used as a template in order to prepare Cu/NPCC by direct carbonization under N2 atmosphere followed by galvanic replacement reaction of Cu metals by PdII ions. All the prepared materials are characterized by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), and nitrogen adsorption/desorption measurements. The effect of synthesis method of MOF-199 on the electrocatalytic activity of the final product towards HER is investigated. The electrochemical measurements indicate that Cu-Pd/NPCC derived from the MOF prepared by EC method (Cu-Pd/NPCC/EC) exhibits an enhanced catalytic activity towards HER in H2SO4 solution than the Cu-Pd/NPCC/HT. This improvement may be attributed to using of supporting electrolyte in the preparation of Cu-Pd/NPCC/EC.

  14. Electrochemical behavior of Ni{sub x}W{sub 1-x} materials as catalyst for hydrogen evolution reaction in alkaline media

    Energy Technology Data Exchange (ETDEWEB)

    Oliver-Tolentino, Miguel A. [UPIBI-IPN, Departamento de Ciencias Basicas, Av. Acueducto s/n, Barrio La Laguna, Col. Ticoman, Mexico D.F. 07340 (Mexico); Arce-Estrada, Elsa M. [ESIQIE-IPN Departamento de Ingenieria en Metalurgia y Materiales, UPALM, UPALM, Mexico D.F. 07738 (Mexico); Cortes-Escobedo, Claudia A. [Centro de Investigacion e Innovacion Tecnologica del IPN, Cda. Cecati s/n, Col. Sta. Catarina, CP 02250 Azcapotzalco D.F. (Mexico); Bolarin-Miro, Ana M.; Sanchez-De Jesus, Felix [Area Academica de Ciencias de la Tierra y Materiales, Universidad Autonoma del Estado de Hidalgo, CU, Carr. Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma, CP 42184 Hidalgo (Mexico); Gonzalez-Huerta, Rosa de G. [ESIQIE-IPN, Departamento de Ingenieria Quimica - Laboratorio de Electroquimica y Corrosion, Edif. Z-5 3er piso, UPALM, Mexico D.F. 07738 (Mexico); Manzo-Robledo, Arturo, E-mail: amanzor@ipn.mx [ESIQIE-IPN, Departamento de Ingenieria Quimica - Laboratorio de Electroquimica y Corrosion, Edif. Z-5 3er piso, UPALM, Mexico D.F. 07738 (Mexico)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer The electrochemical techniques used in this study elucidated the Ni-W surface state. Black-Right-Pointing-Pointer The Ni-W materials were effective for the hydrogen evolution reaction. Black-Right-Pointing-Pointer The prepared alloys exhibited higher catalytic activity than their precursors. Black-Right-Pointing-Pointer The preparation method is relatively simple and effective procedure. - Abstract: In the present work, results of electrochemical evaluation, as well as morphological and structural characterization of Ni{sub x}W{sub 1-x} materials with x = 0.77, 0.64, 0.4, 0.19 and 0.07 processed by means of high energy ball milling from high purity powders are presented. Also, the electrocatalytic performance on the hydrogen evolution reaction (HER) of the Ni{sub x}W{sub 1-x} materials evaluated by linear polarization and cyclic voltammetry techniques in alkaline media at room temperature is discussed. The structural and morphological characterization of the as-prepared materials was carried out using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results indicated a small-particle clusters and solid solution formation. According to the kinetics parameters the best electrocatalytic activity was observed at Ni{sub 64}W{sub 36}.

  15. Operando observations of solid-state electrochemical reactions in Li-ion batteries by spatially resolved TEM EELS and electron holography.

    Science.gov (United States)

    Yamamoto, Kazuo; Iriyama, Yasutoshi; Hirayama, Tsukasa

    2017-02-08

    All-solid-state Li-ion batteries having incombustible solid electrolytes are promising energy storage devices because they have significant advantages in terms of safety, lifetime and energy density. Electrochemical reactions, namely, Li-ion insertion/extraction reactions, commonly occur around the nanometer-scale interfaces between the electrodes and solid electrolytes. Thus, transmission electron microscopy (TEM) is an appropriate technique to directly observe such reactions, providing important information for understanding the fundamental solid-state electrochemistry and improving battery performance. In this review, we introduce two types of TEM techniques for operando observations of battery reactions, spatially resolved electron energy-loss spectroscopy in a TEM mode for direct detection of the Li concentration profiles and electron holography for observing the electric potential changes due to Li-ion insertion/extraction reactions. We visually show how Li-ion insertion/extractions affect the crystal structures, electronic structures, and local electric potential during the charge-discharge processes in these batteries. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Facile coating of Poly(3,4-ethylenedioxy thiophene) on manganese dioxide by galvanic displacement reaction and its electrochemical properties for electrochemical capacitors

    International Nuclear Information System (INIS)

    Kim, Kwangheon; Kim, Jiyoung; Kim, Kwangbum

    2012-01-01

    Poly(3,4-ethylenedioxy thiophene) coated Manganese Dioxide (PEDOT/MnO 2 ) composite electrode was fabricated by simply immersing the MnO 2 electrode in an acidic aqueous solution containing 3,4-ethylenedioxy thiophene (EDOT) monomers. Analysis of open-circuit potential of the MnO 2 electrode in the solution indicates the reduction of outer surface of MnO 2 to dissolved Mn 2+ ions and simultaneously oxidation of EDOT monomer to PEDOT on the MnO 2 surface to form a PEDOT shell via a galvanic displacement reaction. Analysis of cyclic voltammograms and specific capacitance of the PEDOT/MnO 2 , conductive carbon added MnO 2 and conductive carbon added PEDOT/MnO 2 electrodes suggests that the conductive carbon acted mainly to provide a continuous conducting path in the electrode to improve the rate capability and the PEDOT layer on MnO 2 acts to increase the active reaction site of MnO 2

  17. Electrochemical thermodynamic measurement system

    Science.gov (United States)

    Reynier, Yvan [Meylan, FR; Yazami, Rachid [Los Angeles, CA; Fultz, Brent T [Pasadena, CA

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  18. The effect of electrochemical CO annealing on platinum–cobalt nanoparticles in acid medium and their correlation to the oxygen reduction reaction

    International Nuclear Information System (INIS)

    Ciapina, Eduardo G.; Ticianelli, Edson A.

    2011-01-01

    Highlights: ► Modification of the surface properties of Pt 3 Co/C electrocatalyst. ► Electrochemical CO annealing in acid media generated a Pt-rich surface. ► In situ XAS revealed modifications in the Pt 5d band occupancy after CO annealing. ► The CO-annealed sample exhibited stronger interaction with oxygenated species. ► Increased Pt utilization in the CO-annealed Pt 3 Co/C electrocatalyst. - Abstract: This paper describes a modification of the surface properties of a carbon-supported Pt 3 Co catalyst resulting from an electrochemical cycling treatment in a 0.1 M HClO 4 and in a CO-saturated 0.1 M HClO 4 solution (electrochemical CO-annealing). The procedure generated a Pt-rich surface with electrochemical properties different from that presented by the as-received (untreated) sample. This was evidenced by a shift in the CO stripping peak to more positive potentials in the CO stripping voltammetry, and by an increased charge of H upd region and a modification of the oxide reduction peak observed in the base cyclic voltammogram. In situ X-ray absorption spectroscopy experiments conducted in the dispersive mode revealed differences in the electronic 5d band occupancy after the CO annealing, whereas the behavior of the intensity of the white-line as function of the potential for this material approached that found for pure Pt/C nanoparticles, in contrast to the small potential dependence profile exhibited by the as-received Pt 3 Co nanoparticles. Mass activities towards the oxygen reduction reaction measured by rotating disk experiments carried out at 1600 rpm in a O 2 -saturated solution at 25 °C increased from 0.10 A/mg of Pt to 0.19 A/mg of Pt, evidencing the higher Pt utilization in the CO-annealed Pt 3 Co/C electrocatalyst. The origin of the different electrochemical behavior is discussed.

  19. Prevention and Management of Adverse Reactions Induced by Iodinated Contrast Media.

    Science.gov (United States)

    Wu, Yi Wei; Leow, Kheng Song; Zhu, Yujin; Tan, Cher Heng

    2016-04-01

    Iodinated radiocontrast media (IRCM) is widely used in current clinical practice. Although IRCM is generally safe, serious adverse drug reactions (ADRs) may still occur. IRCM-induced ADRs may be subdivided into chemotoxic and hypersensitivity reactions. Several factors have been shown to be associated with an increased risk of ADRs, including previous contrast media reactions, history of asthma and allergic disease, etc. Contrast media with lower osmolality is generally recommended for at-risk patients to prevent ADRs. Current premedication prophylaxis in at-risk patients may reduce the risk of ADRs. However, there is still a lack of consensus on the prophylactic role of premedication. Contrast-induced nephropathy (CIN) is another component of IRCM-related ADRs. Hydration remains the mainstay of CIN prophylaxis in at-risk patients. Despite several preventive measures, ADRs may still occur. Treatment strategies for potential contrast reactions are also summarised in this article. This article summarises the pathophysiology, epidemiology and risk factors of ADRs with emphasis on prevention and treatment strategies. This will allow readers to understand the rationale behind appropriate patient preparation for diagnostic imaging involving IRCM.

  20. Novel duplex vapor: Electrochemical method for silicon solar cells. [chemical reactor for a silicon sodium reaction system

    Science.gov (United States)

    Nanis, L.; Sanjurjo, A.; Sancier, K.

    1979-01-01

    The scaled up chemical reactor for a SiF4-Na reaction system is examined for increased reaction rate and production rate. The reaction system which now produces 5 kg batches of mixed Si and NaF is evaluated. The reactor design is described along with an analysis of the increased capacity of the Na chip feeder. The reactor procedure is discussed and Si coalescence in the reaction products is diagnosed.

  1. Can Dietary Polyphenols Prevent the Formation of Toxic Compounds from Maillard Reaction?

    Science.gov (United States)

    Del Turco, Serena; Basta, Giuseppina

    2016-01-01

    Polyphenols are functional compounds in edible vegetable and food such as tea, coffee and red wine and increasing evidence demonstrates a positive link between consumption of polyphenol-rich foods and disease prevention. In this review we have focused on the current knowledge of the potential anti-glycation effects of polyphenols, particularly in regard to their influence on Maillard reaction, a non-enzymatic reaction between amino acids and reducing sugars that contributes to the production of toxic compounds, mainly reactive carbonyl species, advanced glycation end-products (AGEs) and other toxicants. The Maillard reaction occurs in the human body during hyperglycemic condition, but it is well known as browning reaction in thermally processed foods and it is responsible for flavor and toxicant formation. Dietary polyphenols can have anti-glycation effects and actively participate in Maillard reaction, mitigating the AGE formation and the heat-induced production of toxic compounds. In a time in which the role of a healthy diet in the prevention of chronic diseases is welcome and the borderline between food and medicine is becoming very thin, an improved mechanistic knowledge of how polyphenols can function to reduce harmful and unhealthy substances is mandatory.

  2. (Nd/Pr)2NiO4+δ: Reaction Intermediates and Redox Behavior Explored by in Situ Neutron Powder Diffraction during Electrochemical Oxygen Intercalation.

    Science.gov (United States)

    Ceretti, Monica; Wahyudi, Olivia; André, Gilles; Meven, Martin; Villesuzanne, Antoine; Paulus, Werner

    2018-04-16

    Oxygen intercalation/deintercalation in Pr 2 NiO 4+δ and Nd 2 NiO 4+δ was followed by in situ neutron powder diffraction during electrochemical oxidation/reduction, in a dedicated reaction cell at room temperature. For both systems three phases, all showing the same line width, were identified. The starting phases Pr 2 NiO 4.23 and Nd 2 NiO 4.24 , considered with an average orthorhombic Fmmm symmetry, although both show a slight monoclinic distortion, get reduced in a two-phase reaction step to tetragonal intermediate phases with 0.07 ≤ δ ≤ 0.10 and P4 2 / ncm space group, which on further reduction transform, again in a two-phase reaction step, toward the respective stoichiometric (Pr/Nd) 2 NiO 4.0 phases, with Bmab space group. Electrochemical oxidation does, however, not proceed fully reversibly for both cases: while the reoxidation of Nd 2 NiO 4+δ is limited to the tetragonal intermediate phase with δ = 0.10, the homologous Pr 2 NiO 4+δ can be reoxidized up to δ = 0.17, showing orthorhombic symmetry. For the intermediate tetragonal phase, we were able to establish for Pr 2 NiO 4.09 a complex anharmonic displacement behavior of the apical oxygen atoms, as analyzed by single-crystal neutron diffraction and maximum entropy analysis, in agreement with a low- T diffusion pathway for oxygen ions, activated by lattice dynamics.

  3. Electrochemical Measurements of the Kinetics of Inhibition of Two FeFe Hydrogenases by O2 Demonstrate That the Reaction Is Partly Reversible.

    Science.gov (United States)

    Orain, Christophe; Saujet, Laure; Gauquelin, Charles; Soucaille, Philippe; Meynial-Salles, Isabelle; Baffert, Carole; Fourmond, Vincent; Bottin, Hervé; Léger, Christophe

    2015-10-07

    The mechanism of reaction of FeFe hydrogenases with oxygen has been debated. It is complex, apparently very dependent on the details of the protein structure, and difficult to study using conventional kinetic techniques. Here we build on our recent work on the anaerobic inactivation of the enzyme [Fourmond et al. Nat. Chem. 2014, 4, 336-342] to propose and apply a new method for studying this reaction. Using electrochemical measurements of the turnover rate of hydrogenase, we could resolve the first steps of the inhibition reaction and accurately determine their rates. We show that the two most studied FeFe hydrogenases, from Chlamydomonas reinhardtii and Clostridium acetobutylicum, react with O2 according to the same mechanism, despite the fact that the former is much more O2 sensitive than the latter. Unlike often assumed, both enzymes are reversibly inhibited by a short exposure to O2. This will have to be considered to elucidate the mechanism of inhibition, before any prediction can be made regarding which mutations will improve oxygen resistance. We hope that the approach described herein will prove useful in this respect.

  4. Longitudinally Controlled Modification of Cylindrical and Conical Track-Etched Poly(ethylene terephthalate) Pores Using an Electrochemically Assisted Click Reaction.

    Science.gov (United States)

    Coceancigh, Herman; Tran-Ba, Khanh-Hoa; Siepser, Natasha; Baker, Lane A; Ito, Takashi

    2017-10-31

    In this study, the longitudinally controlled modification of the inner surfaces of poly(ethylene terephthalate) (PET) track-etched pores was explored using an electrochemically assisted Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction. Cylindrical or conical PET track-etched pores were first decorated with ethynyl groups via the amidation of surface -COOH groups, filled with a solution containing Cu(II) and azide-tagged fluorescent dye, and then sandwiched between comb-shaped and planar gold electrodes. Cu(I) was produced at the comb-shaped working electrode by the reduction of Cu(II); it diffused along the pores toward the other electrode and catalyzed CuAAC between an azide-tagged fluorescent dye and a pore-tethered ethynyl group. The modification efficiency of cylindrical pores (ca. 1 μm in diameter) was assessed from planar and cross-sectional fluorescence microscope images of modified membranes. Planar images showed that pore modification took place only above the teeth of the comb-shaped electrode with a higher reaction yield for longer Cu(II) reduction times. Cross-sectional images revealed micrometer-scale gradient modification along the pore axis, which reflected a Cu(I) concentration profile within the pores, as supported by finite-element computer simulations. The reported approach was applicable to the asymmetric modification of cylindrical pores with two different fluorescent dyes in the opposite directions and also for the selective visualization of the tip and base openings of conical pores (ca. 3.5 μm in base diameter and ca. 1 μm in tip diameter). The method based on electrochemically assisted CuAAC provides a controlled means to fabricate asymmetrically modified nanoporous membranes and, in the future, will be applicable for chemical separations and the development of sequential catalytic reactors.

  5. Longitudinally Controlled Modification of Cylindrical and Conical Track-Etched Poly(ethylene terephthalate) Pores Using an Electrochemically Assisted Click Reaction

    International Nuclear Information System (INIS)

    Coceancigh, Herman; Tran-Ba, Khanh-Hoa; Columbia University, New York, NY; Siepser, Natasha; Baker, Lane A.; Ito, Takashi

    2017-01-01

    Here in this study, the longitudinally controlled modification of the inner surfaces of poly(ethylene terephthalate) (PET) track-etched pores was explored using an electrochemically assisted Cu(I)-catalyzed azide–alkyne cycloaddition (CuAAC) click reaction. Cylindrical or conical PET track-etched pores were first decorated with ethynyl groups via the amidation of surface -COOH groups, filled with a solution containing Cu(II) and azide-tagged fluorescent dye, and then sandwiched between comb-shaped and planar gold electrodes. Cu(I) was produced at the comb-shaped working electrode by the reduction of Cu(II); it diffused along the pores toward the other electrode and catalyzed CuAAC between an azide-tagged fluorescent dye and a pore-tethered ethynyl group. The modification efficiency of cylindrical pores (ca. 1 μm in diameter) was assessed from planar and cross-sectional fluorescence microscope images of modified membranes. Planar images showed that pore modification took place only above the teeth of the comb-shaped electrode with a higher reaction yield for longer Cu(II) reduction times. Cross-sectional images revealed micrometer-scale gradient modification along the pore axis, which reflected a Cu(I) concentration profile within the pores, as supported by finite-element computer simulations. The reported approach was applicable to the asymmetric modification of cylindrical pores with two different fluorescent dyes in the opposite directions and also for the selective visualization of the tip and base openings of conical pores (ca. 3.5 μm in base diameter and ca. 1 μm in tip diameter). Lastly, the method based on electrochemically assisted CuAAC provides a controlled means to fabricate asymmetrically modified nanoporous membranes and, in the future, will be applicable for chemical separations and the development of sequential catalytic reactors.

  6. Prevention of generalized reactions to contrast media: a consensus report and guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Morcos, S.K. [Dept. of Diagnostic Imaging, Northern General Hospital, Sheffield (United Kingdom); Thomsen, H.S. [Dept. of Diagnostic Radiology, Herlev Hospital, University of Copenhagen (Denmark); Webb, J.A.W. [Diagnostic Radiology Department, St. Bartholomew' s Hospital, London (United Kingdom)

    2001-09-01

    The aim of this study was to document, using consensus methodology, current practice for prevention of generalized reactions to contrast media, to identify areas where there is disagreement or confusion and to draw up guidelines for reducing the risk of generalized contrast media reactions based on the survey and a review of the literature. A document with 165 questions was mailed to 202 members of the European Society of Urogenital Radiology. The questions covered risk factors and prophylactic measures for generalized contrast media reactions. Sixty-eight members (34%) responded. The majority indicated that a history of moderate and severe reaction(s) to contrast media and asthma are important risk factors. The survey also indicated that patients with risk factors should receive non-ionic contrast media. In patients at high risk of reaction, if the examination is deemed absolutely necessary, a resuscitation team should be available at the time of the procedure. The majority (91%) used corticosteroid prophylaxis given at least 11 h before contrast medium to patients at increased risk of reaction. The frequency of the dosage varied from one to three times. Fifty-five percent also use antihistamine Hl, mainly administered orally and once. Antihistamine H2 and ephedrine are rarely used. All essential drugs are available on the emergency resuscitation trolley. Patients with risk factors are observed up to 30 min by 48% and up to 60 min by 43% of the responders. Prophylactic measures are not taken before extravascular use of contrast media. Prophylactic drugs are given to patients with a history of moderate or severe generalized reaction to contrast media. In patients with asthma, opinion is divided with only half of the responders giving prophylactic drugs. Aspirin, {beta}-blockers, interleukin-2 and non-steroid anti-inflammatory drugs are not considered risk factors and therefore are not stopped before injection of contrast media. The survey showed some variability in

  7. Prevention of generalized reactions to contrast media: a consensus report and guidelines

    International Nuclear Information System (INIS)

    Morcos, S.K.; Thomsen, H.S.; Webb, J.A.W.

    2001-01-01

    The aim of this study was to document, using consensus methodology, current practice for prevention of generalized reactions to contrast media, to identify areas where there is disagreement or confusion and to draw up guidelines for reducing the risk of generalized contrast media reactions based on the survey and a review of the literature. A document with 165 questions was mailed to 202 members of the European Society of Urogenital Radiology. The questions covered risk factors and prophylactic measures for generalized contrast media reactions. Sixty-eight members (34%) responded. The majority indicated that a history of moderate and severe reaction(s) to contrast media and asthma are important risk factors. The survey also indicated that patients with risk factors should receive non-ionic contrast media. In patients at high risk of reaction, if the examination is deemed absolutely necessary, a resuscitation team should be available at the time of the procedure. The majority (91%) used corticosteroid prophylaxis given at least 11 h before contrast medium to patients at increased risk of reaction. The frequency of the dosage varied from one to three times. Fifty-five percent also use antihistamine Hl, mainly administered orally and once. Antihistamine H2 and ephedrine are rarely used. All essential drugs are available on the emergency resuscitation trolley. Patients with risk factors are observed up to 30 min by 48% and up to 60 min by 43% of the responders. Prophylactic measures are not taken before extravascular use of contrast media. Prophylactic drugs are given to patients with a history of moderate or severe generalized reaction to contrast media. In patients with asthma, opinion is divided with only half of the responders giving prophylactic drugs. Aspirin, β-blockers, interleukin-2 and non-steroid anti-inflammatory drugs are not considered risk factors and therefore are not stopped before injection of contrast media. The survey showed some variability in

  8. Stable silver nanoclusters electrochemically deposited on nitrogen-doped graphene as efficient electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Jin, Shi; Chen, Man; Dong, Haifeng; He, Bingyu; Lu, Huiting; Su, Lei; Dai, Wenhao; Zhang, Qiaochu; Zhang, Xueji

    2015-01-01

    Metal nanoclusters exhibit unusually high catalytic activity toward oxygen reduction reaction (ORR) due to their small size and unique electronic structures. However, controllable synthesis of stable metal nanoclusters is a challenge, and the durability of metal clusters suffers from the deficiency of dissolution, aggregation, and sintering during catalysis reactions. Herein, silver nanoclusters (AgNCs) (diameter , which is vital in high performance fuel cells, batteries and nanodevices.

  9. Electrochemical force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, Sergei V.; Jesse, Stephen; Collins, Liam F.; Rodriguez, Brian J.

    2017-01-10

    A system and method for electrochemical force microscopy are provided. The system and method are based on a multidimensional detection scheme that is sensitive to forces experienced by a biased electrode in a solution. The multidimensional approach allows separation of fast processes, such as double layer charging, and charge relaxation, and slow processes, such as diffusion and faradaic reactions, as well as capturing the bias dependence of the response. The time-resolved and bias measurements can also allow probing both linear (small bias range) and non-linear (large bias range) electrochemical regimes and potentially the de-convolution of charge dynamics and diffusion processes from steric effects and electrochemical reactivity.

  10. A CFD analysis of transport phenomena and electrochemical reactions in a tubular-shaped PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy and Environment Foundation, Al-Najaf, P.O.Box 39 (Iraq)

    2013-07-01

    A fuel cell is most interesting new power source because it solves not only the environment problem but also natural resource exhaustion problem. CFD modeling and simulation for heat and mass transport in PEM fuel cells are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize fuel cell designs before building a prototype for engineering application. In this research, full three-dimensional, non-isothermal computational fluid dynamics model of a tubular-shaped proton exchange membrane (PEM) fuel cell has been developed. This comprehensive model accounts for the major transport phenomena such as convective and diffusive heat and mass transfer, electrode kinetics, transport and phase-change mechanism of water, and potential fields in a tubular-shaped PEM fuel cell. The model explains many interacting, complex electrochemical, and transport phenomena that cannot be studied experimentally. Three-dimensional results of the species profiles, temperature distribution, potential distribution, and local current density distribution are presented and analysed, with the focus on the physical insight and fundamental understanding.

  11. ELECTROCHEMICAL PROPERTIES AND ELECTROCHEMICAL ...

    African Journals Online (AJOL)

    Rct is about five times higher in acetonitrile relative to water. All these EIS results of the different types of PPy suggest a relation with the wettability of the polymer. KEY WORDS: Conducting polymers, Polypyrrole, Electrochemical impedance spectroscopy, Equivalent- electrical circuit, Micellar media. INTRODUCTION.

  12. Relationship violence and women's reactions to male- and female-controlled HIV prevention methods.

    Science.gov (United States)

    Saul, Janet; Moore, Janet; Murphy, Sheila T; Miller, Lynn C

    2004-06-01

    This study examined the association of relationship violence and preference for three HIV prevention methods among 104 African American and Hispanic women who were at some risk for heterosexual transmission of HIV and other sexually transmitted diseases (STDs). Women completed a brief questionnaire on sexual behaviors and history of relationship violence. All women then watched a video describing three HIV/STD prevention methods (male condoms, female condoms, and vaginal spermicide) that included a discussion of method effectiveness, how to use each method, and their benefits and limitations. Participants then completed a questionnaire assessing their reactions to each of the three HIV prevention methods discussed in the video. Women in violent relationships indicated less likelihood of using male condoms and greater likelihood of using female-controlled methods, particularly vaginal spermicide, than women in nonviolent relationships. In addition, a higher percentage of women in violent compared to nonviolent relationships expected their partners to prefer the vaginal spermicide and a lower percentage expected partners to prefer male condoms. These data suggest that the current focus on finding alternative HIV prevention methods for women in violent relationships is warranted and that a vaginal microbicidal product may be the preferred alternative for this group of women and their male partners.

  13. Preventive effect of fermented Maillard reaction products from milk proteins in cardiovascular health.

    Science.gov (United States)

    Oh, N S; Kwon, H S; Lee, H A; Joung, J Y; Lee, J Y; Lee, K B; Shin, Y K; Baick, S C; Park, M R; Kim, Y; Lee, K W; Kim, S H

    2014-01-01

    The aim of this study was to determine the dual effect of Maillard reaction and fermentation on the preventive cardiovascular effects of milk proteins. Maillard reaction products (MRP) were prepared from the reaction between milk proteins, such as whey protein concentrates (WPC) and sodium caseinate (SC), and lactose. The hydrolysates of MRP were obtained from fermentation by lactic acid bacteria (LAB; i.e., Lactobacillus gasseri H10, L. gasseri H11, Lactobacillus fermentum H4, and L. fermentum H9, where human-isolated strains were designated H1 to H15), which had excellent proteolytic and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities (>20%). The antioxidant activity of MRP was greater than that of intact proteins in assays of the reaction with 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt and trivalent ferric ions; moreover, the effect of MRP was synergistically improved by fermentation. The Maillard reaction dramatically increased the level of antithrombotic activity and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) inhibitory effect of milk proteins, but did not change the level of activity for micellar cholesterol solubility. Furthermore, specific biological properties were enhanced by fermentation. Lactobacillus gasseri H11 demonstrated the greatest activity for thrombin and HMGR inhibition in Maillard-reacted WPC, by 42 and 33%, respectively, whereas hydrolysates of Maillard-reacted SC fermented by L. fermentum H9 demonstrated the highest reduction rate for micellar cholesterol solubility, at 52%. In addition, the small compounds that were likely released by fermentation of MRP were identified by size-exclusion chromatography. Therefore, MRP and hydrolysates of fermented MRP could be used to reduce cardiovascular risks. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Process and kinetics of the fundamental radiation-electrochemical reactions in the primary coolant loop of nuclear reactors

    International Nuclear Information System (INIS)

    Kozomara-Maic, S.

    1987-06-01

    In spite of the rather broad title of this report, its major part is devoted to the corrosion problems at the RA reactor, i.e. causes and consequences of the reactor shutdown in 1979 and 1982. Some problems of reactor chemistry are pointed out because they are significant for future reactor operation. The final conclusion of this report is that corrosion processes in the primary coolant circuit of the nuclear reactor are specific and that radiation effects cannot be excluded when processes and reaction kinetics are investigated. Knowledge about the kinetics of all the chemical reactions occurring in the primary coolant loop are of crucial significance for safe and economical reactor operation [sr

  15. Electrochemical investigations of Pu(IV)/Pu(III) redox reaction using graphene modified glassy carbon electrodes and a comparison to the performance of SWCNTs modified glassy carbon electrodes

    International Nuclear Information System (INIS)

    Gupta, Ruma; Gamare, Jayashree; Sharma, Manoj K.; Kamat, J.V.

    2016-01-01

    Highlights: • First report of aqueous electrochemistry of Plutonium on graphene modified electrode. • Graphene is best electrocatalytic material for Pu(IV)/Pu(III) redox couple among the reported modifiers viz. reduced graphene oxide (rGO) and SWCNT’s. • The electrochemical reversibility of Pu(IV)/Pu(III) redox couple improves significantly on graphene modified electrode compared to previously reported rGO & SWCNTs modified electrodes • Donnan interaction between plutonium species and graphene surface offers a possibility for designing a highly sensitive sensor for plutonium • Graphene modified electrode shows higher sensitivity for the determination of plutonium compared to glassy carbon and single walled carbon nanotube modified electrode - Abstract: The work reported in this paper demonstrates for the first time that graphene modified glassy carbon electrode (Gr/GC) show remarkable electrocatalysis towards Pu(IV)/Pu(III) redox reaction and the results were compared with that of single-walled carbon nanotubes modified GC (SWCNTs/GC) and glassy carbon (GC) electrodes. Graphene catalyzes the exchange of current of the Pu(IV)/Pu(III) couple by reducing both the anodic and cathodic overpotentials. The Gr/GC electrode shows higher peak currents (i p ) and smaller peak potential separation (ΔE p ) values than the SWCNTs/GC and GC electrodes. The heterogeneous electron transfer rate constants (k s ), charge transfer coefficients (α) and the diffusion coefficients (D) involved in the electrocatalytic redox reaction were determined. Our observations show that graphene is best electrocatalytic material among both the SWCNTs and GC to study Pu(IV)/Pu(III) redox reaction.

  16. Structure-property relationship of bifunctional MnO2 nanostructures: highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media.

    Science.gov (United States)

    Meng, Yongtao; Song, Wenqiao; Huang, Hui; Ren, Zheng; Chen, Sheng-Yu; Suib, Steven L

    2014-08-13

    Manganese oxides of various structures (α-, β-, and δ-MnO2 and amorphous) were synthesized by facile methods. The electrocatalytic properties of these materials were systematically investigated for catalyzing both oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) in alkaline media. Extensive characterization was correlated with the activity study by investigating the crystal structures (XRD, HRTEM), morphologies (SEM), porosities (BET), surfaces (XPS, O2-TPD/MS), and electrochemical properties (Tafel analysis, Koutechy-Levich plots, and constant-current electrolysis). These combined results show that the electrocatalytic activities are strongly dependent on the crystallographic structures, and follow an order of α-MnO2 > AMO > β-MnO2 > δ-MnO2. Both OER studies and ORR studies reveal similar structure-determined activity trends in alkaline media. In the OER studies, α-MnO2 displays an overpotential of 490 mV compared to 380 mV shown by an Ir/C catalyst in reaching 10 mA cm(-2). Meanwhile, α-MnO2 also exhibits stability for 3 h when supplying a constant current density of 5 mA cm(-2). This was further improved by adding Ni(2+) dopants (ca. 8 h). The superior OER activity was attributed to several factors, including abundant di-μ-oxo bridges existing in α-MnO2 as the protonation sites, analogous to the OEC in PS-II of the natural water oxidation system; the mixed valencies (AOS = 3.7); and the lowest charge transfer resistances (91.8 Ω, η = 430 mV) as revealed from in situ electrochemical impedance spectroscopy (EIS). In the ORR studies, when reaching 3 mA cm(-2), α-MnO2 shows 760 mV close to 860 mV for the best ORR catalyst (20% Pt/C). The outstanding ORR activity was due to the strongest O2 adsorption capability of α-MnO2 suggested by temperature-programmed desorption. As a result, this discovery of the structure-related electrocatalytic activities could provide guidance in the further development of easily prepared, scalable, and low

  17. Electrochemical reactions and cathode properties of Fe-doped Li2O for the hermetically sealed lithium peroxide battery

    Science.gov (United States)

    Harada, Kosuke; Hibino, Mitsuhiro; Kobayashi, Hiroaki; Ogasawara, Yoshiyuki; Okuoka, Shin-ichi; Yonehara, Koji; Ono, Hironobu; Sumida, Yasutaka; Yamaguchi, Kazuya; Kudo, Tetsuichi; Mizuno, Noritaka

    2016-08-01

    Fe-doped Li2O (FDL) is synthesized mechanochemically and is demonstrated as a new Co-free cathode material for use in sealed Li2O2 batteries, which have been proposed as high energy density batteries. Fe3+ ions are substitutionally doped into the Li sites in an antifluorite-type Li2O structure to create FDL. The FDL consists of (Li0.82Fe0.06)2O (d-FDL) and high-temperature form of Li5FeO4 (o-FDL), in which Fe3+ ions disorderly and orderly arranged, respectively. According to the Mössbauer spectra and quantitative peroxide species analysis, the FDL cathode operates principally based on the redox reaction between O22- and O2-. X-ray diffraction study reveals that the reversible formation of O22- proceeds mainly in the d-FDL. An irreversible side reaction involving the evolution of oxygen gas occurs when the cathode is charged to more than 250 mAh g-1. The FDL (Fe/(Li + Fe) = 10 at%) cathode exhibits a reversible capacity of 200 mAh g-1 over 200 cycles at a current density of 22.5 mA g-1.

  18. Development and implementation of a critical pathway for prevention of adverse reactions to contrast media for computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Keun Jo [Presbyterian Medical Center, Seoul (Korea, Republic of); Kweon, Dae Cheol; Kim, Myeong Goo [Seoul National University Hospital, Seoul (Korea, Republic of); Yoo, Beong Gyu [Wonkwang Health Science College, Iksan (Korea, Republic of)

    2007-03-15

    The purpose of this study is to develop a critical pathway (CP) for the prevention of adverse reactions to contrast media for computed tomography. The CP was developed and implemented by a multidisciplinary group is Seoul National University Hospital. The CP was applied to CT patients. Patients who underwent CT scanning were included in the CP group from March in 2004. The satisfaction of the patients with CP was compared with non-CP groups. We also investigated the degree of satisfaction among the radiological technologists and nurses. The degree of patient satisfaction with the care process increased patient information (24%), prevention of adverse reactions to contrast media (19%), pre-cognitive effect of adverse reactions to contrast media (39%) and information degree of adverse reactions to contrast media (19%). This CP program can be used as one of the patient care tools for reducing the adverse reactions to contrast media and increasing the efficiency of care process in CT examination settings.

  19. Development and implementation of a critical pathway for prevention of adverse reactions to contrast media for computed tomography

    International Nuclear Information System (INIS)

    Jang, Keun Jo; Kweon, Dae Cheol; Kim, Myeong Goo; Yoo, Beong Gyu

    2007-01-01

    The purpose of this study is to develop a critical pathway (CP) for the prevention of adverse reactions to contrast media for computed tomography. The CP was developed and implemented by a multidisciplinary group is Seoul National University Hospital. The CP was applied to CT patients. Patients who underwent CT scanning were included in the CP group from March in 2004. The satisfaction of the patients with CP was compared with non-CP groups. We also investigated the degree of satisfaction among the radiological technologists and nurses. The degree of patient satisfaction with the care process increased patient information (24%), prevention of adverse reactions to contrast media (19%), pre-cognitive effect of adverse reactions to contrast media (39%) and information degree of adverse reactions to contrast media (19%). This CP program can be used as one of the patient care tools for reducing the adverse reactions to contrast media and increasing the efficiency of care process in CT examination settings

  20. Electrochemical bromination of germacrene D

    Energy Technology Data Exchange (ETDEWEB)

    Ogamino, Takahisa; Mori, Kazuki; Yamamura, Shosuke; Nishiyama, Shigeru [Keio University, Yokohama (Japan). Dept. of Chemistry

    2004-10-30

    Electrochemical bromination of germacrene D 1 and geraniol 2 carrying plural olefinic bonds provided the corresponding brominated products 3-10. The bicyclic derivative 6 was preferentially produced from 1, while chemical brominations provided no clear selectivity of its product distribution. Influence of the parameters of the electrochemical reaction conditions was evaluated, aiming at improvement of regioselectivity and yields of the brominated products. (author)

  1. Electrochemical properties and electrochemical impedance ...

    African Journals Online (AJOL)

    Polypyrrole (PPy) films of different thickness were characterized by electrochemical impedance spectroscopy (EIS) measurements in acetonitrile and aqueous solutions, containing 0.1 M NaClO4 or sodium dodecylsulfate as the dopant. The PPy films were electrochemically deposited on Pt, and their electrochemical ...

  2. Management of delayed hemolytic transfusion reaction in sickle cell disease: Prevention, diagnosis, treatment.

    Science.gov (United States)

    Pirenne, F; Bartolucci, P; Habibi, A

    2017-09-01

    Transfusion remains a key treatment of sickle cell disease complications. However, delayed hemolytic transfusion reaction, the most serious complication of transfusion, may be life-threatening if hyperhemolysis develops. This syndrome is generally underdiagnosed because its biological and clinical features resemble those of vaso-occlusive crisis, and red blood cell antibodies are frequently absent. Further transfusions may aggravate the symptoms, leading to severe multiple organ failure and death. It is therefore essential to prevent, diagnose and treat this syndrome efficiently. Prevention is based principally on the attenuation of allo-immunization through the provision of extended-matched RBCs or the use of rituximab. However, such treatment may be insufficient. Early diagnosis might make it possible to implement specific treatments in some cases, thereby avoiding the need for secondary transfusion. Diagnosis is dependent on the knowledge of the medical staff. Finally, many treatments, including steroids, immunoglobulins, erythropoietin and eculizumab, have been used to improve outcome. Improvements in our knowledge of the specific features of DHTR in SCD should facilitate management of this syndrome. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Electrochemical Removal Of Selenate From Aqueous Solutions

    Science.gov (United States)

    Baek, Kitae; Kasem, Naji; Ciblak, Ali; Vesper, Dorothy; Padilla, Ingrid; Alshawabkeh, Akram N.

    2013-01-01

    Removal of selenate from solution is investigated in batch electrochemical systems using reactive iron anodes and copper plate cathode in a bicarbonate medium. Iron anodes produce ferrous hydroxide, which is a major factor in the removal of selenate from solution. Iron anodes also generate a significant decrease in the oxidation-reduction potential (ORP) of the solution because it prevents generation of oxygen gas at the anode by electrolysis. The removal rates varied from 45.1 to 97.4%, depending on current density and selenate concentration. The transformation of selenate by the process is modeled based on a heterogeneous reaction coupled with electrochemical generation of ferrous and hydroxide. The rates are optimized at lower initial concentrations, higher electrical currents, and the presence of anions. Presence of dissolved oxygen does not cause any significant effects the removal of selenate. PMID:23378820

  4. Aerosol synthesis and electrochemical analysis of niobium mixed-metal oxides for the ethanol oxidation reaction in acid and alkaline electrolyte

    Science.gov (United States)

    Konopka, Daniel A.

    Direct ethanol fuel cells are especially important among emerging electrochemical power systems with the potential to offset a great deal of the energy demand currently met through the use of fossil fuels. Ethanol can be refined from petroleum sources or attained from renewable biomass, and is more easily and safely stored and transported than hydrogen, methanol or gasoline. The full energy potential of ethanol in fuel cells can only be realized if the reaction follows a total oxidation pathway to produce CO2. This must be achieved by the development of advanced catalysts that are electrically conductive, stable in corrosive environments, contain a high surface area on which the reaction can occur, and exhibit a bi-functional effect for the ethanol oxidation reaction (EOR). The latter criterion is achievable in mixed-metal systems. Platinum is an effective metal for catalyzing surface reactions of many adsorbates and is usually implemented in the form of Pt nanoparticles supported on inexpensive carbon. This carbon is believed to be neutral in the catalysis of Pt. Instead, carbon can be replaced with carefully designed metals and metal oxides as co-catalysis or support structures that favorably alter the electronic structure of Pt slightly through a strong metal support interaction, while also acting as an oxygen source near adsorbates to facilitate the total oxidation pathway. Niobium mixed-metal-oxides were explored in this study as bi-functional catalyst supports to Pt nanoparticles. We developed a thermal aerosol synthesis process by which mesoporous powders of mixed-metal-oxides decorated with Pt nanoparticles could be obtained from liquid precursors within ˜5 seconds or less, followed by carefully refined chemical and thermal post-treatments. Exceptionally high surface areas of 170--180m2/g were achieved via a surfactant-templated 3D wormhole-type porosity, comparable on a per volume basis to commercial carbon blacks and high surface area silica supports

  5. SPECTROPHOTOMETRIC AND ELECTROCHEMICAL STUDIES ...

    African Journals Online (AJOL)

    ABSTRACT. Spectrophotometric and electrochemical studies concerning the interaction of cryptand 222 with DDQ and I2 have been performed in ethanol solution. In the case of DDQ, the results are indicative of the formation of C222+ and DDQ- through an equilibrium reaction. The results of I2 indicate the formation of ...

  6. Utility of opium seed extract tests in preventing hypersensitivity reactions during surgery.

    Science.gov (United States)

    Armentia, A; Pineda, F; Palacios, R; Martín-Gil, F-J; Miguel, A S; Arenal, J J; Tejedor, J; Tef, B M

    2014-01-01

    Anaphylaxis during anaesthesia is fatal in 3-9% of patients and analgesics, including opioids, and is the second most common medicament-related cause, although the prevalence is underestimated. We recently found that patients may generate IgE antibodies to opium seeds. To determine the diagnostic accuracy of specific antibodies to morphine, codeine, rocuronium and oil body and aqueous fractions of Papaver somniferum seeds in the diagnosis and prevention of allergy to opioids. Patients with hypersensitivity reactions during surgery, and severe clinical allergy (pollen, tobacco), and illicit heroin users were selected. The sensitivity, specificity and predictive values of in vivo and in vitro diagnostic techniques including oil body and aqueous fractions of P. somniferum seeds were measured. We studied 203 patients, with mean age 35.1±17.1 and 200 healthy controls. Patients sensitised to heroin or with hypersensitivity reactions during surgery responded to P. somniferum seed tests. Of patients not known to be sensitised to opioids, the highest positivity was in patients sensitised to tobacco (pOpium seed skin tests and IgE, especially the oil body fraction, were more sensitive (64.2%) and specific (98.4%) than morphine, codeine and rocuronium tests for opioid sensitivity. Pollen allergy was not a risk factor for sensitisation to morphine. Sensitivity to opioids and intraoperative anaphylaxis can be diagnosed by routine tests. IgE and skin tests for the oil body fraction of P. somniferum had the highest sensitivity for sensitisation to opioids. Copyright © 2012 SEICAP. Published by Elsevier Espana. All rights reserved.

  7. Electrochemical and Computational Studies on the Electrocatalytic Effect of Conducting Polymers toward the Redox Reactions of Thiadiazole-Based Thiolate Compounds

    KAUST Repository

    Rodríguez-Calero, Gabriel G.

    2010-04-08

    We have studied the electrocatalytic effects of polythiophene-based conducting polymers toward the redox reactions of the dilithium salt of the thiadiazole-based dithiol compound 2,5-dimercapto-1,3,4-thiodiazole (DMcT-2Li) via cyclic voltammetry (CV), rotating-disk electrode voltammetry, and electrochemical impedance spectroscopy (EIS). We have found that the electrocatalytic activity of the conducting polymers is strongly influenced by the potential range over which the polymers are electrically conductive (i.e., window of conductivity), which was tuned by employing different electron-donating groups at the 3- or 3,4-positions of polythiophene (PTh). Both poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(3,4-propylenedioxythiophene) (PProDOT), whose windows of conductivity exhibited a good overlap with the formal potential for the dimerization process of DMcT-2Li; E0′ d (?0.54 V versus Ag/Ag+) exhibited electrocatalytic activity toward both the oxidation and reduction processes of DMcT-2Li. On the other hand, PTh, poly(3-methylthiophene) (PMTh), and poly(3,4- dimethoxythiophene) (PDMTh), whose windows of conductivity did not overlap with E0′d, did not exhibit electrocatalytic activity. The standard charge transfer rate constants for the dimerization process of DMcT-2Li at PEDOT, PProDOT, and PDMTh film-modified glassy carbon electrodes (GCEs) were estimated to be 7.4 - 10?4, 3.2 - 10?4, and 6.9 - 10?5 cm/s while the rate constant was 6.3 - 10?5 cm/s at an unmodified GCE. Moreover, EIS studies for PEDOT, PProDOT, and PDMTh film-modified GCEs indicated the smallest charge transfer resistance for a PEDOT film and highest for a PDMTh film at E0′d, indicating that the higher the electrical conductivity of a film at E 0′d the higher the electrocatalytic activity toward the redox reactions of DMcT-2Li. These results clearly indicate that in order to accelerate the redox reactions of DMcT-2Li (and likely of other organosulfur compounds) the window of conductivity

  8. One-pot synthesis of MoS2/In2S3 ultrathin nanoflakes with mesh-shaped structure on indium tin oxide as photocathode for enhanced photo-and electrochemical hydrogen evolution reaction

    Science.gov (United States)

    Sun, Baoliang; Shan, Fei; Jiang, Xinxin; Ji, Jing; Wang, Feng

    2018-03-01

    A bifunctional MoS2/In2S3 hybrid composite that has both photo- and electrocatalytic activity toward hydrogen evolution reaction (HER) is prepared by a facile one pot hydrothermal method. The characterizations by scanning electron microscope (SEM), high resolution transmission electron microscope (HRTEM) and Photoluminescence (PL) shows that the MoS2/In2S3 hybrid exhibits ultrathin nanoflakes with mesh-shaped structure on transparent conductive substrates, and the as prepared catalyst composite obviously improves the separation of electro-hole pairs. The as prepared hybrid nanosheets with Mo:In of 1/2 integrate In-doped MoS2 to reduce the stacking and increase the active surface area. The novel mesh-shaped nanostructure with a moderate degree of disorder provides not only simultaneously intrinsic conductivity and defects but also higher electrochemically active surface area (ECSA). By electrochemical measurements, such as linear sweep voltammetry (LSV), electrochemical impedance spectroscope (EIS) and cyclic voltammetry (CV), we find that the MoS2/In2S3 hybrid possesses much better photo/electrochemical activity than pristine MoS2 or In2S3. MoS2/In2S3 ultrathin nanoflaks are anticipated to be a superior photoelectrocatalyst for PEC cells, and the rational use of the MoS2/In2S3 cathode offers a new avenue toward achieving effective photo-assistant electrocatalytic activity.

  9. Enzyme-Gelatin Electrochemical Biosensors: Scaling Down

    Directory of Open Access Journals (Sweden)

    Hendrik A. Heering

    2012-03-01

    Full Text Available In this article we investigate the possibility of scaling down enzyme-gelatin modified electrodes by spin coating the enzyme-gelatin layer. Special attention is given to the electrochemical behavior of the selected enzymes inside the gelatin matrix. A glassy carbon electrode was used as a substrate to immobilize, in the first instance, horse heart cytochrome c (HHC in a gelatin matrix. Both a drop dried and a spin coated layer was prepared. On scaling down, a transition from diffusion controlled reactions towards adsorption controlled reactions is observed. Compared to a drop dried electrode, a spin coated electrode showed a more stable electrochemical behavior. Next to HHC, we also incorporated catalase in a spin coated gelatin matrix immobilized on a glassy carbon electrode. By spincoating, highly uniform sub micrometer layers of biocompatible matrices can be constructed. A full electrochemical study and characterization of the modified surfaces has been carried out. It was clear that in the case of catalase, gluteraldehyde addition was needed to prevent leaking of the catalase from the gelatin matrix.

  10. A Review of Haptoglobin Typing Methods for Disease Association Study and Preventing Anaphylactic Transfusion Reaction

    Directory of Open Access Journals (Sweden)

    Dae-Hyun Ko

    2013-01-01

    Full Text Available Haptoglobin, the product of the gene, is a glycoprotein involved in the scavenging of free hemoglobin. Haptoglobin levels increase or decrease in response to various acquired conditions, and they are also influenced by genetic predisposition. There were 2 major alleles, and , and 1 minor allele, . Many researchers have attempted to study the haptoglobin types and their association with disease; however, no definitive conclusions have been reached yet. It is reported that patients who are genetically deficient in haptoglobin are at risk of anaphylaxis against blood components containing haptoglobin. Haptoglobin genotypes also affect the reference intervals of haptoglobin levels. Many studies have attempted to establish simple and accurate typing methods. In this paper, we have broadly reviewed several methods for haptoglobin typing—phenotyping, Southern blotting, conventional PCR, real-time PCR, and loop-mediated isothermal amplification. We discuss their characteristics, clinical applications, and limitations. The phenotyping methods are time consuming and labor intensive and not designed to detect patients harboring . The rapid and robust haptoglobin genotyping may help in preventing fatal anaphylactic reactions and in establishing the relationships between the haptoglobin phenotypes and diseases.

