WorldWideScience

Sample records for pretreatment enzymatic hydrolysis

  1. Enzymatic hydrolysis of pretreated soybean straw

    International Nuclear Information System (INIS)

    Xu Zhong; Wang Qunhui; Jiang Zhaohua; Yang Xuexin; Ji Yongzhen

    2007-01-01

    In order to produce lactic acid, from agricultural residues such as soybean straw, which is a raw material for biodegradable plastic production, it is necessary to decompose the soybean straw into soluble sugars. Enzymatic hydrolysis is one of the methods in common use, while pretreatment is the effective way to increase the hydrolysis rate. The optimal conditions of pretreatment using ammonia and enzymatic hydrolysis of soybean straw were determined. Compared with the untreated straw, cellulose in straw pretreated by ammonia liquor (10%) soaking for 24 h at room temperature increased 70.27%, whereas hemicellulose and lignin in pretreated straw decreased to 41.45% and 30.16%, respectively. The results of infrared spectra (IR), scanning electron microscope (SEM) and X-ray diffraction (XRD) analysis also showed that the structure and the surface of the straw were changed through pretreatment that is in favor of the following enzymatic hydrolysis. maximum enzymatic hydrolysis rate of 51.22% was achieved at a substrate concentration of 5% (w/v) at 50 deg. C and pH 4.8 using cellulase (50 fpu/g of substrate) for 36 h

  2. Enzymatic Hydrolysis of Alkaline Pretreated Coconut Coir

    Directory of Open Access Journals (Sweden)

    Akbarningrum Fatmawati

    2013-06-01

    Full Text Available The purpose of this research is to study the effect of concentration and temperature on the cellulose and lignin content, and the reducing sugars produced in the enzymatic hydrolysis of coconut coir. In this research, the coconut coir is pretreated using 3%, 7%, and 11% NaOH solution at 60oC, 80oC, and 100oC. The pretreated coir were assayed by measuring the amount of cellulose and lignin and then hydrolysed using Celluclast and Novozyme 188 under various temperature (30oC, 40oC, 50oC and pH (3, 4, 5. The hydrolysis results were assayed for the reducing sugar content. The results showed that the alkaline delignification was effective to reduce lignin and to increase the cellulose content of the coir. The best delignification condition was observed at 11% NaOH solution and 100oC which removed 14,53% of lignin and increased the cellulose content up to 50,23%. The best condition of the enzymatic hydrolysis was obtained at 50oC and pH 4 which produced 7,57 gr/L reducing sugar. © 2013 BCREC UNDIP. All rights reservedReceived: 2nd October 2012; Revised: 31st January 2013; Accepted: 6th February 2013[How to Cite: Fatmawati, A., Agustriyanto, R., Liasari, Y. (2013. Enzymatic Hydrolysis of Alkaline Pre-treated Coconut Coir. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 34-39 (doi:10.9767/bcrec.8.1.4048.34-39[Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4048.34-39] | View in  |

  3. Evaluation of wet oxidation pretreatment for enzymatic hydrolysis of softwood

    DEFF Research Database (Denmark)

    Palonen, H.; Thomsen, A.B.; Tenkanen, M.

    2004-01-01

    , and the compositions of solid and liquid fractions were analyzed. The solid fraction after wet oxidation contained 58-64% cellulose, 2-16% hemicellulose, and 24-30% lignin. The pretreatment series gave information about the roles of lignin and hemicellulose in the enzymatic hydrolysis. The temperature...... of the pretreatment, the residual hemicellulose content of the substrate, and the type of the commercial cellulase preparation used were the most important factors affecting the enzymatic hydrolysis. The highest sugar yield in a 72-h hydrolysis, 79% of theoretical, was obtained using a pretreatment of 200degrees...

  4. Wet explosion pretreatment of sugarcane bagasse for enhanced enzymatic hydrolysis

    DEFF Research Database (Denmark)

    Biswas, Rajib; Uellendahl, Hinrich; Ahring, Birgitte Kiær

    2014-01-01

    Wet explosion pretreatment of sugarcane bagasse was investigated in pilot-scale with the aim of obtaining the highest possible sugar yield after pretreatment. The temperatures used were 155, 170, 185 and 200 C with or without addition of oxygen (0.6 MPa pressure). Enzymatic hydrolysis of washed...

  5. Green liquor pretreatment for improving enzymatic hydrolysis of corn stover.

    Science.gov (United States)

    Gu, Feng; Yang, Linfeng; Jin, Yongcan; Han, Qiang; Chang, Hou-min; Jameel, Hasan; Phillips, Richard

    2012-11-01

    Green liquor consists of sodium carbonate and sodium sulfide and is readily available in any kraft mills. The green liquor pretreatment process for bioethanol production was developed for wood chips. This process uses only proven technology and equipment currently used in a kraft pulp mill and has several additional advantages such as high sugar recovery and concentration, no inhibitive substances produced, as compared to acid-based pretreatment methods. The liquor was used to pretreat corn stover for enhancing enzymatic hydrolysis in bioethanol production. Pulp yield of 70% with 45% lignin removal was achieved under optimized conditions (8% total titratable alkali, 40% sulfidity and 140°C). About 70% of the original polysaccharides were converted into fermentable sugars, using 20 FPU/g-pulp of enzyme in the subsequent enzymatic hydrolysis. The result indicates that green liquor is a feasible pretreatment to improve the enzymatic saccharification of corn stover for bioethanol production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Bioethanol production: Pretreatment and enzymatic hydrolysis of softwood

    Energy Technology Data Exchange (ETDEWEB)

    Tengborg, Charlotte

    2000-05-01

    The enzymatic hydrolysis process can be used to produce bioethanol from softwood, which are the dominating raw material in the Northern hemisphere. This thesis deals with the development of the process focusing on the pretreatment and the enzymatic hydrolysis stages. The influence of pretreatment conditions on sugar yield, and the effect of inhibitors on the ethanol yield, were investigated for spruce and pine. The maximum yields of hemicellulose sugars and glucose were obtained under different pretreatment conditions. This indicates that two-stage pretreatment may be preferable. The added catalysts, H{sub 2}SO{sub 4} and SO{sub 2}, resulted in similar total sugar yields about 40 g/100 g dry raw material. However, the fermentability of SO{sub 2}-impregnated material was better. This pretreatment resulted in the formation of inhibitors to the subsequent process steps, e.g. sugar and lignin degradation products. The glucose yield in the enzymatic hydrolysis stage was affected by various parameters such as enzyme loading, temperature, pH, residence time, substrate concentration, and agitation. To decrease the amount of fresh water used and thereby waste water produced, the sugar-rich prehydrolysate from the pretreatment step was included in the enzymatic hydrolysis of the solid fraction, resulting in a reduction in the cellulose conversion of up to 36%. Different prehydrolysate detoxification methods, such as treatment with Ca(OH){sub 2}, laccase, and fermentation using yeast, were investigated. The latter was shown to be very efficient. The amount of fresh water used can be further reduced by recycling various process streams. This was simulated experimentally in a bench-scale process. A reduction in fresh water demand of 50% was obtained without any further negative effects on either hydrolysis or fermentation.

  7. Enzymatic hydrolysis of pretreated barley and wheat straw

    DEFF Research Database (Denmark)

    Rosgaard, Lisa

    2007-01-01

    feeding strategy to increase the substrate loading in the hydrolysis reaction. The substrate for the enzymatic hydrolysis was primarily steam pretreated wheat and barley straw since these substrates were the primary feedstocks for the Babilafuente Bioethanol process. The initial work showed...... addition of hemicellulase activities to complement the cellulase activities found in Celluclast. Further improving the hydrolysis process in relation to the Babilafuente Bioethanol process might be achieved applying a substrate fed-batch strategy, if optimised in relation to timing of the substrate...

  8. Effect of nitrogen oxide pretreatments on enzymatic hydrolysis of cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Borrevik, R.K.; Wilke, C.R.; Brink, D.L.

    1978-09-01

    This work considers the effect of nitrogen oxide pretreatments on the subsequent enzymatic hydrolysis by Trichoderma viride cellulase of the cellulose occurring in wheat straw; Triticum Aestivum-L, em. Thell. In the pretreatment scheme the straw is first reacted with nitric oxide and air, and then extracted in aqueous solution. In this way, overall sugar yields increased from 17% for the case of no pretreatment to 70%. The glucose yield increased from 20 to 60%. The yield of glucose during enzymatic hydrolysis is dependent on the reaction time of the gas phase reaction. For a 24 hour reaction the yield is 60%, but drops to 45% for a reaction time of 2 hours. Xylose, a potentially valuable side product of the pretreatment, is obtained by dilute acid hydrolysis during the extraction stage in yields of 90 to 96%. In acidic media, the kinetics of both the rate of formation and destruction of xylose were found to follow the first-order rate laws reported in the literature. These were determined to be 4.5 (liter/gmole)(hr./sup -1/) and 0.03 hr./sup -1/, respectively. However, the rate of formation is much greater (20.4 (liter/gmole) (hr./sup -1/)) when the extraction liquor is recycled. The most likely explanation for this is that the increased total acidity of the recycled liquor compensates for diffusional limitations. A preliminary design and cost analysis of the pretreatment-hydrolysis scheme indicates that glucose can be produced at 10.86 cents per pound, exclusive of straw cost. The corresponding cost per pound of total sugars produced is 5.0 cents. Sensitivity analyses indicate that 42% of the pretreatment cost (excluding hydrolysis) can be attributed to nitric oxide production, and the high yield of sugar obtained is advantageous when considering the cost of straw.

  9. Kinetic studies of cellulose enzymatic hydrolysis from pretreated corn cob

    Science.gov (United States)

    Stevanie, Jeannie; Kartawiria, Irvan; Abimanyu, Haznan

    2017-01-01

    Successful utilization of corn cob biomass as raw material in bioethanol production is depending on the hydrolysis process where high level of β-cellulose is converted into glucose. Enzymatic hydrolysis is the common process for this purpose. This study is focusing on the evaluation of hydrolysis of pre-treated corn cob using Novozymes Cellic ® C-Tec2 and H-Tec2 enzymes to obtain the optimum reaction condition and its general reaction kinetics. The corn cob used was pretreated using 10% of NaOH solution. Hydrolysis reactions were conducted in 250 ml Erlenmeyer flask for 72 hour using mixture of C-Tec2 and H-Tec2 enzymes at the fixed ratio of 5:1 and glucose concentration were measured using HPLC. Reaction temperature of 40°C and quantity of 0.5 ml enzyme solution per gram substrate gives the highest reaction rate (0.0123 gram of glucose/gram sample.h) with the glucose yield being 0.089 g glucose/ g substrate. Total conversion of cellulose observed was 11.91 %. Corn cob hydrolysis using C-Tec2 and H-Tec2 enzymes also result in xylose (0.0202 g/g substrate), which can also contribute to bioethanol productivity in further fermentation process. The reaction is following zero order kinetics for the first 8 hours and reaches maximum yield within 10 hours; significantly shorter compared to previous studies of cellulosic material hydrolysis that may take up to 72 hour to complete. Prolonging the hydrolysis of pre-treated corn cob more than 24 hour gives no significant increase in glucose conversion and yield. Hydrolysis temperature range of 40°C to 60°C is in accordance with the manufacturer recommendation for the purpose; however the decrease of reaction rate is observable at temperature 50°C or higher.

  10. Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw

    NARCIS (Netherlands)

    Kootstra, A.M.J.; Beeftink, H.H.; Scott, E.L.; Sanders, J.P.M.

    2009-01-01

    The efficiencies of fumaric, maleic, and sulfuric acid in wheat straw pretreatment were compared. As a measure for pretreatment efficiency, enzymatic digestibility of the lignocellulose was determined. Monomeric glucose and xylose concentrations were measured after subsequent enzymatic hydrolysis,

  11. Enzymatic hydrolysis of sugarcane bagasse pretreated with acid or alkali

    Directory of Open Access Journals (Sweden)

    Vivian Cristina Pietrobon

    2011-04-01

    Full Text Available The aim of this study was to evaluate the performance of enzymatic hydrolysis of acid or alkali pretreated sugarcane bagasse for the production of fermentable sugars. The first step consisted of selection of commercial enzymes presenting the highest cellulolytic activities. After selection of four enzymes: HPL, CL, P1 and P4, their performances were tested in the bagasse pretreated with acid and alkali. The sugar content of the hydrolysates was analyzed by anion exchange liquid chromatography. Data showed that the joint action of 0.5% acid pretreatment, 121ºC, 30 minutes and enzyme CL provides the best results, 67.25 g of hexose and 148.13g of pentose per kg of dry bagasse.

  12. Hydrothermal pretreatment and enzymatic hydrolysis of mixed green and woody lignocellulosics from arid regions

    DEFF Research Database (Denmark)

    Ashraf, Muhammad Tahir; Thomsen, Mette Hedegaard; Schmidt, Jens Ejbye

    2017-01-01

    on the yields from hydrothermal pretreatment and enzymatic hydrolysis was analyzed by mixing three different lignocellulosic residues — Bermuda grass, Jasmine hedges, and date palm fronds. Results showed that the individual and the mixed lignocellulosics gave same yields when treated under similar conditions...... of hydrothermal pretreatment and enzymatic hydrolysis. It indicates that this mixture can be a suitable feedstock for lignocellulosic biorefinery....

  13. Steam pretreatment of lignocellulosic material for enhanced enzymatic hydrolysis.

    Science.gov (United States)

    Brownell, H H; Saddler, J N

    1987-02-01

    Pretreatment methods were compared with steam explosion, and differing views on the relative importance of mechanical and chemical effects were outlined. Hydrolysis was desirable; pyrolysis was undesirable. The effects of initial moisture content on steam consumption, mechanism and rate of heat transfer, pentosan solubilization, and subsequent glucose yield were summarized. The insignificant effect, after treatment at 240 degrees C, of 90% pressure bleed-down before explosion on subsequent simultaneous saccharification and fermentation (SSF) yields was described. Treatment at 190 degrees C with complete bleed-down (no explosion), when compared with that at 240 degrees C with explosion from full pressure, showed at least as good solubilizatoin of pentosan, enzymatic hydrolysis, and SSF but showed greater pentosan destruction for the same degree of pentosan removal. Water washing of unexploded steamed aspenwood chips was at least as efficient as that of similarly treated but exploded chips. Scanning electron micrographs of unexploded chips showed extensive rupturing of vessel pit membranes and other morphological features associated with steam-exploded wood. Neither the explosion nor the high temperatures (above 190 degrees C) are necessary.

  14. Hydrothermal pretreatment and enzymatic hydrolysis of mixed green and woody lignocellulosics from arid regions.

    Science.gov (United States)

    Ashraf, Muhammad Tahir; Thomsen, Mette Hedegaard; Schmidt, Jens Ejbye

    2017-08-01

    Utilization of multi-specie feedstocks is imperative for application of lignocellulosic biorefineries in arid regions. Different lignocellulosic residues vary in composition and anatomical features. Pretreatment and enzymatic hydrolysis are two processes at the front end of any lignocellulosics biorefinery applying biochemical pathway, and have to efficiently deal with the variance in the feedstock composition and properties. However, there is limited knowledge about effect of mixing different lignocellulosics on pretreatment and enzymatic hydrolysis yields. In this study effect of mixing on the yields from hydrothermal pretreatment and enzymatic hydrolysis was analyzed by mixing three different lignocellulosic residues - Bermuda grass, Jasmine hedges, and date palm fronds. Results showed that the individual and the mixed lignocellulosics gave same yields when treated under similar conditions of hydrothermal pretreatment and enzymatic hydrolysis. It indicates that this mixture can be a suitable feedstock for lignocellulosic biorefinery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Biological pretreatment of corn stover with white-rot fungus for improved enzymatic hydrolysis

    Science.gov (United States)

    Biological pretreatment of lignocellulosic biomass by white-rot fungus can represent a low-cost and eco-friendly alternative to harsh physical, chemical or physico-chemical pretreatment methods to facilitate enzymatic hydrolysis. However, fungal pretreatment can cause carbohydrate loss and it is, th...

  16. Switchgrass storage effects on the recovery of carbohydrates after liquid hot water pretreatment and enzymatic hydrolysis

    Directory of Open Access Journals (Sweden)

    Danielle Julie Carrier

    2016-08-01

    Full Text Available Perennial grasses that would be used for bioenergy and bioproducts production will need to be stored for various periods of time to ensure a continual feedstock supply to a bioprocessing facility. The effects of storage practices on grass composition and the response of grasses to subsequent bioprocesses such as pretreatment and enzymatic hydrolysis needs to be understood to develop the most efficient storage protocols. This study examined the effect of outdoor storage of round switchgrass bales on composition before and after liquid hot water pretreatment (LHW and enzymatic hydrolysis. This study also examined the effect of washing LHW pretreated biomass prior to enzymatic hydrolysis. It was determined that switchgrass composition after baling was stable. As expected, glucan and lignin contents increased after LHW due to decreases in xylan and galactan. Washing biomass prior to enzymatic hydrolysis reduced saccharification, especially in samples from the interior of the bale, by at least 5%.

  17. Effective of Microwave-KOH Pretreatment on Enzymatic Hydrolysis of Bamboo

    Science.gov (United States)

    Zhiqiang Li; Zehui Jiang; Yan Yu; Zhiyong Cai

    2012-01-01

    Bamboo, with its advantages of fast growth, short renovation, easy propagation and rich in cellulose and hemicellulose, is a potential feedstock for bioethanol or other biofuels production. The objective of this study was to examine the fea- sibility of microwave assistant KOH pretreatments to enhance enzymatic hydrolysis of bamboo. Pretreatment was car- ried out by...

  18. Enhanced enzymatic cellulose hydrolysis by subcritical carbon dioxide pretreatment of sugarcane bagasse.

    Science.gov (United States)

    Zhang, Hongdan; Wu, Shubin

    2014-04-01

    Most biomass pretreatment processes for sugar production are run at low-solid concentration (carbon dioxide (CO2) could provide a more sustainable pretreatment medium while using relative high-solid contents (15 wt.%). The effects of subcritical CO2 pretreatment of sugarcane bagasse to the solid and glucan recoveries at different pretreatment conditions were investigated. Subsequently, enzymatic hydrolysis at different hydrolysis time was applied to obtain maximal glucose yield, which can be used for ethanol fermentation. The maximum glucose yield in enzyme hydrolyzate reached 38.5 g based on 100g raw material after 72 h of enzymatic hydrolysis, representing 93.0% glucose in sugarcane bagasse. The enhanced digestibilities of subcritical CO2 pretreated sugarcane bagasse were due to the removal of hemicellulose, which were confirmed by XRD, FTIR, SEM, and TGA analyses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Comparison of different pretreatment strategies for enzymatic hydrolysis of wheat and barley straw

    DEFF Research Database (Denmark)

    Rosgaard, Lisa; Pedersen, Sven; Meyer, Anne Boye Strunge

    2007-01-01

    generally produced higher glucose concentrations after enzymatic hydrolysis than wheat straw. Acid or water impregnation followed by steam explosion of barley straw was the best pretreatment in terms of resulting glucose concentration in the liquid hydrolysate after enzymatic hydrolysis. When the glucose...... procedures: acid or water impregnation followed by steam explosion versus hot water extraction. The pretreatments were compared after enzyme treatment using a cellulase enzyme system, Celluclast 1.5 L (R) from Trichoderma reesei, and a beta-glucosidase, Novozyme 188 from Aspergillus niger. Barley straw...... concentrations obtained after enzymatic hydrolyses were related to the potential glucose present in the pretreated residues, the highest yield, similar to 48% (g g(-1)), was obtained with hot water extraction pretreatment of barley straw; this pretreatment also produced highest yields for wheat straw, producing...

  20. Use of sorghum straw (Sorghum bicolor for second generation ethanol production: pretreatment and enzymatic hydrolysis

    Directory of Open Access Journals (Sweden)

    Wilton Soares Cardoso

    2013-01-01

    Full Text Available Agronomic biomass yields of forage sorghum BRS 655 presented similar results to other energy crops, producing 9 to 12.6 tons/ha (dry mass of sorghum straw. The objective of this study was to evaluate the lignocellulosic part of this cultivar in terms of its potential in the different unit processes in the production of cellulosic ethanol, measuring the effects of pretreatment and enzymatic hydrolysis. Three types of pre-treatments for two reaction times were conducted to evaluate the characteristics of the pulp for subsequent saccharification. The pulp pretreated by alkali, and by acid followed by delignification, attained hydrolysis rates of over 90%.

  1. Radiation pretreatments of cellulose materials for the enhancement of enzymatic hydrolysis

    International Nuclear Information System (INIS)

    Ait Si Mamar, S.; Hadjadj, A.

    1990-01-01

    The conversion of wheat straw agricultural cellulosic wastes to reducing sugars and glucose has been studied by pretreatments by acid hydrolysis and gamma radiolysis over the dose 0-2 MGy. The pretreatment of cellulosic wastes by gamma radiolysis in the presence of sulfuric acid solution shows that the reducing sugars yield increases with the irradiation dose. The effect of radiation degradation on cellulosic wastes between 0.1 MGy and 2 MGy shows the glucose and reducing sugars yields after enzymatic hydrolysis by cellulase vary with the dose. In the relatively low dose range, up to about 0.5 MGy, the reducing sugars yields vary slightly. For an acid hydrolysis followed by radiation at dose range below 0.5 MGy the reducing sugars yields are practically insensitive to radiation. On the other hand, the pretreatment by radiation in higher dose range from 0.5 to 2 MGy followed by enzymatic hydrolysis is effective for the conversion of cellulosic wastes into glucose. The radiation induced degradation of cellulose into glucose depends on the type of acid hydrolysis and on the enzymatic hydrolysis time by cellulase. Pre-irradiation in air is more effective than in acid solution. (author)

  2. Radiation pretreatments of cellulose materials for the enhancement of enzymatic hydrolysis

    Science.gov (United States)

    Mamar, S. Ait Si; Hadjadj, A.

    The conversion of wheat straw agricultural cellulosic wastes to reduning sugars and glucose has been studied by pretreatments by acid hydrolysis and gamma radiolysis over the dose 0-2 MGy. The pretreatment of cellulosic wastes by gamma radiolysis in the presence of sulfuric acid solution shows that the reducing sugars yield increases with the irradiation dose. The effect of radiation degradation on cellulosic wastes between 0.1 MGy and 2 MGy shows the glucose and reducing sugars yields after enzymatic hydrolysis by cellulase vary with the dose. In the relatively low dose range, up to about 0.5 MGy, the reducing sugars yields vary slightly. For an acid hydrolysis followed by radiation at dose range below 0.5 MGy the reducing sugars yields are practically insensitive to radiation. On the other hand, the pretreatment by radiation in higher dose range from 0.5 to 2 MGy followed by enzymatic hydrolysis is effective for the conversion of cellulosic wastes into glucose. The radiation induced degradation of cellulose into glucose depends on the type of acid hydrolysis and on the enzymatic hydrolysis time by cellulase. Pre-irradiation in air is more effective than in acid solution.

  3. Comparison of different pretreatment strategies for enzymatic hydrolysis of wheat and barley straw.

    Science.gov (United States)

    Rosgaard, Lisa; Pedersen, Sven; Meyer, Anne S

    2007-12-01

    In biomass-to-ethanol processes a physico-chemical pretreatment of the lignocellulosic biomass is a critical requirement for enhancing the accessibility of the cellulose substrate to enzymatic attack. This report evaluates the efficacy on barley and wheat straw of three different pretreatment procedures: acid or water impregnation followed by steam explosion versus hot water extraction. The pretreatments were compared after enzyme treatment using a cellulase enzyme system, Celluclast 1.5 L from Trichoderma reesei, and a beta-glucosidase, Novozyme 188 from Aspergillus niger. Barley straw generally produced higher glucose concentrations after enzymatic hydrolysis than wheat straw. Acid or water impregnation followed by steam explosion of barley straw was the best pretreatment in terms of resulting glucose concentration in the liquid hydrolysate after enzymatic hydrolysis. When the glucose concentrations obtained after enzymatic hydrolyses were related to the potential glucose present in the pretreated residues, the highest yield, approximately 48% (g g-1), was obtained with hot water extraction pretreatment of barley straw; this pretreatment also produced highest yields for wheat straw, producing a glucose yield of approximately 39% (g g-1). Addition of extra enzyme (Celluclast 1.5 L+Novozyme 188) during enzymatic hydrolysis resulted in the highest total glucose concentrations from barley straw, 32-39 g L-1, but the relative increases in glucose yields were higher on wheat straw than on barley straw. Maldi-TOF MS analyses of supernatants of pretreated barley and wheat straw samples subjected to acid and water impregnation, respectively, and steam explosion, revealed that the water impregnated + steam-exploded samples gave a wider range of pentose oligomers than the corresponding acid-impregnated samples.

  4. Rapid near infrared spectroscopy for prediction of enzymatic hydrolysis of corn bran after various pretreatments.

    Science.gov (United States)

    Baum, Andreas; Agger, Jane; Meyer, Anne S; Egebo, Max; Mikkelsen, Jørn Dalgaard

    2012-02-15

    Efficient generation of a fermentable hydrolysate is a primary requirement in the utilization of fibrous plant biomass as feedstocks in bioethanol processes. The first biomass conversion step usually involves a hydrothermal pretreatment before enzymatic hydrolysis. The purpose of the pretreatment step is to increase the responsivity of the substrate to enzymatic attack and the type of pretreatment affects the enzymatic conversion efficiency. Destarched corn bran is a fibrous, heteroxylan-rich side-stream from the starch industry which may be used as a feedstock for bioethanol production or as a source of xylose for other purposes. In the present study we demonstrate the use of diffuse reflectance near infrared spectroscopy (NIR) as a rapid and non-destructive analytical tool for evaluation of pretreatment effects on destarched corn bran. NIR was used to achieve classification between 43 differently pretreated corn bran samples using principal component analysis (PCA) and hierarchal clustering algorithms. Quantification of the enzymatically released monosaccharides by HPLC was used to design multivariate calibration models (biPLS) on the NIR spectra. The models could predict the enzymatic release of different levels of arabinose, xylose and glucose from all the differently pretreated destarched corn bran samples. The present study also demonstrates a generic, non-destructive solution to determine the enzymatic monosaccharide release from polymers in biomass side-streams, thereby potentially replacing the cumbersome HPLC analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Pretreatments and enzymatic hydrolysis of sugarcane bagasse aiming at the enhancement of the yield of glucose and xylose

    Directory of Open Access Journals (Sweden)

    A. de A. Guilherme

    Full Text Available ABSTRACT This work studied the enzymatic hydrolysis of sugarcane bagasse aiming at the production of glucose and xylose. The bagasse was subjected to two different pretreatments: combined acid and alkalinepretreatment and hydrogen peroxidepretreatment. The enzymatic hydrolysis was optimized and a kinetic study was carried out in a stirred tank reactor (STR in batch mode. Optimal conditions were obtained by subjecting the bagasse to the hydrogen peroxide pretreatment followed by enzymatic hydrolysis. The addition of xylanases to the enzymatic mixture improved the production of fermentable sugars by 48%.

  6. Evaluation of lime and hydrothermal pretreatments for efficient enzymatic hydrolysis of raw sugarcane bagasse.

    Science.gov (United States)

    Grimaldi, Maira Prearo; Marques, Marina Paganini; Laluce, Cecília; Cilli, Eduardo Maffud; Sponchiado, Sandra Regina Pombeiro

    2015-01-01

    Ethanol production from sugarcane bagasse requires a pretreatment step to disrupt the cellulose-hemicellulose-lignin complex and to increase biomass digestibility, thus allowing the obtaining of high yields of fermentable sugars for the subsequent fermentation. Hydrothermal and lime pretreatments have emerged as effective methods in preparing the lignocellulosic biomass for bioconversion. These pretreatments are advantageous because they can be performed under mild temperature and pressure conditions, resulting in less sugar degradation compared with other pretreatments, and also are cost-effective and environmentally sustainable. In this study, we evaluated the effect of these pretreatments on the efficiency of enzymatic hydrolysis of raw sugarcane bagasse obtained directly from mill without prior screening. In addition, we evaluated the structure and composition modifications of this bagasse after lime and hydrothermal pretreatments. The highest cellulose hydrolysis rate (70 % digestion) was obtained for raw sugarcane bagasse pretreated with lime [0.1 g Ca(OH)2/g raw] for 60 min at 120 °C compared with hydrothermally pretreated bagasse (21 % digestion) under the same time and temperature conditions. Chemical composition analyses showed that the lime pretreatment of bagasse promoted high solubilization of lignin (30 %) and hemicellulose (5 %) accompanied by a cellulose accumulation (11 %). Analysis of pretreated bagasse structure revealed that lime pretreatment caused considerable damage to the bagasse fibers, including rupture of the cell wall, exposing the cellulose-rich areas to enzymatic action. We showed that lime pretreatment is effective in improving enzymatic digestibility of raw sugarcane bagasse, even at low lime loading and over a short pretreatment period. It was also demonstrated that this pretreatment caused alterations in the structure and composition of raw bagasse, which had a pronounced effect on the enzymes accessibility to the

  7. Effect of γ-rays radiation pretreatment on enzymatic hydrolysis of corn straw for producing sugar

    International Nuclear Information System (INIS)

    Tang Hongtao; Ha Yiming; Wang Feng

    2011-01-01

    The effect of γ-rays radiation pretreatment on enzymatic of corn straw for producing sugar was studied. The relationship between irradiation-dosage and content of reducing sugar was investigated in DNS method. After 1000 kGy irradiation, the content of reducing sugar reached about 317.35%. A synergistic effect between irradiation and enzyme was observed. The reducing sugar yield after enzymatic hydrolysis reached 20.51% when the corn straw powder (0.15 mm) irradiated with a dose of 1000 kGy. The result shows that the irradiation had significant influence on enzymatic hydrolysis of corn straw. At the 500 kGy pre-irradiation, compared with initial yield, the maximum sugar yield of sample had increased by 13.68% while the irradiated corn straw stored in 20 days. (authors)

  8. Enhancement of enzymatic hydrolysis and lignin removal of bagasse using photocatalytic pretreatment

    Science.gov (United States)

    Pattanapibul1, P.; Chuangchote, S.; Laosiripojana, N.; Champreda, V.; Kaewsaenee, J.

    2017-05-01

    Pretreatment for reduction of biological resistance in a lignocellulosic material, i.e. bagasse, for enzymatic hydrolysis and fermentation was investigated. Photocatalyst (TiO2) was used as an additive composition to assist this pretreatment process. Reaction time was varied (24, 48, and 72 h) to find the optimum condition for the pretreatment, while concentration of solvent (NaOH, H2O2, or NH4OH), biomass to solvent ratio, and weight ratio of catalyst to bagasse were fixed at 2 M, 1:20 g/ml (typically, solvent = 150 ml), and 1:5, respectively. Batch reaction temperature was at 25°C. After the pretreatment, the enzymatic digestibility of pretreated bagasse was carried out to find the sugar yield. Hydrolysis of pretreated bagasse with photocatalyst show higher sugar yields than the conventional reactions without photocatalyst. The maximum yields of sugars (541.03 mg glucose and 192.79 mg pentose) were obtained at the longest reaction time.

  9. Facile, room-temperature pre-treatment of rice husks with tetrabutylphosphonium hydroxide: Enhanced enzymatic and acid hydrolysis yields.

    Science.gov (United States)

    Lau, B B Y; Luis, E T; Hossain, M M; Hart, W E S; Cencia-Lay, B; Black, J J; To, T Q; Aldous, L

    2015-12-01

    Aqueous solutions of tetrabutylphosphonium hydroxide have been evaluated as pretreatment media for rice husks, prior to sulphuric acid hydrolysis or cellulase enzymatic hydrolysis. Varying the water:tetrabutylphosphonium hydroxide ratio varied the rate of delignification, as well as silica, lignin and cellulose solubility. Pre-treatment with 60wt% hydroxide dissolved the rice husk and the regenerated material was thus heavily disrupted. Sulphuric acid hydrolysis of 60wt%-treated samples yielded the highest amount of glucose per gram of rice husk. Solutions with good lignin and silica solubility but only moderate to negligible cellulose solubility (10-40wt% hydroxide) were equally effective as pre-treatment media for both acid and enzymatic hydrolysis. However, pre-treatment with 60wt% hydroxide solutions was incompatible with downstream enzymatic hydrolysis. This was due to significant incorporation of phosphonium species in the regenerated biomass, which significantly inhibited the activity of the cellulase enzymes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Enhanced enzymatic hydrolysis of sugarcane bagasse with ferric chloride pretreatment and surfactant.

    Science.gov (United States)

    Zhang, Hongdan; Ye, Guangying; Wei, Yutuo; Li, Xin; Zhang, Aiping; Xie, Jun

    2017-04-01

    A FeCl 3 pretreatment methodology was developed to convert raw sugarcane bagasse to highly digestible pretreated solid and selectively extract up to ∼100% of the hemicellulose from lignocellulosic biomass. FeCl 3 pretreated solids yielded a quite high fermentable sugar yield compared to the native material. In addition, characterization of raw material and pretreated solid by X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric (TG) analysis was carried out to better understand how hemicellulose removal affected subsequent enzymatic hydrolysis. Furthermore, the addition of surfactants during enzymatic hydrolysis achieved higher glucose yields. 82.3% of glucose could be obtained with addition of BSA, combined with that generated during pretreatment process, the total glucose yield reached 42.2g/100g raw material, representing 93.8% of glucose in the raw sugarcane bagasse. The FeCl 3 process offered the potential to co-produce xylose-derived and glucose-derived chemicals in the bio-refinery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Comparative study of different alcoholate pretreatments for enhanced enzymatic hydrolysis of sugarcane bagasse.

    Science.gov (United States)

    Huang, Qing; Yan, Qiuli; Fu, Jing; Lv, Xiaojing; Xiong, Chunjiang; Lin, Jianghai; Liu, Zehuan

    2016-07-01

    Pretreatment of sugarcane bagasse (SCB) with alcoholates, sodium methoxide (CH3ONa), potassium methoxide (CH3OK) and sodium ethoxide (C2H5ONa), was investigated. Analyses of lignocellulose composition and enzymatic saccharification indicated that C2H5ONa showed the highest enzymatic efficiency of 102.1%. The response surface optimization of C2H5ONa pretreatment showed that under optimal conditions (4% of C2H5ONa, 121°C, 1h), 65.4% of lignin was removed and the enzymatic efficiency reached 105.2%. Hydrolysis of SCB with cellulases and xylanase at a ratio of 4:1 showed the strongest synergism with reducing sugar production of 21g/L and conversion rates of cellulose and xylan reaching 110.4% and 94.5%, respectively. These results indicated that C2H5ONa is a promising alkali to pretreat SCB and the synergism between cellulases and xylanase has a significant effect on enzymatic saccharification of the pretreated SCB. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Improved enzymatic hydrolysis of lignocellulosic biomass through pretreatment with plasma electrolysis.

    Science.gov (United States)

    Gao, Jing; Chen, Li; Zhang, Jian; Yan, Zongcheng

    2014-11-01

    A comprehensive research on plasma electrolysis as pretreatment method for water hyacinth (WH) was performed based on lignin content, crystalline structure, surface property, and enzymatic hydrolysis. A large number of active particles, such as HO and H2O2, generated by plasma electrolysis could decompose the lignin of the biomass samples and reduce the crystalline index. An efficient pretreatment process made use of WH pretreated at a load of 48 wt% (0.15-0.18 mm) in FeCl3 solution for 30 min at 450 V. After the pretreatment, the sugar yield of WH was increased by 126.5% as compared with unpretreated samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Subcritical CO2 pretreatment of sugarcane bagasse and its enzymatic hydrolysis for sugar production.

    Science.gov (United States)

    Zhang, Hongdan; Wu, Shubin

    2013-12-01

    The present work investigated the effects of subcritical CO2 pretreatment of sugarcane bagasse at different CO2 pressure, pretreatment time, and temperature with relative high-solid concentration (15% w/v) to the composition of prehydrolyzate and the enzymatic hydrolysis. The results indicated that the maximum xylose yields in prehydrolyzate liquid were 15.78 g (combined 3.16 g xylose and 12.62 g xylo-oligosaccharides per 100g raw material). Due to the effective removal of hemicellulose, the maximum glucose yield in enzyme hydrolyzate reached 37.99 g per 100g raw material, representing 91.87% of glucose in the sugarcane bagasse. The maximal total sugars yield (combined xylose and glucose both in prehydrolyzate and enzymatic hydrolyzate) were 52.95 g based on 100g raw material. These results indicated that subcritical CO2 pretreatment can effectively improve the enzymatic hydrolysis, so it could be successfully applied to sugarcane bagasse. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Physico-chemical pretreatment and enzymatic hydrolysis of cotton stalk for ethanol production by Saccharomyces cerevisiae.

    Science.gov (United States)

    Singh, Anita; Bajar, Somvir; Bishnoi, Narsi R

    2017-11-01

    The aim of this work was to study the physico-chemical pretreatment and enzymatic hydrolysis of cotton stalk for ethanol production by Saccharomyces cerevisiae. Firstly, factors affecting pretreatment were screened out by Plackett-Burman design (PBD) and most significant factors were further optimized by Box-Behnken design (BBD). As shown by experimental study, most significant factors were FeCl 3 concentration (FC), irradiation time (IT) and substrate concentration (SC) affecting pretreatment of cotton stalk among all studied factors. Under optimum conditions of pretreatment FC 0.15mol/l, IT 20min and SC 55g/l, the release of reducing sugar was 6.6g/l. Hydrolysis of pretreated cotton stalk was done by crude on-site produced enzymes and hydrolysate was concentrated. Ethanol production by Saccharomyces cerevisiae using concentrated cotton stalk hydrolysate was 9.8g p /l, with ethanol yield 0.37g p /g s on consumed sugars. The data indicated that microwave FeCl 3 pretreated cotton stalk hydrolyses by crude unprocessed enzyme cocktail was good, and ethanol can be produced by fermentation of hydrolysate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The pretreatment of corn stover with Gloeophyllum trabeum KU-41 for enzymatic hydrolysis

    Directory of Open Access Journals (Sweden)

    Gao Ziqing

    2012-05-01

    Full Text Available Abstract Background Pretreatment is an essential step in the enzymatic hydrolysis of biomass for bio-ethanol production. The dominant concern in this step is how to decrease the high cost of pretreatment while achieving a high sugar yield. Fungal pretreatment of biomass was previously reported to be effective, with the advantage of having a low energy requirement and requiring no application of additional chemicals. In this work, Gloeophyllum trabeum KU-41 was chosen for corn stover pretreatment through screening with 40 strains of wood-rot fungi. The objective of the current work is to find out which characteristics of corn stover pretreated with G. trabeum KU-41 determine the pretreatment method to be successful and worthwhile to apply. This will be done by determining the lignin content, structural carbohydrate, cellulose crystallinity, initial adsorption capacity of cellulase and specific surface area of pretreated corn stover. Results The content of xylan in pretreated corn stover was decreased by 43% in comparison to the untreated corn stover. The initial cellulase adsorption capacity and the specific surface area of corn stover pretreated with G. trabeum were increased by 7.0- and 2.5-fold, respectively. Also there was little increase in the cellulose crystallinity of pretreated corn stover. Conclusion G. trabeum has an efficient degradation system, and the results indicated that the conversion of cellulose to glucose increases as the accessibility of cellulose increases due to the partial removal of xylan and the structure breakage of the cell wall. This pretreatment method can be further explored as an alternative to the thermochemical pretreatment method.

  16. Microalgae pretreatment with liquid hot water to enhance enzymatic hydrolysis efficiency.

    Science.gov (United States)

    Yuan, Tao; Li, Xiekun; Xiao, Shiyuan; Guo, Ying; Zhou, Weizheng; Xu, Jingliang; Yuan, Zhenhong

    2016-11-01

    Nowadays, microalgae are being considered as promising raw material for bioethanol production. In this work, three process variables during liquid hot water (LHW) pretreatment prior to enzymatic hydrolysis by response surface methodology on Scenedesmus sp. WZKMT were investigated to enhance glucose recovery. Results indicated that the order of significance for three parameters was temperature>solid-to-liquid ratio>time. The optimal condition was 1:13 (w/v), 147°C and 40min. The concentration and recovery of glucose under this condition were 14.223g·L(-1) and 89.32%, respectively, which were up to 5-fold higher than the samples without LHW pretreatment. In addition, the surface morphologies of microalgae cells before and after LHW pretreatment were also verified using scanning electron microscopy (SEM). LHW pretreatment can greatly enhance the enzymatic efficiency, and can be regarded as an ideal pretreatment method for glucose recovery from microalgae. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Effect of the steam explosion pretreatment on enzymatic hydrolysis of eucalyptus wood and sweet sorghum bagasse

    International Nuclear Information System (INIS)

    Negro, M.J.; Martinez, J.M.; Manero, J.; Saez, F.; Martin, C.

    1990-01-01

    The effect of steam explosion treatment on the enzymatic hydrolysis yield of two different lignocellulosic substrates is studied. Raw materials have been pretreated in a pilot plant designed to work in batch and equiped with a reactor vessel of 2 1 working volume where biomass was heated at the desired temperature and then exploded and recovered in a cyclone. Temperatures from 190 to 230 o C and reaction times from 2 to 8 min. have been assayed. The efficiency of the steam explosion treatment has been evaluated on the composition of the lignocellulosic materials as well as on their enzymatic hydrolysis yield using a cellulolytic complex from T. reesei. Results show a high solubilization rate of hemicelluloses ands variable losses of cellulose and lignin depending on the conditions tested. Enzymatic hydrolysis yields of both substrates experimented remarkable increments, correspondig the highest values obtained to 210 o C; 2 min. and 210 o C; 4 min. for sorghum bagasse and eucaliptus wood respectivelly. (Author). 13 refs

  18. Effect of the steam explosion pretreatment on enzymatic hydrolysis of eucalyptus wood and sweet sorghum baggages

    International Nuclear Information System (INIS)

    Negro, M. J.; Martinez, J. M.; Manero, J.; Saez, F.; Martin, C.

    1991-01-01

    The effect of steam explosion treatment on the enzymatic hydrolysis yield of two different lignocellulosic substrates is studied. Raw materials have been pretreated in a pilot plant designed to work in batch and equipped with a reactor vessel of 2 1 working volume where biomass was heated at the desired temperature and then exploded and recovered in a cyclone. Temperatures from 190 to 230 degree celsius and reaction times from 2 to 8 min. have been assayed. The efficiency of the steam explosion treatment has been evaluated on the composition of the lignocellulosic materials as well as on their enzymatic hydrolysis yield using a cellulolytic complex from T. reesel. Results show a high solubilization rate of hemicelluloses and variable losses of cellulose and lignin depending on the conditions tested. Enzymatic hydrolysis yields of both substrates experimented remarkable increments, corresponding the highest values obtained to 210 degree celsius; 2 min. and 21O degree celsius; 4 min. for sorghum bagasse and eucalyptus wood respectively. (Author) 13 refs

  19. The enzymatic hydrolysis of pretreated pulp fibers predominantly involves "peeling/erosion" modes of action.

    Science.gov (United States)

    Arantes, Valdeir; Gourlay, Keith; Saddler, Jack N

    2014-01-01

    There is still considerable debate regarding the actual mechanism by which a "cellulase mixture" deconstructs cellulosic materials, with accessibility to the substrate at the microscopic level being one of the major restrictions that limits fast, complete cellulose hydrolysis. In the work reported here we tried to determine the predominant mode of action, at the fiber level, of how a cellulase mixture deconstructs pretreated softwood and hardwood pulp fibers. Quantitative changes in the pulp fibers derived from different pretreated biomass substrates were monitored throughout the course of enzymatic hydrolysis to see if the dominant mechanisms involved either the fragmentation/cutting of longer fibers to shorter fibers or their "peeling/delamination/erosion," or if both cutting and peeling mechanisms occurred simultaneously. Regardless of the source of biomass, the type of pretreatment and the chemical composition of the substrate, under typical hydrolysis conditions (50°C, pH 4.8, mixing) longer pulp fibers (fiber length >200 μm) were rapidly broken down until a relatively constant fiber length of 130 to 160 μm was reached. In contrast, shorter fibers with an initial average fiber length of 130 to 160 μm showed no significant change in length despite their substantial hydrolysis. The fragmentation/cutting mode of deconstruction was only observed on longer fibers at early stages of hydrolysis. Although the fiber fragmentation mode of deconstruction was not greatly influenced by enzyme loading, it was significantly inhibited by glucose and was mainly observed during initial mixing of the enzyme and substrate. In contrast, significant changes in the fiber width occurred throughout the course of hydrolysis for all of the substrates, suggesting that fiber width may limit the rate and extent of cellulose hydrolysis. It appears that, at the fiber level, pretreated pulp fibers are hydrolyzed through a two-step mode of action involving an initial rapid

  20. Effect of alkali lignins with different molecular weights from alkali pretreated rice straw hydrolyzate on enzymatic hydrolysis.

    Science.gov (United States)

    Li, Yun; Qi, Benkun; Luo, Jianquan; Wan, Yinhua

    2016-01-01

    This study investigated the effect of alkali lignins with different molecular weights on enzymatic hydrolysis of lignocellulose. Different alkali lignins fractions, which were obtained from cascade ultrafiltration, were added into the dilute acid pretreated (DAP) and alkali pretreated (AP) rice straws respectively during enzymatic hydrolysis. The results showed that the addition of alkali lignins enhanced the hydrolysis and the enhancement for hydrolysis increased with increasing molecular weights of alkali lignins, with maximum enhancement being 28.69% for DAP and 20.05% for AP, respectively. The enhancement was partly attributed to the improved cellulase activity, and filter paper activity increased by 18.03% when adding lignin with highest molecular weight. It was found that the enhancement of enzymatic hydrolysis was correlated with the adsorption affinity of cellulase on alkali lignins, and the difference in surface charge and hydrophobicity of alkali lignins were responsible for the difference in affinity between cellulase and lignins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Comparison of sodium hydroxide and calcium hydroxide pretreatments on the enzymatic hydrolysis and lignin recovery of sugarcane bagasse.

    Science.gov (United States)

    Chang, Menglei; Li, Denian; Wang, Wen; Chen, Dongchu; Zhang, Yuyuan; Hu, Huawen; Ye, Xiufang

    2017-11-01

    Sodium hydroxide (NaOH) and calcium hydroxide (Ca(OH) 2 ) respectively dissolved in water and 70% glycerol were applied to treat sugarcane bagasse (SCB) under the condition of 80°C for 2h. NaOH solutions could remove more lignin and obtain higher enzymatic hydrolysis efficiency of SCB than Ca(OH) 2 solutions. Compared with the alkali-water solutions, the enzymatic hydrolysis of SCB treated in NaOH-glycerol solution decreased, while that in Ca(OH) 2 -glycerol solution increased. The lignin in NaOH-water pretreatment liquor could be easily recovered by calcium chloride (CaCl 2 ) at room temperature, but that in Ca(OH) 2 -water pretreatment liquor couldn't. NaOH pretreatment is more suitable for facilitating enzymatic hydrolysis and lignin recovery of SCB than Ca(OH) 2 pretreatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Improvement of enzymatic hydrolysis and ethanol production from corn stalk by alkali and N-methylmorpholine-N-oxide pretreatments.

    Science.gov (United States)

    Cai, Ling-Yan; Ma, Yu-Long; Ma, Xiao-Xia; Lv, Jun-Min

    2016-07-01

    A combinative technology of alkali and N-methylmorpholine-N-oxide (NMMO) was used to pretreat corn stalk (CS) for improving the efficiencies of subsequent enzymatic hydrolysis and ethanol fermentation. The results showed that this strategy could not only remove hemicellulose and lignin but also decrease the crystallinity of cellulose. About 98.0% of enzymatic hydrolysis yield was obtained from the pretreated CS as compared with 46.9% from the untreated sample. The yield for corresponding ethanol yield was 64.6% while untreated CS was only 18.8%. Besides, xylose yield obtained from the untreated CS was only 11.1%, while this value was 93.8% for alkali with NMMO pretreated sample. These results suggest that a combination of alkali with 50% (wt/wt) NMMO solution may be a promising alternative for pretreatment of lignocellulose, which can increase the productions of subsequent enzymatic hydrolysis and ethanol fermentation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Biological pretreatment of corn stover with Phlebia brevispora NRRL-13108 for enhanced enzymatic hydrolysis and efficient ethanol production

    Science.gov (United States)

    Biological pretreatment of lignocellulosic biomass by white-rot fungus can represent a low-cost and eco-friendly alternative to harsh physical, chemical, or physico-chemical pretreatment methods to facilitate enzymatic hydrolysis. In this work, solid state cultivation of corn stover with Phlebia bre...

  4. A sequential pretreatment of lignocelluloses in bamboo biomass to fermentable sugars by acid/enzymatic hydrolysis.

    Science.gov (United States)

    Jagannathan, Praveenkumar; Muthukumaran, Chandrasekaran; Tamilarasan, Krishnamurthi

    2017-08-01

    A sequential pretreatment method for hydrolyzing rigid hemicelluloses and cellulose content in the bamboo biomass was investigated in this study. The effects of different parameters, such as nature of biomass, type of acid, acid and biomass concentration, were studied. Under the optimum condition of 5% (v/v) HCl-treated biomass and biomass concentration (8%, w/v), the maximum yield of sugar (619 mg/g of biomass) was obtained. The enzymatic hydrolysis parameter conditions were further optimized by response surface methodology-based central composite method. According to the results, the highest yield of sugar (515 mg/g of biomass) was obtained at hydrolysis temperature 50 °C, biomass concentration 8.9%, w/v, enzyme concentration (199.8 mg/g of biomass) and time 60 h, respectively. The effects of untreated, pretreated and enzymatically hydrolyzed biomass structure and complexity were investigated by field emission scanning electron microscopy and X-ray diffraction techniques.

  5. Enhancing the hydrolysis and methane production potential of mixed food waste by an effective enzymatic pretreatment.

    Science.gov (United States)

    Kiran, Esra Uçkun; Trzcinski, Antoine P; Liu, Yu

    2015-05-01

    In this study, a fungal mash rich in hydrolytic enzymes was produced by solid state fermentation (SSF) of waste cake in a simple and efficient manner and was further applied for high-efficiency hydrolysis of mixed food wastes (FW). The enzymatic pretreatment of FW with this fungal mash resulted in 89.1 g/L glucose, 2.4 g/L free amino nitrogen, 165 g/L soluble chemical oxygen demand (SCOD) and 64% reduction in volatile solids within 24h. The biomethane yield and production rate from FW pretreated with the fungal mash were found to be respectively about 2.3 and 3.5-times higher than without pretreatment. After anaerobic digestion of pretreated FW, a volatile solids removal of 80.4±3.5% was achieved. The pretreatment of mixed FW with the fungal mash produced in this study is a promising option for enhancing anaerobic digestion of FW in terms of energy recovery and volume reduction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Hydrolysis of Miscanthus for bioethanol production using dilute acid presoaking combined with wet explosion pre-treatment and enzymatic treatment

    DEFF Research Database (Denmark)

    Sørensen, Annette; Teller, Philip Johan; Hilstrøm, Troels

    2008-01-01

    xylose prior to wet explosion. The acid presoaking extracted 63.2% xylose and 5.2% glucose. Direct enzymatic hydrolysis of the presoaked biomass was found to give only low sugar yields of 24-26% glucose. Wet explosion is a pre-treatment method that combines wet-oxidation and steam explosion. The effect...... of wet explosion on non-presoaked and presoaked Miscanthus was investigated using both atmospheric air and hydrogen peroxide as the oxidizing agent. All wet explosion pre-treatments showed to have a disrupting effect on the lignocellulosic biomass, making the sugars accessible for enzymatic hydrolysis......Miscanthus is a high yielding bioenergy crop. In this study we used acid presoaking, wet explosion, and enzymatic hydrolysis to evaluate the combination of the different pre-treatment methods for bioethanol production with Miscanthus. Acid presoaking is primarily carried out in order to remove...

  7. Pretreatment and enzymatic hydrolysis of wheat straw (Triticum aestivum L.) – The impact of lignin relocation and plant tissues on enzymatic accessibility

    DEFF Research Database (Denmark)

    Hansen, Mads Anders Tengstedt; Kristensen, Jan Bach; Felby, Claus

    2011-01-01

    , after 144 h of enzymatic hydrolysis the cortex had vanished, exposing the heavier lignified vascular tissue. Accumulation of lignin droplets and exposure of residual lignin could be part of the explanation for the decreasing hydrolysis rate. Flattening of macrofibrils after pretreatment together...

  8. Enhancement of enzymatic hydrolysis of wheat straw by gamma irradiation–alkaline pretreatment

    International Nuclear Information System (INIS)

    Yin, Yanan; Wang, Jianlong

    2016-01-01

    Pretreatment of wheat straw with gamma irradiation and NaOH was performed to enhance the enzymatic hydrolysis of wheat straw for production of reducing sugar. The results showed that the irradiation of wheat straw at 50 kGy decreased the yield of reducing sugar, however, the reducing sugar yield increased with increasing dose from 50 kGy to 400 kGy. The irradiation of wheat straw at 100 kGy can significantly decrease NaOH consumption and treatment time. The reducing sugar yield could reach 72.67% after irradiation at 100 kGy and 2% NaOH treatment for 1 h. The combined pretreatment of wheat straw by gamma radiation and NaOH immersion can increase the solubilization of hemicellulose and lignin as well as the accessible surface area for enzyme molecules. - Highlights: • Pretreatment of wheat straw by gamma radiation and NaOH was investigated. • Irradiation pretreatment can significantly decrease NaOH consumption. • Reducing sugar yield reached 72.67% at 100 kGy and 2% NaOH treatment for 1 h.

  9. The promoting effects of manganese on biological pretreatment with Irpex lacteus and enzymatic hydrolysis of corn stover.

    Science.gov (United States)

    Song, Lili; Ma, Fuying; Zeng, Yelin; Zhang, Xiaoyu; Yu, Hongbo

    2013-05-01

    The effect of metal ions on biological pretreatment was evaluated for improving subsequent enzymatic hydrolysis. Results showed that the efficiency of fungal pretreatment was greatly improved with manganese supplement in biomass. After enzymatic hydrolysis of 28-d pretreated corn stover, maximum glucose yield was 308.98 mg/g corn stover with manganese supplement, which increased by 61.39% as compared to the conventional fungal pretreatment. Furthermore, manganese also enhanced the production of ethanol, corresponding to a high ethanol conversion (83.39%). Manganese greatly improved the delignification of Irpex lacteus specially. Correspondingly, the efficiency of saccharification and fermentation was closely related to the removal of lignin. This study showed a promising effect of manganese on fungal pretreatment and the production of biofuels. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Enzymatic hydrolysis of sodium dodecyl sulphate (SDS)-pretreated newspaper for cellulosic ethanol production by Saccharomyces cerevisiae and Pichia stipitis.

    Science.gov (United States)

    Xin, Fengxue; Geng, Anli; Chen, Ming Li; Gum, Ming Jun Marcus

    2010-10-01

    Fermentation of enzymatic hydrolysate of waste newspaper was investigated for cellulosic ethanol production in this study. Various nonionic and ionic surfactants were applied for waste newspaper pretreatment to increase the enzymatic digestibility. The surfactant-pretreated newspaper was enzymatically digested in 0.05 M sodium citrate buffer (pH 4.8) with varying solid content, filter paper unit loading (FPU/g newspaper), and ratio of filter paper unit/beta-glucosidase unit (FPU/CBU). Newspaper pretreated with the anionic surfactant sodium dodecyl sulphate (SDS) demonstrated the highest sugar yield. The addition of Tween-80 in the enzymatic hydrolysis process enhanced the enzymatic digestibility of newspaper pretreated with all of the surfactants. Enzymatic hydrolysis of SDS-pretreated newspaper with 15% solid content, 15 FPU/g newspaper, and FPU/CBU of 1:4 resulted in a newspaper hydrolysate conditioning 29.07 g/L glucose and 4.08 g/L xylose after 72 h of incubation at 50 degrees C. The fermentation of the enzymatic hydrolysate with Saccharomyces cerevisiae, Pichia stipitis, and their co-culture produced 14.29, 13.45, and 14.03 g/L of ethanol, respectively. Their corresponding ethanol yields were 0.43, 0.41, and 0.42 g/g.

  11. Torque measurements reveal large process differences between materials during high solid enzymatic hydrolysis of pretreated lignocellulose

    Directory of Open Access Journals (Sweden)

    Palmqvist Benny

    2012-08-01

    Full Text Available Abstract Background A common trend in the research on 2nd generation bioethanol is the focus on intensifying the process and increasing the concentration of water insoluble solids (WIS throughout the process. However, increasing the WIS content is not without problems. For example, the viscosity of pretreated lignocellulosic materials is known to increase drastically with increasing WIS content. Further, at elevated viscosities, problems arise related to poor mixing of the material, such as poor distribution of the enzymes and/or difficulties with temperature and pH control, which results in possible yield reduction. Achieving good mixing is unfortunately not without cost, since the power requirements needed to operate the impeller at high viscosities can be substantial. This highly important scale-up problem can easily be overlooked. Results In this work, we monitor the impeller torque (and hence power input in a stirred tank reactor throughout high solid enzymatic hydrolysis (Arundo donax and spruce. Two different process modes were evaluated, where either the impeller speed or the impeller power input was kept constant. Results from hydrolysis experiments at a fixed impeller speed of 10 rpm show that a very rapid decrease in impeller torque is experienced during hydrolysis of pretreated arundo (i.e. it loses its fiber network strength, whereas the fiber strength is retained for a longer time within the spruce material. This translates into a relatively low, rather WIS independent, energy input for arundo whereas the stirring power demand for spruce is substantially larger and quite WIS dependent. By operating the impeller at a constant power input (instead of a constant impeller speed it is shown that power input greatly affects the glucose yield of pretreated spruce whereas the hydrolysis of arundo seems unaffected. Conclusions The results clearly highlight the large differences between the arundo and spruce materials, both in terms of

  12. Effects of agitation on particle-size distribution and enzymatic hydrolysis of pretreated spruce and giant reed

    Science.gov (United States)

    2014-01-01

    Background Mixing is an energy demanding process which has been previously shown to affect enzymatic hydrolysis. Concentrated biomass slurries are associated with high and non-Newtonian viscosities and mixing in these systems is a complex task. Poor mixing can lead to mass and/or heat transfer problems as well as inhomogeneous enzyme distribution, both of which can cause possible yield reduction. Furthermore the stirring energy dissipation may impact the particle size which in turn may affect the enzymatic hydrolysis. The objective of the current work was to specifically quantify the effects of mixing on particle-size distribution (PSD) and relate this to changes in the enzymatic hydrolysis. Two rather different materials were investigated, namely pretreated Norway spruce and giant reed. Results Changes in glucan hydrolysis and PSD were measured as a function of agitation during enzymatic hydrolysis at fiber loadings of 7 or 13% water-insoluble solids (WIS). Enzymatic conversion of pretreated spruce was strongly affected by agitation rates at the higher WIS content. However, at low WIS content the agitation had almost no effect on hydrolysis. There was some effect of agitation on the hydrolysis of giant reed at high WIS loading, but it was smaller than that for spruce, and there was no measurable effect at low WIS loading. In the case of spruce, intense agitation clearly affected the PSD and resulted in a reduced mean particle size, whereas for giant reed the decrease in particle size was mainly driven by enzymatic action. However, the rate of enzymatic hydrolysis was not increased after size reduction by agitation. Conclusions The impact of agitation on the enzymatic hydrolysis clearly depends not only on feedstock but also on the solids loading. Agitation was found to affect the PSD differently for the examined pretreated materials spruce and giant reed. The fact that the reduced mean particle diameter could not explain the enhanced hydrolysis rates found for

  13. Effect of gamma ray radiation pretreatment on enzymatic hydrolysis of wheat straw to produce sugar

    International Nuclear Information System (INIS)

    Yang Chunping; Shen Zhiqiang; Yu Guoce; Wang Jianlong

    2009-01-01

    The effect and aftereffect of radiation pretreatment of wheat straw with gamma ray were studied. It is shown that irradiation can cause significant breakdown of the structure of wheat straw. The mass loss of wheat straw increases and the size distribution after crushing moves to fine particles at elevated irradiation doses. A synergistic effect between irradiation and crushing was observed, with a glucose yield of 10.2% at a dose of 500 kGy with powder of 0.109 mm. The aftereffect of irradiation has important impact on enzymatic hydrolysis of wheat straw. The aftereffect of 400 kGy irradiation accounts for 20.1% of the initial effect for glucose production, and the aftereffects of 50, 100, 200 and 300 kGy account for 12.9%, 14.9%, 8.9% and 9.1%, respectively, for reducing sugar production. (authors)

  14. Enzymatic hydrolysis of steam-pretreated lignocellulosic materials with Trichoderma atroviride enzymes produced in-house

    Directory of Open Access Journals (Sweden)

    Macrelli Stefano

    2009-07-01

    Full Text Available Abstract Background Improvement of the process of cellulase production and development of more efficient lignocellulose-degrading enzymes are necessary in order to reduce the cost of enzymes required in the biomass-to-bioethanol process. Results Lignocellulolytic enzyme complexes were produced by the mutant Trichoderma atroviride TUB F-1663 on three different steam-pretreated lignocellulosic substrates, namely spruce, wheat straw and sugarcane bagasse. Filter paper activities of the enzymes produced on the three materials were very similar, while β-glucosidase and hemicellulase activities were more dependent on the nature of the substrate. Hydrolysis of the enzyme preparations investigated produced similar glucose yields. However, the enzymes produced in-house proved to degrade the xylan and the xylose oligomers less efficiently than a commercial mixture of cellulase and β-glucosidase. Furthermore, accumulation of xylose oligomers was observed when the TUB F-1663 supernatants were applied to xylan-containing substrates, probably due to the low β-xylosidase activity of the enzymes. The efficiency of the enzymes produced in-house was enhanced by supplementation with extra commercial β-glucosidase and β-xylosidase. When the hydrolytic capacities of various mixtures of a commercial cellulase and a T. atroviride supernatant produced in the lab were investigated at the same enzyme loading, the glucose yield appeared to be correlated with the β-glucosidase activity, while the xylose yield seemed to be correlated with the β-xylosidase level in the mixtures. Conclusion Enzyme supernatants produced by the mutant T. atroviride TUB F-1663 on various pretreated lignocellulosic substrates have good filter paper activity values combined with high levels of β-glucosidase activities, leading to cellulose conversion in the enzymatic hydrolysis that is as efficient as with a commercial cellulase mixture. On the other hand, in order to achieve good xylan

  15. High selective delignification using oxidative ionic liquid pretreatment at mild conditions for efficient enzymatic hydrolysis of lignocellulose.

    Science.gov (United States)

    Pang, Zhiqiang; Lyu, Wenkang; Dong, Cuihua; Li, Hongxing; Yang, Guihua

    2016-08-01

    Herein, the oxidative ionic liquid (IL) pretreatment for overcoming recalcitrance of lignocellulose with selective delignification was investigated, and the subsequent enzymatic hydrolysis was evaluated. IL pretreatment incorporating oxygen delignification could enhance lignin extraction with high selectivity at low carbohydrate loss. The dual-action of oxidative decomposition and dissolution by 1-butyl-3-methlimidazolium chloride (BmimCl) on biomass were synergistically acted, accounting for efficient recalcitrance removal. In addition, the mild oxidative IL treatment only slightly converted crystalline cellulose into amorphous structure, and the extensive extraction of the amorphous lignin and carbohydrate resulted to the expose of cellulose with high susceptibility. Correspondingly, the enzymatic hydrolysis of the pretreated lignocellulose was greatly enhanced. The oxidative IL treatment at mild conditions, collaborating BmimCl treatment with oxygen delignification is a promising and effective system for overcoming the robust structure of lignocellulose. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Enhanced enzymatic hydrolysis and acetone-butanol-ethanol fermentation of sugarcane bagasse by combined diluted acid with oxidate ammonolysis pretreatment.

    Science.gov (United States)

    Li, Hailong; Xiong, Lian; Chen, Xuefang; Wang, Can; Qi, Gaoxiang; Huang, Chao; Luo, Mutan; Chen, Xinde

    2017-03-01

    This study aims to propose a biorefinery pretreatment technology for the bioconversion of sugarcane bagasse (SB) into biofuels and N-fertilizers. Performance of diluted acid (DA), aqueous ammonia (AA), oxidate ammonolysis (OA) and the combined DA with AA or OA were compared in SB pretreatment by enzymatic hydrolysis, structural characterization and acetone-butanol-ethanol (ABE) fermentation. Results indicated that DA-OA pretreatment improves the digestibility of SB by sufficiently hydrolyzing hemicellulose into fermentable monosaccharides and oxidating lignin into soluble N-fertilizer with high nitrogen content (11.25%) and low C/N ratio (3.39). The enzymatic hydrolysates from DA-OA pretreated SB mainly composed of glucose was more suitable for the production of ABE solvents than the enzymatic hydrolysates from OA pretreated SB containing high ratio of xylose. The fermentation of enzymatic hydrolysates from DA-OA pretreated SB produced 12.12g/L ABE in 120h. These results suggested that SB could be utilized efficient, economic, and environmental by DA-OA pretreatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Combination of enzymatic hydrolysis and ethanol organosolv pretreatments: effect on lignin structures, delignification yields and cellulose-to-glucose conversion.

    Science.gov (United States)

    Obama, Patrick; Ricochon, Guillaume; Muniglia, Lionel; Brosse, Nicolas

    2012-05-01

    Enzymatic pre-hydrolysis using the industrial enzymatic cocktail Cellulyve® was assessed as a first step in a pretreatment process of Miscanthus biomass involving an aqueous-ethanol organosolv treatment. (13)C and (31)P Nuclear Magnetic Resonance and size exclusion chromatography were used to analyze the cellulose and lignin before and after treatment. It was demonstrated that despite a very low impact on the fibre structure (observed by Scanning Electron Microscopy) and composition (in terms of sugars and polyphenolics content), the enzymatic pre-treatment disrupted the lignocellulosic matrix to a considerable extend. This weakening permitted enhanced removal of lignin during organosolv pulping and increased hydrolysability of the residual cellulosic pulp for the production of monomeric glucose. Using this combined treatment, a delignification yield of 93% and an enzymatic cellulose-to-glucose conversion of 75% were obtained. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Pretreatment of sugarcane bagasse using the advanced oxidation process by electron beam for enzymatic hydrolysis of cellulose

    International Nuclear Information System (INIS)

    Ribeiro, Marcia Almeida

    2013-01-01

    The sugar cane bagasse is a renewable energy source and a raw material promise in the biofuel production, once represents about 30% of glucose contained in the plant with the potential to be hydrolyzed and then converted to ethanol. The bagasse is composed of cellulose, straight chain of glucose, of hemicellulose, an amorphous polymer consisting of xylose, arabinose, galactose, and mannose, and of lignin, a complex polymer consisting of fenilpropan units that acts as waterproof coating on the fibers, which is hard to remove due its recalcitrant nature. The aim of this work was to study the electron beam processing as a pretreatment of sugarcane bagasse to enzymatic hydrolysis of cellulose. The pretreatment of sugarcane bagasse is one of the most important steps to make this material economically viable and competitive on the energy production. As a pretreatment the electron beam processing can weak the hemicellulose and lignin structures by the action highly reactive radicals that breaks the links, reducing the degree of polymerization fibers. It was evaluated the chemical and structural modifications on fibers caused by the irradiation, the enzymatic hydrolysis of electron beam as the only pretreatment and combined to steam explosion. For enzymatic hydrolysis it was used the commercial enzymes from Novozymes. The radiation processing promotes changes in structure and composition of sugarcane bagasse, increasing the solubility, that is related to hemicellulose and cellulose cleavage, and also increasing the enzymatic conversion yield. In the case of exploded bagasse there is no changes in the enzymatic hydrolysis yield, however the electron beam processing promoted a 67% reduction of furfural, that is formed in the steam explosion process. (author)

  19. Comparison of the effectiveness of various pretreatment methods on the enzymatic hydrolysis of sweet potato (Ipomoea batatas L. ) biomass

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, S.; Biswas, P.K.; Tolbert, M.E.M.

    1987-01-01

    Lignin, phenolic substances and other interfering constituents in agricultural biomass act as physical barriers and diminish the rate and extent of hydrolytic degradation of cellulose. In order to enhance the enzymatic susceptibility of cellulose substrate, a variety of pretreatment processes prior to cellulose hydrolysis have been investigated. Waste leaves and stems of sweet potatoes have been examined as substrates for the production of fermentable sugars for conversion to ethanol. This investigation considers the effects of a variety of single and multiple pretreatment methods on the rate of enzymatic hydrolysis of stems and leaves by cellulase from Trichoderma viride. For the single pretreatments, each substrate was treated with either 2.0% or 4.0% (w/v) sodium hydroxide at room temperature (24 h), or with 70% (v/v) ethanol at 60C (3h), or with methanol, or was extracted directly in 75% zinc chloride (w/v) solution in 0.5% hydrochloric acid at 140C (12 min). Multiple pretreatments consisted of the following: methanol or methanol and acetone, sulfuric acid (1%, v/v) followed by sodium hydroxide (4.0%, w/v) or zinc chloride or sodium hydroxide and zinc chloride; ethanol, zinc chloride; methanol or methanol and acetone followed by zinc chloride. Single pretreatments were not promising. However, single or multiple pretreatments of leaves enhanced the enzymatic hydrolysis and yields of glucose. Neither single nor multiple pretreatment was found to be very effective for stem substrates, as untreated stems were highly susceptible to cellulolysis. Among all the pretreatments, those involving zinc chloride in hydrochloric acid generally resulted in higher glucose yields. 18 references.

  20. Rapid near infrared spectroscopy for prediction of enzymatic hydrolysis of corn bran after various pretreatments

    DEFF Research Database (Denmark)

    Baum, Andreas; Wittrup Agger, Jane; Meyer, Anne S.

    2012-01-01

    step is to increase the responsivity of the substrate to enzymatic attack and the type of pretreatment affects the enzymatic conversion efficiency. Destarched corn bran is a fibrous, heteroxylan-rich side-stream from the starch industry which may be used as a feedstock for bioethanol production...... or as a source of xylose for other purposes. In the present study we demonstrate the use of diffuse reflectance near infrared spectroscopy (NIR) as a rapid and non-destructive analytical tool for evaluation of pretreatment effects on destarched corn bran. NIR was used to achieve classification between 43...... differently pretreated corn bran samples using principal component analysis (PCA) and hierarchal clustering algorithms. Quantification of the enzymatically released monosaccharides by HPLC was used to design multivariate calibration models (biPLS) on the NIR spectra. The models could predict the enzymatic...

  1. Phenols and lignin: Key players in reducing enzymatic hydrolysis yields of steam-pretreated biomass in presence of laccase.

    Science.gov (United States)

    Oliva-Taravilla, Alfredo; Tomás-Pejó, Elia; Demuez, Marie; González-Fernández, Cristina; Ballesteros, Mercedes

    2016-01-20

    Phenols are known as inhibitors for cellulases and fermentative microorganisms in bioethanol production processes. The addition of laccases removes the phenolic compounds and subsequently reduces the lag phase of the fermentative microorganism. However, the application of laccases diminishes glucose release during the enzymatic hydrolysis. In this study a model cellulosic substrate (Sigmacell) together with lignin extract, whole steam-pretreated wheat straw (slurry) and its water insoluble solid fraction (WIS) were subjected to enzymatic hydrolysis to evaluate the effects of laccase treatment in presence of lignin and phenols. The presence of laccase in enzymatic hydrolysis of Sigmacell with lignin extract reduced glucose yield by 37% compared with assays without laccase. Furthermore, this reduction was even more marked in presence of phenols (55% reduction). Interestingly, when hydrolyzing WIS, the addition of phenols coupled with laccase treatment did not show a reduction when compared with only laccase addition. This fact suggests the key role of lignin in the hydrolysis inhibition since in WIS the ratio cellulase per gram of lignin was much lower than in Sigmacell experiments. Finally, the lower cellobiose and xylose recoveries point out that phenolic oligomers formed by laccase oxidation play important roles in the inhibition of endoglucanases, cellobiohydrolases and xylanases. To conclude, the proportion of lignin and the composition of phenols are key players in the inhibition of cellulases when the enzymatic hydrolysis is combined with laccases detoxification. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Effect of pretreatment on enzymatic hydrolysis of bovine collagen and formation of ACE-inhibitory peptides

    DEFF Research Database (Denmark)

    Zhang, Yuhao; Olsen, Karsten; Grossi, Alberto Blak

    2013-01-01

    ACEinhibitory peptides. The highest ACE-inhibitory activity was obtained with Alcalase. Pretreatment significantly influenced the DH and ACE-inhibition. For most enzymes, boiling for 5 min resulted in a significantly higher DH and ACE-inhibitory activity. With Alcalase and collagenase, hydrolysis and release...... of ACE-inhibitory peptides occurred without any pretreatment, but HP-treatment significantly improved the DH and ACE-inhibitory activity. HP did not markedly affect the hydrolysis with the other enzymes. The major peptides obtained with Alcalase were identified; all were released from the triple helix...

  3. Addition of Surfactants and Non-Hydrolytic Proteins and Their Influence on Enzymatic Hydrolysis of Pretreated Sugarcane Bagasse.

    Science.gov (United States)

    Méndez Arias, Johanna; de Oliveira Moraes, Anelize; Modesto, Luiz Felipe Amarante; de Castro, Aline Machado; Pereira, Nei

    2017-02-01

    Poly(ethylene glycol) (PEG 4000) and bovine serum albumin (BSA) were investigated with the purpose of evaluating their influence on enzymatic hydrolysis of sugarcane bagasse. Effects of these supplements were assayed for different enzymatic cocktails (Trichoderma harzianum and Penicillium funiculosum) that acted on lignocellulosic material submitted to different pretreatment methods with varying solid (25 and 100 g/L) and protein (7.5 and 20 mg/g cellulose) loadings. The highest levels of glucose release were achieved using partially delignified cellulignin as substrate, along with the T. harzianum cocktail: increases of 14 and 18 % for 25 g/L solid loadings and of 33 and 43 % for 100 g/L solid loadings were reached for BSA and PEG supplementation, respectively. Addition of these supplements could maintain hydrolysis yield even for higher solid loadings, but for higher enzymatic cocktail protein loadings, increases in glucose release were not observed. Results indicate that synergism might occur among these additives and cellulase and xylanases. The use of these supplements, besides depending on factors such as pretreatment method of sugarcane bagasse, enzymatic cocktails composition, and solid and protein loadings, may not always lead to positive effects on the hydrolysis of lignocellulosic material, making it necessary further statistical studies, according to process conditions.

