WorldWideScience

Sample records for pretreated cladding removal

  1. Rheological evaluation of pretreated cladding removal waste

    International Nuclear Information System (INIS)

    McCarthy, D.; Chan, M.K.C.; Lokken, R.O.

    1986-01-01

    Cladding removal waste (CRW) contains concentrations of transuranic (TRU) elements in the 80 to 350 nCi/g range. This waste will require pretreatment before it can be disposed of as glass or grout at Hanford. The CRW will be pretreated with a rare earth strike and solids removal by centrifugation to segregate the TRU fraction from the non-TRU fraction of the waste. The centrifuge centrate will be neutralized with sodium hydroxide. This neutralized cladding removal waste (NCRW) is expected to be suitable for grouting. The TRU solids removed by centrifugation will be vitrified. The goal of the Rheological Evaluation of Pretreated Cladding Removal Waste Program was to evaluate those rheological and transport properties critical to assuring successful handling of the NCRW and TRU solids streams and to demonstrate transfers in a semi-prototypic pumping environment. This goal was achieved by a combination of laboratory and pilot-scale evaluations. The results obtained during these evaluations were correlated with classical rheological models and scaled-up to predict the performance that is likely to occur in the full-scale system. The Program used simulated NCRW and TRU solid slurries. Rockwell Hanford Operations (Rockwell) provided 150 gallons of simulated CRW and 5 gallons of simulated TRU solid slurry. The simulated CRW was neutralized by Pacific Northwest Laboratory (PNL). The physical and rheological properties of the NCRW and TRU solid slurries were evaluated in the laboratory. The properties displayed by NCRW allowed it to be classified as a pseudoplastic or yield-pseudoplastic non-Newtonian fluid. The TRU solids slurry contained very few solids. This slurry exhibited the properties associated with a pseudoplastic non-Newtonian fluid

  2. Photonic lantern with cladding-removable fibers

    Science.gov (United States)

    Sun, Weimin; Yan, Qi; Bi, Yao; Yu, Haijiao; Liu, Xiaoqi; Xue, Jiuling; Tian, He; Liu, Yongjun

    2014-07-01

    Recently, spectral measurement becomes an important tool in astronomy to find exoplanets etc. The fibers are used to transfer light from the focal plate to spectrometers. To get high-resolution spectrum, the input slits of the spectrometers should be as narrow as possible. In opposite, the light spots from the fibers are circle, which diameters are clearly wider than the width of the spectrometer slits. To reduce the energy loss of the fiber-guide star light, many kinds of image slicers were designed and fabricated to transform light spot from circle to linear. Some different setup of fiber slicers are introduced by different research groups around the world. The photonic lanterns are candidates of fiber slicers. Photonic lantern includes three parts: inserted fibers, preform or tubing, taped part of the preform or tubing. Usually the optical fields concentrate in the former-core area, so the light spots are not uniform from the tapered end of the lantern. We designed, fabricated and tested a special kind of photonic lantern. The special fibers consist polymer cladding and doped high-index core. The polymer cladding could be easily removed using acetone bath, while the fiber core remains in good condition. We inserted the pure high-index cores into a pure silica tubing and tapered it. During the tapering process, the gaps between the inserted fibers disappeared. Finally we can get a uniform tapered multimode fiber end. The simulation results show that the longer the taper is, the lower the loss is. The shape of the taper should be controlled carefully. A large-zone moving-flame taper machine was fabricated to make the special photonic lantern. Three samples of photonic lanterns were fabricated and tested. The lanterns with cladding-removable fibers guide light uniform in the tapered ends that means these lanterns could collect more light from those ends.

  3. Leach test of cladding removal waste grout using Hanford groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R.J.; Martin, W.J.; Legore, V.L.

    1995-09-01

    This report describes laboratory experiments performed during 1986-1990 designed to produce empirical leach rate data for cladding removal waste (CRW) grout. At the completion of the laboratory work, funding was not available for report completion, and only now during final grout closeout activities is the report published. The leach rates serve as inputs to computer codes used in assessing the potential risk from the migration of waste species from disposed grout. This report discusses chemical analyses conducted on samples of CRW grout, and the results of geochemical computer code calculations that help identify mechanisms involved in the leaching process. The semi-infinite solid diffusion model was selected as the most representative model for describing leaching of grouts. The use of this model with empirically derived leach constants yields conservative predictions of waste release rates, provided no significant changes occur in the grout leach processes over long time periods. The test methods included three types of leach tests--the American Nuclear Society (ANS) 16.1 intermittent solution exchange test, a static leach test, and a once-through flow column test. The synthetic CRW used in the tests was prepared in five batches using simulated liquid waste spiked with several radionuclides: iodine ({sup 125}I), carbon ({sup 14}C), technetium ({sup 99}Tc), cesium ({sup 137}Cs), strontium ({sup 85}Sr), americium ({sup 241}Am), and plutonium ({sup 238}Pu). The grout was formed by mixing the simulated liquid waste with dry blend containing Type I and Type II Portland cement, class F fly ash, Indian Red Pottery clay, and calcium hydroxide. The mixture was allowed to set and cure at room temperature in closed containers for at least 46 days before it was tested.

  4. Removal of micropollutants during physicochemical pretreatment of Hospital Wastewater

    International Nuclear Information System (INIS)

    Suarez, S.; Omil, F.; Lema, J. M.

    2009-01-01

    The fate and occurrence of micro-pollutants, such as pharmaceuticals, hormones or cosmetic ingredients, has attracted an increasing attention in environmental research. The main sources for such compounds in the environment include domestic sewage. hospital effluents and discharges from the pharmaceutical manufacturing industry. The aim of the presented work was to analyse the efficiency of coagulation-flocculation and flotation processes for the pre-treatment of hospital wastewaters, focusing on the removal of 12 Pharmaceutical and Personal Care Products (PPCPs), including musk fragrances, anti-epileptics, tranquillisers, anti-inflammatory drugs, antibiotics and one iodinated contras media. (Author)

  5. AOM Characterization and Removal Efficiency Using Various SWRO Pretreatment Techniques

    KAUST Repository

    Namazi, Mohammed

    2017-12-01

    This study investigates the operation of dual media filter DMF during ambient and simulated algal bloom conditions, and the role of coagulation and dissolved air flotation (DAF) in mitigating the adverse effects of algal blooms on DMF performance. The study also highlights which AOM concentration as a function of biopolymer is critical to organic fouling in DMF pretreatment for Red Sea water desalination with RO. On the other hand, the present study has carried out another experiment on AOM fouling in comparison with bacterial organic matter (BOM) and humic organic matter (HOM) using two different pore sizes of UF ceramic membranes, 5 and 50 kDa. The main aim of this comparison is to examine fouling behavior and mechanism and removal efficiency. The study revealed that AOM can induce organic fouling in DMF during simulated algal bloom conditions at biopolymer concentrations as low as 0.2 mg C/L. DMF performance was strongly affected by AOM concentration as observed by flow rate decline through time. Liquid chromatography – organic carbon detection (LC-OCD) analysis showed higher removal rates of biopolymers than lower molecular weight fractions (i.e., humic substances, building blocks and low molecular weight neutrals) for all pretreatment scenarios. The study also indicated that while DMF performance was enhanced with coagulation and sedimentation, the most significant improvement in performance was observed for DMF operation preceded by coagulation and DAF. Hydraulic performance of DMF correlated well with biopolymers removal, with removal rates of 72%, 53% and 39%, for coagulation/DAF, coagulation/sedimentation, and no coagulation, respectively. For UF ceramic membranes, results showed that more TEP/organics were removed by the 5 kDa membranes compared to the 50 kDa membrane, which is accounted for lower MWCO. The UF 5 kDa membrane also showed low fouling formation than 50 kDa membrane for all of three types of organic matter tested. Analysis of the fouled

  6. Ion exchange pretreatment of alkaline radwaste for cesium removal

    International Nuclear Information System (INIS)

    Bibler, J.P.

    1994-08-01

    A cation exchange resin has been tested for its ability to remove the Cs ion from simulants of highly alkaline liquid nuclear wastes found at the Savannah River Site, Oak Ridge, and Hanford. The resin is a condensation polymer of the K salt of resorcinol and formaldehyde. It removes milli- and micromolar amounts of Cs + from solutions that contain as high as 11 molar Na + . Small column tests indicate that approximately 200 column volumes of SRS simulant and 205 column volumes of OR Tank 25 supernatant simulant can be processed before the resin requires regeneration. For these two wastes, a carousel arrangement of two columns in series and a third in reserve can be used effectively in a process. Hanford 101-AW simulant generates a less sharp breakthrough profile with this resin, though an operation using a maximum of three columns in series with another column off-line for regeneration would be effective if the resin beds are allowed to reach about 90% breakthrough before taking them out of service. Parameters that effect the performance of the resin with a particular feed solution are the concentrations of the two primary ions of interest, Cs + and Na + , as well as the concentrations of K + and OH - . A further ramification of the hydroxide ion concentration is its role in assisting oxidation of the resin, thereby destroying its usefulness in cesium removal. Although the performance of the resin is unaffected at doses of 1 E+8 rad ionizing radiation, it shows noticeable degradation after storage for 100 hours in alkaline solutions, generating quinone and ketone groups, as determined from C-13 NMR and by an increase in total organic C content of the contacting solution. Gases detected from the radiolysis of the resin/simulant mixture are CO 2 from the resin, N 2 O from nitrate in the simulant, and H 2 possibly from resin and simulant. Oxygen depletion in the mixture results from radiolysis and chemical degradation

  7. Removal of mercury from coal via a microbial pretreatment process

    Science.gov (United States)

    Borole, Abhijeet P [Knoxville, TN; Hamilton, Choo Y [Knoxville, TN

    2011-08-16

    A process for the removal of mercury from coal prior to combustion is disclosed. The process is based on use of microorganisms to oxidize iron, sulfur and other species binding mercury within the coal, followed by volatilization of mercury by the microorganisms. The microorganisms are from a class of iron and/or sulfur oxidizing bacteria. The process involves contacting coal with the bacteria in a batch or continuous manner. The mercury is first solubilized from the coal, followed by microbial reduction to elemental mercury, which is stripped off by sparging gas and captured by a mercury recovery unit, giving mercury-free coal. The mercury can be recovered in pure form from the sorbents via additional processing.

  8. The mechanism of xylans removal during hydrothermal pretreatment of poplar fibers investigated by immunogold labeling.

    Science.gov (United States)

    Ma, Jing; Ji, Zhe; Chen, Jia C; Zhou, Xia; Kim, Yoon S; Xu, Feng

    2015-07-01

    Hydrothermal pretreatment initially removed the lignin-free xylan from the middle layer of secondary wall, followed by the lignin-bound xylan, but the cellulose-bound xylan was seldom removed by this pretreatment. An in-depth understanding of the mechanism of xylan removal during hydrothermal pretreatment (HTP) of wood is critical for cost-effective conversion of lignocellulosic biomass to biofuels. Several studies demonstrated the kinetics and mechanism of xylan removal during HTP on molecular scale, but the dissolution mechanism of xylan during HTP remains unclear at ultra-structural level. Our study investigated changes in the micro-distribution of xylan in poplar fiber cell walls during HTP by transmission electron microscopy (TEM) in combination with immunogold labeling. The study revealed that HTP caused greater decline in the density of xylan labeling in the S2 layer of fiber wall than in the S1 layer. There was a greater loss in the density of xylan labeling during HTP in the delignified and enzymatically treated fibers compared to untreated fibers. We propose that in the initial stages of HTP lignin-free xylan in the S2 layer was more readily hydrolyzed than in the S1 layer by hydronium ions. With increasing pretreatment time, the xylan covalently bound to lignin was also removed from the S2 layer due to the dissolution of lignin. The xylan tightly bound to cellulose was seldom removed during HTP, but was hydrolyzed in subsequent enzymatic treatment. This TEM-immunolabeling investigation reveals the manner in which different xylan fractions are removed from fiber cell wall during HTP, and we expect the information to be helpful in developing processes tailored for more effective conversion of cellulosic biomass into fermentable sugars.

  9. Removal of oil pollutants in seawater as pretreatment of reverse osmosis desalination process

    Energy Technology Data Exchange (ETDEWEB)

    Wen Jian; Nishijima, Wataru; Baes, Aloysius U.; Okada, Mitsumasa [Hiroshima Univ., Environmental Science Dept., Hiroshima (Japan); Kitanaka, Atsushi [Fuji-Electric Corporate Research and Development Ltd., Yokosuka, Kanagawa (Japan)

    1999-11-01

    Weathered oil contaminated seawater (WOCS) was used to investigate the behaviour of soluble oil components in seawater in various pretreatment processes for removal of oil pollutants in seawater. The various pretreatment processes were a reverse osmosis desalination process in combination with advanced oxidation processes, ultrafiltration, coagulation, GAC adsorption, biological treatment and separation with a low pressure RO membrane. WOCS was prepared by mixing oil, nutrients and fresh seawater which was exposed to sunlight to simulate photooxidation and microbial degradation of oil in the marine environment. It was found that WOCS contained soluble components with relatively small molecular size, which are refractory to biodegradation and difficult to remove by advanced oxidation processes (AOPs), UF membrane or coagulation using FeCl{sub 3} or PAC as flocculants. However, DOC in WOCS (OCWOCS) was easily adsorbed to GAC. Low pressure RO membranes with higher salt rejection rate could remove more OCWOCS compared to those of lower salt rejection rate. (Author)

  10. Removal of oil pollutants in seawater as pretreatment of reverse osmosis desalination process

    Energy Technology Data Exchange (ETDEWEB)

    Wen Jian; Nishijima, Wataru; Baes, Aloysius U.; Okada, Mitsumasa [Hiroshima Univ., Environmental Science Dept., Hiroshima (Japan); Kitanaka, Atsushi [Fuji-Electric Corporate Research and Development Ltd., Yokosuka, Kanagawa (Japan)

    1999-07-01

    Weathered oil contaminated seawater (WOCS) was used to investigate the behaviour of soluble oil components in seawater in various pretreatment processes for removal of oil pollutants in seawater. The various pretreatment processes were a reverse osmosis desalination process in combination with advanced oxidation processes, ultrafiltration, coagulation, GAC adsorption, biological treatment and separation with a low pressure RO membrane. WOCS was prepared by mixing oil, nutrients and fresh seawater which was exposed to sunlight to simulate photooxidation and microbial degradation of oil in the marine environment. It was found that WOCS contained soluble components with relatively small molecular size, which are refractory to biodegradation and difficult to remove by advanced oxidation processes (AOPs), UF membrane or coagulation using FeCl{sub 3} or PAC as flocculants. However, DOC in WOCS (OCWOCS) was easily adsorbed to GAC. Low pressure RO membranes with higher salt rejection rate could remove more OCWOCS compared to those of lower salt rejection rate. (Author)

  11. Sensors Based on Thin-Film Coated Cladding Removed Multimode Optical Fiber and Single-Mode Multimode Single-Mode Fiber: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Ignacio Del Villar

    2015-01-01

    Full Text Available Two simple optical fibre structures that do not require the inscription of a grating, a cladding removed multimode optical fibre (CRMOF and a single-mode multimode single-mode structure (SMS, are compared in terms of their adequateness for sensing once they are coated with thin-films. The thin-film deposited (TiO2/PSS permits increasing the sensitivity to surrounding medium refractive index. The results obtained can be extrapolated to other fields such as biological or chemical sensing just by replacing the thin-film by a specific material.

  12. Evaluation of pre-treatment technologies for phosphorous removal from drinking water to mitigate membrane biofouling

    Science.gov (United States)

    Frolova, M.; Tihomirova, K.; Mežule, L.; Rubulis, J.; Gruškeviča, K.; Juhna, T.

    2017-10-01

    Membranes are widely used for the treatment of various solutions. However, membrane fouling remains the limiting factor for their usage, setting biofouling as the most severe type of it. Therefore, the production of biologically stable water prior to membranes is important. Since lack of phosphorus may hinder the growth of microorganisms, the aim of this research is to evaluate the effect of microbially available phosphorus (MAP) removal via affordable water pre-treatment methods (adsorption, biofiltration, electrocoagulation) on bacterial growth. Four cylindrical reactors were installed at an artificially recharged groundwater station. Further temperature influence and carbon limitation were tested for biofiltration technology. The amount of MAP and total cell count was measured by flow cytometry. The results showed that at lower temperatures electrocoagulation performed the best, resulting in complete MAP removal (detection limit 6.27x10-3μg P l-1). Sorbent demonstrated MAP removal of 70-90%. Biomass did not have any noteworthy results at +8°C, however, at +19°C MAP removal of around 80% was achieved. Main conclusions obtained within this study are: (i) tested technologies effectively eliminate MAP levels; (ii) temperature has a significant effect on MAP removal in a bioreactor, (iii) multi-barrier approach might be necessary for better P limitation that might prolong operating time of a membrane.

  13. Dichloromethane removal and microbial variations in a combination of UV pretreatment and biotrickling filtration.

    Science.gov (United States)

    Jianming, Yu; Wei, Liu; Zhuowei, Cheng; Yifeng, Jiang; Wenji, Cai; Jianmeng, Chen

    2014-03-15

    Biofiltration of hydrophobic and/or recalcitrant volatile organic compounds in industry is currently limited. A laboratory-scale system integrating ultraviolet (UV) photodegradation and a biotrickling filter (BTF) was developed to treat dichloromethane (DCM), and this was compared to BTF alone. A combined UV-BTF approach permitted faster biofilm formation and greater removal than BTF. DCM distribution and its photodegradation intermediates revealed that the lower filter of the UV-BTF contributed more to CO2 production; the upper filter assisted more with DCM removal. The UV-BTF kept secretion of extracellular polymeric substances at a normal level with an evenly distributed biomass. Pyrosequencing analysis showed that the dominant population in the combined biofilter was more diverse than that in BTF alone. Our data provide a foundation for understanding the effect of UV pretreatment on BTF performance and the microbial community. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Effectiveness of seawater reverse osmosis (SWRO) pretreatment systems in removing transparent exopolymer particles (TEP) substances

    KAUST Repository

    Lee, Shang-Tse

    2015-05-01

    Transparent exopolymer particles (TEP) have been reported as one of the main factors of membrane fouling in seawater reverse osmosis (SWRO) process. Research has been focused on algal TEP so far, overlooking bacterial TEP. This thesis investigated the effects of coagulation on removal of bacterial TEP/TEP precursors in seawater and subsequent reduction on TEP fouling in ultrafiltration (UF), as a pretreatment of SWRO. Furthermore, the performance of pretreatment (coagulation + UF) has been investigated on a bench-scale SWRO system. TEP/TEP precursors were harvested from a strain of marine bacteria, Pseudoalteromonas atlantica, isolated from the Red Sea. Isolated bacterial organic matter (BOM), containing 1.5 mg xanthan gum eq./L TEP/TEP precursors, were dosed in Red Sea water to mimic a high TEP concentration event. Bacterial TEP/TEP precursors added to seawater were coagulated with ferric chloride and aluminum sulfate at different dosages and pH. Results showed that ferric chloride had a better removal efficiency on TEP/TEP precursors. Afterwards, the non-coagulated/coagulated seawater were tested on a UF system at a constant flux of 130 L/m2h, using two types of commercially available membranes, with pore sizes of 50 kDa and 100 kDa, respectively. The fouling potential of coagulated water was determined by the Modified Fouling Index (MFI-UF). Transmembrane pressure (TMP) was also continuously monitored to investigate the fouling development on UF membranes. TEP concentrations in samples were determined by the alcian blue staining assay. Liquid chromatography-organic carbon detection (LC-OCD) was used to determine the removal of TEP precursors with particular emphasis on biopolymers. Finally, SWRO tests showed that TEP/TEP precursors had a high fouling potential as indicated by MFI-UF, corresponding to the TMP measurements. Coagulation could substantially reduce TEP/TEP precursors fouling in UF when its dosage was equal or higher than 0.2 mg Fe/L. The flux decline

  15. Enhancing organic matter removal in desalination pretreatment systems by application of dissolved air flotation

    DEFF Research Database (Denmark)

    Shutova, Yulia; Karna, Barun Lal; Hambly, Adam C.

    2016-01-01

    Membrane fouling in reverse osmosis (RO) systems caused by organic matter (OM) remains a significant operational issue during desalination. Dissolved air flotation (DAF) has recently received attention as a pre-treatment option for seawater OM removal; however, only a limited number of studies have...... been undertaken. This may be because it is difficult to characterise OM in seawater due to the high salt content and low carbon concentration. In this study, DAF pre-treatment experiments were conducted using a model seawater solution, and real seawater and brackish water samples. DAF performance...... on the sample, respectively. The optimal normalised coagulant dose (Fe3+ to DOC ratio) was observed to be 0.5-4 at pH5.5 increasing to 4-12 at pH7.5. At pH5.5, the optimum coagulant dose increased with increasing humic character of the feed water. Overall, the OM removal efficiency by DAF observed in this study...

  16. Effect of physico-chemical pretreatment on the removal efficiency of horizontal subsurface-flow constructed wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Caselles-Osorio, Aracelly [Environmental Engineering Division, Hydraulics, Coastal and Environmental Engineering Department, Technical University of Catalonia, c/Jordi Girona 1-3, Modul D-1, 08034 Barcelona (Spain); Department of Biology, Atlantic University, Km 7 Higway Old Colombia Port, Barranquilla (Colombia); Garcia, Joan [Environmental Engineering Division, Hydraulics, Coastal and Environmental Engineering Department, Technical University of Catalonia, c/Jordi Girona 1-3, Modul D-1, 08034 Barcelona (Spain)]. E-mail: joan.garcia@upc.edu

    2007-03-15

    In this study, we tested the effect of a physico-chemical pretreatment on contaminant removal efficiency in two experimental horizontal subsurface-flow constructed wetlands (SSF CWs). One SSF CW was fed with settled urban wastewater, whereas the other with the same wastewater after it had undergone a physico-chemical pretreatment. The SSF CWs were operated with three different hydraulic retention times. During the experiments the effluent concentrations of COD, ammonia N and sulfate were very similar, and, therefore, the physico-chemical pretreatment did not improve the quality of the effluents. COD removal efficiency (as percentage or mass surface removal rate) was slightly greater in the SSF CW fed with pretreated wastewater. Ammonia N removal efficiency was, in general, similar in both SSF CWs and very high (80-90%). At the end of the experiments it was observed that in the SSF CW fed with settled wastewater the hydraulic conductivity decreased by a 20%. - A physico-chemical pretreatment may help to reduce the risk of clogging of subsurface-flow constructed wetlands.

  17. Effect of physico-chemical pretreatment on the removal efficiency of horizontal subsurface-flow constructed wetlands

    International Nuclear Information System (INIS)

    Caselles-Osorio, Aracelly; Garcia, Joan

    2007-01-01

    In this study, we tested the effect of a physico-chemical pretreatment on contaminant removal efficiency in two experimental horizontal subsurface-flow constructed wetlands (SSF CWs). One SSF CW was fed with settled urban wastewater, whereas the other with the same wastewater after it had undergone a physico-chemical pretreatment. The SSF CWs were operated with three different hydraulic retention times. During the experiments the effluent concentrations of COD, ammonia N and sulfate were very similar, and, therefore, the physico-chemical pretreatment did not improve the quality of the effluents. COD removal efficiency (as percentage or mass surface removal rate) was slightly greater in the SSF CW fed with pretreated wastewater. Ammonia N removal efficiency was, in general, similar in both SSF CWs and very high (80-90%). At the end of the experiments it was observed that in the SSF CW fed with settled wastewater the hydraulic conductivity decreased by a 20%. - A physico-chemical pretreatment may help to reduce the risk of clogging of subsurface-flow constructed wetlands

  18. Removal of contaminant gases from an electrolytic urine pretreatment process. [in spacecraft life support systems

    Science.gov (United States)

    Colombo, G. V.; Putnam, D. F.

    1977-01-01

    The effluent gas stream from an electrolytic urine pretreatment process was analyzed by gas chromatography-mass spectroscopy and wet chemical methods to determine its composition. The major constituents were identified as: hydrogen, carbon dioxide, oxygen, nitrogen, water vapor, and chlorine. The trace impurities were chlorinated light hydrocarbons, and a number of other organic impurities in the low ppm range. Several methods of removing all of the undesirable gases to levels acceptable for return to a space cabin atmosphere were investigated experimentally. A subsystem concept comprised of the following sequential unit processes and operations was successfully demonstrated: (1) raw urine scrubbing, (2) silica gel sorption, (3) dilution with cabin air, and (4) catalytic oxidation.

  19. REMOVAL OF ARSENIC FROM AN AQUEOUS SOLUTION BY PRETREATED WASTE TEA FUNGAL BIOMASS

    Directory of Open Access Journals (Sweden)

    S. Mamisahebei , Gh. R. Jahed Khaniki, A. Torabian, S. Nasseri, K. Naddafi

    2007-04-01

    Full Text Available Arsenic contamination in water poses a serious threat on human health. The tea fungus known as Kombucha is a waste produced during black tea fermentation. The objective of this study was to examine the main aspect of a possible strategy for the removal of arsenates employing tea fungal biomass. The pretreatment of biomass with FeCl3 was found to improve the biosorption efficiency. Arsenics uptake was found to be rapid for all concentrations and reached to 79% of equilibrium capacity of biosorption in 20 min and reached equilibrium in 90 min. The pseudo second-order and first-order models described the biosorption kinetics of As (V with good correlation coefficient (R2>0.93 and better than the other equations. The data obtained from the experiment of biosorption isotherm were analyzed using the Freundlich and Langmuir isotherm models. The equation described the isotherm of As (V biosorption with relatively high correlation coefficient (R2>0.93. According to the Langmuir model, the maximum uptake capacities (qm of tea fungal biomass for As (V were obtained 3.9810-3 mmol/gr. The effect of Na+, K+, Mg+2 and Ca+2 on equilibrium capacities of As was not significant. The variation of sorption efficiency with pH showed that optimum biosorption takes place in the pH ranges of 6 to 8. Promising results were obtained in laboratory experiments and effective As (V removals were observed.

  20. Liberation of metal clads of waste printed circuit boards by removal of halogenated epoxy resin substrate using dimethylacetamide.

    Science.gov (United States)

    Verma, Himanshu Ranjan; Singh, Kamalesh K; Mankhand, Tilak Raj

    2017-02-01

    Present work reports the evaluation of dimethylacetamide (DMAc) as a solvent to dissolve the halogenated epoxy resin substrate (HERS) of waste printed circuit boards (WPCBs). Studies revealed that HERS dissolution attributes to the cracking and delamination of WPCB's layers. Variation of the parameters governing the dissolution elucidated that dissolution is directly dependent on temperature and WPCBs concentration in DMAc. The results also showed that increase in the WPCBs size drastically retards the rate of HERS dissolution. After delamination, the spent DMAc was regenerated, and the dissolved HERS was recovered as residue. The chemical structure of regenerated solution and recovered residue were found to be similar to pure DMAc and untreated HERS, respectively. Cyclic usage of regenerated DMAc revealed that 3-5% of DMAc is lost after each usage cycle while its effectiveness to dissolve the HERS remains equivalent to the pure DMAc. The dissolution of HERS ensures the liberation of copper cladded on the surface of WPCBs, and thus the proposed process avoids the requirement of highly energy intensive metal liberation processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. REMOVE AND RELEASE OF NUTRIENTS AFTER HYBRID PRE-TREATMENT OF ACTIVATED SLUDGE FOAM

    Directory of Open Access Journals (Sweden)

    Alicja Machnicka

    2017-02-01

    Full Text Available One of the problems in wastewater treatment technologies is the formation of foam/scum on the surface of bioreactors. The foam elimination/destruction can be carried out by various methods among which disintegration is included. Hybrid disintegration (chemical decomposition and hydrodynamic cavitation of the foam microorganisms results in phosphates, ammonium nitrogen, magnesium and potassium transferred from the foam solids into the liquid phase. Application of both methods as a hybrid pre-treatment process caused in an increased concentration of phosphates of about 677 mg PO43- L-1, ammonium nitrogen about 41 mg N-NH4+ L-1. The concentration of Mg2+ and K+ in the solution increased from 6.2 to 31.1 mg Mg2+ L-1 and from 22.4 to 102.0 mg K+ L-1, respectively. The confirmation of physicochemical changes and release of cellular matter as a result of cellular lysis (hybrid disintegration was IR analysis. It was demonstrated that the disintegration of foam permits removal of a part of nutrients in the form of struvite.

  2. Biomass pretreatment

    Science.gov (United States)

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  3. The use of raw and acid-pretreated bivalve mollusk shells to remove metals from aqueous solutions

    International Nuclear Information System (INIS)

    Liu Yang; Sun Changbin; Xu Jin; Li Youzhi

    2009-01-01

    Heavy metal removal from industrial wastewater is not only to protect living organisms in the environment but also to conserve resources such as metals and water by enabling their reuse. To overcome the disadvantage of high cost and secondary pollution by the conventional physico-chemical treatment techniques, environmentally benign and low-cost adsorbents are in demand. In this study, the use of raw and acid-pretreated bivalve mollusk shells (BMSs) to remove metals from aqueous solutions with single or mixed metal was evaluated at different BMSs doses, pH and temperatures in batch shaking experiments in laboratory conditions. When the BMSs were used to treat CuSO 4 .5H 2 O solution, the copper sorption capacities of the raw and acid-pretreated BMSs were approximately 38.93 mg/g and 138.95 mg/g, respectively. The copper removal efficiency (CRE) of the raw BMSs became greatly enhanced with increasing initial pH, reaching 99.51% at the initial pH 5. Conversely, the CRE of the acid-pretreated BMSs was maintained at 99.48-99.52% throughout the pH range of 1-5. Furthermore, the CRE values of the raw and acid-pretreated BMSs were not greatly changed when the temperature was varied from 15 deg. C to 40 deg. C. In addition, the CRE value of the raw BMSs was maintained for 12 cycles of sorption-desorption with a CRE of 98.4% being observed in the final cycle. Finally, when the BMSs were used to treat electroplating wastewater, the removal efficiencies (REs) of the raw BMSs were 99.97%, 98.99% and 87% for Fe, Zn and Cu, respectively, whereas the REs of the acid-pretreated BMSs were 99.98%, 99.43% and 92.13%, respectively. Ion exchange experiments revealed that one of mechanisms for metal sorption by the BMSs from aqueous solution is related to ion exchange, especially between the metal ions in the treated solution and Ca 2+ from BMSs. Infrared absorbance spectra analysis indicated that the acid pretreatment led to occurrence of the groups (i.e. -OH, -NH, C=O and S=O) of

  4. Monosaccharide yields and lignin removal from wheat straw in response to catalyst type and pH during mild thermal pretreatment

    DEFF Research Database (Denmark)

    Pedersen, Mads; Viksø-Nielsen, Anders; Meyer, Anne S.

    2010-01-01

    pretreatment at pH 1 gave the highest yield of saccharides in the liquid fraction, the solid fraction was more susceptible to enzymatic attack when pretreated at pH 13. The highest yields were obtained after pretreatment with hydrochloric acid at pH 1, and with sodium hydroxide at pH 13 when enzymatic...... hydrolysis was employed. A two-step pretreatment strategy at pH 1 (hydrochloric acid) and subsequently at pH 13 (sodium hydroxide) released 69 and 95% of the theoretical maximal amounts of glucose and xylose, respectively. Furthermore, this two-step pretreatment removed 68% of the lignin from the straw...

  5. Towards a method of rapid extraction of strontium-90 from urine: urine pretreatment and alkali metal removal

    Energy Technology Data Exchange (ETDEWEB)

    Hawkins, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Dietz, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Kaminski, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Mertz, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Shkrob, I. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-03-01

    A technical program to support the Centers of Disease Control and Prevention is being developed to provide an analytical method for rapid extraction of Sr-90 from urine, with the intent of assessing the general population’s exposure during an emergency response to a radiological terrorist event. Results are presented on the progress in urine sample preparation and chemical separation steps that provide an accurate and quantitative detection of Sr-90 based upon an automated column separation sequence and a liquid scintillation assay. Batch extractions were used to evaluate the urine pretreatment and the column separation efficiency and loading capacity based upon commercial, extractant-loaded resins. An efficient pretreatment process for decolorizing and removing organics from urine without measurable loss of radiostrontium from the sample was demonstrated. In addition, the Diphonix® resin shows promise for the removal of high concentrations of common strontium interferents in urine as a first separation step for Sr-90 analysis.

  6. Enhancement of enzymatic hydrolysis and lignin removal of bagasse using photocatalytic pretreatment

    Science.gov (United States)

    Pattanapibul1, P.; Chuangchote, S.; Laosiripojana, N.; Champreda, V.; Kaewsaenee, J.

    2017-05-01

    Pretreatment for reduction of biological resistance in a lignocellulosic material, i.e. bagasse, for enzymatic hydrolysis and fermentation was investigated. Photocatalyst (TiO2) was used as an additive composition to assist this pretreatment process. Reaction time was varied (24, 48, and 72 h) to find the optimum condition for the pretreatment, while concentration of solvent (NaOH, H2O2, or NH4OH), biomass to solvent ratio, and weight ratio of catalyst to bagasse were fixed at 2 M, 1:20 g/ml (typically, solvent = 150 ml), and 1:5, respectively. Batch reaction temperature was at 25°C. After the pretreatment, the enzymatic digestibility of pretreated bagasse was carried out to find the sugar yield. Hydrolysis of pretreated bagasse with photocatalyst show higher sugar yields than the conventional reactions without photocatalyst. The maximum yields of sugars (541.03 mg glucose and 192.79 mg pentose) were obtained at the longest reaction time.

  7. Pretreatment of brewery effluent to cultivate Spirulina sp. for nutrients removal and biomass production.

    Science.gov (United States)

    Lu, Qian; Liu, Hui; Liu, Wen; Zhong, Yuming; Ming, Caibing; Qian, Wei; Wang, Qin; Liu, Jianliang

    2017-10-01

    Due to the low concentration of nitrate and high contents of organics, brewery effluent was not suitable for the cultivation of Spirulina sp. This work changed the nutrient profile of brewery effluent effectively by dilution, addition of nitrate, and anaerobic digestion. The result showed that the optimum dilution rate and NaNO 3 addition for brewery effluent were 20% and 0.5 g/L, respectively. Spirulina sp. grown in pretreated brewery effluent produced 1.562 mg/L biomass and reduced concentrations of nutrients to reach the permissible dischargeable limits. In addition, Spirulina sp. grown in pretreated brewery effluent had much higher protein content and oil content. So the appropriate treatment converted brewery effluent into a nutrient balanced medium for algae cultivation and alleviated the potential environmental problems. Pretreatment procedure developed in this work is an effective way to realize the sustainable utilization of brewery effluent and produce algal biomass with valuable nutrients.

  8. Selection of Pretreatment Processes for Removal of Radionuclides from Hanford Tank Waste

    International Nuclear Information System (INIS)

    Carreon, R.; Mauss, B. M.; Johnson, M. E.; Holton, L. K.; Wright, G. T.; Peterson, R. A.; Rueter, K. J.

    2002-01-01

    The U.S. Department of Energy's (DOE's), Office of River Protection (ORP) located at Hanford Washington has established a contract (1) to design, construct, and commission a new Waste Treatment and Immobilization Plant (WTP) that will treat and immobilize the Hanford tank wastes for ultimate disposal. The WTP is comprised of four major elements, pretreatment, LAW immobilization, HLW immobilization, and balance of plant facilities. This paper describes the technologies selected for pretreatment of the LAW and HLW tank wastes, how these technologies were selected, and identifies the major technology testing activities being conducted to finalize the design of the WTP

  9. Pharmaceutical removal during managed aquifer recharge with pretreatment by advanced oxidation

    KAUST Repository

    Lekkerkerker-Teunissen, Karin

    2012-10-01

    Organic micropollutants (OMPs) are detected in sources for drinking water and treatment possibilities are investigated. Innovative removal technologies are available such as membrane filtration and advanced oxidation, but also biological treatment should be considered. By combining an advanced oxidation process with managed aquifer recharge (MAR), two complementary processes are expected to provide a hybrid system for OMP removal, according to the multiple barrier approach. Laboratory scale batch reactor experiments were conducted to investigate the removal of dissolved organic carbon (DOC) and 14 different pharmaceutically active compounds (PhACs) from MAR influent water and water subjected to oxidation, under different process conditions. A DOC removal of 10% was found in water under oxic (aerobic) conditions for batch reactor experiments, a similar value for DOC removal was observed in the field. Batch reactor experiments for the removal of PhACs showed that the removal of pharmaceuticals ranged from negligible to more than 90%. Under oxic conditions, seven out of 14 pharmaceuticals were removed over 90% and 12 out of 14 pharmaceuticals were removed at more than 50% during 30 days of experiments. Under anoxic conditions, four out of 14 pharmaceuticals were removed over 90% and eight out of 14 pharmaceuticals were removed at more than 50% over 30 days\\' experiments. Carbamazepine and phenazone were persistent both under oxic and anoxic conditions. The PhACs removal efficiency with oxidized water was, for most compounds, comparable to the removal with MAR influent water. Copyright © IWA Publishing 2012.

  10. Effect and Modeling of Glucose Inhibition and In Situ Glucose Removal During Enzymatic Hydrolysis of Pretreated Wheat Straw

    DEFF Research Database (Denmark)

    Andric, Pavle; Meyer, Anne S.; Jensen, Peter Arendt

    2010-01-01

    The enzymatic hydrolysis of lignocellulosic biomass is known to be product-inhibited by glucose. In this study, the effects on cellulolytic glucose yields of glucose inhibition and in situ glucose removal were examined and modeled during extended treatment of heat-pretreated wheat straw with the ......The enzymatic hydrolysis of lignocellulosic biomass is known to be product-inhibited by glucose. In this study, the effects on cellulolytic glucose yields of glucose inhibition and in situ glucose removal were examined and modeled during extended treatment of heat-pretreated wheat straw...... with the cellulolytic enzyme system, Celluclast (R) 1.5 L, from Trichoderma reesei, supplemented with a beta-glucosidase, Novozym (R) 188, from Aspergillus niger. Addition of glucose (0-40 g/L) significantly decreased the enzyme-catalyzed glucose formation rates and final glucose yields, in a dose-dependent manner......-Menten inhibition models without great significance of the inhibition mechanism. Moreover, the experimental in situ removal of glucose could be simulated by a Michaelis-Menten inhibition model. The data provide an important base for design of novel reactors and operating regimes which include continuous product...

  11. High-performance removal of acids and furans from wheat straw pretreatment liquid by diananofiltration

    DEFF Research Database (Denmark)

    Sueb, Mohd Shafiq Mohd; Zdarta, Jakub; Jesionowski, Teofil

    2017-01-01

    Two model solutions and a real stream from the hydrothermal pretreatment of wheat straw were subjected to nanofiltration, and permeate flux, retention and resistance to fouling were evaluated. Three commercial NF membranes were tested, and a pressure of 4 bars (range: 1–20 bars) and a temperature...

  12. Removal of Trace Pharmaceuticals from Water using coagulation and powdered activated carbon as pretreatment to ultrafiltration membrane system.

    Science.gov (United States)

    Sheng, Chenguang; Nnanna, A G Agwu; Liu, Yanghe; Vargo, John D

    2016-04-15

    In this study, the efficacy of water treatment technologies: ultra-filtration (UF), powdered activated carbon (PAC), coagulation (COA) and a combination of these technologies (PAC/UF and COA/UF) to remove target pharmaceuticals (Acetaminophen, Bezafibrate, Caffeine, Carbamazepine, Cotinine, Diclofenac, Gemfibrozil, Ibuprofen, Metoprolol, Naproxen, Sulfadimethoxine, Sulfamethazine, Sulfamethoxazole, Sulfathiazole, Triclosan and Trimethoprim) was investigated. Samples of wastewater from municipal WWTPs were analyzed using direct aqueous injection High Performance Liquid Chromatography with Tandem Quadrupole Mass Spectrometric (LC/MS/MS) detection. On concentration basis, results showed an average removal efficiency of 29%, 50%, and 7%, respectively, for the UF, PAC dosage of 50ppm, and COA dosage of 10ppm. When PAC dosage of 100ppm was used as pretreatment to the combined PAC and UF in-line membrane system, a 90.3% removal efficiency was achieved. The removal efficiency of UF in tandem with COA was 33%, an increase of 4% compared with the single UF treatment. The adsorption effect of PAC combined with the physical separation process of UF revealed the best treatment strategy for removing pharmaceutical contaminant from water. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Pretreatment of agriculture field water for improving membrane flux during pesticide removal

    Science.gov (United States)

    Mehta, Romil; Saha, N. K.; Bhattacharya, A.

    2017-10-01

    Pretreatment of feed water to improve membrane flux during filtration of agriculture field water containing substituted phenyl urea pesticide diuron has been reported. Laboratory-made reverse osmosis membrane was used for filtration. Preliminary experiments were conducted with model solution containing natural organic matter extracted from commercial humic acids, divalent ions Ca2+, Mg2+. Membrane fouling was characterized by pure water flux decline, change in membrane hydrophilicity and infrared spectroscopy. Natural organic matter present in field water causes severe membrane fouling. The presence of divalent cations further aggravated fouling. Use of ethylenediaminetetraacetic acid (EDTA) and polyacrylic acids (PAA) in feed resulted in the decrease in membrane fouling. Pretreatment of field water is a must if it is contaminated with micro-organism having membrane fouling potential. Feed water pretreatment and use of PAA restricted membrane fouling to 16 % after 60 h of filtration. Membrane permeate flux decline was maximum at the first 12 h and thereafter remained steady at around 45-46 lm-2h-1 till the end of 60 h. Diuron rejection remained consistently greater than 93 % throughout the experiment. Diuron rejection was found to be unaffected by membrane fouling.

  14. Fluoride Removal from pretreated Photovoltaic Wastewater by Electrocoagulation: An Investigation of The Effect of Operational Parameters

    KAUST Repository

    Drouiche, Nadjib

    2012-03-20

    In this paper, application of electrocoagulation using common iron electrode to a simulated photovoltaic wastewater after precipitation with lime (Ca(OH)2) was investigated. Electrocoagulation process delivers the coagulant in situ as the sacrificial anode corrodes, while the simultaneous evolution of hydrogen at the cathode allows pollutant removal by flotation. Several working parameters, such as initial pH, applied potential and distance between the electrodes, were studied in an attempt to achieve higher fluoride removal efficiency. The optimum conditions for the process were identified as pH = 6, the distance between electrodes = 1 and an applied potential of 30 V. Furthermore fluoride removal is under the direct discharge standards.Results showed high effectivenessof the electrocoagulation method in removing fluoride from aqueous solutions.

  15. Scenario Studies into Advanced Particle Removal in the Physical-Chemical Pre-treatment of Wastewater

    NARCIS (Netherlands)

    Van Nieuwenhuijzen, A.F.

    2002-01-01

    The research dealt with in this dissertation had the objective identifying the specific roles of particulate matter in wastewater influent and its inherent characteristics. In addition, advanced particle removal techniques for the development of more sustainable treatment scenarios based on

  16. Oestrogen removal from biological pre-treated wastewater within decentralised sanitation and re-use concepts

    NARCIS (Netherlands)

    Mes, de T.Z.D.; Urmenyi, A.M.; Poot, A.A.; Wessling, M.; Mulder, M.H.V.; Zeeman, G.

    2006-01-01

    Two parallel researches were performed; one focused on the fate of oestrogens in the biological treatment systems within decentralised sanitation and re-use concepts (DESAR), the second related to the development of a suitable specific removal method. A new affinity membrane was developed using

  17. Effect of microbial community structure on organic removal and biofouling in membrane adsorption bioreactor used in seawater pretreatment

    KAUST Repository

    Jeong, Sanghyun

    2016-03-03

    Membrane bioreactors (MBRs) were operated on-site for 56 d with different powdered activated carbon (PAC) dosages of 0, 1.5 and 5.0 g/L to pretreat seawater for reverse osmosis desalination. It was hypothesized that PAC would stimulate adsorption and biological degradation of organic compounds. The microbial communities responsible for biofouling on microfiltration (MF) membranes and biological organic removal in MBR were assessed using terminal restriction fragment length polymorphism fingerprinting and 454-pyrosequencing. The PAC addition improved assimilable organic carbon removal (53-59%), and resulted in reduced biofouling development on MF (> 50%) with only a marginal development in trans-membrane pressure. Interestingly, the bacterial community composition was significantly differentiated by the PAC addition. Cyanobacterium, Pelagibaca and Maricoccus were dominant in the PAC-free conditions, while Thiothrix and Sphingomonas were presumably responsible for the better reactor performances in PAC-added conditions. In contrast, the archaeal communities were consistent with predominance of Candidatus Nitrosopumilus. These data therefore show that the addition of PAC can improve MBR performance by developing different bacterial species, controlling AOC and associated biofouling on the membranes.

  18. Assessment of different pre-treatment methods for the removal of limonene in citrus waste and their effect on methane potential and methane production rate

    OpenAIRE

    Ruiz Fuertes, Begoña; de Benito, Amparo; Rivera, José Daniel; Flotats Ripoll, Xavier

    2016-01-01

    The objective of this study was to assess the limonene removal efficiency of three pre-treatment methods when applied to citrus waste and to evaluate their effects on the biochemical methane potential (BMP) and the methane production rate (MPR) using batch anaerobic tests

  19. The effect of pretreating resorbable blast media titanium discs with an ultrasonic scaler or toothbrush on the bacterial removal efficiency of brushing

    Science.gov (United States)

    Koh, Minchul; Park, Jun-Beom; Jang, Yun-Ji

    2013-01-01

    Purpose This in vitro study was performed to assess the adherence of Porphyromonas gingivalis to a resorbable blast media (RBM) titanium surface pretreated with an ultrasonic scaler or toothbrush and to evaluate the effects of the treatment of the RBM titanium discs on the bacterial removal efficiency of brushing by crystal violet assay and scanning electron microscopy. Methods RBM titanium discs were pretreated with one of several ultrasonic scaler tips or cleaned with a toothbrush. Then the titanium discs were incubated with P. gingivalis and the quantity of adherent bacteria was compared. The disc surfaces incubated with bacteria were brushed with a toothbrush with dentifrice. Bacteria remaining on the disc surfaces were quantified. Results A change in morphology of the surface of the RBM titanium discs after different treatments was noted. There were no significant differences in the adherence of bacteria on the pretreated discs according to the treatment modality. Pretreatment with various instruments did not produce significant differences in the bacterial removal efficiency of brushing with dentifrice. Conclusions Within the limits of this study, various types of mechanical instrumentation were shown to cause mechanical changes on the RBM titanium surface but did not show a significant influence on the adherence of bacteria and removal efficiency of brushing. PMID:24455443

  20. Laser cladding with powder

    NARCIS (Netherlands)

    Schneider, M.F.; Schneider, Marcel Fredrik

    1998-01-01

    This thesis is directed to laser cladding with powder and a CO2 laser as heat source. The laser beam intensity profile turned out to be an important pa6 Summary rameter in laser cladding. A numerical model was developed that allows the prediction of the surface temperature distribution that is

  1. Ray-Tracing-Based Modeling of Clad-Removed Step-Index Plastic Optical Fiber in Smart Textiles: Effect of Curvature in Plain Weave Fabric

    Directory of Open Access Journals (Sweden)

    Sun Hee Moon

    2018-01-01

    Full Text Available Plastic optical fiber was chosen for information delivery media in smart textile. Cladding layer was peeled off by chemical and mechanical methods to find optimal peeling conditions. Both radial side illumination and longitudinal end-tip illumination were measured for visible light of 627 µm wavelength. A half-cone-shaped jig was manufactured using 3D printing to give various curvature conditions to fibers. Also POFs were embedded in plain weave textile structure to measure the light dissipation effect. The waveguide phenomenon was modeled using discrete ray tracing technique and ray-to-interface collision detection algorithm. Results from the proposed modeling technique showed linear relationship with those from experiment.

  2. All fiber cladding mode stripper with uniform heat distribution and high cladding light loss manufactured by CO2 laser ablation

    Science.gov (United States)

    Jebali, M. A.; Basso, E. T.

    2018-02-01

    Cladding mode strippers are primarily used at the end of a fiber laser cavity to remove high-power excess cladding light without inducing core loss and beam quality degradation. Conventional manufacturing methods of cladding mode strippers include acid etching, abrasive blasting or laser ablation. Manufacturing of cladding mode strippers using laser ablation consist of removing parts of the cladding by fused silica ablation with a controlled penetration and shape. We present and characterize an optimized cladding mode stripper design that increases the cladding light loss with a minimal device length and manufacturing time. This design reduces the localized heat generation by improving the heat distribution along the device. We demonstrate a cladding mode stripper written on a 400um fiber with cladding light loss of 20dB, with less than 0.02dB loss in the core and minimal heating of the fiber and coating. The manufacturing process of the designed component is fully automated and takes less than 3 minutes with a very high throughput yield.

  3. Stone cladding engineering

    National Research Council Canada - National Science Library

    Camposinhos, Rui de Sousa

    2014-01-01

    .... Straightforward formulae are provided for computing action on cladding, with special emphasis on the effect of seismic forces, including an extensive general methodology applied to non-structural elements...

  4. Removal Natural Organic Matter (NOM in Peat Water from Wetland Area by Coagulation-Ultrafiltration Hybrid Process with Pretreatment Two-Stage Coagulation

    Directory of Open Access Journals (Sweden)

    Mahmud Mahmud

    2013-11-01

    Full Text Available The primary problem encountered in the application of membrane technology was membrane fouling. During this time, hybrid process by coagulation-ultrafiltration in drinking water treatment that has been conducted by some research, using by one-stage coagulation. The goal of this research was to investigate the effect of two-stage coagulation as a pretreatment towards performance of the coagulation-ultrafiltration hybrid process for removal NOM in the peat water. Coagulation process, either with the one-stage or two-stage coagulation was very good in removing charge hydrophilic fraction, i.e. more than 98%. NOM fractions of the peat water, from the most easily removed by the two-stage coagulation and one-stage coagulation process was charged hydrophilic>strongly hydrophobic>weakly hydrophobic>neutral hydrophilic. The two-stage coagulation process could removed UV254 and colors with a little better than the one-stage coagulation at the optimum coagulant dose. Neutral hydrophilic fraction of peat water NOM was the most influential fraction of UF membrane fouling. The two-stage coagulation process better in removing the neutral hidrophilic fraction, while removing of the charged hydrophilic, strongly hydrophobic and weakly hydrophobic similar to the one-stage coagulation. Hybrid process by pretreatment with two-stage coagulation, beside can increased removal efficiency of UV254 and color, also can reduced fouling rate of the ultrafiltration membraneIt must not exceed 250 words, contains a brief summary of the text, covering the whole manuscript without being too elaborate on every section. Avoid any abbreviation, unless it is a common knowledge or has been previously stated.

  5. Production of isoprene, one of the high-density fuel precursors, from peanut hull using the high-efficient lignin-removal pretreatment method.

    Science.gov (United States)

    Wang, Sumeng; Wang, Zhaobao; Wang, Yongchao; Nie, Qingjuan; Yi, Xiaohua; Ge, Wei; Yang, Jianming; Xian, Mo

    2017-01-01

    /hydrogen peroxide combination pretreatment approach was proved effective to remove lignin and hemicellulose from lignocellulosic materials. Meanwhile, the pretreated PH could be converted into isoprene efficiently in the engineered Escherichia coli . It is concluded that this novel strategy of isoprene production using lignocellulosic materials pretreated by phosphoric acid/hydrogen peroxide is a promising alternative to isoprene production using traditional way which can fully utilize non-renewable fossil sources.

  6. Assessment of different pre-treatment methods for the removal of limonene in citrus waste and their effect on methane potential and methane production rate.

    Science.gov (United States)

    Ruiz, Begoña; de Benito, Amparo; Rivera, José Daniel; Flotats, Xavier

    2016-12-01

    The objective of this study was to assess the limonene removal efficiency of three pre-treatment methods when applied to citrus waste and to evaluate their effects on the biochemical methane potential and the methane production rate using batch anaerobic tests. The methods tested were based on removal (biological pretreatment by fungi) or recovery (steam distillation and ethanol extraction) of limonene. All the treatments decreased the concentration of limonene in orange peel, with average efficiencies of 22%, 44% and 100% for the biological treatment, steam distillation and ethanol extraction, respectively. By-products from limonene biodegradation by fungi exhibited an inhibitory effect also, not making interesting the biological pretreatment. The methane potential and production rate of the treated orange peel increased significantly after applying the recovery strategies, which separated and recovered simultaneously other inhibitory components of the citrus essential oil. Apart from the high recovery efficiency of the ethanol extraction process, it presented a favourable energy balance. © The Author(s) 2016.

  7. Initial Cladding Condition

    International Nuclear Information System (INIS)

    Siegmann, E.

    2000-01-01

    The purpose of this analysis is to describe the condition of commercial Zircaloy clad fuel as it is received at the Yucca Mountain Project (YMP) site. Most commercial nuclear fuel is encased in Zircaloy cladding. This analysis is developed to describe cladding degradation from the expected failure modes. This includes reactor operation impacts including incipient failures, potential degradation after reactor operation during spent fuel storage in pool and dry storage and impacts due to transportation. Degradation modes include cladding creep, and delayed hydride cracking during dry storage and transportation. Mechanical stresses from fuel handling and transportation vibrations are also included. This Analysis and Model Report (AMR) does not address any potential damage to assemblies that might occur at the YMP surface facilities. Ranges and uncertainties have been defined. This analysis will be the initial boundary condition for the analysis of cladding degradation inside the repository. In accordance with AP-2.13Q, ''Technical Product Development Planning'', a work plan (CRWMS M andO 2000c) was developed, issued, and utilized in the preparation of this document. There are constraints, caveats and limitations to this analysis. This cladding degradation analysis is based on commercial Pressurized Water Reactor (PWR) fuel with Zircaloy cladding but is applicable to Boiling Water Reactor (BWR) fuel. Reactor operating experience for both PWRs and BWRs is used to establish fuel reliability from reactor operation. It is limited to fuel exposed to normal operation and anticipated operational occurrences (i.e. events which are anticipated to occur within a reactor lifetime), and not to fuel that has been exposed to severe accidents. Fuel burnup projections have been limited to the current commercial reactor licensing environment with restrictions on fuel enrichment, oxide coating thickness and rod plenum pressures. The information provided in this analysis will be used in

  8. Removal of selected nitrogenous heterocyclic compounds in biologically pretreated coal gasification wastewater (BPCGW) using the catalytic ozonation process combined with the two-stage membrane bioreactor (MBR).

    Science.gov (United States)

    Zhu, Hao; Han, Yuxing; Ma, Wencheng; Han, Hongjun; Ma, Weiwei

    2017-12-01

    Three identical anoxic-aerobic membrane bioreactors (MBRs) were operated in parallel for 300 consecutive days for raw (R 1 ), ozonated (R 2 ) and catalytic ozonated (R 3 ) biologically pretreated coal gasification wastewater (BPCGW) treatment. The results demonstrated that catalytic ozonation process (COP) applied asa pretreatment remarkably improved the performance of the unsatisfactory single MBR. The overall removal efficiencies of COD, NH 3 -N and TN in R 3 were 92.7%, 95.6% and 80.6%, respectively. In addition, typical nitrogenous heterocyclic compounds (NHCs) of quinoline, pyridine and indole were completely removed in the integrated process. Moreover, COP could alter sludge properties and reshape microbial community structure, thus delaying the occurrence of membrane fouling. Finally, the total cost for this integrated process was estimated to be lower than that of single MBR. The results of this study suggest that COP is a good option to enhance pollutants removal and alleviate membrane fouling in the MBR for BPCGW treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Electra-Clad

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-04

    The study relates to the use of building-integrated photovoltaics. The Electra-Clad project sought to use steel-based cladding as a substrate for direct fabrication of a fully integrated solar panel of a design similar to the ICP standard glass-based panel. The five interrelated phases of the project are described. The study successfully demonstrated that the principles of the panel design are achievable and sound. But, despite intensive trials, a commercially realistic solar performance has not been achieved: the main failing was the poor solar conversion efficiency as the active area of the panel was increased in size. The problem lies with the coating used on the steel cladding substrates and it was concluded that a new type of coating will be required. ICP Solar Technologies UK carried out the work under contract to the DTI.

  10. Pharmaceuticals removal and microbial community assessment in a continuous fungal treatment of non-sterile real hospital wastewater after a coagulation-flocculation pretreatment.

    Science.gov (United States)

    Mir-Tutusaus, J A; Parladé, E; Llorca, M; Villagrasa, M; Barceló, D; Rodriguez-Mozaz, S; Martinez-Alonso, M; Gaju, N; Caminal, G; Sarrà, M

    2017-06-01

    Hospital wastewaters are a main source of pharmaceutical active compounds, which are usually highly recalcitrant and can accumulate in surface and groundwater bodies. Fungal treatments can remove these contaminants prior to discharge, but real wastewater poses a problem to fungal survival due to bacterial competition. This study successfully treated real non-spiked, non-sterile wastewater in a continuous fungal fluidized bed bioreactor coupled to a coagulation-flocculation pretreatment for 56 days. A control bioreactor without the fungus was also operated and the results were compared. A denaturing gradient gel electrophoresis (DGGE) and sequencing approach was used to study the microbial community arisen in both reactors and as a result some bacterial degraders are proposed. The fungal operation successfully removed analgesics and anti-inflammatories, and even the most recalcitrant pharmaceutical families such as antibiotics and psychiatric drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Characterization Of Cladding Hull Wastes From Used Nuclear Fuels

    Directory of Open Access Journals (Sweden)

    Kang K.H.

    2015-06-01

    Full Text Available Used cladding hulls from pressurized water reactor (PWR are characterized to provide useful information for the treatment and disposal of cladding hull wastes. The radioactivity and the mass of gamma emitting nuclides increases with an increase in the fuel burn-up and their removal ratios are found to be more than 99 wt.% except Co-60 and Cs-137. In the result of measuring the concentrations of U and Pu included in the cladding hull wastes, most of the residues are remained on the surface and the removal ratio of U and Pu are revealed to be over 99.98 wt.% for the fuel burn-up of 35,000 MWd/tU. An electron probe micro-analyzer (EPMA line scanning shows that radioactive fission products are penetrated into the Zr oxide layer, which is proportional to the fuel burn-up. The oxidative decladding process exhibits more efficient removal ratio of radionuclides.

  12. Enhanced ethanol production by removal of cutin and epicuticular waxes of wheat straw by plasma assisted pretreatment

    DEFF Research Database (Denmark)

    Kádár, Zsófia; Schultz-Jensen, Nadja; Jensen, J. S.

    2015-01-01

    as with Scanning Electron Microscopy (SEM) imaging. Compounds resulting from wax degradation were analyzed in the washing water of PAP wheat straw. The wax removal enhanced enzymatic hydrolysis yield and, consequently, the efficiency of wheat straw conversion into ethanol. In total, PAP increased the conversion...

  13. DECONTAMINATION OF ZIRCALOY SPENT FUEL CLADDING HULLS

    Energy Technology Data Exchange (ETDEWEB)

    Rudisill, T; John Mickalonis, J

    2006-09-27

    The reprocessing of commercial spent nuclear fuel (SNF) generates a Zircaloy cladding hull waste which requires disposal as a high level waste in the geologic repository. The hulls are primarily contaminated with fission products and actinides from the fuel. During fuel irradiation, these contaminants are deposited in a thin layer of zirconium oxide (ZrO{sub 2}) which forms on the cladding surface at the elevated temperatures present in a nuclear reactor. Therefore, if the hulls are treated to remove the ZrO{sub 2} layer, a majority of the contamination will be removed and the hulls could potentially meet acceptance criteria for disposal as a low level waste (LLW). Discard of the hulls as a LLW would result in significant savings due to the high costs associated with geologic disposal. To assess the feasibility of decontaminating spent fuel cladding hulls, two treatment processes developed for dissolving fuels containing zirconium (Zr) metal or alloys were evaluated. Small-scale dissolution experiments were performed using the ZIRFLEX process which employs a boiling ammonium fluoride (NH{sub 4}F)/ammonium nitrate (NH{sub 4}NO{sub 3}) solution to dissolve Zr or Zircaloy cladding and a hydrofluoric acid (HF) process developed for complete dissolution of Zr-containing fuels. The feasibility experiments were performed using Zircaloy-4 metal coupons which were electrochemically oxidized to produce a thin ZrO{sub 2} layer on the surface. Once the oxide layer was in place, the ease of removing the layer using methods based on the two processes was evaluated. The ZIRFLEX and HF dissolution processes were both successful in removing a 0.2 mm (thick) oxide layer from Zircaloy-4 coupons. Although the ZIRFLEX process was effective in removing the oxide layer, two potential shortcomings were identified. The formation of ammonium hexafluorozirconate ((NH{sub 4}){sub 2}ZrF{sub 6}) on the metal surface prior to dissolution in the bulk solution could hinder the decontamination

  14. Removal of synthetic resins through a chloroform-based pretreatment for a correct radiocarbon dating of restored artworks

    International Nuclear Information System (INIS)

    Caforio, L.