  11. Application of Electrochemical Impedance Spectroscopy for Fuel Cell Characterization: Polymer Electrolyte Fuel Cell (PEFC) and Oxygen Reduction Reaction in Alkaline Solution

    OpenAIRE

    Wagner, Norbert

    2012-01-01

    Separation of different electrochemical and ohmic contributions to the current/voltage U(i) characteristics requires additional experimental techniques like Electrochemical Impedance Spectroscopy (EIS). The application of EIS is an approach to determine parameters which have proved to be indispensable for the characterization and development of fuel cell electrodes and electrolyte electrode assemblies. By varying the operating conditions of the fuel cell and by simulation of the measured ...

  12. Electrochemical biosensors

    CERN Document Server

    Cosnier, Serge

    2015-01-01

    "This is an excellent book on modern electrochemical biosensors, edited by Professor Cosnier and written by leading international experts. It covers state-of-the-art topics of this important field in a clear and timely manner."-Prof. Joseph Wang, UC San Diego, USA  "This book covers, in 13 well-illustrated chapters, the potential of electrochemical methods intimately combined with a biological component for the assay of various analytes of biological and environmental interest. Particular attention is devoted to the description of electrochemical microtools in close contact with a biological cell for exocytosis monitoring and to the use of nanomaterials in the electrochemical biosensor architecture for signal improvement. Interestingly, one chapter describes the concept and design of self-powered biosensors derived from biofuel cells. Each topic is reviewed by experts very active in the field. This timely book is well suited for providing a good overview of current research trends devoted to electrochemical...

  13. Kinetics of electrochemically controlled surface reactions on bulk and thin film metals studied with Fourier transform impedance spectroscopy and surface plasmon resonance techniques

    Science.gov (United States)

    Assiongbon, Kankoe A.

    2005-07-01

    In the work presented in this thesis, the surface sensitive electrochemical techniques of cyclic voltametry (CV), potential step (PS) and Fourier transform impedance spectroscopy (FT-EIS), as well as the optical technique of surface plasmon resonance (SPR), were used to probe a wide variety of surface processes at various metal/liquid interface. Three polycrystalline metals (Au, Ta and Cu) and a Cr-coated gold film were used for these studies in different aqueous environments. A combination of CV with FT-EIS and PS was used to investigate electronic and structural proprieties of a modified bulk electrode of Au. This experimental system involved under potential deposition (UPD) of Bi3+ on Au in a supporting aqueous electrolyte containing ClO-4 . UPD range of Bi3+ was determined, and adsorption kinetics of Bi3+ in the presence of coadsorbing anion, ClO-4 were quantified. Potentiodynamic growth of oxide films of Ta in the following electrolytes NaNO3, NaNO3 + 5wt% H2O2, NaOH and NaOH + 5wt% H2O2 had been investigated. The oxide films were grown in the range -0.1 → +0.4V (high electric field) at a scan rate of 10 mV/s. Time resolved A.C. impedance spectroscopy measurements in the frequency range (0.1--20 KHz) were performed to characterize the surface reactions of oxide formation. The results are interpreted in terms of charge conductivity O2- through the oxide film, and disintegration of H2O2 into OH-. In a high pH medium (pH 12), dissociation of H2O2 was catalytically enhanced. This led to destabilization of the electrogenerated tantalum oxide surface film in the form of a soluble hexatantalate species. In contrast with the electrolytes, NaNO3, NaNO3 + 5wt% H2O2, NaOH, where only the oxide growth was observed, the A.C. impedance spectroscopy measurements in NaOH + 5wt% H 2O2 showed competition between oxide formation and its removal. These results are relevant for chemical slurry design in chemical mechanical polishing (CMP) of Ta. Further investigations were

  14. Regorafenib-associated hand-foot skin reaction: practical advice on diagnosis, prevention, and management.

    Science.gov (United States)

    McLellan, B; Ciardiello, F; Lacouture, M E; Segaert, S; Van Cutsem, E

    2015-10-01

    Regorafenib is an orally available, small-molecule multikinase inhibitor with international marketing authorizations for use in colorectal cancer and gastrointestinal stromal tumors. In clinical trials, regorafenib showed a consistent and predictable adverse-event profile, with hand-foot skin reaction (HFSR) among the most clinically significant toxicities. This review summarizes the clinical characteristics of regorafenib-related HFSR and provides practical advice on HFSR management to enable health care professionals to recognize, pre-empt, and effectively manage the symptoms, thereby allowing patients to remain on active therapy for as long as possible. This review is based on a systematic literature search of the PubMed database (using synonyms of HFSR, regorafenib, and skin toxicities associated with targeted therapies or cytotoxic chemotherapy). However, as this search identified very few articles, the authors also use their clinical experience as oncologists and dermatologists managing patients with treatment-related HFSR to provide recommendations on recognition and management of HFSR in regorafenib-treated patients. Regorafenib-related HFSR is similar to that seen with other multikinase inhibitors (e.g. sorafenib, sunitinib, cabozantinib, axitinib, and pazopanib) but differs from the hand-foot syndrome seen with cytotoxic chemotherapies (e.g. fluoropyrimidines, anthracyclines, and taxanes). There have been no controlled trials of symptomatic management of regorafenib-related HFSR, and limited good-quality evidence from randomized clinical trials of effective interventions for HFSR associated with other targeted therapies. Recommendations on prevention and management of regorafenib-related HFSR in this review are therefore based on the expert opinion of the authors (dermatologists and oncologists with expertise in the management of treatment-related skin toxicities and oncologists involved in clinical trials of regorafenib) and tried-and-tested empirical

  15. Regorafenib-associated hand–foot skin reaction: practical advice on diagnosis, prevention, and management

    Science.gov (United States)

    McLellan, B.; Ciardiello, F.; Lacouture, M. E.; Segaert, S.; Van Cutsem, E.

    2015-01-01

    Background Regorafenib is an orally available, small-molecule multikinase inhibitor with international marketing authorizations for use in colorectal cancer and gastrointestinal stromal tumors. In clinical trials, regorafenib showed a consistent and predictable adverse-event profile, with hand–foot skin reaction (HFSR) among the most clinically significant toxicities. This review summarizes the clinical characteristics of regorafenib-related HFSR and provides practical advice on HFSR management to enable health care professionals to recognize, pre-empt, and effectively manage the symptoms, thereby allowing patients to remain on active therapy for as long as possible. Design This review is based on a systematic literature search of the PubMed database (using synonyms of HFSR, regorafenib, and skin toxicities associated with targeted therapies or cytotoxic chemotherapy). However, as this search identified very few articles, the authors also use their clinical experience as oncologists and dermatologists managing patients with treatment-related HFSR to provide recommendations on recognition and management of HFSR in regorafenib-treated patients. Results Regorafenib-related HFSR is similar to that seen with other multikinase inhibitors (e.g. sorafenib, sunitinib, cabozantinib, axitinib, and pazopanib) but differs from the hand–foot syndrome seen with cytotoxic chemotherapies (e.g. fluoropyrimidines, anthracyclines, and taxanes). There have been no controlled trials of symptomatic management of regorafenib-related HFSR, and limited good-quality evidence from randomized clinical trials of effective interventions for HFSR associated with other targeted therapies. Recommendations on prevention and management of regorafenib-related HFSR in this review are therefore based on the expert opinion of the authors (dermatologists and oncologists with expertise in the management of treatment-related skin toxicities and oncologists involved in clinical trials of regorafenib) and

  16. Cost-effectiveness of leucoreduction for prevention of febrile non-haemolytic transfusion reactions

    Science.gov (United States)

    Tsantes, Argirios E.; Kyriakou, Elias; Nikolopoulos, Georgios K.; Stylos, Dimitrios; Sidhom, Marlene; Bonovas, Stefanos; Douramani, Panagiota; Kalantzis, Dimitrios; Kokoris, Styliani; Valsami, Serena; Stamoulis, Konstantinos; Politou, Marianna; Foudoulaki-Paparizos, Leontini

    2014-01-01

    Background The cost-effectiveness of universal leucoreduction of blood components remains unclear. When using leucoreduced red blood cells, the decrease in the rate of febrile non-haemolytic transfusion reactions (FNHTR) is the only proven, meaningful clinical benefit, whose relationship to costs can be calculated relatively easily. The aim of this study was to evaluate the cost-effectiveness of leucoreduction in avoiding FNHTR. Materials and methods Data were obtained from two large tertiary hospitals in Athens, Greece, over a 4-year period (2009–2012). The incidence of FNHTR in patients transfused with leucoreduced or non-leucodepleted red blood cells, the additional cost of leucoreduction and the cost to treat the FNHTR were estimated. The incremental cost-effectiveness ratio (ICER), which is the ratio of the change in costs to the incremental benefits of leucoreduction, was calculated. Results In total, 86,032 red blood cell units were transfused. Of these, 53,409 were leucodepleted and 32,623 were non-leucoreduced. Among patients transfused with leucodepleted units, 25 cases (0.047%) met the criteria for having a FNHTR, while in patients treated with non-leucoreduced components, 134 FNHTR were observed (0.411%). The ICER of leucoreduction was € 6,916 (i.e., the cost to prevent one case of FNHTR). Conclusions Leucoreduction does not have a favourable cost-effectiveness ratio in relation to the occurrence of FNHTR. However, many factors, which could not be easily and accurately assessed, influence the long-term costs of transfusion. It is imperative to undertake a series of large, meticulously designed clinical studies across the entire spectrum of blood transfusion settings, to investigate most of the parameters involved. PMID:24931843

  17. X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell

    International Nuclear Information System (INIS)

    Deb, A.; Bergmann, U.; Cairns, E.L.; California Univ., Berkeley, CA; Cramer, S.P.; California Univ., Davis, CA

    2004-01-01

    The extraction and insertion of lithium in LiFePO 4 has been investigated in practical Li-ion intercalation electrodes for Li-ion batteries using Fe K-edge X-ray absorption spectroscopy (XAS). A versatile electrochemical in situ reaction cell was utilized, specifically designed for long-term X-ray experiments on battery electrodes during the lithium-extraction/insertion process in electrode materials for Li-ion batteries. The electrode contained about 7.7 mg of LiFePO 4 on a 20 μm-thick Al foil. In order to determine the charge compensation mechanism and structural perturbations occurring in the system during cycling, in situ X-ray absorption fine-structure spectroscopy (XAFS) measurements were conducted on the cell at a moderate rate using typical Li-ion battery operating voltages (3.0-4.1 V versus Li/Li + ).XAS studies of the LiFePO 4 electrode measured at the initial state (LiFePO 4 ) showed iron to be in the Fe(II) state corresponding to the initial state (0.0 mAh) of the battery, whereas in the delithiated state (FePO 4 ) iron was found to be in the FE(III) state corresponding to the final charged state (3 m Ah) of the battery. The X-ray absorption near-edge structure (XANES) region of the XAS spectra revealed a high-spin configuration for the two states [Fe(II), d 6 and Fe(III), d 5 ]. The XAFS data analysis confirmed that the olivine structure of the LeFePO 4 and FePO 4 is retained by the electrodes, which is in agreement with the X-ray diffraction observations on these compounds. The XAFS data that were collected continuously during cycling revealed details about the response of the cathode to Li insertion and extraction. These measurements on the LiFePO 4 cathode show that the material retains good structural short-range order leading to superior cycling

  18. Electrochemical sensor for monitoring electrochemical potentials of fuel cell components

    Science.gov (United States)

    Kunz, Harold R.; Breault, Richard D.

    1993-01-01

    An electrochemical sensor comprised of wires, a sheath, and a conduit can be utilized to monitor fuel cell component electric potentials during fuel cell shut down or steady state. The electrochemical sensor contacts an electrolyte reservoir plate such that the conduit wicks electrolyte through capillary action to the wires to provide water necessary for the electrolysis reaction which occurs thereon. A voltage is applied across the wires of the electrochemical sensor until hydrogen evolution occurs at the surface of one of the wires, thereby forming a hydrogen reference electrode. The voltage of the fuel cell component is then determined with relation to the hydrogen reference electrode.

  19. A facile approach to prepare crumpled CoTMPyP/electrochemically reduced graphene oxide nanohybrid as an efficient electrocatalyst for hydrogen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Juanjuan, E-mail: majj0518@hotmail.com [Department of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005 (China); School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore (Singapore); Liu, Lin; Chen, Qian; Yang, Min [Department of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005 (China); Wang, Danping [School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore (Singapore); Tong, Zhiwei [Department of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005 (China); Chen, Zhong, E-mail: aszchen@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore (Singapore)

    2017-03-31

    Highlights: • Crumpled CoTMPyP/ERGO hybrid was successfully prepared by a facile two-step process. • CoTMPyP nanoaggregates are homogeneously distributed over the graphene surface. • CoTMPyP/ERGO hybrid film shows good electrocatalytic activity and stability for HER. - Abstract: Elaborate design and synthesis of efficient and stable non-Pt electrocatalysts for some renewable energy related conversion/storage processes are one of the major goals of sustainable chemistry. Herein, we report a facile method to fabricate Co porphyrin functionalized electrochemically reduced graphene oxide (CoTMPyP/ERGO) thin film by direct assembly of oppositely charged tetrakis(N-methylpyridyl) porphyrinato cobalt (CoTMPyP) and GO nanosheets under mild conditions followed by an electrochemical reduction procedure. STEM analysis confirms that CoTMPyP nanoaggregates are homogeneously distributed over the graphene surface. The electrochemical properties of CoTMPyP/ERGO were investigated by cyclic voltammetry, linear sweep voltammetry and electrochemical impedance spectroscopy. The results demonstrate that CoTMPyP/ERGO nanohybrid film can serve as excellent electrocatalyst for hydrogen evolution in alkaline solution with high activity and stability. The intimate contact and efficient electron transfer between CoTMPyP and ERGO, as well as the crumpled structure, contribute to the improvement of the electrocatalytic performance.

  20. Electrochemical Hydrogen Evolution

    DEFF Research Database (Denmark)

    Laursen, A.B.; Varela Gasque, Ana Sofia; Dionigi, F.

    2012-01-01

    The electrochemical hydrogen evolution reaction (HER) is growing in significance as society begins to rely more on renewable energy sources such as wind and solar power. Thus, research on designing new, inexpensive, and abundant HER catalysts is important. Here, we describe how a simple experiment....... This exercise circumvents the complexity of traditional experiments while it still demonstrates the trends of the HER volcano known from literature....

  1. Influence of enzymatic reactions on the electrochemical behavior of EN X2CrNiMo17-11-2 (AISI 316L) stainless steel in bio-corrosion: role of interfacial processes on the modification of the passive layer

    International Nuclear Information System (INIS)

    Landoulsi, J.

    2008-01-01

    The outstanding corrosion behavior of stainless steels (SS) results from the presence of thin oxide layer (some nanometers). In non sterile aqueous media, stainless steels may exhibit a non stable behavior resulting from interactions between microbial species and passive film. In fact, microorganisms can be deeply involved in the corrosion processes usually reported as Microbial Influenced Corrosion (MIC). They can induce the initiation or the acceleration of this phenomenon and they do so when organized in bio-films. From the electrochemical point of view, stainless steels showed an increase of the free corrosion potential (Ecorr) attributed to the bio-film settlement. The Eco' ennoblement was broadly reported in seawater and seems to be confirmed in fresh water according to recent findings. A considerable progress in the comprehension of MIC processes was related to the role of extracellular species, essentially enzymes. Many enzymatic reactions occurring in bio-films consist on using oxygen as electron acceptor to generate hydrogen peroxide and related species. The aim of this work is to understand the mechanisms involved in the electrochemical behavior of stainless steel according to an enzymatic approach in medium simulating fresh water. To this end, glucose oxidase was chosen to globalize aerobic activities of bio-films. Electrochemical measurements in situ and surface analysis allow the comprehension of the role and the nature of interfacial processes. Surface characterization was performed with the help of a new quantitative utilization of XPS analysis and AFM. Results show a significant evolution in term of morphology (surface organization), (ii) chemical composition (passive layer, adsorbed organic species) and (iii) chemical reaction (oxidation, dissolution, effect of enzyme). Finally, a new enzymatic system is proposed to mimic specific physicochemical conditions at the SS / bio-film interface, in particular enzymatic generation of oxidant species in

  2. Characterization of polyphenol oxidase from the Manzanilla cultivar (Olea europaea pomiformis) and prevention of browning reactions in bruised olive fruits.

    Science.gov (United States)

    Segovia-Bravo, Kharla A; Jarén-Galan, Manuel; García-García, Pedro; Garrido-Fernandez, Antonio

    2007-08-08

    The crude extract of the polyphenol oxidase (PPO) enzyme from the Manzanilla cultivar (Olea europaea pomiformis) was obtained, and its properties were characterized. The browning reaction followed a zero-order kinetic model. Its maximum activity was at pH 6.0. This activity was completely inhibited at a pH below 3.0 regardless of temperature; however, in alkaline conditions, pH inhibition depended on temperature and was observed at values above 9.0 and 11.0 at 8 and 25 degrees C, respectively. The thermodynamic parameters of substrate oxidation depended on pH within the range in which activity was observed. The reaction occurred according to an isokinetic system because pH affected the enzymatic reaction rate but not the energy required to carry out the reaction. In the alkaline pH region, browning was due to a combination of enzymatic and nonenzymatic reactions that occurred in parallel. These results correlated well with the browning behavior observed in intentionally bruised fruits at different temperatures and in different storage solutions. The use of a low temperature ( approximately 8 degrees C) was very effective for preventing browning regardless of the cover solution used.

  3. Consultation with registered dietitian to prevent accidental reactions to food: insight from an egg allergy influenza vaccination cohort.

    Science.gov (United States)

    Bégin, P; Filion, C; Graham, F; Lacombe-Barrios, J; Paradis, J; Paradis, L; Des Roches, A

    2017-02-01

    Egg is an ubiquitous allergen found in many food products. Current food allergy guidelines recognize the importance of consultation with a registered dietitian to ensure nutritional adequacy. However, there is a lack of evidence on its impact on the implementation of allergen avoidance strategies. Taking advantage of a well-characterized cohort of influenza vaccination in egg-allergic children (n=397), we tested the hypothesis that real-life professional dietary advice was associated with a decrease in accidental reactions to egg in allergic children with retrospective questionnaires. Lack of consultation with a dietitian was associated with a 1.89-fold increase in the risk of accidental reactions to egg (confidence interval: 1.47-2.42). The only other independent variable that predicted reactions was having had a history of acute reaction to egg prior diagnosis (relative risk=2.02; confidence interval: 1.64-3.00). These findings support the usefulness of referral to a food allergy-specialized dietitian at time of diagnosis in order to prevent future accidental reactions to egg.

  4. Applications of Nonlinear Electrochemical Impedance Spectroscopy (NLEIS)

    KAUST Repository

    Adler, S. B.

    2013-08-31

    This paper reviews the use of nonlinear electrochemical impedance spectroscopy (NLEIS) in the analysis of SOFC electrode reactions. By combining EIS and NLEIS, as well as other independent information about an electrode material, it becomes possible to establish quantitative links between electrochemical kinetics and materials properties, even when systems are unstable with time. After a brief review of the method, this paper summarizes recent results analyzing the effects of Sr segregation in thin-film LSC electrodes. © The Electrochemical Society.

  5. Shenlingbaishusan, a chines herbal medicine, in the prevention and treatment of colo-rectal radiation reactions during pelvic tumor radiotherapy

    International Nuclear Information System (INIS)

    Hu Yueran; Liu Yajie; Wu Chaoquan; Chen Chuping; Wang Yaobang; Li Xianming; Zhong Heli; Wu Dong

    2005-01-01

    Objective: To study the effect of traditional Chinese herbal medicine-Shenlingbaishusan in preventing and treating colon and rectum radiation reactions. Methods: Ninty-six patients with female pelvic tumor (cervical and endometrial cancer) were randomly divided into two groups: radiotherapy (RT) alone group (47 patients) and RT+ Shenlingbaishusan group(49 patients). RT in both groups, being similar, 1.8-2.0 Gy/per fraction, five fractions/per week, to a total dose of 48-50 Gy/5-6 weeks to the whole pelvis by external irradiation plus brachytherapy: to a total dose of 42-49 Gy/6-7 weeks for cervix carcinoma, and 10-15 Gy/1-2 weeks for endometrial cancer. Results: All patients have been were followed for more than one year after radiotherapy. The incidence of acute and late colon and rectum radiation reactions. was:15 patients in the RT + Shenlingbaishusan group: grade I10 patients, Grade II3 patients, grade III2 patients incontrast to the 47 patients in the RT group: grade I 24 patients, grade II 14 patients and grade III 9 patients (P<0.01). Conclusions: The traditional Chinese medicine-Shenlingbaishusan is effective in preventing and treating colon and rectum radiation reactions during pelvic tumor radiotherapy.(authors)

  6. Electrochemical synthesis of alkyl nitroaromatic compounds.

    Science.gov (United States)

    Gallardo, Iluminada; Guirado, Gonzalo; Marquet, Jordi

    2003-01-24

    Alkyl nitroaromatic compounds were readily prepared via nucleophilic aromatic substitution for hydrogen or a heteroatom by electrochemical oxidation of the sigma-complex. Butyllithium and butylmagnesium chloride were used as nucleophiles, and several nitrocompounds were tested to explore the possibilities of the NASH and NASX reactions promoted electrochemically.

  7. The Effectiveness of Surface Coatings on Preventing Interfacial Reaction During Ultrasonic Welding of Aluminum to Magnesium

    Science.gov (United States)

    Panteli, Alexandria; Robson, Joseph D.; Chen, Ying-Chun; Prangnell, Philip B.

    2013-12-01

    High power ultrasonic spot welding (USW) is a solid-state joining process that is advantageous for welding difficult dissimilar material couples, like magnesium to aluminum. USW is also a useful technique for testing methods of controlling interfacial reaction in welding as the interface is not greatly displaced by the process. However, the high strain rate deformation in USW has been found to accelerate intermetallic compound (IMC) formation and a thick Al12Mg17 and Al3Mg2 reaction layer forms after relatively short welding times. In this work, we have investigated the potential of two approaches for reducing the IMC reaction rate in dissimilar Al-Mg ultrasonic welds, both involving coatings on the Mg sheet surface to (i) separate the join line from the weld interface, using a 100- μm-thick Al cold spray coating, and (ii) provide a diffusion barrier layer, using a thin manganese physical vapor deposition (PVD) coating. Both methods were found to reduce the level of reaction and increase the failure energy of the welds, but their effectiveness was limited due to issues with coating attachment and survivability during the welding cycle. The effect of the coatings on the joint's interface microstructure, and the fracture behavior have been investigated in detail. Kinetic modeling has been used to show that the benefit of the cold spray coating can be attributed to the reaction rate reverting to that expected under static conditions. This reduces the IMC growth rate by over 50 pct because at the weld line, the high strain rate dynamic deformation in USW normally enhances diffusion through the IMC layer. In comparison, the thin PVD barrier coating was found to rapidly break up early in USW and become dispersed throughout the deformation layer reducing its effectiveness.

  8. Electrochemical Cell

    DEFF Research Database (Denmark)

    1999-01-01

    The invention relates to a rechargeable electrochemical cell comprising a negative electrode, an electrolyte and a positive electrode in which the positive electrode structure comprises a lithium cobalt manganese oxide of the composition Li¿2?Co¿y?Mn¿2-y?O¿4? where 0 ... for capacity losses in lithium ion cells and lithium-alloy cells....

  9. Electrochemical capacitor

    Science.gov (United States)

    Anderson, Marc A.; Liu, Kuo -Chuan; Mohr, Charles M.

    1999-10-05

    An inexpensive porous metal oxide material having high surface area, good conductivity and high specific capacitance is advantageously used in an electrochemical capacitor. The materials are formed in a sol-gel process which affords control over the properties of the resultant metal oxide materials.

  10. Development of a Sensitive Electrochemical Enzymatic Reaction-Based Cholesterol Biosensor Using Nano-Sized Carbon Interdigitated Electrodes Decorated with Gold Nanoparticles.

    Science.gov (United States)

    Sharma, Deepti; Lee, Jongmin; Seo, Junyoung; Shin, Heungjoo

    2017-09-15

    We developed a versatile and highly sensitive biosensor platform. The platform is based on electrochemical-enzymatic redox cycling induced by selective enzyme immobilization on nano-sized carbon interdigitated electrodes (IDEs) decorated with gold nanoparticles (AuNPs). Without resorting to sophisticated nanofabrication technologies, we used batch wafer-level carbon microelectromechanical systems (C-MEMS) processes to fabricate 3D carbon IDEs reproducibly, simply, and cost effectively. In addition, AuNPs were selectively electrodeposited on specific carbon nanoelectrodes; the high surface-to-volume ratio and fast electron transfer ability of AuNPs enhanced the electrochemical signal across these carbon IDEs. Gold nanoparticle characteristics such as size and morphology were reproducibly controlled by modulating the step-potential and time period in the electrodeposition processes. To detect cholesterol selectively using AuNP/carbon IDEs, cholesterol oxidase (ChOx) was selectively immobilized via the electrochemical reduction of the diazonium cation. The sensitivity of the AuNP/carbon IDE-based biosensor was ensured by efficient amplification of the redox mediators, ferricyanide and ferrocyanide, between selectively immobilized enzyme sites and both of the combs of AuNP/carbon IDEs. The presented AuNP/carbon IDE-based cholesterol biosensor exhibited a wide sensing range (0.005-10 mM) and high sensitivity (~993.91 µA mM -1 cm -2 ; limit of detection (LOD) ~1.28 µM). In addition, the proposed cholesterol biosensor was found to be highly selective for the cholesterol detection.

  11. Coupling of an indicator-free electrochemical DNA biosensor with polymerase chain reaction for the detection of DNA sequences related to the apolipoprotein E

    Energy Technology Data Exchange (ETDEWEB)

    Lucarelli, Fausto; Marrazza, Giovanna; Palchetti, Ilaria; Cesaretti, S.; Mascini, Marco

    2002-09-26

    This paper describes a disposable indicator-free electrochemical DNA biosensor applied to the detection of apolipoprotein E (apoE) sequences in PCR samples. In the indicator-free assays, the duplex formation was detected by measuring the electrochemical signal of the guanine base of nucleic acids. The biosensor format involved the immobilisation of an inosine-modified (guanine-free) probe onto a screen-printed electrode (SPE) transducer and the detection of the duplex formation in connection with the square-wave voltammetric measurement of the oxidation peak of the guanine of the target sequence. The indicator-free scheme has been characterised using 23-mer oligonucleotides as model: parameters affecting the hybridisation assay such as probe immobilisation conditions, hybridisation time, use of hybridisation accelerators were examined and optimised. The analysis of PCR samples (244 bp DNA fragments, obtained by amplification of DNA extracted from human blood) required a further optimisation of the experimental procedure. In particular, a lower steric hyndrance of the probe modified surface was essential to allow an efficient hybridisation of the target DNA fragment. Negative controls have been performed using the PCR blank and amplicons unrelated to the immobilised probe. A 10 min hybridisation time allowed a full characterisation of each sample.

  12. ASR prevention — Effect of aluminum and lithium ions on the reaction products

    Energy Technology Data Exchange (ETDEWEB)

    Leemann, Andreas, E-mail: andreas.leemann@empa.ch [Laboratory for Concrete/Construction Chemistry, Empa, Swiss Federal Laboratories for Material Science and Technology, Überlandstr. 129, 8600 Dübendorf (Switzerland); Bernard, Laetitia [Laboratory for Nanoscale Materials Science, Empa, Swiss Federal Laboratories for Material Science and Technology, Überlandstr. 129, 8600 Dübendorf (Switzerland); Alahrache, Salaheddine; Winnefeld, Frank [Laboratory for Concrete/Construction Chemistry, Empa, Swiss Federal Laboratories for Material Science and Technology, Überlandstr. 129, 8600 Dübendorf (Switzerland)

    2015-10-15

    In spite of the recent progress in the understanding of the mechanisms enabling aluminum-containing SCM like metakaolin and added LiNO{sub 3} to limit the extent of ASR in mortar and concrete, some gaps still remain. They concern mainly the effect of aluminum-containing SCM on the formed ASR products and the influence of aggregate characteristics on the effectiveness of LiNO{sub 3}. In this study, a model system, concrete and mortar were investigated by pore solution analysis, TGA, XRD, NMR, SEM combined with EDX and ToF-SIMS to address these questions. The amount of aluminum present in the pore solution of concrete and mortar is only able to slow down SiO{sub 2} dissolution but not to alter morphology, structure and composition of the reaction products. LiNO{sub 3} can suppress ASR by forming dense products protecting reactive minerals from further reaction. But its effectiveness is decreasing with increasing specific surface area of the reactive minerals in aggregates. - Highlights: • Aluminum of SCM slows down SiO{sub 2} dissolution. • Aluminum of SCM does not alter morphology and structure of ASR product. • ASR suppressing effect of LiNO{sub 3} depends on specific surface area of the aggregates.

  13. ASR prevention — Effect of aluminum and lithium ions on the reaction products

    International Nuclear Information System (INIS)

    Leemann, Andreas; Bernard, Laetitia; Alahrache, Salaheddine; Winnefeld, Frank

    2015-01-01

    In spite of the recent progress in the understanding of the mechanisms enabling aluminum-containing SCM like metakaolin and added LiNO 3 to limit the extent of ASR in mortar and concrete, some gaps still remain. They concern mainly the effect of aluminum-containing SCM on the formed ASR products and the influence of aggregate characteristics on the effectiveness of LiNO 3 . In this study, a model system, concrete and mortar were investigated by pore solution analysis, TGA, XRD, NMR, SEM combined with EDX and ToF-SIMS to address these questions. The amount of aluminum present in the pore solution of concrete and mortar is only able to slow down SiO 2 dissolution but not to alter morphology, structure and composition of the reaction products. LiNO 3 can suppress ASR by forming dense products protecting reactive minerals from further reaction. But its effectiveness is decreasing with increasing specific surface area of the reactive minerals in aggregates. - Highlights: • Aluminum of SCM slows down SiO 2 dissolution. • Aluminum of SCM does not alter morphology and structure of ASR product. • ASR suppressing effect of LiNO 3 depends on specific surface area of the aggregates

  14. Maillard reaction products from highly heated food prevent mast cell number increase and inflammation in a mouse model of colitis.

    Science.gov (United States)

    Al Amir, Issam; Dubayle, David; Héron, Anne; Delayre-Orthez, Carine; Anton, Pauline M

    2017-12-01

    Links between food and inflammatory bowel diseases (IBDs) are often suggested, but the role of food processing has not been extensively studied. Heat treatment is known to cause the loss of nutrients and the appearance of neoformed compounds such as Maillard reaction products. Their involvement in gut inflammation is equivocal, as some may have proinflammatory effects, whereas other seem to be protective. As IBDs are associated with the recruitment of immune cells, including mast cells, we raised the hypothesis that dietary Maillard reaction products generated through heat treatment of food may limit the colitic response and its associated recruitment of mast cells. An experimental model of colitis was used in mice submitted to mildly and highly heated rodent food. Adult male mice were divided in 3 groups and received nonheated, mildly heated, or highly heated chow during 21 days. In the last week of the study, each group was split into 2 subgroups, submitted or not (controls) to dextran sulfate sodium (DSS) colitis. Weight variations, macroscopic lesions, colonic myeloperoxidase activity, and mucosal mast cell number were evaluated at the end of the experiment. Only highly heated chow significantly prevented DSS-induced weight loss, myeloperoxidase activity, and mast cell number increase in the colonic mucosa of DSS-colitic mice. We suggest that Maillard reaction products from highly heated food may limit the occurrence of inflammatory phases in IBD patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Electrochemical cell

    Science.gov (United States)

    Redey, L.I.; Myles, K.M.; Vissers, D.R.; Prakash, J.

    1996-07-02

    An electrochemical cell is described with a positive electrode having an electrochemically active layer of at least one transition metal chloride. A negative electrode of an alkali metal and a compatible electrolyte including an alkali metal salt molten at cell operating temperature is included in the cell. The electrolyte is present at least partially as a corrugated {beta}{double_prime} alumina tube surrounding the negative electrode interior to the positive electrode. The ratio of the volume of liquid electrolyte to the volume of the positive electrode is in the range of from about 0.1 to about 3. A plurality of stacked electrochemical cells is disclosed each having a positive electrode, a negative electrode of an alkali metal molten at cell operating temperature, and a compatible electrolyte. The electrolyte is at least partially present as a corrugated {beta}{double_prime} alumina sheet separating the negative electrode and interior to the positive electrodes. The alkali metal is retained in a porous electrically conductive ceramic, and seals for sealing the junctures of the electrolyte and the adjacent electrodes at the peripheries thereof. 8 figs.

  16. Electrochemical impedance spectroscopy study of a surface confined redox reaction: The reduction of azobenzene on mercury in the absence of diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Prieto, Francisco, E-mail: dapena@us.es [Department of Physical Chemistry, University of Seville, c/Profesor Garcia Gonzalez no 2, 41012 Seville (Spain); Rueda, Manuela; Hidalgo, Jose; Martinez, Elisa; Navarro, Inmaculada [Department of Physical Chemistry, University of Seville, c/Profesor Garcia Gonzalez no 2, 41012 Seville (Spain)

    2011-09-30

    The kinetics of azobenzene reduction on mercury electrodes in the absence of diffussional mass transport is studied by electrochemical impedance spectroscopy (EIS) in acetic acid/acetate buffered solutions at different pH values. Cyclic voltammetry experiments confirm the absence of diffusion effects and provide the values of the surface equilibrium potential. The analysis of the impedance frequency spectrums at every potential within the faradaic region conforms well the model and provides the global rate constant of the process, k{sub f}. The potential dependence of k{sub f} suggests the existence of an EE mechanism, with two electron transfers controlling the overall rate. The kinetic parameters of every step are obtained and their pH dependences clarify the role played by the protonation steps.

  17. Electrochemical oxidation of organic waste

    International Nuclear Information System (INIS)

    Almon, A.C.; Buchanan, B.R.

    1990-01-01

    Both silver catalyzed and direct electrochemical oxidation of organic species are examined in analytical detail. This paper describes the mechanisms, reaction rates, products, intermediates, capabilities, limitations, and optimal reaction conditions of the electrochemical destruction of organic waste. A small bench-top electrocell being tested for the treatment of small quantities of laboratory waste is described. The 200-mL electrochemical cell used has a processing capacity of 50 mL per day, and can treat both radioactive and nonradioactive waste. In the silver catalyzed process, Ag(I) is electrochemically oxidized to Ag(II), which attacks organic species such as tributylphosphate (TBP), tetraphenylborate (TPB), and benzene. In direct electrochemical oxidation, the organic species are destroyed at the surface of the working electrode without the use of silver as an electron transfer agent. This paper focuses on the destruction of tributylphosphate (TBP), although several organic species have been destroyed using this process. The organic species are converted to carbon dioxide, water, and inorganic acids

  18. Electrochemical treatment of 2, 4-dichlorophenol using a nanostructured 3D-porous Ti/Sb-SnO2-Gr anode: Reaction kinetics, mechanism, and continuous operation.

    Science.gov (United States)

    Asim, Sumreen; Zhu, Yunqing; Batool, Aisha; Hailili, Reshalaiti; Luo, Jianmin; Wang, Yuanhao; Wang, Chuanyi

    2017-10-01

    2, 4-dichlorophenol (2, 4-DCP) is considered to be a highly toxic, mutagenic, and possibly carcinogenic pollutant. This study is focused on the electrochemical oxidation of 2, 4-DCP on nanostructured 3D-porous Ti/Sb-SnO 2 -Gr anodes, with the aim of presenting a comprehensive elucidation of mineralization process through the investigation of influential kinetics, the reactivity of hydroxyl radical's and analysis of intermediates. High efficiency was achieved at pH of 3 using Na 2 SO 4 electrolytes at a current density of 30 mA cm -2 . Under the optimized conditions, a maximum removal of 2, 4-DCP of up to 99.9% was reached, whereas a TOC removal of 81% was recorded with the lowest EC TOC (0.49 kW h g -1 ) within 40 min of electrolysis. To explore the stability of the 3D-Ti/Sb-SnO 2 -Gr electrodes, a continuous electrochemical operation was established, and the consistent mineralization results indicated the effectiveness of the 3D-Ti/Sb-SnO 2 -Gr system concerning its durability and practical utilization. EPR studies demonstrated the abundant generation of OH radicals on 3D-Ti/Sb-SnO 2 -Gr, resulting in fast recalcitrant pollutant incineration. From dechlorination and the reactivity of the OH radicals, several intermediates including six cyclic byproducts and three aliphatic carboxylic acids were detected, and two possible degradation pathways were proposed that justify the complete mineralization of 2, 4-DCP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Prevention

    Science.gov (United States)

    ... Error processing SSI file About Heart Disease & Stroke Prevention Heart disease and stroke are an epidemic in ... secondhand smoke. Barriers to Effective Heart Disease & Stroke Prevention Many people with key risk factors for heart ...

  20. Electrochemical Hydrogen Peroxide Generator

    Science.gov (United States)

    Tennakoon, Charles L. K.; Singh, Waheguru; Anderson, Kelvin C.

    2010-01-01

    Two-electron reduction of oxygen to produce hydrogen peroxide is a much researched topic. Most of the work has been done in the production of hydrogen peroxide in basic media, in order to address the needs of the pulp and paper industry. However, peroxides under alkaline conditions show poor stabilities and are not useful in disinfection applications. There is a need to design electrocatalysts that are stable and provide good current and energy efficiencies to produce hydrogen peroxide under acidic conditions. The innovation focuses on the in situ generation of hydrogen peroxide using an electrochemical cell having a gas diffusion electrode as the cathode (electrode connected to the negative pole of the power supply) and a platinized titanium anode. The cathode and anode compartments are separated by a readily available cation-exchange membrane (Nafion 117). The anode compartment is fed with deionized water. Generation of oxygen is the anode reaction. Protons from the anode compartment are transferred across the cation-exchange membrane to the cathode compartment by electrostatic attraction towards the negatively charged electrode. The cathode compartment is fed with oxygen. Here, hydrogen peroxide is generated by the reduction of oxygen. Water may also be generated in the cathode. A small amount of water is also transported across the membrane along with hydrated protons transported across the membrane. Generally, each proton is hydrated with 3-5 molecules. The process is unique because hydrogen peroxide is formed as a high-purity aqueous solution. Since there are no hazardous chemicals or liquids used in the process, the disinfection product can be applied directly to water, before entering a water filtration unit to disinfect the incoming water and to prevent the build up of heterotrophic bacteria, for example, in carbon based filters. The competitive advantages of this process are: 1. No consumable chemicals are needed in the process. The only raw materials

  1. Sagittal Plane Knee Biomechanics and Vertical Ground Reaction Forces Are Modified Following ACL Injury Prevention Programs: A Systematic Review.

    Science.gov (United States)

    Padua, Darin A; Distefano, Lindsay J

    2009-03-01

    Injuries to the anterior cruciate ligament (ACL) occur because of excessive loading on the knee. ACL injury prevention programs can influence sagittal plane ACL loading factors and vertical ground reaction force (VGRF). To determine the influence of ACL injury prevention programs on sagittal plane knee biomechanics (anterior tibial shear force, knee flexion angle/moments) and VGRF. The PubMed database was searched for studies published between January 1988 and June 2008. Reference lists of selected articles were also reviewed. Studies were included that evaluated healthy participants for knee flexion angle, sagittal plane knee kinetics, or VGRF after performing a multisession training program. Two individuals reviewed all articles and determined which articles met the selection criteria. Approximately 4% of the articles fulfilled the selection criteria. Data were extracted regarding each program's duration, frequency, exercise type, population, supervision, and testing procedures. Means and variability measures were recorded to calculate effect sizes. One reviewer extracted all data and assessed study quality using PEDro (Physiotherapy Evidence Database). A second reviewer (blinded) verified all information. There is moderate evidence to indicate that knee flexion angle, external knee flexion moment, and VGRF can be successfully modified by an ACL injury prevention program. Programs utilizing multiple exercises (ie, integrated training) appear to produce the most improvement, in comparison to that of single-exercise programs. Knee flexion angle was improved following integrated training (combined balance and strength exercises or combined plyometric and strength exercises). Similarly, external knee flexion moment was improved following integrated training consisting of balance, plyometric, and strength exercises. VGRF was improved when incorporating supervision with instruction and feedback on proper technique. ACL injury prevention programs that are aimed at

  2. Materials for electrochemical device safety

    Science.gov (United States)

    Vissers, Daniel R.; Amine, Khalil; Thackeray, Michael M.; Kahaian, Arthur J.; Johnson, Christopher S.

    2015-04-07

    An electrochemical device includes a thermally-triggered intumescent material or a gas-triggered intumescent material. Such devices prevent or minimize short circuits in a device that could lead to thermal run-away. Such devices may include batteries or supercapacitors.

  3. Adolescents' reactions to universal and indicated prevention programs for depression: perceived stigma and consumer satisfaction.

    Science.gov (United States)

    Rapee, Ronald M; Wignall, Ann; Sheffield, Jeanie; Kowalenko, Nick; Davis, Anna; McLoone, Jordana; Spence, Susan H

    2006-06-01

    There is a common view that one of the major considerations in selecting between universal and indicated interventions is the marked stigma produced by the latter. However, to date there has been no empirical examination of this assumption. The current study examined reported stigma and program satisfaction following two school-based interventions aimed at preventing depression in 532 middle adolescents. The interventions were conducted either across entire classes by classroom teachers (universal delivery) or in small high risk groups by mental health professionals (indicated delivery). The indicated delivery was associated with significantly greater levels of perceived stigma, but effect sizes were small and neither program was associated with marked stigma in absolute terms. Perceived stigma was more strongly associated with aspects of the individual including being male and showing greater externalizing symptomatology. In contrast, the indicated program was evaluated more positively by both participants and program leaders and effect sizes for these measures of satisfaction were moderate to large. The results point to the need for further empirical evaluation of both perceived stigma and program satisfaction in providing balanced considerations of the value of indicated and universal programs.

  4. Prevention of disorders of behavioral reactions in rats using nootropics with sodium valproate

    Directory of Open Access Journals (Sweden)

    Ivanov A.V.

    2013-06-01

    Full Text Available Using of anticonvulsants can trigger a number of side effects, such as possible changes in behavior and emotional state of people with epilepsy, risk of unwarranted aggression, nervousness, discoordination, sleepiness, encephalopathies. However, the epilepsy itself as a chronic neurological pathology causes cognitive and "epileptic" deficiency, in patients general retardation, sluggishness of mental activity, decreased cognitive abilities de¬velop. Therefore it is advisable to combine anticonvulsants with nootropics with their ability to protect the brain and increase body's resistance to extreme stress, reduce neurological deficits, restore damaged mnestic and mental functions. The author considered the use of nootropics on the background of anticonvulsant sodium valproate (80 mg/kg. Behavioral reactions of white rats in the test "Open field" and muscle tone of white mice in the test "muscle relaxation" were performed on the day 4 nootropics introduction in 1 hour after a single sodium valproate application. It’s shown experimentally that sodium valproate provided systemic depriming action on orientation and exploratory activity of rats: locomotor activity reduced in the number of squares strolled by 62.8% and in the number of vertical uprights by 80%, the amount of peeping into the burrows decreased by 58.7% as compared with the control. In the test "muscle relaxation" sodium valproate reduced muscle strength of mice by 38.6%. Against the background of anticonvulsant application piracetam (500 mg/kg had no effect on the behavioral responses of rats and muscle tone of mice. Citicoline (500 mg/kg increased locomotor activity in the number of squares crossed by 29.7%, in the number of vertical racks – by 20%, and the endurance of mice by 18.6%. Memantine (10 mg/kg in combination with sodium valproate insignificantly decreased (by 8.4% locomotor activity of rats, but increased exploratory activity by 30.5%; withholding of mice on the wire

  5. Coping with Accident Reactions (CARE) early intervention programme for preventing traumatic stress reactions in young injured children: study protocol for two randomised controlled trials.

    Science.gov (United States)

    De Young, Alexandra C; Haag, Ann-Christin; Kenardy, Justin A; Kimble, Roy M; Landolt, Markus A

    2016-07-28

    Accidental injury represents the most common type of traumatic event experienced by children under the age of 6 years. Around 10-30 % of young injured children will go on to develop post-traumatic stress disorder (PTSD) and other co-morbid conditions. Parents of injured children are also at risk of PTSD, and this is associated with short- and long-term consequences for their children's physical and psychological recovery. Despite the significance of this problem, to date, the mental health needs of injured young children have been neglected. One reason for this is due to the uncertainty and considerable debate around how to best provide early psychological intervention to traumatised children and adults. To address these gaps, researchers and psychologists in Australia and Switzerland have developed the Coping with Accident Reactions (CARE) programme, which is a two-session early intervention designed to prevent persistent PTSD reactions in young injured children screened as 'at risk'. Two separate international studies are being conducted to evaluate the effectiveness and feasibility of this programme. The study design for the two proposed studies will employ a randomised controlled trial design and children (aged 1-6 years) who are screened as at risk for PTSD 1 week after an unintentional injury, and their parents will be randomised to either (1) CARE intervention or (2) treatment as usual. Assessment will be completed at baseline (2 weeks) and 3 and 6 months post-injury. This international collaboration provides an excellent opportunity to test the benefit of screening and providing early intervention to young children in two different countries and settings. It is expected that outcomes from this research will lead to significant original contributions to the scientific evidence base and clinical treatment and recovery of very young injured children. The Australian study was registered with the Australian New Zealand Clinical Trials Registry ( ACTRN

  6. Remote electrochemical sensor

    Science.gov (United States)

    Wang, J.; Olsen, K.; Larson, D.

    1997-10-14

    An electrochemical sensor is described for remote detection, particularly useful for metal contaminants and organic or other compounds. The sensor circumvents technical difficulties that previously prevented in-situ remote operations. The microelectrode, connected to a long communications cable, allows convenient measurements of the element or compound at timed and frequent intervals and instrument/sample distances of ten feet to more than 100 feet. The sensor is useful for both downhole groundwater monitoring and in-situ water (e.g., shipboard seawater) analysis. 21 figs.

  7. Electrochemical investigations of Co3Fe-RGO as a bifunctional catalyst for oxygen reduction and evolution reactions in alkaline media

    Science.gov (United States)

    Kumar, Surender; Kumar, Divyaratan; Kishore, Brij; Ranganatha, Sudhakar; Munichandraiah, Nookala; Venkataramanan, Natarajan S.

    2017-10-01

    Nanoparticles of Co3Fe alloy is prepared on reduced graphene oxide (RGO) sheets by modified polyol method. Synthesized alloy particles are characterized by various physicochemical techniques. TEM and SEM pictures showed homogeneously dispersed alloy nanoparticles on the RGO sheets. Electrochemistry of alloy nanoparticles is investigated in alkaline medium. The result shows that oxygen evaluation reaction (OER) activity of Co3Fe-RGO is higher than Pt-black particles. RDE studies in alkaline medium shows that oxygen reduction reaction (ORR) follow four electron pathway. It is suggest that Co3Fe-RGO is an efficient non-precious catalyst for oxygen (ORR/OER) reactions in alkaline electrolyte for PEMFC applications.

  8. Electrochemical cell

    Science.gov (United States)

    Kaun, T.D.

    An improved secondary electrochemical cell is disclosed having a negative electrode of lithium aluminum, a positive electrode of iron sulfide, a molten electrolyte of lithium chloride and potassium chloride, and the combination that the fully charged theoretical capacity of the negative electrode is in the range of 0.5 to 1.0 that of the positive electrode. The cell thus is negative electrode limiting during discharge cycling. Preferably, the negative electrode contains therein, in the approximate range of 1 to 10 volume % of the electrode, an additive from the materials of graphitized carbon, aluminum-iron alloy, and/or magnesium oxide.

  9. 57Fe-Mössbauer spectroscopy and electrochemical activities of graphitic layer encapsulated iron electrocatalysts for the oxygen reduction reaction

    DEFF Research Database (Denmark)

    Zhong, Lijie; Frandsen, Cathrine; Mørup, Steen

    2018-01-01

    Graphitic layer encapsulated iron based nanoparticles (G@FeNPs) have recently been disclosed as an interesting type of highly active electrocatalysts for the oxygen reduction reaction (ORR). However, the complex composition of the metal-containing components and their contributions in catalysis r...

  10. Electrochemical and chemical corrosion of chromium

    International Nuclear Information System (INIS)

    Drazic, Dragutin M.; Popic, Jovan P.