  4. Eliminating inhibition of enzymatic hydrolysis by lignosulfonate in unwashed sulfite-pretreated aspen using metal salts

    Science.gov (United States)

    Hao Liu; Junyong Zhu

    2010-01-01

    This study demonstrated the efficiency of Ca(II) and Mg(II) in removing inhibition of enzymatic hydrolysis by lignosulfonate through non-productive adsorption of enzymes. Adding 1 mmol/g cellulose of either metal salt restores approximately 65% of the activity lost when a pure cellulose/cellulase solution is spiked with lignosulfonate. Addition of either Ca(II) or Mg(...

  5. Comparison of Microwave and Ozonolysis Effect as Pretreatment on Sugarcane Bagasse Enzymatic Hydrolysis

    Directory of Open Access Journals (Sweden)

    N Eqra

    2015-03-01

    Full Text Available Bioethanol production from agricultural residues is one of the promising methods. Pretreatment is the most important step in this type of bioethanol production. In this study, the saccharification percentage of sugarcane bagasse was investigated after two types of pretreatments including ozone steaming and microwave. Microwave pretreatment was studied with two factors of microwave radiation (170, 450, and 850 w and microwave duration (2, 6, and 10 min. The ozonolysis (ozone steaming pretreatment was surveyed with two factors of moisture content of bagasse (30, 40, and 50% and ozonolysis time (1.5, 2.5, 3.5, and 4.5 hr. After hydrolysis, the Saccharification percentage of sugarcane bagasse increased to 57.2% and 67.06% with microwave and ozonolysis pretreatments, respectively; compare to 20.85% in non-ozonated bagasse. It can be concluded that the ozonolysis is the most effective pretreatment regarding to saccharification percentage of sugarcane bagasse.

  6. Effect of mixing on enzymatic hydrolysis of steam-pretreated spruce: a quantitative analysis of conversion and power consumption

    Directory of Open Access Journals (Sweden)

    Wiman Magnus

    2011-05-01

    Full Text Available Abstract Background When scaling up lignocellulose-based ethanol production, the desire to increase the final ethanol titer after fermentation can introduce problems. A high concentration of water-insoluble solids (WIS is needed in the enzymatic hydrolysis step, resulting in increased viscosity, which can cause mass and heat transfer problems because of poor mixing of the material. In the present study, the effects of mixing on the enzymatic hydrolysis of steam-pretreated spruce were investigated using a stirred tank reactor operated with different impeller speeds and enzyme loadings. In addition, the results were related to the power input needed to operate the impeller at different speeds, taking into account the changes in rheology throughout the process. Results A marked difference in hydrolysis rate at different impeller speeds was found. For example, the conversion was twice as high after 48 hours at 500 rpm compared with 25 rpm. This difference remained throughout the 96 hours of hydrolysis. Substantial amounts of energy were required to achieve only minor increases in conversion during the later stages of the process. Conclusions Impeller speed strongly affected both the hydrolysis rate of the pretreated spruce and needed power input. Similar conversions could be obtained at different energy input by altering the mixing (that is, energy input, enzyme load and residence time, an important issue to consider when designing large-scale plants.

  7. Optimization of Saccharification Conditions of Lignocellulosic Biomass under Alkaline Pre-Treatment and Enzymatic Hydrolysis

    Directory of Open Access Journals (Sweden)

    Rafał Łukajtis

    2018-04-01

    Full Text Available Pre-treatment is a significant step in the production of second-generation biofuels from waste lignocellulosic materials. Obtaining biofuels as a result of fermentation processes requires appropriate pre-treatment conditions ensuring the highest possible degree of saccharification of the feed material. An influence of the following process parameters were investigated for alkaline pre-treatment of Salix viminalis L.: catalyst concentration (NaOH, temperature, pre-treatment time and granulation. For this purpose, experiments were carried out in accordance to the Box-Behnken design for four factors. In the saccharification process of the pre-treated biomass, cellulolytic enzymes immobilized on diatomaceous earth were used. Based on the obtained results, a mathematical model for the optimal conditions of alkaline pre-treatment prediction is proposed. The optimal conditions of alkaline pre-treatment are established as follows: granulation 0.75 mm, catalyst concentration 7%, pre-treatment time 6 h and temperature 65 °C if the saccharification efficiency and cost analysis are considered. An influence of the optimized pre-treatment on both the chemical composition and structural changes for six various lignocellulosic materials (energetic willow, energetic poplar, beech, triticale, meadow grass, corncobs was investigated. SEM images of raw and pre-treated biomass samples are included in order to follow the changes in the biomass structure during hydrolysis.

  8. Investigation of the pellets produced from sugarcane bagasse during liquid hot water pretreatment and their impact on the enzymatic hydrolysis.

    Science.gov (United States)

    Wang, Wen; Zhuang, Xinshu; Yuan, Zhenhong; Yu, Qiang; Qi, Wei

    2015-08-01

    In the process of liquid hot water (LHW) pretreatment, there are numbers of pellets formed on the lignocellulosic surface. The characteristics and effect of pellets on the enzymatic hydrolysis of LHW-treated sugarcane bagasse (SCB) were investigated. After SCB was treated with LHW at 180°C, the pellets deposited on the surface of solid residues were extracted gently with 1% sodium hydroxide (NaOH) solution. They were composed of 81.0% lignin, 7.0% glucan, and 3.2% xylan. The LHW pretreatment solution (PS) was sprayed to the filter paper, and the pellets were observed on its surface. Fourier transform infrared spectroscopy (FTIR) data showed that lignin was also the main component of the PS pellets. The effect of the pellets on enzymatic hydrolysis was chiefly attributed to the steric hindrance, not the cellulase adsorption. The structural characteristics of LHW-treated SCB might play a more important role in influencing the enzymatic hydrolysis than the pellets. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Combining hot-compressed water and ball milling pretreatments to improve the efficiency of the enzymatic hydrolysis of eucalyptus

    Directory of Open Access Journals (Sweden)

    Sakaki Tsuyoshi

    2008-04-01

    Full Text Available Abstract Background Lignocellulosic biomass such as wood is an attractive material for fuel ethanol production. Pretreatment technologies that increase the digestibility of cellulose and hemicellulose in the lignocellulosic biomass have a major influence on the cost of the subsequent enzymatic hydrolysis and ethanol fermentation processes. Pretreatments without chemicals such as acids, bases or organic solvents are less effective for an enzymatic hydrolysis process than those with chemicals, but they have a less negative effect on the environment. Results The enzymatic digestibility of eucalyptus was examined following a combined pretreatment without chemicals comprising a ball milling (BM and hot-compressed water (HCW treatment. The BM treatment simultaneously improved the digestibility of both glucan and xylan, and was effective in lowering the enzyme loading compared with the HCW treatment. The combination of HCW and BM treatment reduced the BM time. The eucalyptus treated with HCW (160°C, 30 minutes followed by BM (20 minutes had an approximately 70% yield of total sugar with a cellulase loading of 4 FPU/g substrate. This yield was comparable to the yields from samples treated with HCW (200°C, 30 minutes or BM (40 minutes hydrolyzed with 40 FPU/g substrate. Conclusion The HCW treatment is useful in improving the milling efficiency. The combined HCW-BM treatment can save energy and enzyme loading.

  10. Endophytic Fungi as Pretreatment to Enhance Enzymatic Hydrolysis of Olive Tree Pruning

    Directory of Open Access Journals (Sweden)

    Raquel Martín-Sampedro

    2017-01-01

    Full Text Available Olive tree pruning, as one of the most abundant lignocellulosic residues in Mediterranean countries, has been evaluated as a source of sugars for fuel and chemicals production. A mild acid pretreatment has been combined with a fungal pretreatment using either two endophytes (Ulocladium sp. and Hormonema sp. or a saprophyte (Trametes sp. I-62. The use of endophytes is based on the important role that some of them play during the initial stages of wood decomposition. Without acid treatment, fungal pretreatment with Ulocladium sp. provided a nonsignificant enhancement of 4.6% in glucose digestibility, compared to control. When a mild acid hydrolysis was carried out after fungal pretreatments, significant increases in glucose digestibility from 4.9% to 12.0% (compared to control without fungi were observed for all fungal pretreatments, with maximum values yielded by Hormonema sp. However, despite the observed digestibility boost, the total sugar yields (taking into account solid yield were not significantly increased by the pretreatments. Nevertheless, based on these preliminary improvements in digestibility, this work proves the potential of endophytic fungi to boost the production of sugar from olive tree pruning, which would add an extra value to the bioeconomy of olive crops.

  11. Pyrolysis characteristics and kinetics of lignin derived from enzymatic hydrolysis residue of bamboo pretreated with white-rot fungus.

    Science.gov (United States)

    Yan, Keliang; Liu, Fang; Chen, Qing; Ke, Ming; Huang, Xin; Hu, Weiyao; Zhou, Bo; Zhang, Xiaoyu; Yu, Hongbo

    2016-01-01

    The lignocellulose biorefinery based on the sugar platform usually focuses on polysaccharide bioconversion, while lignin is only burned for energy recovery. Pyrolysis can provide a novel route for the efficient utilization of residual lignin obtained from the enzymatic hydrolysis of lignocellulose. The pyrolysis characteristics of residual lignin are usually significantly affected by the pretreatment process because of structural alteration of lignin during pretreatment. In recent years, biological pretreatment using white-rot fungi has attracted extensive attention, but there are only few reports on thermal conversion of lignin derived from enzymatic hydrolysis residue (EHRL) of the bio-pretreated lignocellulose. Therefore, the study investigated the pyrolysis characteristics and kinetics of EHRL obtained from bamboo pretreated with Echinodontium taxodii in order to evaluate the potential of thermal conversion processes of EHRL. Fourier transform infrared spectroscopy spectra showed that EHRL of bamboo treated with E. taxodii had the typical lignin structure, but aromatic skeletal carbon and side chain of lignin were partially altered by the fungus. Thermogravimetric analysis indicated that EHRL pyrolysis at different heating rates could be divided into two depolymerization stages and covered a wide temperature range from 500 to 900 K. The thermal decomposition reaction can be well described by two third-order reactions. The kinetics study indicated that the EHRL of bamboo treated with white-rot fungus had lower apparent activation energies, lower peak temperatures of pyrolysis reaction, and higher char residue than the EHRL of raw bamboo. Pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) was applied to characterize the fast pyrolysis products of EHRL at 600 ℃. The ratios of guaiacyl-type to syringyl-type derivatives yield (G/S) and guaiacyl-type to p-hydroxy-phenylpropane-type derivatives yield (G/H) for the treated sample were increased by 33.18 and

  12. Effects of substrate loading on enzymatic hydrolysis and viscosity of pretreated barley straw

    DEFF Research Database (Denmark)

    Rosgaard, L.; Andric, Pavle; Dam-Johansen, Kim

    2007-01-01

    for the reaction with a substrate loading of 5% w/w DM after 72 h. The reactions subjected to gradual loading of substrate or substrate plus enzymes to increase the substrate levels from 5 to 15% w/w DM, consistently provided lower concentrations of glucose after 72 h of reaction; however, the initial rates...... glucose concentration, 78 g/l, after 72 h of reaction, was obtained with an initial, full substrate loading of 15% dry matter weight/weight (w/w DM). Conversely, the glucose yields, in grams per gram of DM, were highest at lower substrate concentrations, with the highest glucose yield being 0.53 g/g DM...... viscosity during hydrolysis, and high glucose concentrations. An enzyme system comprising Celluclast and Novozyme 188, a commercial cellulase product derived from Trichoderma reesei and a beta-glucosidase derived from Aspergillus niger, respectively, was used for the enzymatic hydrolysis. The highest final...

  13. Effects of SPORL and dilute acid pretreatment on substrate morphology, cell physical and chemical wall structures, and subsequent enzymatic hydrolysis of lodgepole pine

    Science.gov (United States)

    Xinping Li; Xiaolin Luo; Kecheng Li; J.Y. Zhu; J. Dennis Fougere; Kimberley Clarke

    2012-01-01

    The effects of pretreatment by dilute acid and sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) on substrate morphology, cell wall physical and chemical structures, along with the subsequent enzymatic hydrolysis of lodgepole pine substrate were investigated. FE-SEM and TEM images of substrate structural morphological changes showed that SPORL...

  14. Electron beam pretreatment of switchgrass to enhance enzymatic hydrolysis to produce sugars for biofuels.

    Science.gov (United States)

    Sundar, Smith; Bergey, N Scott; Salamanca-Cardona, Lucia; Stipanovic, Arthur; Driscoll, Mark

    2014-01-16

    Conversion of lignocellulosic biomass to value added products such as ethanol and other platform chemicals is enhanced by pretreatment, which reduces the crystallinity and molecular weight of cell wall polymers, thus increasing the available reaction sites. In this study, switchgrass (Panicum virgatum L.) was pretreated with high energy electron beam (EB) irradiation to reduce its recalcitrance and achieve higher sugar conversion rates during treatment with cellulases and β-glucosidase. Conversion rates to sugars were compared before and after hot water (HW) extraction of EB-treated and control samples of switchgrass. Thermogravimetric analysis (TGA) was employed to determine peak degradation temperature of these EB-treated biomass samples before and after HW extraction, and near infrared spectroscopy (NIR) was used as a rapid technique to determine cellulose, hemicellulose, and lignin contents in the samples. TGA data confirm previously reported results that EB pretreatment reduces the molecular weight and crystallinity of cellulose and hemicellulose. This leaves hemicellulose more amenable to HW extraction and creates more cellulase-accessible sites, as shown by NIR and glucose yield data, respectively. Hemicellulose content was reduced from 30.2 to 16.9% after HW extraction and 1000 kGy EB treatment, and ultimate glucose yield after cellulase hydrolysis increased more than 4-fold. This study provides evidence that when EB pretreatment is utilized in combination with HW extraction, higher conversion rates and yields of glucose can be obtained from the cellulosic fraction of switchgrass. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Ammonia fiber expansion (AFEX) pretreatment, enzymatic hydrolysis, and fermentation on empty palm fruit bunch fiber (EPFBF) for cellulosic ethanol production.

    Science.gov (United States)

    Lau, Ming J; Lau, Ming W; Gunawan, Christa; Dale, Bruce E

    2010-11-01

    Empty palm fruit bunch fiber (EPFBF), a readily available cellulosic biomass from palm processing facilities, is investigated as a potential carbohydrate source for cellulosic ethanol production. This feedstock was pretreated using ammonia fiber expansion (AFEX) and enzymatically hydrolyzed. The best tested AFEX conditions were at 135 °C, 45 min retention time, water to dry biomass loading of 1:1 (weight ratio), and ammonia to dry biomass loading of 1:1 (weight ratio). The particle size of the pretreated biomass was reduced post-AFEX. The optimized enzyme formulation consists of Accellerase (84 μL/g biomass), Multifect Xylanase (31 μL/g biomass), and Multifect Pectinase (24 μL/g biomass). This mixture achieved close to 90% of the total maximum yield within 72 h of enzymatic hydrolysis. Fermentation on the water extract of this biomass affirms that nutrients solely from the pretreated EPFBF can support yeast growth for complete glucose fermentation. These results suggest that AFEX-treated EPFBF can be used for cellulosic biofuels production because biomass recalcitrance has been overcome without reducing the fermentability of the pretreated materials.

  16. Comparison of autohydrolysis and ionic liquid 1-butyl-3-methylimidazolium acetate pretreatment to enhance enzymatic hydrolysis of sugarcane bagasse.

    Science.gov (United States)

    Hashmi, Muzna; Sun, Qining; Tao, Jingming; Wells, Tyrone; Shah, Aamer Ali; Labbé, Nicole; Ragauskas, Arthur J

    2017-01-01

    The aim of this work was to evaluate the efficiency of an ionic liquid (IL) 1-butyl-3-methylimidazolium acetate ([C 4 mim][OAc]) pretreatment (110°C for 30min) in comparison to high severity autohydrolysis pretreatment in terms of delignification, cellulose crystallinity and enzymatic digestibility. The increase in severity of autohydrolysis pretreatment had positive effect on glucan digestibility, but was limited by the crystallinity of cellulose. [C 4 mim][OAc] pretreated sugarcane bagasse exhibited a substantial decrease in lignin content, reduced cellulose crystallinity, and enhanced glucan and xylan digestibility. Glucan and xylan digestibility was determined as 97.4% and 98.6% from [C 4 mim][OAc] pretreated bagasse, and 62.1% and 57.5% from the bagasse autohydrolyzed at 205°C for 6min, respectively. The results indicated the improved digestibility and hydrolysis rates after [C 4 mim][OAc] pretreatment when compared against a comparable autohydrolyzed biomass. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Enzymatic hydrolysis of chitin pretreated by rapid depressurization from supercritical 1,1,1,2-tetrafluoroethane toward highly acetylated oligosaccharides.

    Science.gov (United States)

    Villa-Lerma, Guadalupe; González-Márquez, Humberto; Gimeno, Miquel; Trombotto, Stéphane; David, Laurent; Ifuku, Shinsuke; Shirai, Keiko

    2016-06-01

    The hydrolysis of chitin treated under supercritical conditions was successfully carried out using chitinases obtained by an optimized fermentation of the fungus Lecanicillium lecanii. The biopolymer was subjected to a pretreatment based on suspension in supercritical 1,1,1,2-tetrafluoroethane (scR134a), which possesses a critical temperature and pressure of 101°C and 40bar, respectively, followed by rapid depressurization to atmospheric pressure and further fibrillation. This methodology was compared to control untreated chitins and chitin subjected to steam explosion showing improved production of reducing sugars (0.18mg/mL), enzymatic hydrolysis and high acetylation (FA of 0.45) in products with degrees of polymerization between 2 and 5. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Effect and Modeling of Glucose Inhibition and In Situ Glucose Removal During Enzymatic Hydrolysis of Pretreated Wheat Straw

    DEFF Research Database (Denmark)

    Andric, Pavle; Meyer, Anne S.; Jensen, Peter Arendt

    2010-01-01

    The enzymatic hydrolysis of lignocellulosic biomass is known to be product-inhibited by glucose. In this study, the effects on cellulolytic glucose yields of glucose inhibition and in situ glucose removal were examined and modeled during extended treatment of heat-pretreated wheat straw with the ......The enzymatic hydrolysis of lignocellulosic biomass is known to be product-inhibited by glucose. In this study, the effects on cellulolytic glucose yields of glucose inhibition and in situ glucose removal were examined and modeled during extended treatment of heat-pretreated wheat straw...... with the cellulolytic enzyme system, Celluclast (R) 1.5 L, from Trichoderma reesei, supplemented with a beta-glucosidase, Novozym (R) 188, from Aspergillus niger. Addition of glucose (0-40 g/L) significantly decreased the enzyme-catalyzed glucose formation rates and final glucose yields, in a dose-dependent manner......-Menten inhibition models without great significance of the inhibition mechanism. Moreover, the experimental in situ removal of glucose could be simulated by a Michaelis-Menten inhibition model. The data provide an important base for design of novel reactors and operating regimes which include continuous product...

  19. Combination of Superheated Steam with Laccase Pretreatment Together with Size Reduction to Enhance Enzymatic Hydrolysis of Oil Palm Biomass

    Directory of Open Access Journals (Sweden)

    Nur Fatin Athirah Ahmad Rizal

    2018-04-01

    Full Text Available The combination of superheated steam (SHS with ligninolytic enzyme laccase pretreatment together with size reduction was conducted in order to enhance the enzymatic hydrolysis of oil palm biomass into glucose. The oil palm empty fruit bunch (OPEFB and oil palm mesocarp fiber (OPMF were pretreated with SHS and ground using a hammer mill to sizes of 2, 1, 0.5 and 0.25 mm before pretreatment using laccase to remove lignin. This study showed that reduction of size from raw to 0.25 mm plays important role in lignin degradation by laccase that removed 38.7% and 39.6% of the lignin from OPEFB and OPMF, respectively. The subsequent saccharification process of these pretreated OPEFB and OPMF generates glucose yields of 71.5% and 63.0%, which represent a 4.6 and 4.8-fold increase, respectively, as compared to untreated samples. This study showed that the combination of SHS with laccase pretreatment together with size reduction could enhance the glucose yield.

  20. Evaluation of ammonia fibre expansion (AFEX) pretreatment for enzymatic hydrolysis of switchgrass harvested in different seasons and locations.

    Science.gov (United States)

    Bals, Bryan; Rogers, Chad; Jin, Mingjie; Balan, Venkatesh; Dale, Bruce

    2010-01-04

    When producing biofuels from dedicated feedstock, agronomic factors such as harvest time and location can impact the downstream production. Thus, this paper studies the effectiveness of ammonia fibre expansion (AFEX) pretreatment on two harvest times (July and October) and ecotypes/locations (Cave-in-Rock (CIR) harvested in Michigan and Alamo harvested in Alabama) for switchgrass (Panicum virgatum). Both harvest date and ecotype/location determine the pretreatment conditions that produce maximum sugar yields. There was a high degree of correlation between glucose and xylose released regardless of the harvest, pretreatment conditions, or enzyme formulation. Enzyme formulation that produced maximum sugar yields was the same across all harvests except for the CIR October harvest. The least mature sample, the July harvest of CIR switchgrass, released the most sugars (520 g/kg biomass) during enzymatic hydrolysis while requiring the least severe pretreatment conditions. In contrast, the most mature harvest released the least amount of sugars (410 g/kg biomass). All hydrolysates were highly fermentable, although xylose utilisation in the July CIR hydrolysate was poor. Each harvest type and location responded differently to AFEX pretreatment, although all harvests successfully produced fermentable sugars. Thus, it is necessary to consider an integrated approach between agricultural production and biochemical processing in order to insure optimal productivity.

  1. Evaluation of ammonia fibre expansion (AFEX pretreatment for enzymatic hydrolysis of switchgrass harvested in different seasons and locations

    Directory of Open Access Journals (Sweden)

    Balan Venkatesh

    2010-01-01

    Full Text Available Abstract Background When producing biofuels from dedicated feedstock, agronomic factors such as harvest time and location can impact the downstream production. Thus, this paper studies the effectiveness of ammonia fibre expansion (AFEX pretreatment on two harvest times (July and October and ecotypes/locations (Cave-in-Rock (CIR harvested in Michigan and Alamo harvested in Alabama for switchgrass (Panicum virgatum. Results Both harvest date and ecotype/location determine the pretreatment conditions that produce maximum sugar yields. There was a high degree of correlation between glucose and xylose released regardless of the harvest, pretreatment conditions, or enzyme formulation. Enzyme formulation that produced maximum sugar yields was the same across all harvests except for the CIR October harvest. The least mature sample, the July harvest of CIR switchgrass, released the most sugars (520 g/kg biomass during enzymatic hydrolysis while requiring the least severe pretreatment conditions. In contrast, the most mature harvest released the least amount of sugars (410 g/kg biomass. All hydrolysates were highly fermentable, although xylose utilisation in the July CIR hydrolysate was poor. Conclusions Each harvest type and location responded differently to AFEX pretreatment, although all harvests successfully produced fermentable sugars. Thus, it is necessary to consider an integrated approach between agricultural production and biochemical processing in order to insure optimal productivity.

  2. Pretreating lignocellulosic biomass by the concentrated phosphoric acid plus hydrogen peroxide (PHP) for enzymatic hydrolysis: evaluating the pretreatment flexibility on feedstocks and particle sizes.

    Science.gov (United States)

    Wang, Qing; Wang, Zhanghong; Shen, Fei; Hu, Jinguang; Sun, Fubao; Lin, Lili; Yang, Gang; Zhang, Yanzong; Deng, Shihuai

    2014-08-01

    In order to seek a high-efficient pretreatment path for converting lignocellulosic feedstocks to fermentable sugars by enzymatic hydrolysis, the concentrated H₃PO₄ plus H₂O₂ (PHP) was attempted to pretreat different lignocellulosic biomass for evaluating the pretreatment flexibility on feedstocks. Meanwhile, the responses of pretreatment to particle sizes were also evaluated. When the PHP-pretreatment was employed (final H₂O₂ and H₃PO₄ concentration of 1.77% and 80.0%), 71-96% lignin and more than 95% hemicellulose in various feedstocks (agricultural residues, hardwood, softwood, bamboo, and their mixture, and garden wastes mixture) can be removed. Consequently, more than 90% glucose conversion was uniformly achieved indicating PHP greatly improved the pretreatment flexibility to different feedstocks. Moreover, when wheat straw and oak chips were PHP-pretreated with different sizes, the average glucose conversion reached 94.9% and 100% with lower coefficient of variation (7.9% and 0.0%), which implied PHP-pretreatment can significantly weaken the negative effects of feedstock sizes on subsequent conversion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Improving the enzymatic hydrolysis of thermo-mechanical fiber from Eucalyptus urophylla by a combination of hydrothermal pretreatment and alkali fractionation.

    Science.gov (United States)

    Sun, Shaoni; Cao, Xuefei; Sun, Shaolong; Xu, Feng; Song, Xianliang; Sun, Run-Cang; Jones, Gwynn Lloyd

    2014-01-01

    The recalcitrance of lignocellulosic biomass is a major limitation for its conversion into biofuels by enzymatic hydrolysis. The use of a pretreatment technology is an essential step to diminish biomass recalcitrance for bioethanol production. In this study, a two-step pretreatment using hydrothermal pretreatment at various temperatures and alkali fractionation was performed on eucalyptus fiber. The detailed chemical composition, physicochemical characteristics, and morphology of the pretreated fibers in each of the fractions were evaluated to advance the performance of eucalyptus fiber in enzymatic digestibility. The hydrothermal pretreatment (100 to 220°C) significantly degraded hemicelluloses, resulting in an increased crystallinity of the pretreated fibers. However, as the pretreatment temperature reached 240°C, partial cellulose was degraded, resulting in a reduced crystallinity of cellulose. As compared to the hydrothermal pretreatment alone, a combination of hydrothermal and alkali treatments significantly removed hemicelluloses and lignin, resulting in an improved enzymatic hydrolysis of the cellulose-rich fractions. As compared with the raw fiber, the enzymatic hydrolysis rate increased 1.1 to 8.5 times as the hydrothermal pretreatment temperature increased from 100 to 240°C. Interestingly, after a combination of hydrothermal pretreatment and alkali fractionation, the enzymatic hydrolysis rate increased 3.7 to 9.2 times. Taking into consideration the consumption of energy and the production of xylo-oligosaccharides and lignin, an optimum pretreatment condition was found to be hydrothermal pretreatment at 180°C for 30 min and alkali fractionation with 2% NaOH at 90°C for 2.5 h, in which 66.3% cellulose was converted into glucose by enzymatic hydrolysis. The combination of hydrothermal pretreatment and alkali fractionation was a promising method to remove hemicelluloses and lignin as well as overcome the biomass recalcitrance for enzymatic hydrolysis

  4. Effects of glycerol on enzymatic hydrolysis and ethanol production using sugarcane bagasse pretreated by acidified glycerol solution.

    Science.gov (United States)

    Zhang, Zhanying; Wong, Heng H; Albertson, Peter L; Harrison, Mark D; Doherty, William O S; O'Hara, Ian M

    2015-09-01

    In this study, for the first time the effects of glycerol on enzymatic hydrolysis and ethanol fermentation were investigated. Enzymatic hydrolysis was inhibited slightly with 2.0 wt% glycerol, leading to reduction in glucan digestibility from 84.9% without glycerol to 82.9% (72 h). With 5.0 wt% and 10.0 wt% glycerol, glucan digestibility was reduced by 4.5% and 11.0%, respectively. However, glycerol did not irreversibly inhibit cellulase enzymes. Ethanol fermentation was not affected by glycerol up to 5.0 wt%, but was inhibited slightly at 10.0 wt% glycerol, resulting in reduction in ethanol yield from 86.0% in the absence of glycerol to 83.7% (20 h). Based on the results of laboratory and pilot-scale experiments, it was estimated that 0.142 kg ethanol can be produced from 1.0 kg dry bagasse (a glucan content of 38.0%) after pretreatment with acidified glycerol solution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Industrial-scale steam explosion pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production of second generation ethanol and value-added products.

    Science.gov (United States)

    Oliveira, Fernando M V; Pinheiro, Irapuan O; Souto-Maior, Ana M; Martin, Carlos; Gonçalves, Adilson R; Rocha, George J M

    2013-02-01

    Steam explosion at 180, 190 and 200°C for 15min was applied to sugarcane straw in an industrial sugar/ethanol reactor (2.5m(3)). The pretreated straw was delignificated by sodium hydroxide and hydrolyzed with cellulases, or submitted directly to enzymatic hydrolysis after the pretreatment. The pretreatments led to remarkable hemicellulose solubilization, with the maximum (92.7%) for pretreatment performed at 200°C. Alkaline treatment of the pretreated materials led to lignin solubilization of 86.7% at 180°C, and only to 81.3% in the material pretreated at 200°C. All pretreatment conditions led to high hydrolysis conversion of cellulose, with the maximum (80.0%) achieved at 200°C. Delignification increase the enzymatic conversion (from 58.8% in the cellulignin to 85.1% in the delignificated pulp) of the material pretreated at 180°C, but for the material pretreated at 190°C, the improvement was less remarkable, while for the pretreated at 200°C the hydrolysis conversion decreased after the alkaline treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Comparison and Optimization of Saccharification Conditions of Alkaline Pre-Treated Triticale Straw for Acid and Enzymatic Hydrolysis Followed by Ethanol Fermentation

    Directory of Open Access Journals (Sweden)

    Rafał Łukajtis

    2018-03-01

    Full Text Available This paper concerns the comparison of the efficiency of two-stage hydrolysis processes, i.e., alkaline pre-treatment and acid hydrolysis, as well as alkaline pre-treatment followed by enzymatic hydrolysis, carried out in order to obtain reducing sugars from triticale straw. For each of the analyzed systems, the optimization of the processing conditions was carried out with respect to the glucose yield. For the alkaline pre-treatment, an optimal catalyst concentration was selected for constant values of temperature and pre-treatment time. For enzymatic hydrolysis, optimal process time and concentration of the enzyme preparation were determined. For the acidic hydrolysis, performed with 85% phosphoric acid, the optimum temperature and hydrolysis time were determined. In the hydrolysates obtained after the two-stage treatment, the concentration of reducing sugars was determined using HPLC. The obtained hydrolysates were subjected to ethanol fermentation. The concentrations of fermentation inhibitors are given and their effects on the alcoholic fermentation efficiency are discussed.

  7. Effects of SPORL and dilute acid pretreatment on substrate morphology, cell physical and chemical wall structures, and subsequent enzymatic hydrolysis of lodgepole pine.

    Science.gov (United States)

    Li, Xinping; Luo, Xiaolin; Li, Kecheng; Zhu, J Y; Fougere, J Dennis; Clarke, Kimberley

    2012-11-01

    The effects of pretreatment by dilute acid and sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) on substrate morphology, cell wall physical and chemical structures, along with the subsequent enzymatic hydrolysis of lodgepole pine substrate were investigated. FE-SEM and TEM images of substrate structural morphological changes showed that SPORL pretreatment resulted in fiber separation, where SPORL high pH (4.2) pretreatment exhibited better fiber separation than SPORL low pH (1.9) pretreatment. Dilute acid pretreatment produced very poor fiber separation, consisting mostly of fiber bundles. The removal of almost all hemicelluloses in the dilute acid pretreated substrate did not overcome recalcitrance to achieve a high cellulose conversion when lignin removal was limited. SPORL high pH pretreatment removed more lignin but less hemicellulose, while SPORL low pH pretreatment removed about the same amount of lignin and hemicelluloses in lodgepole pine substrates when compared with dilute acid pretreatment. Substrates pretreated with either SPORL process had a much higher cellulose conversion than those produced with dilute acid pretreatment. Lignin removal in addition to removal of hemicellulose in SPORL pretreatment plays an important role in improving the cellulose hydrolysis of the substrate.

  8. Enzymatic hydrolysis and fermentability of corn stover pretreated by lactic acid and/or acetic acid

    DEFF Research Database (Denmark)

    Xu, Jian; Thomsen, Mette Hedegaard; Thomsen, Anne Belinda

    2009-01-01

    Four different pretreatments with and without addition of low concentration organic acids were carried out on corn stover at 195 °C for 15 min. The highest xylan recovery of 81.08% was obtained after pretreatment without acid catalyst and the lowest of 58.78% after pretreatment with both acetic...

  9. Kinetic Modelling and Experimental Studies for the Effects of Fe2+ Ions on Xylan Hydrolysis with Dilute-Acid Pretreatment and Subsequent Enzymatic Hydrolysis

    Directory of Open Access Journals (Sweden)

    Hui Wei

    2018-01-01

    Full Text Available High-temperature (150–170 °C pretreatment of lignocellulosic biomass with mineral acids is well established for xylan breakdown. Fe2+ is known to be a cocatalyst of this process although kinetics of its action remains unknown. The present work addresses the effect of ferrous ion concentration on sugar yield and degradation product formation from corn stover for the entire two-step treatment, including the subsequent enzymatic cellulose hydrolysis. The feedstock was impregnated with 0.5% acid and 0.75 mM iron cocatalyst, which was found to be optimal in preliminary experiments. The detailed kinetic data of acid pretreatment, with and without iron, was satisfactorily modelled with a four-step linear sequence of first-order irreversible reactions accounting for the formation of xylooligomers, xylose and furfural as intermediates to provide the values of Arrhenius activation energy. Based on this kinetic modelling, Fe2+ turned out to accelerate all four reactions, with a significant alteration of the last two steps, that is, xylose degradation. Consistent with this model, the greatest xylan conversion occurred at the highest severity tested under 170 °C/30 min with 0.75 mM Fe2+, with a total of 8% xylan remaining in the pretreated solids, whereas the operational conditions leading to the highest xylose monomer yield, 63%, were milder, 150 °C with 0.75 mM Fe2+ for 20 min. Furthermore, the subsequent enzymatic hydrolysis with the prior addition of 0.75 mM of iron(II increased the glucose production to 56.3% from 46.3% in the control (iron-free acid. The detailed analysis indicated that conducting the process at lower temperatures yet long residence times benefits the yield of sugars. The above kinetic modelling results of Fe2+ accelerating all four reactions are in line with our previous mechanistic research showing that the pretreatment likely targets multiple chemistries in plant cell wall polymer networks, including those represented by the C

  10. Cell-wall properties contributing to improved deconstruction by alkaline pre-treatment and enzymatic hydrolysis in diverse maize (Zea mays L.) lines.

    Science.gov (United States)

    Li, Muyang; Heckwolf, Marlies; Crowe, Jacob D; Williams, Daniel L; Magee, Timothy D; Kaeppler, Shawn M; de Leon, Natalia; Hodge, David B

    2015-07-01

    A maize (Zea mays L. subsp. mays) diversity panel consisting of 26 maize lines exhibiting a wide range of cell-wall properties and responses to hydrolysis by cellulolytic enzymes was employed to investigate the relationship between cell-wall properties, cell-wall responses to mild NaOH pre-treatment, and enzymatic hydrolysis yields. Enzymatic hydrolysis of the cellulose in the untreated maize was found to be positively correlated with the water retention value, which is a measure of cell-wall susceptibility to swelling. It was also positively correlated with the lignin syringyl/guaiacyl ratio and negatively correlated with the initial cell-wall lignin, xylan, acetate, and p-coumaric acid (pCA) content, as well as pCA released from the cell wall by pre-treatment. The hydrolysis yield following pre-treatment exhibited statistically significant negative correlations to the lignin content after pre-treatment and positive correlations to the solubilized ferulic acid and pCA. Several unanticipated results were observed, including a positive correlation between initial lignin and acetate content, lack of correlation between acetate content and initial xylan content, and negative correlation between each of these three variables to the hydrolysis yields for untreated maize. Another surprising result was that pCA release was negatively correlated with hydrolysis yields for untreated maize and, along with ferulic acid release, was positively correlated with the pre-treated maize hydrolysis yields. This indicates that these properties that may negatively contribute to the recalcitrance in untreated cell walls may positively contribute to their deconstruction by alkaline pre-treatment. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. Two-Step Sequential Pretreatment for the Enhanced Enzymatic Hydrolysis of Coffee Spent Waste

    OpenAIRE

    Ravindran, Rajeev; Jaiswal, Swarna; Abu-ghannam, Nissreen; Jaiswal, Amit

    2017-01-01

    In the present study, eight different pretreatments of varying nature (physical, chemical and physico-chemical) followed by a sequential, combinatorial pretreatment strategy was applied to spent coffee waste to attain maximum sugar yield. Pretreated samples were analysed for total reducing sugar, individual sugars and generation of inhibitory compounds such as furfural and hydroxymethyl furfural (HMF) which can hinder microbial growth and enzyme activity. Native spent coffee waste was high in...

  12. Chemical characterization and hydrothermal pretreatment of Salicornia bigelovii straw for enhanced enzymatic hydrolysis and bioethanol potential

    DEFF Research Database (Denmark)

    Cybulska, Iwona; Chaturvedi, Tanmay; Brudecki, Grzegorz P.

    2014-01-01

    to hydrothermal pretreatment, producing highly digestible (up to 92% glucan-to-glucose conversion) and fermentable (up to 100% glucose-to-ethanol conversion) fiber fractions. Liquid fractions obtained in the pretreatment did not show inhibition towards Saccharomyces cerevisiae. No significant differences among...

  13. Biological pretreatment of corn stover with white-rot fungus for enzymatic hydrolysis and bioethanol production

    Science.gov (United States)

    Pretreatment, as the first step towards conversion of lignocellulosic feedstocks to biofuels and/or chemicals remains one of the main barriers to commercial success. Typically, harsh methods are used to pretreat lignocellulosic biomass prior to its breakdown to sugars by enzymes, which also result ...

  14. Two-step sequential pretreatment for the enhanced enzymatic hydrolysis of coffee spent waste.

    Science.gov (United States)

    Ravindran, Rajeev; Jaiswal, Swarna; Abu-Ghannam, Nissreen; Jaiswal, Amit K

    2017-09-01

    In the present study, eight different pretreatments of varying nature (physical, chemical and physico-chemical) followed by a sequential, combinatorial pretreatment strategy was applied to spent coffee waste to attain maximum sugar yield. Pretreated samples were analysed for total reducing sugar, individual sugars and generation of inhibitory compounds such as furfural and hydroxymethyl furfural (HMF) which can hinder microbial growth and enzyme activity. Native spent coffee waste was high in hemicellulose content. Galactose was found to be the predominant sugar in spent coffee waste. Results showed that sequential pretreatment yielded 350.12mg of reducing sugar/g of substrate, which was 1.7-fold higher than in native spent coffee waste (203.4mg/g of substrate). Furthermore, extensive delignification was achieved using sequential pretreatment strategy. XRD, FTIR, and DSC profiles of the pretreated substrates were studied to analyse the various changes incurred in sequentially pretreated spent coffee waste as opposed to native spent coffee waste. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Comparison between wet oxidation and steam explosion as pretreatment methods for enzymatic hydrolysis of sugarcane bagasse

    DEFF Research Database (Denmark)

    Medina, Carlos Martín; Marcet, M.; Thomsen, Anne Belinda

    2008-01-01

    , and to a two-fold increase of cellulose content in the pretreated solids, while steam explosion solubilised only 60% of xylan and 35% of lignin and increased cellulose content in the solid material by one third. Wet oxidation formed more aliphatic acids and phenolics, and less furan aldehydes in the liquid...... significantly in steam explosion. This investigation demonstrates the potential of wet oxidation as a promising pretreatment method for enzyme-based bagasse-to-ethanol processes....

  16. Effect of pretreatment severity in continuous steam explosion on enzymatic conversion of wheat straw: Evidence from kinetic analysis of hydrolysis time courses.

    Science.gov (United States)

    Monschein, Mareike; Nidetzky, Bernd

    2016-01-01

    Focusing on continuous steam explosion, the influence of pretreatment severity due to varied acid loading on hydrolysis of wheat straw by Trichoderma reesei cellulases was investigated based on kinetic evaluation of the saccharification of each pretreated substrate. Using semi-empirical descriptors of the hydrolysis time course, key characteristics of saccharification efficiency were captured in a quantifiable fashion. Not only hydrolysis rates per se, but also the transition point of their bi-phasic decline was crucial for high saccharification degree. After 48h the highest saccharification was achieved for substrate pretreated at relatively low severity (1.2% acid). Higher severity increased enzyme binding to wheat straw, but reduced the specific hydrolysis rates. Higher affinity of the lignocellulosic material for cellulases does not necessarily result in increased saccharification, probably because of lignin modifications occurring at high pretreatment severities. At comparable severity, continuous pretreatment produced a substrate more susceptible to enzymatic hydrolysis than the batch process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Over production of fermentable sugar for bioethanol production from carbohydrate-rich Malaysian food waste via sequential acid-enzymatic hydrolysis pretreatment.

    Science.gov (United States)

    Hafid, Halimatun Saadiah; Nor 'Aini, Abdul Rahman; Mokhtar, Mohd Noriznan; Talib, Ahmad Tarmezee; Baharuddin, Azhari Samsu; Umi Kalsom, Md Shah

    2017-09-01

    In Malaysia, the amount of food waste produced is estimated at approximately 70% of total municipal solid waste generated and characterised by high amount of carbohydrate polymers such as starch, cellulose, and sugars. Considering the beneficial organic fraction contained, its utilization as an alternative substrate specifically for bioethanol production has receiving more attention. However, the sustainable production of bioethanol from food waste is linked to the efficient pretreatment needed for higher production of fermentable sugar prior to fermentation. In this work, a modified sequential acid-enzymatic hydrolysis process has been developed to produce high concentration of fermentable sugars; glucose, sucrose, fructose and maltose. The process started with hydrothermal and dilute acid pretreatment by hydrochloric acid (HCl) and sulphuric acid (H 2 SO 4 ) which aim to degrade larger molecules of polysaccharide before accessible for further steps of enzymatic hydrolysis by glucoamylase. A kinetic model is proposed to perform an optimal hydrolysis for obtaining high fermentable sugars. The results suggested that a significant increase in fermentable sugar production (2.04-folds) with conversion efficiency of 86.8% was observed via sequential acid-enzymatic pretreatment as compared to dilute acid pretreatment (∼42.4% conversion efficiency). The bioethanol production by Saccharomyces cerevisiae utilizing fermentable sugar obtained shows ethanol yield of 0.42g/g with conversion efficiency of 85.38% based on the theoretical yield was achieved. The finding indicates that food waste can be considered as a promising substrate for bioethanol production. Copyright © 2017. Published by Elsevier Ltd.

  18. Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue.

    Science.gov (United States)

    Kumar, Adepu K; Parikh, Bhumika S; Pravakar, Mohanty

    2016-05-01

    The present investigation demonstrated pretreatment of lignocellulosic biomass rice straw using natural deep eutectic solvents (NADESs), and separation of high-quality lignin and holocellulose in a single step. Qualitative analysis of the NADES extract showed that the extracted lignin was of high purity (>90 %), and quantitative analysis showed that nearly 60 ± 5 % (w/w) of total lignin was separated from the lignocellulosic biomass. Addition of 5.0 % (v/v) water during pretreatment significantly enhanced the total lignin extraction, and nearly 22 ± 3 % more lignin was released from the residual biomass into the NADES extract. X-ray diffraction studies of the untreated and pretreated rice straw biomass showed that the crystallinity index ratio was marginally decreased from 46.4 to 44.3 %, indicating subtle structural alterations in the crystalline and amorphous regions of the cellulosic fractions. Thermogravimetric analysis of the pretreated biomass residue revealed a slightly higher T dcp (295 °C) compared to the T dcp (285 °C) of untreated biomass. Among the tested NADES reagents, lactic acid/choline chloride at molar ratio of 5:1 extracted maximum lignin of 68 ± 4 mg g(-1) from the rice straw biomass, and subsequent enzymatic hydrolysis of the residual holocellulose enriched biomass showed maximum reducing sugars of 333 ± 11 mg g(-1) with a saccharification efficiency of 36.0 ± 3.2 % in 24 h at 10 % solids loading.

  19. Synergistic benefits of ionic liquid and alkaline pretreatments of poplar wood. Part 1: effect of integrated pretreatment on enzymatic hydrolysis.

    Science.gov (United States)

    Yuan, Tong-Qi; Wang, Wei; Xu, Feng; Sun, Run-Cang

    2013-09-01

    An environmentally friendly pretreatment process was developed to fractionate hemicelluloses and lignin from poplar wood by ionic liquid (IL) pretreatment coupled with mild alkaline extraction. Hemicellulosic and lignin fractions were obtained in high yields, amounting to 59.3% and 74.4%, respectively, which can served as raw materials for production of value-added products. The yield of glucose for the integrated pretreated poplar wood was 99.2%, while it was just 19.2% for the untreated material. The synergistic benefits of the removal of lignin and hemicelluloses, the increase of the cellulose surface area, and the conversion of cellulose fibers from the cellulose I to the cellulose II crystal phase resulted in the high glucose yield for the integrated pretreated substrate. Therefore, the IL based biorefining strategy proposed can integrate biofuels production into a biorefinery scheme in which the major components of poplar wood can be converted into value-added products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Comparative analysis of the effect of pretreating aspen wood with aqueous and aqueous-organic solutions of sulfuric and nitric acid on its reactivity during enzymatic hydrolysis

    DEFF Research Database (Denmark)

    Dotsenko, Gleb; Osipov, D. O.; Zorov, I. N.

    2016-01-01

    The effect of aspen wood pretreatment methods with the use of both aqueous solutions of sulfuric and nitric acids and aqueous-organic solutions (ethanol, butanol) of sulfuric acid (organosolv) on the limiting degree of conversion of this type of raw material into simple sugars during enzymatic...... hydrolysis are compared. The effects of temperature, acid concentration, composition of organic phase (for sulfuric acid), and pressure (for nitric acid) on the effectiveness of pretreatment were analyzed. It is shown that the use of organosolv with 0.5% sulfuric acid allows us to increase the reactivity...

  1. Hydrolysis of alkaline pretreated banana peel

    Science.gov (United States)

    Fatmawati, A.; Gunawan, K. Y.; Hadiwijaya, F. A.

    2017-11-01

    Banana peel is one of food wastes that are rich in carbohydrate. This shows its potential as fermentation substrate including bio-ethanol. This paper presented banana peel alkaline pretreatment and enzymatic hydrolysis. The pretreatment was intended to prepare banana peel in order to increase hydrolysis performance. The alkaline pretreatment used 10, 20, and 30% w/v NaOH solution and was done at 60, 70 and 80°C for 1 hour. The hydrolysis reaction was conducted using two commercial cellulose enzymes. The reaction time was varied for 3, 5, and 7 days. The best condition for pretreatment process was one conducted using 30% NaOH solution and at 80°C. This condition resulted in cellulose content of 90.27% and acid insoluble lignin content of 2.88%. Seven-day hydrolysis time had exhibited the highest reducing sugar concentration, which was7.2869 g/L.

  2. Effects of some physical and chemical pretreatments on the composition and enzymatic hydrolysis and digestibility of lemon grass and citronella bagasse

    Energy Technology Data Exchange (ETDEWEB)

    Rolz, C.; de Arriola, M.C.; Valladares, J.; de Cabrera, S.

    1986-01-01

    The effect of some physical and chemical pretreatments of lemon grass and citronella bagasse on the composition changes, susceptibility to enzymatic hydrolysis and in vitro enzymatic digestibilities was evaluated. Three alkaline chemical pretreatments were tested (NaOH, Na/sub 2/CO/sub 3/ and Ca(OH)/sub 2/ and NH/sub 3/), one acidic (SO/sub 2/) and two physical (steam explosion and a modified organosolv employing alkaline ethanol-water mixtures with anthraquinone as catalyst). The general response to different pretreatments was similar with the two bagasse samples. However, the observed improvements were greater for lemon grass than for citronella, suggesting that improvements were, overall, species-specific. Hemicellulose was hydrolyzed extensively: cellulose was chemically stable and higher lignin losses were observed for the organosolv, the sulfur dioxide and the sodium hydroxide methods. With the steam exploded, the organosolv and the NaOH and SO/sub 2/ pretreated materials, saccharification values above 70% were obtained with cellulase compared with about 14% for untreated materials. The in vitro digestibilities with pepsin and cellulase were highest for the organosolv and the NaOH pretreatments, more than 5 times the untreated values for lemon grass and around 3.5 for citronella. 45 references.

  3. Effect of pretreatment and enzymatic hydrolysis on the physical-chemical composition and morphologic structure of sugarcane bagasse and sugarcane straw.

    Science.gov (United States)

    Moretti, Marcia Maria de Souza; Perrone, Olavo Micali; Nunes, Christiane da Costa Carreira; Taboga, Sebastião; Boscolo, Maurício; da Silva, Roberto; Gomes, Eleni

    2016-11-01

    The present work aimed to study the effect of the pretreatment of sugarcane bagasse and straw with microwave irradiation in aqueous and acid glycerol solutions on their chemical composition, fiber structure and the efficiency of subsequent enzymatic hydrolysis. Thermogravimetric analysis showed that the pretreatment acted mainly on the lignin and hemicellulose fractions of the bagasse, whereas, in the straw, lesser structural and chemical changes were observed. The images from transmission electron microscopy (TEM) revealed that treating bagasse and straw with acid glycerol solution loosened the cell walls and there was a breakdown in the pit membrane. The treated material was submitted to hydrolysis for 72h and higher yields of reducing sugars were observed compared to the untreated material (250.9mg/g from straw and 197.4mg/g from bagasse). TEM images after hydrolysis confirmed the possible points of access of the enzymes to the secondary cell wall region of the pretreated biomass. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Effect of a milling pre-treatment on the enzymatic hydrolysis of carbohydrates in brewer's spent grain.

    Science.gov (United States)

    Niemi, Piritta; Faulds, Craig B; Sibakov, Juhani; Holopainen, Ulla; Poutanen, Kaisa; Buchert, Johanna

    2012-07-01

    Millions of tonnes of brewer's spent grain (BSG) are annually produced worldwide as a by-product of the brewing industry. BSG has the potential to be a valuable source of food, chemicals and energy if cost-efficient fractionation methods can be developed. A 2-fold improvement in carbohydrate solubilisation could be achieved through the introduction of a milling step prior to enzymatic hydrolysis. Course and fine milled fractions were characterized by particle size distribution and light microscopy. Fine milling decreased particle size down to the micron level and this in turn improved the carbohydrate solubility yield by a multi-enzyme mixture from 23% up to 45%. Carbohydrate solubilisation could be further increased through the supplementation of this enzyme preparation with additional cellulases. The physical degradation caused by the milling also liberated soluble carbohydrates without the requirement of any enzymatic treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Effects of Extrusion Pretreatment Parameters on Sweet Sorghum Bagasse Enzymatic Hydrolysis and Its Subsequent Conversion into Bioethanol

    Science.gov (United States)

    Heredia-Olea, Erick; Pérez-Carrillo, Esther; Serna-Saldívar, Sergio O.

    2015-01-01

    Second-generation bioethanol production from sweet sorghum bagasse first extruded at different conditions and then treated with cell wall degrading enzymes and fermented with I. orientalis was determined. The twin extruder parameters tested were barrel temperature, screws speed, and feedstock moisture content using surface response methodology. The best extrusion conditions were 100°C, 200 rpm, and 30% conditioning moisture content. This nonchemical and continuous pretreatment did not generate inhibitory compounds. The extruded feedstocks were saccharified varying the biocatalysis time and solids loading. The best conditions were 20% solids loading and 72 h of enzymatic treatment. These particular conditions converted 70% of the total fibrous carbohydrates into total fermentable C5 and C6 sugars. The extruded enzymatically hydrolyzed sweet sorghum bagasse was fermented with the strain I. orientalis at 12% solids obtaining a yield of 198.1 mL of ethanol per kilogram of bagasse (dw). PMID:25866776

  6. Effects of Extrusion Pretreatment Parameters on Sweet Sorghum Bagasse Enzymatic Hydrolysis and Its Subsequent Conversion into Bioethanol

    Directory of Open Access Journals (Sweden)

    Erick Heredia-Olea

    2015-01-01

    Full Text Available Second-generation bioethanol production from sweet sorghum bagasse first extruded at different conditions and then treated with cell wall degrading enzymes and fermented with I. orientalis was determined. The twin extruder parameters tested were barrel temperature, screws speed, and feedstock moisture content using surface response methodology. The best extrusion conditions were 100°C, 200 rpm, and 30% conditioning moisture content. This nonchemical and continuous pretreatment did not generate inhibitory compounds. The extruded feedstocks were saccharified varying the biocatalysis time and solids loading. The best conditions were 20% solids loading and 72 h of enzymatic treatment. These particular conditions converted 70% of the total fibrous carbohydrates into total fermentable C5 and C6 sugars. The extruded enzymatically hydrolyzed sweet sorghum bagasse was fermented with the strain I. orientalis at 12% solids obtaining a yield of 198.1 mL of ethanol per kilogram of bagasse (dw.

  7. The effect of harvest time, dry matter content and mechanical pretreatments on anaerobic digestion and enzymatic hydrolysis of miscanthus

    DEFF Research Database (Denmark)

    Frydendal-Nielsen, Susanne; Hjorth, Maibritt; Baby, Sanmohan

    2016-01-01

    Miscanthus x giganteus was harvested as both green and mature biomass and the dry matter content of the driest harvest was artificially decreased by adding water in two subsamples, giving a total of five dry matter contents. All five biomass types were mechanically pretreated by roller-milling, e......Miscanthus x giganteus was harvested as both green and mature biomass and the dry matter content of the driest harvest was artificially decreased by adding water in two subsamples, giving a total of five dry matter contents. All five biomass types were mechanically pretreated by roller......-milling, extrusion or grinding and accumulated methane production and enzymatically-accessible sugars were measured. Accumulated methane production was studied using sigmoid curves that allowed comparison among the treatments of the rate of the methane production and ultimate methane yield. The green biomass gave...

  8. Enzymatic activity of the cellulolytic complex produced by trichoderma reesei. Enzymatic hydrolysis of cellulose

    International Nuclear Information System (INIS)

    Alfonsel Jaen, M.; Negro, M.J.; Saez, R.; Martin Moreno, C.

    1986-01-01

    The enzymatic activity characterization of the cellulolytic complex obtained from Trichoderma reese QM 9414 and the influence of the enzymatic hydrolysis conditions on the hydrolysis yield are studied. Pure cellulose and native or alkali pretreated biomass from Onopordum nervosum have been used as substrates. The values of pH, temperature, substrate concentration and enzyme-substrate ratio for the optimum activity of that complex, evaluated as glucose and reducing sugars productions, have been selected. Previous studies on enzymatic hydrolysis of O. nervosum have shown a remarkable effect of the alkaline pretreatments on the final hydrolysis yield. (author). 10 figs.; 10 refs

  9. Enzymatic activity of the cellulolytic complex produced by Trichoderma reesei. Enzymatic hydrolysis of cellulose

    International Nuclear Information System (INIS)

    Alfonsel J, M.; Negro A, M. J.; Saez A, R.; Martin M, C.

    1986-01-01

    The enzymatic activity characterization of the cellulolytic complex obtained from Trichoderma reesei QM 9414 and the influence of the enzymatic hydrolysis conditions on the hydrolysis yield are studied. Pure cellulose and native or alkali pretreated biomass Onopordum nervosum have been used as substrates. The values of pH, temperature, substrate concentration and enzyme-substrate ratio for the optimum activity of that complex, evaluated as glucose and reducing sugars production, have been selected. Previous studies on enzymatic hydrolysis of 0. nervosum have shown a remarkable effect of the alkaline pretreatments on the final hydrolysis yield. (Author) 10 refs

  10. Supercritical carbon dioxide combined with 1-butyl-3-methylimidazolium acetate and ethanol for the pretreatment and enzymatic hydrolysis of sugarcane bagasse.

    Science.gov (United States)

    Silveira, Marcos Henrique Luciano; Vanelli, Bruno Angelo; Corazza, Marcos Lucio; Ramos, Luiz Pereira

    2015-09-01

    The use of green solvents for the partial delignification of milled sugarcane bagasse (1mm particle size) and for the enhancement of its susceptibility to enzymatic hydrolysis was demonstrated. The experiments were carried out for 2h using 40 g of supercritical carbon dioxide combined with 1-butyl-3-methylimidazolium acetate and 15.8 g of ethanol. The effects of temperature (110-180 °C), pressure (195-250 bar) and IL-to-bagasse mass ratio (0:1-1:1) were investigated through a factorial design in which the response variables were the extent of delignification and both anhydroglucose and anhydroxylose contents in the pretreated materials. The highest delignification degree (41%) led to the best substrate for hydrolysis, giving a 70.7 wt% glucose yield after 12h using 5 wt% and Cellic CTec2® (Novozymes) at 10 mg g(-1) total solids. Hence, excellent substrates for hydrolysis were produced with a minimal IL requirement, which could be recovered by ethanol washing for its downstream processing and reuse. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Enzymatic Hydrolysis of Hydrotropic Pulps at Different Substrate Loadings.

    Science.gov (United States)

    Denisova, Marina N; Makarova, Ekaterina I; Pavlov, Igor N; Budaeva, Vera V; Sakovich, Gennady V

    2016-03-01

    Enzymatic hydrolysis of cellulosic raw materials to produce nutrient broths for microbiological synthesis of ethanol and other valuable products is an important field of modern biotechnology. Biotechnological processing implies the selection of an effective pretreatment technique for raw materials. In this study, the hydrotropic treatment increased the reactivity of the obtained substrates toward enzymatic hydrolysis by 7.1 times for Miscanthus and by 7.3 times for oat hulls. The hydrotropic pulp from oat hulls was more reactive toward enzymatic hydrolysis compared to that from Miscanthus, despite that the substrates had similar compositions. As the initial substrate loadings were raised during enzymatic hydrolysis of the hydrotropic Miscanthus and oat hull pulps, the concentration of reducing sugars increased by 34 g/dm(3) and the yield of reducing sugars decreased by 31 %. The findings allow us to predict the efficiency of enzymatic hydrolysis of hydrotropic pulps from Miscanthus and oat hulls when scaling up the process by volume.

  12. ENZYMATIC HYDROLYSIS OF AGRICULTURAL LIGNOCELLULOSIC BIOMASS

    Directory of Open Access Journals (Sweden)

    T. VINTILA

    2009-05-01

    Full Text Available The yield, productivity and cost for the enzymatic hydrolysis of cellulose to glucose are crucial for the production of second generation ethanol. In the first study we have evaluated the activity of several commercial cellulolytic enzymes and a crude extract of a local strain of Trichoderma viride. The load used was 15 U of cellulase/gram cellulose and 90 U of cellobiase/gram cellulose. The hydrolysis was carried out at 50oC and pH 4,8 for 96 hours. The best cellulose hydrolysis yield of 58% was obtained with the cocktail formed of crude cellulases from T. viride CMIT3.5 combined with Novozyme 188. This cocktail was used in the second study, when alkaline-steam pretreated wheat straw and corn stover where hydrolyzed at pH 4,8 for 96 hours. The temperature was set at 50oC and 40oC. The hydrolysis at lower temperature was tested for a future experiment of simultaneous hydrolysis and fermentation. An enzymatic assay using glucose-6-phosphate dehydrogenase was used to determine exclusively glucose, instead of wide-range sugar DNS assay. Reporting to 100 grams of wet pretreated biomass, the following results were obtained: 14.4 g% glucose for corn stover at 50oC and 13,0 g% at 40oC; 13,1 g% glucose for wheat straw at 50oC and 10.3 g% at 40oC. Considering that wheat straw contain 36.6% glucose-based carbohydrates, the hydrolysis yields are between 39.3% and 28.1%. Further studies, concerning the optimal parameters for cellulase cocktail will be made.

  13. ENZYMATIC HYDROLYSIS OF AGRICULTURAL LIGNOCELLULOSIC BIOMASS

    Directory of Open Access Journals (Sweden)

    S. STRAVA

    2009-05-01

    Full Text Available The yield, productivity and cost for the enzymatic hydrolysis of cellulose to glucoseare crucial for the production of second generation ethanol. In the first study wehave evaluated the activity of several commercial cellulolytic enzymes and a crudeextract of a local strain of Trichoderma viride. The load used was 15 U ofcellulase/gram cellulose and 90 U of cellobiase/gram cellulose. The hydrolysis wascarried out at 50oC and pH 4,8 for 96 hours. The best cellulose hydrolysis yield of58% was obtained with the cocktail formed of crude cellulases from T. virideCMIT3.5 combined with Novozyme 188. This cocktail was used in the second study,when alkaline-steam pretreated wheat straw and corn stover where hydrolyzed at pH4,8 for 96 hours. The temperature was set at 50oC and 40oC. The hydrolysis at lowertemperature was tested for a future experiment of simultaneous hydrolysis andfermentation. An enzymatic assay using glucose-6-phosphate dehydrogenase wasused to determine exclusively glucose, instead of wide-range sugar DNS assay.Reporting to 100 grams of wet pretreated biomass, the following results wereobtained: 14.4 g% glucose for corn stover at 50oC and 13,0 g% at 40oC; 13,1 g%glucose for wheat straw at 50oC and 10.3 g% at 40oC. Considering that wheat strawcontain 36.6% glucose-based carbohydrates, the hydrolysis yields are between39.3% and 28.1%. Further studies, concerning the optimal parameters for cellulasecocktail will be made.

  14. Dynamic modeling and validation of a lignocellulosic enzymatic hydrolysis process

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail; Sin, Gürkan

    2013-01-01

    The enzymatic hydrolysis process is one of the key steps in second generation biofuel production. After being thermally pretreated, the lignocellulosic material is liquefied by enzymes prior to fermentation. The scope of this paper is to evaluate a dynamic model of the hydrolysis process...... on a demonstration scale reactor. The following novel features are included: the application of the Convection–Diffusion–Reaction equation to a hydrolysis reactor to assess transport and mixing effects; the extension of a competitive kinetic model with enzymatic pH dependency and hemicellulose hydrolysis...

  15. Kinetic modelling of enzymatic starch hydrolysis

    NARCIS (Netherlands)

    Bednarska, K.A.

    2015-01-01

    Kinetic modelling of enzymatic starch hydrolysis – a summary

    K.A. Bednarska

    The dissertation entitled ‘Kinetic modelling of enzymatic starch hydrolysis’ describes the enzymatic hydrolysis and kinetic modelling of liquefaction and saccharification of wheat starch.

  16. The roles of xylan and lignin in oxalic acid pretreated corncob during separate enzymatic hydrolysis and ethanol fermentation

    Science.gov (United States)

    Jae-Won Lee; Rita C.L.B. Rodrigues; Hyun Joo Kim; In-Gyu Choi; Thomas W. Jeffries

    2010-01-01

    High yields of hemicellulosic and cellulosic sugars are critical in obtaining economical conversion of agricultural residues to ethanol. To optimize pretreatment conditions, we evaluated oxalic acid loading rates, treatment temperatures and times in a 23 full factorial design. Response-surface analysis revealed an optimal oxalic acid pretreatment...

  17. Pretreatment of flaxseed protein isolate by high hydrostatic pressure: Impacts on protein structure, enzymatic hydrolysis and final hydrolysate antioxidant capacities.

    Science.gov (United States)

    Perreault, Véronique; Hénaux, Loïc; Bazinet, Laurent; Doyen, Alain

    2017-04-15

    The effect of high hydrostatic pressure (HHP) on flaxseed protein structure and peptide profiles, obtained after protein hydrolysis, was investigated. Isolated flaxseed protein (1%, m/v) was subjected to HHP (600MPa, 5min or 20min at 20°C) prior to hydrolysis with trypsin only and trypsin-pronase. The results demonstrated that HHP treatment induced dissociation of flaxseed proteins and generated higher molecular weight aggregates as a function of processing duration. Fluorescence spectroscopy showed that HHP treatment, as well as processing duration, had an impact on flaxseed protein structure since exposition of hydrophobic amino acid tyrosine was modified. Except for some specific peptides, the concentrations of which were modified, similar peptide profiles were obtained after hydrolysis of pressure-treated proteins using trypsin. Finally, hydrolysates obtained using trypsin-pronase had a greater antioxidant capacity (ORAC) than control samples; these results confirmed that HHP enhanced the generation of antioxidant peptides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The effect of delignification of forest biomass on enzymatic hydrolysis.

    Science.gov (United States)

    Yu, Zhiying; Jameel, Hasan; Chang, Hou-Min; Park, Sunkyu

    2011-10-01

    The effect of delignification methods on enzymatic hydrolysis of forest biomass was investigated using softwood and hardwood that were pretreated at an alkaline condition followed by sodium chlorite or ozone delignification. Both delignifications improved enzymatic hydrolysis especially for softwood, while pretreatment alone was found effective for hardwood. High enzymatic conversion was achieved by sodium chlorite delignification when the lignin content was reduced to 15%, which is corresponding to 0.30-0.35 g/g accessible pore volume, and further delignification showed a marginal effect. Sample crystallinity index increased with lignin removal, but it did not show a correlation with the overall carbohydrate conversion of enzymatic hydrolysis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. The Effect of Sugarcane Bagassès Size on the Properties of Pretreatment and Enzymatic Hydrolysis

    Science.gov (United States)

    Xu, Jun; Zhou, Guoqiang; Li, Jun

    2017-06-01

    The influence of milled bagasse particle size on their reducing sugar and lignin content during dilute acid hydrolysis followed by enzymolysis was investigated. The biomass crystal structures of hydrolyzed residues and enzymolyzed substrates were studied with X-ray diffractometry (XRD). The results showed that the conversion ratio of reducing sugar declined with decreasing milled bagasse particle size. The conversion ratio of reducing sugar after acid hydrolysis decreased from 31.3% to 28.9%. The smaller of the milled bagasse particle size was, the higher of the klason lignin content of hydrolyzed residuals was, which resulted in a decline in conversion ratio of reducing sugar during enzymolysis. In this study, the optimal size of milled bagasse particles was 10 to 20 meshes. The total reducing sugar conversion ratio was 61.5%, consisting of 31.3% in hydrolysis and 30.2% in enzymolysis. After hydrolysis, the specific surface area and pore size increased, and the fiber length was shortened. The inner microfiber bundles were exposed, which improved the accessibility of cellulase and the efficiency of enzymolysis.

  20. Pretreatment of sugarcane bagasse using the advanced oxidation process by electron beam for enzymatic hydrolysis of cellulose; Pre-tratamento do bagaco de cana utilizando o processo de oxidacao avancada por feixe de eletrons para hidrolise enzimatica da celulose

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Marcia Almeida

    2013-07-01

    The sugar cane bagasse is a renewable energy source and a raw material promise in the biofuel production, once represents about 30% of glucose contained in the plant with the potential to be hydrolyzed and then converted to ethanol. The bagasse is composed of cellulose, straight chain of glucose, of hemicellulose, an amorphous polymer consisting of xylose, arabinose, galactose, and mannose, and of lignin, a complex polymer consisting of fenilpropan units that acts as waterproof coating on the fibers, which is hard to remove due its recalcitrant nature. The aim of this work was to study the electron beam processing as a pretreatment of sugarcane bagasse to enzymatic hydrolysis of cellulose. The pretreatment of sugarcane bagasse is one of the most important steps to make this material economically viable and competitive on the energy production. As a pretreatment the electron beam processing can weak the hemicellulose and lignin structures by the action highly reactive radicals that breaks the links, reducing the degree of polymerization fibers. It was evaluated the chemical and structural modifications on fibers caused by the irradiation, the enzymatic hydrolysis of electron beam as the only pretreatment and combined to steam explosion. For enzymatic hydrolysis it was used the commercial enzymes from Novozymes. The radiation processing promotes changes in structure and composition of sugarcane bagasse, increasing the solubility, that is related to hemicellulose and cellulose cleavage, and also increasing the enzymatic conversion yield. In the case of exploded bagasse there is no changes in the enzymatic hydrolysis yield, however the electron beam processing promoted a 67% reduction of furfural, that is formed in the steam explosion process. (author)

  1. Fungal cellulase/xylanase production and corresponding hydrolysis using pretreated corn stover as substrates.

    Science.gov (United States)

    Zhang, Liang; Wang, Xiaoqing; Ruan, Zhenhua; Liu, Ying; Niu, Xiaorui; Yue, Zhengbo; Li, Zhimin; Liao, Wei; Liu, Yan

    2014-01-01

    Three pretreated corn stover (ammonia fiber expansion, dilute acid, and dilute alkali) were used as carbon source to culture Trichoderma reesei Rut C-30 for cellulase and xylanase production. The results indicated that the cultures on ammonia fiber expansion and alkali pretreated corn stover had better enzyme production than the acid pretreated ones. The consequent enzymatic hydrolysis was performed applying fungal enzymes on pretreated corn stover samples. Tukey's statistical comparisons exhibited that there were significant differences on enzymatic hydrolysis among different combination of fungal enzymes and pretreated corn stover. The higher sugar yields were achieved by the enzymatic hydrolysis of dilute alkali pretreated corn stover.

  2. NREL 2012 Achievement of Ethanol Cost Targets: Biochemical Ethanol Fermentation via Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover

    Energy Technology Data Exchange (ETDEWEB)

    Tao, L.; Schell, D.; Davis, R.; Tan, E.; Elander, R.; Bratis, A.

    2014-04-01

    For the DOE Bioenergy Technologies Office, the annual State of Technology (SOT) assessment is an essential activity for quantifying the benefits of biochemical platform research. This assessment has historically allowed the impact of research progress achieved through targeted Bioenergy Technologies Office funding to be quantified in terms of economic improvements within the context of a fully integrated cellulosic ethanol production process. As such, progress toward the ultimate 2012 goal of demonstrating cost-competitive cellulosic ethanol technology can be tracked. With an assumed feedstock cost for corn stover of $58.50/ton this target has historically been set at $1.41/gal ethanol for conversion costs only (exclusive of feedstock) and $2.15/gal total production cost (inclusive of feedstock) or minimum ethanol selling price (MESP). This year, fully integrated cellulosic ethanol production data generated by National Renewable Energy Laboratory (NREL) researchers in their Integrated Biorefinery Research Facility (IBRF) successfully demonstrated performance commensurate with both the FY 2012 SOT MESP target of $2.15/gal (2007$, $58.50/ton feedstock cost) and the conversion target of $1.41/gal through core research and process improvements in pretreatment, enzymatic hydrolysis, and fermentation.

  3. Reduction of enzyme dosage by oxygen delignification and mechanical refining for enzymatic hydrolysis of green liquor-pretreated hardwood.

    Science.gov (United States)

    Koo, Bon-Wook; Treasure, Trevor H; Jameel, Hasan; Phillips, Richard B; Chang, Hou-Min; Park, Sunkyu

    2011-10-01

    In this study, a strategy to reduce enzyme dosage is evaluated by applying two post-treatments, oxygen delignification and mechanical refining. The sugar conversion for GL12 substrates was increased from 51.5% to 77.9% with post-treatments at the enzyme dosage of 10 FPU. When the amount of enzyme was reduced to 5 FPU with post-treatments, the conversion of 71.8% was obtained, which was significant higher than the conversion without any post-treatment using 10 FPU (51.5%). This clearly demonstrates the benefit of post-treatments that allows more than 50% of enzyme reduction at the same level of enzymatic conversion. Enzyme-accessible surface area and pore volume were evaluated by Simons' staining and DSC thermoporometry methods, and strong correlations were found with the sugar conversion.

  4. Kinetics of enzymatic hydrolysis of methyl ricinoleate

    OpenAIRE

    Neeharika, T. S.V.R.; Lokesh, P.; Prasanna Rani, K. N.; Prathap Kumar, T.; Prasad, R. B.N.

    2015-01-01

    Ricinoleic acid is an unsaturated hydroxy fatty acid that naturally occurs in castor oil in proportions of up to 85–90%. Ricinoleic acid is a potential raw material and finds several applications in coatings, lubricant formulations and pharmaceutical areas. Enzymatic hydrolysis of castor oil is preferred over conventional hydrolysis for the preparation of ricinoleic acid to avoid estolide formation. A kinetics analysis of the enzymatic hydrolysis of Methyl Ricinoleate in the presence of Candi...

  5. Assessment of Antioxidant and Antimicrobial Properties of Lignin from Corn Stover Residue Pretreated with Low-Moisture Anhydrous Ammonia and Enzymatic Hydrolysis Process.

    Science.gov (United States)

    Guo, Mingming; Jin, Tony; Nghiem, Nhuan P; Fan, Xuetong; Qi, Phoebe X; Jang, Chan Ho; Shao, Lingxiao; Wu, Changqing

    2018-01-01

    Lignin accounts for 15-35% of dry biomass materials. Therefore, developing value-added co-products from lignin residues is increasingly important to improve the economic viability of biofuel production from biomass resources. The main objective of this work was to study the lignin extracts from corn stover residue obtained from a new and improved process for bioethanol production. Extraction conditions that favored high lignin yield were optimized, and antioxidant and antimicrobial activities of the resulting lignin were investigated. Potential estrogenic toxicity of lignin extracts was also evaluated. The corn stover was pretreated by low-moisture anhydrous ammonia (LMAA) and then subjected to enzymatic hydrolysis using cellulase and hemicellulase. The residues were then added with sodium hydroxide and extracted for different temperatures and times for enhancing lignin yield and the bioactivities. The optimal extraction conditions using 4% (w/v) sodium hydroxide were determined to be 50 °C, 120 min, and 1:8 (w:v), the ratio between corn stover solids and extracting liquid. Under the optimal condition, 33.92 g of lignin yield per 100 g of corn stover residue was obtained. Furthermore, the extracts produced using these conditions showed the highest antioxidant activity by the hydrophilic oxygen radical absorbance capacity (ORAC) assay. The extracts also displayed significant antimicrobial activities against Listeria innocua. Minimal estrogenic impacts were observed for all lignin extracts when tested using the MCF-7 cell proliferation assay. Thus, the lignin extracts could be used for antioxidant and antimicrobial applications, and improve the value of the co-products from the biomass-based biorefinery.