    2013-01-01

    In Archaeometry, the collaboration among different specialists can be very useful to solve problems of authentication and to characterize the artworks. This cooperation is also recommended in radiocarbon dating. Before dating, for example, it is important to be aware of possible restorations undergone by the artworks and, in particular, which products have been used, since they may represent a source of contamination altering the obtained date. In fact, these products are generally organic compounds, thus representing an addition of exogenous carbon, which must be completely removed. In this paper, the case of the removal of synthetic resins will be discussed. The issue of contamination by synthetic resins will be presented using two case studies: the wooden frame of a Trittico by Ambrogio Lorenzetti and a painting on canvas of the first decades of the XX century.

  15. Evaluation of hemicellulose removal by xylanase and delignification on SHF and SSF for bioethanol production with steam-pretreated substrates.

    Science.gov (United States)

    Shen, Fei; Kumar, Linoj; Hu, Jinguang; Saddler, Jack N

    2011-10-01

    Steam-pretreated sweet sorghum bagasse (SSB) and Douglas-fir (DF) were employed for SHF and SSF to evaluate the effects of xylanase supplementation and delignification on ethanol production. Results indicated final ethanol concentration in SHF could reach 28.4 g/L (SSB) and 20.4 g/L (DF) by xylanase supplementation with the increase of 46% and 61% in comparison with controls. The delignification could significantly enhance final ethanol concentration to 31.2g/L (SSB) and 30.2 g/L (DF) with the increase of 61% and 138%. In SSF, final ethanol concentration in the delignified SSB and DF arrived at 27.6 g/L and 34.3 g/L with the increase of 26% and 157% compared with controls. However, only 2.2 g/L (SSB) and 6.9 g/L (DF) ethanol were obtained with xylanase supplementation. According to these results, it could be concluded that delignification was beneficial to improve ethanol production of SHF and SSF. The xylanase supplementation (0.12 g protein/g glucan) was only positive to SHF while retarded SSF seriously. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Filtration and Leach Testing for PUREX Cladding Sludge and REDOX Cladding Sludge Actual Waste Sample Composites

    Energy Technology Data Exchange (ETDEWEB)

    Shimskey, Rick W.; Billing, Justin M.; Buck, Edgar C.; Casella, Amanda J.; Crum, Jarrod V.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Hallen, Richard T.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Swoboda, Robert G.

    2009-03-02

    A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan (Barnes and Voke 2006). The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Hanford Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Under test plan TP RPP WTP 467 (Fiskum et al. 2007), eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. Under this test plan, a waste testing program was implemented that included: • Homogenizing the archive samples by group as defined in the test plan. • Characterizing the homogenized sample groups. • Performing parametric leaching testing on each group for compounds of interest. • Performing bench-top filtration/leaching tests in the hot cell for each group to simulate filtration and leaching activities if they occurred in the UFP2 vessel of the WTP Pretreatment Facility. This report focuses on a filtration/leaching test performed using two of the eight waste composite samples. The sample groups examined in this report were the plutonium-uranium extraction (PUREX) cladding waste sludge (Group 3, or CWP) and reduction-oxidation (REDOX) cladding waste sludge (Group 4, or CWR). Both the Group 3 and 4 waste composites were anticipated to be high in gibbsite, thus requiring caustic leaching. WTP RPT 167 (Snow et al. 2008) describes the homogenization, characterization, and parametric leaching activities before benchtop filtration/leaching testing of these two waste groups. Characterization and initial parametric data in that report were used to plan a single filtration/leaching test using a blend of both wastes. The test focused on filtration testing of the waste and caustic leaching for aluminum, in the form

  17. Aerogel-clad optical fiber

    Science.gov (United States)

    Sprehn, Gregory A.; Hrubesh, Lawrence W.; Poco, John F.; Sandler, Pamela H.

    1997-01-01

    An optical fiber is surrounded by an aerogel cladding. For a low density aerogel, the index of refraction of the aerogel is close to that of air, which provides a high numerical aperture to the optical fiber. Due to the high numerical aperture, the aerogel clad optical fiber has improved light collection efficiency.

  18. Ice-clad volcanoes

    Science.gov (United States)

    Waitt, Richard B.; Edwards, B.R.; Fountain, Andrew G.; Huggel, C.; Carey, Mark; Clague, John J.; Kääb, Andreas

    2015-01-01

    An icy volcano even if called extinct or dormant may be active at depth. Magma creeps up, crystallizes, releases gas. After decades or millennia the pressure from magmatic gas exceeds the resistance of overlying rock and the volcano erupts. Repeated eruptions build a cone that pokes one or two kilometers or more above its surroundings - a point of cool climate supporting glaciers. Ice-clad volcanic peaks ring the northern Pacific and reach south to Chile, New Zealand, and Antarctica. Others punctuate Iceland and Africa (Fig 4.1). To climb is irresistible - if only “because it’s there” in George Mallory’s words. Among the intrepid ascents of icy volcanoes we count Alexander von Humboldt’s attempt on 6270-meter Chimborazo in 1802 and Edward Whymper’s success there 78 years later. By then Cotopaxi steamed to the north.

  19. Stone cladding engineering

    CERN Document Server

    Sousa Camposinhos, Rui de

    2014-01-01

    This volume presents new methodologies for the design of dimension stone based on the concepts of structural design while preserving the excellence of stonemasonry practice in façade engineering. Straightforward formulae are provided for computing action on cladding, with special emphasis on the effect of seismic forces, including an extensive general methodology applied to non-structural elements. Based on the Load and Resistance Factor Design Format (LRDF), minimum slab thickness formulae are presented that take into consideration stress concentrations analysis based on the Finite Element Method (FEM) for the most commonly used modern anchorage systems. Calculation examples allow designers to solve several anchorage engineering problems in a detailed and objective manner, underlining the key parameters. The design of the anchorage metal parts, either in stainless steel or aluminum, is also presented.

  20. Metal-clad waveguide sensors

    DEFF Research Database (Denmark)

    Skivesen, Nina

    by Qi et al [Zm Qi et al, Sens. Actuators B 81, 2002] before, however the sensing principle we present results in a broad detection range from gasses to solid materials and is different from the principle suggested by Qi et al with a highlylimited detection range. Metal-clad waveguide sensors......, where single cell detection isshown by use of the metal-clad waveguide sensors.......This work concerns planar optical waveguide sensors for biosensing applications, with the focus on deep-probe sensing for micron-scale biological objects like bacteria and whole cells. In the last two decades planar metal-clad waveguides have been brieflyintroduced in the literature applied...

  1. Performance of refractory alloy-clad fuel pins

    International Nuclear Information System (INIS)

    Dutt, D.S.; Cox, C.M.; Millhollen, M.K.

    1984-12-01

    This paper discusses objectives and basic design of two fuel-cladding tests being conducted in support of SP-100 technology development. Two of the current space nuclear power concepts use conventional pin type designs, where a coolant removes the heat from the core and transports it to an out-of-core energy conversion system. An extensive irradiation testing program was conducted in the 1950's and 1960's to develop fuel pins for space nuclear reactors. The program emphasized refractory metal clad uranium nitride (UN), uranium carbide (UC), uranium oxide (UO 2 ), and metal matrix fuels (UCZr and BeO-UO 2 ). Based on this earlier work, studies presented here show that UN and UO 2 fuels in conjunction with several refractory metal cladding materials demonstrated high potential for meeting space reactor requirements and that UC could serve as an alternative but higher risk fuel

  2. Heparin removal by ecteola-cellulose pre-treatment enables the use of plasma samples for accurate measurement of anti-Yellow fever virus neutralizing antibodies.

    Science.gov (United States)

    Campi-Azevedo, Ana Carolina; Peruhype-Magalhães, Vanessa; Coelho-Dos-Reis, Jordana Grazziela; Costa-Pereira, Christiane; Yamamura, Anna Yoshida; Lima, Sheila Maria Barbosa de; Simões, Marisol; Campos, Fernanda Magalhães Freire; de Castro Zacche Tonini, Aline; Lemos, Elenice Moreira; Brum, Ricardo Cristiano; de Noronha, Tatiana Guimarães; Freire, Marcos Silva; Maia, Maria de Lourdes Sousa; Camacho, Luiz Antônio Bastos; Rios, Maria; Chancey, Caren; Romano, Alessandro; Domingues, Carla Magda; Teixeira-Carvalho, Andréa; Martins-Filho, Olindo Assis

    2017-09-01

    Technological innovations in vaccinology have recently contributed to bring about novel insights for the vaccine-induced immune response. While the current protocols that use peripheral blood samples may provide abundant data, a range of distinct components of whole blood samples are required and the different anticoagulant systems employed may impair some properties of the biological sample and interfere with functional assays. Although the interference of heparin in functional assays for viral neutralizing antibodies such as the functional plaque-reduction neutralization test (PRNT), considered the gold-standard method to assess and monitor the protective immunity induced by the Yellow fever virus (YFV) vaccine, has been well characterized, the development of pre-analytical treatments is still required for the establishment of optimized protocols. The present study intended to optimize and evaluate the performance of pre-analytical treatment of heparin-collected blood samples with ecteola-cellulose (ECT) to provide accurate measurement of anti-YFV neutralizing antibodies, by PRNT. The study was designed in three steps, including: I. Problem statement; II. Pre-analytical steps; III. Analytical steps. Data confirmed the interference of heparin on PRNT reactivity in a dose-responsive fashion. Distinct sets of conditions for ECT pre-treatment were tested to optimize the heparin removal. The optimized protocol was pre-validated to determine the effectiveness of heparin plasma:ECT treatment to restore the PRNT titers as compared to serum samples. The validation and comparative performance was carried out by using a large range of serum vs heparin plasma:ECT 1:2 paired samples obtained from unvaccinated and 17DD-YFV primary vaccinated subjects. Altogether, the findings support the use of heparin plasma:ECT samples for accurate measurement of anti-YFV neutralizing antibodies. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Clad Degradation - FEPs Screening Arguments

    International Nuclear Information System (INIS)

    E. Siegmann

    2004-01-01

    The purpose of this report is to document the screening of the cladding degradation features, events, and processes (FEPs) for commercial spent nuclear fuel (CSNF). This report also addresses the effect of some FEPs on both the cladding and the CSNF, DSNF, and HLW waste forms where it was considered appropriate to address the effects on both materials together. This report summarizes the work of others to screen clad degradation FEPs in a manner consistent with, and used in, the Total System Performance Assessment-License Application (TSPA-LA). This document was prepared according to ''Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of LA'' (BSC 2004a [DIRS 167796])

  4. The influence of ventilation on moisture conditions in facades with wooden cladding

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place; Brandt, Erik

    2009-01-01

    A ventilated cavity behind the cladding of timber frame walls is often considered good building practice that facilitates the removal of moisture from the construction. However, moisture will only be removed from the construction by ventilating it with dry air, whereas ventilating with humid air...... might add moisture to the construction. Full-size wall elements with wooden cladding placed in a test building were exposed to natural climate on the outside and to a humid indoor climate on the inside. Temperature and moisture conditions inside the wall elements and climate parameters were monitored....... Test parameters included cavity/unventilated cavity/no cavity, cavity size, vent geometry, type of cladding and type of wind barrier. The potential durability of the wooden façade claddings was evaluated by coupling the measured time series of moisture content, temperature and time by means of a model...

  5. Development of high performance cladding

    International Nuclear Information System (INIS)

    Kiuchi, Kiyoshi

    2003-01-01

    The developments of superior next-generation light water reactor are requested on the basis of general view points, such as improvement of safety, economics, reduction of radiation waste and effective utilization of plutonium, until 2030 year in which conventional reactor plants should be renovate. Improvements of stainless steel cladding for conventional high burn-up reactor to more than 100 GWd/t, developments of manufacturing technology for reduced moderation-light water reactor (RMWR) of breeding ratio beyond 1.0 and researches of water-materials interaction on super critical pressure-water cooled reactor are carried out in Japan Atomic Energy Research Institute. Stable austenite stainless steel has been selected for fuel element cladding of advanced boiling water reactor (ABWR). The austenite stain less has the superiority for anti-irradiation properties, corrosion resistance and mechanical strength. A hard spectrum of neutron energy up above 0.1 MeV takes place in core of the reduced moderation-light water reactor, as liquid metal-fast breeding reactor (LMFBR). High performance cladding for the RMWR fuel elements is required to get anti-irradiation properties, corrosion resistance and mechanical strength also. Slow strain rate test (SSRT) of SUS 304 and SUS 316 are carried out for studying stress corrosion cracking (SCC). Irradiation tests in LMFBR are intended to obtain irradiation data for damaged quantity of the cladding materials. (M. Suetake)

  6. Study of laser cladding nuclear valve parts

    International Nuclear Information System (INIS)

    Shi Shihong; Wang Xinlin; Huang Guodong

    1998-12-01

    The mechanism of laser cladding is discussed by using heat transfer model of laser cladding, heat conduction model of laser cladding and convective transfer mass model of laser melt-pool. Subsequently the laser cladding speed limit and the influence of laser cladding parameters on cladding layer structure is analyzed. A 5 kW with CO 2 transverse flow is used in the research for cladding treatment of sealing surface of stop valve parts of nuclear power stations. The laser cladding layer is found to be 3.0 mm thick. The cladding surface is smooth and has no such defects as crack, gas pore, etc. A series of comparisons with plasma spurt welding and arc bead welding has been performed. The results show that there are higher grain grade and hardness, lower dilution and better performances of resistance to abrasion, wear and of anti-erosion in the laser cladding layer. The new technology of laser cladding can obviously improve the quality of nuclear valve parts. Consequently it is possible to lengthen the service life of nuclear valve and to raise the safety and reliability of the production system

  7. CLAD DEGRADATION - FEPS SCREENING ARGUMENTS

    International Nuclear Information System (INIS)

    R. Schreiner

    2004-01-01

    The purpose of this report is to evaluate and document the screening of the clad degradation features, events, and processes (FEPs) with respect to modeling used to support the Total System Performance Assessment-License Application (TSPA-LA). This report also addresses the effect of certain FEPs on both the cladding and the commercial spent nuclear fuel (CSNF), DOE-owned spent nuclear fuel (DSNF), and defense high-level waste (DHLW) waste forms, as appropriate to address the effects on multiple materials and both components (FEPs 2.1.09.09.0A, 2.1.09.11.0A, 2.1.11.05.0A, 2.1.12.02.0A, and 2.1.12.03.0A). These FEPs are expected to affect the repository performance during the postclosure regulatory period of 10,000 years after permanent closure. Table 1-1 provides the list of cladding FEPs, including their screening decisions (include or exclude). The primary purpose of this report is to identify and document the analysis, screening decision, and TSPA-LA disposition (for included FEPs) or screening argument (for excluded FEPs) for these FEPs related to clad degradation. In some cases, where a FEP covers multiple technical areas and is shared with other FEP reports, this report may provide only a partial technical basis for the screening of the FEP. The full technical basis for shared FEPs is addressed collectively by the sharing FEP reports. The screening decisions and associated TSPA-LA dispositions or screening arguments from all of the FEP reports are cataloged in a project-specific FEPs database

  8. Fracture Toughness Of Zircaloy Claddings

    International Nuclear Information System (INIS)

    Bertsch, J.; Hoffelner, W

    2003-01-01

    Zirconium-based alloys (Zircaloy) have been used as cladding material in Light Water Reactors for many years. During fabrication, or in in-reactor service, crack-type defects can be formed, posing questions regarding mechanical integrity. As claddings change their mechanical properties (mainly toughness) during service as a result of irradiation-induced degradation, oxidation and hydride formation, it is essential for integrity considerations to provide parameters for the assessment of the influence of flaws on rupture behaviour. Usually, fracture-mechanics parameters are employed such as the fracture toughness, K IC , or, for high plastic strains, the J-integral, JIC. The applicability of these parameters is, however, limited by the dimensions of the samples (e.g. thickness). In claddings with a wall thickness of below 1 mm, determination of toughness necessitates an extension of the J-integral concept. A method based on the traditional J-approach, but applicable to thin-walled structures, is presented in this paper. (author)

  9. Development and study the performance of PBA cladding modified fiber optic intrinsic biosensor for urea detection

    Energy Technology Data Exchange (ETDEWEB)

    Botewad, S. N.; Pahurkar, V. G.; Muley, G. G., E-mail: gajananggm@yahoo.co.in [Department of Physics, Sant Gadge Baba Amravati University, Amravati, Maharashtra, India-444602 (India)

    2016-05-06

    The fabrication and study of a cladding modified fiber optic intrinsic urea biosensor based on evanescent wave absorbance has been presented. The sensor was prepared using cladding modification technique by removing a small portion of cladding of an optical fiber and modifying with an active cladding of porous polyaniline-boric acid (PBA) matrix to immobilize enzyme-urease through cross-linking via glutaraldehyde. The nature of as-synthesized and deposited PBA film on fiber optic sensing element was studied by ultraviolet-visible (UV-vis) spectroscopy and X-ray diffraction (XRD) analysis. The performance of the developed sensor was studied for different urea concentrations in solutions prepared in phosphate buffer.

  10. The Development of Expansion Plug Wedge Test for Clad Tubing Structure Mechanical Property Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Jiang, Hao [ORNL

    2016-01-12

    To determine the tensile properties of irradiated fuel cladding in a hot cell, a simple test was developed at the Oak Ridge National Laboratory (ORNL) and is described fully in US Patent Application 20060070455, “Expanded plug method for developing circumferential mechanical properties of tubular materials.” This method is designed for testing fuel rod cladding ductility in a hot cell using an expandable plug to stretch a small ring of irradiated cladding material. The specimen strain is determined using the measured diametrical expansion of the ring. This method removes many complexities associated with specimen preparation and testing. The advantages are the simplicity of measuring the test component assembly in the hot cell and the direct measurement of the specimen’s strain. It was also found that cladding strength could be determined from the test results.

  11. LASER SURFACE CLADDING FOR STRUCTURAL REPAIR

    OpenAIRE

    SANTANU PAUL

    2018-01-01

    Laser cladding is a powder deposition technique, which is used to deposit layers of clad material on a substrate to improve its surface properties. It has widespread application in the repair of dies and molds used in the automobile industry. These molds and dies are subjected to cyclic thermo-mechanical loading and therefore undergo localized damage and wear. The final clad quality and integrity is influenced by various physical phenomena, namely, melt pool morphology, microst...

  12. Pulsed Laser Cladding of Ni Based Powder

    Science.gov (United States)

    Pascu, A.; Stanciu, E. M.; Croitoru, C.; Roata, I. C.; Tierean, M. H.

    2017-06-01

    The aim of this paper is to optimize the operational parameters and quality of one step Metco Inconel 718 atomized powder laser cladded tracks, deposited on AISI 316 stainless steel substrate by means of a 1064 nm high power pulsed laser, together with a Precitec cladding head manipulated by a CLOOS 7 axes robot. The optimization of parameters and cladding quality has been assessed through Taguchi interaction matrix and graphical output. The study demonstrates that very good cladded layers with low dilution and increased mechanical proprieties could be fabricated using low laser energy density by involving a pulsed laser.

  13. Nuclear-powered pacemaker fuel cladding study

    International Nuclear Information System (INIS)

    Shoup, R.L.

    1976-07-01

    The fabrication of fuel capsules with refractory metal and alloy clads used in nuclear-powered cardiac pacemakers precludes the expedient dissolution of the clad in inorganic acid solutions. An experiment to measure penetration rates of acids on commonly used fuel pellet clads indicated that it is not impossible, but that it would be very difficult to dissolve the multiple cladding. This work was performed because of a suggestion that a 238 PuO 2 -powered pacemaker could be transformed into a terrorism weapon

  14. Modelling cladding response to changing conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tulkki, Ville; Ikonen, Timo [VTT Technical Research Centre of Finland ltd (Finland)

    2016-11-15

    The cladding of the nuclear fuel is subjected to varying conditions during fuel reactor life. Load drops and reversals can be modelled by taking cladding viscoelastic behaviour into account. Viscoelastic contribution to the deformation of metals is usually considered small enough to be ignored, and in many applications it merely contributes to the primary part of the creep curve. With nuclear fuel cladding the high temperature and irradiation as well as the need to analyse the variable load all emphasise the need to also inspect the viscoelasticity of the cladding.

  15. Rigorous modeling of cladding modes in photonic crystal fibers

    DEFF Research Database (Denmark)

    Rindorf, Lars Henning; Bang, Ole

    We study the cladding modes of a photonic crystal fiber (PCF) with a finite size cladding using a finite element method. The cladding consists of seven rings of air holes with bulk silica outside.......We study the cladding modes of a photonic crystal fiber (PCF) with a finite size cladding using a finite element method. The cladding consists of seven rings of air holes with bulk silica outside....

  16. Algae and Partiele Removal in Direct Filtration of Biesbosch Water: Influence of Algal Characteristics, Oxidation and other Pre-treatment Conditions

    NARCIS (Netherlands)

    Petrusvenski, B.

    1996-01-01

    Direct flitration is an economicaily and environmentally attractive altemative to conventional treatment of impounded surface watei, provided that the waler bource is of appropriate quality, However, direct filtration has limited partiele and algae removal capacity. Problems related to algae and

  17. Development of advanced zirconium fuel cladding

    International Nuclear Information System (INIS)

    Jeong, Young Hwan; Park, S. Y.; Lee, M. H.

    2007-04-01

    This report includes the manufacturing technology developed for HANA TM claddings, a series of their characterization results as well as the results of their in-pile and out-of pile performances tests which were carried out to develop some fuel claddings for a high burn-up (70,000MWd/mtU) which are competitive in the world market. Some of the HANA TM claddings, which had been manufactured based on the results from the 1st and 2nd phases of the project, have been tested in a research reactor in Halden of Norway for an in-pile performance qualification. The results of the in-pile test showed that the performance of the HANA TM claddings for corrosion and creep was better than 50% compared to that of Zircaloy-4 or A cladding. It was also found that the out-of pile performance of the HANA TM claddings for such as LOCA and RIA in some accident conditions corrosion creep, tensile, burst and fatigue was superior or equivalent to that of the Zircaloy-4 or A cladding. The project also produced the other many data which were required to get a license for an in-pile test of HANA TM claddings in a commercial reactor. The data for the qualification or characterization were provided for KNFC to assist their activities to get the license for the in-pile test of HANA TM Lead Test Rods(LTR) in a commercial reactor

  18. Cladding Alloys for Fluoride Salt Compatibility

    Energy Technology Data Exchange (ETDEWEB)

    Muralidharan, Govindarajan [ORNL; Wilson, Dane F [ORNL; Walker, Larry R [ORNL; Santella, Michael L [ORNL; Holcomb, David Eugene [ORNL

    2011-06-01

    This report provides an overview of several candidate technologies for cladding nickel-based corrosion protection layers onto high-temperature structural alloys. The report also provides a brief overview of the welding and weld performance issues associated with joining nickel-clad nickel-based alloys. From the available techniques, two cladding technologies were selected for initial evaluation. The first technique is a line-of-sight method that would be useful for cladding large structures such as vessel interiors or large piping. The line-of-sight method is a laser-based surface cladding technique in which a high-purity nickel powder mixed into a polymer binder is first sprayed onto the surface, baked, and then rapidly melted using a high-power laser. The second technique is a vapor phase technique based on the nickel-carbonyl process that is suitable for cladding inaccessible surfaces such as the interior surfaces of heat exchangers. An initial evaluation for performed on the quality of nickel claddings processed using the two selected cladding techniques.

  19. Nuclear fuel elements having a composite cladding

    Science.gov (United States)

    Gordon, Gerald M.; Cowan, II, Robert L.; Davies, John H.

    1983-09-20

    An improved nuclear fuel element is disclosed for use in the core of nuclear reactors. The improved nuclear fuel element has a composite cladding of an outer portion forming a substrate having on the inside surface a metal layer selected from the group consisting of copper, nickel, iron and alloys of the foregoing with a gap between the composite cladding and the core of nuclear fuel. The nuclear fuel element comprises a container of the elongated composite cladding, a central core of a body of nuclear fuel material disposed in and partially filling the container and forming an internal cavity in the container, an enclosure integrally secured and sealed at each end of said container and a nuclear fuel material retaining means positioned in the cavity. The metal layer of the composite cladding prevents perforations or failures in the cladding substrate from stress corrosion cracking or from fuel pellet-cladding interaction or both. The substrate of the composite cladding is selected from conventional cladding materials and preferably is a zirconium alloy.

  20. Metallography of pitted aluminum-clad, depleted uranium fuel

    International Nuclear Information System (INIS)

    Nelson, D.Z.; Howell, J.P.

    1994-01-01

    The storage of aluminum-clad fuel and target materials in the L-Disassembly Basin at the Savannah River Site for more than 5 years has resulted in extensive pitting corrosion of these materials. In many cases the pitting corrosion of the aluminum clad has penetrated in the uranium metal core, resulting in the release of plutonium, uranium, cesium-137, and other fission product activity to the basin water. In an effort to characterize the extent of corrosion of the Mark 31A target slugs, two unirradiated slug assemblies were removed from basin storage and sent to the Savannah River Technology Center for evaluation. This paper presents the results of the metallography and photographic documentation of this evaluation. The metallography confirmed that pitting depths varied, with the deepest pit found to be about 0.12 inches (3.05 nun). Less than 2% of the aluminum cladding was found to be breached resulting in less than 5% of the uranium surface area being affected by corrosion. The overall integrity of the target slug remained intact

  1. TEC – Thin Environmental Cladding

    Directory of Open Access Journals (Sweden)

    Alan Tomasi

    2015-05-01

    Full Text Available Permasteelisa Group developed with Fiberline Composites a new curtain wall system (Thin Environmental Cladding or TEC, making use of pultruded GFRP (Glass Fiber Reinforced Polymer material instead of traditional aluminum. Main advantages using GFRP instead of aluminum are the increased thermal performance and the limited environmental impact. Selling point of the selected GFRP resin is the light transmission, which results in pultruded profiles that allow the visible light to pass through them, creating great aesthetical effects. However, GFRP components present also weaknesses, such as high acoustic transmittance (due to the reduced weight and anisotropy of the material, low stiffness if compared with aluminum (resulting in higher facade deflection and sensible fire behavior (as combustible material. This paper will describe the design of the TEC-facade, highlighting the functional role of glass within the facade concept with regards to its acoustic, structural, aesthetics and fire behavior.

  2. HF-based clad etching of fibre Bragg grating and its utilization in ...

    Indian Academy of Sciences (India)

    2014-02-09

    Feb 9, 2014 ... This paper presents a fiber Bragg grating (FBG) based sensor to study the concentration of laser dye in dye–ethanol solution. The FBG used in this experiment is indigenously developed using 255 nm UV radiations from copper vapour laser. The cladding of the FBG was partially removed using HF-based ...

  3. HF-based clad etching of fibre Bragg grating and its utilization in ...

    Indian Academy of Sciences (India)

    2014-02-09

    Feb 9, 2014 ... Abstract. This paper presents a fiber Bragg grating (FBG) based sensor to study the concentration of laser dye in dye–ethanol solution. The FBG used in this experiment is indigenously developed using 255 nm UV radiations from copper vapour laser. The cladding of the FBG was partially removed using ...

  4. Detection of fatigue cracks in cladded blocks

    International Nuclear Information System (INIS)

    Singh, G.P.; Cervantes, R.A.; Manning, R.C.; Takama, S.

    1986-01-01

    A nuclear reactor pressure vessel (RPV) operates at high temperatures. Feedwater nozzles are susceptible to thermal fatigue; and, after a large number of plant startup/shutdown cycles, thermal fatigue cracking may be initiated at these nozzles. In order to address this problem, ultrasonic data were acquired from five cladded specimens with overall approximate 4-mm thick stainless steel cladding; the specimens contained one fatigue crack each. The study evaluates the application of signal processing and pattern recognition methods to discriminate between base metal-to-clad interface signals and fatigue crack signals. Details are presented

  5. CALCULATION OF STRESS AND DEFORMATION IN FUEL ROD CLADDING DURING PELLET-CLADDING INTERACTION

    Directory of Open Access Journals (Sweden)

    Dávid Halabuk

    2015-12-01

    Full Text Available The elementary parts of every fuel assembly, and thus of the reactor core, are fuel rods. The main function of cladding is hermetic separation of nuclear fuel from coolant. The fuel rod works in very specific and difficult conditions, so there are high requirements on its reliability and safety. During irradiation of fuel rods, a state may occur when fuel pellet and cladding interact. This state is followed by changes of stress and deformations in the fuel cladding. The article is focused on stress and deformation analysis of fuel cladding, where two fuels are compared: a fresh one and a spent one, which is in contact with cladding. The calculations are done for 4 different shapes of fuel pellets. It is possible to evaluate which shape of fuel pellet is the most appropriate in consideration of stress and deformation forming in fuel cladding, axial dilatation of fuel, and radial temperature distribution in the fuel rod, based on the obtained results.

  6. Chemical compatibility between cladding alloys and advanced fuels

    International Nuclear Information System (INIS)

    Fee, D.C.; Johnson, C.E.

    1975-05-01

    The National Advanced Fuels Program requires chemical, mechanical, and thermophysical properties data for cladding alloys. The compatibility behavior of cladding alloys with advanced fuels is critically reviewed. in carbide fuel pins, the principal compatibility problem is cladding carburization, diffusion of carbon into the cladding matrix accompanied by carbide precipitation. Carburization changes the mechanical properties of the cladding alloy. The extent of carburization increases in sodium (versus gas) bonded fuels. The depth of carburization increases with increasing sesquicarbide (M 2 C 3 ) content of the fuel. In nitride fuel pins, the principal compatibility problem is cladding nitriding, diffusion of nitrogen into the cladding matrix accompanied by nitride precipitation. Nitriding changes the mechanical properties of the cladding alloy. In both carbide and nitride fuel pins, fission products do not migrate appreciably to the cladding and do not appear to contribute to cladding attack. 77 references. (U.S.)

  7. Friction Surface Cladding of AA1050 on AA2024-T351; influence of clad layer thickness and tool rotation rate

    NARCIS (Netherlands)

    Liu, Shaojie; Bor, Teunis Cornelis; Geijselaers, Hubertus J.M.; Akkerman, Remko

    2015-01-01

    Friction Surfacing Cladding (FSC) is a recently developed solid state process to deposit thin metallic clad layers on a substrate. The process employs a rotating tool with a central opening to supply clad material and support the distribution and bonding of the clad material to the substrate. The

  8. CREEP STRAIN CORRELATION FOR IRRADIATED CLADDING

    International Nuclear Information System (INIS)

    P. Macheret

    2001-01-01

    In an attempt to predict the creep deformation of spent nuclear fuel cladding under the repository conditions, different correlations have been developed. One of them, which will be referred to as Murty's correlation in the following, and whose expression is given in Henningson (1998), was developed on the basis of experimental points related to unirradiated Zircaloy cladding (Henningson 1998, p. 56). The objective of this calculation is to adapt Murty's correlation to experimental points pertaining to irradiated Zircaloy cladding. The scope of the calculation is provided by the range of experimental parameters characterized by Zircaloy cladding temperature between 292 C and 420 C, hoop stress between 50 and 630 MPa, and test time extending to 8000 h. As for the burnup of the experimental samples, it ranges between 0.478 and 64 MWd/kgU (i.e., megawatt day per kilogram of uranium), but this is not a parameter of the adapted correlation

  9. MODELLING OF NUCLEAR FUEL CLADDING TUBES CORROSION

    Directory of Open Access Journals (Sweden)

    Miroslav Cech

    2016-12-01

    Full Text Available This paper describes materials made of zirconium-based alloys used for nuclear fuel cladding fabrication. It is focused on corrosion problems their theoretical description and modeling in nuclear engineering.

  10. GSGG edge cladding development: Final technical report

    International Nuclear Information System (INIS)

    Izumitani, T.; Meissner, H.E.; Toratani, H.

    1986-01-01

    The objectives of this project have been: (1) Investigate the possibility of chemical etching of GSGG crystal slabs to obtain increased strength. (2) Design and construct a simplified mold assembly for casting cladding glass to the edges of crystal slabs of different dimensions. (3) Conduct casting experiments to evaluate the redesigned mold assembly and to determine stresses as function of thermal expansion coefficient of cladding glass. (4) Clad larger sizes of GGG slabs as they become available. These tasks have been achieved. Chemical etching of GSGG slabs does not appear possible with any other acid than H 3 PO 4 at temperatures above 300 0 C. A mold assembly has been constructed which allowed casting cladding glass around the edges of the largest GGG slabs available (10 x 20 x 160 mm) without causing breakage through the annealing step

  11. Optimization of metal-clad waveguide sensors

    DEFF Research Database (Denmark)

    Skivesen, N.; Horvath, R.; Pedersen, H.C.

    2005-01-01

    The present paper deals with the optimization of metal-clad waveguides for sensor applications to achieve high sensitivity for adlayer and refractive index measurements. By using the Fresnel reflection coefficients both the angular shift and the width of the resonances in the sensorgrams are taken...... into account. Our optimization shows that it is possible for metal-clad waveguides to achieve a sensitivity improvement of 600% compared to surface-plasmon-resonance sensors....

  12. Plasmonic waveguides cladded by hyperbolic metamaterials.

    Science.gov (United States)

    Ishii, Satoshi; Shalaginov, Mikhail Y; Babicheva, Viktoriia E; Boltasseva, Alexandra; Kildishev, Alexander V

    2014-08-15

    Strongly anisotropic media with hyperbolic dispersion can be used for claddings of plasmonic waveguides (PWs). In order to analyze the fundamental properties of such waveguides, we analytically study 1D waveguides arranged from a hyperbolic metamaterial (HMM) in a HMM-Insulator-HMM (HIH) structure. We show that HMM claddings give flexibility in designing the properties of HIH waveguides. Our comparative study on 1D PWs reveals that HIH-type waveguides can have a higher performance than MIM or IMI waveguides.

  13. The effect of droplet sprinkling on the oxidation kinetics of zirconium cladding in steam

    International Nuclear Information System (INIS)

    Dzhusov, Y.P.; Efanov, A.D.; Kalyakin, S.G.; Khoruzhii, O.V.; Likhanskii, V.V.; Malynkin, V.G.; Matweev, L.V.; Shumsky, R.V.; Stein, Y.Y.; Volcheck, A.M.

    2000-01-01

    The influence of oxide layer cracking on the acceleration of Zr cladding oxidation in steam was investigated. Cracking occurs due to temperature gradients, which arise during cooling of the cladding surface by droplet jets. Experimental results on characteristics of heat removal and the temperature gradients induced are presented for different regimes of sprinkling. A model for the calculation of mechanical stresses under the experimental conditions was developed in frame of the theory of envelopes. It was shown that the stresses are sufficiently high to induce cracking of the outer oxide layer. Experimental investigations of oxidation kinetics of Zr-1%Nb cladding were carried out under the conditions of surface cooling by droplet jets. The results of these experiments confirmed that the reaction of oxidation can be strongly accelerated by sprinkling. (orig.)

  14. TEC – Thin Environmental Cladding

    Directory of Open Access Journals (Sweden)

    Alan Tomasi

    2014-06-01

    Full Text Available Corresponding author: Alan Tomasi, Group R&D Project Manager, Permasteelisa S.p.A., viale E. Mattei 21/23 | 31029 Vittorio Veneto, Treviso, Italy. Tel.: +39 0438 505207; E-mail: a.tomasi@permasteelisagroup.com; www.permasteelisagroup.com Permasteelisa Group developed with Fiberline Composites a new curtain wall system (Thin Environmental Cladding or TEC, making use of pultruded GFRP (Glass Fiber Reinforced Polymer material instead of traditional aluminum. Main advantages using GFRP instead of aluminum are the increased thermal performance and the limited environmental impact. Selling point of the selected GFRP resin is the light transmission, which results in pultruded profiles that allow the visible light to pass through them, creating great aesthetical effects. However, GFRP components present also weaknesses, such as high acoustic transmittance (due to the reduced weight and anisotropy of the material, low stiffness if compared with aluminum (resulting in higher facade deflection and sensible fire behavior (as combustible material. This paper will describe the design of the TEC-facade, highlighting the functional role of glass within the facade concept with regards to its acoustic, structural, aesthetics and fire behavior.

  15. Development of tensile test techniques for irradiated fuel cladding in hot cell

    International Nuclear Information System (INIS)

    Kim, D. S.; Hong, G. P.; Joo, Y. S.; Ahn, S. B.; Jeong, Y. H.; Oh, W. H.; Baek, S. J.

    2003-01-01

    To estimate the longitudinal and transverse tensile properties of fuel cladding in hot cell, existing tensile test techniques are reviewed. The specimen geometries have been optimized to determine the constitutive stress-strain properties of the cladding in both the longitudinal and transverse directions. The dogbone tube specimen for the longitudinal tensile test is designed to have a uniform strain distribution at the gage section. The ring specimen design for the transverse tensile test is conducted to maximize uniformity of strain distribution in the uniaxial ring specimen and to assure plane strain conditions in the plane-strain ring specimen. Fuel pellets in the cladding are removed by using the mechanical(grinding or drilling) or chemical(dissolution) method. The specimens are machined by a traveling-wire electrical discharge machine in hot cell. The pin-loaded grip is used for the longitudinal tensile test of an irradiated specimen. The grip for the transverse tensile test is designed such that a constant specimen curvature is maintained during deformation, and the interface was lubricated to minimize the friction between the outer surface of the die insert and the inner surface of the cladding specimen. In order to determine the constitutive stress-strain response of the cladding specimens, the machine compliance should be considered. The essential data for fuel damage criteria used in regulation and the material properties used in safety analyses could be obtained

  16. Aplicação de adsorção para remover amônia de efluentes suinícolas pré-tratados Adsorption applied to the removal of ammonia from pre-treated piggery wastewater

    Directory of Open Access Journals (Sweden)

    Martha Mayumi Higarashi

    2008-01-01

    Full Text Available The aim of this work is to evaluate the use of natural zeolites to remove the NH4+ that remains in effluents from swine facilities which were submitted to physico-chemical and biological treatments. Experiments were made in batch made adding 5% (w/w of adsorbent (0.6-1.3 and 3.0-8.0 mm to synthetic and real swine facilities effluents. The results show that ammonium removal is influenced by adsorbent particle size and the presence of other ions in the effluent. The adsorption equilibrium was described by Langmuir as well as Freundlich isotherms and the kinetic data fitted well a pseudo-second order model.

  17. Two-Channel SPR Sensor Combined Application of Polymer- and Vitreous-Clad Optic Fibers

    Directory of Open Access Journals (Sweden)

    Yong Wei

    2017-12-01

    Full Text Available By combining a polymer-clad optic fiber and a vitreous-clad optic fiber, we proposed and fabricated a novel optic fiber surface plasmon resonance (SPR sensor to conduct two-channel sensing at the same detection area. The traditional optic fiber SPR sensor has many disadvantages; for example, removing the cladding requires corrosion, operating it is dangerous, adjusting the dynamic response range is hard, and producing different resonance wavelengths in the sensing area to realize a multi-channel measurement is difficult. Therefore, in this paper, we skillfully used bare fiber grinding technology and reverse symmetry welding technology to remove the cladding in a multi-mode fiber and expose the evanescent field. On the basis of investigating the effect of the grinding angle on the dynamic range change of the SPR resonance valley wavelength and sensitivity, we combined polymer-clad fiber and vitreous-clad fiber by a smart design structure to realize at a single point a two-channel measurement fiber SPR sensor. In this paper, we obtained a beautiful spectral curve from a multi-mode fiber two-channel SPR sensor. In the detection range of the refractive rate between 1.333 RIU and 1.385 RIU, the resonance valley wavelength of channel Ⅰ shifted from 622 nm to 724 nm with a mean average sensitivity of 1961 nm/RIU and the resonance valley wavelength of channel Ⅱ shifted from 741 nm to 976 nm with a mean average sensitivity of 4519 nm/RIU.

  18. Clad Degradation- Summary and Abstraction for LA

    International Nuclear Information System (INIS)

    D. Stahl

    2004-01-01

    The purpose of this model report is to develop the summary cladding degradation abstraction that will be used in the Total System Performance Assessment for the License Application (TSPA-LA). Most civilian commercial nuclear fuel is encased in Zircaloy cladding. The model addressed in this report is intended to describe the postulated condition of commercial Zircaloy-clad fuel as a function of postclosure time after it is placed in the repository. Earlier total system performance assessments analyzed the waste form as exposed UO 2 , which was available for degradation at the intrinsic dissolution rate. Water in the waste package quickly became saturated with many of the radionuclides, limiting their release rate. In the total system performance assessments for the Viability Assessment and the Site Recommendation, cladding was analyzed as part of the waste form, limiting the amount of fuel available at any time for degradation. The current model is divided into two stages. The first considers predisposal rod failures (most of which occur during reactor operation and associated activities) and postdisposal mechanical failure (from static loading of rocks) as mechanisms for perforating the cladding. Other fuel failure mechanisms including those caused by handling or transportation have been screened out (excluded) or are treated elsewhere. All stainless-steel-clad fuel, which makes up a small percentage of the overall amount of fuel to be stored, is modeled as failed upon placement in the waste packages. The second stage of the degradation model is the splitting of the cladding from the reaction of water or moist air and UO 2 . The splitting has been observed to be rapid in comparison to the total system performance assessment time steps and is modeled to be instantaneous. After the cladding splits, the rind buildup inside the cladding widens the split, increasing the diffusion area from the fuel rind to the waste package interior. This model report summarizes the

  19. Accident tolerant fuel cladding development: Promise, status, and challenges

    Science.gov (United States)

    Terrani, Kurt A.

    2018-04-01

    The motivation for transitioning away from zirconium-based fuel cladding in light water reactors to significantly more oxidation-resistant materials, thereby enhancing safety margins during severe accidents, is laid out. A review of the development status for three accident tolerant fuel cladding technologies, namely coated zirconium-based cladding, ferritic alumina-forming alloy cladding, and silicon carbide fiber-reinforced silicon carbide matrix composite cladding, is offered. Technical challenges and data gaps for each of these cladding technologies are highlighted. Full development towards commercial deployment of these technologies is identified as a high priority for the nuclear industry.

  20. Plug-welding of ODS cladding tube for BOR-60 irradiation. Welding condition setting. Device remodeling and welding

    International Nuclear Information System (INIS)

    Seki, Masayuki; Ishibashi, Fujio; Kono, Syusaku; Hirako, Kazuhito; Tsukada, Tatsuya

    2003-04-01

    Irradiation test in BOR-60 at RIAR to judge practical use prospect of ODS cladding tube at early stage is planned as Japan-Russia a joint research. RIAR does fuel design of fuel pin used for this joint research. JNC manufactures ODS cladding tube and bar materials (two steel kind of martensite and ferrite), upper endplug production. They are welded by pressurized resistance welding, and are inspected in JNC Tokai, transported to RIAR. And RIAR manufactures vibration packing fuel pin. On the upper endplug welding by pressurized resistance welding method, we worded on the problems such as decision of welding condition by changing the size and crystallization of cladding tube and the design of endplug, and the chucking device remodeling to correspond to the long scale cladding tube welding system (included handling) and of quality assurance method. Especially, use of long scale cladding tube caused problem that bending transformation occurred in cladding tube by welding pressure. However, we solved this problem by shortening the distance of cladding tube colette chuck and pressure receiving, and by putting the sleeve in an internal space of welding machine, losing the bending of cladding tube. Moreover, welding defects were occurred by the difference of an inside state, an inside defect and recrystallization of cladding tube. We solved the problem by inside grinding for the edge of tube, angle beam method by ultrasonic wave, and ultrasonic wave form confirmation. Manufacturing process with long scale cladding tube including heat-treatment to remove combustion return and remaining stress was established besides, Afterwards, welding of ODS cladding tube and upper endplug. As the quality assurance system, we constructed [Documented procedure (referred to JOYO)] based on [Document of the QA plan] by OEC. Welding and inspection were executed by the document procedure. It is thought that the quality assurance method become references for the irradiation test in JOYO in the

  1. A pellet-clad interaction failure criterion

    International Nuclear Information System (INIS)

    Howl, D.A.; Coucill, D.N.; Marechal, A.J.C.

    1983-01-01

    A Pellet-Clad Interaction (PCI) failure criterion, enabling the number of fuel rod failures in a reactor core to be determined for a variety of normal and fault conditions, is required for safety analysis. The criterion currently being used for the safety analysis of the Pressurized Water Reactor planned for Sizewell in the UK is defined and justified in this paper. The criterion is based upon a threshold clad stress which diminishes with increasing fast neutron dose. This concept is consistent with the mechanism of clad failure being stress corrosion cracking (SCC); providing excess corrodant is always present, the dominant parameter determining the propagation of SCC defects is stress. In applying the criterion, the SLEUTH-SEER 77 fuel performance computer code is used to calculate the peak clad stress, allowing for concentrations due to pellet hourglassing and the effect of radial cracks in the fuel. The method has been validated by analysis of PCI failures in various in-reactor experiments, particularly in the well-characterised power ramp tests in the Steam Generating Heavy Water Reactor (SGHWR) at Winfrith. It is also in accord with out-of-reactor tests with iodine and irradiated Zircaloy clad, such as those carried out at Kjeller in Norway. (author)

  2. A comprehensive study on removal and recovery of copper(II) from aqueous solutions by NaOH-pretreated Marrubium globosum ssp. globosum leaves powder: potential for utilizing the copper(II) condensed desorption solutions in agricultural applications.

    Science.gov (United States)

    Kililç, Mehmet; Yazilcil, Hüseyin; Solak, Murat

    2009-04-01

    This paper reports on removal and recovery of copper(II) ions from aqueous solutions under batch experimental conditions using NaOH-pretreated powdered leaves of Marrubium globosum ssp. globosum plant. Experimental results showed that pH was optimized at the value of 5.5 by 16.23 mg/g. The increasing metal concentration and temperature caused an increase in biosorption capacity and the process reached its equilibrium in 60 min. The result obtained from kinetic and isotherm studies resulted in better agreement with pseudo second-order kinetic and Langmuir isotherm models. Thermodynamic parameters revealed that the Cu(2+) biosorption by the biomass was an endothermic process. The higher desorption efficiency above 90% was obtained in case of using Na(2)EDTA, K(4)O(7)P(2), HNO(3), HCl, and (NH(4))(2)C(2)O(4) x H(2)O solutions, individually. Reusability of the biomass was examined under consecutive biosorption-desorption cycles repeating five times. The most interesting finding of the study is the idea of utilizing the EDTA-Cu complex, which can be qualified as a residual from desorption processes, as a liquid chemical fertilizer in agricultural applications.

  3. Integrated analysis of hydrothermal flow through pretreatment

    Directory of Open Access Journals (Sweden)

    Archambault-Leger Veronique

    2012-07-01

    Full Text Available Abstract Background The impact of hydrothermal flowthrough (FT pretreatment severity on pretreatment and solubilization performance metrics was evaluated for three milled feedstocks (corn stover, bagasse, and poplar and two conversion systems (simultaneous saccharification and fermentation using yeast and fungal cellulase, and fermentation by Clostridium thermocellum. Results Compared to batch pretreatment, FT pretreatment consistently resulted in higher XMG recovery, higher removal of non-carbohydrate carbon and higher glucan solubilization by simultaneous saccharification and fermentation (SSF. XMG recovery was above 90% for FT pretreatment below 4.1 severity but decreased at higher severities, particularly for bagasse. Removal of non-carbohydrate carbon during FT pretreatment increased from 65% at low severity to 80% at high severity for corn stover, and from 40% to 70% for bagasse and poplar. Solids obtained by FT pretreatment were amenable to high conversion for all of the feedstocks and conversion systems examined. The optimal time and temperature for FT pretreatment on poplar were found to be 16 min and 210°C. At these conditions, SSF glucan conversion was about 85%, 94% of the XMG was removed, and 62% of the non carbohydrate mass was solubilized. Solubilization of FT-pretreated poplar was compared for C. thermocellum fermentation (10% inoculum, and for yeast-fungal cellulase SSF (5% inoculum, cellulase loading of 5 and 10 FPU/g glucan supplemented with β-glucosidase at 15 and 30 U/g glucan. Under the conditions tested, which featured low solids concentration, C. thermocellum fermentation achieved faster rates and more complete conversion of FT-pretreated poplar than did SSF. Compared to SSF, solubilization by C. thermocellum was 30% higher after 4 days, and was over twice as fast on ball-milled FT-pretreated poplar. Conclusions XMG removal trends were similar between feedstocks whereas glucan conversion trends were significantly

  4. Inspection system for Zircaloy clad fuel rods

    International Nuclear Information System (INIS)

    Yancey, M.E.; Porter, E.H.; Hansen, H.R.

    1975-10-01

    A description is presented of the design, development, and performance of a remote scanning system for nondestructive examination of fuel rods. Characteristics that are examined include microcracking of fuel rod cladding, fuel-cladding interaction, cladding thickness, fuel rod diameter variation, and fuel rod bowing. Microcracking of both the inner and outer fuel rod surfaces and variations in wall thickness are detected by using a pulsed eddy current technique developed by Argonne National Laboratory (ANL). Fuel rod diameter variation and fuel rod bowing are detected by using two linear variable differential transformers (LVDTs) and a signal conditioning system. The system's mechanical features include variable scanning speeds, a precision indexing system, and a servomechanism to maintain proper probe alignment. Initial results indicate that the system is a very useful mechanism for characterizing irradiated fuel rods

  5. Laser cladding to select new glassy alloys

    International Nuclear Information System (INIS)

    Medrano, L.L.O.; Afonso, C.R.M.; Kiminami, C.S.; Gargarella, P.; Ramasco, B.

    2016-01-01

    A new experimental technique used to analyze the effect of compositional variation and cooling rate in the phase formation in a multicomponent system is the laser cladding. This work have evaluated the use of laser cladding to discover a new bulk metallic glass (BMG) in the Al-Co-Zr system. Coatings with composition variation have made by laser cladding using Al-Co-Zr alloys powders and the samples produced have been characterized by X ray diffraction, microscopy and energy-dispersive X-ray spectroscopy. The results did not show the composition variation as expected, because of incomplete melting during laser process. It was measured a composition variation tendency that allowed the glass forming investigation by the glass formation criterion λ+Δh 1/2 . The results have showed no glass formation in the coating samples, which prove a limited capacity of Zr-Co-Al system to form glass (author)

  6. Potential effects of gallium on cladding materials

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, D.F.; Beahm, E.C.; Besmann, T.M.; DeVan, J.H.; DiStefano, J.R.; Gat, U.; Greene, S.R.; Rittenhouse, P.L.; Worley, B.A.

    1997-10-01

    This paper identifies and examines issues concerning the incorporation of gallium in weapons derived plutonium in light water reactor (LWR) MOX fuels. Particular attention is given to the more likely effects of the gallium on the behavior of the cladding material. The chemistry of weapons grade (WG) MOX, including possible consequences of gallium within plutonium agglomerates, was assessed. Based on the calculated oxidation potentials of MOX fuel, the effect that gallium may have on reactions involving fission products and possible impact on cladding performance were postulated. Gallium transport mechanisms are discussed. With an understanding of oxidation potentials and assumptions of mechanisms for gallium transport, possible effects of gallium on corrosion of cladding were evaluated. Potential and unresolved issues and suggested research and development (R and D) required to provide missing information are presented.

  7. Stress corrosion testing of irradiated cladding tubes

    International Nuclear Information System (INIS)

    Lunde, L.; Olshausen, K.D.

    1980-01-01

    Samples from two fuel rods with different cladding have been stress corrosion tested by closed-end argon-iodine pressurization at 320 0 C. The fuel rods with stress relieved and recrystallized Zircaloy-2 had received burnups of 10.000 and 20.000 MWd/ton UO 2 , respectively. It was found that the SCC failure stress was unchanged or slightly higher for the irradiated than for the unirradiated control tubes. The tubes failed consistently in the end with the lowest irradiation dose. The diameter increase of the irradiated cladding during the test was 1.1% for the stress-relieved samples and 0.24% for the recrystallized samples. SEM examination revealed no major differences between irradiated and unirradiated cladding. A ''semi-ductile'' fracture zone in recrystallized material is described in some detail. (author)

  8. Potential effects of gallium on cladding materials

    International Nuclear Information System (INIS)

    Wilson, D.F.; Beahm, E.C.; Besmann, T.M.; DeVan, J.H.; DiStefano, J.R.; Gat, U.; Greene, S.R.; Rittenhouse, P.L.; Worley, B.A.

    1997-10-01

    This paper identifies and examines issues concerning the incorporation of gallium in weapons derived plutonium in light water reactor (LWR) MOX fuels. Particular attention is given to the more likely effects of the gallium on the behavior of the cladding material. The chemistry of weapons grade (WG) MOX, including possible consequences of gallium within plutonium agglomerates, was assessed. Based on the calculated oxidation potentials of MOX fuel, the effect that gallium may have on reactions involving fission products and possible impact on cladding performance were postulated. Gallium transport mechanisms are discussed. With an understanding of oxidation potentials and assumptions of mechanisms for gallium transport, possible effects of gallium on corrosion of cladding were evaluated. Potential and unresolved issues and suggested research and development (R and D) required to provide missing information are presented

  9. Modelling of pellet-clad interaction during power ramps

    International Nuclear Information System (INIS)

    Zhou, G.; Lindback, J.E.; Schutte, H.C.; Jernkvist, L.O.; Massih, A.R.; Massih, A.R.

    2005-01-01

    A computational method to describe the pellet-clad interaction phenomenon is presented. The method accounts for the mechanical contact between fragmented pellets and the zircaloy clad, as well as for chemical reaction of fission products with zircaloy during power ramps. Possible pellet-clad contact states, soft, hard and friction, are taken into account in the computational algorithm. The clad is treated as an elastic-plastic-viscoplastic material with irradiation hardening. Iodine-induced stress corrosion cracking is described by using a fracture mechanics-based model for crack propagation. This integrated approach is used to evaluate two power ramp experiments made on boiling water reactor fuel rods in test reactors. The influence of the pellet-clad coefficient of friction on clad deformation is evaluated and discussed. Also, clad deformations, pellet-clad gap size and fission product gas release for one of the ramped rods are calculated and compared with measured data. (authors)

  10. Multilayer cladding with hyperbolic dispersion for plasmonic waveguides

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Shalaginov, Mikhail Y.; Ishii, Satoshi

    2015-01-01

    We study the properties of plasmonic waveguides with a dielectric core and multilayer metal-dielectric claddings that possess hyperbolic dispersion. The waveguides hyperbolic multilayer claddings show better performance in comparison to conventional plasmonic waveguides. © OSA 2015....

  11. Management of cladding hulls and fuel hardware

    International Nuclear Information System (INIS)

    1985-01-01

    The reprocessing of spent fuel from power reactors based on chop-leach technology produces a solid waste product of cladding hulls and other metallic residues. This report describes the current situation in the management of fuel cladding hulls and hardware. Information is presented on the material composition of such waste together with the heating effects due to neutron-induced activation products and fuel contamination. As no country has established a final disposal route and the corresponding repository, this report also discusses possible disposal routes and various disposal options under consideration at present

  12. Evaluation of fast experimental reactor claddings, (2)

    International Nuclear Information System (INIS)

    Miura, Makoto; Nagaki, Hiroshi; Koyama, Masahiro; Tanaka, Yasumasa

    1974-01-01

    Thin-walled fine tubes of Type 316 austenitic stainless steel are used for fuel cladding in Joyo (experimental FBR). The material exhibits the change of the mechanical properties in long-time annealing at high temperature, resulting from the precipitation of carbide in structure. In this connection, the experiment and the results on the changes of the microstructure and mechanical properties (proof stress and hardness) are described. The test specimens are the fuel cladding tubes produced for trial for Joyo core and those for FFTF core made in the U.S.A. They were heated between 400 0 and 850 0 C for 1000 hr in vacuum. (Mori, K.)

  13. Inpile (in PWR) testing of cladding materials

    International Nuclear Information System (INIS)

    Hahn, R.; Jeong, Y. H.; Baek, B. J.; Kim, K. H.; Kim, S. J.; Choi, B. K.; Kim, J. M.

    1999-04-01

    As an introduction, the reasons to perform inpile tests are depicted. An overview over general inpile test procedure is given, and test details which are necessary for the development of new alloys for high burnup claddings, like sample geometries and measuring techniques for inpile corrosion testing, are described in detail. Tests for the creep and length change behavior of cladding tubes are described briefly. Finally, conclusions are drawn and literature citations for further test details are given. (author). 9 refs., 2 tabs., 17 figs

  14. Polarization effects in silicon-clad optical waveguides

    Science.gov (United States)

    Carson, R. F.; Batchman, T. E.

    1984-01-01

    By changing the thickness of a semiconductor cladding layer deposited on a planar dielectric waveguide, the TE or TM propagating modes may be selectively attenuated. This polarization effect is due to the periodic coupling between the lossless propagating modes of the dielectric slab waveguide and the lossy modes of the cladding layer. Experimental tests involving silicon claddings show high selectivity for either polarization.

  15. Functionally graded materials produced by laser cladding

    NARCIS (Netherlands)

    Pei, Y.T.; Hosson, J.Th.M. De

    2000-01-01

    AlSi40 functionally graded materials (FGMs) were produced by a one-step laser cladding process on cast Al-alloy substrate as a possible solution for interfacial problems often present in laser coatings. The microstructure of the FGMs consists of a large amount of silicon primary particles surrounded

  16. Crud deposits on zircaloy-clad fuel

    International Nuclear Information System (INIS)

    Lister, D.H.

    1980-05-01

    The information on in-reactor corrosion of Zircaloy fuel cladding and crud deposition on fuel generated by Atomic Energy of Canada Limited up to 1979 has been reviewed elsewhere. This report is a summary of the crud deposition part of that review. (auth)

  17. The measurement of residual stresses in claddings

    International Nuclear Information System (INIS)

    Hofer, G.; Bender, N.

    1978-01-01

    The ring core method, a variation of the hole drilling method for the measurement of biaxial residual stresses, has been extended to measure stresses from depths of about 5 to 25mm. It is now possible to measure the stress profiles of clad material. Examples of measured stress profiles are shown and compared with those obtained with a sectioning technique. (author)

  18. Thermodynamics of pellet-cladding interaction

    International Nuclear Information System (INIS)

    Kyoh, Bunkei; Fuji, Kensho

    1987-01-01

    Equilibrium thermodynamic calculations are performed on the U-Zr-Cs-I-O system that is assumed to exist in the fuel-cladding gap of light water reactor (LWR) fuel under pellet-cladding interaction (PCI) failure condition. For this purpose a computer program called SOLGASMIX-PV for the calculation of complex multi-component equilibria is used, and the results of postirradiation examination are interpreted. The analysis of the thermodynamics of the system U-Zr-Cs-I-O indicates that cesium and iodine are assumed to be released from fuel pellet into the fuel-cladding gap as CsI, therefore, the Cs/I ratio in fuel-cladding bonding zone is one. The important condensed phases in this region are UO 2 , U 3 O 8 , Cs 2 U 2 O 7 , Cs 2 U 15 O 46 , ZrO 2 and CsI, and the major gaseous species are CsI, I 2 and I. Under this situation where Cs/I ratio is one, cesium-zirconate is not present. If, however, cesium rich phase is partially present then cesium will be associated with zirconium, possibly as Cs 2 ZrO 3 . (author)

  19. Composite cladding for nuclear fuel elements

    International Nuclear Information System (INIS)

    Armijo, J.S.

    1975-01-01

    The composite cladding described is for nuclear reactors and comprises a zirconium alloy substrate, a metallurgically bonded metal barrier on the inner surface of the substrate, and a metallurgically bonded internal coating on the inner surface of the metal barrier. The metal of the barrier is selected from aluminium, niobium, copper, nickel, stainless steel or iron. The internal coating is zirconium alloy [fr

  20. Study and Behaviour of Prefabricated Composite Cladding

    Science.gov (United States)

    Sai Avinash, P.; Thiagarajan, N.; Santhi, A. S.