    2004-01-01

    It was shown that chromium in deaerated sulfuric acid of pH 1 exhibits two stable corrosion potentials, depending whether the metal had previously been in contact with air or subjected to activation by cathodic evolving hydrogen. Electrochemical polarization measurements, as well as the measurements of the actual metal dissolution rate at the corrosion potential, anodic or cathodic polarization, using the analytical determination of Cr ions in the solution, or volumes of hydrogen evolved, showed that hydrogen can evolve on chromium by three different reaction mechanisms. The first one is the electrochemical hydrogen evolution reaction from H + ions at the bare chromium surface obtained by cathodic activation. This reaction and the active anodic dissolution of chromium determine one stable corrosion potential. The second reaction is the reaction of H + ions on the oxidized chromium surface which, coupled with the anodic dissolution of passivated chromium determines the other stable corrosion potential. The third one is the 'anomalous' or chemical reaction of chromium with water molecules and hydrogen ions whereby hydrogen is liberated. This is a potential independent reaction, occurring on the bare metal surface, and which is at pH 1 several times faster at the corrosion potential than the electrochemical hydrogen evolution reaction. The consequence is that the overall corrosion rate is several times faster than that determined by the usual electrochemical methods. The measurements were performed in the temperature interval 20 - 65 o C and apparent energies of activation for anodic, cathodic and anomalous dissolution reactions were estimated as 63.1, 19.5 and 66.9 kJ mol -1 , respectively. This implies that the anomalous dissolution rate increases more with the increase of temperature than the electrochemical corrosion rate. The applicability of the different methods of measuring electrochemical corrosion rates is discussed. (Author)

  11. Electrochemically Synthesized Sb/Sb2O3 Composites as High-Capacity Anode Materials Utilizing a Reversible Conversion Reaction for Na-Ion Batteries.

    Science.gov (United States)

    Hong, Kyung-Sik; Nam, Do-Hwan; Lim, Sung-Jin; Sohn, DongRak; Kim, Tae-Hee; Kwon, HyukSang

    2015-08-12

    Sb/Sb2O3 composites are synthesized by a one-step electrodeposition process from an aqueous electrolytic bath containing a potassium antimony tartrate complex. The synthesis process involves the electrodeposition of Sb simultaneously with the chemical deposition of Sb2O3, which allows for the direct deposition of morula-like Sb/Sb2O3 particles on the current collector without using a binder. Structural characterization confirms that the Sb/Sb2O3 composites are composed of approximately 90 mol % metallic Sb and 10 mol % crystalline Sb2O3. The composite exhibits a high reversible capacity (670 mAh g(-1)) that is higher than the theoretical capacity of Sb (660 mAh g(-1)). The high reversible capacity results from the conversion reaction between Na2O and Sb2O3 that occurs additionally to the alloying/dealloying reaction of Sb with Na. Moreover, the Sb/Sb2O3 composite shows excellent cycle performance with 91.8% capacity retention over 100 cycles, and a superior rate capability of 212 mAh g(-1) at a high current density of 3300 mA g(-1). The outstanding cycle performance is attributed to an amorphous Na2O phase generated by the conversion reaction, which inhibits agglomeration of Sb particles and acts as an effective buffer against volume change of Sb during cycling.

  12. Synthesis of IV-VI Transition Metal Carbide and Nitride Nanoparticles Using a Reactive Mesoporous Template for Electrochemical Hydrogen Evolution Reaction

    KAUST Repository

    Alhajri, Nawal Saad

    2016-01-01

    Interstitial carbides and nitrides of early transition metals in Groups IV-VI exhibit platinum-like behavior which makes them a promising candidate to replace noble metals in a wide variety of reactions. Most synthetic methods used to prepare these materials lead to bulk or micron size powder which limits their use in reactions in particular in catalytic applications. Attempts toward the production of transition metal carbide and nitride nanoparticles in a sustainable, simple and cheap manner have been rapidly increasing. In this thesis, a new approach was presented to prepare nano-scale transition metal carbides and nitrides of group IV-VI with a size as small as 3 nm through the reaction of transition metal precursor with mesoporous graphitic carbon nitride (mpg-C3N4) that not only provides confined spaces for nanoparticles formation but also acts as a chemical source of nitrogen and carbon. The produced nanoparticles were characterized by powder X-ray diffraction (XRD), temperature-programmed reaction with mass spectroscopy (MS), CHN elemental analyses, thermogravimetric analyses (TGA), nitrogen sorption, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The effects of the reaction temperature, the ratio of the transition metal precursor to the reactive template (mpg-C3N4), and the selection of the carrier gas (Ar, N2, and NH3) on the resultant crystal phases and structures were investigated. The results indicated that different tantalum phases with cubic structure, TaN, Ta2CN, and TaC, can be formed under a flow of nitrogen by changing the reaction temperatures. Two forms of tantalum nitride, namely TaN and Ta3N5, were selectively formed under N2 and NH3 flow, respectively. Significantly, the formation of TaC, Ta2CN, and TaN can be controlled by altering the weight ratio of the C3N4 template relative to the Ta precursor at 1573 K under a flow of nitrogen where high C3N4/Ta precursor ratio generally resulted in high carbide

  13. Prevention

    Science.gov (United States)

    ... Contact Aging & Health A to Z Find a Geriatrics Healthcare Professional Medications & Older Adults Making Your Wishes ... Prevention Hearing Loss Heart Attack High Blood Pressure Nutrition Osteoporosis Shingles Skin Cancer Related News Quitting Smoking, ...

  14. Synergy of Cobalt and Silver Microparticles Electrodeposited on Glassy Carbon for the Electrocatalysis of the Oxygen Reduction Reaction: An Electrochemical Investigation

    Directory of Open Access Journals (Sweden)

    Claudio Zafferoni

    2015-08-01

    Full Text Available The combination of two different metals, each of them acting on different steps of the oxygen reduction reaction (ORR, yields synergic catalytic effects. In this respect, the electrocatalytic effect of silver is enhanced by the addition of cobalt, which is able to break the O–O bond of molecular oxygen, thus accelerating the first step of the reduction mechanism. At the same time, research is to further reduce the catalyst’s cost, reducing the amount of Ag, which, even though being much less expensive than Pt, is still a noble metal. From this point of view, using a small amount of Ag together with an inexpensive material, such as graphite, represents a good compromise. The aim of this work was to verify if the synergic effects are still operating when very small amounts of cobalt (2–10 μg·cm−2 are added to the microparticles of silver electrodeposited on glassy carbon, described in a preceding paper from us. To better stress the different behaviour observed when cobalt and silver are contemporarily present in the deposit, the catalytic properties of cobalt alone were investigated. The analysis was completed by the Levich plots to evaluate the number of electrons involved and by Tafel plots to show the effects on the reaction mechanism.

  15. Internal Active Thermal Control System (IATCS) Sodium Bicarbonate/Carbonate Buffer in an Open Aqueous Carbon Dioxide System and Corollary Electrochemical/Chemical Reactions Relative to System pH Changes

    Science.gov (United States)

    Stegman, Thomas W.; Wilson, Mark E.; Glasscock, Brad; Holt, Mike

    2014-01-01

    The International Space Station (ISS) Internal Active Thermal Control System (IATCS) experienced a number of chemical changes driven by system absorption of CO2 which altered the coolant’s pH. The natural effects of the decrease in pH from approximately 9.2 to less than 8.4 had immediate consequences on system corrosion rates and corrosion product interactions with specified coolant constituents. The alkalinity of the system was increased through the development and implementation of a carbonate/bicarbonate buffer that would increase coolant pH to 9.0 – 10.0 and maintain pH above 9.0 in the presence of ISS cabin concentrations of CO2 up to twenty times higher than ground concentrations. This paper defines how a carbonate/bicarbonate buffer works in an open carbon dioxide system and summarizes the analyses performed on the buffer for safe and effective application in the on-orbit system. The importance of the relationship between the cabin environment and the IATCS is demonstrated as the dominant factor in understanding the system chemistry and pH trends before and after addition of the carbonate/bicarbonate buffer. The paper also documents the corollary electrochemical and chemical reactions the system has experienced and the rationale for remediation of these effects with the addition of the carbonate/bicarbonate buffer.

  16. Prevention

    DEFF Research Database (Denmark)

    Halken, S; Høst, A

    2001-01-01

    , breastfeeding should be encouraged for 4-6 months. In high-risk infants a documented extensively hydrolysed formula is recommended if exclusive breastfeeding is not possible for the first 4 months of life. There is no evidence for preventive dietary intervention neither during pregnancy nor lactation...... populations. These theories remain to be documented in proper, controlled and prospective studies. Breastfeeding and the late introduction of solid foods (>4 months) is associated with a reduced risk of food allergy, atopic dermatitis, and recurrent wheezing and asthma in early childhood. In all infants....... Preventive dietary restrictions after the age of 4-6 months are not scientifically documented....

  17. Plasmon-driven sequential chemical reactions in an aqueous environment.

    Science.gov (United States)

    Zhang, Xin; Wang, Peijie; Zhang, Zhenglong; Fang, Yurui; Sun, Mengtao

    2014-06-24

    Plasmon-driven sequential chemical reactions were successfully realized in an aqueous environment. In an electrochemical environment, sequential chemical reactions were driven by an applied potential and laser irradiation. Furthermore, the rate of the chemical reaction was controlled via pH, which provides indirect evidence that the hot electrons generated from plasmon decay play an important role in plasmon-driven chemical reactions. In acidic conditions, the hot electrons were captured by the abundant H(+) in the aqueous environment, which prevented the chemical reaction. The developed plasmon-driven chemical reactions in an aqueous environment will significantly expand the applications of plasmon chemistry and may provide a promising avenue for green chemistry using plasmon catalysis in aqueous environments under irradiation by sunlight.

  18. Synthesis and evaluation of MoWCoS/G and MoWCuS/G as new transition metal dichalcogenide nanocatalysts for electrochemical hydrogen evolution reaction

    Science.gov (United States)

    Askari, Mohammad Bagher; Beheshti-Marnani, Amirkhosro; Banizi, Zoha Tavakoli; Seifi, Majid; Ramezan zadeh, Mohammad Hassan

    2018-01-01

    New nanocomposites based on transition metal dichalcogenides, MoWCoS and MoWCuS, were synthesized through one step hydrothermal method. X-ray diffraction (XRD) and energy dispersive X-ray (EDX) techniques as well as field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) images confirmed the synthesis of nanocomposites. For investigation of hydrogen evolution reaction (HER) properties of new nanocomposites, linear sweep voltammetry (LSV) was applied for this purpose. According to the results of similar previous works, the prepared nanocomposites showed promising HER properties as low overpotential equal to 41.4 mV/dec for MoWCoS hybridized with reduced graphene (G) and a little higher one equal to 49 mV/dec for MoWCuS hybridized with reduced graphene. Based on obtained Tafel slopes 38 and 53 mV/dec for MoWCoS/G and MoWCuS/G, respectively, the "Heyrovsky-Volmer" mechanism was suggested for the new HER three component nanocatalysts as the first effort to this purpose.

  19. Electrochemical characterization of liquid resistors

    International Nuclear Information System (INIS)

    Wilson, J.M.; Whiteley, R.V.

    1983-01-01

    During the first two years of operation of Sandia's Particle Beam Fusion Accelerator (PBFA I) the reliability of the CuSO 4 solution resistors in the Marx Generator Energy Storage System has been unsatisfactory. Resistor failure, which is characterized by a large increase in resistance, has been attributed to materials, production techniques, and operating parameters. The problems associated with materials and production techniques have been identified and solutions are proposed. Non-ideal operating parameters are shown to cause polarization of the cathode in the resistor. This initiates electrochemical reactions in the resistor. These reactions often lead to resistance changes and to eventual resistor failure

  20. Minimizing electrode contamination in an electrochemical cell

    Science.gov (United States)

    Kim, Yu Seung; Zelenay, Piotr; Johnston, Christina

    2014-12-09

    An electrochemical cell assembly that is expected to prevent or at least minimize electrode contamination includes one or more getters that trap a component or components leached from a first electrode and prevents or at least minimizes them from contaminating a second electrode.

  1. Electrochemical hydrogen Storage Systems

    International Nuclear Information System (INIS)

    Macdonald, Digby

    2010-01-01

    previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a

  2. Electrochemical hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Digby Macdonald

    2010-08-09

    described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin

  3. Design of the Anti-tuberculosis Drugs induced Adverse Reactions in China National Tuberculosis Prevention and Control Scheme Study (ADACS

    Directory of Open Access Journals (Sweden)

    He Ping

    2010-05-01

    Full Text Available Abstract Background More than 1 million tuberculosis (TB patients are receiving the standard anti-TB treatment provided by China National Tuberculosis Prevention and Control Scheme (CNTS in China every year. Adverse reactions (ADRs induced by anti-TB drugs could both do harm to patients and lead to anti-TB treatment failure. The ADACS aimed to explore ADRs' incidences, prognoses, economical and public health impacts for TB patients and TB control, and build a DNA bank of TB patients. Methods/Design Multiple study designs were adopted. Firstly, a prospective cohort with 4488 sputum smears positive pulmonary tuberculosis patients was established. Patients were followed up for 6-9 months in 52 counties of four regions. Those suspected ADRs should be checked and confirmed by Chinese State Food and Drug Administration (SFDA. Secondly, if the suspected ADR was anti-TB drug induced liver injury (ATLI, a nested case-control study would be performed which comprised choosing a matched control and doing a plus questionnaire inquiry. Thirdly, health economical data of ADRs would be collected to analyze financial burdens brought by ADRs and cost-effectiveness of ADRs' treatments. Fourthly, a drop of intravenous blood for each patient was taken and saved in FTA card for DNA banking and genotyping. Finally, the demographic, clinical, environmental, administrative and genetic data would be merged for the comprehensive analysis. Discussion ADACS will give an overview of anti-TB drugs induced ADRs' incidences, risk factors, treatments, prognoses, and clinical, economical and public health impacts for TB patients applying CNTS regimen in China, and provide suggestions for individualized health care and TB control policy.

  4. ELECTROCHEMICAL BEHAVIOUR OF ENVIRONMENTALLY ...

    African Journals Online (AJOL)

    dell

    ABSTRACT. Electrochemical behaviour of Aloe secundiflora on carbon steel corrosion control in neutral and aerated soft water solutions have been investigated using electrochemical impedance spectroscopy and Tafel polarization techniques. The investigation was performed at different inhibitor concentrations under ...

  5. Separators for electrochemical cells

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Steven Allen; Anakor, Ifenna Kingsley; Farrell, Greg Robert

    2018-01-16

    Provided are separators for use in an electrochemical cell comprising (a) an inorganic oxide and (b) an organic polymer, wherein the inorganic oxide comprises organic substituents. Also provided are electrochemical cells comprising such separators.

  6. Electrochemical Hydrogen Refrigerator

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal is to develop and test a 1 W at 20K Joule‐Thomson cryocooler using an electrochemical compressor. A Joule Thomson refrigerator based on electrochemical...

  7. Catalysts for electrochemical generation of oxygen

    Science.gov (United States)

    Hagans, P.; Yeager, E.

    1979-01-01

    Several aspects of the electrolytic evolution of oxygen for use in life support systems are analyzed including kinetic studies of various metal and nonmetal electrode materials, the formation of underpotential films on electrodes, and electrode surface morphology and the use of single crystal metals. In order to investigate the role of surface morphology to electrochemical reactions, a low energy electron diffraction and an Auger electron spectrometer are combined with an electrochemical thin-layer cell allowing initial characterization of the surface, reaction run, and then a comparative surface analysis.

  8. The electrochemical impedance of metal hydride electrodes

    DEFF Research Database (Denmark)

    Valøen, Lars Ole; Lasia, Andrzej; Jensen, Jens Oluf

    2002-01-01

    , explaining the experimental impedances in a wide frequency range for electrodes of hydride forming materials mixed with copper powder, were obtained. Both charge transfer and spherical diffusion of hydrogen in the particles are important sub processes that govern the total rate of the electrochemical...... hydrogen absorption/desorption reaction. To approximate the experimental data, equations describing the current distribution in porous electrodes were needed. Indications of one or more parallel reduction/oxidation processes competing with the electrochemical hydrogen absorption/desorption reaction were...

  9. Electrochemical study of oxygen reduction reaction in Pt/C catalysts synthesized by photo-deposition; Estudio electroquimico de la reaccion de reduccion de oxigeno en catalizadores de Pt/C sintetizados por fotodeposito

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Galindo, J. A.; Ruiz-Camacho, B.; Valenzuela-Zapata, M. A.; Gonzalez-Huerta, R. G. [IPN, ESIQIE, Mexico, D.F. (Mexico)]. E-mail: rosgonzalez_h@yahoo.com.mx

    2009-09-15

    Fuel batteries are considered one of the principal generators of energy for the immediate future, though their use is limited by their cost and useful lifetime. One of the main components of a fuel battery are electrodes made of a noble metal, such as Pt, dispersed in a support. The interaction between these two components has received a good deal of attention in recent years. It is considered to be responsible for structural growth effects and a decreased dispersion of metal particles on a support, causing the battery to have low overall performance and a reduced useful lifetime. The properties of the support are accentuated in cathode catalysts, where oxygen reduction reactions occur as a result of its operating conditions. Syntheses are currently being investigated to improve the metal-support interaction and thereby increase the lifetime of the fuel battery. This work presents the electrochemical study of nanometric-sized carbon-supported platinum (Pt/C) catalysts synthesized with chemical photo-deposition to determine its catalytic effect and stability for oxygen reduction reaction in an acid medium. C{sub 10}H{sub 14}O{sub 4}Pt (Pt(acac)2) was used as the platinum precursor. The electrochemical study was conducted with cyclic voltamperometry and rotary disc electrode (RDE) techniques, observing that the synthesized catalysts present a behavior similar to that of Pt (E-Tek). The kinetic study showed an open-circuit potential of de 0.96 V with a Tafel slope of 73 mV dec-1, and with a current of 0.1 mA cm-2 the potential is 0.91 V. The authors wish to thank the ICYTDF (project PICS08-37) and the IPN (project SIP-20090433). [Spanish] Las pilas de combustible se perfilan como uno de los principales generadores de energia en un futuro inmediato, pero su utilizacion esta limitada por su costo y tiempo de vida util. Uno de los componentes principales de la pila de combustible son los electrodos integrados por un metal noble, como el Pt, disperso en un soporte. La

  10. The enhancing power of iodide on corrosion prevention of mild steel in the presence of a synthetic-soluble Schiff-base: Electrochemical and surface analyses

    International Nuclear Information System (INIS)

    Lashgari, Mohsen; Arshadi, Mohammad-Reza; Miandari, Somaieh

    2010-01-01

    The inhibitory action of N,N'-1,3-propylen-bis(3-methoxysalicylidenimine) {PMSI} on mild steel corrosion in sulfuric acid medium was investigated through electrochemical methods and evaluations based on infrared spectroscopy and scanning electron micrographs. The studies revealed that the molecule is a good mixed-type inhibitor (mostly anodic), acts as a multi-dentate ligand and repels the corrosive agents by hydrophobic forces. Its adsorption on metal surface has a physicochemical nature and obeys the Langmuir isotherm. At a critical (optimum) concentration, an anomalous inhibitory behavior was observed and interpreted at microscopic level by means of desorption/adsorption process and horizontal ↔vertical hypothesis. The addition of iodide into acid moreover causes a synergistic influence, a substantial enhancement on inhibitory performance. Finally, using isolated inhibitor calculations at B3LYP/6-31G + (d,p) level of theory, the equilibrium geometry of PMSI was determined and the energy required for hindrance avoidance was predicted.

  11. Place and role of electrochemical energy converters in the energetics

    Directory of Open Access Journals (Sweden)

    Andrey Kurbatov

    2012-05-01

    Full Text Available The position of the electrochemical method of energy conversion of a chemical reaction in the overall energy production was considered. The effective ways and tendencies of its implementation were shown. The variants of electrochemical systems for the production, accumulation and storage of energy was also considered.

  12. An Electrochemical Investigation of Methanol Oxidation on Nickel ...

    African Journals Online (AJOL)

    An Electrochemical Investigation of Methanol Oxidation on Nickel Hydroxide Nanoparticles. ... Electrochemical characterization exhibited stable redox behaviour of the Ni(III)/Ni(II) couple. ... The rate constant (k) for the chemical reaction between methanol and catalytic centres has been evaluated by chronoamperometry.

  13. Formation of HgSe thin films using electrochemical atomic Layer epitaxy

    CSIR Research Space (South Africa)

    Mathe, MK

    2005-09-01

    Full Text Available The growth of HgSe using electrochemical atomic-layer epitaxy (EC-ALE) is reported. EC-ALE is the electrochemical analog of ALE, where electrochemical surface-limited reactions referred to as underpotential deposits, generally result...

  14. ELECTROCHEMICAL OXIDATION OF NICLOSAMIDE AT A ...

    African Journals Online (AJOL)

    a

    ABSTRACT. Cyclic voltammetry, square-wave voltammetry and controlled potential electrolysis have been used to study the electrochemical oxidation behaviour of niclosamide at a glassy carbon electrode. The number of electrons transferred, the wave characteristics, the diffusion coefficient and reversibility of the reactions ...

  15. Electrochemical and photoelectrochemical reduction of furfurals

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung-Shin; Roylance, John James; Kubota, Stephen R.

    2018-02-06

    Electrochemical cells and photoelectrochemical cells for the reduction of furfurals are provided. Also provided are methods of using the cells to carry out the reduction reactions. Using the cells and methods, furfurals can be converted into furan alcohols or linear ketones.

  16. Electrochemical oxidation of substituted benzylamines in aquo ...

    Indian Academy of Sciences (India)

    Electrochemical oxidation of nine para- and meta-substituted benzylamines in varying mole fractions of acetic acid in water has been investigated in the presence of 0.1 M sulphuric acid as supporting electrolyte. The oxidation potentials correlate well with Hammett's substituent constants affording negative reaction ...

  17. A Review of the Use of Topical Calendula in the Prevention and Treatment of Radiotherapy-Induced Skin Reactions

    Science.gov (United States)

    Kodiyan, Joyson; Amber, Kyle T.

    2015-01-01

    Calendula is a topical agent derived from a plant of the marigold family Calendula Officinalis. Containing numerous polyphenolic antioxidants, calendula has been studied in both the laboratory and clinical setting for the use in treating and preventing radiation induced skin toxicity. Despite strong evidence in the laboratory supporting calendula’s mechanism of action in preventing radiation induced skin toxicity, clinical studies have demonstrated mixed results. In light of the controversy surrounding the efficacy of calendula in treating and preventing radiodermatitis, the topic warrants further discussion. PMID:26783706

  18. A Review of the Use of Topical Calendula in the Prevention and Treatment of Radiotherapy-Induced Skin Reactions

    Directory of Open Access Journals (Sweden)

    Joyson Kodiyan

    2015-04-01

    Full Text Available Calendula is a topical agent derived from a plant of the marigold family Calendula Officinalis. Containing numerous polyphenolic antioxidants, calendula has been studied in both the laboratory and clinical setting for the use in treating and preventing radiation induced skin toxicity. Despite strong evidence in the laboratory supporting calendula’s mechanism of action in preventing radiation induced skin toxicity, clinical studies have demonstrated mixed results. In light of the controversy surrounding the efficacy of calendula in treating and preventing radiodermatitis, the topic warrants further discussion.

  19. The Effectiveness of Al-Si Coatings for Preventing Interfacial Reaction in Al-Mg Dissimilar Metal Welding

    Science.gov (United States)

    Wang, Yin; Al-Zubaidy, Basem; Prangnell, Philip B.

    2018-01-01

    The dissimilar welding of aluminum to magnesium is challenging because of the rapid formation of brittle intermetallic compounds (IMC) at the weld interface. An Al-Si coating interlayer was selected to address this problem, based on thermodynamic calculations which predicted that silicon would change the reaction path to avoid formation of the normally observed binary Al-Mg IMC phases ( β-Al3Mg2 and γ-Al12Mg17). Long-term static heat treatments confirmed that a Si-rich coating will preferentially produce the Mg2Si phase in competition with the less stable, β-Al3Mg2 and γ-Al12Mg17 binary IMC phases, and this reduced the overall reaction layer thickness. However, when an Al-Si clad sheet was tested in a real welding scenario, using the Refill™ friction stir spot welding (FSSW) technique, Mg2Si was only produced in very small amounts owing to the much shorter reaction time. Surprisingly, the coating still led to a significant reduction in the IMC reaction layer thickness and the welds exhibited enhanced mechanical performance, with improved strength and fracture energy. This beneficial behavior has been attributed to the softer coating material both reducing the welding temperature and giving rise to the incorporation of Si particles into the reaction layer, which toughened the brittle interfacial IMC phases during crack propagation.

  20. Selecting measures to prevent deleterious alkali-silica reaction in concrete : rationale for the AASHTO PP65 prescriptive approach.

    Science.gov (United States)

    2012-10-01

    PP65-11 provides two approaches for selecting preventive measures: (i) a performance approach based on laboratory testing, and (ii) a prescriptive approach based on a consideration of the reactivity of the aggregate, type and size of structure, expos...

  1. Chemical and Electrochemical Properties of La0.58Sr0.4Fe0.8Co0.2O3-δ (LSCF) Thin Films upon Oxygen Reduction and Evolution Reactions

    DEFF Research Database (Denmark)

    Pitscheider, Simon; Machala, Michael; Guan, Zixuan

    2017-01-01

    The Oxygen Evolution and Oxygen Reduction Reactions (OER/ORR), occurring at the oxygen electrode of Solid Oxide Cells (SOCs) in the two possible ways of operation, require substantial overpotentials, therefore lowering the operating efficiency of the cells. The reaction mechanisms occurring...... deviates from the nominal bulk composition, and that secondary phases can segregate at the surfaces and interfaces during operation. Furthermore, the electrochemical properties such as Area Specific Resistance (ASR), oxygen exchange coefficient (kex), ASR activation energy (Ea) and pO2exponents for LSCF...... conditions. In particular, NAP-XPS studies of the surface chemistry evolution under operation, as well as the correlation between surface potential changes in relation to the applied overpotential are addressed, in an attempt to determine the real driving force for the oxygen reactions.For this purpose, thin...

  2. Post-marketing surveillance of the safety profile of iodixanol in the outpatient CT setting. A prospective, multicenter, observational study of patient risk factors, adverse reactions and preventive measures in 9953 patients

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Frank Hugo Heinz [Radiology and Nuclear Medicine Center, Ludwigshafen (Germany)

    2014-11-15

    Non-interventional study in outpatient, contrast-enhanced CT: 1. to determine the extent of preventive measures for risk reduction of adverse drug reactions after contrast-enhanced CT examinations. 2. to prospectively determine the incidence and severity of adverse drug reactions occurring after administration of the iso-osmolar contrast medium iodixanol. 3. to determine a possible influence of preventive measures on the incidence/severity of adverse drug reactions. Evaluable documentation was provided for 9953 patients from 66 radiology centers across Germany. Patient characteristics, aspects of iodixanol administration, and adverse events with an at least 'possible' relationship were documented on a standardized case report form (CRF) and were evaluated up to seven days after contrast medium administration. About 55.5% of patients showed one or more risk factors (e.g. impaired renal function 4.4%, diabetes mellitus 8.5%, hypertension 20.6%). One third of the sites did not implement any preventive measures. Patients with a known risk for an allergy-like reaction were more likely to receive pharmacologic preventive treatment (0.5-50.5%). Oral hydration was the main preventive measure in patients with renal risk factors (<8%) followed by intravenous hydration (1%). Adverse drug reactions, mainly hypersensitivity reactions, occurred in 77 patients (0.74%), but were classified as serious in only 3 patients (0.03%). No statistically significant correlation between risk factors, preventive measures, and adverse reactions could be found. The use of preventive measures for CT examinations in this outpatient setting was generally low with risk patients being pre-medicated more often, depending on their history. In the routine outpatient setting, iso-osmolar iodixanol was very well tolerated in almost 10 000 patients undergoing diagnostic CT. The rate of acute and delayed adverse reactions was low. No correlation could be found between risk factors, preventive

  3. EFFICIENT INTRODUCTION OF COMPLEMENTARY FOODS FOR CHILDREN WITH ATOPIC DERMATITIS AND PREDISPOSITION TO ALLERGIC REACTIONS FOR PREVENTION OF ATOPIC MARCH

    Directory of Open Access Journals (Sweden)

    A.V. Kamaev

    2011-01-01

    Full Text Available Prevalence of allergic diseases grows constantly. Realization of genetic defects to the disease depends of impact of environment and contacts with different allergens. Prophylactic dietary avoidance is important to prevent debut of the atopic dermatitis and secondary exacerbations of the disease. Terms and preferable sequence of complementary food introduction are discussed for breast-fed and formula-fed infants; advantages of ready-made industrial products of infant meals are proved. The gradual outreach of infant’s taste spectrum and increasing step by step of load on infant’s intestine can become serious hedge for the atopic march and important measure of prevention of allergic rhinitis and asthma.Key words: atopic march, dietetics, complementary foods, prevention of allergies, children.

  4. Biomass derived porous nitrogen doped carbon for electrochemical devices

    Directory of Open Access Journals (Sweden)

    Litao Yan

    2017-04-01

    Full Text Available Biomass derived porous nanostructured nitrogen doped carbon (PNC has been extensively investigated as the electrode material for electrochemical catalytic reactions and rechargeable batteries. Biomass with and without containing nitrogen could be designed and optimized to prepare PNC via hydrothermal carbonization, pyrolysis, and other methods. The presence of nitrogen in carbon can provide more active sites for ion absorption, improve the electronic conductivity, increase the bonding between carbon and sulfur, and enhance the electrochemical catalytic reaction. The synthetic methods of natural biomass derived PNC, heteroatomic co- or tri-doping into biomass derived carbon and the application of biomass derived PNC in rechargeable Li/Na batteries, high energy density Li–S batteries, supercapacitors, metal-air batteries and electrochemical catalytic reaction (oxygen reduction and evolution reactions, hydrogen evolution reaction are summarized and discussed in this review. Biomass derived PNCs deliver high performance electrochemical storage properties for rechargeable batteries/supercapacitors and superior electrochemical catalytic performance toward hydrogen evolution, oxygen reduction and evolution, as promising electrodes for electrochemical devices including battery technologies, fuel cell and electrolyzer. Keywords: Biomass, Nitrogen doped carbon, Batteries, Fuel cell, Electrolyzer

  5. A kinetic study of the electrochemical hydrogenation of ethylene

    International Nuclear Information System (INIS)

    Sedighi, S.; Gardner, C.L.

    2010-01-01

    In this study, we have examined the kinetics of the electrochemical hydrogenation of ethylene in a PEM reactor. While in itself this reaction is of little industrial interest, this reaction can be looked upon as a model reaction for many of the important hydrogenation processes including the refining of heavy oils and the hydrogenation of vegetable oils. To study the electrochemical hydrogenation of ethylene, several experimental techniques have been used including polarization measurements, measurement of the composition of the exit gases and potential step, transient measurements. The results show that the hydrogenation reaction proceeds rapidly and essentially to completion. By fitting the experimental transient data to the results from a zero-dimensional mathematical model of the process, a set of kinetic parameters for the reactions has been obtained that give generally good agreement with the experimental results. It seems probable that similar experimental techniques could be used to study the electrochemical hydrogenation of other unsaturated organic molecules of more industrial significance.

  6. Electrochemical reactor with rotating cylinder electrode for optimum electrochemical recovery of nickel from plating rinsing effluents

    International Nuclear Information System (INIS)

    Hernández-Tapia, J.R.; Vazquez-Arenas, J.; González, I.

    2013-01-01

    Highlights: • Rotating cylinder cathode enhanced mass transport rates of Ni(II) species. • pH control around 4 is crucial to recover high purity nickel. • Increasing cathodic currents increased energy consumptions for nickel recovery. • Specific energy consumptions increase drastically at the end of electrolysis. -- Abstract: This study is devoted to analyze the metallic electrochemical recovery of nickel from synthetic solutions simulating plating rinsing discharges, in order to meet the water recycling policies implemented in these industries. These effluents present dilute Ni(II) concentrations (100 and 200 ppm) in chloride and sulfate media without supporting electrolyte (397–4202 μS cm −1 ), which stems poor current distribution, limited mass transfer, ohmic drops and enhancement of parasitic reactions. An electrochemical reactor with rotating cylinder electrode (RCE) and a pH controller were utilized to overcome these problems. The pH control around 4 was crucial to yield high purity nickel, and thus prevent the precipitation of hydroxides and oxides. Macroelectrolysis experiments were systematically conducted to analyze the impacts of the applied current density in the recovery efficiency and energy consumption, particularly for very diluted effluents (100 and 200 ppm Ni(II)), which present major recovery problems. Promising nickel recoveries in the order of 90% were found in the former baths using a current density of −3.08 mA cm −2 , and with overall profits of 9.64 and 14.69 USD kg −1 , respectively. These estimations were based on the international market price for nickel ($18 USD kg −1 )

  7. Nanoscale Protection Layers To Mitigate Degradation in High-Energy Electrochemical Energy Storage Systems.

    Science.gov (United States)

    Lin, Chuan-Fu; Qi, Yue; Gregorczyk, Keith; Lee, Sang Bok; Rubloff, Gary W

    2018-01-16

    In the pursuit of energy storage devices with higher energy and power, new ion storage materials and high-voltage battery chemistries are of paramount importance. However, they invite-and often enhance-degradation mechanisms, which are reflected in capacity loss with charge/discharge cycling and sometimes in safety problems. Degradation mechanisms are often driven by fundamentals such as chemical and electrochemical reactions at electrode-electrolyte interfaces, volume expansion and stress associated with ion insertion and extraction, and profound inhomogeneity of electrochemical behavior. While it is important to identify and understand these mechanisms at some reasonable level, it is even more critical to design strategies to mitigate these degradation pathways and to develop means to implement and validate the strategies. A growing set of research highlights the mitigation benefits achievable by forming thin protection layers (PLs) intentionally created as artificial interphase regions at the electrode-electrolyte interface. These advances illustrate a promising-perhaps even generic-pathway for enabling higher-energy and higher-voltage battery configurations. In this Account, we summarize examples of such PLs that serve as mitigation strategies to avoid degradation in lithium metal anodes, conversion-type electrode materials, and alloy-type electrodes. Examples are chosen from a larger body of electrochemical degradation research carried out in Nanostructures for Electrical Energy Storage (NEES), our DOE Energy Frontier Research Center. Overall, we argue on the basis of experimental and theoretical evidence that PLs effectively stabilize the electrochemical interfaces to prevent parasitic chemical and electrochemical reactions and mitigate the structural, mechanical, and compositional degradation of the electrode materials at the electrode-electrolyte interfaces. The evidenced improvement in performance metrics is accomplished by (1) establishing a homogeneous

  8. Deep reduced PEDOT films support electrochemical applications: Biomimetic color front.

    Directory of Open Access Journals (Sweden)

    Toribio Fernandez OTERO

    2015-02-01

    Full Text Available Most of the literature accepts, despite many controversial results, that during oxidation/reduction films of conducting polymers move from electronic conductors to insulators. Thus, engineers and device’s designers are forced to use metallic supports to reoxidize the material for reversible device work. Electrochromic front experiments appear as main visual support of the claimed insulating nature of reduced conducting polymers. Here we present a different design of the biomimetic electrochromic front that corroborates the electronic and ionic conducting nature of deep reduced films. The direct contact PEDOT metal/electrolyte and film/electrolyte was prevented from electrolyte contact until 1cm far from the metal contact with protecting Parafilm®. The deep reduced PEDOT film supports the flow of high currents promoting reaction induced electrochromic color changes beginning 1 cm far from the metal-polymer electrical contact and advancing, through the reduced film, towards the metal contact. Reverse color changes during oxidation/reduction always are initiated at the film/electrolyte contact advancing, under the protecting film, towards the film/metal contact. Both reduced and oxidized states of the film demonstrate electronic and ionic conductivities high enough to be used for electronic applications or, as self-supported electrodes, for electrochemical devices. The electrochemically stimulated conformational relaxation (ESCR model explains those results.

  9. Electrochemical desalination of bricks - Experimental and modeling

    DEFF Research Database (Denmark)

    Skibsted, Gry; Ottosen, Lisbeth M.; Jensen, Pernille Erland

    2015-01-01

    Chlorides, nitrates and sulfates play an important role in the salt-decay of porous materials in buildings and monuments. Electrochemical desalination is a technology able to remove salts from such porous materials in order to stop or prevent the decay. In this paper, experimental and numerical......-contaminated bricks with respect to the monovalent ions is discussed. Comparison between the experimental and the simulation results showed that the proposed numerical model is able to predict electrochemical desalination treatments with remarkable accuracy, and it can be used as a predictive tool...

  10. Electrochemical performance in the hydrogen evolution reaction of Ni-TR (TR= La, Ce) materials synthesized using the solid state reaction method; Desempeno electroquimico en la reaccion de evolucion de hidrogeno de materiales de electrodo Ni-TR (TR = La, Ce) sintetizados por el metodo de reaccion de estado solido

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Huerta, A. M.; Dominguez-Crespo, M. A.; Ramirez-Meneses, E.; Yanez-Zamora, C. [CICATA, IPN, Altamira, Tamaulipas (Mexico); Avila-Garcia, I. [IPN, ESIQIE, UPALM, Mexico, D.F. (Mexico)]. E-mail: mdominguezc@ipn.mx; adcrespo2000@yahoo.com.mx

    2009-09-15

    At the industrial level, the use of fuel cell technology is still limited because of the high costs of its parts and costs related to its operations. Although the electrode material with greater electroactivity is Pt, because of its high cost, alternative electrocatalysts have been sought that balance cost and activity. One of the materials that have been most widely used is nickel, along with some of its alloys. This material has shown good performance using low overpotentials in traditional reactions such as hydrogen (HER) and oxygen (OER) evolution, as well as high resistance to corrosion and low costs. In particular, binary and ternary alloys have shown significant increases in HER activity when compared to materials in the pure or massive state. Therefore, in the search for new alternatives with acceptable efficiency and low-cost, this work obtained Ni-TR (TR = La, Ce) using solid-state reaction with metallic acetylacetonates and metallic powder. These materials were synthesized for 3 h at different temperatures (795 or 920, 1000 and 1200 degrees Celsius) in order to evaluate the effect on the electrochemical performance of the electrocatalysts. The structural and morphological characterization of materials was performed with XRD and SEM techniques, respectively. In addition, the electrochemical performance of electrode materials was evaluated with HER using cyclic voltametry (CV) and potentiodynamic curves. The results obtained show that a combination of oxides was obtained (NiO, CeO{sub 2} and LaNiO{sub 3}) at low temperatures; nonetheless, as the synthesis temperatures increase, NiO-CeO{sub 2} and NiO-LaNiO{sub 3} alloys are formed, respectively. A clear dependence was also observed between electrocatalytic activity and the source for obtaining these materials(Ni-TR). [Spanish] A nivel industrial, el uso de la tecnologia de celdas de combustible esta todavia limitada debido sobre todo a los altos costos de las partes que la constituyen y los costos

  11. Post-marketing surveillance of the safety profile of iodixanol in the outpatient CT setting: a prospective, multicenter, observational study of patient risk factors, adverse reactions and preventive measures in 9953 patients.

    Science.gov (United States)

    Müller, F H H

    2014-11-01

    Non-interventional study in outpatient, contrast-enhanced CT; 1. to determine the extent of preventive measures for risk reduction of adverse drug reactions after contrast-enhanced CT examinations. 2. to prospectively determine the incidence and severity of adverse drug reactions occurring after administration of the iso-osmolar contrast medium iodixanol. 3. to determine a possible influence of preventive measures on the incidence/severity of adverse drug reactions.. Evaluable documentation was provided for 9953 patients from 66 radiology centers across Germany. Patient characteristics, aspects of iodixanol administration, and adverse events with an at least "possible" relationship were documented on a standardized case report form (CRF) and were evaluated up to seven days after contrast medium administration. About 55.5 % of patients showed one or more risk factors (e. g. impaired renal function 4.4 %, diabetes mellitus 8.5 %, hypertension 20.6 %). One third of the sites did not implement any preventive measures. Patients with a known risk for an allergy-like reaction were more likely to receive pharmacologic preventive treatment (0.5 - 50.5 %). Oral hydration was the main preventive measure in patients with renal risk factors (Adverse drug reactions, mainly hypersensitivity reactions, occurred in 77 patients (0.74 %), but were classified as serious in only 3 patients (0.03 %). No statistically significant correlation between risk factors, preventive measures, and adverse reactions could be found. The use of preventive measures for CT examinations in this outpatient setting was generally low with risk patients being pre-medicated more often, depending on their history. In the routine outpatient setting, iso-osmolar iodixanol was very well tolerated in almost 10,000 patients undergoing diagnostic CT. The rate of acute and delayed adverse reactions was low. No correlation could be found between risk factors, preventive measures and the incidence

  12. Electrochemical surface plasmon resonance: basic formalism and experimental validation.

    Science.gov (United States)

    Wang, Shaopeng; Huang, Xinping; Shan, Xiaonan; Foley, Kyle J; Tao, Nongjian

    2010-02-01

    A quantitative formalism of electrochemical surface plasmon resonance (EC-SPR) was developed for studying electrochemical reactions. The EC-SPR signal from the reactions was found to be a convolution function of electrochemical current, and therefore, EC-SPR is a powerful tool that can provide information similar to the conventional current-based electrochemical techniques. As an example, potential-sweep EC-SPR was analyzed in details and was found to provide a new way to measure convolution voltammetry without the need of numerical integration. In addition to the benefits provided by the conventional convolution voltammetry, the EC-SPR has several unique advantages, including (1) spatial resolution that is particularly attractive for studying heterogeneous reactions, (2) optical properties of the reactions species that may assist identification of reaction mechanisms, and (3) high surface sensitivity for studying surface binding of the reaction species. Experiments and numerical simulations were carried out for a model system, hexaammineruthenium(III) chloride. The simultaneously measured electrochemical current and SPR response confirmed the relationship between the two quantities, and the numerical simulations were in excellent agreement with the measurements.

  13. Electrochemical non-enzymatic glucose sensors

    International Nuclear Information System (INIS)

    Park, Sejin; Boo, Hankil; Chung, Taek Dong

    2006-01-01

    The electrochemical determination of glucose concentration without using enzyme is one of the dreams that many researchers have been trying to make come true. As new materials have been reported and more knowledge on detailed mechanism of glucose oxidation has been unveiled, the non-enzymatic glucose sensor keeps coming closer to practical applications. Recent reports strongly imply that this progress will be accelerated in 'nanoera'. This article reviews the history of unraveling the mechanism of direct electrochemical oxidation of glucose and making attempts to develop successful electrochemical glucose sensors. The electrochemical oxidation of glucose molecules involves complex processes of adsorption, electron transfer, and subsequent chemical rearrangement, which are combined with the surface reactions on the metal surfaces. The information about the direct oxidation of glucose on solid-state surfaces as well as new electrode materials will lead us to possible breakthroughs in designing the enzymeless glucose sensing devices that realize innovative and powerful detection. An example of those is to introduce nanoporous platinum as an electrode, on which glucose is oxidized electrochemically with remarkable sensitivity and selectivity. Better model of such glucose sensors is sought by summarizing and revisiting the previous reports on the electrochemistry of glucose itself and new electrode materials

  14. A Paper-Based Electrochromic Array for Visualized Electrochemical Sensing

    Directory of Open Access Journals (Sweden)

    Fengling Zhang

    2017-01-01

    Full Text Available We report a battery-powered, paper-based electrochromic array for visualized electrochemical sensing. The paper-based sensing system consists of six parallel electrochemical cells, which are powered by an aluminum-air battery. Each single electrochemical cell uses a Prussian Blue spot electrodeposited on an indium-doped tin oxide thin film as the electrochromic indicator. Each electrochemical cell is preloaded with increasing amounts of analyte. The sample activates the battery for the sensing. Both the preloaded analyte and the analyte in the sample initiate the color change of Prussian Blue to Prussian White. With a reaction time of 60 s, the number of electrochemical cells with complete color changes is correlated to the concentration of analyte in the sample. As a proof-of-concept analyte, lactic acid was detected semi-quantitatively using the naked eye.

  15. A Paper-Based Electrochromic Array for Visualized Electrochemical Sensing.

    Science.gov (United States)

    Zhang, Fengling; Cai, Tianyi; Ma, Liang; Zhan, Liyuan; Liu, Hong

    2017-01-31

    We report a battery-powered, paper-based electrochromic array for visualized electrochemical sensing. The paper-based sensing system consists of six parallel electrochemical cells, which are powered by an aluminum-air battery. Each single electrochemical cell uses a Prussian Blue spot electrodeposited on an indium-doped tin oxide thin film as the electrochromic indicator. Each electrochemical cell is preloaded with increasing amounts of analyte. The sample activates the battery for the sensing. Both the preloaded analyte and the analyte in the sample initiate the color change of Prussian Blue to Prussian White. With a reaction time of 60 s, the number of electrochemical cells with complete color changes is correlated to the concentration of analyte in the sample. As a proof-of-concept analyte, lactic acid was detected semi-quantitatively using the naked eye.

  16. Electrochemical study of Tm (III) ions on W and oxo acidity reactions in the LiCI-KCI eutectic; Estudio electroquimico de disoluciones de Tm (III) sobre W y reacciones de oxoacidez en el eutectico LiCI.-KCl

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Requejo, P.

    2010-07-01

    Study of the electrochemical behaviour of Tm (III) dissolutions in the LiCI-KCI eutectic mixture using inert electrodes (W) and reagent electrodes (Al). On W, TM (III) ions are reduced in two consecutives stages sufficiently separated. The TM electro-reduction on Al makes room for the formation of intermetallic compounds so the use of an Ai electrode is appropriate to decontamination operations.

  17. Selectively-etched nanochannel electrophoretic and electrochemical devices

    Science.gov (United States)

    Surh, Michael P [Livermore, CA; Wilson, William D [Pleasanton, CA; Barbee, Jr., Troy W.; Lane, Stephen M [Oakland, CA

    2006-06-27

    Nanochannel electrophoretic and electrochemical devices having selectively-etched nanolaminates located in the fluid transport channel. The normally flat surfaces of the nanolaminate having exposed conductive (metal) stripes are selectively-etched to form trenches and baffles. The modifications of the prior utilized flat exposed surfaces increase the amount of exposed metal to facilitate electrochemical redox reaction or control the exposure of the metal surfaces to analytes of large size. These etched areas variously increase the sensitivity of electrochemical detection devices to low concentrations of analyte, improve the plug flow characteristic of the channel, and allow additional discrimination of the colloidal particles during cyclic voltammetry.

  18. Preparation and Electrochemical Properties of Silver Doped Hollow Carbon Nanofibers

    Directory of Open Access Journals (Sweden)

    LI Fu

    2016-11-01

    Full Text Available Silver doped PAN-based hollow carbon nanofibers were prepared combining co-electrospinning with in situ reduction technique subsequently heat treatment to improve the electrochemical performances of carbon based supercapacitor electrodes. The morphology, structure and electrochemical performances of the resulted nanofiber were studied. The results show that the silver nanoparticles can be doped on the surface of hollow carbon nanofibers and the addition of silver favors the improvement of the electrochemical performances, exhibiting the enhanced reversibility of electrode reaction and the capacitance and the reduced charge transfer impedance.

  19. Novel Technology for Phenol Wastewater Treatment Using Electrochemical Reactor

    Directory of Open Access Journals (Sweden)

    Yuncheng Xie

    2015-01-01

    Full Text Available There are various electrochemical approaches to save energy, mostly by means of equipment improvement coupled with other water treatment technologies. Replacement of DC power with pulse power, modified reactor coupled with photocatalysis can decrease cost. But more or less additional input is developed, or infrastructure has to be replaced. In this paper, an N-Step electrochemical reactor, based on stage reaction modeling, is put forward. On the basis of not changing equipment investment and by adjustment of the operating current density at different levels, power consumption decreases. This model develops a foundation of electrochemical water treatment technology for the engineering application.

  20. Anaerobic electrochemical membrane bioreactor and process for wastewater treatment

    KAUST Repository

    Amy, Gary

    2015-07-09

    An anaerobic electrochemical membrane bioreactor (AnEMBR) can include a vessel into which wastewater can be introduced, an anode electrode in the vessel suitable for supporting electrochemically active microorganisms (EAB, also can be referred to as anode reducing bacteria, exoelectrogens, or electricigens) that oxidize organic compounds in the wastewater, and a cathode membrane electrode in the vessel, which is configured to pass a treated liquid through the membrane while retaining the electrochemically active microorganisms and the hydrogenotrophic methanogens (for example, the key functional microbial communities, including EAB, methanogens and possible synergistic fermenters) in the vessel. The cathode membrane electrode can be suitable for catalyzing the hydrogen evolution reaction to generate hydro en.