  6. Enhanced enzymatic conversion with freeze pretreatment of rice straw

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ken-Lin; Thitikorn-amorn, Jitladda; Ou, Bay-Ming; Chen, Shan-He; Huang, Po-Jung [Institute of Biological Chemistry and Genomics Research Center Academia Sinica, Nankang, Taipei 115 (China); Hsieh, Jung-Feng [Department of Food Science, Fu Jen Catholic University, Xin Zhuang, Taipei 242 (China); Ratanakhanokchai, Khanok [School of Bioresources and Technology, King Mongkut' s University of Technology Thonburi, Bangkok 10150 (Thailand); Chen, Shui-Tein [Institute of Biological Chemistry and Genomics Research Center Academia Sinica, Nankang, Taipei 115 (China); Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106 (China)

    2011-01-15

    Production of bioethanol by the conversion of lignocellulosic waste has attracted much interest in recent years, because of its low cost and great potential availability. The pretreatment process is important for increasing the enzymatic digestibility of lignocellulosic materials. Enzymatic conversion with freeze pretreatment of rice straw was evaluated in this study. The freeze pretreatment was found to significantly increase the enzyme digestibility of rice straw from 48% to 84%. According to the results, enzymatic hydrolysis of unpretreated rice straw with 150 U cellulase and 100 U xylanase for 48 h yielded 226.77 g kg{sup -1} and 93.84 g kg{sup -1} substrate-reducing sugars respectively. However, the reducing sugar yields from freeze pretreatment under the same conditions were 417.27 g kg{sup -1} and 138.77 g kg{sup -1} substrate, respectively. In addition, hydrolyzates analysis showed that the highest glucose yield obtained during the enzymatic hydrolysis step in the present study was 371.91 g kg{sup -1} of dry rice straw, following pretreatment. Therefore, the enhanced enzymatic conversion with freeze pretreatment of rice straw was observed in this study. This indicated that freeze pretreatment was highly effective for enzymatic hydrolysis and low environmental impact. (author)

  7. Lime pretreatment and fermentation of enzymatically hydrolyzed sugarcane bagasse.

    Science.gov (United States)

    Rabelo, Sarita C; Maciel Filho, Rubens; Costa, Aline C

    2013-03-01

    Sugarcane bagasse was subjected to lime (calcium hydroxide) pretreatment and enzymatic hydrolysis for second-generation ethanol production. A central composite factorial design was performed to determine the best combination of pretreatment time, temperature, and lime loading, as well as to evaluate the influence of enzymatic loadings on hydrolysis conversion. The influence of increasing solids loading in the pretreatment and enzymatic hydrolysis stages was also determined. The hydrolysate was fermented using Saccharomyces cerevisiae in batch and continuous mode. In the continuous fermentation, the hydrolysates were concentrated with molasses. Lime pretreatment significantly increased the enzymatic digestibility of sugarcane bagasse without the need for prior particle size reduction. In the optimal pretreatment conditions (90 h, 90 °C, 0.47 glime/g bagasse) and industrially realistic conditions of hydrolysis (12.7 FPU/g of cellulase and 7.3 CBU/g of β-glucosidase), 139.6 kglignin/ton raw bagasse and 126.0 kg hemicellulose in the pretreatment liquor per ton raw bagasse were obtained. The hydrolysate from lime pretreated sugarcane bagasse presented low amounts of inhibitors, leading to ethanol yield of 164.1 kgethanol/ton raw bagasse.

  8. Enhancing saccharification of cassava stems by starch hydrolysis prior to pretreatment

    OpenAIRE

    Martín, Carlos; Wei, Maogui; Xiong, Shaojun; Jönsson, Leif J.

    2017-01-01

    Chemical characterization of cassava stems from different origin revealed that glucans accounted for 54-63% of the dry weight, whereas 35-67% of these glucans consisted of starch. The cassava stems were subjected to a saccharification study including starch hydrolysis, pretreatment with either sulfuric acid or 1-ethyl-3-methylimidazolium acetate ([Emim]OAc), and enzymatic hydrolysis of cellulose. Starch hydrolysis prior to pretreatment decreased sugar degradation, improved enzymatic convertib...

  9. Effect of the steam explosion pretreatment on enzymatic hydrolysis of eucalyptus wood and sweet sorghum baggages; Efecto del pretratamiento con explosion por vapor en la hidrolisis enzimatica de madera de eucalipto y bagazo de sorgo

    Energy Technology Data Exchange (ETDEWEB)

    Negro, M. J.; Martinez, J. M.; Manero, J.; Saez, F.; Martin, C.

    1991-07-01

    The effect of steam explosion treatment on the enzymatic hydrolysis yield of two different lignocellulosic substrates is studied. Raw materials have been pretreated in a pilot plant designed to work in batch and equipped with a reactor vessel of 2 1 working volume where biomass was heated at the desired temperature and then exploded and recovered in a cyclone. Temperatures from 190 to 230 degree celsius and reaction times from 2 to 8 min. have been assayed. The efficiency of the steam explosion treatment has been evaluated on the composition of the lignocellulosic materials as well as on their enzymatic hydrolysis yield using a cellulolytic complex from T. reesel. Results show a high solubilization rate of hemicelluloses and variable losses of cellulose and lignin depending on the conditions tested. Enzymatic hydrolysis yields of both substrates experimented remarkable increments, corresponding the highest values obtained to 210 degree celsius; 2 min. and 21O degree celsius; 4 min. for sorghum bagasse and eucalyptus wood respectively. (Author) 13 refs.

  10. Epidemic based modeling of enzymatic hydrolysis of lignocellulosic biomass.

    Science.gov (United States)

    Tai, Chao; Arellano, Maria G; Keshwani, Deepak R

    2014-01-01

    An epidemic based model was developed to describe the enzymatic hydrolysis of a lignocellulosic biomass, dilute sulfuric acid pretreated corn stover. The process of substrate getting adsorbed and digested by enzyme was simulated as susceptibles getting infected by viruses and becoming removed and recovered. This model simplified the dynamic enzyme "infection" process and the catalysis of cellulose into a two-parameter controlled, enzyme behavior guided mechanism. Furthermore, the model incorporates the adsorption block by lignin and inhibition effects on cellulose catalysis. The model satisfactorily predicted the enzyme adsorption and hydrolysis, negative role of lignin, and inhibition effects over hydrolysis for a broad range of substrate and enzyme loadings. Sensitivity analysis was performed to evaluate the incorporation of lignin and other inhibition effects. Our model will be a useful tool for evaluating the effects of parameters during hydrolysis and guide a design strategy for continuous hydrolysis and the associated process control. © 2014 American Institute of Chemical Engineers.

  11. Heterogeneous Expression and Functional Characterization of Cellulose-Degrading Enzymes from Aspergillus niger for Enzymatic Hydrolysis of Alkali Pretreated Bamboo Biomass.

    Science.gov (United States)

    Ali, Nasir; Ting, Zhang; Li, Hailong; Xue, Yong; Gan, Lihui; Liu, Jian; Long, Minnan

    2015-09-01

    Enzymatic hydrolysis of cellulosic biomass has caught much attention because of modest reaction conditions and environment friendly conditions. To reduce the cost and to achieve good quantity of cellulases, a heterologous expression system is highly favored. In this study, cellulose-degrading enzymes, GH3 family β-glucosidase (BGL), GH7 family-related cellobiohydrolases (CBHs), and endoglucanase (EG) from a newly isolated Aspergillus niger BE-2 are highly expressed in Pichia pastoris GS115. The strain produced EG, CBHs, and BGL enzymatic concentration of 0.56, 0.11, and 22 IU/mL, respectively. Mode of actions of the recombinant enzymes for substrate specificity and end product analysis are verified and found specific for cellulose degradation. Bamboo biomass saccharification with A. niger cellulase released a high level of fermentable sugars. Hydrolysis parameters are optimized to obtain reducing sugars level of 3.18 g/L. To obtain reducing sugars from a cellulosic biomass, A. niger could be a good candidate for enzymes resource of cellulase to produce reducing sugars from a cellulosic biomass. This study also facilitates the development of highly efficient enzyme cocktails for the bioconversion of lignocellulosic biomass into monosaccharides and oligosaccharides.

  12. Two-dimensional NMR evidence for cleavage of lignin and xylan substituents in wheat straw through hydrothermal pretreatment and enzymatic hydrolysis

    DEFF Research Database (Denmark)

    Yelle, Daniel J.; Kaparaju, Laxmi-Narasimha Prasad; Hunt, Christopher G.

    2013-01-01

    correlation spectroscopy, via an heteronuclear single quantum coherence experiment, revealed substantial lignin β-aryl ether cleavage, deacetylation via cleavage of the natural acetates at the 2-O- and 3-O-positions of xylan, and uronic acid depletion via cleavage of the (1 → 2)-linked 4-O....... g., further deacylation revealed by the depletion in ferulate and p-coumarate structures). Supplementary chemical analyses showed that the hydrothermal pretreatment increased the cellulose and lignin concentration with partial removal of extractives and hemicelluloses. The subsequent enzymatic...

  13. Derivatization-free gel permeation chromatography elucidates enzymatic cellulose hydrolysis

    Directory of Open Access Journals (Sweden)

    Engel Philip

    2012-10-01

    Full Text Available Abstract Background The analysis of cellulose molecular weight distributions by gel permeation chromatography (GPC is a powerful tool to obtain detailed information on enzymatic cellulose hydrolysis, supporting the development of economically viable biorefinery processes. Unfortunately, due to work and time consuming sample preparation, the measurement of cellulose molecular weight distributions has a limited applicability until now. Results In this work we present a new method to analyze cellulose molecular weight distributions that does not require any prior cellulose swelling, activation, or derivatization. The cellulose samples were directly dissolved in dimethylformamide (DMF containing 10-20% (v/v 1-ethyl-3-methylimidazolium acetate (EMIM Ac for 60 minutes, thereby reducing the sample preparation time from several days to a few hours. The samples were filtrated 0.2 μm to avoid column blocking, separated at 0.5 mL/min using hydrophilic separation media and were detected using differential refractive index/multi angle laser light scattering (dRI/MALLS. The applicability of this method was evaluated for the three cellulose types Avicel, α-cellulose and Sigmacell. Afterwards, this method was used to measure the changes in molecular weight distributions during the enzymatic hydrolysis of the different untreated and ionic liquid pretreated cellulose substrates. The molecular weight distributions showed a stronger shift to smaller molecular weights during enzymatic hydrolysis using a commercial cellulase preparation for cellulose with lower crystallinity. This was even more pronounced for ionic liquid-pretreated cellulose. Conclusions In conclusion, this strongly simplified GPC method for cellulose molecular weight distribution allowed for the first time to demonstrate the influence of cellulose properties and pretreatment on the mode of enzymatic hydrolysis.

  14. Ultrasound enhanced enzymatic hydrolysis of Parthenium hysterophorus: A mechanistic investigation.

    Science.gov (United States)

    Singh, Shuchi; Agarwal, Mayank; Bhatt, Aditya; Goyal, Arun; Moholkar, Vijayanand S

    2015-09-01

    This study has attempted to establish the mechanism of the ultrasound-induced enhancement of enzymatic hydrolysis of pretreated and delignified biomass of Parthenium hysterophorus. A dual approach of statistical optimization of hydrolysis followed by application of sonication at optimum conditions has been adopted. The kinetics of hydrolysis shows a marked 6× increase with sonication, while net sugar yield shows marginal rise of ∼ 20%. The statistical experimental design reveals the hydrolysis process to be enzyme limited. Profile of sugar yield in ultrasound-assisted enzymatic hydrolysis has been analyzed using HCH-1 model coupled with Genetic Algorithm optimization. The trends in the kinetic and physiological parameters of HCH-1 model reveal that sonication enhances enzyme/substrate affinity and reaction velocity of hydrolysis. The product inhibition of enzyme in all forms (free, adsorbed, complexed) also reduces with ultrasound. These effects are attributed to intense micro-convection induced by ultrasound and cavitation in the liquid medium. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Starch facilitates enzymatic wheat gluten hydrolysis

    NARCIS (Netherlands)

    Hardt, N.A.; Boom, R.M.; Goot, van der A.J.

    2015-01-01

    Wheat gluten can be hydrolyzed by either using (vital) wheat gluten or directly from wheat flour. This study investigates the influence of the presence of starch, the main component of wheat, on enzymatic wheat gluten hydrolysis. Wheat gluten present in wheat flour (WFG) and vital wheat gluten (VWG)

  16. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover

    Energy Technology Data Exchange (ETDEWEB)

    Humbird, D.; Davis, R.; Tao, L.; Kinchin, C.; Hsu, D.; Aden, A.; Schoen, P.; Lukas, J.; Olthof, B.; Worley, M.; Sexton, D.; Dudgeon, D.

    2011-03-01

    This report describes one potential biochemical ethanol conversion process, conceptually based upon core conversion and process integration research at NREL. The overarching process design converts corn stover to ethanol by dilute-acid pretreatment, enzymatic saccharification, and co-fermentation. Building on design reports published in 2002 and 1999, NREL, together with the subcontractor Harris Group Inc., performed a complete review of the process design and economic model for the biomass-to-ethanol process. This update reflects NREL's current vision of the biochemical ethanol process and includes the latest research in the conversion areas (pretreatment, conditioning, saccharification, and fermentation), optimizations in product recovery, and our latest understanding of the ethanol plant's back end (wastewater and utilities). The conceptual design presented here reports ethanol production economics as determined by 2012 conversion targets and 'nth-plant' project costs and financing. For the biorefinery described here, processing 2,205 dry ton/day at 76% theoretical ethanol yield (79 gal/dry ton), the ethanol selling price is $2.15/gal in 2007$.

  17. Enzymatic activity of the cellulolytic complex produced by Trichoderma reesei. Enzymatic hydrolysis of cellulose; Actividad enzimatica del complejo celulolitico producido por Trichoderma reesei. Hidrolisis enzimatica de la celulosa

    Energy Technology Data Exchange (ETDEWEB)

    Alfonsel, M.; Negro, M. J.; Saez, R.; Martin, C.

    1986-07-01

    The enzymatic activity characterization of the cellulolytic complex obtained from Trichoderma reesei QM 9414 and the influence of the enzymatic hydrolysis conditions on the hydrolysis yield are studied. Pure cellulose and native or alkali pretreated biomass Onopordum nervosum have been used as substrates. The values of pH, temperature, substrate concentration and enzyme-substrate ratio for the optimum activity of that complex, evaluated as glucose and reducing sugars production, have been selected. Previous studies on enzymatic hydrolysis of 0. nervosum have shown a remarkable effect of the alkaline pretreatments on the final hydrolysis yield. (Author) 10 refs.

  18. Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis.

    Science.gov (United States)

    Zhao, Hua; Jones, Cecil L; Baker, Gary A; Xia, Shuqian; Olubajo, Olarongbe; Person, Vernecia N

    2009-01-01

    The efficient conversion of lignocellulosic materials into fuel ethanol has become a research priority in producing affordable and renewable energy. The pretreatment of lignocelluloses is known to be key to the fast enzymatic hydrolysis of cellulose. Recently, certain ionic liquids (ILs) were found capable of dissolving more than 10wt% cellulose. Preliminary investigations [Dadi, A.P., Varanasi, S., Schall, C.A., 2006. Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol. Bioeng. 95, 904-910; Liu, L., Chen, H., 2006. Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM]Cl. Chin. Sci. Bull. 51, 2432-2436; Dadi, A.P., Schall, C.A., Varanasi, S., 2007. Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment. Appl. Biochem. Biotechnol. 137-140, 407-421] suggest that celluloses regenerated from IL solutions are subject to faster saccharification than untreated substrates. These encouraging results offer the possibility of using ILs as alternative and non-volatile solvents for cellulose pretreatment. However, these studies are limited to two chloride-based ILs: (a) 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), which is a corrosive, toxic and extremely hygroscopic solid (m.p. approximately 70 degrees C), and (b) 1-allyl-3-methylimidazolium chloride ([AMIM]Cl), which is viscous and has a reactive side-chain. Therefore, more in-depth research involving other ILs is much needed to explore this promising pretreatment route. For this reason, we studied a number of chloride- and acetate-based ILs for cellulose regeneration, including several ILs newly developed in our laboratory. This will enable us to select inexpensive, efficient and environmentally benign solvents for processing cellulosic biomass. Our data confirm that all regenerated celluloses are less crystalline (58-75% lower) and more accessible to cellulase (>2 times) than untreated substrates. As a result

  19. Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification

    Directory of Open Access Journals (Sweden)

    Chen Ye

    2013-01-01

    Full Text Available Abstract Background Previous research on alkaline pretreatment has mainly focused on optimization of the process parameters to improve substrate digestibility. To achieve satisfactory sugar yield, extremely high chemical loading and enzyme dosages were typically used. Relatively little attention has been paid to reduction of chemical consumption and process waste management, which has proven to be an indispensable component of the bio-refineries. To indicate alkali strength, both alkali concentration in pretreatment solution (g alkali/g pretreatment liquor or g alkali/L pretreatment liquor and alkali loading based on biomass solids (g alkali/g dry biomass have been widely used. The dual approaches make it difficult to compare the chemical consumption in different process scenarios while evaluating the cost effectiveness of this pretreatment technology. The current work addresses these issues through pretreatment of corn stover at various combinations of pretreatment conditions. Enzymatic hydrolysis with different enzyme blends was subsequently performed to identify the effects of pretreatment parameters on substrate digestibility as well as process operational and capital costs. Results The results showed that sodium hydroxide loading is the most dominant variable for enzymatic digestibility. To reach 70% glucan conversion while avoiding extensive degradation of hemicellulose, approximately 0.08 g NaOH/g corn stover was required. It was also concluded that alkali loading based on total solids (g NaOH/g dry biomass governs the pretreatment efficiency. Supplementing cellulase with accessory enzymes such as α-arabinofuranosidase and β-xylosidase significantly improved the conversion of the hemicellulose by 6–17%. Conclusions The current work presents the impact of alkaline pretreatment parameters on the enzymatic hydrolysis of corn stover as well as the process operational and capital investment costs. The high chemical consumption for alkaline

  20. Microstructural study of pre-treated and enzymatic hydrolyzed bamboo

    Directory of Open Access Journals (Sweden)

    Funsho O. KOLAWOLE

    2016-07-01

    Full Text Available Bamboo was used as biomass feedstock which was pre-treated using dilute acid hydrolysis followed by enzymatic hydrolysis. The bamboo was mechanical ground to particle sizes 212–500µm, followed by pre-treatment with dilute sulfuric acid at a concentration of 0.5 and 1.0 (%v/v at temperatures of 25, 110, 120, 150 and 200°C with time intervals of 2 and 4 hours. Pre-hydrolyzate was later analyzed for reducing sugar using UV-Vis spectrophotometry. Under the above conditions, a maximum glucose yield of 153.1 mg/g was obtained at 200°C and acid concentrations of 1% for 4 hours. Water insoluble solids obtained were subsequently hydrolyzed with Celluclast (Trichoderma reesi and β-glucosidase (Novozyme 188 for 72 hours. Optical Microscope and ESEM images of bamboo samples were obtained at various stages of pre-treatment and enzymatic hydrolysis. Result reveals a breakdown in the ligno-cellulosic structure of the bamboo during exposure to dilute acid and enzymatic hydrolysis.

  1. Fuzzy logic feedback control for fed-batch enzymatic hydrolysis of lignocellulosic biomass.

    Science.gov (United States)

    Tai, Chao; Voltan, Diego S; Keshwani, Deepak R; Meyer, George E; Kuhar, Pankaj S

    2016-06-01

    A fuzzy logic feedback control system was developed for process monitoring and feeding control in fed-batch enzymatic hydrolysis of a lignocellulosic biomass, dilute acid-pretreated corn stover. Digested glucose from hydrolysis reaction was assigned as input while doser feeding time and speed of pretreated biomass were responses from fuzzy logic control system. Membership functions for these three variables and rule-base were created based on batch hydrolysis data. The system response was first tested in LabVIEW environment then the performance was evaluated through real-time hydrolysis reaction. The feeding operations were determined timely by fuzzy logic control system and efficient responses were shown to plateau phases during hydrolysis. Feeding of proper amount of cellulose and maintaining solids content was well balanced. Fuzzy logic proved to be a robust and effective online feeding control tool for fed-batch enzymatic hydrolysis.

  2. Palm Date Fibers: Analysis and Enzymatic Hydrolysis

    Directory of Open Access Journals (Sweden)

    Mohammad J. Taherzadeh

    2010-11-01

    Full Text Available Waste palm dates were subjected to analysis for composition and enzymatic hydrolysis of their flesh fibers. The fruit contained 32% glucose and 30% fructose, while the water-insoluble fibers of its flesh consisted of 49.9% lignin and 20.9% polysaccharides. Water-insoluble fibers were settled to 55% of its initial volume in 12 h. The presence of skin and flesh colloidal fibers results in high viscosity and clogging problems during industrial processes. The settling velocity of the fibers was improved by enzymatic hydrolysis. Hydrolysis resulted in 84.3% conversion of the cellulosic part of the fibers as well as reducing the settling time to 10 minutes and the final settled volume to 4% of the initial volume. It implies easier separation of the fibers and facilitates fermentation processes in the corresponding industries. Two kinds of high- and low-lignin fibers were identified from the water-insoluble fibers. The high-lignin fibers (75% lignin settled easily, while the low-lignin fibers (41.4% lignin formed a slurry suspension which settled very slowly. The hydrophilicity of these low-lignin fibers is the major challenge of the industrial processes.

  3. pH catalyzed pretreatment of corn bran for enhanced enzymatic arabinoxylan degradation

    DEFF Research Database (Denmark)

    Agger, Jane; Johansen, Katja Salomon; Meyer, Anne S.

    2011-01-01

    Corn bran is mainly made up of the pericarp of corn kernels and is a byproduct stream resulting from the wet milling step in corn starch processing. Through statistic modeling this study examined the optimization of pretreatment of corn bran for enzymatic hydrolysis. A low pH pretreatment (pH 2......, 150°C, 65min) boosted the enzymatic release of xylose and glucose and maximized biomass solubilization. With more acidic pretreatment followed by enzymatic hydrolysis the total xylose release was maximized (at pH 1.3) reaching ∼50% by weight of the original amount present in destarched corn bran......, but the enzyme catalyzed xylose release was maximal after pretreatment at approx. pH 2. The total glucose release peaked after pretreatment of approx. pH 1.5 with an enzymatic release of approx. 68% by weight of the original amounts present in destarched corn bran. For arabinose the enzymatic release...

  4. Enzymatic hydrolysis of spent coffee ground.

    Science.gov (United States)

    Jooste, T; García-Aparicio, M P; Brienzo, M; van Zyl, W H; Görgens, J F

    2013-04-01

    Spent coffee ground (SCG) is the main residue generated during the production of instant coffee by thermal water extraction from roasted coffee beans. This waste is composed mainly of polysaccharides such as cellulose and galactomannans that are not solubilised during the extraction process, thus remaining as unextractable, insoluble solids. In this context, the application of an enzyme cocktail (mannanase, endoglucanase, exoglucanase, xylanase and pectinase) with more than one component that acts synergistically with each other is regarded as a promising strategy to solubilise/hydrolyse remaining solids, either to increase the soluble solids yield of instant coffee or for use as raw material in the production of bioethanol and food additives (mannitol). Wild fungi were isolated from both SCG and coffee beans and screened for enzyme production. The enzymes produced from the selected wild fungi and recombinant fungi were then evaluated for enzymatic hydrolysis of SCG, in comparison to commercial enzyme preparations. Out of the enzymes evaluated on SCG, the application of mannanase enzymes gave better yields than when only cellulase or xylanase was utilised for hydrolysis. The recombinant mannanase (Man1) provided the highest increments in soluble solids yield (17 %), even when compared with commercial preparations at the same protein concentration (0.5 mg/g SCG). The combination of Man1 with other enzyme activities revealed an additive effect on the hydrolysis yield, but not synergistic interaction, suggesting that the highest soluble solid yields was mainly due to the hydrolysis action of mannanase.

  5. Increased release of fermentable sugars from elephant grass by enzymatic hydrolysis in the presence of surfactants

    International Nuclear Information System (INIS)

    Menegol, Daiane; Scholl, Angélica Luisi; Fontana, Roselei Claudete; Dillon, Aldo José Pinheiro; Camassola, Marli

    2014-01-01

    Highlights: • Milling is an attractive method to enhance the enzymatic hydrolysis of biomass. • Surfactants improve the efficiency of lignocellulose enzymatic hydrolysis. • Pretreatment with NaOH, smaller particle size and Tween 80® were more efficient. - Abstract: In the search for renewable energy sources, elephant grass is an alternative substrate for ethanol production, but this substrate must be hydrolyzed by cellulases and xylanases to liberate fermentable sugars. During enzymatic hydrolysis, cellulase activity is reduced by the irreversible adsorption of cellulase onto cellulose, decreasing the rate of hydrolysis. Adding surfactants during hydrolysis can improve the process. The effects of Tween® and Triton® surfactants on the enzymatic hydrolysis of elephant grass were evaluated in this context. The data indicate that pretreatment with sodium hydroxide, along with a smaller particle size (0.075–0.152 mm) and the use of Tween 80®, increased the efficiency of releasing reducing sugars from pretreated elephant grass biomass. Thus, it is possible to reduce grinding costs in second-generation ethanol production through the use of surfactants, as they allow efficient hydrolysis of larger biomass particles

  6. Production of fermentable sugars by combined chemo-enzymatic hydrolysis of cellulosic material for bioethanol production

    Directory of Open Access Journals (Sweden)

    M. Idrees

    2014-06-01

    Full Text Available To change the recalcitrant nature of the lignocellulosic material for maximum hydrolysis yield, a comprehensive study was done by using sulphuric acid as an exclusive catalyst for the pretreatment process. The enzymatic digestibility of the biomass [Water Hyacinth: Eichhornia crassipes] after pretreatment was determined by measuring the hydrolysis yield of the pretreated material obtained from twenty four different pretreatment conditions. These included different concentrations of sulphuric acid (0.0, 1.0, 2.0 and 3.0%, at two different temperatures (108 and 121 ºC for different residence times (1.0, 2.0 and 3.0h.The highest reducing sugar yield (36.65 g/L from enzymatic hydrolysis was obtained when plant material was pretreated at 121 ºC for 1.0 h residence time using 3.0% (v/v sulphuric acid and at 1:10 (w/v solid to liquid ratio. The total reducing sugars obtained from the two-stage process (pretreatment + enzymatic hydrolysis was 69.6g/L. The resulting sugars were fermented into ethanol by using Saccharomyces cerevisiae. The ethanol yield from the enzymatic hydrolyzate was 95.2% of the theoretical yield (0.51g/g glucose, as determined by GS-MS, and nearly 100% since no reducing sugars were detected in the fermenting media by TLC and DNS analysis.

  7. Lactose hydrolysis in an enzymatic membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mertens, B.; Huyghebaert, A.

    1987-10-01

    The enzymatic hydrolysis of lactose in whey permeate with subsequent recuperation of Saccharomyces lactis lactase by means of ultrafiltration was investigated. In whey permeate, S. lactis lactase shows maximal activity at pH 6.5; the optimal temperature was found to be 45/sup 0/C and is limited by strong thermal inactivation beyond this temperature. High activity combined with acceptable thermal inactivation (< 10% after 5 h incubation) was established at 30/sup 0/C. S. lactis lactase also displays considerable activity at low temperature (5/sup 0/C). Enzyme stability is reduced drastically by demineralisation: addition of low concentrations of manganese ions (10/sup -3/ M) considerably enhances stability. Using a DDS Lab-Unit 35 fitted with GR61PP polysulphon membranes (cut-off: 20.000), pilot scale experiments were carried out (pH 6.5; 30/sup 0/C) in which whey permeate was hydrolyzed to a degree of hydrolysis of 82% minimum. Enzyme recuperation amounted to 96.5% per batch, all enzyme activity loss being due to thermal inactivation. Microbiological examination of the enzymatic membrane reactor showed that growth of mcicroorganisms can largely be suppressed by working at lower temperature (5/sup 0/C). Eventually, 50 ppm H/sub 2/O/sub 2/ or sterile filtration will adequately solve microbiological problems without affecting enzyme activity.

  8. Numerical prediction of kinetic model for enzymatic hydrolysis of cellulose using DAE-QMOM approach

    Science.gov (United States)

    Jamil, N. M.; Wang, Q.

    2016-06-01

    Bioethanol production from lignocellulosic biomass consists of three fundamental processes; pre-treatment, enzymatic hydrolysis, and fermentation. In enzymatic hydrolysis phase, the enzymes break the cellulose chains into sugar in the form of cellobiose or glucose. A currently proposed kinetic model for enzymatic hydrolysis of cellulose that uses population balance equation (PBE) mechanism was studied. The complexity of the model due to integrodifferential equations makes it difficult to find the analytical solution. Therefore, we solved the full model of PBE numerically by using DAE-QMOM approach. The computation was carried out using MATLAB software. The numerical results were compared to the asymptotic solution developed in the author's previous paper and the results of Griggs et al. Besides confirming the findings were consistent with those references, some significant characteristics were also captured. The PBE model for enzymatic hydrolysis process can be solved using DAE-QMOM method. Also, an improved understanding of the physical insights of the model was achieved.

  9. Enzymatic hydrolysis of biomimetic bacterial cellulose-hemicellulose composites.

    Science.gov (United States)

    Penttilä, Paavo A; Imai, Tomoya; Hemming, Jarl; Willför, Stefan; Sugiyama, Junji

    2018-06-15

    The production of biofuels and other chemicals from lignocellulosic biomass is limited by the inefficiency of enzymatic hydrolysis. Here a biomimetic composite material consisting of bacterial cellulose and wood-based hemicelluloses was used to study the effects of hemicelluloses on the enzymatic hydrolysis with a commercial cellulase mixture. Bacterial cellulose synthesized in the presence of hemicelluloses, especially xylan, was found to be more susceptible to enzymatic hydrolysis than hemicellulose-free bacterial cellulose. The reason for the easier hydrolysis could be related to the nanoscale structure of the substrate, particularly the packing of cellulose microfibrils into ribbons or bundles. In addition, small-angle X-ray scattering was used to show that the average nanoscale morphology of bacterial cellulose remained unchanged during the enzymatic hydrolysis. The reported easier enzymatic hydrolysis of bacterial cellulose produced in the presence of wood-based xylan offers new insights to overcome biomass recalcitrance through genetic engineering. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Improving enzymatic hydrolysis efficiency of wheat straw through sequential autohydrolysis and alkaline post-extraction.

    Science.gov (United States)

    Wu, Xinxing; Huang, Chen; Zhai, Shengcheng; Liang, Chen; Huang, Caoxing; Lai, Chenhuan; Yong, Qiang

    2018-03-01

    In this work, a two-step pretreatment process of wheat straw was established by combining autohydrolysis pretreatment and alkaline post-extraction. The results showed that employing alkaline post-extraction to autohydrolyzed wheat straw could significantly improve its enzymatic hydrolysis efficiency from 36.0% to 83.7%. Alkaline post-extraction lead to the changes of the structure characteristics of autohydrolyzed wheat straw. Associations between enzymatic hydrolysis efficiency and structure characteristics were also studied. The results showed that the factors of structure characteristics such as delignification, xylan removal yield, crystallinity, accessibility and hydrophobicity are positively related to enzymatic hydrolysis efficiency within a certain range for alkaline post-extracted wheat straw. The results demonstrated that autohydrolysis coupled with alkaline post-extraction is an effective and promising method to gain fermentable sugars from biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Compositional and structural changes in Phoenix canariensis and Opuntia ficus-indica with pretreatment: Effects on enzymatic hydrolysis and second generation ethanol production.

    Science.gov (United States)

    Udeh, Benard Anayo; Erkurt, Emrah Ahmet

    2017-01-01

    Two different plants namely Phoenix canariensis and Opuntia ficus-indica were used as substrate for reducing sugar generation and ethanol production. Dilute acid, alkaline and steam explosion were used as pretreatment methods in order to depolymerize lignin and/or hemicellulose and recover cellulose. By using alkaline pretreatment with 2.5% NaOH 71.08% for P. canariensis and 74.61% for O. ficus-indica lignin removal and 81.84% for P. canariensis and 72.66% for O. ficus-indica cellulose recovery yields were obtained. Pretreated materials were hydrolyzed by cellulase with high efficiency (87.0% and 84.5% cellulose conversion yields for P. canariensis and O. ficus-indica) and used as substrate for fermentation. Maximum ethanol production of 15.75g/L and 14.71g/L were achieved from P. canariensis and O. ficus-indica respectively. Structural differences were observed by XRD, FTIR and SEM for untreated, pretreated, hydrolyzed and fermented samples and were highly correlated with compositional analysis results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The Role of Product Inhibition as a Yield-Determining Factor in Enzymatic High-Solid Hydrolysis of Pretreated Corn Stover

    DEFF Research Database (Denmark)

    Nymand Olsen, Søren; Borch, Kim; Cruys-Bagger, Nicolaj

    2014-01-01

    . The results suggest that the solid effect is mainly controlled by product inhibition under the given experimental conditions (washed pretreated corn stover as substrate). Cellobiose was found to be approximately 15 times more inhibitory than glucose on a molar scale. However, considering that glucose...

  13. Two-Dimensional NMR Evidence for Cleavage of Lignin and Xylan Substituents in Wheat Straw Through Hydrothermal Pretreatment and Enzymatic Hydrolysis

    Science.gov (United States)

    Daniel J. Yelle; Prasad Kaparaju; Christopher G. Hunt; Kolby Hirth; Hoon Kim; John Ralph; Claus Felby

    2012-01-01

    Solution-state two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy of plant cell walls is a powerful tool for characterizing changes in cell wall chemistry during the hydrothermal pretreatment process of wheat straw for second-generation bioethanol production. One-bond 13C-1H NMR correlation spectroscopy, via...

  14. Kinetics of Enzymatic High-Solid Hydrolysis of Lignocellulosic Biomass Studied by Calorimetry

    DEFF Research Database (Denmark)

    Olsen, Søren Nymand; Rasmussen, Erik Lumby; McFarland, K.C.

    2011-01-01

    Enzymatic hydrolysis of high-solid biomass (>10% w/w dry mass) has become increasingly important as a key step in the production of second-generation bioethanol. To this end, development of quantitative real-time assays is desirable both for empirical optimization and for detailed kinetic analysis....... In the current work, we have investigated the application of isothermal calorimetry to study the kinetics of enzymatic hydrolysis of two substrates (pretreated corn stover and Avicel) at high-solid contents (up to 29% w/w). It was found that the calorimetric heat flow provided a true measure of the hydrolysis...... analysis of the interrelationships of enzyme load and the rate, time, and extent of the reaction. The results suggest that the hydrolysis rate of pretreated corn stover is limited initially by available attack points on the substrate surface (

  15. Short-time ultrasonication treatment in enzymatic hydrolysis of biomass

    Science.gov (United States)

    Zengqian Shi; Zhiyong Cai; Siqun Wang; Qixin Zhong; Joseph J. Bozell

    2013-01-01

    To improve the conversion of enzymatic hydrolysis of biomass in an energy-efficient manner, two shorttime ultrasonication strategies were applied on six types of biomass with different structures and components. The strategies include pre-sonication before the hydrolysis and intermittent sonication during the ongoing hydrolysis. The microstructures of each type of...

  16. Improving enzymatic hydrolysis of industrial hemp (Cannabis sativa L.) by electron beam irradiation

    International Nuclear Information System (INIS)

    Shin, Soo-Jeong; Sung, Yong Joo

    2008-01-01

    The electron beam irradiation was applied as a pretreatment of the enzymatic hydrolysis of hemp biomass with doses of 150, 300 and 450 kGy. The higher irradiation dose resulted in the more extraction with hot-water extraction or 1% sodium hydroxide solution extraction. The higher solubility of the treated sample was originated from the chains scission during irradiation, which was indirectly demonstrated by the increase of carbonyl groups as shown in diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) spectra. The changes in the micro-structure of hemp resulted in the better response to enzymatic hydrolysis with commercial cellulases (Celluclast 1.5L and Novozym 342). The improvement in enzymatic hydrolysis by the irradiation was more evident in the hydrolysis of the xylan than in that of the cellulose

  17. Improving enzymatic hydrolysis of industrial hemp (Cannabis sativa L.) by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Soo-Jeong [Chungbuk National University, Cheongju, Chungbuk 361-763 (Korea, Republic of); Sung, Yong Joo [KT and G Central Research Institute, 302 Shinseong-Dong, Yuseong-Gu, Daejeon 305-805 (Korea, Republic of)], E-mail: yosung17@yahoo.co.kr

    2008-09-15

    The electron beam irradiation was applied as a pretreatment of the enzymatic hydrolysis of hemp biomass with doses of 150, 300 and 450 kGy. The higher irradiation dose resulted in the more extraction with hot-water extraction or 1% sodium hydroxide solution extraction. The higher solubility of the treated sample was originated from the chains scission during irradiation, which was indirectly demonstrated by the increase of carbonyl groups as shown in diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) spectra. The changes in the micro-structure of hemp resulted in the better response to enzymatic hydrolysis with commercial cellulases (Celluclast 1.5L and Novozym 342). The improvement in enzymatic hydrolysis by the irradiation was more evident in the hydrolysis of the xylan than in that of the cellulose.

  18. Preparation of immobilized growing cells and enzymatic hydrolysis of sawdust

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1984-01-01

    Trichoderma reesei cells were immobilized by radiation polymerization using porous materials such as non-woven material and sawdust, and the enzymatic hydrolysis of sawdust with the enzyme solution from the immobilized growing cells was studied. The filter paper activity, which shows the magnitude of cellulase production in the immobilized cells, was comparable with that in the intact cells. The filter paper activity was affected by addition concentration of monomer and porous materials. The cells in the immobilized cells grew to be adhered on the surface of the fibrous polymers. Sawdust, which was pretreated by irradiation technique, was effectively hydrolyzed with the enzyme solution resulting from the culture of the immobilized cells, in which the glucose yield increased increasing the culture time of the immobilized cells. (author)

  19. pH catalyzed pretreatment of corn bran for enhanced enzymatic arabinoxylan degradation.

    Science.gov (United States)

    Agger, Jane; Johansen, Katja Salomon; Meyer, Anne S

    2011-02-28

    Corn bran is mainly made up of the pericarp of corn kernels and is a byproduct stream resulting from the wet milling step in corn starch processing. Through statistic modeling this study examined the optimization of pretreatment of corn bran for enzymatic hydrolysis. A low pH pretreatment (pH 2, 150 °C, 65 min) boosted the enzymatic release of xylose and glucose and maximized biomass solubilization. With more acidic pretreatment followed by enzymatic hydrolysis the total xylose release was maximized (at pH 1.3) reaching ∼ 50% by weight of the original amount present in destarched corn bran, but the enzyme catalyzed xylose release was maximal after pretreatment at approx. pH 2. The total glucose release peaked after pretreatment of approx. pH 1.5 with an enzymatic release of approx. 68% by weight of the original amounts present in destarched corn bran. For arabinose the enzymatic release was negatively affected by the acidic pretreatment as labile arabinosyl-linkages were presumably hydrolysed directly during the pretreatment. A maximum of 60% arabinose release was achieved directly from the optimal (acidic) pretreatment. The total content of diferulic acids, supposedly involved in the cross-linking of the arabinoxylan polymers, decreased by both alkaline and acidic pretreatment pH, with the loss by alkaline pretreatments being highest. No direct correlation between the enzymatic release of xylose and the content of diferulic acids in the substrate could be verified. On the contrary the enzymatic release of xylose was significantly correlated to the total release of arabinose, indicating that the degree of arabinosyl-substitutions on the xylan backbone is an essential parameter for enzymatic hydrolysis of corn bran arabinoxylan. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Enzymatic saccharification of dilute acid pretreated saline crops for fermentable sugar production

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yi; Zhang, Ruihong [Biological and Agricultural Engineering Department, University of California, Davis One Shields Avenue, Davis, CA 95616 (United States); Pan, Zhongli [Biological and Agricultural Engineering Department, University of California, Davis One Shields Avenue, Davis, CA 95616 (United States); Processed Foods Research Unit, USDA-ARS-WRRC, 800 Buchanan Street, Albany, CA 94710 (United States); Wang, Donghai [Biological and Agricultural Engineering Department, Kansas State University, Manhattan, KS 66506 (United States)

    2009-11-15

    Four saline crops [athel (Tamarix aphylla L), eucalyptus (Eucalyptus camaldulensis), Jose Tall Wheatgrass (Agropyron elongatum), and Creeping Wild Ryegrass (Leymus triticoides)] that are used in farms for salt uptake from soil and drainage irrigation water have the potential for fuel ethanol production because they don't take a large number of arable lands. Dilute sulfuric acid pretreatment and enzymatic hydrolysis were conducted to select the optimum pretreatment conditions and the best saline crop for further enzymatic hydrolysis research. The optimum dilute acid pretreatment conditions included T = 165 C, t = 8 min, and sulfuric acid concentration 1.4% (w/w). Creeping Wild Ryegrass was decided to be the best saline crop. Solid loading, cellulase and {beta}-glucosidase concentrations had significant effects on the enzymatic hydrolysis of dilute acid pretreated Creeping Wild Ryegrass. Glucose concentration increased by 36 mg/mL and enzymatic digestibility decreased by 20% when the solid loading increased from 4 to 12%. With 8% solid loading, enzymatic digestibility increased by over 30% with the increase of cellulase concentration from 5 to 15 FPU/g-cellulose. Under given cellulase concentration of 15 FPU/g-cellulose, 60% increase of enzymatic digestibility of pretreated Creeping Wild Ryegrass was obtained with the increase of {beta}-glucosidase concentration up to 15 CBU/g-cellulose. With a high solid loading of 10%, fed-batch operation generated 12% and 18% higher enzymatic digestibility and glucose concentration, respectively, than batch process. (author)

  1. Enhanced enzymatic saccharification of sugarcane bagasse pretreated by combining O2 and NaOH.

    Science.gov (United States)

    Bi, Shuaizhu; Peng, Lincai; Chen, Keli; Zhu, Zhengliang

    2016-08-01

    Sugarcane bagasse pretreated by combining O2 and NaOH with different variables was conducted to improve its enzymatic digestibility and sugar recovery, and the results were compared with sole NaOH pretreatment. Lignin removal for O2-NaOH pretreatment was around 10% higher than that for sole NaOH pretreatment under the same conditions, and O2-NaOH pretreatment resulted in higher glucan recovery in the solid remain. Subsequently, O2-NaOH pretreated sugarcane bagasse presented more efficient enzymatic digestibility than sole NaOH pretreatment. Under the moderate pretreatment conditions of combining 1% NaOH and 0.5MPa O2 at 80°C for 120min, a high glucan conversion of 95% was achieved after 48h enzymatic hydrolysis. Coupled with the operations of pretreatment and enzymatic hydrolysis, an admirable total sugar recovery of 89% (glucose recovery of 93% and xylose recovery of 84%) was obtained. The susceptibility of the substrates to enzymatic digestibility was explained by their physical and chemical characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Kinetics of enzymatic hydrolysis of methyl ricinoleate

    Directory of Open Access Journals (Sweden)

    Neeharika, T. S.V.R.

    2015-12-01

    Full Text Available Ricinoleic acid is an unsaturated hydroxy fatty acid that naturally occurs in castor oil in proportions of up to 85–90%. Ricinoleic acid is a potential raw material and finds several applications in coatings, lubricant formulations and pharmaceutical areas. Enzymatic hydrolysis of castor oil is preferred over conventional hydrolysis for the preparation of ricinoleic acid to avoid estolide formation. A kinetics analysis of the enzymatic hydrolysis of Methyl Ricinoleate in the presence of Candida antarctica Lipase B was carried out in this study by varying reaction temperature (40–60 °C and enzyme concentration (2–5%. The optimal conditions were found to be 6 h reaction time, temperature 60°C, buffer to methyl ricinoleate ratio 2:1(v/w and 4% enzyme concentration to achieve a maximum conversion of 98.5%. A first order reversible reaction kinetic model was proposed to describe this reaction and a good agreement was observed between the experimental data and the model values. The effect of temperature on the forward reaction rate constant was determined by fitting data to the Arrhenius equation. The activation energy for forward reaction was found to be 14.69 KJ·mol−1.El ácido ricinoleico es un hidroxiácido insaturado que se produce naturalmente en el aceite de ricino en proporciones de hasta el 85–90%. El ácido ricinoleico es una materia prima con gran potencial y tiene aplicaciones en revestimientos, formulaciones lubricantes y en áreas farmacéuticas. Para la preparación del ácido ricinoleico se prefiere la hidrólisis enzimática del aceite de ricino a la hidrólisis convencional, para evitar la formación de estólidos. En este estudio se llevó a cabo la cinética de la hidrólisis enzimática del ricinoleato de metilo en presencia de lipasa de Candida antarctica B mediante la variación de la temperatura de reacción (40–60 °C y la concentración de la enzima (2–5%. Las condiciones óptimas de la reacción para

  3. Effects of sonication and high-pressure carbon dioxide processing on enzymatic hydrolysis of egg white proteins

    Directory of Open Access Journals (Sweden)

    Knežević-Jugović Zorica D.

    2012-01-01

    Full Text Available The objectives of this study were to examine the effect of sonication and high-pressure carbon dioxide processing on proteolytic hydrolysis of egg white proteins and antioxidant activity of the obtained hydrolysates. It appeared that the ultrasound pretreatment resulted in an increase in the degree of hydrolysis of the enzymatic reaction while the high-pressure carbon dioxide processing showed an inhibition effect on the enzymatic hydrolysis of egg white proteins to some extent. The antioxidant activity of the obtained hydrolysates was improved by ultrasound pretreatment of egg white proteins at the pH 8.3. Thus, the combination of ultrasound pretreatment at the pH 8.3 and subsequent enzymatic hydrolysis with alcalase at 50°C and pH 8.0 could offer a new approach to the improvement of the functional properties of egg white proteins and their biological activity. [Projekat Ministarstva nauke Republike Srbije, br. E!6750

  4. Aiming for the complete utilization of sugar-beet pulp: Examination of the effects of mild acid and hydrothermal pretreatment followed by enzymatic digestion

    NARCIS (Netherlands)

    Kuhnel, S.; Schols, H.A.; Gruppen, H.

    2011-01-01

    Background - Biomass use for the production of bioethanol or platform chemicals requires efficient breakdown of biomass to fermentable monosaccharides. Lignocellulosic feedstocks often require physicochemical pretreatment before enzymatic hydrolysis can begin. The optimal pretreatment can be

  5. Enzymatic hydrolysis and ethanol fermentation of high dry matter wet-exploded wheat straw at low enzyme loading

    DEFF Research Database (Denmark)

    Georgieva, T.I.; Hou, Xiaoru; Hilstrøm, Troels

    2008-01-01

    Wheat straw was pretreated by wet explosion using three different oxidizing agents (H2O2, O-2, and air). The effect of the pretreatment was evaluated based on glucose and xylose liberated during enzymatic hydrolysis. The results showed that pretreatment with the use of O-2 as oxidizing agent was ...... and a low enzyme loading of 10 FPU/g cellulose in an industrial acceptable time frame of 96 h. Cellulose and hemicellulose conversion from enzymatic hydrolysis were 70 and 68%, respectively, and an overall ethanol yield from SSF was 68%....

  6. Enzymatic Saccharification and Ethanol Fermentation of Reed Pretreated with Liquid Hot Water

    Directory of Open Access Journals (Sweden)

    Jie Lu

    2012-01-01

    Full Text Available Reed is a widespread-growing, inexpensive, and readily available lignocellulosic material source in northeast China. The objective of this study is to evaluate the liquid hot water (LHW pretreatment efficiency of reed based on the enzymatic digestibility and ethanol fermentability of water-insoluble solids (WISs from reed after the LHW pretreatment. Several variables in the LHW pretreatment and enzymatic hydrolysis process were optimized. The conversion of glucan to glucose and glucose concentrations are considered as response variables in different conditions. The optimum conditions for the LHW pretreatment of reed area temperature of 180°C for 20min and a solid-to-liquid ratio of 1 : 10. These optimum conditions for the LHW pretreatment of reed resulted in a cellulose conversion rate of 82.59% in the subsequent enzymatic hydrolysis at 50°C for 72 h with a cellulase loading of 30 filter paper unit per gram of oven-dried WIS. Increasing the pretreatment temperature resulted in a higher enzymatic digestibility of the WIS from reed. Separate hydrolysis and fermentation of WIS showed that the conversion of glucan to ethanol reached 99.5% of the theoretical yield. The LHW pretreatment of reed is a suitable method to acquire a high recovery of fermentable sugars and high ethanol conversion yield.

  7. A comparison of acidic and enzymatic hydrolysis of rutin | Wang ...

    African Journals Online (AJOL)

    Rutin and its hydrolysis products (isoquercitrin and quercetin) are widely used as important materials in food and pharmaceutical industry. In this study, the effects of various acids and enzymes as catalysts on the hydrolysis reaction of rutin were studied. In comparison with acidic and enzymatic catalysis of rutin, the research ...

  8. Enhancing enzymatic hydrolysis of coconut husk through Pseudomonas aeruginosa AP 029/GLVIIA rhamnolipid preparation.

    Science.gov (United States)

    de Araújo, Cynthia Kérzia Costa; de Oliveira Campos, Alan; de Araújo Padilha, Carlos Eduardo; de Sousa Júnior, Francisco Canindé; do Nascimento, Ruthinéia Jéssica Alves; de Macedo, Gorete Ribeiro; Dos Santos, Everaldo Silvino

    2017-08-01

    This work investigated the influence of chemical (Triton X-100) and biological surfactant preparation (rhamnolipids) in coconut husk hydrolysis that was subjected to pretreatment with acid-alkali or alkaline hydrogen peroxide. The natural and pretreated biomass was characterized using the National Renewable Energy Laboratory protocol analysis as well as X-ray diffraction and scanning electron microscopy. The results demonstrated that in terms of the total reducing sugars, there was no significant difference between the hydrolysis using Triton X-100 and rhamnolipids, regardless of the pretreatment. A cellulosic conversion value as high as 33.0% was obtained in experiments with rhamnolipids. The coconut husk was observed to be a potential biomass that could produce second generation ethanol, and the rhamnolipid preparation can be used to support for the enzymatic hydrolysis, enhancing the advantage of cellulose conversion into glucose over chemical surfactants because it is an environmentally friendly approach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Combined subcritical water and enzymatic hydrolysis for reducing sugar production from coconut husk

    Science.gov (United States)

    Muharja, Maktum; Junianti, Fitri; Nurtono, Tantular; Widjaja, Arief

    2017-05-01

    Coconut husk wastes are abundantly available in Indonesia. It has a potential to be used into alternative renewable energy sources such as hydrogen using enzymatic hydrolysis followed by a fermentation process. Unfortunately, enzymatic hydrolysis is hampered by the complex structure of lignocellulose, so the cellulose component is hard to degrade. In this study, Combined Subcritical Water (SCW) and enzymatic hydrolysis are applied to enhance fermentable, thereby reducing production of sugar from coconut husk. There were two steps in this study, the first step was coconut husk pretreated by SCW in batch reactor at 80 bar and 150-200°C for 60 minutes reaction time. Secondly, solid fraction from the results of SCW was hydrolyzed using the mixture of pure cellulose and xylanase enzymes. Analysis was conducted on untreated and SCW-treated by gravimetric assay, liquid fraction after SCW and solid fraction after enzymatic hydrolysis using DNS assay. The maximum yield of reducing sugar (including xylose, arabinose glucose, galactose, mannose) was 1.254 gr per 6 gr raw material, representing 53.95% of total sugar in coconut husk biomass which was obtained at 150°C 80 bar for 60 minutes reaction time of SCW-treated and 6 hour of enzymatic hydrolysis using mixture of pure cellulose and xylanase enzymes (18.6 U /gram of coconut husk).

  10. ENZYMATIC HYDROLYSIS AS AN ENVIRONMENTALLY FRIENDLY PROCESS COMPARED TO THERMAL HYDROLYSIS FOR INSTANT COFFEE PRODUCTION

    Directory of Open Access Journals (Sweden)

    I. J. Baraldi

    Full Text Available Abstract Conventional production of instant coffee is based on solubilisation of polysaccharides present in roasted coffee. Higher process temperatures increase the solubilisation yield, but also lead to carbohydrate degradation and formation of undesirable volatile compounds. Enzymatic hydrolysis of roasted coffee is an alternative to minimize carbohydrate degradation. In this work, products obtained from thermal and enzymatic processes were compared in terms of carbohydrates and volatiles composition. Roasted coffee was extracted with water at 125 °C, and spent coffee was processed by thermal (180 °C or enzymatic hydrolysis. Enzymatic hydrolysis experiments were carried out at 50 °C using the commercial enzyme preparations Powercell (Prozyn, Galactomannanase (HBI-Enzymes, and Ultraflo XL (Novozymes. These formulations were previously selected from eleven different commercial enzyme preparations, and their main enzymatic activities included cellulase, galactomannanase, galactanase, and β-glucanase. Enzymatic hydrolysis yield was 18% (dry basis, similar to the extraction yield at 125 °C (20%, but lower than the thermal hydrolysis yield at 180 °C (28%. Instant coffee produced by enzymatic hydrolysis had a low content of undesirable volatile compounds and 21% (w/w of total carbohydrates. These results point to the enzymatic process as a feasible alternative for instant coffee production, with benefits including improved quality as well as reduced energy consumption.

  11. Study of Chemical and Enzymatic Hydrolysis of Cellulosic Material to Obtain Fermentable Sugars

    Directory of Open Access Journals (Sweden)

    Myriam A. Amezcua-Allieri

    2017-01-01

    Full Text Available The objective of this study was to evaluate the chemical and enzymatic hydrolysis using a factorial experimental design (23 in order to obtain fermentable sugars from cellulose-based material (CBM usually used as pet litter. In assessing chemical hydrolysis, we studied the effect of temperature, in addition to H2SO4 concentration and reaction time, on the production of total sugars, reducing sugars, soluble lignin, carbohydrate profile, furfural (F, and hydroxymethyl furfural (HMF. We performed a response surface analysis and found that, at 100°C, 1% acid concentration, and 60 min reaction time, the yields of 0.0033 g reducing sugar/g biomass and 0.0852 g total sugars/g biomass were obtained. Under the above conditions, F is not generated, while HMF is generated in such a concentration that does not inhibit fermentation. We pretreated the CBM with H2SO4, NaOH, CaO, or ozonolysis, in order to evaluate the effectiveness of the enzymatic hydrolysis from the pretreated biomass, using an enzymatic cocktail. Results showed that CBM with acid was susceptible to enzymatic attack, obtaining a concentration of 0.1570 g reducing sugars/g biomass and 0.3798 g total sugars/g biomass. We concluded that acid pretreatment was the best to obtain fermentable sugars from CBM.

  12. Inhibition of cellulose enzymatic hydrolysis by laccase-derived compounds from phenols.

    Science.gov (United States)

    Oliva-Taravilla, Alfredo; Tomás-Pejó, Elia; Demuez, Marie; González-Fernández, Cristina; Ballesteros, Mercedes

    2015-01-01

    The presence of inhibitors compounds after pretreatment of lignocellulosic materials affects the saccharification and fermentation steps in bioethanol production processes. Even though, external addition of laccases selectively removes the phenolic compounds from lignocellulosic prehydrolysates, when it is coupled to saccharification step, lower hydrolysis yields are attained. Vanillin, syringaldehyde and ferulic acid are phenolic compounds commonly found in wheat-straw prehydrolysate after steam-explosion pretreatment. These three phenolic compounds were used in this study to elucidate the inhibitory mechanisms of laccase-derived compounds after laccase treatment. Reaction products derived from laccase oxidation of vanillin and syringaldehyde showed to be the strongest inhibitors. The presence of these products causes a decrement on enzymatic hydrolysis yield of a model cellulosic substrate (Sigmacell) of 46.6 and 32.6%, respectively at 24 h. Moreover, a decrease in more than 50% of cellulase and β-glucosidase activities was observed in presence of laccase and vanillin. This effect was attributed to coupling reactions between phenoxyl radicals and enzymes. On the other hand, when the hydrolysis of Sigmacell was performed in presence of prehydrolysate from steam-exploded wheat straw a significant inhibition on enzymatic hydrolysis was observed independently of laccase treatment. This result pointed out that the other components of wheat-straw prehydrolysate are affecting the enzymatic hydrolysis to a higher extent than the possible laccase-derived products. © 2015 American Institute of Chemical Engineers.

  13. Delignification of miscanthus using ethylenediamine (EDA) with or without ammonia and subsequent enzymatic hydrolysis to sugars.

    Science.gov (United States)

    Padmanabhan, Sasisanker; Schwyter, Philippe; Liu, Zhongguo; Poon, Geoffrey; Bell, Alexis T; Prausnitz, John M

    2016-06-01

    Pretreatment of miscanthus is essential for efficient enzymatic production of cellulosic ethanol. This study reports a possible pretreatment method for miscanthus using aqueous ethylenediamine (EDA) for 30 min at 180 °C with or without ammonia. The mass ratio of miscanthus to EDA was varied from 1:3, 1:1, and 1:0.5, keeping the mass ratio of miscanthus to liquid (EDA + Water) constant at 1:8. The ammonia-to-miscanthus ratio was 1:0.25. After pretreatment with a ratio of 1:3 miscanthus to EDA, about 75 % of the lignin was removed from the raw miscanthus with 90 % retention of cellulose and 50 % of hemicellulose in the recovered solid. Enzymatic hydrolysis of the recovered solid miscanthus gave 63 % glucose and 62 % xylose conversion after 72 h. EDA provides an effective pretreatment for miscanthus, achieving good delignification and enhanced sugar yield by enzyme hydrolysis. Results using aqueous EDA with or without ammonia are much better than those using hot water and compare favorably with those using aqueous ammonia. The delignification efficiency of EDA pretreatment is high compared to that for hot-water pretreatment and is nearly as efficient as that obtained for aqueous-ammonia pretreatment.

  14. Lignocellulose pretreatment technologies affect the level of enzymatic cellulose oxidation by LPMO

    DEFF Research Database (Denmark)

    Rodríguez-Zúñiga, Ursula Fabiola; Cannella, David; de Campos Giordano, Roberto

    2015-01-01

    Sugarcane bagasse, corn stover, and wheat straw are among the most available resources for production of cellulosic ethanol. For these biomasses we study the influence of pre-treatment methods on the chemical composition, as well as on the subsequent reactions of enzymatic hydrolysis and oxidation...

  15. Pretreatment of corn stover using wet oxidation to enhance enzymatic digestibility

    DEFF Research Database (Denmark)

    Varga, E.; Schmidt, A.S.; Reczey, K.

    2003-01-01

    Corn stover is an abundant, promising raw material for fuel ethanol production. Although it has a high cellulose content, without pretreatment it resists enzymatic hydrolysis, like most lignocellulosic materials. Wet oxidation (water, oxygen, mild alkali or acid, elevated temperature and pressure...

  16. Enzymatic Hydrolysis of Various Proteins of Wheat in Heterogeneous Conditions

    Directory of Open Access Journals (Sweden)

    Hasan Hasanov

    2010-12-01

    Full Text Available Enzymatic hydrolysis of different proteins isolated from wheat flour by neutral proteinase (neutraza "Novozymes" was studied. It was shown, that hydrolysis of alkaline proteins was 10-11 times higher as compared with albumin from wheat, 3-4 times higher than alcohol soluble proteins and 2-2.5 times higher than globulins. It was found that, hydrothermal treatment of wheat flour decreased the rate of protein hydrolysis. The rate of hydrolysis of native alkaline soluble proteins was 4-6 times higher than denaturized proteins. The rate of hydrolysis of denatured water-soluble proteins is 3-5 times higher as compared with native protein (albumin. It was shown that product of thermal degradation of raw materials also influence on the rate of protein hydrolysis.

  17. Enzymatic lignocellulose hydrolysis: Improved cellulase productivity by insoluble solids recycling

    Science.gov (United States)

    2013-01-01

    Background It is necessary to develop efficient methods to produce renewable fuels from lignocellulosic biomass. One of the main challenges to the industrialization of lignocellulose conversion processes is the large amount of cellulase enzymes used for the hydrolysis of cellulose. One method for decreasing the amount of enzyme used is to recycle the enzymes. In this study, the recycle of enzymes associated with the insoluble solid fraction after the enzymatic hydrolysis of cellulose was investigated for pretreated corn stover under a variety of recycling conditions. Results It was found that a significant amount of cellulase activity could be recovered by recycling the insoluble biomass fraction, and the enzyme dosage could be decreased by 30% to achieve the same glucose yields under the most favorable conditions. Enzyme productivity (g glucose produced/g enzyme applied) increased between 30 and 50% by the recycling, depending on the reaction conditions. While increasing the amount of solids recycled increased process performance, the methods applicability was limited by its positive correlation with increasing total solids concentrations, reaction volumes, and lignin content of the insoluble residue. However, increasing amounts of lignin rich residue during the recycle did not negatively impact glucose yields. Conclusions To take advantage of this effect, the amount of solids recycled should be maximized, based on a given processes ability to deal with higher solids concentrations and volumes. Recycling of enzymes by recycling the insoluble solids fraction was thus shown to be an effective method to decrease enzyme usage, and research should be continued for its industrial application. PMID:23336604

  18. Enzymatic lignocellulose hydrolysis: Improved cellulase productivity by insoluble solids recycling

    Directory of Open Access Journals (Sweden)

    Weiss Noah

    2013-01-01

    Full Text Available Abstract Background It is necessary to develop efficient methods to produce renewable fuels from lignocellulosic biomass. One of the main challenges to the industrialization of lignocellulose conversion processes is the large amount of cellulase enzymes used for the hydrolysis of cellulose. One method for decreasing the amount of enzyme used is to recycle the enzymes. In this study, the recycle of enzymes associated with the insoluble solid fraction after the enzymatic hydrolysis of cellulose was investigated for pretreated corn stover under a variety of recycling conditions. Results It was found that a significant amount of cellulase activity could be recovered by recycling the insoluble biomass fraction, and the enzyme dosage could be decreased by 30% to achieve the same glucose yields under the most favorable conditions. Enzyme productivity (g glucose produced/g enzyme applied increased between 30 and 50% by the recycling, depending on the reaction conditions. While increasing the amount of solids recycled increased process performance, the methods applicability was limited by its positive correlation with increasing total solids concentrations, reaction volumes, and lignin content of the insoluble residue. However, increasing amounts of lignin rich residue during the recycle did not negatively impact glucose yields. Conclusions To take advantage of this effect, the amount of solids recycled should be maximized, based on a given processes ability to deal with higher solids concentrations and volumes. Recycling of enzymes by recycling the insoluble solids fraction was thus shown to be an effective method to decrease enzyme usage, and research should be continued for its industrial application.

  19. Improvement Enzymatic Hydrolysis of Wheat Straw for Bioethanol Production by Combined Treatment of Radiation and Acid

    International Nuclear Information System (INIS)

    Hong, Sung Hyun; Lee, Seung Sik; Bai, Hyoung Woo; Chung, Byung Yeoup

    2012-01-01

    The cost of ethanol production from starch and sucrose for use as a vehicle fuel is ultimately high. Consequently, it has been suggested that the large-scale use of ethanol as a fuel will require the utilization of cellulosic feedstock. Lignocellulosic biomass has the potential to serve as a low cost and renewable feedstock for bioconversion into fermentable sugars, which can be further utilized for biofuel production. It is estimated that there is over one billion tons of biomass available for conversion into biofuels on a renewable basis to displace a substantial portion of the fossil fuels currently consumed within the transportation sector. Among different pretreatment methods such as biological, physical, chemical, and physic-chemical pretreatments, chemical pretreatment using dilute acid as catalyst, which has been extensively evaluated for treating a variety of lignocellulosic feedstocks, is reported as one of the leading pretreatment technologies. Ionizing radiation can easily penetrate lignocellulosic structure and undoubtedly produce free radicals useful in modification of lignin structure as well as breakdown cellulose crystal regions. Phenoxy radicals appeared to be important radical intermediates that ultimately transformed into o-quinonoid structures in lignin. Therefore, ionizing radiation such as gamma ray and electron beam can be a great alternative. In this study, the effect of ionizing irradiation of wheat straw prior to dilute sulfuric acid treatment is investigated. The combined pretreatment for wheat straw was performed to evaluate the efficiency of enzymatic hydrolysis and compared with that of the effect of enzymatic hydrolysis by individual pretreatment

  20. Transition-state structures for enzymatic and alkaline phosphotriester hydrolysis

    International Nuclear Information System (INIS)

    Caldwell, S.R.; Raushel, F.M.; Weiss, P.M.; Cleland, W.W.

    1991-01-01

    The primary and secondary 18 O isotope effects for the alkaline (KOH) and enzymatic (phosphotriesterase) hydrolysis of two phosphotriesters, O,O-diethyl p-nitrophenyl phosphate (I) and O,O-diethyl O-(4-carbamoylphenyl) phosphate (II), are consistent with an associative mechanism with significant changes in bond order to both the phosphoryl and phenolic leaving group oxygens in the transition state. The synthesis of [ 15 N, phosphoryl- 18 O]-,[ 15 N, phenolic- 18 O]-, and [ 15 N]-O,O-diethyl p-nitrophenyl phosphate and O,O-diethyl O-(4-carbamoylphenyl)phosphate is described. The primary and secondary 18 O isotope effects for the alkaline hydrolysis of compound I are 1.0060 and 1.0063 ± 0.0001, whereas for compound II they are 1.027±0.002 and 1.025 ± 0.002, respectively. These isotope effects are consistent with the rate-limiting addition of hydroxide and provide evidence for a S N 2-like transition state with the absence of a stable phosphorane intermediate. For the enzymatic hydrolysis of compound I, the primary and secondary 18 O isotope effects are very small, 1.0020 and 1.0021±0.0004, respectively, and indicate that the chemical step in the enzymatic mechanism is not rate-limiting. The 18 O isotope effects for the enzymatic hydrolysis of compound II are 1.036±0.001 and 1.0181±0.0007, respectively, and are comparable in magnitude to the isotope effects for alkaline hydrolysis, suggesting that the chemical step is rate-limiting. The relative magnitude of the primary 18 O isotope effects for the alkaline and enzymatic hydrolysis of compound II reflect a transition state that is more progressed for the enzymatic reaction

  1. Enzymatic hydrolysis of pelletized AFEX™-treated corn stover at high solid loadings.

    Science.gov (United States)

    Bals, Bryan D; Gunawan, Christa; Moore, Janette; Teymouri, Farzaneh; Dale, Bruce E

    2014-02-01

    Ammonia fiber expansion (AFEX™) pretreatment can be performed at small depots, and the pretreated biomass can then be pelletized and shipped to a centralized refinery. To determine the feasibility of this approach, pelletized AFEX-treated corn stover was hydrolyzed at high (18-36%) solid loadings. Water absorption and retention by the pellets was low compared to unpelletized stover, which allowed enzymatic hydrolysis slurries to remain well mixed without the need for fed-batch addition. Glucose yields of 68% and xylose yields of 65% were obtained with 20 mg enzyme/g glucan and 18% solid loading after 72 h, compared to 61% and 59% for unpelletized corn stover. Pelletization also slightly increased the initial rate of hydrolysis compared to unpelletized biomass. The ease of mixing and high yields obtained suggests that pelletization after AFEX pretreatment could have additional advantages beyond improved logistical handling of biomass. © 2013 Wiley Periodicals, Inc.

  2. Enzymatic hydrolysis of corn bran arabinoxylan

    DEFF Research Database (Denmark)

    Agger, Jane

    observed that different particle size fractions from corn bran are not uniformly composed. The content of monosaccharides varies and results in differences in content and composition of cellulose and arabinoxylan. These differences in biomass composition may very well also be part of the explanation why...... bran fraction. Once the arabinoxylan structure is free of the cell wall matrix the hydrolysis seem to be restricted due to steric hindrance or lack of additional enzymes to catalyse the hydrolysis of certain unusual bonds. In particular, it is of outmost importance to target arabinosyl substitutions...... by completing the knowledge about corn bran arabinoxylan, which can then lead to the identification of missing, central enzyme activities, and thereby also make the work on corn bran generic. The thesis is based upon the scientific publications produced during the last four years and they represent...

  3. Enzymatic hydrolysis and characterization of waste lignocellulosic biomass produced after dye bioremediation under solid state fermentation.

    Science.gov (United States)

    Waghmare, Pankajkumar R; Kadam, Avinash A; Saratale, Ganesh D; Govindwar, Sanjay P

    2014-09-01

    Sugarcane bagasse (SCB) adsorbes 60% Reactive Blue172 (RB172). Providensia staurti EbtSPG able to decolorize SCB adsorbed RB172 up to 99% under solid state fermentation (SSF). The enzymatic saccharification efficiency of waste biomass after bioremediation of RB172 process (ddSCB) has been evaluated. The cellulolyitc crude enzyme produced by Phanerochaete chrysosporium used for enzymatic hydrolysis of native SCB and ddSCB which produces 0.08 and 0.3 g/L of reducing sugars respectively after 48 h of incubation. The production of hexose and pentose sugars during hydrolysis was confirmed by HPTLC. The effect of enzymatic hydrolysis on SCB and ddSCB has been evaluated by FTIR, XRD and SEM analysis. Thus, during dye biodegradation under SSF causes biological pretreatment of SCB which significantly enhanced its enzymatic saccharification. Adsorption of dye on SCB, its bioremediation under SSF produces wastes biomass and which further utilized for enzymatic saccharification for biofuel production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Enzymatic hydrolysis and characterization of lignocellulosic biomass exposed to electron beam irradiation.

    Science.gov (United States)

    Karthika, K; Arun, A B; Rekha, P D

    2012-10-01

    Pretreatment of lignocellulosic biomass has been taken up as a global challenge as it comprises a large renewable source of fermentable sugars. In this study, effect of electron beam irradiation (EBI) on a hybrid grass variety investigated as a biomass pretreatment method. Dry biomass samples after characterization were exposed to EBI doses of 0, 75, 150 and 250 kGy. The pretreated biomass samples were enzymatically hydrolyzed using Trichoderma reesei ATCC 26921 cellulase for 144 h. The enzyme loadings were 15 and 30 FPU/g of biomass. The structural changes and degree of crystallinity of the pretreated biomass were studied by FTIR, XRD and SEM analyses. The lignocellulosic biomass sample showed 12.0% extractives, 36.9% cellulose, 28.4% hemicellulose, 11.9% lignin and 8.6% ash. Significant improvements in the reducing sugar and glucose yields were observed in the hydrolysate of EBI pretreated biomass compared to the control. In 250 kGy exposed samples 79% of the final reducing sugar yield was released within 48 h of hydrolysis at an enzyme loading rate of 30FPU/g of biomass. The IR crystallinity index calculated from the FTIR data and degree of crystallinity (XRD) decreased in the EBI treated samples. A significant negative correlation was observed between degree of crystallinity and the glucose yield from enzymatic hydrolysis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. SIMULTANEOUS PRETREATMENT OF LIGNOCELLULOSE AND HYDROLYSIS OF STARCH IN MIXTURES TO SUGARS

    OpenAIRE

    Hamzeh Hoseinpour; Keikhosro Karimi; Hamid Zilouei; Mohammad J. Taherzadeh

    2010-01-01

    Mixtures of starch and lignocelluloses are available in many industrial, agricultural, and municipal wastes and residuals. In this work, dilute sulfuric acid was used for simultaneous pretreatment of lignocellulose and hydrolysis of starch, to obtain a maximum amount of fermentable sugar after enzymatic hydrolysis with cellulase and β-glucosidase. The acid treatment was carried out at 70-150°C with 0-1% (v/v) acid concentration and 5-15% (w/v) solids concentration for 0-40 minutes. Under the ...

  6. Alteration of biomass composition in response to changing substrate particle size and the consequences for enzymatic hydrolysis of corn bran

    DEFF Research Database (Denmark)

    Agger, Jane; Meyer, Anne S.

    2012-01-01

    Corn bran is a by-product from corn starch processing. This work examined the effects of changing substrate particle size on enzymatic hydrolysis of both raw and pretreated destarched corn bran. The biomass composition of the corn bran varied between particle size fractions: The largest particles...

  7. White-rot fungi pretreatment combined with alkaline/oxidative pretreatment to improve enzymatic saccharification of industrial hemp.

    Science.gov (United States)

    Xie, Chunliang; Gong, Wenbing; Yang, Qi; Zhu, Zuohua; Yan, Li; Hu, Zhenxiu; Peng, Yuande

    2017-11-01

    White-rot fungi combined with alkaline/oxidative (A/O) pretreatments of industrial hemp woody core were proposed to improve enzymatic saccharification. In this study, hemp woody core were treated with only white rot fungi, only A/O and combined with the two methods. The results showed that Pleurotus eryngii (P. eryngii) was the most effective fungus for pretreatment. Reducing sugars yield was 329mg/g with 30 Filter Paper Unit (FPU)/g cellulase loading when treated 21day. In the A/O groups, the results showed that when treated with 3% NaOH and 3% H 2 O 2 , the yield of reducing sugars was 288mg/g with 30FPU/g cellulase loading. After combination pretreatment with P. eryngii and A/O pretreatment, the reducing sugar yield from enzymatic hydrolysis of combined sample increased 1.10-1.29-fold than that of bio-treated or A/O pretreatment sample at the same conditions, suggesting that P. eryngii combined with A/O pretreatment was an effective method to improve enzyme hydrolysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Benefits from additives and xylanase during enzymatic hydrolysis of bamboo shoot and mature bamboo.

    Science.gov (United States)

    Li, Kena; Wang, Xiao; Wang, Jingfeng; Zhang, Junhua

    2015-09-01

    Effects of additives (BSA, PEG 6000, and Tween 80) on enzymatic hydrolysis of bamboo shoot and mature bamboo fractions (bamboo green, bamboo timber, bamboo yellow, bamboo node, and bamboo branches) by cellulases and/or xylanase were evaluated. The addition of additives was comparable to the increase of cellulase loadings in the conversion of cellulose and xylan in bamboo fractions. Supplementation of xylanase (1 mg/g DM) with cellulases (10 FPU/g DM) in the hydrolysis of bamboo fractions was more efficient than addition of additives in the production of glucose and xylose. Moreover, addition of additives could further increase the glucose release from different bamboo fractions by cellulases and xylanase. Bamboo green exhibited the lowest hydrolyzability. Almost all of the polysaccharides in pretreated bamboo shoot fractions were hydrolyzed by cellulases with the addition of additives or xylanase. Additives and xylanase showed great potential for reducing cellulase requirement in the hydrolysis of bamboo. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Ethanol production by enzymatic hydrolysis: parametric analysis of a base-case process

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, S.H.

    1984-05-01

    A base-case flowsheet for an enzymatic hydrolysis process is presented. Included is a parametric sensitivity analysis to identify key research issues and an assessment of this technology. The plant discussed is a large-scale facility, producing 50 million gallons of ethanol per year. The plant design is based on the process originally conceived by the US National Army Command and consists of these process steps: pretreatment; enzyme production; enzyme hydrolysis; fermentation; and distillation. The base-case design parameters are based on recent laboratory data from Lawrence Berkeley Laboratories and the University of California at Berkeley. The selling price of ethanol is used to compare variations in the base-case operating parameters, which include hydrolysis efficiencies, capital costs, enzyme production efficiencies, and enzyme recycle. 28 references, 38 figures, 8 tables.