    2017-07-01

    The incessant population rise entailed for an expeditious construction at competitive prices that steered the customary path to the light weight structural components. This lead to construction of structural components using ferrocement. The load bearing structural cladding, sizing 3200x900x100 mm, is chosen for the study, which, is analyzed using the software ABAQUS 6.14 in accordance with the IS:875-87 Part1, IS:875-87 Part2, ACI 549R-97, ACI 318R-08 and NZS:3101-06 Part1 standards. The Ferrocement claddings (FCs) are fabricated to a scaled dimension of 400x115x38 mm. The light weight-high strength phenomena are corroborated by incorporating Glass Fibre Reinforced Polymer Laminates (GFRPL) of thickness 6mm, engineered with the aid of hand layup (wet layup) technique wielding epoxy resin, followed by curing under room temperature. The epoxy resin is employed for fastening ferrocement cladding with the Glass fiber reinforced polymer laminate, with the contemporary methodology. The compressive load carrying capacity of the amalgamated assembly, both in presence and absence of Glass Fibre Reinforced polymer laminates (GFRPL) on either side of Ferrocement cladding, has been experimented.

  1. Dissolution of aluminium-cladded fuel elements

    International Nuclear Information System (INIS)

    Bernhard, G.; Boessert, W.; Hladik, O.; Schwarzbach, R.

    1984-01-01

    In the molybdenum production plant at Rossendorf (AMOR) short-term irradiated aluminium-cladded fuel elements from the Rossendorf research reactor RFR are dissolved for the purpose of molybdenum 99 production. The dissolution behaviour of these fuel elements and the appropriate dissolver are described. (author)

  2. Experimental assessment of fuel-cladding interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Elizabeth Sooby [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-29

    A range of fuel concepts designed to better tolerate accident scenarios and reactor transients are currently undergoing fundamental development at national laboratories as well as university and industrial partners. Pellet-clad mechanical and chemical interaction can be expected to affect fuel failure rates experienced during steady state operation, as well as dramatically impact the response of the fuel form under loss of coolant and other accident scenarios. The importance of this aspect of fuel design prompted research initiated by AFC in FY14 to begin exploratory efforts to characterize this phenomenon for candidate fuelcladding systems of immediate interest. Continued efforts in FY15 and FY17 aimed to better understand and simulate initial pellet-clad interaction with little-to-no pressure on the pellet-clad interface. Reported here are the results from 1000 h heat treatments at 400, 500, and 600°C of diffusion couples pairing UN with a FeCrAl alloy, SiC, and Zr-based cladding candidate sealed in evacuated quartz ampoules. No gross reactions were observed, though trace elemental contaminants were identified.

  3. Plasmonic waveguides cladded by hyperbolic metamaterials

    DEFF Research Database (Denmark)

    Ishii, Satoshi; Shalaginov, Mikhail Y.; Babicheva, Viktoriia E.

    2014-01-01

    Strongly anisotropic media with hyperbolic dispersion can be used for claddings of plasmonic waveguides (PWs). In order to analyze the fundamental properties of such waveguides, we analytically study 1D waveguides arranged from a hyperbolic metamaterial (HMM) in a HMM-Insulator-HMM (HIH) structur...

  4. Prevention of nuclear fuel cladding materials corrosion

    International Nuclear Information System (INIS)

    Yang, K.R.; Yang, J.C.; Lee, I.C.; Kang, H.D.; Cho, S.W.; Whang, C.K.

    1983-01-01

    The only way which could be performed by the operator of nuclear power plant to minimizing the degradation of nuclear fuel cladding material is to control the water quality of primary coolant as specified standard conditions which dose not attack the cladding material. If the water quality of reactor coolant does not meet far from the specification, the failure will occure not only cladding material itself but construction material of primary system which contact with the coolant. The corrosion product of system material are circulate through the whole primary system with the coolant and activated by the neutron near the reactor core. The activated corrosion products and fission products which released from fuel rod to the coolant, so called crud, will repeate deposition and redeposition continuously on the fuel rod and construction material surface. As a result we should consider heat transfer problem. In this study following activities were performed; 1. The crud sample was taken from the spent fuel rod surface of Kori unit one and analized for radioactive element and non radioactive chemical species. 2. The failure mode of nuclear fuel cladding material was estimated by the investigation of releasing type of fission products from the fuel rod to the reactor coolant using the iodine isotopes concentration of reactor coolants. 3. A study was carried out on the sipping test results of spent fuel and a discussion was made on the water quality control records through the past three cycle operation period of Kori unit one plant. (Author)

  5. Thick tool steel coatings with laser cladding

    NARCIS (Netherlands)

    Ocelik, V.; de Oliveira, U.; De Hosson, J. Th. M.; DeHosson, JTM; Brebbia, CA; Nishida, SI

    2007-01-01

    This paper concentrates on thick and crack-free laser clad coatings (up to 3 mm). The coating material is a chromium-molybdenum-tungsten-vanadium alloyed high-speed steel that shows high wear resistance, high compressive strength, good toughness, very good dimensional stability on heat treatment and

  6. Method to produce carbon-cladded nuclear fuel particles

    International Nuclear Information System (INIS)

    Sturge, D.W.; Meaden, G.W.

    1978-01-01

    In the method charges of micro-spherules of fuel element are designed to have two carbon layers, whereby a one aims to achieve a uniform granulation (standard measurement). Two drums are used for this purpose connected behind one another. The micro-spherules coated with the first layer (phenolformaldehyde resin coated graphite particles) leave the first drum and enter the second one. Following the coating with a second layer, the micro-spherules are introduced into a grain size separator. The spherules that are too small are directly recycled into the second drum and those ones that are too large are recycled into the first drum after removing the graphite layers. The method may also be applied to metal cladded particles to manufacture cermet fuels. (RW) [de

  7. Cladding Effects on Structural Integrity of Nuclear Components

    International Nuclear Information System (INIS)

    Sattari-Far, Iradi; Andersson, Magnus

    2006-06-01

    Based on this study, the following conclusions and recommendations can be made: Due to significant differences in the thermal and mechanical properties between the austenitic cladding and the ferritic base metal, residual stresses are induced in the cladding and the underlying base metal. These stresses are left in clad components even after Post-Weld Heat Treatment (PWHT). The different restraint conditions of the clad component have a minor influence on the magnitude of the cladding residual stresses in the cladding layer. The thickness of the clad object is the main impacting geometrical dimension in developing cladding residual stresses. A clad object having a base material thickness exceeding 10 times the cladding thickness would be practically sufficient to introduce cladding residual stresses of a thick reactor pressure vessel. For a clad component that received PWHT, the peak tensile stress is in the cladding layer, and the residual stresses in the underlying base material are negligible. However, for clad components not receiving PWHT, for instance the repair welding of the cladding, the cladding residual stresses of tensile type exist even in the base material. This implies a higher risk for underclad cracking for clad repairs that received no PWHT. For certain clad geometries, like nozzles, the profile of the cladding residual stresses depends on the clad thickness and position, and significant tensile stresses can also exist in the base material. Based on different measurements reported in the literature, a value of 150 GPa can be used as Young's Modulus of the austenitic cladding material at room temperature. The control measurements of small samples from the irradiated reactor pressure vessel head did not reveal a significant difference of Young's Modulus between the irradiated and the unirradiated cladding material condition. No significant differences between the axial and tangential cladding residual stresses are reported in the measurement of

  8. Cladding Effects on Structural Integrity of Nuclear Components

    Energy Technology Data Exchange (ETDEWEB)

    Sattari-Far, Iradi; Andersson, Magnus [lnspecta Technology AB, Stockholm (Sweden)

    2006-06-15

    Based on this study, the following conclusions and recommendations can be made: Due to significant differences in the thermal and mechanical properties between the austenitic cladding and the ferritic base metal, residual stresses are induced in the cladding and the underlying base metal. These stresses are left in clad components even after Post-Weld Heat Treatment (PWHT). The different restraint conditions of the clad component have a minor influence on the magnitude of the cladding residual stresses in the cladding layer. The thickness of the clad object is the main impacting geometrical dimension in developing cladding residual stresses. A clad object having a base material thickness exceeding 10 times the cladding thickness would be practically sufficient to introduce cladding residual stresses of a thick reactor pressure vessel. For a clad component that received PWHT, the peak tensile stress is in the cladding layer, and the residual stresses in the underlying base material are negligible. However, for clad components not receiving PWHT, for instance the repair welding of the cladding, the cladding residual stresses of tensile type exist even in the base material. This implies a higher risk for underclad cracking for clad repairs that received no PWHT. For certain clad geometries, like nozzles, the profile of the cladding residual stresses depends on the clad thickness and position, and significant tensile stresses can also exist in the base material. Based on different measurements reported in the literature, a value of 150 GPa can be used as Young's Modulus of the austenitic cladding material at room temperature. The control measurements of small samples from the irradiated reactor pressure vessel head did not reveal a significant difference of Young's Modulus between the irradiated and the unirradiated cladding material condition. No significant differences between the axial and tangential cladding residual stresses are reported in the

  9. Influence of texture on fracture toughness of zircaloy cladding

    International Nuclear Information System (INIS)

    Grigoriev, V.; Andersson, Stefan

    1997-06-01

    The correlation between texture and fracture toughness of Zircaloy 2 cladding has been investigated in connection with axial cracks in fuel rods. The texture of the cladding determines the anisotropy of plasticity of the cladding which, in turn, should influence the strain conditions at the crack-tip. Plastic strains in the cladding under uniaxial tension were characterised by means of the anisotropy constants F, G and H calculated according to Hill's theory. Test temperatures between 20 and 300 deg C do not influence the F, G and H values. Any significant effect of hydrogen (about 500 wtppm) on the anisotropy constants F, G and H has not been revealed at a test temperature of 300 deg C. The results, obtained for stress-relieved and recrystallized cladding with different texture, show an obvious influence of texture on the fracture toughness of Zircaloy cladding. A higher fracture toughness has been found for cladding with more radial texture

  10. Research on laser cladding control system based on fuzzy PID

    Science.gov (United States)

    Zhang, Chuanwei; Yu, Zhengyang

    2017-12-01

    Laser cladding technology has a high demand for control system, and the domestic laser cladding control system mostly uses the traditional PID control algorithm. Therefore, the laser cladding control system has a lot of room for improvement. This feature is suitable for laser cladding technology, Based on fuzzy PID three closed-loop control system, and compared with the conventional PID; At the same time, the laser cladding experiment and friction and wear experiment were carried out under the premise of ensuring the reasonable control system. Experiments show that compared with the conventional PID algorithm in fuzzy the PID algorithm under the surface of the cladding layer is more smooth, the surface roughness increases, and the wear resistance of the cladding layer is also enhanced.

  11. Microstructure of laser cladded martensitic stainless steel

    CSIR Research Space (South Africa)

    Van Rooyen, C

    2006-08-01

    Full Text Available of austenitic solidification. Table 4 - Chemical composition of the laser cladded martensitic stainless steel in the dendritic and interdendritic areas Material Area C* Cr Ni Mn Si Mo Dendritic 0.3 12.8 0.15 0.7 0.65 0.02 Fe211-1 (420) Off... alloy steels and are shown in Table 4. Ms (ºC) = 550 – 350C – 40Mn - 20Cr – 10Mo – 17Ni – 8W – 35V – 10Cu + 15Co + 30Al (Eq 3) Table 5 - Ms temperatures of laser cladded martensitic stainless steel Material Ms Dendritic area (ºC) Ms...

  12. Development of metal-clad filled evacuated panel superinsulation

    Energy Technology Data Exchange (ETDEWEB)

    Wilkes, K.E.; Strizak, J.P.; Weaver, F.J. [Oak Ridge National Lab., TN (United States); Besser, J.E.; Smith, D.L. [Aladdin Industries, Inc. (United States)

    1997-03-01

    This Cooperative Research and Development Agreement (CRADA) was between Aladdin Industries, Inc. and Lockheed Martin Energy Research Corp. The purpose of the CRADA was to determine the thermal performance of various metal claddings used to encapsulate Filled Evacuated Panel (FEP) superinsulation and to optimize the cost versus thermal performance of the claddings. A FEP superinsulation is a new type of superinsulation with the potential for saving large amounts of energy in buildings, building equipment, transportation (refrigerated railcars and trucks), industrial applications, etc. The major disadvantage of metal claddings for FEPs is the heat loss through the cladding caused by the high thermal conductivity of most metals. In smaller FEPs, this heat loss can degrade the overall performance of the FEP by factors of two or more as compared with polymer-clad FEPs. On the other hand, metal claddings are essentially impermeable to ambient air, whereas polymer claddings are not. Thus, the longevity and reliability of metal-clad FEPs are much superior to polymer-clad FEPs. In addition, because of the very low vapor pressure of metals as compared to polymers, metal-clad FEPs can achieve and operate at lower internal pressures. These lower pressures allow use of less expensive and/or higher performance filler materials.

  13. Conditioning of nuclear cladding wastes by melting

    International Nuclear Information System (INIS)

    Puyou, M.; Jouan, A.; Jacquet-Francillon, N.

    1991-01-01

    This paper discusses a cold-crucible induction melting process to condition cladding waste from irradiated fast breeder reactor fuel. The process has been developed by the CEA at Marcoule (France) as part of a major R and D program. It has been qualified at industrial scale on nonradioactive waste, and at laboratory scale on radioactive waste: several radioactive ingots have been produced from actual stainless steel or zircaloy hulls. The results confirm the numerous advantages of this containment method

  14. Alloy development for high burnup cladding (PWR)

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, R. [Kraftwerk Union AG, Mulheim (Germany); Jeong, Y.H.; Baek, K.H.; Kim, S.J.; Choi, B.K.; Kim, J.M. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-04-01

    An overview on current alloy development for high burnup PWR fuel cladding is given. It is mainly based on literature data. First, the reasons for an increase of the current mean discharge burnup from 35 MWd / kg(U) to 70 MWd / kg(U) are outlined. From the material data, it is shown that a batch average burnup of 60-70 MWd / kg(U), as aimed by many fuel vendors, can not be achieved with stand (=ASTM-) Zry-4 cladding tubes without violating accepted design criteria. Specifically criteria which limit maximum oxide scale thickness and maximum hydrogen content, and to a less degree, maximum creep and growth rate, can not be achieved. The development potential of standard Zry-4 is shown. Even when taking advantage of this potential, it is shown that an 'improved' Zry-4 is reaching its limits when it achieves the target burnup. The behavior of some Zr alloys outside the ASTM range is shown, and the advantages and disadvantages of the 3 alloy groups (ZrSn+transition metals, ZrNb, ZrSnNb+transition metals) which are currently considered to have the development potential for high burnup cladding materials are depicted. Finally, conclusions are drawn. (author). 14 refs., 11 tabs., 82 figs.

  15. Alloy development for high burnup cladding (PWR)

    International Nuclear Information System (INIS)

    Hahn, R.; Jeong, Y. H.; Baek, K. H.; Kim, S. J.; Choi, B. K.; Kim, J.M.

    1999-04-01

    An overview on current alloy development for high burnup PWR fuel cladding is given. It is mainly based on literature data. First, the reasons for an increase of the current mean discharge burnup from 35 MWd / kg(U) to 70 MWd / kg(U) are outlined. From the material data, it is shown that a batch average burnup of 60-70 MWd / kg(U), as aimed by many fuel vendors, can not be achieved with stand (=ASTM-) Zry-4 cladding tubes without violating accepted design criteria. Specifically criteria which limit maximum oxide scale thickness and maximum hydrogen content, and to a less degree, maximum creep and growth rate, can not be achieved. The development potential of standard Zry-4 is shown. Even when taking advantage of this potential, it is shown that an 'improved' Zry-4 is reaching its limits when it achieves the target burnup. The behavior of some Zr alloys outside the ASTM range is shown, and the advantages and disadvantages of the 3 alloy groups (ZrSn+transition metals, ZrNb, ZrSnNb+transition metals) which are currently considered to have the development potential for high burnup cladding materials are depicted. Finally, conclusions are drawn. (author). 14 refs., 11 tabs., 82 figs

  16. Impact of reactor water chemistry on cladding performance

    Energy Technology Data Exchange (ETDEWEB)

    Cox, B. [University of Toronto, Centre for Nuclear Engineering, Toronto, Ontario (Canada)

    1997-07-01

    Water chemistry may have a major impact on fuel cladding performance in PWRs. If the saturation temperature on the surface of fuel cladding is exceeded, either because of the thermal hydraulics of the system, or because of crud deposition, then LiOH concentration can occur within thick porous oxide films on the cladding. This can degrade the protective film and accelerate the corrosion rate of the cladding. If sufficient boric acid is also present in the coolant then these effects may be mitigated. This is normally the case through most of any reactor fuel cycle. Extensive surface boiling may disrupt this equilibrium because of the volatility of boric acid in steam. Under such conditions severe cladding corrosion can ensue. The potential for such effects on high burnup cladding in CANDU reactors, where bone acid is not present in the primary coolant, is discussed. (author)

  17. Hygrothermal performance of ventilated wooden cladding

    Energy Technology Data Exchange (ETDEWEB)

    Nore, Kristine

    2009-10-15

    This project contributes to more accurate design guidelines for high-performance building envelopes by analysis of hygrothermal performance of ventilated wooden cladding. Hygrothermal performance is defined by cladding temperature and moisture conditions, and subsequently by risk of degradation. Wood cladding is the most common facade material used in rural and residential areas in Norway. Historically, wooden cladding design varied in different regions in Norway. This was due to both climatic variations and the logistical distance to materials and craftspeople. The rebuilding of Norwegian houses in the 1950s followed central guidelines where local climate adaptation was often not evaluated. Nowadays we find some technical solutions that do not withstand all climate exposures. The demand for thermal comfort and also energy savings has changed hygrothermal condition of the building envelopes. In well-insulated wall assemblies, the cladding temperature is lower compared to traditional walls. Thus the drying out potential is smaller, and the risk of decay may be higher. The climate change scenario indicates a warmer and wetter future in Norway. Future buildings should be designed to endure harsher climate exposure than at present. Is there a need for refined climate differentiated design guidelines for building enclosures? As part of the Norwegian research programme 'Climate 2000', varieties of wooden claddings have been investigated on a test house in Trondheim. The aim of this investigation was to increase our understanding of the relation between microclimatic conditions and the responding hygrothermal performance of wooden cladding, according to orientation, design of ventilation gap, wood material quality and surface treatment. The two test facades, facing east and west have different climate exposure. Hourly measurements of in total 250 sensors provide meteorological data; temperature, radiation, wind properties, relative humidity, and test house data

  18. Extrusion Pretreatment of Lignocellulosic Biomass: A Review

    Directory of Open Access Journals (Sweden)

    Jun Zheng

    2014-10-01

    Full Text Available Bioconversion of lignocellulosic biomass to bioethanol has shown environmental, economic and energetic advantages in comparison to bioethanol produced from sugar or starch. However, the pretreatment process for increasing the enzymatic accessibility and improving the digestibility of cellulose is hindered by many physical-chemical, structural and compositional factors, which make these materials difficult to be used as feedstocks for ethanol production. A wide range of pretreatment methods has been developed to alter or remove structural and compositional impediments to (enzymatic hydrolysis over the last few decades; however, only a few of them can be used at commercial scale due to economic feasibility. This paper will give an overview of extrusion pretreatment for bioethanol production with a special focus on twin-screw extruders. An economic assessment of this pretreatment is also discussed to determine its feasibility for future industrial cellulosic ethanol plant designs.

  19. Pellet-clad interaction in water reactor fuels

    International Nuclear Information System (INIS)

    2004-01-01

    The aim of this seminar is was to draw up a comprehensive picture of the pellet clad interaction and its impact on the fuel rod. This document is a detailed abstract of the papers presented during the following five sessions: industrial goals, fuel material behaviour in PCI situation, cladding behaviour relevant to PCI, in pile rod behaviour and modelling of the mechanical interaction between pellet and cladding. (A.L.B.)

  20. Clad fiber capacitor and method of making same

    Science.gov (United States)

    Tuncer, Enis

    2012-12-11

    A clad capacitor and method of manufacture includes assembling a preform comprising a ductile, electrically conductive fiber; a ductile, electrically insulating cladding positioned on the fiber; and a ductile, electrically conductive sleeve positioned over the cladding. One or more preforms are then bundled, heated and drawn along a longitudinal axis to decrease the diameter of the ductile components of the preform and fuse the preform into a unitized strand.

  1. Analyses on Silicide Coating for LOCA Resistant Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Sweidan, Faris B.; Lee, You Ho; Ryu, Ho Jin [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    A particular focus of accident-tolerant fuel has been cladding due to the rapid high-temperature oxidation of zirconium-based cladding with the evolution of H2 when steam is a reactant. Some key features of the coated cladding include high-temperature resistance to oxidation, lower processing temperatures, and a high melting point of the coating. Zirconium alloys exhibit a reasonably high melting temperature, so a coating for the cladding is appealing if the coating increases the high-temperature resistance to oxidation. In this case, the cladding is protected from complete oxidation. The cladding coating involves the application of zirconium silicide onto Zr-based cladding. Zirconium silicide coating is expected to produce a glassy layer that becomes more protective at elevated temperature. For this reason, silicide coatings on cladding offer the potential for improved reliability at normal operating temperatures and at the higher transient temperatures encountered during accidents. Although ceramic coatings are brittle and may have weak points to be used as coating materials, several ceramic coatings were successful and showed adherent behavior and high resistance to oxidation. In this study, the oxidation behavior of zirconium silicide and its oxidation kinetics are analyzed. Zirconium silicide is a new suggested material to be used as coatings on existing Zr-based cladding alloys, the aim of this study is to evaluate if zirconium silicide is applicable to be used, so they can be more rapidly developed using existing cladding technology with some modifications. These silicide coatings are an attractive alternative to the use of coatings on zirconium claddings or to the lengthy development of monolithic ceramic or ceramic composite claddings and coatings.

  2. Analyses on Silicide Coating for LOCA Resistant Cladding

    International Nuclear Information System (INIS)

    Sweidan, Faris B.; Lee, You Ho; Ryu, Ho Jin

    2015-01-01

    A particular focus of accident-tolerant fuel has been cladding due to the rapid high-temperature oxidation of zirconium-based cladding with the evolution of H2 when steam is a reactant. Some key features of the coated cladding include high-temperature resistance to oxidation, lower processing temperatures, and a high melting point of the coating. Zirconium alloys exhibit a reasonably high melting temperature, so a coating for the cladding is appealing if the coating increases the high-temperature resistance to oxidation. In this case, the cladding is protected from complete oxidation. The cladding coating involves the application of zirconium silicide onto Zr-based cladding. Zirconium silicide coating is expected to produce a glassy layer that becomes more protective at elevated temperature. For this reason, silicide coatings on cladding offer the potential for improved reliability at normal operating temperatures and at the higher transient temperatures encountered during accidents. Although ceramic coatings are brittle and may have weak points to be used as coating materials, several ceramic coatings were successful and showed adherent behavior and high resistance to oxidation. In this study, the oxidation behavior of zirconium silicide and its oxidation kinetics are analyzed. Zirconium silicide is a new suggested material to be used as coatings on existing Zr-based cladding alloys, the aim of this study is to evaluate if zirconium silicide is applicable to be used, so they can be more rapidly developed using existing cladding technology with some modifications. These silicide coatings are an attractive alternative to the use of coatings on zirconium claddings or to the lengthy development of monolithic ceramic or ceramic composite claddings and coatings

  3. Nuclear reactor fuel element with vanadium getter on cladding

    International Nuclear Information System (INIS)

    Johnson, C.E.; Carroll, K.G.

    1977-01-01

    A nuclear reactor fuel element is described which has an outer cladding, a central core of fissionable or mixed fissionable and fertile fuel material and a layer of vanadium as an oxygen getter on the inner surface of the cladding. The vanadium reacts with oxygen released by the fissionable material during irradiation of the core to prevent the oxygen from reacting with and corroding the cladding. Also described is a method for coating the inner surface of small diameter tubes of cladding with a layer of vanadium. 5 claims, 1 figure

  4. Computer analysis of elongation of the WWER fuel rod claddings

    International Nuclear Information System (INIS)

    Scheglov, A.; Proselkov, V.

    2008-01-01

    In this paper description of mechanisms influencing changes of the WWER fuel cladding length and axial forces influencing fuel and cladding are presented. It is shown that shortening of the fuel claddings in case of high burnup can be explained by the change of the fuel and cladding reference state caused by reduction of the fuel rod power level - during reactor outages. It is noted that the presented calculated data are to be reviewed and interpreted as the preliminary results; further work is needed for their confirmation. (authors)

  5. Calculations of stresses in GCFR cladding under normal operating conditions

    International Nuclear Information System (INIS)

    Liu, Y.Y.; Hsieh, T.C.; Billone, M.C.

    1979-11-01

    A modified version of the LIFE-III code, LIFE-GCFR, and classical stress-analysis techniques have been used to calculate the stresses in the GCFR cladding under normal reactor operating conditions. Several types of loadings on the cladding that occur during normal operation have been considered. These include fuel-cladding mechanical interaction, thermal stresses induced by radial and axial temperature gradients, and swelling gradient-induced stresses. The combined and individual effects of these loadings, as well as the effect of creep on cladding stresses, have been assessed

  6. Finite-width plasmonic waveguides with hyperbolic multilayer cladding.

    Science.gov (United States)

    Babicheva, Viktoriia E; Shalaginov, Mikhail Y; Ishii, Satoshi; Boltasseva, Alexandra; Kildishev, Alexander V

    2015-04-20

    Engineering plasmonic metamaterials with anisotropic optical dispersion enables us to tailor the properties of metamaterial-based waveguides. We investigate plasmonic waveguides with dielectric cores and multilayer metal-dielectric claddings with hyperbolic dispersion. Without using any homogenization, we calculate the resonant eigenmodes of the finite-width cladding layers, and find agreement with the resonant features in the dispersion of the cladded waveguides. We show that at the resonant widths, the propagating modes of the waveguides are coupled to the cladding eigenmodes and hence, are strongly absorbed. By avoiding the resonant widths in the design of the actual waveguides, the strong absorption can be eliminated.

  7. Anaerobic digestion of fungally pre-treated wine distillery wastewater

    African Journals Online (AJOL)

    The COD removal efficiency after fungal pre-treatment reached 53.3%. During digestion, pH buffering was achieved using CaCO3 and K2HPO4. This provided a stable environment inside digester for efficient and time-independent COD removal. The total COD removal efficiency reached 99.5%, and the system proved able ...

  8. Antibacterial Effect of Surface Pretreatment Techniques against ...

    African Journals Online (AJOL)

    2018-02-23

    Feb 23, 2018 ... of dentin chips were obtained from the cavity walls, and the number of bacteria recovered was counted. Kruskal–Wallis ... Keywords: Antibacterial effect, cavity surface pretreatment techniques, cavity preparation, dental, dental ... wavelengths for removing oral soft and dental hard tissues without pain relief, ...

  9. Bromine pretreated chitosan for adsorption of lead

    Indian Academy of Sciences (India)

    Pollution by heavy metals like lead (II) is responsible for health hazards and environmental degradation. Adsorption is a prevalent method applied for removal of heavy metal pollutants from water. This study explored adsorption performances of 30% bromine pretreated chitosan for lead (II) abatement from water. Bromine ...

  10. Bragg grating induced cladding mode coupling due to asymmetrical index modulation in depressed cladding fibers

    DEFF Research Database (Denmark)

    Berendt, Martin Ole; Grüne-Nielsen, Lars; Soccolich, C.F.

    1998-01-01

    to reduce this problem. None of these designs seems to give complete solutions. In particular, the otherwise promising depressed cladding design gives a pronounced coupling to one LP01 mode, this has been referred to as a Ghost grating. To find the modes of the fiber we have established a numerical mode...

  11. PCI resistant light water reactor fuel cladding

    International Nuclear Information System (INIS)

    Foster, J.P.; Sabol, G.P.

    1988-01-01

    A tubular nuclear fuel element cladding tube is described, the fuel element cladding tube forming the entire fuel element cladding and consisting of: a single continuous wall, the single continuous wall consisting of a single alloy selected from the group consisting of zirconium base alloys, A, B, C, D, and E; the single continuous wall characterized by a cold worked and stress relieved microstructure throughout; wherein the zirconium base alloy A contains 0.2 - 0.6 w/o Sn, 0.03 - 0.11 w/o sum of Fe and Cr, section 600 ppm O and section 1500 ppm total impurities; the zirconium base alloy B contains 0.1 - 0.6 w/oo Sn, 0.04 - 0.24 w/o Fe, 0.05 - 0.15 w/o Cr, section 0.08 w/o Ni, section 600 ppm O and section 1500 ppm total impurities; the zirconium base alloy C contains 1.2 - 1.7 w/o Sn, 0.04 - 0.24 w/o Fe, 0.05 - 0.15 w/o Cr, section 0.08 w/o Ni, section 600 ppm O, and section 1500 ppm total impurities; the zirconium base alloy D contains 0.15 - 0.6 w/o Sn, 0.15 - 0.5 w/o Fe, section 600 ppm O, and section 1500 ppm total impurities; and the zirconium base alloy E contains 0.4 - 0.6 w/o Sn, 0.1 - 0.3 w/o Fe, 0.03 - 0.07 w/o Ni, section 600 ppm O, and section 1500 ppm total impurities

  12. Methods for pretreating biomass

    Science.gov (United States)

    Balan, Venkatesh; Dale, Bruce E; Chundawat, Shishir; Sousa, Leonardo

    2017-05-09

    A method for pretreating biomass is provided, which includes, in a reactor, allowing gaseous ammonia to condense on the biomass and react with water present in the biomass to produce pretreated biomass, wherein reactivity of polysaccharides in the biomass is increased during subsequent biological conversion as compared to the reactivity of polysaccharides in biomass which has not been pretreated. A method for pretreating biomass with a liquid ammonia and recovering the liquid ammonia is also provided. Related systems which include a biochemical or biofuel production facility are also disclosed.

  13. Analysis of pellet cladding mechanical interaction using computational simulation

    International Nuclear Information System (INIS)

    Berretta, José R.; Suman, Ricardo B.; Faria, Danilo P.; Rodi, Paulo A.; Giovedi, Claudia

    2017-01-01

    During the operation of Pressurized Water Reactors (PWR), specifically under power transients, the fuel pellet experiences many phenomena, such as swelling and thermal expansion. These dimensional changes in the fuel pellet can enable occurrence of contact it and the cladding along the fuel rod. Thus, pellet cladding mechanical interaction (PCMI), due this contact, induces stress increase at the contact points during a period, until the accommodation of the cladding to the stress increases. This accommodation occurs by means of the cladding strain, which can produce failure, if the fuel rod deformation is permanent or the burst limit of the cladding is reached. Therefore, the mechanical behavior of the cladding during the occurrence of PCMI under power transients shall be investigated during the fuel rod design. Considering the Accident Tolerant Fuel program which aims to develop new materials to be used as cladding in PWR, one important design condition to be evaluated is the cladding behavior under PCMI. The purpose of this paper is to analyze the effects of the PCMI on a typical PWR fuel rod geometry with stainless steel cladding under normal power transients using computational simulation (ANSYS code). The PCMI was analyzed considering four geometric situations at the region of interaction between pellet and cladding. The first case, called “perfect fuel model” was used as reference for comparison. In the second case, it was considered the occurrence of a pellet crack with the loss of a chip. The goal for the next two cases was that a pellet chip was positioned into the gap of pellet-cladding, in the situations described in the first two cases. (author)

  14. Analysis of pellet cladding mechanical interaction using computational simulation

    Energy Technology Data Exchange (ETDEWEB)

    Berretta, José R.; Suman, Ricardo B.; Faria, Danilo P.; Rodi, Paulo A., E-mail: jose.berretta@marinha.mil.br [Centro Tecnológico da Marinha em São Paulo (CTMSP), São Paulo, SP (Brazil); Giovedi, Claudia, E-mail: claudia.giovedi@labrisco.usp.br [Universidade de Sao Paulo (LabRisco/USP), São Paulo, SP (Brazil). Laboratório de Análise, Avaliação e Gerenciamento de Riscos

    2017-07-01

    During the operation of Pressurized Water Reactors (PWR), specifically under power transients, the fuel pellet experiences many phenomena, such as swelling and thermal expansion. These dimensional changes in the fuel pellet can enable occurrence of contact it and the cladding along the fuel rod. Thus, pellet cladding mechanical interaction (PCMI), due this contact, induces stress increase at the contact points during a period, until the accommodation of the cladding to the stress increases. This accommodation occurs by means of the cladding strain, which can produce failure, if the fuel rod deformation is permanent or the burst limit of the cladding is reached. Therefore, the mechanical behavior of the cladding during the occurrence of PCMI under power transients shall be investigated during the fuel rod design. Considering the Accident Tolerant Fuel program which aims to develop new materials to be used as cladding in PWR, one important design condition to be evaluated is the cladding behavior under PCMI. The purpose of this paper is to analyze the effects of the PCMI on a typical PWR fuel rod geometry with stainless steel cladding under normal power transients using computational simulation (ANSYS code). The PCMI was analyzed considering four geometric situations at the region of interaction between pellet and cladding. The first case, called “perfect fuel model” was used as reference for comparison. In the second case, it was considered the occurrence of a pellet crack with the loss of a chip. The goal for the next two cases was that a pellet chip was positioned into the gap of pellet-cladding, in the situations described in the first two cases. (author)

  15. COMPARISON OF CLADDING CREEP RUPTURE MODELS

    Energy Technology Data Exchange (ETDEWEB)

    P. Macheret

    2000-06-12

    The objective of this calculation is to compare several creep rupture correlations for use in calculating creep strain accrued by the Zircaloy cladding of spent nuclear fuel when it has been emplaced in the repository. These correlations are used to calculate creep strain values that are then compared to a large set of experimentally measured creep strain data, taken from four different research articles, making it possible to determine the best fitting correlation. The scope of the calculation extends to six different creep rupture correlations.

  16. Termination of plastic-clad fiber

    International Nuclear Information System (INIS)

    Nance, W.R.

    1982-03-01

    Optical waveguides are ideal in a nuclear weapon environment because of their resistance to electromagnetic interference. Of the fibers on today's market, plastic-clad silica (PCS) is the most radiation resistant and therfore the best choice. Because terminating PCS is complex, this paper attemps to address the major problems associated with these terminations including selecting the proper connector and optimizing the terminating procedures. The sources of losses in the connectors are summarized and typical loss values are given for four connectors which were tested

  17. Stainless Steel Cladding Of Structural Steels By CO2 Laser Welding Techniques

    Science.gov (United States)

    Ludovico, A.; Daurelio, G.; Arcamone, O.

    1989-01-01

    Steel cladding processes are usually performed in different ways: hot roll cladding, strip cladding, weld cladding, explosion forming. For the first time, a medium power (2 KW c.w.) CO2 laser was used to clad structural steels (Fe 37C), 3 and 5 mm thick, with austenitic stainless steels (AISI 304 and AISI 316), 0.5 and 1.5 mm thick. The cladding technique we have developed uses the laser penetration welding process.

  18. Pré-tratamento com cloro e ozônio para remoção de cianobactérias Pre-treatment with chlorine and ozone for removal of the cyanobacteria

    Directory of Open Access Journals (Sweden)

    Renata Iza Mondardo

    2006-12-01

    Full Text Available O presente trabalho tem como objetivo investigar o desempenho da ozonização e da cloração utilizadas na pré-oxidação de água, com elevada concentração de microalgas e cianobactérias, a ser submetida à Filtração Direta Descendente, seguida de desinfecção por cloro, avaliando a qualidade da água produzida, sobretudo no que se refere à remoção de fitoplâncton, à formação de trialometanos e aos testes toxicológicos. Os ensaios, em escala piloto, realizados com a pré-ozonização, apresentaram melhores resultados quando comparados aos realizados com a pré-cloração. Em relação aos trialometanos, por exemplo, a aplicação da pré-ozonização com 2 mgO3/L reduziu em até 50% a formação desses compostos quando comparado ao emprego da pré-cloração. O emprego da ozonização demonstrou ser uma excelente alternativa para o pré-tratamento de água com elevada concentração de microalgas e cianobactérias que utiliza a técnica da filtração direta como processo de potabilização, produzindo água filtrada condizente com o padrão de potabilidade estabelecidos pela Portaria 518/GM do Ministério da Saúde.The present work aims at investigating the performance of ozonation and chlorination used in the pre-oxidation of water with high microalgae and cyanobacteria concentration to be submitted to downflow direct filtration followed by chlorine disinfection, and evaluating the quality of the water produced, especially with regard to phytoplankton removal, trihalomethane formation, and toxicological tests. The pilot scale tests carried outwith the pre-ozonation exhibited better results when compared to the results from the pre-chlorination tests. As to the trihalomethanes, for example, the application of pre-ozonation with 2 mgO3/L reduced in 50% the formation of these compounds whencompared to the application of pre-chlorination. The application of ozonation was shown to be an excellent alternative for pre-treating water

  19. Qualification of submerged-arc narrow strip cladding process

    International Nuclear Information System (INIS)

    Ayres, P.S.; Gottschling, J.D.; Jeffers, G.K.

    1975-08-01

    An unique narrow strip cladding process for use on both plate and forging material for nuclear components was developed. The qualification testing of this low-heat input process for cladding nuclear components, including those of SA508 Class 2 material is described. The theory that explains the acceptable results of these tests is also given. (auth)

  20. Qualification of submerged-arc narrow strip cladding process

    International Nuclear Information System (INIS)

    Ayres, P.S.; Gottschling, J.D.; Jeffers, G.K.

    1976-03-01

    Babcock and Wilcox has developed an unique narrow strip cladding process for use on both plate and forging material for nuclear components. The qualification testing of this low-heat input process for cladding nuclear components is described, including those of SA508 Class 2 material. The theory that explains the acceptable results of these tests is also given

  1. Laser cladding process development for high carbon steel substrates

    CSIR Research Space (South Africa)

    Lengopeng, T

    2014-11-01

    Full Text Available with an increase in laser power at constant scan speed. The hardness values taken on the HAZ showed a decrease with the increase in the number of clad layers during build-up. Meanwhile, four clad layer build up samples showed similar hardness trend independent...

  2. Interfacial adhesion of laser clad functionally graded materials

    NARCIS (Netherlands)

    Ocelik, V.; Pei, Y.T.; de Hosson, J.T.M.; Popoola, O; Dahotre, NB; Midea, SJ; Kopech, HM

    2003-01-01

    Two functionally graded coatings were prepared by different laser surface engineering techniques. Laser cladding of AlSi40 powder leads to the formation of functionally graded material (FGM) coating on AI-Si cast alloy substrate. Mapping of strain fields near the laser clad track using the digital

  3. Long-range plasmonic waveguides with hyperbolic cladding

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia E.; Shalaginov, Mikhail Y.; Ishii, Satoshi

    2015-01-01

    waveguides. We show that the proposed structures support long-range surface plasmon modes, which exist when the permittivity of the core matches the transverse effective permittivity component of the metamaterial cladding. In this regime, the surface plasmon polaritons of each cladding layer are strongly...

  4. Material Selection for Accident Tolerant Fuel Cladding

    International Nuclear Information System (INIS)

    Pint, Bruce A.; Terrani, Kurt A.; Yamamoto, Yukinori; Snead, Lance Lewis

    2015-01-01

    Alternative cladding materials to Zr-based alloys are being investigated for accident tolerance, which can be defined as > 100X improvement (compared to Zr-based alloys) in oxidation resistance to steam or steam-H 2 environments at ≥1473 K (1200°C) for short times. After reviewing a wide range of candidates, current steam oxidation testing is being conducted on Mo, MAX phases and FeCrAl alloys. Recently reported low mass losses for Mo in steam at 800°C could not be reproduced. Both FeCrAl and MAX phase Ti 2 AlC form a protective alumina scale in steam. However, commercial Ti 2 AlC that was not single phase, formed a much thicker oxide at 1200°C in steam and significant TiO 2 , and therefore Ti 2 AlC may be challenging to form as a cladding or a coating. Alloy development for FeCrAl is seeking to maintain its steam oxidation resistance to 1475°C, while reducing its Cr content to minimize susceptibility to irradiation-assisted α' formation. The composition effects and critical limits to retaining protective scale formation at > 1400°C are still being evaluated.

  5. Material Selection for Accident Tolerant Fuel Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Pint, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Snead, Lance Lewis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    Alternative cladding materials to Zr-based alloys are being investigated for accident tolerance, which can be defined as > 100X improvement (compared to Zr-based alloys) in oxidation resistance to steam or steam-H2 environments at ≥ 1200°C for short times. After reviewing a wide range of candidates, current steam oxidation testing is being conducted on Mo, MAX phases and FeCrAl alloys. Recently reported low mass losses for Mo in steam at 800°C could not be reproduced. Both FeCrAl and MAX phase Ti2AlC form a protective alumina scale in steam. However, commercial Ti2AlC that was not single phase, formed a much thicker oxide at 1200°C in steam and significant TiO2, and therefore Ti2AlC may be challenging to form as a cladding or a coating. Alloy development for FeCrAl is seeking to maintain its steam oxidation resistance to 1475°C, while reducing its Cr content to minimize susceptibility to irradiation-assisted α´ formation. The composition effects and critical limits to retaining protective scale formation at > 1400°C are still being evaluated.

  6. The ballooning of fuel cladding tubes: theory and experiment

    International Nuclear Information System (INIS)

    Shewfelt, R.S.W.

    1988-01-01

    Under some conditions, fuel clad ballooning can result in considerable strain before rupture. If ballooning were to occur during a loss-of-coolant accident (LOCA), the resulting substantial blockage of the sub-channel would restrict emergency core cooling. However, circumferential temperature gradients that would occur during a LOCA may significantly limit the average strain at failure. Understandably, the factors that control ballooning and rupture of fuel clad are required for the analysis of a LOCA. Considerable international effort has been spent on studying the deformation of Zircaloy fuel cladding under conditions that would occur during a LOCA. This effort has established a reasonable understanding of the factors that control the ballooning, failure time, and average failure strain of fuel cladding. In this paper, both the experimental and theoretical studies of the fuel clad ballooning are reviewed. (author)

  7. Test system to simulate transient overpower LMFBR cladding failure

    International Nuclear Information System (INIS)

    Barrus, H.G.; Feigenbutz, L.V.

    1981-01-01

    One of the HEDL programs has the objective to experimentally characterize fuel pin cladding failure due to cladding rupture or ripping. A new test system has been developed which simulates a transient mechanically-loaded fuel pin failure. In this new system the mechanical load is prototypic of a fuel pellet rapidly expanding against the cladding due to various causes such as fuel thermal expansion, fuel melting, and fuel swelling. This new test system is called the Fuel Cladding Mechanical Interaction Mandrel Loading Test (FCMI/MLT). The FCMI/MLT test system and the method used to rupture cladding specimens very rapidly to simulate a transient event are described. Also described is the automatic data acquisition and control system which is required to control the startup, operation and shutdown of the very fast tests, and needed to acquire and store large quantities of data in a short time

  8. Compact cladding-pumped planar waveguide amplifier and fabrication method

    Science.gov (United States)

    Bayramian, Andy J.; Beach, Raymond J.; Honea, Eric; Murray, James E.; Payne, Stephen A.

    2003-10-28

    A low-cost, high performance cladding-pumped planar waveguide amplifier and fabrication method, for deployment in metro and access networks. The waveguide amplifier has a compact monolithic slab architecture preferably formed by first sandwich bonding an erbium-doped core glass slab between two cladding glass slabs to form a multi-layer planar construction, and then slicing the construction into multiple unit constructions. Using lithographic techniques, a silver stripe is deposited and formed at a top or bottom surface of each unit construction and over a cross section of the bonds. By heating the unit construction in an oven and applying an electric field, the silver stripe is then ion diffused to increase the refractive indices of the core and cladding regions, with the diffusion region of the core forming a single mode waveguide, and the silver diffusion cladding region forming a second larger waveguide amenable to cladding pumping with broad area diodes.

  9. Pretreatment of microbial sludges

    Science.gov (United States)

    Rivard, Christopher J.; Nagle, Nicholas J.

    1995-01-01

    Methods are described for pretreating microbial sludges to break cells and disrupt organic matter. One method involves the use of sonication, and another method involves the use of shear forces. The pretreatment of sludge enhances bioconversion of the organic fraction. This allows for efficient dewatering of the sludge and reduces the cost for final disposal of the waste.

  10. Cladding embrittlement during postulated loss-of-coolant accidents.

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M.; Yan, Y.; Burtseva, T.; Daum, R.; Nuclear Engineering Division

    2008-07-31

    The effect of fuel burnup on the embrittlement of various cladding alloys was examined with laboratory tests conducted under conditions relevant to loss-of-coolant accidents (LOCAs). The cladding materials tested were Zircaloy-4, Zircaloy-2, ZIRLO, M5, and E110. Tests were performed with specimens sectioned from as-fabricated cladding, from prehydrided (surrogate for high-burnup) cladding, and from high-burnup fuel rods which had been irradiated in commercial reactors. The tests were designed to determine for each cladding material the ductile-to-brittle transition as a function of steam oxidation temperature, weight gain due to oxidation, hydrogen content, pre-transient cladding thickness, and pre-transient corrosion-layer thickness. For short, defueled cladding specimens oxidized at 1000-1200 C, ring compression tests were performed to determine post-quench ductility at {le} 135 C. The effect of breakaway oxidation on embrittlement was also examined for short specimens oxidized at 800-1000 C. Among other findings, embrittlement was found to be sensitive to fabrication processes--especially surface finish--but insensitive to alloy constituents for these dilute zirconium alloys used as cladding materials. It was also demonstrated that burnup effects on embrittlement are largely due to hydrogen that is absorbed in the cladding during normal operation. Some tests were also performed with longer, fueled-and-pressurized cladding segments subjected to LOCA-relevant heating and cooling rates. Recommendations are given for types of tests that would identify LOCA conditions under which embrittlement would occur.

  11. Removal method of radium in mine water by filter sand

    International Nuclear Information System (INIS)

    Taki, Tomihiro; Naganuma, Masaki

    2003-01-01

    Trace radium is contained in mine water from the old mine road in Ningyo-Toge Environmental Engineering Center, JNC. We observed that filter sand with hydrated manganese oxide adsorbed radium in the mine water safely for long time. The removal method of radium by filter sand cladding with hydrated manganese oxide was studied. The results showed that radium was removed continuously and last for a long time from mine water with sodium hypochlorite solution by passing through the filter sand cladding with hydrated manganese. Only sodium hypochlorite solution was used. When excess of it was added, residue chlorine was used as chlorine disinfection. Filter sand cladding with hydrated manganese on the market can remove radium in the mine water. The removal efficiency of radium is the same as the radium coprecipitation method added with barium chloride. The cost is much lower than the ordinary methods. Amount of waste decreased to about 1/20 of the coprecipitation method. (S.Y.)

  12. Cladding material, tube including such cladding material and methods of forming the same

    Science.gov (United States)

    Garnier, John E.; Griffith, George W.

    2016-03-01

    A multi-layered cladding material including a ceramic matrix composite and a metallic material, and a tube formed from the cladding material. The metallic material forms an inner liner of the tube and enables hermetic sealing of thereof. The metallic material at ends of the tube may be exposed and have an increased thickness enabling end cap welding. The metallic material may, optionally, be formed to infiltrate voids in the ceramic matrix composite, the ceramic matrix composite encapsulated by the metallic material. The ceramic matrix composite includes a fiber reinforcement and provides increased mechanical strength, stiffness, thermal shock resistance and high temperature load capacity to the metallic material of the inner liner. The tube may be used as a containment vessel for nuclear fuel used in a nuclear power plant or other reactor. Methods for forming the tube comprising the ceramic matrix composite and the metallic material are also disclosed.

  13. Hollow Core Photonic Crystal Fibre Comprising a Fibre Grating in the Cladding and its Applications

    DEFF Research Database (Denmark)

    2010-01-01

    An optical fibre is provided having a fibre cladding around a longitudinally extending optical propagation core. The cladding has a reflection region of a varying refractive index in the longitudinal direction.......An optical fibre is provided having a fibre cladding around a longitudinally extending optical propagation core. The cladding has a reflection region of a varying refractive index in the longitudinal direction....

  14. Cladding development and characterization in the United States

    International Nuclear Information System (INIS)

    Lobsinger, R.J.

    1977-01-01

    During the past decade, an extensive program of cladding development has been carried out at HEDL in support of the FFTF/Breeder Reactor Program. This activity has resulted in the establishment of specification, fabrication, and characterization requirements for breeder reactor fuel cladding. In establishing these requirements, input has been derived from vendor development programs, evaluation studies, and reviews with other national laboratories. The major fabrication requirements of the current specification as derived from the development program and the testing required to assure product conformance and characterize cladding behavior are described

  15. Fabrication of oxide dispersion strengthened ferritic clad fuel pins

    International Nuclear Information System (INIS)

    Zirker, L.R.; Bottcher, J.H.; Shikakura, S.; Tsai, C.L.

    1991-01-01

    A resistance butt welding procedure was developed and qualified for joining ferritic fuel pin cladding to end caps. The cladding are INCO MA957 and PNC ODS lots 63DSA and 1DK1, ferritic stainless steels strengthened by oxide dispersion, while the end caps are HT9 a martensitic stainless steel. With adequate parameter control the weld is formed without a residual melt phase and its strength approaches that of the cladding. This welding process required a new design for fuel pin end cap and weld joint. Summaries of the development, characterization, and fabrication processes are given for these fuel pins. 13 refs., 6 figs., 1 tab

  16. Deep-probe metal-clad waveguide biosensors

    DEFF Research Database (Denmark)

    Skivesen, Nina; Horvath, Robert; Thinggaard, S.

    2007-01-01

    -clad waveguide sensor is shown to be the best all-round alternative to the surface-plasmon resonance biosensor. Both metal-clad waveguides are tested experimentally for cell detection, showing a detection linut of 8-9 cells/mm(2). (c) 2006 Elsevier B.V. All rights reserved.......Two types of metal-clad waveguide biosensors, so-called dip-type and peak-type, are analyzed and tested. Their performances are benchmarked against the well-known surface-plasmon resonance biosensor, showing improved probe characteristics for adlayer thicknesses above 150-200 nm. The dip-type metal...

  17. Long-range plasmonic waveguides with hyperbolic cladding.

    Science.gov (United States)

    Babicheva, Viktoriia E; Shalaginov, Mikhail Y; Ishii, Satoshi; Boltasseva, Alexandra; Kildishev, Alexander V

    2015-11-30

    We study plasmonic waveguides with dielectric cores and hyperbolic multilayer claddings. The proposed design provides better performance in terms of propagation length and mode confinement in comparison to conventional designs, such as metal-insulator-metal and insulator-metal-insulator plasmonic waveguides. We show that the proposed structures support long-range surface plasmon modes, which exist when the permittivity of the core matches the transverse effective permittivity component of the metamaterial cladding. In this regime, the surface plasmon polaritons of each cladding layer are strongly coupled, and the propagation length can be on the order of a millimeter.

  18. Pretreatment of food waste with high voltage pulse discharge towards methane production enhancement.

    Science.gov (United States)

    Zou, Lianpei; Ma, Chaonan; Liu, Jianyong; Li, Mingfei; Ye, Min; Qian, Guangren

    2016-12-01

    Anaerobic batch tests were performed to investigate the methane production enhancement and solid transformation rates from food waste (FW) by high voltage pulse discharge (HVPD) pretreatment. The total cumulative methane production with HVPD pretreatment was 134% higher than that of the control. The final volatile solids transformation rates of FW with and without HVPD pretreatment were 54.3% and 32.3%, respectively. Comparison study on HVPD pretreatment with acid, alkali and ultrasonic pretreatments showed that the methane production and COD removal rates of FW pretreated with HVPD were more than 100% higher than the control, but only about 50% higher can be obtained with other pretreatments. HVPD pretreatment could be a promising pretreatment method in the application of energy recovery from FW. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Characteristics Of KRS-5 Fiber With Crystalline Cladding

    Science.gov (United States)

    Kimura, M.; Kachi, S.; Shiroyama, K.

    1986-05-01

    KRS-5 polycrystalline fibers having a core-cladding structure have been fabricated by complex extrusion. The core material is KRS-5 (T1Br-TlI), and the cladding material is KRS-6 (T1Br-T1C1). Through thermal treatment after fiber fabrication, the refractive index profile is changed to the graded index (GI) type. The attenuation loss of these core-cladding GI fibers is 0.2 dB/m at about 10.6 μm (lauching NA = 0.05). Fibers with this core-cladding structure will enable wide applications using far infrared wavelength light, for example in CO2, laser processing machines and spectroscopy equipment, because of their ease in handling.

  20. Cladding axial elongation models for FRAP-T6

    International Nuclear Information System (INIS)

    Shah, V.N.; Carlson, E.R.; Berna, G.A.

    1983-01-01

    This paper presents a description of the cladding axial elongation models developed at the Idaho National Engineering Laboratory (INEL) for use by the FRAP-T6 computer code in analyzing the response of fuel rods during reactor transients in light water reactors (LWR). The FRAP-T6 code contains models (FRACAS-II subcode) that analyze the structural response of a fuel rod including pellet-cladding-mechanical-interaction (PCMI). Recently, four models were incorporated into FRACAS-II to calculate cladding axial deformation: (a) axial PCMI, (b) trapped fuel stack, (c) fuel relocation, and (d) effective fuel thermal expansion. Comparisons of cladding axial elongation measurements from two experiments with the corresponding FRAP-T6 calculations are presented

  1. High Temperature Resistance Claddings for Nuclear Thermal Rockets, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This program will develop a series of nano-/micro-composite coated nuclear reactor facing components using MesoCoat's CermaCladTM process. This proposed SBIR program...

  2. Oxidation during reflood of reactor core with melting cladding

    Energy Technology Data Exchange (ETDEWEB)

    Siefken, L.J.; Allison, C.M.; Davis, K.L. [and others

    1995-09-01

    Models were recently developed and incorporated into the SCDAP/RELAP5 code for calculating the oxidation of fuel rods during cladding meltdown and reflood. Experiments have shown that a period of intense oxidation may occur when a hot partially oxidized reactor core is reflooded. This paper offers an explanation of the cladding meltdown and oxidation processes that cause this intense period of oxidation. Models for the cladding meltdown and oxidation processes are developed. The models are assessed by simulating a severe fuel damage experiment that involved reflood. The models for cladding meltdown and oxidation were found to improve calculation of the temperature and oxidation of fuel rods during the period in which hot fuel rods are reflooded.

  3. A Multi-Scale Modeling of Laser Cladding Process (Preprint)

    National Research Council Canada - National Science Library

    Cao, J; Choi, J

    2006-01-01

    Laser cladding is an additive manufacturing process that a laser generates a melt-pool on the substrate material while a second material, as a powder or a wire form, is injected into that melt-pool...

  4. Finite-width plasmonic waveguides with hyperbolic multilayer cladding

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Shalaginov, Mikhail Y.; Ishii, Satoshi

    2015-01-01

    Engineering plasmonic metamaterials with anisotropic optical dispersion enables us to tailor the properties of metamaterial-based waveguides. We investigate plasmonic waveguides with dielectric cores and multilayer metal-dielectric claddings with hyperbolic dispersion. Without using any homogeniz...

  5. High Resolution Temperature Estimation During Laser Cladding of Stainless Steel

    Science.gov (United States)

    Devesse, Wim; De Baere, Dieter; Hinderdael, Michaël; Guillaume, Patrick

    Laser cladding is a technique that is used for the coating, repair and production of metallic parts. Material is added to the surface of the part by injecting a flow of powder into a melt pool that is created with a high power laser beam. When the beam scans the surface of the substrate, strong local heating and cooling results. A good knowledge of the temperature distribution history during the laser cladding process is vital to predict and optimize the material properties of the final part. This paper presents a contactless temperature measurement system with high temporal and spatial resolution based on a hyperspectral line camera. High temperature measurements were made during laser cladding of AISI 316L stainless steel. A good correlation is shown between the temperature measurements and microscope images taken after creation of the clad.

  6. Wash water waste pretreatment system

    Science.gov (United States)

    1977-01-01

    Investigations were completed on wash waters based on each candidate personal cleansing agent. Evaluations of coagulants, antifoam agents, and the effect of promising antifoams on the chemical precipitation were included. Based on these evaluations two candidate soaps as well as their companion antifoam agents were selected for further work. Operating parameters included the effect of soap concentration, ferric chloride concentration, duration of mixing, and pore size of depth filters on the degree of soap removal. The effect of pressure on water flow through filter cartridges and on the rate of decline of water flow was also investigated. The culmination of the program was the recommendation of a pretreatment concept based on chemical precipitation followed by pressure filtration.

  7. Double-clad nuclear-fuel safety rod

    Science.gov (United States)

    McCarthy, W.H.; Atcheson, D.B.

    1981-12-30

    A device for shutting down a nuclear reactor during an undercooling or overpower event, whether or not the reactor's scram system operates properly. This is accomplished by double-clad fuel safety rods positioned at various locations throughout the reactor core, wherein melting of a secondary internal cladding of the rod allows the fuel column therein to shift from the reactor core to place the reactor in a subcritical condition.

  8. Interim report on the creepdown of Zircaloy fuel cladding

    International Nuclear Information System (INIS)

    Hobson, D.O.; Dodd, C.V.

    1977-01-01

    This report describes the creepdown phenomenon in Zircaloy fuel cladding and the methods by which it will be measured and analyzed. Instrumentation for monitoring radial deformation in the cladding is described in detail--in terms of theory, design, and stability. The programs that control the microcomputer are listed, both to document the level of sophistication of the instrumentation and to indicate the flexibility of the test equipment

  9. HYDRIDE-RELATED DEGRADATION OF SNF CLADDING UNDER REPOSITORY CONDITIONS

    International Nuclear Information System (INIS)

    McCoy, K.

    2000-01-01

    The purpose and scope of this analysis/model report is to analyze the degradation of commercial spent nuclear fuel (CSNF) cladding under repository conditions by the hydride-related metallurgical processes, such as delayed hydride cracking (DHC), hydride reorientation and hydrogen embrittlement, thereby providing a better understanding of the degradation process and clarifying which aspects of the process are known and which need further evaluation and investigation. The intended use is as an input to a more general analysis of cladding degradation

  10. Special techniques for tensile tests of irradiated zirconium claddings

    International Nuclear Information System (INIS)

    Prokhorov, V.I.; Makarov, O.Ju.; Smirnov, V.P.

    2002-01-01

    Irradiated zirconium alloy claddings possessing property anisotropy should be tested in transverse and longitudinal directions. Such mechanical tests can be performed in conditions of large variety of geometric peculiarities of specimens, supports or grips. The objective of the work is the development of the unified complex of updated special techniques that allow investigation of mechanical pre- and post-irradiation properties of VVER claddings including radiation effect of property anisotropy changes in the same way. (author)

  11. Laser cladding crack repair of austenitic stainless steel

    CSIR Research Space (South Africa)

    Van Rooyen, C

    2009-06-01

    Full Text Available of pressurised vessel Fig. 2: Overlay positional welding Fig. 3: Crack sealing without peening prior to cladding 3 Hammer peening was introduced in order to mechanically seal of squirting water prior to crack sealing. Leaks were reduced from.... Simulated crack repair and overlay cladding with 316L is shown in Fig. 6. Three small leaking pores were observed in the first layer, indicated by arrows. Hammer peening was applied to the first layer to mechanically seal the leaking pores prior...

  12. Evolutionary developments of advanced PWR nuclear fuels and cladding materials

    International Nuclear Information System (INIS)

    Kim, Kyu-Tae

    2013-01-01

    Highlights: • PWR fuel and cladding materials development processes are provided. • Evolution of PWR advanced fuel in U.S.A. and in Korea is described. • Cutting-edge design features against grid-to-rod fretting and debris are explained. • High performance data of advanced grids, debris filters and claddings are given. -- Abstract: The evolutionary developments of advanced PWR fuels and cladding materials are explained with outstanding design features of nuclear fuel assembly components and zirconium-base cladding materials. The advanced PWR fuel and cladding materials development processes are also provided along with verification tests, which can be used as guidelines for newcomers planning to develop an advanced fuel for the first time. The up-to-date advanced fuels with the advanced cladding materials may provide a high level of economic utilization and reliable performance even under current and upcoming aggressive operating conditions. To be specific, nuclear fuel vendors may achieve high fuel burnup capability of between 45,000 and 65,000 MWD/MTU batch average, overpower thermal margin of as much as 15% and longer cycle length up to 24 months on the one hand and fuel failure rates of around 10 −6 on the other hand. However, there is still a need for better understanding of grid-to-rod fretting wear mechanisms leading to major PWR fuel defects in the world and subsequently a driving force for developing innovative spacer grid designs with zero fretting wear-induced fuel failure

  13. Laser cladding: repairing and manufacturing metal parts and tools

    Science.gov (United States)

    Sexton, Leo

    2003-03-01

    Laser cladding is presently used to repair high volume aerospace, automotive, marine, rail or general engineering components where excessive wear has occurred. It can also be used if a one-off high value component is either required or has been accidentally over-machined. The ultimate application of laser cladding is to build components up from nothing, using a laser cladding system and a 3D CAD drawing of the component. It is thus emerging that laser cladding can be classified as a special case of Rapid Prototyping (RP). Up to this point in time RP was seen, and is still seen, as in intermediately step between the design stage of a component and a finished working product. This can now be extended so that laser cladding makes RP a one-stop shop and the finished component is made from tool-steel or some alloy-base material. The marriage of laser cladding with RP is an interesting one and offers an alternative to traditional tool builders, re-manufacturers and injection mould design/repair industries. The aim of this paper is to discuss the emergence of this new technology, along with the transference of the process out of the laboratory and into the industrial workplace and show it is finding its rightful place in the manufacturing/repair sector. It will be shown that it can be used as a cost cutting, strategic material saver and consequently a green technology.