  1. Electrochemical Analysis of Neurotransmitters

    Science.gov (United States)

    Bucher, Elizabeth S.; Wightman, R. Mark

    2016-01-01

    Chemical signaling through the release of neurotransmitters into the extracellular space is the primary means of communication between neurons. More than four decades ago, Ralph Adams and his colleagues realized the utility of electrochemical methods for the study of easily oxidizable neurotransmitters, such as dopamine, norepinephrine, and serotonin and their metabolites. Today, electrochemical techniques are frequently coupled to microelectrodes to enable spatially resolved recordings of rapid neurotransmitter dynamics in a variety of biological preparations spanning from single cells to the intact brain of behaving animals. In this review, we provide a basic overview of the principles underlying constant-potential amperometry and fast-scan cyclic voltammetry, the most commonly employed electrochemical techniques, and the general application of these methods to the study of neurotransmission. We thereafter discuss several recent developments in sensor design and experimental methodology that are challenging the current limitations defining the application of electrochemical methods to neurotransmitter measurements. PMID:25939038

  2. Electrochemical Sensors: Functionalized Silica

    Energy Technology Data Exchange (ETDEWEB)

    Fryxell, Glen E.; Lin, Yuehe; Yantasee, Wassana

    2009-03-24

    This chapter summarizes recent devellopment of electrochemical sensors based on functionlized mesoporous silica materials. The nanomatrials based sensors have been developed for sensitive and selective enrironmental detection of toxic heavy metal and uranium ions.

  3. Electrochemical Analysis of Neurotransmitters

    Science.gov (United States)

    Bucher, Elizabeth S.; Wightman, R. Mark

    2015-07-01

    Chemical signaling through the release of neurotransmitters into the extracellular space is the primary means of communication between neurons. More than four decades ago, Ralph Adams and his colleagues realized the utility of electrochemical methods for the study of easily oxidizable neurotransmitters, such as dopamine, norepinephrine, and serotonin and their metabolites. Today, electrochemical techniques are frequently coupled to microelectrodes to enable spatially resolved recordings of rapid neurotransmitter dynamics in a variety of biological preparations spanning from single cells to the intact brain of behaving animals. In this review, we provide a basic overview of the principles underlying constant-potential amperometry and fast-scan cyclic voltammetry, the most commonly employed electrochemical techniques, and the general application of these methods to the study of neurotransmission. We thereafter discuss several recent developments in sensor design and experimental methodology that are challenging the current limitations defining the application of electrochemical methods to neurotransmitter measurements.

  4. Fundamentals of electrochemical science

    CERN Document Server

    Oldham, Keith

    1993-01-01

    Key Features* Deals comprehensively with the basic science of electrochemistry* Treats electrochemistry as a discipline in its own right and not as a branch of physical or analytical chemistry* Provides a thorough and quantitative description of electrochemical fundamentals

  5. Electrochemical cell structure and method of making the same

    Science.gov (United States)

    Schick, Louis Andrew; Libby, Cara Suzanne; Bowen, John Henry; Bourgeois, Richard Scott

    2012-09-25

    An electrochemical cell structure is provided which includes an anode, a cathode spaced apart from said anode, an electrolyte in ionic communication with each of said anode and said cathode and a nonconductive frame. The nonconductive frame includes at least two components that support each of said anode, said cathode and said electrolyte and define at least one flowpath for working fluids and for products of electrochemical reaction.

  6. Electrochemical Characterization of a PEMEC Using Impedance Spectroscopy

    OpenAIRE

    Elsøe, Katrine; Grahl-Madsen, L.; Hjelm, Johan; Scherer, G.G.; Hjelm, Johan; Mogensen, Mogens Bjerg

    2017-01-01

    In this study, electrochemical impedance spectroscopy (EIS) is applied in combination with cyclic voltammetry (CV) and current density – cell voltage curves (iV-curves) to investigate the processes contributing to the total impedance of a polymer electrolyte membrane electrolysis cell (PEMEC). iV-curves were linear above 0.35 A cm−2 implying ohmic processes to be performance limiting, however the impedance spectra showed three arcs indicating three electrochemical reactions at these condition...

  7. Pseudocapacitive oxide materials for high-rate electrochemical energy storage

    OpenAIRE

    Augustyn, Veronica; Simon, Patrice; Dunn, Bruce

    2014-01-01

    International audience; Electrochemical energy storage technology is based on devices capable of exhibiting high energy density (batteries) or high power density (electrochemical capacitors). There is a growing need, for current andnear-future applications, where both high energy and high power densities are required in the same material. Pseudocapacitance, a faradaic process involving surface or near surface redox reactions, offers a means of achieving high energy density at high charge–disc...

  8. A Review on Dapsone Hypersensitivity Syndrome Among Chinese Patients with an Emphasis on Preventing Adverse Drug Reactions with Genetic Testing.

    Science.gov (United States)

    Wang, Na; Parimi, Leela; Liu, Hong; Zhang, Furen

    2017-05-01

    AbstractDapsone is a bactericidal and bacteriostatic against Mycobacterium leprae , a causative agent of leprosy. Dapsone is also applied in a range of medical fields because of its anti-inflammatory and immunomodulatory effects. Dapsone hypersensitivity syndrome (DHS) is a rare yet serious adverse drug reaction (ADR) caused by dapsone involving multiple organs. We performed a systematic review of published articles describing dapsone-induced hypersensitivity syndrome, including all Chinese articles and the latest literature available in online databases published between October 2009 and October 2015. We determined the prevalence, clinical characteristics, and mortality rate of DHS. Importantly, we also summarized the recent advances in genetic testing allowing prediction of ADRs. In an initial systematic electronic search, we retrieved 191 articles. Subsequently, these articles were further filtered and ultimately 84 articles (60 Chinese case reports, 21 non-Chinese articles, and three epidemiological studies) were selected, which included 877 patients. The prevalence of DHS among Chinese patients was 1.5% with a fatality rate of 9.6%. Early withdrawal of dapsone and appropriate treatment reduced the fatality rate. Most importantly, genetic screening for the HLA-B*13:01 allele among high-risk populations showed a significant utility as a useful genetic marker to DHS. In conclusion, this review discusses the epidemiological and clinical characteristics of DHS among Chinese patients, which may help physicians to understand this syndrome.

  9. Developing effective campaign messages to prevent neural tube defects: a qualitative assessment of women's reactions to advertising concepts.

    Science.gov (United States)

    Massi Lindsey, Lisa L; Silk, Kami J; Von Friederichs-Fitzwater, Marlene M; Hamner, Heather C; Prue, Christine E; Boster, Franklin J

    2009-03-01

    The incidence of neural tube defects (NTDs), serious birth defects of the brain and spine that affect approximately 3,000 pregnancies in the United States each year, can be reduced by 50-70% with daily periconceptional consumption of the B vitamin folic acid. Two studies were designed to assess college women's reactions to and perceptions of potential campaign advertising concepts derived from preproduction formative research to increase folic acid consumption through the use of a daily multivitamin. Study one assessed draft advertising concepts in eight focus groups (N = 71) composed of college-enrolled women in four cities geographically dispersed across the United States. Based on study one results, the concepts were revised and reassessed in study two with a different sample (eight focus groups; N = 73) of college women in the same four cities. Results indicated that participants generally responded favorably to concepts in each of the two studies, and provided insight into individual concepts to increase their overall appeal and effectiveness. The specific findings and implications of these results are discussed.

  10. Solid state electrochemical composite

    Science.gov (United States)

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2009-06-30

    Provided is a composite electrochemical device fabricated from highly electronically conductive materials such as metals, metal alloys, or electronically conductive ceramics. The electronic conductivity of the electrode substrate is maximized. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in ionic (electrochemical) devices such as fuel cells and electrolytic gas separation systems including oxygen generation system.

  11. Electrochemical polymer electrolyte membranes

    CERN Document Server

    Fang, Jianhua; Wilkinson, David P

    2015-01-01

    Electrochemical Polymer Electrolyte Membranes covers PEMs from fundamentals to applications, describing their structure, properties, characterization, synthesis, and use in electrochemical energy storage and solar energy conversion technologies. Featuring chapters authored by leading experts from academia and industry, this authoritative text: Discusses cutting-edge methodologies in PEM material selection and fabricationPoints out important challenges in developing PEMs and recommends mitigation strategies to improve PEM performanceAnalyzes the cur

  12. Electrochemical Oxidation of Propene with a LSF15/CGO10 Electrochemical Reactor

    DEFF Research Database (Denmark)

    Ippolito, Davide; Kammer Hansen, Kent

    2014-01-01

    A porous electrochemical reactor, made of La0.85Sr0.15FeO3 (LSF) as electrode and Ce0.9Gd0.1O1.95 (CGO) as electrolyte, was studied for the electrochemical oxidation of propene over a wide range of temperatures. Polarization was found to enhance propene oxidation rate. Ce0.9Gd0.1O1.95 was used as...... in suppressing the competing oxygen evolution reaction and promoting the oxidation of propene under polarization, with faradaic efficiencies above 70% at 250◦C. © 2014 The Electrochemical Society....

  13. Electrochemical Reduction of Zinc Phosphate

    International Nuclear Information System (INIS)

    Kim, Chang Hwan; Lee, Jung Hyun; Shin, Woon Sup

    2010-01-01

    We demonstrated first that the electrochemical reduction of zinc phosphate in neutral phosphate buffer is possible and potentially applicable to bio-compatible rechargeable battery. The actual redox component is Zn(s)/Zn phosphate(s) and the future research about the control of crystal formation for the better cyclability is required. In lead-acid battery, the electrochemical redox reaction of Pb (s) /PbSO 4(s) is used by reducing Pb(II) and oxidizing Pb(0) in sulfate rich solution. Since both reduced form and oxidized form are insoluble, they cannot diffuse to the opposite electrodes and react. It is a very common strategy to make a stable battery electrode that a metal element is reduced and oxidized in solution containing an abundance of anion readily precipitating with the metal ion. For the application of this strategy to construction of rechargeable battery using bio-compatible electrode materials and electrolytes, the use of phosphate ion can be considered as anion readily precipitating with metal ions. If phosphate buffer with neutral pH is used as electrolyte, the better bio-compatibility will be achieved than most of rechargeable battery using strong acid, strong base or organic solvent as electrolyte solution. There are many metal ions readily precipitating with phos-phate ion, and zinc is one of them

  14. Scanning tunneling microscopy, Fourier transform infrared spectroscopy, and electrochemical characterization of 2-naphthalenethiol self-assembled monolayers on the Au surface: a study of bridge-mediated electron transfer in Ru(NH3)6(2+)/Ru(NH3)6(3+) redox reactions.

    Science.gov (United States)

    Ganesh, V; Lakshminarayanan, V

    2005-09-01

    We have studied the structure, adsorption kinetics, and barrier properties of self-assembled monolayers of 2-naphthalenethiol on Au using electrochemical techniques, grazing-angle Fourier transform infrared (FTIR) spectroscopy, and scanning tunneling microscopy (STM). The results of cyclic voltammetric and impedance measurements using redox probes show that 2-naphthalenethiol on Au forms a stable and reproducible, but moderately blocking, monolayer. Annealing of the self-assembled monolayer (SAM)-modified surface at 72 +/- 2 degrees C remarkably improves the blocking property of the monolayer of 2-naphthalenethiol on Au. From the study of kinetics of SAM formation, we find that the self-assembly follows Langmuir adsorption isotherm. Our STM and FTIR results show that the molecules are adsorbed with the naphthalene ring tilted from the surface normal by forming a square root 3 x 3 R30 degrees overlayer structure. From our studies, we conclude that the electron-transfer reaction of ferro/ferricyanide in the freshly formed monolayer occurs predominantly through the pinholes and defects present in the monolayer. However, in the case of thermally annealed specimen, although the ferro/ferricyanide reaction is almost completely blocked, the electron-transfer reaction of hexaammineruthenium(III) chloride is not significantly inhibited. It is proposed that the electron-transfer reaction in the case of the ruthenium redox couple takes place by a tunneling mechanism through the high-electron-density aromatic naphthalene ring acting as a bridge between the monolayer-modified electrode and the ruthenium complex.

  15. Controlled amino-functionalization by electrochemical reduction of bromo and nitro azobenzene layers bound to Si(111) surfaces.

    Science.gov (United States)

    Ullien, Daniela; Thüne, Peter C; Jager, Wolter F; Sudhölter, Ernst J R; de Smet, Louis C P M

    2014-09-28

    4-Nitrobenzenediazonium (4-NBD) and 4-bromobenzenediazonium (4-BBD) salts were grafted electrochemically onto H-terminated, p-doped silicon (Si) surfaces. Atomic force microscopy (AFM) and ellipsometry experiments clearly showed layer thicknesses of 2-7 nm, which indicate multilayer formation. Decreasing the diazonium salt concentration and the reaction time resulted in a smaller layer thickness, but did not prevent the formation of multilayers. It was demonstrated, mainly by X-ray photoelectron spectroscopy (XPS), that the diazonium salts not only react with the H-terminated Si surface, but also with electrografted phenyl groups via azo-bond formation. These azo bonds can be electrochemically reduced at Ered = -1.5 V, leading to the corresponding amino groups. This reduction resulted in a modest decrease in layer thickness, and did not yield monolayers. This indicates that other coupling reactions, notably a biphenyl coupling, induced by electrochemically produced phenyl radicals, take place as well. In addition to the azo functionalities, the nitro functionalities in electrografted layers of 4-NBD were independently reduced to amino functionalities at a lower potential (Ered = -2.1 V). The presence of amino functionalities on fully reduced layers, both from 4-NBD- and 4-BBD-modified Si, was shown by the presence of fluorine after reaction with trifluoroacetic anhydride (TFAA). This study shows that the electrochemical reduction of azo bonds generates amino functionalities on layers produced by electrografting of aryldiazonium derivatives. In this way multifunctional layers can be formed by employing functional aryldiazonium salts, which is believed to be very practical in the fabrication of sensor platforms, including those made of multi-array silicon nanowires.

  16. A novel arctigenin-containing latex glove prevents latex allergy by inhibiting type I/IV allergic reactions.

    Science.gov (United States)

    Wang, Yong-Xin; Xue, Dan-Ting; Liu, Meng; Zhou, Zheng-Min; Shang, Jing

    2016-03-01

    , and a persistent anti-allergic effect after being added into the latex to prevent latex allergy. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  17. Numerical simulation of electrochemical desalination

    Science.gov (United States)

    Hlushkou, D.; Knust, K. N.; Crooks, R. M.; Tallarek, U.

    2016-05-01

    We present an effective numerical approach to simulate electrochemically mediated desalination of seawater. This new membraneless, energy efficient desalination method relies on the oxidation of chloride ions, which generates an ion depletion zone and local electric field gradient near the junction of a microchannel branch to redirect sea salt into the brine stream, consequently producing desalted water. The proposed numerical model is based on resolution of the 3D coupled Navier-Stokes, Nernst-Planck, and Poisson equations at non-uniform spatial grids. The model is implemented as a parallel code and can be employed to simulate mass-charge transport coupled with surface or volume reactions in 3D systems showing an arbitrarily complex geometrical configuration.

  18. Nano-electrochemical deposition of fuel cells electrocatalysts

    CSIR Research Space (South Africa)

    Mathe, MK

    2008-11-01

    Full Text Available crucial components in fuel cells are the electrodes (anodes and cathodes) at which electrochemical reactions (reactions which liberate or consume electrons from breakdown of molecules) take place. The flow of such electrons is one of the fundamental... aspects in generating electricity from fuel cells. For these reactions to occur at useful rates either the operating temperature has to be high or electrocatalysts have to be used, a scenario particularly crucial at low operating temperatures desired...

  19. Transport aspects of electrochemical machining and electrometallurgy

    International Nuclear Information System (INIS)

    Muller, R.H.

    1976-05-01

    Transport processes in large measure determine the rate at which electrolytic metal deposition and dissolution can be conducted. Unusually high rates, often accompanied by the formation of solid reaction products, are achieved in electrochemical machining by the use of high electrolyte flow velocities between closely-spaced electrodes. Geometrical shape and surface finish resulting from deposition or dissolution reactions are determined by the current distribution on a macroscopic and microscopic scale. Macroscopic current distributions have been determined experimentally by different electrical and optical means and are compared to theoretical expectations based on transport correlations and numerical models

  20. Prevention and treatment of acute radiation-induced skin reactions: a systematic review and meta-analysis of randomized controlled trials

    International Nuclear Information System (INIS)

    Chan, Raymond Javan; Webster, Joan; Chung, Bryan; Marquart, Louise; Ahmed, Muhtashimuddin; Garantziotis, Stuart

    2014-01-01

    Radiation-induced skin reaction (RISR) is a common side effect that affects the majority of cancer patients receiving radiation treatment. RISR is often characterised by swelling, redness, pigmentation, fibrosis, and ulceration, pain, warmth, burning, and itching of the skin. The aim of this systematic review was to assess the effects of interventions which aim to prevent or manage RISR in people with cancer. We searched the following databases up to November 2012: Cochrane Skin Group Specialised Register, CENTRAL (2012, Issue 11), MEDLINE (from 1946), EMBASE (from 1974), PsycINFO (from 1806), CINAHL (from 1981) and LILACS (from 1982). Randomized controlled trials evaluating interventions for preventing or managing RISR in cancer patients were included. The primary outcomes were development of RISR, and levels of RISR and symptom severity. Secondary outcomes were time taken to develop erythema or dry desquamation; quality of life; time taken to heal, a number of skin reaction and symptom severity measures; cost, participant satisfaction; ease of use and adverse effects. Where appropriate, we pooled results of randomized controlled trials using mean differences (MD) or odd ratios (OR) with 95% confidence intervals (CI). Forty-seven studies were included in this review. These evaluated six types of interventions (oral systemic medications; skin care practices; steroidal topical therapies; non-steroidal topical therapies; dressings and other). Findings from two meta-analyses demonstrated significant benefits of oral Wobe-Mugos E for preventing RISR (OR 0.13 (95% CI 0.05 to 0.38)) and limiting the maximal level of RISR (MD -0.92 (95% CI -1.36 to -0.48)). Another meta-analysis reported that wearing deodorant does not influence the development of RISR (OR 0.80 (95% CI 0.47 to 1.37)). Despite the high number of trials in this area, there is limited good, comparative research that provides definitive results suggesting the effectiveness of any single intervention for

  1. Pulse electrochemical meso/micro/nano ultraprecision machining technology.

    Science.gov (United States)

    Lee, Jeong Min; Kim, Young Bin; Park, Jeong Woo

    2013-11-01

    This study demonstrated meso/micro/nano-ultraprecision machining through electrochemical reactions using intermittent DC pulses. The experiment focused on two machining methods: (1) pulse electrochemical polishing (PECP) of stainless steel, and (2) pulse electrochemical nano-patterning (PECNP) on a silicon (Si) surface, using atomic force microscopy (AFM) for fabrication. The dissolution reaction at the stainless steel surface following PECP produced a very clean, smooth workpiece. The advantages of the PECP process included improvements in corrosion resistance, deburring of the sample surface, and removal of hydrogen from the stainless steel surface as verified by time-of-flight secondary-ion mass spectrometry (TOF-SIMS). In PECNP, the electrochemical reaction generated within water molecules produced nanoscale oxide textures on a Si surface. Scanning probe microscopy (SPM) was used to evaluate nanoscale-pattern processing on a Si wafer surface produced by AFM-PECNP For both processes using pulse electrochemical reactions, three-dimensional (3-D) measurements and AFM were used to investigate the changes on the machined surfaces. Preliminary results indicated the potential for advancing surface polishing techniques and localized micro/nano-texturing technology using PECP and PECNP processes.

  2. Electrochemical Approaches to Renewable Energy

    Science.gov (United States)

    Lobaccaro, Peter

    Renewable energy is becoming an increasingly important component of the world's energy supply as the threat of global warming continues to rise. There is a need to reduce the cost of this renewable energy and a future challenge to deal with the strain intermittent power sources like renewables place on the power grid. In this dissertation, electrochemistry is harnessed to address possible solutions to both of these issues. First, it is used to develop a low cost alternative photovoltaic material. Then, it is used to investigate the production of chemical fuel stocks which can be used for energy storage. In chapter 2, advances are made in the electrochemical deposition of indium (In) on molybdenum foil which enables the deposition of electronic-grade purity, continuous films with thicknesses in the micron range. As an example application, the electrodeposited In films are phosphorized via the thin-film vapor-liquid-solid growth method. The resulting poly-crystalline InP films display excellent optoelectronic quality, comparable to films grown from more standard vacuum deposition techniques. This demonstrates the versatility of the developed electrochemical deposition procedure. In the remaining chapters, renewable fuel production is investigated. First in chapter 3, molybdenum disulfide (MoS2) is examined as a catalyst for the hydrogen evolution reaction (HER). Typically, high-cost synthesized MoS2 is used as the catalyst because the pristine MoS 2 mineral is known to be a poor catalyst. The fundamental challenge with pristine MoS2 is the inert HER activity of the predominant (0001) basal surface plane. Here, we report a general thermal process in which the basal plane is texturized to increase the density of HER-active edge sites. The process generates high HER catalytic performance in pristine MoS 2 across various morphologies such as the bulk mineral, films composed of micron-scale flakes, and even films of a commercially-available spray of nanoflake MoS2. In

  3. A mathematical model of the current density distribution in electrochemical cells - AUTHORS’ REVIEW

    Directory of Open Access Journals (Sweden)

    PREDRAG M. ŽIVKOVIĆ

    2011-06-01

    Full Text Available An approach based on the equations of electrochemical kinetics for the estimation of the current density distribution in electrochemical cells is presented. This approach was employed for a theoretical explanation of the phenomena of the edge and corner effects. The effects of the geometry of the system, the kinetic parameters of the cathode reactions and the resistivity of the solution are also discussed. A procedure for a complete analysis of the current distribution in electrochemical cells is presented.

  4. Electrochemical characterization of sulfur with low depth of charge/discharge in lithium sulfur batteries

    International Nuclear Information System (INIS)

    Yang, Zhigao; Wang, Shengping; Dong, Kang; Dai, Yu; Lei, Xinrong

    2016-01-01

    Highlights: • The charge/discharge electrochemical window of Li-S batteries is limited to a narrow range (1.95-2.45 V). • In this narrow electrochemical window, the electrochemical reactions only occur in the liquid phase. • This narrow electrochemical window provides improved capacity performance and cycling performance. - Abstract: In this research, a narrow charge/discharge electrochemical window is enforced for lithium sulfur batteries. In this way, the active material of the electrode (which is sulfur in the initial state) is limited to Li 2 S 8 and Li 2 S 3 , leading the electrochemical reactions to take place in the liquid phase and thereby improving the capacity performance and cycling performance. After 50 cycles at a current density of 0.1 mA cm −2 , the specific capacity obtained using a narrow electrochemical window (1.95-2.45 V) (490 mAh g −1 ) was greater than that obtained using a wide electrochemical window (1.7-2.8 V) (435 mAh g −1 ). This finding demonstrates the feasibility of improving the electrochemical performance by employing a suitable electrochemical window to restrain the phase transformation to the middle liquid phase.

  5. Electrochemical energy storage

    CERN Document Server

    Tarascon, Jean-Marie

    2015-01-01

    The electrochemical storage of energy has become essential in assisting the development of electrical transport and use of renewable energies. French researchers have played a key role in this domain but Asia is currently the market leader. Not wanting to see history repeat itself, France created the research network on electrochemical energy storage (RS2E) in 2011. This book discusses the launch of RS2E, its stakeholders, objectives, and integrated structure that assures a continuum between basic research, technological research and industries. Here, the authors will cover the technological

  6. Electrochemical nitridation of metal surfaces

    Science.gov (United States)

    Wang, Heli; Turner, John A.

    2015-06-30

    Electrochemical nitridation of metals and the produced metals are disclosed. An exemplary method of electrochemical nitridation of metals comprises providing an electrochemical solution at low temperature. The method also comprises providing a three-electrode potentiostat system. The method also comprises stabilizing the three-electrode potentiostat system at open circuit potential. The method also comprises applying a cathodic potential to a metal.

  7. Electrochemical studies on spent fuel corrosion processes

    International Nuclear Information System (INIS)

    Pablo, J. de; Casas, I.; Clarens, F.; Gimenez, J.; Rovira, M.

    2003-01-01

    This presentations is mainly based on the electrochemical studies carried out by the Canadian team and the research group of the Berlin University. Electrochemical studies allow to study separately both the anodic reaction which corresponds-sources on UO 2 -electrodes response is one of to the UO 2 dissolution and the cathodic reaction that is the reduction of the oxidants. By using intensity current-potential plots a mechanisms of UO 2 corrosion has been established. At-300 mV (vs SCE), irreversible oxidation of UO 2 takes place and dissolution begins. In the absence of complexing agents like carbonate, an oxidised layer is formed at 100 mV a stoichiometry close to UO 2 . In carbonate medium, the oxidized layer is not formed because the U(VI) formed is rapidly dissolved. Results in terms of dissolution rates obtained by electrochemical measurements are similar to the ones obtained in dissolution experiments by using flow through reactors and similar kinetic laws are obtained. The effect of external α and γ-sources on UO 2 -electrodes response is one of the few available data on the effects of radiolysis on the UO 2 dissolution rate and can offer a complementary knowledge to the spent fuel and α-doped pellets dissolution experiments. (Author)

  8. First Principle simulations of electrochemical interfaces - a DFT study

    DEFF Research Database (Denmark)

    Ahmed, Rizwan

    challenges regarding first principle electrochemical interface modeling in order to bridge the gap between the model interface used in simulations and real catalyst at operating conditions. Atomic scale insight for the processes and reactions that occur at the electrochemical interface presents a challenge...... electrochemical interface is challenging to model because processes that take place over the interface are complicated. First principle methods have limitations due to the various approximations in implementations and may sometimes lead to incorrect electronic structure at the electrochemical interface, which can......, as the chemical potential of proton (or pH) was not considered. However, in most of the cases, the effect of pH was negligible. We have applied this developed model to Pt(111)-water interface as an example, and constructed the corresponding Pourbaix diagram, which shows the effect of pH and potential on adsorbate...

  9. Ball Lightning Aerosol Electrochemical Power Source or A Cloud of Batteries

    Science.gov (United States)

    Meshcheryakov, Oleg

    2007-07-01

    Despite numerous attempts, an adequate theoretical and experimental simulation of ball lightning still remains incomplete. According to the model proposed here, the processes of electrochemical oxidation within separate aerosol particles are the basis for this phenomenon, and ball lightning is a cloud of composite nano or submicron particles, where each particle is a spontaneously formed nanobattery which is short-circuited by the surface discharge because it is of such a small size. As free discharge-shorted current loops, aerosol nanobatteries are exposed to a powerful mutual magnetic dipole dipole attraction. The gaseous products and thermal energy produced by each nanobattery as a result of the intra-particle self-sustaining electrochemical reactions, cause a mutual repulsion of these particles over short distances and prevent their aggregation, while a collectivization of the current loops of separate particles, due to the electric arc overlapping between adjacent particles, weakens their mutual magnetic attraction over short distances. Discharge currents in the range of several amperes to several thousand amperes as well as the pre-explosive mega ampere currents, generated in the reduction oxidation reactions and distributed between all the aerosol particles, explain both the magnetic attraction between the elements of the ball lightning substance and the impressive electromagnetic effects of ball lightning.

  10. Ball Lightning–Aerosol Electrochemical Power Source or A Cloud of Batteries

    Science.gov (United States)

    2007-01-01

    Despite numerous attempts, an adequate theoretical and experimental simulation of ball lightning still remains incomplete. According to the model proposed here, the processes of electrochemical oxidation within separate aerosol particles are the basis for this phenomenon, and ball lightning is a cloud of composite nano or submicron particles, where each particle is a spontaneously formed nanobattery which is short-circuited by the surface discharge because it is of such a small size. As free discharge-shorted current loops, aerosol nanobatteries are exposed to a powerful mutual magnetic dipole–dipole attraction. The gaseous products and thermal energy produced by each nanobattery as a result of the intra-particle self-sustaining electrochemical reactions, cause a mutual repulsion of these particles over short distances and prevent their aggregation, while a collectivization of the current loops of separate particles, due to the electric arc overlapping between adjacent particles, weakens their mutual magnetic attraction over short distances. Discharge currents in the range of several amperes to several thousand amperes as well as the pre-explosive mega ampere currents, generated in the reduction–oxidation reactions and distributed between all the aerosol particles, explain both the magnetic attraction between the elements of the ball lightning substance and the impressive electromagnetic effects of ball lightning.

  11. Ball Lightning–Aerosol Electrochemical Power Source or A Cloud of Batteries

    Directory of Open Access Journals (Sweden)

    Meshcheryakov Oleg

    2007-01-01

    Full Text Available AbstractDespite numerous attempts, an adequate theoretical and experimental simulation of ball lightning still remains incomplete. According to the model proposed here, the processes of electrochemical oxidation within separate aerosol particles are the basis for this phenomenon, and ball lightning is a cloud of composite nano or submicron particles, where each particle is a spontaneously formed nanobattery which is short-circuited by the surface discharge because it is of such a small size. As free discharge-shorted current loops, aerosol nanobatteries are exposed to a powerful mutual magnetic dipole–dipole attraction. The gaseous products and thermal energy produced by each nanobattery as a result of the intra-particle self-sustaining electrochemical reactions, cause a mutual repulsion of these particles over short distances and prevent their aggregation, while a collectivization of the current loops of separate particles, due to the electric arc overlapping between adjacent particles, weakens their mutual magnetic attraction over short distances. Discharge currents in the range of several amperes to several thousand amperes as well as the pre-explosive mega ampere currents, generated in the reduction–oxidation reactions and distributed between all the aerosol particles, explain both the magnetic attraction between the elements of the ball lightning substance and the impressive electromagnetic effects of ball lightning.

  12. Safety First: Preventing Allergic Reactions

    Science.gov (United States)

    Roy, Ken

    2015-01-01

    All elementary teachers should be aware of their students' allergies especially when they are planning to use plants or animals in the classroom or interacting with them in the field. This knowledge is essential because allergy symptoms can range from an itchy rash to anaphylactic shock. This column shares safety information for the science…

  13. Electrochemical Techniques in Textile Processes and Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Mireia Sala

    2012-01-01

    Full Text Available The textile industry uses the electrochemical techniques both in textile processes (such as manufacturing fibers, dyeing processes, and decolorizing fabrics and in wastewaters treatments (color removal. Electrochemical reduction reactions are mostly used in sulfur and vat dyeing, but in some cases, they are applied to effluents discoloration. However, the main applications of electrochemical treatments in the textile sector are based on oxidation reactions. Most of electrochemical oxidation processes involve indirect reactions which imply the generation of hypochlorite or hydroxyl radical in situ. These electrogenerated species are able to bleach indigo-dyed denim fabrics and to degrade dyes in wastewater in order to achieve the effluent color removal. The aim of this paper is to review the electrochemical techniques applied to textile industry. In particular, they are an efficient method to remove color of textile effluents. The reuse of the discolored effluent is possible, which implies an important saving of salt and water (i.e., by means of the “UVEC Cell”.

  14. Automatic devices for electrochemical water treatment with cooling of electrolyte

    Directory of Open Access Journals (Sweden)

    Trišović Tomislav Lj.

    2016-01-01

    Full Text Available The most common disinfectants for water treatment are based on chlorine and its compounds. Practically, water treatments with chlorine compounds have no alternative, since they provide, in comparison to other effective processes such as ozonization or ultraviolet irradiation, high residual disinfection capacity. Unfortunately, all of chlorine-based compounds for disinfection tend to degrade during storage, thus reducing the concentration of active chlorine. Apart from degradation, additional problems are transportation, storage and handling of such hazardous compounds. Nowadays, a lot of attention is paid to the development of electrochemical devices for in situ production of chlorine dioxide or sodium hypochlorite as efficient disinfectants for water treatment. The most important part of such a device is the electrochemical reactor. Electrochemical reactor uses external source of direct current in order to produce disinfectants in electrochemical reactions occurring at the electrodes. Construction of an electrochemical device for water treatment is based on evaluation of optimal conditions for electrochemical reactions during continues production of disinfectants. The aim of this study was to develop a low-cost electrochemical device for the production of disinfectant, active chlorine, at the place of its usage, based on newly developed technical solutions and newest commercial components. The projected electrochemical device was constructed and mounted, and its operation was investigated. Investigations involved both functionality of individual components and device in general. The major goal of these investigations was to achieve maximal efficiency in extreme condition of elevated room temperature and humidity with a novel device construction involving coaxial heat exchanger at the solution inlet. Room operation of the proposed device was investigated when relative humidity was set to 90% and the ambient temperature of 38°C. The obtained

  15. ELECTROCHEMICAL BEHAVIOUR AND VOLTAMMETRIC ...

    African Journals Online (AJOL)

    The electrochemical behaviour of Geshoidin was investigated at a glassy carbon electrode in mixtures of citric acid and di-sodium hydrogen orthophosphate aqueous buffer system over a wide pH range (pH 2-11) using cyclic voltammetry. Chemically irreversible single oxidation and reduction peaks were obtained in the ...

  16. Electrochemical Power Sources

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 7. Electrochemical Power Sources - Rechargeable Batteries. A K Shukla S K Martha. General Article Volume 6 Issue 7 July 2001 pp 52-63. Fulltext. Click here to view fulltext PDF. Permanent link:

  17. Electrochemically and Bioelectrochemically Induced Ammonium Recovery

    Science.gov (United States)

    Gildemyn, Sylvia; Luther, Amanda K.; Andersen, Stephen J.; Desloover, Joachim; Rabaey, Korneel

    2015-01-01

    Streams such as urine and manure can contain high levels of ammonium, which could be recovered for reuse in agriculture or chemistry. The extraction of ammonium from an ammonium-rich stream is demonstrated using an electrochemical and a bioelectrochemical system. Both systems are controlled by a potentiostat to either fix the current (for the electrochemical cell) or fix the potential of the working electrode (for the bioelectrochemical cell). In the bioelectrochemical cell, electroactive bacteria catalyze the anodic reaction, whereas in the electrochemical cell the potentiostat applies a higher voltage to produce a current. The current and consequent restoration of the charge balance across the cell allow the transport of cations, such as ammonium, across a cation exchange membrane from the anolyte to the catholyte. The high pH of the catholyte leads to formation of ammonia, which can be stripped from the medium and captured in an acid solution, thus enabling the recovery of a valuable nutrient. The flux of ammonium across the membrane is characterized at different anolyte ammonium concentrations and currents for both the abiotic and biotic reactor systems. Both systems are compared based on current and removal efficiencies for ammonium, as well as the energy input required to drive ammonium transfer across the cation exchange membrane. Finally, a comparative analysis considering key aspects such as reliability, electrode cost, and rate is made. This video article and protocol provide the necessary information to conduct electrochemical and bioelectrochemical ammonia recovery experiments. The reactor setup for the two cases is explained, as well as the reactor operation. We elaborate on data analysis for both reactor types and on the advantages and disadvantages of bioelectrochemical and electrochemical systems. PMID:25651406

  18. Electrochemical micro/nano-machining: principles and practices.

    Science.gov (United States)

    Zhan, Dongping; Han, Lianhuan; Zhang, Jie; He, Quanfeng; Tian, Zhao-Wu; Tian, Zhong-Qun

    2017-03-06

    Micro/nano-machining (MNM) is becoming the cutting-edge of high-tech manufacturing because of the increasing industrial demand for supersmooth surfaces and functional three-dimensional micro/nano-structures (3D-MNS) in ultra-large scale integrated circuits, microelectromechanical systems, miniaturized total analysis systems, precision optics, and so on. Taking advantage of no tool wear, no surface stress, environmental friendliness, simple operation, and low cost, electrochemical micro/nano-machining (EC-MNM) has an irreplaceable role in MNM. This comprehensive review presents the state-of-art of EC-MNM techniques for direct writing, surface planarization and polishing, and 3D-MNS fabrications. The key point of EC-MNM is to confine electrochemical reactions at the micro/nano-meter scale. This review will bring together various solutions to "confined reaction" ranging from electrochemical principles through technical characteristics to relevant applications.

  19. The behavior of electrochemical cell resistance

    International Nuclear Information System (INIS)

    Ritley, K.A.; Dull, P.M.; Weber, M.H.; Carroll, M.; Hurst, J.J.; Lynn, K.G.

    1990-01-01

    Knowledge of the basic electrochemical behavior found in typical cold fusion experiments is important to understanding and preventing experimental errors. For a Pd/LiOH(D)/Pt electrochemical cell, the applied cell voltage/current relationship (the effective cell resistance) does not obey Ohm's law directly, but instead exhibits a complicated response to the current, voltage, temperature, electrolyte conductance, and other factors. Failure to properly consider this response can possibly result in errors that could affect the heat balance in calorimetry and temperature measurement experiments. Measurements of this response under varying voltage, temperature, and electrolyte conductivity conditions are reported. A plausible scenario in which the temperature dependence of the effective cell resistance can either exaggerate or ameliorate novel exothermic processes is suggested

  20. Sodium-concrete reactions

    International Nuclear Information System (INIS)

    Gadd, P.G.

    1982-09-01

    Reaction products of all the major constituents of commercial concrete with liquid sodium have been identified using X-Ray Powder Diffraction. Eight different aggregate materials were chosen to represent the main rock classes available and Ordinary Portland Cement was used throughout. A Differential Thermal Analysis apparatus which enabled continuous stirring of the reactants was designed to improve contact between the powdered concrete components and the liquid sodium. Heats of reaction were calculated from peak areas, the apparatus having been calibrated using reactions of sodium with simple binary oxides whose heats of reaction were known. The heat evolution from aggregates was rationalised on the basis of their mineralogical composition, thus providing a means of choosing an optimum aggregate for use in the concrete of a LMFBR. The reaction of SiO 2 with liquid sodium was shown to depend on the oxygen concentration of the sodium. Reaction products are identified. The reaction of Al 2 O 3 with sodium has been shown also to depend on the oxygen concentration. Reaction products are identified. The evolution of hydrogen during a sodium-cement reaction has been studied using an electrochemical hydrogen meter and the penetration of the liquid metal into cement blocks was also investigated. (author)

  1. Electrochemical C-O Bond Formation: A Facile Access to Aromatic Lactones.

    Science.gov (United States)

    Dai, Jian-Jun; Tao, Xiang-Zhang; Zhou, Jie; Xu, Jun; Xu, Hua-Jian

    2018-03-07

    An efficient and robust methodology based on electrochemical techniques for the direct synthesis of aromatic lactones via dehydrogenative C-O cyclization is described. This new and useful electrochemical reaction can tolerate a variety of functional groups, and is scalable to 100 grams under mild conditions. Remarkably, heterocycle-containing substrates can be employed, thus expanding the scope of radical C-O cyclization reaction. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Electrochemical processing of spent nuclear fuels: An overview of oxide reduction in pyroprocessing technology

    Directory of Open Access Journals (Sweden)

    Eun-Young Choi

    2015-12-01

    Full Text Available The electrochemical reduction process has been used to reduce spent oxide fuel to a metallic form using pyroprocessing technology for a closed fuel cycle in combination with a metal-fuel fast reactor. In the electrochemical reduction process, oxides fuels are loaded at the cathode basket in molten Li2O–LiCl salt and electrochemically reduced to the metal form. Various approaches based on thermodynamic calculations and experimental studies have been used to understand the electrode reaction and efficiently treat spent fuels. The factors that affect the speed of the electrochemical reduction have been determined to optimize the process and scale-up the electrolysis cell. In addition, demonstrations of the integrated series of processes (electrorefining and salt distillation with the electrochemical reduction have been conducted to realize the oxide fuel cycle. This overview provides insight into the current status of and issues related to the electrochemical processing of spent nuclear fuels.

  3. Characterising of solid state electrochemical cells under operation

    DEFF Research Database (Denmark)

    Holtappels, Peter

    2014-01-01

    electrochemical cells are still a "black box". In order to identify local reaction sites, surface coverage and potential/current introduced materials and surface modifications, in situ techniques are needed to gain a better understanding of the elementary and performance limiting steps for these cells...

  4. Iodine encapsulation in CNTs and its application for electrochemical capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Y.; Ishii, Y.; Al-zubaidi, A.; Kawasaki, S., E-mail: kawasaki.shinji@nitech.ac.jp [Nagoya Institute of Technology, Gokiso, Showa, Nagoya, Aichi (Japan); Rashid, M.; Syakirin, A. [Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia)

    2016-07-06

    We report the experimental results for new type electrochemical capacitor using iodine redox reaction in single-walled carbon nanotubes (SWCNTs). It was found that the energy density of the present redox capacitor using SWCNTs is almost three times larger than that of the normal electric double layer capacitor.

  5. Diversity in electrochemical oxidation of dihydroxybenzenes in the ...

    Indian Academy of Sciences (India)

    ECEC, ECECE and ECECECE for oxidation of 1a–e in the presence of 3. Keywords. 1-Methylindole; catechol; Michael addition reaction; cyclic voltammetry; electrochemical oxidation. 1. Introduction. Indole is a powerful antioxidant and it appears to be especially effective against breast and cervical cancer because of its ...

  6. Mechanistic and Kinetic Aspects of the Direct Electrochemical ...

    African Journals Online (AJOL)

    The direct electrochemical oxidation of 4-t-butyltoluene at graphite electrodes in methanol, using NaClO4 as electrolyte, has been investigated in order to obtain an insight into the mechanism and kinetics of the anodic reactions taking place. It is shown that an increase in current density affects the product distribution, ...

  7. Electrochemical degradation of methyl tert-butyl ether

    Directory of Open Access Journals (Sweden)

    Aleksandr B. Velichenko

    2014-12-01

    Full Text Available In this paper, we have examined the performance of PbO2 anodes in the EC degradation of MTBE. It was shown that electrochemical oxidation of MTBE at lead dioxide anodes is effective method of anodic conversion of the organic pollutant to acetic acid as untoxic product. Proposed method is formally reagent treatment of water at the same time it does not need addition of any reagent in reaction media. All needed reagents formed directly from the solvent (water thanks to electrochemical reactions. According to obtained data the main electrochemical stages of the process of anodic conversion of MTBE are formation of hydroxyl-radicals and molecular oxygen. Then formed compounds take part in stages of chemical MTBE oxidation and intermediate species that led to deeper oxidation to form acetic acid as the result. Proposed mechanism of MTBE electrochemical oxidation is in satisfactory agreement with experimental data. Dependence of MTBE conversion rate from the nature of micro-doped and composite lead dioxide anodes is explained by difference in hydroxyl-radical bond strength with an electrode surface that determined it reaction ability in secondary chemical reactions of organic compounds oxidation.

  8. The Variation of Electrochemical Cell Potentials with Temperature

    Science.gov (United States)

    Peckham, Gavin D.; McNaught, Ian J.

    2011-01-01

    Electrochemical cell potentials have no simple relationship with temperature but depend on the interplay between the sign and magnitude of the isothermal temperature coefficient, dE[degrees]/dT, and on the magnitude of the reaction quotient, Q. The variations in possible responses of standard and non-standard cell potentials to changes in the…

  9. Catalysis of the electrochemical water oxidation to oxygen

    NARCIS (Netherlands)

    Díaz Morales, Oscar Alfonso

    2015-01-01

    This thesis discusses the parameters affecting the catalysis for the electrochemical conversion of water into oxygen. The slow kinetics for the oxygen evolution reaction (OER) is one of the major bottlenecks in the solar energy-to-fuels conversion process, which reduces the efficiency for the

  10. Electrochemical Hydrogen Evolution: Sabatier's Principle and the Volcano Plot

    Science.gov (United States)

    Laursen, Anders B.; Varela, Ana Sofia; Dionigi, Fabio; Fanchiu, Hank; Miller, Chandler; Trinhammer, Ole L.; Rossmeisl, Jan; Dahl, Soren

    2012-01-01

    The electrochemical hydrogen evolution reaction (HER) is growing in significance as society begins to rely more on renewable energy sources such as wind and solar power. Thus, research on designing new, inexpensive, and abundant HER catalysts is important. Here, we describe how a simple experiment combined with results from density functional…

  11. Nanoporous gold assembly of glucose oxidase for electrochemical biosensing

    DEFF Research Database (Denmark)

    Xiao, Xinxin; Ulstrup, Jens; Li, Hui

    2014-01-01

    (GOx) has been brought to assemble on NPG via surface chemical reactions to form enzyme modified NPG nanomaterial with promising sensitivity for glucose detection. Cyclic voltammetry and single-potential step chronoamperometry (SPSC) are employed to study the electrochemical behavior of both bare...

  12. Simulating cyclic voltammetry under advection for electrochemical cantilevers

    DEFF Research Database (Denmark)

    Adesokan, Bolaji James; Evgrafov, Anton; Sørensen, Mads Peter

    2015-01-01

    We present a mathematical model describing an electrochemical system involving electrode–electrolyte interaction. The model is governed by a system of advection–diffusion equations with a nonlinear reaction term at the boundary. Our calculations based on such model demonstrate the dynamics of ion...

  13. Electrochemical oxidation of niclosamide at a glassy carbon ...

    African Journals Online (AJOL)

    Cyclic voltammetry, square-wave voltammetry and controlled potential electrolysis have been used to study the electrochemical oxidation behaviour of niclosamide at a glassy carbon electrode. The number of electrons transferred, the wave characteristics, the diffusion coefficient and reversibility of the reactions have been ...

  14. Electrochemical behavior of synthesized Al{sub x}Sn{sub y} with mechanical grinding in hydrogen evolution reaction (HER); Comportamiento electroquimico del Al{sub x}Sn{sub y} sintetizado por molienda mecanica en la REH (Reaccion de Evolucion de Hidrogeno)

    Energy Technology Data Exchange (ETDEWEB)

    Olvera Vazquez, S. L.; Arce Estrada, E. M. [Instituto Politecnico Nacional, Mexico, D.F. (Mexico )]. E-mail: seydyliz@hotmail.com

    2009-09-15

    Currently, the best catalyst for HER is Pt, nevertheless because of its high costs, many studies have been performed with a variety of materials, including AI, which is a promising source of hydrogen. Therefore, this work studied the effect of tin on Al{sub x}Sn{sub y} alloys obtained by mechanical grinding. The materials obtained were characterized with electron sweep microscopy, x-ray diffraction and electrochemical techniques. It was determined that the synthesized materials have a micrometer size and present at least two phases. The electrochemical characterization for use as electrocatalysts for the hydrogen evolution reaction (HER) was performed in an NaCl 2 M solution using potentiodynamic polarization and chronoamperometry techniques, showing that the materials with low tin contents have better electrocatalytic activity for HER. [Spanish] Actualmente el mejor catalizador para la REH es el Pt, sin embargo debido a sus altos costos se han realizado numerosos estudios con diversos materiales entre los cuales se encuentra el Al, que es una promisoria fuente de hidrogeno. Por tal motivo en este trabajo se realizaron estudios del efecto que presenta el contenido de estano en aleaciones Al{sub x}Sn{sub y} obtenidas por molienda mecanica. Los materiales obtenidos se caracterizaron por microscopia electronica de barrido, difraccion de rayos X y tecnicas electroquimicas. Se determino que los materiales sintetizados son de tamano micrometrico y que al menos presentan dos fases. La caracterizacion electroquimica para su uso como electrocatalizadores para la reaccion de evolucion de hidrogeno, REH, se llevo a cabo en una solucion de NaCl 2 M, empleando las tecnicas de polarizacion potenciodinamica y cronoamperometria, observandose que los materiales con contenidos bajos de estano presentan una mejor actividad electrocatalitica para la REH.

  15. Electrochemical flow capacitors

    Science.gov (United States)

    Gogotsi, Yury; Presser, Volker; Kumbur, Emin Caglan

    2015-10-27

    The present invention generally relates to devices for energy storage technologies, and more particularly to electrochemical flow capacitor systems and applications. In some aspects, these flow capacitors have at least one electrode comprising a non-stationary solid or semi-solid composition comprising supercapacitive particles and an electrolytic solvent in electrical communication with at least one current collector, and energy is stored and/or released by charging and/or discharging the electrode(s).

  16. ELECTROCHEMICAL POWER FOR TRANSPORTATION

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, Elton J.; Hietbrink, Earl H.

    1981-01-01

    This section includes some historical background of the rise and fall and subsequent rebirth of the electric vehicle; and a brief discussion of current transportation needs, and environmental and energy utilization issues that resulted in the renewed interest in applying electrochemical energy conversion technology to electric vehicle applications. Although energy utilization has evolved to be the most significant and important issue, the environmental issue will be discussed first in this section only because of its chronological occurrence. The next part of the chapter is a review of passenger and commercial electric vehicle technology with emphasis on vehicle design and demonstrated performance of vehicles with candidate power sources being developed. This is followed by a discussion of electrochemical power source requirements associated with future electric vehicles that can play a role in meeting modern transportation needs. The last part of the chapter includes first a discussion of how to identify candidate electrochemical systems that might be of interest in meeting electric vehicle power source requirements. This is then followed by a review of the current technological status of these systems and a discussion of the most significant problems that must be resolved before each candidate system can be a viable power source.