  10. The Mechanisms of Plant Cell Wall Deconstruction during Enzymatic Hydrolysis

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; E. Thybring, Emil; Johansen, Katja Salomon

    2014-01-01

    Mechanical agitation during enzymatic hydrolysis of insoluble plant biomass at high dry matter contents is indispensable for the initial liquefaction step in biorefining. It is known that particle size reduction is an important part of liquefaction, but the mechanisms involved are poorly understood....... Here we put forward a simple model based on mechanical principles capable of capturing the result of the interaction between mechanical forces and cell wall weakening via hydrolysis of glucosidic bonds. This study illustrates that basic material science insights are relevant also within biochemistry...

  11. Optimization of enzymatic hydrolysis of skipjack tuna by-product ...

    African Journals Online (AJOL)

    The goal of this study was to optimize enzymatic hydrolysis of the dark flesh of skipjack tuna (Katsuwonus pelamis). Protamex® was used as the hydrolytic enzyme at various concentrations (1%, 1.5%, 2%, 2.5% and 3% w/w) at pHs from 6.5 to 8.5, temperatures from 40 to 60 oC and times of 2 to 6 h. The experiment was ...

  12. Effect of Subsequent Dilute Acid and Enzymatic Hydrolysis on Reducing Sugar Production from Sugarcane Bagasse and Spent Citronella Biomass

    Directory of Open Access Journals (Sweden)

    Robinson Timung

    2016-01-01

    Full Text Available This work was aimed at investigating the effect of process parameters on dilute acid pretreatment and enzymatic hydrolysis of spent citronella biomass (after citronella oil extraction and sugarcane bagasse on total reducing sugar (TRS yield. In acid pretreatment, the parameters studied were acid concentration, temperature, and time. At the optimized condition (0.1 M H2SO4, 120°C, and 120 min, maximum TRS obtained was 452.27 mg·g−1 and 487.50 mg·g−1 for bagasse and citronella, respectively. Enzymatic hydrolysis of the pretreated biomass using Trichoderma reesei 26291 showed maximum TRS yield of 226.99 mg·g−1 for citronella and 282.85 mg·g−1 for bagasse at 10 FPU, 50°C, and 48 hr. The maximum crystallinity index (CI of bagasse and citronella after acid pretreatment obtained from X-ray diffraction analysis was 64.41% and 56.18%, respectively. Decreased CI after enzymatic hydrolysis process to 37.28% and 34.16% for bagasse and citronella, respectively, revealed effective conversion of crystalline cellulose to glucose. SEM analysis of the untreated and treated biomass revealed significant hydrolysis of holocellulose and disruption of lignin.

  13. Enzymatic Hydrolysis and Ethanol Fermentation of High Dry Matter Wet-Exploded Wheat Straw at Low Enzyme Loading

    Science.gov (United States)

    Georgieva, Tania I.; Hou, Xiaoru; Hilstrøm, Troels; Ahring, Birgitte K.

    Wheat straw was pretreated by wet explosion using three different oxidizing agents (H2O2, O2, and air). The effect of the pretreatment was evaluated based on glucose and xylose liberated during enzymatic hydrolysis. The results showed that pretreatment with the use of O2 as oxidizing agent was the most efficient in enhancing overall convertibility of the raw material to sugars and minimizing generation of furfural as a by-product. For scale-up of the process, high dry matter (DM) concentrations of 15-20% will be necessary. However, high DM hydrolysis and fermentation are limited by high viscosity of the material, higher inhibition of the enzymes, and fermenting microorganism. The wet-explosion pretreatment method enabled relatively high yields from both enzymatic hydrolysis and simultaneous saccharification and fermentation (SSF) to be obtained when performed on unwashed slurry with 14% DM and a low enzyme loading of 10 FPU/g cellulose in an industrial acceptable time frame of 96 h. Cellulose and hemicellulose conversion from enzymatic hydrolysis were 70 and 68%, respectively, and an overall ethanol yield from SSF was 68%.

  14. DEXTRINIZED SYRUPS OBTAINING THROUGH THE ENZYMATIC HYDROLYSIS OF SORGHUM STARCH

    Directory of Open Access Journals (Sweden)

    Leyanis Rodríguez Rodríguez

    2015-10-01

    Full Text Available The main objective of this work was the production of syrups dextrinized by enzymatic hydrolysis of starch red sorghum CIAPR-132 using α-amylase on solutions at different concentrations, with different concentrations of enzyme and enzyme hydrolysis time. The response variable was the dextrose equivalent in each obtained syrup (ED using the modified Lane-Eynon method. In some of the experiments, we used a full factorial design 23 and in others we worked with intermediate concentration and higher hydrolysis time with different levels of enzyme. The obtained products were syrups dextrinized ED between 10,25 and 33,97% (values we can find within the established ones for these types of syrups, which can be used for their functional properties as intermediates syrups or as raw material for different processes of the food industry. This allows you to set a pattern for the use of sorghum feedstock in unconventional obtaining products from its starch.

  15. Optimization of the enzymatic hydrolysis of Blue shark skin.

    Science.gov (United States)

    Rodríguez-Díaz, Julio C; Kurozawa, Louise E; Netto, Flavia M; Hubinger, Miriam D

    2011-09-01

    Enzymatic hydrolysis of Blue shark skin using Protamex™ was evaluated seeking optimal process conditions. The influence of temperature (45 to 65 °C), pH (6.8 to 8), and enzyme/substrate ratio (E/S; 1% to 5%) on the responses of degree of hydrolysis and protein recovery were determined and process optimization was performed looking for maximum value of the responses. Optimum conditions were established (T = 51 °C, E/S = 4%, and pH = 7.1) and model validation was accomplished by triplicate. Under these conditions protein hydrolysates were prepared and characterized by their amino acid composition, peptide size distribution, and antioxidant capacity by ferric reducing antioxidant power (FRAP) and Trolox equivalent antioxidant capacity (TEAC) assays. A degree of hydrolysis of 19.3% and protein recovery of 90.3% were obtained at optimal conditions. Chemical score indicated that the hydrolysate supplies minimal essential amino acid requirements for adults. Molecular weight of peptides on the hydrolysate was below 6.5 kDa. Enzymatic hydrolysis process was efficient for recovery of low molecular weight peptides with important nutritional content and antioxidant activity (FRAP = 12 μmol eq. in FeSO(4).7H(2)O/g of protein, TEAC = 225.3 μmol eq. in trolox/g of protein). © 2011 Institute of Food Technologists®

  16. Continuous Enzymatic Hydrolysis of Lignocellulosic Biomass in a Membrane-Reactor System

    Energy Technology Data Exchange (ETDEWEB)

    Stickel, Jonathan J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sievers, David A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Adhikari, Birendra [University of Colorado; Pellegrino, John [University of Colorado

    2018-02-21

    Converting abundant lignocellulosic biomass to sugars as fungible precursors to fuels and chemicals has the potential to diversify the supply chain for those products, but further process improvements are needed to achieve economic viability. In the current work, process intensification of the key enzymatic hydrolysis unit operation is demonstrated by means of a membrane reactor system that was operated continuously. Lignocellulosic biomass (pretreated corn stover) and buffered enzyme solution were fed to a continuously stirred-tank reactor, and clarified sugar solution was withdrawn via a commercial tubular ultrafiltration membrane. The membrane permeance decline and membrane cleaning efficacy were studied and did not vary significantly when increasing fraction insoluble solids (FIS) from 2.5% to 5%. Continuous enzymatic hydrolysis was successfully operated for more than 80 h. A model for the reactor system was able to predict dynamic behavior that was in reasonable agreement with experimental results. The modeled technical performance of anticipated commercial batch and continuous enzymatic hydrolysis processes were compared and showed that continuous operation would provide at least twice the volumetric productivity for the conditions studied. Further improvements are anticipated by better membrane selection and by increasing FIS.

  17. Recycling cellulases during the hydrolysis of steam exploded and ethanol pretreated Lodgepole pine.

    Science.gov (United States)

    Tu, Maobing; Chandra, Richard P; Saddler, Jack N

    2007-01-01

    Recycling of cellulases is one way of reducing the high cost of enzymes during the bioconversion process. The effects of surfactant addition on enzymatic hydrolysis and the potential recycling of cellulases were studied during the hydrolysis of steam exploded Lodgepole pine (SELP) and ethanol pretreated Lodgepole pine (EPLP). Three cellulase preparations (Celluclast, Spezyme CP, and MSUBC) were evaluated to determine their hydrolysis efficiencies over multiple rounds of recycling. The surfactant, Tween 80, significantly increased the yield from 63% to 86% during the hydrolysis of the SELP substrate. The addition of surfactant to the hydrolysis of the EPLP substrate increased the free enzymes in the supernatant from 71% of the initial protein to 96%. Based on the Langmuir adsorption constants, cellulases (Celluclast and Spezyme CP) from Trichoderma reesei showed a higher affinity (3.48 mL/mg and 3.17 mL/mg) for the EPLP substrate than did the Penicillium enzyme (0.62 mg/mg). The Trichoderma reesei enzyme was used in four successive rounds of enzyme recycling using surfactant addition and readsorption onto fresh substrates during the hydrolysis of EPLP. In contrast, the Penicillium-derived enzyme preparation (MSUBC) could only be recycled once. When the same recycling strategy was carried out using the SELP substrate, the hydrolysis yield declined during each enzyme recycling round. These results suggested that the higher lignin content of the SELP substrate, and the low affinity of cellulases for the SELP substrate limited enzyme recycling by readsorption onto fresh substrates.

  18. Pretreatment of Agave americana stalk for enzymatic saccharification.

    Science.gov (United States)

    Yang, Qiang; Pan, Xuejun

    2012-12-01

    Agave americana is one of commonly grown agave species but currently less valuable because its large flower stalk cannot be used for producing alcoholic beverage. In the present study, the stalk was pretreated with dilute acid (DA), sulfite (SPORL), and sodium hydroxide (NaOH) to preliminarily assess its potential as feedstock for bioethanol production. The changes of cell wall components during the pretreatments, enzymatic digestibility of the pretreated stalks, and the adsorption of cellulases on the substrates were investigated. Results indicated that the pretreatments significantly improved the enzymatic digestibility of the agave stalk. SPORL pretreatment gave higher substrate and sugar yields, while NaOH pretreated stalk had better digestibility under the investigated conditions. The better hydrolysability of NaOH-pretreated stalk was attributed to low lignin and hemicellulose content and high affinity to cellulases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Dielectric barrier discharge plasma pretreatment on hydrolysis of microcrystalline cellulose

    Science.gov (United States)

    Huang, Fangmin; Long, Zhouyang; Liu, Sa; Qin, Zhenglong

    2017-04-01

    Dielectric barrier discharge (DBD) plasma was used as a pretreatment method for downstream hydrolysis of microcrystalline cellulose (MCC). The degree of polymerization (DP) of MCC decreased after it was pretreated by DBD plasma under a carrier gas of air/argon. The effectiveness of depolymerization was found to be influenced by the crystallinity of MCC when under the pretreatment of DBD plasma. With the addition of tert-butyl alcohol in the treated MCC water suspension solution, depolymerization effectiveness of MCC was inhibited. When MCC was pretreated by DBD plasma for 30 min, the total reducing sugar concentration (TRSC) and liquefaction yield (LY) of pretreated-MCC (PMCC) increased by 82.98% and 34.18% respectively compared with those for raw MCC.

  20. Enhanced biomass delignification and enzymatic saccharification of canola straw by steam-explosion pretreatment.

    Science.gov (United States)

    Garmakhany, Amir Daraei; Kashaninejad, Mahdi; Aalami, Mehran; Maghsoudlou, Yahya; Khomieri, Mortza; Tabil, Lope G

    2014-06-01

    In recent decades, bioconversion of lignocellulosic biomass to biofuel (ethanol and biodiesel) has been extensively investigated. The three main chemical constituents of biomass are cellulose, hemicellulose and lignin. Cellulose and hemicellulose are polysaccharides of primarily fermentable sugars, glucose and xylose respectively. Hemicellulose also includes small fermentable fractions of arabinose, galactose and mannose. The main issue in converting lignocellulosic biomass to fuel ethanol is the accessibility of the polysaccharides for enzymatic breakdown into monosaccharides. This study focused on the use of steam explosion as the pretreatment method for canola straw as lignocellulosic biomass. Result showed that steam explosion treatment of biomass increased cellulose accessibility and it hydrolysis by enzyme hydrolysis. Following 72 h of enzyme hydrolysis, a maximum cellulose conversion to glucose yield of 29.40% was obtained for the steam-exploded sample while the control showed 11.60% glucose yields. Steam explosion pretreatment increased glucose production and glucose yield by 200% and 153.22%, respectively, compared to the control sample. The crystalline index increased from 57.48% in untreated canola straw to 64.72% in steam-exploded samples. Steam explosion pretreatment of biomass increased cellulose accessibility, and enzymatic hydrolysis increased glucose production and glucose yield of canola straw. © 2013 Society of Chemical Industry.

  1. Improvement on sugar cane bagasse hydrolysis using enzymatic mixture designed cocktail.

    Science.gov (United States)

    Bussamra, Bianca Consorti; Freitas, Sindelia; Costa, Aline Carvalho da

    2015-01-01

    The aim of this work was to study cocktail supplementation for sugar cane bagasse hydrolysis, where the enzymes were provided from both commercial source and microorganism cultivation (Trichoderma reesei and genetically modified Escherichia coli), followed by purification. Experimental simplex lattice mixture design was performed to optimize the enzymatic proportion. The response was evaluated through hydrolysis microassays validated here. The optimized enzyme mixture, comprised of T. reesei fraction (80%), endoglucanase (10%) and β-glucosidase (10%), converted, theoretically, 72% of cellulose present in hydrothermally pretreated bagasse, whereas commercial Celluclast 1.5L converts 49.11%±0.49. Thus, a rational enzyme mixture designed by using synergism concept and statistical analysis was capable of improving biomass saccharification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Bioethanol from lignocellulose - pretreatment, enzyme immobilization and hydrolysis kinetics

    DEFF Research Database (Denmark)

    Tsai, Chien Tai

    , the cost of enzyme is still the bottle neck, re-using the enzyme is apossible way to reduce the input of enzyme in the process. In the point view of engineering, the prediction of enzymatic hydrolysis kinetics under different substrate loading, enzyme combination is usful for process design. Therefore...... was cross-linked by glutaraldehyde. (3) Validation and modification of a semimechanistic model, which was done during 2010 ~ 2012. A number of cellulosic hydrolysis kinetic models were proposed. Among the models, a simple and usful mathamatical model proposed by Kadam et al. (2004) has potential......, and different product inhibitors such as glucose, cellobiose and xylose) to test the hydrolysis and product inhibition mechanism of the model. Nonlinear least squares methodwas used to identify the model and estimate kinetic parameters based on the experimental data. The analysis showed that transglycosylation...

  3. Extraction and characterization of wax from sugarcane bagasse and the enzymatic hydrolysis of dewaxed sugarcane bagasse.

    Science.gov (United States)

    Qi, Gaoxiang; Peng, Fen; Xiong, Lian; Lin, Xiaoqing; Huang, Chao; Li, Hailong; Chen, Xuefang; Chen, Xinde

    2017-03-16

    Extraction of high-value products from agricultural wastes is an important component for sustainable bioeconomy development. In this study, wax extraction from sugarcane bagasse was performed and the beneficial effect of dewaxing pretreatment on the enzymatic hydrolysis was investigated. About 1.2% (w/w) of crude sugarcane wax was obtained from the sugarcane bagasse using the mixture of petroleum ether and ethanol (mass ratio of 1:1) as the extraction agent. Results of Fourier-transform infrared characterization and gas chromatography-mass spectrometry qualitative analysis showed that the crude sugarcane wax consisted of fatty fractions (fatty acids, fatty aldehydes, hydrocarbons, and esters) and small amount of lignin derivatives. In addition, the effect of dewaxing pretreatment on the enzymatic hydrolysis of sugarcane bagasse was also investigated. The digestibilities of cellulose and xylan in dewaxed sugarcane bagasse were 18.7 and 10.3%, respectively, compared with those of 13.1 and 8.9% obtained from native sugarcane bagasse. The dewaxed sugarcane bagasse became more accessible to enzyme due to the disruption of the outermost layer of the waxy materials.

  4. Degradation of Opioids and Opiates During Acid Hydrolysis Leads to Reduced Recovery Compared to Enzymatic Hydrolysis.

    Science.gov (United States)

    Sitasuwan, Pongkwan; Melendez, Cathleen; Marinova, Margarita; Mastrianni, Kaylee R; Darragh, Alicia; Ryan, Emily; Lee, L Andrew

    2016-10-01

    Drug monitoring laboratories utilize a hydrolysis process to liberate the opiates from their glucuronide conjugates to facilitate their detection by tandem mass spectrometry (MS). Both acid and enzyme hydrolysis have been reported as viable methods, with the former as a more effective process for recovering codeine-6-glucuronide and morphine-6-glucuronide. Here, we report concerns with acid-catalyzed hydrolysis of opioids, including a significant loss of analytes and conversions of oxycodone to oxymorphone, hydrocodone to hydromorphone and codeine to morphine. The acid-catalyzed reaction was monitored in neat water and patient urine samples by liquid chromatography-time-of-flight and tandem MS. These side reactions with acid hydrolysis may limit accurate quantitation due to loss of analytes, possibly lead to false positives, and poorly correlate with pharmacogenetic profiles, as cytochrome P450 enzyme (CYP2D6) is often involved with oxycodone to oxymorphone, hydrocodone to hydromorphone and codeine to morphine conversions. Enzymatic hydrolysis process using the purified, genetically engineered β-glucuronidase (IMCSzyme ® ) addresses many of these concerns and demonstrates accurate quantitation and high recoveries for oxycodone, hydrocodone, oxymorphone and hydromorphone. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Impact of pretreatment with dilute sulfuric acid under moderate temperature on hydrolysis of corn stover with two enzyme systems.

    Science.gov (United States)

    Tai, Chao; Keshwani, Deepak

    2014-03-01

    Pretreatment of corn stover with dilute sulfuric acid at moderate temperature was investigated, and glucan digestibility by Cellic CTec2 and Celluclast on the pretreated biomass was compared. Pretreatments were carried out from 60 to 180 min at the temperature from 105 to 135 °C, with acid concentrations ranging from 0.5 to 2% (w/v). Significant portion of xylan was removed during pretreatment, and the glucan digestibility by CTec2 was significantly better than that by Celluclast in all cases. Analysis showed that glucan digestibility by both two enzymes correlated directly with the extent of xylan removal in pretreatment. Confidence interval was built to give a more precise range of glucan conversion and to test the significant difference among pretreatment conditions. Response surface model was built to obtain the optimal pretreatment condition to achieve high glucan conversion after enzymatic hydrolysis. Considering the cost and energy savings, the optimal pretreatment condition of 1.75% acid for 160 min at 135 °C was determined, and glucan conversion can achieve the range from 72.86 to 76.69% at 95% confidence level after enzymatic hydrolysis, making total glucan recovery up to the range from 89.42 to 93.25%.

  6. Effect of bisulfite treatment on composition, structure, enzymatic hydrolysis and cellulase adsorption profiles of sugarcane bagasse.

    Science.gov (United States)

    Liu, Z J; Lan, T Q; Li, H; Gao, X; Zhang, H

    2017-01-01

    The effect of sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) on composition, structure, enzymatic hydrolysis and cellulase adsorption profiles of sugarcane bagasse (SCB) was investigated. SPORL gave a higher SCB hydrolysis yield (85.33%) compared to dilute acid pretreatment (DA) (64.39%). The SEM pictures showed that SPORL SCB structure became more disordered and looser, suggesting SPORL SCB was more accessible to cellulase. The zeta potential of SPORL SCB suspension (-21.89mV) was significantly different from that of DA SCB (-12.87mV), which demonstrated the lignin in SPORL SCB was more hydrophilic. With regard to cellulase adsorption profiles, SPORL SCB had a lower non-productive adsorption (14.87mg/glignin) and a higher productive adsorption (37.67 mg/gcarbohydrate) compared with DA SCB (17.05mg/glignin; 25.79mg/gcarbohydrate). These results indicated that SPORL SCB had better accessibility to cellulase and the higher productive cellulase adsorption of SPORL SCB had improved hydrolysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Dynamic Simulation, Sensitivity and Uncertainty Analysis of a Demonstration Scale Lignocellulosic Enzymatic Hydrolysis Process

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail; Sin, Gürkan

    2014-01-01

    This study presents the uncertainty and sensitivity analysis of a lignocellulosic enzymatic hydrolysis model considering both model and feed parameters as sources of uncertainty. The dynamic model is parametrized for accommodating various types of biomass, and different enzymatic complexes...

  8. Optimizing Phosphoric Acid plus Hydrogen Peroxide (PHP) Pretreatment on Wheat Straw by Response Surface Method for Enzymatic Saccharification.

    Science.gov (United States)

    Qiu, Jingwen; Wang, Qing; Shen, Fei; Yang, Gang; Zhang, Yanzong; Deng, Shihuai; Zhang, Jing; Zeng, Yongmei; Song, Chun

    2017-03-01

    Wheat straw was pretreated by phosphoric acid plus hydrogen peroxide (PHP), in which temperature, time, and H 3 PO 4 proportion for pretreatment were investigated by using response surface method. Results indicated that hemicellulose and lignin removal positively responded to the increase of pretreatment temperature, H 3 PO 4 proportion, and time. H 3 PO 4 proportion was the most important variable to control cellulose recovery, followed by pretreatment temperature and time. Moreover, these three variables all negatively related to cellulose recovery. Increasing H 3 PO 4 proportion can improve enzymatic hydrolysis; however, reduction on cellulose recovery results in decrease of glucose yield. Extra high temperature or long time for pretreatment was not beneficial to enzymatic hydrolysis and glucose yield. Based on the criterion for minimizing H 3 PO 4 usage and maximizing glucose yield, the optimized pretreatment conditions was 40 °C, 2.0 h, and H 3 PO 4 proportion of 70.2 % (H 2 O 2 proportion of 5.2 %), by which glucose yielded 299 mg/g wheat straw (946.2 mg/g cellulose) after 72-h enzymatic hydrolysis.

  9. Characterization of the Micromorphology and Topochemistry of Poplar Wood during Mild Ionic Liquid Pretreatment for Improving Enzymatic Saccharification

    Directory of Open Access Journals (Sweden)

    Sheng Chen

    2017-01-01

    Full Text Available Ionic liquids (ILs as designer solvents have been applied in biomass pretreatment to increase cellulose accessibility and therefore improve the enzymatic hydrolysis. We investigated the characterization of the micromorphology and the topochemistry of poplar wood during 1-ethyl-3-methylimidazolium acetate pretreatment with mild conditions (90 °C for 20 and 40 min by multiple microscopic techniques (FE-SEM, CLSM, and CRM. Chemical composition analysis, XRD, cellulase adsorption isotherm, and enzymatic hydrolysis were also performed to monitor the variation of substrate properties. Our results indicated that the biomass conversion was greatly enhanced (from 20.57% to 73.64% due to the cell wall deconstruction and lignin dissolution (29.83% lignin was removed after incubation for 40 min, rather than the decrystallization or crystallinity transformation of substrates. The mild ILs pretreatment, with less energy input, can not only enhance enzymatic hydrolysis, but also provide a potential approach as the first step in improving the sequential pretreatment effectiveness in integrated methods. This study provides new insights on understanding the ILs pretreatment with low temperature and short duration, which is critical for developing individual and/or combined pretreatment technologies with reduced energy consumption.

  10. Characterization of the Micromorphology and Topochemistry of Poplar Wood during Mild Ionic Liquid Pretreatment for Improving Enzymatic Saccharification.

    Science.gov (United States)

    Chen, Sheng; Zhang, Xun; Ling, Zhe; Xu, Feng

    2017-01-11

    Ionic liquids (ILs) as designer solvents have been applied in biomass pretreatment to increase cellulose accessibility and therefore improve the enzymatic hydrolysis. We investigated the characterization of the micromorphology and the topochemistry of poplar wood during 1-ethyl-3-methylimidazolium acetate pretreatment with mild conditions (90 °C for 20 and 40 min) by multiple microscopic techniques (FE-SEM, CLSM, and CRM). Chemical composition analysis, XRD, cellulase adsorption isotherm, and enzymatic hydrolysis were also performed to monitor the variation of substrate properties. Our results indicated that the biomass conversion was greatly enhanced (from 20.57% to 73.64%) due to the cell wall deconstruction and lignin dissolution (29.83% lignin was removed after incubation for 40 min), rather than the decrystallization or crystallinity transformation of substrates. The mild ILs pretreatment, with less energy input, can not only enhance enzymatic hydrolysis, but also provide a potential approach as the first step in improving the sequential pretreatment effectiveness in integrated methods. This study provides new insights on understanding the ILs pretreatment with low temperature and short duration, which is critical for developing individual and/or combined pretreatment technologies with reduced energy consumption.

  11. Enzymatic hydrolysis: a method in alleviating legume allergenicity.

    Science.gov (United States)

    Kasera, Ramkrashan; Singh, A B; Lavasa, S; Prasad, Komarla Nagendra; Arora, Naveen

    2015-02-01

    Legumes are involved in IgE mediated food allergy in many countries. Avoidance of allergenic food is the only way to avoid symptomatic reaction. The present study investigated the effect of enzymatic hydrolysis on the allergenicity of three legumes - kidney bean (Phaseolus vulgaris), black gram (Vigna mungo) and peanut (Arachis hypogaea). Soluble protein extracts of the study legumes were sequentially treated by Alcalase(®) and Flavourzyme(®). Allergenicity of hydrolysates was then determined by ELISA, immunoblot, stripped basophil histamine release and skin prick test (SPT). Hydrolysis resulted in the loss of all IgE binding fractions determined by immunoblot in the three legumes. Specific IgE binding in ELISA was reduced by 62.2 ± 7.7%, 87.1 ± 9.6% and 91.8 ± 7.2% in the hydrolysates of kidney bean, black gram and peanut, respectively (p < 0.01). The release of histamine was decreased significantly when sensitized basophils were challenged with hydrolysates as compared to raw extracts. Significant reduction in the biopotency of hydrolysates was also observed in SPT where only 1/10 kidney bean-sensitive individuals, 2/6 black gram-sensitive individuals and 1/7 peanut-sensitive individuals were found positive to their respective hydrolysates. In conclusion, enzymatic hydrolysis is effective in attenuating allergenicity of legume proteins and may be employed for preparing hypoallergenic food extracts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Cassava Pulp as a Biofuel Feedstock of an Enzymatic Hydrolysis Proces

    Directory of Open Access Journals (Sweden)

    Djuma’ali Djuma’ali

    2013-03-01

    Full Text Available Cassava pulp, a low cost solid byproduct of cassava starch industry, has been proposed as a high potential ethanolic fermentation substrate due to its high residual starch level, low ash content and small particle size of the lignocellulosic fibers. As the economic feasibility depends on complete degradation of the polysaccharides to fermentable glucose, the comparative hydrolytic potential of cassava pulp by six commercial enzymes were studied. Raw cassava pulp (12% w/v, particle size <320 μm hydrolyzed by both commercial pectinolytic (1 and amylolytic (2 enzymes cocktail, yielded 70.06% DE. Hydrothermal treatment of cassava pulp enhanced its susceptibility to enzymatic cleavageas compared to non-hydrothermal treatment raw cassava pulp. Hydrothermal pretreatment has shown that a glucoamylase (3 was the most effective enzyme for hydrolysis process of cassava pulp at temperature 65 °C or 95 °C for 10 min and yielded approximately 86.22% and 90.18% DE, respectively. Enzymatic pretreatment increased cassava pulp vulnerability to cellulase attacks. The optimum conditions for enzymatic pretreatment of 30% (w/v cassava pulp by a potent cellulolytic/ hemicellulolytic enzyme (4 was achieves at 50 °C for 3, meanwhile for liquefaction and saccharification by a thermo-stable α-amylase (5 was achieved at 95 °C for 1 and a glucoamylase (3 at 50 °C for 24 hours, respectively, yielded a reducing sugar level up to 94,1% DE. The high yield of glucose indicates the potential use of enzymatic-hydrothermally treated cassava pulp as a cheap substrate for ethanol production.

  13. Optimization of Enzymatic Hydrolysis of Waste Bread before Fermentation

    Directory of Open Access Journals (Sweden)

    Helena Hudečková

    2017-01-01

    Full Text Available Finding of optimal hydrolysis conditions is important for increasing the yield of saccharides. The higher yield of saccharides is usable for increase of the following fermentation effectivity. In this study optimal conditions (pH and temperature for amylolytic enzymes were searched. As raw material was used waste bread. Two analytical methods for analysis were used. Efficiency and process of hydrolysis was analysed spectrophotometrically by Somogyi-Nelson method. Final yields of glucose were analysed by HPLC. As raw material was used waste bread from local cafe. Waste bread was pretreated by grinding into small particles. Hydrolysis was performed in 100 mL of 15 % (w/v waste bread particles in the form of water suspension. Waste bread was hydrolysed by two commercial enzymes. For the liquefaction was used α‑amylase (BAN 240 L. The saccharification was performed by glucoamylase (AMG 300 L. Optimal conditions for α‑amylase (pH 6; 80 °C were found. The yield of total sugars was 67.08 g∙L-1 (calculated to maltose. As optimal conditions for glucoamylase (pH 4.2; 60 °C were found. Amount of glucose was 70.28 g∙L1. The time of waste bread liquefaction was 180 minutes. The time of saccharification was 90 minutes. The results were presented at the conference CECE Junior 2014.

  14. Oxalic acid pretreatment, fungal enzymatic saccharification and ...

    African Journals Online (AJOL)

    Furthermore, a native Saccharomyces cerevisiae (strain KB) was able to convert 78% (w/w) of glucose (and other fermentable sugars) to ethanol after 60 h of incubation at 32°C, under stationary culture conditions. The challenges encountered in chemical and biological conversions included incomplete hydrolysis and ...

  15. Effect of Subsequent Dilute Acid and Enzymatic Hydrolysis on Reducing Sugar Production from Sugarcane Bagasse and Spent Citronella Biomass

    OpenAIRE

    Robinson Timung; Narendra Naik Deshavath; Vaibhav V. Goud; Venkata V. Dasu

    2016-01-01

    This work was aimed at investigating the effect of process parameters on dilute acid pretreatment and enzymatic hydrolysis of spent citronella biomass (after citronella oil extraction) and sugarcane bagasse on total reducing sugar (TRS) yield. In acid pretreatment, the parameters studied were acid concentration, temperature, and time. At the optimized condition (0.1 M H2SO4, 120°C, and 120 min), maximum TRS obtained was 452.27 mg·g−1 and 487.50 mg·g−1 for bagasse and citronella, respectively....

  16. Effects of lignin-metal complexation on enzymatic hydrolysis of cellulose

    Science.gov (United States)

    H. Liu; Junyong Zhu; S.Y. Fu

    2010-01-01

    This study investigated the inhibition of enzymatic hydrolysis by unbound lignin (soluble and insoluble) with or without the addition of metal compounds. Sulfonated, Organosolv, and Kraft lignin were added in aqueous enzyme-cellulose systems at different concentrations before hydrolysis. The measured substrate enzymatic digestibility (SED) of cellulose was decreased by...

  17. The effect of high intensity mixing on the enzymatic hydrolysis of concentrated cellulose fiber suspensions

    Science.gov (United States)

    Joseph R. Samaniuk; C. Tim Scott; Thatcher W. Root; Daniel J. Klingenberg

    2011-01-01

    Enzymatic hydrolysis of lignocellulosic biomass in a high shear environment was examined. The conversion of cellulose to glucose in samples mixed in a torque rheometer producing shear flows similar to those found in twin screw extruders was greater than that of unmixed samples. In addition, there is a synergistic effect of mixing and enzymatic hydrolysis; mixing...

  18. Correlation between anatomical characteristics of ethanol organosolv pretreated Buddleja davidii and its enzymatic conversion to glucose.

    Science.gov (United States)

    Hallac, Bassem B; Ray, Michael; Murphy, Richard J; Ragauskas, Arthur J

    2010-12-01

    Buddleja davidii is a unique biomass that has many attractive agroenergy features, especially its wide range of growth habitat. The anatomical characteristics of B. davidii were investigated before and after ethanol organosolv pretreatment (one of the leading pretreatment technologies) in order to further understand the alterations that occur to the cellular structure of the biomass which can then be correlated with its enzymatic digestibility. Results showed that the ethanol organosolv pretreatment of B. davidii selectively removes lignin from the middle lamella (ML), which does not significantly disrupt the crystalline structure of cellulose. The removal of ML lignin is a major factor in enhancing enzymatic cellulose-to-glucose hydrolysis. The pretreatment also causes cell deformation, resulting in cracks and breaks in the cell wall. These observations, together with characterization analysis of the cell wall polymer material, lend support to the hypothesis that the physical distribution of lignin in the biomass matrix is an important structural feature affecting biomass enzymatic digestibility. © 2010 Wiley Periodicals, Inc.

  19. Effect of ultrasonic pretreatment on kinetics of gelatin hydrolysis by collagenase and its mechanism.

    Science.gov (United States)

    Yu, Zhi-Long; Zeng, Wei-Cai; Zhang, Wen-Hua; Liao, Xue-Pin; Shi, Bi

    2016-03-01

    Gelatin is a mixture of soluble proteins prepared by partial hydrolysis of native collagen. Gelatin can be enzymatically hydrolyzed to produce bioactive hydrolysates. However, the preparation of gelatin peptide with expected activity is usually a time-consuming process. The production efficiency of gelatin hydrolysates needs to be improved. In present work, effect of ultrasonic pretreatment on kinetic parameters of gelatin hydrolysis by collagenase was investigated based on an established kinetic model. With ultrasonic pretreatment, reaction rate constant and enzyme inactivation constant were increased by 27.5% and 27.8%, respectively. Meanwhile, hydrolysis activation energy and enzyme inactivation energy were reduced by 36.3% and 43.0%, respectively. In order to explore its possible mechanism, influence of sonication on structural properties of gelatin was determined using atomic force microscopy, particle size analyzer, fluorescence spectroscopy, protein solubility test and Fourier transform infrared spectroscopy. Moreover, hydrogen peroxide was used as a positive control for potential sonochemical effect. It was found that reduction of gelatin particle size was mainly caused by physical effect of ultrasound. Increased solubility and variation in β-sheet and random coil elements of gelatin were due to sonochemical effect. Both physical and chemical effects of sonication contributed to the change in α-helix and β-turn structures. The current results suggest that ultrasound can be potentially applied to stimulate the production efficiency of gelatin peptides, mainly due to its effects on modification of protein structures. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Toxicological evaluation of neoagarooligosaccharides prepared by enzymatic hydrolysis of agar.

    Science.gov (United States)

    Hong, Sun Joo; Lee, Je-Hyeon; Kim, Eun Joo; Yang, Hea Jung; Park, Jae-Seon; Hong, Soon-Kwang

    2017-11-01

    Agar, a heterogeneous polymer of galactose, is the main component of the cell wall of marine red algae. It is well established as a safe, non-digestible carbohydrate in Oriental countries. Although neoagarooligosaccharides (NAOs) prepared by the hydrolysis of agar by β-agarase have been reported to exert various biological activities, the safety of these compounds has not been reported to date. For safety evaluation, NAOs containing mainly neoagarotetraose and neoagarohexaose were prepared from agar by enzymatic hydrolysis using β-agarase DagA from Streptomyces coelicolor. Genotoxicity tests such as the bacterial reverse mutation assay, eukaryotic chromosome aberration assay, and in vivo micronucleus assay all indicated that NAOs did not exert any mutational effects. The toxicity of NAOs in rat and beagle dog models was investigated by acute, 14-day, and 91-day repeated oral dose toxicity tests. The results showed that NAO intake of up to 5,000 mg/kg body weight resulted in no significant changes in body weight, food intake, water consumption, hematologic and blood biochemistry parameters, organ weight, or clinical symptoms. Collectively, a no-observed-adverse-effect level of 5,000 mg/kg body weight/day for both male and female rats was established for NAO. These findings support the safety of NAO for possible use in food supplements and pharmaceutical and cosmetic products. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Chemical and Enzymatic Hydrolysis of Polyurethane/Polylactide Blends

    Directory of Open Access Journals (Sweden)

    Joanna Brzeska

    2015-01-01

    Full Text Available Polyether-esterurethanes containing synthetic poly[(R,S-3-hydroxybutyrate] (R,S-PHB and polyoxytetramethylenediol in soft segments and polyesterurethanes with poly(ε-caprolactone and poly[(R,S-3-hydroxybutyrate] were blended with poly([D,L]-lactide (PLA. The products were tested in terms of their oil and water absorption. Oil sorption tests of polyether-esterurethane revealed their higher response in comparison to polyesterurethanes. Blending of polyether-esterurethanes with PLA caused the increase of oil sorption. The highest water sorption was observed for blends of polyether-esterurethane, obtained with 10% of R,S-PHB in soft segments. The samples mass of polyurethanes and their blends were almost not changed after incubation in phosphate buffer and trypsin and lipase solutions. Nevertheless the molecular weight of polymers was significantly reduced after degradation. It was especially visible in case of incubation of samples in phosphate buffer what suggested the chemical hydrolysis of polymer chains. The changes of surface of polyurethanes and their blends, after incubation in both enzymatic solutions, indicated on enzymatic degradation, which had been started despite the lack of mass lost. Polyurethanes and their blends, contained more R,S-PHB in soft segments, were degraded faster.

  2. Production of fermentable sugars from sugarcane bagasse by enzymatic hydrolysis after autohydrolysis and mechanical refining.

    Science.gov (United States)

    Batalha, Larisse Aparecida Ribas; Han, Qiang; Jameel, Hasan; Chang, Hou-Min; Colodette, Jorge Luiz; Borges Gomes, Fernando José

    2015-03-01

    The autohydrolysis process has been considered a simple, low-cost and environmental friendly technology for generation of sugars from biomass. In order to improve accessibility of enzymes during enzymatic hydrolysis as well as to allow the recovery of hemicellulose in the filtrate, the sugarcane bagasse was pretreated using autohydrolysis followed by a mechanical refining process. The autohydrolysis was carried out in three different conditions. Autohydrolysis at 190°C for 10min provided the highest overall sugar (19.2/100g raw bagasse) in prehydrolyzate. The enzymatic hydrolysis step was performed for all the post-treated solids with and without refining at enzyme loadings of 5 and 10FPU/g for 96h. A total of 84.4% of sugar can be recovered from sugarcane bagasse at 180°C for 20min with 5 FPU/g enzyme charge. The economic analysis for the proposed method showed that the bioethanol production can have a financial return larger than 12%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. A comparative analysis of pretreatment strategies on the properties and hydrolysis of brewers' spent grain.

    Science.gov (United States)

    Ravindran, Rajeev; Jaiswal, Swarna; Abu-Ghannam, Nissreen; Jaiswal, Amit K

    2018-01-01

    In this study, brewer's spent grain (BSG) was subjected to a range pretreatments to study the effect on reducing sugar yield. Glucose and xylose were found to be the predominant sugars in BSG. Brewers spent grain was high in cellulose (19.21g/100g of BSG) and lignin content (30.84g/100g of BSG). Microwave assisted alkali (MAA) pretreatment was found to be the most effective pretreatment for BSG, where the pretreatment was conducted at 400W for 60s. A maximum reducing yield was observed with high biomass loading (1g/10ml), cellulase (158.76μl/10ml), hemicellulase (153.3μl/10ml), pH (5.4) and an incubation time (120h). Upon enzymatic hydrolysis, MAA pretreated BSG yielded 228.25mg of reducing sugar/g of BSG which was 2.86-fold higher compared to native BSG (79.67mg/g of BSG); simultaneously BSG was de-lignified significantly. The changes in functional groups, crystallinity and thermal behaviour was studies by means of FTIR, XRD and DSC, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Ultrasound Pretreatment as an Useful Tool to Enhance Egg White Protein Hydrolysis: Kinetics, Reaction Model, and Thermodinamics.

    Science.gov (United States)

    Jovanović, Jelena R; Stefanović, Andrea B; Šekuljica, Nataša Ž; Tanasković, Sonja M Jakovetić; Dojčinović, Marina B; Bugarski, Branko M; Knežević-Jugović, Zorica D

    2016-09-28

    The impact of ultrasound waves generated by probe-type sonicator and ultrasound cleaning bath on egg white protein susceptibility to hydrolysis by alcalase compared to both thermal pretreatment and conventional enzymatic hydrolysis was quantitatively investigated. A series of hydrolytic reactions was carried out in a stirred tank reactor at different substrate concentrations, enzyme concentrations, and temperatures using untreated, and pretreated egg white proteins (EWPs). The kinetic model based on substrate inhibition and second-order enzyme deactivation successfully predicts the experimental behavior providing an effective tool for comparison and optimization. The ultrasound pretreatments appear to greatly improve the enzymatic hydrolysis of EWPs under different conditions when compare to other methods. The apparent reaction rate constants for proteolysis (k 2 ) are 0.009, 0.011, 0.053, and 0.045 min -1 for untreated EWPs, and those pretreated with heat, probe-type sonicator, and ultrasound cleaning bath technologies, respectively. The ultrasound pretreatment also decreases hydrolysis activation (E a ) and enzyme deactivation (E d ) energy, enthalpy (ΔH), and entropy (ΔS) of activation and for the probe-type sonication this decrease is 61.7%, 61.6%, 63.6%, and 32.2%, respectively, but ultrasound has little change in Gibbs free energy value in the temperature range of 318 to 338 K. The content of sulfhydryl groups and ζ potential show a significant increase (P < 0.05) for both applied ultrasound pretreatments and the reduction of particle size distribution are achieved, providing some evidence that the ultrasound causes EWP structural changes affecting the proteolysis rate. © 2016 Institute of Food Technologists®

  5. Enzymatic hydrolysis at high-solids loadings for the conversion of agave bagasse to fuel ethanol

    International Nuclear Information System (INIS)

    Caspeta, Luis; Caro-Bermúdez, Mario A.; Ponce-Noyola, Teresa; Martinez, Alfredo

    2014-01-01

    Highlights: • Conversion of agave bagasse to fuel ethanol. • Ethanosolv-pretreatment variables were statistically adjusted. • 91% of total sugars found in agave bagasse were recovered. • 225 g/L glucose from 30%-consistency hydrolysis using mini-reactors with peg-mixers. • 0.25 g of ethanol per g of dry agave bagasse was obtained. - Abstract: Agave bagasse is the lignocellulosic residue accumulated during the production of alcoholic beverages in Mexico and is a potential feedstock for the production of biofuels. A factorial design was used to investigate the effect of temperature, residence time and concentrations of acid and ethanol on ethanosolv pretreatment and enzymatic hydrolysis of agave bagasse. This method and the use of a stirred in-house-made mini-reactor increased the digestibility of agave bagasse from 30% observed with the dilute-acid method to 98%; also allowed reducing the quantity of enzymes used to hydrolyze samples with solid loadings of 30% w/w and glucose concentrations up to 225 g/L were obtained in the enzymatic hydrolysates. Overall this process allows the recovery of 91% of the total fermentable sugars contained in the agave bagasse (0.51 g/g) and 69% of total lignin as co-product (0.11 g/g). The maximum ethanol yield under optimal conditions using an industrial yeast strain for the fermentation was 0.25 g/g of dry agave bagasse, which is 86% of the maximum theoretical (0.29 g/g). The effect of the glucose concentration and solid loading on the conversion of cellulose to glucose is discussed, in addition to prospective production of about 50 million liters of fuel ethanol using agave bagasse residues from the tequila industry as a potential solution to the disposal problems

  6. Impact of hydrothermal pre-treatment to chemical composition, enzymatic digestibility and spatial distribution of cell wall polymers.

    Science.gov (United States)

    Holopainen-Mantila, Ulla; Marjamaa, Kaisa; Merali, Zara; Käsper, Andres; de Bot, Peter; Jääskeläinen, Anna-Stiina; Waldron, Keith; Kruus, Kristiina; Tamminen, Tarja

    2013-06-01

    The effect of hydrothermal pretreatment on chemical composition, microscopic structure and enzymatic digestibility of wheat straw was studied. Wheat straw was pretreated with increasing severity to obtain series of samples with altered chemistry and structure. The hydrothermal pretreatment caused solubilisation of arabinoxylan and phenolic acids and their dimers in a temperature dependent manner with minor effects on the cellulose and Klason lignin content. In the cell wall level, the pretreatment intensified staining of cellulose and relocalised xylan in the cell walls. The distribution, properties and content of the cell wall phenolic compounds was altered as observed with phloroglucinol and autofluorescence imaging. In the enzymatic hydrolysis, the highest yields were obtained from the samples with a low xylan and diferulate content. On the cell wall structural level, the sample with the highest digestibility was observed to have intensified cellulose staining, possibly reflecting the increased accessibility of cellulose. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Kinetic study of enzymatic hydrolysis of potato starch

    Directory of Open Access Journals (Sweden)

    Óscar Fernando Castellanos Domínguez

    2004-01-01

    Full Text Available This article describes the kinetic study of potato starch enzymatic hydrolysis using soluble enzymes (Novo Nordisk. Different assays divided into four groups were used: reaction time (with which it was possible to reduce the 48-72 hour duration reported in the literature to 16 hours with comparable productivity levels; selecting the set of enzymes to be used (different types were evaluated - BAN and Termamyl as alfa-amylases during dextrinisation stage, and AMG, Promozyme and Fungamyl for sacarification reaction- identifying those presenting the best performance during hydrolysis.Reaction conditions were optimised for the process's two stages (destrinisation and sacarification. Enzyme dose, calcium cofactor concentration, pH, temperature and agitation speed were studied for the first stage. Enzyme ratio, pH and agitation speed were studied for sacarification; the latter parameter reported values having no antecedents in the literature (60 rpm and 30 rpm for first and second reactions, respectively. Michaelis Menten kinetics were calculated once conditions had been optimised, varying substrate from 10-50% P/V, obtaining km and Vmax kinetic parameters for each reaction. A kinetic model was found according to local working conditions which was able to explain potato starch conversion to glucose syrup, achieving 96 dextrose equivalents by the end of the reaction, being well within the maximum range reported in the literature (94-98.Laboratory equipment was constructed prior to carrying out assays which was able to reproduce and improve the conditions reported in the literature, making it a useful, reliable tool for use in assays returning good results.

  8. Pretreatment of wheat straw with potassium hydroxide for increasing enzymatic and microbial degradability.

    Science.gov (United States)

    Liu, Xiaoying; Zicari, Steven M; Liu, Guangqing; Li, Yeqing; Zhang, Ruihong

    2015-06-01

    The pretreatment of wheat straw with potassium hydroxide (KOH) at ambient temperature (20°C) was investigated. The pretreatment effects on chemical composition and physical structures, and subsequent enzymatic hydrolysis and anaerobic digestion were evaluated. Wheat straw at 10% total solids (TS) was treated with KOH solution for 24h at a wide range of KOH loadings from 2% to 50% (w/w dry basis). Higher KOH loading resulted in higher lignin reduction from the straw and chemical oxygen demand (COD) in the resulting black liquor. Maximum lignin reduction of 54.7% was observed at 50% KOH loading. In comparison to untreated straw, specific hydrolysis yields achieved 14.0-92.3% over the range of 2-50% KOH loading, and methane yields increased 16.7-77.5% for KOH loadings of 10-50%, respectively. Accounting for losses during pretreatment, 20% KOH loading resulted in maximum overall reducing sugar yield and methane yield and therefore is the recommended loading for pretreatment under these conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Comparative performance of enzymatic and combined alkaline-enzymatic pretreatments on methane production from ensiled sorghum forage.

    Science.gov (United States)

    Rollini, Manuela; Sambusiti, Cecilia; Musatti, Alida; Ficara, Elena; Retinò, Isabella; Malpei, Francesca

    2014-12-01

    This study investigated the effect of enzymatic and combined alkaline-enzymatic pretreatments on chemical composition and methane production from ensiled sorghum forage. Four commercial enzymatic preparations were tested and the two yielding the highest sugars release were added to evaluate any hydrolytic effect on both untreated and alkaline pretreated samples. In the combined alkaline-enzymatic pretreatment trials, the highest sugar release was found with Primafast and BGL preparations (added at a final concentration 0.12 and 0.20 mL/g TS, respectively), with a total monomeric content of 12 and 6.5 g/L. Fibre composition analysis confirmed that the combined alkaline-enzymatic pretreatment led to cellulose (up to 32 %) and hemicelluloses (up to 56 %) solubilisation, compared to the enzymatic pretreatment alone. BMP tests were performed on both untreated and pretreated samples, and time courses of methane production were fitted. Both enzymatic and combined alkaline-enzymatic pretreatment led to a methane production increase (304 and 362 mL CH4/g VS), compared to that of untreated sorghum (265 mL CH4/g VS), as  +15 and  +37 %, respectively. Moreover, higher specific methane production rates, compared to that of untreated sorghum (20.31 mL CH4/g VS/d), were obtained by applying the enzymatic and combined alkaline-enzymatic pretreatment (33.94 and 31.65 mL CH4/g VS/d), respectively.

  10. Microwave Assisted Alkali Pretreatment of Rice Straw for Enhancing Enzymatic Digestibility

    Directory of Open Access Journals (Sweden)

    Renu Singh

    2014-01-01

    Full Text Available Rapid industrialization, increasing energy demand, and climate change are the conditions that forced the researchers to develop a clean, efficient, renewable, and sustainable source of energy which has a potential to replace fossil fuels. Ethanol is one of the attractive and suitable renewable energy resources. In present study, effectiveness of microwave pretreatment in combination with sodium hydroxide (NaOH for increasing enzymatic hydrolysis of rice straw has been investigated and under optimum conditions obtained a maximum reducing sugar (1334.79 µg/mL through microwave assisted NaOH pretreatment. Chemical composition analysis and scanning electron microscope (SEM images showed that the removal of lignin, hemicellulose, and silicon content is more in microwave assisted NaOH pretreatment than the blank sample. X-ray diffraction (XRD analysis revealed that the crystallinity index of rice straw treated with microwave assisted alkali (54.55% is significantly high as compared to the blank (49.07%. Hence, the present study proves that microwave assisted alkali pretreatment can effectively enhance enzymatic digestibility of rice straw and it is feasible to convert rice straw for bioethanol production.

  11. Enzymatic hydrolysis of lignocellulosic biomass by Kitasatospora sp. to produce xylo-oligosaccharides (XOS)

    Science.gov (United States)

    Rahmani, Nanik; Jannah, Alifah Mafatikhul; Lisdiyanti, Puspita; Prasetya, Bambang; Yopi

    2017-11-01

    The optimizations of enzymatic hydrolysis to produce of xylo-oligosaccharides (XOs) from three different lignocellulosic biomasses were investigated. Sugarcane bagasse, oil palm empty fruit bunch, and rice straw contain rich hemicelluloses especially hetero-xylan which can be hydrolyzes by endo-xylanase enzyme. Enzymatic hydrolysis of sugarcane bagasse by endo-xylanase from Kitasatospora sp. was optimum at temperature hydrolysis 30 °C using 16 U of enzyme concentrations and 4 % substrate concentrations, while oil palm empty fruit bunchwas optimum at temperature hydrolysis 30 °C using 16 U of enzyme concentrations and 5 % substrate concentrations, and rice straw was optimum at 40 °C temperature hydrolysis using 16 U of enzyme concentrations and 4 % substrate concentrations. The hydrolysis products were analyzed by TLC and HPLC. The main product hydrolysis for sugarcane bagasse, oil palm empty fruit bunch and rice straw are xylobiose.

  12. [Response surface method optimize of nano-silica solid dispersion technology assistant enzymatic hydrolysis preparation genistein].

    Science.gov (United States)

    Jin, Xin; Zhang, Zhen-Hai; Zhu, Jing; Sun, E; Yu, Dan-Hong; Chen, Xiao-Yun; Liu, Qi-Yuan; Ning, Qing; Jia, Xiao-Bin

    2012-04-01

    This article reports that nano-silica solid dispersion technology was used to raise genistein efficiency through increasing the enzymatic hydrolysis rate. Firstly, genistin-nano-silica solid dispersion was prepared by solvent method. And differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) were used to verify the formation of solid dispersion, then enzymatic hydrolysis of solid dispersion was done by snailase to get genistein. With the conversion of genistein as criteria, single factor experiments were used to study the different factors affecting enzymatic hydrolysis of genistin and its solid dispersion. And then, response surface method was used to optimize of nano-silica solid dispersion technology assistant enzymatic hydrolysis. The optimum condition to get genistein through enzymatic hydrolysis of genistin-nano-silica solid dispersion was pH 7.1, temperature 52.2 degrees C, enzyme concentration 5.0 mg x mL(-1) and reaction time 7 h. Under this condition, the conversion of genistein was (93.47 +/- 2.40)%. Comparing with that without forming the genistin-nano-silica solid dispersion, the conversion increased 2.62 fold. At the same time, the product of hydrolysis was purified to get pure genistein. The method of enzymatic hydrolysis of genistin-nano-silica solid dispersion by snailase to obtain genistein is simple, efficiency and suitable for the modern scale production.

  13. Enzymatic digestion of alkaline-sulfite pretreated sugar cane bagasse and its correlation with the chemical and structural changes occurring during the pretreatment step.

    Science.gov (United States)

    Mendes, Fernanda M; Laurito, Debora F; Bazzeggio, Mariana; Ferraz, André; Milagres, Adriane M F

    2013-01-01

    Sugar cane bagasse is recalcitrant to enzymatic digestion, which hinders the efficient conversion of its polysaccharides into fermentable sugars. Alkaline-sulfite pretreatment was used to overcome the sugar cane bagasse recalcitrance. Chemical and structural changes that occurred during the pretreatment were correlated with the efficiency of the enzymatic digestion of the polysaccharides. The first 30 min of pretreatment, which removed approximately half of the initial lignin and 30% of hemicellulose seemed responsible for a significant enhancement of the cellulose conversion level, which reached 64%. After the first 30 min of pretreatment, delignification increased slightly, and hemicellulose removal was not enhanced; however, acid groups continued to be introduced into the residual lignin. Water retention values were 145% to the untreated bagasse and 210% to the bagasse pretreated for 120 min and fiber widths increased from 10.4 to 30 μm, respectively. These changes were responsible for an additional increase in the efficiency of enzymatic hydrolysis of the cellulose, which reached 92% with the 120 min pretreated sample. © 2013 American Institute of Chemical Engineers.

  14. Effect of surfactants on separate hydrolysis fermentation and simultaneous saccharification fermentation of pretreated lodgepole pine.

    Science.gov (United States)

    Tu, Maobing; Zhang, Xiao; Paice, Mike; McFarlane, Paul; Saddler, Jack N

    2009-01-01

    The effects of surfactants addition on enzymatic hydrolysis and subsequent fermentation of steam exploded lodgepole pine (SELP) and ethanol pretreated lodgepole pine (EPLP) were investigated in this study. Supplementing Tween 80 during cellulase hydrolysis of SELP resulted in a 32% increase in the cellulose-to-glucose yield. However, little improvement was obtained from hydrolyzing EPLP in the presence of the same amount of surfactant. The positive effect of surfactants on SELP hydrolysis led to an increase in final ethanol yield after the fermentation. It was found that the addition of surfactant led to a substantial increase in the amount of free enzymes in the 48 h hydrolysates derived from both substrates. The effect of surfactant addition on final ethanol yield of simultaneous saccharification and fermentation (SSF) was also investigated by using SELP in the presence of additional furfural and hydroxymethylfurfural (HMF). The results showed that the surfactants slightly increased the conversion rates of furfural and HMF during SSF process by Saccharomyces cerevisiae. The presence of furfural and HMF at the experimental concentrations did not affect the final ethanol concentration either. The strategy of applying surfactants in cellulase recycling to reduce enzyme cost is presented. (c) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009.

  15. A xylanase-aided enzymatic pretreatment facilitates cellulose nanofibrillation.

    Science.gov (United States)

    Long, Lingfeng; Tian, Dong; Hu, Jinguang; Wang, Fei; Saddler, Jack

    2017-11-01

    Although biological pretreatment of cellulosic fiber based on endoglucanases has shown some promise to facilitate cellulose nanofibrillation, its efficacy is still limited. In this study, a xylanase-aided endoglucanase pretreatment was assessed on the bleached hardwood and softwood Kraft pulps to facilitate the downstream cellulose nanofibrillation. Four commercial xylanase preparations were compared and the changes of major fiber physicochemical characteristics such as cellulose/hemicellulose content, gross fiber properties, fiber morphologies, cellulose accessibility/degree of polymerization (DP)/crystallinity were systematically evaluated before and after enzymatic pretreatment. It showed that the synergistic cooperation between endoglucanase and certain xylanase (Biobrite) could efficiently "open up" the hardwood Kraft pulp with limited carbohydrates degradation (cellulose nanofibrillation during mild sonication process (90Wh) with more uniform disintegrated nanofibril products (50-150nm, as assessed by scanning electron microscopy and UV-vis spectroscopy). Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Effects of enzymatic hydrolysis on the allergenicity of whey protein concentrates.

    OpenAIRE

    Cuicui Duan; Lijie Yang; Aili Li; Rui Zhao; Guicheng Huo

    2014-01-01

    Cow's milk whey consists of many protein components and some of them are antigens to human and known to modulate immune responses. Enzymatic hydrolysis is a useful method to modify proteins with allergenicity. The objective of this study was to identify whether the in vitro enzymatic hydrolysis could reduce the allergenicity of whey protein concentrates (WPC). In this study, WPC were hydrolyzed by trypsin and twenty-four BALB/c mice were divided into three groups and fed with WPC formula and ...

  17. Antioxidative Peptides Derived from Enzyme Hydrolysis of Bone Collagen after Microwave Assisted Acid Pre-Treatment and Nitrogen Protection

    Directory of Open Access Journals (Sweden)

    Jin Sun

    2010-11-01

    Full Text Available This study focused on the preparation method of antioxidant peptides by enzymatic hydrolysis of bone collagen after microwave assisted acid pre-treatment and nitrogen protection. Phosphoric acid showed the highest ability of hydrolysis among the four other acids tested (hydrochloric acid, sulfuric acid and/or citric acid. The highest degree of hydrolysis (DH was 9.5% using 4 mol/L phosphoric acid with a ratio of 1:6 under a microwave intensity of 510 W for 240 s. Neutral proteinase gave higher DH among the four protease tested (Acid protease, neutral protease, Alcalase and papain, with an optimum condition of: (1 ratio of enzyme and substrate, 4760 U/g; (2 concentration of substrate, 4%; (3 reaction temperature, 55 °C and (4 pH 7.0. At 4 h, DH increased significantly (P < 0.01 under nitrogen protection compared with normal microwave assisted acid pre-treatment hydrolysis conditions. The antioxidant ability of the hydrolysate increased and reached its maximum value at 3 h; however DH decreased dramatically after 3 h. Microwave assisted acid pre-treatment and nitrogen protection could be a quick preparatory method for hydrolyzing bone collagen.

  18. Glucose obtained from rice bran by ultrasound-assisted enzymatic hydrolysis

    Directory of Open Access Journals (Sweden)

    Raquel Cristine Kuhn

    2015-05-01

    Full Text Available In this work ultrasound-assisted solid-state enzymatic hydrolysis of rice bran to obtain fermentable sugars was investigated. For this purpose, process variables such as temperature, enzyme concentration and moisture content were evaluated during the enzymatic hydrolysis with and without ultrasound irradiation. The enzyme used is a blend of amylases derived from genetically modified strains of Trichoderma reesei. Kinetic of the enzymatic hydrolysis of rice bran at the constant-reaction rate period were measured. The best results for the ultrasound-assisted enzymatic hydrolysis was obtained using 3 wt% of enzyme, 60 oC and moisture content of 65 wt%, yielding 0.38 g sugar/g rice bran, whereas for the hydrolysis in the absence of ultrasound the highest yield was 0.20 g sugar/g rice bran using 3 wt% of enzyme, 60 oC and moisture content of 50 wt%. The use of ultrasound-assisted enzymatic hydrolysis of rice bran was intensified, obtaining around 74% more fermentable sugar than in the absence, showing that the use of ultrasound is a promising technology to be used in enzymatic reaction as an alternative of process intensification.

  19. Recovery of Whey Proteins and Enzymatic Hydrolysis of Lactose Derived from Casein Whey Using a Tangential Flow Ultrafiltration Module

    Science.gov (United States)

    Das, Bipasha; Bhattacharjee, Sangita; Bhattacharjee, Chiranjib

    2013-09-01

    In this study, ultrafiltration (UF) of pretreated casein whey was carried out in a cross-flow module fitted with 5 kDa molecular weight cut-off polyethersulfone membrane to recover whey proteins in the retentate and lactose in the permeate. Effects of processing conditions, like transmembrane pressure and pH on permeate flux and rejection were investigated and reported. The polarised layer resistance was found to increase with time during UF even in this high shear device. The lactose concentration in the permeate was measured using dinitro salicylic acid method. Enzymatic kinetic study for lactose hydrolysis was carried out at three different temperatures ranging from 30 to 50 °C using β-galactosidase enzyme. The glucose formed during lactose hydrolysis was analyzed using glucose oxidase-peroxidase method. Kinetics of enzymatic hydrolysis of lactose solution was found to follow Michaelis-Menten model and the model parameters were estimated by Lineweaver-Burk plot. The hydrolysis rate was found to be maximum (with Vmax = 5.5091 mmol/L/min) at 30 °C.

  20. Isolation and purification of arctigenin from Fructus Arctii by enzymatic hydrolysis combined with high-speed counter-current chromatography.

    Science.gov (United States)

    Liu, Feng; Xi, Xingjun; Wang, Mei; Fan, Li; Geng, Yanling; Wang, Xiao

    2014-02-01

    Enzymatic hydrolysis pretreatment combined with high-speed counter-current chromatography for the transformation and isolation of arctigenin from Fructus Arctii was successfully developed. In the first step, the extract solution of Fructus Arctii was enzymatic hydrolyzed by β-glucosidase. The optimal hydrolysis conditions were 40°C, pH 5.0, 24 h of hydrolysis time, and 1.25 mg/mL β-glucosidase concentration. Under these conditions, the content of arctigenin was transformed from 2.60 to 12.59 mg/g. In the second step, arctigenin in the hydrolysis products was separated and purified by high-speed counter-current chromatography with a two-phase solvent system composed of petroleum ether/ethyl acetate/methanol/water (10:25:15:20, v/v), and the fraction was analyzed by HPLC, ESI-MS, and (1)H NMR spectroscopy. Finally, 102 mg of arctigenin with a purity of 98.9% was obtained in a one-step separation from 200 mg of hydrolyzed sample. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Enzymatic saccharification of high pressure assist-alkali pretreated cotton stalk and structural characterization.

    Science.gov (United States)

    Du, Shuang-kui; Su, Xia; Yang, Weihua; Wang, Yanqin; Kuang, Meng; Ma, Lei; Fang, Dan; Zhou, Dayun

    2016-04-20

    Cotton stalk is a potential biomass for bioethanol production, while the conversion of direct saccharification or biotransformation of cotton stalk is extremely low due to the recalcitrant nature of lignocellulose. To enhance the enzymatic conversion of cotton stalks, the enzymatic saccharification parameters of high pressure assist-alkali pretreatment (HPAP) cotton stalk were optimized in the present study. Results indicated that a maximum reducing sugar yield of 54.7g/100g dry biomass cellulose was achieved at a substrate concentration of 2%, 100rpm agitation, 0.6g/g enzyme loading, 40°C hydrolysis temperature, 50h saccharification time, and pH 5.0. Scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy were used to identify structural changes in native, pretreated biomass and hydrolyzed residues. Structural analysis revealed large part of amorphous cellulose and partial crystalline cellulose in the HPAP cotton stalk were hydrolyzed during enzymatic treatment. HPAP cotton stalk can be used as a potential feed stock for bioethanol production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Enzymatic Xylose Release from Pretreated Corn Bran Arabinoxylan: Differential Effects of Deacetylation and Deferuloylation on Insoluble and Soluble Substrate Fractions

    DEFF Research Database (Denmark)

    Agger, Jane; Viksø-Nielsen, Ander; Meyer, Anne S.

    2010-01-01

    In the present work enzymatic hydrolysis of arabinoxylan from pretreated corn bran (190 °C, 10 min) was evaluated by measuring the release of xylose and arabinose after treatment with a designed minimal mixture of monocomponent enzymes consisting of α-l-arabinofuranosidases, an endoxylanase......, and a β-xylosidase. The pretreatment divided the corn bran material 50:50 into soluble and insoluble fractions having A:X ratios of 0.66 and 0.40, respectively. Addition of acetyl xylan esterase to the monocomponent enzyme mixture almost doubled the xylose release from the insoluble substrate fraction...

  3. Composition and hydrothermal pretreatment and enzymatic saccharification performance of grasses and legumes from a mixed-species prairie

    Directory of Open Access Journals (Sweden)

    DeMartini Jaclyn D

    2011-11-01

    Full Text Available Abstract Background Mixtures of prairie species (mixed prairie species; MPS have been proposed to offer important advantages as a feedstock for sustainable production of fuels and chemicals. Therefore, understanding the performance in hydrothermal pretreatment and enzymatic hydrolysis of select species harvested from a mixed prairie is valuable in selecting these components for such applications. This study examined composition and sugar release from the most abundant components of a plot of MPS: a C3 grass (Poa pratensis, a C4 grass (Schizachyrium scoparium, and a legume (Lupinus perennis. Results from this study provide a platform to evaluate differences between grass and leguminous species, and the factors controlling their recalcitrance to pretreatment and enzymatic hydrolysis. Results Significant differences were found between the grass and leguminous species, and between the individual anatomical components that influence the recalcitrance of MPS. We found that both grasses contained higher levels of sugars than did the legume, and also exhibited higher sugar yields as a percentage of the maximum possible from combined pretreatment and enzymatic hydrolysis. Furthermore, particle size, acid-insoluble residue (AcIR, and xylose removal were not found to have a direct significant effect on glucan digestibility for any of the species tested, whereas anatomical composition was a key factor in both grass and legume recalcitrance, with the stems consistently exhibiting higher recalcitrance than the other anatomical fractions. Conclusions The prairie species tested in this study responded well to hydrothermal pretreatment and enzymatic saccharification. Information from this study supports recommendations as to which plant types and species are more desirable for biological conversion in a mixture of prairie species, in addition to identifying fractions of the plants that would most benefit from genetic modification or targeted growth.

  4. Enzyme feeding strategies for better fed-batch enzymatic hydrolysis of empty fruit bunch.

    Science.gov (United States)

    Sugiharto, Yohanes Eko Chandra; Harimawan, Ardiyan; Kresnowati, Made Tri Ari Penia; Purwadi, Ronny; Mariyana, Rina; Andry; Fitriana, Hana Nur; Hosen, Hauna Fathmadinda

    2016-05-01

    Lignin inhibitory becomes a major obstacle for enzymatic hydrolysis of empty fruit bunch conducted in high solid loading. Since current technology required high enzyme loading, surfactant application could not effectively used since it is only efficient in low enzyme loading. In addition, it will increase final operation cost. Hence, another method namely "proportional enzyme feeding" was investigated in this paper. In this method, enzyme was added to reactor proportionally to substrate addition, different from conventional method ("whole enzyme feeding") where whole enzyme was added prior to hydrolysis process started. Proportional enzyme feeding could increase enzymatic digestibility and glucose concentration up to 26% and 12% respectively, compared to whole enzyme feeding for hydrolysis duration more than 40h. If enzymatic hydrolysis was run less than 40h (25% solid loading), whole enzyme feeding is preferable. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Acid and enzymatic hydrolysis to recover reducing sugars from cassava bagasse: an economic study

    Directory of Open Access Journals (Sweden)

    Woiciechowski Adenise Lorenci

    2002-01-01

    Full Text Available The objective of this work was to study the acid and enzymatic hydrolysis of cassava bagasse for the recovery of reducing sugars and to establish the operational costs. A statistical program "Statistica", based on the surface response was used to optimize the recovery of reducing sugars in both the processes. The process economics was determined considering the values of reducing sugars obtained at laboratory scale, and the operations costs of a cylindrical reactor of 1500 L, with flat walls at the top and bottom. The reactor was operated with 150 kg of cassava bagasse and 1350 kg of water. The yield of the acid hydrolysis was 62.4 g of reducing sugars from 100 g of cassava bagasse containing 66% starch. It represented 94.5% of reducing sugar recovery. The yield of the enzymatic hydrolysis was 77.1 g of reducing sugars from 120 g of cassava bagasse, which represented 97.3% of reducing sugars recovery. Concerning to the time, a batch of acid hydrolysis required 10 minutes, plus the time to heat and cool the reactor, and a batch of the enzymatic hydrolysis needed 25 hours and 20 minutes, plus the time to heat and to cool the reactor. Thus, the acid hydrolysis of 150 kg of cassava bagasse required US$ 34.27, and the enzymatic hydrolysis of the same amount of cassava bagasse required US$ 2470.99.

  6. The effect of varying organosolv pretreatment chemicals on the physicochemical properties and cellulolytic hydrolysis of mountain pine beetle-killed lodgepole pine.

    Science.gov (United States)

    Del Rio, Luis F; Chandra, Richard P; Saddler, Jack N

    2010-05-01

    Mountain pine beetle-killed lodgepole pine (Pinus contorta) chips were pretreated using the organosolv process, and their ease of subsequent enzymatic hydrolysis was assessed. The effect of varying pretreatment chemicals and solvents on the substrate's physicochemical characteristics was also investigated. The chemicals employed were MgCl2, H2SO4, SO2, and NaOH, and the solvents were ethanol and butanol. It was apparent that the different pretreatments resulted in variations in both the chemical composition of the solid and liquid fractions as well in the extent of cellulolytic hydrolysis (ranging from 21% to 82% hydrolysis after 12 h). Pretreatment under acidic conditions resulted in substrates that were readily hydrolyzed despite the apparent contradiction that pretreatment under alkaline conditions resulted in increased delignification (approximately 7% and 10% residual lignin for alkaline conditions versus 17% to 19% for acidic conditions). Acidic pretreatments also resulted in lower cellulose degree of polymerization, shorter fiber lengths, and increased substrate porosity. The substrates generated when butanol/water mixtures were used as the pretreatment solvent were also hydrolyzed more readily than those generated with ethanol/water. This was likely due to the limited miscibility of the solvents resulting in an increased concentration of pretreatment chemicals in the aqueous layer and thus a higher pretreatment severity.

  7. Comparison of enzymatic and acid hydrolysis of bound flavor compounds in model system and grapes.

    Science.gov (United States)

    Dziadas, Mariusz; Jeleń, Henryk H

    2016-01-01

    Four synthesized terpenyl-ß-D-glycopyranosides (geranyl, neryl, citronellyl, myrtenyl) were subjected to enzymatic (AR 2000, pH 5.5) and acid (citric buffer, pH 2.5) hydrolysis. Decrease of glycosides was measured by HPLC and the volatiles released--by comprehensive gas chromatography-mass spectrometry (GC × GC-ToF-MS). Enzymatic hydrolysis performed for 21 h yielded 100% degree of hydrolysis for all glycosides but citronellyl (97%). Degree of acid hydrolysis was highly dependent on type of aglycone and the conditions. The highest degree was achieved for geraniol, followed by citronellol and nerol. Myrtenylo-ß-D-glycopyranoside was the most resistant glycoside to hydrolysis. Acid hydrolysis degree was also related to temperature/time combination, the highest being for 100 °C and 2 h. In a result of enzymatic hydrolysis 85-91% of total peak areas was terpene aglycone, whereas for acid hydrolysis the area of released terpene aglycone did not exceed 1.3% of total peak area indicating almost complete decomposition/transformation of terpenyl aglycone. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Aiming for the complete utilization of sugar-beet pulp: Examination of the effects of mild acid and hydrothermal pretreatment followed by enzymatic digestion

    Directory of Open Access Journals (Sweden)

    Gruppen Harry

    2011-05-01

    Full Text Available Abstract Background Biomass use for the production of bioethanol or platform chemicals requires efficient breakdown of biomass to fermentable monosaccharides. Lignocellulosic feedstocks often require physicochemical pretreatment before enzymatic hydrolysis can begin. The optimal pretreatment can be different for different feedstocks, and should not lead to biomass destruction or formation of toxic products. Methods We examined the influence of six mild sulfuric acid or water pretreatments at different temperatures on the enzymatic degradability of sugar-beet pulp (SBP. Results We found that optimal pretreatment at 140°C of 15 minutes in water was able to solubilize 60% w/w of the total carbohydrates present, mainly pectins. More severe treatments led to the destruction of the solubilized sugars, and the subsequent production of the sugar-degradation products furfural, hydroxymethylfurfural, acetic acid and formic acid. The pretreated samples were successfully degraded enzymatically with an experimental cellulase preparation. Conclusions In this study, we found that pretreatment of SBP greatly facilitated the subsequent enzymatic degradation within economically feasible time ranges and enzyme levels. In addition, pretreatment of SBP can be useful to fractionate functional ingredients such as arabinans and pectins from cellulose. We found that the optimal combined severity factor to enhance the enzymatic degradation of SBP was between log R'0 = -2.0 and log R'0 = -1.5. The optimal pretreatment and enzyme treatment solubilized up to 80% of all sugars present in the SBP, including ≥90% of the cellulose.

  9. Enzymatic pre-treatment increases the protein bioaccessibility and extractability in dulse (Palmaria palmata)

    OpenAIRE

    Mæhre, Hanne K; Jensen, Ida-Johanne; Eilertsen, Karl-Erik

    2016-01-01

    Several common protein extraction protocols have been applied on seaweeds, but extraction yields have been limited. The aims of this study were to further develop and optimize existing extraction protocols and to examine the effect of enzymatic pre-treatment on bioaccessibility and extractability of seaweed proteins. Enzymatic pre-treatment of seaweed samples resulted in a three-fold increase in amino acids available for extraction. Combining enzymatic pre-treatment with a...