  14. Real-time laser cladding control with variable spot size

    Science.gov (United States)

    Arias, J. L.; Montealegre, M. A.; Vidal, F.; Rodríguez, J.; Mann, S.; Abels, P.; Motmans, F.

    2014-03-01

    Laser cladding processing has been used in different industries to improve the surface properties or to reconstruct damaged pieces. In order to cover areas considerably larger than the diameter of the laser beam, successive partially overlapping tracks are deposited. With no control over the process variables this conduces to an increase of the temperature, which could decrease mechanical properties of the laser cladded material. Commonly, the process is monitored and controlled by a PC using cameras, but this control suffers from a lack of speed caused by the image processing step. The aim of this work is to design and develop a FPGA-based laser cladding control system. This system is intended to modify the laser beam power according to the melt pool width, which is measured using a CMOS camera. All the control and monitoring tasks are carried out by a FPGA, taking advantage of its abundance of resources and speed of operation. The robustness of the image processing algorithm is assessed, as well as the control system performance. Laser power is decreased as substrate temperature increases, thus maintaining a constant clad width. This FPGA-based control system is integrated in an adaptive laser cladding system, which also includes an adaptive optical system that will control the laser focus distance on the fly. The whole system will constitute an efficient instrument for part repair with complex geometries and coating selective surfaces. This will be a significant step forward into the total industrial implementation of an automated industrial laser cladding process.

  15. A model for hydrogen pickup for BWR cladding materials

    International Nuclear Information System (INIS)

    Hede, G.; Kaiser, U.

    2001-01-01

    It has been observed that rod elongation is driven by the hydrogen pickup but not by corrosion as such. Based on this a non-destructive method to determine clad hydrogen concentration has been developed. The method is based on the observation that there are three different mechanisms behind the rod growth: the effect of neutron irradiation on the Zircaloy microstructure, the volume increase of the cladding as an effect of hydride precipitation and axial pellet-cladding-mechanical-interaction (PCMI). The derived correlation is based on the experience of older cladding materials, inspected at hot-cell laboratories, that obtained high hydrogen levels (above 500 ppm) at lower burnup (assembly burnup below 50 MWd/kgU). Now this experience can be applied, by interpolation, on more modern cladding materials with a burnup beyond 50 MWd/kgU by analysis of the rod growth database of the respective cladding materials. Hence, the method enables an interpolation rather than an extrapolation of present day hydrogen pickup database, which improves the reliability and accuracy. Further, one can get a good estimate of the hydrogen pickup during an ongoing outage based on a non-destructive method. Finally, rod growth measurements are normally performed for a large population of rods, hence giving a good statistics compared to examination of a few rods at a hot cell. (author)

  16. Cladding Attachment Over Thick Exterior Insulating Sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P. [Building Science Corporation, Somerville, MA (United States); Eng, P. [Building Science Corporation, Somerville, MA (United States); Lepage, R. [Building Science Corporation, Somerville, MA (United States)

    2014-01-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location (Straube and Smegal 2009, Pettit 2009, Joyce 2009, Ueno 2010). The research presented in this report is intended to help develop a better understanding of the system mechanics involved and the potential for environmental exposure induced movement between the furring strip and the framing. BSC sought to address the following research questions: 1.What are the relative roles of the mechanisms and the magnitudes of the force that influence the vertical displacement resistance of the system? 2.Can the capacity at a specified deflection be reliably calculated using mechanics based equations? 3.What are the impacts of environmental exposure on the vertical displacement of furring strips attached directly through insulation back to a wood structure?

  17. Cladding Attachment Over Thick Exterior Insulating Sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P. [Building Science Corporation, Somerville, MA (United States); Eng, P. [Building Science Corporation, Somerville, MA (United States); Lepage, R. [Building Science Corporation, Somerville, MA (United States)

    2014-01-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location (Straube and Smegal 2009, Pettit 2009, Joyce 2009, Ueno 2010). The research presented in this report is intended to help develop a better understanding of the system mechanics involved and the potential for environmental exposure induced movement between the furring strip and the framing. BSC sought to address the following research questions: 1. What are the relative roles of the mechanisms and the magnitudes of the force that influence the vertical displacement resistance of the system? 2. Can the capacity at a specified deflection be reliably calculated using mechanics based equations? 3. What are the impacts of environmental exposure on the vertical displacement of furring strips attached directly through insulation back to a wood structure?

  18. GREET Pretreatment Module

    Energy Technology Data Exchange (ETDEWEB)

    Adom, Felix K. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division

    2014-09-01

    A wide range of biofuels and biochemicals can be produced from cellulosic biomass via different pretreatment technologies that yield sugars. Process simulations of dilute acid and ammonia fiber expansion pretreatment processes and subsequent hydrolysis were developed in Aspen Plus for four lignocellulosic feedstocks (corn stover, miscanthus, switchgrass, and poplar). This processing yields sugars that can be subsequently converted to biofuels or biochemical. Material and energy consumption data from Aspen Plus were then compiled in a new Greenhouses Gases, Regulated Emissions, and Energy Use in Transportation (GREETTM) pretreatment module. The module estimates the cradle-to-gate fossil energy consumption (FEC) and greenhouse gas (GHG) emissions associated with producing fermentable sugars. This report documents the data and methodology used to develop this module and the cradle-to-gate FEC and GHG emissions that result from producing fermentable sugars.

  19. Revitalization of Lightweight Cladding of Buildings and Its Impact on Environment

    Science.gov (United States)

    Liška, Pavel; Nečasová, Barbora; Kovářová, Barbora; Novotný, Michal

    2017-12-01

    The presented study reveals that the revitalization of lightweight claddings installed before 1990 can have a positive impact on the environment and on the reduction of greenhouse gases in particular. The main focus is placed on the revitalization of a structural system known as OD-001, commonly called the ‘Boleticky panel’ system, which was frequently utilised all around the Czech Republic in the period before 1990. Only revitalization methods utilizing contemporary structural designs and current materials were verified during this study. The ‘Boleticky panel’ system was the type of façade cladding most frequently installed on administrative buildings in what was then Czechoslovakia. It is a panel system where load-bearing structure of the panel itself consists of closed profiles that are suspended from the building’s load-bearing structure. This type of system saw a great deal of use for more than 20 years. From today’s point of view, its thermal and technical properties are completely unsatisfactory and the gradual structural degradation of such systems, with a direct impact on their mechanical resistance, has been monitored over the last few years. However, these defects can be completely eliminated by the selection of a suitable type of revitalization. Cladding revitalization can be divided into three main categories. Each category represents a different level of impact on the structure of the above described cladding system. The first category only involves the replacement of windows, while the second consists in the replacement both of the windows and the existing panel sections. The third category of revitalization entails the complete removal of the existing cladding system and its replacement with a new one. The Life Cycle Assessment method (LCA) was used for environmental impact assessment. The aims and intentions of this method are not to search for the most economical or technically perfect product, service or technology, but to find the

  20. Effects of cold worked and fully annealed claddings on fuel failure behaviour

    International Nuclear Information System (INIS)

    Saito, Shinzo; Hoshino, Hiroaki; Shiozawa, Shusaku; Yanagihara, Satoshi

    1979-12-01

    Described are the results of six differently heat-treated Zircaloy clad fuel rod tests in NSRR experiments. The purpose of the test is to examine the extent of simulating irradiated claddings in mechanical properties by as-cold worked ones and also the effect of fully annealing on the fuel failure bahaviour in a reactivity initiated accident (RIA) condition. As-cold worked cladding does not properly simulated the embrittlement of the irradiated one in a RIA condition, because the cladding is fully annealed before the fuel failure even in the short transient. Therefore, the fuel behaviour such as fuel failure threshold energy, failure mechanism, cladding deformation and cladding oxidation of the fully annealed cladding fuel, as well as that of the as-cold worked cladding fuel, are not much different from that of the standard stress-relieved cladding fuel. (author)

  1. Corrosion Resistance Evaluation of HANA Claddings in Commercial PWR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee-Hun; Kwon, Oh-Hyun; Kim, Hong-Jin; Yoo, Jong-Sung; Kim, Yong-Hwan [KEPCO NF, Daejeon (Korea, Republic of)

    2014-10-15

    Korea Atomic Energy Research Institute (KAERI) in collaboration with KEPCO Nuclear Fuel (KNF) developed newly-advanced alloy which are named HANA (High-performance Alloy for Nuclear Application) for high burnup PWR nuclear fuel, showed an excellent out-pile corrosion resistance in PWR simulating loop conditions. And in-pile corrosion resistance of HANA claddings, which was examined at the first provisional inspection after -185 FPD of irradiation in the Halden Reactor, and also shown superior to the other references alloy. Also, other researches showed a much better corrosion resistance when compared to the other Zr-based alloy in various corrosion conditions. In this study, the LTA program for newly-developed fuel assembly (HIPER) with the HANA claddings was implemented to justify the performance for 3 cycles of operation schedule in Hanul nuclear power plant. The objective of this study is to compare corrosion properties of reference alloy with HANA claddings loaded in Hanul nuclear power plant.. For the examination procedures, the oxide thickness measurements method and equipment of PSE are described in detail as follow in measurement methods chapter. Finally, based on the above mentioned measurements method, the summarized oxide thickness data obtained from PSE are evaluated for the corrosion resistance in commercial nuclear power plant and some discussion for the corrosion resistance are described. In the past, corrosion resistance of HANA claddings was successfully conducted in test reactor. In this study, the corrosion characteristic of HANA claddings which are applied to HIPER is examined in the commercial nuclear power plant. HANA claddings in the HIPER showed a more improved corrosion resistance than reference alloy claddings and are evaluated well with meeting the oxide thickness criteria.

  2. Development of advanced LWR fuel cladding

    International Nuclear Information System (INIS)

    Jeong, Yong Hwan; Park, S. Y.; Lee, M. H.

    2000-04-01

    This report describes the results from evaluating the preliminary Zr-based alloys to develop the advanced Zr-based alloys for the nuclear fuel claddings, which should have good corrosion resistance and mechanical properties at high burn-up over 70,000MWD/MTU. It also includes the results from the basic studies for optimizing the processes which are involved in the development of the advanced Zr-based alloys. Ten(10) kinds of candidates for the alloys of which performance is over that of the existing Zircaloy-4 or ZIRLO alloy were selected out of the preliminary alloys of 150 kinds which were newly designed and repeatedly manufactured and evaluated to find out the promising alloys. First of all, the corrosion tests on the preliminary alloys were carried out to evaluate their performance in both pure water and LiOH solution at 360 deg C and in steam at 400 deg C. The tensile tests were performed on the alloys which proved to be good in the corrosion resistance. The creep behaviors were tested at 400 deg C for 10 days with the application of constant load on the samples which showed good performance in the corrosion resistance and tensile properties. The effect of the final heat treatment and A-parameters as well as Sn or Nb on the corrosion resistance, tensile properties, hardness, microstructures of the alloys was evaluated for some alloys interested. The other basic researches on the oxides, electrochemical properties, corrosion mechanism, and the establishment of the phase diagrams of some alloys were also carried out

  3. Development of advanced LWR fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong Hwan; Park, S. Y.; Lee, M. H. [and others

    2000-04-01

    This report describes the results from evaluating the preliminary Zr-based alloys to develop the advanced Zr-based alloys for the nuclear fuel claddings, which should have good corrosion resistance and mechanical properties at high burn-up over 70,000MWD/MTU. It also includes the results from the basic studies for optimizing the processes which are involved in the development of the advanced Zr-based alloys. Ten(10) kinds of candidates for the alloys of which performance is over that of the existing Zircaloy-4 or ZIRLO alloy were selected out of the preliminary alloys of 150 kinds which were newly designed and repeatedly manufactured and evaluated to find out the promising alloys. First of all, the corrosion tests on the preliminary alloys were carried out to evaluate their performance in both pure water and LiOH solution at 360 deg C and in steam at 400 deg C. The tensile tests were performed on the alloys which proved to be good in the corrosion resistance. The creep behaviors were tested at 400 deg C for 10 days with the application of constant load on the samples which showed good performance in the corrosion resistance and tensile properties. The effect of the final heat treatment and A-parameters as well as Sn or Nb on the corrosion resistance, tensile properties, hardness, microstructures of the alloys was evaluated for some alloys interested. The other basic researches on the oxides, electrochemical properties, corrosion mechanism, and the establishment of the phase diagrams of some alloys were also carried out.

  4. Effects of SPORL and dilute acid pretreatment on substrate morphology, cell physical and chemical wall structures, and subsequent enzymatic hydrolysis of lodgepole pine.

    Science.gov (United States)

    Li, Xinping; Luo, Xiaolin; Li, Kecheng; Zhu, J Y; Fougere, J Dennis; Clarke, Kimberley

    2012-11-01

    The effects of pretreatment by dilute acid and sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) on substrate morphology, cell wall physical and chemical structures, along with the subsequent enzymatic hydrolysis of lodgepole pine substrate were investigated. FE-SEM and TEM images of substrate structural morphological changes showed that SPORL pretreatment resulted in fiber separation, where SPORL high pH (4.2) pretreatment exhibited better fiber separation than SPORL low pH (1.9) pretreatment. Dilute acid pretreatment produced very poor fiber separation, consisting mostly of fiber bundles. The removal of almost all hemicelluloses in the dilute acid pretreated substrate did not overcome recalcitrance to achieve a high cellulose conversion when lignin removal was limited. SPORL high pH pretreatment removed more lignin but less hemicellulose, while SPORL low pH pretreatment removed about the same amount of lignin and hemicelluloses in lodgepole pine substrates when compared with dilute acid pretreatment. Substrates pretreated with either SPORL process had a much higher cellulose conversion than those produced with dilute acid pretreatment. Lignin removal in addition to removal of hemicellulose in SPORL pretreatment plays an important role in improving the cellulose hydrolysis of the substrate.

  5. Structural Analysis of Alkaline Pretreated Rice Straw for Ethanol Production

    Directory of Open Access Journals (Sweden)

    Paripok Phitsuwan

    2017-01-01

    Full Text Available Rice straw (RS is an abundant, readily available agricultural waste, which shows promise as a potential feedstock for Asian ethanol production. To enhance release of glucose by enzymatic hydrolysis, RS was pretreated with aqueous ammonia (27% w/w at two pretreatment temperatures: room temperature and 60°C. Statistical analysis indicated similarity of enzymatic glucose production at both pretreatment temperatures after 3-day incubation. Chemical composition, FTIR, and EDX analyses confirmed the retention of glucan and xylan in the pretreated solid, but significant reduction of lignin (60.7% removal and silica. SEM analysis showed the disorganized surfaces and porosity of the pretreated RS fibers, thus improving cellulose accessibility for cellulase. The crystallinity index increased from 40.5 to 52.3%, indicating the higher exposure of cellulose. With 10% (w/v solid loadings of pretreated RS, simultaneous saccharification and fermentation yielded a final ethanol concentration of 24.6 g/L, corresponding to 98% of maximum theoretical yield. Taken together, aqueous ammonia pretreatment is an effective method to generate highly digestible pretreated RS for bioethanol production and demonstrates potential application in biorefinery industry.

  6. Advances in aluminum pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Sudour, Michel; Maintier, Philippe [PPG Industries France, 3 Z.A.E. Les Dix Muids, B.P. 89, F-59583 Marly (France); Simpson, Mark [PPG Industries Inc., 1200 Piedmont Troy, Michigan 48083 (United States); Quaglia, Paolo [PPG Industries Italia, Via Garavelli 21, I-15028 Quattordio (Italy)

    2004-07-01

    As automotive manufacturers continue to look for ways to reduce vehicle weight, aluminum is finding more utility as a body panel component. The substitution of cold-rolled steel and zinc-coated substrates with aluminum has led to new challenges in vehicle pretreatment. As a result, changes to traditional pretreatment chemistries and operating practices are necessary in order to produce an acceptable coating on aluminum body panels. These changes result in increased sludging and other undesirable characteristics. In addition to the chemistry changes, there are also process-related problems to consider. Many existing automotive pretreatment lines simply were not designed to handle aluminum and its increased demands on filtration and circulation equipment. To retrofit such a system is capital intensive and in addition to requiring a significant amount of downtime, may not be totally effective. Thus, the complexities of pre-treating aluminum body panels have actually had a negative effect on efforts to introduce more aluminum into new vehicle design programs. Recent research into ways of reducing the negative effects has led to a new understanding of the nature of zinc phosphate bath -aluminum interactions. Many of the issues associated with the pretreatment of aluminum have been identified and can be mitigated with only minor changes to the zinc phosphate bath chemistry. The use of low levels of soluble Fe ions, together with free fluoride, has been shown to dramatically improve the efficiency of a zinc phosphate system processing aluminum. Appearance of zinc phosphate coatings, coating weights and sludge are all benefited by this chemistry change. (authors)

  7. The quest for safe and reliable fuel cladding materials

    Energy Technology Data Exchange (ETDEWEB)

    Pino, Eddy S.; Abe, Alfredo Y., E-mail: eddypino132@hotmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Giovedi, Claudia, E-mail: claudia.giovedi@labrisco.usp.br [Universidade de Sao Paulo (POLI/USP), Sao Paulo, SP (Brazil). Lab. de Analise, Avaliacao e Gerenciamento de Risco

    2015-07-01

    The tragic Fukushima Daiichi Nuclear Plant accident of March, 2011, has brought great unrest and challenge to the nuclear industry, which, in collaboration with universities and nuclear research institutes, is making great efforts to improve the safety in nuclear reactors developing accident tolerant fuels (ATF). This involves the study of different materials to be applied as cladding and, also, the improvement in the fuel properties in order to enhance the fuel performance and safety, specifically under accident conditions. Related to the cladding, iron based alloys and silicon carbide (SiC) materials have been studied as a good alternative. In the case of austenitic stainless steel, there is the advantage that the austenitic stainless steel 304 was used as cladding material in the first PWR (Pressurized Water Reactor) registering a good performance. Then, alternated cladding materials such as iron based alloys (304, 310, 316, 347) should be used to replace the zirconium-based alloys in order to improve safety. In this paper, these cladding materials are evaluated in terms of their physical and chemical properties; among them, strength and creep resistance, thermal conductivity, thermal stability and corrosion resistance. Additionally, these properties are compared with those of conventional zirconium-based alloys, the most used material in actual PWR, to assess the advantages and disadvantages of each material concerning to fuel performance and safety contribution. (author)

  8. POST CRITICAL HEAT TRANSFER AND FUEL CLADDING OXIDATION

    Directory of Open Access Journals (Sweden)

    Vojtěch Caha

    2016-12-01

    Full Text Available The knowledge of heat transfer coefficient in the post critical heat flux region in nuclear reactor safety is very important. Although the nuclear reactors normally operate at conditions where critical heat flux (CHF is not reached, accidents where dryout occur are possible. Most serious postulated accidents are a loss of coolant accident or reactivity initiated accident which can lead to CHF or post CHF conditions and possible disruption of core integrity. Moreover, this is also influenced by an oxide layer on the cladding surface. The paper deals with the study of mathematical models and correlations used for heat transfer calculation, especially in post dryout region, and fuel cladding oxidation kinetics of currently operated nuclear reactors. The study is focused on increasing of accuracy and reliability of safety limit calculations (e.g. DNBR or fuel cladding temperature. The paper presents coupled code which was developed for the solution of forced convection flow in heated channel and oxidation of fuel cladding. The code is capable of calculating temperature distribution in the coolant, cladding and fuel and also the thickness of an oxide layer.

  9. Fuel-cladding chemical interaction in mixed-oxide fuels

    International Nuclear Information System (INIS)

    Lawrence, L.A.; Weber, J.W.; Devary, J.L.

    1978-10-01

    The character and extent of fuel-cladding chemical interaction (FCCI) was established for UO 2 -25 wt% PuO 2 clad with 20% cold worked Type 316 stainless steel irradiated at high cladding temperatures to peak burnups greater than 8 atom %. The data base consists of 153 data sets from fuel pins irradiated in EBR-II with peak burnups to 9.5 atom %, local cladding inner surface temperatures to 725 0 C, and exposure times to 415 equivalent full power days. As-fabricated oxygen-to-metal ratios (O/M) ranged from 1.938 to 1.984 with the bulk of the data in the range 1.96 to 1.98. HEDL P-15 pins provided data at low heat rates, approx. 200 W/cm, and P-23 series pins provided data at higher heat rates, approx. 400 W/cm. A design practice for breeder reactors is to consider an initial reduction of 50 microns in cladding thickness to compensate for possible FCCI. This approach was considered to be a conservative approximation in the absence of a comprehensive design correlation for extent of interaction. This work provides to the designer a statistically based correlation for depth of FCCI which reflects the influences of the major fuel and operating parameters on FCCI

  10. Cladding Alloys for Fluoride Salt Compatibility Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Muralidharan, Govindarajan [ORNL; Wilson, Dane F [ORNL; Santella, Michael L [ORNL; Holcomb, David Eugene [ORNL

    2011-05-01

    This interim report provides an overview of several candidate technologies for cladding nickel-based corrosion protection layers onto high-temperature structural alloys. The report also provides a brief overview of the welding and weld performance issues associated with joining nickel-clad nickel-based alloys. From the available techniques, two cladding technologies were selected for initial evaluation. The first technique is a line-of-sight method that would be useful for coating large structures such as vessel interiors or large piping. The line-of-sight method is a laser-based surface cladding technique in which a high-purity nickel powder mixed into a polymer binder is first sprayed onto the surface, baked, and then rapidly melted using a high power laser. The second technique is a vapor phase technique based on the nickel-carbonyl process that is suitable for coating inaccessible surfaces such as the interior surfaces of heat exchangers. The final project report will feature an experimental evaluation of the performance of the two selected cladding techniques.

  11. The quest for safe and reliable fuel cladding materials

    International Nuclear Information System (INIS)

    Pino, Eddy S.; Abe, Alfredo Y.; Giovedi, Claudia

    2015-01-01

    The tragic Fukushima Daiichi Nuclear Plant accident of March, 2011, has brought great unrest and challenge to the nuclear industry, which, in collaboration with universities and nuclear research institutes, is making great efforts to improve the safety in nuclear reactors developing accident tolerant fuels (ATF). This involves the study of different materials to be applied as cladding and, also, the improvement in the fuel properties in order to enhance the fuel performance and safety, specifically under accident conditions. Related to the cladding, iron based alloys and silicon carbide (SiC) materials have been studied as a good alternative. In the case of austenitic stainless steel, there is the advantage that the austenitic stainless steel 304 was used as cladding material in the first PWR (Pressurized Water Reactor) registering a good performance. Then, alternated cladding materials such as iron based alloys (304, 310, 316, 347) should be used to replace the zirconium-based alloys in order to improve safety. In this paper, these cladding materials are evaluated in terms of their physical and chemical properties; among them, strength and creep resistance, thermal conductivity, thermal stability and corrosion resistance. Additionally, these properties are compared with those of conventional zirconium-based alloys, the most used material in actual PWR, to assess the advantages and disadvantages of each material concerning to fuel performance and safety contribution. (author)

  12. Glycerol carbonate as green solvent for pretreatment of sugarcane bagasse

    Science.gov (United States)

    2013-01-01

    Background Pretreatment of lignocellulosic biomass is a prerequisite for effective saccharification to produce fermentable sugars. In this study, “green” solvent systems based on acidified mixtures of glycerol carbonate (GC) and glycerol were used to treat sugarcane bagasse and the roles of each solvent in deconstructing biomass were determined. Results Pretreatment of sugarcane bagasse at 90°C for only 30 min with acidified GC produced a solid residue having a glucan digestibility of 90% and a glucose yield of 80%, which were significantly higher than a glucan digestibility of 16% and a glucose yield of 15% obtained for bagasse pretreated with acidified ethylene carbonate (EC). Biomass compositional analyses showed that GC pretreatment removed more lignin than EC pretreatment (84% vs 54%). Scanning electron microscopy (SEM) showed that fluffy and size-reduced fibres were produced from GC pretreatment whereas EC pretreatment produced compact particles of reduced size. The maximal glucan digestibility and glucose yield of GC/glycerol systems were about 7% lower than those of EC/ethylene glycol (EG) systems. Replacing up to 50 wt% of GC with glycerol did not negatively affect glucan digestibility and glucose yield. The results from pretreatment of microcrystalline cellulose (MCC) showed that (1) pretreatment with acidified alkylene glycol (AG) alone increased enzymatic digestibility compared to pretreatments with acidified alkylene carbonate (AC) alone and acidified mixtures of AC and AG, (2) pretreatment with acidified GC alone slightly increased, but with acidified EC alone significantly decreased, enzymatic digestibility compared to untreated MCC, and (3) there was a good positive linear correlation of enzymatic digestibility of treated and untreated MCC samples with congo red (CR) adsorption capacity. Conclusions Acidified GC alone was a more effective solvent for pretreatment of sugarcane bagasse than acidified EC alone. The higher glucose yield obtained

  13. Influence of ultrasound pretreatment on wood physiochemical structure.

    Science.gov (United States)

    He, Zhengbin; Wang, Zhenyu; Zhao, Zijian; Yi, Songlin; Mu, Jun; Wang, Xiaoxu

    2017-01-01

    As an initial step to increase the use of renewable biomass resources, this study was aimed at investigating the effects of ultrasound pretreatment on structural changes of wood. Samples were pretreated by ultrasound with the power of 300W and frequency of 28kHz in aqueous soda solution, aqueous acetic acid, or distilled water, then pretreated and control samples were characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The results shown that ultrasound pretreatment is indeed effective in modifying the physiochemical structure of eucalyptus wood; the pretreatment decreased the quantity of alkali metals (e.g., potassium, calcium and magnesium) in the resulting material. Compared to the control group, the residual char content of samples pretreated in aqueous soda solution increased by 10.08%-20.12% and the reaction temperature decreased from 361°C to 341°C, however, in samples pretreated by ultrasound in acetic solution or distilled water, the residual char content decreased by 12.40%-21.45% and there were no significant differences in reactivity apart from a slightly higher maximum reaction rate. Ultrasound pretreatment increased the samples' crystallinity up to 35.5% and successfully removed cellulose, hemicellulose, and lignin from the samples; the pretreatment also increased the exposure of the sample to the treatment solutions, broke down sample pits, and generated collapses and microchannels on sample pits, and removed attachments in the samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Nonhazardous Urine Pretreatment Method

    Science.gov (United States)

    Akse, James R.; Holtsnider, John T.

    2012-01-01

    A method combines solid phase acidification with two non-toxic biocides to prevent ammonia volatilization and microbial proliferation. The safe, non-oxidizing biocide combination consists of a quaternary amine and a food preservative. This combination has exhibited excellent stabilization of both acidified and unacidified urine. During pretreatment tests, composite urine collected from donors was challenged with a microorganism known to proliferate in urine, and then was processed using the nonhazardous urine pre-treatment method. The challenge microorganisms included Escherichia coli, a common gram-negative bacteria; Enterococcus faecalis, a ureolytic gram-positive bacteria; Candida albicans, a yeast commonly found in urine; and Aspergillus niger, a problematic mold that resists urine pre-treatment. Urine processed in this manner remained microbially stable for over 57 days. Such effective urine stabilization was achieved using non-toxic, non-oxidizing biocides at higher pH (3.6 to 5.8) than previous methods in use or projected for use aboard the International Space Station (ISS). ISS urine pretreatment methods employ strong oxidants including ozone and hexavalent chromium (Cr(VI)), a carcinogenic material, under very acidic conditions (pH = 1.8 to 2.4). The method described here offers a much more benign chemical environment than previous pretreatment methods, and will lower equivalent system mass (ESM) by reducing containment volume and mass, system complexity, and crew time needed to handle pre-treatment chemicals. The biocides, being non-oxidizing, minimize the potential for chemical reactions with urine constituents to produce volatile, airborne contaminants such as cyanogen chloride. Additionally, the biocides are active under significantly less acidic conditions than those used in the current system, thereby reducing the degree of required acidification. A simple flow-through solid phase acidification (SPA) bed is employed to overcome the natural buffering

  15. Performance of HT9 clad metallic fuel at high temperature

    International Nuclear Information System (INIS)

    Pahl, R.G.; Lahm, C.E.; Hayes, S.L.

    1992-01-01

    Steady-state testing of HT9 clad metallic fuel at high temperatures was initiated in EBR-II in November of 1987. At that time U-10 wt. % Zr fuel clad with the low-swelling ferritic/martensitic alloy HT9 was being considered as driver fuel options for both EBR-II and FFTF. The objective of the X447 test described here was to determine the lifetime of HT9 cladding when operated with metallic fuel at beginning of life inside wall temperatures approaching ∼660 degree C. Though stress-temperature design limits for HT9 preclude its use for high burnup applications under these conditions due to excessive thermal creep, the X447 test was carried out to obtain data on high temperature breach phenomena involving metallic fuel since little data existed in that area

  16. Manufacturing process for the metal ceramic hybrid fuel cladding tube

    International Nuclear Information System (INIS)

    Jung, Yang Il; Kim, Sun Han; Park, Jeong Yong

    2012-01-01

    For application in LWRs with suppressed hydrogen release, a metal-ceramic hybrid cladding tube has been proposed. The cladding consists of an inner zirconium tube and outer SiC fiber matrix SiC ceramic composite. The inner zirconium allows the matrix to remain fully sealed even if the ceramic matrix cracks through. The outer SiC composite can increase the safety margin by taking the merits of the SiC itself. However, it is a challenging task to fabricate the metal-ceramic hybrid tube. Processes such as filament winding, matrix impregnation, and surface costing are additionally required for the existing Zr based fuel cladding tubes. In the current paper, the development of the manufacturing process will be introduced

  17. Compatibility of niobium, titanium, and vanadium metals with LMFBR cladding

    International Nuclear Information System (INIS)

    Wilson, C.N.

    1975-10-01

    A series of laboratory capsule annealing experiments were conducted to assess the compatibility of niobium, vanadium, and titanium with 316 stainless steel cladding in the temperature range of 700 to 800 0 C. Niobium, vanadium, and titanium are cantidate oxygen absorber materials for control of oxygen chemistry in LMFBR fuel pins. Capsule examination indicated good compatibility between niobium and 316 stainless steel at 800 0 C. Potential compatibility problems between cladding and vanadium or titanium were indicated at 800 0 C under reducing conditions. In the presence of Pu/sub 0.25/U/sub 0.75/O/sub 1.98/ fuel (Δanti G 02 congruent to -160 kcal/mole) no reaction was observed between vanadium or titanium and cladding at 800 0 C

  18. Chemical Dissolution of Simulant FCA Cladding and Plates

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pierce, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); O' Rourke, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-08

    The Savannah River Site (SRS) has received some fast critical assembly (FCA) fuel from the Japan Atomic Energy Agency (JAEA) for disposition. Among the JAEA FCA fuel are approximately 7090 rectangular Stainless Steel clad fuel elements. Each element has an internal Pu-10.6Al alloy metal wafer. The thickness of each element is either 1/16 inch or 1/32 inch. The dimensions of each element ranges from 2 inches x 1 inch to 2 inches x 4 inches. This report discusses the potential chemical dissolution of the FCA clad material or stainless steel. This technology uses nitric acid-potassium fluoride (HNO3-KF) flowsheets of H-Canyon to dissolve the FCA elements from a rack of materials. Historically, dissolution flowsheets have aimed to maximize Pu dissolution rates while minimizing stainless steel dissolution (corrosion) rates. Because the FCA cladding is made of stainless steel, this work sought to accelerate stainless steel dissolution.

  19. Clad photon sieve for generating localized hollow beams

    Science.gov (United States)

    Cheng, Yiguang; Tong, Junmin; Zhu, Jiangping; Liu, Junbo; Hu, Song; He, Yu

    2016-02-01

    A novel photon sieve structure called clad photon sieve is proposed to generate localized hollow beams and its design principle and focusing properties are studied. The clad photon sieve is composed of the internal zone and external zone with pinholes being positioned on the dark zones. Pinholes in the internal zone and in the external zone give destructive interference to the focus, leading to localized hollow beams being generated on the focal plane. Focusing properties of clad photon sieve with different focal lengths, zone numbers and modulation factors are also studied by theoretical calculations, numerical simulations and experiments, showing that the central dark spot size can be controlled by the focal length and rings number, and the intensity of the central dark spot varies with different modulation factors related with the internal zone and the external zone. This photon sieve can be useful for trapping and manipulating of particles and cooling of atoms.

  20. Compatibility of niobium, titanium, and vanadium metals with LMFBR cladding

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, C.N.

    1975-10-01

    A series of laboratory capsule annealing experiments were conducted to assess the compatibility of niobium, vanadium, and titanium with 316 stainless steel cladding in the temperature range of 700 to 800/sup 0/C. Niobium, vanadium, and titanium are cantidate oxygen absorber materials for control of oxygen chemistry in LMFBR fuel pins. Capsule examination indicated good compatibility between niobium and 316 stainless steel at 800/sup 0/C. Potential compatibility problems between cladding and vanadium or titanium were indicated at 800/sup 0/C under reducing conditions. In the presence of Pu/sub 0.25/U/sub 0.75/O/sub 1.98/ fuel (..delta..anti G/sub 02/ congruent to -160 kcal/mole) no reaction was observed between vanadium or titanium and cladding at 800/sup 0/C.

  1. Absorptivity Measurements and Heat Source Modeling to Simulate Laser Cladding

    Science.gov (United States)

    Wirth, Florian; Eisenbarth, Daniel; Wegener, Konrad

    The laser cladding process gains importance, as it does not only allow the application of surface coatings, but also additive manufacturing of three-dimensional parts. In both cases, process simulation can contribute to process optimization. Heat source modeling is one of the main issues for an accurate model and simulation of the laser cladding process. While the laser beam intensity distribution is readily known, the other two main effects on the process' heat input are non-trivial. Namely the measurement of the absorptivity of the applied materials as well as the powder attenuation. Therefore, calorimetry measurements were carried out. The measurement method and the measurement results for laser cladding of Stellite 6 on structural steel S 235 and for the processing of Inconel 625 are presented both using a CO2 laser as well as a high power diode laser (HPDL). Additionally, a heat source model is deduced.

  2. Removal of particulates from nuclear offgas

    International Nuclear Information System (INIS)

    Burchsted, C.A.

    1976-01-01

    Particulate removal from nuclear offgases can be broken down into three parts: pretreatment, prefiltration, and absolute filtration. Pretreatment, using conventional air cleaning devices in most cases, is sometimes required to temper the gases and remove heavy concentrations of particulate matter. Prefiltration, if required, serves primarily to protect the final filter stages from heavy dust loadings in order to extend their life. HEPA filters are the most commonly used ''absolute'' filtration devices and are always required for removal of submicrometer particulates that cannot be removed effectively by other devices

  3. Irradiation of defected SAP clad UO2 fuel in the X-7 organic loop

    International Nuclear Information System (INIS)

    Robertson, R.F.S.; Cracknell, A.G.; MacDonald, R.D.

    1961-10-01

    This report describes an experiment designed to test the behaviour under irradiation of a UO 2 fuel specimen clad in a defected SAP sheath and cooled by recirculating organic liquid. The specimen containing the defect was irradiated in the X-7 loop in the NRX reactor from the 25th of November until the 13th of December 1960. Up to the 13th of December the behaviour was analogous to that seen with defected UO 2 specimens clad in zircaloy which were irradiated in water loops. Reactor power transients resulted in peaking of gamma ray activities in the loop, but on steady operation these activities tended to fall to a steady state level, Over this period the pressure drop across the fuel increased by a factor of two, the increases occurring after reactor shut downs and start ups. On 13th December the pressure drop increased rapidly, after a reactor shut down and start up, to over five times its original value and the activities in the loop rose to a high level. The specimen was removed and examination showed that the sheath was very badly split and that the volume between the fuel and the sheath was filled with a hard black organic substance. This report gives full details of the irradiation and of the post -irradiation examination. Correlation of the observed phenomenon is attempted and a preliminary assessment of the problems which would be associated with defect fuel in an organic reactor is given. (author)

  4. Influence Of The Laser Cladding Strategies On The Mechanical Properties Of Inconel 718

    International Nuclear Information System (INIS)

    Lamikiz, A.; Tabernero, I.; Ukar, E.; Lopez de Lacalle, L. N.; Delgado, J.

    2011-01-01

    This work presents different experimental results of the mechanical properties of Inconel registered 718 test parts built-up by laser cladding. Recently, turbine manufacturers for aeronautical sector have presented high interest on laser cladding processes. This process allows building fully functional structures on superalloys, such as Inconel registered 718, with high flexibility on complex shapes. However, there is limited data on mechanical properties of the laser cladding structures. Moreover, the available data do not include the influence of process parameters and laser cladding strategies. Therefore, a complete study of the influence of the laser cladding parameters and mainly, the variation of the tensile strength with the laser cladding strategy is presented. The results show that there is a high directionality of mechanical properties, depending on the strategies of laser cladding process. In other words, the test parts show a fiber -like structure that should be considered on the laser cladding strategy selection.

  5. Low-Stress Silicon Cladding for Surface Finishing Large UVOIR Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase I research, ZeCoat Corporation demonstrated a low-stress silicon cladding process for surface finishing large UVOIR mirrors. A polishable cladding is...

  6. Pretreatment of Dioscorea zingiberensis for Microbial Transformation

    Directory of Open Access Journals (Sweden)

    Tianxiang Zheng

    2014-09-01

    Full Text Available The influences of five pretreatments on fungal growth and enzyme production during microbial transformation of Dioscorea zingiberensis (DZW were studied. The biomass, α-rhamnase and β-glucosidase activities in the fermentation system were employed in the study to determine how each method affected the efficiency of microbial transformation. The fungal strain grew better on the substrate which contained easily utilized carbon source. While lack of carbon source induced the strain produce more glucosidase. Among five pretreatment methods, complex enzymatic hydrolyzation can remove 84.3% starch and 76.5% fibre from DZW in form of sugar, which resulted in high α-rhamnase activity of 2.89 IU/mL and β-glucosidase activity of 8.17 IU/mL in fermentation broth.

  7. Gap conductance in Zircaloy-clad LWR fuel rods

    International Nuclear Information System (INIS)

    Ainscough, J.B.

    1982-04-01

    This report describes the procedures currently used to calculate fuel-cladding gap conductance in light water reactor fuel rods containing pelleted UO 2 in Zircaloy cladding, under both steady-state and transient conditions. The relevant theory is discussed together with some of the approximations usually made in performance modelling codes. The state of the physical property data which are needed for heat transfer calculations is examined and some of the relevant in- and out-of-reactor experimental work on fuel rod conductance is reviewed

  8. Comparison of models discribing cladding deformations during LOCA

    International Nuclear Information System (INIS)

    Chakraborty, A.K.; Zipper, R.

    1981-05-01

    This report compares the important models for the determination of cladding deformations during LOCA. In addition to the comparisons of underlying assumptions of different models the same is done for the coefficients applied for the models. In order to assess the predictive capability of the models the calculated results are compared with the experimental results of the individual claddings. It was found out that the results of temperature ramp tests could be calculated better than that of the pressure ramp tests. The calculations revealed that even with the simplified assumption of the model used in TESPA the agreement of the calculated results with those of model NORA was relatively good. (orig.) [de

  9. Cladding dimensional changes in mixed oxide fuel pins

    International Nuclear Information System (INIS)

    Makenas, B.J.; Jost, J.W.; Hales, J.W.

    1980-01-01

    Several types of stainless steel (304, 316, 316-20% Cold Worked, and 316 Titanium stabilized 20% CW) have been used as cladding for mixed oxide (U, Pu)O 2 fuel pins irradiated in EBR-II. All of the materials have performed satisfactorily in their respective experimental subassemblies but significant differences in swelling and inelastic strain behavior have been found at high fast fluences among the different materials and among different heats of the same material. Cladding diameter increases were measured for 622 developmental and FFTF reference design fuel pins which were irradiated in 19 experimental subassemblies. Fuel pin diameters were determined from multiangle axial trace profilometry measurements

  10. Technical committee meeting on fuel and cladding interaction. Summary report

    International Nuclear Information System (INIS)

    1977-04-01

    Experiments and experiences concerning fuel-cladding interaction in thermal and fast neutron flux burnup are dealt with. A number of results from in-pile and out-of pile experiments with different fuel pins with cladding made of different stainless steels showed the importance of corrosion process, dependent on the burnup, core temperature, metal-oxide ratio, and other steady state parameters in the core of fast reactors (most frequently LMFBRs). This is of importance for fuel pins design and fabrication. Mixed oxide fuel is treated in many cases

  11. Synthesis of clad motion experiments interpretation: codes and validation

    International Nuclear Information System (INIS)

    Papin, J.; Fortunato, M.; Seiler, J.M.

    1983-04-01

    This communication deals with clad melting and relocation phenomena related to LMFBR safety analysis of loss of flow accidents. We present: - the physical models developed at DSN/CEN Cadarache in single channel and bundle geometry. The interpretation with these models of experiments performed by the STT (CEN Grenoble). It comes out that we have now obtained a good understanding of the involved phenomena in single channel geometry. On the other hand, further studies are necessary for a better knowledge of clad motion phenomena in bundle cases with conditions close to reactor ones

  12. Irradiation experience with HT9-clad metallic fuel

    International Nuclear Information System (INIS)

    Pahl, R.G.; Lahm, C.E.; Tsai, H.; Billone, M.C.

    1991-01-01

    The safe and reliable performance of metallic fuel is currently under study and demonstration in the Integral Fast Reactor program. In-reactor tests of HT9-clad metallic fuel have now reached maturity and have all shown good performance characteristics to burnups exceeding 17.5 at. % in the lead assembly. Because this low-swelling tempered martensitic alloy is the cladding of choice for high fluence applications, the experimental observations and performance modelling efforts reported in this paper play an important role in demonstrating reliability

  13. Modelling of pellet-cladding interaction in PWR's

    International Nuclear Information System (INIS)

    Esteves, A.M.; Silva, A.T. e.

    1992-01-01

    The pellet-cladding interaction that can occur in a PWR fuel rod design is modelled with the computer codes FRAPCON-1 and ANSYS. The fuel performance code FRAPCON-1 analyses the fuel rod irradiation behavior and generates the initial conditions for the localized fuel rod thermal and mechanical modelling in two and three-dimensional finite elements with ANSYS. In the mechanical modelling, a pellet fragment is placed in the fuel rod gap. Two types of fuel rod cladding materials are considered: Zircaloy and austenitic stainless steel. (author)

  14. Biomass shock pretreatment

    Science.gov (United States)

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  15. Effects of enzymatic removal of plant cell wall acylation (acetylation, p-coumaroylation, and feruloylation) on accessibility of cellulose and xylan in natural (non-pretreated) sugar cane fractions.

    Science.gov (United States)

    Várnai, Anikó; Costa, Thales Hf; Faulds, Craig B; Milagres, Adriane Mf; Siika-Aho, Matti; Ferraz, André

    2014-01-01

    fractions and the hydrolysis data together suggest that feruloyl groups are more likely to decorate xylan, while p-coumaroyl groups are rather linked to lignin. The three different feruloyl esterases had distinct product profiles on non-pretreated sugar cane substrate, indicating that sugar cane pith could function as a possible natural substrate for feruloyl esterase activity measurements. Hydrolysis data suggest that TsFaeC was able to release p-coumaroyl groups esterifying lignin.

  16. Engineering of metal-clad optical nanocavity to optimize coupling with integrated waveguides

    OpenAIRE

    Kim, Myung-Ki; Li, Zheng; Huang, Kun; Going, Ryan; Wu, Ming C.; Choo, Hyuck

    2013-01-01

    We propose a cladding engineering method that flexibly modifies the radiation patterns and rates of metal-clad nanoscale optical cavity. Optimally adjusting the cladding symmetry of the metal-clad nanoscale optical cavity modifies the modal symmetry and produces highly directional radiation that leads to 90% coupling efficiency into an integrated waveguide. In addition, the radiation rate of the cavity mode can be matched to its absorption rate by adjusting the thickness of the bottom-claddin...

  17. Report on Reactor Physics Assessment of Candidate Accident Tolerant Fuel Cladding Materials in LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); George, Nathan [Univ. of Tennessee, Knoxville, TN (United States); Maldonado, G. Ivan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-28

    This work focuses on ATF concepts being researched at Oak Ridge National Laboratory (ORNL), expanding on previous studies of using alternate cladding materials in pressurized water reactors (PWRs). The neutronic performance of two leading alternate cladding materials were assessed in boiling water reactors (BWRs): iron-chromium-aluminum (FeCrAl) cladding, and silicon carbide (SiC)-based composite cladding. This report fulfills ORNL Milestone M3FT-15OR0202332 within the fiscal year 2015 (FY15)

  18. Ceramic Coatings for Clad (The C3 Project): Advanced Accident-Tolerant Ceramic Coatings for Zr-Alloy Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Sickafus, Kurt E. [Univ. of Tennessee, Knoxville, TN (United States); Wirth, Brian [Univ. of Tennessee, Knoxville, TN (United States); Miller, Larry [Univ. of Tennessee, Knoxville, TN (United States); Weber, Bill [Univ. of Tennessee, Knoxville, TN (United States); Zhang, Yanwen [Univ. of Tennessee, Knoxville, TN (United States); Patel, Maulik [Univ. of Tennessee, Knoxville, TN (United States); Motta, Arthur [Pennsylvania State Univ., University Park, PA (United States); Wolfe, Doug [Pennsylvania State Univ., University Park, PA (United States); Fratoni, Max [Univ. of California, Berkeley, CA (United States); Raj, Rishi [Univ. of Colorado, Boulder, CO (United States); Plunkett, Kenneth [Univ. of Colorado, Boulder, CO (United States); Was, Gary [Univ. of Michigan, Ann Arbor, MI (United States); Hollis, Kendall [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nelson, Andy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stanek, Chris [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Comstock, Robert [Westinghouse Electric Corporation, Pittsburgh, PA (United States); Partezana, Jonna [Westinghouse Electric Corporation, Pittsburgh, PA (United States); Whittle, Karl [Univ. of Sheffield (United Kingdom); Preuss, Michael [Univ. of Manchester (United Kingdom); Withers, Philip [Univ. of Manchester (United Kingdom); Wilkinson, Angus [Univ. of Oxford (United Kingdom); Donnelly, Stephen [Univ. of Huddersfield (United Kingdom); Riley, Daniel [Australian Nuclear Science and Technology Organisation, Syndney (Australia)

    2017-02-14

    The goal of this NEUP-IRP project is to develop a fuel concept based on an advanced ceramic coating for Zr-alloy cladding. The coated cladding must exhibit demonstrably improved performance compared to conventional Zr-alloy clad in the following respects: During normal service, the ceramic coating should decrease cladding oxidation and hydrogen pickup (the latter leads to hydriding and embrittlement). During a reactor transient (e.g., a loss of coolant accident), the ceramic coating must minimize or at least significantly delay oxidation of the Zr-alloy cladding, thus reducing the amount of hydrogen generated and the oxygen ingress into the cladding. The specific objectives of this project are as follows: To produce durable ceramic coatings on Zr-alloy clad using two possible routes: (i) MAX phase ceramic coatings or similar nitride or carbide coatings; and (ii) graded interface architecture (multilayer) ceramic coatings, using, for instance, an oxide such as yttria-stabilized zirconia (YSZ) as the outer protective layer. To characterize the structural and physical properties of the coated clad samples produced in 1. above, especially the corrosion properties under simulated normal and transient reactor operating conditions. To perform computational analyses to assess the effects of such coatings on fuel performance and reactor neutronics, and to perform fuel cycle analyses to assess the economic viability of modifying conventional Zr-alloy cladding with ceramic coatings. This project meets a number of the goals outlined in the NEUP-IRP call for proposals, including: Improve the fuel/cladding system through innovative designs (e.g. coatings/liners for zirconium-based cladding) Reduce or eliminate hydrogen generation Increase resistance to bulk steam oxidation Achievement of our goals and objectives, as defined above, will lead to safer light-water reactor (LWR) nuclear fuel assemblies, due to improved cladding properties and built-in accident resistance, as well as

  19. Pretreating wheat straw by the concentrated phosphoric acid plus hydrogen peroxide (PHP): Investigations on pretreatment conditions and structure changes.

    Science.gov (United States)

    Wang, Qing; Hu, Jinguang; Shen, Fei; Mei, Zili; Yang, Gang; Zhang, Yanzong; Hu, Yaodong; Zhang, Jing; Deng, Shihuai

    2016-01-01

    Wheat straw was pretreated by PHP (the concentrated H3PO4 plus H2O2) to clarify effects of temperature, time and H3PO4 proportion on hemicellulose removal, delignification, cellulose recovery and enzymatic digestibility. Overall, hemicellulose removal was intensified by PHP comparing to the concentrated H3PO4. Moreover, efficient delignification specially happened in PHP pretreatment. Hemicellulose removal and delignification by PHP positively responded to temperature and time. Increasing H3PO4 proportion in PHP can promote hemicellulose removal, however, decrease the delignification. Maximum hemicellulose removal and delignification were achieved at 100% and 83.7% by PHP. Enzymatic digestibility of PHP-pretreated wheat straw was greatly improved by increasing temperature, time and H3PO4 proportion, and complete hydrolysis can be achieved consequently. As temperature of 30-40°C, time of 2.0 h and H3PO4 proportion of 60% were employed, more than 92% cellulose was retained in the pretreated wheat straw, and 29.1-32.6g glucose can be harvested from 100g wheat straw. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Gradient microstructure in laser clad TiC-reinforced Ni-alloy composite coating

    NARCIS (Netherlands)

    Pei, Y.T.; Zuo, T.C.

    1998-01-01

    A gradient TiC–(Ni alloy) composite coating was produced by one step laser cladding with pre-placed mixture powder on a 1045 steel substrate. The clad layers consisted of TiC particles, γ-Ni primary dendrites and interdendritic eutectics. From the bottom to the top of the clad layer produced at 2000

  1. Effect of copper surface pre-treatment on the properties of CVD grown graphene

    OpenAIRE

    Min-Sik Kim; Jeong-Min Woo; Dae-Myeong Geum; J. R. Rani; Jae-Hyung Jang

    2014-01-01

    Here, we report the synthesis of high quality monolayer graphene on the pre-treated copper (Cu) foil by chemical vapor deposition method. The pre-treatment process, which consists of pre-annealing in a hydrogen ambient, followed by diluted nitric acid etching of Cu foil, helps in removing impurities. These impurities include native copper oxide and rolling lines that act as a nucleation center for multilayer graphene. Raman mapping of our graphene grown on pre-treated Cu foil primarily consis...

  2. Impact of surfactant type for ionic liquid pretreatment on enhancing delignification of rice straw.

    Science.gov (United States)

    Chang, Ken-Lin; Chen, Xi-Mei; Wang, Xiao-Qin; Han, Ye-Ju; Potprommanee, Laddawan; Liu, Jing-Yong; Liao, Yu-Ling; Ning, Xun-An; Sun, Shui-Yu; Huang, Qing

    2017-03-01

    This work describes an environmentally friendly method for pretreating rice straw by using 1-Allyl-3-methylimidazolium chloride ([AMIM]Cl) as an ionic liquid (IL) assisted by surfactants. The impacts of surfactant type (including nonionic-, anionic-, cationic- and bio-surfactant) on the ionic liquid pretreatment were investigated. The bio-surfactant+IL-pretreated rice straw showed significant lignin removal (26.14%) and exhibited higher cellulose conversion (36.21%) than the untreated (16.16%) rice straw. The cellulose conversion of the rice straw pretreated with bio-surfactant+IL was the highest and the lowest was observed for pretreated with cationic-surfactant+IL. Untreated and pretreated rice straw was thoroughly characterized through SEM and AFM. In conclusion, the results provided an effective and environmental method for pretreating lignocellulosic substrates by using green solvent (ionic liquid) and biodegradable bio-surfactant. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Understanding the impact of ionic liquid pretreatment on eucalyptus

    Energy Technology Data Exchange (ETDEWEB)

    Centikol, Ozgul [Joint Bioenergy Institute; Dibble, Dean [Joint Bioenergy Institute; Cheng, Gang [Joint Bioenergy Institute; Kent, Michael S [ORNL; Knierim, Manfred [Joint Bioenergy Institute; Melnichenko, Yuri B [ORNL

    2010-01-01

    The development of cost-competitive biofuels necessitates the realization of advanced biomass pretreatment technologies. Ionic liquids provide a basis for one of the most promising pretreatment technologies and are known to allow effective processing of cellulose and some biomass species. Here, we demonstrate that the ionic liquid 1-ethyl-3-methyl imidazolium acetate, [C2mim][OAc], induces structural changes at the molecular level in the cell wall of Eucalyptus globulus. Deacetylation of xylan, acetylation of the lignin units, selective removal of guaiacyl units (increasing the syringyl:guaiacyl ratio) and decreased {beta}-ether content were the most prominent changes observed. Scanning electron microscopy images of the plant cell wall sections reveal extensive swelling during [C2mim][OAc] pretreatment. X-ray diffraction measurements indicate a change in cellulose crystal structure from cellulose I to cellulose II after [C2mim][OAc] pretreatment. Enzymatic saccharification of the pretreated material produced increased sugar yields and improved hydrolysis kinetics after [C2mim][OAc] pretreatment. These results provide new insight into the mechanism of ionic liquid pretreatment and reaffirm that this approach may be promising for the production of cellulosic biofuels from woody biomass.

  4. Green liquor pretreatment for improving enzymatic hydrolysis of corn stover.

    Science.gov (United States)

    Gu, Feng; Yang, Linfeng; Jin, Yongcan; Han, Qiang; Chang, Hou-min; Jameel, Hasan; Phillips, Richard

    2012-11-01

    Green liquor consists of sodium carbonate and sodium sulfide and is readily available in any kraft mills. The green liquor pretreatment process for bioethanol production was developed for wood chips. This process uses only proven technology and equipment currently used in a kraft pulp mill and has several additional advantages such as high sugar recovery and concentration, no inhibitive substances produced, as compared to acid-based pretreatment methods. The liquor was used to pretreat corn stover for enhancing enzymatic hydrolysis in bioethanol production. Pulp yield of 70% with 45% lignin removal was achieved under optimized conditions (8% total titratable alkali, 40% sulfidity and 140°C). About 70% of the original polysaccharides were converted into fermentable sugars, using 20 FPU/g-pulp of enzyme in the subsequent enzymatic hydrolysis. The result indicates that green liquor is a feasible pretreatment to improve the enzymatic saccharification of corn stover for bioethanol production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Cladding hull decontamination process: preliminary development studies

    International Nuclear Information System (INIS)

    Griggs, B.; Bryan, G.H.

    1979-12-01

    An investigation of the chemical and radioactive properties of fuel hulls was conducted to assist in a decontamination process development effort. The removal of zirconium oxide layers from zirconium was accomplished by a treatment in 600 0 C HF followed by a dilute aqueous reagent. Similar treatment in fused alkali-zirconium fluoride salt baths was examined. A remotely operated small batch facility was developed and process parameters determined. 16 figures, 9 tables

  6. Fundamental metallurgical aspects of axial splitting in zircaloy cladding

    International Nuclear Information System (INIS)

    Chung, H. M.

    2000-01-01

    Fundamental metallurgical aspects of axial splitting in irradiated Zircaloy cladding have been investigated by microstructural characterization and analytical modeling, with emphasis on application of the results to understand high-burnup fuel failure under RIA situations. Optical microscopy, SEM, and TEM were conducted on BWR and PWR fuel cladding tubes that were irradiated to fluence levels of 3.3 x 10 21 n cm -2 to 5.9 x 10 21 n cm -2 (E > 1 MeV) and tested in hot cell at 292--325 C in Ar. The morphology, distribution, and habit planes of macroscopic and microscopic hydrides in as-irradiated and posttest cladding were determined by stereo-TEM. The type and magnitude of the residual stress produced in association with oxide-layer growth and dense hydride precipitation, and several synergistic factors that strongly influence axial-splitting behavior were analyzed. The results of the microstructural characterization and stress analyses were then correlated with axial-splitting behavior of high-burnup PWR cladding reported for simulated-RIA conditions. The effects of key test procedures and their implications for the interpretation of RIA test results are discussed

  7. Advances in appendage joining techniques for PHWR fuel cladding

    International Nuclear Information System (INIS)

    Desai, P.B.; Ray, T.K.; Date, V.G.; Purushotham, D.S.C.

    1995-01-01

    This paper describes work carried out at the BARC on the development of a technique to join tiny appendages (spacers and bearing pads) to thin cladding (before loading of UO 2 pellets) by resistance welding for PHWR fuel assemblies. The work includes qualifying the process for production environment, designing prototype equipment for regular production and quality monitoring. In the first phase of development, welding of appendages on UO 2 loaded elements was successfully developed, and is being used in production. Welding of appendages on to empty clad tubes is a superior technique for several reasons. Many problems associated with development of welding on empty tubes were resolved. work was initiated, in the second phase of the development task, to select a suitable technique to join appendages on empty clad tubes without any collapse of thin clad. Several alternatives were reviewed and assessed such as laser, full face welding, shim welding and shrink fitting ring spacers. Selection of a method using a mandrel and a modified electrode geometry was fully developed. Results were optimized and process development successfully completed. Appropriate weld monitoring techniques were also reviewed for their adaptation. This technique is useful for 19, 22 as well as 37 element assemblies. (author)

  8. Prediction of cladding life in waste package environments

    International Nuclear Information System (INIS)

    McCoy, J.K.; Doering, T.W.

    1994-01-01

    Fuel cladding can potentially provide longer containment or slower release of radionuclides from spent fuel after geologic disposal. To predict the amount of benefit that cladding can provide, we surveyed degradation modes and developed a model for creep rupture by diffusion-controlled cavity growth, the mechanism that several authors have concluded is the most important. In this mechanism, voids nucleate on the grain boundaries and grow by diffusion of vacancies along the grain boundaries to the voids. When a certain fraction of the grain boundary area is covered with voids, the material fails. An analytic expression for cladding lifetime is developed. Besides materials constants, the predicted lifetime depends on the temperature history, the hoop stress in the cladding, the spacing between void nuclei, and the micro-structure. The inclusion of microstructure is a significant new feature of the model; this feature is used to help avoid excessive conservatism. The model is applied in a sample calculation for disposal of spent fuel, and the practice of using temperature limits to evaluate repository designs is examined

  9. Production and quality control of fuel cladding tubes for LWRs

    International Nuclear Information System (INIS)

    Matsuda, Katsuhiko; Hagi, Shigeki; Anada, Hiroyuki; Abe, Hideaki; Hyodo, Shigetoshi

    1994-01-01

    This paper reviews the recent fabrication technology and corrosion resistance study of fuel cladding tubes for LWRs conducted by Sumitomo Metal Industries Ltd. started the research on zircaloy in 1957. In 1980, the factory exclusively for the production of cladding tubes was founded, and the mass production system on full scale was established. Thereafter, the various improvement of the production technology, the development of new products, and the heightening of the performance mainly on the corrosion resistance have been tested and studied. Recently, the works in the production processes were almost automated, and the installation of the production lines advanced, and the stabilization of product quality and the rationalization of costs are promoted. Moreover, the development of the zircaloy cladding tubes having high corrosion resistance has been advanced to cope with the long term cycle operation of LWRs hereafter. The features of zircaloy cladding tubes, the manufacturing processes, the improvement of the manufacturing technology, the improvement of the corrosion resistance and so on are reported. (K.I.)

  10. Clad failure detection in G 3 - operational feedback

    International Nuclear Information System (INIS)

    Plisson, J.