  17. Electrochemical and CMT measurements of the anomalous dissolution of nickel in solutions containing oxygen

    DEFF Research Database (Denmark)

    Bech-Nielsen, Gregers; de Fontenay, Frank; Poulsen, Henning

    1997-01-01

    In addition to single nickel crystals also nickel samples produced by dc and pr (pulse-reversal) plating were examined. As previously reported the true rate of dissolution of nickel in solutions containing oxygen was found to be as much as three times the electrochemical rate at the corrosion...... potential. When passivation was approached (spontaneously or by anodic polarization) the true rate of dissolution approached the rate of anodic reaction. During cathodic polarization there was still a significant rate of dissolution. The true rate of dissolution was determined by CMT measurements (Corrosion...... Measurements by Titration). Electrochemical measurements (EC) indicating the rate of electrochemical reactions were made simultaneously....

  18. Voltage equilibration for reactive atomistic simulations of electrochemical processes

    International Nuclear Information System (INIS)

    Onofrio, Nicolas; Strachan, Alejandro

    2015-01-01

    We introduce electrochemical dynamics with implicit degrees of freedom (EChemDID), a model to describe electrochemical driving force in reactive molecular dynamics simulations. The method describes the equilibration of external electrochemical potentials (voltage) within metallic structures and their effect on the self-consistent partial atomic charges used in reactive molecular dynamics. An additional variable assigned to each atom denotes the local potential in its vicinity and we use fictitious, but computationally convenient, dynamics to describe its equilibration within connected metallic structures on-the-fly during the molecular dynamics simulation. This local electrostatic potential is used to dynamically modify the atomic electronegativities used to compute partial atomic changes via charge equilibration. Validation tests show that the method provides an accurate description of the electric fields generated by the applied voltage and the driving force for electrochemical reactions. We demonstrate EChemDID via simulations of the operation of electrochemical metallization cells. The simulations predict the switching of the device between a high-resistance to a low-resistance state as a conductive metallic bridge is formed and resistive currents that can be compared with experimental measurements. In addition to applications in nanoelectronics, EChemDID could be useful to model electrochemical energy conversion devices

  19. Application of photothermal deflection spectroscopy to electrochemical interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rudnicki, James D. [Univ. of California, Berkeley, CA (United States); McLarnon, Frank R. [Univ. of California, Berkeley, CA (United States); Cairns, Elton J. [Univ. of California, Berkeley, CA (United States)

    1992-03-01

    This dissertation discusses the theory and practice of Photothermal Deflection Spectroscopy (PDS, which is also known as probe beam deflection spectroscopy, PBDS, probe deflection technique, and mirage effect spectroscopy) with respect to electrochemical systems. Much of the discussion is also relevant to non-electrochemical systems. PDS can measure the optical absorption spectrum of interfaces and concentration gradients in the electrolyte adjacent to the electrode. These measurements can be made on a wide variety of electrode surfaces and can be performed under dynamic conditions. The first three chapters discuss the theory of the phenomena that can be detected by PDS, and the equipment used in a PDS system. A ``secondary gradient technique`` is proposed, which places the probe beam on the back of an electrode. The results of a numerical model yield a method for determining the offset of the probe beam from the electrode surface based on the frequency response of the PDS signal. The origin and control of noise in the PDS signal are discussed. A majority of the signal noise appears to be acoustic in origin. The electrochemical oxidation of platinum is used to demonstrate that PDS has sub-monolayer sensitivity necessary to study interfacial chemistry. The results allow us to propose a two-reaction oxidation mechanism: the platinum is electrochemically oxidized to form platinum dihydroxide and dehydrated by a non-electrochemical second-order reaction. The final chapter discusses the relation of PDS to similar and competing techniques, and considers possibilities for the future of the technique.

  20. Gold nanoparticle-based electrochemical biosensors

    International Nuclear Information System (INIS)

    Pingarron, Jose M.; Yanez-Sedeno, Paloma; Gonzalez-Cortes, Araceli

    2008-01-01

    The unique properties of gold nanoparticles to provide a suitable microenvironment for biomolecules immobilization retaining their biological activity, and to facilitate electron transfer between the immobilized proteins and electrode surfaces, have led to an intensive use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance with respect to other biosensor designs. Recent advances in this field are reviewed in this article. The advantageous operational characteristics of the biosensing devices designed making use of gold nanoparticles are highlighted with respect to non-nanostructured biosensors and some illustrative examples are commented. Electrochemical enzyme biosensors including those using hybrid materials with carbon nanotubes and polymers, sol-gel matrices, and layer-by-layer architectures are considered. Moreover, electrochemical immunosensors in which gold nanoparticles play a crucial role in the electrode transduction enhancement of the affinity reaction as well as in the efficiency of immunoreagents immobilization in a stable mode are reviewed. Similarly, recent advances in the development of DNA biosensors using gold nanoparticles to improve DNA immobilization on electrode surfaces and as suitable labels to improve detection of hybridization events are considered. Finally, other biosensors designed with gold nanoparticles oriented to electrically contact redox enzymes to electrodes by a reconstitution process and to the study of direct electron transfer between redox proteins and electrode surfaces have also been treated

  1. Investigation of electrochemical actuation by polyaniline nanofibers

    Science.gov (United States)

    Mehraeen, Shayan; Alkan Gürsel, Selmiye; Papila, Melih; Çakmak Cebeci, Fevzi

    2017-09-01

    Polyaniline nanofibers have shown promising electrical and electrochemical properties which make them prominent candidates in the development of smart systems employing sensors and actuators. Their electrochemical actuation potential is demonstrated in this study. A trilayer composite actuator based on polyaniline nanofibers was designed and fabricated. Cross-linked polyvinyl alcohol was sandwiched between two polyaniline nanofibrous electrodes as ion-containing electrolyte gel. First, electrochemical behavior of a single electrode was studied, showing reversible redox peak pairs in 1 M HCl using a cyclic voltammetry technique. High aspect ratio polyaniline nanofibers create a porous network which facilitates ion diffusion and thus accelerates redox reactions. Bending displacement of the prepared trilayer actuator was then tested and reported under an AC potential stimulation as low as 0.5 V in a variety of frequencies from 50 to 1000 mHz, both inside 1 M HCl solution and in air. Decay of performance of the composite actuator in air is investigated and it is reported that tip displacement in a solution was stable and repeatable for 1000 s in all selected frequencies.

  2. Ultrasensitive electrochemical biomolecular detection using nanostructured microelectrodes.

    Science.gov (United States)

    Sage, Andrew T; Besant, Justin D; Lam, Brian; Sargent, Edward H; Kelley, Shana O

    2014-08-19

    Electrochemical sensors have the potential to achieve sensitive, specific, and low-cost detection of biomolecules--a capability that is ever more relevant to the diagnosis and monitored treatment of disease. The development of devices for clinical diagnostics based on electrochemical detection could provide a powerful solution for the routine use of biomarkers in patient treatment and monitoring and may overcome the many issues created by current methods, including the long sample-to-answer times, high cost, and limited prospects for lab-free use of traditional polymerase chain reaction, microarrays, and gene-sequencing technologies. In this Account, we summarize the advances in electrochemical biomolecular detection, focusing on a new and integrated platform that exploits the bottom-up fabrication of multiplexed electrochemical sensors composed of electrodeposited noble metals. We trace the evolution of these sensors from gold nanoelectrode ensembles to nanostructured microelectrodes (NMEs) and discuss the effects of surface morphology and size on assay performance. The development of a novel electrocatalytic assay based on Ru(3+) adsorption and Fe(3+) amplification at the electrode surface as a means to enable ultrasensitive analyte detection is discussed. Electrochemical measurements of changes in hybridization events at the electrode surface are performed using a simple potentiostat, which enables integration into a portable, cost-effective device. We summarize the strategies for proximal sample processing and detection in addition to those that enable high degrees of sensor multiplexing capable of measuring 100 different analytes on a single chip. By evaluating the cost and performance of various sensor substrates, we explore the development of practical lab-on-a-chip prototype devices. By functionalizing the NMEs with capture probes specific to nucleic acid, small molecule, and protein targets, we can successfully detect a wide variety of analytes at

  3. Tailoring aerogel electrodes for electrochemical applications

    Science.gov (United States)

    Sakamoto, Jeffrey Steven

    2001-07-01

    The principal theme of the dissertation research was determining the relation between aerogel electrode morphology and electrochemical performance. Issues such as electrical wiring and mass transport in transition metal oxide, aerogel electrodes were addressed and designs were tailored for electrochemical applications. Single-wall carbon nanotubes were used to form the electronically conducting network in lithium intercalation electrodes that incorporated vanadium oxide aerogel as the active material. The similarities in morphology and dimensional scale for the nanotubes and V2O5 ribbons enabled excellent electrical contact to be made between the two phases without seriously affecting the aerogel nanostructure. The electrodes exhibited specific capacities in excess of 400 mAh/g at high discharge rates and retained this level of capacity on cycling. A second research goal was to improve mass transport within the aerogel electrode by minimizing tortuosity. In this research, hierarchically ordered vanadium oxide aerogel electrodes were designed and fabricated. The electrodes have two discrete and independent levels or porosity. At one level, ordered, interconnected macropores were fabricated using the templating process. At another level, interconnected mesopores were created using sol-gel synthesis and ambient drying. Electrochemical activity towards lithium was demonstrated using cyclic voltammetry and chronopotentiometry. These data are believed to be the first to demonstrate electrochemical activity for the class of materials based on the inverse opal structure. Several Group I cations and multivalent cations were reversibly, and electrochemically reacted with vanadium oxide aerogel. The molar capacities of the Group I elements (Na+ = 3.0 moles and K+ = 2.0) were high and comparable to Li+ (3.6 moles). Interestingly, the electron equivalent capacity for Mg2+ (4.0) was higher than Li+ and agrees well with the chemical titration capacity. Galvanostatic rate

  4. Two-stage Sequential Electrochemical Treatment of Nitrate Brine Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Yu Jiefei; Kupferle, Margaret J. [University of Cincinnati, Department of Civil and Environmental Engineering (United States)], E-mail: Margaret.Kupferle@uc.edu

    2008-08-15

    Nitrates in concentrated brines can be electrochemically reduced in the cathodic chamber of a split-cell electrochemical reactor with formation of ammonium (and small amounts of nitrite). Fortunately, ammonium may be electrochemically oxidized to nitrogen gas in the anodic reaction chamber if a coupled sequential process is used. The presence of chloride in the brine waste is an important consideration in oxidative electrochemical processes, however, because it cycles through oxidized and reduced states at the electrode surfaces and in the bulk solution. Electrochemical oxidation converts chloride ions to 'active chlorine' species with additional oxidizing capability (chlorine, hypochlorous acid and hypochlorite - essentially bleach), as well as to chlorates, depending on the reaction conditions. The production of these active species improves treatment performance in the ammonium oxidation phase since oxidation is no longer limited to the electrode surface. However, the process must be engineered to minimize loss of process efficiency due to parasitic side reactions (chloramines and chlorate). In this study, two-stage batch electrolysis was conducted using a three-electrode (copper anode, platinum-coated titanium cathode, silver/silver chloride reference) electrochemical cell, with the anodic and cathodic chambers separated by a Nafion 117 membrane. Treatment of nitrate and ammonium was tested with and without the presence of chloride in the waste. No significant difference was observed in cathodic nitrate reduction with chloride present or absent. However, the presence of chloride in the solution favored overall soluble nitrogen elimination upon oxidation. Increasing applied current increased production of undesirable byproducts (especially chlorate)

  5. Synthesis of magnetite nanoparticles using electrochemical oxidation

    Directory of Open Access Journals (Sweden)

    Ye. Ya. Levitin

    2014-08-01

    Full Text Available The monodisperse magnetite nanoparticles are promising for use in the biomedical industry for targeted drug delivery, cell separation and biochemical products, Magnetic Resonance Imaging, immunological studies, etc. Classic method for the synthesis of magnetite is the chemical condensation Elmore’s, it is simple and cheap, but it is complicated by the formation of side compounds which impair the magnetic properties of the final product. Biological and medical purposes require high purity magnetite nanoparticles. Electrochemical methods of producing nanoparticles of magnetite acquire significant spread. The kinetics of electrochemical processes are a function of a larger number of parameters than the kinetics of conventional chemical reaction, thus electrochemical reactions can be thinner and more completely adjusted to give a predetermined size nanoparticles. In the kinetics of the electrochemical oxidation and reduction the important role is played by the nature of the electrode. In many industrial processes, it is advisable to use lead dioxide anodes with titanium current lead. Purpose of the work To determine the optimum conditions of electrochemical oxidation of Fe2+ Fe3+to produce magnetite with high purity and improved magnetic characteristics. Materials and methods Electrochemical studies were carried out in a glass cell ЯСЭ-2 using a potentiostat ПИ-50-1.1 and a recording device ПДА1. Reference electrode - silver chloride ЭВЛ1М 3.1, potentials listed on the hydrogen scale. The test solution contained 80 g/ l FeSO4×7H2O and H2SO4(to pH 1. The pH of the solution was measured with a pH–meter « рН–150». Concentration ratio of Fe3+/Fe2+in the solution was measured by permanganometric method. Magnetite particle sizes were measured by an electron microscope computer ЭВМ-100Л, an increasing is 2×105. Saturation magnetization was evaluated by the magnetization curve, for the measured sample in the field with strength

  6. Reaction Mechanisms for the Electrochemical Reduction of CO2to CO and Formate on the Cu(100) Surface at 298K from Quantum Mechanics Free Energy Calculations with Explicit Water.

    Science.gov (United States)

    Cheng, Tao; Xiao, Hai; Goddard, William A

    2016-10-11

    Copper is the only elemental metal that reduces a significant fraction of CO 2 to hydrocarbons and alcohols, but the atomistic reaction mechanism that controls the product distributions are not known because it has not been possible to detect the reaction intermediates on the electrode surface experimentally, or carry out Quantum Mechanics (QM) calculations with a realistic description of the electrolyte (water). Here, we carry out Quantum Mechanics (QM) calculations with an explicit description of water on the Cu(100) surface (experimentally shown to be stable under CO2RR conditions) to examine the initial reaction pathways to form CO and formate (HCOO - ) from CO 2 through free energy calculations at 298K and pH 7. We find that CO formation proceeds from physisorbed CO 2 to chemisorbed CO 2 (*CO 2 δ- ), with a free energy barrier of ΔG ‡ =0.43 eV, the rate determining step (RDS). The subsequent barriers of protonating *CO 2 δ- to form COOH* and then dissociating COOH* to form *CO are 0.37 eV and 0.30 eV, respectively. HCOO - formation proceeds through a very different pathway in which physisorbed CO 2 reacts directly with a surface H* (along with electron transfer), leading to ΔG ‡ = 0.80 eV. Thus, the competition between CO formation and HCOO - formation occurs in the first electron transfer step. On Cu(100), the RDS for CO formation is lower, making CO the predominant product. Thus, to alter the product distribution we need to control this first step of CO 2 binding, which might involve alloying or changing the structure at the nanoscale.

  7. A microfluidic chip for electrochemical conversions in drug metabolism studies

    NARCIS (Netherlands)

    Odijk, Mathieu; Baumann, A.; Lohmann, W.; van den Brink, Floris Teunis Gerardus; Olthuis, Wouter; Karst, U.; van den Berg, Albert

    2009-01-01

    We have designed a microfluidic microreactor chip for electrochemical conversion of analytes, containing a palladium reference electrode and platinum working and counter electrodes. The counter electrode is placed in a separate side-channel on chip to prevent unwanted side-products appearing in the

  8. Patterned electrochemical deposition of copper using an electron beam

    Directory of Open Access Journals (Sweden)

    Mark den Heijer

    2014-02-01

    Full Text Available We describe a technique for patterning clusters of metal using electrochemical deposition. By operating an electrochemical cell in the transmission electron microscope, we deposit Cu on Au under potentiostatic conditions. For acidified copper sulphate electrolytes, nucleation occurs uniformly over the electrode. However, when chloride ions are added there is a range of applied potentials over which nucleation occurs only in areas irradiated by the electron beam. By scanning the beam we control nucleation to form patterns of deposited copper. We discuss the mechanism for this effect in terms of electron beam-induced reactions with copper chloride, and consider possible applications.

  9. Chemical Production of Graphene Catalysts for Electrochemical Energy Conversion

    DEFF Research Database (Denmark)

    Seselj, Nedjeljko

    by scanning tunneling microscopy (STM), to investigate the nature of L-cysteine bonds on Au. Synthesized electrocatalysts were characterized by spectroscopic, microscopic and electrochemical techniques. Electrocatalysis was examined by electrochemical oxidation of formic acid, methanol and ethanol, and oxygen...... reduction reaction experiments, for both anode and cathode catalyst applications respectively. Finally, the main goal was to investigate the electrocatalytic performance within the PEMFC systems. Direct formic acid, methanol and ethanol PEMFC station was established. As-synthesized grapheneimmobilized Au......@Pt NPs exhibited high electrocatalytic performance and long stability in direct formic acid, methanol and ethanol PEMFCs....

  10. Electrochemical Characterization of a PEMEC Using Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Elsøe, Katrine; Grahl-Madsen, L.; Hjelm, Johan

    2017-01-01

    In this study, electrochemical impedance spectroscopy (EIS) is applied in combination with cyclic voltammetry (CV) and current density – cell voltage curves (iV-curves) to investigate the processes contributing to the total impedance of a polymer electrolyte membrane electrolysis cell (PEMEC). i......V-curves were linear above 0.35 A cm−2 implying ohmic processes to be performance limiting, however the impedance spectra showed three arcs indicating three electrochemical reactions at these conditions not to be purely ohmic, but also to have capacitive properties. A hypothesis that the composite Ir...

  11. Electrochemical oxidation of nitrite on nanodiamond powder electrode

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L.H.; Zang, J.B.; Wang, Y.H.; Bian, L.Y. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2008-03-10

    Nanodiamond (ND) powder electrodes were fabricated and the electrochemical properties were investigated in the solution containing nitrite in this article. This electrode exhibits substantial catalytic ability toward the oxidation of nitrite anions. The electrochemical oxidation mechanism of nitrite on the ND powder electrode is discussed. The oxidation of NaNO{sub 2} is a two-electron transfer process. The electrode reaction rate constant k is estimated to be 2.013 x 10{sup -4} cm/s and (1 - {alpha})n{sub {alpha}} is 0.1643. The peak current increases linearly with the rising of the concentration of NaNO{sub 2}. (author)

  12. Reaction temperature sensing (RTS)-based control for Li-ion battery safety.

    Science.gov (United States)

    Zhang, Guangsheng; Cao, Lei; Ge, Shanhai; Wang, Chao-Yang; Shaffer, Christian E; Rahn, Christopher D

    2015-12-11

    We report reaction temperature sensing (RTS)-based control to fundamentally enhance Li-ion battery safety. RTS placed at the electrochemical interface inside a Li-ion cell is shown to detect temperature rise much faster and more accurately than external measurement of cell surface temperature. We demonstrate, for the first time, that RTS-based control shuts down a dangerous short-circuit event 3 times earlier than surface temperature- based control and prevents cell overheating by 50 °C and the resultant cell damage.

  13. Electrochemical Science and Technology

    CERN Document Server

    Oldham, Keith; Bond, Alan

    2011-01-01

    The book addresses the scientific principles underlying electrochemistry. Starting with the basic concepts of electricity, the early chapters discuss the physics and chemistry of the materials from which electrochemical cells are constructed and the properties that make these materials appropriate as cell components. Much of the importance of electrochemistry lies in the conversion of electrical energy into chemical energy and vice versa; the thermodynamics of these processes is described, in the context of a wide range of applications of these interconversions. An electrode is a surface at wh

  14. Electrochemical Reduction of Quinones in Different Media: A Review

    Directory of Open Access Journals (Sweden)

    Partha Sarathi Guin

    2011-01-01

    Full Text Available The electron transfer reactions involving quinones, hydroquinones, and catechols are very important in many areas of chemistry, especially in biological systems. The therapeutic efficiency as well as toxicity of anthracycline anticancer drugs, a class of anthraquinones, is governed by their electrochemical properties. Other quinones serve as important functional moiety in various biological systems like electron-proton carriers in the respiratory chain and their involvement in photosynthetic electron flow systems. The present paper summarizes literatures on the reduction of quinones in different solvents under various conditions using different electrochemical methods. The influence of different reaction conditions including pH of the media, nature of supporting electrolytes, nature of other additives, intramolecular or intermolecular hydrogen bonding, ion pair formation, polarity of the solvents, stabilization of the semiquinone and quinone dianion, catalytic property, and adsorption at the electrode surface, are discussed and relationships between reaction conditions and products formed have been presented.

  15. Alkaline Electrochemical Capacitor and Electrode Fabrication

    National Research Council Canada - National Science Library

    Finello, D

    1999-01-01

    .... The subject low cost alkaline electrochemical capacitor designs are based upon titanium nitride electrodes which exhibit 125 mF/sq cm surface capacitance density and remarkable electrochemical...

  16. Novel electrochemical process for coal conversion

    Energy Technology Data Exchange (ETDEWEB)

    Farooque, M.

    1989-07-01

    The feasibility of two distinctly different routes to coal conversion at low severity conditions was investigated. An electrochemical approach utilizing both the electro-oxidation and electro-reduction routes was employed. The electro-oxidation route consists of an electrochemical reaction involving H{sub 2}O and coal, leading to the breakup of coal molecules. The observed reaction rate has been explained as a combination of the coal and pyrite electro-oxidation currents. Organic sulfur has been identified as the contributing factor for the observation of more than 100% H{sub 2} production current efficiency with several coal samples. Also, an attractive coal pre-treatment process has been identified which results in production of useful products and simultaneous upgrading of the coal. Electrochemical oxidation of coal with H{sub 2}O leads to the production of hydrogen, CO{sub 2}, simultaneous removal of pyritic sulfur, and significant reduction of ash content. There is also indirect evidence that the organic sulfur may be removed in the process. A preliminary economic evaluation of this process has projected a cost advantage of > $8 per ton of Illinois {number sign}2 coal. A lab-scale cell has been successfully employed in this study for generating process data useful for future design calculations. This study also explored the electro-reduction route of coal conversion and has successfully demonstrated production of liquid products from different coal types at low severity conditions. A variety of aliphatic and aromatic compounds have been identified in the products. Coal type appeared to be the most important parameter affecting the product spectrum. 32 refs., 26 figs., 19 tabs.

  17. Polymeric hydrogen diffusion barrier, high-pressure storage tank so equipped, method of fabricating a storage tank and method of preventing hydrogen diffusion

    Science.gov (United States)

    Lessing, Paul A [Idaho Falls, ID

    2008-07-22

    An electrochemically active hydrogen diffusion barrier which comprises an anode layer, a cathode layer, and an intermediate electrolyte layer, which is conductive to protons and substantially impermeable to hydrogen. A catalytic metal present in or adjacent to the anode layer catalyzes an electrochemical reaction that converts any hydrogen that diffuses through the electrolyte layer to protons and electrons. The protons and electrons are transported to the cathode layer and reacted to form hydrogen. The hydrogen diffusion barrier is applied to a polymeric substrate used in a storage tank to store hydrogen under high pressure. A storage tank equipped with the electrochemically active hydrogen diffusion barrier, a method of fabricating the storage tank, and a method of preventing hydrogen from diffusing out of a storage tank are also disclosed.

  18. Polymeric hydrogen diffusion barrier, high-pressure storage tank so equipped, method of fabricating a storage tank and method of preventing hydrogen diffusion

    Science.gov (United States)

    Lessing, Paul A.

    2004-09-07

    An electrochemically active hydrogen diffusion barrier which comprises an anode layer, a cathode layer, and an intermediate electrolyte layer, which is conductive to protons and substantially impermeable to hydrogen. A catalytic metal present in or adjacent to the anode layer catalyzes an electrochemical reaction that converts any hydrogen that diffuses through the electrolyte layer to protons and electrons. The protons and electrons are transported to the cathode layer and reacted to form hydrogen. The hydrogen diffusion barrier is applied to a polymeric substrate used in a storage tank to store hydrogen under high pressure. A storage tank equipped with the electrochemically active hydrogen diffusion barrier, a method of fabricating the storage tank, and a method of preventing hydrogen from diffusing out of a storage tank are also disclosed.

  19. Electrochemical and AFM study of nickel nucleation mechanisms on vitreous carbon from ammonium sulfate solutions

    International Nuclear Information System (INIS)

    Grujicic, Darko; Pesic, Batric

    2006-01-01

    Reaction and nucleation mechanisms of nickel in ammoniacal solutions have been investigated as a function of nickel concentration, solution pH, deposition potential, temperature and conditioning potential. Electrochemical mechanisms of nickel reduction were found to be pH dependent, while their kinetics was concentration dependent. A surface film formed by anodic oxidation passivates nickel clusters preventing their further oxidation. Nickel nucleation on vitreous carbon, which proceeds according to the progressive nucleation model, shows a large degree of inhibition at both pH 6 and pH 9. Cluster sizes were larger when electrodeposition was carried out from solutions with higher nickel concentrations. The clusters were also larger at more negative deposition potentials and at higher solution pH. Cluster population density increased with the increasing solution temperature. Different activation energies for the nickel-aquo and nickel-ammino complexes calculated from Arrhenius diagram indicate that electroreduction of nickel-ammino complex is energetically more demanding. All electrochemical results were further verified by the atomic force microscopy investigations

  20. Study of the mechanism of the dissolution of actinide's dioxides (UO2, NpO2 PuO2, AmO2) by chemical or electrochemical redox reactions in aqueous acid medium

    International Nuclear Information System (INIS)

    Berger, P.

    1988-11-01

    The study of the mechanism of the dissolution of MO 2 type actinide's oxides (with M = U,Np,Pu,Am) has been realized. Three basic tools have been employed: 1/ thermodynamic calculations, 2/ electrochemistry of the oxides in carbon paste electrodes (CPE), 3/ isotopic labelling ( 18 O) followed by the measurement of the MO 2 2+ entities by RAMAN spectroscopy. The thermodynamic study demonstrates that: 1/ the dissolution of MO 2 oxides leading to MIV ions in acidic non complexing medium is impossible: these oxides are thus strictly insoluble in these conditions, 2/ the dissolution of MO 2 oxides leading to M III, M V and M VI aquo ions is possible and the range of potential corresponding to these transformations have been calculated. The results of the thermodynamic study are supported by those obtained by electrochemistry. Quantitative transformations: MO 2 (solid) → MO 2 2+ (solution) or MO 2 (solid) → M 3 (solution) are observable. The knowledge of the reactional chemical path has been improved in the case of the oxidizing dissolution (MO 2 (solid) → MO 2 2+ (solution) , in the course of the experiment where 18 O labelling of actinyl's oxygen (MO 2 2+ ) was realized: the species M 16 O 2 2+ , M 16,18 O 2 2+ and M 18,18 O 2 2+ were detected after reaction by RAMAN spectroscopy. This study demonstrated that the first step of an oxidizing dissolution of an actinide's oxide of the MO 2 type consist in the conversion of M IV O 2 into an M V (MO 2 + ) species on the surface of the oxide [fr

  1. Electrochemical biosensors for hormone analyses.

    Science.gov (United States)

    Bahadır, Elif Burcu; Sezgintürk, Mustafa Kemal

    2015-06-15

    Electrochemical biosensors have a unique place in determination of hormones due to simplicity, sensitivity, portability and ease of operation. Unlike chromatographic techniques, electrochemical techniques used do not require pre-treatment. Electrochemical biosensors are based on amperometric, potentiometric, impedimetric, and conductometric principle. Amperometric technique is a commonly used one. Although electrochemical biosensors offer a great selectivity and sensitivity for early clinical analysis, the poor reproducible results, difficult regeneration steps remain primary challenges to the commercialization of these biosensors. This review summarizes electrochemical (amperometric, potentiometric, impedimetric and conductometric) biosensors for hormone detection for the first time in the literature. After a brief description of the hormones, the immobilization steps and analytical performance of these biosensors are summarized. Linear ranges, LODs, reproducibilities, regenerations of developed biosensors are compared. Future outlooks in this area are also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Development of galvanostatic Fourier transform electrochemical impedance spectroscopy.

    Science.gov (United States)

    Nam, Kwang-Mo; Shin, Dong-Hyup; Jung, Namchul; Joo, Moon G; Jeon, Sangmin; Park, Su-Moon; Chang, Byoung-Yong

    2013-02-19

    Here, we report development of the galvanostatic Fourier transform electrochemical impedance spectroscopy (FTEIS), which monitors impedance of electrochemical reactions activated by current steps. We first derive relevant relations for potential change upon application of a step current, obtain impedances theoretically from the relations by simulation, and verify them with experimental results. The validity of the galvanostatic FTEIS technique is demonstrated by measuring impedances of a semiconductive silicon wafer using the conventional frequency response analysis (FRA), the potentiostatic FTEIS, and the galvanostatic FTEIS methods, and the results are in excellent agreement with each other. This work is significant in that the galvanostatic FTEIS would allow one to record impedance changes during charge/discharge cycles of secondary batteries and fuel cells as well as electrochemically irreversible systems which may produce noise level chronoamperometric currents by potentiostatic techniques.

  3. Current Progress of Nanomaterials in Molecularly Imprinted Electrochemical Sensing.

    Science.gov (United States)

    Zhong, Chunju; Yang, Bin; Jiang, Xinxin; Li, Jianping

    2018-01-02

    Nanomaterials have received much attention during the past decade because of their excellent optical, electronic, and catalytic properties. Nanomaterials possess high chemical reactivity, also high surface energy. Thus, provide a stable immobilization platform for biomolecules, while preserving their reactivity. Due to the conductive and catalytic properties, nanomaterials can also enhance the sensitivity of molecularly imprinted electrochemical sensors by amplifying the electrode surface, increasing the electron transfer, and catalyzing the electrochemical reactions. Molecularly imprinted polymers that contain specific molecular recognition sites can be designed for a particular target analyte. Incorporating nanomaterials into molecularly imprinted polymers is important because nanomaterials can improve the response signal, increase the sensitivity, and decrease the detection limit of the sensors. This study describes the classification of nanomaterials in molecularly imprinted polymers, their analytical properties, and their applications in the electrochemical sensors. The progress of the research on nanomaterials in molecularly imprinted polymers and the application of nanomaterials in molecularly imprinted polymers is also reviewed.

  4. Graphene Ink Film Based Electrochemical Detector for Paracetamol Analysis

    Directory of Open Access Journals (Sweden)

    Li Fu

    2018-01-01

    Full Text Available Graphene ink is a commercialized product in the graphene industry with promising potential application in electronic device design. However, the limitation of the graphene ink is its low electronic performance due to the ink preparation protocol. In this work, we proposed a simple post-treatment of graphene ink coating via electrochemical oxidation. The electronic conductivity of the graphene ink coating was enhanced as expected after the treatment. The proposed electrochemical oxidation treatment also exposes the defects of graphene and triggered an electrocatalytic reaction during the sensing of paracetamol (PA. The overpotential of redox is much lower than conventional PA redox potential, which is favorable for avoiding the interference species. Under optimum conditions, the graphene ink-based electrochemical sensor could linearly detect PA from 10 to 500 micro molar (μM, with a limit of detection of 2.7 μM.

  5. Electrochemical DNA Biosensor Based on a Tetrahedral Nanostructure Probe for the Detection of Avian Influenza A (H7N9) Virus.

    Science.gov (United States)

    Dong, Shibiao; Zhao, Rongtao; Zhu, Jiangong; Lu, Xiao; Li, Yang; Qiu, Shaofu; Jia, Leili; Jiao, Xiong; Song, Shiping; Fan, Chunhai; Hao, RongZhang; Song, HongBin

    2015-04-29

    A DNA tetrahedral nanostructure-based electrochemical biosensor was developed to detect avian influenza A (H7N9) virus through recognizing a fragment of the hemagglutinin gene sequence. The DNA tetrahedral probe was immobilized onto a gold electrode surface based on self-assembly between three thiolated nucleotide sequences and a longer nucleotide sequence containing complementary DNA to hybridize with the target single-stranded (ss)DNA. The captured target sequence was hybridized with a biotinylated-ssDNA oligonucleotide as a detection probe, and then avidin-horseradish peroxidase was introduced to produce an amperometric signal through the interaction with 3,3',5,5'-tetramethylbenzidine substrate. The target ssDNA was obtained by asymmetric polymerase chain reaction (PCR) of the cDNA template, reversely transcribed from the viral lysate of influenza A (H7N9) virus in throat swabs. The results showed that this electrochemical biosensor could specifically recognize the target DNA fragment of influenza A (H7N9) virus from other types of influenza viruses, such as influenza A (H1N1) and (H3N2) viruses, and even from single-base mismatches of oligonucleotides. Its detection limit could reach a magnitude of 100 fM for target nucleotide sequences. Moreover, the cycle number of the asymmetric PCR could be reduced below three with the electrochemical biosensor still distinguishing the target sequence from the negative control. To the best of our knowledge, this is the first report of the detection of target DNA from clinical samples using a tetrahedral DNA probe functionalized electrochemical biosensor. It displays that the DNA tetrahedra has a great potential application as a probe of the electrochemical biosensor to detect avian influenza A (H7N9) virus and other pathogens at the gene level, which will potentially aid the prevention and control of the disease caused by such pathogens.

  6. Electrochemical chlorine evolution at rutile oxide (110) surfaces

    DEFF Research Database (Denmark)

    Hansen, Heine Anton; Man, Isabela Costinela; Studt, Felix

    2010-01-01

    Based on density functional theory (DFT) calculations we study the electrochemical chlorine evolution reaction on rutile (110) oxide surfaces. First we construct the Pourbaix surface diagram for IrO2 and RuO2, and from this we find the chlorine evolution reaction intermediates and identify...... the lowest overpotential at which all elementary reaction steps in the chlorine evolution reaction are downhill in free energy. This condition is then used as a measure for catalytic activity. Linear scaling relations between the binding energies of the intermediates and the oxygen binding energies at cus...... of the oxygen binding energy, giving rise to a Sabatier volcano. By combining the surface phase diagram and the volcano describing the catalytic activity, we find that the reaction mechanism differs depending on catalyst material. The flexibility in reaction path means that the chlorine evolution activity...

  7. The synthesis of PdPt/carbon paper via surface limited redox replacement reactions for oxygen reduction reaction

    CSIR Research Space (South Africa)

    Motsoeneng, RG

    2015-09-01

    Full Text Available Surface-limited redox replacement reactions using the electrochemical atomic layer deposition (EC-ALD) technique were used to synthesize PdPt bimetallic electrocatalysts on carbon paper substrate. Electrocatalysts having different Pd:Pt ratio were...

  8. Tribological and electrochemical characteristics of DLC coatings with bias voltage

    Science.gov (United States)

    Kim, Woo-Jung; Kim, Jung-Gu; Park, Se Jun; Lee, Kwang-Ryeol

    2005-12-01

    Diamond-like carbon (DLC) coatings were deposited on a STS 316L substrate by means of R.F plasma-assisted chemical vapor deposition (R.F PACVD) technique using benzene (C6H6) as a reaction gas. The tribological and electrochemical characteristics of the DLC coatings were investigated by a tribological technique (wear test) and by electrochemical techniques (potentiodynamic polarization test and electrochemical impedance spectroscopy). Surface analyses of the DLC coatings were conducted by means of scanning electron microscopy and atomic force microscopy. This study provides reliable and quantitative data for an assessment of the effect of bias voltage on tribological and electrochemical characteristics in a simulated body fluid environment (0.89 wt.% NaCl of pH 7.4 at 37°C). From the results of the tribological and electrochemical techniques, wear and corrosion resistance of the DLC coatings were improved owing to the low surface roughness, low porosity and good adhesion strength. Among all DLC coatings in this experiment, the DLC coating with a bias voltage of -800 V showed better wear and corrosion resistance than did other coatings

  9. Carbons, ionic liquids and quinones for electrochemical capacitors

    Directory of Open Access Journals (Sweden)

    Raul eDiaz

    2016-04-01

    Full Text Available Carbons are the main electrode materials used in electrochemical capacitors, which are electrochemical energy storage devices with high power densities and long cycling lifetimes. However, increasing their energy density will improve their potential for commercial implementation. In this regard, the use of high surface area carbons and high voltage electrolytes are well known strategies to increase the attainable energy density, and lately ionic liquids have been explored as promising alternatives to current state of the art acetonitrile-based electrolytes. Also, in terms of safety and sustainability ionic liquids are attractive electrolyte materials for electrochemical capacitors. In addition, it has been shown that the matching of the carbon pore size with the electrolyte ion size further increases the attainable electric double layer (EDL capacitance and energy density.The use of pseudocapacitive reactions can significantly increase the attainable energy density, and quinonic-based materials offer a potentially sustainable and cost effective research avenue for both the electrode and the electrolyte. This perspective will provide an overview of the current state of the art research on electrochemical capacitors based on combinations of carbons, ionic liquids and quinonic compounds, highlighting performances and challenges and discussing possible future research avenues. In this regard, current interest is mainly focused on strategies which may ultimately lead to commercially competitive sustainable high performance electrochemical capacitors for different applications including those requiring mechanical flexibility and biocompatibility.

  10. Electrochemical organic destruction in support of Hanford tank waste pretreatment

    International Nuclear Information System (INIS)

    Lawrence, W.E.; Surma, J.E.; Gervais, K.L.; Buehler, M.F.; Pillay, G.; Schmidt, A.J.

    1994-10-01

    The US Department of Energy's Hanford Site in Richland, Washington, has 177 underground storage tanks that contain approximately 61 million gallons of radioactive waste. The current cleanup strategy is to retrieve the waste and separate components into high-level and low-level waste. However, many of the tanks contain organic compounds that create concerns associated with tank safety and efficiency of anticipated separation processes. Therefore, a need exists for technologies that can safely and efficiently destroy organic compounds. Laboratory-scale studies conducted during FY 93 have shown proof-of-principle for electrochemical destruction of organics. Electrochemical oxidation is an inherently safe technology and shows promise for treating Hanford complexant concentrate aqueous/ slurry waste. Therefore, in support of Hanford tank waste pretreatment needs, the development of electrochemical organic destruction (ECOD) technology has been undertaken. The primary objective of this work is to develop an electrochemical treatment process for destroying organic compounds, including tank waste complexants. Electroanalytical analyses and bench-scale flow cell testing will be conducted to evaluate the effect of anode material and process operating conditions on the rate of organic destruction. Cyclic voltammetry will be used to identify oxygen overpotentials for the anode materials and provide insight into reaction steps for the electrochemical oxidation of complexants. In addition, a bench-scale flow cell evaluation will be conducted to evaluate the influence of process operating conditions and anode materials on the rate and efficiency of organic destruction using the nonradioactive a Hanford tank waste simulant

  11. Status of the DOE battery and electrochemical technology program. III

    International Nuclear Information System (INIS)

    Roberts, R.

    1982-02-01

    This report reviews the status of the Department of Energy Subelement on Electrochemical Storage Systems. It emphasizes material presented at the Fourth US Department of Energy Battery and Electrochemical Contractors' Conference, held June 2-4, 1981. The conference stressed secondary batteries, however, the aluminum/air mechanically rechargeable battery and selected topics on industrial electrochemical processes were included. The potential contributions of the battery and electrochemical technology efforts to supported technologies: electric vehicles, solar electric systems, and energy conservation in industrial electrochemical processes, are reviewed. The analyses of the potential impact of these systems on energy technologies as the basis for selecting specific battery systems for investigation are noted. The battery systems in the research, development, and demonstration phase discussed include: aqueous mobile batteries (near term) - lead-acid, iron/nickel-oxide, zinc/nickel-oxide; advanced batteries - aluminum/air, iron/air, zinc/bromine, zinc/ferricyanide, chromous/ferric, lithium/metal sulfide, sodium/sulfur; and exploratory batteries - lithium organic electrolyte, lithium/polymer electrolyte, sodium/sulfur (IV) chloroaluminate, calcium/iron disulfide, lithium/solid electrolyte. Supporting research on electrode reactions, cell performance modeling, new battery materials, ionic conducting solid electrolytes, and electrocatalysis is reviewed. Potential energy saving processes for the electrowinning of aluminum and zinc, and for the electrosynthesis of inorganic and organic compounds are included

  12. Organic electrochemical transistors

    KAUST Repository

    Rivnay, Jonathan

    2018-01-16

    Organic electrochemical transistors (OECTs) make effective use of ion injection from an electrolyte to modulate the bulk conductivity of an organic semiconductor channel. The coupling between ionic and electronic charges within the entire volume of the channel endows OECTs with high transconductance compared with that of field-effect transistors, but also limits their response time. The synthetic tunability, facile deposition and biocompatibility of organic materials make OECTs particularly suitable for applications in biological interfacing, printed logic circuitry and neuromorphic devices. In this Review, we discuss the physics and the mechanism of operation of OECTs, focusing on their identifying characteristics. We highlight organic materials that are currently being used in OECTs and survey the history of OECT technology. In addition, form factors, fabrication technologies and applications such as bioelectronics, circuits and memory devices are examined. Finally, we take a critical look at the future of OECT research and development.

  13. Electrochemical Hydrogen Compressor

    Energy Technology Data Exchange (ETDEWEB)

    Lipp, Ludwig [FuelCell Energy, Inc., Torrington, CT (United States)

    2016-01-21

    Conventional compressors have not been able to meet DOE targets for hydrogen refueling stations. They suffer from high capital cost, poor reliability and pose a risk of fuel contamination from lubricant oils. This project has significantly advanced the development of solid state hydrogen compressor technology for multiple applications. The project has achieved all of its major objectives. It has demonstrated capability of Electrochemical Hydrogen Compression (EHC) technology to potentially meet the DOE targets for small compressors for refueling sites. It has quantified EHC cell performance and durability, including single stage hydrogen compression from near-atmospheric pressure to 12,800 psi and operation of EHC for more than 22,000 hours. Capital cost of EHC was reduced by 60%, enabling a path to meeting the DOE cost targets for hydrogen compression, storage and delivery ($2.00-2.15/gge by 2020).

  14. Organic electrochemical transistors

    Science.gov (United States)

    Rivnay, Jonathan; Inal, Sahika; Salleo, Alberto; Owens, Róisín M.; Berggren, Magnus; Malliaras, George G.

    2018-02-01

    Organic electrochemical transistors (OECTs) make effective use of ion injection from an electrolyte to modulate the bulk conductivity of an organic semiconductor channel. The coupling between ionic and electronic charges within the entire volume of the channel endows OECTs with high transconductance compared with that of field-effect transistors, but also limits their response time. The synthetic tunability, facile deposition and biocompatibility of organic materials make OECTs particularly suitable for applications in biological interfacing, printed logic circuitry and neuromorphic devices. In this Review, we discuss the physics and the mechanism of operation of OECTs, focusing on their identifying characteristics. We highlight organic materials that are currently being used in OECTs and survey the history of OECT technology. In addition, form factors, fabrication technologies and applications such as bioelectronics, circuits and memory devices are examined. Finally, we take a critical look at the future of OECT research and development.

  15. surface properties of electrochemically reduced viscose rayon ...

    African Journals Online (AJOL)

    DJFLEX

    A viscose rayon based activated carbon cloth (ACC) was electrochemically reduced under a wide ... Electrochemical reduction resulted in a loss of 28% BET surface .... electrodes. As shown in. Figure 1. Schematic of the electrochemical cell used for electrochemical reduction. Figure 1, the anodes were placed at equal.

  16. Electrochemically active thickness of solid oxide fuel cell electrodes: Effectiveness model prediction

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Jin Hyun [School of Mechanical Engineering, Daegu University, Gyungsan (Korea, Republic of)

    2017-04-15

    The three-phase boundaries (TPBs) in the electrodes of solid oxide fuel cells (SOFCs) have different activity because of the distributed nature of the electrochemical reactions. The electrochemically active thickness (EAT) is a good measure to evaluate the extension of the active reaction zone into the electrode and the effective utilization of TPBs. In this study, an electrochemical reaction/charge conduction problem is formulated based on the Butler–Volmer reaction kinetics and then numerically solved to determine the EATs for the active electrode layers of SOFCs with various microstructural, dimensional, and property parameters. Thus, the EAT data and correlations presented in this study are expected to provide useful information for designing efficient electrodes of SOFCs.

  17. The Electrochemical Atomic Layer Deposition of Pt and Pd nanoparticles on Ni foam for the electrooxidation of alcohols

    CSIR Research Space (South Africa)

    Modibedi, RM

    2012-10-01

    Full Text Available Electrodeposition of Pt and Pd metal by surface limited redox replacement reactions was performed using the electrochemical atomic layer deposition. Carbon paper and Ni foam were used as substrates for metal deposition. Supported Pt and Pd...

  18. Electrochemical behavior of labetalol at an ionic liquid modified carbon paste electrode and its electrochemical determination

    Directory of Open Access Journals (Sweden)

    Zhang Yan-Mei

    2013-01-01

    Full Text Available Electrochemical behavior of labetalol (LBT at carbon paste electrode (CPE and an ionic liquid1-benzyl-3-methylimidazolehexafluorophosphate([BnMIM]PF6modified carbon paste electrode([BnMIM]PF6/CPEin Britton-Robinson buffer solution (pH 2.0 was investigated by cyclic voltammetry (CV and square wave voltammetric (SWV. The experimental results showed that LBT at both the bare CPE and [BnMIM]PF6/CPEshowed an irreversible oxidation process, but at [BnMIM]PF6/CPE its oxidation peak current increased greatly and the oxidation peak potential shifted negatively. The electrode reaction process is a diffusion-controlled process involving one electron transferring accompanied by a participation of one proton at [BnMIM]PF6/CPE. At the same time, the electrochemical kinetic parameters were determined. Under the optimized electrochemical experimental conditions, the oxidation peak currents were proportional to LBT concentration in the range of 7.0 x 10-6-1.0 x 10-4 mol L-1 with the limit of detection(LOD, S/N=3 of 4.810 x 10-8 mol L-1and the limit of quantification(LOQ, S/N=10 of 1.60 x 10-7 mol L-1, respectively. The proposed method was successfully applied in the determination of LBT content in commercial tablet samples.

  19. An approach to the electrochemical activity of poly-(phenothiazines) by complementary electrochemical impedance spectroscopy and Vis-NIR spectroscopy

    International Nuclear Information System (INIS)

    Agrisuelas, J.; Garcia-Jareno, J.J.; Gimenez-Romero, D.; Vicente, F.

    2010-01-01

    The electroactivity of two poly-(phenothiazine), the poly-(Azure A) and the poly-(Methylene Blue), has been compared in this work. The spectroelectrochemical results prove clearly the existence of two electroactive moieties integrated in the polymeric lattice, the phenothiazine ring (detected by changes of absorbance at 590 and 685 nm) and the newly formed covalent links which fixes the monomers in the backbone of the polymer (detected by changes of absorbance at 460 and 875 nm). Differences in the electrochemical response of both polymers are due to differences in this covalent link. However in both polymers, the charge balance during electrochemical reactions takes place by the exchange of one anion species and one cation species during the double electronic transference in both types of electroactive centers. Electrochemical impedance analysis together with the spectroelectrochemical (cyclic voltammetry + Vis-Near IR spectroscopy) makes possible to throw light on the mechanistic model of the electrochemical reaction of these polymers taking into account the coupled electronic/ionic transports, the trapped polarons (pinning model), structural configurations and inner water molecules.

  20. Role of laser radiation in activating anodic dissolution under electrochemical machining of metals and alloys

    Directory of Open Access Journals (Sweden)

    Rakhimyanov Kharis

    2017-01-01

    Full Text Available The specific features of electrochemical dissolution of the 12X18H9T stainless steel, the OT-4 titanium alloy and the BK8 hard alloy in the sodium nitrate water solution exposed to 1.06 micrometer wavelength laser radiation were considered. It is found that depassivation of the anode surface is the main mechanism of laser activation in electrochemical dissolving of materials. It is established that the maximum efficiency of laser electrochemical machining is achieved at a pulse repetition frequency of 10 kHz laser radiation. It is connected with the photoactivation mechanism of electrolyte solution molecules, which increases their reaction capacity.

  1. Electrochemical reduction of carbon dioxide at copper - modified nickel electrode in water + methanol

    OpenAIRE

    Sakaguchi, Y; Kaneco, S; Katsumata, H; Suzuki, T; Ohta, K

    2005-01-01

    In the electrochemical reduction of carbon dioxide, in water, at most metal electrodes the major reaction products were carbon monoxide and formic acid. However, only copper has proven a suitable electrode for the formation of hydrocarbons such as methane and ethylene, which can be used as fuel gases. Recently, many investigators have actively studied the electrochemical reduction of carbon dioxide using various metal electrodes in organic solvents, given that organic aprotic solvents dissolv...