  10. Study of Enzymatic Hydrolysis of Fructans from Agave salmiana Characterization and Kinetic Assessment

    Science.gov (United States)

    Michel-Cuello, Christian; Ortiz-Cerda, Imelda; Moreno-Vilet, Lorena; Grajales-Lagunes, Alicia; Moscosa-Santillán, Mario; Bonnin, Johanne; González-Chávez, Marco Martín; Ruiz-Cabrera, Miguel

    2012-01-01

    Fructans were extracted from Agave salmiana juice, characterized and subjected to hydrolysis process using a commercial inulinase preparation acting freely. To compare the performance of the enzymatic preparation, a batch of experiments were also conducted with chicory inulin (reference). Hydrolysis was performed for 6 h at two temperatures (50, 60°C) and two substrate concentrations (40, 60 mg/ml). Hydrolysis process was monitored by measuring the sugars released and residual substrate by HPLC. A mathematical model which describes the kinetics of substrate degradation as well as fructose production was proposed to analyze the hydrolysis assessment. It was found that kinetics were significantly influenced by temperature, substrate concentration, and type of substrate (P < 0.01). The extent of substrate hydrolysis varied from 82 to 99%. Hydrolysis product was mainly constituted of fructose, obtaining from 77 to 96.4% of total reducing sugars. PMID:22629216

  11. Study of Enzymatic Hydrolysis of Fructans from Agave salmiana Characterization and Kinetic Assessment

    Directory of Open Access Journals (Sweden)

    Christian Michel-Cuello

    2012-01-01

    Full Text Available Fructans were extracted from Agave salmiana juice, characterized and subjected to hydrolysis process using a commercial inulinase preparation acting freely. To compare the performance of the enzymatic preparation, a batch of experiments were also conducted with chicory inulin (reference. Hydrolysis was performed for 6 h at two temperatures (50, 60∘C and two substrate concentrations (40, 60 mg/ml. Hydrolysis process was monitored by measuring the sugars released and residual substrate by HPLC. A mathematical model which describes the kinetics of substrate degradation as well as fructose production was proposed to analyze the hydrolysis assessment. It was found that kinetics were significantly influenced by temperature, substrate concentration, and type of substrate (P<0.01. The extent of substrate hydrolysis varied from 82 to 99%. Hydrolysis product was mainly constituted of fructose, obtaining from 77 to 96.4% of total reducing sugars.

  12. Enhanced enzymatic saccharification of pretreated biomass using glycerol thermal processing (GTP).

    Science.gov (United States)

    Zhang, Wei; Sathitsuksanoh, Noppadon; Barone, Justin R; Renneckar, Scott

    2016-01-01

    Biomass was heated (200-240°C) in the presence of glycerol, for 4-12 min, under shear to disrupt the native cell wall architecture. The impact of this method, named glycerol thermal processing (GTP), on saccharification efficiency of the hardwood Liquidambar styraciflua, and a control cellulose sample was studied as a function of treatment severity. Furthermore, the enzymatic conversion of samples with varying compositions was studied after extraction of the structural polymers. Interestingly, the sweet gum processed materials crystallinity index increased by 10% of the initial value. The experiments revealed that the residual lignin was not a barrier to limiting the digestibility of cellulose after pretreatment yielding up to 70% glucose based on the starting wood material. Further xylan removal greatly improved the cellulose hydrolysis rate, converting nearly 70% of the cellulose into glucose within 24h, and reaching 78% of ultimate glucan digestibility after 72 h. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Enzymatic membrane reactor for full saccharification of ionic liquid-pretreated microcrystalline cellulose.

    Science.gov (United States)

    Lozano, Pedro; Bernal, Berenice; Jara, Antonio G; Belleville, Marie-Pierre

    2014-01-01

    Ultrafiltration reactors based on polymeric or ceramic membranes were shown to be suitable catalytic systems for fast enzymatic saccharification of cellulose, allowing the full recovery and reuse of enzymes. By pre-treating cellulose with the IL 1-butyl-3-methylimidazolium chloride, the suitability of this substrate for enzymatic saccharification in a reactor based on polymeric ultrafiltration membranes was demonstrated, leading to 95% cellulose hydrolysis in 4h at 50°C. The filtration process gave a clear glucose solution (up to 113 mM) at constant permeate flow (24.7 L h(-1) m(-2)), allowing the enzyme to be reused for 9 operation cycles under semi-continuous operation, without any loss of enzyme activity. Under continuous operation mode and using ceramic ultrafiltration membranes at different residence times, the enzymatic reactor showed constant profiles in both the permeate flow rate and the glucose concentration, demonstrating the excellent suitability of the proposed approach for the saccharification of cellulose. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Exploring surface characterization and electrostatic property of Hybrid Pennisetum during alkaline sulfite pretreatment for enhanced enzymatic hydrolysability.

    Science.gov (United States)

    Yang, Ming; Wang, Jingfeng; Hou, Xincun; Wu, Juying; Fan, Xifeng; Jiang, Fan; Tao, Pan; Wang, Fan; Peng, Pai; Yang, Fangxia; Zhang, Junhua

    2017-11-01

    The surface characterization and electrostatic property of Hybrid Pennisetum (HP) after alkaline sulfite pretreatment were explored for enhanced enzymatic hydrolysability. The O/C ratio in HP increased from 0.34 to 0.60, and C1 concentration decreased from 62.5% to 31.6%, indicating that alkaline sulfite pretreatment caused poorer lignin but richer carbohydrate on HP surface. Zeta potential and sulfur element analysis indicated that more enzymes would preferably adsorb on the carbohydrate surface of alkaline sulfite pretreated HP because the lignin was sulfonated, which facilitated the decrease of non-productive adsorption. Glucose yield of alkaline sulfite pretreated HP reached to 100% by synergistic action of cellulase and xylanase in the hydrolysis, which was significantly higher than that of NaOH pretreated, and the concentration of glucose released was 1.52times higher. The results suggested that alkaline sulfite pretreatment had potential for improving the HP hydrolysability, and the surface characterization and electrostatic property facilitated the enzymatic digestibility. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Enteral Tube Feeding Nutritional Protein Hydrolysate Production Under Different Factors By Enzymatic Hydrolysis

    Directory of Open Access Journals (Sweden)

    Nguyen ThiQuynhHoa

    2015-01-01

    Full Text Available Abstract Hydrolysis of proteins involves the cleavage of peptide bonds to give peptides of varying sizes and amino acid composition. There are a number of types of hydrolysis enzymatic acid or alkali hydrolysis. Chemical hydrolysis is difficult to control and reduces the nutritional quality of products destroying L-form amino acids and producing toxic substances such as lysino-alanine. Enzymatic hydrolysis works without destructing amino acids and by avoiding the extreme temperatures and pH levels required for chemical hydrolysis the nutritional properties of the protein hydrolysates remain largely unaffected. In this research we investigate the fat removal and protein hydrolysis from pork meat to produce the enteral tube feeding nutritional protein hydrolysate for patient. Our results are as follows meat moisture 75.1 protein 22.6 lipid 1.71 ash 0.5 vitamin B1 1.384mg100g n hexantreatment at 80oCin 45 minutes and drying 30 minutes in 90oC.Viscosity of the hydrolysate is very low 2.240 0.092 cPand high degree of hydrolysis 31.390 0.138 . The final protein powder has balance nutritional components and acid amines low microorganisms which are safety for human consumption.

  16. Pretreating wheat straw by phosphoric acid plus hydrogen peroxide for enzymatic saccharification and ethanol production at high solid loading.

    Science.gov (United States)

    Qiu, Jingwen; Ma, Lunjie; Shen, Fei; Yang, Gang; Zhang, Yanzong; Deng, Shihuai; Zhang, Jing; Zeng, Yongmei; Hu, Yaodong

    2017-08-01

    Wheat straw was pretreated by phosphoric acid plus hydrogen peroxide (PHP) for enzymatic hydrolysis and ethanol fermentation at high solid loadings. Results indicated solid loading could reach 20% with 77.4% cellulose-glucose conversion and glucose concentration of 164.9g/L in hydrolysate, it even was promoted to 25% with only 3.4% decrease on cellulose-glucose conversion as the pretreated-wheat straw was dewatered by air-drying. 72.9% cellulose-glucose conversion still was achieved as the minimized enzyme input of 20mg protein/g cellulose was employed for hydrolysis at 20% solid loading. In the corresponding conditions, 100g wheat straw can yield 11.2g ethanol with concentration of 71.2g/L by simultaneous saccharification and fermentation. Thus, PHP-pretreatment benefitted the glucose or ethanol yield at high solid loadings with lower enzyme input. Additionally, decreases on the maximal cellulase adsorption and the direct-orange/direct-blue indicated drying the PHP-pretreated substrates negatively affected the hydrolysis due to the shrinkage of cellulase-size-accommodable pores. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Electron beam application as pre treatment of sugar cane bagasse to enzymatic hydrolysis of cellulose

    International Nuclear Information System (INIS)

    Cardoso, Vanessa Miguel

    2008-01-01

    Due to increasing worldwide shortage of food and energy sources, sugarcane bagasse has been considered as a substrate for single cell protein, animal feed, and renewable energy production. Sugarcane bagasse generally contain up to 45% glucose polymer cellulose, much of which is in a crystalline structure, 40% hemicelluloses, an amorphous polymer usually composed of xylose, arabinose, galactose, glucose, and mannose and 20% lignin, which cannot be easily separated into readily usable components due to their recalcitrant nature. Pure cellulose is readily depolymerised by radiation, but in biomass the cellulose is intimately bonded with lignin, that protect it from radiation effects. The objective of this study was the evaluation of the electron beam irradiation efficiency as a pre-treatment to enzymatic hydrolysis of cellulose in order to facilitate its fermentation and improves the production of ethanol biofuel. Samples of sugarcane bagasse were obtained in sugar/ethanol Mill sited in Piracicaba, Brazil, and were irradiated using Radiation Dynamics Electron Beam Accelerator with 1,5 MeV energy and 37 kW, in batch systems. The applied absorbed doses of the fist sampling, Bagasse A, were 20 kGy, 50 kGy, 10 0 kGy and 200 kGy. After the evaluation the preliminary obtained results, it was applied lower absorbed doses in the second assay: 5 kGy, 10 kGy, 20 kGy, 30 kGy, 50 kGy, 70 kGy, 100 kGy and 150 kGy. The electron beam processing took to changes in the sugarcane bagasse structure and composition, lignin and cellulose cleavage. The yield of enzymatic hydrolyzes of cellulose in. (author)

  18. Mechanistic kinetic models of enzymatic cellulose hydrolysis-A review.

    Science.gov (United States)

    Jeoh, Tina; Cardona, Maria J; Karuna, Nardrapee; Mudinoor, Akshata R; Nill, Jennifer

    2017-07-01

    Bioconversion of lignocellulose forms the basis for renewable, advanced biofuels, and bioproducts. Mechanisms of hydrolysis of cellulose by cellulases have been actively studied for nearly 70 years with significant gains in understanding of the cellulolytic enzymes. Yet, a full mechanistic understanding of the hydrolysis reaction has been elusive. We present a review to highlight new insights gained since the most recent comprehensive review of cellulose hydrolysis kinetic models by Bansal et al. (2009) Biotechnol Adv 27:833-848. Recent models have taken a two-pronged approach to tackle the challenge of modeling the complex heterogeneous reaction-an enzyme-centric modeling approach centered on the molecularity of the cellulase-cellulose interactions to examine rate limiting elementary steps and a substrate-centric modeling approach aimed at capturing the limiting property of the insoluble cellulose substrate. Collectively, modeling results suggest that at the molecular-scale, how rapidly cellulases can bind productively (complexation) and release from cellulose (decomplexation) is limiting, while the overall hydrolysis rate is largely insensitive to the catalytic rate constant. The surface area of the insoluble substrate and the degrees of polymerization of the cellulose molecules in the reaction both limit initial hydrolysis rates only. Neither enzyme-centric models nor substrate-centric models can consistently capture hydrolysis time course at extended reaction times. Thus, questions of the true reaction limiting factors at extended reaction times and the role of complexation and decomplexation in rate limitation remain unresolved. Biotechnol. Bioeng. 2017;114: 1369-1385. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. CONTINUOUS AND SEMICONTINUOUS REACTION SYSTEMS FOR HIGH-SOLIDS ENZYMATIC HYDROLYSIS OF LIGNOCELLULOSICS

    OpenAIRE

    Quiroga, A. González; Silvera, A. Bula; Padilla, R. Vasquez; Costa, A. C. da; Maciel Filho, R.

    2015-01-01

    Abstract An attractive operation strategy for the enzymatic hydrolysis of lignocellulosics results from dividing the process into three stages with complementary goals: continuous enzyme adsorption at low-solids loading (5% w/w) with recycling of the liquid phase; continuous liquefaction at high-solids content (up to 20% w/w); and, finally, continuous or semicontinuous hydrolysis with supplementation of fresh enzymes. This paper presents a detailed modeling and simulation framework for the af...

  20. Evaluation of the effects of isolated lignin on enzymatic hydrolysis of cellulose.

    Science.gov (United States)

    Zhang, Hongdan; Wu, Shubin; Xie, Jun

    2017-06-01

    The different physical and chemical properties of lignin might have various effects on the enzymatic hydrolysis of lignocellulosic substrates. In this study, the influence of lignin on enzymatic digestibility of cellulose was assessed. Addition of 20% (4g/L) isolated enzymatic lignin (lignin 2 and 3) and kraft lignin (lignin 4) resulted in 5-20% drop of glucose yield, depending on lignin sources. The inhibitory effect of lignin was abated as the enzyme loading increased from 10 to 20FPU/g dry substrate. However, the increasing lignin amount to 40% (8g/L) did not appear to further decrease the cellulose hydrolysis efficiency. Ethanol lignin (lignin 1) and calcium lignosulfonate (lignin 5) had no negative effect on the enzymatic hydrolysis of cellulose at cellulase loading of 10 or 20FPU/g dry substrate, the increasing lignin content to 40% presented 6.2% increase of glucose yield. The results indicated that different lignin had significantly influence on the enzymatic hydrolysis, which was confirmed by analysis in chemical composition, elemental analysis, functionality, and thermogravimetry. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Chemical and enzymatic hydrolysis of anthraquinone glycosides from Madder roots

    NARCIS (Netherlands)

    Derksen, G.C.H.; Naayer, M.; Beek, T.A. van; Capelle, A.; Haaksman, I.K.; Doren, H.A. van; Groot, Æ. de

    2003-01-01

    For the production of a commercially useful dye extract from madder, the glycoside ruberythric acid has to be hydrolysed to the aglycone alizarin which is the main dye component. An intrinsic problem is the simultaneous hydrolysis of the glycoside lucidin pritneveroside to the unwanted mutagenic

  2. Product inhibition of enzymatic hydrolysis of cellulose: are we running the reactions all wrong?

    DEFF Research Database (Denmark)

    Meyer, Anne S.

    2012-01-01

    Enzyme catalyzed deconstruction of cellulose to glucose is an important technology step in lignocellulose-to-ethanol processing as well as in the future biorefinery based production of novel products to replace fossil oil based chemistry. The main goals of the enzymatic biomass saccharification...... include high substrate conversion (maximal yields), maximal enzyme efficiency, maximal volumetric reactor productivity, minimal equipment investment, minimal size, and short reaction time. The classic batch type STR reactions used for enzymatic cellulose hydrolysis prevent these goals to be fulfilled...

  3. Comparison of mechanistic models in the initial rate enzymatic hydrolysis of AFEX-treated wheat straw

    Directory of Open Access Journals (Sweden)

    Agbogbo Frank K

    2010-03-01

    Full Text Available Abstract Background Different mechanistic models have been used in the literature to describe the enzymatic hydrolysis of pretreated biomass. Although these different models have been applied to different substrates, most of these mechanistic models fit into two- and three-parameter mechanistic models. The purpose of this study is to compare the models and determine the activation energy and the enthalpy of adsorption of Trichoderma reesei enzymes on ammonia fibre explosion (AFEX-treated wheat straw. Experimental enzymatic hydrolysis data from AFEX-treated wheat straw were modelled with two- and three-parameter mechanistic models from the literature. In order to discriminate between the models, initial rate data at 49°C were subjected to statistical analysis (analysis of variance and scatter plots. Results For three-parameter models, the HCH-1 model best fitted the experimental data; for two-parameter models Michaelis-Menten (M-M best fitted the experimental data. All the three-parameter models fitted the data better than the two-parameter models. The best three models at 49°C (HCH-1, Huang and M-M were compared using initial rate data at three temperatures (35°, 42° and 49°C. The HCH-1 model provided the best fit based on the F values, the scatter plot and the residual sum of squares. Also, its kinetic parameters were linear in Arrhenius/van't Hoff's plots, unlike the other models. The activation energy (Ea is 47.6 kJ/mol and the enthalpy change of adsorption (ΔH is -118 kJ/mol for T. reesei enzymes on AFEX-treated wheat straw. Conclusion Among the two-parameter models, Michaelis-Menten model provided the best fit compared to models proposed by Humphrey and Wald. For the three-parameter models, HCH-1 provided the best fit because the model includes a fractional coverage parameter (ϕ which accounts for the number of reactive sites covered by the enzymes.

  4. On energy consumption for size-reduction and yields from subsequent enzymatic saccharification of pretreated lodgepole pine.

    Science.gov (United States)

    Zhu, W; Zhu, J Y; Gleisner, R; Pan, X J

    2010-04-01

    This study investigated the effects of chemical pretreatment and disk-milling conditions on energy consumption for size-reduction and the efficiency of enzymatic cellulose saccharification of a softwood. Lodgepole pine wood chips produced from thinnings of a 100-year-old unmanaged forest were pretreated by hot-water, dilute-acid, and two SPORL processes (Sulfite Pretreatment to Overcome Recalcitrance of Lignocellulose) at acid charge on oven dry (od) wood of 0% and 2.21%. The pretreated wood chips were then milled using a laboratory disk mill under various solids-loadings and disk-plate gaps to produce substrates for enzymatic hydrolysis. We found that post-chemical-pretreatment size-reduction of forest biomass can decrease size-reduction energy consumption by 20-80% depending on the pretreatment applied under 20% solids-loading and a disk-plate gap of 0.76 mm in milling. SPORL with a sodium bisulfite charge of 8% and sulfuric acid charge of 2.21% on wood was the most effective in decreasing size-reduction energy consumption. Solids-loading had the most significant effect on disk-milling energy. When solids-loading was reduced from 30% to 3%, disk-milling energy could be decreased by more than a factor of 10 for wood chips pretreated by both SPORL and dilute-acid at an acid charge of 2.21%. The enzymatic hydrolysis glucose yields (EHGY) from the substrates produced by all pretreatments were independent of the solids-loading in milling, indicating that these energy savings in size-reduction can be realized without affecting EHGY. When wood chips were pretreated by SPORL with 2.21% acid charge, size-reduction energy consumption was decreased to less than 50 Wh/kg od wood at a practical solids-loading of approximately 10-20%, equivalent to that used in size-reduction of agriculture biomass, with excellent EHGY of about 370 g per kg od wood. Similar effects on size-reduction energy savings and excellent EHGY were also achieved when large disk-plate gaps (up to 1.52 mm

  5. Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content

    DEFF Research Database (Denmark)

    Cannella, David; Hsieh, Chia-Wen; Felby, Claus

    2012-01-01

    -glucosidase than glucose. The formation of oxidized products decreased as the hydrolysis temperature was increased from 33° to 50°C. Despite end-product inhibition, the oxidative cleavage of the cellulose chains has a synergistic effect upon the overall hydrolysis of cellulose as the sugar yield increased compared...... hydrolysis of pretreated wheat straw at 30% WIS. Up to 4% of released glucose was oxidized into gluconic acid using Cellic CTec2, whereas no oxidized products were detected when using an earlier cellulase preparation Celluclast/Novozym188. However, the cellulose conversion yield was 25% lower using......, no reducing agent was needed for the function of the oxidative enzymes. Conclusions: The presence of oxidative enzymes in Cellic CTec2 led to the formation of cellobionic and gluconic acid during hydrolysis of pretreated wheat straw and filter paper. Gluconic acid was a stronger inhibitor of ß...

  6. Stochastic molecular model of enzymatic hydrolysis of cellulose for ethanol production

    Science.gov (United States)

    2013-01-01

    Background During cellulosic ethanol production, cellulose hydrolysis is achieved by synergistic action of cellulase enzyme complex consisting of multiple enzymes with different mode of actions. Enzymatic hydrolysis of cellulose is one of the bottlenecks in the commercialization of the process due to low hydrolysis rates and high cost of enzymes. A robust hydrolysis model that can predict hydrolysis profile under various scenarios can act as an important forecasting tool to improve the hydrolysis process. However, multiple factors affecting hydrolysis: cellulose structure and complex enzyme-substrate interactions during hydrolysis make it diffucult to develop mathematical kinetic models that can simulate hydrolysis in presence of multiple enzymes with high fidelity. In this study, a comprehensive hydrolysis model based on stochastic molecular modeling approch in which each hydrolysis event is translated into a discrete event is presented. The model captures the structural features of cellulose, enzyme properties (mode of actions, synergism, inhibition), and most importantly dynamic morphological changes in the substrate that directly affect the enzyme-substrate interactions during hydrolysis. Results Cellulose was modeled as a group of microfibrils consisting of elementary fibrils bundles, where each elementary fibril was represented as a three dimensional matrix of glucose molecules. Hydrolysis of cellulose was simulated based on Monte Carlo simulation technique. Cellulose hydrolysis results predicted by model simulations agree well with the experimental data from literature. Coefficients of determination for model predictions and experimental values were in the range of 0.75 to 0.96 for Avicel hydrolysis by CBH I action. Model was able to simulate the synergistic action of multiple enzymes during hydrolysis. The model simulations captured the important experimental observations: effect of structural properties, enzyme inhibition and enzyme loadings on the

  7. Process design for enzymatic Adipyl-7-ADCA hydrolysis

    NARCIS (Netherlands)

    Schroën, Catharina Gerarda Petronella Henrica; Nierstrasz, Vincent; Bosma, Rouke; Dijkstra, Zwaantje Johanna; VandeSandt, Emilius Johannes Albertus Xavierius; Beeftink, Hendrik Harmen; Tramper, Johannes

    2002-01-01

    Adipyl-7-ADCA is a new source for 7-aminodeacetoxycephalosporanic acid (7-ADCA), one of the substrates for antibiotics synthesis. In this paper, a novel process for enzymatic 7-ADCA production is presented. The process consists of a reactor, a crystallization step, a membrane separation step, and

  8. Allergenicity of Peanut Proteins is Retained Following Enzymatic Hydrolysis

    Science.gov (United States)

    Rationale: Hydrolysis of peanut proteins by food-grade enzymes may reduce allergenicity and could lead to safer forms of immunotherapy. Methods: Light roasted peanut flour extracts were digested with pepsin (37°C, pH 2), Alcalase (60°C pH 8), or Flavourzyme (50°C, pH 7) up to 1 hr, or sequentially w...

  9. Effect of high hydrostatic pressure on the enzymatic hydrolysis of bovine serum albumin.

    Science.gov (United States)

    De Maria, Serena; Ferrari, Giovanna; Maresca, Paola

    2017-08-01

    The extent of enzymatic proteolysis mainly depends on accessibility of the peptide bonds, which stabilize the protein structure. The high hydrostatic pressure (HHP) process is able to induce, at certain operating conditions, protein displacement, thus suggesting that this technology can be used to modify protein resistance to the enzymatic attack. This work aims at investigating the mechanism of enzymatic hydrolysis assisted by HHP performed under different processing conditions (pressure level, treatment time). Bovine serum albumin was selected for the experiments, solubilized in sodium phosphate buffer (25 mg mL -1 , pH 7.5) with α-chymotrypsin or trypsin (E/S ratio = 1/10) and HPP treatment (100-500 MPa, 15-25 min). HHP treatment enhanced the extent of the hydrolysis reaction of globular proteins, being more effective than conventional hydrolysis. At HHP treatment conditions maximizing the protein unfolding, the hydrolysis degree of proteins was increased as a consequence of the increased exposure of peptide bonds to the attack of proteolytic enzymes. The maximum hydrolysis degree (10% and 7% respectively for the samples hydrolyzed with α-chymotrypsin and trypsin) was observed for the samples processed at 400 MPa for 25 min. At pressure levels higher than 400 MPa the formation of aggregates was likely to occur; thus the degree of hydrolysis decreased. Protein unfolding represents the key factor controlling the efficiency of HHP-assisted hydrolysis treatments. The peptide produced under high pressure showed lower dimensions and a different structure with respect to those of the hydrolysates obtained when the hydrolysis was carried out at atmospheric pressure, thus opening new frontiers of application in food science and nutrition. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. [The development of the method for enzymatic hydrolysis for the extraction of toxic substances from the hair samples].

    Science.gov (United States)

    Slustovskaya, Yu V; Krys'ko, M V; Strelova, O Yu

    The objective of the present study was to develop and validate the method for the extraction of toxic substances from the hair samples as exemplified by enzymatic hydrolysis of barbituric acid derivatives. The experiments were carried out with the use of laboratory animals (white female rats and albino guinea pigs) that had been daily given a phenobarbital solution per os during 4 months preceding the study. The hairs obtained from the experimental animals were subjected to acid hydrolysis with a 6 mole hydrochloric acid and enzymatic hydrolysis with the use of chymopsin, trypsin, chymotrypsin, and papain solutions. The analysis of the extracted materials was performed by means of gas chromatography with mass-selective detection. The application of the proposed method for enzymatic hydrolysis produced the better results than acid hydrolysis. This technique was validated. The results of the study made possible the comparative characteristic of the effectiveness of acid and enzymatic hydrolysis.

  11. Acceleration of the Enzymatic Hydrolysis of Cotton Waste Celluloses by Low Intensity Uniform Ultrasound Field

    Science.gov (United States)

    The cost-competitive production of bio-ethanol and other biofuels is currently impeded, mostly by high cost and low efficiency of enzymatic hydrolysis of feedstock biomass and especially plant celluloses. Despite substantial reduction in the cost of production of cellulolytic enzymes in recent times...

  12. Degradation of Collagen Increases Nitrogen Solubilisation During Enzymatic Hydrolysis of Fleshing Meat

    NARCIS (Netherlands)

    Anzani, Cecilia; Prandi, Barbara; Tedeschi, Tullia; Baldinelli, Chiara; Sorlini, Giovanni; Wierenga, Peter A.; Dossena, Arnaldo; Sforza, Stefano

    2017-01-01

    Abstract: The meat portion directly attached to bovine hides (fleshing meat) is a by-product of leather industry that is a potential new source of proteins. In literature different enzymatic and chemical methods have been proposed to hydrolyze and solubilize fleshing meat. Enzyme hydrolysis is

  13. Process development for gelatinisation and enzymatic hydrolysis of starch at high concentrations

    NARCIS (Netherlands)

    Baks, T.

    2007-01-01

    cum laude graduation (with distinction) Enzymatic hydrolysis of starch is encountered in day-to-day life for instance in the dishwasher during removal of stains with detergents or in our mouth during chewing of starch-based foods in the presence of saliva. The reaction is also important for the

  14. Effects of Ionic Strength on the Enzymatic Hydrolysis of Diluted and Concentrated Whey Protein Isolate

    NARCIS (Netherlands)

    Butré, C.I.; Wierenga, P.A.; Gruppen, H.

    2012-01-01

    To identify the parameters that affect enzymatic hydrolysis at high substrate concentrations, whey protein isolate (1–30% w/v) was hydrolyzed by Alcalase and Neutrase at constant enzyme-to-substrate ratio. No changes were observed in the solubility and the aggregation state of the proteins. With

  15. Nanosilver: A Catalyst in Enzymatic Hydrolysis of Starch

    Directory of Open Access Journals (Sweden)

    Falkowska Marta

    2014-09-01

    Full Text Available Silver nanoparticles are widely used, because of their antimicrobial properties. In this paper, the rate of starch digestion in the presence of nanocatalyst was compared with the rate of reaction without nanosilver. The rate of enzymatic degradation of starch was found to be increased in the presence of silver nanoparticles. It is considered that α-amylase was immobilized onto the surface of nanoparticles.

  16. Enzymatic hydrolysis of Grass Carp fish skin hydrolysates able to promote the proliferation of Streptococcus thermophilus.

    Science.gov (United States)

    Wang, Xiao-Nan; Qin, Mei; Feng, Yu-Ying; Chen, Jian-Kang; Song, Yi-Shan

    2017-09-01

    The promotion effect on proliferation of Streptococcus thermophilus by enzymatic hydrolysates of aquatic products was firstly studied. The effect of influencing factors of the hydrolysis on the growth of S. thermophilus was investigated. Grass Carp fish skin was hydrolysed to peptides by enzymatic hydrolysis using protease ProteAX, and for the S. thermophilus growth, the optimal enzymatic hydrolysis conditions were temperature of 60 °C, initial pH of 9.0, enzyme concentration of 10 g kg -1 , hydrolysis time of 80 min, and ratio of material to liquid of 1:2. The Grass Carp fish skin hydrolysate (GCFSH) prepared under the optimum conditions was fractionated to five fragments (GCFSH 1, GCFSH 2, GCFSH 3, GCFSH 4, GCFSH 5) according to molecular weight sizes, in which the fragments GCFSH 4 and GCFSH 5, with molecular weights of less than 1000 Da, significantly promoted the growth of S. thermophilus. The hydrolysis process of Grass Carp fish skin can be simplified, and the peptides with molecular weights below 1000 Da in the hydrolysates are the best nitrogen source for proliferation of S. thermophilus. This work can provide a fundamental theoretical basis for the production of multi-component functional foods, especially in milk drinks or yogurt. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. High-solids loading enzymatic hydrolysis of waste papers for biofuel production

    International Nuclear Information System (INIS)

    Wang, Lei; Templer, Richard; Murphy, Richard J.

    2012-01-01

    Highlights: ► Waste papers have great potential as a feedstock for bioethanol production. ► A wet blending step would significantly enhance enzymatic hydrolysis efficiency. ► High-solids loading saccharification was performed successfully on waste papers. ► Saccharification data were from four types of paper and two enzyme alternatives. ► Enzymatic hydrolysis kinetic models were validated by experimental data. -- Abstract: Waste papers (newspaper, office paper, magazines and cardboard in this study) with 50–73% (w/w oven dry weight) carbohydrate contents have considerable potential as raw materials for bioethanol production. A particle size reduction step of wet blending prior to enzymatic hydrolysis of newspaper was found to increase the glucan conversion efficiency by up to 10%. High-solids loading hydrolysis at 15% (w/w) of four types of paper using two enzyme alternatives, Celluclast 1.5L supplemented with Novozyme 188 and Cellic Ctec 1 (Novozymes A/S, Demark), at various enzyme concentrations were successfully performed in a lab-scale overhead-stirred reactor. This work has identified the relative saccharification performance for the four types of paper and shows office paper and cardboard to be more suitable for producing bioethanol than newspaper or magazine paper. The experimental data were also very well described by a modified, simple three parameter glucan and xylan hydrolysis model. These findings provide the possibility for incorporating this validated kinetic model into process designs required for commercial scale bioethanol production from waste paper resources.

  18. The mechanism of poly(ethylene glycol) 4000 effect on enzymatic hydrolysis of lignocellulose.

    Science.gov (United States)

    Li, Jihong; Li, Shizhong; Fan, Chenyu; Yan, Zhipei

    2012-01-01

    Adsorption of cellulase on substrates is a key step for enzymatic hydrolysis of lignocellulose. Addition of surface active additives affects the interaction between cellulase and substrates and has been proven to enhance enzymatic hydrolysis of lignocellulose by many studies. However, the mechanism of poly(ethylene glycol) effect is not yet clear. In this study, enzymatic activity and the adsorption of cellulase on different substrates with different addition sequence of PEG 4000 were investigated. The crystallinity index of substrates incubated by PEG 4000 was also measured by FTIR and XRD. Except for reduction of unproductive binding of cellulase on lignin which was reported by some literatures, current results confirmed a crucial function of PEG 4000 which prevented cellulase deactivation on cellulose rather than lignin through significant difference in adsorption capacity and enzymatic activity of cellulase with different PEG 4000 addition sequence. This conclusion rationally explained PEG 4000 had positive effect on pure cellulose without lignin as well as on lignocellulosic biomass. In addition, PEG 4000 was also found to be contributed to promote the removal of amorphous cellulose. These conclusions are helpful to understand the effect of surface active additives and optimize the enzymatic hydrolysis process. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Effects of cutting orientation in poplar wood biomass size reduction on enzymatic hydrolysis sugar yield.

    Science.gov (United States)

    Zhang, Meng; Ju, Xiaohui; Song, Xiaoxu; Zhang, Xiao; Pei, Z J; Wang, Donghai

    2015-10-01

    The aim of this study was to understand how cutting orientation in poplar wood biomass size reduction affects enzymatic hydrolysis sugar yield of wood particles. A metal cutting (milling) machine was used to produce poplar wood particles from three cutting orientations. Results showed that cutting orientation significantly affected enzymatic hydrolysis sugar yield of wood particles. In this study, size reduction from the optimum cutting orientation produced 50% more sugars than the other two cutting orientations. Particles from the cutting orientation with the highest sugar yield had a large enzyme accessible area (125 mg orange dye/g biomass, as evaluated by Simons' stain procedure) and low crystallinity (50% crystallinity index, as calculated by the Segal method). Furthermore, small particle size did not necessarily lead to improvement in enzymatic digestibility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Barley grain constituents, starch composition, and structure affect starch in vitro enzymatic hydrolysis.

    Science.gov (United States)

    Asare, Eric K; Jaiswal, Sarita; Maley, Jason; Båga, Monica; Sammynaiken, Ramaswami; Rossnagel, Brian G; Chibbar, Ravindra N

    2011-05-11

    The relationship between starch physical properties and enzymatic hydrolysis was determined using ten different hulless barley genotypes with variable carbohydrate composition. The ten barley genotypes included one normal starch (CDC McGwire), three increased amylose starches (SH99250, SH99073, and SB94893), and six waxy starches (CDC Alamo, CDC Fibar, CDC Candle, Waxy Betzes, CDC Rattan, and SB94912). Total starch concentration positively influenced thousand grain weight (TGW) (r(2) = 0.70, p starch concentration (r(2) = -0.80, p hydrolysis of pure starch (r(2) = -0.67, p starch concentration (r(2) = 0.46, p starch (RS) in meal and pure starch samples. The rate of starch hydrolysis was high in pure starch samples as compared to meal samples. Enzymatic hydrolysis rate both in meal and pure starch samples followed the order waxy > normal > increased amylose. Rapidly digestible starch (RDS) increased with a decrease in amylose concentration. Atomic force microscopy (AFM) analysis revealed a higher polydispersity index of amylose in CDC McGwire and increased amylose genotypes which could contribute to their reduced enzymatic hydrolysis, compared to waxy starch genotypes. Increased β-glucan and dietary fiber concentration also reduced the enzymatic hydrolysis of meal samples. An average linkage cluster analysis dendrogram revealed that variation in amylose concentration significantly (p starch concentration in meal and pure starch samples. RS is also associated with B-type granules (5-15 μm) and the amylopectin F-III (19-36 DP) fraction. In conclusion, the results suggest that barley genotype SH99250 with less decrease in grain weight in comparison to that of other increased amylose genotypes (SH99073 and SH94893) could be a promising genotype to develop cultivars with increased amylose grain starch without compromising grain weight and yield.

  1. Enzymatic Hydrolysis of Water Extractable Polysaccharides from Leaves of Plantago major L.

    Science.gov (United States)

    Lukova, Paolina K; Karcheva-Bahchevanska, Diana P; Bivolarski, Veselin P; Mladenov, Rumen D; Iliev, Ilia N; Nikolova, Mariana M

    2017-06-01

    Plantago major L. leaves have been used for centuries by the traditional medicine in the treatment of infectious disorders of the respiratory, urinary and digestive tracts. Researchers have reported that hot water extracts of Plantago major possess a broad-spectrum of anticancer, antioxidant and antiviral activities, as well as activities which modulate cell-mediated immunity. Their beneficial properties may be due to the significant content of polysaccharides. The polysaccharides that have been isolated from the leaves of Plantago major L. have different structures - pectic substances, galactans, arabinogalactans, glucomannans. The aim of this paper was to study the correlation between the structure of the water extractable polysaccharides isolated from Plantago major L. leaves and their enzymatic hydrolysis with different carbohydrate hydrolases. The hydrolysis reactions were performed with the enzymes hemicellulase and mannanase. Spectrophotometric total reducing sugars assay was used to examine the hydrolysis yield. The monosaccharide and oligosaccharide compositions were determined using HPLC analysis. The highest hydrolysis yield of the water extractable polysaccharides from Plantago major leaves was obtained by treatment with hemicellulase. The hydrolysis yield increased with the augmentation of the ratio of enzyme to polysaccharide. Galactose was the prevalent monosaccharide identified in the composition of the isolated polysaccharides. Oligosaccharides with different degree of polymerization were also detected. The enzymatic hydrolysis of water extractable polysaccharides from Plantago major leaves allows us to obtain different types of oligosaccharides with beneficial effects on both human health and industry.

  2. Bacterial cellulose production from cotton-based waste textiles: enzymatic saccharification enhanced by ionic liquid pretreatment.

    Science.gov (United States)

    Hong, Feng; Guo, Xiang; Zhang, Shuo; Han, Shi-fen; Yang, Guang; Jönsson, Leif J

    2012-01-01

    Cotton-based waste textiles were explored as alternative feedstock for production of bacterial cellulose (BC) by Gluconacetobacter xylinus. The cellulosic fabrics were treated with the ionic liquid (IL) 1-allyl-3-methylimidazolium chloride ([AMIM]Cl). [AMIM]Cl caused 25% inactivation of cellulase activity at a concentration as low as of 0.02 g/mL and decreased BC production during fermentation when present in concentrations higher than 0.0005 g/mL. Therefore, removal of residual IL by washing with hot water was highly beneficial to enzymatic saccharification as well as BC production. IL-treated fabrics exhibited a 5-7-fold higher enzymatic hydrolysis rate and gave a seven times larger yield of fermentable sugars than untreated fabrics. BC from cotton cloth hydrolysate was obtained at an yield of 10.8 g/L which was 83% higher than that from the culture grown on glucose-based medium. The BC from G. xylinus grown on IL-treated fabric hydrolysate had a 79% higher tensile strength than BC from glucose-based culture medium which suggests that waste cotton pretreated with [AMIM]Cl has potential to serve as a high-quality carbon source for BC production. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Enzymatic Hydrolysis of Oleuropein from Olea europea (Olive Leaf Extract and Antioxidant Activities

    Directory of Open Access Journals (Sweden)

    Jiao-Jiao Yuan

    2015-02-01

    Full Text Available Oleuropein (OE, the main polyphenol in olive leaf extract, is likely to decompose into hydroxytyrosol (HT and elenolic acid under the action of light, acid, base, high temperature. In the enzymatic process, the content of OE in olive leaf extract and enzyme are key factors that affect the yield of HT. A selective enzyme was screened from among 10 enzymes with a high OE degradation rate. A single factor (pH, temperature, time, enzyme quantity optimization process and a Box-Behnken design were studied for the enzymatic hydrolysis of 81.04% OE olive leaf extract. Additionally, enzymatic hydrolysis results with different substrates (38.6% and 81.04% OE were compared and the DPPH antioxidant properties were also evaluated. The result showed that the performance of hydrolysis treatments was best using hemicellulase as a bio-catalyst, and the high purity of OE in olive extract was beneficial to biotransform OE into HT. The optimal enzymatic conditions for achieving a maximal yield of HT content obtained by the regression were as follows: pH 5, temperature 55 °C and enzyme quantity 55 mg. The experimental result was 11.31% ± 0.15%, and the degradation rate of OE was 98.54%. From the present investigation of the antioxidant activity determined by the DPPH method, the phenol content and radical scavenging effect were both decreased after enzymatic hydrolysis by hemicellulase. However, a high antioxidant activity of the ethyl acetate extract enzymatic hydrolysate (IC50 = 41.82 μg/mL was demonstated. The results presented in this work suggested that hemicellulase has promising and attractive properties for industrial production of HT, and indicated that HT might be a valuable biological component for use in pharmaceutical products and functional foods.

  4. Enzymatic hydrolysis of oleuropein from Olea europea (olive) leaf extract and antioxidant activities.

    Science.gov (United States)

    Yuan, Jiao-Jiao; Wang, Cheng-Zhang; Ye, Jian-Zhong; Tao, Ran; Zhang, Yu-Si

    2015-02-11

    Oleuropein (OE), the main polyphenol in olive leaf extract, is likely to decompose into hydroxytyrosol (HT) and elenolic acid under the action of light, acid, base, high temperature. In the enzymatic process, the content of OE in olive leaf extract and enzyme are key factors that affect the yield of HT. A selective enzyme was screened from among 10 enzymes with a high OE degradation rate. A single factor (pH, temperature, time, enzyme quantity) optimization process and a Box-Behnken design were studied for the enzymatic hydrolysis of 81.04% OE olive leaf extract. Additionally, enzymatic hydrolysis results with different substrates (38.6% and 81.04% OE) were compared and the DPPH antioxidant properties were also evaluated. The result showed that the performance of hydrolysis treatments was best using hemicellulase as a bio-catalyst, and the high purity of OE in olive extract was beneficial to biotransform OE into HT. The optimal enzymatic conditions for achieving a maximal yield of HT content obtained by the regression were as follows: pH 5, temperature 55 °C and enzyme quantity 55 mg. The experimental result was 11.31% ± 0.15%, and the degradation rate of OE was 98.54%. From the present investigation of the antioxidant activity determined by the DPPH method, the phenol content and radical scavenging effect were both decreased after enzymatic hydrolysis by hemicellulase. However, a high antioxidant activity of the ethyl acetate extract enzymatic hydrolysate (IC50 = 41.82 μg/mL) was demonstated. The results presented in this work suggested that hemicellulase has promising and attractive properties for industrial production of HT, and indicated that HT might be a valuable biological component for use in pharmaceutical products and functional foods.

  5. Sediments in coffee extracts: Composition and control by enzymatic hydrolysis.

    Science.gov (United States)

    Delgado, P A; Vignoli, J A; Siika-Aho, M; Franco, T T

    2008-09-01

    The water-insolubility of some coffee extract components is one of the major limitations in the production of instant coffee. In this work, fractions from coffee extracts and sediments were prepared, and their chemical composition determined. Based on the carbohydrate analysis, galactomannan was found to be the main polysaccharide component of the insoluble fractions and probably responsible for sediment formation. The suitability of twelve commercial enzymes for the hydrolysis of the insoluble fractions was investigated. Pectinase 444L was the most effective enzyme in releasing sugars, mainly mannose and galactose, from these substrates. Biopectinase CCM, Rohapect B1L, Pectinase 444L and Galactomannanase ACH were found to be the most effective enzymes for reducing the sediment of coffee extracts. The highest sediment reduction was obtained using Rohapect B1L and Galactomannanase ACH, at enzyme concentrations of 0.3 and 0.1mg protein/g substrate, respectively. Copyright © 2008 Elsevier Ltd. All rights reserved.

  6. Process development for heme-enriched peptide by enzymatic hydrolysis of hemoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Man-Jin In [Chungwoon University, Hongsung (Korea). Dept. of Human Nutrition and Food Science; Hee Jeong Chae [Hoseo University, Asan (Korea). Dept. of Food Science and Technology; Nam-Soon Oh [Kongju National University, Chungnam (Korea). Dept. of Food Science and Technology

    2002-08-01

    An efficient production method of heme-iron-enriched peptide was developed based on enzymatic hydrolysis. Hemoglobin hydrolysis, carried out stepwise with commercially available exopeptidase and endopeptidase, resulted in an increased degree of hydrolysis (DH). Exopeptidase-catalyzed protein hydrolysis formed low molecular weight peptides and amino acids. Different process parameters including dialysis and ultra- and diafiltration were evaluated. Heme/peptide ratio increased as molecular weight cut-off (MWCO) of the dialysis membrane increased. When the hydrolysate was dialyzed against sodium phosphate buffer, a higher heme/peptide ratio was obtained. The heme/peptide ratio of the hydrolysate reached up to 25.4% when the dialysis was carried out with a membrane of 12-14 kDa MWCO. Also, the ratio was improved by the use of ultrafiltration and diafiltration on the pilot-scale. (author)

  7. Surface lignin change pertaining to the integrated process of dilute acid pre-extraction and mechanical refining of poplar wood chips and its impact on enzymatic hydrolysis.

    Science.gov (United States)

    Liu, Wei; Chen, Wei; Hou, Qingxi; Zhang, Jinping; Wang, Bing

    2017-03-01

    Dilute acid pre-extraction enhanced the mechanically refined poplar pulp substrates' enzymatic hydrolysis efficiency obviously. The results showed that the surface lignin distribution was changed significantly in residual wood chips and pulp substrates, and the surface lignin distribution showed important impact on the following enzymatic hydrolysis. Acid pre-extraction can lead to a redistribution of lignin in fiber cell walls, i.e., the lignin was degraded and migrated to fiber surface in the form of re-deposited lignin and pseudo-lignin. However, higher pre-extraction intensity was not desired due to the formation of redeposited lignin and pseudo-lignin. This study will help to reach a deeper understanding on the lignin distribution in the view of molecular and ultrastructure, and promote the development of a cost-efficient pretreatment strategy for biomass processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Fractionation of wheat straw by prehydrolysis, organosolv delignification and enzymatic hydrolysis for production of sugars and lignin.

    Science.gov (United States)

    Huijgen, W J J; Smit, A T; de Wild, P J; den Uil, H

    2012-06-01

    Wheat straw was fractionated using a three-step biorefining approach: (1) aqueous pretreatment for hemicellulose prehydrolysis into sugars, (2) organosolv delignification, and (3) enzymatic cellulose hydrolysis into glucose. Prehydrolysis was applied to avoid degradation of hemicellulose sugars during organosolv delignification. Maximum xylose yield obtained was 67% or 0.17 kg/kg straw (prehydrolysis: 175 °C, 30 min, 20mM H(2)SO(4)) compared to 4% in case of organosolv without prehydrolysis (organosolv: 200 °C, 60 min, 60% w/w aqueous ethanol). Prehydrolysis was found to reduce the lignin yield by organosolv delignification due to the formation of 'pseudo-lignin' and lignin recondensation during prehydrolysis. This reduction could partly be compensated by increasing the temperature of the organosolv delignification step. Prehydrolysis substantially improved the enzymatic cellulose digestibility from 49% after organosolv without prehydrolysis to 80% (20 FPU/g substrate). Increasing the organosolv delignification temperature to 220 °C resulted in a maximum enzymatic glucose yield of 93% or 0.36 kg/kg straw. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Enzymatic protein hydrolysates from high pressure-pretreated isolated pea proteins have better antioxidant properties than similar hydrolysates produced from heat pretreatment.

    Science.gov (United States)

    Girgih, Abraham T; Chao, Dongfang; Lin, Lin; He, Rong; Jung, Stephanie; Aluko, Rotimi E

    2015-12-01

    Isolated pea protein (IPP) dispersions (1%, w/v) were pretreated with high pressure (HP) of 200, 400, or 600 MPa for 5 min at 24 °C or high temperature (HT) for 30 min at 100 °C prior to hydrolysis with 1% (w/w) Alcalase. HP pretreatment of IPP at 400 and 600 MPa levels led to significantly (P40%) oxygen radical absorption capacity (ORAC) of hydrolysates. 2,2-Diphenyl-1-picrylhydrazyl, superoxide radical and hydroxyl radical scavenging activities of pea protein hydrolysates were also significantly (P<0.05) improved (25%, 20%, and 40%, respectively) by HP pretreatment of IPP. Protein hydrolysates from HT IPP showed no ORAC, superoxide or hydroxyl scavenging activity but had significantly (P<0.05) improved (80%) ferric reducing antioxidant power. The protein hydrolysates had weaker antioxidant properties than glutathione but overall, the HP pretreatment was superior to HT pretreatment in facilitating enzymatic release of antioxidant peptides from IPP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Enzymatic hydrolysis of barley and malt hemicellulose during brewing and mashing

    Energy Technology Data Exchange (ETDEWEB)

    Ogurtsov, V.E.; Lifshits, D.B.; Kondratenko, N.V.; Babicheva, L.K.; Yarovenko, V.L.

    1978-01-01

    A study was made of the hydrolysis of hemicellulose as beer wort is produced during the mashing of malt and barley. The hydrolysis of hemicellulose was found to be insignificant (5 to 6%) as the barley is mashed (fine and course grain) under the influence of its enzymes. The hydrolysis is more intense (by 30%) when endosperm is mashed. The hydrolysis of hemicellulose does not occur during the mashing of malt. The mashing of barley endosperm with enzymatic preparations containing hemicellulose (cytorosemin P10kh, xylonigrin P10kh, amylorisin P10kh, and amylosubtilin G10kh), increases the hydrolysis of hemicellulose by 10 to 20% depending on the amount of hemicellulose. The utilization of the raw material extract is simultaneously increased significantly. The mashing of barley with the same enzyme preparations increases the degree of hemicellulose hydrolysis by 6 to 18% and the use of the raw extract by 14 to 27% by 3 to 10% for the fine grain, and by 9 to 25% for the course grain. The degree of hemicellulose hydrolysis during the production of barley wort is influenced not only by the composition of the mash (endosperm or whole grain), but also by the degree of grain pulverization. 7 references, 5 tables.

  11. Nutritional composition of different grades of edible bird's nest and its enzymatic hydrolysis

    Science.gov (United States)

    Noor, Hidayati Syamimi Mohd; Babji, Abdul Salam; Lim, Seng Joe

    2018-04-01

    Edible bird nest (EBN) is a powerful and nutritious food usually consumed by the Chinese Community and it is considered among the most expensive animal products which are made up by salivation of swiftlets (Aerodramus fuciphagus). The other 5% to 10% are made up of foreign matters such as feathers, faecal matter and dirt. The EBN is graded based on its aesthetics as well as its cleaning processes. The aim of this study were to determine and compare EBN of different grades (A, B, C, D) in terms of proximate composition and amino acid profile, and next to enzymatically hydrolyse and determine the degree of hydrolysis (DH) and the recovery percentage of EBN hydrolysates. The enzymatic hydrolysis were performed as an alternative cleaning process of the various grades of EBN, where the glycoproteins were hydrolysed to glycopeptides, making them soluble and leaving behind other insoluble impurities. The results in this study showed that EBN contained high crude protein content: 60.59% (EBNA), 59.50% (EBNB), 54.29% (EBNC) and 56.57% (EBND). Lower grade EBNs (EBNC and EBND) has much higher ash content, i.e. impurities, compared to higher grade EBNs (EBNA and EBNB). In terms of amino acid profile, EBND showed the highest total amino acids compared to EBNA, EBNB and EBNC, with serine and aspartic acid being the main amino acids. Treating the EBN with alcalase for 1.0 - 4.0 hours produced hydrolysates with different degree of hydrolysis (DH), ranging from 10.83 %DH (EBNA) to 13.79 %DH (EBNC). The recovery of EBN after enzymatic hydrolysis range from 89 % (EBNB) to 99% (EBNA). Overall, results showed nutritional composition and amino acid profile of EBN of various grades were significantly different in its nutritional quality, while the enzymatic hydrolysis has successfully separated the impurities from the lower grades EBN.

  12. Dilute H{sub 2}SO{sub 4}-catalyzed hydrothermal pretreatment to enhance enzymatic digestibility of Jatropha curcas fruit hull for ethanol fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Marasabessy, Ahmad [Wageningen Univ. (Netherlands). Agrotechnology and Food Sciences Group; Rijksuniversiteit Groningen (Netherlands). Dept. of Chemical Engineering; Agency for the Assessment and Application of Technology (BPPT), Jakarta (Indonesia); Kootstra, A. Maarten J. [Wageningen Univ. (Netherlands). Agrotechnology and Food Sciences Group; Wageningen Univ. (Netherlands). Bioprocess Engineering Group; Sanders, Johan P.M.; Westhuis, Ruud A. [Wageningen Univ. (Netherlands). Agrotechnology and Food Sciences Group

    2012-11-01

    Dilute sulfuric acid pretreatment of the Jatropha curcas fruit hull at high temperatures (140 C to 180 C) performed in a 110-mL stainless steel reactor was investigated to enhance the enzymatic digestibility of its lignocellulosic components. Carbohydrates accounted for 43% of the dry matter of the J. curcas fruit hull biomass. The goal of the study was to optimize the pretreatment conditions (acid concentration, time, and temperature) in order to obtain the highest sugar yield after subsequent enzymatic hydrolysis. A Box-Behnken design was applied to the experimental setup in order to reduce the number of experiments. The optimal pretreatment conditions are 30-min incubations at a temperature of 178 C with a sulfuric acid concentration of 0.9% (w/v). Using these pretreatment conditions for a fruit solid loading of 9.52% followed by a 24-h enzymatic hydrolysis resulted in a liberation of 100% of all pentoses present (71% yield and 29% degradation to furfural) and 83% of the hexoses (78% yield and 5% degradation to 5-hydroxymethylfurfural). The simultaneous saccharification and fermentation experiment showed that acid-pretreated fruit hull can be used as a substrate for Saccharomyces cerevisiae to produce ethanol. (orig.)

  13. Enhanced dewaterability of sludge during anaerobic digestion with thermal hydrolysis pretreatment: New insights through structure evolution.

    Science.gov (United States)

    Zhang, Jingsi; Li, Ning; Dai, Xiaohu; Tao, Wenquan; Jenkinson, Ian R; Li, Zhuo

    2017-12-19

    Comprehensive insights into the sludge digestate dewaterability were gained through porous network structure of sludge. We measured the evolution of digestate dewaterability, represented by the solid content of centrifugally dewatered cake, in high-solids sequencing batch digesters with and without thermal hydrolysis pretreatment (THP). The results show that the dewaterability of the sludge after digestion was improved by 3.5% (±0.5%) for unpretreated sludge and 5.1% (±0.4%) for thermally hydrolyzed sludge. Compared to the unpretreated sludge digestate, thermal hydrolysis pretreatment eventually resulted in an improvement of dewaterability by 4.6% (±0.5%). Smaller particle size and larger surface area of sludge were induced by thermal hydrolysis and anaerobic digestion treatments. The structure strength and compactness of sludge, represented by elastic modulus and fractal dimension respectively, decreased with increase of digestion time. The porous network structure was broken up by thermal hydrolysis pretreatment and was further weakened during anaerobic digestion, which correspondingly improved the dewaterability of digestates. The logarithm of elastic modulus increased linearly with fractal dimension regardless of the pretreatment. Both fractal dimension and elastic modulus showed linear relationship with dewaterability. The rheological characterization combined with the analysis of fractal dimension of sewage sludge porous network structure was found applicable in quantitative evaluation of sludge dewaterability, which depended positively on both thermal hydrolysis and anaerobic digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Progressive structural changes of Avicel, bleached softwood, and bacterial cellulose during enzymatic hydrolysis

    Science.gov (United States)

    Kafle, Kabindra; Shin, Heenae; Lee, Christopher M.; Park, Sunkyu; Kim, Seong H.

    2015-01-01

    A comprehensive picture of structural changes of cellulosic biomass during enzymatic hydrolysis is essential for a better understanding of enzymatic actions and development of more efficient enzymes. In this study, a suite of analytical techniques including sum frequency generation (SFG) spectroscopy, infrared (IR) spectroscopy, x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) were employed for lignin-free model biomass samples—Avicel, bleached softwood, and bacterial cellulose—to find correlations between the decrease in hydrolysis rate over time and the structural or chemical changes of biomass during the hydrolysis reaction. The results showed that the decrease in hydrolysis rate over time appears to correlate with the irreversible deposition of non-cellulosic species (either reaction side products or denatured enzymes, or both) on the cellulosic substrate surface. The crystallinity, degree of polymerization, and meso-scale packing of cellulose do not seem to positively correlate with the decrease in hydrolysis rate observed for all three substrates tested in this study. It was also found that the cellulose Iα component of the bacterial cellulose is preferentially hydrolyzed by the enzyme than the cellulose Iβ component. PMID:26463274

  15. Characterisation of non-degraded oligosaccharides in enzymatically hydrolysed and fermented, dilute ammonia-pretreated corn stover for ethanol production.

    Science.gov (United States)

    Jonathan, M C; DeMartini, J; Van Stigt Thans, S; Hommes, R; Kabel, M A

    2017-01-01

    Corn stover is lignocellulosic biomass that has potential to be used as raw material for bioethanol production. In the current research, dilute ammonia pretreatment was used to improve the accessibility of corn stover carbohydrates to subsequently added hydrolytic enzymes. Some carbohydrates, however, were still present after enzymatic hydrolysis and fermentation. Hence, this research was aimed to characterise the recalcitrant carbohydrates, especially the oligosaccharides that remained after hydrolysis and fermentation of dilute ammonia-pretreated corn stover (DACS). About 35% (w/w) of DACS carbohydrates remained after enzymatic hydrolysis and fermentation of the released monosaccharides. One-third of these recalcitrant carbohydrates were water soluble and composed of diverse oligosaccharides. By using UHPLC-MS n , more than 50 oligosaccharides were detected. Glucurono-xylooligosaccharides (UAXOS) with a degree of polymerisation (DP) less than 5 were the most abundant oligosaccharides. The (4- O -methyl) glucuronosyl substituent was mostly attached onto the terminal xylosyl residue. It was shown that the glucuronosyl substituent in some UAXOS was modified into a hexenuronosyl, a glucuronamide or a hexenuronamide residue due to the dilute ammonia pretreatment. Another group of abundant oligosaccharides comprised various xyloglucan oligosaccharides (XGOS), with a DP 5 annotated as XXG as the most pronounced. In addition, disaccharides annotated as xylosyl-glucose with different β linkages as well as larger carbohydrates were present in the fermentation slurry. Around one-third of the 35% (w/w) recalcitrant DACS carbohydrates remained as water-soluble saccharides. In this study, more than 50 recalcitrant oligosaccharides were detected, which mostly composed of xylosyl and/or glucosyl residues. The most pronounced oligosaccharides were UAXOS and XGOS. Hence, α-glucuronidase and α-xylosidase were suggested to be added to the enzyme mixture to degrade these

  16. Accessibility of Enzymatically Delignified Bambusa bambos for Efficient Hydrolysis at Minimum Cellulase Loading: An Optimization Study

    Directory of Open Access Journals (Sweden)

    Arindam Kuila

    2011-01-01

    Full Text Available In the present investigation, Bambusa bambos was used for optimization of enzymatic pretreatment and saccharification. Maximum enzymatic delignification achieved was 84%, after 8 h of incubation time. Highest reducing sugar yield from enzyme-pretreated Bambusa bambos was 818.01 mg/g dry substrate after 8 h of incubation time at a low cellulase loading (endoglucanase, β-glucosidase, exoglucanase, and xylanase were 1.63 IU/mL, 1.28 IU/mL, 0.08 IU/mL, and 47.93 IU/mL, respectively. Enzyme-treated substrate of Bambusa bambos was characterized by analytical techniques such as Fourier transformed infrared spectroscopy (FTIR, X-ray diffraction (XRD, and scanning electron microscopy (SEM. The FTIR spectrum showed that the absorption peaks of several functional groups were decreased after enzymatic pretreatment. XRD analysis indicated that cellulose crystallinity of enzyme-treated samples was increased due to the removal of amorphous lignin and hemicelluloses. SEM image showed that surface structure of Bambusa bambos was distorted after enzymatic pretreatment.

  17. Role of supramolecular cellulose structures in enzymatic hydrolysis of plant cell walls

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; Hidayat, Budi Juliman; Johansen, Katja Salomon

    2011-01-01

    The study of biomass deconstruction by enzymatic hydrolysis has hitherto not focussed on the importance of supramolecular structures of cellulose. In lignocellulose fibres, regions with a different organisation of the microfibrils are present. These regions are called dislocations or slip planes...... mixture on hydrothermally treated wheat straw, it was found that the fibres were cut into segments corresponding to the sections between the dislocations initially present, as has previously been observed for acid hydrolysis of softwood pulps. The results indicate that dislocations are important during...

  18. Quantitative predictions of bioconversion of aspen by dilute acid and SPORL pretreatments using a unified combined hydrolysis factor (CHF)

    Science.gov (United States)

    W. Zhu; Carl J. Houtman; J.Y. Zhu; Roland Gleisner; K.F. Chen

    2012-01-01

    A combined hydrolysis factor (CHF) was developed to predict xylan hydrolysis during pretreatments of native aspen (Populus tremuloides) wood chips. A natural extension of previously developed kinetic models allowed us to account for the effect of catalysts by dilute acid and two sulfite pretreatments at different pH values....

  19. Lipophilic prodrugs of apomorphine I: Preparation, characterisation, and in vitro enzymatic hydrolysis in biorelevant media

    DEFF Research Database (Denmark)

    Borkar, Nrupa Nitin; Li, Boyang; Holm, René

    2015-01-01

    in biorelevant media before and after incorporating them into self-emulsifying drug delivery systems (SEDDS) for oral delivery. Two apomorphine diester prodrugs were synthesised: dilauroyl apomorphine (DLA) and dipalmitoyl apomorphine (DPA). The in vitro enzymatic hydrolysis of diesters was performed using...... substrates of lipases present in pancreatin, and the degree of diester degradation can be controlled by selecting suitable lipid excipients. Therefore, diesters of apomorphine are promising prodrugs for oral delivery aiming at lymphatic transport....

  20. Process development for gelatinisation and enzymatic hydrolysis of starch at high concentrations

    OpenAIRE

    Baks, T.

    2007-01-01

    cum laude graduation (with distinction) Enzymatic hydrolysis of starch is encountered in day-to-day life for instance in the dishwasher during removal of stains with detergents or in our mouth during chewing of starch-based foods in the presence of saliva. The reaction is also important for the (food) industry, for example for the production of beer or bio-ethanol. In industry, it is usually preceded by gelatinisation to make the starch molecules available for the enzymes. Both gelatinisation...

  1. The dual effects of Maillard reaction and enzymatic hydrolysis on the antioxidant activity of milk proteins.

    Science.gov (United States)

    Oh, N S; Lee, H A; Lee, J Y; Joung, J Y; Lee, K B; Kim, Y; Lee, K W; Kim, S H

    2013-08-01

    The objective of this study was to determine the enhanced effects on the biological characteristics and antioxidant activity of milk proteins by the combination of the Maillard reaction and enzymatic hydrolysis. Maillard reaction products were obtained from milk protein preparations, such as whey protein concentrates and sodium caseinate with lactose, by heating at 55°C for 7 d in sodium phosphate buffer (pH 7.4). The Maillard reaction products, along with untreated milk proteins as controls, were hydrolyzed for 0 to 3h with commercial proteases Alcalase, Neutrase, Protamex, and Flavorzyme (Novozymes, Bagsværd, Denmark). The antioxidant activity of hydrolyzed Maillard reaction products was determined by reaction with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, their 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, and the ability to reduce ferric ions. Further characteristics were evaluated by the o-phthaldialdehyde method and sodium dodecyl sulfate-PAGE. The degree of hydrolysis gradually increased in a time-dependent manner, with the Alcalase-treated Maillard reaction products being the most highly hydrolyzed. Radical scavenging activities and reducing ability of hydrolyzed Maillard reaction products increased with increasing hydrolysis time. The combined products of enzymatic hydrolysis and Maillard reaction showed significantly greater antioxidant activity than did hydrolysates or Maillard reaction products alone. The hydrolyzed Maillard reaction products generated by Alcalase showed significantly higher antioxidant activity when compared with the other protease products and the antioxidant activity was higher for the whey protein concentrate groups than for the sodium caseinate groups. These findings indicate that Maillard reaction products, coupled with enzymatic hydrolysis, could act as potential antioxidants in the pharmaceutical, food, and dairy industries. Copyright © 2013 American Dairy Science Association

  2. Utilization of residue from cassava starch processing for production of fermentable sugar by enzymatic hydrolysis

    Directory of Open Access Journals (Sweden)

    Luciana Reis Fontinelle SOUTO

    2016-01-01

    Full Text Available Abstract The aim of this study was to characterize and perform enzymatic hydrolysis of cassava peeling residue (peel and inner peel, mainly composed of peels and small pieces. Residue was sanitized, dried at 55 °C for 24 hours and ground. The obtained flour showed pH of 4.85; 72.53 g 100 g–1 moisture; 5.18 mL 1M NaOH 100 g–1 acidity; 60.68 g 100 g–1 starch; 1.08 g 100 g–1 reducing sugar; 1.63 g 100g–1 ash; 0.86 g 100 g–1 lipid and 3.97 g 100 g–1 protein. Enzymatic hydrolysis was carried out by means of rotational central composite design, analyzing the effects of concentrations of α-amylase enzyme (10 to 50 U g starch–1, and the amyloglucosidase enzyme (80 to 400 U g starch–1 on variable responses: percent conversion of starch into reducing sugars (RSC and soluble solid content (SS. Highest values of RSC (110% and SS (12 °Brix were observed when using the maximum concentration of amyloglucosidase and throughout the concentration range of α-amylase. Enzymatic hydrolysis of cassava peel is feasible and allows the use of hydrolysate in fermentation processes for the production of various products, such as alcoholic drinks, vinegar, among others.

  3. Effects of lipids on enzymatic hydrolysis and physical properties of starch.

    Science.gov (United States)

    Ai, Yongfeng; Hasjim, Jovin; Jane, Jay-lin

    2013-01-30

    This study aimed to understand effects of lipids, including corn oil (CO), soy lecithin (SL), palmitic acid (PA), stearic acid (SA), oleic acid (OA), and linoleic acid (LA), on the enzymatic hydrolysis and physical properties of normal corn (NCS), tapioca (TPS), waxy corn (WCS), and high-amylose corn (HA7) starch, and to elucidate mechanisms of interactions between the starches and lipids. After cooking with the lipids (10%, w/w, dsb), NCS, TPS, and HA7 showed significant decreases in enzymatic hydrolysis, and their DSC thermograms displayed amylose-lipid-complex dissociation peaks except with the CO. (13)C NMR spectra of amylodextrin with CO showed downfield changes in the chemical shifts of carbons 1 and 4 of the anhydroglucose unit, indicating helical complex formation. Generally, free fatty acids (FFAs) reduced, but SL increased the peak viscosities of starches. FFAs and SL decreased, but CO increased the gel strength of NCS. These lipids displayed little impacts on the enzymatic hydrolysis and physical properties of WCS because it lacked amylose. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Enzymatic Pre-Treatment Increases the Protein Bioaccessibility and Extractability in Dulse (Palmaria palmata

    Directory of Open Access Journals (Sweden)

    Hanne K. Mæhre

    2016-10-01

    Full Text Available Several common protein extraction protocols have been applied on seaweeds, but extraction yields have been limited. The aims of this study were to further develop and optimize existing extraction protocols and to examine the effect of enzymatic pre-treatment on bioaccessibility and extractability of seaweed proteins. Enzymatic pre-treatment of seaweed samples resulted in a three-fold increase in amino acids available for extraction. Combining enzymatic pre-treatment with alkaline extraction resulted in a 1.6-fold increase in the protein extraction yield compared to a standard alkaline extraction protocol. A simulated in vitro gastrointestinal digestion model showed that enzymatic pre-treatment of seaweed increased the amount of amino acids available for intestinal absorption 3.2-fold. In conclusion, enzymatic pre-treatment of seaweeds is effective for increasing the amount of amino acids available for utilization and may thus be an effective means for increasing the utilization potential of seaweed proteins. However, both the enzymatic pre-treatment protocol and the protein extraction protocol need further optimization in order to obtain optimal cost-benefit and results from the in vitro gastrointestinal digestion model need to be confirmed in clinical models.

  5. Enzymatic Pre-Treatment Increases the Protein Bioaccessibility and Extractability in Dulse (Palmaria palmata).

    Science.gov (United States)

    Mæhre, Hanne K; Jensen, Ida-Johanne; Eilertsen, Karl-Erik

    2016-10-26

    Several common protein extraction protocols have been applied on seaweeds, but extraction yields have been limited. The aims of this study were to further develop and optimize existing extraction protocols and to examine the effect of enzymatic pre-treatment on bioaccessibility and extractability of seaweed proteins. Enzymatic pre-treatment of seaweed samples resulted in a three-fold increase in amino acids available for extraction. Combining enzymatic pre-treatment with alkaline extraction resulted in a 1.6-fold increase in the protein extraction yield compared to a standard alkaline extraction protocol. A simulated in vitro gastrointestinal digestion model showed that enzymatic pre-treatment of seaweed increased the amount of amino acids available for intestinal absorption 3.2-fold. In conclusion, enzymatic pre-treatment of seaweeds is effective for increasing the amount of amino acids available for utilization and may thus be an effective means for increasing the utilization potential of seaweed proteins. However, both the enzymatic pre-treatment protocol and the protein extraction protocol need further optimization in order to obtain optimal cost-benefit and results from the in vitro gastrointestinal digestion model need to be confirmed in clinical models.

  6. Effective enzymatic in situ saccharification of bamboo shoot shell pretreated by dilute alkalic salts sodium hypochlorite/sodium sulfide pretreatment under the autoclave system.

    Science.gov (United States)

    Chong, Gang-Gang; He, Yu-Cai; Liu, Qiu-Xiang; Kou, Xiao-Qin; Huang, Xiao-Jun; Di, Jun-Hua; Ma, Cui-Luan

    2017-10-01

    In this study, dilute alkali salts (0.6% NaClO, 0.067% Na 2 S) pretreatment at 10% sulfidity under the autoclave system at 120°C for 40min was used for pretreating bamboo shoot shell (BSS). Furthermore, FT-IR, XRD and SEM were employed to characterize the changes in the cellulose structural characteristics (porosity, morphology, and crystallinity) of the pretreated BSS solid residue. After 72h, the reducing sugars and glucose from the enzymatic in situ hydrolysis of 50g/L pretreated BSS in dilute NaClO/Na 2 S media could be obtained at 31.11 and 20.32g/L, respectively. Finally, the obtained BSS-hydrolysates containing alkalic salt NaClO/Na 2 S resulted in slightly negative effects on the ethanol production. Glucose in BSS-hydrolysates was fermented from 20.0 to 0.17g/L within 48h, and an ethanol yield of 0.41g/g glucose, which represents 80.1% of the theoretical yield, was obtained. This study provided an effective strategy for potential utilization of BSS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Effect of Maize Biomass Composition on the Optimization of Dilute-Acid Pretreatments and Enzymatic Saccharification

    NARCIS (Netherlands)

    Torres Salvador, A.F.; Weijde, van der R.T.; Dolstra, O.; Visser, R.G.F.; Trindade, L.M.

    2013-01-01

    At the core of cellulosic ethanol research are innovations leading to reductions in the chemical and energetic stringency of thermochemical pretreatments and enzymatic saccharification. In this study, key compositional features of maize cell walls influencing the enzymatic conversion of biomass into

  8. Enzymatic single-step preparation and antioxidant activity of hetero-chitooligosaccharides using non-pretreated housefly larvae powder.

    Science.gov (United States)

    Zhang, Yang; Zhou, Xiuling; Ji, Lusha; Du, Xiuju; Sang, Qing; Chen, Fang

    2017-09-15

    A novel chitinolytic enzyme-producing bacterium Chitiniphilus sp. LZ32 was isolated. Non-pretreated Housefly larvae powder (HLP) was used as an adsorbent to purify chitinolytic enzymes. The optimal conditions for hydrolysis of HLP by purifying enzymes chitinolytic enzymes were investigated. HPLC and MALDI-TOF analyses indicated that HLP enzymatic hydrolyzates mainly contain N-acetylglucosamine (GlcNAc) and hetero-chitooligosaccharides (COS) composed of GlcN and GlcNAc. The hetero-chitooligosaccharides (COS) had a degree of polymerization (DP) in the 2-6 range. The maximum production of COS was 158.3μg/mL after 72h of incubation. Maximum pentamer (51.2μg/mL) and hexamer concentrations (36.1μg/mL) were achieved at hydrolysis times of 72 and 84h, respectively. Antioxidant activities of purified COS products (PCOS) from different hydrolysis times were investigated in vitro. PCOS produced by hydrolysis times of 72h (PCOS-72) exhibited the strongest hydroxyl-scavenging ability and reducing power. These results indicate the potential of Chitiniphilus sp. LZ32 for COS production using HLP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Integrating alkaline extraction of proteins with enzymatic hydrolysis of cellulose from wet distiller's grains and solubles.

    Science.gov (United States)

    Bals, Bryan; Balan, Venkatesh; Dale, Bruce

    2009-12-01

    Fractionation of distiller's grains into value added products may serve to improve the economic viability of dry grind corn ethanol facilities in the wake of variable corn and ethanol prices. This research is aimed at creating a high protein, high lysine product from the grain using alkaline protein extractions in conjunction with hydrolysis of the remaining fiber to sugars which are then fermented to ethanol. Alkaline extractions improved the lysine content in protein products, although protein solubility did not exceed 45% of the total protein. In addition, oligomeric carbohydrates, starch, and other water solubles were also extracted, leading to a low purity protein product. Resulting sugar yields following ammonia fiber expansion (AFEX) pretreatment were also lower for extracted distiller's grains. From these experiments, it does not appear likely that alkaline extraction is a useful tool for fractionation of distiller's grains. However, pretreatment and hydrolysis can be an effective tool for further fractionation of protein.

  10. The effect of acid hydrolysis pretreatment on crystallinity and solubility of kenaf cellulose membrane

    Energy Technology Data Exchange (ETDEWEB)

    Saidi, Anis Syuhada Mohd; Zakaria, Sarani; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Padzil, Farah Nadia Mohammad [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2015-09-25

    Cellulose was extracted from kenaf core pulp (KCP) by series of bleaching steps in the sequence (DEED) where D and E are referred as acid and alkali treatment. The bleached kenaf pulp (BKCP) is then pretreated with acid hydrolysis at room temperature for 1 and 3 h respectively. The pretreated cellulose is dissolved in lithium hydroxide/urea (LiOH/urea) and cellulose solution produced was immersed in distilled water bath. BKCP without treatment was also conducted for comparison purpose. The effects of acid hydrolysis pretreatment on solubility and crystallinity are investigated. Higher solubility of cellulose solution is achieved for treated samples. Cellulose II formation and crystallinity index of the cellulose membrane were determined by X-ray diffraction (XRD)

  11. Low temperature lignocellulose pretreatment: effects and interactions of pretreatment pH are critical for maximizing enzymatic monosaccharide yields from wheat straw

    DEFF Research Database (Denmark)

    Pedersen, Mads; Johansen, Katja S.; Meyer, Anne S.

    2011-01-01

    Background: The recent development of improved enzymes and pentose-using yeast for cellulosic ethanol processes calls for new attention to the lignocellulose pretreatment step. This study assessed the influence of pretreatment pH, temperature, and time, and their interactions on the enzymatic...... alkaline pretreatments. Alkaline pretreatments also solubilized most of the lignin. Conclusions: Pretreatment pH exerted significant effects and factor interactions on the enzymatic glucose and xylose releases. Quite extreme pH values were necessary with mild thermal pretreatment strategies (T...... glucose and xylose yields from mildly pretreated wheat straw in multivariate experimental designs of acid and alkaline pretreatments. Results: The pretreatment pH was the most significant factor affecting both the enzymatic glucose and xylose yields after mild thermal pretreatments at maximum 140 degrees...

  12. Hydrothermal treatment and enzymatic hydrolysis of Tamarix ramosissima: evaluation of the process as a conversion method in a biorefinery concept.