    1964-01-01

    After briefly reviewing the role and the principles of clad failure detection, the author describes the working conditions and the conclusions reached after 4 years operation of this installation on the reactor G 3. He mentions also the modifications made to the original installation as well as the tests carried out and the experiments under way. (author) [fr

  11. Radioluminescent clad optical fibre X-ray sensor

    NARCIS (Netherlands)

    Fitzpatrick, C.; O'Donoghue, C.; Lewis, E.; Schöbel, J.; Bastaiens, B.; Bastiaens, Hubertus M.J.; van der Slot, Petrus J.M.

    2003-01-01

    An optical fibre X-ray sensor using cladding to core coupling of radioluminescent emissions from X-ray phosphors is presented. The sensor is tested using a line source normally used in the pre-ionisation of an excimer laser and is calibrated against a pendosimeter and the emission intensity of a

  12. Microstrain Determination in Individual Grains of Laser Deposited Cladding Layers

    NARCIS (Netherlands)

    de Oliveira, Uazir O. B.; Ocelik, Vaclav; De Hosson, Jeff T. M.; Chandra, T; Tsuzaki, K; Militzer, M; Ravindran, C

    2007-01-01

    The laser cladding technique makes the deposition of thick metallic, wear and corrosion resistant coatings feasible on weaker substrates. During the process, localized high thermal gradients generate internal stresses that may cause cracking when these overcome the fracture stress. To explain the

  13. Statistical mechanical analysis of LMFBR fuel cladding tubes

    International Nuclear Information System (INIS)

    Poncelet, J.-P.; Pay, A.

    1977-01-01

    The most important design requirement on fuel pin cladding for LMFBR's is its mechanical integrity. Disruptive factors include internal pressure from mixed oxide fuel fission gas release, thermal stresses and high temperature creep, neutron-induced differential void-swelling as a source of stress in the cladding and irradiation creep of stainless steel material, corrosion by fission products. Under irradiation these load-restraining mechanisms are accentuated by stainless steel embrittlement and strength alterations. To account for the numerous uncertainties involved in the analysis by theoretical models and computer codes statistical tools are unavoidably requested, i.e. Monte Carlo simulation methods. Thanks to these techniques, uncertainties in nominal characteristics, material properties and environmental conditions can be linked up in a correct way and used for a more accurate conceptual design. First, a thermal creep damage index is set up through a sufficiently sophisticated clad physical analysis including arbitrary time dependence of power and neutron flux as well as effects of sodium temperature, burnup and steel mechanical behavior. Although this strain limit approach implies a more general but time consuming model., on the counterpart the net output is improved and e.g. clad temperature, stress and strain maxima may be easily assessed. A full spectrum of variables are statistically treated to account for their probability distributions. Creep damage probability may be obtained and can contribute to a quantitative fuel probability estimation

  14. Foam coating on aluminum alloy with laser cladding

    NARCIS (Netherlands)

    Ocelik, V.; van Heeswijk, V.; de Hosson, J.T.M.; Csach, K.

    dThis article concentrates on the creation of a foam layer on an Al-Si substrate with laser technology. The cladding of At-Si powder in the front of a laser track has been separated from the side injection of mixture of Al-Si/TiH2 powder (foaming agent), which allows for fine tuning of the main

  15. Achilles tests finally nail PWR fuel clad ballooning fears

    International Nuclear Information System (INIS)

    Dore, P.; McMinn, K.

    1992-01-01

    A conclusive series of experiments carried out by AEA Reactor Services at its Achilles rig in the UK has finally allayed fears that fuel clad ballooning is a major safety problem for Sizewell B, Britain's first Pressurized Water Reactor. The experiments are described in this article. (author)

  16. Viscoelastic modelling of Zircaloy cladding in-pile transient creep

    Energy Technology Data Exchange (ETDEWEB)

    Tulkki, Ville, E-mail: ville.tulkki@vtt.fi; Ikonen, Timo

    2015-02-15

    In fuel behaviour modelling accurate description of the cladding stress response is important for both operational and safety considerations. The cladding creep determines in part the width of the gas gap, the duration to pellet-cladding contact and the stresses to the cladding due to the pellet expansion. Conventionally the strain hardening rule has been used to describe the creep response to transient loads in engineering applications. However, it has been well documented that the strain hardening rule does not describe well results of tests with load drops or reversals. In our earlier work we have developed a model for primary creep which can be used to simulate the in- and out-of-pile creep tests. Since then several creep experiments have entered into public domain. In this paper we develop the model formulation based on the theory of viscoelasticity, and show that this model can reproduce the new experimental results. We also show that the creep strain recovery encountered in experimental measurements can be explained by viscoelastic behaviour.

  17. Delayed hydride cracking of Zircaloy-4 fuel cladding

    International Nuclear Information System (INIS)

    Pizarro, Luis M.; Fernandez, Silvia; Lafont, Claudio; Mizrahi, Rafael; Haddad, Roberto

    2007-01-01

    Crack propagation rates, grown by the delayed hydride cracking mechanism, were measured in Zircaloy-4 fuel cladding, according to a Coordinated Research Project (CRP) sponsored by the International Atomic Energy Agency (IAEA). During the first stage of the program a Round Robin Testing was performed on fuel cladding samples provided by Studsvik (Sweden), of the type used in PWR reactors. Crack growth in the axial direction is obtained through the specially developed 'pin load testing' (PLT) device. In these tests, crack propagation rates were determined at 250 C degrees on several samples of the material described above, obtaining a mean value of about 2.5 x 10 -8 m s -1 . The results were analyzed and compared satisfactorily with those obtained by the other laboratories participating in the CRP. At the present moment, similar tests on CANDU and Atucha I type fuel cladding are being performed. It is thought that the obtained results will give valuable information concerning the analysis of possible failures affecting fuel cladding under reactor operation. (author) [es

  18. An Innovative Ceramic Corrosion Protection System for Zircaloy Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Ronald H. Baney, Dr. D. Butt, Dr. P. Demkowicz, Dr. G. Fuchs Department of Materials Science; James S. Tulenko, Department of Nuclear and Radiological Engineering; University of Florida.

    2003-02-19

    Light Water reactor (LWR) fuel performance is currently limited by thermal, chemical and mechanical constraints associated with the design, fabrication, and operation of the fuel in incore operation. Corrosion of the zirconium based (Zircaloy-4) alloy cladding of the fuel is a primary limiting factor. Recent success at the University of Florida in developing thin ceramic films with great adhesive properties for metal substrates offers an innovative breakthrough for eliminating a major weakness of the Zircaloy clad. ?The University of Florida proposes to coat the existing Zircaloy clad tubes with a ceramic coating for corrosion protection. An added bonus of this approach would be the implementation of a boron-containing burnable poison outer layer will also be demonstrated as part of the ceramic coating development. In this proposed effort, emphasis will be on the ceramic coating with only demonstration of feasibility on the burnable outer coating approach. This proposed program i s expected to give a step change (approximately a doubling) in clad lifetime before failure due to corrosion. In the development of ceramic coatings for Zircaloy-4 clad, silicon carbide and zirconium carbide coatings will first be applied to Zircaloy-4 coupons and cladding samples by thermal assisted chemical vapor deposition, plasma assisted chemical vapor deposition or by laser ablation deposition. All of these processes are in use at the University of Florida and have shown great potential. The questions of adhesion and thermal expansion mismatch of the ceramic coating to the Zircaloy substrate will be addressed. Several solutions to these conditions will be examined, if needed. These solutions include the use of a zirconium oxide compliant layer, employment of a laser roughened surface and the use of a gradient composition interlayer. These solutions have already been shown to be effective for other high modulus coatings on metal substrates. Mechanical properties and adhesion of the

  19. Hydrogenation and high temperature oxidation of Zirconium claddings

    International Nuclear Information System (INIS)

    Novotny, T.; Perez-Feró, E.; Horváth, M.

    2015-01-01

    In the last few years a new series of experiments started for supporting the new LOCA criteria, considering the proposals of US NRC. The effects which can cause the embrittlement of VVER fuel claddings were reviewed and evaluated in the framework of the project. The purpose of the work was to determine how the fuel cladding’s hydrogen uptake under normal operating conditions, effect the behavior of the cladding under LOCA conditions. As a first step a gas system equipment with gas valves and pressure gauge was built, in which the zirconium alloy can absorb hydrogen under controlled conditions. In this apparatus E110 (produced by electrolytic method, currently used at Paks NPP) and E110G (produced by a new technology) alloys were hydrogenated to predetermined hydrogen contents. According the results of ring compression tests the E110G alloys lose their ductility above 3200 ppm hydrogen content. This limit can be applied to determine the ductile-brittle transition of the nuclear fuel claddings. After the hydrogenation, high temperature oxidation experiments were carried out on the E110G and E110 samples at 1000 °C and 1200 °C. 16 pieces of E110G and 8 samples of E110 with 300 ppm and 600 ppm hydrogen content were tested. The oxidation of the specimens was performed in steam, under isothermal conditions. Based on the ring compression tests load-displacement curves were recorded. The main objective of the compression tests was to determine the ductile-brittle transition. These results were compared to the results of our previous experiments where the samples did not contain hydrogen. The original claddings showed more ductile behavior than the samples with hydrogen content. The higher hydrogen content resulted in a more brittle mechanical behavior. However no significant difference was observed in the oxidation kinetics of the same cladding types with different hydrogen content. The experiments showed that the normal operating hydrogen uptake of the fuel claddings

  20. Steam attack studies in SiC clad and advanced steel clad

    International Nuclear Information System (INIS)

    Terrani, Kurt; Snead, Lance; Pint, Bruce

    2013-01-01

    The most recent generation of zirconium alloys used as nuclear fuel cladding in LWRs offer exceptional performance under normal operating conditions with failure rates below 1 ppm. This level of performance is due to six decades of active research and development by nuclear operators, vendors, government laboratories, and academia. During this same period, iron alloys, which were successfully used in the early days of nuclear power but supplanted by zirconium alloys, have undergone broad-based development including specialty specialised steels for high-temperature corrosion and steam resistance. This coupled with the recent trends in fuel handling, reactor operation and the extreme control of coolant chemistry begs for re-examination of the application of advanced iron-alloys as LWR fuel cladding, specifically, oxidation resistant iron alloys that offer large margins of safety under severe accident conditions. Recently, steam oxidation tests have been performed on a wide range of austenitic and ferritic iron alloys at ORNL where the dependence of the oxidation kinetics on alloy chemistry has been determined. As the temperature increases the minimum Cr content in the ferritic and austenitic alloys needs to be increased for oxidation resistance. At temperatures ≥1200 deg. C ∼25% Cr content is necessary for adequate oxidation resistance. At the fixed Cr content, an increase in Ni content in the austenitic alloys enhances the oxidation resistance. Note that the 25% minimum Cr content disqualifies the conventional austenitic (18Cr-8Ni) alloys such as 304L as oxidation resistant materials in steam. The most promising alloys are ferritic alloys that contain some Al in addition to Cr. FeCrAl alloys with 20% Cr and 5% Al exhibit exceptionally low oxidation in high-temperature steam up to 1300 deg. C due to formation of a protective alumina film on the surface of the material. High-pressure steam oxidation tests (up to 2 MPa) were also performed that showed the effect of

  1. Thermal gradient effects on the oxidation of Zircaloy fuel cladding

    International Nuclear Information System (INIS)

    Klein, A.C.; Reyes, J.N. Jr.; Maguire, M.A.

    1990-01-01

    A Thermal Gradient Test Facility (TGTF) has been designed and constructed to measure the thermal gradient effect on pressurized water reactor (PWR) fuel rod cladding. The TGTF includes a heat flux simulator assembly capable of producing a wide range of PWR operating conditions including water flow velocities and temperatures, water chemistry conditions, cladding temperatures, and heat fluxes ranging to 160 W/cm 2 . It is fully instrumented including a large number of thermocouples both inside the water flow channel and inside the cladding. Two test programs are in progress. First, cladding specimens are pre-oxidized in air at 500 deg. C and in 400 deg. C steam for various lengths of time to develop a range of uniform oxide thicknesses from 1 to 60 micrometers. The pre-oxidized specimens are placed in the TGTF to characterize the oxide thermal conductivity under a variety of water flow and heat flux conditions. Second, to overcome the long exposure times required under typical PWR conditions a series of tests with the addition of high concentrations of lithium hydroxide to the water are being considered. Static autoclave tests have been conducted with lithium hydroxide concentrations ranging from 0 to 2 moles per liter at 300, 330, and 360 deg. C for up to 36 hours. Results for zircaloy-4 show a considerable increase in the weight gain for the exposed samples with oxidation rate enhancement factors as high as 70 times that of pure water. Operation of the TGTF with elevated lithium hydroxide levels will yield real-time information concerning the effects of a heat flux on the oxidation kinetics of zircaloy fuel rod cladding. (author). 5 refs, 5 figs, 2 tabs

  2. Bromine pretreated chitosan for adsorption of lead (II) from water

    Indian Academy of Sciences (India)

    Pollution by heavy metals like lead (II) is responsible for health hazards and environmental degradation. Adsorption is a prevalent method applied for removal of heavy metal pollutants from water. This study explored adsorption performances of 30% bromine pretreated chitosan for lead (II) abatement from water. Bromine ...

  3. Separations/pretreatment considerations for Hanford privatization phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, R.D.; McGinnis, C.P.; Welch, T.D.

    1998-05-01

    The Tank Focus Area is funded to develop, demonstrate, and deploy technologies that will assist in the treatment and closure of its nuclear waste tanks. Pretreatment technologies developed to support the privatization effort by the Department of Energy are reviewed. Advancements in evaporation, solid-liquid separation, sludge treatment, solids controls, sodium management, and radionuclide removal are considered.

  4. Influence of pretreatment of agriculture residues on phytase ...

    African Journals Online (AJOL)

    phytase production. Pretreatment of agriculture residues with water to remove excess inorganic phosphate has significantly enhanced the phytase activity in case of de-oiled rice bran, wheat bran, peanut cake (low and high oil) and coconut cake. Maximum increase of 20.3 times in phytase activity was observed in case of ...

  5. Bromine pretreated chitosan for adsorption of lead (II) from water

    Indian Academy of Sciences (India)

    Abstract. Pollution by heavy metals like lead (II) is responsible for health hazards and environmental degradation. Adsorption is a prevalent method applied for removal of heavy metal pollutants from water. This study explored adsorption performances of 30% bromine pretreated chitosan for lead (II) abatement from water.

  6. An allowable cladding peak temperature for spent nuclear fuels in interim dry storage

    Science.gov (United States)

    Cha, Hyun-Jin; Jang, Ki-Nam; Kim, Kyu-Tae

    2018-01-01

    Allowable cladding peak temperatures for spent fuel cladding integrity in interim dry storage were investigated, considering hydride reorientation and mechanical property degradation behaviors of unirradiated and neutron irradiated Zr-Nb cladding tubes. Cladding tube specimens were heated up to various temperatures and then cooled down under tensile hoop stresses. Cool-down specimens indicate that higher heat-up temperature and larger tensile hoop stress generated larger radial hydride precipitation and smaller tensile strength and plastic hoop strain. Unirradiated specimens generated relatively larger radial hydride precipitation and plastic strain than did neutron irradiated specimens. Assuming a minimum plastic strain requirement of 5% for cladding integrity maintenance in interim dry storage, it is proposed that a cladding peak temperature during the interim dry storage is to keep below 250 °C if cladding tubes are cooled down to room temperature.

  7. Effect of Co - based Alloy on Properties of Laser Cladding Layer

    Science.gov (United States)

    Yang, Y.; Jiang, Z. P.; Li, H. Z.

    2017-11-01

    A large number of laser cladding experiments have been carried out using 20CrMnTi steel as substrate and Co-based alloy as cladding material. The influence of Co-based alloy on the laser cladding properties of 20CrMnTi steel was studied by analyzing the macroscopic and microscopic characteristics of cladding crack susceptibility, dilution rate, microstructure and friction and wear properties. The results show that the high-power laser cladding of Co-based material can obtain a flat defect-free cladding layer with compact structure and low crack susceptibility. A multi-layer cladding strategy with variable power can be used to fabricate thin wall structures without collapse Parts, the surface smooth without pores.

  8. Cost comparison for REDC pretreatment project

    International Nuclear Information System (INIS)

    Robinson, S.M.; Homan, F.J.

    1997-06-01

    This analysis has been prepared to support the planned expenditure to provide the Radiochemical Engineering Development Center (REDC) with the capability to pretreat their liquid low-level waste (LLLW) before discharging it to the Oak Ridge National Laboratory (ORNL) LLLW system. Pretreatment will remove most of the radioactivity, particularly the transuranic isotopes and Cs-137 from the waste to be discharged. This will render the supernates that accumulate in the storage tanks low-activity Class B low-level wastes rather than high-activity Class B or Class C wastes. The sludges will be Class C rather than remote-handled transuranic (RH-TRU) wastes. When REDC wastes are commingled with other ORNL LLLW, the present-worth treatment and transport costs are higher by a factor of 1.3 for the no-pretreatment cases. This result is consistent with data from similar studies conducted at other sites. Based on the information presented in this analysis, the recommendation is to proceed with REDC treatment projects

  9. Corrosion of research reactor aluminium clad spent fuel in water

    International Nuclear Information System (INIS)

    2009-12-01

    A large variety of research reactor spent fuel with different fuel meats, different geometries and different enrichments in 235 U are presently stored underwater in basins located around the world. More than 90% of these fuels are clad in aluminium or aluminium based alloys that are notoriously susceptible to corrosion in water of less than optimum quality. Some fuel is stored in the reactor pools themselves, some in auxiliary pools (or basins) close to the reactor and some stored at away-from-reactor pools. Since the early 1990s, when corrosion induced degradation of the fuel cladding was observed in many of the pools, corrosion of research reactor aluminium clad spent nuclear fuel stored in light water filled basins has become a major concern, and programmes were implemented at the sites to improve fuel storage conditions. The IAEA has since then established a number of programmatic activities to address corrosion of research reactor aluminium clad spent nuclear fuel in water. Of special relevance was the Coordinated Research Project (CRP) on Corrosion of Research Reactor Aluminium Clad Spent Fuel in Water (Phase I) initiated in 1996, whose results were published in IAEA Technical Reports Series No. 418. At the end of this CRP it was considered necessary that a continuation of the CRP should concentrate on fuel storage basins that had demonstrated significant corrosion problems and would therefore provide additional insight into the fundamentals of localized corrosion of aluminium. As a consequence, the IAEA started a new CRP entitled Corrosion of Research Reactor Aluminium Clad Spent Fuel in Water (Phase II), to carry out more comprehensive research in some specific areas of corrosion of aluminium clad spent nuclear fuel in water. In addition to this CRP, one of the activities under IAEA's Technical Cooperation Regional Project for Latin America Management of Spent Fuel from Research Reactors (2001-2006) was corrosion monitoring and surveillance of research

  10. Technetium removal: preliminary flowsheet options

    International Nuclear Information System (INIS)

    Eager, K.M.

    1995-01-01

    This document presents the results of a preliminary investigation into options for preliminary flowsheets for 99Tc removal from Hanford Site tank waste. A model is created to show the path of 99Tc through pretreatment to disposal. The Tank Waste Remediation (TWRS) flowsheet (Orme 1995) is used as a baseline. Ranges of important inputs to the model are developed, such as 99Tc inventory in the tanks and important splits through the TWRS flowsheet. Several technetium removal options are discussed along with sensitivities of the removal schemes to important model parameters

  11. Energy consumption modeling during dairy sewage pretreatment

    Science.gov (United States)

    Dąbrowski, Wojciech; Żyłka, Radosław; Malinowski, Paweł; Boruszko, Dariusz

    2017-11-01

    The research was conducted in a dairy WWTP located in north-eastern Poland with the average flow of 546 m3d-1 and PE 11500 in 2016. Energy consumption was measured with the help of Lumel 3-phase network parameter transducers installed within the plant. The modeling was conducted based on the quantity and quality of raw sewage, after its screening, averaging and dissolved air flotation. The following parameters were determined: BOD5, COD. N-total and P-total. During the research period. 15 measurement series were carried out. Pollution loads removed in primary treatment varied from 167.0 to 803.5 kgO2d-1 and 1205.9 to 10032 kgO2d-1 for BOD5 and COD respectively. The energy consumption share during dairy pretreatment in relation to the total energy consumption was in the range from 13.8 to 28.5% with the mean value of 18.7% during the research period. Energy consumption indicators relating to removed pollution loads for primary treatment were established with the mean values of 0.74 and 0.83 kWhkg-1d-1 for BOD5 and COD respectively. An attempt was made to determine the influence of raw sewage characteristics and pretreatment efficiency on energy consumption of the object. A model of energy consumption during pretreatment was estimated according to the experimental data obtained in the research period. It was modeled using the linear regression model and principal component analysis.

  12. Energy consumption modeling during dairy sewage pretreatment

    Directory of Open Access Journals (Sweden)

    Dąbrowski Wojciech

    2017-01-01

    Full Text Available The research was conducted in a dairy WWTP located in north-eastern Poland with the average flow of 546 m3d-1 and PE 11500 in 2016. Energy consumption was measured with the help of Lumel 3-phase network parameter transducers installed within the plant. The modeling was conducted based on the quantity and quality of raw sewage, after its screening, averaging and dissolved air flotation. The following parameters were determined: BOD5, COD. N-total and P-total. During the research period. 15 measurement series were carried out. Pollution loads removed in primary treatment varied from 167.0 to 803.5 kgO2d-1 and 1205.9 to 10032 kgO2d-1 for BOD5 and COD respectively. The energy consumption share during dairy pretreatment in relation to the total energy consumption was in the range from 13.8 to 28.5% with the mean value of 18.7% during the research period. Energy consumption indicators relating to removed pollution loads for primary treatment were established with the mean values of 0.74 and 0.83 kWhkg-1d-1 for BOD5 and COD respectively. An attempt was made to determine the influence of raw sewage characteristics and pretreatment efficiency on energy consumption of the object. A model of energy consumption during pretreatment was estimated according to the experimental data obtained in the research period. It was modeled using the linear regression model and principal component analysis.

  13. Effect of alkaline pretreatment on anaerobic digestion of solid wastes

    International Nuclear Information System (INIS)

    Lopez Torres, M.; Espinosa Llorens, Ma. del C.

    2008-01-01

    The introduction of the anaerobic digestion for the treatment of the organic fraction of municipal solid waste (OFMSW) is currently of special interest. The main difficulty in the treatment of this waste fraction is its biotransformation, due to the complexity of organic material. Therefore, the first step must be its physical, chemical and biological pretreatment for breaking complex molecules into simple monomers, to increase solubilization of organic material and improve the efficiency of the anaerobic treatment in the second step. This paper describes chemical pretreatment based on lime addition (Ca(OH) 2 ), in order to enhance chemical oxygen demand (COD) solubilization, followed by anaerobic digestion of the OFMSW. Laboratory-scale experiments were carried out in completely mixed reactors, 1 L capacity. Optimal conditions for COD solubilization in the first step of pretreatment were 62.0 mEq Ca(OH) 2 /L for 6.0 h. Under these conditions, 11.5% of the COD was solubilized. The anaerobic digestion efficiency of the OFMSW, with and without pretreatment, was evaluated. The highest methane yield under anaerobic digestion of the pretreated waste was 0.15 m 3 CH 4 /kg volatile solids (VS), 172.0% of the control. Under that condition the soluble COD and VS removal were 93.0% and 94.0%, respectively. The results have shown that chemical pretreatment with lime, followed by anaerobic digestion, provides the best results for stabilizing the OFMSW

  14. Acceptability of local boiling during shutdown heat removal

    International Nuclear Information System (INIS)

    Dunn, F.E.

    1985-01-01

    Failures in the shutdown heat removal system of an LMFBR might lead to flow stagnation and coolant boiling in the reactor core. At normal operating power, the onset of sodium boiling will lead to film dryout and melting of the cladding and fuel within a few seconds. On the other hand, both calculations and currently available experimental data indicate that at neat fluxes corresponding to decay heat power levels, boiling leads to improved heat removal; and it limits the temperature rise in the fuel pins. Therefore, when setting criteria for decay heat removal systems, there is no reason to preclude sodium boiling per se because of heat removal considerations

  15. Fabrication of a tantalum-clad tungsten target for KENS

    International Nuclear Information System (INIS)

    Kawai, Masayoshi; Kikuchi, Kenji; Kurishita, Hiroaki; Li, J.-F.; Furusaka, Michihiro

    2001-01-01

    Since the cold neutron source intensity of KENS (the spallation neutron source at High Energy Accelerator Research Organization) was decreased into about a third of the designed value because a cadmium liner at the cold neutron source deformed and obstructed the neutron beam line, the target-moderator-and-reflector assembly (TMRA) has been replaced by a new one aimed at improving the neutron performance and recovering the cold neutron source. The tantalum target has also been replaced by a tantalum-clad tungsten one. In order to bond the tantalum-clad with the tungsten block, a hot isostatic press (HIP) process was applied and optimized. It was found that gaseous interstitial impurity elements severely attacked tantalum and embrittled, and that the getter materials such as zirconium and tantalum were effective to reduce the embrittlement

  16. Development of performance improvement of the cladding by ion beam

    International Nuclear Information System (INIS)

    Jung, Ki Sok; Kim, W.; Lee, J. H.; Choi, B. H.; Han, J. K.; Yoon, Y. H.; Lee, J. S.; Kwon, H. S.

    1997-07-01

    Ion implantation for the enhancement of the mechanical properties and the corrosion properties of the nuclear fuel cladding material has been conducted. Nitrogen implantations at 120 kV, > 5x10 17 ions/cm 2 , and >500 deg C resulted in the ZrN formation at the substrate surfaces. Nitrogen implantation at the elevated temperature in the oxygen atmosphere resulted in the great enhancement of the mechanical properties such as wear hardnesses. The hardness enhancement was especially significant up to 3 times at or above 500 deg C and 3x10 17 ions/cm 2 . The fretting wear resistance could be enhanced by 2 times at a dose of 8x10 17 ions/cm 2 . For the dedicated implanter of the cladding, main parts of the system were fabricated, e.g. ion sources, analyzing magnet, acceleration tube, vacuum lines, and the control programs. (author). 96 refs., 88 figs

  17. Modeling of realistic cladding structures for photonic bandgap fibers

    DEFF Research Database (Denmark)

    Mortensen, Niels Asger; Nielsen, Martin Dybendal

    2004-01-01

    Cladding structures of photonic bandgap fibers often have airholes of noncircular shape, and, typically, close-to-hexagonal airholes with curved corners are observed. We study photonic bandgaps in such structures by aid of a two-parameter representation of the size and curvature. For the fundamen......Cladding structures of photonic bandgap fibers often have airholes of noncircular shape, and, typically, close-to-hexagonal airholes with curved corners are observed. We study photonic bandgaps in such structures by aid of a two-parameter representation of the size and curvature....... For the fundamental bandgap we find that the bandgap edges (the intersections with the air line) shift toward shorter wavelengths when the air-filling fraction f is increased. The bandgap also broadens, and the relative bandwidth increases exponentially with f2. Compared with recent experiments [Nature 424, 657 (2003...

  18. Fracture resistance of irradiated stainless steel clad vessels

    International Nuclear Information System (INIS)

    McCabe, D.E.

    1988-01-01

    The surface crack embedded in the clad layer of a reactor vessel has been identified as a critical safety assessment condition relative to the pressurized thermal shock accident scenario. This project was initiated to determine the severity of such cracks experimentally, using irradiated material, and to identify the material property and stress conditions in the local region of the crack that are significant to the analysis. Bend bar tests provided the experimental simulation of the subject RPV surface crack. This report covers analysis techniques used and presents the findings indicated by the experimental results for irradiated and unirradiated materials. The irradiated clad specimens are the first of this type aimed at representing actual conditions in the wall of an irradiated pressure vessel. (author)

  19. Solution-mediated cladding doping of commercial polymer optical fibers

    Science.gov (United States)

    Stajanca, Pavol; Topolniak, Ievgeniia; Pötschke, Samuel; Krebber, Katerina

    2018-03-01

    Solution doping of commercial polymethyl methacrylate (PMMA) polymer optical fibers (POFs) is presented as a novel approach for preparation of custom cladding-doped POFs (CD-POFs). The presented method is based on a solution-mediated diffusion of dopant molecules into the fiber cladding upon soaking of POFs in a methanol-dopant solution. The method was tested on three different commercial POFs using Rhodamine B as a fluorescent dopant. The dynamics of the diffusion process was studied in order to optimize the doping procedure in terms of selection of the most suitable POF, doping time and conditions. Using the optimized procedure, longer segment of fluorescent CD-POF was prepared and its performance was characterized. Fiber's potential for sensing and illumination applications was demonstrated and discussed. The proposed method represents a simple and cheap way for fabrication of custom, short to medium length CD-POFs with various dopants.

  20. Pulsed Magnetic Welding for Advanced Core and Cladding Steel

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Guoping [Univ. of Wisconsin, Madison, WI (United States); Yang, Yong [Univ. of Florida, Gainesville, FL (United States)

    2013-12-19

    To investigate a solid-state joining method, pulsed magnetic welding (PMW), for welding the advanced core and cladding steels to be used in Generation IV systems, with a specific application for fuel pin end-plug welding. As another alternative solid state welding technique, pulsed magnetic welding (PMW) has not been extensively explored on the advanced steels. The resultant weld can be free from microstructure defects (pores, non-metallic inclusions, segregation of alloying elements). More specifically, the following objectives are to be achieved: 1. To design a suitable welding apparatus fixture, and optimize welding parameters for repeatable and acceptable joining of the fuel pin end-plug. The welding will be evaluated using tensile tests for lap joint weldments and helium leak tests for the fuel pin end-plug; 2 Investigate the microstructural and mechanical properties changes in PMW weldments of proposed advanced core and cladding alloys; 3. Simulate the irradiation effects on the PWM weldments using ion irradiation.

  1. Modeling of Zircaloy cladding degradation under repository conditions

    International Nuclear Information System (INIS)

    Santanam, L.; Raghavan, S.; Chin, B.A.

    1989-07-01

    Two potential degradation mechanisms, creep and stress corrosion cracking, of Zircaloy cladding during repository storage of spent nuclear fuel have been investigated. The deformation and fracture map methodology has been used to predict maximum allowable initial storage temperatures to achieve a thousand year life without rupture as a function of spent-fuel history. A stress analysis of fuel rods has been performed. Stresses in the outer zirconium oxide layer and the inner Zircaloy tube have been predicted for typical internal pressurization, oxide layer thickness, volume expansion from formation of the oxide layer and thermal expansion coefficients of the cladding and oxide. Stress relaxation occurring in-reactor has also been taken into account. The calculations indicate that for the anticipated storage conditions investigated, the outer zirconium oxide layer is in a state of compression thus making it unlikely that stress corrosion cracking of the exterior surface will occur. 20 refs., 6 figs., 9 tabs

  2. Modeling of MOX Fuel Pellet-Clad Interaction Using ABAQUS

    International Nuclear Information System (INIS)

    Ambrosek, Richard G.; Pedersen, Robert C.; Maple, Amanda

    2002-01-01

    Post-irradiation examination (PIE) has indicated an increase in the outer diameter of fuel pins being irradiated in the Advanced Test Reactor (ATR) for the MOX irradiation program. The diameter increase is the largest in the region between fuel pellets. The fuel pellet was modeled using PATRAN and the model was evaluated using ABAQUS, version 6.2. The results from the analysis indicate the non-uniform clad diameter is caused by interaction between the fuel pellet and the clad. The results also demonstrate that the interaction is not uniform over the pellet axial length, with the largest interaction occurring in the region of the pellet-pellet interface. Results were obtained for an axisymmetric model and for a 1/8 pie shaped segment, using the coupled temperature-displacement solution technique. (authors)

  3. The characterization of activities associated with irradiated fuel element claddings

    International Nuclear Information System (INIS)

    Jenkins, I.L.; Bolus, D.J.; Glover, K.M.; Haynes, J.W.; Mapper, D.; Marwick, A.D.; Waterman, M.J.

    1982-01-01

    The object of the present work was to characterise the natures and amounts of the various α and βγ activities associated with cladding hulls. The claddings studied were stainless steel from a Fast Reactor and from an Advanced Gas Reactor and Zircaloy from a Boiling Water Reactor, from a Pressurized Water Reactor and from a Steam Generating Heavy Water Reactor. The hulls were examined by the following methods: alpha spectrometry to identify and quantify the α emitters and to estimate their depths of penetration, partial and complete dissolution of hulls followed by gross α counting, α spectrometry and γ spectrometry, fission track autoradiography to determine the distribution of fissile material associated with hulls, neutron activation to determine the total fissile content of the hulls, chemical separations followed by β counting and chemical treatment with various reagents to examine the ease of decontamination

  4. Chemical interaction at the FBR cladding fuel interfaces

    International Nuclear Information System (INIS)

    Delbrassine, A.; Retels, J.; Dirven, P.

    1978-01-01

    Pins containing UO 2 -30 wt.%PuO 2 and/or Caesium and/or Telluriom as doping elements have been irradiated for about 40 days in the BR2 reactor. The effects of two Cs/Te ratios, namely 1.3 and 4 and a wide range of O/M ratios on the inner corrosion of the clad have been investigated. The influence of Tellurium on the attack of the cladding has been pointed out. It may be responsible for the Chromium NS Nickel depletion in the grain boundaries of the steel. It is necessary to measure the effective Ts/Te ratio associated with the local corrosion layers. This local Cs/Te ratio should be more useful than the initial mean Cs/Te ratio in a pin for understanding the corrosion phenomene. (author)

  5. Pulsed Magnetic Welding for Advanced Core and Cladding Steel

    International Nuclear Information System (INIS)

    Cao, Guoping; Yang, Yong

    2013-01-01

    To investigate a solid-state joining method, pulsed magnetic welding (PMW), for welding the advanced core and cladding steels to be used in Generation IV systems, with a specific application for fuel pin end-plug welding. As another alternative solid state welding technique, pulsed magnetic welding (PMW) has not been extensively explored on the advanced steels. The resultant weld can be free from microstructure defects (pores, non-metallic inclusions, segregation of alloying elements). More specifically, the following objectives are to be achieved: 1. To design a suitable welding apparatus fixture, and optimize welding parameters for repeatable and acceptable joining of the fuel pin end-plug. The welding will be evaluated using tensile tests for lap joint weldments and helium leak tests for the fuel pin end-plug; 2 Investigate the microstructural and mechanical properties changes in PMW weldments of proposed advanced core and cladding alloys; 3. Simulate the irradiation effects on the PWM weldments using ion irradiation.

  6. Multiresponse Optimization of Laser Cladding Steel + VC Using Grey Relational Analysis in the Taguchi Method

    Science.gov (United States)

    Zhang, Zhe; Kovacevic, Radovan

    2016-07-01

    Laser cladding of metal matrix composite coatings (MMCs) has become an effective and economic method to improve the wear resistance of mechanical components. The clad quality characteristics such as clad height, carbide fraction, carbide dissolution, and matrix hardness in MMCs determine the wear resistance of the coatings. These clad quality characteristics are influenced greatly by the laser cladding processing parameters. In this study, American Iron and Steel Institute (AISI) 420 + 20% vanadium carbide (VC) was deposited on mild steel with a high powder direct diode laser. The Taguchi-based Grey relational method was used to optimize the laser cladding processing parameters (laser power, scanning speed, and powder feed rate) with the consideration of multiple clad characteristics related to wear resistance (clad height, carbide volume fraction, and Fe-matrix hardness). A Taguchi L9 orthogonal array was designed to study the effects of processing parameters on each response. The contribution and significance of each processing parameter on each clad characteristic were investigated by the analysis of variance (ANOVA). The Grey relational grade acquired from Grey relational analysis was used as the performance characteristic to obtain the optimal combination of processing parameters. Based on the optimal processing parameters, the phases and microstructure of the laser-cladded coating were characterized by using x-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS).

  7. Radiation hardness of new Kuraray double cladded optical fibers

    International Nuclear Information System (INIS)

    Bedeschi, F.; Menzione, A.; Budagov, Yu.; Chirikov-Zorin, I.; Solov'ev, A.; Turchanovich, L.; Vasil'chenko, V.

    1996-01-01

    The radiation hardness of the new plastic scintillating and clear fibers irradiated by 137 Cs γ-flux and by pulsed reactor fast neutrons were investigated. All the studied fibers were of S-type (with S=70) and had a double cladding. Optical fibers degradation study after irradiation shows that the level of radiation hardness lower that what is expected from results of previous studies. 9 refs., 6 figs

  8. Interactions of Zircaloy cladding with gallium: 1998 midyear status

    International Nuclear Information System (INIS)

    Wilson, D.F.; DiStefano, J.R.; Strizak, J.P.; King, J.F.; Manneschmidt, E.T.

    1998-06-01

    A program has been implemented to evaluate the effect of gallium in mixed-oxide (MOX) fuel derived from weapons-grade (WG) plutonium on Zircaloy cladding performance. The objective is to demonstrate that low levels of gallium will not compromise the performance of the MOX fuel system in a light-water reactor. The graded, four-phase experimental program was designed to evaluate the performance of prototypic Zircaloy cladding materials against (1) liquid gallium (Phase 1), (2) various concentrations of Ga 2 O 3 (Phase 2), (3) centrally heated surrogate fuel pellets with expected levels of gallium (Phase 3), and (4) centrally heated prototypic MOX fuel pellets (Phase 4). This status report describes the results of a series of tests for Phases 1 and 2. Three types of tests are being performed: (1) corrosion, (2) liquid metal embrittlement, and (3) corrosion-mechanical. These tests will determine corrosion mechanisms, thresholds for temperature and concentration of gallium that may delineate behavioral regimes, and changes in the mechanical properties of Zircaloy. Initial results have generally been favorable for the use of WG-MOX fuel. The MOX fuel cladding, Zircaloy, does react with gallium to form intermetallic compounds at ≥300 C; however, this reaction is limited by the mass of gallium and is therefore not expected to be significant with a low level (parts per million) of gallium in the MOX fuel. Although continued migration of gallium into the initially formed intermetallic compound can result in large stresses that may lead to distortion, this was shown to be extremely unlikely because of the low mass of gallium or gallium oxide present and expected clad temperatures below 400 C. Furthermore, no evidence for grain boundary penetration by gallium has been observed

  9. In-situ crack repair by laser cladding

    CSIR Research Space (South Africa)

    Van Rooyen, C

    2010-09-01

    Full Text Available Hammer peening was introduced in order to mechanically seal of squirting water prior to crack sealing. Leaks were reduced from squirting to oozing. During cladding, water started squirting out again resulting in pore formation in some areas. Hammer... is shown in Figure 6. Three small leaking pores were observed in the first layer, indicated by arrows. Hammer peening was applied to the first layer to mechanically seal the leaking pores prior to deposition of the second sealing layer. Successful...

  10. Biologically Pre-Treated Habitation Waste Water as a Sustainable Green Urine Pre-Treat Solution

    Science.gov (United States)

    Jackson, W. Andrew; Thompson, Bret; Sevanthi, Ritesh; Morse, Audra; Meyer, Caitlin; Callahan, Michael

    2017-01-01

    The ability to recover water from urine and flush water is a critical process to allow long term sustainable human habitation in space or bases on the moon or mars. Organic N present as urea or similar compounds can hydrolyze producing free ammonia. This reaction results in an increase in the pH converting ammonium to ammonia which is volatile and not removed by distillation. The increase in pH will also cause precipitation reactions to occur. In order to prevent this, urine on ISS is combined with a pretreat solution. While use of a pretreatment solution has been successful, there are numerous draw backs including: storage and use of highly hazardous solutions, limitations on water recovery (less than 85%), and production of brine with pore dewatering characteristics. We evaluated the use of biologically treated habitation wastewaters (ISS and early planetary base) to replace the current pretreat solution. We evaluated both amended and un-amended bioreactor effluent. For the amended effluent, we evaluated "green" pretreat chemicals including citric acid and citric acid amended with benzoic acid. We used a mock urine/air separator modeled after the urine collection assembly on ISS. The urine/air separator was challenged continually for >6 months. Depending on the test point, the separator was challenged daily with donated urine and flushed with amended or un-amended reactor effluent. We monitored the pH of the urine, flush solution and residual pH in the urine/air separator after each urine event. We also evaluated solids production and biological growth. Our results support the use of both un-amended and amended bioreactor effluent to maintain the operability of the urine /air separator. The ability to use bioreactor effluent could decrease consumable cost, reduce hazards associated with current pre-treat chemicals, allow other membrane based desalination processes to be utilized, and improve brine characteristics.

  11. Novel fungal consortium pretreatment of waste oat straw to enhance economic and efficient biohydrogen production

    Directory of Open Access Journals (Sweden)

    Lirong Zhou

    2016-12-01

    Full Text Available Bio-pretreatment using a fungal consortium to enhance the efficiency of lignocellulosic biohydrogen production was explored.  A fungal consortium comprised of T. viride and P. chrysosporium as microbial inoculum was compared with untreated and single-species-inoculated samples. Fungal bio-pretreatment was carried out at atmospheric conditions with limited external energy input.  The effectiveness of the pretreatment is evaluated according to its lignin removal and digestibility. Enhancement of biohydrogen production is observed through scanning electron microscopy (SEM analysis. Fungal consortium pretreatment effectively degraded oat straw lignin (by >47% in 7 days leading to decomposition of cell-wall structure as revealed in SEM images, increasing biohydrogen yield. The hydrogen produced from the fungal consortium pretreated straw increased by 165% 6 days later, and was more than produced from either a single fungi species of T. viride or P. chrysosponium pretreated straw (94% and 106%, respectively. No inhibitory effect on hydrogen production was observed.

  12. Microbial biofilm growth on irradiated, spent nuclear fuel cladding

    Science.gov (United States)

    Bruhn, D. F.; Frank, S. M.; Roberto, F. F.; Pinhero, P. J.; Johnson, S. G.

    2009-02-01

    A fundamental criticism regarding the potential for microbial influenced corrosion in spent nuclear fuel cladding or storage containers concerns whether the required microorganisms can, in fact, survive radiation fields inherent in these materials. This study was performed to unequivocally answer this critique by addressing the potential for biofilm formation, the precursor to microbial-influenced corrosion, in radiation fields representative of spent nuclear fuel storage environments. This study involved the formation of a microbial biofilm on irradiated spent nuclear fuel cladding within a hot cell environment. This was accomplished by introducing 22 species of bacteria, in nutrient-rich media, to test vessels containing irradiated cladding sections and that was then surrounded by radioactive source material. The overall dose rate exceeded 2 Gy/h gamma/beta radiation with the total dose received by some of the bacteria reaching 5 × 10 3 Gy. This study provides evidence for the formation of biofilms on spent-fuel materials, and the implication of microbial influenced corrosion in the storage and permanent deposition of spent nuclear fuel in repository environments.

  13. Final report on accident tolerant fuel performance analysis of APMT-Steel Clad/UO₂ fuel and APMT-Steel Clad/UN-U₃Si₅ fuel concepts

    Energy Technology Data Exchange (ETDEWEB)

    Unal, Cetin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Galloway, Jack D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-12

    In FY2014 our group completed and documented analysis of new Accident Tolerant Fuel (ATF) concepts using BISON. We have modeled the viability of moving from Zircaloy to stainless steel cladding in traditional light water reactors (LWRs). We have explored the reactivity penalty of this change using the MCNP-based burnup code Monteburns, while attempting to minimize this penalty by increasing the fuel pellet radius and decreasing the cladding thickness. Fuel performance simulations using BISON have also been performed to quantify changes to structural integrity resulting from thinner stainless steel claddings. We account for thermal and irradiation creep, fission gas swelling, thermal swelling and fuel relocation in the models for both Zircaloy and stainless steel claddings. Additional models that account for the lower oxidation stainless steel APMT are also invoked where available. Irradiation data for HT9 is used as a fallback in the absence of appropriate models. In this study the isotopic vectors within each natural element are varied to assess potential reactivity gains if advanced enrichment capabilities were levied towards cladding technologies. Recommendations on cladding thicknesses for a robust cladding as well as the constitutive components of a less penalizing composition are provided. In the first section (section 1-3), we present results accepted for publication in the 2014 TOPFUEL conference regarding the APMT/UO₂ ATF concept (J. Galloway & C. Unal, Accident Tolerant and Neutronically Favorable LWR Cladding, Proceedings of WRFPM 2014, Sendai, Japan, Paper No.1000050). Next we discuss our preliminary findings from the thermo-mechanical analysis of UN-U₃Si₅ fuel with APMT clad. In this analysis we used models developed from limited data that need to be updated when the irradiation data from ATF-1 test is available. Initial results indicate a swelling rate less than 1.5% is needed to prevent excessive clad stress.

  14. Cladding of Cr- Modified NiAl Coating on 310 Stainless Steel Weld Cladding and Evaluation of its Wear Behavior.

    Directory of Open Access Journals (Sweden)

    S. Pourmohamadi

    2017-02-01

    Full Text Available In this study, a Cr-modified NiAl coating was fabricated by weld cladding technique using Gas- Tungsten Arc Welding (GTAW process on 310 steel. Chemical composition and microstructure of the coating was studied by X-Ray Diffraction (XRD, optical microscopy and scanning electron microscopy equipped with an Energy Dispersive Spectroscopy (EDS. The wear behavior of the coated steel was examined through pin-on-disc tests at ambient temperature and 400 °C. The results showed that the hardness of coated steel increased remarkably due to the formation of Cr-modified NiAl on the surface. Furthermore, the wear experiments showed that the presence of Cr-modified NiAl coating caused significant improvement in wear resistance of cladding 310 steel at both ambient temperature and 400 °C. These results were discussed based on the wear mechanism obtained from examination of the worn surfaces using SEM.

  15. Fuel-cladding mechanical interaction effects in fast reactor mixed oxide fuel

    International Nuclear Information System (INIS)

    Boltax, A.; Biancheria, A.

    1977-01-01

    Thermal and fast reactor irradiation experiments on mixed oxide fuel pins under steady-state and power change conditions reveal evidence for significant fuel-cladding mechanical interaction (FCMI) effects. Analytical studies with the LIFE-III fuel performance code indicate that high cladding stresses can be produced by general and local FCMI effects. Also, evidence is presented to show that local cladding strains can be caused by the accumulation of cesium at the fuel-cladding interface. Although it is apparent that steady-state FCMI effects have not given rise to cladding breaches in current fast reactors, it is anticipated that FCMI may become more important in the future because of interest in: higher fuel burnups; increased power ramp rates; load follow operation; and low swelling cladding alloys. (author)

  16. Tailoring nonlinearity and dispersion of photonic crystal fibers using hybrid cladding

    International Nuclear Information System (INIS)

    Zhao-lun, Liu; Lan-tian, Hou; Wei, Wang

    2009-01-01

    We present a hybrid cladding photonic crystal fiber for shaping high nonlinear and flattened dispersion in a wide range of wavelengths. The new structure adopts hybrid cladding with different pitches, air-holes diameters and air-holes arrayed fashions. The full-vector finite element method with perfectly matched layer is used to investigate the characteristics of the hybrid cladding photonic crystal fiber such as nonlinearity and dispersion properties. The influence of the cladding structure parameters on the nonlinear coefficient and geometric dispersion is analyzed. High nonlinear coefficient and the dispersion properties of fibers are tailored by adjusting the cladding structure parameters. A novel hybrid cladding photonic crystal fiber with high nonlinear coefficient and dispersion flattened which is suited for super continuum generation is designed. (author)

  17. On LMFBR corrosion. Part II: Consideration of the in-reactor fuel-cladding system

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Pickering, S.; Walker, C.T.; Whitlow, W.H.

    1976-05-01

    The scientific and technological aspects of LMFBR cladding corrosion are discussed in detail. Emphasis is placed on the influence of the irradiation environment and the effect of fuel and filler-gas impurities on the corrosion process. These studies are complemented by a concise review of out-of-pile simulation experiments that endeavour to clarify the role of the aggressive fission products cesium, tellurium and iodine. The principal models for cladding corrosion are presented and critically assessed. Areas of uncertainty are exposed and some pertinent experiments are suggested. Consideration is also given to some new observations regarding the role of stress in fuel-cladding reactions and the formation of ferrite in the corrosion zone of the cladding during irradiation. Finally, two technological solutions to the problem of cladding corrosion are proposed. These are based on the use of an oxygen buffer in the fuel and the application of a protective coating to the inner surface of the cladding

  18. Cladding failure margins for metallic fuel in the integral fast reactor

    International Nuclear Information System (INIS)

    Bauer, T.H.; Fenske, G.R.; Kramer, J.M.

    1987-01-01

    The reference fuel for Integral Fast Reactor (IFR) is a ternary U-Pu-Zr alloy with a low swelling austenitic or ferritic stainless steel cladding. It is known that low melting point eutectics may form in such metallic fuel-cladding systems which could contribute to cladding failure under accident conditions. This paper will present recent measurements of cladding eutectic penetration rates for the ternary IFR alloy and will compare these results with earlier eutectic penetration data for other fuel and cladding materials. A method for calculating failure of metallic fuel pins is developed by combining cladding deformation equations with a large strain analysis where the hoop stress is calculated using the instantaneous wall thickness as determined from correlations of the eutectic penetration-rate data. This method is applied to analyze the results of in-reactor and out-of-reactor fuel pin failure tests on uranium-fissium alloy EBR-II Mark-II driver fuel

  19. Reflood behavior at low initial clad temperature in Slab Core Test Facility Core-II

    International Nuclear Information System (INIS)

    Akimoto, Hajime; Sobajima, Makoto; Abe, Yutaka; Iwamura, Takamichi; Ohnuki, Akira; Okubo, Tsutomu; Murao, Yoshio; Okabe, Kazuharu; Adachi, Hiromichi.

    1990-07-01

    In order to study the reflood behavior with low initial clad temperature, a reflood test was performed using the Slab Core Test Facility (SCTF) with initial clad temperature of 573 K. The test conditions of the test are identical with those of SCTF base case test S2-SH1 (initial clad temperature 1073 K) except the initial clad temperature. Through the comparison of results from these two tests, the following conclusions were obtained. (1) The low initial clad temperature resulted in the low differential pressures through the primary loops due to smaller steam generation in the core. (2) The low initial clad temperature caused the accumulated mass in the core to be increased and the accumulated mass in the downcomer to be decreased in the period of the lower plenum injection with accumulator (before 50s). In the later period of the cold leg injection with LPCI (after 100s), the water accumulation rates in the core and the downcomer were almost the same between both tests. (3) The low initial clad temperature resulted in the increase of the core inlet mass flow rate in the lower plenum injection period. However, the core inlet mass flow rate was almost the same regardless of the initial clad temperature in the later period of the cold leg injection period. (4) The low initial clad temperature resulted in the low turnaround temperature, high temperature rise and fast bottom quench front propagation. (5) In the region apart from the quench front, low initial clad temperature resulted in the lower heat transfer. In the region near the quench front, almost the same heat transfer coefficient was observed between both tests. (6) No flow oscillation with a long period was observed in the SCTF test with low initial clad temperature of 573 K, while it was remarkable in the Cylindrical Core Test Facility (CCTF) test which was performed with the same initial clad temperature. (J.P.N.)

  20. Solid-Core Photonic Bandgap Fibers for Cladding-Pumped Raman Amplification

    Science.gov (United States)

    2011-06-03

    that the cladding is uniformly-pumped at its maximum numerical aperture and that the photonic band gap ( PBG ) structure comprised of a triangular array...published 3 Jun 2011 (C) 2011 OSA 6 June 2011 / Vol. 19, No. 12 / OPTICS EXPRESS 11855 beyond the PBG structure. In this case, the high pump cladding...exhibit lower loss [16]. For high order bandgaps to exist in the cladding, the inclusions forming the PBG structure must support a large number of guided

  1. Development of Preliminary HT9 Cladding Tube for Sodium-cooled Fast Reactor (SFR)

    International Nuclear Information System (INIS)

    Kim, Jun Hwan; Baek, Jong Hyuk; Heo, Hyeong Min; Park, Sang Gyu; Kim, Sung Ho; Lee, Chan Bock

    2013-01-01

    To achieve manufacturing technology of the fuel cladding tube in order to keep pace with the predetermined schedule in developing SFR fuel, KAERI has launched in developing fuel cladding tube in cooperation with a domestic steelmaking company. After fabricating medium-sized 1.1 ton HT9 ingot, followed by the multiple processes of hot and cold working, preliminary samples of HT9 seamless cladding tube having 7.4mm in outer diameter, 0.56mm in thickness, and 3m in length were fabricated. The objective of this study is to summarize the brief development status of the HT9 cladding tubes. Mechanical properties like axial tension, biaxial burst, pressurized creep and sodium compatibility of the cladding tubes were carried out to set up the performance evaluation technology to test the prototype FMS cladding tube which is going to be manufactured in next stage. As a part of developing fuel cladding for the Sodium-cooled Fast Reactor (SFR), preliminary HT9 cladding tube was fabricated in cooperation with a domestic steelmaking company. Microstructure as well as mechanical tests like axial tensile test, biaxial burst test, and pressurized creep test of the fuel cladding were carried out. Performance of the domestic HT9 tube was revealed to be similar in the previously fabricated foreign HT9 tube. Further prototype FMS cladding tube is going to be manufactured in next year based on this experience. Various test items like mechanical test, sodium compatibility test, microstructural analysis, basic property, cladding performance under transient situation, and performance under ion and neutron irradiation are going be performed in the future to set up the relevant technology for the licensing of the SFR cladding tube

  2. The significance of cladding material on the integrity of nuclear pressure vessels with cracks

    International Nuclear Information System (INIS)

    Sattari-Far, Iradj.

    1989-05-01

    The significance of the austenitic cladding layer is reviewed in this literature study. The cladding induced stresses are generally not considered when evaluating the severity of flaws in reactor pressure vessels. It has been shown that this emission may be misleading. The necessity to consider the cladding induced stresses is also emphasized in the latest edition of ASME XI. Contrary to what is commonly assumed, the austenitic cladding displays a charpy V transition region with a low ductility. The interface material (HAZ) is the most influenced region by irradiation, and a transition shift of over 100 degree C may be expected. Because of the significant difference in the thermal expansion coefficients of the cladding and the base metal, cladding induced stresses can be set up. Even after PWHT, residual stresses of yield magnitude remain in the cladding and the HAZ at ambient temperature. The cladding induced stresses are temperature dependent and decrease as the temperature increases. The cladding induced stresses have a significant influence on small defects near the inside surface of a pressure vessel. For semielliptical surface cracks, the maximum CTOD-value along the crack front is not found at the deepest point, but in the cladding/base metal interface, having a magnitude three times higher than the value in the deepest point. It implies that this type of crack would propagate along the clad/base material interface. At some point in time, the crack will reach a geometry which may cause such a severe condition at the deepest point that it will start to grow in the depth direction as well. The initiation and growth behaviour of such cracks need to be investigated to be able to assess the significance of cladding on the integrity of nuclear pressure vessels. (author) (50 figs., 33 refs.)

  3. A method for limitation of probability of accumulation of fuel elements claddings damage in WWER

    OpenAIRE

    Sergey N. Pelykh; Mark V. Nikolsky; S. D. Ryabchikov

    2014-01-01

    The aim is to reduce the probability of accumulation of fuel elements claddings damage by developing a method to control the properties of the fuel elements on stages of design and operation of WWER. An averaged over the fuel assembly WWER-1000 fuel element is considered. The probability of depressurization of fuel elements claddings is found. The ability to predict the reliability of claddings by controlling the factors that determine the properties of the fuel elements is proved. The expedi...

  4. Fission product migration in intact fuel rods. S176 experiments 1-5: Fission product deposits on clad specimens and their thermal stability

    International Nuclear Information System (INIS)

    Blackadder, W.; Forsyth, R.; Malen, K.; Nilsson, Bengt-Aake.

    1978-03-01

    This report is the fifth of a group which present the results obtained during the first 5 experiments in the S176 series of irradiation experiments. The aim of this series is to provide informtion on the distribution of fission products in intact irradiated fuel rods, both within the UO 2 fuel and on the inside of the Zircaloy clad. Fuel rods, previously irradiated to appreciable burnups in the Aagesta R3 reactor, after cooling, are re-irradiated in the Studsvik R2 test reactor for short periods to build up significant inventories of short-lived fission products of interest. Examination of sections of fuel and clad is performed within a short time after removal from the reactor

  5. Review of experimental data for modelling LWR fuel cladding behaviour under loss of coolant accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Massih, Ali R. [Quantum Technologies AB, Uppsala Science Park (Sweden)

    2007-02-15

    Extensive range of experiments has been conducted in the past to quantitatively identify and understand the behaviour of fuel rod under loss-of-coolant accident (LOCA) conditions in light water reactors (LWRs). The obtained experimental data provide the basis for the current emergency core cooling system acceptance criteria under LOCA conditions for LWRs. The results of recent experiments indicate that the cladding alloy composition and high burnup effects influence LOCA acceptance criteria margins. In this report, we review some past important and recent experimental results. We first discuss the background to acceptance criteria for LOCA, namely, clad embrittlement phenomenology, clad embrittlement criteria (limitations on maximum clad oxidation and peak clad temperature) and the experimental bases for the criteria. Two broad kinds of test have been carried out under LOCA conditions: (i) Separate effect tests to study clad oxidation, clad deformation and rupture, and zirconium alloy allotropic phase transition during LOCA. (ii) Integral LOCA tests, in which the entire LOCA sequence is simulated on a single rod or a multi-rod array in a fuel bundle, in laboratory or in a tests and results are discussed and empirical correlations deduced from these tests and quantitative models are conferred. In particular, the impact of niobium in zirconium base clad and hydrogen content of the clad on allotropic phase transformation during LOCA and also the burst stress are discussed. We review some recent LOCA integral test results with emphasis on thermal shock tests. Finally, suggestions for modelling and further evaluation of certain experimental results are made.

  6. Simulation of a pellet-clad mechanical interaction with ABAQUS and its verification

    International Nuclear Information System (INIS)

    Cheon, J.-S.; Lee, B.-H.; Koo, Y.-H.; Sohn, D.-S.; Oh, J.-Y.

    2003-01-01

    Pellet-clad mechanical interaction (PCMI) during power transients for MOX fuel is modelled by a FE method. The PCMI model predicts well clad elongation during power ramp and relaxation during power hold except the fuel behaviour during a power decrease. Higher fiction factor results in the earlier occurrence of PCMI and more enhanced clad elongation. The relaxation is dependent on the irradiation creep rate of the pellet and axial compressive force. Verification of the PCMI model was done using recent MOX experimental data. Temperature and clad elongation for the fuel rod can be evaluated in a reasonable way

  7. Simulation of high burn-up fuel cladding and its safety assessment under LOCA condition

    International Nuclear Information System (INIS)

    Park, Dong Jun; Won, Sung Bin; Choi, Byoung Kwon; Park, Jeong Yong; Koo, Yang Hyun

    2011-01-01

    Current LOCA safety criteria was established in the beginning of 1970s and based on the results obtained from non-irradiated Zircaloy-4 claddings. Because of major advantages in fuel-cycle costs, reactor operation, and waste management, the increase in fuel discharge burn-up is current worldwide trend in the nuclear industry. As the fuel burn-up increases, various phenomena unexpected have been reported due to changes in the condition of reactor operation and in-core environment. Since, it should be considered whether the current Loss-of-coolant accident (LOCA) criteria is suitable for high burn-up fuel cladding or not. In addition, many fuel vendors have recently developed new cladding alloys superior to Zircaloy-4 cladding. The performance of these advanced cladding alloys under LOCA, especially at high burn-up, is not well understood at this time. To better understand high burn-up effects and commercialize new cladding alloys, study of LOCA-related behavior of various types of high burn-up fuel cladding and their data base is essentially required. In this background, postulated LOCA test has been carried out with prehydrided Zircaloy-4 cladding as a surrogate for high burn-up cladding and the relevant results obtained are discussed

  8. Implications and control of fuel-cladding chemical interaction for LMFBR fuel pin design

    International Nuclear Information System (INIS)

    Roake, W.E.