  2. Synthesis and characterization of poly aniline for electrochemical biosensor construction

    International Nuclear Information System (INIS)

    Magalhaes, Gleice S.L.; Southgate, Erica F.; Alhadeff, Eliana M.; Guimaraes, Maria Jose O.C.

    2011-01-01

    Conductors polymers have many attractive interests to the industry due their highly technological applications. This work treats specially of polyaniline because it's large electrical conductivity, electrochemical properties, associate to the chemical stability in environmental conditions and synthesis facility. The main of this work is the application in a construction of an electrochemical biosensor for ethanol detection and quantification. Different conditions of synthesis of the conductor emeraldine polyaniline form were studied, investigated the influence of the dopant agent and the reactional environment conditions temperature on the reaction yield and conductivities. The polyaniline that showed the best conductivity were characterized by differential and thermal gravimetric analysis, infrared spectroscopy, X ray diffraction, and cycle voltammetry, comparing with the commercial polyaniline. (author)

  3. Li-driven electrochemical properties of WO3 nanorods

    International Nuclear Information System (INIS)

    Wang Qiang; Wen Zhenhai; Jeong, Yeonseok; Choi, Jiyoung; Lee, Kwangyeol; Li, Jinghong

    2006-01-01

    The Li-driven electrochemical properties of monoclinic WO 3 nanorods, which are prepared by a solution-based colloidal approach, have been studied, and the relationship between the properties and the nanostructures of the material has been established. The electrochemical reactions towards lithium involved in WO 3 nanorods were investigated by means of a galvanostatic method and an impedance technique, and superior characteristics associated with one-dimensional nanostructures were observed. WO 3 nanorods with a high aspect ratio were found to yield an intercalation capacity up to 1.12 Li per formula unit, much higher than the value of 0.78 Li per formula unit for bulk WO 3 . This can be explained on the basis of the unique rod-like structure that effectively enhanced structure stability. The evolution of Li-driven reaction kinetics further illustrated benefits of WO 3 nanorods owing to the increased edge and corner effects

  4. Electrochemical Hydrogen Compressor

    Energy Technology Data Exchange (ETDEWEB)

    David P. Bloomfield; Brian S. MacKenzie

    2006-05-01

    The Electrochemical Hydrogen Compressor EHC was evaluated against DOE applications for compressing hydrogen at automobile filling stations, in future hydrogen pipelines and as a commercial replacement for conventional diaphragm hydrogen compressors. It was also evaluated as a modular replacement for the compressors used in petrochemical refineries. If the EHC can be made inexpensive, reliable and long lived then it can satisfy all these applications save pipelines where the requirements for platinum catalyst exceeds the annual world production. The research performed did not completely investigate Molybdenum as a hydrogen anode or cathode, it did show that photoetched 316 stainless steel is inadequate for an EHC. It also showed that: molybdenum bipolar plates, photochemical etching processes, and Gortex Teflon seals are too costly for a commercial EHC. The use of carbon paper in combination with a perforated thin metal electrode demonstrated adequate anode support strength, but is suspect in promoting galvanic corrosion. The nature of the corrosion mechanisms are not well understood, but locally high potentials within the unit cell package are probably involved. The program produced a design with an extraordinary high cell pitch, and a very low part count. This is one of the promising aspects of the redesigned EHC. The development and successful demonstration of the hydraulic cathode is also important. The problem of corrosion resistant metal bipolar plates is vital to the development of an inexpensive, commercial PEM fuel cell. Our research suggests that there is more to the corrosion process in fuel cells and electrochemical compressors than simple, steady state, galvanic stability. It is an important area for scientific investigation. The experiments and analysis conducted lead to several recommended future research directions. First, we need a better understanding of the corrosion mechanisms involved. The diagnosis of experimental cells with titration to

  5. Characterization of Electrochemically Generated Silver

    Science.gov (United States)

    Adam, Niklas; Martinez, James; Carrier, Chris

    2014-01-01

    Silver biocide offers a potential advantage over iodine, the current state of the art in US spacecraft disinfection technology, in that silver can be safely consumed by the crew. Low concentrations of silver (Silver does not require hardware to remove it from a water system, and therefore can provide a simpler means for disinfecting water. The Russian segment of the International Space Station has utilized an electrochemically generated silver solution, which is colloidal in nature. To be able to reliably provide a silver biocide to drinking water by electrochemical means would reduce mass required for removing another biocide such as iodine from the water. This would also aid in crew time required to replace iodine removal cartridges. Future long term missions would benefit from electrochemically produced silver as the biocide could be produced on demand and requires only a small concentration to be effective. Since it can also be consumed safely, there is less mass in removal hardware and little consumables required for production. The goal of this project initially is to understand the nature of the electrochemically produced silver, the particle sizes produced by the electrochemical cell and the effect that voltage adjustment has on the particle size. In literature, it has been documented that dissolved oxygen and pH have an effect on the ionization of the electrochemical silver so those parameters would be measured and possibly adjusted to understand their effect on the silver.

  6. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells.

    Science.gov (United States)

    Blanc, Frédéric; Leskes, Michal; Grey, Clare P

    2013-09-17

    prevent dendrite formation. The in situ method was also applied to monitor (by (11)B NMR) electrochemical double-layer formation in supercapacitors in real time. Though this method is useful, it comes with challenges. The separation of the contributions from the different cell components in the NMR spectra is not trivial because of overlapping resonances. In addition, orientation-dependent NMR interactions, including the spatial- and orientation-dependent bulk magnetic susceptibility (BMS) effects, can lead to resonance broadening. Efforts to understand and mitigate these BMS effects are discussed in this Account. The in situ NMR investigation of fuel cells initially focused on the surface electrochemistry at the electrodes and the electrochemical oxidation of methanol and CO to CO2 on the Pt cathode. On the basis of the (13)C and (195)Pt NMR spectra of the adsorbates and electrodes, CO adsorbed on Pt and other reaction intermediates and complete oxidation products were detected and their mode of binding to the electrodes investigated. Appropriate design and engineering of the NMR hardware has allowed researchers to integrate intact direct methanol fuel cells into NMR probes. Chemical transformations of the circulating methanol could be followed and reaction intermediates could be detected in real time by either (2)H or (13)C NMR spectroscopy. By use of the in situ NMR approach, factors that control fuel cell performance, such as methanol cross over and catalyst performance, were identified.

  7. Electrochemical promotion of CH{sub 4} combustion over a Pd/CeO{sub 2}-YSZ catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Borja, C.; Dorado, F.; De L.-Consuegra, A.; G.-Vargas, J.M.; Valverde, J.L. [Faculty of Chemistry, Department of Chemical Engineering, University of Castilla La Mancha, Av. Camilo Jose Cela, 12, 13071 Ciudad Real (Spain)

    2011-02-15

    The phenomenon of electrochemical promotion of catalysis (EPOC) has been demonstrated on palladium supported catalysts using ceria and yttria-stabilised zirconia as solid electrolyte. SEM, XRD, linear voltammetry and AC impedance spectroscopy have been used to study this double electrolyte system. Electrochemical catalysts were also used to promote the methane combustion reaction leading to one of the highest faradaic efficiency reported for this reaction ({lambda} = 764). Thus, the catalytic activity of palladium was found to increase over 450% via electrochemical transference of oxygen promoting ions from the solid electrolyte to the catalyst film. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Workgroup Report by the Joint Task Force Involving American Academy of Allergy, Asthma & Immunology (AAAAI); Food Allergy, Anaphylaxis, Dermatology and Drug Allergy (FADDA) (Adverse Reactions to Foods Committee and Adverse Reactions to Drugs, Biologicals, and Latex Committee); and the Centers for Disease Control and Prevention Botulism Clinical Treatment Guidelines Workgroup-Allergic Reactions to Botulinum Antitoxin: A Systematic Review.

    Science.gov (United States)

    Schussler, Edith; Sobel, Jeremy; Hsu, Joy; Yu, Patricia; Meaney-Delman, Dana; Grammer, Leslie C; Nowak-Wegrzyn, Anna

    2017-12-27

    Naturally occurring botulism is rare, but a large number of cases could result from unintentional or intentional contamination of a commercial food. Despeciated, equine-derived, heptavalent botulinum antitoxin (HBAT) is licensed in the United States. Timely treatment reduces morbidity and mortality, but concerns that botulinum antitoxin can induce anaphylaxis exist. We sought to quantify the allergy risk of botulinum antitoxin treatment and the usefulness of skin testing to assess this risk. We conducted a systematic review of (1) allergic reactions to botulinum antitoxin and (2) the predictive value of skin testing (ST) before botulinum antitoxin administration. We searched 5 scientific literature databases, reviewed articles' references, and obtained data from the HBAT manufacturer and from the Centers for Disease Control and Prevention. Anaphylaxis incidence was determined for HBAT and previously employed botulinum antitoxins. We calculated the positive predictive value (PPV) and negative predictive value (NPV) of ST for anaphylaxis related to HBAT and other botulinum antitoxins. Seven articles were included. Anaphylaxis incidence was 1.64% (5/305 patients) for HBAT and 1.16% (8/687 patients) for all other botulinum antitoxins (relative risk, 1.41 [95% confidence interval, .47-4.27]; P = .5). Observed values for both PPV and NPV for HBAT-ST (33 patients) were 100%. Observed PPVs and NPVs of ST for other botulinum antitoxins (302 patients) were 0-56% and 50%-100%, respectively. There were no reports of fatal anaphylaxis. Considering the <2 % rate of anaphylaxis, fatal outcomes, modest predictive value of ST, resource requirements for ST, and the benefits of early treatment, data do not support delaying HBAT administration to perform ST in a mass botulinum toxin exposure. Anaphylactic reactions may occur among 1%-2% of botulinum antitoxin recipients and will require epinephrine and antihistamine treatment and, possibly, intensive care. Published by Oxford

  9. Reaction Automata

    OpenAIRE

    Okubo, Fumiya; Kobayashi, Satoshi; Yokomori, Takashi

    2011-01-01

    Reaction systems are a formal model that has been introduced to investigate the interactive behaviors of biochemical reactions. Based on the formal framework of reaction systems, we propose new computing models called reaction automata that feature (string) language acceptors with multiset manipulation as a computing mechanism, and show that reaction automata are computationally Turing universal. Further, some subclasses of reaction automata with space complexity are investigated and their la...

  10. Electrochemical extraction of samarium from molten chlorides in pyrochemical processes

    International Nuclear Information System (INIS)

    Castrillejo, Y.; Fernandez, P.; Medina, J.; Hernandez, P.; Barrado, E.

    2011-01-01

    This work concerns the electrochemical extraction of samarium from molten chlorides. In this way, the electrochemical behaviour of samarium ions has been investigated in the eutectic LiCl-KCl at the surface of tungsten, aluminium and aluminium coated tungsten electrodes. On a W inert electrode the electro-reduction of Sm(III) takes place in only one soluble-soluble electrochemical step Sm(III)/Sm(II). The electrochemical system Sm(II)/Sm(0) has not been observed within the electrochemical window, because of the prior reduction of Li(I) ions from the solvent, which inhibits the electro-extraction of Sm species from the salt on such a substrate. Sm metal in contact with the melt react to give Li(0) according to the reaction: Sm(0) + 2Li(I) ↔ Sm(II) + 2Li(0). On the contrary, on reactive Al electrodes the electrochemical system Sm(II)/Sm(0) was observed within the electroactive range. The potential shift of the redox couple is caused by the decrease of Sm activity in the metal phase due to the formation of Sm-Al alloys at the interface. The formation mechanism of the intermetallic compounds was studied in a melt containing: (i) both Sm(III) and Al(III) ions, using W and Al coated tungsten electrodes, and (ii) Sm(III) ions using an Al electrode. Analysis of the samples after potentiostatic electrolysis by X-ray diffraction and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS), allowed the identification of Al 3 Sm and Al 2 Sm.

  11. Electrochemical extraction of samarium from molten chlorides in pyrochemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Castrillejo, Y., E-mail: ycastril@qa.uva.es [QUIANE/Dept Quimica Analitica, F. de Ciencias, Universidad de Valladolid, Prado de la Magdalena s/n, 47005 Valladolid (Spain); Fernandez, P. [QUIANE/Dept Quimica Analitica, F. de Ciencias, Universidad de Valladolid, Prado de la Magdalena s/n, 47005 Valladolid (Spain); Medina, J. [Dept Fisica Materia Condensada Cristalografia y Mineralogia, F. de Ciencias, Universidad de Valladolid, Prado de la Magdalena s/n, 47005 Valladolid (Spain); Hernandez, P. [Centro de Investigaciones Quimicas, Universidad Autonoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, C.P. 42076 Pachuca, Hidalgo (Mexico); Barrado, E. [QUIANE/Dept Quimica Analitica, F. de Ciencias, Universidad de Valladolid, Prado de la Magdalena s/n, 47005 Valladolid (Spain)

    2011-10-01

    This work concerns the electrochemical extraction of samarium from molten chlorides. In this way, the electrochemical behaviour of samarium ions has been investigated in the eutectic LiCl-KCl at the surface of tungsten, aluminium and aluminium coated tungsten electrodes. On a W inert electrode the electro-reduction of Sm(III) takes place in only one soluble-soluble electrochemical step Sm(III)/Sm(II). The electrochemical system Sm(II)/Sm(0) has not been observed within the electrochemical window, because of the prior reduction of Li(I) ions from the solvent, which inhibits the electro-extraction of Sm species from the salt on such a substrate. Sm metal in contact with the melt react to give Li(0) according to the reaction: Sm(0) + 2Li(I) {r_reversible} Sm(II) + 2Li(0). On the contrary, on reactive Al electrodes the electrochemical system Sm(II)/Sm(0) was observed within the electroactive range. The potential shift of the redox couple is caused by the decrease of Sm activity in the metal phase due to the formation of Sm-Al alloys at the interface. The formation mechanism of the intermetallic compounds was studied in a melt containing: (i) both Sm(III) and Al(III) ions, using W and Al coated tungsten electrodes, and (ii) Sm(III) ions using an Al electrode. Analysis of the samples after potentiostatic electrolysis by X-ray diffraction and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS), allowed the identification of Al{sub 3}Sm and Al{sub 2}Sm.

  12. Kelvin probe force microscopy in liquid using electrochemical force microscopy.

    Science.gov (United States)

    Collins, Liam; Jesse, Stephen; Kilpatrick, Jason I; Tselev, Alexander; Okatan, M Baris; Kalinin, Sergei V; Rodriguez, Brian J

    2015-01-01

    Conventional closed loop-Kelvin probe force microscopy (KPFM) has emerged as a powerful technique for probing electric and transport phenomena at the solid-gas interface. The extension of KPFM capabilities to probe electrostatic and electrochemical phenomena at the solid-liquid interface is of interest for a broad range of applications from energy storage to biological systems. However, the operation of KPFM implicitly relies on the presence of a linear lossless dielectric in the probe-sample gap, a condition which is violated for ionically-active liquids (e.g., when diffuse charge dynamics are present). Here, electrostatic and electrochemical measurements are demonstrated in ionically-active (polar isopropanol, milli-Q water and aqueous NaCl) and ionically-inactive (non-polar decane) liquids by electrochemical force microscopy (EcFM), a multidimensional (i.e., bias- and time-resolved) spectroscopy method. In the absence of mobile charges (ambient and non-polar liquids), KPFM and EcFM are both feasible, yielding comparable contact potential difference (CPD) values. In ionically-active liquids, KPFM is not possible and EcFM can be used to measure the dynamic CPD and a rich spectrum of information pertaining to charge screening, ion diffusion, and electrochemical processes (e.g., Faradaic reactions). EcFM measurements conducted in isopropanol and milli-Q water over Au and highly ordered pyrolytic graphite electrodes demonstrate both sample- and solvent-dependent features. Finally, the feasibility of using EcFM as a local force-based mapping technique of material-dependent electrostatic and electrochemical response is investigated. The resultant high dimensional dataset is visualized using a purely statistical approach that does not require a priori physical models, allowing for qualitative mapping of electrostatic and electrochemical material properties at the solid-liquid interface.

  13. Kelvin probe force microscopy in liquid using electrochemical force microscopy

    Directory of Open Access Journals (Sweden)

    Liam Collins

    2015-01-01

    Full Text Available Conventional closed loop-Kelvin probe force microscopy (KPFM has emerged as a powerful technique for probing electric and transport phenomena at the solid–gas interface. The extension of KPFM capabilities to probe electrostatic and electrochemical phenomena at the solid–liquid interface is of interest for a broad range of applications from energy storage to biological systems. However, the operation of KPFM implicitly relies on the presence of a linear lossless dielectric in the probe–sample gap, a condition which is violated for ionically-active liquids (e.g., when diffuse charge dynamics are present. Here, electrostatic and electrochemical measurements are demonstrated in ionically-active (polar isopropanol, milli-Q water and aqueous NaCl and ionically-inactive (non-polar decane liquids by electrochemical force microscopy (EcFM, a multidimensional (i.e., bias- and time-resolved spectroscopy method. In the absence of mobile charges (ambient and non-polar liquids, KPFM and EcFM are both feasible, yielding comparable contact potential difference (CPD values. In ionically-active liquids, KPFM is not possible and EcFM can be used to measure the dynamic CPD and a rich spectrum of information pertaining to charge screening, ion diffusion, and electrochemical processes (e.g., Faradaic reactions. EcFM measurements conducted in isopropanol and milli-Q water over Au and highly ordered pyrolytic graphite electrodes demonstrate both sample- and solvent-dependent features. Finally, the feasibility of using EcFM as a local force-based mapping technique of material-dependent electrostatic and electrochemical response is investigated. The resultant high dimensional dataset is visualized using a purely statistical approach that does not require a priori physical models, allowing for qualitative mapping of electrostatic and electrochemical material properties at the solid–liquid interface.

  14. Application of photothermal deflection spectroscopy to electrochemical interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rudnicki, J.D.; McLarnon, F.R.; Cairns, E.J.

    1992-03-01

    This dissertation discusses the theory and practice of Photothermal Deflection Spectroscopy (PDS, which is also known as probe beam deflection spectroscopy, PBDS, probe deflection technique, and mirage effect spectroscopy) with respect to electrochemical systems. Much of the discussion is also relevant to non-electrochemical systems. PDS can measure the optical absorption spectrum of interfaces and concentration gradients in the electrolyte adjacent to the electrode. These measurements can be made on a wide variety of electrode surfaces and can be performed under dynamic conditions. The first three chapters discuss the theory of the phenomena that can be detected by PDS, and the equipment used in a PDS system. A secondary gradient technique'' is proposed, which places the probe beam on the back of an electrode. The results of a numerical model yield a method for determining the offset of the probe beam from the electrode surface based on the frequency response of the PDS signal. The origin and control of noise in the PDS signal are discussed. A majority of the signal noise appears to be acoustic in origin. The electrochemical oxidation of platinum is used to demonstrate that PDS has sub-monolayer sensitivity necessary to study interfacial chemistry. The results allow us to propose a two-reaction oxidation mechanism: the platinum is electrochemically oxidized to form platinum dihydroxide and dehydrated by a non-electrochemical second-order reaction. The final chapter discusses the relation of PDS to similar and competing techniques, and considers possibilities for the future of the technique.

  15. Insights Into Electrochemical and Photoelectrochemical Water-Splitting

    Science.gov (United States)

    Vargas-Barbosa, Nella M.

    The water-splitting reaction has been known for over a century, yet its efficient execution remains to be one of the "holy grails" for current researchers. Here, molecular water is converted to oxygen and hydrogen gas via multiple proton- and electron-transfer steps. Although the product of interest is high-purity hydrogen gas fuel, the thermodynamic and kinetic requirements of the oxygen evolution reaction (OER) are the main limiting factor. The goal of this dissertation was to develop and understand model electro- and photoelectro-catalytic systems that can address the kinetic limitations of the OER, as well as guidelines for the future development of water-splitting devices. Chapter 1 introduces the kinetic theory of heterogeneous electron-transfer reactions and how it is applied to the understanding of the watersplitting reaction. The chemical properties that make iridium oxide an ideal model electrocatalyst for the OER are discussed, as well as an overview of previous work on this material. Furthermore, the fundamentals of photo-electrochemical water-splitting are presented. Here, sunlight is used as the main driving force for producing oxygen and hydrogen. It has been previously demonstrated that the synthesis of IrOx˙nH 2O colloids by alkaline hydrolysis of Ir(III) or Ir(IV) salts proceeds through iridium hydroxide intermediates. Chapter 2 is a detailed spectro-electrochemical and DFT study of such intermediates and their effect in photoelectrochemical water-splitting cells. Primarily, we have identified the monomeric nature of this hydroxide intermediates as well as their most likely chemical composition and their relative ratio between Ir(III) and Ir(IV). The results from this study address a very important, current dilemma in IrOx˙nH2O-based photoelectrochemical water-splitting cells: how does the chemistry of the catalyst and its interface with the semiconductor influence the photoresponse of the cell? The careful preparation and characterization of

  16. ELECTROCHEMICAL PROPERTIES OF NANOPOROUS CARBON ELECTRODES

    Directory of Open Access Journals (Sweden)

    P.Nigu

    2002-01-01

    Full Text Available Electrical double layer and electrochemical characteristics at the nanoporous carbon | (C2H54NBF4 + acetonitrile interface have been studied by the cyclic voltammetry and impedance spectroscopy methods. The value of zero charge potential (0.23 V vs. SCE in H2O, the region of ideal polarizability and other characteristics have been established. Analysis of complex plane plots shows that the nanoporous carbon | x M (C2H54NBF4 + acetonitrile interface can be simulated by the equivalent circuit, in which the two parallel conduction parts in the solid and liquid phases are interconnected by the double layer capacitance in parallel with the complex admittance of hindered reaction of the charge transfer process. The values of the characteristic frequency depend on the electrolyte concentration and on the electrode potential, i.e. on the nature of ions adsorbed at the surface of nanoporous carbon electrode.

  17. pH in atomic scale simulations of electrochemical interfaces

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Chan, Karen; Ahmed, Rizwan

    2013-01-01

    Electrochemical reaction rates can strongly depend on pH, and there is increasing interest in electrocatalysis in alkaline solution. To date, no method has been devised to address pH in atomic scale simulations. We present a simple method to determine the atomic structure of the metal......|solution interface at a given pH and electrode potential. Using Pt(111)|water as an example, we show the effect of pH on the interfacial structure, and discuss its impact on reaction energies and barriers. This method paves the way for ab initio studies of pH effects on the structure and electrocatalytic activity...

  18. Novel nanoarchitectures for electrochemical biosensing

    Science.gov (United States)

    Archibald, Michelle M.

    Sensitive, real-time detection of biomarkers is of critical importance for rapid and accurate diagnosis of disease for point-of-care (POC) technologies. Current methods, while sensitive, do not adequately allow for POC applications due to several limitations, including complex instrumentation, high reagent consumption, and cost. We have investigated two novel nanoarchitectures, the nanocoax and the nanodendrite, as electrochemical biosensors towards the POC detection of infectious disease biomarkers to overcome these limitations. The nanocoax architecture is composed of vertically-oriented, nanoscale coaxial electrodes, with coax cores and shields serving as integrated working and counter electrodes, respectively. The dendritic structure consists of metallic nanocrystals extending from the working electrode, increasing sensor surface area. Nanocoaxial- and nanodendritic-based electrochemical sensors were fabricated and developed for the detection of bacterial toxins using an electrochemical enzyme-linked immunosorbent assay (ELISA) and differential pulse voltammetry (DPV). Proof-of-concept was demonstrated for the detection of cholera toxin (CT). Both nanoarchitectures exhibited levels of sensitivity that are comparable to the standard optical ELISA used widely in clinical applications. In addition to matching the detection profile of the standard ELISA, these electrochemical nanosensors provide a simple electrochemical readout and a miniaturized platform with multiplexing capabilities toward POC implementation. Further development as suggested in this thesis may lead to increases in sensitivity, enhancing the attractiveness of the architectures for future POC devices.

  19. Electrochemical Reactions of Organic Molecules in the Presence of Cyclodextrins

    Czech Academy of Sciences Publication Activity Database

    Hromadová, Magdaléna; Sokolová, Romana

    2011-01-01

    Roč. 15, č. 17 (2011), s. 2950-2956 ISSN 1385-2728 R&D Projects: GA AV ČR IAA400400802; GA ČR GA203/08/1157; GA ČR GA203/09/1607 Institutional research plan: CEZ:AV0Z40400503 Keywords : heterogeneous electron transfer * cyclodextrin s * inclusion complexes Subject RIV: CG - Electrochemistry Impact factor: 3.064, year: 2011

  20. Microfluidic flow cells for studies of electrochemical reactions

    OpenAIRE

    Møinichen, Christine

    2012-01-01

    In this project the main goal was to establish a routine for making a microfluidic flow cell (MFFC) using soft lithography methods, and test the flow cell with different electrolytes, sulphuric acid and a ruthenium red-ox couple, and eventually use the established routine to make a microfluidic fuel cell and test it. A routine was established using the negative photoresist ma-N405. The photoresist was overdeveloped to make sure an undercut profile was reached, which proved to be necessary for...

  1. Corrosion Fatigue and Electrochemical Reactions in Modified HY130 Steel.

    Science.gov (United States)

    1986-05-01

    However, when the coverage 8 is between 0.2 and 0.8, interactions between the adsorbed atoms become appreciable. Temkin [26] proposed that standard free...energy of adsorption would decrease linearly with coverage. AG 8 = AGO - re (6) where AG8 and AGO are the standard free energies of adsorption at...coverage 8 and on the free surface (8 = 0), respectively; and r, is a constant. When 8 is small, Temkin conditions approach Langmuir conditions. Volmer

  2. Enhancing Activity for the Oxygen Evolution Reaction

    DEFF Research Database (Denmark)

    Frydendal, Rasmus; Busch, Michael; Halck, Niels Bendtsen

    2014-01-01

    Electrochemical production of hydrogen, facilitated in electrolyzers, holds great promise for energy storage and solar fuel production. A bottleneck in the process is the catalysis of the oxygen evolution reaction, involving the transfer of four electrons. The challenge is that the binding energies...... that the oxygen evolution reaction overpotential decreases by 100–300 mV for manganese oxides and 100 mV for cobalt oxides....

  3. Nickel-cobalt hydroxide nanosheets: Synthesis, morphology and electrochemical properties.

    Science.gov (United States)

    Schneiderová, Barbora; Demel, Jan; Zhigunov, Alexander; Bohuslav, Jan; Tarábková, Hana; Janda, Pavel; Lang, Kamil

    2017-08-01

    This paper reports the synthesis, characterization, and electrochemical performance of nickel-cobalt hydroxide nanosheets. The hydroxide nanosheets of approximately 0.7nm thickness were prepared by delamination of layered nickel-cobalt hydroxide lactate in water and formed transparent colloids that were stable for months. The nanosheets were deposited on highly oriented pyrolytic graphite by spin coating, and their electrochemical behavior was investigated by cyclic voltammetry in potassium hydroxide electrolyte. Our method of electrode preparation allows for studying the electrochemistry of nanosheets where the majority of the active centers can participate in the charge transfer reaction. The observed electrochemical response was ascribed to mutual compensation of the cobalt and nickel response via electron sharing between these metals in the hydroxide nanosheets, a process that differentiates the behavior of nickel-cobalt hydroxide nanosheets from single nickel hydroxide or cobalt hydroxide nanosheets or their physical mixture. The presence of cobalt in the nickel-cobalt hydroxide nanosheets apparently decreases the time of electrochemical activation of the nanosheet layer, which for the nickel hydroxide nanosheets alone requires more potential sweeps. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Preparation of electrochemically active silicon nanotubes in highly ordered arrays

    Directory of Open Access Journals (Sweden)

    Tobias Grünzel

    2013-10-01

    Full Text Available Silicon as the negative electrode material of lithium ion batteries has a very large capacity, the exploitation of which is impeded by the volume changes taking place upon electrochemical cycling. A Si electrode displaying a controlled porosity could circumvent the difficulty. In this perspective, we present a preparative method that yields ordered arrays of electrochemically competent silicon nanotubes. The method is based on the atomic layer deposition of silicon dioxide onto the pore walls of an anodic alumina template, followed by a thermal reduction with lithium vapor. This thermal reduction is quantitative, homogeneous over macroscopic samples, and it yields amorphous silicon and lithium oxide, at the exclusion of any lithium silicides. The reaction is characterized by spectroscopic ellipsometry for thin silica films, and by nuclear magnetic resonance and X-ray photoelectron spectroscopy for nanoporous samples. After removal of the lithium oxide byproduct, the silicon nanotubes can be contacted electrically. In a lithium ion electrolyte, they then display the electrochemical waves also observed for other bulk or nanostructured silicon systems. The method established here paves the way for systematic investigations of how the electrochemical properties (capacity, charge/discharge rates, cyclability of nanoporous silicon negative lithium ion battery electrode materials depend on the geometry.

  5. Alkaline Electrochemical Capacitor and Electrode Fabrication

    National Research Council Canada - National Science Library

    Finello, D

    1999-01-01

    Highly capacitive (high surface area) electrodes that are electrochemically stable in strong alkaline electrolyte will form the basis for a new generation of electrical and electrochemical energy storage and conversion devices...

  6. Electrochemical surface plasmon resonance sensor based on two-electrode configuration

    International Nuclear Information System (INIS)

    Zhang, Bing; Dong, Wei; Wen, Yizhang; Pang, Kai; Wang, Xiaoping; Li, Yazhuo; Zhan, Shuyue

    2016-01-01

    To obtain detailed information about electrochemistry reactions, a two-electrode electrochemical surface plasmon resonance (EC-SPR) sensor has been proposed. We describe the theory of potential modulation for this novel sensor and determine the factors that can change the SPR resonance angle. The reference electrode in three-electrode configuration was eliminated, and comparing with several other electrode materials, activated carbon (AC) is employed as the suitable counter electrode for its potential stability. Just like three-electrode configuration, the simpler AC two-electrode system can also obtain detailed information about the electrochemical reactions. (paper)

  7. Direct Electrochemical Synthesis of Bismuth(III Phenoxides and their Coordination Compounds

    Directory of Open Access Journals (Sweden)

    Harpreet Kaur

    2012-01-01

    Full Text Available Bismuth(III phenoxides have been synthesized by electrochemical reactions of 1-naphthol, 2-naphthol, 4-aminophenol, 2-nitrophenol, 4-nitrophenol, 2-hydroxybenzoic acid, p-cresol, phenol, resorcinol, 2-tert-butylphenol and 2-tert-butyl-4-methoxyphenol at sacrificial bismuth anode and inert platinum cathode using tetrabutylammonium chloride as supporting electrolyte. The coordination compounds of these phenols with 1, 10-phenanthroline and 2, 2ʼ-bipyridyl have also been synthesized electrochemically. The solid products separated in the anode compartment have been isolated and characterized by elemental analysis and infrared spectral studies. Current efficiencies of these reactions are quite high.

  8. Electrochemical degradation of crystal violet with BDD electrodes: effect of electrochemical parameters and identification of organic by-products.

    Science.gov (United States)

    Palma-Goyes, Ricardo E; Guzmán-Duque, Fernando L; Peñuela, Gustavo; González, Ignacio; Nava, Jose L; Torres-Palma, Ricardo A

    2010-09-01

    This paper explores the applicability of electrochemical oxidation on a triphenylmethane dye compound model, hexamethylpararosaniline chloride (or crystal violet, CV), using BDD anodes. The effect of the important electrochemical parameters: current density (2.5-15 m A cm(-2)), dye concentration (33-600 mg L(-1)), sodium sulphate concentration (7.1-50.0 g L(-1)) and initial pH (3-11) on the efficiency of the electrochemical process was evaluated. The results indicated that while the current density was lower than the limiting current density, no side products (hydrogen peroxide, peroxodisulphate, ozone and chlorinated oxidizing compounds) were generated and the degradation, through OH radical attack, occurred with high efficiency. Analysis of intermediates using GC-MS investigation identified several products: N-methylaniline, N,N-dimethylaniline, 4-methyl-N,N-dimethylaniline, 4-methyl-N-methylaniline, 4-dimethylaminophenol, 4-dimethylaminobenzoic acid, 4-(N,N-dimethylamino)-4'-(N',N'-dimethylamino) diphenylmethane, 4-(4-dimethylaminophenyl)-N,N-dimethylaniline, 4-(N,N-dimethylamino)-4'-(N',N'-dimethylamino) benzophenone. The presence of these aromatic structures showed that the main CV degradation pathway is related to the reaction of CV with the OH radical. Under optimal conditions, practically 100% of the initial substrate and COD were eliminated in approximately 35 min of electrolysis; indicating that the early CV by-products were completely degraded by the electrochemical system. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  9. Electrochemical DNA biosensor for detection of DNA damage induced by hydroxyl radicals.

    Science.gov (United States)

    Hájková, Andrea; Barek, Jiří; Vyskočil, Vlastimil

    2017-08-01

    A simple electrochemical DNA biosensor based on a glassy carbon electrode (GCE) was prepared by adsorbing double-stranded DNA (dsDNA) onto the GCE surface and subsequently used for the detection of dsDNA damage induced by hydroxyl radicals. Investigation of the mutual interaction between hydroxyl radicals and dsDNA was conducted using a combination of several electrochemical detection techniques: square-wave voltammetry for direct monitoring the oxidation of dsDNA bases, and cyclic voltammetry and electrochemical impedance spectroscopy as indirect electrochemical methods making use of the redox-active indicator [Fe(CN) 6 ] 4-/3- . Hydroxyl radicals were generated electrochemically on the surface of a boron-doped diamond electrode and chemically (via the Fenton's reaction or the auto-oxidation of Fe(II)). The extent of dsDNA damage by electrochemically generated hydroxyl radicals depended on the current density applied to the generating electrode: by applying 5, 10, and 50mAcm -2 , selected relative biosensor responses decreased after 3min incubation from 100% to 38%, 27%, and 3%, respectively. Chemically generated hydroxyl radicals caused less pronounced dsDNA damage, and their damaging activity depended on the form of Fe(II) ions: decreases to 49% (Fenton's reaction; Fe(II) complexed with EDTA) and 33% (auto-oxidation of Fe(II); Fe(II) complexed with dsDNA) were observed after 10min incubation. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Electrochemical fuel cell generator having an internal and leak tight hydrocarbon fuel reformer

    Science.gov (United States)

    Dederer, Jeffrey T.; Hager, Charles A.

    1998-01-01

    An electrochemical fuel cell generator configuration is made having a generator section which contains a plurality of axially elongated fuel cells, each cell containing a fuel electrode, air electrode, and solid oxide electrolyte between the electrodes, in which axially elongated dividers separate portions of the fuel cells from each other, and where at least one divider also reforms a reformable fuel gas mixture prior to electricity generation reactions, the at least one reformer-divider is hollow having a closed end and an open end entrance for a reformable fuel mixture to pass to the closed end of the divider and then reverse flow and pass back along the hollowed walls to be reformed, and then finally to pass as reformed fuel out of the open end of the divider to contact the fuel cells, and further where the reformer-divider is a composite structure having a gas diffusion barrier of metallic foil surrounding the external walls of the reformer-divider except at the entrance to prevent diffusion of the reformable gas mixture through the divider, and further housed in an outer insulating jacket except at the entrance to prevent short-circuiting of the fuel cells by the gas diffusion barrier.

  11. Structural and Conformational Chemistry from Electrochemical Molecular Machines. Replicating Biological Functions. A Review.

    Science.gov (United States)

    Otero, Toribio F

    2017-12-14

    Each constitutive chain of a conducting polymer electrode acts as a reversible multi-step electrochemical molecular motor: reversible reactions drive reversible conformational movements of the chain. The reaction-driven cooperative actuation of those molecular machines generates, or destroys, inside the film the free volume required to lodge/expel balancing counterions and solvent: reactions drive reversible film volume variations, which basic structural components are here identified and quantified from electrochemical responses. The content of the reactive dense gel (chemical molecular machines, ions and water) mimics that of the intracellular matrix in living functional cells. Reaction-driven properties (composition-dependent properties) and devices replicate biological functions and organs. An emerging technological world of soft, wet, reaction-driven, multifunctional and biomimetic devices and the concomitant zoomorphic or anthropomorphic robots is presented. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Electrochemical affinity biosensors for detection of mycotoxins: A review.

    Science.gov (United States)

    Vidal, Juan C; Bonel, Laura; Ezquerra, Alba; Hernández, Susana; Bertolín, Juan R; Cubel, Carlota; Castillo, Juan R

    2013-11-15

    This review discusses the current state of electrochemical biosensors in the determination of mycotoxins in foods. Mycotoxins are highly toxic secondary metabolites produced by molds. The acute toxicity of these results in serious human and animal health problems, although it has been only since early 1960s when the first studied aflatoxins were found to be carcinogenic. Mycotoxins affect a broad range of agricultural products, most important cereals and cereal-based foods. A majority of countries, mentioning especially the European Union, have established preventive programs to control contamination and strict laws of the permitted levels in foods. Official methods of analysis of mycotoxins normally requires sophisticated instrumentation, e.g. liquid chromatography with fluorescence or mass detectors, combined with extraction procedures for sample preparation. For about sixteen years, the use of simpler and faster analytical procedures based on affinity biosensors has emerged in scientific literature as a very promising alternative, particularly electrochemical (i.e., amperometric, impedance, potentiometric or conductimetric) affinity biosensors due to their simplicity and sensitivity. Typically, electrochemical biosensors for mycotoxins use specific antibodies or aptamers as affinity ligands, although recombinant antibodies, artificial receptors and molecular imprinted polymers show potential utility. This article deals with recent advances in electrochemical affinity biosensors for mycotoxins and covers complete literature from the first reports about sixteen years ago. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Respiratory transfusion reactions

    Directory of Open Access Journals (Sweden)

    Ivica Marić

    2017-11-01

    Full Text Available Respiratory transfusion-related reactions are not very frequent, partly also because recognition and reporting transfusion reactions is still underemphasized. Tis article describes the most important respiratory transfusion reactions, their pathophysiology, clinical picture and treatment strategies. Respiratory transfusion related reactions can be primary or secondary. The most important primary transfusion-related reactions are TRALI - transfusion-related acute lung injury, TACO – transfusion-associated circulatory overload, and TAD - transfusion-associated dyspnea. TRALI is immuneassociated injury of alveolar basal membrane, which becomes highly permeable and causes noncardiogenic pulmonary edema. Treatment of TRALI is mainly supportive with oxygen, fluids (in case of hypotension and in cases of severe acute respiratory failure also mechanic ventilation. TACO is caused by volume overload in predisposed individuals, such as patients with heart failure, the elderly, infants, patients with anemia and patients with positive fluid balance. Clinical picture is that of a typical pulmonary cardiogenic edema, and the therapy is classical: oxygen and diuretics, and in severe cases also non-invasive or invasive mechanical ventilation. TAD is usually a mild reaction of unknown cause and cannot be classified as TACO or TRALI, nor can it be ascribed to patient’s preexisting diseases. Although the transfusion-related reactions are not very common, knowledge about them can prevent serious consequences. On the one hand preventive measures should be sought, and on the other early recognition is beneficial, so that proper treatment can take place.

  14. A new dynamic electrochemical transduction mechanism for interdigitated array microelectrodes.

    Science.gov (United States)

    Zhu, Xiaoshan; Choi, Jin-Woo; Ahn, Chong H

    2004-12-01

    A dynamic electrochemical transduction mechanism for interdigitated array microelectrodes using an electrical charge pumping method is presented in this paper. In this dynamic transduction mechanism, a charged external capacitor is used as the charge supplier for the electrochemical reaction of the reversible redox species at the interdigitated array electrodes. The charges stored in the capacitor are consumed as the electrochemical reaction current, which causes the capacitor potential decay. The theoretical analysis has shown that the species concentration has a decisive effect on the capacitor potential decay, and therefore the characteristics of the capacitor potential decay are recorded and analyzed to evaluate the concentration of redox species. The new transduction mechanism has the advantages of achieving high sensitivity with small sensor area and simplifying the measurement instrumentation. As a demonstration device, interdigitated array microelectrodes (approximately 0.2 mm(2) electrode surface area) have been fabricated and successfully characterized using p-aminophenol as the redox species under this dynamic mechanism. The detection limit of p-aminophenol was calculated to be approximately 4 x 10(-7) M for the sensor with the new dynamic transduction mechanism.

  15. Electrochemical and spectroscopic measurements for stable nitroxyl radicals

    Energy Technology Data Exchange (ETDEWEB)

    Nakahara, Kentaro; Iwasa, Shigeyuki; Iriyama, Jiro; Morioka, Yukiko; Suguro, Masahiro; Satoh, Masaharu [NEC Corporation, Tsukuba, Ibaraki (Japan). Fundamental and Environmental Research Laboratories; Cairns, Elton J. [Lawrence Berkeley National Laboratory, CA (United States). Environmental Energy Technologies Division

    2006-11-12

    A nitroxyl radical, 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), is known to be oxidized electrochemically at 3.5V versus lithium [4,5]. Since this reaction is reversible in the aprotic electrolyte, we can use it as a cathode reaction in lithium rechargeable battery. Some nitroxyl radical compounds which have different structures have been prepared and their electrochemical behavior and spectroscopic properties have been studied. The electrochemical measurements in aprotic electrolyte revealed that most nitroxyl radical compounds show reversible redox behavior similar to that of TEMPO independent of their structures in the range of -0.15-0.20V versus Ag/Ag{sup +} (3.69-4.04V versus Li/Li{sup +}). The redox potentials for these materials were found to be predictable approximately by quantum calculations. Thus, various molecular designs tailored to desired redox potentials would be possible as active materials for lithium rechargeable batteries, and their specific capacities, mechanical properties and colors can be controlled within limits. (author)

  16. Electrochemical Transfer of S Between Molten Steel and Molten Slag

    Science.gov (United States)

    Kim, Dong-Hyun; Kim, Wook; Kang, Youn-Bae

    2018-02-01

    S transfer between molten steel and molten slag was investigated in view of the electrochemical character of S transfer. C-saturated molten steel containing S was allowed to react with CaO-SiO2-Al2O3-MgO slag at 1673 K (1400 °C) until the two phases arrive at a chemical equilibrium. The application of an electric field of constant current through graphite electrodes lowered the S content in the molten steel below its chemical equilibrium level, and the system arrived at a new equilibrium level (electrochemical equilibrium). However, subsequent shutting off of the electric field did not lead to the system reverting to the original chemical equilibrium: reversion of S was observed but to a limited extent. The application of an electric field of opposite direction or flowing of CO gas allowed significant reversion of S. Side reactions (decomposition of oxide components) were observed, and these were considered to be coupled to the transfer of S. An electrochemical reaction mechanism was proposed based on the experimental observations found in the present study.

  17. Forecasting approach of electrochemical valorisation of CO2 in alkali molten carbonates

    International Nuclear Information System (INIS)

    Chery, Deborah

    2015-01-01

    Carbon Dioxide is a greenhouse which can be valorised by means of electrochemical valorisation into carbon monoxide. The main goals of the thesis consist in the theoretical determination of the conductive conditions leading to this electrochemical valorisation in alkali molten carbonates along with the study of the feasibility of this electrochemical reduction in binary and ternary eutectics under experimental condition. CO 2 solubility has been determined by manometric measure and increase along with the temperature. CO 2 electrochemical experimental feasibility into CO in eutectics on gold plate electrode and graphite carbon has been proved by cyclic volt-amperometry for temperatures exceeding 550 C, without gold plate electrode pretreatment and with gold plate pretreatment by an pre-electrolysis at potential slightly negative as the CO 2 reduction potential. A global approach of reactional mechanisms implied in CO 2 reduction is proposed. (author)

  18. Electrochemical Biosensor Based on Boron-Doped Diamond Electrodes with Modified Surfaces

    Directory of Open Access Journals (Sweden)

    Yuan Yu

    2012-01-01

    Full Text Available Boron-doped diamond (BDD thin films, as one kind of electrode materials, are superior to conventional carbon-based materials including carbon paste, porous carbon, glassy carbon (GC, carbon nanotubes in terms of high stability, wide potential window, low background current, and good biocompatibility. Electrochemical biosensor based on BDD electrodes have attracted extensive interests due to the superior properties of BDD electrodes and the merits of biosensors, such as specificity, sensitivity, and fast response. Electrochemical reactions perform at the interface between electrolyte solutions and the electrodes surfaces, so the surface structures and properties of the BDD electrodes are important for electrochemical detection. In this paper, the recent advances of BDD electrodes with different surfaces including nanostructured surface and chemically modified surface, for the construction of various electrochemical biosensors, were described.

  19. A portable transfer chamber for electrochemical measurements on electrodes prepared in ultra-high vacuum.

    Science.gov (United States)

    El-Jawad, M; Chemin, J-L; Gilles, B; Maillard, F

    2013-06-01

    This paper describes a versatile, light weight, and portable chamber dedicated to the transfer of electrodes from ultra-high vacuum (UHV) to atmospheric pressure and the liquid phase. This chamber can be connected to a liquid-phase reaction cell to perform electrochemical measurements and transfer back the electrode to the UHV environment. The experimental set-up can also be turned in order to make the electrode the bottom of the electrochemical cell. The validity and the efficiency of the experimental set-up were tested with a Pt(111) surface that provides unique electrochemical features in acidic sulphate-containing solution. This transfer chamber concept provides the surface science community with a new and versatile tool, complementary to existing systems, which allows fast electrolyte purging or electrochemical measurements under well-controlled mass transport conditions.

  20. Identifying the public's concerns and the Centers for Disease Control and Prevention's reactions during a health crisis: An analysis of a Zika live Twitter chat.

    Science.gov (United States)

    Glowacki, Elizabeth M; Lazard, Allison J; Wilcox, Gary B; Mackert, Michael; Bernhardt, Jay M

    2016-12-01

    The arrival of the Zika virus in the United States caused much concern among the public because of its ease of transmission and serious consequences for pregnant women and their newborns. We conducted a text analysis to examine original tweets from the public and responses from the Centers for Disease Control and Prevention (CDC) during a live Twitter chat hosted by the CDC. Both the public and the CDC expressed concern about the spread of Zika virus, but the public showed more concern about the consequences it had for women and babies, whereas the CDC focused more on symptoms and education. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  1. Studies on electron transfer reactions of Keggin-type mixed ...

    Indian Academy of Sciences (India)

    Administrator

    (PV2) in aqueous phosphate buffer of pH 6 at ambient temperature. Electrochemical and optical studies show that the stoichiometry of the reaction is 1: 2 (NADH : HPA). EPR and optical studies show that HPA act as one electron acceptor and the products of electron transfer reactions are one elec- tron reduced heteropoly ...

  2. Leukocytes and transfusion related adverse events: the effects of leuko-reduction process in the prevention of adverse reactions resulted from the transfusion of blood components: review article

    Directory of Open Access Journals (Sweden)

    Ehteramolsadat Hosseini

    2017-05-01

    Full Text Available Blood transfusion is commonly implemented to manage life and health-threatening conditions on a rapid and short-term basis. Over the years, ongoing technical advances have dramatically improved transfusion medicine to provide more safety and effectiveness. However, transfusion is still complicated with different adverse events that mainly induced by the presence of allogeneic leukocytes in the blood products. Several lines of evidence have shown that leukocytes in blood components are involved in the induction of febrile nonhemolytic transfusion reactions (FNHTRs, HLA alloimmunization and platelet refractoriness as well as the increased risk of the infectious diseases transmitted by leukotropic viruses including cytomegalovirus (CMV, human T-lymphotropic virus (HTLV-I/II and Epstein-Barr virus (EBV. During current decades, introducing various leuko-reduction techniques have shown to be associated with less transfusion related adverse events and improved clinical outcomes. The lower incidence and severity of febrile transfusion reactions; reduced risk of transfusion related transmission of CMV or other leukocyte-associated infections, lowered incidence of alloimmune platelet refractoriness in addition to reducing risk of mortality and morbidity in patients are considered as clinical benefits of leuko-reduced products. Currently, by the use of 3rd and 4th generation of filters, the highest levels of leukoreduction in blood components have been achieved. Filtration techniques have also the advantages of being performed shortly after preparation of components (pre-storage or post-storage even at the patient’s bedside. However, it seems that pre-storage depletion of leukocytes provides better protection than post-storage techniques due to the elimination of leukocyte-derived cytokines effects which are increasingly released during storage. Particularly in platelet products, the earlier depletion of leukocyte also favors less platelet

  3. From Two-Phase to Three-Phase: The New Electrochemical Interface by Oxide Electrocatalysts

    Science.gov (United States)

    Xu, Zhichuan J.