    Science.gov (United States)

    Xiao, Ling-Ping; Shi, Zheng-Jun; Xu, Feng; Sun, Run-Cang

    2013-05-01

    The present work investigated the effects of hydrothermal treatment (HTT) of Tamarix ramosissima by determination of sugar and inhibitor formation in the liquid fraction, and chemical and morphological changes of the pretreated solid material coupled with an evaluation of enzymatic hydrolysis. HTT was carried out in a batch reactor system at a maximal temperature (TMAX 180-240 °C) and evaluated for severities logRo ranging from 2.40 to 4.17. The liquid fractions were analyzed by HPLC, GPC, and GC-MS. The morphology and composition of the solid residues were characterized using an array of techniques, such as SEM, XRD, BET surface area, and CP/MAS (13)C NMR. Using a variety of tools, we have developed a better understanding of how HTT process affects biomass structure and cellulose properties that impact on its digestibility. These results provided new insights into the factors limiting enzymatic digestibility and mechanism of biomass deconstruction during hydrothermal process. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  13. Improvement of yields and rates during enzymatic hydrolysis of cellulose to glucose. Progress report, June 1-August 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Sundstrom, D W; Klei, H E; Coughlin, R W

    1979-10-01

    During this quarter experiments were conducted on enzymatic hydrolysis of cellulose using T. reesei cellulase together with the immobilized ..beta..-glucosidase (..beta..-G) described in earlier reports. In batch, slurry, and fluidized bed reactors, the presence of the immobilized ..beta..-G reduced cellobiose concentrations to low levels, such that glucose yields were increased by over 100% with Solka floc and corn stover as substrates. Acid pretreated corn stover from the Dartmouth group was readily hydrolyzed by cellulase when combined with our immobilized ..beta..-G, giving glucose yields comparable to that from Solka flox, based on cellulose content. These studies complete the major tasks outlined in our original proposal. During the past twelve months: microbial ..beta..-glucosidase (..beta..-G) from A. phoenicis has been produced and purified; the (..beta..-G) has been immobilized on an alumina support yielding long half lives and having immobilization activities above 80%; The immobilized ..beta..-G in several enzymatic reaction systems has been tested using a practical cellulose source (corn stover); and glucose yield has been increased by over 100% by employing the immobilized ..beta..-G. This promising enzyme reaction system will be developed further under funding based on a renewal application already submitted to SERI.

  14. Antioxidative activities of hydrolysates from edible birds nest using enzymatic hydrolysis

    Science.gov (United States)

    Muhammad, Nurul Nadia; Babji, Abdul Salam; Ayub, Mohd Khan

    2015-09-01

    Edible bird's nest protein hydrolysates (EBN) were prepared via enzymatic hydrolysis to investigate its antioxidant activity. Two types of enzyme (alcalase and papain) were used in this study and EBN had been hydrolysed with different hydrolysis time (30, 60, 90 and 120 min). Antioxidant activities in EBN protein hydrolysate were measured using DPPH, ABTS+ and Reducing Power Assay. From this study, increased hydrolysis time from 30 min to 120 min contributed to higher DH, as shown by alcalase (40.59%) and papain (24.94%). For antioxidant assay, EBN hydrolysed with papain showed higher scavenging activity and reducing power ability compared to alcalase. The highest antioxidant activity for papain was at 120 min hydrolysis time with ABTS (54.245%), DPPH (49.78%) and Reducing Power (0.0680). Meanwhile for alcalase, the highest antioxidant activity was at 30 min hydrolysis time. Even though scavenging activity for EBN protein hydrolysates were high, the reducing power ability was quite low as compared to BHT and ascorbic Acid. This study showed that EBN protein hydrolysate with alcalase and papain treatments potentially exhibit high antioxidant activity which have not been reported before.

  15. Production and characterization of cowpea protein hydrolysate with optimum nitrogen solubility by enzymatic hydrolysis using pepsin.

    Science.gov (United States)

    Mune Mune, Martin Alain; Minka, Samuel René

    2017-06-01

    Cowpea is a source of low-cost and good nutritional quality protein for utilization in food formulations in replacement of animal proteins. Therefore it is necessary that cowpea protein exhibits good functionality, particularly protein solubility which affects the other functional properties. The objective of this study was to produce cowpea protein hydrolysate exhibiting optimum solubility by the adequate combination of hydrolysis parameters, namely time, solid/liquid ratio (SLR) and enzyme/substrate ratio (ESR), and to determine its functional properties and molecular characteristics. A Box-Behnken experimental design was used for the experiments, and a second-order polynomial to model the effects of hydrolysis time, SLR and ESR on the degree of hydrolysis and nitrogen solubility index. The optimum hydrolysis conditions of time 208.61 min, SLR 1/15 (w/w) and ESR 2.25% (w/w) yielded a nitrogen solubility of 75.71%. Protein breakdown and the peptide profile following enzymatic hydrolysis were evaluated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and size exclusion chromatography. Cowpea protein hydrolysate showed higher oil absorption capacity, emulsifying activity and foaming ability compared with the concentrate. The solubility of cowpea protein hydrolysate was adequately optimized by response surface methodology, and the hydrolysate showed adequate functionality for use in food. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  16. Process evaluation of enzymatic hydrolysis with filtrate recycle for the production of high concentration sugars.

    Science.gov (United States)

    Xue, Ying; Rusli, Jannov; Chang, Hou-Min; Phillips, Richard; Jameel, Hasan

    2012-02-01

    Process simulation and lab trials were carried out to demonstrate and confirm the efficiency of the concept that recycling hydrolysate at low total solid enzymatic hydrolysis is one of the options to increase the sugar concentration without mixing problems. Higher sugar concentration can reduce the capital cost for fermentation and distillation because of smaller retention volume. Meanwhile, operation cost will also decrease for less operating volume and less energy required for distillation. With the computer simulation, time and efforts can be saved to achieve the steady state of recycling process, which is the scenario for industrial production. This paper, to the best of our knowledge, is the first paper discussing steady-state saccharification with recycling of the filtrate form enzymatic hydrolysis to increase sugar concentration. Recycled enzymes in the filtrate (15-30% of the original enzyme loading) resulted in 5-10% higher carbohydrate conversion compared to the case in which recycled enzymes were denatured. The recycled hydrolysate yielded 10% higher carbohydrate conversion compared to pure sugar simulated hydrolysate at the same enzyme loading, which indicated hydrolysis by-products could boost enzymatic hydrolysis. The high sugar concentration (pure sugar simulated) showed inhibition effect, since about 15% decrease in carbohydrate conversion was observed compared with the case with no sugar added. The overall effect of hydrolysate recycling at WinGEMS simulated steady-state conditions with 5% total solids was increasing the sugar concentration from 35 to 141 g/l, while the carbohydrate conversion was 2% higher for recycling at steady state (87%) compared with no recycling strategy (85%). Ten percent and 15% total solid processes were also evaluated in this study.

  17. Ozone pretreatment and fermentative hydrolysis of wheat straw

    Science.gov (United States)

    Ben'ko, E. M.; Chukhchin, D. G.; Lunin, V. V.

    2017-11-01

    Principles of the ozone pretreatment of wheat straw for subsequent fermentation into sugars are investigated. The optimum moisture contents of straw in the ozonation process are obtained from data on the kinetics of ozone absorbed by samples with different contents of water. The dependence of the yield of reducing sugars in the fermentative reaction on the quantity of absorbed ozone is established. The maximum conversion of polysaccharides is obtained at ozone doses of around 3 mmol/g of biomass, and it exceeds the value for nonozonated samples by an order of magnitude. The yield of sugar falls upon increasing the dose of ozone. The process of removing lignin from the cell walls of straw during ozonation is visualized by means of scanning electron microscopy.

  18. Enzymatic Hydrolysis of Cellulose to Glucose: A Report on the NATICK Program

    Science.gov (United States)

    1981-09-01

    ENZYMATIC SACCHARIFICATION OF WASTE CELLULOSE I MUTATION PRETREATMENT I FERMENTATION SUBSTRATE + ENZYMES SACCHARIRCATION GLUCOSE + BY PRODUCTS YEAST FERM...somewhat lower than the growth optima . However ceflobiase is unstable at lo, pH. If pH is held at 5.0. and temperature reduced to 22 0 -25 0 C cellobiase...products are continuously removed or by simultaneous saccharification and yeast fermentation (SSF) to ethanol (62). Another means of using cellulase more

  19. Using a combined hydrolysis factor to optimize high titer ethanol production from sulfite-pretreated poplar without detoxification

    Science.gov (United States)

    Jingzhi Zhang; Feng Gu; J.Y. Zhu; Ronald S. Zalesny Jr.

    2015-01-01

    Sulfite pretreatment to overcome the recalcitrance of lignocelluloses (SPORL) was applied to poplar NE222 chips in a range of chemical loadings, temperatures, and times. The combined hydrolysis factor (CHF) as a pretreatment severity accurately predicted xylan dissolution by SPORL. Good correlations between CHF and pretreated...

  20. Effects of enzymatic hydrolysis on conformational and functional properties of chickpea protein isolate.

    Science.gov (United States)

    Mokni Ghribi, Abir; Maklouf Gafsi, Ines; Sila, Assaâd; Blecker, Christophe; Danthine, Sabine; Attia, Hamadi; Bougatef, Ali; Besbes, Souhail

    2015-11-15

    The impact of enzymatic hydrolysis by Alcalase on the conformational and functional properties of chickpea protein isolate (CPI) was investigated. The physicochemical, interfacial tension and surface characteristics of CPI and their hydrolysates (CPH) according to the degree of hydrolysis (DH) were also determined. These parameters were then related to the changes in the emulsification activity (EAI) and stability (ESI). The enzymatic hydrolysis was found to improve protein recovery and solubility, leading to a reduction in the molecular weight bands with a concomitant increase in the intensity and appearance of protein bands having apparent molecular mass below 20 kDa. The interfacial tension decreased from ∼ 66.5 mN m(-1) for CPI to ∼ 59.1 m Nm(-1) for CPH. A similar trend was observed for the surface charge which declined from -27.55 mV to -16.4 mV for the CPI and CPH, respectively. These changes were found to have a detrimental effect on the EAI and ESI values. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Particle size distribution of rice flour affecting the starch enzymatic hydrolysis and hydration properties.

    Science.gov (United States)

    de la Hera, Esther; Gomez, Manuel; Rosell, Cristina M

    2013-10-15

    Rice flour is becoming very attractive as raw material, but there is lack of information about the influence of particle size on its functional properties and starch digestibility. This study evaluates the degree of dependence of the rice flour functional properties, mainly derived from starch behavior, with the particle size distribution. Hydration properties of flours and gels and starch enzymatic hydrolysis of individual fractions were assessed. Particle size heterogeneity on rice flour significantly affected functional properties and starch features, at room temperature and also after gelatinization; and the extent of that effect was grain type dependent. Particle size heterogeneity on rice flour induces different pattern in starch enzymatic hydrolysis, with the long grain having slower hydrolysis as indicated the rate constant (k). No correlation between starch digestibility and hydration properties or the protein content was observed. It seems that in intact granules interactions with other grain components must be taken into account. Overall, particle size fractionation of rice flour might be advisable for selecting specific physico-chemical properties. Copyright © 2013. Published by Elsevier Ltd.

  2. Biohydrogen production from enzymatic hydrolysis of food waste in batch and continuous systems

    Science.gov (United States)

    Han, Wei; Yan, Yingting; Shi, Yiwen; Gu, Jingjing; Tang, Junhong; Zhao, Hongting

    2016-01-01

    In this study, the feasibility of biohydrogen production from enzymatic hydrolysis of food waste was investigated. Food waste (solid-to-liquid ratio of 10%, w/v) was first hydrolyzed by commercial glucoamylase to release glucose (24.35 g/L) in the food waste hydrolysate. Then, the obtained food waste hydrolysate was used as substrate for biohydrogen production in the batch and continuous (continuous stirred tank reactor, CSTR) systems. It was observed that the maximum cumulative hydrogen production of 5850 mL was achieved with a yield of 245.7 mL hydrogen/g glucose (1.97 mol hydrogen/mol glucose) in the batch system. In the continuous system, the effect of hydraulic retention time (HRT) on biohydrogen production from food waste hydrolysate was investigated. The optimal HRT obtained from this study was 6 h with the highest hydrogen production rate of 8.02 mmol/(h·L). Ethanol and acetate were the major soluble microbial products with low propionate production at all HRTs. Enzymatic hydrolysis of food waste could effectively accelerate hydrolysis speed, improve substrate utilization rate and increase hydrogen yield. PMID:27910937

  3. Effects of enzymatic hydrolysis on the allergenicity of whey protein concentrates.

    Science.gov (United States)

    Duan, Cuicui; Yang, Lijie; Li, Aili; Zhao, Rui; Huo, Guicheng

    2014-08-01

    Cow's milk whey consists of many protein components and some of them are antigens to human and known to modulate immune responses. Enzymatic hydrolysis is a useful method to modify proteins with allergenicity. The objective of this study was to identify whether the in vitro enzymatic hydrolysis could reduce the allergenicity of whey protein concentrates (WPC). In this study, WPC were hydrolyzed by trypsin and twenty-four BALB/c mice were divided into three groups and fed with WPC formula and WPC hydrolysates formula, while the control mice received milk-free diet. The results revealed that there was no significant difference between the body weights among all groups. WPC-fed mice produced an elevated spleen lymphocyte proliferation level than WPC hydrolysates-fed mice and also produced higher levels of WPC-specific IgE in intestinal tract and serum in comparison to WPC hydrolysates-fed mice and control group. Significant up-regulation of plasma histamine levels were also observed and showed the same trend with IgE. The secretions of IL-4 and IL-5 were significantly enhanced by WPC. WPC significantly suppressed the secretion of IFN-γ while hydrolysates of WPC significantly increased the secretion of IFN-γ compared to control group. These results suggest that hydrolysis may play a role to reduce the allergenicity of WPC.

  4. Ozonolysis combined with ultrasound as a pretreatment of sugarcane bagasse: Effect on the enzymatic saccharification and the physical and chemical characteristics of the substrate.

    Science.gov (United States)

    Perrone, Olavo Micali; Colombari, Felippe Mariano; Rossi, Jessika Souza; Moretti, Marcia Maria Souza; Bordignon, Sidnei Emilio; Nunes, Christiane da Costa Carreira; Gomes, Eleni; Boscolo, Mauricio; Da-Silva, Roberto

    2016-10-01

    Sugarcane bagasse (SCB) was treated in three stages using ozone oxidation (O), washing in an alkaline medium (B) and ultrasonic irradiation (U). The impact of each pretreatment stage on the physical structure of the SCB was evaluated by its chemical composition, using an infrared technique (FTIR-ATR), and using thermogravimetric analysis (TGA/DTG). The pretreatment sequence O, B, U provided a significant reduction of lignin and hemicellulose, which was confirmed by changes in the absorption bands corresponding to these compounds, when observed using infrared. Thermogravimetric analysis confirmed an increased thermal stability in the treated sample due to the removal of hemicellulose and extractives during the pretreatment. This pretreatment released 391mg glucose/g from treated SCB after the enzymatic hydrolysis, corresponding to a yield of 94% of the cellulose available. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Xylan hydrolysis in Populus trichocarpa × P. deltoides and model substrates during hydrothermal pretreatment.

    Science.gov (United States)

    Trajano, Heather L; Pattathil, Sivakumar; Tomkins, Bruce A; Tschaplinski, Timothy J; Hahn, Michael G; Van Berkel, Gary J; Wyman, Charles E

    2015-03-01

    Previous studies defined easy and difficult to hydrolyze fractions of hemicellulose that may result from bonds among cellulose, hemicellulose, and lignin. To understand how such bonds affect hydrolysis, Populus trichocarpa × Populus deltoides, holocellulose isolated from P. trichocarpa × P. deltoides and birchwood xylan were subjected to hydrothermal flow-through pretreatment. Samples were characterized by glycome profiling, HPLC, and UPLC-MS. Glycome profiling revealed steady fragmentation and removal of glycans from solids during hydrolysis. The extent of polysaccharide fragmentation, hydrolysis rate, and total xylose yield were lowest for P. trichocarpa × P. deltoides and greatest for birchwood xylan. Comparison of results from P. trichocarpa × P. deltoides and holocellulose suggested that lignin-carbohydrate complexes reduce hydrolysis rates and limit release of large xylooligomers. Smaller differences between results with holocellulose and birchwood xylan suggest xylan-cellulose hydrogen bonds limited hydrolysis, but to a lesser extent. These findings imply cell wall structure strongly influences hydrolysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Germination-Assisted Enzymatic Hydrolysis Can Improve the Quality of Soybean Protein.

    Science.gov (United States)

    Yang, Hui; Li, Xin; Gao, Jinyan; Tong, Ping; Yang, Anshu; Chen, Hongbing

    2017-08-01

    This study aimed to investigate the effects of combined germination and Alcalase hydrolysis on the quality of soybean protein. Protein profiles, water solubility, foaming and emulsifying properties, thixotropic properties, and in vitro protein digestibility (IVPD) were tested, the chemical score (CS), essential amino acid index (EAAI), and protein efficiency ratio (PER) of soybean protein were also defined. The combined treatment of germination and Alcalase hydrolysis remarkably improved the solubility, emulsification activity index, emulsion stability index, and foaming capacity of soybean protein. Notably, a decrease in foaming stability was detected. The electrophoretic profile showed a weak breakdown of soybean protein during germination. However, a strong breakdown of protein was observed after the hydrolysis with Alcalase. The combined treatment also decreased the CS and EAAI of soybean protein, but only by 18%. Meanwhile, the IVPD and PER of soybean protein were significantly improved. Moreover, the protein of the germinated and hydrolyzed soybean flour demonstrated better swallowing properties. These findings indicated that the combined treatment of germination and enzymatic hydrolysis can improve the quality of soybean protein. © 2017 Institute of Food Technologists®.

  7. CONTINUOUS AND SEMICONTINUOUS REACTION SYSTEMS FOR HIGH-SOLIDS ENZYMATIC HYDROLYSIS OF LIGNOCELLULOSICS

    Directory of Open Access Journals (Sweden)

    A. González Quiroga

    2015-12-01

    Full Text Available Abstract An attractive operation strategy for the enzymatic hydrolysis of lignocellulosics results from dividing the process into three stages with complementary goals: continuous enzyme adsorption at low-solids loading (5% w/w with recycling of the liquid phase; continuous liquefaction at high-solids content (up to 20% w/w; and, finally, continuous or semicontinuous hydrolysis with supplementation of fresh enzymes. This paper presents a detailed modeling and simulation framework for the aforementioned operation strategies. The limiting micromixing situations of macrofluid and microfluid are used to predict conversions. The adsorption and liquefaction stages are modeled as a continuous stirred tank and a plug flow reactor, respectively. Two alternatives for the third stage are studied: a train of five cascading stirred tanks and a battery of batch reactors in parallel. Simulation results show that glucose concentrations greater than 100 g L-1 could be reached with both of the alternatives for the third stage.

  8. Enzymatic Hydrolysis of Polyester Thin Films at the Nanoscale: Effects of Polyester Structure and Enzyme Active-Site Accessibility.

    Science.gov (United States)

    Zumstein, Michael Thomas; Rechsteiner, Daniela; Roduner, Nicolas; Perz, Veronika; Ribitsch, Doris; Guebitz, Georg M; Kohler, Hans-Peter E; McNeill, Kristopher; Sander, Michael

    2017-07-05

    Biodegradable polyesters have a large potential to replace persistent polymers in numerous applications and to thereby reduce the accumulation of plastics in the environment. Ester hydrolysis by extracellular carboxylesterases is considered the rate-limiting step in polyester biodegradation. In this work, we systematically investigated the effects of polyester and carboxylesterase structure on the hydrolysis of nanometer-thin polyester films using a quartz-crystal microbalance with dissipation monitoring. Hydrolyzability increased with increasing polyester-chain flexibility as evidenced from differences in the hydrolysis rates and extents of aliphatic polyesters varying in the length of their dicarboxylic acid unit and of poly(butylene adipate-co-terephthalate) (PBAT) polyesters varying in their terephthalate-to-adipate ratio by Rhizopus oryzae lipase and Fusarium solani cutinase. Nanoscale nonuniformities in the PBAT films affected enzymatic hydrolysis and were likely caused by domains with elevated terephthalate contents that impaired enzymatic hydrolysis. Yet, the cutinase completely hydrolyzed all PBAT films, including films with a terephthalate-to-adipate molar ratio of one, under environmentally relevant conditions (pH 6, 20 °C). A comparative analysis of the hydrolysis of two model polyesters by eight different carboxylesterases revealed increasing hydrolysis with increasing accessibility of the enzyme active site. Therefore, this work highlights the importance of both polyester and carboxylesterase structure to enzymatic polyester hydrolysis.

  9. Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content

    Directory of Open Access Journals (Sweden)

    Cannella David

    2012-04-01

    Full Text Available Abstract Background The recent discovery of accessory proteins that boost cellulose hydrolysis has increased the economical and technical efficiency of processing cellulose to bioethanol. Oxidative enzymes (e.g. GH61 present in new commercial enzyme preparations have shown to increase cellulose conversion yields. When using pure cellulose substrates it has been determined that both oxidized and unoxidized cellodextrin products are formed. We report the effect of oxidative activity in a commercial enzyme mix (Cellic CTec2 upon overall hydrolysis, formation of oxidized products and impact on β-glucosidase activity. The experiments were done at high solids loadings using a lignocellulosic substrate simulating commercially relevant conditions. Results The Cellic CTec2 contained oxidative enzymes which produce gluconic acid from lignocellulose. Both gluconic and cellobionic acid were produced during hydrolysis of pretreated wheat straw at 30% WIS. Up to 4% of released glucose was oxidized into gluconic acid using Cellic CTec2, whereas no oxidized products were detected when using an earlier cellulase preparation Celluclast/Novozym188. However, the cellulose conversion yield was 25% lower using Celluclast/Novozym188 compared to Cellic CTec2. Despite the advantage of the oxidative enzymes, it was shown that aldonic acids could be problematic to the hydrolytic enzymes. Hydrolysis experiments revealed that cellobionic acid was hydrolyzed by β-glucosidase at a rate almost 10-fold lower than for cellobiose, and the formed gluconic acid was an inhibitor of the β-glucosidase. Interestingly, the level of gluconic acid varied significantly with temperature. At 50°C (SHF conditions 35% less gluconic acid was produced compared to at 33°C (SSF conditions. We also found that in the presence of lignin, no reducing agent was needed for the function of the oxidative enzymes. Conclusions The presence of oxidative enzymes in Cellic CTec2 led to the formation of

  10. Influence of thermal hydrolysis pretreatment on organic transformation characteristics of high solid anaerobic digestion.

    Science.gov (United States)

    Han, Yun; Zhuo, Yang; Peng, Dangcong; Yao, Qian; Li, Huijuan; Qu, Qiliang

    2017-11-01

    The study evaluated the influence of thermal hydrolysis pretreatment (THP) on anaerobic digestion (AD) ability of high solid sludge. The transformation characteristics of organics during the THP+AD process of dewatering sludge from wastewater treatment plant was investigated using a lab-scale THP reactor and four anaerobic digesters. The reduction efficiency of volatile suspended solids using THP+AD exceeded 49%. The acceleration of biogas production during AD was due to the enhancement of protein hydrolysis and acidogenesis by THP. THP had only minimal influence on the improvement of carbohydrate acidogenesis. The hydrolysis of poly phosphates was likely the main reaction of phosphorus transformation. Biochemical generation of sulfide and ammonia nitrogen occurred during the acidogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Green and chemical-free process of enzymatic xylooligosaccharide production from corncob: Enhancement of the yields using a strategy of lignocellulosic destructuration by ultra-high pressure pretreatment.

    Science.gov (United States)

    Seesuriyachan, Phisit; Kawee-Ai, Arthitaya; Chaiyaso, Thanongsak

    2017-10-01

    In this study, the pressures at 50-500MPa were evaluated at different time to pretreat and further enzyme hydrolysis. The ultra-high pressure (UHP) pretreatment at 100MPa for 10min led to improved accessibility of enzyme for conversion of xylan to xylooligosaccharide (XOS). The maximum XOS yield of 35.6mg/g substrate was achieved and firstly reported at 10% (w/v) of substrate, 100U of endo-xylanase/g corncobs and incubation time of 18h. The enzymatic hydrolysis efficiency was increased by 180.3% and released a high amount of xylobiose. The UHP pretreatment relatively did not affect to the composition of corncob, but decreased 34.3% of lignin. Interestingly, antioxidant activities of XOS using UHP pretreatment were higher than untreated corncob. The UHP pretreatment improved lignocellulosic destructuration and XOS yields in a shorter time without the need of chemicals, implying that UHP could be an effective pretreatment of biomass with a chemical-free process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Extraction of cellulose nano-crystals from old corrugated container fiber using phosphoric acid and enzymatic hydrolysis followed by sonication.

    Science.gov (United States)

    Tang, Yanjun; Shen, Xiaochuang; Zhang, Junhua; Guo, Daliang; Kong, Fangong; Zhang, Nan

    2015-07-10

    Due to its amazing physicochemical properties and high environmental compatibility, cellulose nano-crystals (CNC) hold great promise for serving as a strategic platform for sustainable development. Now, there has been growing interest in the development of processes using waste or residual biomass as CNC source for addressing economic and environmental concerns. In the present work, a combined process involving phosphoric acid hydrolysis, enzymatic hydrolysis and sonication was proposed aiming to efficiently exact CNC from low-cost old corrugated container (OCC) pulp fiber. The effect of enzymatic hydrolysis on the yield and microstructure of resulting CNC was highlighted. Results showed that the enzymatic hydrolysis was effective in enhancing CNC yield after phosphoric acid hydrolysis. CNC was obtained with a yield of 23.98 wt% via the combined process with phosphoric acid concentration of 60 wt%, cellulase dosage of 2 mL (84 EGU) per 2g fiber and sonication intensity of 200 W. Moreover, the presence of enzymatic hydrolysis imparted the obtained CNC with improved dispersion, increased crystallinity and thermal stability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Ensiling and hydrothermal pretreatment of grass: Consequences for enzymatic biomass conversion and total monosaccharide yields

    DEFF Research Database (Denmark)

    Ambye-Jensen, Morten; Johansen, Katja Salomon; Didion, Thomas

    2014-01-01

    Ensiling may act as a pretreatment of fresh grass biomass and increase the enzymatic conversion of structural carbohydrates to fermentable sugars. However, ensiling does not provide sufficient severity to be a standalone pretreatment method. Here, ensiling of grass is combined with hydrothermal...... treatment (HTT) with the aim of improving the enzymatic biomass convertibility and decrease the required temperature of the HTT. Results: Grass silage (Festulolium Hykor) was hydrothermally treated at temperatures of 170, 180, and 190°C for 10 minutes. Relative to HTT treated dry grass, ensiling increased...

  14. Sweetening syrup production by enzymatic hydrolysis of starch variety yam (Dioscorea rotundata

    Directory of Open Access Journals (Sweden)

    Carlos Ramón Vidal Tovar

    2011-04-01

    Full Text Available Sweeteners syrups produced by enzymatic hydrolysis from starch of hawthorn yam (Dioscorea rotundata. The starch was extracted by a scratched, washed, sedimented and drying; the yield was quantified taking into account the amount of initial raw material and was determined the concentration of starch, amylose, amylopectin, crude fiber, ash, protein, fat and humidity in accordance with the requirements of the AOAC standards, and ICONTEC COVENIN. Enzymatic hydrolysis of starch was conducted using ∂-amylase, glucoamylase and pullulanase in starch solutions at 36 and 46 % w/w varying the order of application of glucoamylase and pullulanase were determined pH, Brix, moisture, reducing sugars (AR, total sugar (TS and the dextrose equivalent (ED in the syrups obtained. In the liquefaction were obtained with an intermediate syrups sweeteners ED 18.81% and 22.15%. Syrups low and medium conversion with an ED between 34-45% in the first saccharification and high conversion syrups with a DE between 75-79% as a final product. The above values allow the use of hawthorn yam starch syrup production for multiple uses in different food industry processes.

  15. Chondroitin sulphate extracted from antler cartilage using high hydrostatic pressure and enzymatic hydrolysis

    Directory of Open Access Journals (Sweden)

    Chong-Tai Kim

    2014-12-01

    Full Text Available Chondroitin sulphate (CS, a major glycosaminoglycan, is an essential component of the extracellular matrix in cartilaginous tissues. Wapiti velvet antlers are a rich source of these molecules. The purpose of the present study was to develop an effective isolation procedure of CS from fresh velvet antlers using a combination of high hydrostatic pressure (100 MPa and enzymatic hydrolysis (papain. High CS extractability (95.1 ± 2.5% of total uronic acid was obtained following incubation (4 h at 50 °C with papain at pH 6.0 in 100 MPa compared to low extractability (19 ± 1.1% in ambient pressure (0.1 MPa. Antler CS fractions were isolated by Sephacryl S-300 chromatography and identified by western blot using an anti-CS monoclonal antibody. The antler CS fraction did not aggregate with hyaluronic acid in CL-2B chromatography and possessed DPPH radical scavenging activity at 78.3 ± 1.5%. The results indicated that high hydrostatic pressure and enzymatic hydrolysis procedure may be a useful tool for the isolation of CS from antler cartilaginous tissues.

  16. Hydrolysis of macromolecular components of primary and secondary wastewater sludge by thermal hydrolytic pretreatment.

    Science.gov (United States)

    Wilson, Christopher A; Novak, John T

    2009-10-01

    A laboratory simulation of the thermal hydrolytic pretreatment (THP) process was performed on wastewater sludge, as well as key macromolecular components: proteins, lipids, and polysaccharides. Hydrolysis temperatures from 130 to 220 degrees C were investigated. The objectives of this study were to determine how and over which temperature range THP specifically affects sludge components, and whether hydrolysis temperature can be used to minimize the previously reported drawbacks of THP such as high total ammonia nitrogen (TAN) loads and the production of highly-colored recalcitrant organics. In addition, the applicability of THP to primary sludge (PS) was investigated. The breakdown of proteins, lipids, and polysaccharides was determined to be temperature dependent, and both waste activated sludge (WAS) and PS responded similarly to THP apart from intrinsic differences in lipid and protein content. Pure carbohydrate solutions were not largely converted to mono- or dimeric reducing sugar units at temperatures below 220 degrees C, however significant caramelization of starch and production of dextrose and maltose was observed to occur at 220 degrees C. Volatile fatty acid production during thermal hydrolysis was largely attributed to the breakdown of unsaturated lipids, and long-chain fatty acid production was not significant in terms of previous reports of methanogenic inhibition. Ammonia was produced from protein during thermal hydrolysis, however solids loading rather than thermal hydrolysis temperature appeared to be a more meaningful control for ammonia levels in downstream anaerobic digestion.

  17. Comparison of Dilute Acid and Ionic Liquid Pretreatment of Switchgrass: Biomass Recalcitrance, Delignification and Enzymatic Saccharification

    Science.gov (United States)

    The efficiency of two biomass pretreatment technologies, dilute acid hydrolysis and dissolution in an ionic liquid, are compared in terms of delignification, saccharification efficiency and saccharide yields with switchgrass serving as a model bioenergy crop. When subject to ionic liquid pretreatme...

  18. Organic acid pretreatment of oil palm trunk: effect on enzymatic saccharification and ethanol production.

    Science.gov (United States)

    Rattanaporn, Kittipong; Tantayotai, Prapakorn; Phusantisampan, Theerawut; Pornwongthong, Peerapong; Sriariyanun, Malinee

    2018-04-01

    Effective lignocellulosic biomass saccharification is one of the crucial requirements of biofuel production via fermentation process. Organic acid pretreatments have been gained much interests as one of the high potential methods for promoting enzymatic saccharification of lignocellulosic materials due to their lower hazardous properties and lower production of inhibitory by-products of fermentation than typical chemical pretreatment methods. In this study, three organic acids, including acetic acid, oxalic acid, and citric acid, were examined for improvement of enzymatic saccharification and bioethanol production from oil palm trunk biomass. Based on response surface methodology, oxalic acid pretreated biomass released the maximum reducing sugar of 144 mg/g-pretreated biomass at the optimum condition, which was higher than untreated samples for 2.30 times. The released sugar yield of oil palm trunk also corresponded to the results of FT-IR analysis, which revealed the physical modification of cellulose and hemicellulose surface structures of pretreated biomass. Nevertheless, citric acid pretreatment is the most efficient pretreatment method to improve bioethanol fermentation of Saccharomyces cerevisiae TISTR 5606 at 1.94 times higher than untreated biomass. These results highlighted the selection of organic acid pretreatment as a potential method for biofuel production from oil palm trunk feedstocks.

  19. Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation.

    Science.gov (United States)

    Canilha, Larissa; Kumar Chandel, Anuj; dos Santos Milessi, Thais Suzane; Fernandes Antunes, Felipe Antônio; da Costa Freitas, Wagner Luiz; das Graças Almeida Felipe, Maria; da Silva, Silvio Silvério

    2012-01-01

    Depleted supplies of fossil fuel, regular price hikes of gasoline, and environmental damage have necessitated the search for economic and eco-benign alternative of gasoline. Ethanol is produced from food/feed-based substrates (grains, sugars, and molasses), and its application as an energy source does not seem fit for long term due to the increasing fuel, food, feed, and other needs. These concerns have enforced to explore the alternative means of cost competitive and sustainable supply of biofuel. Sugarcane residues, sugarcane bagasse (SB), and straw (SS) could be the ideal feedstock for the second-generation (2G) ethanol production. These raw materials are rich in carbohydrates and renewable and do not compete with food/feed demands. However, the efficient bioconversion of SB/SS (efficient pretreatment technology, depolymerization of cellulose, and fermentation of released sugars) remains challenging to commercialize the cellulosic ethanol. Among the technological challenges, robust pretreatment and development of efficient bioconversion process (implicating suitable ethanol producing strains converting pentose and hexose sugars) have a key role to play. This paper aims to review the compositional profile of SB and SS, pretreatment methods of cane biomass, detoxification methods for the purification of hydrolysates, enzymatic hydrolysis, and the fermentation of released sugars for ethanol production.

  20. Bioconversion of Sugarcane Biomass into Ethanol: An Overview about Composition, Pretreatment Methods, Detoxification of Hydrolysates, Enzymatic Saccharification, and Ethanol Fermentation

    Directory of Open Access Journals (Sweden)

    Larissa Canilha

    2012-01-01

    Full Text Available Depleted supplies of fossil fuel, regular price hikes of gasoline, and environmental damage have necessitated the search for economic and eco-benign alternative of gasoline. Ethanol is produced from food/feed-based substrates (grains, sugars, and molasses, and its application as an energy source does not seem fit for long term due to the increasing fuel, food, feed, and other needs. These concerns have enforced to explore the alternative means of cost competitive and sustainable supply of biofuel. Sugarcane residues, sugarcane bagasse (SB, and straw (SS could be the ideal feedstock for the second-generation (2G ethanol production. These raw materials are rich in carbohydrates and renewable and do not compete with food/feed demands. However, the efficient bioconversion of SB/SS (efficient pretreatment technology, depolymerization of cellulose, and fermentation of released sugars remains challenging to commercialize the cellulosic ethanol. Among the technological challenges, robust pretreatment and development of efficient bioconversion process (implicating suitable ethanol producing strains converting pentose and hexose sugars have a key role to play. This paper aims to review the compositional profile of SB and SS, pretreatment methods of cane biomass, detoxification methods for the purification of hydrolysates, enzymatic hydrolysis, and the fermentation of released sugars for ethanol production.

  1. Co-digestion of sewage sludge and dewatered residues from enzymatic hydrolysis of sugar beet pulp.

    Science.gov (United States)

    Borowski, Sebastian; Kucner, Marcin

    2015-11-01

    Sugar beet pulp residues (SBPR) from hydrolysis and dewatering of beet pulp were co-digested with municipal sewage sludge (MSS). The highest biogas yields of nearly 512 dm(3)/kg VSfed (volatile solids fed) were achieved for SBPR, treated both as the monosubstrate and as a mixture with MSS (1 : 1 by weight). Simultaneously, the highest methane production of 348 dm(3) CH4/kg VSfed was determined when the sewage sludge was co-digested with 35% SBPR. The analysis of digestate showed that neither ammonia nor volatile fatty acids destabilized the biogas production. Processing of sugar beet pulp into bioethanol via enzymatic hydrolysis and microbial fermentation has become increasingly attractive. However, in this process, only the liquid fraction derived from hydrolysis is subjected into alcoholic fermentation, whereas the remaining solid fraction needs to be utilized. This study demonstrated that sugar beet pulp residues after bioethanol production can successfully be co-digested with sewage sludge to increase biogas productivity of anaerobic digesters located at wastewater treatment plants.

  2. Bioethanol Production By Utilizing Cassava Peels Waste Through Enzymatic And Microbiological Hydrolysis

    Science.gov (United States)

    Witantri, R. G.; Purwoko, T.; Sunarto; Mahajoeno, E.

    2017-07-01

    Cassava peels waste contains, cellulose which is quite high at 43.626%, this is a potential candidate as a raw for bioethanol production. The purpose of this study was to determine the performance of the enzymatic hydrolysis, microbiological (Effective microbe) and fermentation in cassava peel waste is known from the results of quantitative measurement of multiple ethanol parameters (DNS Test, pH, ethanol concentration). This research was carried out in stages, the first stage is hydrolysis with completely randomized design with single factor variation of the catalyst, consisting of three levels ie cellulase enzymes, multienzyme and effective microbial EM4. The second stage is fermentation with factorial randomized block design, consisting of three groups of variations of catalyst, and has two factors: variations of fermipan levels 1, 2, 3% and the duration of fermentation, 2,4,6 days. The parameters in the test is a reducing sugar, pH and concentration of ethanol. The results showed that variation of hydrolysis treatment, fermentation time, and fermipan levels has real effect on the fermentation process. On average the highest ethanol content obtained from the treatment with multienzyme addition, with the addition of 2% fermipan levels and on the 2nd day of fermentation that is equal to 3.76%.

  3. Effects of surface proteins and lipids on molecular structure, thermal properties, and enzymatic hydrolysis of rice starch

    Directory of Open Access Journals (Sweden)

    Pan HU

    Full Text Available Abstract Rice starches with different amylose contents were treated with sodium dodecyl sulfate (SDS to deplete surface proteins and lipids, and the changes in molecular structure, thermal properties, and enzymatic hydrolysis were evaluated. SDS treatment did not significantly change the molecular weight distribution, crystalline structure, short-range ordered degree, and gelatinization properties of starch, but significantly altered the pasting properties and increased the swelling power of starch. The removal of surface proteins and lipids increased the enzymatic hydrolysis and in vitro digestion of starch. The influences of removing surface proteins and lipids from starch on swelling power, pasting properties, and enzymatic hydrolysis were different among the various starches because of the differences in molecular structures of different starch styles. The aforementioned results indicated that removing the surface proteins and lipids from starch did not change the molecular structure but had significant effects on some functional properties.

  4. Optimized delignification of wood-derived lignocellulosics for improved enzymatic hydrolysis.

    Science.gov (United States)

    Cullis, Ian F; Mansfield, Shawn D

    2010-08-15

    One of the major bottlenecks in the bioconversion of lignocelluosic feedstocks to liquid ethanol is the recalcitrance of residue following pretreatment, specifically softwood derived residues. Peroxide delignification has previously been shown to effectively aid in the removal of condensed lignaceous moieties from substrates following pretreatment, and thereby improve the hydrolyzability of the polymeric carbohydrates to their monomeric constituents. Despite the effectiveness of peroxide, drawbacks in this system still remain, as the concentration of peroxide required for adequate hydrolysis performance is currently uneconomical. In an attempt to improve the efficacy of the delignification process, we evaluated other post-treatment operations and concurrently attempted to limit the decomposition of peroxide loading; with the over arching aim to improve the efficiency of the bioconversion process. By employing several peroxide stabilizers and pre-chelating the steam exploded recalcitrant substrates, we were able to substantially improve the delignification treatment of Douglas-fir wood chips, and to reduce peroxide loading by more than 50% without negative effects on the hydrolysis rates and yield.

  5. Aqueous-ammonia delignification of miscanthus followed by enzymatic hydrolysis to sugars.

    Science.gov (United States)

    Liu, Zhongguo; Padmanabhan, Sasisanker; Cheng, Kun; Schwyter, Philippe; Pauly, Markus; Bell, Alexis T; Prausnitz, John M

    2013-05-01

    This work concerns the effect of aqueous ammonia pretreatment at four temperatures and at 10, 20 or 30 wt.% ammonia. After 1h, more than 65% delignification is achieved at 150 or 180 °C for high and for low concentrations of ammonia. When the delignified miscanthus is enzymatically hydrolyzed for 96 h using cellulases and beta-glucosidase, conversion of the recovered solid to glucose is 53.4% and to xylose 70.0%. Additional glucose and xylose can be obtained from the ammonia-containing aqueous phase. Increased ammonia concentration leads to better conversion. Fourier-transform infrared and Two-dimensional (13)C-(1)H Heteronuclear Single Quantum Coherence (HSQC) Nuclear Magnetic Resonance spectroscopy provide data for the composition of the pretreated miscanthus and for that of the liquid extract. These spectra indicate that pretreatment with ammonia leads to de-acetylation of the xylan-backbone. The β-O-4' linked aryl ether remains the most abundant linkage in the pretreated miscanthus. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Cellulolytic enzyme production and enzymatic hydrolysis for second-generation bioethanol production.

    Science.gov (United States)

    Wang, Mingyu; Li, Zhonghai; Fang, Xu; Wang, Lushan; Qu, Yinbo

    2012-01-01

    Second-generation bioethanol made from lignocellulosic biomass is considered one of the most promising biofuels. However, the enzymatic hydrolysis of the cellulose component to liberate glucose for ethanol fermentation is one of the major barriers for the process to be economically competitive because of the recalcitrance of feedstock. In this chapter, the progress on the understanding of the mechanisms of lignocellulose degradation, as well as the identification and optimization of fungal cellulases, cellulolytic strains, and cellulase production is reviewed. The physiologic functions and enzymatic mechanisms of two groups of enzymes involved in lignocellulose degradation, cellulases and hemicellulases, are discussed, and the synergism of the cellulase components during lignocellulose degradation is addressed. Furthermore, the methods for screening filamentous fungal strains capable of degrading lignocellulose are evaluated and the production of cellulases by these fungal strains is discussed. Aside from traditional mutagenesis for improving the secretion level and enzymatic activities of cellulases from filamentous fungal species, genetic engineering of strains and protein engineering on cellulase molecules are also highlighted.

  7. Alkaline peroxide pretreatment of corn stover for enzymatic saccharification and ethanol production

    Science.gov (United States)

    Alkaline hydrogen peroxide (AHP) pretreatment and enzymatic saccharification were evaluated for conversion of corn stover cellulose and hemicellulose to fermentable sugars. Corn stover used in this study contained 37.0±0.2% cellulose, 26.8±0.2% hemicellulose and 18.0±0.1% lignin on dry basis. Unde...

  8. Effect of pretreatment methods on the synergism of cellulase and xylanase during the hydrolysis of bagasse.

    Science.gov (United States)

    Jia, Lili; Gonçalves, Geisa A L; Takasugi, Yusaku; Mori, Yutaro; Noda, Shuhei; Tanaka, Tsutomu; Ichinose, Hirofumi; Kamiya, Noriho

    2015-06-01

    The effect of pretreatment with peracetic acid (PAA) or an ionic liquid (1-ethyl-3-methylimidazolium acetate, [Emim][OAc]) on the synergism between endoglucanase and endoxylanase in the hydrolysis of bagasse was investigated. An endoglucanase, Cel6A, with a carbohydrate-binding module (CBM) and two endoxylanases, XynZ-C without a CBM and Xyn11A with an intrinsic xylan/cellulose binding module (XBM), were selected. The hemicellulose content, especially arabinan, and the cellulose crystallinity of bagasse were found to affect the cellulase-xylanase synergism. More specifically, higher synergism (above 3.4) was observed for glucan conversion, at low levels of arabinan (0.9%), during the hydrolysis of PAA pretreated bagasse. In contrast, [Emim][OAc] pretreated bagasse, showed lower cellulose crystallinity and achieved higher synergism (over 1.9) for xylan conversion. Ultimately, the combination of Cel6A and Xyn11A resulted in higher synergism for glucan conversion than the combination of Cel6A with XynZ-C, indicating the importance of the molecular architecture of enzymes for metabolic synergism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Enzymatic hydrolysis of heated whey: iron-binding ability of peptides and antigenic protein fractions.

    Science.gov (United States)

    Kim, S B; Seo, I S; Khan, M A; Ki, K S; Lee, W S; Lee, H J; Shin, H S; Kim, H S

    2007-09-01

    This study evaluated the influence of various enzymes on the hydrolysis of whey protein concentrate (WPC) to reduce its antigenic fractions and to quantify the peptides having iron-binding ability in its hydrolysates. Heated (for 10 min at 100 degrees C) WPC (2% protein solution) was incubated with 2% each of Alcalase, Flavourzyme, papain, and trypsin for 30, 60, 90, 120, 150, 180, and 240 min at 50 degrees C. The highest hydrolysis of WPC was observed after 240 min of incubation with Alcalase (12.4%), followed by Flavourzyme (12.0%), trypsin (10.4%), and papain (8.53%). The nonprotein nitrogen contents of WPC hydrolysate followed the hydrolytic pattern of whey. The major antigenic fractions (beta-lactoglobulin) in WPC were degraded within 60 min of its incubation with Alcalase, Flavourzyme, or papain. Chromatograms of enzymatic hydrolysates of heated WPC also indicated complete degradation of beta-lactoglobulin, alpha-lactalbumin, and BSA. The highest iron solubility was noticed in hydrolysates derived with Alcalase (95%), followed by those produced with trypsin (90%), papain (87%), and Flavourzyme (81%). Eluted fraction 1 (F-1) and fraction 2 (F-2) were the respective peaks for the 0.25 and 0.5 M NaCl chromatographic step gradient for analysis of hydrolysates. Iron-binding ability was noticeably higher in F-1 than in F-2 of all hydrolysates of WPC. The highest iron contents in F-1 were observed in WPC hydrolysates derived with Alcalase (0.2 mg/kg), followed by hydrolysates derived with Flavourzyme (0.14 mg/kg), trypsin (0.14 mg/kg), and papain (0.08 mg/kg). Iron concentrations in the F-2 fraction of all enzymatic hydrolysates of WPC were low and ranged from 0.03 to 0.05 mg/kg. Fraction 1 may describe a new class of iron chelates based on the reaction of FeSO4 x 7 H2O with a mixture of peptides obtained by the enzymatic hydrolysis of WPC. The chromatogram of Alcalase F-1 indicated numerous small peaks of shorter wavelengths, which probably indicated a variety of

  10. Impact of the environmental conditions and substrate pre-treatment on whey protein hydrolysis: A review.

    Science.gov (United States)

    Cheison, Seronei Chelulei; Kulozik, Ulrich

    2017-01-22

    Proteins in solution are subject to myriad forces stemming from interactions with each other as well as with the solvent media. The role of the environmental conditions, namely pH, temperature, ionic strength remains under-estimated yet it impacts protein conformations and consequently its interaction with, and susceptibility to, the enzyme. Enzymes, being proteins are also amenable to the environmental conditions because they are either activated or denatured depending on the choice of the conditions. Furthermore, enzyme specificity is restricted to a narrow regime of optimal conditions while opportunities outside the optimum conditions remain untapped. In addition, the composition of protein substrate (whether mixed or single purified) have been underestimated in previous studies. In addition, protein pre-treatment methods like heat denaturation prior to hydrolysis is a complex phenomenon whose progression is influenced by the environmental conditions including the presence or absence of sugars like lactose, ionic strength, purity of the protein, and the molecular structure of the mixed proteins particularly presence of free thiol groups. In this review, we revisit protein hydrolysis with a focus on the impact of the hydrolysis environment and show that preference of peptide bonds and/or one protein over another during hydrolysis is driven by the environmental conditions. Likewise, heat-denaturing is a process which is dependent on not only the environment but the presence or absence of other proteins.

  11. Enzymatic saccharification of cellulose and cellulosic biomass of sweet potato (Ipomoea batatas L. ): two-step hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Tolbert, M.E.M.; Bhattacharya, S.; Biswas, P.K.

    1986-01-01

    The enzymatic hydrolysis of lignocellulosic biomass of sweet potato vines as well as microcrystalline cellulose, Sigmacell type 20, by cellulases from Trichoderma viride is reported. Material was treated with a concentrated solution of ZnCl2 and 0.5% hydrochloric acid and heated at 145C for 12 minutes. Hydrolysis of the cellulose precipitated by acetone was 2-2.5 times greater than untreated lignocellulose and approached 64% conversion. A two-step hydrolysis of treated or untreated cellulose resulted in higher conversion of cellulose into reducing sugars. Increasing cellulase concentrations increased the conversion, but an increase in substrate concentration resulted in a decrease in cellulose conversion. 20 references.

  12. Kinetic study of batch and fed-batch enzymatic saccharification of pretreated substrate and subsequent fermentation to ethanol

    Directory of Open Access Journals (Sweden)

    Gupta Rishi

    2012-03-01

    Full Text Available Abstract Background Enzymatic hydrolysis, the rate limiting step in the process development for biofuel, is always hampered by its low sugar concentration. High solid enzymatic saccharification could solve this problem but has several other drawbacks such as low rate of reaction. In the present study we have attempted to enhance the concentration of sugars in enzymatic hydrolysate of delignified Prosopis juliflora, using a fed-batch enzymatic hydrolysis approach. Results The enzymatic hydrolysis was carried out at elevated solid loading up to 20% (w/v and a comparison kinetics of batch and fed-batch enzymatic hydrolysis was carried out using kinetic regimes. Under batch mode, the actual sugar concentration values at 20% initial substrate consistency were found deviated from the predicted values and the maximum sugar concentration obtained was 80.78 g/L. Fed-batch strategy was implemented to enhance the final sugar concentration to 127 g/L. The batch and fed-batch enzymatic hydrolysates were fermented with Saccharomyces cerevisiae and ethanol production of 34.78 g/L and 52.83 g/L, respectively, were achieved. Furthermore, model simulations showed that higher insoluble solids in the feed resulted in both smaller reactor volume and shorter residence time. Conclusion Fed-batch enzymatic hydrolysis is an efficient procedure for enhancing the sugar concentration in the hydrolysate. Restricting the process to suitable kinetic regimes could result in higher conversion rates.

  13. Pronase hydrolysis as a pretreatment for quantifying Maillard intermediates during toasting of cornflakes

    Directory of Open Access Journals (Sweden)

    Mario A. Cueto

    2016-04-01

    Full Text Available Some of the products generated by the Maillard reaction are desired and very important for defining consumer acceptance of breakfast cereals. However, in recent years there has been an increased concern about compounds that are potentially harmful such as furfurals. The aim of this work was to analyze the effectiveness of protein hydrolysis with pronase as a pretreament for the evaluation of furfurals generated by the Maillard reaction during toasting of cornflakes and the parallel development of brown and fluorescent compounds. Furfurals were more accurately quantified with the pronase hydrolysis pretreatment because the protein matrix binds furfurals and fluorescent compounds. For control of the early reaction steps in the toasting process, the most sensitive parameter was fluorescence.

  14. Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates

    Directory of Open Access Journals (Sweden)

    Saddler Jack N

    2011-02-01

    Full Text Available Abstract A range of lignocellulosic feedstocks (including agricultural, softwood and hardwood substrates were pretreated with either sulfur dioxide-catalyzed steam or an ethanol organosolv procedure to try to establish a reliable assessment of the factors governing the minimum protein loading that could be used to achieve efficient hydrolysis. A statistical design approach was first used to define what might constitute the minimum protein loading (cellulases and β-glucosidase that could be used to achieve efficient saccharification (defined as at least 70% glucan conversion of the pretreated substrates after 72 hours of hydrolysis. The likely substrate factors that limit cellulose availability/accessibility were assessed, and then compared with the optimized minimum amounts of protein used to obtain effective hydrolysis. The optimized minimum protein loadings to achieve efficient hydrolysis of seven pretreated substrates ranged between 18 and 63 mg protein per gram of glucan. Within the similarly pretreated group of lignocellulosic feedstocks, the agricultural residues (corn stover and corn fiber required significantly lower protein loadings to achieve efficient hydrolysis than did the pretreated woody biomass (poplar, douglas fir and lodgepole pine. Regardless of the substantial differences in the source, structure and chemical composition of the feedstocks, and the difference in the pretreatment technology used, the protein loading required to achieve efficient hydrolysis of lignocellulosic substrates was strongly dependent on the accessibility of the cellulosic component of each of the substrates. We found that cellulose-rich substrates with highly accessible cellulose, as assessed by the Simons' stain method, required a lower protein loading per gram of glucan to obtain efficient hydrolysis compared with substrates containing less accessible cellulose. These results suggest that the rate-limiting step during hydrolysis is not the catalytic

  15. Mechanism of the discrepancy in the enzymatic hydrolysis efficiency between defatted peanut flour and peanut protein isolate by Flavorzyme.

    Science.gov (United States)

    Zheng, Lin; Zhao, Yijun; Xiao, Chuqiao; Sun-Waterhouse, Dongxiao; Zhao, Mouming; Su, Guowan

    2015-02-01

    Both defatted peanut flour (DPF) and peanut protein isolate (PPI) are widely used to prepare peanut protein hydrolysates. To compare their enzymatic hydrolysis efficiencies, DPF and PPI were hydrolysed by Alcalase, Neutrase, Papain, Protamex and Flavorzyme. Alcalase and Flavorzyme were found to be the most efficient proteases to hydrolyse both DPF and PPI. The efficiency was comparable to each other when using Alcalase, while PPI was hydrolysed less efficiently than DPF when using Flavorzyme. Analysis of changes in the protein solubility, subunit and conformation, and amino acid composition of DPF, PPI and their Flavorzyme hydrolysis residues indicated that the PPI preparation process had minimal effect on it, but peptide aggregation via non-covalent bonding (including hydrophobic interactions and hydrogen bonds) during hydrolysis and/or thermal treatment after hydrolysis were likely responsible for the reduced hydrolysis efficiency of PPI by Flavorzyme. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Free energy diagram for the heterogeneous enzymatic hydrolysis of glycosidic bonds in cellulose

    DEFF Research Database (Denmark)

    Westh, Peter; Cruys-Bagger, Nicolaj; Sørensen, Trine Holst

    2015-01-01

    and dissociation of the enzyme-substrate complex. The results showed that the kinetics of enzyme-substrate association (i.e. formation of the Michaelis complex) was almost entirely entropy controlled, and that the activation entropy corresponded approximately to the loss of translational and rotational degrees......Kinetic and thermodynamic data has been analyzed according to transition state theory and a simplified reaction scheme for the enzymatic hydrolysis of insoluble cellulose. For the cellobiohydrolase Cel7A from Hypocrea jecorina (Tricoderma reesei) we were able to measure or collect relevant values...... for all stable and activated complexes defined by the reaction scheme, and hence propose a free energy diagram for the full heterogeneous process. For other Cel7A enzymes, including variants with and without carbohydrate binding module (CBM), we obtained activation parameters for the association...

  17. Enzymatic pretreatment of low-grade oils for biodiesel production

    DEFF Research Database (Denmark)

    Nordblad, Mathias; Pedersen, Anders K.; Rancke-Madsen, Anders

    2016-01-01

    The alkaline process for making biodiesel (fatty acidmethyl esters, or FAME) is highly efficient at the transesterification of glycerides. However, its performance is poor when it comes to using oil that contain significant amounts of free fatty acids (FFA).The traditional approach to such feed...... stocks is to employ acid catalysis, which is slow and requires a large excess of methanol, orto evaporate FFA and convert that in a separate process. An attractive option would be to convert the FFA in oil feedstocks to FAME, before introducing it into the alkaline process. The high selectivity of enzyme......, an assessment of process stability in a continuous packed bed system indicates that as much as 15m3 oil could potentially be pretreated by 1 kg of biocatalyst at the given process conditions....

  18. Effect of various pretreatment conditions on enzymatic saccharification

    Directory of Open Access Journals (Sweden)

    Muhammad Irfan

    2011-08-01

    Full Text Available The present work deals with the delignification of wheat straw and sugarcane bagasse with different pretreatmenttechniques followed by saccharification with commercial and indigenously produced cellulase enzymes. 100 g of sugar canebagasse and whaet straw were treated with various concentrations of H2O2 (1-5% v/v and its combination with 2% NaOHfor one hour under steam at 30 psi. Sugarcane bagasse was 88% delignified with 5% H2O2 + 2% NaOH whereas wheat strawshowed 51% delignification with 3% H2O2 + 2% NaOH. Moreover the saccharification with commercial cellulase enzyme wasfound to be 33.6% and 63.3% with pretreated wheat straw and sugarcane bagasse, respectively. However, very low levels ofsaccharification (6-14% were found with indigenously produced cellulase enzyme.

  19. Determination of inhibition in the enzymatic hydrolysis of cellobiose using hybrid neural modeling

    Directory of Open Access Journals (Sweden)

    F. C. Corazza

    2005-03-01

    Full Text Available Neural networks and hybrid models were used to study substrate and product inhibition observed in the enzymatic hydrolysis of cellobiose at 40ºC, 50ºC and 55ºC, pH 4.8, using cellobiose solutions with or without the addition of exogenous glucose. Firstly, the initial velocity method and nonlinear fitting with StatisticaÒ were used to determine the kinetic parameters for either the uncompetitive or the competitive substrate inhibition model at a negligible product concentration and cellobiose from 0.4 to 2.0 g/L. Secondly, for six different models of substrate and product inhibitions and data for low to high cellobiose conversions in a batch reactor, neural networks were used for fitting the product inhibition parameter to the mass balance equations derived for each model. The two models found to be best were: 1 noncompetitive inhibition by substrate and competitive by product and 2 uncompetitive inhibition by substrate and competitive by product; however, these models’ correlation coefficients were quite close. To distinguish between them, hybrid models consisting of neural networks and first principle equations were used to select the best inhibition model based on the smallest norm observed, and the model with noncompetitive inhibition by substrate and competitive inhibition by product was shown to be the best predictor of cellobiose hydrolysis reactor behavior.

  20. Enhancing the Antioxidant Ability of Trametes versicolor Polysaccharopeptides by an Enzymatic Hydrolysis Process.

    Science.gov (United States)

    Jhan, Mei-Hsin; Yeh, Ching-Hua; Tsai, Chia-Chun; Kao, Ching-Tian; Chang, Chao-Kai; Hsieh, Chang-Wei

    2016-09-10

    Polysaccharopeptides (PSPs) are among the main bioactive constituents of Trametes versicolor (T. versicolor). The purpose of this research was to investigate the antioxidant activities of enzymatic hydrolysates obtained from T. versicolor polysaccharopeptides by 80 U/mL β-1,3-glucanase (PSPs-EH80). The half-inhibitory concentration (IC50) of PSPs-EH80 in metal chelating assay, ABTS and DPPH radical scavenging test results were 0.83 mg/mL, 0.14 mg/mL and 0.52 mg/mL, respectively, which were lower than that of PSPs-EH 20 U/mL. The molecular weights of the PSPs-EH80 hydrolysates were 300, 190, 140 and 50 kDa, respectively, and the hydrolysis of polysaccharides by β-1,3-glucanase did not change the original functional group. PSPs-EH80 reduced the reactive oxygen species (ROS) content at least twice that of treatment without PSPs-EH80. In addition, an oxidative damage test showed that PSPs-EH80 can improve HaCaT cell survival. According to our results, PSP demonstrates the potential of anti-oxidative damage; besides, enzyme hydrolysis can improve the ability of the PSP.

  1. Statistical Evaluation of HTS Assays for Enzymatic Hydrolysis of β-Keto Esters.

    Directory of Open Access Journals (Sweden)

    O Buß

    Full Text Available β-keto esters are used as precursors for the synthesis of β-amino acids, which are building blocks for some classes of pharmaceuticals. Here we describe the comparison of screening procedures for hydrolases to be used for the hydrolysis of β-keto esters, the first step in the preparation of β-amino acids. Two of the tested high throughput screening (HTS assays depend on coupled enzymatic reactions which detect the alcohol released during ester hydrolysis by luminescence or absorption. The third assay detects the pH shift due to acid formation using an indicator dye. To choose the most efficient approach for screening, we assessed these assays with different statistical methods-namely, the classical Z'-factor, standardized mean difference (SSMD, the Kolmogorov-Smirnov-test, and t-statistics. This revealed that all three assays are suitable for HTS, the pH assay performing best. Based on our data we discuss the explanatory power of different statistical measures. Finally, we successfully employed the pH assay to identify a very fast hydrolase in an enzyme-substrate screening.

  2. Acceleration of the Enzymatic Hydrolysis of Corn Stover and Sugar Cane Bagasse Celluloses by Low Intensity Uniform Ultrasound

    Science.gov (United States)

    The cost-competitive production of bio-ethanol and other biofuels is currently impeded, mostly by high cost and low efficiency of enzymatic hydrolysis of feedstock biomass and especially plant celluloses. Despite substantial reduction in the cost of production of cellulolytic enzymes in recent times...

  3. Performance of coupled enzymatic hydrolysis and membrane separation bioreactor for antihypertensive peptides production from Porphyra yezoensis protein

    Science.gov (United States)

    To explore more efficient production methods of antihypertensive peptides from Porphyra yezoensis protein, three methods of coupling of enzymatic hydrolysis and membrane separation (CEH-MS) were studied and compared with the traditional EH and offline MS method. The results showed that the conversio...

  4. Forms and lability of phosphorus in algae and aquatic macrophytes characterized by solution 31P NMR coupled with enzymatic hydrolysis

    Science.gov (United States)

    Increased information on forms and lability of phosphorus (P) in aquatic macrophytes and algae is crucial for better understanding of P biogeochemical cycling in eutrophic lakes. In this work, solution 31P nuclear magnetic resonance (NMR) spectroscopy coupled with enzymatic hydrolysis (EH) was used ...

  5. Rapid enzymatic hydrolysis of masked deoxynivalenol and zearalenone prior to liquid chromatography mass spectrometry or immunoassay analysis

    Czech Academy of Sciences Publication Activity Database

    Nielen, M. F. V.; Weijers, C. A. G. M.; Peters, J.; Weignerová, Lenka; Zuilhof, H.; Franssen, M. C. R.

    2014-01-01

    Roč. 7, č. 2 (2014), s. 107-113 ISSN 1875-0710 Institutional support: RVO:61388971 Keywords : masked mycotoxins * enzymatic hydrolysis * 1,3-beta-glucanase Subject RIV: CE - Biochemistry Impact factor: 2.157, year: 2014

  6. Effects of laccase on lignin depolymerization and enzymatic hydrolysis of ensiled corn stover.

    Science.gov (United States)

    Chen, Qin; Marshall, Megan N; Geib, Scott M; Tien, Ming; Richard, Tom L

    2012-08-01

    The aim of this study was to explore the synergies of laccase, a ligninolytic enzyme, with cellulose and hemicellulase amendments on ensiled corn stover. Molecular signals of lignin decomposition were observed by tetramethylammonium hydroxide thermochemolysis and gas chromatography-mass spectroscopy (TMAH-GC-MS) analysis. The significant findings suggest that ensilage might provide a platform for biological pretreatment. By partially hydrolyzing cellulose and hemicellulose into soluble sugars, ensilage facilitates laccase penetration into the lignocellulose complex to enhance lignin degradation. Downstream cellulose hydrolysis was improved 7% with increasing laccase loading rate. These results demonstrate the potential of enzymes, either directly amended or expressed by microbes during ensilage, to maximize utilization of corn stover for cellulosic biofuels and other downstream fermentations. Copyright © 2012. Published by Elsevier Ltd.

  7. Effect of gelatinization and hydrolysis conditions on the selectivity of starch hydrolysis with alpha-amylase from Bacillus licheniformis

    NARCIS (Netherlands)

    Baks, T.; Bruins, M.E.; Matser, A.M.; Janssen, A.E.M.; Boom, R.M.

    2008-01-01

    Enzymatic hydrolysis of starch can be used to obtain various valuable hydrolyzates with different compositions. The effects of starch pretreatment, enzyme addition point, and hydrolysis conditions on the hydrolyzate composition and reaction rate during wheat starch hydrolysis with ¿-amylase from

  8. Thermal and enzymatic pretreatment of sludge containing phthalate esters prior to mesophilic anaerobic digestion

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Yenal, U.; Ahring, Birgitte Kiær

    2004-01-01

    The present study aimed at investigating the effect of thermal pretreatment of sludge at 70degreesC on the anaerobic degradation of three commonly found phthalic acid esters (PAE): di-ethyl phthalate (DEP), di-butyl phthalate (DBP), and di-ethylhexyl phthalate (DEHP). Also, the enzymatic treatment...... at 28degreesC with a commercial lipase was studied as a way to enhance PAE removal. Pretreatment at 70degreesC of the sludge containing PAE negatively influenced the anaerobic biodegradability of phthalate esters at 37degreesC. The observed reduction of PAE biodegradation rates after the thermal...... pretreatment was found to be proportional to the PAE solubility in water: the higher the solubility, the higher the percentage of the reduction (DEP > DBP > DEHP). PAE were slowly degraded during the pretreatment at 70degreesC, yet this was probably due to physicochemical reactions than to microbial...

  9. Improvements on enzymatic hydrolysis of human hair for illicit drug determination by gas chromatography/mass spectrometry.

    Science.gov (United States)

    Míguez-Framil, Martha; Moreda-Piñeiro, Antonio; Bermejo-Barrera, Pilar; López, Patricia; Tabernero, María Jesús; Bermejo, Ana María

    2007-11-15

    The use of ultrasound energy for accelerating the pronase E enzymatic hydrolysis of human hair for extracting illicit drugs has been novelty tested. The enzymatic extracts obtained after 30 min of sonication in an ultrasonic water bath were subjected to an optimized solid-phase extraction process, which involved a solution of 2.0% (v/v) acetic acid in methanol as eluting solution and concentration by N2 stream evaporation. A gas chromatography/mass spectrometry method was used to separate and determine cocaine, benzoylecgonine, codeine, morphine, and 6-monoacethylmorphine in 20 min. Variables affecting ultrasound-assisted pronase E hydrolysis such as hydrolysis temperature, hydrolysis time, enzyme concentration, catalyzer (1,4-dithiothreitol) concentration, ionic strength, pH, and ultrasound frequency were simultaneously evaluated by a Plackett-Burman design 2(8) PBD of resolution III. The most statistically significant variables were ionic strength and pH, which means that analyte extraction is mainly attributed to pronase E activity. The optimization or evaluation of all the factors has led to an accelerated pronase E hydrolysis of human hair, which can be completed in 30 min. Results have been found to be statistically similar to those obtained with conventional pronase E hydrolysis. The accelerated method was finally applied to several human hair samples from multidrug abusers.

  10. Comparative study of sulfite pretreatments for robust enzymatic saccharification of corn cob residue

    Directory of Open Access Journals (Sweden)

    Bu Lingxi

    2012-12-01

    Full Text Available Abstract Background Corn cob residue (CCR is a kind of waste lignocellulosic material with enormous potential for bioethanol production. The moderated sulphite processes were used to enhance the hydrophily of the material by sulfonation and hydrolysis. The composition, FT-IR spectra, and conductometric titrations of the pretreated materials were measured to characterize variations of the CCR in different sulfite pretreated environments. And the objective of this study is to compare the saccharification rate and yield of the samples caused by these variations. Results It was found that the lignin in the CCR (43.2% had reduced to 37.8%, 38.0%, 35.9%, and 35.5% after the sulfite pretreatment in neutral, acidic, alkaline, and ethanol environments, respectively. The sulfite pretreatments enhanced the glucose yield of the CCR. Moreover, the ethanol sulfite sample had the highest glucose yield (81.2%, based on the cellulose in the treated sample among the saccharification samples, which was over 10% higher than that of the raw material (70.6%. More sulfonic groups and weak acid groups were produced during the sulfite pretreatments. Meanwhile, the ethanol sulfite treated sample had the highest sulfonic group (0.103 mmol/g and weak acid groups (1.85 mmol/g in all sulfite treated samples. In FT-IR spectra, the variation of bands at 1168 and 1190 cm-1 confirmed lignin sulfonation during sulfite pretreatment. The disappearance of the band at 1458 cm-1 implied the methoxyl on lignin had been removed during the sulfite pretreatments. Conclusions It can be concluded that the lignin in the CCR can be degraded and sulfonated during the sulfite pretreatments. The pretreatments improve the hydrophility of the samples because of the increase in sulfonic group and weak acid groups, which enhances the glucose yield of the material. The ethanol sulfite pretreatment is the best method for lignin removal and with the highest glucose yield.

  11. Effect of the structural features of hydrochloric acid-deamidated wheat gluten on its susceptibility to enzymatic hydrolysis.

    Science.gov (United States)

    Cui, Chun; Hu, Qingling; Ren, Jiaoyan; Zhao, Haifeng; You, Lijun; Zhao, Mouming

    2013-06-19

    The effect of the structural features of hydrochloric acid-deamidated wheat gluten with different degrees of deamidation (DDs) on the susceptibility to enzymatic hydrolysis by pancreatin was investigated. The wheat gluten deamidated by hydrochloric acid with a DD of 55% revealed the highest susceptibility to enzymatic hydrolysis as evaluated by the hydrolysis degree and nitrogen solubility index of the hydrolysates. An increase of peptides with MW below 3000 Da was observed as the DD increased. Raman spectra in the 1740-1800 cm⁻¹ and 521-530 cm⁻¹ range suggested that wheat gluten had taken off the deamidation with different DDs and that the disulfide bond had disrupted the sulfhydryl groups with different intensities, respectively. Results from the deconvolution of the amide I region of FTIR spectra in the 1600-1700 cm⁻¹ range showed that the content of the α-helix decreased and that the content of the β-turn and β-sheet increased with increasing DDs, which improved the molecular structure and flexibility of wheat gluten. A scanning electron microscope (SEM) revealed that the image of HDG-55% presented the smoothest surface and the least uniform pore, enabling the sample to be more susceptible to enzymatic hydrolysis. The above information will enable us to better understand the effect of structure on the susceptibility of deamidated wheat gluten.

  12. Brown seaweed processing: enzymatic saccharification of Laminaria digitata requires no pre-treatment

    DEFF Research Database (Denmark)

    Manns, Dirk; Andersen, Stinus K.; Saake, Bodo

    2016-01-01

    This study assesses the effect of different milling pre-treatments on enzymatic glucose release from the brown seaweed Laminaria digitata having high glucan (laminarin) content. Wet refiner milling, using rotating disc distances of 0.1–2 mm, generated populations of differently sized pieces...... of lamina having decreasing average surface area (100–0.1 mm2) with increased milling severity. Higher milling severity (lower rotating disc distance) also induced higher spontaneous carbohydrate solubilization from the material. Due to the seaweed material consisting of flat blades, the milling did...... not increase the overall surface area of the seaweed material, and size diminution of the laminas by milling did not improve the enzymatic glucose release. Milling was thus not required for enzymatic saccharification because all available glucose was released even from unmilled material. Treatment...

  13. Influence of enzymatic hydrolysis on the allergenicity of roasted peanut protein extract.

    Science.gov (United States)

    Cabanillas, Beatriz; Pedrosa, Mercedes M; Rodríguez, Julia; Muzquiz, Mercedes; Maleki, Soheila J; Cuadrado, Carmen; Burbano, Carmen; Crespo, Jesús F

    2012-01-01

    Peanut allergy is recognized as one of the most severe food allergies. Some studies have investigated the effects of enzymatic treatments on the in vitro immunological reactivity of members of the Leguminosae family, such as the soybean, chickpea and lentil. Nevertheless, there are only a few studies carried out with sera from patients with a well-documented allergy. Roasted peanut protein extract was hydrolyzed by the sequential and individual action of 2 food-grade enzymes, an endoprotease (Alcalase) and an exoprotease (Flavourzyme). Immunoreactivity to roasted peanut extract and hydrolyzed samples was evaluated by means of IgE immunoblot, ELISA and 2-dimensional electrophoresis using sera from 5 patients with a clinical allergy to peanuts and anti-Ara h 1, anti-Ara h 2 and anti-Ara h 3 immunoblots. Immunoblot and ELISA assays showed an important decrease of IgE reactivity and Ara h 1, Ara h 2 and Ara h 3 levels in the first 30 min of hydrolyzation with Alcalase. In contrast, individual treatment with Flavourzyme caused an increase in IgE reactivity detected by ELISA at 30 min and led to a 65% inhibition of IgE reactivity at the end of the assay (300 min). Ara h 1 and the basic subunit of Ara h 3 were still recognized after treatment with Flavourzyme for 300 min. Hydrolysis with the endoprotease Alcalase decreases IgE reactivity in the soluble protein fraction of roasted peanut better than hydrolysis with the exoprotease Flavourzyme. Copyright © 2011 S. Karger AG, Basel.

  14. EFFECTIVE ALKALINE PEROXIDE OXIDATION PRETREATMENT OF SHEA TREE SAWDUST FOR THE PRODUCTION OF BIOFUELS: KINETICS OF DELIGNIFICATION AND ENZYMATIC CONVERSION TO SUGAR AND SUBSEQUENT PRODUCTION OF ETHANOL BY FERMENTATION USING Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    A. O. Ayeni

    Full Text Available Abstract Shea tree sawdust delignification kinetic data during alkaline peroxide pretreatment were investigated at temperatures of 120 °C, 135 °C, and 150 °C. The activation energy during delignification was 76.4 kJ/mol and the Arrhenius constant was calculated as 8.4 x 106 per min. The reducing sugar yield for the treated to the untreated biomass was about 22-fold. Enzymatic hydrolysis conditions studied were; time (72 h and 96 h, substrate concentration (20, 30, 40, and 50 g/L, and enzyme loadings (10, 25, 40, 50 FPU/g dry biomass, which showed the optimum conditions of 96 h, 40 g/L, and 25 FPU/g dry biomass at 45 °C hydrolysis temperature. At the optimized enzymatic hydrolysis conditions, the reducing sugar yield was 416.32 mg equivalent glucose/g treated dry biomass. After 96 h fermentation of treated biomass, the ethanol obtained at 2% effective cellulose loading was 12.73 g/L. Alkaline peroxide oxidation pretreatment and subsequent enzymatic hydrolysis improved the ethanol yield of the biomass.