    1977-01-01

    Fuel-cladding-chemical-interaction (FCCI) is typically incorporated into the design of an LMFBR fuel pin as a wastage allowance. Several interrelated factors are considered during the evolution of an LMFBR fuel pin design. Those which are indirectly affected by FCCI include: allowable pin power, fuel restructuring, fission gas migration and release from the fuel, fuel cracking, fuel swelling, in-reactor cladding creep, cladding swelling, and the cladding mechanical strain. Chemical activity of oxygen is the most readily controlled factor in FCCI. Two methods are being investigated: control of total oxygen inventory by limiting fuel O/M, and control of oxygen activity with buffer metals

  9. Formation quality optimization of laser hot wire cladding for repairing martensite precipitation hardening stainless steel

    Science.gov (United States)

    Wen, Peng; Feng, Zhenhua; Zheng, Shiqing

    2015-01-01

    Laser cladding is an advantaged repairing technology due to its low heat input and high flexibility. With preheating wire by resistance heat, laser hot wire cladding shows better process stability and higher deposition efficiency compared to laser cold wire/powder cladding. Multi-pass layer were cladded on the surface of martensite precipitation hardening stainless steel FV520B by fiber laser with ER410NiMo wire. Wire feed rate and preheat current were optimized to obtain stable wire transfer, which guaranteed good formation quality of single pass cladding. Response surface methodology (RSM) was used to optimize processing parameters and predict formation quality of multi-pass cladding. Laser power P, scanning speed Vs, wire feed rate Vf and overlap ratio η were selected as the input variables, while flatness ratio, dilution and incomplete fusion value as the responses. Optimal clad layer with flat surface, low dilution and no incomplete fusion was obtained by appropriately reducing Vf, and increasing P, Vs and η. No defect like pore or crack was found. The tensile strength and impact toughness of the clad layer is respectively 96% and 86% of those of the substrate. The clad layer showed nonuniform microstructure and was divided into quenched areas with coarse lath martensite and tempered areas with tempered martensite due to different thermal cycles in adjacent areas. The tempered areas showed similar hardness to the substrate.

  10. Raman probes based on optically-poled double-clad fiber and coupler

    DEFF Research Database (Denmark)

    Brunetti, Anna Chiara; Margulis, Walter; Rottwitt, Karsten

    2012-01-01

    Two fiber Raman probes are presented, one based on an optically-poled double-clad fiber and the second based on an optically-poled double-clad fiber coupler respectively. Optical poling of the core of the fiber allows for the generation of enough 532nm light to perform Raman spectroscopy...... of a sample of dimethyl sulfoxide (DMSO), when illuminating the waveguide with 1064nm laser light. The Raman signal is collected in the inner cladding, from which it is retrieved with either a bulk dichroic mirror or a double-clad fiber coupler. The coupler allows for a substantial reduction of the fiber...

  11. Corrosion Resistance of Laser Clads of Inconel 625 and Metco 41C

    Science.gov (United States)

    Němeček, Stanislav; Fidler, Lukáš; Fišerová, Pavla

    The present paper explores the impact of laser cladding parameters on the corrosion behaviour of the resulting surface. Powders of Inconel 625 and austenitic Metco 41C steel were deposited on steel substrate. It was confirmed that the level of dilution has profound impact on the corrosion resistance and that dilution has to be minimized. However, the chemical composition of the cladding is altered even in the course of the cladding process, a fact which is related to the increase in the substrate temperature. The cladding process was optimized to achieve maximum corrosion resistance. The results were verified and validated using microscopic observation, chemical analysis and corrosion testing.

  12. Theoretical analysis of swelling characteristics of cylindrical uranium dioxide fuel pins with a niobium - 1-percent-zirconium clad

    Science.gov (United States)

    Saltsman, J. F.

    1973-01-01

    The relations between clad creep strain and fuel volume swelling are shown for cylindrical UO2 fuel pins with a Nb-1Zr clad. These relations were obtained by using the computer code CYGRO-2. These clad-strain - fuel-volume-swelling relations may be used with any fuel-volume-swelling model, provided the fuel volume swelling is isotropic and independent of the clad restraints. The effects of clad temperature (over a range from 118 to 1642 K (2010 to 2960 R)), pin diameter, clad thickness and central hole size in the fuel have been investigated. In all calculations the irradiation time was 500 hours. The burnup rate was varied.

  13. Cell-wall structural changes in wheat straw pretreated for bioethanol production

    Directory of Open Access Journals (Sweden)

    Jørgensen Henning

    2008-04-01

    Full Text Available Abstract Background Pretreatment is an essential step in the enzymatic hydrolysis of biomass and subsequent production of bioethanol. Recent results indicate that only a mild pretreatment is necessary in an industrial, economically feasible system. The Integrated Biomass Utilisation System hydrothermal pretreatment process has previously been shown to be effective in preparing wheat straw for these processes without the application of additional chemicals. In the current work, the effect of the pretreatment on the straw cell-wall matrix and its components are characterised microscopically (atomic force microscopy and scanning electron microscopy and spectroscopically (attenuated total reflectance Fourier transform infrared spectroscopy in order to understand this increase in digestibility. Results The hydrothermal pretreatment does not degrade the fibrillar structure of cellulose but causes profound lignin re-localisation. Results from the current work indicate that wax has been removed and hemicellulose has been partially removed. Similar changes were found in wheat straw pretreated by steam explosion. Conclusion Results indicate that hydrothermal pretreatment increases the digestibility by increasing the accessibility of the cellulose through a re-localisation of lignin and a partial removal of hemicellulose, rather than by disruption of the cell wall.

  14. Enhanced dark fermentative biohydrogen production from marine macroalgae Padina tetrastromatica by different pretreatment processes

    Directory of Open Access Journals (Sweden)

    M. Radha

    2017-03-01

    Full Text Available Marine macroalgae are promising substrates for biofuel production. Pretreating macroalgae with chemicals could remove microbial inhibitors and enhance the accessibility of the microorganisms involved in the process to the substrates leading to increased product yield. In the present study, Padina tetrastromatica a seaweed species was subjected to different chemical pretreatment in order to remove phenolic content and to enhance biohydrogen production. Different mineral acids (i.e., HCl, H2SO4, and HNO3 and bases (NaOH and KOH were applied for effective pretreatment of the seaweed. Dilute sulphuric acid treatment of seaweed resulted in the highest cumulative biohydrogen production of 78 ± 2.9 mL/0.05 g VS and reduced phenolic content to 1.6 ±0.072 mg gallic acid equivalent (GAE/g. Optimization of three variables for pretreatment (i.e., substrate concentration, acid concentration, and reaction time was examined by Response Surface Methodology. After the optimization of the pretreatment conditions, phenolic content was decreased to 0.06 mg GAE/g. and enhanced biohydrogen production was observed. Structural changes due to pretreatment was studied by FTIR and XRD analyses. The results clearly indicated that the dilute sulphuric acid pretreatment was effective in removing phenolic content and enhancing biohydrogen production.

  15. Enzymatic Hydrolysis of Alkaline Pretreated Coconut Coir

    Directory of Open Access Journals (Sweden)

    Akbarningrum Fatmawati

    2013-06-01

    Full Text Available The purpose of this research is to study the effect of concentration and temperature on the cellulose and lignin content, and the reducing sugars produced in the enzymatic hydrolysis of coconut coir. In this research, the coconut coir is pretreated using 3%, 7%, and 11% NaOH solution at 60oC, 80oC, and 100oC. The pretreated coir were assayed by measuring the amount of cellulose and lignin and then hydrolysed using Celluclast and Novozyme 188 under various temperature (30oC, 40oC, 50oC and pH (3, 4, 5. The hydrolysis results were assayed for the reducing sugar content. The results showed that the alkaline delignification was effective to reduce lignin and to increase the cellulose content of the coir. The best delignification condition was observed at 11% NaOH solution and 100oC which removed 14,53% of lignin and increased the cellulose content up to 50,23%. The best condition of the enzymatic hydrolysis was obtained at 50oC and pH 4 which produced 7,57 gr/L reducing sugar. © 2013 BCREC UNDIP. All rights reservedReceived: 2nd October 2012; Revised: 31st January 2013; Accepted: 6th February 2013[How to Cite: Fatmawati, A., Agustriyanto, R., Liasari, Y. (2013. Enzymatic Hydrolysis of Alkaline Pre-treated Coconut Coir. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 34-39 (doi:10.9767/bcrec.8.1.4048.34-39[Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4048.34-39] | View in  |

  16. Activation of glassy carbon electrodes by photocatalytic pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Dumanli, Onur [Department of Chemistry, Faculty of Science and Art, Ondokuz Mayis University, Kurupelit, 55139 Samsun (Turkey); Onar, A. Nur [Department of Chemistry, Faculty of Science and Art, Ondokuz Mayis University, Kurupelit, 55139 Samsun (Turkey)], E-mail: nonar@omu.edu.tr

    2009-11-01

    This paper describes a simple and rapid photocatalytic pretreatment procedure that removes contaminants from glassy carbon (GC) surfaces. The effectiveness of TiO{sub 2} mediated photocatalytic pretreatment procedure was compared to commonly used alumina polishing procedure. Cyclic voltammetric and chronocoulometric measurements were carried out to assess the changes in electrode reactivity by using four redox systems. Electrochemical measurements obtained on photocatalytically treated GC electrodes showed a more active surface relative to polished GC. In cyclic voltammograms of epinephrine, Fe(CN){sub 6}{sup 3-/4-} and ferrocene redox systems, higher oxidation and reduction currents were observed. The heterogeneous electron transfer rate constants (k{sup o}) were calculated for Fe(CN){sub 6}{sup 3-/4-} and ferrocene which were greater for photocatalytic pretreatment. Chronocoulometry was performed in order to find the amount of adsorbed methylene blue onto the electrode and was calculated as 0.34 pmol cm{sup -2} for photocatalytically pretreated GC. The proposed photocatalytic GC electrode cleansing and activating pretreatment procedure was more effective than classical alumina polishing.

  17. Effect of pretreating of host oil on coprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Hajdu, P.E.; Tierney, J.W.; Wender, I. [Univ. of Pittsburgh, PA (United States)

    1995-12-31

    The principal objective of this research was to determine if coprocessing performance (i.e., coal conversion and oil yield) could be significantly improved by pretreating the heavy resid prior to reacting it with coal. For this purpose, two petroleum vacuum resids (1000{degrees}F+), one from the Amoco Co. and another from the Citgo Co., were used as such and after they had been pretreated by catalytic hydrogenation and hydrocracking reactions. The pretreatments were aimed at improving the host oil by; (1) converting any aromatic structures in the petroleum to hydroaromatic compounds capable of donating hydrogen, (2) cracking the heavy oil to lower molecular weight material that might serve as a better solvent, (3) reducing the coking propensity of the heavy oil through the hydrogenation of polynuclear aromatic compounds, and (4) removing metals and heteroatoms that might poison a coprocessing catalyst. Highly dispersed catalysts, including fine particle Fe- and Mo-based, and dicobalt octacarbonyl, Co{sub 2}(CO){sub 8}, were used in this study. The untreated and pretreated resids were extensively characterized in order to determine chemical changes brought about by the pretreatments. The modified heavy oils were then coprocessed with an Illinois No. 6 coal as well as with a Wyodak coal, and compared to coprocessing with untreated resids under the same hydroliquefaction conditions. The amount of oil derived from coal was estimated by measuring the level of phenolic oxygen (derived mainly from coal) present in the oil products. Results are presented and discussed.

  18. Breakdown of cell wall nanostructure in dilute acid pretreated biomass.

    Science.gov (United States)

    Pingali, Sai Venkatesh; Urban, Volker S; Heller, William T; McGaughey, Joseph; O'Neill, Hugh; Foston, Marcus; Myles, Dean A; Ragauskas, Arthur; Evans, Barbara R

    2010-09-13

    The generation of bioethanol from lignocellulosic biomass holds great promise for renewable and clean energy production. A better understanding of the complex mechanisms of lignocellulose breakdown during various pretreatment methods is needed to realize this potential in a cost and energy efficient way. Here we use small-angle neutron scattering (SANS) to characterize morphological changes in switchgrass lignocellulose across molecular to submicrometer length scales resulting from the industrially relevant dilute acid pretreatment method. Our results demonstrate that dilute acid pretreatment increases the cross-sectional radius of the crystalline cellulose fibril. This change is accompanied by removal of hemicellulose and the formation of R(g) ∼ 135 A lignin aggregates. The structural signature of smooth cell wall surfaces is observed at length scales larger than 1000 A, and it remains remarkably invariable during pretreatment. This study elucidates the interplay of the different biomolecular components in the breakdown process of switchgrass by dilute acid pretreatment. The results are important for the development of efficient strategies of biomass to biofuel conversion.

  19. Processes for pretreating lignocellulosic biomass: A review

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, J.D.

    1992-11-01

    This paper reviews existing and proposed pretreatment processes for biomass. The focus is on the mechanisms by which the various pretreatments act and the influence of biomass structure and composition on the efficacy of particular pretreatment techniques. This analysis is used to identify pretreatment technologies and issues that warrant further research.

  20. Pretreating lignocellulosic biomass by the concentrated phosphoric acid plus hydrogen peroxide (PHP) for enzymatic hydrolysis: evaluating the pretreatment flexibility on feedstocks and particle sizes.

    Science.gov (United States)

    Wang, Qing; Wang, Zhanghong; Shen, Fei; Hu, Jinguang; Sun, Fubao; Lin, Lili; Yang, Gang; Zhang, Yanzong; Deng, Shihuai

    2014-08-01

    In order to seek a high-efficient pretreatment path for converting lignocellulosic feedstocks to fermentable sugars by enzymatic hydrolysis, the concentrated H₃PO₄ plus H₂O₂ (PHP) was attempted to pretreat different lignocellulosic biomass for evaluating the pretreatment flexibility on feedstocks. Meanwhile, the responses of pretreatment to particle sizes were also evaluated. When the PHP-pretreatment was employed (final H₂O₂ and H₃PO₄ concentration of 1.77% and 80.0%), 71-96% lignin and more than 95% hemicellulose in various feedstocks (agricultural residues, hardwood, softwood, bamboo, and their mixture, and garden wastes mixture) can be removed. Consequently, more than 90% glucose conversion was uniformly achieved indicating PHP greatly improved the pretreatment flexibility to different feedstocks. Moreover, when wheat straw and oak chips were PHP-pretreated with different sizes, the average glucose conversion reached 94.9% and 100% with lower coefficient of variation (7.9% and 0.0%), which implied PHP-pretreatment can significantly weaken the negative effects of feedstock sizes on subsequent conversion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Experiments to understand the corrosion process of fuel rod claddings

    International Nuclear Information System (INIS)

    Groeschel, F.; Hermann, A.

    1997-01-01

    Fuel rods in light water reactors have to respond to the trends in increased burn-up and extended dwelling time in reactor. Waterside corrosion of the cladding affecting wall thickness, mechanical stability due to hydriding and the heat transfer due to the low thermal conductivity of the oxide scale may become the limiting factors. The corrosion process is complex and involves a large variety of mechanisms. Understanding of the process is important for safe operation and a prerequisite for development of improved materials. A variety of analytical techniques and mechanical tests, including examination of irradiated pathfinder rods, are used to tackle the different aspects. (author) 6 figs., 1 tab., 17 refs

  2. Corrosion Resistant Cladding by YAG Laser Welding in Underwater Environment

    International Nuclear Information System (INIS)

    Tsutomi Kochi; Toshio Kojima; Suemi Hirata; Ichiro Morita; Katsura Ohwaki

    2002-01-01

    It is known that stress-corrosion cracking (SCC) will occur in nickel-base alloys used in Reactor Pressure Vessel (RPV) and Internals of nuclear power plants. A SCC sensitivity has been evaluated by IHI in each part of RPV and Internals. There are several water level instrumentation nozzles installed in domestic BWR RPV. In water level instrumentation nozzles, 182 type nickel-base alloys were used for the welding joint to RPV. It is estimated the SCC potential is high in this joint because of a higher residual stress than the yield strength (about 400 MPa). This report will describe a preventive maintenance method to these nozzles Heat Affected Zone (HAZ) and welds by a corrosion resistant cladding (CRC) by YAG Laser in underwater environment (without draining a reactor water). There are many kinds of countermeasures for SCC, for example, Induction Heating Stress Improvement (IHSI), Mechanical Stress Improvement Process (MSIP) and so on. A YAG laser CRC is one of them. In this technology a laser beam is used for heat source and irradiated through an optical fiber to a base metal and SCC resistant material is used for welding wires. After cladding the HAZ and welds are coated by the corrosion resistant materials so their surfaces are improved. A CRC by gas tungsten arc welding (GTAW) in an air environment had been developed and already applied to a couple of operating plants (16 Nozzles). This method was of course good but it spent much time to perform because of an installation of some water-proof working boxes to make a TIG-weldability environment. CRC by YAG laser welding in underwater environment has superior features comparing to this conventional TIG method as follows. At the viewpoint of underwater environment, (1) an outage term reduction (no drainage water). (2) a radioactive exposure dose reduction for personnel. At that of YAG laser welding, (1) A narrower HAZ. (2) A smaller distortion. (3) A few cladding layers. A YAG laser CRC test in underwater

  3. Standard specification for architectural flat glass clad polycarbonate

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This specification covers the quality requirements for cut sizes of glass clad polycarbonate (GCP) for use in buildings as security, detention, hurricane/cyclic wind-resistant, and blast and ballistic-resistant glazing applications. 1.2 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  4. Embrittlement of zircaloy cladding due to oxygen uptake (CBRTTL)

    International Nuclear Information System (INIS)

    Reymann, G.A.

    1979-02-01

    A model for embrittlement of zircaloy due to oxygen uptake at high temperatures is described. The model defines limits for oxygen content and temperature which, if exceeded, give rise to zircaloy cladding which is sufficiently embrittled to cause failure either on quenching or normal handling following a transient. A significant feature of this model is that the onset of embrittlement is dependent on the cooling rate. A distinction is made between slow and fast cooling, with the boundary at 100 K/s. The material property correlations and computer subcodes described in MATPRO are developed for use in Light Water Reactor (LWR) codes

  5. Ultrasonic signal processing for sizing under-clad flaws

    International Nuclear Information System (INIS)

    Shankar, R.; Paradiso, T.J.; Lane, S.S.; Quinn, J.R.

    1985-01-01

    Ultrasonic digital data were collected from underclad cracks in sample pressure vessel specimen blocks. These blocks were weld cladded under different processes to simulate actual conditions in US Pressure Water Reactors. Each crack was represented by a flaw-echo dynamic curve which is a plot of the transducer motion on the surface as a function of the ultrasonic response into the material. Crack depth sizing was performed by identifying in the dynamic curve the crack tip diffraction signals from the upper and lower tips. This paper describes the experimental procedure, digital signal processing methods used and algorithms developed for crack depth sizing

  6. Widely tunable femtosecond solitonic radiation in photonic crystal fiber cladding

    DEFF Research Database (Denmark)

    Peng, J. H.; Sokolov, A. V.; Benabid, F.

    2010-01-01

    We report on a means to generate tunable ultrashort optical pulses. We demonstrate that dispersive waves generated by solitons within the small-core features of a photonic crystal fiber cladding can be used to obtain femtosecond pulses tunable over an octave-wide spectral range. The generation...... process is highly efficient and occurs at the relatively low laser powers available from a simple Ti:sapphire laser oscillator. The described phenomenon is general and will play an important role in other systems where solitons are known to exist....

  7. RIA simulation tests using driver tube for ATF cladding

    Energy Technology Data Exchange (ETDEWEB)

    Cinbiz, Mahmut N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, N. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lowden, R. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linton, K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, K. A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-01

    Pellet-cladding mechanical interaction (PCMI) is a potential failure mechanism for accident-tolerant fuel (ATF) cladding candidates during a reactivity-initiated accident (RIA). This report summarizes Fiscal Year (FY) 2017 research activities that were undertaken to evaluate the PCMI-like hoop-strain-driven mechanical response of ATF cladding candidates. To achieve various RIA-like conditions, a modified-burst test (MBT) device was developed to produce different mechanical pulses. The calibration of the MBT instrument was accomplished by performing mechanical tests on unirradiated Generation-I iron-chromium-aluminum (FeCrAl) alloy samples. Shakedown tests were also conducted in both FY 2016 and FY 2017 using unirradiated hydrided ZIRLO™ tube samples. This milestone report focuses on testing of ATF materials, but the benchmark tests with hydrided ZIRLO™ tube samples are documented in a recent journal article.a For the calibration and benchmark tests, the hoop strain was monitored using strain gauges attached to the sample surface in the hoop direction. A novel digital image correlation (DIC) system composed of a single high-speed camera and an array of six mirrors was developed for the MBT instrument to better resolve the failure behavior of samples and to provide useful data for validation of high-fidelity modeling and simulation tools. The DIC system enable a 360° view of a sample’s outer surface. This feature was added to the instrument to determine the precise failure location on a sample’s surface for strain predictions. The DIC system was tested on several silicon carbide fiber/silicon carbide matrix (SiC/SiC) composite tube samples at various pressurization rates of the driver tube (which correspond to the strain rates for the samples). The hoop strains for various loading conditions were determined for the SiC/SiC composite tube samples. Future work is planned to enhance understanding of the failure behavior of the ATF cladding candidates of age

  8. Laser cladding of wear resistant metal matrix composite coatings

    International Nuclear Information System (INIS)

    Yakovlev, A.; Bertrand, Ph.; Smurov, I.

    2004-01-01

    A number of coatings with wear-resistant properties as well as with a low friction coefficient are produced by laser cladding. The structure of these coatings is determined by required performance and realized as metal matrix composite (MMC), where solid lubricant serves as a ductile matrix (e.g. CuSn), reinforced by appropriate ceramic phase (e.g. WC/Co). One of the engineered coating with functionally graded material (FGM) structure has a dry friction coefficient 0.12. Coatings were produced by coaxial injection of powder blend into the zone of laser beam action. Metallographic and tribological examinations were carried out confirming the advanced performance of engineered coatings

  9. Properties of light water reactor spent fuel cladding. Interim report

    International Nuclear Information System (INIS)

    Farwick, D.G.; Moen, R.A.

    1979-08-01

    The Commercial Waste and Spent Fuel Packaging Program will provide containment packages for the safe storage or disposal of spent Light Water Reactor (LWR) fuel. Maintaining containment of radionuclides during transportation, handling, processing and storage is essential, so the best understanding of the properties of the materials to be stored is necessary. This report provides data collection, assessment and recommendations for spent LWR fuel cladding materials properties. Major emphasis is placed on mechanical properties of the zircaloys and austenitic stainless steels. Limited information on elastic constants, physical properties, and anticipated corrosion behavior is also provided. Work is in progress to revise these evaluations as the program proceeds

  10. Enhanced enzymatic saccharification of sugarcane bagasse pretreated by combining O2 and NaOH.

    Science.gov (United States)

    Bi, Shuaizhu; Peng, Lincai; Chen, Keli; Zhu, Zhengliang

    2016-08-01

    Sugarcane bagasse pretreated by combining O2 and NaOH with different variables was conducted to improve its enzymatic digestibility and sugar recovery, and the results were compared with sole NaOH pretreatment. Lignin removal for O2-NaOH pretreatment was around 10% higher than that for sole NaOH pretreatment under the same conditions, and O2-NaOH pretreatment resulted in higher glucan recovery in the solid remain. Subsequently, O2-NaOH pretreated sugarcane bagasse presented more efficient enzymatic digestibility than sole NaOH pretreatment. Under the moderate pretreatment conditions of combining 1% NaOH and 0.5MPa O2 at 80°C for 120min, a high glucan conversion of 95% was achieved after 48h enzymatic hydrolysis. Coupled with the operations of pretreatment and enzymatic hydrolysis, an admirable total sugar recovery of 89% (glucose recovery of 93% and xylose recovery of 84%) was obtained. The susceptibility of the substrates to enzymatic digestibility was explained by their physical and chemical characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Evaluation of ultrasound assisted potassium permanganate pre-treatment of spent coffee waste.

    Science.gov (United States)

    Ravindran, Rajeev; Jaiswal, Swarna; Abu-Ghannam, Nissreen; Jaiswal, Amit K

    2017-01-01

    In the present study, novel pre-treatment for spent coffee waste (SCW) has been proposed which utilises the superior oxidising capacity of alkaline KMnO 4 assisted by ultra-sonication. The pre-treatment was conducted for different exposure times (10, 20, 30 and 40min) using different concentrations of KMnO 4 (1, 2, 3, 4, 5%w/v) at room temperature with solid/liquid ratio of 1:10. Pretreating SCW with 4% KMnO 4 and exposing it to ultrasound for 20min resulted in 98% cellulose recovery and a maximum lignin removal of 46%. 1.7 fold increase in reducing sugar yield was obtained after enzymatic hydrolysis of KMnO 4 pretreated SCW as compared to raw. SEM, XRD and FTIR analysis of the pretreated SCW revealed the various effects of pretreatment. Thermal behaviour of the pretreated substrate against the native biomass was also studied using DSC. Ultrasound-assisted potassium permanganate oxidation was found to be an effective pretreatment for SCW, and can be a used as a potential feedstock pretreatment strategy for bioethanol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The pretreatment of corn stover with Gloeophyllum trabeum KU-41 for enzymatic hydrolysis

    Directory of Open Access Journals (Sweden)

    Gao Ziqing

    2012-05-01

    Full Text Available Abstract Background Pretreatment is an essential step in the enzymatic hydrolysis of biomass for bio-ethanol production. The dominant concern in this step is how to decrease the high cost of pretreatment while achieving a high sugar yield. Fungal pretreatment of biomass was previously reported to be effective, with the advantage of having a low energy requirement and requiring no application of additional chemicals. In this work, Gloeophyllum trabeum KU-41 was chosen for corn stover pretreatment through screening with 40 strains of wood-rot fungi. The objective of the current work is to find out which characteristics of corn stover pretreated with G. trabeum KU-41 determine the pretreatment method to be successful and worthwhile to apply. This will be done by determining the lignin content, structural carbohydrate, cellulose crystallinity, initial adsorption capacity of cellulase and specific surface area of pretreated corn stover. Results The content of xylan in pretreated corn stover was decreased by 43% in comparison to the untreated corn stover. The initial cellulase adsorption capacity and the specific surface area of corn stover pretreated with G. trabeum were increased by 7.0- and 2.5-fold, respectively. Also there was little increase in the cellulose crystallinity of pretreated corn stover. Conclusion G. trabeum has an efficient degradation system, and the results indicated that the conversion of cellulose to glucose increases as the accessibility of cellulose increases due to the partial removal of xylan and the structure breakage of the cell wall. This pretreatment method can be further explored as an alternative to the thermochemical pretreatment method.

  13. Oxidation resistant chromium coating on Zircaloy-4 for accident tolerant fuel cladding

    International Nuclear Information System (INIS)

    Park, Jung-Hwan; Kim, Eui-Jung; Jung, Yang-Il; Park, Dong-Jun; Kim, Hyun-Gil; Park, Jeong-Yong; Koo, Yang-Hyun

    2015-01-01

    The attributes of such a fuel are approved reaction kinetics with steam, a slower hydrogen generation rate, and good cladding thermo-mechanical properties. Many researchers have tried to modify zirconium alloys to improve their oxidation resistance in the early stages of the ATF development. Corrosion resistant coating on cladding is one of the candidate technologies to improve the oxidation resistance of zirconium cladding. By applying coating technology to zirconium cladding, it is easy to obtain corrosion resistance without a change in the base materials. Among the surface coating methods, arc ion plating (AIP) is a coating technology to improve the adhesion owing to good throwing power, and a dense deposit (Fig. 1). Owing to these advantages, AIP has been widely used to efficiently form protective coatings on cutting tools, dies, bearings, etc. In this study, The AIP technique for the protection of zirconium claddings from the oxidation in a high-temperature steam environment was studied. The homogeneous Cr film with a high adhesive ability to the cladding was deposited by AIP and acted as a protection layer to enhance the corrosion resistance of the zirconium cladding. It was concluded that the AIP technology is effective for coating a protective layer on claddings

  14. Conical reflection of light during free-space coupling into a symmetrical metal-cladding waveguide.

    Science.gov (United States)

    Zheng, Yuanlin; Cao, Zhuangqi; Chen, Xianfeng

    2013-09-01

    Novel conical reflection of light by a thick three-layered metal-clad optical waveguide is observed. A symmetrical metal-cladding optical waveguide is used, which exhibits extraordinary conical reflection during free-space coupling of light to the waveguide. The phenomenon is attributed to the leakage of excited ultrahigh-order guided modes and their inter- and intramode coupling interaction.

  15. Radionuclide release from PWR spent fuel specimens with induced cladding defects

    International Nuclear Information System (INIS)

    Wilson, C.N.; Oversby, V.M.

    1984-03-01

    Radionuclide releases from pressurized water reactor (PWR) spent fuel rod specimens containing various artificially induced cladding defects were compared by leach testing. The study was conducted in support of the Nevada Nuclear Waste Storage Investigations (NNWSI) Waste Package Task to evaluate the effectiveness of failed cladding as a barrier to radionuclide release. Test description and results are presented. 6 references, 4 figures

  16. Core temperature in super-Gaussian pumped air-clad photonic ...

    Indian Academy of Sciences (India)

    In this paper we investigate the core temperature of air-clad photonic crystal fiber (PCF) lasers pumped by a super-Gaussian (SG) source of order four. The results are compared with conventional double-clad fiber (DCF) lasers pumped by the same super-Gaussian and by top-hat pump profiles.

  17. Technique Comparison of the Fracture Toughness Tests for Irradiated Fuel Claddings in a Hot Cell

    International Nuclear Information System (INIS)

    Ahn, Sangbok; Kim, Dosik; Jung, Yanghong; Choo, Yongsun; Ryu, Wooseog

    2007-01-01

    The degradation of a fracture toughness in a fuel cladding is a important factor to restrict the operation safety in nuclear power plants. The fracture properties of claddings were traditionally measured through a rubber bung test, a burst test, etc. Those results were the qualitative fracture characteristics, and could not be used as design or operation safety evaluation data. We need to evaluate the quantitative characteristics of claddings under normal operation and in accidents. The application of a fracture mechanics concept in testing a fuel cladding is restricted by the cladding geometry and creating the correct stress-state conditions. The geometry of claddings does not meet the requirement of the ASTM Standards for a specimen configuration and an applied load. The specimen may be produced from previously flattened claddings, but the flattening causes some uncertainties in the results due to changes in the microstructure of the material and a new distribution of the internal stresses. Therefore many efforts have been devoted to developing new test techniques, to quantify the fracture characteristics of claddings. Researchers from JAEA and NFI in Japan, Studsvik Company Ltd in Sweden, IAEA in Australia, and KAERI in Korea have independently developed fracture test techniques. This study is designed to review the independently developed techniques and to compare of their merits. Finally we shall apply the other techniques to upgrade our developing techniques

  18. Development of an observation and control system for industrial laser cladding

    NARCIS (Netherlands)

    Hofman, Johannes Tjaard

    2009-01-01

    Laser cladding has become an important surface modification technique in today’s industry. It is not only applied for coating new products but also for repair and refurbishment as well as in rapid prototyping. A laser clad workstation has been developed. It uses a 4 kW Nd:YAG fibre coupled laser as

  19. Experimental verification of microbending theory using mode coupling to discrete cladding modes

    DEFF Research Database (Denmark)

    Probst, C. B.; Bjarklev, Anders Overgaard; Andreasen, S. B.

    1989-01-01

    a microbending theory in which coupling between the guided mode and a number of discrete cladding modes is considered. Very good agreement between theory and measurement is achieved. The consequences of the existence of discrete cladding modes with regard to the proper choice of artificial microbending spectrum...

  20. Structural analysis of the SNAP-8 developmental reactor fuel element cladding

    Energy Technology Data Exchange (ETDEWEB)

    Dalcher, A.W.

    1969-04-15

    Primary, secondary, and thermal stresses were calculated and evaluated for the SNAP-8 developmental reactor fuel element cladding. The effects of fabrication and assembly stresses, as well as test and operational stresses were included in the analysis. With the assumption that fuel-swelling-induced stresses are nil, the analytical results indicate that the cladding assembly is structurally adequate for the proposed operation.

  1. Air-clad fibers: pump absorption assisted by chaotic wave dynamics?

    DEFF Research Database (Denmark)

    Mortensen, Niels Asger

    2007-01-01

    Wave chaos is a concept which has already proved its practical usefulness in design of double-clad fibers for cladding-pumped fiber lasers and fiber amplifiers. In general, classically chaotic geometries will favor strong pump absorption and we address the extent of chaotic wave dynamics in typical...

  2. Method of evaluation of stress corrosion cracking susceptibility of clad fuel tubes

    International Nuclear Information System (INIS)

    Takase, Iwao; Yoshida, Toshimi; Ikeda, Shinzo; Masaoka, Isao; Nakajima, Junjiro.

    1986-01-01

    Purpose: To determine, by an evaluation in out-pile test, the stress corrosion cracking susceptibility of clad fuel tubes in the reactor environment. Method: A plurality of electrodes are mounted in the circumferential direction on the entire surface of cladding tubes. Of the electrodes, electrodes at two adjacent places are used as measuring terminals and electrodes at another two places adjacent thereto are used as constant-current terminals. With a specific current flowing in the constant-current terminals, measurements are made of a potential difference between the terminals to be measured, and from a variation in the potential difference the depth of cracking of the cladding tube surface is presumed to determine the stress corrosion cracking susceptibility of the cladding tube. To check the entire surface of the cladding tube, the cladding tube is moved by each block in the circumferential direction by a contact changeover system, repeating the measurements of the potential difference. Contact type electrodes are secured with an insulator and held in uniform contact with the cladding tube by a spring. It is detachable by use of a locking system and movable as desired. Thus the stress corrosion cracking susceptibility can be determined without mounting the cladding tube through and also a fuel failure can be prevented. (Horiuchi, T.)

  3. An Examination of Collaborative Learning Assessment through Dialogue (CLAD) in Traditional and Hybrid Human Development Courses

    Science.gov (United States)

    McCarthy, Wanda C.; Green, Peter J.; Fitch, Trey

    2010-01-01

    This investigation assessed the effectiveness of using Collaborative Learning Assessment through Dialogue (CLAD) (Fitch & Hulgin, 2007) with students in undergraduate human development courses. The key parts of CLAD are student collaboration, active learning, and altering the role of the instructor to a guide who enhances learning opportunities.…

  4. 78 FR 10265 - Pricing for the 2013 Commemorative Coin Programs-Silver and Clad Coin Options

    Science.gov (United States)

    2013-02-13

    ... DEPARTMENT OF THE TREASURY United States Mint Pricing for the 2013 Commemorative Coin Programs--Silver and Clad Coin Options AGENCY: United States Mint, Department of the Treasury. ACTION: Notice... Dollar and the 2013 5-Star Generals Commemorative Coin Program for the silver and clad coin options...

  5. Elastic plastic analysis of fuel element assemblies - hexagonal claddings and fuel rods

    International Nuclear Information System (INIS)

    Mamoun, M.M.; Wu, T.S.; Chopra, P.S.; Rardin, D.C.

    1979-01-01

    Analytical studies have been conducted to investigate the structural, thermal, and mechanical behavior of fuel rods, claddings and fuel element assemblies of several designs for a conceptual Safety Test Facility (STF). One of the design objectives was to seek a geometrical configuration for a clad by maximizing the volume fraction of fuel and minimizing the resultant stresses set-up in the clad. The results of studies conducted on various geometrical configurations showed that the latter design objective can be achieved by selecting a clad of an hexagonal geometry. The analytical studies necessitated developing solutions for determining the stresses, strains, and displacements experienced by fuel rods and an hexagonal cladding subjected to thermal fuel-bowing loads acting on its internal surface, the external pressure of the coolant, and elevated temperatures. This paper presents some of the initially formulated analytical methods and results. It should be emphasized that the geometrical configuration considered in this paper may not necessarily be similar to that of the final design. Several variables have been taken into consideration including cladding thickness, the dimensions of the fuel rod, the temperature of the fuel and cladding, the external pressure of the cooling fluid, and the mechanical strength properties of fuel and cladding. A finite-element computer program, STRAW Code, has also been employed to generate several numerical results which have been compared with those predicted by employing the initially formulated solutions. The theoretically predicted results are in good agreement with those of the STRAW Code. (orig.)

  6. Effects of Zr-hydride distribution of irradiated Zircaloy-2 cladding in RIA-simulating pellet-clad mechanical interaction testing

    Directory of Open Access Journals (Sweden)

    Per Magnusson

    2018-03-01

    Full Text Available A series of simulated reactivity-initiated accident (RIA tests on irradiated fully recrystallized boiling water reactor Zircaloy-2 cladding has been performed by means of the expansion-due-to-compression (EDC test method. The EDC method reproduces fuel pellet–clad mechanical interaction (PCMI conditions for the cladding during RIA transients with respect to temperature and loading rates by out-of-pile mechanical testing. The tested materials had a large variation in burnup and hydrogen content (up to 907 wppm. The results of the EDC tests showed variation in the PCMI resistance of claddings with similar burnup and hydrogen content, making it difficult to clearly identify ductile-to-brittle transition temperatures. The EDC-tested samples of the present and previous work were investigated by light optical and scanning electron microscopy to study the influence of factors such as azimuthal variation of the Zr-hydrides and the presence of hydride rims and radially oriented hydrides. Two main characteristics were identified in samples with low ductility with respect to hydrogen content and test temperature: hydride rims and radial hydrides at the cladding outer surface. Crack propagation and failure modes were also studied, showing two general modes of crack propagation depending on distribution and amount of radially oriented hydrides. It was concluded that the PCMI resistance of irradiated cladding under normal conditions with homogenously distributed circumferential hydrides is high, with good margin to the RIA failure limits. To further improve safety, focus should be on conditions causing nonfavorable hydride distribution, such as hydride reorientation and formation of hydride blisters at the cladding outer surface. Keywords: Failure, Hydrides, Hydrogen Content, Pellet–Clad Mechanical Interaction, Reactivity-Initiated Accident, Transient

  7. Development of eutectic free cladding materials for metallic fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tokiwai, Moriyasu; Yuda, Ryoichi [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan); Ohuchi, Atsushi [Nippon Nuclear Fuel Development Co. Ltd., Oarai, Ibaraki (Japan); Amaya, Masaki [Global Nuclear Fuel-Japan Co., Ltd, Oarai, Ibaraki (Japan)

    2002-11-01

    Historically, it is well known that U base metallic fuel has a lower eutectic temperature with stainless steel cladding. In the phase diagram for the U-Fe binary system, the eutectic temperature is 998K. The eutectic reaction is a limiting factor for raising reactor operation temperature. For the purpose of development of eutectic-free cladding materials, three kinds of diffusion-couple tests with 10 mass%Zr alloy were conducted at a temperature of 1027K for 2250 hrs. We selected the following materials: (a) nitrogen charged zirconium foils, (b) vanadium foils of commercial grade, and (c) nitrogen charged ferritic stainless steel (HT-9). The results showed that typical Zr with layer was observed in all of these materials. Zr with layer appeared to act as a barrier against inter-diffusion of U, Fe. The barrier provided immunity to the eutectic reaction. Discussion was made on C-14 problems in relation to another desirable thermodynamic characteristics of Zr such as carbon-14 immobilization. EPMA analysis indicated relatively high nitrogen concentration at the barrier. The barrier is probably composed of ZrN. (author)

  8. Treatment of cladding hulls by the HIPOW process

    International Nuclear Information System (INIS)

    Larker, H.T.; Tegman, R.

    1981-01-01

    The conditions for densifying and bonding Zircaloy cladding hulls from spent LWR fuel to blocks by the HIPOW (hot isostatic pressing of waste) process have been studied. Fully dense and mechanically strong blocks of Zircaloy can be made without additives at temperatures around 1000 0 C. A volume reduction of about seven times and surface area reduction of more than 300 times, compared to typical loose-filled cladding hulls remaining after the chop-leach operations in a reprocessing plant, can be obtained. A study of a possible process for industrial scale has been made. Handling under water can prevent any fire hazard in the preparation sequence. The use of a special hermetically sealed double-wall metal container encasing the hulls during the densification in the hot isostatic press virtually eliminates the problem of lasting contamination of this equipment, thus greatly simplifying service and maintenance. One hot isostatic press can serve a reprocessing line with an LWR fuel capacity of 800 tons/year. Fines (residues) from fuel dissolution and alpha-contaminated ashes from incinerated organic materials in the plant may also be incorporated in the Zircaloy blocks. Tritium can quantitatively be contained in these blocks

  9. Cladding and Structural Materials for Advanced Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Was, G S; Allen, T R; Ila, D; C,; Levi,; Morgan, D; Motta, A; Wang, L; Wirth, B

    2011-06-30

    The goal of this consortium is to address key materials issues in the most promising advanced reactor concepts that have yet to be resolved or that are beyond the existing experience base of dose or burnup. The research program consists of three major thrusts: 1) high-dose radiation stability of advanced fast reactor fuel cladding alloys, 2) irradiation creep at high temperature, and 3) innovative cladding concepts embodying functionally-graded barrier materials. This NERI-Consortium final report represents the collective efforts of a large number of individuals over a period of three and a half years and included 9 PIs, 4 scientists, 3 post-docs and 12 students from the seven participating institutions and 8 partners from 5 national laboratories and 3 industrial institutions (see table). University participants met semi-annually and participants and partners met annually for meetings lasting 2-3 days and designed to disseminate and discuss results, update partners, address outstanding issues and maintain focus and direction toward achieving the objectives of the program. The participants felt that this was a highly successful program to address broader issues that can only be done by the assembly of a range of talent and capabilities at a more substantial funding level than the traditional NERI or NEUP grant. As evidence of the success, this group, collectively, has published 20 articles in archival journals and made 57 presentations at international conferences on the results of this consortium.

  10. Reactor water chemistry relevant to coolant-cladding interaction

    International Nuclear Information System (INIS)

    1987-09-01

    The report is a summary of the work performed in a frame of a Coordinated Research Program organized by the IAEA and carried out from 1981 till 1986. It consists of a survey on our knowledge on coolant-cladding interaction: the basic phenomena, the relevant parameters, their control and the modelling techniques implemented for their assessment. Based upon the results of this Coordinated Research Program, the following topics are reviewed on the report: role of water chemistry in reliable operation of nuclear power plants; water chemistry specifications and their control; behaviour of fuel cladding materials; corrosion product behaviour and crud build-up in reactor circuits; modelling of corrosion product behaviour. This report should be of interest to water chemistry supervisors at the power plants, to experts in utility engineering departments, to fuel designers, to R and D institutes active in the field and to the consultants of these organizations. A separate abstract was prepared for each of the 3 papers included in the Annex of this document. Refs, figs, tabs

  11. Microindentation hardness evaluation of iridium alloy clad vent set cups

    International Nuclear Information System (INIS)

    Ulrich, G.B.; DeRoos, L.F.; Stinnette, S.E.

    1993-01-01

    An iridium alloy, DOP-26, is used as cladding for 238 PuO 2 fuel in radioisotope heat sources for space power systems. Presently, DOP-26 iridium alloy clad vent sets (CVS) are being manufactured at the Oak Ridge Y-12 Plant for potential use in the National Aeronautics and Space Administration's Cassini mission to Saturn. Wrought/ground/stress relieved blanks are warm formed into CVS cups. These cups are then annealed to recrystallize the material for subsequent fabrication/assembly operations as well as for final use. One of the cup manufacturing certification requirements is to test for Vickers microindentation hardness. New microindentation hardness specification limits, 210 to 310 HV, have been established for a test load of 1000 grams-force (gf). The original specification limits, 250 to 350 HV, were for 200 gf testing. The primary reason for switching to a higher test load was to reduce variability in the test data. The DOP-26 alloy exhibits microindentation hardness load dependence, therefore, new limits were needed for 1000 gf testing. The new limits were established by testing material from 15 CVS cups using 200 gf and 1000 gf loads and then statistically analyzing the data. Additional work using a Knoop indenter and a 10 gf load indicated that the DOP-26 alloy grain boundaries have higher hardnesses than the grain interiors

  12. Novel Accident-Tolerant Fuel Meat and Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Robert D. Mariani; Pavel G Medvedev; Douglas L Porter; Steven L Hayes; James I. Cole; Xian-Ming Bai

    2013-09-01

    A novel accident-tolerant fuel meat and cladding are here proposed. The fuel meat design incorporates annular fuel with inserts and discs that are fabricated from a material having high thermal conductivity, for example niobium. The inserts are rods or tubes. Discs separate the fuel pellets. Using the BISON fuel performance code it was found that the peak fuel temperature can be lowered by more than 600 degrees C for one set of conditions with niobium metal as the thermal conductor. In addition to improved safety margin, several advantages are expected from the lower temperature such as decreased fission gas release and fuel cracking. Advantages and disadvantages are discussed. An enrichment of only 7.5% fully compensates the lost reactivity of the displaced UO2. Slightly higher enrichments, such as 9%, allow uprates and increased burnups to offset the initial costs for retooling. The design has applications for fast reactors and transuranic burning, which may accelerate its development. A zirconium silicide coating is also described for accident tolerant applications. A self-limiting degradation behavior for this coating is expected to produce a glassy, self-healing layer that becomes more protective at elevated temperature, with some similarities to MoSi2 and other silicides. Both the fuel and coating may benefit from the existing technology infrastructure and the associated wide expertise for a more rapid development in comparison to other, more novel fuels and cladding.

  13. SiC/SiC Cladding Materials Properties Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Mary A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Koyanagi, Takaaki [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Singh, Gyanender P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    When a new class of material is considered for a nuclear core structure, the in-pile performance is usually assessed based on multi-physics modeling in coordination with experiments. This report aims to provide data for the mechanical and physical properties and environmental resistance of silicon carbide (SiC) fiber–reinforced SiC matrix (SiC/SiC) composites for use in modeling for their application as accidenttolerant fuel cladding for light water reactors (LWRs). The properties are specific for tube geometry, although many properties can be predicted from planar specimen data. This report presents various properties, including mechanical properties, thermal properties, chemical stability under normal and offnormal operation conditions, hermeticity, and irradiation resistance. Table S.1 summarizes those properties mainly for nuclear-grade SiC/SiC composites fabricated via chemical vapor infiltration (CVI). While most of the important properties are available, this work found that data for the in-pile hydrothermal corrosion resistance of SiC materials and for thermal properties of tube materials are lacking for evaluation of SiC-based cladding for LWR applications.

  14. FRAPCON analysis of cladding performance during dry storage operations

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, David J.; Geelhood, Kenneth J.

    2018-03-01

    There is an increasing need in the U.S. and around the world to move used nuclear fuel from wet storage in fuel pools to dry storage in casks stored at independent spent fuel storage installations (ISFSI) or interim storage sites. The NRC limits cladding temperature to 400°C while maintaining cladding hoop stress below 90 MPa in an effort to avoid radial hydride reorientation. An analysis was conducted with FRAPCON-4.0 on three modern fuel designs with three representative used nuclear fuel storage temperature profiles that peaked at 400 °C. Results were representative of the majority of U.S. LWR fuel. They conservatively showed that hoop stress remains below 90 MPa at the licensing temperature limit. Results also show that the limiting case for hoop stress may not be at the highest rod internal pressure in all cases but will be related to the axial temperature and oxidation profiles of the rods at the end of life and in storage.

  15. Treatment of olive mill wastewater by chemical processes: effect of acid cracking pretreatment.

    Science.gov (United States)

    Hande Gursoy-Haksevenler, B; Arslan-Alaton, Idil

    2014-01-01

    The effect of acid cracking (pH 2.0; T 70 °C) and filtration as a pretreatment step on the chemical treatability of olive mill wastewater (chemical oxygen demand (COD) 150,000 m/L; total organic carbon (TOC) 36,000 mg/L; oil-grease 8,200 mg/L; total phenols 3,800 mg/L) was investigated. FeCl3 coagulation, Ca(OH)2 precipitation, electrocoagulation using stainless steel electrodes and the Fenton's reagent were applied as chemical treatment methods. Removal performances were examined in terms of COD, TOC, oil-grease, total phenols, colour, suspended solids and acute toxicity with the photobacterium Vibrio fischeri. Significant oil-grease (95%) and suspended solids (96%) accompanied with 58% COD, 43% TOC, 39% total phenols and 80% colour removals were obtained by acid cracking-filtration pretreatment. Among the investigated chemical treatment processes, electrocoagulation and the Fenton's reagent were found more effective after pretreatment, especially in terms of total phenols removal. Total phenols removal increased from 39 to 72% when pretreatment was applied, while no significant additional (≈10-15%) COD and TOC removals were obtained when acid cracking was coupled with chemical treatment. The acute toxicity of the original olive mill wastewater sample increased considerably after pretreatment from 75 to 89% (measured for the 10-fold diluted wastewater sample). An operating cost analysis was also performed for the selected chemical treatment processes.

  16. Pressurized water reactor fuel performance problems connected with fuel cladding corrosion processes

    International Nuclear Information System (INIS)

    Dobrevski, I.; Zaharieva, N.

    2008-01-01

    Generally, Pressurized Water Reactor (WWER, PWR) Fuel Element Performance is connected with fuel cladding corrosion and crud deposition processes. By transient to extended fuel cycles in nuclear power reactors, aiming to achieve higher burnup and better fuel utilization, the role of these processes increases significantly. This evolution modifies the chemical and electrochemical conditions in the reactor primary system, including change of fuel claddings' environment. The higher duty cores are always attended with increased boiling (sub-cooled nucleate boiling) mainly on the feed fuel assemblies. This boiling process on fuel cladding surfaces can cause different consequences on fuel element cladding's environment characteristics. In the case of boiling at the cladding surfaces without or with some cover of corrosion product deposition, the behavior of gases dissolved in water phase is strongly influenced by the vapor generation. The increase of vapor partial pressure will reduce the partial pressures of dissolved gases and will cause their stripping out. By these circumstances the concentrations of dissolved gases in cladding wall water layer can dramatically decrease, including also the case by which all dissolved gases to be stripped out. On the other hand it is known that the hydrogen is added to primary coolant in order to avoid the production of oxidants by radiolysis of water. It is clear that if boiling strips out dissolved hydrogen, the creation of oxidizing conditions at the cladding surfaces will be favored. In this case the local production of oxidants will be a result from local processes of water radiolysis, by which not only both oxygen (O 2 ) and hydrogen (H 2 ) but also hydrogen peroxide (H 2 O 2 ) will be produced. While these hydrogen and oxygen will be stripped out preferentially by boiling, the bigger part of hydrogen peroxide will remain in wall water phase and will act as the most important factor for creation of oxidizing conditions in fuel

  17. Hydrodynamic cavitation-assisted alkaline pretreatment as a new approach for sugarcane bagasse biorefineries.

    Science.gov (United States)

    Terán Hilares, Ruly; Dos Santos, Júlio César; Ahmed, Muhammad Ajaz; Jeon, Seok Hwan; da Silva, Silvio Silvério; Han, Jong-In

    2016-08-01

    Hydrodynamic cavitation (HC) was employed in order to improve the efficiency of alkaline pretreatment of sugarcane bagasse (SCB). Response surface methodology (RSM) was used to optimize pretreatment parameters: NaOH concentration (0.1-0.5M), solid/liquid ratio (S/L, 3-10%) and HC time (15-45min), in terms of glucan content, lignin removal and enzymatic digestibility. Under an optimal HC condition (0.48M of NaOH, 4.27% of S/L ratio and 44.48min), 52.1% of glucan content, 60.4% of lignin removal and 97.2% of enzymatic digestibility were achieved. Moreover, enzymatic hydrolysis of the pretreated SCB resulted in a yield 82% and 30% higher than the untreated and alkaline-treated controls, respectively. HC was found to be a potent and promising approach to pretreat lignocellulosic biomass. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Efficacy of pretreating oil palm fronds with an acid-base mixture catalyst.

    Science.gov (United States)

    Jung, Young Hoon; Park, Hyun Min; Park, Yong-Cheol; Park, Kyungmoon; Kim, Kyoung Heon

    2017-07-01

    Oil palm fronds are abundant but recalcitrant to chemical pretreatment. Herein, an acid-base mixture was applied as a catalyst to efficiently pretreat oil palm fronds. Optimized conditions for the pretreatment were a 0.1M acidic acid-base mixture and 3min ramping to 190°C and 12min holding. The oil palm fronds pretreated and washed with the acid-base mixture exhibited an enzymatic digestibility of 85% by 15 FPU Accellerase 1000/g glucan after 72h hydrolysis, which was significantly higher than the enzymatic digestibilities obtained by acid or alkali pretreatment alone. This could be attributed to the synergistic actions of the acid and base, producing an 87% glucose recovery with 100% and 40.3% removal of xylan and lignin, respectively, from the solids. Therefore, an acid-base mixture can be a feasible catalyst to deconstruct oil palm fronds for sugar production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Enhanced enzymatic cellulose hydrolysis by subcritical carbon dioxide pretreatment of sugarcane bagasse.

    Science.gov (United States)

    Zhang, Hongdan; Wu, Shubin

    2014-04-01

    Most biomass pretreatment processes for sugar production are run at low-solid concentration (carbon dioxide (CO2) could provide a more sustainable pretreatment medium while using relative high-solid contents (15 wt.%). The effects of subcritical CO2 pretreatment of sugarcane bagasse to the solid and glucan recoveries at different pretreatment conditions were investigated. Subsequently, enzymatic hydrolysis at different hydrolysis time was applied to obtain maximal glucose yield, which can be used for ethanol fermentation. The maximum glucose yield in enzyme hydrolyzate reached 38.5 g based on 100g raw material after 72 h of enzymatic hydrolysis, representing 93.0% glucose in sugarcane bagasse. The enhanced digestibilities of subcritical CO2 pretreated sugarcane bagasse were due to the removal of hemicellulose, which were confirmed by XRD, FTIR, SEM, and TGA analyses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Annealing studies of Zircaloy-2 cladding at 580-850 deg C

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1983-01-01

    For fuel rod cladding it is important to determine if prior metallurgical condition combined with irradiation damage can influence high temperature deformation, because studies of such deformation are required to produce data for the cladding ballooning models which are used in analysing loss-of-coolant (LOCA). If the behaviour of all cladding conditions during a LOCA can be represented by, say, the annealed condition, then a great deal of experimental work on a multiplicity of cladding conditions can be avoided. By examining the metallographic structure and hardness, the present study determines the time required in the range 580 to 850 deg C for returning Zircaloy cladding to the annealed condition, so that for any transient a point can be specified where the material should have annealed. An equation has been derived to give this information. (author)

  1. Annealing studies of zircaloy-2 cladding at 580-8500C

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1978-05-01

    For fuel element cladding it is important to determine if prior metallurgical condition combined with irradiation damage can influence high temperature deformation, because studies of such deformation are required to produce data for the cladding ballooning models which are used in analysing loss-of-coolant accidents (LOCA). If the behaviour of all cladding conditions during a LOCA can be represented by, say, the annealed condition, then much experimental work on a multiplicity of cladding conditions can be avoided. By examining the metallographic structure and hardness, the present study determines the time required in the range 580 to 850 0 C for returning Zircaloy cladding to the annealed condition, so that for any transient, a point can be specified where the material should have annealed. An equation has been derived to give this information. (author)

  2. The Mechanical Response of Advanced Claddings during Proposed Reactivity Initiated Accident Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cinbiz, Mahmut N [ORNL; Brown, Nicholas R [ORNL; Terrani, Kurt A [ORNL; Lowden, Rick R [ORNL; ERDMAN III, DONALD L [ORNL

    2017-01-01

    This study investigates the failure mechanisms of advanced nuclear fuel cladding of FeCrAl at high-strain rates, similar to design basis reactivity initiated accidents (RIA). During RIA, the nuclear fuel cladding was subjected to the plane-strain to equibiaxial tension strain states. To achieve those accident conditions, the samples were deformed by the expansion of high strength Inconel alloy tube under pre-specified pressure pulses as occurring RIA. The mechanical response of the advanced claddings was compared to that of hydrided zirconium-based nuclear fuel cladding alloy. The hoop strain evolution during pressure pulses were collected in situ; the permanent diametral strains of both accident tolerant fuel (ATF) claddings and the current nuclear fuel alloys were determined after rupture.

  3. Sliding wear studies of microwave clad versus unclad surface of stainless steel 304

    Directory of Open Access Journals (Sweden)

    Akshata M. K.

    2018-01-01

    Full Text Available Small and large scale (gas power plant, hydro power plant, automobile industries are suffering by failure of component. Sometimes, it is also observed that the component which was failed due to these reasons are very much costly and replacement of those also very difficult due to the complex geometry. By using Microwave hybrid heating, WC-12Co based clads were developed on austenitic stainless steel (SS304. Microwave clads were developed by introducing the preplaced, preheated powder for a duration of 15 min to microwave radiation at 2.45GHz frequency and 900 W power in domestic microwave applicator. By using optical microscope and scanning electron microscope (SEM, the developed clads were characterized. By using pin-on-disk, wear performance of the WC-12Co based clads and unclad samples were tested. It is observed that developed clad samples performed superior wear resistance than unclad samples.

  4. Deposition of Co-Ti alloy on mild steel substrate using laser cladding

    International Nuclear Information System (INIS)

    Alemohammad, Hamidreza; Esmaeili, Shahrzad; Toyserkani, Ehsan

    2007-01-01

    Laser cladding of a Co-Ti alloy on a mild steel substrate is studied. Premixed powders with the composition of 85 wt% cobalt and 15 wt% titanium are pre-placed on the substrate and a moving laser beam at different velocities is used to produce clad layers well bounded to the substrate. Characteristics of the clad are investigated using optical microscopy, X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and microhardness tests. The results reveal that the intermetallic phase TiCo 3 and β (i.e. fcc) cobalt are formed in the clad layer. The clad layer can also have major dilution from the substrate depending on the laser scanning velocity. It is observed that a finer microstructure is achievable with higher laser velocities whereas higher hardness is achieved using lower velocities. The latter is due to the formation of a larger fraction of TiCo 3 phase

  5. Introduction of an Innovative Cladding Panel System for Multi-Story Buildings

    Directory of Open Access Journals (Sweden)

    Hathairat Maneetes

    2014-08-01

    Full Text Available An Energy Dissipating Cladding System has been developed for use in buildings designed based on the concept of damage-controlled structure in seismic design. This innovative cladding panel system is capable of functioning both as a structural brace, as well as a source of energy dissipation, without demanding inelastic action and ductility from the basic lateral force resisting system. The structural systems of many modern buildings typically have large openings to accommodate glazing systems, and a popular type of construction uses spandrel precast cladding panels at each floor level that supports strip window systems. The present study focuses on developing spandrel type precast concrete cladding panels as supplementary energy dissipating devices that are added to the basic structural system. Through a series of analytical studies, the result of evaluating the ability of the proposed Energy Dissipating Cladding system to improve the earthquake resistance of the buildings is presented here.

  6. Tank Focus Area pretreatment activities

    International Nuclear Information System (INIS)

    McGinnis, C.P.; Welch, T.D.; Manke, K.L.

    1997-01-01

    Plans call for the high-level wastes to be retrieved from the tanks and immobilized in a stable waste form suitable for long-term isolation. Chemistry and chemical engineering operations are required to retrieve the wastes, to condition the wastes for subsequent steps, and to reduce the costs of the waste management enterprise. Pretreatment includes those processes between retrieval and immobilization, and includes preparation of suitable feed material for immobilization and separations to partition the waste into streams that yield lower life-cycle costs. Some of the technologies being developed by the Tank Focus Area (TFA) to process these wastes are described. These technologies fall roughly into three areas: (1) solid/liquid separation (SLS), (2) sludge pretreatment, and (3) supernate pretreatment

  7. Technical basis for storage of Zircaloy-clad spent fuel in inert gases

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Gilbert, E.R.