    2018-03-01

    Electrochemical reactions typically occur at the interface between a solid electrode and a liquid electrolyte. The charge exchange behaviour between these two phases determines the kinetics of electrochemical reactions. In the past few years, significant advances have been made in the development of metal oxide electrocatalysts for fuel cell and electrolyser reactions. However, considerable gaps remain in the fundamental understanding of the charge transfer pathways and the interaction between the metal oxides and the conducting substrate on which they are located. In particular, the electrochemical interfaces of metal oxides are significantly different from the traditional (metal) ones, where only a conductive solid electrode and a liquid electrolyte are considered. Oxides are insulating and have to be combined with carbon as a conductive mediator. This electrode configuration results in a three-phase electrochemical interface, consisting of the insulating oxide, the conductive carbon, and the liquid electrolyte. To date, the mechanistic insights into this kind of non-traditional electrochemical interface remain unclear. Consequently conventional electrochemistry concepts, established on classical electrode materials and their two-phase interfaces, are facing challenges when employed for explaining these new electrode materials. [Figure not available: see fulltext.

  4. Electrochemical Machining Removes Deep Obstructions

    Science.gov (United States)

    Catania, Mark J.

    1987-01-01

    Electrochemical machining (ECM) is effective way of removing obstructing material between two deep holes supposed to intersect but do not because of misalignment of drilling tools. ECM makes it possible to rework costly castings otherwise scrapped. Method fast even for tough or hard alloys and complicated three-dimensional shapes.

  5. SUPPLEMENTARY INFORMATION A combined Electrochemical ...

    Indian Academy of Sciences (India)

    DELL

    A combined Electrochemical and Theoretical study of pyridine-based Schiff bases as novel corrosion inhibitors for mild steel in hydrochloric acid medium. PARUL DOHAREa, M A QURAISHIb* and I B OBOTb. aDepartment of Chemistry, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar. Pradesh 221 ...

  6. Electrolytes for magnesium electrochemical cells

    Science.gov (United States)

    Burrell, Anthony K.; Sa, Niya; Proffit, Danielle Lee; Lipson, Albert; Liao, Chen; Vaughey, John T.; Ingram, Brian J.

    2017-07-04

    An electrochemical cell includes a high voltage cathode configured to operate at 1.5 volts or greater; an anode including Mg.sup.0; and an electrolyte including an ether solvent and a magnesium salt; wherein: a concentration of the magnesium salt in the ether is 1 M or greater.

  7. Electrochemical method for transferring graphene

    DEFF Research Database (Denmark)

    2015-01-01

    The present application discloses a method for separating a graphene-support layer laminate from a conducting substrate-graphene-support layer laminate, using a gentle, controllable electrochemical method. In this way, substrates which are fragile, expensive or difficult to manufacture can be used...... - and even re-used - without damage or destruction of the substrate or the graphene....

  8. Graphene-based electrochemical supercapacitors

    Indian Academy of Sciences (India)

    Graphenes prepared by three different methods have been investigated as electrode materials in electrochemical supercapacitors. The samples prepared by exfoliation of graphitic oxide and by the transformation of nanodiamond exhibit high specific capacitance in aq. H2SO4, the value reaching up to 117 F/g. By using an ...

  9. Electrochemical Genosensing of Circulating Biomarkers

    Science.gov (United States)

    Campuzano, Susana; Yáñez-Sedeño, Paloma; Pingarrón, José Manuel

    2017-01-01

    Management and prognosis of diseases requires the measurement in non- or minimally invasively collected samples of specific circulating biomarkers, consisting of any measurable or observable factors in patients that indicate normal or disease-related biological processes or responses to therapy. Therefore, on-site, fast and accurate determination of these low abundance circulating biomarkers in scarcely treated body fluids is of great interest for health monitoring and biological applications. In this field, electrochemical DNA sensors (or genosensors) have demonstrated to be interesting alternatives to more complex conventional strategies. Currently, electrochemical genosensors are considered very promising analytical tools for this purpose due to their fast response, low cost, high sensitivity, compatibility with microfabrication technology and simple operation mode which makes them compatible with point-of-care (POC) testing. In this review, the relevance and current challenges of the determination of circulating biomarkers related to relevant diseases (cancer, bacterial and viral infections and neurodegenerative diseases) are briefly discussed. An overview of the electrochemical nucleic acid–based strategies developed in the last five years for this purpose is given to show to both familiar and non-expert readers the great potential of these methodologies for circulating biomarker determination. After highlighting the main features of the reported electrochemical genosensing strategies through the critical discussion of selected examples, a conclusions section points out the still existing challenges and future directions in this field. PMID:28420103

  10. Current trends in electrochemical sensing and biosensing of DNA methylation.

    Science.gov (United States)

    Krejcova, Ludmila; Richtera, Lukas; Hynek, David; Labuda, Jan; Adam, Vojtech

    2017-11-15

    DNA methylation plays an important role in physiological and pathological processes. Several genetic diseases and most malignancies tend to be associated with aberrant DNA methylation. Among other analytical methods, electrochemical approaches have been successfully employed for characterisation of DNA methylation patterns that are essential for the diagnosis and treatment of particular diseases. This article discusses current trends in the electrochemical sensing and biosensing of DNA methylation. Particularly, it provides an overview of applied electrode materials, electrode modifications and biorecognition elements applications with an emphasis on strategies that form the core DNA methylation detection approaches. The three main strategies as (i) bisulfite treatment, (ii) cleavage by restriction endonucleases, and (iii) immuno/affinity reaction were described in greater detail. Additionally, the availability of the reviewed platforms for early cancer diagnosis and the approval of methylation inhibitors for anticancer therapy were discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. An accelerated electrochemical MIC test for stainless alloys

    International Nuclear Information System (INIS)

    Gendron, T.S.; Cleland, R.D.

    1994-01-01

    Previous work in our laboratory and elsewhere has suggested that MIC of stainless steels and nickel-base alloys occurs in locally anaerobic regions that support the growth of sulfate reducing bacteria (SRB). The cathodic reaction is provided by oxygen reduction at remote sites. Such a coupling between anode and cathode is difficult to reproduce in the laboratory, but can be simulated indirectly using a double electrochemical cell, as in previous work. A more realistic simulation using a single aerated electrochemical cell has now been developed, in which a second organism (P. aeruginosa) is used to provide an anoxic habitat for SRB growth and possibly a source of organic carbon, within a layer of silt. A bare alloy electrode is used as the oxygen cathode. Tests of this kind using rigorous microbiological procedures have generated pitting corrosion of several alloys in low chloride media simulating freshwater heat exchanger conditions. Similar test procedures are applicable to other environments of interest to this symposium

  12. Need for In Operando Characterization of Electrochemical Interface Features

    DEFF Research Database (Denmark)

    Traulsen, Marie Lund; Chatzichristodoulou, Christodoulos; Hansen, Karin Vels

    2015-01-01

    pronounced for surfaces and interfaces of the popular perovskite structured metal oxide electrodes such as lanthanum strontium manganites or cobaltites on which a several nanometer thick skin of strontium rich oxide forms already during cell preparation and it is believed that this is changing significantly......It has proven particularly difficult to determine the electrode reaction mechanisms in high temperature solid oxide cells (SOCs) that convert gases. The literature is full of contradictory statements and apparently contradictory findings. Often the same type of electrochemical kinetics that apply...... during the recent 2 decades. This progress has to a large extent been based on combination of electrochemical characterization and in situ and in operando and in situ surface analysis techniques, which so far have been less developed for high temperature electrochemistry above 300 °C. In spite...

  13. Fabrication and investigation of electrochemical characterization of Ba based cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Talaei, Z.S.; Salamati, H.; Pakzad, A. [Physics Department Superconductivity Laboratory, Isfahan University of Technology, Isfahan 84156-83111 (Iran)

    2010-09-15

    In this paper, Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (BSCF) oxide was prepared, using a solid state reaction method. Crystal structure and electrochemical conductivity of this composition were studied by x-ray diffraction and four-point probe method, respectively. The x-ray pattern shows cubic structure. The resistivity was measured from room temperature up to 450 C in air. At this condition, resistivity was dropped 99 percent of its original value. In the investigation of the electrochemical properties, D{sub chem}, chemical diffusion coefficient and E{sub a}, activation energy for hopping of small polarons were calculated by equation Arrhenius. As our results show increasing the temperature leads to higher values of D{sub chem}. Log (D{sub chem}) and inverse temperature were related by a negative slope. (author)

  14. Electrochemical supramolecular recognition of hemin-carbon composites

    Science.gov (United States)

    Le, Hien Thi Ngoc; Jeong, Hae Kyung

    2018-04-01

    Hemin-graphite oxide-carbon nanotube (hemin-GO-CNT) and hemin-thermally reduced graphite oxide-carbon nanotube (hemin-TRGO-CNT) composites are synthesized and investigated for the electrochemical supramolecular recognition by electron transfer between biomolecules (dopamine and hydrogen peroxide) and the composite electrodes. Redox reaction mechanisms of two composites with dopamine and hydrogen peroxide are explained in detail by using cyclic voltammetry and differential pulse voltammetry. Hemin-TRGO-CNT displays higher electrochemical detection for dopamine and hydrogen peroxide than that of hemin-GO-CNT, exhibiting enhancement of the electron transfer due to the effective immobilization of redox couple of hemin (Fe2+/Fe3+) on the TRGO-CNT surface.

  15. Electro-deposition of Pd on carbon paper and Ni foam via surface limited redox-replacement reaction for oxygen reduction reaction

    CSIR Research Space (South Africa)

    Modibedi, RM

    2014-05-01

    Full Text Available Pd nanostructured catalysts were electrodeposited by surface-limited redox replacement reactions usingthe electrochemical atomic layer deposition technique. Carbon paper and Ni foam were used as substratesfor the electrodeposition of the metal...

  16. Rapid and label-free electrochemical DNA biosensor for detecting hepatitis A virus.

    Science.gov (United States)

    Manzano, Marisa; Viezzi, Sara; Mazerat, Sandra; Marks, Robert S; Vidic, Jasmina

    2018-02-15

    Diagnostic systems that can deliver highly specific and sensitive detection of hepatitis A virus (HAV) in food and water are of particular interest in many fields including food safety, biosecurity and control of outbreaks. Our aim was the development of an electrochemical method based on DNA hybridization to detect HAV. A ssDNA probe specific for HAV (capture probe) was designed and tested on DNAs from various viral and bacterial samples using Nested-Reverse Transcription Polymerase Chain Reaction (nRT-PCR). To develop the electrochemical device, a disposable gold electrode was functionalized with the specific capture probe and tested on complementary ssDNA and on HAV cDNA. The DNA hybridization on the electrode was measured through the monitoring of the oxidative peak potential of the indicator tripropylamine by cyclic voltammetry. To prevent non-specific binding the gold surface was treated with 3% BSA before detection. High resolution atomic force microscopy (AFM) confirmed the efficiency of electrode functionalization and on-electrode hybridization. The proposed device showed a limit of detection of 0.65pM for the complementary ssDNA and 6.94fg/µL for viral cDNA. For a comparison, nRT-PCR quantified the target HAV cDNA with a limit of detection of 6.4fg/µL. The DNA-sensor developed can be adapted to a portable format to be adopted as an easy-to- use and low cost method for screening HAV in contaminated food and water. In addition, it can be useful for rapid control of HAV infections as it takes only a few minutes to provide the results. Copyright © 2017. Published by Elsevier B.V.

  17. Reactions on carbon anodes in aluminium electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Eidet, Trygve

    1997-12-31

    The consumption of carbon anodes and energy in aluminium electrolysis is higher than what is required theoretically. This thesis studies the most important of the reactions that consume anode materials. These reactions are the electrochemical anode reaction and the airburn and carboxy reactions. The first part of the thesis deals with the kinetics and mechanism of the electrochemical anode reaction using electrochemical impedance spectroscopy. The second part deals with air and carboxy reactivity of carbon anodes and studies the effects of inorganic impurities on the reactivity of carbon anodes in the aluminium industry. Special attention is given to sulphur since its effect on the carbon gasification is not well understood. Sulphur is always present in anodes, and it is expected that the sulphur content of available anode cokes will increase in the future. It has also been suggested that sulphur poisons catalyzing impurities in the anodes. Other impurities that were investigated are iron, nickel and vanadium, which are common impurities in anodes which have been reported to catalyze carbon gasification. 88 refs., 92 figs., 24 tabs.

  18. Effect of La doping on the electrochemical activity of double perovskite oxide Sr2FeMoO6 in alkaline medium

    International Nuclear Information System (INIS)

    Azizi, F.; Kahoul, A.; Azizi, A.

    2009-01-01

    The crystalline structure, grain morphology, electrical and electrochemical properties of Sr 2-x La x FeMoO 6 (x = 0, 0.25, 0.5 and 1) double perovskite has been investigated by means of X-ray powder diffraction, scanning electron micrography, electrical and electrochemical measurements. It was found that the grain morphology, the resistivity and the electrochemical activity are strongly influenced by La doping. While the surface area as the determining factor in the oxygen reaction rate was excluded, the electrical resistivity was found to have a great effect on the electrochemical activity of the compounds.

  19. Nuclear reactions

    International Nuclear Information System (INIS)

    Lane, A.M.

    1980-01-01

    In reviewing work at Harwell over the past 25 years on nuclear reactions it is stated that a balance has to be struck in both experiment and theory between work on cross-sections of direct practical relevance to reactors and on those relevant to an overall understanding of reaction processes. The compound nucleus and direct process reactions are described. Having listed the contributions from AERE, Harwell to developments in nuclear reaction research in the period, work on the optical model, neutron capture theory, reactions at doorway states with fine structure, and sum-rules for spectroscopic factors are considered in more detail. (UK)

  20. Electrochemistry as a Tool for Study, Delvelopment and Promotion of Catalytic Reactions

    DEFF Research Database (Denmark)

    Petrushina, Irina

    states that that there are two types of electrochemical promotion: First type is based on change of the Fermi level through the charge of the electric double layer (EDL) between catalyst and its support without electrochemical reaction. This effect was abbreviated as EDLE. Second type is based on change...

  1. Electrochemical transient techniques for study of the electrochemistry and thermodynamics of nuclear materials in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, S.A. [Institute of Chemistry, Kola Science Centre RAS, 14 Fersman Str., 184209 Apatity, Murmansk Region (Russian Federation)], E-mail: kuznet@chemy.kolasc.net.ru; Gaune-Escard, M. [Ecole Polytechnique, Mecanique Energetique, Technopole de Chateau Gombert, 5 Rue Enrico Fermi, 13453 Marseille cedex 13 (France)

    2009-05-15

    Advantages and disadvantages of electrochemical transient techniques and potentiometry for the determination of formal standard potentials were discussed. It was shown that long potentiometric measurements inevitability led to strong interaction between oxide materials and melts involving actinide or lanthanide compounds. Reactions of disproportionation were observed in melts containing lower oxidation states due to the appearance of oxide ions from oxide materials, because actinides and lanthanides have a great affinity to oxygen. Only at the final stage of each experimental set, was the reference electrode immersed in the melt for a short time for the determination by electrochemical transient techniques and the melt being no longer used after these measurements. It was shown that electrochemical transient techniques in contradiction to potentiometry can be used for the determination of formal standard potentials for irreversible process and redox process accompanied by reaction of disproportionation.

  2. Electrochemical Decolorization of Reactive Violet 5 Textile Dye using Pt/Ir Electrodes

    Directory of Open Access Journals (Sweden)

    Bahadır K. Körbahti

    2016-08-01

    Full Text Available Electrochemical decolorization of textile dyeing wastewater containing Reactive Violet 5 (RV5 were investigated at Pt/Ir electrodes in the presence of 75%NaCl+25%Na2CO3 (w/w supporting electrolyte mixture in a batch electrochemical reactor. Experimental parameters were operated in the range of 300-1500 mg/L textile dye concentration, 4-20 g/L 75%NaCl+25%Na2CO3 electrolyte concentration, 5-15 mA/cm2 current density, and 20-60°C reaction temperature in 15 min electrolysis time. Reactive Violet 5 decolorization increased with increasing current density and electrolyte concentration, and decreasing the textile dye concentration. Although a slight increase obtained in color removal efficiency, the temperature was not show much significant effect on decolorization. Depending on electrochemical reaction conditions, Reactive Violet 5 textile dye decolorization were obtained between 42.8-100%.

  3. Effects of p-substituents on electrochemical CO oxidation by Rh porphyrin-based catalysts.

    Science.gov (United States)

    Yamazaki, Shin-ichi; Yamada, Yusuke; Takeda, Sahori; Goto, Midori; Ioroi, Tsutomu; Siroma, Zyun; Yasuda, Kazuaki

    2010-08-21

    Electrochemical CO oxidation by several carbon-supported rhodium tetraphenylporphyrins with systematically varied meso-substituents was investigated. A quantitative analysis revealed that the p-substituents on the meso-phenyl groups significantly affected CO oxidation activity. The electrocatalytic reaction was characterized in detail based on the spectroscopic and X-ray structural results as well as electrochemical analyses. The difference in the activity among Rh porphyrins is discussed in terms of the properties of p-substituents along with a proposed reaction mechanism. Rhodium tetrakis(4-carboxyphenyl)porphyrin (Rh(TCPP)), which exhibited the highest activity among the porphyrins tested, oxidized CO at a high rate at much lower potentials (means that CO is electrochemically oxidized by this catalyst when a slight overpotential is applied during the operation of a proton exchange membrane fuel cell. This catalyst exhibited little H(2) oxidation activity, in contrast to Pt-based catalysts.

  4. Simulation of electrochemical behavior in Lithium ion battery during discharge process

    Science.gov (United States)

    Chen, Yong; Lin, Muyi; Zhao, Li

    2018-01-01

    An electrochemical Lithium ion battery model was built taking into account the electrochemical reactions. The polarization was divided into parts which were related to the solid phase and the electrolyte mass transport of species, and the electrochemical reactions. The influence factors on battery polarization were studied, including the active material particle radius and the electrolyte salt concentration. The results showed that diffusion polarization exist in the positive and negative electrodes, and diffusion polarization increase with the conducting of the discharge process. The physicochemical parameters of the Lithium ion battery had the huge effect on cell voltage via polarization. The simulation data show that the polarization voltage has close relationship with active material particle size, discharging rate and ambient temperature. PMID:29293535

  5. Electrochemical & Thermochemical Behavior of Cerium(IV) Oxide delta

    Science.gov (United States)

    Chueh, William C.

    The mixed-valent nature of nonstoichiometric ceria (CeO2-delta ) gives rise to a wide range of intriguing properties, such as mixed ionic and electronic conduction and oxygen storage. Surface and transport behavior in rare-earth (samaria) doped and undoped ceria were investigated, with particular emphasis on applications in electrochemical and thermochemical energy conversion processes such as fuel cells and solar fuel production. The electrochemical responses of bulk-processed ceria with porous Pt and Au electrodes were analyzed using 1-D and 2-D transport models to decouple surface reactions, near-surface transport and bulk transport. Combined experimental and numerical results indicate that hydrogen electro-oxidation and hydrolysis near open-circuit conditions occur preferentially over the ceria | gas interface rather than over the ceria | gas | metal interface, with the rate-limiting step likely to be either surface reaction or transport through the surface oxygen vacancy depletion layer. In addition, epitaxial thin films of ceria were grown on zirconia substrates using pulsed-laser deposition to examine electrocatalysis over well-defined microstructures. Physical models were derived to analyze the electrochemical impedance response. By varying the film thickness, interfacial and chemical capacitance were decoupled, with the latter shown to be proportional to the small polaron densities. The geometry of microfabricated metal current collectors (metal = Pt, Ni) was also systematically varied to investigate the relative activity of the ceria | gas and the ceria | metal | gas interfaces. The data suggests that the electrochemical activity of the metal-ceria composite is only weakly dependent on the metal due to the relatively high activity of the ceria | gas interface. In addition to electrochemical experiments, thermochemical reduction-oxidation studies were performed on ceria. It was shown that thermally-reduced ceria, upon exposure to H 2O and/or CO2, can be

  6. Magnetic field-assisted electrochemical discharge machining

    International Nuclear Information System (INIS)

    Cheng, Chih-Ping; Mai, Chao-Chuang; Wu, Kun-Ling; Hsu, Yu-Shan; Yan, Biing-Hwa

    2010-01-01

    Electrochemical discharge machining (ECDM) is an effective unconventional method for micromachining in non-conducting materials, such as glass, quartz and some ceramics. However, since the spark discharge performance becomes unpredictable as the machining depth increases, it is hard to achieve precision geometry and efficient machining rate in ECDM drilling. One of the main factors for this is the lack of sufficient electrolyte flow in the narrow gap between the tool and the workpiece. In this study a magnetohydrodynamic (MHD) convection, which enhances electrolyte circulation has been applied to the ECDM process in order to upgrade the machining accuracy and efficiency. During electrolysis in the presence of a magnetic field, the Lorenz force induces the charged ions to form a MHD convection. The MHD convection then forces the electrolyte into movement, thus enhancing circulation of electrolyte. Experimental results show that the MHD convection induced by the magnetic field can effectively enhance electrolyte circulation in the micro-hole, which contributes to higher machining efficiency. Micro-holes in glass with a depth of 450 µm are drilled in less than 20 s. At the same time, better electrolyte circulation can prevent deterioration of gas film quality with increasing machining depth, while ensuring stable electrochemical discharge. The improvement in the entrance diameter thus achieved was 23.8% while that in machining time reached 57.4%. The magnetic field-assisted approach proposed in the research does not require changes in the machining setup or electrolyte but has proved to achieve significant enhancement in both accuracy and efficiency of ECDM.

  7. Electrochemical processing of nitrate waste solutions

    International Nuclear Information System (INIS)

    Genders, D.; Weinberg, N.; Hartsough, D.

    1992-01-01

    The second phase of research performed at The Electrosynthesis Co., Inc. has demonstrated the successful removal of nitrite and nitrate from a synthetic effluent stream via a direct electrochemical reduction at a cathode. It was shown that direct reduction occurs at good current efficiencies in 1,000 hour studies. The membrane separation process is not readily achievable for the removal of nitrites and nitrates due to poor current efficiencies and membrane stability problems. A direct reduction process was studied at various cathode materials in a flow cell using the complete synthetic mix. Lead was found to be the cathode material of choice, displaying good current efficiencies and stability in short and long term tests under conditions of high temperature and high current density. Several anode materials were studied in both undivided and divided cell configurations. A divided cell configuration was preferable because it would prevent re-oxidation of nitrite by the anode. The technical objective of eliminating electrode fouling and solids formation was achieved although anode materials which had demonstrated good stability in short term divided cell tests corroded in 1,000 hour experiments. The cause for corrosion is thought to be F - ions from the synthetic mix migrating across the cation exchange membrane and forming HF in the acid anolyte. Other possibilities for anode materials were explored. A membrane separation process was investigated which employs an anion and cation exchange membrane to remove nitrite and nitrate, recovering caustic and nitric acid. Present research has shown poor current efficiencies for nitrite and nitrate transport across the anion exchange membrane due to co-migration of hydroxide anions. Precipitates form within the anion exchange membranes which would eventually result in the failure of the membranes. Electrochemical processing offers a highly promising and viable method for the treatment of nitrate waste solutions

  8. Gas-permeable hydrophobic tubular membranes for ammonia recovery in bio-electrochemical systems

    NARCIS (Netherlands)

    Kuntke, P.; Zamora, P.; Saakes, M.; Buisman, C.J.N.; Hamelers, H.V.M.

    2016-01-01

    The application of a gas-permeable hydrophobic tubular membrane in bio-electrochemical systems enables efficient recovery of ammonia (NH3) from their cathode compartments. Due to a hydrogen evolution reaction at the cathode, no chemical addition was required to increase the pH for

  9. Electrochemical reduction of the UCL4 to UCL3 on aqueous solution

    International Nuclear Information System (INIS)

    Ordonez, E.; Quiroz, H.; Fernandez-Valverde, S.; Solorza, O.

    1991-01-01

    An electrochemical study of the UCL4 to UCL3 reduction reaction on lead electrodes is presented. Up to 95% conversion is obtained using a divided cell with Nafion membrane as separator. The variation of UCL4 and UCL3 concentrations was monitored by visible spectrophotometry. (author)

  10. Electrochemical studies of the film formation on lithium in propylene carbonate solutions under open circuit conditions

    Energy Technology Data Exchange (ETDEWEB)

    Geronov, Y. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schwager, F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Muller, R. H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    1981-06-01

    The nature of protective surface layers formed on lithium in propylene carbonate solutions of and at open circuit has been investigated by electrochemical pulse measurements. The results are consistent with the fast formation of a compact thin layer resulting from the reaction with residual water. This layer acts as a solid ionic conductor. Slow corrosion or decomposition processes produce a thicker porous overlayer.

  11. Electrochemical corrosion of metallic biomaterials.

    Science.gov (United States)

    Pourbaix, M

    1984-05-01

    Methods of electrochemical thermodynamics (electrode potential-pH equilibrium diagrams) and electrochemical kinetics (polarization curves) may help to understand and predict the corrosion behaviour of metals and alloys in the presence of body fluids. A short review of the literature is given concerning some applications of such methods, both in vitro and in vivo, relating to surgical implants (stainless steels, chromium-cobalt-molybdenum alloys, titanium and titanium alloys) and to dental alloys (silver-tin-copper amalgams, silver-base and gold-base casting alloys, nickel-base casting alloys). Attention is drawn to the necessity of more basic research on crevice- and fretting-corrosion of surgical implant materials and dental alloys, and to the toxicity of corrosion products. A perfect understanding of the exact significance of electrode-potentials is essential for the success of such a task.

  12. Electrochemical treatment of liquid wastes

    International Nuclear Information System (INIS)

    Hobbs, D.

    1996-01-01

    Electrochemical treatment processes are being evaluated and developed for the destruction of organic compounds and nitrates/nitrites and the removal of other hazardous species from liquid wastes stored throughout the DOE complex. This activity consists of five major tasks: (1) evaluation of different electrochemical reactors for the destruction and removal of hazardous waste components, (2) development and validation of engineering process models, (3) radioactive laboratory-scale tests, (4) demonstration of the technology in an engineering-scale size reactor, and (5) analysis and evaluation of testing data. The development program team is comprised of individuals from federal, academic, and private industry. Work is being carried out in DOE, academic, and private industrial laboratories

  13. Electrochemical synthesis of multisegmented nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Kok, Kuan-Ying; Ng, Inn-Khuan; Saidin, Nur Ubaidah [Malaysian Nuclear Agency, Bangi, 43000 Kajang (Malaysia)

    2012-11-27

    Electrochemical deposition has emerged as a promising route for nanostructure fabrication in recent years due to the many inherent advantages it possesses. This study focuses on the synthesis of high-aspect-ratio multisegmented Au/Ni nanowires using template-directed sequential electrochemical deposition techniques. By selectively removing the Ni segments in the nanowires, high-yield of pure gold nanorods of predetermined lengths was obtained. Alternatively, the sacrificial Ni segments in the nanowires can be galvanically displaced with Bi and Te to form barbells structures with Bi{sub x}Te{sub y} nanotubes attached to neighbouring gold segments. Detailed studies on the nanostructures obtained were carried out using various microscopy, diffraction and probebased techniques for structural, morphological and chemical characterizations.

  14. Impedance of electrochemically modified graphite.

    Science.gov (United States)

    Magdić, Katja; Kvastek, Krešimir; Horvat-Radošević, Višnja

    2014-01-01

    Electrochemical impedance spectroscopy, EIS, has been applied for characterization of electrochemically modified graphite electrodes in the sulphuric acid solution. Graphite modifications were performed by potential cyclization between potentials of graphite oxide formation/reduction, different number of cycles, and prolonged reduction steps after cyclization. Impedance spectra measured at two potential points within double-layer region of graphite have been successfully modeled using the concept of porous electrodes involving two different electrolyte diffusion paths, indicating existence of two classes of pores. The evaluated impedance parameter values show continuous changes with stages of graphite modification, indicating continuous structural changes of pores by number of potential cycles applied. Differences of impedance parameter values at two potential values indicate the potential induced changes of solution properties within the pores of modified graphite.

  15. Electrochemical sensing carcinogens in beverages

    CERN Document Server

    Zia, Asif Iqbal

    2016-01-01

    This book describes a robust, low-cost electrochemical sensing system that is able to detect hormones and phthalates – the most ubiquitous endocrine disruptor compounds – in beverages and is sufficiently flexible to be readily coupled with any existing chemical or biochemical sensing system. A novel type of silicon substrate-based smart interdigital transducer, developed using MEMS semiconductor fabrication technology, is employed in conjunction with electrochemical impedance spectroscopy to allow real-time detection and analysis. Furthermore, the presented interdigital capacitive sensor design offers a sufficient penetration depth of the fringing electric field to permit bulk sample testing. The authors address all aspects of the development of the system and fully explain its benefits. The book will be of wide interest to engineers, scientists, and researchers working in the fields of physical electrochemistry and biochemistry at the undergraduate, postgraduate, and research levels. It will also be high...

  16. Recent Advances in Electrochemical Glycobiosensing

    Directory of Open Access Journals (Sweden)

    Germarie Sánchez-Pomales

    2011-01-01

    Full Text Available Biosensors based on electrochemical transduction mechanisms have recently made advances into the field of glycan analysis. These glyco-biosensors offer simple, rapid, sensitive, and economical approaches to the measurement need for rapid glycan analysis for biomarker detection, cancer and disease diagnostics, and bioprocess monitoring of therapeutic glycoproteins. Although the prevalent methods of glycan analysis (high-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy provide detailed identification and structural analysis of glycan species, there are significantly few low-cost, rapid glycan assays available for diagnostic and screening applications. Here we review instances in which glyco-biosensors have been used for glycan analysis using a variety of electrochemical transduction mechanisms (e.g., amperometric, potentiometric, impedimetric, and voltammetric, selective binding agents (e.g., lectins and antibodies, and redox species (e.g., enzyme substrates, inorganic, and nanomaterial.

  17. Electrochemical Study of Esculetin Nitration by Digital Simulation of Cyclic Voltammograms

    Directory of Open Access Journals (Sweden)

    Lida Khalafi

    2013-01-01

    Full Text Available The reaction of electrochemically generated o-quinones from oxidation of esculetin as Michael acceptor with nitrite ion as nucleophile has been studied using cyclic voltammetry. The reaction mechanism is believed to be EC, including oxidation of catechol moiety of esculetin followed by Michael addition of nitrite ion. The observed homogeneous rate constants (obs for reactions were estimated by comparing the experimental voltammetric responses with the digitally simulated results based on the proposed mechanism. Also the effects of pH and nucleophile concentration on voltammetric behavior and the rate constants of chemical reactions were described.

  18. Non-Faradaic electrochemical promotion of catalytic methane reforming for methanol production

    Science.gov (United States)

    Fan, Qinbai

    2016-11-22

    A method of converting methane to methanol at low temperatures utilizes a reactor including an anode, a cathode, a membrane separator between the anode and cathode, a metal oxide catalyst at the anode and a hydrogen recovery catalyst at the cathode. The method can convert methane to methanol at as rate exceeding the theoretical Faradaic rate due to the contribution of an electrochemical reaction occurring in tandem with a Faradaic reaction.

  19. Electrochemical selenium- and iodonium-initiated cyclisation of hydroxy-functionalised 1,4-dienes

    Directory of Open Access Journals (Sweden)

    Philipp Röse

    2015-01-01

    Full Text Available The cobalt(I-catalysed 1,4-hydrovinylation reaction of allyloxytrimethylsilane and allyl alcohol with substituted 1,3-dienes leads to hydroxy-functionalised 1,4-dienes in excellent regio- and diastereoselective fashion. Those 1,4-dienols can be converted into tetrahydrofuran and pyran derivatives under indirect electrochemical conditions generating selenium or iodonium cations. The reactions proceed in good yields and regioselectivities for the formation of single diastereomers.

  20. Recent Advances in Electrochemical Glycobiosensing

    OpenAIRE

    Sánchez-Pomales, Germarie; Zangmeister, Rebecca A.

    2011-01-01

    Biosensors based on electrochemical transduction mechanisms have recently made advances into the field of glycan analysis. These glyco-biosensors offer simple, rapid, sensitive, and economical approaches to the measurement need for rapid glycan analysis for biomarker detection, cancer and disease diagnostics, and bioprocess monitoring of therapeutic glycoproteins. Although the prevalent methods of glycan analysis (high-performance liquid chromatography, mass spectrometry, and nuclear magnet...

  1. Feasibility of electrochemical oxidation process for treatment of saline wastewater

    Directory of Open Access Journals (Sweden)

    Kavoos Dindarloo

    2015-09-01

    Full Text Available Background: High concentration of salt makes biological treatment impossible due to bacterial plasmolysis. The present research studies the process of electrochemical oxidation efficiency and optimal levels as important factors affecting pH, salt concentration, reaction time and applied voltage. Methods: The sample included graphite electrodes with specifications of 2.5 cm diameter and 15 cm height using a reactor with an optimum capacity of 1 L. Sixty samples were obtained with the aid of the experiments carried out in triplicates for each factor at 5 different levels. The entire experiments were performed based on standard methods for water and waste water treatments. Results: Analysis of variance carried out on effect of pH, salt concentration, reaction time and flow intensity in elimination of chemical oxygen demand (COD showed that they are significant factors affecting this process and reduce COD with a coefficient interval of 95% and test power of 80%. Scheffe test showed that at optimal level, a reaction time of 1 hour, 10 g/L concentration, pH = 9 and 15 V electrical potential difference were obtained. Conclusion: Waste waters containing salt may contribute to the electro-oxidation process due to its cations and anions. Therefore, the process of electrochemical oxidation with graphite electrodes could be a proper strategy for the treatment of saline wastewater where biological treatment is not possible.

  2. Microwave activation of palladium nanoparticles for enhanced ethanol electrocatalytic oxidation reaction in alkaline medium

    CSIR Research Space (South Africa)

    Rohwer, MB

    2015-02-01

    Full Text Available gave higher electrochemical active surface area (EASA= 67 m(SUP2)g(SUP-1), aggregation/uniformity of dispersion, showed higher amount of the palladium oxides, and showed remarkable electrocatalytic behaviour towards ethanol oxidation reaction...

  3. Electrochemical studies of ruthenium compounds

    International Nuclear Information System (INIS)

    Kumar Ghosh, B.; Chakravorty, A.

    1989-01-01

    In many ways the chemistry of transition metals is the chemistry of multiple oxidation states and the associated redox phenomena. If a particular element were to be singeld out to illustrate this viewpoint, a model choice would be ruthenium - an element that is directly or indirectly the active centre of a plethora of redox phenomena encompassing ten different oxidation states and a breathtaking diversity of structure and bonding. In the present review the authors are primarily concerned with the oxidation states of certain ligands coordinated to ruthenium. This choice is deliberate since this is one area where the unique power of electrochemical methods is splendidly revealed. Without these methods, development in this area would have been greatly hampered. A brief summary of metal oxidation states is also included as a prelude to the main subject of this review. The authors have generally emphasize the information derived which is of chemical interest leaving the details of formal electrochemical arguments in the background. The authors have reviewed the pattern and systematics of ligand redox in ruthenium complexes. The synergistic combination of electrochemical and spectroscopic methods have vastly increased our understanding of ligand phenomena during the last 15 years or so. This in turn has led to better understanding and new developments in other fields. Photophysics and photochemistry could be cited as examples. (author). 176 refs.; 10 figs.; 10 tabs

  4. Mechanism for reversible CO/CO2 electrochemical conversion on a patterned nickel electrode

    Science.gov (United States)

    Luo, Yu; Li, Wenying; Shi, Yixiang; Cai, Ningsheng

    2017-10-01

    The patterned Ni negative electrode on single-crystal YSZ in CO-CO2 atmosphere is investigated in both the solid oxide fuel cell (SOFC) and solid oxide electrolysis cell (SOEC) modes. The effects of the temperature T, partial pressure of CO and CO2 (pCO and pCO2) on the electrochemical performance are measured to obtain the intrinsic kinetic parameters by natural logarithm linear fitting. The strong dependency of surface diffusion resistance on pCO implies that surface diffusion could be related to CO(Ni). The electrochemical performance had an obviously positive correlation with T and pCO. The limitation of CO2 adsorption leads to a weak dependency of polarization on pCO2. The electrochemical performance of SOEC mode in the atmosphere without CO is 1.21 times higher than that in the atmosphere without CO2, which implies that CO electrochemical reduction could be more significant than CO2 electrochemical reduction in the patterned Ni electrode. An analytical calculation is performed for the speculation of rate-limiting steps. In the SOFC mode, CO oxidation into CO2 is speculated to be rate-determining, besides, adsorbed carbon oxidation into CO could be also non-ignorable. In the SOEC mode, CO reduction into carbon could be more probably the major electrochemical reaction on the pure Ni surface.

  5. Preparation and electrochemical characterization of MnOOH nanowire-graphene oxide

    International Nuclear Information System (INIS)

    Wang Lin; Wang Dianlong

    2011-01-01

    Highlights: → MnOOH nanowire-graphene oxide composites are prepared by hydrothermal reaction in distilled water or 5% ammonia aqueous solution at 130 deg. C, with MnO 2 -graphene oxide composites which are synthesized by a redox reaction between KMnO 4 and graphene oxide. → MnO 2 is deoxidized to MnOOH on graphene oxide through hydrothermal reaction without any extra reductants. → It is found that the electrochemical resistance of MnOOH nanowire-graphene oxide composites decreases and the capacitance increases to 76 F g -1 when hydrothermal reaction is conducted in ammonia aqueous solution. → MnOOH nanowire-graphene oxide composites prepared by hydrothermal reaction in 5% ammonia aqueous solution have excellent capacitance retention ratio at scan rate from 5 mV s -1 to 40 mV s -1 . - Abstract: MnOOH nanowire-graphene oxide composites are prepared by hydrothermal reaction in distilled water or 5% ammonia aqueous solution at 130 deg. C with MnO 2 -graphene oxide composites which are synthesized by a redox reaction between KMnO 4 and graphene oxide. Powder X-ray diffraction (XRD) analyses and energy dispersive X-ray analyses (EDAX) show MnO 2 is deoxidized to MnOOH on graphene oxide through hydrothermal reaction without any extra reductants. The electrochemical capacitance of MnOOH nanowire-graphene oxide composites prepared in 5% ammonia aqueous solution is 76 F g -1 at current density of 0.1 A g -1 . Moreover, electrochemical impedance spectroscopy (EIS) suggests the electrochemical resistance of MnOOH nanowire-graphene oxide composites is reduced when hydrothermal reaction is conducted in ammonia aqueous solution. The relationship between the electrochemical capacitance and the structure of MnOOH nanowire-graphene oxide composites is characterized by cyclic voltammetry (CV) and field emission scanning electron microscopy (FESEM). The results indicate the electrochemical performance of MnOOH nanowire-graphene oxide composites strongly depends on their

  6. Pencil it in: pencil drawn electrochemical sensing platforms

    OpenAIRE

    Foster, Christopher W.; Brownson, Dale A.C.; Ruas de Souza, Ana P.; Bernalte, Elena; Iniesta, Jesus; Bertotti, Mauro; Banks, Craig E.

    2016-01-01

    Inspired by recent reports concerning the utilisation of hand drawn pencil macroelectrodes (PDEs), we report the fabrication, characterisation (physicochemical and electrochemical) and implementation (electrochemical sensing) of various PDEs drawn upon a flexible polyester substrate. Electrochemical characterisation reveals that there are no quantifiable electrochemical responses upon utilising these PDEs with an electroactive analyte that requires an electrochemical oxidation step first, the...

  7. Capacity improvement of the carbon-based electrochemical capacitor by zigzag-edge introduced graphene

    Science.gov (United States)

    Tamura, Naoki; Tomai, Takaaki; Oka, Nobuto; Honma, Itaru

    2018-01-01

    The electrochemical properties of graphene edge has been attracted much attention. Especially, zigzag edge has high electrochemical activity because neutral radical exits on edge. However, due to a lack of efficient production method for zigzag graphene, the electrochemical properties of zigzag edge have not been experimentally demonstrated and the capacitance enhancement of carbonaceous materials in energy storage devices by the control in their edge states is still challenge. In this study, we fabricated zigzag-edge-rich graphene by a one-step method combining graphene exfoliation in supercritical fluid and anisotropic etching by catalytic nanoparticles. This efficient production of zigzag-edge-rich graphene allows us to investigate the electrochemical activity of zigzag edge. By cyclic voltammetry, we revealed the zigzag edge-introduced graphene exhibited unique redox reaction in aqueous acid solution. Moreover, by the calculation on the density function theory (DFT), this unique redox potential for zigzag edge-introduced graphene can be attributed to the proton-insertion/-extraction reactions at the zigzag edge. This finding indicates that the graphene edge modification can contribute to the further increase in the capacitance of the carbon-based electrochemical capacitor.

  8. Electrochemical Impedance Imaging via the Distribution of Diffusion Times

    Science.gov (United States)

    Song, Juhyun; Bazant, Martin Z.

    2018-03-01

    We develop a mathematical framework to analyze electrochemical impedance spectra in terms of a distribution of diffusion times (DDT) for a parallel array of random finite-length Warburg (diffusion) or Gerischer (reaction-diffusion) circuit elements. A robust DDT inversion method is presented based on complex nonlinear least squares regression with Tikhonov regularization and illustrated for three cases of nanostructured electrodes for energy conversion: (i) a carbon nanotube supercapacitor, (ii) a silicon nanowire Li-ion battery, and (iii) a porous-carbon vanadium flow battery. The results demonstrate the feasibility of nondestructive "impedance imaging" to infer microstructural statistics of random, heterogeneous materials.

  9. Response surface optimization of electrochemical treatment of textile dye wastewater

    International Nuclear Information System (INIS)

    Koerbahti, Bahadir K.

    2007-01-01

    The electrochemical treatment of textile dye wastewater containing Levafix Blue CA, Levafix Red CA and Levafix Yellow CA reactive dyes was studied on iron electrodes in the presence of NaCl electrolyte in a batch electrochemical reactor. The wastewater was synthetically prepared in relatively high dye concentrations between 400 mg/L and 2000 mg/L. The electrochemical treatment of textile dye wastewater was optimized using response surface methodology (RSM), where current density and electrolyte concentration were to be minimized while dye removal and turbidity removal were maximized at 28 deg. C reaction temperature. Optimized conditions under specified cost driven constraints were obtained for the highest desirability at 6.7 mA/cm 2 , 5.9 mA/cm 2 and 5.4 mA/cm 2 current density and 3.1 g/L, 2.5 g/L and 2.8 g/L NaCl concentration for Levafix Blue CA, Levafix Red CA and Levafix Yellow CA reactive textile dyes, respectively

  10. ELECTROCHEMICAL BEHAVIOUR OF METHYLENE BLUE IN NON-AQUEOUS SOLVENTS

    International Nuclear Information System (INIS)

    Caram, J.A.; Suárez, J.F. Martínez; Gennaro, A.M.; Mirífico, M.V.

    2015-01-01

    Graphical abstract: Display Omitted - Highlights: • The dye is electro-reduced in two separated monoelectronic charge transfers. • Solvent/supporting electrolyte/acid/base modifies the electrochemical parameters. • A dissociation equilibrium of the dye in non-aqueous solvent is proposed. • The electro-generated and stable dye-radical is also chemically produced in EDA or KOH/DMF. • A new species is reversibly formed in KOH/EtOH or ACN. - Abstract: The electrochemical behaviour of methylene blue in solution of non-aqueous solvents with different supporting electrolytes was studied by cyclic voltammetry. Dye electro-reduction presents two well-defined processes of monoelectronic charge transfer yielding a free radical in the first process and an anion in the second electron transfer. Free radical and anion are long living species in some of the studied media. Effects of supporting electrolyte and solvent on the peak potentials, the peak current functions and the reversibility of the charge transfer processes are reported. A dissociation equilibrium of the dye in solution of non-aqueous solvents and the acid or base added determine markedly the electrochemical responses. In the particular cases of KOH/DMF or EDA basic media the chemical formation of the stable methylene blue radical was detected and it was characterized by EPR spectroscopy. A general reaction scheme is proposed

  11. Electrochemical investigations of ion-implanted oxide films

    International Nuclear Information System (INIS)

    Schultze, J.W.; Danzfuss, B.; Meyer, O.; Stimming, U.

    1985-01-01

    Oxide films (passive films) of 40-50 nm thickness were prepared by anodic polarization of hafnium and titanium electrodes up to 20 V. Multiple-energy ion implantation of palladium, iron and xenon was used in order to obtain modified films with constant concentration profiles of the implanted ions. Rutherford backscattering, X-ray photoelectron spectroscopy measurements and electrochemical charging curves prove the presence of implanted ions, but electrochemical and photoelectrochemical measurements indicate that the dominating effect of ion implantation is the disordering of the oxide film. The capacity of hafnium electrodes increases as a result of an increase in the dielectric constant D. For titanium the Schottky-Mott analysis shows that ion implantation causes an increase in D and the donor concentration N. Additional electronic states in the band gap which are created by the implantation improve the conductivity of the semiconducting or insulating films. This is seen in the enhancement of electron transfer reactions and its disappearance during repassivation and annealing. Energy changes in the band gap are derived from photoelectrochemical measurements; the absorption edge of hafnium oxide films decreases by approximately 2 eV because of ion implantation, but it stays almost constant for titanium oxide films. All changes in electrochemical behavior caused by ion implantation show little variation with the nature of the implanted ion. Hence the dominating effect seems to be a disordering of the oxide. (Auth.)

  12. Biotin determination in food supplements by an electrochemical magneto biosensor.

    Science.gov (United States)

    Kergaravat, Silvina V; Gómez, Gabriel A; Fabiano, Silvia N; Laube Chávez, Tamara I; Pividori, María I; Hernández, Silvia R

    2012-08-15

    An electrochemical magneto biosensor for the rapid determination of biotin in food samples is reported. The affinity reaction was performed on streptavidin-modified magnetic microbeads as a solid support in a direct competitive format. The biotinylated horseradish peroxidase enzyme (biotin-HRP) competes with free biotin in the sample for the binding sites of streptavidin on the magnetic microbeads. The modified magnetic beads were then easily captured by a magneto graphite-epoxy composite electrode and the electrochemical signal was based on the enzymatic activity of the HRP enzyme under the addition of H(2)O(2) as the substrate and o-phenilendiamine as cosubstrate. The response was electrochemically detected by square wave voltammetry. The limit of detection was 8.4×10(-8) mol L(--1) of biotin (20 μg L(--1)) with a dynamic range from 0.94 to 2.4×10(-7) mol L(--1). Biotin-fortified commercial dietary supplement and infant formula samples were evaluated obtaining good performances in the results. Total time of analysis was 40 min per 20 assays. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Electrochemical reduction of imazamethabenz methyl on mercury and carbon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Montoya, Mercedes, E-mail: mmontoya@uhu.e [Departamento de Ingenieria Quimica, Quimica Fisica y Quimica Organica, Universidad de Huelva, Campus El Carmen, Facultad de Ciencias Experimentales, E-21071 Huelva (Spain); Pintado, Sara; Rodriguez Mellado, Jose Miguel [Departamento de Quimica Fisica y Termodinamica Aplicada, Universidad de Cordoba, Campus Universitario de Rabanales, edificio ' Marie Curie' , E-14014 Cordoba (Spain)

    2010-03-30

    This paper presents polarographic and voltammetric studies of the reduction of the herbicide imazamethabenz methyl (2/3-methyl-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-p-toluate), on mercury and carbon electrodes. The electrochemical studies were performed in strongly acidic media (0.1-2.7 M H{sub 2}SO{sub 4}) as well as in the pH range of 1-12. The overall reduction process involves the uptake of two electrons. The results obtained in polarography show that there is the reduction of two species, related via an acid-base equilibrium, and having very close reduction potentials. The voltammetric results obtained with a glassy carbon electrode were very similar to those observed on mercury electrodes. The reducible group in the molecule is the imidazolinone ring. In strongly acidic media (pH < pK{sub a}), the reaction mechanism proposed is the reduction of the protonated herbicide by an electrochemical-chemical-electrochemical (ECE) process, being the r.d.s. the second electron transfer. At pH > pK{sub a} the neutral form of the herbicide is reduced and the second electron transfer becomes reversible or quasi-reversible. In basic media, the species reduced is the deprotonated imazamethabenz methyl and the r.d.s. is the second electron transfer.

  14. Electrochemical components employing polysiloxane-derived binders

    Science.gov (United States)

    Delnick, Frank M.

    2013-06-11

    A processed polysiloxane resin binder for use in electrochemical components and the method for fabricating components with the binder. The binder comprises processed polysiloxane resin that is partially oxidized and retains some of its methyl groups following partial oxidation. The binder is suitable for use in electrodes of various types, separators in electrochemical devices, primary lithium batteries, electrolytic capacitors, electrochemical capacitors, fuel cells and sensors.

  15. Electrochemical ion separation in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Spoerke, Erik David; Ihlefeld, Jon; Waldrip, Karen; Wheeler, Jill S.; Brown-Shaklee, Harlan James; Small, Leo J.; Wheeler, David R.