  15. Sequential enzymatic saccharification and fermentation of ionic liquid and organosolv pretreated agave bagasse for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Pimienta, Jose A. [Univ. Autonoma de Nayarit, Tepic (Mexico); Vargas-Tah, Alejandra [Univ. Nacional Autonoma de Mexico (UNAM), Cuernavaca (Mexico).; López-Ortega, Karla M. [Univ. Autonoma de Nayarit, Tepic (Mexico); Medina-López, Yessenia N. [Univ. Autonoma de Nayarit, Tepic (Mexico); Mendoza-Pérez, Jorge A. [Inst. Politecnico Nacional (IPN), Mexico City (Mexico); Avila, Sayeny [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Singh, Seema [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States); Simmons, Blake A. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States); Loaces, Inés [Univ. Nacional Autonoma de Mexico (UNAM), Cuernavaca (Mexico).; Martinez, Alfredo [Univ. Nacional Autonoma de Mexico (UNAM), Cuernavaca (Mexico).

    2016-11-16

    Agave bagasse (AGB) has gained recognition as a drought-tolerant biofuel feedstock with high productivity in semiarid regions. A comparative analysis of ionic liquid (IL) and organosolv (OV) pretreatment technologies in AGB was performed using a sequential enzymatic saccharification and fermentation (SESF) strategy with cellulolytic enzymes and the ethanologenic Escherichia coli strain MS04. After pretreatment, 86% of xylan and 45% of lignin were removed from OV-AGB, whereas IL-AGB reduced lignin content by 28% and xylan by 50% when compared to the untreated biomass. High glucan ( > 90%) and xylan ( > 83%) conversion was obtained with both pretreated samples. During the fermentation stage (48 h), 12.1 and 12.7 kg of ethanol were produced per 100 kg of untreated AGB for IL and OV, respectively. These comparative analyses showed the advantages of SESF using IL and OV in a biorefinery configuration where a better understanding of AGB recalcitrance is key for future applications.

  16. Utilization of immobilized B-glucosidase in the enzymatic hydrolysis of cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Issacs, Steven H. [Univ. of California, Berkeley, CA (United States); Wilke, C. R. [Univ. of California, Berkeley, CA (United States)

    1978-01-01

    β-glucosidase obtained from Aspergillus phoenicis was immobilized onto phenol formaldehyde resin using glutaraldehyde as a fixing agent, and kinetic characteristics such as pH optimum, temperature stability and Michaelis-Menton constants were determined. Three experiments were performed where a batch hydrolysis of a cellulosic source was carried out with a recycle stream through an immobilized β-glucosidase column in order to continuously remove cellobiose. The first two experiments using pretreated corn stover as the substrate showed no increase in hydrolysis over that of a control system, presumably because the cellobiose production was too low for cellobiose inhibition to occur. The third experiment, using Solka Floc as the substrate, which produced as high as 8.8 grams per liter of cellobiose, showed only a slight increase in soluble sugar production over that of the control system. Since the current process indicates the use of corn stover or a similar substrate, it does not appear useful to include an immobilized enzyme reactor in this manner. Since the fermentation part of the process cannot use cellobiose to produce ethanol, the use of the immobilized β-glucosidase reactor to convert the cellobiose to glucose may have economic significance by increasing the ethanol yield in this fashion. A computer program was produced in order to simulate a fixed-bed reactor with diffusion limitations and to determine the cost per pound of glucose for a given reactor design. Use of the immobilized enzyme system results in a savings of 0.53 cents per pound of glucose, which results in a corresponding savings of 7.2 cents per gallon of ethanol upon subsequent fermentation of the hydrolyzate.

  17. Enhancement of methane production in anaerobic digestion of sewage sludge by thermal hydrolysis pretreatment.

    Science.gov (United States)

    Choi, Jae-Min; Han, Sun-Kee; Lee, Chae-Young

    2018-07-01

    This study was performed to optimize thermal hydrolysis pretreatment (THP) of sewage sludge for enhanced anaerobic digestion (AD). Using the response surface methodology (RSM), the optimal conditions were found 180 °C of reaction temperature and 76 min of reaction time. Through THP under optimal conditions, high molecular substances in sewage sludge such as soluble microbial by-products (SMPs) and extracellular polymeric substances (EPSs) were hydrolyzed into low molecular ones without the generation of refractory compounds. The microbial community analysis revealed that relative abundances of Methanomicrobia such as Methanosarcina, Methanosaeta (acetoclastic methanogens), and Methanoculleus (hydrogenotrophic methanogens) in AD with THP were higher than those in conventional AD. Copyright © 2018. Published by Elsevier Ltd.

  18. Evaluation of sucrose hydrolysis enzymatic route in a packed bed spherical reactor

    International Nuclear Information System (INIS)

    Gamboa Montoya, Esteban

    2012-01-01

    The hydrolysis of sucrose via enzymatic was evaluated using a spherical bed packed reactor. The experimentation was divided into three stages. First, the invertase enzyme is immobilized on 100 grams of support for two particle sizes between 60-80 mesh and 100-140 mesh. A 2 x 3 block design was carried out with 2 treatments and 3 blocks, as variables of volumetric flow design (treatments) at the levels of 2 mL/min and 3 mL/min and initial concentration of sucrose (blocks) of 0,75 mol/L, 1,00 mol/L and 1,25 mol/L and the volumetric flow of 2 mL/min and 3 mL/min, in the second stage. The conversion rate of sucrose in reducing sugars was the response variable. A factorial design of three variables and two levels was applied in the third stage. The sucrose concentration of 1,00 mol/L and 1,25 mol/L, the volumetric flow of 2 mL/min and 4 mL/min and a temperature of 50 degrees Celsius and 55 degrees Celsius were the levels of the design variables. The effect of temperature as well as the interaction concentration of sucrose-volumetric flow and the interaction concentration of sucrose-temperature were statistically significant. The quality analysis of the obtained product was checked by a test of the best reaction conditions determined in the previous stages [es

  19. A coupled CFD and two-phase substrate kinetic model for enzymatic hydrolysis of lignocellulose

    Science.gov (United States)

    Danes, Nicholas; Sitaraman, Hariswaran; Stickel, Jonathan; Sprague, Michael

    2017-11-01

    Cost-effective production of fuels from lignocellulosic biomass is an important subject of research in order to meet the world's current and future energy demands. Enzymatic hydrolysis is one of the several steps in the biochemical conversion of biomass into fuels. This process involves the interplay of non-Newtonian fluid dynamics that happen over tens of seconds coupled with chemical reactions that happen over several hours. In this work, we present a coupled CFD-reaction model for conversion of cellulose to sugars in a benchtop mixer reactor. A subcycling approach is used to circumvent the large time scale disparity between fluid dynamics and reactions. We will present a validation study of our simulations with experiments for well-mixed and stratified reactor scenarios along with predictions for conversion rates and product concentrations at varying impeller speeds and in scaled-up reactors. This work is funded by the Bioenergy Technology Office of DOE and the NSF's Enriched Doctoral Training program (DMS-1551229).

  20. Behaviors and mechanism of acid dyes sorption onto diethylenetriamine-modified native and enzymatic hydrolysis starch

    International Nuclear Information System (INIS)

    Wang Zuohua; Xiang Bo; Cheng Rumei; Li Yijiu

    2010-01-01

    In this paper, different starches were modified by diethylenetriamine. The native starch reacted with diethylenetriamine giving CAS, whereas the enzymatic hydrolysis starch was modified by diethylenetriamine producing CAES. Adsorption capacities of CAES for four acid dyes, namely, Acid orange 7 (AO7), Acid orange 10 (AO10), Acid green 25 (AG25) and Acid red 18 (AR18) have been determined to be 2.521, 1.242, 1.798 and 1.570 mmol g -1 , respectively. In all cases, CAES has exhibited higher sorption ability than CAS, and the increment for these dyes took the sequence of AO7 (0.944 mmol g -1 ) > AO10 (0.592 mmol g -1 ) > AR18 (0.411 mmol g -1 ) > AG25 (0.047 mmol g -1 ). Sorption kinetics and isotherms analysis showed that these sorption processes were better fitted to pseudo-second-order equation and Langmuir equation. Chemical sorption mechanisms were confirmed by studying the effects of pH, ionic strength and hydrogen bonding. Thermodynamic parameters of these dyes onto CAES and CAS were also observed and it indicated that these sorption processes were exothermic and spontaneous in nature.

  1. Alternatives for clarifying glucose syrup obtained by enzymatic hydrolysis of starch

    Directory of Open Access Journals (Sweden)

    Gloria Teresa Cruz Guerrero

    2004-05-01

    Full Text Available The present paper studies some routes for separating and purifying glucose syrup obtained by enzymatic hydrolysis of potato starch. The clarifying process is done in three stages. The first one (solids remotion is done by applying conventional solid-liquid separation techniiques such as sedimentation, centrifugation and filtration, as well as studying the effect of using flocculant and coagulant agents, prior to the already mentioned operations. Purification is done by adding decolouring agents, followed by ultrafiltration of the syrup. The last step (concentration is done by vacuum evaporation. The results showed that separation, centrifuging and sedimation reached 50% yield whilst filtration and ultrafiltration achieved 78% and 98% respectively. It was found that adsorbent agents such as activated carbon and diatomaceous earth were effective in removing colour during the purification stage. The most suitable alternative for separation can be suggested from the foregoing, allowing a syrup to be obtained having similar characteristics and propierties to the commercial product. The most appropriate technological module for carrying out the operation is also represented.

  2. Enzymatic Hydrolysis of Alginate to Produce Oligosaccharides by a New Purified Endo-Type Alginate Lyase

    Directory of Open Access Journals (Sweden)

    Benwei Zhu

    2016-06-01

    Full Text Available Enzymatic hydrolysis of sodium alginate to produce alginate oligosaccharides has drawn increasing attention due to its advantages of containing a wild reaction condition, excellent gel properties and specific products easy for purification. However, the efficient commercial enzyme tools are rarely available. A new alginate lyase with high activity (24,038 U/mg has been purified from a newly isolated marine strain, Cellulophaga sp. NJ-1. The enzyme was most active at 50 °C and pH 8.0 and maintained stability at a broad pH range (6.0–10.0 and temperature below 40 °C. It had broad substrate specificity toward sodium alginate, heteropolymeric MG blocks (polyMG, homopolymeric M blocks (polyM and homopolymeric G blocks (polyG, and possessed higher affinity toward polyG (15.63 mM as well as polyMG (23.90 mM than polyM (53.61 mM and sodium alginate (27.21 mM. The TLC and MS spectroscopy analysis of degradation products suggested that it completely hydrolyzed sodium alginate into oligosaccharides of low degrees of polymerization (DPs. The excellent properties would make it a promising tool for full use of sodium alginate to produce oligosaccharides.

  3. Enzymatic hydrolysis and production of bioethanol from common macrophytic green alga Ulva fasciata Delile.

    Science.gov (United States)

    Trivedi, Nitin; Gupta, Vishal; Reddy, C R K; Jha, Bhavanath

    2013-12-01

    The green seaweed Ulva which proliferates fast and occurs abundantly worldwide was used as a feedstock for production of ethanol following enzymatic hydrolysis. Among the different cellulases investigated for efficient saccharification, cellulase 22119 showed the highest conversion efficiency of biomass into reducing sugars than Viscozyme L, Cellulase 22086 and 22128. Pre-heat treatment of biomass in aqueous medium at 120°C for 1h followed by incubation in 2% (v/v) enzyme for 36 h at 45°C gave a maximum yield of sugar 206.82±14.96 mg/g. The fermentation of hydrolysate gave ethanol yield of 0.45 g/g reducing sugar accounting for 88.2% conversion efficiency. These values are substantially higher than those of reported so far for both agarophytes and carrageenophytes. It was also confirmed that enzyme can be used twice without compromising on the saccharification efficiency. The findings of this study reveal that Ulva can be a potential feedstock for bioethanol production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Immobilization of Lipase using Alginate Hydrogel Beads and Enzymatic Evaluation in Hydrolysis of p-Nitrophenol Butyrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuang; Shang, Wenting; Yang, Xiaoxi; Zhang, Shujuan; Zhang, Xiaogang; Chen, Jiawei [Renmin Univ. of China, Beijing (China)

    2013-09-15

    The immobilization of enzyme is one of the key issues both in the field of enzymatic research and industrialization. In this work, we reported a facile method to immobilize Candida Antarctica lipase B (CALB) in alginate carrier. In the presence of calcium cation, the enzyme-alginate suspension could be cross-linked to form beads with porous structure at room temperature, and the enzyme CALB was dispersed in the beads. Activity of the enzyme-alginate composite was verified by enzymatic hydrolysis reaction of p-nitrophenol butyrate in aqueous phase. The effects of reaction parameters such as temperature, pH, embedding and lyophilized time on the reactive behavior were discussed. Reuse cycle experiments for the hydrolysis of p-nitrophenol butyrate demonstrated that activity of the enzyme-alginate composite was maintained without marked deactivation up to 6 repeated cycles.

  5. Temperature induced decoupling of enzymatic hydrolysis and carbon remineralization in long-term incubations of Arctic and temperate sediments

    DEFF Research Database (Denmark)

    Robador, Alberto; Brüchert, Volker; Steen, Andrew

    2010-01-01

    , as demonstrated by increased concentrations of dissolved organic carbon (DOC) and total dissolved carbohydrates. This effect was stronger at higher incubation temperatures, particularly in the Arctic sediments. In all experiments, concentrations of volatile fatty acids (VFA) were low, indicating tight coupling......Extracellular enzymatic hydrolysis of high-molecular weight organic matter is the initial step in sedimentary organic carbon degradation and is often regarded as the rate-limiting step. Temperature effects on enzyme activities may therefore exert an indirect control on carbon mineralization. We...... explored the temperature sensitivity of enzymatic hydrolysis and its connection to subsequent steps in anoxic organic carbon degradation in long-term incubations of sediments from the Arctic and the North Sea. These sediments were incubated under anaerobic conditions for 24 months at temperatures of 0, 10...

  6. Enzymatic hydrolysis of steam-exploded sugarcane bagasse using high total solids and low enzyme loadings.

    Science.gov (United States)

    Ramos, Luiz Pereira; da Silva, Larissa; Ballem, Annielly Comelli; Pitarelo, Ana Paula; Chiarello, Luana Marcele; Silveira, Marcos Henrique Luciano

    2015-01-01

    Hydrolysis of phosphoric acid-impregnated steam-treated sugarcane bagasse was pre-optimized using a face-centered central composite design in which the process variables were the substrate total solids (TS, %), agitation intensity (AI, rpm) and enzyme loading (EL, gg(-1)). Pretreatment was carried out at 180°C for 10min using cane bagasse with 50wt% moisture content containing 9.5mg of H3PO4 per gram of dry biomass. Hydrolyses were performed for 96h at 50°C using Cellic CTec2® and water-washed steam-treated substrates. The highest amount of fermentable sugars was obtained with 20wt% TS, producing 76.8gL(-1) of glucose equivalents, which corresponded to a total glucan conversion of 69.2wt% and to a theoretical net increase of 39% in ethanol production from the same sugarcane tonnage without considering the use of leaves, tops and the additional yields from C5 sugars. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. On energy consumption for size-reduction and yields from subsequent enzymatic saccharification of pretreated lodgepole pine

    Science.gov (United States)

    W. Zhu; Junyong Zhu; Roland Gleisner; X.J. Pan

    2010-01-01

    This study investigated the effects of chemical pretreatment and disk-milling conditions on energy consumption for size-reduction and the efficiency of enzymatic cellulose saccharification of a softwood. Lodgepole pine wood chips produced from thinnings of a 100-year-old unmanaged forest were pretreated by hot-water, dilute-acid, and two SPORL processes (Sulfite...

  8. Anaerobic treatment of antibiotic production wastewater pretreated with enhanced hydrolysis: Simultaneous reduction of COD and ARGs.

    Science.gov (United States)

    Yi, Qizhen; Zhang, Yu; Gao, Yingxin; Tian, Zhe; Yang, Min

    2017-03-01

    The presence of high concentration antibiotics in wastewater can disturb the stability of biological wastewater treatment systems and promote generation of antibiotic resistance genes (ARGs) during the treatment. To solve this problem, a pilot system consisting of enhanced hydrolysis pretreatment and an up-flow anaerobic sludge bed (UASB) reactor in succession was constructed for treating oxytetracycline production wastewater, and the performance was evaluated in a pharmaceutical factory in comparison with a full-scale anaerobic system operated in parallel. After enhanced hydrolysis under conditions of pH 7 and 85 °C for 6 h, oxytetracycline production wastewater with an influent chemical oxygen demand (COD) of 11,086 ± 602 mg L -1 was directly introduced into the pilot UASB reactor. With the effective removal of oxytetracycline and its antibacterial potency (from 874 mg L -1 to less than 0.61 mg L -1 and from 900 mg L -1 to less than 0.84 mg L -1 , respectively) by the enhanced hydrolysis pretreatment, an average COD removal rate of 83.2%, 78.5% and 68.9% was achieved at an organic loading rate of 3.3, 4.8 and 5.9 kg COD m -3  d -1 , respectively. At the same time, the relative abundances of the total tetracycline (tet) genes and a mobile element (Class 1 integron (intI1)) in anaerobic sludge on day 96 were one order of magnitude lower than those in inoculated sludge on day 0 (P anaerobic system treating oxytetracycline production wastewater with an influent COD of 3720 ± 128 mg L -1 after dilution exhibited a COD removal of 51 ± 4% at an organic loading rate (OLR) 1.2 ± 0.2 kg m -3  d -1 , and a total tet gene abundance in sludge was five times higher than the pilot-scale system (P anaerobic treatment of oxytetracycline production wastewater containing high concentrations of oxytetracycline with significantly lower generation of ARGs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Pretreatment of sugarcane top leaves by ozonation as a promotion of susceptibility to hydrolysis

    Directory of Open Access Journals (Sweden)

    Felipe Iwagaki Braga Ogando

    2016-12-01

    Full Text Available Studies about Ozone (O3 application in sugarcane residues for ethanol production are ongoing. This study was undertaken to evaluate the use of ozone as a pretreatment to facilitate hydrolysis of sugarcane top leaves. In the first experimentation, sugarcane top leaves were subjected to ozone (62.37 mg O3 min-1 over a three hour period and water only (control. Following ozonation, the material was separated into a liquid and solid fraction. The analysis of liquid fraction showed that phenolic concentration and soluble solids did not vary. However, there was a decrease in pH and an increase in reducing sugars. This treatment increased saccharification. During the second treatment, ozone was added by direct infusion in a suspension of sugarcane top leaves and distilled water at a ratio of 1:10 (w.v-1. Additionally, the lignocellulosic analysis showed a positive relationship between the dose of ozone and decomposition of lignin and an increase in the proportion of cellulose and hemicellulose in the material. All aspects are good signs for the use of ozone in pretreatment of lignocelullosic feedstocks.

  10. Biological Pretreatment of Oil Palm Frond Fiber Using White-Rot Fungi for Enzymatic Saccharification

    Directory of Open Access Journals (Sweden)

    Euis Hermiati

    2013-09-01

    Full Text Available Oil palm frond is one type of lignocellulosic biomass abundantly and daily available in Indonesia. It contains cellulose which can be converted to glucose, and further processed to produce different kinds of value –added products. The aim of this research is to study the effects of biological pretreatment of oil palm frond (OPF fiber using Phanerochaete chrysosporium and Trametes versicolor on the enzymatic saccharification of the biomass. The OPF fiber (40-60 mesh sizes was inoculated with cultures of the two fungi and incubated at 27 °C for 4 weeks. The samples were taken after 1, 2, 3, and 4 weeks of incubation. Chemical components of the biomass after pretreatment were analyzed. The saccharification of the pretreated samples using cellulase and β-glucosidase was performed in a water bath shaker at 50 °C for 48 hours. The concentration of reducing sugar increased with increasing of incubation time, either in those pretreated with culture of P. chrysosporium or with T. versicolor. Pretreatment of OPF fiber using single culture of T. versicolor for 4 weeks gave the highest reducing sugar yield (12.61% of dry biomass.

  11. Study on Optimal Conditions of Alcalase Enzymatic Hydrolysis of Soybean Protein Isolate

    OpenAIRE

    Yongsheng Ma; Xianhui Sun; Lintong Wang

    2015-01-01

    Soybean protein isolate was hydrolyzed to obtain soybean polypeptide solution using Alcalase as hydrolase. Degree of hydrolysis and the recovery rate of protein were used to characterize the soybean protein hydrolysis reaction result. Influence factors of soybean protein hydrolysis reaction including the substrate concentration, temperature, pH, enzyme concentration characterized by E/S (ratio of Enzyme and Substrate) and hydrolysis time were systematically studied with single factor and mult...

  12. Combined electrical-alkali pretreatment to increase the anaerobic hydrolysis rate of waste activated sludge during anaerobic digestion

    International Nuclear Information System (INIS)

    Zhen, Guangyin; Lu, Xueqin; Li, Yu-You; Zhao, Youcai

    2014-01-01

    Highlights: • Combined electrical-alkali pretreatment for improving sludge anaerobic digestion was proposed. • Combined process enhanced the cell lysis, biopolymers releases, and thus sludge disintegration. • Increased solubilization of sludge increased the anaerobic hydrolysis rate. • Increased solubilization does not always induce an improved anaerobic digestion efficiency. - Abstract: Pretreatment can be used prior to anaerobic digestion to improve the efficiency of waste activated sludge (WAS) digestion. In this study, electrolysis and a commonly used pretreatment method of alkaline (NaOH) solubilization were integrated as a pretreatment method for promoting WAS anaerobic digestion. Pretreatment effectiveness of combined process were investigated in terms of disintegration degree (DD SCOD ), suspended solids (TSS and VSS) removals, the releases of protein (PN) and polysaccharide (PS), and subsequent anaerobic digestion as well as dewaterability after digestion. Electrolysis was able to crack the microbial cells trapped in sludge gels and release the biopolymers (PN and PS) due to the cooperation of alkaline solubilization, enhancing the sludge floc disintegration/solubilization, which was confirmed by scanning electron microscopy (SEM) analysis. Biochemical methane potential (BMP) assays showed the highest methane yield was achieved with 5 V plus pH 9.2 pretreatment with up to 20.3% improvement over the non-pretreated sludge after 42 days of mesophilic operation. In contrast, no discernible improvements on anaerobic degradability were observed for the rest of pretreated sludges, probably due to the overmuch leakage of refractory soluble organics, partial chemical mineralization of solubilized compounds and sodium inhibition. The statistical analysis further indicated that increased solubilization induced by electrical-alkali pretreatment increased the first-order anaerobic hydrolysis rate (k hyd ), but had no, or very slight enhancement on WAS ultimate

  13. Impact of lignins isolated from pretreated lignocelluloses on enzymatic cellulose saccharification

    DEFF Research Database (Denmark)

    Barsberg, Søren Talbro; Selig, Michael Joseph; Felby, Claus

    2013-01-01

    Lignins were enzymatically isolated from corn stover and wheat straw samples and subjected to hydrothermal or wet oxidation pretreatments for enzyme adsorption experimentations. Lignin contents of the isolates ranged from 26 to 71 % (w/w); cellulose ranged from 3 to 22 % (w/w); xylan from 0.7 to 6...... % (w/w) and ash was from 5.8 to 30 % (w/w). ATR-IR analyses indicated significant and similar levels of calcium in all lignin isolates. Commercial cellulase adsorption studies showed that the presence of these lignins had no significant impact on the total amount of adsorbed enzyme in cellulose...... and cellulose-lignin systems. Consequently, the presence of the lignins had minimal effect, if any, on enzymatic cellulose conversion. Furthermore, this result, coupled with significant calcium levels in the isolated lignins, supports previous work suggesting lignin-calcium complexes reduce enzyme...

  14. Protein extraction and enzymatic hydrolysis of ammonia-treated cassava leaves (Manihot esculenta Crantz).

    Science.gov (United States)

    Urribarrí, Lauris; Chacón, David; González, Orlaidy; Ferrer, Alexis

    2009-05-01

    In the present work, cassava leaves were treated with 0.5 kg ammonia/kg dry matter at 78 degrees C and 30% moisture content in a 2-kg reactor. Protein extraction was carried out with a calcium hydroxide solution (pH 10) for 30 min at several temperatures (30 degrees C, 45 degrees C, 60 degrees C, 75 degrees C, and 90 degrees C) and solid/liquid ratios (1:10 and 1:15) in a thermostatized bath. Soluble protein content of the extracts was determined by Lowry's method. Dry substrate concentrations of 5%, 7.5%, and 10% and enzyme doses of 2 and 5 IU/g dry matter were used for the enzymatic hydrolysis in an orbital incubator at 50 degrees C and 100 rpm. Both cellulase and xylanase were used. Reducing sugars produced were determined with the dinitrosalicylic acid method. The highest protein extraction yield for the ammonia-treated leaves was 29.10%, which was 50% higher than with the untreated leaves (20%), and was obtained at 90 degrees C with a 1:10 solid/liquid ratio. The concentrate had a protein content of 36.35% and the amino acid profile was suitable for swine and poultry. The highest sugar yield was 54.72% with respect to theoretical and was obtained with 5% solids and an enzyme dose of 5 IU/g dry matter. This yield was 3.4 times higher than the yield of the untreated leaves (16.13%). These results indicate that cassava leaves have a great potential for animal feeding and ethanol production. Both protein extraction and sugar yields may be enhanced by optimizing the ammonia treatment.

  15. Enzymatic Hydrolysis of Mannan from Konjac (Amorphophallus sp. Using Mannanase from Streptomyces lipmanii to Produce Manno-oligosaccharides

    Directory of Open Access Journals (Sweden)

    Ashadi Sasongko

    2015-09-01

    Full Text Available Mannan is an abundant polysaccharide that can be found in konjac (Amorphophallus sp.. Mannan can be enzymatically hydrolyzed using mannanase to produce manno-oligosaccharides which can be used as a prebiotic. The aims of this research are to determine the production time of mannanase from Streptomyces lipmanii, perform enzyme characterization, optimize the hydrolysis time, and characterize the hydrolysis product. A qualitative assay using the indicator Congo red showed that S. lipmanii generated a clear zone, indicating that S. lipmanii produced mannanase in konjac medium and possessed mannanolytic activity. Enzyme activity was determined through reducing sugar measurement using the dinitrosalycylic acid method, and optimum enzyme production was achieved at the second day of culture. Characterization of the enzyme showed that hydrolysis was optimum at pH 7 and at a temperature of 50 oC. The reducing sugar content was increased by an increasing the hydrolysis time, and reached an optimum time at 2 h. The degree of polymerization value of three was achieved after 2 h hydrolysis of mannan from konjac, indicating the formation of oligosaccharides. Analysis by thin layer chromatography using butanol, acetic acid, and water in a ratio of 2:1:1 as eluent showed the presence of compounds with a retention time between those of mannose and mannotetrose. Confirmation was also performed by HPLC, based on the retention time

  16. Lipase pre-hydrolysis enhance anaerobic biodigestion of soap stock from an oil refining industry.

    Science.gov (United States)

    Cherif, Slim; Aloui, Fathi; Carrière, Frédéric; Sayadi, Sami

    2014-01-01

    A novel alcalophilic Staphylococcus haemolyticus strain with the lipolytic activity was used to perform enzymatic hydrolysis pretreatment of soap stock: a lipid rich solid waste from an oil refining industry. The culture liquid of the selected bacteria and an enzymatic preparation obtained by precipitation with ammonium sulphate from a filtrate of the same culture liquid were used for enzymatic pretreatment. The hydrolysis was carried with different incubation concentrations (10, 20 and 30%) of soap stock and the pretreatment efficiency was verified by running comparative biodegradability tests (crude and treated lipid waste). All pretreated assays showed higher reaction rate compared to crude lipid waste, which was confirmed by the increased levels of biogas production. The pretreatment of solutions containing 10% emulsified soap stock was optimized for 24 h hydrolysis time, enabling high-biogaz formation (800 ml). The use of enzymatic pre-treatment seemed to be a very promising alternative for treating soap stock having high fat contents.

  17. Robust and efficient enzymatic saccharification of softwoods by SPORL

    Science.gov (United States)

    J.Y. Zhu; X.J. Pan; W. Zhu; G.S. Wang; R. Gleisner

    2009-01-01

    This study demonstrated Sulfite Pretreatment to Overcome Recalcitrance of Lignocellulose (SPORL) for robust conversion of softwood through enzymatic hydrolysis. At a sodium bisulfite charge around 9%, over 90% cellulose conversion could be achieved when spruce wood chips were pretreated at 180°C with pH near 2. For lodgepole pine, pretreatment liquor initial...

  18. Shotgun Approach to Increasing Enzymatic Saccharification Yields of Ammonia Fiber Expansion Pretreated Cellulosic Biomass

    International Nuclear Information System (INIS)

    Chundawat, Shishir P. S.; Uppugundla, Nirmal; Gao, Dahai; Curran, Paul G.; Balan, Venkatesh; Dale, Bruce E.

    2017-01-01

    Most cellulolytic enzyme blends, either procured from a commercial vendor or isolated from a single cellulolytic microbial secretome, do not efficiently hydrolyze ammonia-pretreated (e.g., ammonia fiber expansion, AFEX) lignocellulosic agricultural crop residues like corn stover to fermentable sugars. Typically reported commercial enzyme loading (30–100 mg protein/g glucan) necessary to achieve >90% total hydrolysis yield (to monosaccharides) for AFEX-treated biomass, within a short saccharification time frame (24–48 h), is economically unviable. Unlike acid-based pretreatments, AFEX retains most of the hemicelluloses in the biomass and therefore requires a more complex suite of enzymes for efficient hydrolysis of cellulose and hemicellulose at industrially relevant high solids loadings. One strategy to reduce enzyme dosage while improving cocktail effectiveness for AFEX-treated biomass has been to use individually purified enzymes to determine optimal enzyme combinations to maximize hydrolysis yields. However, this approach is limited by the selection of heterologous enzymes available or the labor required for isolating low-abundance enzymes directly from the microbial secretomes. Here, we show that directly blending crude cellulolytic and hemicellulolytic enzymes-rich microbial secretomes can maximize specific activity on AFEX-treated biomass without having to isolate individual enzymes. Fourteen commercially available cellulolytic and hemicellulolytic enzymes were procured from leading enzyme companies (Novozymes ® , Genencor ® , and Biocatalysts ® ) and were mixed together to generate several hundred unique cocktail combinations. The mixtures were assayed for activity on AFEX-treated corn stover (AFEX-CS) using a previously established high-throughput methodology. The optimal enzyme blend combinations identified from these screening assays were enriched in various low-abundance hemicellulases and accessory enzymes typically absent in most commercial

  19. Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii

    NARCIS (Netherlands)

    Vrije, de T.; Haas, de G.G.; Tan, G.B.; Keijsers, E.R.P.; Claassen, P.A.M.

    2002-01-01

    Pretreatment methods for the production of fermentable substrates from Miscanthus, a lignocellulosic biomass, were investigated. Results demonstrated an inverse relationship between lignin content and the efficiency of enzymatic hydrolysis of polysaccharides. High delignification values were

  20. Increasing the Performance of Enzymatic Hydrolysis of Rice Straw Using Mixed Crude Cellulases from Trichoderma reesei and Aspergillus niger.

    Directory of Open Access Journals (Sweden)

    Sugeng Winardi

    2010-11-01

    Full Text Available Increasing the Performance of Enzymatic Hydrolysis of Rice Straw Using Mixed Crude Cellulases fromTrichoderma reesei and Aspergillus niger. The objective of this work is to compare the effectiveness of mixed crudeenzyme cellulase from T. reesei and A. niger with commercial enzyme from A. niger, and to investigate effect ofenzyme to substrate ratio to performance of enzymatic hydrolysis of rice straw. The commercial enzyme from FlukaBiochemica was used, and crude enzyme were prepared by solid fermentation with simple media. Before hydrolized,the rice straw was grinded and sieved and then heated at 85 oC with 2% sodium hydroxide for six hours. Hydrolysis wasconducted in 300 mL beaker flask equipped with mechanical stirrer. Samples were analyzed by dinitrosalicylic acidmethod and measured by spectrophotometer. Both of commercial and mixed crude enzyme show that, the higherenzyme to substrate ratio was higher the glucose concentration obtained. However, ratio of glucose obtained to enzymeused become smaller. The mixture of crude enzyme from T. reesesi dan A. niger that produced in this work was twofold more effective to hydrolyze rice straw than using cellulase enzyme of A. niger from Fluka Biochemika

  1. Improving rheology and enzymatic hydrolysis of high-solid corncob slurries by adding lignosulfonate and long-chain fatty alcohols.

    Science.gov (United States)

    Lou, Hongming; Wu, Shun; Li, Xiuli; Lan, Tianqing; Yang, Dongjie; Pang, Yuxia; Qiu, Xueqing; Li, Xuehui; Huang, Jinhao

    2014-08-20

    The effects of lignosulfonate (SXSL) and long-chain fatty alcohols (LFAs) on the rheology and enzymatic hydrolysis of high-solid corncob slurries were investigated. The application of 2.5% (w/w) SXSL increased the substrate enzymatic digestibility (SED) of high-solid corncob slurries at 72 h from 31.7 to 54.0%, but meanwhile it increased the slurry's yield stress and complex viscosity to make the slurry difficult to stir and pump. The smallest molecular weight (MW) SXSL fraction had the strongest enhancement on SED. The SXSL fraction with large MW had a negative effect on rheology. n-Octanol (C8) and n-decanol (C10) improved the rheological properties of high-solid slurry and are strong enough to counteract the negative effect of SXSL. Furthermore, C8 and C10 clearly enhanced the enzymatic hydrolysis of high-solid corncob slurries with and without SXSL. A mechanism was proposed to explain the observed negative effect of SXSL and the positive effect of LFAs on the rheological properties.

  2. Seafood-like flavour obtained from the enzymatic hydrolysis of the protein by-products of seaweed (Gracilaria sp.).

    Science.gov (United States)

    Laohakunjit, Natta; Selamassakul, Orrapun; Kerdchoechuen, Orapin

    2014-09-01

    An enzymatic bromelain seaweed protein hydrolysate (eb-SWPH) was characterised as the precursor for thermally processed seafood flavour. Seaweed (Gracilaria fisheri) protein after agar extraction was hydrolysed using bromelain (enzyme activity=119,325 U/g) at 0-20% (w/w) for 0.5-24 h. Optimal hydrolysis conditions were determined using response surface methodology. The proposed model took into account the interaction effect of the enzyme concentration and hydrolysis time on the physicochemical properties and volatile components of eb-SWPH. The optimal hydrolysis conditions for the production of eb-SWPH were 10% bromelain for 3h, which resulted in a 38.15% yield and a 62.91% degree of hydrolysis value. Three free amino acids, arginine, lysine, and leucine, were abundant in the best hydrolysate. Ten volatile flavours of the best eb-SWPH were identified using gas chromatography/mass spectrometry. The predominant odourants were hexanal, hexanoic acid, nonanoic acid, and dihydroactinidiolide. The thermally processed seafood flavour produced from eb-SWPH exhibited a roasted seafood-like flavouring. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Enzymatic hydrolysis of rice straw and glucose fermentation using a Vertical Ball Mill Bioreactor (VBMB): Impact of operational conditions

    DEFF Research Database (Denmark)

    Castro, Rafael C.A.; Mussatto, Solange I.; Roberto, Inês C.

    of spheres at 46 °C. For glucose fermentation, none of the variables influenced the ethanol yield from glucose, which achieved 80% on average. However, for ethanol volumetric productivity, the spheres showed an interactive effect with temperature, being obtained 2.16 g/L.h when both variables were used...... in the lowest level. These results revealed that the glass spheres played an important role during biomass’ fiber liquefaction and yeast’s fermentative performance. Nevertheless, the shear effect caused by the spheres was positive for enzymatic hydrolysis and negative for glucose conversion into ethanol....... By applying the needed adjustments on the levels of the variables for each process (hydrolysis and fermentation), the VBMB can be efficiently used for rice straw bioconversion into ethanol. In addition, the design of this bioreactor would allow its use in different processes, such as simultaneous...

  4. Sequential enzymatic saccharification and fermentation of ionic liquid and organosolv pretreated agave bagasse for ethanol production.

    Science.gov (United States)

    Pérez-Pimienta, Jose A; Vargas-Tah, Alejandra; López-Ortega, Karla M; Medina-López, Yessenia N; Mendoza-Pérez, Jorge A; Avila, Sayeny; Singh, Seema; Simmons, Blake A; Loaces, Inés; Martinez, Alfredo

    2017-02-01

    Agave bagasse (AGB) has gained recognition as a drought-tolerant biofuel feedstock with high productivity in semiarid regions. A comparative analysis of ionic liquid (IL) and organosolv (OV) pretreatment technologies in AGB was performed using a sequential enzymatic saccharification and fermentation (SESF) strategy with cellulolytic enzymes and the ethanologenic Escherichia coli strain MS04. After pretreatment, 86% of xylan and 45% of lignin were removed from OV-AGB, whereas IL-AGB reduced lignin content by 28% and xylan by 50% when compared to the untreated biomass. High glucan (>90%) and xylan (>83%) conversion was obtained with both pretreated samples. During the fermentation stage (48h), 12.1 and 12.7kg of ethanol were produced per 100kg of untreated AGB for IL and OV, respectively. These comparative analyses showed the advantages of SESF using IL and OV in a biorefinery configuration where a better understanding of AGB recalcitrance is key for future applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Solubilization of industrial grade plant protein by enzymatic hydrolysis monitored by vibrational and nuclear magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Bevilacqua, Marta; Pratico, Giulia; Plesner, Johanne

    2017-01-01

    by enzymatic hydrolysis, but during this process several collateral properties of the protein hydrolysates changes. It is therefore important to determine the end-point of the process and to monitor its development. In this feasibility study, we demonstrated the potential of different spectroscopic techniques......Protein hydrolysates are of great interest in the food industry due to their nutritional and functional properties, but their use often implies solubilization in water and therefore hamper the use of plant proteins with inherent low water solubility. Protein solubility in water can be modified...

  6. Structure of the oligomers obtained by enzymatic hydrolysis of the glucomannan produced by the plant Amorphophallus konjac.

    Science.gov (United States)

    Cescutti, Paola; Campa, Cristiana; Delben, Franco; Rizzo, Roberto

    2002-11-29

    Dimers and trimers obtained by enzymatic hydrolysis of the glucomannan produced by the plant Amorphophallus konjac were analysed in order to obtain information on the saccharidic sequences present in the polymer. The polysaccharide was digested with cellulase and beta-mannanase and the oligomers produced were isolated by means of size-exclusion chromatography. They were structurally characterised using electrospray mass spectrometry, capillary electrophoresis, and NMR. The investigation revealed that many possible sequences were present in the polymer backbone suggesting a Bernoulli-type chain.

  7. Co-cultivation of Aspergillus nidulans recombinant strains produces an enzymatic cocktail as alternative to alkaline sugarcane bagasse pretreatment

    Directory of Open Access Journals (Sweden)

    Matheus Sanita Lima

    2016-04-01

    Full Text Available Plant materials represent a strategic energy source because they can give rise to sustainable biofuels through the fermentation of their carbohydrates. A clear example of a plant-derived biofuel resource is the sugar cane bagasse exhibiting 60 % - 80 % of fermentable sugars in its composition. However, the current methods of plant bioconversion employ severe and harmful chemical/physical pretreatments raising biofuel cost production and environmental degradation. Replacing these methods with co-cultivated enzymatic cocktails is an alternative. Here we propose a pretreatment for sugarcane bagasse using a multi-enzymatic cocktail from the co-cultivation of four Aspergillus nidulans recombinant strains. The co-cultivation resulted in the simultaneous production of GH51 arabinofuranosidase (AbfA, GH11 endo-1,4-xylanase (XlnA, GH43 endo-1,5-arabinanase (AbnA and GH12 xyloglucan specific endo-β-1,4-glucanase (XegA. This core set of recombinant enzymes was more efficient than the alternative alkaline method in maintaining the cellulose integrity and exposing this cellulose to the following saccharification process. Thermogravimetric and differential thermal analysis revealed residual byproducts on the alkali pretreated biomass, which were not found in the enzymatic pretreatment. Therefore, the enzymatic pretreatment was residue-free and seemed to be more efficient than the applied alkaline method, which makes it suitable for bioethanol production.

  8. Biological pretreatment of lignocellulosic substrates for enhanced delignification and enzymatic digestibility.

    Science.gov (United States)

    Saritha, M; Arora, Anju; Lata

    2012-06-01

    Sheer enormity of lignocellulosics makes them potential feedstock for biofuel production but, their conversion into fermentable sugars is a major hurdle. They have to be pretreated physically, chemically, or biologically to be used by fermenting organisms for production of ethanol. Each lignocellulosic substrate is a complex mix of cellulose, hemicellulose and lignin, bound in a matrix. While cellulose and hemicellulose yield fermentable sugars, lignin is the most recalcitrant polymer, consisting of phenyl-propanoid units. Many microorganisms in nature are able to attack and degrade lignin, thus making access to cellulose easy. Such organisms are abundantly found in forest leaf litter/composts and especially include the wood rotting fungi, actinomycetes and bacteria. These microorganisms possess enzyme systems to attack, depolymerize and degrade the polymers in lignocellulosic substrates. Current pretreatment research is targeted towards developing processes which are mild, economical and environment friendly facilitating subsequent saccharification of cellulose and its fermentation to ethanol. Besides being the critical step, pretreatment is also cost intensive. Biological treatments with white rot fungi and Streptomyces have been studied for delignification of pulp, increasing digestibility of lignocellulosics for animal feed and for bioremediation of paper mill effluents. Such lignocellulolytic organisms can prove extremely useful in production of bioethanol when used for removal of lignin from lignocellulosic substrate and also for cellulase production. Our studies on treatment of hardwood and softwood residues with Streptomyces griseus isolated from leaf litter showed that it enhanced the mild alkaline solubilisation of lignins and also produced high levels of the cellulase complex when growing on wood substrates. Lignin loss (Klason lignin) observed was 10.5 and 23.5% in case of soft wood and hard wood, respectively. Thus, biological pretreatment process for

  9. Effects of pretreatment on morphology, chemical composition and enzymatic digestibility of eucalyptus bark: a potentially valuable source of fermentable sugars for biofuel production - part 1.

    Science.gov (United States)

    Lima, Marisa A; Lavorente, Gabriela B; da Silva, Hana Kp; Bragatto, Juliano; Rezende, Camila A; Bernardinelli, Oigres D; Deazevedo, Eduardo R; Gomez, Leonardo D; McQueen-Mason, Simon J; Labate, Carlos A; Polikarpov, Igor

    2013-05-09

    In recent years, the growing demand for biofuels has encouraged the search for different sources of underutilized lignocellulosic feedstocks that are available in sufficient abundance to be used for sustainable biofuel production. Much attention has been focused on biomass from grass. However, large amounts of timber residues such as eucalyptus bark are available and represent a potential source for conversion to bioethanol. In the present paper, we investigate the effects of a delignification process with increasing sodium hydroxide concentrations, preceded or not by diluted acid, on the bark of two eucalyptus clones: Eucalyptus grandis (EG) and the hybrid, E. grandis x urophylla (HGU). The enzymatic digestibility and total cellulose conversion were measured, along with the effect on the composition of the solid and the liquor fractions. Barks were also assessed using Fourier-transform infrared spectroscopy (FTIR), solid-state nuclear magnetic resonance (NMR), X-Ray diffraction, and scanning electron microscopy (SEM). Compositional analysis revealed an increase in the cellulose content, reaching around 81% and 76% of glucose for HGU and EG, respectively, using a two-step treatment with HCl 1%, followed by 4% NaOH. Lignin removal was 84% (HGU) and 79% (EG), while the hemicellulose removal was 95% and 97% for HGU and EG, respectively. However, when we applied a one-step treatment, with 4% NaOH, higher hydrolysis efficiencies were found after 48 h for both clones, reaching almost 100% for HGU and 80% for EG, in spite of the lower lignin and hemicellulose removal. Total cellulose conversion increased from 5% and 7% to around 65% for HGU and 59% for EG. NMR and FTIR provided important insight into the lignin and hemicellulose removal and SEM studies shed light on the cell-wall unstructuring after pretreatment and lignin migration and precipitation on the fibers surface, which explain the different hydrolysis rates found for the clones. Our results show that the single

  10. Effects of pretreatment on morphology, chemical composition and enzymatic digestibility of eucalyptus bark: a potentially valuable source of fermentable sugars for biofuel production – part 1

    Science.gov (United States)

    2013-01-01

    Background In recent years, the growing demand for biofuels has encouraged the search for different sources of underutilized lignocellulosic feedstocks that are available in sufficient abundance to be used for sustainable biofuel production. Much attention has been focused on biomass from grass. However, large amounts of timber residues such as eucalyptus bark are available and represent a potential source for conversion to bioethanol. In the present paper, we investigate the effects of a delignification process with increasing sodium hydroxide concentrations, preceded or not by diluted acid, on the bark of two eucalyptus clones: Eucalyptus grandis (EG) and the hybrid, E. grandis x urophylla (HGU). The enzymatic digestibility and total cellulose conversion were measured, along with the effect on the composition of the solid and the liquor fractions. Barks were also assessed using Fourier-transform infrared spectroscopy (FTIR), solid-state nuclear magnetic resonance (NMR), X-Ray diffraction, and scanning electron microscopy (SEM). Results Compositional analysis revealed an increase in the cellulose content, reaching around 81% and 76% of glucose for HGU and EG, respectively, using a two-step treatment with HCl 1%, followed by 4% NaOH. Lignin removal was 84% (HGU) and 79% (EG), while the hemicellulose removal was 95% and 97% for HGU and EG, respectively. However, when we applied a one-step treatment, with 4% NaOH, higher hydrolysis efficiencies were found after 48 h for both clones, reaching almost 100% for HGU and 80% for EG, in spite of the lower lignin and hemicellulose removal. Total cellulose conversion increased from 5% and 7% to around 65% for HGU and 59% for EG. NMR and FTIR provided important insight into the lignin and hemicellulose removal and SEM studies shed light on the cell-wall unstructuring after pretreatment and lignin migration and precipitation on the fibers surface, which explain the different hydrolysis rates found for the clones. Conclusion Our

  11. Comparison of the susceptibility of two hardwood species, Mimosa scabrella Benth and Eucalyptus viminalis labill, to steam explosion and enzymatic hydrolysis

    Directory of Open Access Journals (Sweden)

    L. P. Ramos

    2000-01-01

    Full Text Available Steam explosion of two hardwood species was carried out with and without addition of sulfuric acid (H2SO4 0.5%, p/v as a pretreatment catalyst. In general, wood chips of Eucalyptus viminalis Labill were shown to be more amenable to pretreatment than chips derived from bolds of Mimosa scabrella Benth (bracatinga. This was apparent from all pretreatment parameters tested including the overall recovery yields of pretreated fractions, carbohydrates (pentoses and hexoses recovered as water-solubles, yield of dehydration by-products and lignin susceptibility to acid hydrolysis. There was no evidence for complete deacetylation of both wood species during pretreatment and lignin appeared to undergo extensive acid hydrolysis at higher pretreatment severities. Steam treatment at 205ºC for 5 min without addition of an acid catalyst was shown to be uncapable of removing the hemicellulose component from bracatinga chips, as determined by chemical analysis of the steam-treated water-insoluble fractions. Nearly 30% of the hemicellulose (xylan found in bracatinga remained unhydrolysed after pretreatment, whereas more than 90% of this component could be removed from eucalypt chips under the same pretreatment conditions. Likewise, pretreatment of eucalypt chips resulted in a more extensive solubilization of glucans (cellulose by acid hydrolysis. Addition of dilute H2SO4 as a pretreatment catalyst generally increased the recovery yield of fermentable sugars in the water-soluble fractions and this effect was more pronounced for the pretreatment of bracatinga chips. Steam-treated substrates produced from bracatinga were also less accessible to enzymatic hydrolysis than those produced from eucalypt chips, regardless of the use of an acid catalyst.Duas espécies de angiospermas foram comparadas em relação à suas susceptibilidades ao pré-tratamento por explosão a vapor. De um modo geral, cavacos industriais de Eucalyptus viminalis Labill apresentaram-se mais

  12. Fish protein hydrolysate production from sardine solid waste by crude pepsin enzymatic hydrolysis in a bioreactor coupled to an ultrafiltration unit

    Energy Technology Data Exchange (ETDEWEB)

    Benhabiles, M.S.; Abdi, N. [National Polytechnic school of Algiers, B.P. 182-16200, El Harrach, Algiers (Algeria); Drouiche, N., E-mail: nadjibdrouiche@yahoo.fr [National Polytechnic school of Algiers, B.P. 182-16200, El Harrach, Algiers (Algeria); Silicon Technology Development Unit (UDTS) 2, Bd Frantz Fanon BP140, Alger-7 Merveilles, 16000 (Algeria); Lounici, H. [National Polytechnic school of Algiers, B.P. 182-16200, El Harrach, Algiers (Algeria); Pauss, A. [University of Technology of Compiegne, Departement Genie chimique,B.P. 20.509, 60205 Compiegne cedex (France); Goosen, M.F.A. [Alfaisal University, Riyadh (Saudi Arabia); Mameri, N. [University of Technology of Compiegne, Departement Genie chimique,B.P. 20.509, 60205 Compiegne cedex (France)

    2012-05-01

    The aims of the study were to optimize the production a fish protein hydrolysate (FPH) by enzymatic hydrolysis of sardine solid waste using crude pepsin, and to scale up the process in a bioreactor coupled to an ultrafiltration unit for product recovery. Results showed that the crude pepsin prepared by autolysis of the mucous membranes of a sheep stomach at optimal conditions (i. e. pH = 1.5-2 and incubation time of 6 h) could be satisfactory used for the enzymatic hydrolysis of fish solid waste. The optimal conditions for enzymatic reaction were: temperature 48 Degree-Sign C, and pH 1.5. The scale up of the enzymatic hydrolysis and the coupling of the reactor an ultrafiltration unit to concentrate the hydrolysate gave good results with a rejection coefficient for the protein hydrolysate product in the range of 90%. The volumetric concentration factor was 2.5, with a permeate flux of 200 L m{sup -2} bar{sup -1}. However, the results also suggest that the ultrafiltration product concentration process may be operating beyond the critical flux at which point irreversible membrane fouling occurs. - Highlights: Black-Right-Pointing-Pointer Evaluating to produce a (FPH) by enzymatic hydrolysis of sardine solid wastes was achieved. Black-Right-Pointing-Pointer Investigation of key parameters for optimal conditions for enzymatic hydrolysis have been studied. Black-Right-Pointing-Pointer Valorization of sardine waste was realized by enzymatic hydrolysis process. Black-Right-Pointing-Pointer Performances of this enzyme gave comparable results to those obtained with commercial pepsin. Black-Right-Pointing-Pointer The nutritional quality of the FPH produced appears to be satisfactory.

  13. Fish protein hydrolysate production from sardine solid waste by crude pepsin enzymatic hydrolysis in a bioreactor coupled to an ultrafiltration unit

    International Nuclear Information System (INIS)

    Benhabiles, M.S.; Abdi, N.; Drouiche, N.; Lounici, H.; Pauss, A.; Goosen, M.F.A.; Mameri, N.

    2012-01-01

    The aims of the study were to optimize the production a fish protein hydrolysate (FPH) by enzymatic hydrolysis of sardine solid waste using crude pepsin, and to scale up the process in a bioreactor coupled to an ultrafiltration unit for product recovery. Results showed that the crude pepsin prepared by autolysis of the mucous membranes of a sheep stomach at optimal conditions (i. e. pH = 1.5–2 and incubation time of 6 h) could be satisfactory used for the enzymatic hydrolysis of fish solid waste. The optimal conditions for enzymatic reaction were: temperature 48 °C, and pH 1.5. The scale up of the enzymatic hydrolysis and the coupling of the reactor an ultrafiltration unit to concentrate the hydrolysate gave good results with a rejection coefficient for the protein hydrolysate product in the range of 90%. The volumetric concentration factor was 2.5, with a permeate flux of 200 L m −2 bar −1 . However, the results also suggest that the ultrafiltration product concentration process may be operating beyond the critical flux at which point irreversible membrane fouling occurs. - Highlights: ► Evaluating to produce a (FPH) by enzymatic hydrolysis of sardine solid wastes was achieved. ► Investigation of key parameters for optimal conditions for enzymatic hydrolysis have been studied. ► Valorization of sardine waste was realized by enzymatic hydrolysis process. ► Performances of this enzyme gave comparable results to those obtained with commercial pepsin. ► The nutritional quality of the FPH produced appears to be satisfactory.

  14. Shotgun Approach to Increasing Enzymatic Saccharification Yields of Ammonia Fiber Expansion Pretreated Cellulosic Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Chundawat, Shishir P. S., E-mail: shishir.chundawat@rutgers.edu [Department of Chemical and Biochemical Engineering, Rutgers-State University of New Jersey, Piscataway, NJ (United States); Uppugundla, Nirmal; Gao, Dahai [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI (United States); Curran, Paul G. [Center for Statistical Training and Consulting (CSTAT), Michigan State University, East Lansing, MI (United States); Balan, Venkatesh; Dale, Bruce E. [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI (United States)

    2017-05-10

    Most cellulolytic enzyme blends, either procured from a commercial vendor or isolated from a single cellulolytic microbial secretome, do not efficiently hydrolyze ammonia-pretreated (e.g., ammonia fiber expansion, AFEX) lignocellulosic agricultural crop residues like corn stover to fermentable sugars. Typically reported commercial enzyme loading (30–100 mg protein/g glucan) necessary to achieve >90% total hydrolysis yield (to monosaccharides) for AFEX-treated biomass, within a short saccharification time frame (24–48 h), is economically unviable. Unlike acid-based pretreatments, AFEX retains most of the hemicelluloses in the biomass and therefore requires a more complex suite of enzymes for efficient hydrolysis of cellulose and hemicellulose at industrially relevant high solids loadings. One strategy to reduce enzyme dosage while improving cocktail effectiveness for AFEX-treated biomass has been to use individually purified enzymes to determine optimal enzyme combinations to maximize hydrolysis yields. However, this approach is limited by the selection of heterologous enzymes available or the labor required for isolating low-abundance enzymes directly from the microbial secretomes. Here, we show that directly blending crude cellulolytic and hemicellulolytic enzymes-rich microbial secretomes can maximize specific activity on AFEX-treated biomass without having to isolate individual enzymes. Fourteen commercially available cellulolytic and hemicellulolytic enzymes were procured from leading enzyme companies (Novozymes{sup ®}, Genencor{sup ®}, and Biocatalysts{sup ®}) and were mixed together to generate several hundred unique cocktail combinations. The mixtures were assayed for activity on AFEX-treated corn stover (AFEX-CS) using a previously established high-throughput methodology. The optimal enzyme blend combinations identified from these screening assays were enriched in various low-abundance hemicellulases and accessory enzymes typically absent in most

  15. Heat integration of an ethanol polygeneration plant based on lignocellulose: Comparing weak acid hydrolysis and enzymatic hydrolysis; Energiintegrerat etanolkombinat baserat paa lignocellulosa - Jaemfoerelse mellan svagsyrahydrolys och enzymhydrolys

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Marcus; Nordman, Roger; Taherzadeh, Mohammad

    2011-07-01

    Plants for bioethanol production have been planned in several cities in Sweden, including Boraas. This report provides answers to general questions regarding how such a facility's energy demand is affected by the external integration with a heat and power plant and the internal energy integration between process units. Heat integration of a bioethanol plant means that energy is reused as much as is technically possible; this sets a practical minimum level for the energy demand of the plant. In the study, ethanol production from cellulose has been simulated using Aspen Plus. Weak acid hydrolysis and enzymatic hydrolysis have been simulated, each with 50,000 and 100,000 tonnes of ethanol per year, resulting in four simulation cases. In all cases, heat integration is evaluated using pinch analysis. The steam in the ethanol plant has been covered by steam from a heat and power plant similar to that found today in Boraas. It is important to note that the energy quotas reported here includes energy use for upgrading the residual products. This leads to lower energy quotas than would be the case if the upgrading of residuals were allocated outside of the ethanol production. The conclusions from the project are: - The steam demand of the ethanol plant leads to a reduction in both the electricity and heat production of the heat and power plant. For the weak acid hydrolysis, the electricity loss is relatively high, 26-98%, which will affect the revenue significantly. The loss of electricity production is lower for the enzymatic process: 11-47%. - The difference in decreased electricity between the theoretical case of heating the raw material and the two alternative heating cases is about a factor of two, so the design of the heating of raw material is extremely important. - The reduced heat output of the power plant can, in most cases, be balanced by the surplus heat from the ethanol plant, but to completely balance the shortage, heat over 100 deg C must be used

  16. Influence of pre-treatment on enzymatic degumming of apocynum venetum bast fibers in supercritical carbon dioxide

    Directory of Open Access Journals (Sweden)

    Gao Shi-Hui

    2015-01-01

    Full Text Available Pre-treatment of apocynum venetum bast fibers in supercritical carbon dioxide can improve the efficiency of enzymatic degumming of apocynum venetum bast fiber. This paper studies experimentally effect of pressure and degumming time on degradation rate, the results can be used for optimal design of degumming.

  17. Dilute H2SO4-catalyzed hydrothermal pretreatment to enhance enzymatic digestibility of Jatropha curcas fruit hull for ethanol fermentation

    NARCIS (Netherlands)

    Marasabessy, Ahmad; Kootstra, Maarten; Sanders, Johan P.M.; Weusthuis, Ruud A.

    2012-01-01

    Dilute sulfuric acid pretreatment of the Jatropha curcas fruit hull at high temperatures (140°C to 180°C) performed in a 110-mL stainless steel reactor was investigated to enhance the enzymatic digestibility of its lignocellulosic components. Carbohydrates accounted for 43% of the dry matter of

  18. Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: II. Quantification of inhibition and suitability of membrane reactors.

    Science.gov (United States)

    Andrić, Pavle; Meyer, Anne S; Jensen, Peter A; Dam-Johansen, Kim

    2010-01-01

    Product inhibition of cellulolytic enzymes affects the efficiency of the biocatalytic conversion of lignocellulosic biomass to ethanol and other valuable products. New strategies that focus on reactor designs encompassing product removal, notably glucose removal, during enzymatic cellulose conversion are required for alleviation of glucose product inhibition. Supported by numerous calculations this review assesses the quantitative aspects of glucose product inhibition on enzyme-catalyzed cellulose degradation rates. The significance of glucose product inhibition on dimensioning of different ideal reactor types, i.e. batch, continuous stirred, and plug-flow, is illustrated quantitatively by modeling different extents of cellulose conversion at different reaction conditions. The main operational challenges of membrane reactors for lignocellulose conversion are highlighted. Key membrane reactor features, including system set-up, dilution rate, glucose output profile, and the problem of cellobiose are examined to illustrate the quantitative significance of the glucose product inhibition and the total glucose concentration on the cellulolytic conversion rate. Comprehensive overviews of the available literature data for glucose removal by membranes and for cellulose enzyme stability in membrane reactors are given. The treatise clearly shows that membrane reactors allowing continuous, complete, glucose removal during enzymatic cellulose hydrolysis, can provide for both higher cellulose hydrolysis rates and higher enzyme usage efficiency (kg(product)/kg(enzyme)). Current membrane reactor designs are however not feasible for large scale operations. The report emphasizes that the industrial realization of cellulosic ethanol requires more focus on the operational feasibility within the different hydrolysis reactor designs, notably for membrane reactors, to achieve efficient enzyme-catalyzed cellulose degradation. (c) 2010 Elsevier Inc. All rights reserved.

  19. pH-stat vs. free-fall pH techniques in the enzymatic hydrolysis of whey proteins.

    Science.gov (United States)

    Fernández, Ayoa; Kelly, Phil

    2016-05-15

    Enzymatic hydrolysis of a commercial whey protein isolate (WPI) using either trypsin or Protamex® was compared using controlled (pH-stat) and uncontrolled (free-fall) pH conditions. pH-stat control at the enzyme's optimum value led to a more rapid rate of WPI hydrolysis by trypsin, while the opposite was the case when Protamex® was used. Furthermore, the choice of alkaline solution used to maintain constant pH during pH-stat experiments appeared to affect the reaction rate, being higher when KOH is added to the reaction mixture instead of NaOH. It would appear that potassium may play a role as co-factor or activator for the activity of this particular protease preparation. Although pH-stat techniques are usually considered to yield better hydrolysis kinetics, these findings suggest that the response of proteolytic enzyme preparations to static or free-fall pH control should be checked in advance, particularly when undertaking large scale production of WPI hydrolysates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Enzymatic Hydrolysis of Yellowfin Tuna (Thunnus albacares By-Products Using Protamex Protease

    Directory of Open Access Journals (Sweden)

    Huong Thi My Nguyen

    2011-01-01

    Full Text Available Long-term proteolysis of tuna by-products (head, viscera and tail by the wide spectrum protease Protamex has been investigated and compared. After hydrolysis, two fractions (soluble aqueous phase and insoluble sludge were collected. Chemical compositions of each fraction and molecular mass distributions of soluble peptides were determined. Degrees of hydrolysis obtained after 12 h of hydrolysis of head, viscera and tail were 32.3, 16.8 and 22.2 %, respectively. Nitrogen recovery in the soluble fractions was 73.6 % for the head, 82.7 % for the viscera and 85.8 % for the tail. Lipid distribution indicated that the majority of lipids remained in the sludge. Such proteolysis appears useful for the production of very different fractions: one rich in peptides of medium to small molecular mass and poor in lipids, and another one containing the insoluble proteins and the majority of lipids.

  1. Ultrasound-assisted enzymatic hydrolysis for iodinated amino acid extraction from edible seaweed before reversed-phase high performance liquid chromatography-inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Romarís-Hortas, Vanessa; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio

    2013-09-27

    The combination of reverse phase high performance liquid chromatography (RP-HPLC) with inductively coupled plasma mass spectrometry (ICP-MS) was used for the determination of monoiodotyrosine (MIT) and diiodotyrosine (DIT) in edible seaweed. A sample pre-treatment based on ultrasound assisted enzymatic hydrolysis was optimized for the extraction of these iodinated amino acids. Pancreatin was selected as the most adequate type of enzyme, and parameters affecting the extraction efficiency (pH, temperature, mass of enzyme and extraction time) were evaluated by univariate approaches. In addition, extractable inorganic iodine (iodide) was also quantified by anion exchange high performance liquid chromatography (AE-HPLC) coupled with ICP-MS. The proposed procedure offered limits of detection of 1.1 and 4.3ngg(-1) for MIT and DIT, respectively. Total iodine contents in seaweed, as well as total iodine in enzymatic digests were measured by ICP-MS after microwave assisted alkaline digestion with tetramethylamonium hydroxide (TMAH) for total iodine assessment, and also by treating the pancreatin extracts (extractable total iodine assessment). The optimized procedure was successfully applied to five different types of edible seaweed. The highest total iodine content, and also the highest iodide levels, was found in the brown seaweed Kombu (6646±45μgg(-1)). Regarding iodinated amino acids, Nori (a red seaweed) was by far the one with the highest amount of both species (42±3 and 0.41±0.024μgg(-1) for MIT and DIT, respectively). In general, MIT concentrations were much higher than the amounts of DIT, which suggests that iodine from iodinated proteins in seaweed is most likely bound in the form of MIT residues. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. A novel diffusion-biphasic hydrolysis coupled kinetic model for dilute sulfuric acid pretreatment of corn stover.

    Science.gov (United States)

    Chen, Longjian; Zhang, Haiyan; Li, Junbao; Lu, Minsheng; Guo, Xiaomiao; Han, Lujia

    2015-02-01

    Kinetic experiments on the dilute sulfuric acid pretreatment of corn stover were performed. A high xylan removal and a low inhibitor concentration were achieved by acid pretreatment. A novel diffusion-hydrolysis coupled kinetic model was proposed. The contribution to the xylose yield was analyzed by the kinetic model. Compared with the inhibitor furfural negatively affecting xylose yield, the fast and slow-hydrolyzing xylan significantly contributed to the xylose yield, however, their dominant roles were dependent on reaction temperature and time. The impact of particle size and acid concentration on the xylose yield were also investigated. The diffusion process may significantly influence the hydrolysis of large particles. Increasing the acid concentration from 0.15 M to 0.30 M significantly improved the xylose yield, whereas the extent of improvement decreased to near-quantitative when further increasing acid loading. These findings shed some light on the mechanism for dilute sulfuric acid hydrolysis of corn stover. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Effect of low severity dilute-acid pretreatment of barley straw and decreased enzyme loading hydrolysis on the production of fermentable substrates and the release of inhibitory compounds

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Lignos, G.D.; Bakker, R.R.C.; Koukios, E.G.

    2012-01-01

    The objective of this work was to investigate the feasibility of combining low severity dilute-acid pretreatment of barley straw and decreased enzyme loading hydrolysis for the high production of fermentable substrates and the low release of inhibitory compounds. For most of the pretreatments at 160

  4. Isolation and structural characterization of sugarcane bagasse lignin after dilute phosphoric acid plus steam explosion pretreatment and its effect on cellulose hydrolysis

    Science.gov (United States)

    Jijiao Zeng; Zhaohui Tong; Letian Wang; J.Y. Zhu; Lonnie Ingram

    2014-01-01

    The structure of lignin after dilute phosphoric acid plus steam explosion pretreatment process of sugarcane bagasse in a pilot scale and the effect of the lignin extracted by ethanol on subsequent cellulose hydrolysis were investigated. The lignin structural changes caused by pretreatment were identified using advanced nondestructive techniques such as gel permeation...

  5. Hydrothermal Liquefaction of Enzymatic Hydrolysis Lignin: Biomass Pretreatment Severity Affects Lignin Valorization

    DEFF Research Database (Denmark)

    Jensen, Mads M.; Djajadi, Demi T.; Torri, Cristian

    2018-01-01

    Alkalinehydrothermal liquefaction (HTL) of lignin-rich enzymatichydrolysis residues (EnzHR) from wheat straw and Miscanthusx giganteus was performed at 255, 300, and 345 °C to investigate valorization of this side-stream from second-generation bioethanol production. The EnzHR were from biomass...... contributed with additional chemical information as well as confirming trends seen from quantified monomers. This work is relevant for future lignin valorization in biorefineries based on current second-generation bioethanol production....

  6. Recovery and reuse of cellulase catalyst in an enzymatic cellulose hydrolysis process

    Science.gov (United States)

    Woodward, J.

    1987-09-18

    A process for recovering cellulase from the hydrolysis of cellulose, and reusing it in subsequent hydrolyois procedures. The process utilizes a commercial adsorbent that efficiently removes cellulase from reaction products which can be easily removed by simple decantation. 1 fig., 4 tabs.

  7. Enzymatic hydrolysis of loblolly pine: effects of cellulose crystallinity and delignification

    Science.gov (United States)

    Umesh P. Agarwal; J.Y. Zhu; Sally A. Ralph

    2013-01-01

    Hydrolysis experiments with commercial cellulases have been performed to understand the effects of cell wall crystallinity and lignin on the process. In the focus of the paper are loblolly pine wood samples, which were systematically delignified and partly ball-milled, and, for comparison, Whatman CC31 cellulose samples with different crystallinities. In pure cellulose...

  8. Enzymatic Cellulose Hydrolysis: Enzyme Reusability and Visualization of beta-Glucosidase Immobilized in Calcium Alginate

    DEFF Research Database (Denmark)

    Tsai, Chien Tai; Meyer, Anne S.

    2014-01-01

    The high cellulase enzyme dosages required for hydrolysis of cellulose is a major cost challenge in lignocellulosic ethanol production. One method to decrease the enzyme dosage and increase biocatalytic productivity is to re-use beta-glucosidase (BG) via immobilization. In the present research...

  9. Fungal treatment of cornstalks enhances the delignification and xylan loss during mild alkaline pretreatment and enzymatic digestibility of glucan.

    Science.gov (United States)

    Yu, Hongbo; Du, Wanqing; Zhang, Ji; Ma, Fuying; Zhang, Xiaoyu; Zhong, Weixin

    2010-09-01

    Fungal treatment with Irpex lacteus was used to enhance the delignification and xylan loss during mild alkaline pretreatment and subsequent enzymatic conversion in this research. The 15-day bio-treatment can modify the lignin structure and increase losses of lignin (from 75.67% to 80.00%) and xylan (from 40.68% to 51.37%) during alkaline pretreatment, making the enzymatic conversion more efficient. The high digestibility of glucan can be obtained after the bio-treatment and alkaline pretreatment at near room-temperature (30 degrees C), and the maximum digestibility increased 14% in comparison with that after the sole alkaline pretreatment. The bio-treatment enhanced delignification and glucan digestibility more significantly when the alkaline pretreatment was performed at lower severity. Additionally, Nuclei Growth model with a time-dependent rate constant can describe well the delignification and xylan loss. Results indicated that the bio-treatment increased the rate constant of initial reaction, but accelerated the decline of rate constant during alkaline pretreatment. (c) 2010 Elsevier Ltd. All rights reserved.

  10. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels.

    Science.gov (United States)

    Pääkkö, M; Ankerfors, M; Kosonen, H; Nykänen, A; Ahola, S; Osterberg, M; Ruokolainen, J; Laine, J; Larsson, P T; Ikkala, O; Lindström, T

    2007-06-01

    Toward exploiting the attractive mechanical properties of cellulose I nanoelements, a novel route is demonstrated, which combines enzymatic hydrolysis and mechanical shearing. Previously, an aggressive acid hydrolysis and sonication of cellulose I containing fibers was shown to lead to a network of weakly hydrogen-bonded rodlike cellulose elements typically with a low aspect ratio. On the other hand, high mechanical shearing resulted in longer and entangled nanoscale cellulose elements leading to stronger networks and gels. Nevertheless, a widespread use of the latter concept has been hindered because of lack of feasible methods of preparation, suggesting a combination of mild hydrolysis and shearing to disintegrate cellulose I containing fibers into high aspect ratio cellulose I nanoscale elements. In this work, mild enzymatic hydrolysis has been introduced and combined with mechanical shearing and a high-pressure homogenization, leading to a controlled fibrillation down to nanoscale and a network of long and highly entangled cellulose I elements. The resulting strong aqueous gels exhibit more than 5 orders of magnitude tunable storage modulus G' upon changing the concentration. Cryotransmission electron microscopy, atomic force microscopy, and cross-polarization/magic-angle spinning (CP/MAS) 13C NMR suggest that the cellulose I structural elements obtained are dominated by two fractions, one with lateral dimension of 5-6 nm and one with lateral dimensions of about 10-20 nm. The thicker diameter regions may act as the junction zones for the networks. The resulting material will herein be referred to as MFC (microfibrillated cellulose). Dynamical rheology showed that the aqueous suspensions behaved as gels in the whole investigated concentration range 0.125-5.9% w/w, G' ranging from 1.5 Pa to 105 Pa. The maximum G' was high, about 2 orders of magnitude larger than typically observed for the corresponding nonentangled low aspect ratio cellulose I gels, and G' scales

  11. The enzymatic hydrolysis of soy protein isolate by Corolase PP under high hydrostatic pressure and its effect on bioactivity and characteristics of hydrolysates.

    Science.gov (United States)

    Guan, Haining; Diao, Xiaoqin; Jiang, Fan; Han, Jianchun; Kong, Baohua

    2018-04-15

    Enzymatic hydrolysis of soy protein isolate by Corolase PP under high hydrostatic pressure conditions was studied and the effects of hydrolysis on antioxidant and antihypertensive activities were investigated. As observed, high hydrostatic pressure (80-300MPa) enhanced the hydrolytic efficiency of Corolase PP and decreased the surface hydrophobicity of the hydrolysates. Hydrolysates obtained at 200MPa for 4h had higher bioactivities (reducing power, ABTS radical-scavenging and ACE inhibitory activities). The molecular weight (MW) determination indicated that hydrolysis at high hydrostatic pressure could increase the production of small peptides (isolate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Acid pretreatment and enzymatic saccharification of brown seaweed for polyhydroxybutyrate (PHB) production using Cupriavidus necator.

    Science.gov (United States)

    Azizi, Nahid; Najafpour, Ghasem; Younesi, Habibollah

    2017-08-01

    The brown seaweed Sargassum sp. was used as a feedstock to produce polyhydroxybutyarte (PHB) using Cupriavidus necator PTCC 1615. In order to release monomeric sugars, dilute acid hydrolysis of Sargassum sp. biomass was followed by enzymatic saccharification. In addition, the effect of different nitrogen sources was evaluated for PHB production. The fermentation of hydrolysate with the ammonium sulfate as selected nitrogen source resulted PHB yield of 0.54±0.01g/g reducing sugar. Then, NaCl was used as external stress factor which was added to the media. Addition of 8g/L NaCl had a positive impact on high PHB yield of 0.74±0.01g/g reducing sugar. Increasing trend of NaCl concentration to 16g/L was found to inhibit the production of PHB. Based on obtained results using 20g/L of reducing sugar, at desired condition the highest cell dry weight and PHB concentrations were 5.36±0.22 and 3.93±0.24g/L, respectively. The findings of this study reveal that Sargassum sp. is a promising feedstock for biopolymer production. The characteristics of produced PHB were analyzed by FTIR, differential scanning calorimetry and 1 H NMR. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Obtaining nanofibers from curauá and sugarcane bagasse fibers using enzymatic hydrolysis followed by sonication

    DEFF Research Database (Denmark)

    Campos, Adriana de; Correa, Ana Carolina; Cannella, David

    2013-01-01

    This paper is an initial study of the implementation of two new enzymes, an endoglucanase and a concoction of hemicellulases and pectinases to obtain cellulosic nanoparticles. In this study, curauá and sugarcane bagasse were dewaxed and bleached prior to enzymatic action for 72 h at 50 °C, and th...

  14. Impact of harvest time and switchgrass cultivar on sugar release through enzymatic hydrolysis

    Science.gov (United States)

    Switchgrass (Panicum virgatum L.) is a native North American prairie grass being developed for bioenergy production in the central and eastern USA. The objective of this study was to identify the impacts harvest time and switchgrass cultivar had on sugar release variables determined through enzymat...