    1983-09-01

    The technical bases to establish safe conditions for dry storage of Zircaloy-clad fuel are summarized. Dry storage of fuel with zirconium alloy cladding has been licensed in Canada, the Federal Republic of Germany, and Switzerland. Dry storage demonstrations, hot cell tests, and modeling have been conducted using Zircaloy-clad fuel. The demonstrations have included irradiated boiling water reactor, pressurized heavy-water reactor, and pressurized water reactor fuel assemblies. Irradiated fuel has been emplaced in and retrieved from metal casks, dry wells, silos, and a vault. Dry storage tests and demonstrations have involved about 15,000 fuel rods, and about 5600 rods have been monitored during dry storage in inert gases with maximum cladding temperatures ranging from 50 to 570 0 C. Although some tests and demonstrations are still in progress, there is currently no evidence that any rods exposed to inert gases have failed (one PWR rod exposed to an air cover gas failed at about 270 0 C). Based on this favorable experience, it is concluded that there is sufficient information on fuel rod behavior, storage conditions, and potential cladding failure mechanisms to support licensing of dry storage in the US. This licensing position includes a requirement for inert cover gases and a maximum cladding temperature guideline of 380 0 C for Zircaloy-clad fuel. Using an inert cover gas assures that even if fuel with cladding defects were placed in dry storage, or if defects develop during storage, the defects would not propagate. Tests and demonstrations involving Zircaloy-clad rods and assemblies with maximum cladding temperatures above 400 0 C are in progress. When the results from these tests have been evaluated, the viability of higher temperature limits should be examined. Acceptable conditions for storage in air and dry storage of consolidated fuel are issues yet to be resolved

  8. Scientific basis for storage criteria for interim dry storage of aluminum-clad fuels

    Energy Technology Data Exchange (ETDEWEB)

    Sindelar, R.L.; Peacock, H.B. Jr.; Lam, P.S.; Iyer, N.C.; Louthan, M.R. Jr.; Murphy, J.R. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1996-08-01

    An engineered system for dry storage of aluminum-clad foreign and domestic research reactor spent fuel owned by the US Department of Energy is being considered to store the fuel up to a nominal period of 40 years prior to ultimate disposition. Scientifically-based criteria for environmental limits to drying and storing the fuels for this system are being developed to avoid excessive degradation in sealed and non-sealed (open to air) dry storage systems. These limits are based on consideration of degradation modes that can cause loss of net section of the cladding, embrittlement of the cladding, distortion of the fuel, or release of fuel and fission products from the fuel/clad system. Potential degradation mechanisms include corrosion mechanisms from exposure to air and/or sources of humidity, hydrogen blistering of the aluminum cladding, distortion of the fuel due to creep, and interdiffusion of the fuel and fission products with the cladding. The aluminum-clad research reactor fuels are predominantly highly-enriched aluminum uranium alloy fuel which is clad with aluminum alloys similar to 1100, 5052, and 6061 aluminum. In the absence of corrodant species, degradation due to creep and diffusion mechanisms limit the maximum fuel storage temperature to 200 C. The results of laboratory scale corrosion tests indicate that this fuel could be stored under air up to 200 C at low relative humidity levels (< 20%) to limit corrosion of the cladding and fuel (exposed to the storage environment through assumed pre-existing pits in the cladding). Excessive degradation of fuels with uranium metal up to 200 C can be avoided if the fuel is sufficiently dried and contained in a sealed system; open storage can be achieved if the temperature is controlled to avoid excessive corrosion even in dry air.

  9. Technical basis for storage of Zircaloy-clad spent fuel in inert gases

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.B. Jr.; Gilbert, E.R.

    1983-09-01

    This report summarizes the technical bases to establish safe conditions for dry storage of Zircaloy-clad fuel. Dry storage of fuel with zirconium alloy cladding has been licensed in Canada, the Federal Republic of Germany, and Switzerland. In addition, dry storage demonstrations, hot cell tests, and modeling have been conducted using Zircaloy-clad fuel. The demonstrations have included irradiated boiling water reactor, pressurized heavy-water reactor, and pressurized water reactor (PWR) fuel assemblies. Irradiated fuel has been emplaced in and retrieved from metal casks, dry wells, silos, and a vault. Dry storage tests and demonstrations have involved {similar_to}5,000 fuel rods, and {similar_to}600 rods have been monitored during dry storage in inert gases with maximum cladding temperatures ranging from 50 to 570{sup 0}C. Although some tests and demonstrations are still in progress, there is currently no evidence that any rods exposed to inert gases have failed (one PWR rod exposed to an air cover gas failed at {similar_to}70{sup 0}C). Based on this favorable experience, it is concluded that there is sufficient information on fuel rod behavior, storage conditions, and potential cladding failure mechanisms to support licensing of dry storage in the United States. This licensing position includes a requirement for inert cover gases and a maximum cladding temperature guideline of 380{sup 0}C for Zircaloy-clad fuel. Using an inert cover gas assures that even if fuel with cladding defects were placed in dry storage, or if defects develop during storage, the defects would not propagate. Tests and demonstrations involving Zircaloy-clad rods and assemblies with maximum cladding temperatures above 400{sup 0}C are in progress. When the results from these tests have been evaluated, the viability of higher temperature limits should be examined. Acceptable conditions for storage in air and dry storage of consolidated fuel are issues yet to be resolved.

  10. Models for the Configuration and Integrity of Partially Oxidized Fuel Rod Cladding at High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Siefken, L.J.

    1999-01-01

    Models were designed to resolve deficiencies in the SCDAP/RELAP5/MOD3.2 calculations of the configuration and integrity of hot, partially oxidized cladding. These models are expected to improve the calculations of several important aspects of fuel rod behavior. First, an improved mapping was established from a compilation of PIE results from severe fuel damage tests of the configuration of melted metallic cladding that is retained by an oxide layer. The improved mapping accounts for the relocation of melted cladding in the circumferential direction. Then, rules based on PIE results were established for calculating the effect of cladding that has relocated from above on the oxidation and integrity of the lower intact cladding upon which it solidifies. Next, three different methods were identified for calculating the extent of dissolution of the oxidic part of the cladding due to its contact with the metallic part. The extent of dissolution effects the stress and thus the integrity of the oxidic part of the cladding. Then, an empirical equation was presented for calculating the stress in the oxidic part of the cladding and evaluating its integrity based on this calculated stress. This empirical equation replaces the current criterion for loss of integrity which is based on temperature and extent of oxidation. Finally, a new rule based on theoretical and experimental results was established for identifying the regions of a fuel rod with oxidation of both the inside and outside surfaces of the cladding. The implementation of these models is expected to eliminate the tendency of the SCDAP/RELAP5 code to overpredict the extent of oxidation of the upper part of fuel rods and to underpredict the extent of oxidation of the lower part of fuel rods and the part with a high concentration of relocated material. This report is a revision and reissue of the report entitled, Improvements in Modeling of Cladding Oxidation and Meltdown.

  11. Comparative study of sulfite pretreatments for robust enzymatic saccharification of corn cob residue

    Directory of Open Access Journals (Sweden)

    Bu Lingxi

    2012-12-01

    Full Text Available Abstract Background Corn cob residue (CCR is a kind of waste lignocellulosic material with enormous potential for bioethanol production. The moderated sulphite processes were used to enhance the hydrophily of the material by sulfonation and hydrolysis. The composition, FT-IR spectra, and conductometric titrations of the pretreated materials were measured to characterize variations of the CCR in different sulfite pretreated environments. And the objective of this study is to compare the saccharification rate and yield of the samples caused by these variations. Results It was found that the lignin in the CCR (43.2% had reduced to 37.8%, 38.0%, 35.9%, and 35.5% after the sulfite pretreatment in neutral, acidic, alkaline, and ethanol environments, respectively. The sulfite pretreatments enhanced the glucose yield of the CCR. Moreover, the ethanol sulfite sample had the highest glucose yield (81.2%, based on the cellulose in the treated sample among the saccharification samples, which was over 10% higher than that of the raw material (70.6%. More sulfonic groups and weak acid groups were produced during the sulfite pretreatments. Meanwhile, the ethanol sulfite treated sample had the highest sulfonic group (0.103 mmol/g and weak acid groups (1.85 mmol/g in all sulfite treated samples. In FT-IR spectra, the variation of bands at 1168 and 1190 cm-1 confirmed lignin sulfonation during sulfite pretreatment. The disappearance of the band at 1458 cm-1 implied the methoxyl on lignin had been removed during the sulfite pretreatments. Conclusions It can be concluded that the lignin in the CCR can be degraded and sulfonated during the sulfite pretreatments. The pretreatments improve the hydrophility of the samples because of the increase in sulfonic group and weak acid groups, which enhances the glucose yield of the material. The ethanol sulfite pretreatment is the best method for lignin removal and with the highest glucose yield.

  12. Ultrasonic and Thermal Pretreatments on Anaerobic Digestion of Petrochemical Sludge: Dewaterability and Degradation of PAHs

    Science.gov (United States)

    Zhou, Jun; Xu, Weizhong; Wong, Jonathan W. C.; Yong, Xiaoyu; Yan, Binghua; Zhang, Xueying; Jia, Honghua

    2015-01-01

    Effects of different pretreatment methods on sludge dewaterability and polycyclic aromatic hydrocarbons (PAHs) degradation during petrochemical sludge anaerobic digestion were studied. Results showed that the total biogas production volume in the thermal pretreatment system was 4 and 5 times higher than that in the ultrasound pretreatment and in the control system, and the corresponding volatile solid removal efficiencies reached 28%, 15%, and 8%. Phenanthrene, paranaphthalene, fluoranthene, benzofluoranthene, and benzopyrene removal rates reached 43.3%, 55.5%, 30.6%, 42.9%, and 41.7%, respectively, in the thermal pretreatment system, which were much higher than those in the ultrasound pretreatment and in the control system. Moreover, capillary suction time (CST) of sludge increased after pretreatment, and then reduced after 20 days of anaerobic digestion, indicating that sludge dewaterability was greatly improved after anaerobic digestion. The decrease of protein and polysaccharide in the sludge could improve sludge dewaterability during petrochemical sludge anaerobic digestion. This study suggested that thermal pretreatment might be a promising enhancement method for petrochemical sludge solubilization, thus contributing to degradation of the PAHs, biogas production, and improvement of dewaterability during petrochemical sludge anaerobic digestion. PMID:26327510

  13. Enzymatic digestion of alkaline-sulfite pretreated sugar cane bagasse and its correlation with the chemical and structural changes occurring during the pretreatment step.

    Science.gov (United States)

    Mendes, Fernanda M; Laurito, Debora F; Bazzeggio, Mariana; Ferraz, André; Milagres, Adriane M F

    2013-01-01

    Sugar cane bagasse is recalcitrant to enzymatic digestion, which hinders the efficient conversion of its polysaccharides into fermentable sugars. Alkaline-sulfite pretreatment was used to overcome the sugar cane bagasse recalcitrance. Chemical and structural changes that occurred during the pretreatment were correlated with the efficiency of the enzymatic digestion of the polysaccharides. The first 30 min of pretreatment, which removed approximately half of the initial lignin and 30% of hemicellulose seemed responsible for a significant enhancement of the cellulose conversion level, which reached 64%. After the first 30 min of pretreatment, delignification increased slightly, and hemicellulose removal was not enhanced; however, acid groups continued to be introduced into the residual lignin. Water retention values were 145% to the untreated bagasse and 210% to the bagasse pretreated for 120 min and fiber widths increased from 10.4 to 30 μm, respectively. These changes were responsible for an additional increase in the efficiency of enzymatic hydrolysis of the cellulose, which reached 92% with the 120 min pretreated sample. © 2013 American Institute of Chemical Engineers.

  14. Method of arsenic removal from water

    Science.gov (United States)

    Gadgil, Ashok

    2010-10-26

    A method for low-cost arsenic removal from drinking water using chemically prepared bottom ash pre-treated with ferrous sulfate and then sodium hydroxide. Deposits on the surface of particles of bottom ash form of activated iron adsorbent with a high affinity for arsenic. In laboratory tests, a miniscule 5 grams of pre-treated bottom ash was sufficient to remove the arsenic from 2 liters of 2400 ppb (parts per billion) arsenic-laden water to a level below 50 ppb (the present United States Environmental Protection Agency limit). By increasing the amount of pre-treated bottom ash, even lower levels of post-treatment arsenic are expected. It is further expected that this invention supplies a very low-cost solution to arsenic poisoning for large population segments.

  15. Improved cladding nano-structured materials with self-repairing capabilities

    International Nuclear Information System (INIS)

    Popa-Simil, L.

    2012-01-01

    When designing nuclear reactors or the materials that go into them, one of the key challenges is finding materials that can withstand an outrageously extreme environment. In addition to constant bombardment by radiation, reactor materials may be subjected to extremes in temperature, physical stress, and corrosive conditions. A limitation in fuel burnup is and usage of the nuclear fuel material is related to the structural material radiation damage, that makes the fuel be removed with low-burnup and immobilized in the waste storage pools. The advanced burnup brings cladding material embitterment due to radiation damage effects corroborated with corrosion effects makes the fuel pellet life shorter. The novel nano-clustered structured sintered material may mitigate simultaneously the radiation damage and corrosion effects driving to more robust structural materials that may make the nuclear reactor safer and more reliable. The development of nano-clustered sinter alloys provides new avenues for further examination of the role of grain boundaries and engineered material interfaces in self-healing of radiation-induced defects driving to the design of highly radiation-tolerant materials for the next generation of nuclear energy applications. (authors)

  16. Corrosion of aluminum-clad alloys in wet spent fuel storage

    International Nuclear Information System (INIS)

    Howell, J.P.

    1995-09-01

    Large quantities of Defense related spent nuclear fuels are being stored in water basins around the United States. Under the non-proliferation policy, there has been no processing since the late 1980's and these fuels are caught in the pipeline awaiting processing or other disposition. At the Savannah River Site, over 200 metric tons of aluminum clad fuel are being stored in four water filled basins. Some of this fuel has experienced significant pitting corrosion. An intensive effort is underway at SRS to understand the corrosion problems and to improve the basin storage conditions for extended storage requirements. Significant improvements have been accomplished during 1993-1995, but the ultimate solution is to remove the fuel from the basins and to process it to a more stable form using existing and proven technology. This report presents a discussion of the fundamentals of aluminum alloy corrosion as it pertains to the wet storage of spent nuclear fuel. It examines the effects of variables on corrosion in the storage environment and presents the results of corrosion surveillance testing activities at SRS, as well as other fuel storage basins within the Department of Energy production sites

  17. The KALIMER-600 Reactor Core Design Concept with Varying Fuel Cladding Thickness

    International Nuclear Information System (INIS)

    Hong, Ser Gi; Jang, Jin Wook; Kim, Yeong Il

    2006-01-01

    Recently, Korea Atomic Energy Research Institute (KAERI) has developed a 600MWe sodium cooled fast reactor, the KALIMER-600 reactor core concept using single enrichment fuel. This reactor core concept is characterized by the following design targets : 1) Breakeven breeding (or fissile-self-sufficient) without any blanket, 2) Small burnup reactivity swing ( 23 n/cm 2 ). In the previous design, the single enrichment fuel concept was achieved by using the special fuel assembly designs where non-fuel rods (i.e., ZrH 1.8 , B 4 C, and dummy rods) were used. In particular, the moderator rods (ZrH 1.8 ) were used to reduce the sodium void worth and the fuel Doppler coefficient. But it has been known that this hydride moderator possesses relatively poor irradiation behavior at high temperature. In this paper, a new core design concept for use of single enrichment fuel is described. In this concept, the power flattening is achieved by using the core region wise cladding thicknesses but all non-fuel rods are removed to simplify the fuel assembly design

  18. Innovative coating of nanostructured vanadium carbide on the F/M cladding tube inner surface for mitigating the fuel cladding chemical interactions

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yong [Univ. of Florida, Gainesville, FL (United States); Phillpot, Simon [Univ. of Florida, Gainesville, FL (United States)

    2017-11-29

    Fuel cladding chemical interactions (FCCI) have been acknowledged as a critical issue in a metallic fuel/steel cladding system due to the formation of low melting intermetallic eutectic compounds between the fuel and cladding steel, resulting in reduction in cladding wall thickness as well as a formation of eutectic compounds that can initiate melting in the fuel at lower temperature. In order to mitigate FCCI, diffusion barrier coatings on the cladding inner surface have been considered. In order to generate the required coating techniques, pack cementation, electroplating, and electrophoretic deposition have been investigated. However, these methods require a high processing temperature of above 700 oC, resulting in decarburization and decomposition of the martensites in a ferritic/martensitic (F/M) cladding steel. Alternatively, organometallic chemical vapor deposition (OMCVD) can be a promising process due to its low processing temperature of below 600 oC. The aim of the project is to conduct applied and fundamental research towards the development of diffusion barrier coatings on the inner surface of F/M fuel cladding tubes. Advanced cladding steels such as T91, HT9 and NF616 have been developed and extensively studied as advanced cladding materials due to their excellent irradiation and corrosion resistance. However, the FCCI accelerated by the elevated temperature and high neutron exposure anticipated in fast reactors, can have severe detrimental effects on the cladding steels through the diffusion of Fe into fuel and lanthanides towards into the claddings. To test the functionality of developed coating layer, the diffusion couple experiments were focused on using T91 as cladding and Ce as a surrogate lanthanum fission product. By using the customized OMCVD coating equipment, thin and compact layers with a few micron between 1.5 µm and 8 µm thick and average grain size of 200 nm and 5 µm were successfully obtained at the specimen coated between 300oC and

  19. [Enhancement of anaerobic digestion of excess sludge by acid-alkali pretreatment].

    Science.gov (United States)

    Yuan, Guang-Huan; Zhou, Xing-Qiu; Wu, Jian-Dong

    2012-06-01

    In order to enhance the efficiency of anaerobic digestion of excess sludge, acid-alkali pretreatment method was studied. Three different pretreatment methods (alkali alone,acid-alkali, alkali-acid) were compared to investigate their impacts on hydrolysis and acidification of activated sludge. In addition, their influences on methane-producing in subsequent anaerobic digestion process were also studied. The results showed that the soluble chemical oxygen demand (SCOD) of alkaline treatment alone was about 16% higher than the combining of acid and alkali treatment, SCOD concentration increased to 5406.1 mg x L(-1) after 8 d pretreatment. After treated by acid (pH 4.0, 4 d) and alkali (pH 10.0, 4 d), the acetic acid production and its content in short-chain fatty acids (SCFAs) were higher than other pretreatment methods. And the acetic acid production (as COD/VSS) could reach 74.4 mg x g(-1), accounting for 60.5% of SCFAs. After acid-alkali pretreatment, the C: N ratio of the sludge mixed liquor was about 25, and the C: P ratio was between 35-40, which was more favorable than C: N and C: P ratio of alkali alone and alkali-acid to subsequent anaerobic digestion. The control experiments showed that, after acid-alkali pretreatment, anaerobic digestion cumulative methane yield (CH4/VSS(in)) reached to 136.1 mL x g(-1) at 15 d, which was about 2.5-, 1.6-, and 1.7-fold of the blank (unpretreated), alkali alone pretreatment and alkali-acid pretreatment, respectively. After acid-alkali pretreatment for 8 d and anaerobic digestion for 15 d, the removal efficiency of VSS was about 60.9%, and the sludge reduction effect was better than other pretreatments. It is obvious that the acid-alkali pretreatment method was more favorable to anaerobic digestion and sludge reduction.

  20. Carbonic Acid Pretreatment of Biomass

    Energy Technology Data Exchange (ETDEWEB)

    G. Peter van Walsum; Kemantha Jayawardhana; Damon Yourchisin; Robert McWilliams; Vanessa Castleberry

    2003-05-31

    This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. 1) Solidify the theoretical understanding of the binary CO2/H2O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. 2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. 3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. 4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. 5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for the use of carbonic

  1. Fuel cladding interaction with water coolant in power reactors

    International Nuclear Information System (INIS)

    1985-11-01

    Water coolant chemistry and corrosion processes are important factors in reliable operation of NPP's, as at elevated temperatures water is aggressive towards structural materials. Water regimes for commercial Pressurized Water Reactors and Boiling Water Reactors were developed and proved to be satisfactory. Nevertheless, studies of operation experience continue and an amount of new Research and Development work is being conducted for further improvements of technology and better understanding of the physicochemical nature of those processes. In this report information is presented on the IAEA programme on fuel element cladding interaction with water coolant. Some results of this survey and recommendations made by the group of consultants who participated in this work are given as well as recommendations for continuation of this study. Separate abstracts were prepared for 6 papers of this report

  2. Experimental database of E110 claddings exposed to accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Fero, Erzsebet, E-mail: pereze@aeki.kfki.h [Hungarian Academy of Sciences KFKI Atomic Energy Research Institute, P.O. Box 49, H-1525 Budapest (Hungary); Gyori, Csaba [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe (Germany); Matus, Lajos; Vasaros, Laszlo; Hozer, Zoltan; Windberg, Peter; Maroti, Laszlo; Horvath, Marta; Nagy, Imre; Pinter-Csordas, Anna; Novotny, Tamas [Hungarian Academy of Sciences KFKI Atomic Energy Research Institute, P.O. Box 49, H-1525 Budapest (Hungary)

    2010-02-15

    An experimental database of E110 alloy has been developed on the basis of about 600 separate and combined effect tests of the Hungarian Academy of Sciences KFKI Atomic Energy Research Institute. It contains the data of oxidation, ballooning, tensile and compression tests, the results of post-test investigations, photos, figures, information concerning the test conditions and the corresponding English-language publications. The aim of this database is to give adequate information on the E110 cladding behaviour (oxidation, hydrogen uptake, mechanical performance) under accident conditions and to provide valuable experimental data for model development and code validation. This database is a part of the International Fuel Performance Experimental Database. It is accessible on-line, via the internet. This paper gives an overview of the experiments, the test facilities and conditions involved in the database. It presents the most important results and consequences and introduces the directory structure of the database.

  3. Composite fuel-cladding tubes and its fabrication

    International Nuclear Information System (INIS)

    Higashinakagawa, Emiko; Kawashima, Junko; Sato, Kanemitsu; Kuwae, Ryosho.

    1985-01-01

    Purpose: To reduce stress-corrosion cracks in a fuel cladding tube. Method: By inserting the sleeve of pure zirconium forming a liner layer into the hollow billet of zirconium alloy as an outer tube, then the composed tube is completed through hot-extruding. Then, the composite tube is pressed, by cold working through several passes, into a tube with a predetermined smaller inner-diameter and thinner wall. Heat treatment is applied between each of the passes of the cold working to recrystallize the zirconium-alloy outer tube substantially, as well as to integrally join the outer tube and the liner layer metal-lurgically. It serves as a buffer for moderating the mechanical interaction with the fuel pellets, whereby the resistance to stress-corrosion cracks can be increased. (Moriyama, K.)

  4. Bioactivity of calcium phosphate bioceramic coating fabricated by laser cladding

    Science.gov (United States)

    Zhu, Yizhi; Liu, Qibin; Xu, Peng; Li, Long; Jiang, Haibing; Bai, Yang

    2016-05-01

    There were always strong expectations for suitable biomaterials used for bone regeneration. In this study, to improve the biocompatiblity of titanium alloy, calcium phosphate bioceramic coating was obtained by laser cladding technology. The microstructure, phases, bioactivity, cell differentiation, morphology and resorption lacunae were investigated by optical microscope (OM), x-ray diffraction (XRD), methyl thiazolyl tetrazolium (MTT) assay, tartrate-resistant acid phosphatase (TRAP) staining and scanning electronic microscope (SEM), respectively. The results show that bioceramic coating consists of three layers, which are a substrate, an alloyed layer and a ceramic layer. Bioactive phases of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) were found in ceramic coating. Osteoclast precursors have excellent proliferation on the bioceramic surface. The bioceramics coating could be digested by osteoclasts, which led to the resorption lacunae formed on its surface. It revealed that the gradient bioceramic coating has an excellent bioactivity.

  5. Bioactivity of calcium phosphate bioceramic coating fabricated by laser cladding

    International Nuclear Information System (INIS)

    Zhu, Yizhi; Liu, Qibin; Xu, Peng; Li, Long; Jiang, Haibing; Bai, Yang

    2016-01-01

    There were always strong expectations for suitable biomaterials used for bone regeneration. In this study, to improve the biocompatiblity of titanium alloy, calcium phosphate bioceramic coating was obtained by laser cladding technology. The microstructure, phases, bioactivity, cell differentiation, morphology and resorption lacunae were investigated by optical microscope (OM), x-ray diffraction (XRD), methyl thiazolyl tetrazolium (MTT) assay, tartrate-resistant acid phosphatase (TRAP) staining and scanning electronic microscope (SEM), respectively. The results show that bioceramic coating consists of three layers, which are a substrate, an alloyed layer and a ceramic layer. Bioactive phases of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) were found in ceramic coating. Osteoclast precursors have excellent proliferation on the bioceramic surface. The bioceramics coating could be digested by osteoclasts, which led to the resorption lacunae formed on its surface. It revealed that the gradient bioceramic coating has an excellent bioactivity. (letter)

  6. Fully-automated weld-cladding in boiler units

    Energy Technology Data Exchange (ETDEWEB)

    Heitz, S. [DH Schweisstechnologie und Service, Hohenthurm GmbH und Co. KG, Hohenthurm (Germany); Treder, M. [IMT Ingenieurbuero Martin Treder, Automatisierung und Industrieelektronik, Leisnig (Germany); Lorenz, G. [Siemens AG, Automation und Drives (A und D), Systems Engineering, Fuerth (Germany)

    2001-07-01

    526ld-up welding is a proven and cost-effective method of renovating heating surfaces in power plants and waste incineration plants, for example. However, personnel are subjected to dust, dirt, and heat and often have to work in confined conditions. A newly developed and patented equipment technology ensures better quality on a continuous basis and relieves the burden on personnel engaged in the weld-cladding of finned and diaphragm tube walls. (orig.) [German] Zur Sanierung von Heizflaechen in Kraftwerks- oder Muellverbrennungsanlagen ist das Auftragschweissen eine bewaehrte und wirtschaftliche Methode. Das Personal ist dabei jedoch durch Staub, Schmutz und Hitze belastet und muss nicht selten unter beengten Bedingungen arbeiten. Eine neu entwickelte und patentierte Geraetetechnik sorgt bei der Herstellung von Schweissplattierungen an Flossen- bzw. Membranrohrwaenden fuer bessere und kontinuierliche Qualitaet und entlastet das Bedienpersonal. (orig.)

  7. Pellet cladding interaction: mechanical and chemical aproach to modelling

    International Nuclear Information System (INIS)

    Atabek, R.; Chantant, M.; Pineira, T.; Joseph, J.

    1980-09-01

    An important experimental irradiation programme has been carried out for several years in order to determine the operating limits of PWR fuel elements, during power transients. In addition to the correlation giving the permissible power limit in terms of specific burn-up, the examinations after irradiation on the fuel rods provided results that made it possible to develop mechanical and chemical models that can explain the pellet-cladding interaction phenomena. The mechanical process is described by means of a code using the finite element method. This paper gives the description of the code and the comparison of the experiment-calculation results. The modelization of the chemical process is based on the analyses (qualitative and quantitative) of gamma spectrometry, carried out on sections of fuel rods having undergone a transient. The variations in radial concentration of the cesium and iodine have been particularly studied [fr

  8. Fuel- and clad-motion diagnostics: licensing needs

    International Nuclear Information System (INIS)

    Bari, R.A.; Meyer, J.F.

    1976-01-01

    The paper addresses the current state of uncertainty with respect to fuel and clad motion during a hypothetical core-disruptive accident in a liquid metal fast breeder reactor as it relates to licensing needs. It should be noted that the paper does not represent an official position of the U.S. Nuclear Regulatory Commission, but rather, represents, in part, opinions and conclusions of its contractors. Particular attention is given to the needs for an assessment of the course of events during a hypothetical core-disruptive accident in the Clinch River Breeder Reactor. However, some of the issues discussed are likely to be relevant to larger breeder reactors as well. The issues addressed are related to the needs associated with analyses of the loss-of-flow (LOF) accident without scram and the transient overpower (TOP) accident, without scram

  9. Iodine stress-corrosion cracking in irradiated Zircaloy cladding

    International Nuclear Information System (INIS)

    Mattas, R.F.; Yaggee, F.L.; Neimark, L.A.

    1979-01-01

    Irradiated Zircaloy cladding specimens, which had experienced fluences from 0.1 to 6 x 10 21 n/cm 2 (E>0.1 MeV), were gas-pressure tested in an iodine environment to investigate their stress-corrosion cracking (SCC) susceptibility. The test temperatures and hoop stresses ranged from 320 to 360 0 C and 150 to 500 MPa, respectively. The results indicate that irradiation, in general, increases the susceptibility of Zircaloy to iodine SCC. For specimens that experienced fluences >2 x 10 21 n/cm 2 (E>0.1 MeV), the 24-h failure stress was 177+-18 MPa, regardless of the preirradiation metallurgical condition. An analytical model for iodine SCC has been developed which agrees reasonably well with the test results

  10. Early implementation of SiC cladding fuel performance models in BISON

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-18

    SiC-based ceramic matrix composites (CMCs) [5–8] are being developed and evaluated internationally as potential LWR cladding options. These development activities include interests within both the DOE-NE LWR Sustainability (LWRS) Program and the DOE-NE Advanced Fuels Campaign. The LWRS Program considers SiC ceramic matrix composites (CMCs) as offering potentially revolutionary gains as a cladding material, with possible benefits including more efficient normal operating conditions and higher safety margins under accident conditions [9]. Within the Advanced Fuels Campaign, SiC-based composites are a candidate ATF cladding material that could achieve several goals, such as reducing the rates of heat and hydrogen generation due to lower cladding oxidation rates in HT steam [10]. This work focuses on the application of SiC cladding as an ATF cladding material in PWRs, but these work efforts also support the general development and assessment of SiC as an LWR cladding material in a much broader sense.

  11. Laser Cladding of Ultra-Thin Nickel-Based Superalloy Sheets.

    Science.gov (United States)

    Gabriel, Tobias; Rommel, Daniel; Scherm, Florian; Gorywoda, Marek; Glatzel, Uwe

    2017-03-10

    Laser cladding is a well-established process to apply coatings on metals. However, on substrates considerably thinner than 1 mm it is only rarely described in the literature. In this work 200 µm thin sheets of nickel-based superalloy 718 are coated with a powder of a cobalt-based alloy, Co-28Cr-9W-1.5Si, by laser cladding. The process window is very narrow, therefore, a precisely controlled Yb fiber laser was used. To minimize the input of energy into the substrate, lines were deposited by setting single overlapping points. In a design of experiments (DoE) study, the process parameters of laser power, laser spot area, step size, exposure time, and solidification time were varied and optimized by examining the clad width, weld penetration, and alloying depth. The microstructure of the samples was investigated by optical microscope (OM) and scanning electron microscopy (SEM), combined with electron backscatter diffraction (EBSD) and energy dispersive X-ray spectroscopy (EDX). Similarly to laser cladding of thicker substrates, the laser power shows the highest influence on the resulting clad. With a higher laser power, the clad width and alloying depth increase, and with a larger laser spot area the weld penetration decreases. If the process parameters are controlled precisely, laser cladding of such thin sheets is manageable.

  12. Examination of Zircaloy-clad spent fuel after extended pool storage

    International Nuclear Information System (INIS)

    Bradley, E.R.; Bailey, W.J.; Johnson, A.B. Jr.; Lowry, L.M.

    1981-09-01

    This report presents the results from metallurgical examinations of Zircaloy-clad fuel rods from two bundles (0551 and 0074) of Shippingport PWR Core 1 blanket fuel after extended water storage. Both bundles were exposed to water in the reactor from late 1957 until discharge. The estimated average burnups were 346 GJ/kgU (4000 MWd/MTU) for bundle 0551 and 1550 GJ/kgU (18,000 MWd/MTU) for bundle 0074. Fuel rods from bundle 0551 were stored in deionized water for nearly 21 yr prior to examination in 1980, representing the world's oldest pool-stored Zircaloy-clad fuel. Bundle 0074 has been stored in deionized water since reactor discharge in 1964. Data from the current metallurgical examinations enable a direct assessment of extended pool storage effects because the metallurgical condition of similar fuel rods was investigated and documented soon after reactor discharge. Data from current and past examinations were compared, and no significant degradation of the Zircaloy cladding was indicated after almost 21 yr in water storage. The cladding dimensions and mechanical properties, fission gas release, hydrogen contents of the cladding, and external oxide film thicknesses that were measured during the current examinations were all within the range of measurements made on fuel bundles soon after reactor discharge. The appearance of the external surfaces and the microstructures of the fuel and cladding were also similar to those reported previously. In addition, no evidence of accelerated corrosion or hydride redistribution in the cladding was observed

  13. Analysis of pellet cladding mechanical interaction margins in PWR fuel under power ramp condition

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jong Sung; Lee, Jin Seok; Kim, Hyeong Koo; Chung, Jing On [Korea Nuclear Fuel, Daejeon (Korea, Republic of); Mitchell, David; Aleshin, Yuriy [Westinghouse Electric Company, South Carolina (Colombia)

    2008-10-15

    Small flaws in PWR and BWR fuel such as a missing pellet surface (MPS), pellet fragmentation and cladding defects, play an important role during conditions when there is pellet-cladding mechanical interaction (PCMI) under power ramp conditions. In order to confirm the margin against PWR fuel failure by PCMI with the pellet and cladding imperfections, first the separating hoop stress for cladding failure is determined using the ANSYS FEA model for failed and intact fuel rods under various power ramp conditions. Second, the idealized rod power history is developed to achieve the maximum uniform cladding stress during the normal operational transients. Finally, the stress multiplication factor is calculated with the FEA model to deal with the effect of various shapes and sizes of MPS, pellet fragmentation and cladding defects on the PCMI behavior. Then the stress multiplication factor with pellet imperfections and cladding defects allowed by manufacturing tolerances is applied to the fuel performance analysis code results using the idealized power history to confirm margin to PCMI under power ramp condition.

  14. Deep surface rolling for fatigue life enhancement of laser clad aircraft aluminium alloy

    Science.gov (United States)

    Zhuang, W.; Liu, Q.; Djugum, R.; Sharp, P. K.; Paradowska, A.

    2014-11-01

    Deep surface rolling can introduce deep compressive residual stresses into the surface of aircraft metallic structure to extend its fatigue life. To develop cost-effective aircraft structural repair technologies such as laser cladding, deep surface rolling was considered as an advanced post-repair surface enhancement technology. In this study, aluminium alloy 7075-T651 specimens with a blend-out region were first repaired using laser cladding technology. The surface of the laser cladding region was then treated by deep surface rolling. Fatigue testing was subsequently conducted for the laser clad, deep surface rolled and post-heat treated laser clad specimens. It was found that deep surface rolling can significantly improve the fatigue life in comparison with the laser clad baseline repair. In addition, three dimensional residual stresses were measured using neutron diffraction techniques. The results demonstrate that beneficial compressive residual stresses induced by deep surface rolling can reach considerable depths (more than 1.0 mm) below the laser clad surface.

  15. Management of NPP severe accident by prevention of clad-softening

    International Nuclear Information System (INIS)

    Saxena, Anil Kumar; Limaye, Sanjay Prabhakar; Bera, Subrata; Deo, Anuj Kumar

    2015-01-01

    Specified Emergency Core Cooling System (ECCS) flow rate is testimony of clad reaching to temperature lower than its softening temperature during loss of coolant accident (LOCA) in nuclear reactors. Coolant channel(s) of nuclear reactors with vertical fuel-assemblies e. g. LWRs gets voided in a short time as a result of double ended guillotine rupture in coolant pipeline. There is rapid and almost steep rise in clad temperature due to stored energy and decay heat if ECCS flow rate is less than a specified value. A computer program, based on moving mesh methodology, is developed to calculate rewetting velocity. The program is validated using experimental data. Numerical equations are solved by marching technique. The paper will bring out the fact that if coolant flow is less than a specified value the wet front will not reach the top of the clad. This will result some unrewetted clad portion. As the heating of this unrewetted clad is continued it may result softening of clad. If it happens in many channels the integrity of clad as a whole will be lost. There will be high probability that severe accident will take place. The paper presents a method to prevent softening and thus to ensure accident free operation of nuclear reactor. (author)

  16. Performance of IN-706 and PE-16 cladding in mixed-oxide fuel pins

    International Nuclear Information System (INIS)

    Makenas, B.J.; Lawrence, L.A.; Jensen, B.W.

    1982-05-01

    Iron-nickel base, precipitation-strengthened alloys, IN-706 and PE-16, advanced alloy cladding considered for breeder reactor applications, were irradiated in mixed-oxide fuel pins in the HEDL-P-60 subassembly in EBR-II. Initial selection of candidate advanced alloys was done using only nonfueled materials test results. However, to establish the performance characteristics of the candidate cladding alloys, i.e., dimensional stability and structural integrity under conditions of high neutron flux, elevated temperature, and applied stress, it was necessary to irradiate fuel pins under typical operating conditions. Fuel pins were clad with solution treated IN-706 and PE-16 and irradiated to peak fluences of 6.1 x 10 22 n/cm 2 (E > .1 MeV) and 8.8 x 10 22 n/cm 2 (E > .1 MeV) respectively. Fabrication and operating parameters for the fuel pins with the advanced cladding alloy candidates are summarized. Irradiation of HEDL-P-60 was interrupted with the breach of a pin with IN-706 cladding at 5.1 at % and the test was terminated with cladding breach in a pin with PE-16 cladding at 7.6 at %

  17. Allowable peak heat-up cladding temperature for spent fuel integrity during interim-dry storage

    Directory of Open Access Journals (Sweden)

    Ki-Nam Jang

    2017-12-01

    Full Text Available To investigate allowable peak cladding temperature and hoop stress for maintenance of cladding integrity during interim-dry storage and subsequent transport, zirconium alloy cladding tubes were hydrogen-charged to generate 250 ppm and 500 ppm hydrogen contents, simulating spent nuclear fuel degradation. The hydrogen-charged specimens were heated to four peak temperatures of 250°C, 300°C, 350°C, and 400°C, and then cooled to room temperature at cooling rates of 0.3 °C/min under three tensile hoop stresses of 80 MPa, 100 MPa, and 120 MPa. The cool-down specimens showed that high peak heat-up temperature led to lower hydrogen content and that larger tensile hoop stress generated larger radial hydride fraction and consequently lower plastic elongation. Based on these out-of-pile cladding tube test results only, it may be said that peak cladding temperature should be limited to a level < 250°C, regardless of the cladding hoop stress, to ensure cladding integrity during interim-dry storage and subsequent transport.

  18. Transparent conducting oxide clad limited area epitaxy semipolar III-nitride laser diodes

    KAUST Repository

    Myzaferi, A.

    2016-08-11

    The bottom cladding design of semipolar III-nitride laser diodes is limited by stress relaxation via misfit dislocations that form via the glide of pre-existing threading dislocations (TDs), whereas the top cladding is limited by the growth time and temperature of the p-type layers. These design limitations have individually been addressed by using limited area epitaxy (LAE) to block TD glide in n-type AlGaN bottom cladding layers and by using transparent conducting oxide (TCO) top cladding layers to reduce the growth time and temperature of the p-type layers. In addition, a TCO-based top cladding should have significantly lower resistivity than a conventional p-type (Al)GaN top cladding. In this work, LAE and indium-tin-oxide cladding layers are used simultaneously in a (202⎯⎯1) III-nitride laser structure. Lasing was achieved at 446 nm with a threshold current density of 8.5 kA/cm2 and a threshold voltage of 8.4 V.

  19. Laser Cladding of Ultra-Thin Nickel-Based Superalloy Sheets

    Directory of Open Access Journals (Sweden)

    Tobias Gabriel

    2017-03-01

    Full Text Available Laser cladding is a well-established process to apply coatings on metals. However, on substrates considerably thinner than 1 mm it is only rarely described in the literature. In this work 200 µm thin sheets of nickel-based superalloy 718 are coated with a powder of a cobalt-based alloy, Co–28Cr–9W–1.5Si, by laser cladding. The process window is very narrow, therefore, a precisely controlled Yb fiber laser was used. To minimize the input of energy into the substrate, lines were deposited by setting single overlapping points. In a design of experiments (DoE study, the process parameters of laser power, laser spot area, step size, exposure time, and solidification time were varied and optimized by examining the clad width, weld penetration, and alloying depth. The microstructure of the samples was investigated by optical microscope (OM and scanning electron microscopy (SEM, combined with electron backscatter diffraction (EBSD and energy dispersive X-ray spectroscopy (EDX. Similarly to laser cladding of thicker substrates, the laser power shows the highest influence on the resulting clad. With a higher laser power, the clad width and alloying depth increase, and with a larger laser spot area the weld penetration decreases. If the process parameters are controlled precisely, laser cladding of such thin sheets is manageable.

  20. Order of magnitude cost appraisal for selected aspects of clad waste management

    Energy Technology Data Exchange (ETDEWEB)

    Zima, G.E.

    1977-02-01

    A simple formula, incorporating the fixed charge rate principle, is applied to a clad waste management exercise involving densification, canning, transportation and salt disposal. For the purpose of comparison with the bulk of published nuclear waste management costs, cost and fixed charge rate data appropriate to roughly the period 1970 to 1973 are used. Within the context of this order of magnitude appraisal, densification displays some cost advantage, reflected principally in the transportation cost. Dependent on the degree of densification, above a certain clad waste generation rate the transportation savings may be expected to exceed reasonable densification costs. There is no explicit consideration of the decontamination step in this appraisal. The limited accessibility of surface effect decontamination to internal transuranic and activation product contamination suggests a quite small influence of decontamination on the transportation and disposal costs. Decontamination may, however, have a significant effect on the ease of establishing a practicable containment envelope of high reliability throughout the clad waste history. A brief comparison is made of clad waste management costs with the major costs of the nuclear power economy. This comparison implies a virtually unlimited technical latitude for clad waste treatment in accommodating the public safety without significant perturbation of nuclear power costs. It is submitted that clad waste management optimization will be under the primal constraint of maximizing thelong term public safety, with economic analysis useful only as a discriminator between waste handling alternatives of sensibly equivalent containment qualities. Some areas of clad waste treatment meriting increased attention are noted.

  1. Production of brown algae pyrolysis oils for liquid biofuels depending on the chemical pretreatment methods

    International Nuclear Information System (INIS)

    Choi, Joonhyuk; Choi, Jae-Wook; Suh, Dong Jin; Ha, Jeong-Myeong; Hwang, Ji Won; Jung, Hyun Wook; Lee, Kwan-Young; Woo, Hee-Chul

    2014-01-01

    Highlights: • Pyrolysis of Saccharina japonica, brown algae to produce hydrocarbons. • Sulfuric acid pretreatment of macroalgae to remove inorganic elements. • CaCl 2 treatment of macroalgae to remove valuable fucoidan. • Sulfuric acid pretreatment suppressed the formation of large biochar chunks. • The pretreatment methods allowed the continuous operation of pyrolysis. - Abstract: Based on observations of rapidly growing biochar in fluidization beds, kelp (Saccharina japonica), a species of brown algae, was pretreated for the efficient operation of pyrolysis processes to produce pyrolysis oils. The removal of catalytically active inorganic minerals and the softening of polymeric seaweed structures were performed by means of chemical treatments, including a CaCl 2 treatment to isolate valuable and sticky fucoidan and a sulfuric acid treatment to remove catalytically active minerals. The sulfuric acid pretreatment significantly reduced the inorganic elements but did not significantly affect the properties of the pyrolysis oil compared to the non-treated kelp pyrolysis oil. Whereas the non-treated kelp produced significantly large chunks of biochar, which hindered the continuous operation of pyrolysis, the kelp treated with sulfuric acid did not produce aggregated large particles of biochar, thereby offering a means of developing reliable continuous pyrolysis processes

  2. Fate of antibiotic resistance bacteria and genes during enhanced anaerobic digestion of sewage sludge by microwave pretreatment.

    Science.gov (United States)

    Tong, Juan; Liu, Jibao; Zheng, Xiang; Zhang, Junya; Ni, Xiaotang; Chen, Meixue; Wei, Yuansong

    2016-10-01

    The fate of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) were investigated during the sludge anaerobic digestion (AD) with microwave-acid (MW-H), microwave (MW) and microwave-H2O2-alkaline (MW-H2O2) pretreatments. Results showed that combined MW pretreatment especially for the MW-H pretreatment could efficiently reduce the ARB concentration, and most ARG concentrations tended to attenuate during the pretreatment. The subsequent AD showed evident removal of the ARB, but most ARGs were enriched after AD. Only the concentration of tetX kept continuous declination during the whole sludge treatment. The total ARGs concentration showed significant correlation with 16S rRNA during the pretreatment and AD. Compared with unpretreated sludge, the AD of MW and MW-H2O2 pretreated sludge presented slightly better ARB and ARGs reduction efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Tank Focus Area Pretreatment Program. FY 1995 Program Management Plan

    International Nuclear Information System (INIS)

    Morrison, M.I.; McGinnis, C.P.; Wilkenson, W.T.; Hunt, R.D.

    1995-02-01

    This program management plan (PMP) describes the FY 1995 project plans for the Pretreatment Program of the Tank Focus Area. The Tank Focus Area is one of five areas of environmental concerns originally identified by the Deputy Assistant Secretary for Technology Development (EM-50). Projects in the Tank Focus Area relate to the remediation of liquid waste stored in underground storage tanks at various US Department of Energy sites. The Pretreatment Program is an organizational unit performing work within the Tank Focus Area. The function of the Pretreatment Program is to develop, test, evaluate, and demonstrate new technologies, with emphasis on separations. The 11 Pretreatment Program projects for FY 1995 are (1) Cesium Extraction Testing, (2) Comprehensive Supernate Treatment, (3) Hot Cell Studies, (4) Cesium Removal Demonstration, (5) Out-of-Tank Evaporator Demonstration, (6) Crossflow Filtration, (7) Technical Interchange with CEA, (8) TRUEX Applications, (9) NAC/NAG Process Studies (conducted at Oak Ridge National Laboratory), (10) NAC/NAG Process and Waste Form Studies (conducted at Florida International University), and (11) Program Management. Section 2 of this PMP contains a separate subsection for each FY 1995 project. A brief description of the project, a schedule of major milestones, and a breakdown of costs are provided for each project. The PMP also contains sections that describe the project controls that are in place. Quality assurance, document control, the project management system, and the management organization are described in these sections

  4. The Use of Clay-Polymer Nanocomposites in Wastewater Pretreatment

    Science.gov (United States)

    Rytwo, Giora

    2012-01-01

    Some agricultural effluents are unsuitable for discharge into standard sewage-treatment plants: their pretreatment is necessary to avoid clogging of the filtering devices by colloidal matter. The colloidal stability of the effluents is mainly due to mutual repulsive forces that keep charged particles in suspension. Pretreatment processes are based on two separate stages: (a) neutralization of the charges (“coagulation”) and (b) bridging between several small particles to form larger aggregates that sink, leaving clarified effluent (“flocculation”). The consequent destabilization of the colloidal suspension lowers total suspended solids (TSSs), turbidity, and other environmental quality parameters, making the treatments that follow more efficient. Clay-based materials have been widely used for effluent pretreatment and pollutant removal. This study presents the use of nanocomposites, comprised of an anchoring particle and a polymer, as “coagoflocculants” for the efficient and rapid reduction of TSS and turbidity in wastewater with a high organic load. The use of such particles combines the advantages of coagulant and flocculant by neutralizing the charge of the suspended particles while bridging between them and anchoring them to a denser particle (the clay mineral), enhancing their precipitation. Very rapid and efficient pretreatment is achieved in one single treatment step. PMID:22454607

  5. The Use of Clay-Polymer Nanocomposites in Wastewater Pretreatment

    Directory of Open Access Journals (Sweden)

    Giora Rytwo

    2012-01-01

    Full Text Available Some agricultural effluents are unsuitable for discharge into standard sewage-treatment plants: their pretreatment is necessary to avoid clogging of the filtering devices by colloidal matter. The colloidal stability of the effluents is mainly due to mutual repulsive forces that keep charged particles in suspension. Pretreatment processes are based on two separate stages: (a neutralization of the charges (“coagulation” and (b bridging between several small particles to form larger aggregates that sink, leaving clarified effluent (“flocculation”. The consequent destabilization of the colloidal suspension lowers total suspended solids (TSSs, turbidity, and other environmental quality parameters, making the treatments that follow more efficient. Clay-based materials have been widely used for effluent pretreatment and pollutant removal. This study presents the use of nanocomposites, comprised of an anchoring particle and a polymer, as “coagoflocculants” for the efficient and rapid reduction of TSS and turbidity in wastewater with a high organic load. The use of such particles combines the advantages of coagulant and flocculant by neutralizing the charge of the suspended particles while bridging between them and anchoring them to a denser particle (the clay mineral, enhancing their precipitation. Very rapid and efficient pretreatment is achieved in one single treatment step.

  6. The role of cladding material for performance of LWR control assemblies

    International Nuclear Information System (INIS)

    Dewes, P.; Roppelt, A.

    2000-01-01

    The lifetime of control assemblies in LWRs can be limited presently by mechanical failure of the absorber cladding. The major cause of failure is mechanical interaction of the absorber with the cladding due to irradiation induced dimensional changes such as absorber swelling and cladding creep, resulting in cracking of the clad. Such failures occurred in both BWRs and PWRs. Experience and in-reactor tests revealed that cracking can be avoided principally by two ways: First, if strain rates and hence, stresses in the cladding are kept low (well below the yield strength), significant strains can be tolerated. This is the case for the cladding of PWR control assemblies with slowly swelling Ag-In-Cd absorber. Recent examinations of highly exposed PWR control assemblies confirmed the design correlation up to the presently used strain limit. Second, in such cases where strongly swelling absorber material like boron carbide is still preferred, materials which are resistant against irradiation assisted stress corrosion cracking (IASCC) can be used. The influence of material composition and condition on IASCC was studied in-reactor using tubular samples of various stainless steels and Ni-base alloys stressed by swelling mandrels. In several programme steps high purity materials with special features had been identified as resistant to IASCC. Another process of cladding damage which may occur in PWRs is wear caused by friction of the control rods in the surrounding guide structure. For replacement control assemblies this problem is solved by coating of the cladding. There exists meanwhile excellent experience of up to 18 operation cycles with coated claddings. (author)

  7. Laser performance and modeling of RE3+:YAG double-clad crystalline fiber waveguides

    Science.gov (United States)

    Li, Da; Lee, Huai-Chuan; Meissner, Stephanie K.; Meissner, Helmuth E.

    2018-02-01

    We report on laser performance of ceramic Yb:YAG and single crystal Tm:YAG double-clad crystalline fiber waveguide (CFW) lasers towards the goal of demonstrating the design and manufacturing strategy of scaling to high output power. The laser component is a double-clad CFW, with RE3+:YAG (RE = Yb, Tm respectively) core, un-doped YAG inner cladding, and ceramic spinel or sapphire outer cladding. Laser performance of the CFW has been demonstrated with 53.6% slope efficiency and 27.5-W stable output power at 1030-nm for Yb:YAG CFW, and 31.6% slope efficiency and 46.7-W stable output power at 2019-nm for Tm:YAG CFW, respectively. Adhesive-Free Bond (AFB®) technology enables a designable refractive index difference between core and inner cladding, and designable core and inner cladding sizes, which are essential for single transverse mode CFW propagation. To guide further development of CFW designs, we present thermal modeling, power scaling and design of single transverse mode operation of double-clad CFWs and redefine the single-mode operation criterion for the double-clad structure design. The power scaling modeling of double-clad CFW shows that in order to achieve the maximum possible output power limited by the physical properties, including diode brightness, thermal lens effect, and simulated Brillion scattering, the length of waveguide is in the range of 0.5 2 meters. The length of an individual CFW is limited by single crystal growth and doping uniformity to about 100 to 200 mm lengths, and also by availability of starting crystals and manufacturing complexity. To overcome the limitation of CFW lengths, end-to-end proximity-coupling of CFWs is introduced.

  8. Development of Diffusion barrier coatings and Deposition Technologies for Mitigating Fuel Cladding Chemical Interactions (FCCI)

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar; Allen, Todd; Cole, James

    2013-02-27

    The goal of this project is to develop diffusion barrier coatings on the inner cladding surface to mitigate fuel-cladding chemical interaction (FCCI). FCCI occurs due to thermal and radiation enhanced inter-diffusion between the cladding and fuel materials, and can have the detrimental effects of reducing the effective cladding wall thickness and lowering the melting points of the fuel and cladding. The research is aimed at the Advanced Burner Reactor (ABR), a sodium-cooled fast reactor, in which higher burn-ups will exacerbate the FCCI problem. This project will study both diffusion barrier coating materials and deposition technologies. Researchers will investigate pure vanadium, zirconium, and titanium metals, along with their respective oxides, on substrates of HT-9, T91, and oxide dispersion-strengthened (ODS) steels; these materials are leading candidates for ABR fuel cladding. To test the efficacy of the coating materials, the research team will perform high-temperature diffusion couple studies using both a prototypic metallic uranium fuel and a surrogate the rare-earth element lanthanum. Ion irradiation experiments will test the stability of the coating and the coating-cladding interface. A critical technological challenge is the ability to deposit uniform coatings on the inner surface of cladding. The team will develop a promising non-line-of-sight approach that uses nanofluids . Recent research has shown the feasibility of this simple yet novel approach to deposit coatings on test flats and inside small sections of claddings. Two approaches will be investigated: 1) modified electrophoretic deposition (MEPD) and 2) boiling nanofluids. The coatings will be evaluated in the as-deposited condition and after sintering.

  9. Study of pellet clad interaction defects in Dresden-3 fuel rods

    International Nuclear Information System (INIS)

    Pasupathi, V.; Perrin, J.S.

    1979-01-01

    During Cycle-3 operation of Dresden-3, fuel rod failures occurred following a transient power increase. Ten fuel rods from five of the leaking fuel assemblies were examined at Battelle's Columbus Laboratory and General Electric-Vallecitos Nuclear Center. Examinations consisted of nondestructive and destructive methods including metallography and scanning electron microscopy (SEM). Results showed the cause of fuel rod failure to be pellet clad interaction involving stress corrosion cracking. Results of SEM studies of the cladding crack surfaces and deposits on clad inner surfaces were in agreement with those reported by other investigators

  10. Swelling behavior of 20% CW 316 Stainless Steel cladding irradiated with and without adjacent fuel

    International Nuclear Information System (INIS)

    Makenas, B.J.; Bates, J.F.; Jost, J.W.

    1982-06-01

    Swelling behavior has been evaluated for irradiated 20% CW 316 Stainless Steel used as cladding material for mixed-oxide fuel pins in EBR-II. This behavior has been compared statistically with the behavior of a large number of specimens which were irradiated without adjacent fuel in the same reactor. In spite of the chemical environment and stresses experienced by fueled cladding, the fueled and nonfueled cladding appear to behave in a similar manner although some divergence was noted for one of the cases studied

  11. Effects of commercial cladding on the fracture behavior of pressure vessel steel plates

    International Nuclear Information System (INIS)

    Iskander, S.K.; Alexander, D.J.; Bolt, S.E.; Cook, K.V.; Corwin, W.R.; Oland, B.C.; Nanstad, R.K.; Robinson, G.C.

    1988-01-01

    The objective of this program is to determine the effect, if any, of stainless steel cladding upon the propagation of small surface cracks subjected to stress states similar to those produced by thermal shock conditions. Preliminary results from testing at temperature 10 deg. C and 60 deg. C below NDT have shown that (1) a tough surface layer (cladding and/or HAZ) has arrested running flaws under conditions where unclad plates have ruptured, and (2) the residual load-bearing capacity of clad plates with large subclad flaws significantly exceeded that of an unclad plate. (author)

  12. Finite Element Modeling for Wind Response of Aluminum Wall Cladding in Tall Building

    Directory of Open Access Journals (Sweden)

    Okafor Chinedum Vincent

    2017-09-01

    Full Text Available This paper analyzed wind loading responses of Aluminum Wall cladding panels in Tall Building using Ikeja Lagos State Nigeria. The wind loads were calculated according to Standard and Specification From BS6399-2:1997 Using the wind speed data of Lagos state Nigeria and finite element analysis, we predicted the responses of these Aluminum wall Cladding panels to the design wind loads being calculated. The result of the calculation from BS6399-2:1997 showed that the aluminum cladding panels located on the facade upwind was subject to positive pressure, which increases with height. Also, the cladding panels located on the leeward, as well as sidewalls, were subjected to negative pressure, which tended to be high at the top and bottom corners due to flow separation. From the result of the modeling and analysis, the researcher found out that stresses on the aluminum wall cladding panels were generally below the material yield point, showing that the high wind speed were not the reason for the collapse of aluminum cladding panels in the locality being considered. Instead, the reality lies on one or more issue on the materials construction and placement as discussed.This paper analyzed wind loading responses of Aluminum Wall cladding panels in Tall Building using Ikeja Lagos State Nigeria. The wind loads were calculated according to Standard and Specification From BS6399-2:1997 Using the wind speed data of Lagos state Nigeria and finite element analysis, we predicted the responses of these Aluminum wall Cladding panels to the design wind loads being calculated. The result of the calculation from BS6399-2:1997 showed that the aluminum cladding panels located on the facade upwind was subject to positive pressure, which increases with height. Also, the cladding panels located on the leeward, as well as sidewalls, were subjected to negative pressure, which tended to be high at the top and bottom corners due to flow separation. From the result of the

  13. Effects of commercial cladding on the fracture behavior of pressure vessel steel plates

    International Nuclear Information System (INIS)

    Iskander, S.K.; Alexander, D.J.; Bolt, S.E.; Cook, K.V.; Corwin, W.R.; Oland, B.C.; Nanstad, R.K.; Robinson, G.C.

    1987-01-01

    The objective of this program is to determine the effect, if any, of stainless steel cladding upon the propagation of small surface cracks subjected to stress states similar to those produced by thermal shock conditions. Preliminary results from testing at temperatures 10 0 and 60 0 C below NDT have shown that (1) a tough surface layer (cladding and/or HAZ) has arrested running flaws under conditions where unclad plates have ruptured, and (2) the residual load-bearing capacity of clad plates with large subclad flaws significantly exceeded that of an unclad plate

  14. Observations of in-reactor endurance and rupture life for fueled and unfueled FTR cladding

    International Nuclear Information System (INIS)

    Lovell, A.J.; Christensen, B.Y.; Chin, B.A.

    1979-01-01

    Reactor component endurance limits are important to nuclear experimenters and operators. This paper investigates endurance limits of 316 CW fuel pin cladding. The objective of this paper is to compare and analyze two different sets of FTR fuel pin cladding data. The first data set is from unfueled pressurized cladding irradiated in the Experimental Breeder Reactor No. II (EBR-II). This data set was generated in an assembly in which the temperature was monitored and controlled. The second data set contains observations of breached and unbreached EBR-II test fuel pins covering a large range of temperature, power and burnup conditions

  15. An integrated approach to selecting materials for fuel cladding in advanced high-temperature reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rangacharyulu, C., E-mail: chary.r@usask.ca [Univ. of Saskatchewan, Saskatoon, SK (Canada); Guzonas, D.A.; Pencer, J.; Nava-Dominguez, A.; Leung, L.K.H. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    An integrated approach has been developed for selection of fuel cladding materials for advanced high-temperature reactors. Reactor physics, thermalhydraulic and material analyses are being integrated in a systematic study comparing various candidate fuel-cladding alloys. The analyses established the axial and radial neutron fluxes, power distributions, axial and radial temperature distributions, rates of defect formation and helium production using AECL analytical toolsets and experimentally measured corrosion rates to optimize the material composition for fuel cladding. The project has just been initiated at University of Saskatchewan. Some preliminary results of the analyses are presented together with the path forward for the project. (author)

  16. Impacts of operating parameters on oxidation-reduction potential and pretreatment efficacy in the pretreatment of printing and dyeing wastewater by Fenton process

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huifang, E-mail: whfkhl@sina.com [College of Environment, Jiangsu Key Laboratory of Industrial Water-Conservation and Emission Reduction, Nanjing University of Technology, Nanjing 210009 (China); Wang, Shihe [Department of Municipal Engineering, Southeast University, Nanjing 210096 (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer A real printing and dyeing wastewater was pretreated by Fenton process. Black-Right-Pointing-Pointer We investigated impacts of operating parameters on ORP and pretreatment efficacy. Black-Right-Pointing-Pointer Relationship among ORP, operating parameters and treatment efficacy was established. Black-Right-Pointing-Pointer Pretreatment efficacy was in proportion to the exponent of temperature reciprocal. Black-Right-Pointing-Pointer We investigated kinetics of color and COD removal and BOD{sub 5}/COD ratio in solution. - Abstract: An experiment was conducted in a batch reactor for a real printing and dyeing wastewater pretreatment using Fenton process in this study. The results showed that original pH, hydrogen peroxide concentration and ferrous sulfate concentration affected ORP value and pretreatment efficacy greatly. Under experimental conditions, the optimal original pH was 6.61, and the optimal hydrogen peroxide and ferrous sulfate concentrations were 1.50 and 0.75 g L{sup -1}, respectively. The relationship among ORP, original pH, hydrogen peroxide concentration, ferrous sulfate concentration, and color (COD or BOD{sub 5}/COD) was established, which would be instructive in on-line monitoring and control of Fenton process using ORP. In addition, the effects of wastewater temperature and oxidation time on pretreatment efficacy were also investigated. With an increase of temperature, color and COD removal efficiencies and BOD{sub 5}/COD ratio increased, and they were in proportion to the exponent of temperature reciprocal. Similarly, color and COD removal efficiencies increased with increasing oxidation time, and both color and COD removal obeyed the first-order kinetics. The BOD{sub 5}/COD ratio could be expressed by a second-degree polynomial with respect to oxidation time, and the best biodegradability of wastewater was present at the oxidation time of 6.10 h.