    2017-12-19

    A purification method that uses ion-selective ceramics to electrochemically filter waste products from a molten salt. The electrochemical method uses ion-conducting ceramics that are selective for the molten salt cations desired in the final purified melt, and selective against any contaminant ions. The method can be integrated into a slightly modified version of the electrochemical framework currently used in pyroprocessing of nuclear wastes.

  16. Management of processes of electrochemical dimensional processing

    Science.gov (United States)

    Akhmetov, I. D.; Zakirova, A. R.; Sadykov, Z. B.

    2017-09-01

    In different industries a lot high-precision parts are produced from hard-processed scarce materials. Forming such details can only be acting during non-contact processing, or a minimum of effort, and doable by the use, for example, of electro-chemical processing. At the present stage of development of metal working processes are important management issues electrochemical machining and its automation. This article provides some indicators and factors of electrochemical machining process.

  17. AC impedance electrochemical modeling of lithium-ion positive electrodes

    International Nuclear Information System (INIS)

    Dees, D.; Gunen, E.; Abraham, D.; Jansen, A.; Prakash, J.

    2004-01-01

    Under Department of Energy's Advanced Technology Development Program,various analytical diagnostic studies are being carried out to examine the lithium-ion battery technology for hybrid electric vehicle applications, and a series of electrochemical studies are being conducted to examine the performance of these batteries. An electrochemical model was developed to associate changes that were observed in the post-test analytical diagnostic studies with the electrochemical performance loss during testing of lithium ion batteries. While both electrodes in the lithium-ion cell have been studied using a similar electrochemical model, the discussion here is limited to modeling of the positive electrode. The positive electrode under study has a composite structure made of a layered nickel oxide (LiNi 0.8 Co 0.15 Al 0.05 O 2 ) active material, a carbon black and graphite additive for distributing current, and a PVDF binder all on an aluminum current collector. The electrolyte is 1.2M LiPF 6 dissolved in a mixture of EC and EMC and a Celgard micro-porous membrane is used as the separator. Planar test cells (positive/separator/negative) were constructed with a special fixture and two separator membranes that allowed the placement of a micro-reference electrode between the separator membranes (1). Electrochemical studies including AC impedance spectroscopy were then conducted on the individual electrodes to examine the performance and ageing effects in the cell. The model was developed by following the work of Professor Newman at Berkeley (2). The solid electrolyte interface (SEI) region, based on post-test analytical results, was assumed to be a film on the oxide and an oxide layer at the surface of the oxide. A double layer capacity was added in parallel with the Butler-Volmer kinetic expression. The pertinent reaction, thermodynamic, and transport equations were linearized for a small sinusoidal perturbation (3). The resulting system of differential equations was solved

  18. Selective electrochemical determination of homocysteine in the presence of cysteine and glutathione

    International Nuclear Information System (INIS)

    Salehzadeh, Hamid; Mokhtari, Banafsheh; Nematollahi, Davood

    2014-01-01

    Graphical abstract: 3,5-Di-tert-buthylcatechol was used for the selective electrochemical determination of homocysteine in the presence of cysteine and glutathione at the glassy carbon and carbon nanotube modified glassy carbon electrode. - Highlights: • Selective electrochemical determination of homocysteine. • Catalytic electron transfer of 3,5-di-tert-buthylcatechol in the presence of homocysteine. • Michael type addition reaction of electrochemically generated 3,5-di-tert-buthyl-o-benzoquinone with glutathione. - Abstract: The electrochemical oxidation of 3,5-di-tert-buthylcatechol in the presence of homocysteine was used for the selective electrochemical determination of homocysteine in the presence of cysteine and glutathione at a glassy carbon and a glassy carbon electrode modified with carbon nanotube. The results revealed that the electrochemically generated 3,5-di-tert-butylcyclohexa-3,5-diene-1,2-dione exhibits high catalytic activity toward homocysteine oxidation at reduced over-potential and low catalytic activity for oxidation of cysteine. The catalytic activity 3,5-di-tert-butylcyclohexa-3,5-diene-1,2-dione toward cysteine was suppressed in the presence of 4-N,N-dimethylaminocinnamaldehyde. Contrary to homocysteine and cysteine, the reaction of glutathione with 3,5-di-tert-butylcyclohexa-3,5-diene-1,2-dione is a substituation reaction. This method exhibits three dynamic linear ranges of 2.5 to 10 μmol L −1 , 10 to 100 μmol L −1 and 100 to 1000 μmol L −1 , and a lower detection limit (3σ) of 0.89 ± 3.53% μmol L −1 for homocysteine

  19. Electrochemical DNA biosensor for bovine papillomavirus detection using polymeric film on screen-printed electrode.

    Science.gov (United States)

    Nascimento, Gustavo A; Souza, Elaine V M; Campos-Ferreira, Danielly S; Arruda, Mariana S; Castelletti, Carlos H M; Wanderley, Marcela S O; Ekert, Marek H F; Bruneska, Danyelly; Lima-Filho, José L

    2012-01-01

    A new electrochemical DNA biosensor for bovine papillomavirus (BPV) detection that was based on screen-printed electrodes was comprehensively studied by electrochemical methods of cyclic voltammetry (CV) and differential pulse voltammetry (DPV). A BPV probe was immobilised on a working electrode (gold) modified with a polymeric film of poly-L-lysine (PLL) and chitosan. The experimental design was carried out to evaluate the influence of polymers, probe concentration (BPV probe) and immobilisation time on the electrochemical reduction of methylene blue (MB). The polymer poly-L-lysine (PLL), a probe concentration of 1 μM and an immobilisation time of 60 min showed the best result for the BPV probe immobilisation. With the hybridisation of a complementary target sequence (BPV target), the electrochemical signal decreased compared to a BPV probe immobilised on the modified PLL-gold electrode. Viral DNA that was extracted from cattle with papillomatosis also showed a decrease in the MB electrochemical reduction, which suggested that the decreased electrochemical signal corresponded to a bovine papillomavirus infection. The hybridisation specificity experiments further indicated that the biosensor could discriminate the complementary sequence from the non-complementary sequence. Thus, the results showed that the development of analytical devices, such as a biosensor, could assist in the rapid and efficient detection of bovine papillomavirus DNA and help in the prevention and treatment of papillomatosis in cattle. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Device for geophysical prospecting of ore deposits. [for deposits featuring electronic conductivity; based on polarization curves to determine electrochemical potential

    Energy Technology Data Exchange (ETDEWEB)

    Ryss, J.M.; Bakhtin, J.G.; Chamaev, V.N.; Panteleimonov, V.M.

    1976-03-30

    A device is described for geophysical prospecting of ore deposits, wherein the supply circuit is made up of a direct-current source provided with apparatus for changing current intensity, a main current-carrying electrode having electrical contact with an ore body, and an auxiliary current-carrying electrode electrically connected with the medium enclosing said ore body. Connected in said supply circuit at the main current carrying electrode is a current intensity detector connected whereto is a series circuit made up of a compensating voltage generator, a summing unit and a unit for measuring the potentials of electrochemical reactions on the surface of the ore body. A recording unit is connected to the unit for setting values of the potentials of electrochemical reactions and to record in the form of polarization curves the relationships between the set potentials of electrochemical reactions on the surface of the ore body and the currents flowing through the surface of that body. (DDA)

  1. Fe3O4/carbon hybrid nanoparticle electrodes for high-capacity electrochemical capacitors.

    Science.gov (United States)

    Lee, Jun Seop; Shin, Dong Hoon; Jun, Jaemoon; Lee, Choonghyeon; Jang, Jyongsik

    2014-06-01

    Fe3O4/carbon hybrid nanoparticles (FeCHNPs) were fabricated using dual-nozzle electrospraying, vapor deposition polymerization (VDP), and carbonization. FeOOH nanoneedles decorated with polypyrrole (PPy) nanoparticles (FePNPs) were fabricated by electrospraying pristine PPy mixed with FeCl3 solution, followed by heating stirring reaction. A PPy coating was then formed on the FeOOH nanoneedles through a VDP process. FeCHNPs were produced through carbonization of PPy and FeOOH phase transitions. These hybrid carbon nanoparticles (NPs) were used to build electrodes of electrochemical capacitors. The specific capacitance of the FeCHNPs was 455 F g(-1), which is larger than that of pristine PPy NPs (105 F g(-1)) or other hybrid PPy NPs. Furthermore, the FeCHNP-based capacitors exhibited better cycle stability during charge-discharge cycling than other hybrid NP capacitors. This is because the carbon layer on the Fe3 O4 surface formed a protective coating, preventing damage to the electrode materials during the charge-discharge processes. This fabrication technique is an effective approach for forming stable carbon/metal oxide nanostructures for energy storage applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Direct electrochemistry and electrochemical catalysis of immobilized hemoglobin in an ethanol-water mixture.

    Science.gov (United States)

    Liu, Hui-Hong; Wan, Yong-Qing; Zou, Guo-Lin

    2006-08-01

    Hemoglobin (Hb) was immobilized on a glassy carbon electrode (GCE) surface by konjac glucomannan (KGM). KGM hydrogel films on GCE have relatively high stabilities in aqueous-ethanol mixtures. The entrapped hemoglobin undergoes fast direct electron transfer reactions in aqueous-organic solvent mixtures. The peak current is bigger, the peak-to-peak separation smaller and the formal potential observed in the cyclic voltammogram is more negative for Hb-KGM/GCE in ethanol-PBS compared to Hb-KGM/GCE in PBS. The electrochemical properties of the Hb in aqueous-organic solution are almost unchanged from with those observed for the purely aqueous solution, suggesting that water pools in the KGM hydrogel play an important role in preventing changes in conformation and making proteins unreactive with polar organic solvents. The immobilized Hb was able to catalyze the reduction of nitric oxide, peroxides (hydrogen peroxide, cumene hydroperoxide, t-butyl hydroperoxide, 2-butanone peroxide), and the dehalogenation of haloethanes (hexachloroethane, pentachloroethane, tetrachloroethane, etc.). The stability and reproducibility of the modified electrode meant that it could be used to determine these substances.

  3. Synthesis of naturally-derived macromolecules through simplified electrochemically mediated ATRP

    Directory of Open Access Journals (Sweden)

    Paweł Chmielarz

    2017-11-01

    Full Text Available The flavonoid-based macroinitiator was received for the first time by the transesterification reaction of quercetin with 2-bromoisobutyryl bromide. In accordance with the “grafting from” strategy, a naturally-occurring star-like polymer with a polar 3,3',4',5,6-pentahydroxyflavone core and hydrophobic poly(tert-butyl acrylate (PtBA side arms was synthesized via a simplified electrochemically mediated ATRP (seATRP, utilizing only 78 ppm by weight (wt of a catalytic CuII complex. To demonstrate the possibility of temporal control, seATRP was carried out utilizing a multiple-step potential electrolysis. The rate of the polymerizations was well-controlled by applying optimal potential values during preparative electrolysis to prevent the possibility of intermolecular coupling of the growing polymer arms. This appears to be the first report using on-demand seATRP for the synthesis of QC-(PtBA-Br5 pseudo-star polymers. The naturally-derived macromolecules showed narrow MWDs (Đ = 1.08–1.11. 1H NMR spectral results confirm the formation of quercetin-based polymers. These new flavonoid-based polymer materials may find applications as antifouling coatings and drug delivery systems.

  4. Hydrodynamics of an Electrochemical Membrane Bioreactor

    Science.gov (United States)

    Wang, Ya-Zhou; Wang, Yun-Kun; He, Chuan-Shu; Yang, Hou-Yun; Sheng, Guo-Ping; Shen, Jin-You; Mu, Yang; Yu, Han-Qing

    2015-05-01

    An electrochemical membrane bioreactor (EMBR) has recently been developed for energy recovery and wastewater treatment. The hydrodynamics of the EMBR would significantly affect the mass transfers and reaction kinetics, exerting a pronounced effect on reactor performance. However, only scarce information is available to date. In this study, the hydrodynamic characteristics of the EMBR were investigated through various approaches. Tracer tests were adopted to generate residence time distribution curves at various hydraulic residence times, and three hydraulic models were developed to simulate the results of tracer studies. In addition, the detailed flow patterns of the EMBR were acquired from a computational fluid dynamics (CFD) simulation. Compared to the tank-in-series and axial dispersion ones, the Martin model could describe hydraulic performance of the EBMR better. CFD simulation results clearly indicated the existence of a preferential or circuitous flow in the EMBR. Moreover, the possible locations of dead zones in the EMBR were visualized through the CFD simulation. Based on these results, the relationship between the reactor performance and the hydrodynamics of EMBR was further elucidated relative to the current generation. The results of this study would benefit the design, operation and optimization of the EMBR for simultaneous energy recovery and wastewater treatment.

  5. Innovative oxide materials for electrochemical energy conversion

    Science.gov (United States)

    Wachsman, Eric D.

    2012-02-01

    Research in functional materials has progressed from those materials exhibiting structural to electronic functionality. The study of ion conducting ceramics ushers in a new era of ``chemically functional materials.'' This chemical functionality arises out of the defect equilibria of these materials, and results in the ability to transport chemical species and actively participate in chemical reactions at their surface. Moreover, this chemical functionality provides a promise for the future whereby the harnessing of our natural hydrocarbon energy resources can shift from inefficient and polluting combustion - mechanical methods to direct electrochemical conversion. The unique properties of these materials and their applications will be described. The focus will be on the application of ion conducting ceramics to energy conversion and storage, chemical sensors, chemical separation and conversion, and life support systems. Results presented will include development of record high power density (3 kW/kg) solid oxide fuel cells, NOx/CO species selective solid-state sensors, high yield membrane reactors, and regenerative life support systems that reduce CO2 to O2 and solid C.

  6. Disposable copper-based electrochemical sensor for anodic stripping voltammetry.

    Science.gov (United States)

    Pei, Xing; Kang, Wenjing; Yue, Wei; Bange, Adam; Heineman, William R; Papautsky, Ian

    2014-05-20

    In this work, we report the first copper-based point-of-care sensor for electrochemical measurements demonstrated by zinc determination in blood serum. Heavy metals require careful monitoring, yet current methods are too complex for a point-of-care system. Electrochemistry offers a simple approach to metal detection on the microscale, but traditional carbon, gold (Au), or platinum (Pt) electrodes are difficult or expensive to microfabricate, preventing widespread use. Our sensor features a new low-cost electrode material, copper, which offers simple fabrication and compatibility with microfabrication and PCB processing, while maintaining competitive performance in electrochemical detection. Anodic stripping voltammetry of zinc using our new copper-based sensors exhibited a 140 nM (9.0 ppb) limit of detection (calculated) and sensitivity greater than 1 μA/μM in the acetate buffer. The sensor was also able to determine zinc in a bovine serum extract, and the results were verified with independent sensor measurements. These results demonstrate the advantageous qualities of this lab-on-a-chip electrochemical sensor for clinical applications, which include a small sample volume (μL scale), reduced cost, short response time, and high accuracy at low concentrations of analyte.

  7. Electrochemical Sensor for Explosives Precursors’ Detection in Water

    Directory of Open Access Journals (Sweden)

    Cloé Desmet

    2017-03-01

    Full Text Available Although all countries are intensifying their efforts against terrorism and increasing their mutual cooperation, terrorist bombing is still one of the greatest threats to society. The discovery of hidden bomb factories is of primary importance in the prevention of terrorism activities. Criminals preparing improvised explosives (IE use chemical substances called precursors. These compounds are released in the air and in the waste water during IE production. Tracking sources of precursors by analyzing air or wastewater can then be an important clue for bomb factories’ localization. We are reporting here a new multiplex electrochemical sensor dedicated to the on-site simultaneous detection of three explosive precursors, potentially used for improvised explosive device preparation (hereafter referenced as B01, B08, and B15, for security disclosure reasons and to avoid being detrimental to the security of the counter-explosive EU action. The electrochemical sensors were designed to be disposable and to combine ease of use and portability in a screen-printed eight-electrochemical cell array format. The working electrodes were modified with different electrodeposited metals: gold, palladium, and platinum. These different coatings giving selectivity to the multi-sensor through a “fingerprint”-like signal subsequently analyzed using partial least squares-discriminant analysis (PLS-DA. Results are given regarding the detection of the three compounds in a real environment and in the presence of potentially interfering species.

  8. Direct electron transfer: an approach for electrochemical biosensors with higher selectivity and sensitivity

    Directory of Open Access Journals (Sweden)

    Freire Renato S.

    2003-01-01

    Full Text Available The most promising approach for the development of electrochemical biosensors is to establish a direct electrical communication between the biomolecules and the electrode surface. This review focuses on advances, directions and strategies in the development of third generation electrochemical biosensors. Subjects covered include a brief description of the fundamentals of the electron transfer phenomenon and amperometric biosensor development (different types and new oriented enzyme immobilization techniques. Special attention is given to different redox enzymes and proteins capable of electrocatalyzing reactions via direct electron transfer. The analytical applications and future trends for third generation biosensors are also presented and discussed.

  9. In-situ SEM microchip setup for electrochemical experiments with water based solutions

    DEFF Research Database (Denmark)

    Jensen, Eric; Købler, C.; Jensen, Palle Skovhus

    2013-01-01

    windows, microelectrodes and an electrochemical reference electrode. The system, called the EC-SEM Cell, is used to study electrochemical reactions in liquid with a standard scanning electron microscope (SEM). The central component is a microfabricated chip with a thin (50nm) Si-rich silicon nitride (Si......-situ EC experiments. Before the EC experiments we characterized the beam current being deposited in the liquid as this will affect the experiments. The first EC experiment shows the influence of the electron-beam (e-beam) on a nickel solution by inducing electroless nickel deposition on the window when...

  10. Electrochemical mechanism of silver nanoprisms transformation in aqueous solutions containing the halide ions

    Science.gov (United States)

    Abkhalimov, E. V.; Timofeev, A. A.; Ershov, B. G.

    2018-02-01

    The transformation process of 20-50 nm silver nanoprisms in the presence of Cl-, Br-, and I- ions was studied. The threshold concentrations of halide ions that initiate the transformation do not depend on the size of nanoprisms. It was shown that the structure change is caused by the formation of poorly soluble silver complexes on nanoprisms and occurs by an electrochemical mechanism. The induction period preceding the onset of shape transformation is related to the formation of silver halide nanoelectrodes. The electrochemical reactions involving silver and silver halide nanoelectrodes induce restructuring of silver particles the efficiency of which is determined by electrode potentials. [Figure not available: see fulltext.

  11. Mediated electrochemical hazardous waste destruction

    International Nuclear Information System (INIS)

    Hickman, R.G.; Farmer, J.C.; Wang, F.T.

    1992-03-01

    There are few permitted processes for mixed waste (radioactive plus chemically hazardous) treatment. We are developing an electrochemical process, based upon mediated electrochemical oxidation (MEO), that converts toxic organic components of mixed waste to water, carbon dioxide, and chloride or chloride precipitates. Aggressive oxidizer ions such as Ag 2+ , Co 3+ , or Fe 3+ are produced at an anode. These can attack organic molecules directly, and may also produce hydroxyl free radicals that promote destruction. Solid and liquid radioactive waste streams containing only inorganic radionuclide forms may be treated with existing technology and prepared for final disposal. The coulombic efficiency of the process has been determined, as well as the destruction efficiency for ethylene glycol, a surrogate waste. In addition, hazardous organic materials are becoming very expensive to dispose of and when they are combined with transuranic radioactive elements no processes are presently permitted. Mediated electrochemical oxidation is an ambient- temperature aqueous-phase process that can be used to oxidize organic components of mixed wastes. Problems associated with incineration, such as high-temperature volatilization of radionuclides, are avoided. Historically, Ag(II) has been used as a mediator in this process. Fe(III) and Co(III) are attractive alternatives to Ag(II) since they form soluble chlorides during the destruction of chlorinated solvents. Furthermore, silver itself is toxic heavy metal. Quantitative data have been obtained for the complete oxidation of ethylene glycol by Fe(III) and Co(III). Though ethylene glycol is a nonhalogenated organic, these data have enabled us to make direct comparisons of activities of Fe(III) and Co(III) with Ag(II). Very good quantitative data for the oxidation of ethylene glycol by Ag(II) had already been collected

  12. Electrochemical co-reduction synthesis of graphene/nano-gold composites and its application to electrochemical glucose biosensor

    International Nuclear Information System (INIS)

    Wang, Xiaolin; Zhang, Xiaoli

    2013-01-01

    Graphical abstract: - Highlights: • Graphene/nano-Au composite was synthesized by electrochemical co-reduction method in one step. • Glucose oxidase achieves direct electrochemistry on the graphene/nano-Au composite film. • The glucose biosensor shows a high sensitivity of 56.93 μA mM −1 cm −2 toward glucose. • Glucose was detected with a wide linear range and low detection limit. - Abstract: A simple, green and controllable approach was employed for electrochemical synthesize of the graphene/nano-Au composites. The process was that graphene oxide and HAuCl 4 was electrochemically co-reduced onto the glassy carbon electrode (GCE) by cyclic voltammetry in one step. The obtained graphene/nano-Au/GCE exhibited high electrocatalytic activity toward H 2 O 2 , which resulted in a remarkable decrease in the overpotential of H 2 O 2 electrochemical oxidation compared with bare GCE. Such electrocatalytic behavior of the graphene/nano-Au/GCE permitted effective low-potential amperometric biosensing of glucose via the incorporation of glucose oxidase (GOD) with graphene/nano-Au. An obvious advantage of this enzyme electrode (graphene/nano-Au/GOD/GCE) was that the graphene/nano-Au nanocomposites provided a favorable microenvironment for GOD and facilitated the electron transfer between the active center of GOD and electrode. The immobilized GOD showed a direct, reversible redox reaction. Furthermore, the graphene/nano-Au/GOD/GCE was used as a glucose biosensor, displaying a low detection limit of 17 μM (S/N = 3), a high sensitivity of 56.93 μA mM −1 cm −2 , acceptable reproducibility, very good stability, selectivity and anti-interference ability

  13. Electrochemical properties of quaternary ammonium salts for electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Ue, Makoto; Takeda, Masayuki; Takehara, Masahiro; Mori, Shoichiro [Mitsubishi Chemical Corp., Inashiki, Ibaraki (Japan). Tsukuba Research Center

    1997-08-01

    The limiting reduction and oxidation potentials and electrolytic conductivities of new quaternary ammonium salts were examined for electrochemical capacitor applications, whose anions have already been tested as lithium salts for lithium battery applications. The anodic stability was in the following order BR{sub 4}{sup {minus}} < ClO{sub 4}{sup {minus}} {le} CF{sub 3}SO{sub 3}{sup {minus}} < (CF{sub 3}SO{sub 2}){sub 2}N{sup {minus}} {le} C{sub 4}F{sub 9}SO{sub 3}{sup {minus}} < BF{sub 4}{sup {minus}} < PF{sub 6}{sup {minus}} {le} AsF{sub 6}{sup {minus}} < SbF{sub 6}{sup {minus}}. The electrolytic conductivities of Me{sub 4{minus}n}Et{sub n}N(CF{sub 3}SO{sub 2}){sub 2}N (n = 0--4) were examined in comparison with Me{sub 4{minus}n}Et{sub n}NBF{sub 4} counterparts. These imide salts showed good solubility, relatively high conductivity, and anodic stability in propylene carbonate. Et{sub 4}N(CF{sub 3}SO{sub 2}){sub 2}N was found to be a good supporting salt for low permittivity organic solvents, and it afforded a highly conductive electrolyte system based on the ethylene carbonate-dimethyl carbonate mixed solvent, which is useful for electrochemical capacitor applications.

  14. Nanoporous carbon for electrochemical capacitors.

    Energy Technology Data Exchange (ETDEWEB)

    Siegal, Michael P.; Bunker, Bruce Conrad; Limmer, Steven J.; Yelton, William Graham

    2010-05-01

    Nanoporous carbon (NPC) is a purely graphitic material with highly controlled densities ranging from less than 0.1 to 2.0 g/cm3, grown via pulsed-laser deposition. Decreasing the density of NPC increases the interplanar spacing between graphene-sheet fragments. This ability to tune the interplanar spacing makes NPC an ideal model system to study the behavior of carbon electrodes in electrochemical capacitors and batteries. We examine the capacitance of NPC films in alkaline and acidic electrolytes, and measure specific capacitances as high as 242 F/g.

  15. Nanoelectrode array for electrochemical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yelton, William G [Sandia Park, NM; Siegal, Michael P [Albuquerque, NM

    2009-12-01

    A nanoelectrode array comprises a plurality of nanoelectrodes wherein the geometric dimensions of the electrode controls the electrochemical response, and the current density is independent of time. By combining a massive array of nanoelectrodes in parallel, the current signal can be amplified while still retaining the beneficial geometric advantages of nanoelectrodes. Such nanoelectrode arrays can be used in a sensor system for rapid, non-contaminating field analysis. For example, an array of suitably functionalized nanoelectrodes can be incorporated into a small, integrated sensor system that can identify many species rapidly and simultaneously under field conditions in high-resistivity water, without the need for chemical addition to increase conductivity.

  16. Nanoporous carbon for electrochemical capacitors.

    Energy Technology Data Exchange (ETDEWEB)

    Overmyer, Donald L.; Siegal, Michael P.; Bunker, Bruce Conrad; Limmer, Steven J.; Yelton, William Graham

    2010-04-01

    Nanoporous carbon (NPC) is a purely graphitic material with highly controlled densities ranging from less than 0.1 to 2.0 g/cm3, grown via pulsed-laser deposition. Decreasing the density of NPC increases the interplanar spacing between graphene-sheet fragments. This ability to tune the interplanar spacing makes NPC an ideal model system to study the behavior of carbon electrodes in electrochemical capacitors and batteries. We examine the capacitance of NPC films in alkaline and acidic electrolytes, and measure specific capacitances as high as 242 F/g.

  17. Lead-nickel electrochemical batteries

    CERN Document Server

    Glaize, Christian

    2012-01-01

    The lead-acid accumulator was introduced in the middle of the 19th Century, the diverse variants of nickel accumulators between the beginning and the end of the 20th Century. Although old, these technologies are always very present on numerous markets. Unfortunately they are still not used in optimal conditions, often because of the misunderstanding of the internal electrochemical phenomena.This book will show that batteries are complex systems, made commercially available thanks to considerable amounts of scientific research, empiricism and practical knowledge. However, the design of

  18. Printed-Compliant Electrochemical Systems

    Science.gov (United States)

    Gaikwad, Abhinav Machhindra

    Compliant electronic devices such as health monitoring tags, wearable electronics, fabricated using add-on printing techniques or by patterning traditional silicon based electronics in ultrathin format, enable them to flex, stretch and twist without any noticeable change in performance. These devices require a power source---a primary or secondary battery---to power the electronics. Traditional forms of batteries are bulky and negate the advantages of this new class of devices. Herein, I investigate various printing techniques and architectures that enable compliant batteries and study the performance of such batteries under mechanical deformations. Firstly, this dissertation investigates electrochemical-mechanical performance of a dispenser printed micro-battery using a microfluidic cell. Nanoparticulate silver ink was printed and cured to form silver electrodes, which was charged in-situ to form a silver-zinc battery. The electrochemical performance of the silver-zinc micro-battery was similar to macro-sized batteries. The shear stress generated by flow of electrolyte over the electrode was used to emulate the shear stress generated during flexing and was used as a tool to study the shear strength of the silver electrode at different state of charge. The dissertation then investigates supported architecture as a reinforcement to maintain the performance of the battery under strain. We demonstrate a highly flexible Zn-MnO2 alkalinebattery by embedding the electrochemically active particles in a mesh support. The mesh support absorbs the stresses generated during flexing. A Similar principle was used to make a stretchable battery. The backbone of the stretchable electrode was a stretchable fabric with silver-coated fibers weaved through a rubber network, which served as the current collector. The fabric was coated with Zn and MnO2 to form a stretchable electrode. Due to the weave architecture the electrode could stretch by 100% without any loss is contact between

  19. Flora rapid reaction forces

    Directory of Open Access Journals (Sweden)

    Виктор Васильевич Туганаев

    2015-10-01

    Full Text Available Flora rapid reaction forces ­– there are explerents that have high productivity and weak competitiveness. Their innately functional allocation is to plant disturbed acres as soon as possible preventing by that biosphere homeostasis disturbance. Disturbed acres were used to take place in geological history. Nowadays they take especially big areas. Considering a historical line of Dactylis glomerata L. authors suggest to separate out an especial group of anthropochores which they call medieophytes

  20. Efficient electrochemical CO2 conversion powered by renewable energy.

    Science.gov (United States)

    Kauffman, Douglas R; Thakkar, Jay; Siva, Rajan; Matranga, Christopher; Ohodnicki, Paul R; Zeng, Chenjie; Jin, Rongchao

    2015-07-22

    The catalytic conversion of CO2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au25 nanoclusters as renewably powered CO2 conversion electrocatalysts with CO2 → CO reaction rates between 400 and 800 L of CO2 per gram of catalytic metal per hour and product selectivities between 80 and 95%. These performance metrics correspond to conversion rates approaching 0.8-1.6 kg of CO2 per gram of catalytic metal per hour. We also present data showing CO2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 10(6) molCO2 molcatalyst(-1) during a multiday (36 h total hours) CO2 electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 10(6) and 4 × 10(6) molCO2 molcatalyst(-1) were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO2 conversion systems will produce a net increase in CO2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies are sufficient

  1. Rational synthesis of silver vanadium oxides/polyaniline triaxial nanowires with enhanced electrochemical property.

    Science.gov (United States)

    Mai, Liqiang; Xu, Xu; Han, Chunhua; Luo, Yanzhu; Xu, Lin; Wu, Yimin A; Zhao, Yunlong

    2011-11-09

    We designed and successfully synthesized the silver vanadium oxides/polyaniline (SVO/PANI) triaxial nanowires by combining in situ chemical oxidative polymerization and interfacial redox reaction based on β-AgVO(3) nanowires. The β-AgVO(3) core and two distinct layers can be clearly observed in single triaxial nanowire. Fourier transformed infrared spectroscopic and energy dispersive X-ray spectroscopic investigations indicate that the outermost layer is PANI and the middle layer is Ag(x)VO((2.5+0.5x)) (x < 1), which may result from the redox reaction of Ag(+) and aniline monomers at the interface. The presence of the Ag particle in a transmission electron microscopy image confirms the occurrence of the redox reaction. The triaxial nanowires exhibit enhanced electrochemical performance. This method is shown to be an effective and facile technique for improving the electrochemical performance and stability of nanowire electrodes for applications in Li ion batteries.

  2. Corrosion Prevention of Aluminum Nanoparticles by a Polyurethane Coating.

    Science.gov (United States)

    Nishimura, Toshiyasu; Raman, Vedarajan

    2014-06-19

    In order to prevent corrosion, aluminum nanoparticles were coated with a polyurethane polymer. The coverage of the polyurethane polymer was controlled from 0 to 100%, which changed the corrosion rate of the nanoparticles quantitatively. The surface of the polymer coating was investigated by Transmission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM), and the corrosion resistance of the nanoparticles was estimated by a wet/dry corrosion test on a Pt plate with a NaCl solution. From a TEM with EDAX analysis, the 10 mass% polymer coated Al particles in the synthesis were almost 100% covered on the surface by a polymer film of 10 nm thick. On the other hand, the 3 mass% polymer coated Al was almost 40% covered by a film. In the AFM, the potential around the Al particles had a relatively low value with the polymer coating, which indicated that the conductivity of the Al was isolated from the Pt plate by the polymer. Both the corrosion and H₂ evolution reaction rates were quantitatively reduced by the mass% of polymer coating. In the case of the 10 mass% coated sample, there was no corrosion of Al nanoparticles. This fact suggested that the electrochemical reaction was suppressed by the polymer coating. Moreover, the reaction rate of Al nanoparticles was suppressed in proportion to the coverage percentage of the coating. Thus, to conclude, it was found that the corrosion rate of Al nanoparticles could be quantitatively suppressed by the coverage percentage of the polymer coating.

  3. Corrosion Prevention of Aluminum Nanoparticles by a Polyurethane Coating

    Directory of Open Access Journals (Sweden)

    Toshiyasu Nishimura

    2014-06-01

    Full Text Available In order to prevent corrosion, aluminum nanoparticles were coated with a polyurethane polymer. The coverage of the polyurethane polymer was controlled from 0 to 100%, which changed the corrosion rate of the nanoparticles quantitatively. The surface of the polymer coating was investigated by Transmission Electron Microscopy (TEM and Atomic Force Microscopy (AFM, and the corrosion resistance of the nanoparticles was estimated by a wet/dry corrosion test on a Pt plate with a NaCl solution. From a TEM with EDAX analysis, the 10 mass% polymer coated Al particles in the synthesis were almost 100% covered on the surface by a polymer film of 10 nm thick. On the other hand, the 3 mass% polymer coated Al was almost 40% covered by a film. In the AFM, the potential around the Al particles had a relatively low value with the polymer coating, which indicated that the conductivity of the Al was isolated from the Pt plate by the polymer. Both the corrosion and H2 evolution reaction rates were quantitatively reduced by the mass% of polymer coating. In the case of the 10 mass% coated sample, there was no corrosion of Al nanoparticles. This fact suggested that the electrochemical reaction was suppressed by the polymer coating. Moreover, the reaction rate of Al nanoparticles was suppressed in proportion to the coverage percentage of the coating. Thus, to conclude, it was found that the corrosion rate of Al nanoparticles could be quantitatively suppressed by the coverage percentage of the polymer coating.

  4. Electrochemical processing of nitrate waste solutions

    Energy Technology Data Exchange (ETDEWEB)

    Genders, D.; Weinberg, N.; Hartsough, D. (Electrosynthesis Co., Inc., Cheektowaga, NY (United States))

    1992-10-07

    The second phase of research performed at The Electrosynthesis Co., Inc. has demonstrated the successful removal of nitrite and nitrate from a synthetic effluent stream via a direct electrochemical reduction at a cathode. It was shown that direct reduction occurs at good current efficiencies in 1,000 hour studies. The membrane separation process is not readily achievable for the removal of nitrites and nitrates due to poor current efficiencies and membrane stability problems. A direct reduction process was studied at various cathode materials in a flow cell using the complete synthetic mix. Lead was found to be the cathode material of choice, displaying good current efficiencies and stability in short and long term tests under conditions of high temperature and high current density. Several anode materials were studied in both undivided and divided cell configurations. A divided cell configuration was preferable because it would prevent re-oxidation of nitrite by the anode. The technical objective of eliminating electrode fouling and solids formation was achieved although anode materials which had demonstrated good stability in short term divided cell tests corroded in 1,000 hour experiments. The cause for corrosion is thought to be F[sup [minus

  5. Lability of nanoparticulate metal complexes in electrochemical speciation analysis

    DEFF Research Database (Denmark)

    van Leeuwen, Herman P.; Town, Raewyn M.

    2016-01-01

    equilibrium with the reduced concentration of the electroactive free M2+ in its diffusion layer. Since the metal ion binding sites are confined to the NP body, the conventional reaction layer in the form of a layer adjacent to the electrode surface is immaterial. Instead an intraparticulate reaction zone may...... of the electrochemical technique is crucial in the lability towards the electrode surface. In contrast, for nanoparticulate complexes it is the dynamics of the exchange of the electroactive metal ion with the surrounding medium that governs the effective lability towards the electrode surface.......Lability concepts are elaborated for metal complexes with soft (3D) and hard (2D) aqueous nanoparticles. In the presence of a non-equilibrium sensor, e.g. a voltammetric electrode, the notion of lability for nanoparticulate metal complexes, M-NP, reflects the ability of the M-NP to maintain...

  6. Low temperature oxidation of hydrocarbons using an electrochemical reactor

    DEFF Research Database (Denmark)

    Ippolito, Davide

    at different reaction temperatures. The study of the effect of the infiltration of different electroactive materials on the electrode behavior has been carried on by the use of electrochemical impedance spectroscopy (EIS). Both the methods have been employed to understand the relationship between the catalytic...... conversion was a complex function of multiple variables: the microstructure of the backbone, the polarization resistance of the electrodes, both at OCV and under polarization, the electrical and morphological properties of the infiltrated material and the specific reaction conditions like the propene......, the LSM/CGO exhibited a strong electrode activation and increase of catalytic activity after the application of prolonged polarization. The infiltration of LSM/CGO backbone with Ce0.9Gd0.1O1.95, heat treated at low temperature to form a continuous layer on the electrode, was the best compromise to obtain...

  7. Electrochemical synthesis and characterization of chloride doped ...

    Indian Academy of Sciences (India)

    Unknown

    (HCl) by potentiodynamic method in an electrochemical cell and studied by cyclic voltammetry and FTIR techniques. The FTIR spectra confirmed Cl– ion doping in the ... were not hygroscopic whereas chloride doped polyaniline films were found to be highly hygroscopic. Keywords. Conducting polymer; electrochemical ...

  8. Hydrogel membrane electrolyte for electrochemical capacitors

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 121; Issue 5. Hydrogel membrane electrolyte for electrochemical capacitors ... In the present study, the preparation and characterization of poly(vinyl alcohol)-based hydrogel membranes (PHMEs) as electrolytes for electrochemical capacitors have been reported.

  9. Method for making an electrochemical cell

    Science.gov (United States)

    Tuller, Harry L.; Kramer, Steve A.; Spears, Marlene A.; Pal, Uday B.

    1996-01-01

    An electrochemical device including a solid electrolyte and solid electrode composed of materials having different chemical compositions and characterized by different electrical properties but having the same crystalline phase is provided. A method for fabricating an electrochemical device having a solid electrode and solid electrolyte characterized by the same crystalline phase is provided.

  10. Three dimensional electrochemical system for neurobiological studies

    DEFF Research Database (Denmark)

    Vazquez, Patricia; Dimaki, Maria; Svendsen, Winnie Edith

    2009-01-01

    In this work we report a novel three dimensional electrode array for electrochemical measurements in neuronal studies. The main advantage of working with these out-of-plane structures is the enhanced sensitivity of the system in terms of measuring electrochemical changes in the environment...

  11. ELECTROCHEMICAL STUDIES OF N'-FERROCENYLMETHYL-N ...

    African Journals Online (AJOL)

    2011-12-31

    Dec 31, 2011 ... All the freshly prepared solutions were degassed under argon gas flow before experiments. 3.2. Electrochemical studies. Electrochemical characterization was carried out on a potentiostat type voltalab 40 of radiometer, with a three-stand electrode cell. Cyclic voltammetric experiments were performed in ...

  12. Solid oxide electrochemical reactor science.

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Neal P. (Colorado School of Mines, Golden, CO); Stechel, Ellen Beth; Moyer, Connor J. (Colorado School of Mines, Golden, CO); Ambrosini, Andrea; Key, Robert J. (Colorado School of Mines, Golden, CO)

    2010-09-01

    Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

  13. Buffered Electrochemical Polishing of Niobium

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Tian, Hui [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); College of William and Mary, Williamsburg, VA (United States); Corcoran, Sean [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2011-03-01

    The standard preparation of superconducting radio-frequency (SRF) cavities made of pure niobium include the removal of a 'damaged' surface layer, by buffered chemical polishing (BCP) or electropolishing (EP), after the cavities are formed. The performance of the cavities is characterized by a sharp degradation of the quality factor when the surface magnetic field exceeds about 90 mT, a phenomenon referred to as 'Q-drop.' In cavities made of polycrystalline fine grain (ASTM 5) niobium, the Q-drop can be significantly reduced by a low-temperature (? 120 °C) 'in-situ' baking of the cavity if the chemical treatment was EP rather than BCP. As part of the effort to understand this phenomenon, we investigated the effect of introducing a polarization potential during buffered chemical polishing, creating a process which is between the standard BCP and EP. While preliminary results on the application of this process to Nb cavities have been previously reported, in this contribution we focus on the characterization of this novel electrochemical process by measuring polarization curves, etching rates, surface finish, electrochemical impedance and the effects of temperature and electrolyte composition. In particular, it is shown that the anodic potential of Nb during BCP reduces the etching rate and improves the surface finish.

  14. Bussing Structure In An Electrochemical Cell

    Science.gov (United States)

    Romero, Antonio L.

    2001-06-12

    A bussing structure for bussing current within an electrochemical cell. The bussing structure includes a first plate and a second plate, each having a central aperture therein. Current collection tabs, extending from an electrode stack in the electrochemical cell, extend through the central aperture in the first plate, and are then sandwiched between the first plate and second plate. The second plate is then connected to a terminal on the outside of the case of the electrochemical cell. Each of the first and second plates includes a second aperture which is positioned beneath a safety vent in the case of the electrochemical cell to promote turbulent flow of gasses through the vent upon its opening. The second plate also includes protrusions for spacing the bussing structure from the case, as well as plateaus for connecting the bussing structure to the terminal on the case of the electrochemical cell.

  15. Revisiting the electrochemical oxidation of ammonia on carbon-supported metal nanoparticle catalysts

    International Nuclear Information System (INIS)

    Li, Zhe-Fei; Wang, Yuxuan; Botte, Gerardine G.

    2017-01-01

    Highlights: • A procedure to pretreat electrocatalysts to study the ammonia oxidation is provided. • N ads and O/OH ads were identified as the major deactivation species that prevent ammonia oxidatoin. • The electrocatalytic activity, thermodynamics, and possible deactivation mechanisms for ammonia oxidation were elucidated. • The onset potential for ammonia oxidation is related to the hydrogen binding energy of the catalyst. • Ammonia electro-oxidation involves a complex decoupled electron and proton transfer process. - Abstract: The ammonia electro-oxidation reaction (AOR) has been studied due to its promising applications in ammonia electrolysis, wastewater remediation, direct ammonia fuel cells, and sensors. However, it is difficult to compare and analyze the reported electrocatalytic activity of AOR reliably, likely due to the variation in catalyst synthesis, electrode composition, electrode morphology, and testing protocol. In this paper, the electro-oxidation of ammonia on different carbon-supported precious metal nanoparticle catalysts was revisited. The effect of experimental conditions, electrochemical test parameters, electrocatalytic activity, thermodynamics, and possible deactivation mechanism of the catalysts were investigated. Pt/C catalyst possesses the highest electrocatalytic activity, while Ir/C and Rh/C show lower overpotential. The onset potential of the AOR is related to the hydrogen binding energy of the catalyst. N ads is one major cause of deactivation accompanied with the formation of surface O/OH ads at high potentials. The coulombic efficiency of N ads formation on Pt is about 1% initially and gradually decreases with reaction time. Increase in ammonia concentration leads to increase in current density, while increase in hydroxyl ions concentration can enhance the current density and reduce the overpotential simultaneously. The slopes of AOR onset potential and hydrogen adsorption/desorption potential of Pt/C as a function of p

  16. Characterization of a stirred tank electrochemical cell for water disinfection processes

    Energy Technology Data Exchange (ETDEWEB)

    Polcaro, A.M. [Dipartimento di Ingegneria Chimica e Materiali, Universita degli Studi di Cagliari, p.zza D' Armi, 09123 Cagliari (Italy)]. E-mail: polcaro@dicm.unica.it; Vacca, A. [Dipartimento di Ingegneria Chimica e Materiali, Universita degli Studi di Cagliari, p.zza D' Armi, 09123 Cagliari (Italy); Mascia, M. [Dipartimento di Ingegneria Chimica e Materiali, Universita degli Studi di Cagliari, p.zza D' Armi, 09123 Cagliari (Italy); Palmas, S. [Dipartimento di Ingegneria Chimica e Materiali, Universita degli Studi di Cagliari, p.zza D' Armi, 09123 Cagliari (Italy); Pompei, R. [Dipartimento di Scienze e Tecnologie Biomediche, Universita degli Studi di Cagliari, via Porcell, 4-09123 Cagliari (Italy); Laconi, S. [Dipartimento di Scienze e Tecnologie Biomediche, Universita degli Studi di Cagliari, via Porcell, 4-09123 Cagliari (Italy)

    2007-02-01

    Laboratory experiments were performed to characterize the behaviour of an electrochemical cell equipped with boron-doped diamond anodes and to verify its effectiveness in water disinfection. The hydrodynamic regime was determined when the cell worked either in batch or in continuous mode. Galvanostatic electrolyses of aqueous 1 mM Na{sub 2}SO{sub 4} solutions were performed to investigate on the oxidant production in different experimental conditions. The same solutions contaminated by E. coli, enterococci and coliforms were used as test media to verify the effectiveness of the system in the disinfection process. Experimental results indicated that the major inactivation mechanism of bacteria in the electrochemical cell is a disinfection by electrochemically generated oxidants, however a cooperative effect of superficial reaction has to be taken into account. The great capability of BDD anode to produce reactive oxygen species (ROS) and other oxidizing species during the electrolysis allows to establish a chlorine-free disinfection process.

  17. Effect of Aging on the Electrochemical Performance of LSM-YSZ Cathodes

    DEFF Research Database (Denmark)

    Baqué, L. C.; Jørgensen, Peter Stanley; Zhang, Wei

    2015-01-01

    resistance shows no clear tendency with aging time, while the ionic conductivity decreases up to ∼79%. Accordingly, the electrochemically active thickness contracts from 60–135 μm to 45–60 μm. The changes observed in the cathode transport and electrochemical properties are mostly explained by the evolution......Investigations of degradation mechanisms of solid oxide fuel cells are crucial for achieving a widespread commercialization of the technology. In this work, electrochemical impedance spectroscopy (EIS) was applied for studying the aging effect on LSM-YSZ cathodes exposed to humidified air at 900°C...... for up to 3000 h. EIS spectra were fitted by a transmission line model for estimating relevant parameters associated with the LSM/YSZ charge transfer reaction and the oxide ion conduction through the YSZ network. For the reference non-aged sample, the ionic conductivity values are the expected ones...

  18. Electrochemical functionalization of glassy carbon electrode by reduction of diazonium cations in protic ionic liquid

    International Nuclear Information System (INIS)

    Shul, Galyna; Ruiz, Carlos Alberto Castro; Rochefort, Dominic; Brooksby, Paula A.; Bélanger, Daniel

    2013-01-01

    Protic ionic liquid based on 2-methoxypyridine and trifluoroacetic acid was used as electrolyte for the functionalization of a glassy carbon electrode surface by electrochemical reduction of in situ generated 4-chlorobenzene diazonium and 4-nitrobenzene diazonium cations. The diazonium cations were synthesized in an electrochemical cell by reaction of the corresponding amines with NaNO 2 dissolved in protic ionic liquid. The resulting electrografted organic layers exhibit similar properties to those layers obtained by the derivatization from isolated diazonium salts dissolved in protic ionic liquid. Functionalized glassy carbon electrode surfaces were characterized by cyclic voltammetry, Fourier transform infrared and X-ray photoelectron spectroscopies. Atomic force microscopy thickness measurements revealed that, in our experimental conditions, the use of protic ionic liquid led to the formation of film with a thickness of about 1.5 nm. It is also demonstrated that the nitrobenzene chemisorbed on glassy carbon electrode or dissolved in protic ionic liquid undergoes electrochemical conversion to hydroxyaminobenzene

  19. Evaluation of mass transfer in a novel hollow fiber module design using an electrochemical technique

    Directory of Open Access Journals (Sweden)

    L. S. de França Neta

    Full Text Available Abstract The mass transfer coefficient (K L determined using an electrochemical technique was used in this work as a parameter to evaluate the hydrodynamics of hollow fiber membrane modules. A new microfiltration module configuration was investigated, taking advantage of the hydrocyclone concept aimed at reducing the concentration of the polarization layer near the membrane surface promoted by the centrifugal field. The mass transfer coefficient for the new configuration was compared with that of a conventional longitudinal module. The experimental determination of K L was obtained by monitoring the electrochemical reactions that occur at the electrode surface under mass transfer-limiting conditions. The performance of the microfiltration modules, both hybrid and longitudinal, was evaluated based on parameters such as packing density and fluid flow regimes. The results achieved for the mass transfer coefficient with the electrochemical technique allowed for performance evaluations of the proposed new module configuration and a comparison with the longitudinal module.

  20. Transient modeling of electrochemically assisted CO2 capture and release

    DEFF Research Database (Denmark)

    Singh, Shobhana; Stechel, Ellen B.; Buttry, Daniel A.

    2017-01-01

    reactions associated with the separation process. For concreteness, we use an ionic liquid (IL) with 2 M thiolate anion (RS−) in 1 M disulfide (RSSR) as an electrolyte in the electrochemical cell to capture, transport and release CO2 under standard operating conditions. We computationally solved the model......The present work aims to develop a model of a new electrochemical CO2 separation and release technology. We present a one-dimensional transient model of an electrochemical cell for point source CO2 capture and release, which mainly focuses on the simultaneous mass transport and complex chemical...... to analyze the time-dependent behavior of CO2 capture and electro-migration transport across the cell length. Given high nonlinearity of the system, we used a finite element method (FEM) to numerically solve the coupled mass transport equations. The model describes the concentration profiles by taking...