  15. Hydrolysis of olive mill waste to enhance rhamnolipids and surfactin production.

    Science.gov (United States)

    Moya Ramírez, Ignacio; Altmajer Vaz, Deisi; Banat, Ibrahim M; Marchant, Roger; Jurado Alameda, Encarnación; García Román, Miguel

    2016-04-01

    The aim of this work was to demonstrate the effectiveness of hydrolysis pretreatment of olive mill (OMW) waste before use as a carbon source in biosurfactant production by fermentation. Three hydrolysis methods were assessed: enzymatic hydrolysis, acid pretreatment plus enzymatic hydrolysis, and acid hydrolysis. Fermentation was carried out using two bacterial species: Pseudomonas aeruginosa and Bacillus subtilis. Our results showed that the enzymatic hydrolysis was the best pretreatment, yielding up to 29.5 and 13.7mg/L of rhamnolipids and surfactins respectively. Glucose did not show significant differences in comparison to enzymatically hydrolysed OMW. At the best conditions found rhamnolipids and surfactins reached concentrations of 299 and 26.5mg/L; values considerably higher than those obtained with non-hydrolysed OMW. In addition, enzymatic pretreatment seemed to partially reduce the inhibitory effects of OMW on surfactin production. Therefore, enzymatic hydrolysis proved to effectively increase the productivity of these biosurfactants using OMW as the sole carbon source. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Phenotypic selection of a wild Saccharomyces cerevisiae strain for simultaneous saccharification and co-fermentation of AFEX pretreated corn stover

    Science.gov (United States)

    Mingie Jin; Cory Sarks; Christa Gunawan; Benjamin D. Bice; Shane P. Simonett; Ragothaman Avanasi Narasimhan; Laura B. Willis; Bruce E. Dale; Venkatesh Balan; Trey K. Sato

    2013-01-01

    Simultaneous saccharification and co-fermentation (SSCF) process involves enzymatic hydrolysis of pretreated lignocellulosic biomass and fermentation of glucose and xylose in one bioreactor. The optimal temperatures for enzymatic hydrolysis are higher than the standard fermentation temperature of ethanologenic Saccharomyces cerevisiae. Moreover,...

  17. Ethanol production from sorghum grains [Sorghum bicolor (L. Moench]: evaluation of the enzymatic hydrolysis and the hydrolysate fermentability

    Directory of Open Access Journals (Sweden)

    C. A. Barcelos

    2011-12-01

    Full Text Available The production of ethanol from sorghum grains was investigated in the present work. Initially, starch enzymatic hydrolysis was investigated using commercial α-amylase and glucoamylase, considering particle size, solid:liquid ratio and enzyme load as variables. The hydrolysate, in the best conditions (73 U of α-amylase/g grain and 1150 U glucoamylase/g grain, contained glucose at a concentration of approximately 250 g/L, which was fermented to produce ethanol in a bioreactor in batch mode. Using an industrial strain of Saccharomyces cerevisiae, the maximum ethanol concentration produced was roughly 106 g.L-1 in 24 h of fermentation, resulting in a volumetric productivity of 4.4 g.L-1.h-1 and a product yield based on the substrate consumed (0.499 g.g-1 close to the theoretical.

  18. Optimisation of cheese whey enzymatic hydrolysis and further continuous production of antimicrobial extracts by Lactobacillus plantarum CECT-221.

    Science.gov (United States)

    Rodríguez-Pazo, Noelia; da Silva Sabo, Sabrina; Salgado-Seara, José Manuel; Arni, Saleh Al; de Souza Oliveira, Ricardo Pinheiro; Domínguez, José Manuel

    2016-08-01

    The enzymatic hydrolysis of cheese whey was optimised using the enzymes iZyme, Alcalase or Flavourzyme under different conditions. Hydrolysates supplemented with commercial nutrients were evaluated as fermentation broths to produce DL-3-Phenyllactic acid (PLA) from phenylalanine (Phe) by Lactobacillus plantarum CECT-221. Optimised hydrolysates were obtained using Flavourzyme at 50 °C and 100 rpm during 12 h, and assayed in 250 ml Erlenemyer flasks using different proportions of vinasses as economic nutrient. The process was then scaled up using a 2 litres Bioreactor working under the continuous modality. Under the intermediate dilution rate of 0·0207 h-1 0·81 ± 0·026 mM of PLA and 38·8 ± 3·253 g/l of lactic acid were produced. A final evaluation revealed that lactic acid, and bacteriocins exerted the highest inhibitory effect among the extracted components of cell-free supernatants.

  19. Double enzymatic hydrolysis preparation of heme from goose blood and microencapsulation to promote its stability and absorption.

    Science.gov (United States)

    Wang, Baowei; Cheng, Fansheng; Gao, Shun; Ge, Wenhua; Zhang, Mingai

    2017-02-15

    Iron deficiency anemia (IDA) is the most common nutritional deficiency worldwide. This deficiency could be solved by preparing stable, edible, and absorbable iron food ingredients using environmentally friendly methods. This study investigated enzymatic hydrolysis and microencapsulation process of goose blood. The physicochemical properties, stabilities of the microencapsulated goose blood hydrolysate (MGBH) and a supplement for rats with IDA were also evaluated. The results showed that the synergetic hydrolytic action of neutrase and alkaline protease significantly increased the heme-releasing efficiency. The heme was then microencapsulated using sodium caseinate, maltodextrin and carboxymethyl cellulose (CMC) as the edible wall material, and the encapsulation efficiency of the product reached 98.64%. Meanwhile, favorable thermal, storage and light stabilities were observed for the microencapsulation. It was found that MGBH can significantly improve the body weight and hematological parameters of IDA Wistar rat. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Impact of enzymatic and alkaline hydrolysis on CBD concentration in urine.

    Science.gov (United States)

    Bergamaschi, Mateus M; Barnes, Allan; Queiroz, Regina H C; Hurd, Yasmin L; Huestis, Marilyn A

    2013-05-01

    A sensitive and specific analytical method for cannabidiol (CBD) in urine was needed to define urinary CBD pharmacokinetics after controlled CBD administration, and to confirm compliance with CBD medications including Sativex-a cannabis plant extract containing 1:1 ∆(9)-tetrahydrocannabinol (THC) and CBD. Non-psychoactive CBD has a wide range of therapeutic applications and may also influence psychotropic smoked cannabis effects. Few methods exist for the quantification of CBD excretion in urine, and no data are available for phase II metabolism of CBD to CBD-glucuronide or CBD-sulfate. We optimized the hydrolysis of CBD-glucuronide and/or -sulfate, and developed and validated a GC-MS method for urinary CBD quantification. Solid-phase extraction isolated and concentrated analytes prior to GC-MS. Method validation included overnight hydrolysis (16 h) at 37 °C with 2,500 units β-glucuronidase from Red Abalone. Calibration curves were fit by linear least squares regression with 1/x (2) weighting with linear ranges (r(2) > 0.990) of 2.5-100 ng/mL for non-hydrolyzed CBD and 2.5-500 ng/mL for enzyme-hydrolyzed CBD. Bias was 88.7-105.3 %, imprecision 1.4-6.4 % CV and extraction efficiency 82.5-92.7 % (no hydrolysis) and 34.3-47.0 % (enzyme hydrolysis). Enzyme-hydrolyzed urine specimens exhibited more than a 250-fold CBD concentration increase compared to alkaline and non-hydrolyzed specimens. This method can be applied for urinary CBD quantification and further pharmacokinetics characterization following controlled CBD administration.

  1. Lignosulfonate-mediated cellulase adsorption: enhanced enzymatic saccharification of lignocellulose through weakening nonproductive binding to lignin

    Science.gov (United States)

    Zhaojiang Wang; JY Zhu; Yingjuan Fu; Menghua Qin; Zhiyong Shao; Jungang Jiang; Fang Yang

    2013-01-01

    Thermochemical pretreatment of lignocellulose is crucial to bioconversion in the fields of biorefinery and biofuels. However, the enzyme inhibitors in pretreatment hydrolysate make solid substrate washing and hydrolysate detoxification indispensable prior to enzymatic hydrolysis. Sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL) is a relatively...

  2. Process intensification of delignification and enzymatic hydrolysis of delignified cellulosic biomass using various process intensification techniques including cavitation.

    Science.gov (United States)

    Nagula, Karuna Narsappa; Pandit, Aniruddha Bhalchandra

    2016-08-01

    Different methods of pretreatment including alkali treatment, treatment with ultrasound, biological treatment using laccase enzyme and combined treatment like ultrasound-laccase for Napier grass have been tried. With alkali pretreatment optimized conditions obtained were sodium hydroxide 0.3% w/v giving 86% delignification at temperature of 80°C, treatment time of 2h. In physical methods of treatment ultrasound, at a temperature of 45°C, treatment time of 2h, operating at frequency 24kHz and power of 100W gave 18% delignification. For laccase pretreatment, optimized conditions obtained were 300rpm impeller speed, enzyme concentration 10U/gm of Napier grass gave 50% delignification with cellulose. The optimized conditions for delignification by using combination treatment of ultrasound & enzymatic were obtained at 24kHz frequency, 100W giving 75% of delignification in 6h. An enhancement in lignin degradation by 25% and reduction in the treatment time from 12 to 6h is achieved as compared to only laccase treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. pH-Induced Lignin Surface Modification to Reduce Nonspecific Cellulase Binding and Enhance Enzymatic Saccharification of Lignocelluloses

    Science.gov (United States)

    Hongming Lou; J.Y. Zhu; Tian Qing Lan; Huranran Lai; Xueqing Qiu

    2013-01-01

    We studied the mechanism of the significant enhancement in the enzymatic saccharification of lignocelluloses at an elevated pH of 5.5–6.0. Four lignin residues with different sulfonic acid contents were isolated from enzymatic hydrolysis of lodgepole pine pretreated by either dilute acid (DA) or sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL...

  4. Molecular Investigation of the Mechanism of Non-Enzymatic Hydrolysis of Proteins and the Predictive Algorithm for Susceptibility.

    Science.gov (United States)

    Lauer, Timothy M; Wood, Geoffrey P F; Farkas, David; Sathish, Hasige A; Samra, Hardeep S; Trout, Bernhardt L

    2016-06-14

    A number of potential degradation routes can limit the shelf life of a biotherapeutic. While these are experimentally measurable, the tests to do so require a substantial investment in both time and material, resources rarely available early in the drug development process. To address the potential degradation route of non-enzymatic hydrolysis, we performed a molecular modeling analysis, together with an experimental study, to gain detailed insight into the reaction. On the basis of the mechanism, an algorithm for predicting the likely cleavage sites of a protein has been created. This algorithm measures four key properties during a molecular dynamics simulation, which relate to the key steps of the hydrolysis mechanism, in particular the rate-determining step (which can vary depending on the local environment). The first two properties include the secondary structure and the surface exposure of the amide bond, both of which help detect if the addition of the proton to the amide bond is possible. The second two properties relate to whether the side chain can cyclize and form a furane ring. These two properties are the orientation of the side chain relative to the amide bond and the number of hydrogen bonds between the side chain and the surrounding protein. Overall, the algorithm performs well at identifying reactive versus nonreactive bonds. The algorithm correctly classifies nearly 90% of all amide bonds following an aspartic or glutamic acid residue as reactive or nonreactive.

  5. Effect of methanol/acetone/water extraction and enzymatic hydrolysis on the nutritional value of unheated rapeseed proteins.

    Science.gov (United States)

    Lacroix, M; Amiot, J; Cheour, F; De La Noüe, J; Goulet, G; Brisson, G J

    1988-01-01

    The objective of this work was to study the effect of the extraction of phenols by methanol/acetone/water and proteolysis (pepsin 1 hour; trypsin 2 hours) on the nutritional characteristics of unheated rapeseed protein as measured by weight gain, protein intake, net protein ratio, apparent digestibility and absorbed protein. The effect of proteolysis of the methanol/acetone/water extracted rapeseed protein, and the effect of mixing the methanol/acetone/water extract back with the extracted rapeseed protein was also studied. Extraction of phenolic compounds from rapeseed flour significantly improved weight gain, protein intake, net protein ratio and absorbed protein value. However, the mixing of phenolic extract with the extracted rapeseed protein did not appear to have a significant effect. Enzymatic hydrolysis (1 hour with pepsin and 2 hours with trypsin) of the raw material significantly improved the weight gain and protein intake. The combined methanol/acetone/water extraction and protein hydrolysis treatments were beneficial on all nutritional quality parameters of rapeseed protein. These results suggest that the protein-bound phenolic compounds, rather than the free phenolic compounds contribute mainly to the decrease in the nutritional values of proteins associated with phenolic compounds in raw flour before extraction.

  6. Enzymatic hydrolysis of nylons: quantification of the reaction rate of nylon hydrolase for thin-layered nylons.

    Science.gov (United States)

    Nagai, Keisuke; Iida, Kazuki; Shimizu, Kimiaki; Kinugasa, Ryo; Izumi, Motoki; Kato, Dai-Ichiro; Takeo, Masahiro; Mochiji, Kozo; Negoro, Seiji

    2014-10-01

    Nylon hydrolase degrades various aliphatic nylons, including nylon-6 and nylon-66. We synthesized a nylon-66 copolymer (M w = 22,900, M n = 7,400), in which a part of an adipoyl unit (32 % molar ratio) of nylon-66 was replaced with a succinyl unit by interfacial polymerization. To quantify the reaction rate of the enzymatic hydrolysis of nylons at the surface of solid polymers, we prepared a thin layer of nylons on the bottom surface of each well in a polystyrene-based micro-assay plate. The thickness of the nylon layer was monitored by imaging analysis of the photographic data. More than 99 % of the copolymer with thicknesses of 260 nm (approximately 600 layers of polymer strands) were converted to water-soluble oligomers by nylon hydrolase (3 mg enzyme ml(-1)) at 30 °C within 60 h. These results were further confirmed by TLC analysis of the reaction products and by assay of liberated amino groups in the soluble fractions. The degradation rate of the thin-layered nylon-6 was similarly analyzed. We demonstrate that this assay enables a quantitative evaluation of the reaction rate of hydrolysis at the interface between the solid and aqueous phases and a quantitative comparison of the degradability for various polyamides.

  7. Effect of enzymatic hydrolysis of pancreatin and alcalase enzyme on some properties of edible bird's nest hydrolysate

    Science.gov (United States)

    Khushairay, Etty Syarmila Ibrahim; Ayub, Mohd Khan; Babji, Abdul Salam

    2014-09-01

    Edible bird nest (EBN) is a dried glutinous secretion from the salivary glands of several different swiftlet species. It is widely consumed as a health food due to its high beneficial effects to human health and has been considered to be one of the most precious food items by the Chinese for thousands of years. The aim of this study was to evaluate the effect of enzymatic hydrolysis on protein solubility (μg/g), the degree of hydrolysis (DH%), and peptide content (μg/g) of edible bird's nest hydrolysate. Initial protein solubility of boiled EBN was 25.5mg/g EBN. Treating the solubilized EBN with pancreatin 4NF for 1.0 - 1.5hours increased EBN protein solubility to 163.9mg/g and produced hydrolysate with DH% of 86.5% and 109.5mg/g peptide. EBN hydrolyzed with alcalase for 1.5 hours produced hydrolysate with protein solubility of 86.7mg/g, 82.7 DH% and had 104.1mg/g peptide content.

  8. Statistically designed enzymatic hydrolysis of an icariin/β-cyclodextrin inclusion complex optimized for production of icaritin

    Directory of Open Access Journals (Sweden)

    Xin Jin

    2012-02-01

    Full Text Available This study focuses on the preparation and enzymic hydrolysis of an icariin/β-cyclodextrin inclusion complex to efficiently generate icaritin. The physical characteristics of the inclusion complex were evaluated by differential scanning calorimetry (DSC. Enzymatic hydrolysis was optimized for the conversion of icariin/β-cyclodextrin complex to icaritin by Box–Behnken statistical design. The inclusion complex formulation increased the solubility of icariin approximately 17-fold, from 29.2 to 513.5 μg/mL at 60 °C. The optimum conditions were predicted by Box–Behnken statistical design as follows: 60 °C, pH 7.0, the ratio of enzyme/substrate (1:1.1 and reaction time 7 h. Under the optimal conditions the conversion of icariin was 97.91% and the reaction time was decreased by 68% compared with that without β-CD inclusion. Product analysis by melting point, ESI-MS, UV, IR, 1H NMR and 13C NMR confirmed the authenticity of icaritin with a purity of 99.3% and a yield of 473 mg of icaritin from 1.1 g icariin.

  9. Enzymatic synthesis of N-acetylglucosaminobioses by reverse hydrolysis: characterisation and application of the library of fungal betta-N-acetylhexosaminidases

    Czech Academy of Sciences Publication Activity Database

    Rauvolfová, Jana; Weignerová, Lenka; Kuzma, Marek; Přikrylová, Věra; Macková, M.; Pišvejcová, Andrea; Křen, Vladimír

    2004-01-01

    Roč. 29, - (2004), s. 259-264 ISSN 1381-1177 R&D Projects: GA ČR GP204/02/P096 Institutional research plan: CEZ:AV0Z5020903 Keywords : reverse hydrolysis * enzymatic synthesis * filamentous fungi Subject RIV: EE - Microbiology, Virology Impact factor: 1.547, year: 2004

  10. Determination of carbon isotope ratios in plant starch via selective enzymatic hydrolysis

    International Nuclear Information System (INIS)

    Schimmelmann, A.; DeNiro, M.J.

    1983-01-01

    A method for the determination of the carbon isotope ratios in bipolymers hydrolyzed by enzymatic action consists of separating the monomer by passage through a dialysis membrane and then combusting the monomer prior to isotopic analysis. The method is described for application to the analysis of starch, but it should find application for polymers than can be degraded quantitatively to monomers and/or oligomers using specific hydrolytic enzymes

  11. Hydrothermal Pretreatment of Date Palm (Phoenix dactylifera L. Leaflets and Rachis to Enhance Enzymatic Digestibility and Bioethanol Potential

    Directory of Open Access Journals (Sweden)

    Chuanji Fang

    2015-01-01

    Full Text Available Date palm residues are one of the most promising lignocellulosic biomass for bioethanol production in the Middle East. In this study, leaflets and rachis were subjected to hydrothermal pretreatment to overcome the recalcitrance of the biomass for enzymatic conversion. Evident morphological, structural, and chemical changes were observed by scanning electron microscopy, X-ray diffraction, and infrared spectroscopy after pretreatment. High glucan (>90% for both leaflets and rachis and xylan (>75% for leaflets and >79% for rachis recovery were achieved. Under the optimal condition of hydrothermal pretreatment (210°C/10 min highly digestible (glucan convertibility, 100% to leaflets, 78% to rachis and fermentable (ethanol yield, 96% to leaflets, 80% to rachis solid fractions were obtained. Fermentability test of the liquid fractions proved that no considerable inhibitors to Saccharomyces cerevisiae were produced in hydrothermal pretreatment. Given the high sugar recovery, enzymatic digestibility, and ethanol yield, production of bioethanol by hydrothermal pretreatment could be a promising way of valorization of date palm residues in this region.

  12. Microwave-assisted inorganic salt pretreatment of sugarcane leaf waste: Effect on physiochemical structure and enzymatic saccharification.

    Science.gov (United States)

    Moodley, Preshanthan; Kana, E B Gueguim

    2017-07-01

    This paper presents a method to pretreat sugarcane leaf waste using microwave-assisted (MA) inorganic salt to enhance enzymatic saccharification. The effects of process parameters of salt concentration, microwave power intensity and pretreatment time on reducing sugar yield from sugarcane leaf waste were investigated. Pretreatment models based on MA-NaCl, MA-ZnCl 2 and MA-FeCl 3 were developed with high coefficients of determination (R 2 >0.8) and optimized. Maximum reducing sugar yield of 0.406g/g was obtained with 2M FeCl 3 at 700W for 3.5min. Scanning electron microscopy (SEM), Fourier Transform Infrared analysis (FTIR) and X-ray diffraction (XRD) showed major changes in lignocellulosic structure after MA-FeCl 3 pretreatment with 71.5% hemicellulose solubilization. This regime was further assessed on sorghum leaves and Napier grass under optimal MA-FeCl 3 conditions. A 2-fold and 3.1-fold increase in sugar yield respectively were observed compared to previous reports. This pretreatment was highly effective for enhancing enzymatic saccharification of lignocellulosic biomass. Copyright © 2017. Published by Elsevier Ltd.

  13. Physicochemical and sensory characterization of refined and deodorized tuna (Thunnus albacares) by-product oil obtained by enzymatic hydrolysis.

    Science.gov (United States)

    de Oliveira, Dayse A S B; Minozzo, Marcelo G; Licodiedoff, Silvana; Waszczynskyj, Nina

    2016-09-15

    In this study, the effects of chemical refining and deodorization on fatty acid profiles and physicochemical and sensory characteristics of the tuna by-product oil obtained by enzymatic hydrolysis were evaluated. Enzymatic extraction was conducted for 120 min at 60 °C and pH 6.5 using Alcalase at an enzyme-substrate ratio of 1:200 w/w. The chemical refining of crude oil consisted of degumming, neutralization, washing, drying, bleaching, and deodorization; deodorization was conducted at different temperatures and processing times. Although chemical refining was successful, temperature and chemical reagents favored the removal of polyunsaturated fatty acids (PUFA) from the oil. Aroma attributes of fishy odor, frying odor, and rancid odor predominantly contributed to the sensory evaluation of the product. Deodorization conditions of 160 °C for 1h and 200 °C for 1h were recommended for the tuna by-product oil, which is rich in PUFA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Gelatin based bio-films prepared from grey triggerfish' skin influenced by enzymatic pretreatment.

    Science.gov (United States)

    Souissi, Nabil; Abdelhedi, Ola; Mbarek, Aïcha; Kammoun, Wassim; Kechaou, Hela; Nasri, Moncef

    2017-12-01

    Gelatins from grey triggerfish skin were extracted with different methods. The treatment by pepsin (PG) improved the yield of extraction when compared with untreated gelatin (UG) and acidic gelatin (AG). The outputs of gelatins AG, UG and PG, obtained respectively, with acitic acid, glycine buffer and glycine buffer added with 5U of pepsin/g of the skin beforehand treated by alkali, were 6.9%, 7.9% and 9.7%, respectively. The enzymatic treatment of the alkali-pretreated skin of grey triggerfish altered the electrophoresis profile, biophysical, gellification, rheological and thermal properties of the prepared gelatins extracted under acidic condition. However, the untreated gelatin obtained without pepsin exhibited the highest transition and enthaply temperatures. In addition, the properties of the prepared films were interconnected to their microstructure as demonstrated by scanning electron microscopy. Furthermore, films with PG and UG had a regular surface and a more condensed structure, whereas films prepared with AG had rougher surface. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. An on-line method for pressurized hot water extraction and enzymatic hydrolysis of quercetin glucosides from onions.

    Science.gov (United States)

    Lindahl, Sofia; Liu, Jiayin; Khan, Samiullah; Karlsson, Eva Nordberg; Turner, Charlotta

    2013-06-27

    A novel environmentally sound continuous-flow hot water extraction and enzymatic hydrolysis method for determination of quercetin in onion raw materials was successfully constructed using a stepwise optimization approach. In the first step, enzymatic hydrolysis of quercetin-3,4'-diglucoside to quercetin was optimized using a three level central composite design considering temperature (75-95°C), pH (3-6) and volume concentration of ethanol (5-15%). The enzyme used was a thermostable β-glucosidase variant (termed TnBgl1A_N221S/P342L) covalently immobilized on either of two acrylic support-materials (Eupergit(®) C 250L or monolithic cryogel). Optimal reaction conditions were irrespective of support 84°C, 5% ethanol and pH 5.5, and at these conditions, no significant loss of enzyme activity was observed during 72 h of use. In a second step, hot water extractions from chopped yellow onions, run at the optimal temperature for hydrolysis, were optimized in a two level design with respect to pH (2.6 and 5.5), ethanol concentration (0 and 5%) and flow rate (1 and 3 mL min(-1)) Obtained results showed that the total quercetin extraction yield was 1.7 times higher using a flow rate of 3 mL min(-1) (extraction time 90 min), compared to a flow rate of 1 mL min(-1) (extraction time 240 min). Presence of 5% ethanol was favorable for the extraction yield, while a further decrease in pH was not, not even for the extraction step alone. Finally, the complete continuous flow method (84°C, 5% ethanol, pH 5.5, 3 mL min(-1)) was used to extract quercetin from yellow, red and shallot onions and resulted in higher or similar yield (e.g. 8.4±0.7 μmol g(-1) fresh weight yellow onion) compared to a conventional batch extraction method using methanol as extraction solvent. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. STUDY OF THE PREPARATION OF SUGAR FROM HIGH-LIGNIN LIGNOCELLULOSE APPLYING SUBCRITICAL WATER AND ENZYMATIC HYDROLYSIS: SYNTHESIS AND CONSUMABLE COST EVALUATION

    Directory of Open Access Journals (Sweden)

    HANNY F. SANGIAN

    2015-05-01

    Full Text Available This study concern sugars hydrolyzed from the high-lignin coconut coir dust using moderate subcritical water (SCW hydrolysis at pressures 20-40 bar for 1 h and to evaluate the consumable costs driver generated. The SCW method produced two products, sugar liquid and solid (SCW-treated substrate. The solid was proceeded to prepare the sugar via enzymatic hydrolysis using pure cellulase. Yield of sugar hydrolyzed from lignocellulose by SCW technique was 0.25 gram sugar/gram cellulose +hemicellulose, or 0.09-gram sugar/gram lignocellulose at 160 °C and 40 bar. While, the maximum yield of sugar liberated enzymatically from SCW-treated solid was 0.35-gram sugar/gram cellulose+hemicellulose, or 0.13-gram sugar/gram SCW-treated solid. It was found that carbon dioxide gas was the highest cost driving in SCW hydrolysis.

  17. A pyranose dehydrogenase-based biosensor for kinetic analysis of enzymatic hydrolysis of cellulose by cellulases

    DEFF Research Database (Denmark)

    Cruys-Bagger, Nicolaj; Badino, Silke Flindt; Tokin, Radina Naytchova

    2014-01-01

    A novel electrochemical enzyme biosensor was developed for real-time detection of cellulase activity when acting on their natural insoluble substrate, cellulose. The enzyme biosensor was constructed with pyranose dehydrongease (PDH) from Agaricus meleagris that was immobilized on the surface...... jecorina (HjCel6A) on cellulosic substrates with different morphology (bacterial microcrystalline cellulose (BMCC) and Avicel). The steady-state rate of hydrolysis increased towards a saturation plateau with increasing loads of substrate. The experimental results were rationalized using a steady-state rate...

  18. Aqueous two-phase systems for extractive enzymatic hydrolysis of biomass

    DEFF Research Database (Denmark)

    Bussamra, Bianca Consorti; Azzoni, Sindelia Freitas; Mussatto, Solange I.

    (cellobiose and glucose). This effect is even more pronounced in hydrolysis containing high solid content (15-20% or higher water-insoluble solids – WIS), which is desired in order to obtain hydrolysates containing high total reducing sugar concentration and reduced water usage1. The aim of this project....... The achievement of the project’s goal can lead to, but not limited to, three consequences: enhancement of sugarcane mills productivity; reduction of fossil fuels usage, which can accelerate the energetic independence in many countries; and contribution to a more sustainable economy. This paper will present...

  19. Building blocks for the solution phase synthesis of oligonucleotides: regioselective hydrolysis of 3',5'-Di-O-levulinylnucleosides using an enzymatic approach.

    Science.gov (United States)

    García, Javier; Fernández, Susana; Ferrero, Miguel; Sanghvi, Yogesh S; Gotor, Vicente

    2002-06-28

    A short and convenient synthesis of 3'- and 5'-O-levulinyl-2'-deoxynucleosides has been developed from the corresponding 3',5'-di-O-levulinyl derivatives by regioselective enzymatic hydrolysis, avoiding several tedious chemical protection/deprotection steps. Thus, Candida antartica lipase B (CAL-B) was found to selectively hydrolyze the 5'-levulinate esters, furnishing 3'-O-levulinyl-2'-deoxynucleosides 3 in >80% isolated yields. On the other hand, immobilized Pseudomonas cepacia lipase (PSL-C) and Candida antarctica lipase A (CAL-A) exhibit the opposite selectivity toward the hydrolysis at the 3'-position, affording 5'-O-levulinyl derivatives 4 in >70% yields. A similar hydrolysis procedure was successfully extended to the synthesis of 3'- and 5'-O-levulinyl-protected 2'-O-alkylribonucleosides 7 and 8. This work demonstrates for the first time application of commercial CAL-B and PSL-C toward regioselective hydrolysis of levulinyl esters with excellent selectivity and yields. It is noteworthy that protected cytidine and adenosine base derivatives were not adequate substrates for the enzymatic hydrolysis with CAL-B, whereas PSL-C was able to accommodate protected bases during selective hydrolysis. In addition, we report an improved synthesis of dilevulinyl esters using a polymer-bound carbodiimide as a replacement for dicyclohexylcarbodiimide (DCC), thus considerably simplifying the workup for esterification reactions.

  20. Effect of enzymatic hydrolysis on surface activity and surface rheology of type I collagen.

    Science.gov (United States)

    Kezwoń, Aleksandra; Chromińska, Ilona; Frączyk, Tomasz; Wojciechowski, Kamil

    2016-01-01

    We describe the adsorption behaviour and rheological properties of a calf skin type I collagen, and of its hydrolysates obtained using a Clostridium histolyticum collagenase (CHC) under moderate conditions (pH 7, 37°C). The effect of CHC concentration (2×10(-9)-2×10(-6)M) and incubation time (35-85min) was studied and optimised to achieve the highest decrease of surface tension and the highest dilational surface viscoelasticity of the adsorbed layers. SDS-PAGE electrophoresis and reverse-phase high performance liquid chromatography (RP-HPLC) were used to characterise the hydrolysis products. The results show that even simple modifications (heat treatment, pH change, partial hydrolysis) of collagen enhances its surface properties, especially in terms of surface dilational elasticity modulus. The use of low enzyme concentration (CHC-to-collagen molar ratio of 4×10(-3)) and short incubation time (<45min) results in moderately hydrolysed products with the highest ability to lower surface tension (γ=53.9mNm(-1)) forming highly elastic adsorbed layers (surface dilational elasticity, E'=74.5mNm(-1)). Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Enzymatic hydrolysis of aspen biomass into fermentable sugars by using lignocellulases from Armillaria gemina.

    Science.gov (United States)

    Jagtap, Sujit Sadashiv; Dhiman, Saurabh Sudha; Kim, Tae-Su; Li, Jinglin; Lee, Jung-Kul; Kang, Yun Chan

    2013-04-01

    A white rot fungus, identified as Armillaria gemina SKU2114 on the basis of morphological and phylogenetic analyses, was found to secrete efficient lignocellulose-degrading enzymes. The strain showed maximum endoglucanase, cellobiohydrolase, and β-glucosidase activities of 146, 34, and 15 U/mL, respectively, and also secreted xylanase, laccase, mannanase, and lignin peroxidase with activities of 1270, 0.16, 57, and 0.31 U/mL, respectively, when grown with rice straw as a carbon source. Among various plant biomasses tested for saccharification, aspen biomass produced the maximum amount of reducing sugar. Response surface methodology was used to optimize the hydrolysis of aspen biomass to achieve the highest level of sugar production. A maximum saccharification yield of 62% (429 mg/g-substrate) was obtained using Populus tomentiglandulosa biomass after 48 h of hydrolysis. A. gemina was shown to be a good option for use in the production of reducing sugars from lignocellulosic biomass. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Molecular characterization and enzymatic hydrolysis of naringin extracted from kinnow peel waste.

    Science.gov (United States)

    Puri, Munish; Kaur, Aneet; Schwarz, Wolfgang H; Singh, Satbir; Kennedy, J F

    2011-01-01

    Kinnow peel, a waste rich in glycosylated phenolic substances, is the principal by-product of the citrus fruit processing industry and its disposal is becoming a major problem. This peel is rich in naringin and may be used for rhamnose production by utilizing α-L-rhamnosidase (EC 3.2.1.40), an enzyme that catalyzes the cleavage of terminal rhamnosyl groups from naringin to yield prunin and rhamnose. In this work, infrared (IR) spectroscopy confirmed molecular characteristics of naringin extracted from kinnow peel waste. Further, recombinant α-L-rhamnosidase purified from Escherichia coli cells using immobilized metal-chelate affinity chromatography (IMAC) was used for naringin hydrolysis. The purified enzyme was inhibited by Hg2+ (1 mM), 4-hydroxymercuribenzoate (0.1 mM) and cyanamide (0.1 mM). The purified enzyme established hydrolysis of naringin extracted from kinnow peel and thus endorses its industrial applicability for producing rhamnose. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Enzymatic hydrolysis of anchovy fine powder at high and ambient pressure, and characterization of the hydrolyzates.

    Science.gov (United States)

    Kim, Namsoo; Son, So-Hee; Maeng, Jin-Soo; Cho, Yong-Jin; Kim, Chong-Tai

    2016-02-01

    At specific conditions of high pressure, the stability and activity of some enzymes are reportedly known to increase. The aim of this study was to apply pressure-tolerant proteases to hydrolyzing anchovy fine powder (AFP) and to determine product characteristics of the resultant hydrolyzates. Anchovy fine powder enzyme hydrolyzates (AFPEHs) were produced at 300 MPa and ambient pressure using combinations of Flavourzyme 500MG, Alcalase 2.4L, Marugoto E and Protamex. When the same protease combination was used for hydrolysis, the contents of total soluble solids, total water-soluble nitrogen and trichloroacetic acid-soluble nitrogen in the AFPEHs produced at 300 MPa were conspicuously higher than those in the AFPEHs produced at ambient pressure. This result and electrophoretic characteristics indicated that the high-pressure process of this study accelerates protein hydrolysis compared with the ambient-pressure counterpart. Most peptides in the hydrolyzates obtained at 300 MPa had molecular masses less than 5 kDa. Functionality, sensory characteristics and the content of total free amino acids of selected hydrolyzates were also determined. The high-pressure hydrolytic process utilizing pressure-tolerant proteases was found to be an efficient method for producing protein hydrolyzates with good product characteristics. © 2015 Society of Chemical Industry.

  4. Cell-wall structural changes in wheat straw pretreated for bioethanol production

    Science.gov (United States)

    Jan B. Kristensen; G. Thygesen Lisbeth; Claus Felby; Henning Jorgensen; Thomas Elder

    2008-01-01

    Pretreatment is an essential step in the enzymatic hydrolysis of biomass and subsequent production of bioethanol. Recent results indicate that only a mild pretreatment is necessary in an industrial, economically feasible system. The Integrated Biomass Utilisation System hydrothermal pretreatment process has previously been shown to be effective in preparing wheat straw...

  5. Substrate-Specific Development of Thermophilic Bacterial Consortia by Using Chemically Pretreated Switchgrass

    OpenAIRE

    Eichorst, Stephanie A.; Joshua, Chijioke; Sathitsuksanoh, Noppadon; Singh, Seema; Simmons, Blake A.; Singer, Steven W.

    2014-01-01

    Microbial communities that deconstruct plant biomass have broad relevance in biofuel production and global carbon cycling. Biomass pretreatments reduce plant biomass recalcitrance for increased efficiency of enzymatic hydrolysis. We exploited these chemical pretreatments to study how thermophilic bacterial consortia adapt to deconstruct switchgrass (SG) biomass of various compositions. Microbial communities were adapted to untreated, ammonium fiber expansion (AFEX)-pretreated, and ionic-liqui...

  6. Investigation of accessory hemicellulases and pectinases for polysaccharide hydrolysis of ionic liquid pretreated biomass

    Science.gov (United States)

    The polysaccharides, cellulose, hemicellulose, and other additional carbohydrate polymers of terrestrial biomass, comprise renewable feedstocks for carbon-based chemicals and fuels. Biomass pretreatment is required to overcome its recalcitrance to biochemical deconstruction to monomeric sugars for ...

  7. Comparative data on effects of leading pretreatments and enzyme loadings and formulations on sugar

    Energy Technology Data Exchange (ETDEWEB)

    Wyman, Charles [Univ. of California, Riverside, CA (United States); Balan, Venkatech [Michigan State Univ., East Lansing, MI (United States); Dale, Bruce E. [Michigan State Univ., East Lansing, MI (United States); Elander, Richard [National Renewable Energy Lab. (NREL), Golden, CO (United States); Falls, Matthew [Texas A & M Univ., College Station, TX (United States); Hames, Bonnie [Ceres Corporation, Thousand Oaks, CA (United States); Holtzapple, Mark [Texas A & M Univ., College Station, TX (United States); Ladisch, Michael R. [Purdue Univ., West Lafayette, IN (United States); Lee, Y. Y. [Auburn Univ., AL (United States); Mosier, Nathan [Purdue Univ., West Lafayette, IN (United States); Pallapolu, Venkata R. [Auburn Univ., AL (United States); Shi, Jian [Univ. of California, Riverside, CA (United States); Warner, Ryan E. [Genencor, Palo Alto, CA (United States)

    2011-06-16

    Dilute sulfuric acid (DA), sulfur dioxide (SO2), liquid hot water (LHW), soaking in aqueous ammonia (SAA), ammonia fiber expansion (AFEX), and lime pretreatments were applied to Alamo, Dacotah, and Shawnee switchgrass. Application of the same analytical methods and material balance approaches facil-itated meaningful comparisons of glucose and xylose yields from combined pretreatment and enzymatic hydrolysis. Use of a common supply of cellulase, beta-glucosidase, and xylanase also eased comparisons. All pretreatments enhanced sugar recovery from pretreatment and subsequent enzymatic hydrolysis substantially compared to untreated switchgrass. Adding beta-glucosidase was effective early in enzy-matic hydrolysis while cellobiose levels were high but had limited effect on longer term yields at the enzyme loadings applied. Adding xylanase improved yields most for higher pH pretreatments where more xylan was left in the solids. Harvest time had more impact on performance than switchgrass variety, and microscopy showed changes in different features could impact performance by different pretreatments.

  8. Hidrólise enzimática do óleo de pescado Enzymatic hydrolysis of the fish oil

    Directory of Open Access Journals (Sweden)

    Márcia Elisa da Silva Padilha

    2007-06-01

    - docosahexaenóico deriving from the sea fish. N-3 polyunsatured fatty acids can be obtained from the fish by enzymatic hydrolysis. The enzymatic hydrolysis of fats and oils, or lipolysis, is known to produce fatty acids to alter the fats by esterification, transesterification and interesterification. The main objective of this work was to obtain poliinsaturated fatty acids (PUFA by enzymatic hydrolysis of the industrial fish oil. It was used 1262,81 µmols of substrate, porcine lipase (7,647 mg.mL-1 of enzymatic extract, 60-minute of hydrolysis, 38 °C, pH 8 and NH4CI-NH4OH buffer. The hydrolysis products were separated by column chromatography and characterized by TLC GLC. The specific activity of lipase was 10,14 ± 0,15 UE.mg proteins-1. After 60-minute of reaction was obtained 44,45% of hydrolysis and 1865,76 ± 41,15 µmols of fatty acids. Were identified PUFA, monoacylglycerol, diacylglycerol and triacylglycerol. There was an increase of 46,14 and 40,23%, respectively, of araquidonico and eicosapentaenoic (EPA acids in the triacylglycerols fraction while the monoacylglycerol fraction showed an increase of 96,96 and 52,55% of DPA and DHA.

  9. Separate and Simultaneous enzymatic hydrolysis and fermentation of wheat hemicellulose with recombinant xylose utilizing Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Olsson, Lisbeth; Sørensen, H. R.; Dam, B. P

    2006-01-01

    Fermentations with three different xylose-utilizing recombinant Saccharomyces cerevisiae strains (F12, CR4, and CB4) were performed using two different wheat hemicellulose substrates, unfermented starch free fibers, and an industrial ethanol fermentation residue, vinasse. With CR4 and F12......, the maximum ethanol concentrations obtained were 4.3 and 4 g/L, respectively, but F12 converted xylose 15% faster than CR4 during the first 24 h. The comparison of separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) with F12 showed that the highest, maximum...... ethanol concentrations were obtained with SSF. In general, the volumetric ethanol productivity was initially, highest in the SHF, but the overall volumetric ethanol productivity ended up being maximal in the SSF, at 0.013 and 0.010 g/Lh, with starch free fibers and vinasse, respectively....

  10. Synthesis and spectral characterization of 2,2-diphenylethyl glucosinolate and HPLC-based reaction progress curve data for the enzymatic hydrolysis of glucosinolates by Sinapis alba myrosinase

    Directory of Open Access Journals (Sweden)

    Chase A. Klingaman

    2017-02-01

    Full Text Available The data presented in this article are related to the research article, “HPLC-based enzyme kinetics assay for glucosinolate hydrolysis facilitate analysis of systems with both multiple reaction products and thermal enzyme denaturation” (C.K. Klingaman, M.J. Wagner, J.R. Brown, J.B. Klecker, E.H. Pauley, C.J. Noldner, J.R. Mays, [1]. This data article describes (1 the synthesis and spectral characterization data of a non-natural glucosinolate analogue, 2,2-diphenylethyl glucosinolate, (2 HPLC standardization data for glucosinolate, isothiocyanate, nitrile, and amine analytes, (3 reaction progress curve data for enzymatic hydrolysis reactions with variable substrate concentration, enzyme concentration, buffer pH, and temperature, and (4 normalized initial velocities of hydrolysis/formation for analytes. These data provide a comprehensive description of the enzyme-catalyzed hydrolysis of 2,2-diphenylethyl glucosinolate (5 and glucotropaeolin (6 under widely varied conditions.

  11. Optimization of a novel sequential alkalic and metal salt pretreatment for enhanced delignification and enzymatic saccharification of corn cobs.

    Science.gov (United States)

    Sewsynker-Sukai, Yeshona; Gueguim Kana, E B

    2017-11-01

    This study presents a sequential sodium phosphate dodecahydrate (Na 3 PO 4 ·12H 2 O) and zinc chloride (ZnCl 2 ) pretreatment to enhance delignification and enzymatic saccharification of corn cobs. The effects of process parameters of Na 3 PO 4 ·12H 2 O concentration (5-15%), ZnCl 2 concentration (1-5%) and solid to liquid ratio (5-15%) on reducing sugar yield from corn cobs were investigated. The sequential pretreatment model was developed and optimized with a high coefficient of determination value (0.94). Maximum reducing sugar yield of 1.10±0.01g/g was obtained with 14.02% Na 3 PO 4 ·12H 2 O, 3.65% ZnCl 2 and 5% solid to liquid ratio. Scanning electron microscopy (SEM) and Fourier Transform Infrared analysis (FTIR) showed major lignocellulosic structural changes after the optimized sequential pretreatment with 63.61% delignification. In addition, a 10-fold increase in the sugar yield was observed compared to previous reports on the same substrate. This sequential pretreatment strategy was efficient for enhancing enzymatic saccharification of corn cobs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Application of Ni(II-assisted peptide bond hydrolysis to non-enzymatic affinity tag removal.

    Directory of Open Access Journals (Sweden)

    Edyta Kopera

    Full Text Available In this study, we demonstrate a non-enzymatic method for hydrolytic peptide bond cleavage, applied to the removal of an affinity tag from a recombinant fusion protein, SPI2-SRHWAP-His(6. This method is based on a highly specific Ni(II reaction with (S/TXHZ peptide sequences. It can be applied for the protein attached to an affinity column or to the unbound protein in solution. We studied the effect of pH, temperature and Ni(II concentration on the efficacy of cleavage and developed an analytical protocol, which provides active protein with a 90% yield and ∼100% purity. The method works well in the presence of non-ionic detergents, DTT and GuHCl, therefore providing a viable alternative for currently used techniques.

  13. On the conflicting findings of Role of Cellulose-Crystallinity in Enzume Hydrolysis of Biomass

    Science.gov (United States)

    Umesh Agarwal; Sally Ralph

    2014-01-01

    In the field of conversion of biomass to ethanol, an important area of research is the enzymatic hydrolysis of cellulose. Once cellulose is converted to glucose, it can be easily fermented to ethanol. As the cellulosic ethanol technology stands now, costly pretreatments and high dosages of cellulases are needed to achieve complete hydrolysis of the cellulose fraction...

  14. Hydrolysis of Rice Straw Pretreated by Na2SO3 Over Fe-resin/NaCl

    Directory of Open Access Journals (Sweden)

    YANG Hui

    2017-05-01

    Full Text Available To increase the conversion of rice straw(RS and the yield of products, we employed three methods, which were ultrasonic wave, steam explosion and Na2SO3 pretreatment to pretreat RS(the treated RS noted as CS-RS, ZQ-RS and Na2SO3-RS, respectively and found that Na2SO3 treatment was the best pretreatment method based on XRD, SEM, elemental analysis and content of cellulose, hemicellulose and lignin. The conversion of Na2SO3-RS and the yield of total reducing sugar(TRS and levulinic acid(LA were 97.3%, 29.6% and 13.5%, respectively by 10% Fe-resin in 3.3% NaCl solution under 200 ℃.

  15. Tailoring Wet Explosion Process Parameters for the Pretreatment of Cocksfoot Grass for High Sugar Yields

    DEFF Research Database (Denmark)

    Njoku, Stephen Ikechukwu; Ahring, Birgitte Kiær; Uellendahl, Hinrich

    2013-01-01

    The pretreatment of lignocellulosic biomass is crucial for efficient subsequent enzymatic hydrolysis and ethanol fermentation. In this study, wet explosion (WEx) pretreatment was applied to cocksfoot grass and pretreatment conditions were tailored for maximizing the sugar yields using response su...... when applying less severe pretreatment conditions C (160 °C, 5 min, 0.2 % dilute sulfuric acid). Therefore, the choice of the most suitable pretreatment conditions is depending on the main target product, i.e., hexose or pentose sugars....

  16. Identification of the Major ACE-Inhibitory Peptides Produced by Enzymatic Hydrolysis of a Protein Concentrate from Cuttlefish Wastewater

    Directory of Open Access Journals (Sweden)

    Isabel Rodríguez Amado

    2014-03-01

    Full Text Available The aim of this work was the purification and identification of the major angiotensin converting enzyme (ACE inhibitory peptides produced by enzymatic hydrolysis of a protein concentrate recovered from a cuttlefish industrial manufacturing effluent. This process consisted on the ultrafiltration of cuttlefish softening wastewater, with a 10 kDa cut-off membrane, followed by the hydrolysis with alcalase of the retained fraction. Alcalase produced ACE inhibitors reaching the highest activity (IC50 = 76.8 ± 15.2 μg mL−1 after 8 h of proteolysis. Sequential ultrafiltration of the 8 h hydrolysate with molecular weight cut-off (MWCO membranes of 10 and 1 kDa resulted in the increased activity of each permeate, with a final IC50 value of 58.4 ± 4.6 μg mL−1. Permeate containing peptides lower than 1 kDa was separated by reversed-phase high performance liquid chromatography (RP-HPLC. Four fractions (A–D with potent ACE inhibitory activity were isolated and their main peptides identified using high performance liquid chromatography coupled to an electrospray ion trap Fourier transform ion cyclotron resonance-mass spectrometer (HPLC-ESI-IT-FTICR followed by comparison with databases and de novo sequencing. The amino acid sequences of the identified peptides contained at least one hydrophobic and/or a proline together with positively charged residues in at least one of the three C-terminal positions. The IC50 values of the fractions ranged from 1.92 to 8.83 μg mL−1, however this study fails to identify which of these peptides are ultimately responsible for the potent antihypertensive activity of these fractions.

  17. The effect of enzymatic pre-hydrolysis of dairy wastewater on the granular and immobilized microbial community in anaerobic bioreactors.

    Science.gov (United States)

    Cammarota, Magali C; Rosa, Daniela R; Duarte, Iolanda C S; Saavedra, Nora K; Varesche, Maria B A; Zaiat, Marcelo; Freire, Denise M G

    2013-01-01

    The effect of a lipase-rich enzyme preparation produced by the fungus Penicillium sp. on solid-state fermentation was evaluated in two anaerobic bioreactors (up-flow anaerobic sludge blanket (UASB) and horizontal-flow anaerobic immobilized biomass (HAIB)) treating dairy wastewater with 1200 mg oil and grease/L. The oil and grease hydrolysis step was carried out with 0.1% (w/v) of the solid enzymatic preparation at 30 degrees C for 24 h. This resulted in a final concentration of free acids eight times higher than the initial value. The bioreactors operated at 30 degrees C with hydraulic retention times of 12 h (HAIB) and 20 h (UASB) for a period of 430 days, and had high chemical oxygen demand (COD) removal efficiencies (around 90%) when fed with pre-hydrolyzed wastewater. There was, however, an increase in the effluent oil and grease concentration (from values as low as 17 mg/L to values above 150 mg/L in the UASB bioreactor, and from 38-242 mg/L in the HAIB bioreactor), and oil and grease accumulation in the biomass throughout the operational period (the oil and grease content reached 1.7 times that found in the inoculum of the UASB bioreactor). The HAIB bioreactor gave better results because the support for biomass immobilization acted as a filter, retaining oil and grease at the entry of the bioreactor. The molecular analysis of the Bacteria and Archaea domains revealed significant differences in the microbial profiles in experiments conducted with and without the pre-hydrolysis step. The differences observed in the overall parameters could be related to the microbial diversity of the anaerobic sludge.

  18. Microwave Thermal Hydrolysis Of Sewage Sludge As A Pretreatment Stage For Anaerobic Digestion

    Science.gov (United States)

    Qiao, W.; Wang, W.; Xun, R.

    2008-02-01

    This article focuses on the effects of microwave thermal hydrolysis on sewage sludge anaerobic digestion. Volatile suspended solid (VSS) and COD solubilization of treated sludge were investigated. It was found that the microwave hydrolysis provided a rapid and efficient process to release organics from sludge. The increase of organic dissolution ratio was not obvious when holding time was over 5 min. The effect of the VSS solubilization was mainly dependent on temperature. The highest value of VSS dissolving ratio, 36.4%, was obtained at 170 °C for 30 min. COD dissolving ratio was about 25% at 170 °C. BMP test of excess sludge and mixture of primary and excess sludge proved the increase of methane production. Total biogas production of microwave treated mixture sludge increased by 12.9% to 20.2% over control after 30 days digestion. For excess sludge, biogas production was 11.1% to 25.9% higher than untreated sludge.

  19. Sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust enzymatic saccharification of hardwoods

    Science.gov (United States)

    G. S. Wang; X. J. Pan; Junyong Zhu; Roland Gleisner; D. Rockwood

    2009-01-01

    This study demonstrates sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust bioconversion of hardwoods. With only about 4% sodium bisulfite charge on aspen and 30-min pretreatment at temperature 180[...

  20. Enzymatic hydrolysis of starch in the presence of cereal soluble fibre polysaccharides.

    Science.gov (United States)

    Dhital, Sushil; Dolan, Grace; Stokes, Jason R; Gidley, Michael J

    2014-03-01

    The in vitro amylolysis of both granular and cooked maize starch and the diffusion of glucose in the presence of 1% and 2% cereal soluble fibre polysaccharides (arabinoxylan and mixed linkage beta-glucan) were studied at various levels of shear mixing in order to identify potential molecular mechanisms underlying observed glycemia-reducing effects of soluble fibres in vivo. The presence of soluble fibres increased viscosity by ca. 10× and 100× for 1% and 2% concentrations respectively. Despite this large difference in viscosity, measured digestion and mass transfer coefficients were only reduced by a factor of 1.5 to 2.5 at the same mixing speed. In contrast, introduction of mixing in the digesting and diffusing medium significantly increased the rate of amylolytic starch digestion and mass transfer of glucose. This effect is such that mixing at high speeds negates the hindering effect of the 100× increased viscosity imparted by the presence of 2% soluble fibre; this is essentially captured by the Reynolds number (the ratio of inertial and viscous forces) that defines the flow kinematics. The modest reduction of in vitro starch hydrolysis and glucose diffusion at increased viscosity suggests that the established benefits of soluble fibres on post-prandial glycaemia, in terms of attenuation of the overall rate and extent of dietary starch conversion to blood glucose, are not primarily due to a direct effect of viscosity. Alternative hypotheses are proposed based on gastric emptying, restriction of turbulent flow, and/or stimulation of mucus turnover.

  1. Comparison of lab, pilot, and industrial scale low consistency mechanical refining for improvements in enzymatic digestibility of pretreated hardwood.

    Science.gov (United States)

    Jones, Brandon W; Venditti, Richard; Park, Sunkyu; Jameel, Hasan

    2014-09-01

    Mechanical refining has been shown to improve biomass enzymatic digestibility. In this study industrial high-yield sodium carbonate hardwood pulp was subjected to lab, pilot and industrial refining to determine if the mechanical refining improves the enzymatic hydrolysis sugar conversion efficiency differently at different refining scales. Lab, pilot and industrial refining increased the biomass digestibility for lignocellulosic biomass relative to the unrefined material. The sugar conversion was increased from 36% to 65% at 5 FPU/g of biomass with industrial refining at 67.0 kWh/t, which was more energy efficient than lab and pilot scale refining. There is a maximum in the sugar conversion with respect to the amount of refining energy. Water retention value is a good predictor of improvements in sugar conversion for a given fiber source and composition. Improvements in biomass digestibility with refining due to lab, pilot plant and industrial refining were similar with respect to water retention value. Published by Elsevier Ltd.

  2. Preliminary study for optimization of enzymatic hydrolysis of waste cellulosic materials

    Directory of Open Access Journals (Sweden)

    LUMINITA GEORGESCU

    2011-07-01

    Full Text Available Lignocellulose is a generic term describing the main constituents in most plants, namely cellulose, hemicelluloses, and lignin. Cellulose is a glucose polysaccharide, hemicelluloses are polysaccharides with a backbone of different hexoses (glucose, mannose, galactose and pentoses (xylan, arabinose, and lignin is a complex network of different phenyl propane units. The cellulosic materials are potential sources of ethanol. Steps of this process are saccharification of cellulose to reduce sugars, under enzymes action and to reduce sugars fermentation by yeast to obtain ethanol.The aim of this study is to examine the influence of substrateconcentration, temperature and pH upon enzymatic saccharification ofwaste cellulosic materials, based on office paper, newspaper andcardboard, in ratio of 1:1:1 (w/w and reducing sugar accumulationdynamics in optimised conditions. The study has established optimalparameters: the ratio of enzyme:substrate as 0.5 EU/g substrate,temperature 48°C, pH 4.8 and addition of surfactant Tween 80 inproportion of 0.3 %, reported to the total volume of liquid. The reducing sugar yield was 35 mg reducing sugars/ g dry weight cellulosic waste.

  3. Processing surface sizing starch using oxidation, enzymatic hydrolysis and ultrasonic treatment methods--Preparation and application.

    Science.gov (United States)

    Brenner, Tobias; Kiessler, Birgit; Radosta, Sylvia; Arndt, Tiemo

    2016-03-15

    The surface application of starch is a well-established method for increasing paper strength. In surface sizing, a solution of degraded starch is applied to the paper. Two procedures have proved valuable for starch degradation in the paper mill: enzymatic and thermo-oxidative degradation. The objective of this study was to determine achievable efficiencies of cavitation in preparing degraded starch for surface application on paper. It was found that ultrasonic-assisted starch degradation can provide a starch solution that is suitable for surface sizing. The molecular composition of starch solutions prepared by ultrasonic treatment differed from that of starch solutions degraded by enzymes or by thermo-oxidation. Compared to commercial degradation processes, this resulted in intensified film formation and in greater penetration during surface sizing and ultimately in a higher starch content of the paper. Paper sized with ultrasonically treated starch solutions show the same strength properties compared to commercially sized paper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. [Mechanisms and regulation of enzymatic hydrolysis of cellulose in filamentous fungi: classical cases and new models].

    Science.gov (United States)

    Gutiérrez-Rojas, Ivonne; Moreno-Sarmiento, Nubia; Montoya, Dolly

    2015-01-01

    Cellulose is the most abundant renewable carbon source on earth. However, this polymer structure comprises a physical and chemical barrier for carbon access, which has limited its exploitation. In nature, only a few percentage of microorganisms may degrade this polymer by cellulase expression. Filamentous fungi are one of the most active and efficient groups among these microorganisms. This review describes similarities and differences between cellulase activity mechanisms and regulatory mechanisms controlling gene expression for 3 of the most studied cellulolytic filamentous fungi models: Trichoderma reesei, Aspergillus niger and Aspergillus nidulans, and the recently described model Neurospora crassa. Unlike gene expression mechanisms, it was found that enzymatic activity mechanisms are similar for all the studied models. Understanding the distinctive elements of each system is essential for the development of strategies for the improvement of cellulase production, either by providing the optimum environment (fermentation conditions) or increasing gene expression in these microorganisms by genetic engineering. Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  5. Angiotensin I-Converting Enzyme Inhibitory Peptides of Chia (Salvia hispanica Produced by Enzymatic Hydrolysis

    Directory of Open Access Journals (Sweden)

    Maira Rubi Segura Campos

    2013-01-01

    Full Text Available Synthetic angiotensin I-converting enzyme (ACE-I inhibitors can have undesirable side effects, while natural inhibitors have no side effects and are potential nutraceuticals. A protein-rich fraction from chia (Salvia hispanica L. seed was hydrolyzed with an Alcalase-Flavourzyme sequential system and the hydrolysate ultrafiltered through four molecular weight cut-off membranes (1 kDa, 3 kDa, 5 kDa, and 10 kDa. ACE-I inhibitory activity was quantified in the hydrolysate and ultrafiltered fractions. The hydrolysate was extensive (DH = 51.64% and had 58.46% ACE-inhibitory activity. Inhibition ranged from 53.84% to 69.31% in the five ultrafiltered fractions and was highest in the <1 kDa fraction (69.31%. This fraction’s amino acid composition was identified and then it was purified by gel filtration chromatography and ACE-I inhibition measured in the purified fractions. Amino acid composition suggested that hydrophobic residues contributed substantially to chia peptide ACE-I inhibitory strength, probably by blocking angiotensin II production. Inhibitory activity ranged from 48.41% to 62.58% in the purified fractions, but fraction F1 (1.5–2.5 kDa exhibited the highest inhibition (IC50 = 3.97 μg/mL; 427–455 mL elution volume. The results point out the possibility of obtaining bioactive peptides from chia proteins by means of a controlled protein hydrolysis using Alcalase-Flavourzyme sequentional system.

  6. [Extraction and analysis of the essential oil in Pogostemon cablin by enzymatic hydrolysis and inhibitory activity against Hela cell proliferation].

    Science.gov (United States)

    Yu, Jing; Qi, Yue; Luo, Gang; Duan, Hong-quan; Zhou, Jing

    2012-05-01

    To optimize the extraction method of essential oil in Pogostemon cablin and analyze its inhibitory activity against Hela cell proliferation. The Pogostemon cablin was treated by hemicellulase before steam distillation. The enzyme dosage, treatment time, treatment temperature, pH were optimized through orthogonal experimental design. The components of essential oil were identified by gas chromatography-mass spectrometry (GC-MS). Inhibitory activity of patchouli oil against Hela cell proliferation was determined by MTP method. The optimum extraction process was as follows: pH 4.5, temperature 45 degrees C, the ratio of hemicellulase to Pogostemon cablin was 1% and enzymatic hydrolysis for 1.0 hour. Extraction ratio of the patchouli oil in steam distillation and hemicellulase extraction method was 2.2220 mg/g, 3.1360 mg/g respectively. Patchouli oil could inhibit Hela cell proliferation. IC50 of the patchouli oil in steam distillation and hemicellulase extraction method was 12.2 +/- 0.46 microg/mL and 0.36 +/- 0.03 microg/mL respectively. In comparison with steam distillation method, extraction ratios of essential oil and the inhibitory activity against Hela cell proliferation can be increased by the hemicellulase extraction method.

  7. Total control of chromium in tanneries - thermal decomposition of filtration cake from enzymatic hydrolysis of chrome shavings.

    Science.gov (United States)

    Kocurek, P; Kolomazník, K; Bařinová, M; Hendrych, J

    2017-04-01

    This paper deals with the problem of chromium recovery from chrome-tanned waste and thus with reducing the environmental impact of the leather industry. Chrome-tanned waste was transformed by alkaline enzymatic hydrolysis promoted by magnesium oxide into practically chromium-free, commercially applicable collagen hydrolysate and filtration cake containing a high portion of chromium. The crude and magnesium-deprived chromium cakes were subjected to a process of thermal decomposition at 650°C under oxygen-free conditions to reduce the amount of this waste and to study the effect of magnesium removal on the resulting products. Oxygen-free conditions were applied in order to prevent the oxidation of trivalent chromium into the hazardous hexavalent form. Thermal decomposition products from both crude and magnesium-deprived chrome cakes were characterized by high chromium content over 50%, which occurred as eskolaite (Cr 2 O 3 ) and magnesiochromite (MgCr 2 O 4 ) crystal phases, respectively. Thermal decomposition decreased the amount of chrome cake dry feed by 90%. Based on the performed experiments, a scheme for the total control of chromium in the leather industry was designed.

  8. Direct lactic acid fermentation of Jerusalem artichoke tuber extract using Lactobacillus paracasei without acidic or enzymatic inulin hydrolysis.

    Science.gov (United States)

    Choi, Hwa-Young; Ryu, Hee-Kyoung; Park, Kyung-Min; Lee, Eun Gyo; Lee, Hongweon; Kim, Seon-Won; Choi, Eui-Sung

    2012-06-01

    Lactic acid fermentation of Jerusalem artichoke tuber was performed with strains of Lactobacillus paracasei without acidic or enzymatic inulin hydrolysis prior to fermentation. Some strains of L. paracasei, notably KCTC13090 and KCTC13169, could ferment hot-water extract of Jerusalem artichoke tuber more efficiently compared with other Lactobacillus spp. such as L. casei type strain KCTC3109. The L. paracasei strains could utilize almost completely the fructo-oligosaccharides present in Jerusalem artichoke. Inulin-fermenting L. paracasei strains produced c.a. six times more lactic acid compared with L. casei KCTC3109. Direct lactic fermentation of Jerusalem artichoke tuber extract at 111.6g/L of sugar content with a supplement of 5 g/L of yeast extract by L. paracasei KCTC13169 in a 5L jar fermentor produced 92.5 ce:hsp sp="0.25"/>g/L of lactic acid with 16.8 g/L fructose equivalent remained unutilized in 72 h. The conversion efficiency of inulin-type sugars to lactic acid was 98% of the theoretical yield. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. A mathematical model for the effects of volume fraction and fiber aspect ratio of biomass mixture during enzymatic hydrolysis

    Science.gov (United States)

    Jamil, Norazaliza Mohd; Wang, Qi

    2017-09-01

    Renewable energy or biofuel from lignocellulosic biomass is an alternative way to replace the depleting fossil fuels. The production cost can be reduced by increasing the concentration of biomass particles. However, lignocellulosic biomass is a suspension of natural fibres, and processing at high solid concentration is a challenging task. Thus, understanding the factors that affect the rheology of biomass suspension is crucial in order to maximize the production at a minimum cost. Our aim was to develop a mathematical model for enzymatic hydrolysis of cellulose by combining three scales: the macroscopic flow field, the mesoscopic particle orientation, and the microscopic reactive kinetics. The governing equations for the flow field, particle stress, kinetic equations, and particle orientation were coupled and were simultaneously solved using a finite element method based software, COMSOL. One of the main results was the changes in rheology of biomass suspension were not only due to the decrease in volume fraction of particles, but also due the types of fibres. The results from the simulation model agreed qualitatively with the experimental findings. This approach has enables us to obtain better predictive capabilities, hence increasing our understanding on the behaviour of biomass suspension.

  10. Optimization of Ca(OH)2 pre-treatment and hydrolysis of plantain ...

    African Journals Online (AJOL)

    Plantain stem was pre-treated with 1N and 5N Ca(OH)2 for 10,20 and 30mins and there-after, hydrolysed with cellulase from the haemolyph of giant African Snail (Achatina marginata). The enzyme (5.1x10-3± 2.0mg/g/sec) was used to hydrolyse the plantain stem biomass at 30, 40 and 500C for 30, 60, 120 and 180mins.

  11. Effect of gelatinization and hydrolysis conditions on the selectivity of starch hydrolysis with alpha-amylase from Bacillus licheniformis.

    Science.gov (United States)

    Baks, Tim; Bruins, Marieke E; Matser, Ariette M; Janssen, Anja E M; Boom, Remko M

    2008-01-23

    Enzymatic hydrolysis of starch can be used to obtain various valuable hydrolyzates with different compositions. The effects of starch pretreatment, enzyme addition point, and hydrolysis conditions on the hydrolyzate composition and reaction rate during wheat starch hydrolysis with alpha-amylase from Bacillus licheniformis were compared. Suspensions of native starch or starch gelatinized at different conditions either with or without enzyme were hydrolyzed. During hydrolysis, the oligosaccharide concentration, the dextrose equivalent, and the enzyme activity were determined. We found that the hydrolyzate composition was affected by the type of starch pretreatment and the enzyme addition point but that it was just minimally affected by the pressure applied during hydrolysis, as long as gelatinization was complete. The differences between hydrolysis of thermally gelatinized, high-pressure gelatinized, and native starch were explained by considering the granule structure and the specific surface area of the granules. These results show that the hydrolyzate composition can be influenced by choosing different process sequences and conditions.

  12. Fungal treatment followed by FeCl3 treatment to enhance enzymatic hydrolysis of poplar wood for high sugar yields.

    Science.gov (United States)

    Wang, Wei; Yuan, Tong Qi; Cui, Bao Kai

    2013-12-01

    Fungal treatment followed by FeCl3 treatment was used to improve saccharification of wood from Populus tomentosa. Combined treatments accumulated lignin and slightly degraded cellulose, whereas almost all hemicelluloses were removed. The white rot fungus, Trametes orientalis, and the brown rot fungus, Fomitopsis palustris, both accompanied by FeCl3 post-treatment resulted in 98.8 and 99.7 % of hemicelluloses loss at 180 °C, respectively, which were over twice than that of hot water pretreatment at the same level. In addition, the solid residue from the T. orientalis-assisted and F. palustris-assisted FeCl3 treatment at 180 °C released 84.5 and 95.4 % of reducing sugars, respectively: 1.4- and 1.6-fold higher than that of FeCl3 treatment alone at the same temperature. Combined treatments disrupted the intact cell structure and increased accessible surface area of cellulose therefore enhancing the enzymatic digestibility, as evidenced by XRD and SEM analysis data.

  13. High titer ethanol production from SPORL-pretreated lodgepole pine by simultaneous enzymatic saccharification and combined fermentation.

    Science.gov (United States)

    Lan, T Q; Gleisner, Roland; Zhu, J Y; Dien, Bruce S; Hector, Ronald E

    2013-01-01

    Lodgepole wood chips were pretreated by sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL) at 25% solids loading and 180 °C for 20 min with sulfuric acid and sodium bisulfite charges of 2.2 and 8 wt/wt% on an oven-dry wood basis, respectively. The pretreated wood chips were disk-milled with pretreatment spent liquor and water, and the solid fraction was separated from the liquor stream. The liquor was neutralized and concentrated through vacuum evaporation. Quasi-simultaneous enzymatic saccharification of the cellulosic solids and combined fermentation with the concentrated liquor was conducted at up to 20% total solids loading. Fed-batching of the solids facilitated liquefaction and saccharification, as well as managing instantaneous inhibitor concentrations. At a commercial cellulase (CTec2) loading of only 9 FPU or 0.06 mL/g untreated wood, a maximum ethanol titer of 47.4 g/L was achieved, resulting in a calculated yield of 285 L/tonne of wood using Saccharomyces cerevisiae YRH400 at 35 °C and pH 5.5. Published by Elsevier Ltd.

  14. Influence of enzymatic extrusion liquefaction pretreatment for Chinese rice wine on the volatiles generated from extruded rice.

    Science.gov (United States)

    Xu, Enbo; Li, Hongyan; Wu, Zhengzong; Wang, Fang; Xu, Xueming; Jin, Zhengyu; Jiao, Aiquan

    2015-01-01

    Volatile compounds in enzymatic extruded rice, produced under different conditions of varying barrel temperature (BT), α-amylase concentration (AC) and moisture content (MC), were extracted and identified by headspace solid phase microextraction (HS-SPME) and gas chromatography-linked mass spectrometry (GC-MS). Statistical analyses reflected that the Maillard reaction could be inhibited both by the mild extrusion conditions and the enhanced hydrolysis caused by thermostable α-amylase. Relative amounts of total volatiles in enzymatic extruded rice were far less than those in severe processed extruded rice. Reverse-phase high-performance liquid chromatography (RP-HPLC) showed that the amino acids (AAs) involved in Maillrad reaction were utmostly preserved in extruded rice with highest amylase concentration by comparison of total AA content of different extrudates. These results suggest that enzymatic extrusion liquefaction is an effective way to control the generation of volatiles from extruded rice for Chinese rice wine production. © 2014 Institute of Food Technologists®

  15. Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine

    Science.gov (United States)

    J.Y. Zhu; X.J. Pan; G.S. Wang; R. Gleisner

    2009-01-01

    This study established a novel process using sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust and efficient bioconversion of softwoods. The process consists of sulfite treatment of wood chips under acidic conditions followed by mechanical size reduction using disk refining. The results indicated that after the SPORL pretreatment of...

  16. Optimization of dilute sulfuric acid pretreatment and enzymatic saccharification of corn stover for efficient ethanol production

    Science.gov (United States)

    Dilute acid pretreatment is a promising pretreatment technology for conversion of lignocellulosic biomass to fuel ethanol. Corn stover (supplied by a local farmer) used in this study contained 37.0±0.4% cellulose, 31.3±0.6% hemicelluloses, and 17.8±0.2% lignin. Generation of fermentable sugars from ...

  17. Use of new endophytic fungi as pretreatment to enhance enzymatic saccharification of Eucalyptus globulus.

    Science.gov (United States)

    Martín-Sampedro, Raquel; Fillat, Úrsula; Ibarra, David; Eugenio, María E

    2015-11-01

    New endophytic fungi are assessed for the first time as pretreatment to enhance saccharification of Eucalyptus globulus wood. The fungi are all laccase-producing ascomycetes and were isolated from eucalyptus trees in Spain. After five endophytes had been assayed alone or in combination with white-rot fungus Trametes sp. I-62, three were pre-selected. To improve sugar production, an autohydrolysis pretreatment was performed before or after fungal treatment. Pretreatment increased sugar production 2.7 times compared to non-pretreated wood. When fungal and autohydrolysis pretreatments were combined, a synergistic increase in saccharification was observed in all cases. Endophytic fungi Ulocladium sp. and Hormonema sp. produced greater enhancements in saccharification than Trametes sp. I-62 (increase in sugar yields of 8.5, 8.0 and 6.0 times, respectively), demonstrating the high potential of these new endophytic fungi for saccharification enhancement. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Organosolv pretreatment of olive tree biomass for fermentable sugars

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, M.J.; Cara, C.; Castro, E. [Department of Chemical, Environmental and Materials Engineering, Campus Las Lagunillas, University of Jaen, Jaen (Spain); Huijgen, W.J.J.; Van der Laan, R.R.; Reith, J.H. [ECN Biomass, Coal and Environmental Research, Petten (Netherlands)

    2011-03-15

    Olive tree pruning biomass is one of the main agricultural residues available in Mediterranean countries and is currently lacking commercial applications. To take advantage of its sugar content, a pretreatment is necessary to enhance enzyme accessibility of the cellulose fraction of the residue. This paper describes for the first time the use of organosolv pretreatment in this regard. The main process variables such as pretreatment temperature, residence time, and solvent composition (aqueous ethanol) are studied. Results show that organosolv pretreatment causes delignification and hydrolysis of hemicelluloses and improves the enzymatic digestibility of olive tree pruning biomass. A higher pretreatment severity and ethanol content of the solvent were found to increase delignification (up to 64% at 66% w/w aqueous ethanol, 210C, 60 min). By contrast, xylan hydrolysis was promoted by a lower ethanol content (maximum 92%). The highest enzymatic hydrolysis yield (90% of the structural glucan present in the raw material) has been obtained after pretreatment with 43% w/w aqueous ethanol at 210C for 15 min. Organosolv pretreatment was found to be the most effective pretreatment for enzymatic hydrolysis of olive tree pruning biomass.

  19. The effect of organosolv pretreatment on optimization of hydrolysis process to produce the reducing sugar

    Directory of Open Access Journals (Sweden)

    Lini Fibrillian Zata

    2018-01-01

    Full Text Available As the fossil energy decrease such as petroleum and natural gas, that are encourages a lot of research to develop new sources of energy from renewable raw materials. One of the source is through reducing sugar (glucose and xylose obtained from coffee pulp waste; this is due to abundant production of coffee pulp every year reaching 743 kg/ha. In addition, this waste has not been used optimally and the cellulose and hemicellulose content of the coffee is high. The purpose of this study is to get the optimal operating condition for reducing sugar production from coffee pulp waste. The method used for optimization is Response Surface Methodology with Central Composite Design. The optimum operation condition obtained was pH 4.63 at 34ºC for 16.29 hours of hydrolysis. As a result, the predicted yield gained was 0.147 grams of reducing sugars / gram of cellulose+hemicellulose. The result indicates the gained yield was 0.137 grams of reducing sugars / gram of cellulose+hemicellulose.

  20. Impact of mechanical, chemical and enzymatic pre-treatments on the methane yield from the anaerobic digestion of switchgrass

    International Nuclear Information System (INIS)

    Frigon, Jean-Claude; Mehta, Punita; Guiot, Serge R.

    2012-01-01

    The conversion of cellulosic crops into biofuels, including methane, is receiving a lot of attention lately. Panicum vergatum, or switchgrass, is a warm season perennial grass well adapted to grow in North America. Different pre-treatments were tested in 0.5 l batch reactors, at 35 °C, in order to enhance the methane production from switchgrass, including temperature, sonication, alkalinization and autoclaving. The methane production on the basis of volatile solids (VS) added to the fermentation were 112.4 ± 8.4, 132.5 ± 9.7 and 139.8 ml g −1 after 38 days of incubation for winter harvested switchgrass (WHS) after grinding, grinding with alkalinization, and grinding with alkalinization and autoclaving, respectively. The methane production was higher for fresh summer harvested switchgrass (SHS), with a production of 256.6 ± 8.2 ml g −1 VS after mulching, alkalinization and autoclaving. The methane production from SHS was improved by 29 and 42% when applying lignin (LiP) or manganese peroxidase (MnP), at 202.1 ± 9.8 and 222.9 ± 22.5 ml g −1 VS, respectively. The combination of an alkali pre-treatment with the MnP increased the methane production furthermore at 297.7 ml g −1 VS. The use of pectinases without chemical pre-treatment showed promising yields at 287.4 and 239.5 ml g −1 VS for pectate-lyase and poly-galacturonase, respectively. An estimation of the methane yield per hectare of crop harvested resulted in net energy production of 29.8, 49.7 and 78.1 GJ for winter harvested switchgrass, mulched and pretreated summer harvested switchgrass, respectively. Switchgrass represents an interesting candidate as a lignocellulosic crop for methane production. -- Highlights: ► Switchgrass is a model energy crops for biofuels production. ► This study evaluated different pre-treatments to enhance methane production. ► Pre-treatments increase significantly the methane produced from switchgrass. ► Enzymatic pre-treatments were superior to physical and