  17. The Effect of Pretreatments on Surfactin Production From Potato Process Effluent by Bacillus Subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David Neal; Fox, Sandra Lynn; Bala, Greg Alan

    2000-05-01

    Pretreatment of low-solids (LS) potato process effluent was tested for potential to increase surfactin yield. Pretreatments included heat, removal of starch particulates, and acid hydrolysis. Elimination of contaminating vegetative cells was necessary for surfactin production. After autoclaving, 0.40 g/L of surfactin was produced from the effluent in 72 h, versus 0.24 g/L in the purified potato starch control. However, surfactin yields per carbon consumed were 76% lower from process effluent. Removal of starch particulates had little effect on the culture. Acid hydrolysis decreased growth and surfactant production, except 0.5 wt% acid, which increased the yield by 25% over untreated effluent.

  18. The effect of pretreatments on surfactin production from potato process effluent by Bacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    D. N. Thompson; S. L. Fox; G. A. Bala

    2000-05-07

    Pretreatment of low-solids (LS) potato process effluent was tested for potential to increase surfactin yield. Pretreatments included heat, removal of starch particulates, and acid hydrolysis. Elimination of contaminating vegetative cells was necessary for surfactin production. After autoclaving, 0.40 g/L of surfactin was produced from the effluent in 72 h, versus 0.24 g/L in the purified potato starch control. However, surfactin yields per carbon consumed were 76% lower from process effluent. Removal of starch particulates had little effect on the culture. Acid hydrolysis decreased growth and surfactant production, except 0.5 wt% acid, which increased the yield by 25% over untreated effluent.

  19. Synergistic benefits of ionic liquid and alkaline pretreatments of poplar wood. Part 1: effect of integrated pretreatment on enzymatic hydrolysis.

    Science.gov (United States)

    Yuan, Tong-Qi; Wang, Wei; Xu, Feng; Sun, Run-Cang

    2013-09-01

    An environmentally friendly pretreatment process was developed to fractionate hemicelluloses and lignin from poplar wood by ionic liquid (IL) pretreatment coupled with mild alkaline extraction. Hemicellulosic and lignin fractions were obtained in high yields, amounting to 59.3% and 74.4%, respectively, which can served as raw materials for production of value-added products. The yield of glucose for the integrated pretreated poplar wood was 99.2%, while it was just 19.2% for the untreated material. The synergistic benefits of the removal of lignin and hemicelluloses, the increase of the cellulose surface area, and the conversion of cellulose fibers from the cellulose I to the cellulose II crystal phase resulted in the high glucose yield for the integrated pretreated substrate. Therefore, the IL based biorefining strategy proposed can integrate biofuels production into a biorefinery scheme in which the major components of poplar wood can be converted into value-added products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. The Effect of Ionic Liquid Pretreatment on the Bioconversion of Tomato Processing Waste to Fermentable Sugars and Biogas.

    Science.gov (United States)

    Allison, Brittany J; Cádiz, Juan Canales; Karuna, Nardrapee; Jeoh, Tina; Simmons, Christopher W

    2016-08-01

    Tomato pomace is an abundant lignocellulosic waste stream from industrial tomato processing and therefore a potential feedstock for production of renewable biofuels. However, little research has been conducted to determine if pretreatment can enhance release of fermentable sugars from tomato pomace. Ionic liquids (ILs) are an emerging pretreatment technology for lignocellulosic biomass to increase enzymatic digestibility and biofuel yield while utilizing recyclable chemicals with low toxicity. In this study, pretreatment of tomato pomace with the ionic liquid 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) was investigated. Changes in pomace enzymatic digestibility were affected by pretreatment time and temperature. Certain pretreatment conditions significantly improved reducing sugar yield and hydrolysis time compared to untreated pomace. Compositional analyses suggested that pretreatment primarily removed water-soluble compounds and enriched for lignocellulose in pomace, with only subtle changes to the composition of the lignocellulose. While tomato pomace was effectively pretreated with [C2mim][OAc] to improve enzymatic digestibility, as of yet, unknown factors in the pomace caused ionic liquid pretreatment to negatively affect anaerobic digestion of pretreated material. This result, which is unique compared to similar studies on IL pretreatment of grasses and woody biomass, highlights the need for additional research to determine how the unique chemical composition of tomato pomace and other lignocellulosic fruit residues may interact with ionic liquids to generate inhibitors for downstream fermentation to biofuels.

  1. Evolution of the microstructure and tribological performance of Ti–6Al–4V cladding with TiN powder

    International Nuclear Information System (INIS)

    Lin, Yu-Chi; Lin, Yuan-Ching; Chen, Yong-Chwang

    2012-01-01

    Highlights: ► Titanium nitrides (TiNs) powder was successfully clad on Ti–6Al–4V by a gas tungsten arc welding (GTAW) cladding process. ► Solidification process of the TiN cladding layer was investigated and discussed. ► Microhardness distribution and wear mechanism of the TiN clad layer were discussed. ► Wear performance of the TiN clad layer is higher than that of the Ti–6Al–4V substrate tenfold. -- Abstract: Titanium nitrides (TiNs) powder was used as a material to resist wear; it was then clad onto a Ti–6Al–4V substrate by gas tungsten arc welding (GTAW). During the cladding process, the TiN x reinforcing phase was formed in situ within the clad layer. Since the TiN x reinforcing phase exists within the clad layer, the hardness of the clad layer is double that of the substrate. Wear test results reveal that the wear resistance of TiN clad layer is up to ten times more resistant than the Ti–6Al–4V substrate. From the worn surface analysis, the primary wear mechanism of the Ti–6Al–4V specimen exhibited oxidation wear combined with adhesive wear, and the TiN clad layer specimen exhibited abrasive wear. This investigation also discusses the mechanism for forming the clad layer microstructure. During solidification of the clad layer, the motion of the liquid–solid interface caused the oval TiN x phase to cluster, producing a dendritic appearance.

  2. PWR clad ballooning: The effect of circumferential clad temperature variations on the burst strain/burst temperature relationship

    International Nuclear Information System (INIS)

    Barlow, P.

    1983-01-01

    By experiment, it has been shown by other workers that there is a reduction in the creep ductility of Zircaloy 4 in the α+β phase transition region. Results from single rod burst tests also show a reduction in burst strain in the α+β phase region. In this report it is shown theoretically that for single rod burst tests in the presence of circumferential temperature gradients, the temperature dependence of the mean burst strain is not determined by temperature variations in creep ductility, but is governed by the temperature sensitivity of the creep strain rate, which is shown to be a maximum in the α+β phase transition region. To demonstrate this effect, the mean clad strain at burst was calculated for creep straining at different temperature levels in the α, α+β and β phase regions. Cross-pin temperature gradients were applied which produced strain variations around the clad which were greatest in the α+β phase region. The mean strain at burst was determined using a maximum local burst strain (i.e. a creep ductility) which is independent of temperature. By assuming cross-pin temperature gradients which are typical of those observed during burst tests, then the calculated mean burst strain/burst temperature relationship gave good agreement with experiment. The calculations also show that when circumferential temperature differences are present, the calculated mean strain at burst is not sensitive to variations in the magnitude of the assumed creep ductility. This reduces the importance of the assumed burst criterion in the calculations. Hence a temperature independent creep ductility (e.g. 100% local strain) is adequate as a burst criterion for calculations under PWR LOCA conditions. (author)

  3. Tattoo removal.

    Science.gov (United States)

    Adatto, Maurice A; Halachmi, Shlomit; Lapidoth, Moshe

    2011-01-01

    Over 50,000 new tattoos are placed each year in the United States. Studies estimate that 24% of American college students have tattoos and 10% of male American adults have a tattoo. The rising popularity of tattoos has spurred a corresponding increase in tattoo removal. Not all tattoos are placed intentionally or for aesthetic reasons though. Traumatic tattoos due to unintentional penetration of exogenous pigments can also occur, as well as the placement of medical tattoos to mark treatment boundaries, for example in radiation therapy. Protocols for tattoo removal have evolved over history. The first evidence of tattoo removal attempts was found in Egyptian mummies, dated to have lived 4,000 years BC. Ancient Greek writings describe tattoo removal with salt abrasion or with a paste containing cloves of white garlic mixed with Alexandrian cantharidin. With the advent of Q-switched lasers in the late 1960s, the outcomes of tattoo removal changed radically. In addition to their selective absorption by the pigment, the extremely short pulse duration of Q-switched lasers has made them the gold standard for tattoo removal. Copyright © 2011 S. Karger AG, Basel.

  4. Crack resistance curve determination of zircaloy-4 cladding

    Energy Technology Data Exchange (ETDEWEB)

    Bertsch, J.; Alam, A.; Zubler, R

    2009-03-15

    Fracture mechanics properties of fuel claddings are of relevance with respect to fuel rod integrity. The integrity of a fuel rod, in turn, is important for the fuel performance, for the safe handling of fuel rods, for the prevention of leakages and subsequent dissemination of fuel, for the avoidance of unnecessary dose rates, and for safe operation. Different factors can strongly deteriorate the mechanical fuel rod properties: irradiation damage, thermo-mechanical impact, corrosion or hydrogen uptake. To investigate the mechanical properties of fuel rod claddings which are used in Swiss nuclear power plants, PSI has initiated a program for mechanical testing. A major issue was the interaction between specific loading devices and the tested cladding tube, e.g. in the form of bending or friction. Particular for Zircaloy is the hexagonal closed packed structure of the zirconium crystallographic lattice. This structure implies plastic deformation mechanisms with specific, preferred orientations. Further, the manufacturing procedure of Zircaloy claddings induces a specific texture which plays a salient role with respect to the embrittlement by irradiation or integration of hydrogen in the form of hydrides. Both, the induced microstructure as well as the plastic deformation behaviour play a role for the mechanical properties. At PSI, in a first step inactive thin walled Zircaloy tubes and, for comparison reasons, plates were tested. The validity of the mechanical testing of the non standard tube and plate geometries had to be verified. The used Zircaloy-4 cladding tube sections and small plates of the same wall thickness have been notched, fatigue pre-cracked and tensile tested to evaluate the fracture toughness properties at room temperature, 300 {sup o}C and 350 {sup o}C. The crack propagation has been determined optically. The test results of the plates have been further used to validate FEM calculations. For each sample a complete crack resistance (J-R) curve could

  5. Demonstration of fuel resistant to pellet-cladding interaction. Phase I. Final report

    International Nuclear Information System (INIS)

    Rosenbaum, H.S.

    1979-03-01

    This program has as its ultimate objective the demonstration of an advanced fuel design that is resistant to the failure mechanism known as fuel pellet-cladding interaction (PCI). Two fuel concepts are being developed for possible demonstration within this program: (a) Cu-barrier fuel, and (b) Zr-liner fuel. These advanced fuels (known collectively as barrier fuels) have special fuel cladding designed to protect the Zircaloy cladding tube from the harmful effects of localized stress, and reactive fission products during reactor service. This is the final report for PHASE 1 of this program. Support tests have shown that the barrier fuel resists PCI far better than does the conventional Zircaloy-clad fuel. Power ramp tests thus far have shown good PCI resistance for Cu-barrier fuel at burnup > 12 MWd/kg-U and for Zr-liner fuel > 16 MWd/kg-U. The program calls for continued testing to still higher burnup levels in PHASE 2

  6. Microstructure and properties of laser clad coatings studied by orientation imaging microscopy

    NARCIS (Netherlands)

    Ocelik, V.; Furar, I.; De Hosson, J. Th. M.

    2010-01-01

    In this work orientation imaging microscopy (OIM), based on electron backscatter diffraction in scanning electron microscopy, was employed to examine in detail the relationship between laser cladding processing parameters and he properties and the microstructure of single and overlapping laser

  7. Theory of the frictional interaction between nuclear fuel cladding and a cracked ceramic pellet

    International Nuclear Information System (INIS)

    Gittus, J.H.

    1976-02-01

    A summary is presented of the outcome of theoretical work detailed in five publications, reproduced as appendices, which is concerned with the tendency for the cladding tube of nuclear fuel elements to fracture as the result of power cycling or after a sudden upward power excursion. The relationship is shown between the properties of the clad, those of UO 2 pellets, and the tendency of the clad to fail during upward power excursions. The role of interfacial friction is explored and the benefit to be obtained by reducing it is calculated for cases where a soft metal interlayer is present. It is shown that the experimentally-confirmed magnitude of the strain-concentration in the arc of cladding over a radial pellet crack could not arise if there were interfaceons present. Accordingly, these defects, although they do occur in some sliding situations, are thought to be absent from the pellet clas interface in fuel pins. (author)

  8. The Development of Finite Element Model for Pellet-Cladding Mechanical Interaction

    International Nuclear Information System (INIS)

    Lee, Jin-Seok; Yoo, Jong-Sung; Kim, Hyeong-Koo; Kim, Yong-Hwan; Lee, Chong-Chul; Mitchell, D.; Aleshin, Y.

    2007-01-01

    This paper studies a FEA(Finite Element Analysis) model to describe PCMI under a power ramp and pressure loading conditions. From this PCMI model, the stress fields of pellet and cladding are evaluated. In order to compute the stress and strain fields in the cladding which were failed under the power ramp, this model might be extended to include the missing chip shape which occurred in the process of assembling or manufacturing of fuel rod. This missing chip of pellet has an affects on the temperature and the stress of the cladding in the vicinity of the chip edge so that the possibility of fuel failure is increased during the power ramp. The pellet fragmentation can be also accounted because the fuel cracking occurs immediately after reactor start-up and plays an important role in relaxing stresses in pellet but escalating the stress in cladding

  9. The Effect of Rare Earth on the Structure and Performance of Laser Clad Coatings

    Science.gov (United States)

    Bao, Ruiliang; Yu, Huijun; Chen, Chuanzhong; Dong, Qing

    Laser cladding is one kind of advanced surface modification technology and has the abroad prospect in making the wear-resistant coating on metal substrates. However, the application of laser cladding technology does not achieve the people's expectation in the practical production because of many defects such as cracks, pores and so on. The addiction of rare earth can effectively reduce the number of cracks in the clad coating and enhance the coating wear-resistance. In the paper, the effects of rare earth on metallurgical quality, microstructure, phase structure and wear-resistance are analyzed in turns. The preliminary discussion is also carried out on the effect mechanism of rare earth. At last, the development tendency of rare earth in the laser cladding has been briefly elaborated.

  10. Fabrication of versatile cladding light strippers and fiber end-caps with CO2 laser radiation

    Science.gov (United States)

    Steinke, M.; Theeg, T.; Wysmolek, M.; Ottenhues, C.; Pulzer, T.; Neumann, J.; Kracht, D.

    2018-02-01

    We report on novel fabrication schemes of versatile cladding light strippers and end-caps via CO2 laser radiation. We integrated cladding light strippers in SMA-like connectors for reliable and stable fiber-coupling of high-power laser diodes. Moreover, the application of cladding light strippers in typical fiber geometries for high-power fiber lasers was evaluated. In addition, we also developed processes to fuse end-caps to fiber end faces via CO2 laser radiation and inscribe the fibers with cladding light strippers near the end-cap. Corresponding results indicate the great potential of such devices as a monolithic and low-cost alternative to SMA connectors.

  11. Effect of reactor chemistry and operating variables on fuel cladding corrosion in PWRs

    International Nuclear Information System (INIS)

    Park, Moon Ghu; Lee, Sang Hee

    1997-01-01

    As the nuclear industry extends the fuel cycle length, waterside corrosion of zircaloy cladding has become a limiting factor in PWR fuel design. Many plant chemistry factors such as, higher lithium/boron concentration in the primary coolant can influence the corrosion behavior of zircaloy cladding. The chemistry effect can be amplified in higher duty fuel, particularlywhen surface boiling occurs. Local boiling can result in increased crud deposition on fuel cladding which may induce axial power offset anomalies (AOA), recently reported in several PWR units. In this study, the effect of reactor chemistry and operating variables on Zircaloy cladding corrosion is investigated and simulation studies are performed to evaluate the optimal primary chemistry condition for extended cycle operation. (author). 8 refs., 3 tabs., 16 figs

  12. Low-Stress Silicon Cladding for Surface Finishing Large UVOIR Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase I research, ZeCoat Corporation will develop an affordable, low-stress silicon cladding process which is super-polishable for large UVOIR mirrors. The...

  13. The state-of-the-art laser bio-cladding technology

    Science.gov (United States)

    Liu, Jichang; Fuh, J. Y. H.; Lü, L.

    2010-11-01

    The current state and future trend of laser bio-cladding technology are discussed. Laser bio-cladding is used in implants including fabrication of metal scaffolds and bio-coating on the scaffolds. Scaffolds have been fabricated from stainless steel, Co-based alloy or Ti alloy using laser cladding, and new laser-deposited Ti alloys have been developed. Calcium phosphate bioceramic coatings have been deposited on scaffolds with laser to improve the wear resistence and corrosion resistence of implants and to induce bone regeneration. The types of biomaterial devices currently available in the market include replacement heart valve prosthesis, dental implants, hip/knee implants, catheters, pacemakers, oxygenators and vascular grafts. Laser bio-cladding process is attracting more and more attentions of people.

  14. Mechanical behavior of fast reactor fuel pin cladding subjected to simulated overpower transients

    International Nuclear Information System (INIS)

    Johnson, G.D.; Hunter, C.W.

    1978-06-01

    Cladding mechanical property data for analysis and prediction of fuel pin transient behavior were obtained under experimental conditions in which the temperature ramps of reactor transients were simulated. All cladding specimens were 20% CW Type 316 stainless steel and were cut from EBR-II irradiated fuel pins. It was determined that irradiation degraded the cladding ductility and failure strength. Specimens that had been adjacent to the fuel exhibited the poorest properties. Correlations were developed to describe the effect of neutron fluence on the mechanical behavior of the cladding. Metallographic examinations were conducted to characterize the failure mode and to establish the nature of internal and external surface corrosion. Various mechanisms for the fuel adjacency effect were examined and results for helium concentration profiles were presented. Results from the simulated transient tests were compared with TREAT test results

  15. Numerical study to represent non-isothermal melt-crystallization kinetics at laser-powder cladding

    CSIR Research Space (South Africa)

    Niziev, VG

    2013-04-01

    Full Text Available The study of laser-powder cladding process subject to heat transfer, melting and crystallization kinetics has been carried out numerically and experimentally. The Kolmogorov-Avrami equation was applied to describe the kinetics of the phase...

  16. Evaluation of Corrosion of Aluminum Based Reactor Fuel Cladding Materials During Dry Storage

    Energy Technology Data Exchange (ETDEWEB)

    Peacock, H.B. Jr.

    1999-10-21

    This report provides an evaluation of the corrosion behavior of aluminum cladding alloys and aluminum-uranium alloys at conditions relevant to dry storage. The details of the corrosion program are described and the results to date are discussed.

  17. Circumferential nonuniformity of cladding radiation swelling of fast reactor peripheral fuel elements

    International Nuclear Information System (INIS)

    Reutov, V.F.; Farkhutdinov, K.G.

    1977-01-01

    The results are presented of the investigation into the perimeter radiation swelling of Kh18N10T stainless steel cladding in different cross sections of a peripheral fuel element of the BR-5 reactor. The fluence on the cladding is 1.8-2.9 x 10 22 fast neutr/cm 2 , the operating temperatures in different parts of the fuel element being 430 deg to 585 deg C. There has been observed circumferential non-uniformity of the distribution, concentration, and of the total volume of radiation cavities, which is due to temperature non-uniformity along the cladding perimeter. It is shown that such non-uniformity of radiation swelling of the cladding material may result in bending of the peripheral fuel element with regard to the fuel assembly sheath walls

  18. Microwave assisted acid and alkali pretreatment of Miscanthus biomass for biorefineries

    Directory of Open Access Journals (Sweden)

    Zongyuan Zhu

    2015-10-01

    Full Text Available Miscanthus is a major bioenergy crop in Europe and a potential feedstock for second generation biofuels. Thermochemical pretreatment is a significant step in the process of converting lignocellulosic biomass into fermentable sugars. In this work, microwave energy was applied to facilitate NaOH and H2SO4 pretreatments of Miscanthus. This was carried out at 180 ℃ in a monomode microwave cavity at 300 W. Our results show that H2SO4 pretreatment contributes to the breakdown of hemicelluloses and cellulose, leading to a high glucose yield. The maximum sugar yield from available carbohydrates during pretreatment is 75.3% (0.2 M H2SO4 20 Min, and glucose yield is 46.7% under these conditions. NaOH and water pretreatments tend to break down only hemicellulose in preference to cellulose, contributing to high xylose yield. Compared to conventional heating NaOH/H2SO4 pretreatment, 12 times higher sugar yield was obtained by using microwave assisted pretreatment within half the time. NaOH pretreatments lead to a significantly enhanced digestibility of the residue, because the effective removal of lignin and hemicellulose makes cellulose fibres more accessible to cellulases. Morphological study of biomass shows that the tightly packed fibres in the Miscanthus were dismantled and exposed under NaOH condition. We studied sugar degradation under microwave assisted H2SO4 conditions. The results shows that 6-8% biomass was converted into levulinic acid (LA during pretreatment, showing the possibility of using microwave technology to produce LA from biomass. The outcome of this work shows great potential for using microwave in the thermo-chemical pretreatment for biomass and also selective production of LA from biomass.

  19. The impacts of deacetylation prior to dilute acid pretreatment on the bioethanol process.

    Science.gov (United States)

    Chen, Xiaowen; Shekiro, Joseph; Franden, Mary Ann; Wang, Wei; Zhang, Min; Kuhn, Erik; Johnson, David K; Tucker, Melvin P

    2012-02-27

    Dilute acid pretreatment is a promising pretreatment technology for the biochemical production of ethanol from lignocellulosic biomass. During dilute acid pretreatment, xylan depolymerizes to form soluble xylose monomers and oligomers. Because the xylan found in nature is highly acetylated, the formation of xylose monomers requires two steps: 1) cleavage of the xylosidic bonds, and 2) cleavage of covalently bonded acetyl ester groups. In this study, we show that the latter may be the rate limiting step for xylose monomer formation. Furthermore, acetyl groups are also found to be a cause of biomass recalcitrance and hydrolyzate toxicity. While the removal of acetyl groups from native corn stover by alkaline de-esterification prior to pretreatment improves overall process yields, the exact impact is highly dependent on the corn stover variety in use. Xylose monomer yields in pretreatment generally increases by greater than 10%. Compared to pretreated corn stover controls, the deacetylated corn stover feedstock is approximately 20% more digestible after pretreatment. Finally, by lowering hydrolyzate toxicity, xylose utilization and ethanol yields are further improved during fermentation by roughly 10% and 7%, respectively. In this study, several varieties of corn stover lots were investigated to test the robustness of the deacetylation-pretreatment-saccharification-fermentation process. Deacetylation shows significant improvement on glucose and xylose yields during pretreatment and enzymatic hydrolysis, but it also reduces hydrolyzate toxicity during fermentation, thereby improving ethanol yields and titer. The magnitude of effect is dependent on the selected corn stover variety, with several varieties achieving improvements of greater than 10% xylose yield in pretreatment, 20% glucose yield in low solids enzymatic hydrolysis and 7% overall ethanol yield.

  20. The impacts of deacetylation prior to dilute acid pretreatment on the bioethanol process

    Directory of Open Access Journals (Sweden)

    Chen Xiaowen

    2012-02-01

    Full Text Available Abstract Background Dilute acid pretreatment is a promising pretreatment technology for the biochemical production of ethanol from lignocellulosic biomass. During dilute acid pretreatment, xylan depolymerizes to form soluble xylose monomers and oligomers. Because the xylan found in nature is highly acetylated, the formation of xylose monomers requires two steps: 1 cleavage of the xylosidic bonds, and 2 cleavage of covalently bonded acetyl ester groups. Results In this study, we show that the latter may be the rate limiting step for xylose monomer formation. Furthermore, acetyl groups are also found to be a cause of biomass recalcitrance and hydrolyzate toxicity. While the removal of acetyl groups from native corn stover by alkaline de-esterification prior to pretreatment improves overall process yields, the exact impact is highly dependent on the corn stover variety in use. Xylose monomer yields in pretreatment generally increases by greater than 10%. Compared to pretreated corn stover controls, the deacetylated corn stover feedstock is approximately 20% more digestible after pretreatment. Finally, by lowering hydrolyzate toxicity, xylose utilization and ethanol yields are further improved during fermentation by roughly 10% and 7%, respectively. In this study, several varieties of corn stover lots were investigated to test the robustness of the deacetylation-pretreatment-saccharification-fermentation process. Conclusions Deacetylation shows significant improvement on glucose and xylose yields during pretreatment and enzymatic hydrolysis, but it also reduces hydrolyzate toxicity during fermentation, thereby improving ethanol yields and titer. The magnitude of effect is dependent on the selected corn stover variety, with several varieties achieving improvements of greater than 10% xylose yield in pretreatment, 20% glucose yield in low solids enzymatic hydrolysis and 7% overall ethanol yield.

  1. Pretreatment Solution for Water Recovery Systems

    Science.gov (United States)

    Muirhead, Dean (Inventor)

    2018-01-01

    Chemical pretreatments are used to produce usable water by treating a water source with a chemical pretreatment that contains a hexavalent chromium and an acid to generate a treated water source, wherein the concentration of sulfate compounds in the acid is negligible, and wherein the treated water source remains substantially free of precipitates after the addition of the chemical pretreatment. Other methods include reducing the pH in urine to be distilled for potable water extraction by pretreating the urine before distillation with a pretreatment solution comprising one or more acid sources selected from a group consisting of phosphoric acid, hydrochloric acid, and nitric acid, wherein the urine remains substantially precipitate free after the addition of the pretreatment solution. Another method described comprises a process for reducing precipitation in urine to be processed for water extraction by mixing the urine with a pretreatment solution comprising hexavalent chromium compound and phosphoric acid.

  2. BISON Fuel Performance Analysis of FeCrAl cladding with updated properties

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); George, Nathan M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wirth, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-30

    In order to improve the accident tolerance of light water reactor (LWR) fuel, alternative cladding materials have been proposed to replace zirconium (Zr)-based alloys. Of these materials, there is a particular focus on iron-chromium-aluminum (FeCrAl) alloys due to much slower oxidation kinetics in high-temperature steam than Zr-alloys. This should decrease the energy release due to oxidation and allow the cladding to remain integral longer in the presence of high temperature steam, making accident mitigation more likely. As a continuation of the development for these alloys, suitability for normal operation must also be demonstrated. This research is focused on modeling the integral thermo-mechanical performance of FeCrAl-cladded fuel during normal reactor operation. Preliminary analysis has been performed to assess FeCrAl alloys (namely Alkrothal 720 and APMT) as a suitable fuel cladding replacement for Zr-alloys, using the MOOSE-based, finite-element fuel performance code BISON and the best available thermal-mechanical and irradiation-induced constitutive properties. These simulations identify the effects of the mechanical-stress and irradiation response of FeCrAl, and provide a comparison with Zr-alloys. In comparing these clad materials, fuel rods have been simulated for normal reactor operation and simple steady-state operation. Normal reactor operating conditions target the cladding performance over the rod lifetime (~4 cycles) for the highest-power rod in the highest-power fuel assembly under reactor power maneuvering. The power histories and axial temperature profiles input into BISON were generated from a neutronics study on full-core reactivity equivalence for FeCrAl using the 3D full core simulator NESTLE. Evolution of the FeCrAl cladding behavior over time is evaluated by using steady-state operating conditions such as a simple axial power profile, a constant cladding surface temperature, and a constant fuel power history. The fuel rod designs and

  3. Microstructure and wear-resistance of laser clad TiC particle-reinforced coating

    NARCIS (Netherlands)

    Lei, T.C.; Ouyang, J.H.; Pei, Y.T.; Zhou, Y.

    A TiC-Ni alloy composite coating was clad to 1045 steel substrate using a 2kW CO2 laser. The microstructural constituents of the clad layer are found to be gamma-Ni and TiCp in the dendrites, and a fine eutectic of gamma-Ni plus (Fe, Cr)(23)C-6 in the interdendritic areas. Partial dissolution and

  4. Steam oxidation of Zr 1% Nb clads of VVER fuels in high temperature

    International Nuclear Information System (INIS)

    Solyanyj, V.I.; Bibilashvili, Yu.K.; Dranenko, V.V.; Levin, A.Ya.; Izrajlevskij, L.B.; Morozov, A.M.

    1984-01-01

    In a wide range of accident conditions processes of clad corrosion effected by steam are rather intensive and in many respects influence the safety of NPP and the after-accident dismantling of a reactor core. This paper discusses the results of comprehensive studies into corrosion behaviour of Zr 1%Nb clads of VVER-type fuels at high temperatures. These studies are a continuation of previous work and the base for the design modelling of corrosion processes

  5. Experience in quality assurance of alloy D9 clad tubes for Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Kapoor, K.; Prahlad, B.

    2012-01-01

    Stainless Steel Alloy D9 is the material for cladding in various sub-assemblies of Prototype Fast Breeder Reactor (PFBR). The fabrication, inspection, testing and supply of the clad tubes for the first core of PFBR is nearly completed. The paper also compares the specification requirements and the achieved results for some of the critical aspects which is arrived after completing supply against the first core requirement

  6. Thermal stress intensity factor for an axial crack in a clad cylinder

    International Nuclear Information System (INIS)

    Kuo, An Yu; Deardorf, A.F.; Riccardella, P.C.

    1993-01-01

    Many clad pressure vessels have been found to have cracks running through the inside surface cladding and into the base material. Although Young's moduli and Poisson's ratios of the clad and base materials are about the same for most of the industrial applications, coefficients of thermal expansion of the two dissimilar materials, clad and base materials, are usually quite different. For example, low alloy ferritic steel is a common base material for reactor pressure vessels (RPV) and the vessels are usually clad with austenitic stainless steel. Young's moduli for the low alloy steel and stainless steel at 350 F are 29,000 ksi and 28,000 ksi, respectively, while their coefficients of thermal expansion are 7.47x10 -6 in/in and 9.50x10 -6 in/in-degree F, respectively. The mismatch in coefficients of thermal expansion will cause high residual thermal stress even when the entire vessel is at a uniform temperature. This residual stress is one of the primary reasons why so many cracks have been found in the cladded components. In performing reactor pressure vessel integrity evaluation, such as computing probability of brittle fracture of the RPV, it is necessary to calculate stress intensity factors for cracks, which initiate from the clad material and run into the base metal. This paper presents a convenient method of calculating stress intensity factor for an axial crack emanating from the inside surface of a cladded cylinder under thermal loading. A J-integral like line integral was derived and used to calculate the stress intensity factors from finite element stress solutions of the problem

  7. Investigation of likely causes of white patch formation on irradiated WWER fuel rod claddings

    International Nuclear Information System (INIS)

    Bibilashvili, Yu.K.; Velioukhanov, V.P.; Ioltoukhovski, A.Y.; Pogodin, V.P.

    1999-01-01

    The information concerning white patches observed on fuel cladding surfaces has been analytically treated. The analysis shows at least three kinds of the white patch appearance: bright white spots which appear to be loose corrosion product deposits disclosing corrosion pits upon spalling; indistinct streaks with separate pronounced spots 1-2 in dia. The spots seem to be thin superficial deposits; light-coloured dense uniform crud distributed over the surface of fuel claddings and fuel assembly jackets. (author)

  8. Pellet-clad interaction observations in boiling water reactor fuel elements

    International Nuclear Information System (INIS)

    Sahoo, K.C.; Bahl, J.K.; Sivaramakrishnan, K.S.; Roy, P.R.

    1981-01-01

    Under a programme to assess the performance of fuel elements of Tarapur Atomic Power Station, post-irradiation examination has been carried out on 18 fuel elements in the first phase. Pellet-clad mechanical interaction behaviour in 14 elements with varying burnup and irradiation history has been studied using eddy current testing technique. The data has been analysed to evaluate the role of pellet-clad mechanical interaction in PCI/SCC failure in power reactor operating conditions. (author)

  9. Fuel-cladding chemical interaction correlation for mixed-oxide fuel pins

    International Nuclear Information System (INIS)

    Lawrence, L.A.

    1986-10-01

    A revised wastage correlation was developed for FCCI with fabrication and operating parameters. The expansion of the data base to 305 data sets provided sufficient data to employ normal statistical techniques for calculation of confidence levels without unduly penalizing predictions. The correlation based on 316 SS cladding also adequately accounts for limited measured depths of interaction for fuel pins with D9 and HTq cladding

  10. Analysis of mechanical tensile properties of irradiated and annealed RPV weld overlay cladding

    International Nuclear Information System (INIS)

    Novak, J.

    1993-01-01

    Mechanical tensile properties of irradiated and annealed outer layer of reactor pressure vessel weld overlay cladding, composed of Cr19Ni10Nb alloy, have been experimentally determined by conventional tensile testing and indentation testing. The constitutive properties of weld overlay cladding are then modelled with two homogenization models of the constitutive properties of elastic-plastic matrix-inclusion composites; numerical and experimental results are then compared. 10 refs., 4 figs., 4 tabs

  11. Coatings and claddings for the reduction of plasma contamination and surface erosion in fusion reactors

    International Nuclear Information System (INIS)

    Kaminsky, M.

    1980-01-01

    For the successful operation of plasma devices and future fusion reactors it is necessary to control plasma impurity release and surface erosion. Effective methods to obtain such controls include the application of protective coatings to, and the use of clad materials for, certain first wall components. Major features of the development programs for coatings and claddings for fusion applications will be described together with an outline of the testing program. A discussion of some pertinent test results will be included

  12. A process to remove ammonia from PUREX plant effluents

    International Nuclear Information System (INIS)

    Moore, J.D.

    1990-01-01

    Zirconium-clad nuclear fuel from the Hanford N-Reactor is reprocessed in the PUREX (Plutonium Uranium Extraction) Plant operated by the Westinghouse Hanford Comapny. Before dissolution, cladding is chemically removed from the fuel elements with a solution of ammonium fluoride-ammonium nitrate (AFAN). a solution batch with an ammonia equivalent of about 1,100 kg is added to each fuel batch of 10 metric tons. This paper reports on this decladding process, know as the 'Zirflex' process which produces waste streams containing ammonia and ammonium slats. Waste stream treatment, includes ammonia scrubbing, scrub solution evaporation, residual solids dissolution, and chemical neutralization. These processes produce secondary liquid and gaseous waste streams containing varying concentrations of ammonia and low-level concentrations of radionuclides. Until legislative restrictions were imposed in 1987, these secondary streams were released to the soil in a liquid disposal 'crib' and to the atmosphere

  13. Impact of pretreatment with dilute sulfuric acid under moderate temperature on hydrolysis of corn stover with two enzyme systems.

    Science.gov (United States)

    Tai, Chao; Keshwani, Deepak

    2014-03-01

    Pretreatment of corn stover with dilute sulfuric acid at moderate temperature was investigated, and glucan digestibility by Cellic CTec2 and Celluclast on the pretreated biomass was compared. Pretreatments were carried out from 60 to 180 min at the temperature from 105 to 135 °C, with acid concentrations ranging from 0.5 to 2% (w/v). Significant portion of xylan was removed during pretreatment, and the glucan digestibility by CTec2 was significantly better than that by Celluclast in all cases. Analysis showed that glucan digestibility by both two enzymes correlated directly with the extent of xylan removal in pretreatment. Confidence interval was built to give a more precise range of glucan conversion and to test the significant difference among pretreatment conditions. Response surface model was built to obtain the optimal pretreatment condition to achieve high glucan conversion after enzymatic hydrolysis. Considering the cost and energy savings, the optimal pretreatment condition of 1.75% acid for 160 min at 135 °C was determined, and glucan conversion can achieve the range from 72.86 to 76.69% at 95% confidence level after enzymatic hydrolysis, making total glucan recovery up to the range from 89.42 to 93.25%.

  14. Deformation, oxidation and embrittlement of PWB fuel cladding in a loss-of-coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, P.D.; Hindle, E.D.; Mann, C.A.

    1986-09-01

    The scope of this report is limited to the oxidation, embrittlement and deformation of PWB fuel in a loss of coolant accident in which the emergency core coolant systems operate in accordance with the design, ie accidents within the design basis of the plant. A brief description is given of the thermal hydraulic events during large and small breaks of the primary circuit, followed by the correct functioning and remedial action of the emergency core cooling systems. The possible damage to the fuel cladding during these events is also described. The basic process of oxidation of zircaloy-4 fuel cladding by steam, and the reaction kinetics of the oxidation are reviewed in detail. Variables having a possible influence on the oxidation kinetics are also considered. The embrittlement of zircaloy-4 cladding by oxidation is also reviewed in detail. It is related to fracture during the thermal shock of rewetting or by the ambient impact forces as a result of post-accident fuel handling. Criteria based both on total oxidation and on the detailed distribution of oxygen through the oxidised cladding wall are considered. The published computer codes for the calculation of oxygen concentration are reviewed in terms of the model employed and the limitations apparent in these models when calculating oxygen distribution in cladding in the actual conditions of a loss of coolant accident. The factors controlling the deformation and rupture of cladding in a loss of coolant accident are reviewed in detail.

  15. Study on the standard establishment for the integrity assessment of nuclear fuel cladding Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S. S.; Kim, S. H.; Jung, Y. K.; Yang, C. Y.; Kim, I. G.; Choi, Y. H.; Kim, H. J.; Kim, M. W.; Rho, B. H. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2007-02-15

    Fuel cladding material plays important role as a primary structure under the high temperature, high pressure and neutron environment of nuclear power plant. According to this environment, cladding material can be experienced several type aging phenomena including the neutron irradiation embrittlement. On the other hand, although the early nuclear power plant was designed to fitting into the 40MWd/KgU burn-up, the currently power plant intends to go to the high burn-up range. In this case, the safety criteria which was established at low burn-up needs to conform the applicability at the high burn-up. In this study, the safety criteria of fuel cladding material was reviewed to assess the cladding material integrity, and the material characteristics of cladding were reviewed. The current LOCA criterial was also reviewed, and the basic study for re-establishment of LOCA criteria was performed. The time concept safety criteria was also discussed to prevent the breakaway oxidation. Through the this study, safety issues will be produced and be helpful for integrity insurance of nuclear fuel cladding material. This report is 2nd term report.

  16. Study on the Standard Establishment for the Integrity Assessment of Nuclear Fuel Cladding Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S-S; Kim, S-H; Jung, Y-K; Yang, C-Y; Kim, I-G; Choi, Y-H; Kim, H-J; Kim, M-W; Rho, B-H [KINS, Daejeon (Korea, Republic of)

    2008-02-15

    Fuel cladding material plays important role as a primary structure under the high temperature, high pressure and neutron environment of nuclear power plant. According to this environment, cladding material can be experienced several type aging phenomena including the neutron irradiation embrittlement. On the other hand, although the early nuclear power plant was designed to fitting into the 40MWd/KgU burn-up, the currently power plant intends to go to the high burn-up range. In this case, the safety criteria which was established at low burn-up needs to conform the applicability at the high burn-up. In this study, the safety criteria of fuel cladding material was reviewed to assess the cladding material integrity, and the material characteristics of cladding were reviewed. The current LOCA criterial was also reviewed, and the basic study for re-establishment of LOCA criteria was performed. The time concept safety criteria was also discussed to prevent the breakaway oxidation. Through the this study, safety issues will be produced and be helpful for integrity insurance of nuclear fuel cladding material. This report is the final report.

  17. FY 2014 Status Report: of Vibration Testing of Clad Fuel (M4FT-14OR0805033)

    Energy Technology Data Exchange (ETDEWEB)

    Bevard, Bruce Balkcom [ORNL

    2014-03-28

    The DOE Used Fuel Disposition Campaign (UFDC) tasked Oak Ridge National Laboratory (ORNL) to investigate the behavior of light-water-reactor (LWR) fuel cladding material performance related to extended storage and transportation of UNF. ORNL has been tasked to perform a systematic study on UNF integrity under simulated normal conditions of transportation (NCT) by using the recently developed hot-cell testing equipment, Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT). To support the testing on actual high-burnup UNF, fast-neutron irradiation of pre-hydrided zirconium-alloy cladding in the High Flux Isotope Reactor (HFIR) at elevated temperatures will be used to simulate the effects of high-burnup on fuel cladding for help in understanding the cladding materials properties relevant to extended storage and subsequent transportation. The irradiated pre-hydrided metallic materials testing will generate baseline data to benchmark hot-cell testing of the actual high-burnup UNF cladding. More importantly, the HFIR-irradiated samples will be free of alpha contamination and can be provided to researchers who do not have hot cell facilities to handle highly contaminated high-burnup UNF cladding to support their research projects for the UFDC.

  18. A thermodynamic model for the attack behaviour in stainless steel clad oxide fuel pins

    International Nuclear Information System (INIS)

    Goetzmann, O.

    1979-01-01

    So far, post irradiation examination of burnt fuel pins has not revealed a clear cut picture of the cladding attack situation. For seemingly same conditions sometimes attack occurs, sometimes not. This model tries to depict the reaction possibilities along the inner cladding wall on the basis of thermodynamic facts in the fuel pin. It shows how the thermodynamic driving force for attack changes along the fuel column, and with different initial and operational conditions. Two criteria for attack are postulated: attack as a result of the direct reaction of reactive elements with cladding components; and attack as a result of the action of a special agent (CsOH). In defining a reaction potenial the oxygen potential, the temperature conditions (cladding temperature and fuel surface temperature), and the fission products are involved. For the determination of the oxygen potential at the cladding, three models for the redistribution of oxygen across the fuel/clad gap are offered. The effect of various parameters, like rod power, gap conductance, oxygen potential, inner wall temperature, on the thermodynamic potential for attack is analysed. (Auth.)

  19. Laser cladding of copper with molybdenum for wear resistance enhancement in electrical contacts

    International Nuclear Information System (INIS)

    Ng, K.W.; Man, H.C.; Cheng, F.T.; Yue, T.M.

    2007-01-01

    Laser cladding of Mo on Cu has been attempted with the aim of enhancing the wear resistance and hence increasing the service life of electrical contacts made of Cu. In order to overcome the difficulties arising from the large difference in thermal properties and the low mutual solubility between Cu and Mo, Ni was introduced as an intermediate layer between Mo and Cu. The Ni and Mo layers were laser clad one after the other to form a sandwich layer of Mo/Ni/Cu. Excellent bonding between the clad layer and the Cu substrate was ensured by strong metallurgical bonding. The hardness of the surface of the clad layer is seven times higher than that of the Cu substrate. Pin-on-disc wear tests consistently showed that the abrasive wear resistance of the clad layer was also improved by a factor of seven as compared with untreated Cu substrate. The specific electrical contact resistance of the clad surface was about 5.6 x 10 -7 Ω cm 2

  20. High temperature steam oxidation of zircaloy-2 cladding of PHWR fuel element

    International Nuclear Information System (INIS)

    Sethumadhavan, V.; Sathe, S.M.; Sunil Kumar; Khan, K.B.; Sah, D.N.

    1997-07-01

    In the event of a postulated loss of coolant accident (LOCA) the cladding surface of PHWR fuel element will be exposed to high temperature steam environment which may result in extensive oxidation and embrittlement of the cladding tube. High temperature steam oxidation has been studied on 40 mm long tubular samples of as fabricated zircaloy-2 cladding tubes of PHWR fuel. These studies were carried out in the temperature range 923K - 1073K for time durations ranging from 30 minutes to 4 hours and in temperature range 1323K -1423K for exposure time up to 30 minutes. The weight gain and the thickness of zirconium oxide and alpha layers have been measured in the exposed samples. Microstructure developed in the tubes due to high temperature exposure has been examined. Correlations have been derived from the experimental data for calculating oxygen uptake by the cladding during high temperature steam exposures. A diffusion based model has been developed to calculate the growth of oxide and oxygen stabilised alpha zirconium layers and distribution of oxygen in the cladding. Theoretical model has been used to predict the multilayer growth and oxygen distribution in the cladding at any given temperature for specified time duration. The results indicate that at a temperature of 923K zircaloy-2 oxidation follows a cubic rate law but at temperatures of 973K - 1073K and at 1323K - 1423K the oxidation is governed by parabolic rate law. Model calculations are in good agreement with experimental measurements

  1. Characterization of hard coatings produced by laser cladding using laser-induced breakdown spectroscopy technique

    International Nuclear Information System (INIS)

    Varela, J.A.; Amado, J.M.; Tobar, M.J.; Mateo, M.P.; Yañez, A.; Nicolas, G.

    2015-01-01

    Highlights: • Chemical mapping and profiling by laser-induced breakdown spectroscopy (LIBS) of coatings produced by laser cladding. • Production of laser clads using tungsten carbide (WC) and nickel based matrix (NiCrBSi) powders. • Calibration by LIBS of hardfacing alloys with different WC concentrations. - Abstract: Protective coatings with a high abrasive wear resistance can be obtained from powders by laser cladding technique, in order to extend the service life of some industrial components. In this work, laser clad layers of self-fluxing NiCrBSi alloy powder mixed with WC powder have been produced on stainless steel substrates of austenitic type (AISI 304) in a first step and then chemically characterized by laser-induced breakdown spectroscopy (LIBS) technique. With the suitable laser processing parameters (mainly output power, beam scan speed and flow rate) and powders mixture proportions between WC ceramics and NiCrBSi alloys, dense pore free layers have been obtained on single tracks and on large areas with overlapped tracks. The results achieved by LIBS technique and applied for the first time to the analysis of laser clads provided the chemical composition of the tungsten carbides in metal alloy matrix. Different measurement modes (multiple point analyses, depth profiles and chemical maps) have been employed, demonstrating the usefulness of LIBS technique for the characterization of laser clads based on hardfacing alloys. The behavior of hardness can be explained by LIBS maps which evidenced the partial dilution of some WC spheres in the coating

  2. Review and perspective: Sapphire optical fiber cladding development for harsh environment sensing

    Science.gov (United States)

    Chen, Hui; Buric, Michael; Ohodnicki, Paul R.; Nakano, Jinichiro; Liu, Bo; Chorpening, Benjamin T.

    2018-03-01

    The potential to use single-crystal sapphire optical fiber as an alternative to silica optical fibers for sensing in high-temperature, high-pressure, and chemically aggressive harsh environments has been recognized for several decades. A key technological barrier to the widespread deployment of harsh environment sensors constructed with sapphire optical fibers has been the lack of an optical cladding that is durable under these conditions. However, researchers have not yet succeeded in incorporating a high-temperature cladding process into the typical fabrication process for single-crystal sapphire fibers, which generally involves seed-initiated fiber growth from the molten oxide state. While a number of advances in fabrication of a cladding after fiber-growth have been made over the last four decades, none have successfully transitioned to a commercial manufacturing process. This paper reviews the various strategies and techniques for fabricating an optically clad sapphire fiber which have been proposed and explored in published research. The limitations of current approaches and future prospects for sapphire fiber cladding are discussed, including fabrication methods and materials. The aim is to provide an understanding of the past research into optical cladding of sapphire fibers and to assess possible material systems for future research on this challenging problem for harsh environment sensors.

  3. The deformation, oxidation and embrittlement of PWB fuel cladding in a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Parsons, P.D.; Hindle, E.D.; Mann, C.A.

    1986-09-01

    The scope of this report is limited to the oxidation, embrittlement and deformation of PWB fuel in a loss of coolant accident in which the emergency core coolant systems operate in accordance with the design, ie accidents within the design basis of the plant. A brief description is given of the thermal hydraulic events during large and small breaks of the primary circuit, followed by the correct functioning and remedial action of the emergency core cooling systems. The possible damage to the fuel cladding during these events is also described. The basic process of oxidation of zircaloy-4 fuel cladding by steam, and the reaction kinetics of the oxidation are reviewed in detail. Variables having a possible influence on the oxidation kinetics are also considered. The embrittlement of zircaloy-4 cladding by oxidation is also reviewed in detail. It is related to fracture during the thermal shock of rewetting or by the ambient impact forces as a result of post-accident fuel handling. Criteria based both on total oxidation and on the detailed distribution of oxygen through the oxidised cladding wall are considered. The published computer codes for the calculation of oxygen concentration are reviewed in terms of the model employed and the limitations apparent in these models when calculating oxygen distribution in cladding in the actual conditions of a loss of coolant accident. The factors controlling the deformation and rupture of cladding in a loss of coolant accident are reviewed in detail. (author)

  4. Thermal stress in the edge cladding of Nova glass laser disks

    International Nuclear Information System (INIS)

    Pitts, J.H.; Kong, M.K.; Gerhard, M.A.

    1987-01-01

    We calculated thermal stresses in Nova glass laser disks having light-absorbing edge cladding glass attached to the periphery with an epoxy adhesive. Our closed-form solutions indicated that, because the epoxy adhesive is only 25 μm across, it does not significantly affect the thermal stress in the disk or cladding glass. Our numerical results showed a peak tensile stress in the cladding glass of 24 MPa when the cladding glass had a uniform absorption coefficient of 7.5 cm -1 . This peak value is reduced to 19 MPa if surface parasitic oscillation heating is eliminated by tilting the disk edges. The peak tensile stresses exceed the typical 7 to 14-MPa working stress for glass; however, we have not observed any disk or cladding glass failures at peak Nova fluences of 20 J/cm 2 . We have observed delamination of the epoxy adhesive bond at fluences several times that which would occur on Nova. Replacement laser disks will incorporate cladding with a reduced absorption coefficient of 4.5 cm -1 . Recent experiments show that this reduced absorption coefficient is satisfactory

  5. Progress and Challenges of Ultrasonic Testing for Stress in Remanufacturing Laser Cladding Coating.

    Science.gov (United States)

    Yan, Xiao-Ling; Dong, Shi-Yun; Xu, Bin-Shi; Cao, Yong

    2018-02-13

    Stress in laser cladding coating is an important factor affecting the safe operation of remanufacturing components. Ultrasonic testing has become a popular approach in the nondestructive evaluation of stress, because it has the advantages of safety, nondestructiveness, and online detection. This paper provides a review of ultrasonic testing for stress in remanufacturing laser cladding coating. It summarizes the recent research outcomes on ultrasonic testing for stress, and analyzes the mechanism of ultrasonic testing for stress. Remanufacturing laser cladding coating shows typical anisotropic behaviors. The ultrasonic testing signal in laser cladding coating is influenced by many complex factors, such as microstructure, defect, temperature, and surface roughness, among others. At present, ultrasonic testing for stress in laser cladding coating can only be done roughly. This paper discusses the active mechanism of micro/macro factors in the reliability of stress measurement, as well as the impact of stress measurement on the quality and safety of remanufacturing components. Based on the discussion, this paper proposes strategies to nondestructively, rapidly, and accurately measure stress in remanufacturing laser cladding coating.

  6. Hair Removal

    DEFF Research Database (Denmark)

    Hædersdal, Merete

    2011-01-01

    Hair removal with optical devices has become a popular mainstream treatment that today is considered the most efficient method for the reduction of unwanted hair. Photothermal destruction of hair follicles constitutes the fundamental concept of hair removal with red and near-infrared wavelengths...... suitable for targeting follicular and hair shaft melanin: normal mode ruby laser (694 nm), normal mode alexandrite laser (755 nm), pulsed diode lasers (800, 810 nm), long-pulse Nd:YAG laser (1,064 nm), and intense pulsed light (IPL) sources (590-1,200 nm). The ideal patient has thick dark terminal hair......, white skin, and a normal hormonal status. Currently, no method of lifelong permanent hair eradication is available, and it is important that patients have realistic expectations. Substantial evidence has been found for short-term hair removal efficacy of up to 6 months after treatment with the available...

  7. Hair removal

    DEFF Research Database (Denmark)

    Haedersdal, Merete; Haak, Christina S

    2011-01-01

    Hair removal with optical devices has become a popular mainstream treatment that today is considered the most efficient method for the reduction of unwanted hair. Photothermal destruction of hair follicles constitutes the fundamental concept of hair removal with red and near-infrared wavelengths...... suitable for targeting follicular and hair shaft melanin: normal mode ruby laser (694 nm), normal mode alexandrite laser (755 nm), pulsed diode lasers (800, 810 nm), long-pulse Nd:YAG laser (1,064 nm), and intense pulsed light (IPL) sources (590-1,200 nm). The ideal patient has thick dark terminal hair......, white skin, and a normal hormonal status. Currently, no method of lifelong permanent hair eradication is available, and it is important that patients have realistic expectations. Substantial evidence has been found for short-term hair removal efficacy of up to 6 months after treatment with the available...

  8. Thermal and enzymatic pretreatment of sludge containing phthalate esters prior to mesophilic anaerobic digestion

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Yenal, U.; Ahring, Birgitte Kiær

    2004-01-01

    The present study aimed at investigating the effect of thermal pretreatment of sludge at 70degreesC on the anaerobic degradation of three commonly found phthalic acid esters (PAE): di-ethyl phthalate (DEP), di-butyl phthalate (DBP), and di-ethylhexyl phthalate (DEHP). Also, the enzymatic treatment...... at 28degreesC with a commercial lipase was studied as a way to enhance PAE removal. Pretreatment at 70degreesC of the sludge containing PAE negatively influenced the anaerobic biodegradability of phthalate esters at 37degreesC. The observed reduction of PAE biodegradation rates after the thermal...... pretreatment was found to be proportional to the PAE solubility in water: the higher the solubility, the higher the percentage of the reduction (DEP > DBP > DEHP). PAE were slowly degraded during the pretreatment at 70degreesC, yet this was probably due to physicochemical reactions than to microbial...

  9. Comparison of manual and automated pretreatment methods for AMS radiocarbon dating of plant fossils

    Science.gov (United States)

    Bradley, L.A.; Stafford, Thomas W.

    1994-01-01

    A new automated pretreatment system for the preparation of materials submitted for accelerator mass spectrometry (AMS) analysis is less time-consuming and results in a higher sample yield. The new procedure was tested using two groups of plant fossils: one group was pretreated using the traditional method, and the second, using the automated pretreatment apparatus. The time it took to complete the procedure and the amount of sample material remaining were compared. The automated pretreatment apparatus proved to be more than three times faster and, in most cases, produced a higher yield. A darker discoloration of the KOH solutions was observed indicating that the automated system is more thorough in removing humates from the specimen compared to the manual method. -Authors

  10. Development of advanced claddings for suppressing the hydrogen emission in accident conditions. Development of advanced claddings for suppressing the hydrogen emission in the accident condition

    International Nuclear Information System (INIS)

    Park, Jeong-Yong; KIM, Hyun-Gil; JUNG, Yang-Il; PARK, Dong-Jun; KOO, Yang-Hyun

    2013-01-01

    The development of accident-tolerant fuels can be a breakthrough to help solve the challenge facing nuclear fuels. One of the goals to be reached with accident-tolerant fuels is to reduce the hydrogen emission in the accident condition by improving the high-temperature oxidation resistance of claddings. KAERI launched a new project to develop the accident-tolerant fuel claddings with the primary objective to suppress the hydrogen emission even in severe accident conditions. Two concepts are now being considered as hydrogen-suppressed cladding. In concept 1, the surface modification technique was used to improve the oxidation resistance of Zr claddings. Like in concept 2, the metal-ceramic hybrid cladding which has a ceramic composite layer between the Zr inner layer and the outer surface coating is being developed. The high-temperature steam oxidation behaviour was investigated for several candidate materials for the surface modification of Zr claddings. From the oxidation tests carried out in 1 200 deg. C steam, it was found that the high-temperature steam oxidation resistance of Cr and Si was much higher than that of zircaloy-4. Al 3 Ti-based alloys also showed extremely low-oxidation rate compared to zircaloy-4. One important part in the surface modification is to develop the surface coating technology where the optimum process needs to be established depending on the surface layer materials. Several candidate materials were coated on the Zr alloy specimens by a laser beam scanning (LBS), a plasma spray (PS) and a PS followed by LBS and subject to the high-temperature steam oxidation test. It was found that Cr and Si coating layers were effective in protecting Zr-alloys from the oxidation. The corrosion behaviour of the candidate materials in normal reactor operation condition such as 360 deg. C water will be investigated after the screening test in the high-temperature steam. The metal-ceramic hybrid cladding consisted of three major parts; a Zr liner, a

  11. Corrosion properties of cladding materials from Zr1Nb alloy

    International Nuclear Information System (INIS)

    Kloc, K.; Kosler, S.

    1975-01-01

    The corrosion behaviour was observed of the Zr1Nb alloy in hot water and superheated steam and the effects of impurity content, of the purity of the corrosion environment and of the heat treatment of the alloy were studied on the alloy corrosion resistance. Also studied were the absorption of hydrogen by the alloy and its behaviour in reactor situations. It was ascertained that the alloy has a good corrosion resistance up to a temperature of 350 degC. The corrosion resistance is reduced by the presence of nitrogen above 50 to 70 ppm and of carbon above 50 to 90 ppm. A graphic representation is given of the dependence of corrosion resistance on the temperature of annealing, the nitrogen content of the alloy and the time of the action of hot water or steam, as well as the dependence of the hydrogen content in the alloy on the peripheral tension of the cladding in hot water both in non-active environment and at irradiation with a neutron flux of approximately 10 20 n/cm 2 . (J.B.)

  12. Soldering of copper-clad niobium--titanium superconductor composite

    International Nuclear Information System (INIS)

    Moorhead, A.J.; Woodhouse, J.J.; Easton, D.S.

    1977-04-01

    When superconductivity is applied to various electrical devices, the joining of the superconducting material and the performance of the joints are generally crucial to the successful operation of the system. Although many techniques are being considered for joining composite superconductors, soldering is the most common. We determined the wetting and flow behavior of various solder and flux combinations on a copper-clad Nb-Ti composite, developed equipment and techniques for soldering and inspection of lap joints, and determined the shear strength of joints at temperatures down to -269 0 C (4 0 K). We studied 15 solders and 17 commercial and experimental fluxes in the wettability and flow tests. A resistance unit was built for soldering test specimens. A series of samples soldered with 80 Pb-20 Sn, 83 Pb-15 Sn-2 Sb, 97.5 Pb-1.5 Ag-1 Sn, 80 In-15 Pb-5 Ag, or 25 In-37.5 Pb-37.5 Sn (wt percent) was inspected by three nondestructive techniques. Through-transmission ultrasound gave the best correlation with nonbond areas revealed in peel tests. Single-lap shear specimens soldered with 97.5 Pb-1.5 Ag-1 Sn had the highest strength (10.44 ksi, 72 MPa) and total elongation (0.074 in., 1.88 mm) at -269 0 C (4 0 K) of four solders tested

  13. Expert Meeting Report: Cladding Attachment Over Exterior Insulation (BSC Report)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-10-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. The location of the insulation to the exterior of the structure has many direct benefits including better effective R-value from reduced thermal bridging, better condensation resistance, reduced thermal stress on the structure, as well as other commonly associated improvements such as increased air tightness and improved water management (Hutcheon 1964, Lstiburek 2007). The intent of the meeting was to review the current state of industry knowledge regarding cladding attachment over exterior insulation with a specific focus on: 1. Gravity load resistance, 2. Wind load resistance. The presentations explore these topics from an engineering design, laboratory testing, field monitoring, as well as practical construction perspective. By bringing various groups together (who have been conduction research or have experience in this area), a more holistic review of the design limits and current code language proposals can be completed and additional gaps identified. The results of which will help inform design standards and criteria.

  14. Expert Meeting Report: Cladding Attachment Over Exterior Insulation

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P. [Building Science Corporation, Somerville, MA (United States)

    2013-10-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. The location of the insulation to the exterior of the structure has many direct benefits including better effective R-value from reduced thermal bridging, better condensation resistance, reduced thermal stress on thestructure, as well as other commonly associated improvements such as increased air tightness and improved water management (Hutcheon 1964, Lstiburek 2007). The intent of the meeting was to review the current state of industry knowledge regarding cladding attachment over exterior insulation with a specific focus on: 1. Gravity load resistance, 2. Wind load resistance. The presentations explorethese topics from an engineering design, laboratory testing, field monitoring, as well as practical construction perspective. By bringing various groups together (who have been conduction research or have experience in this area), a more holistic review of the design limits and current code language proposals can be completed and additional gaps identified. The results of which will help informdesign standards and criteria.

  15. SCANUK. A collaborative programme to develop new zirconium cladding alloys

    International Nuclear Information System (INIS)

    Tyzack, C.; Hurst, P.; Slattery, G.F.

    1977-04-01

    The primary aim of the programme was to develop alloys with better performance than Zircaloy-2 under BWR/TWR conditions and specifically with improved resistance to short-term high temperature transients. Secondly, the alloys were to be capable of full-term reactor service over a wider temperature range than usual (up to 450 0 C). For the first objective a Zr-1 wt % Nb alloy was selected and for the second, alloys were composed of small amounts of chromium and/or molybdenum added to a base composition of 1/2 or 1 wt % niobium in zirconium. The test programme obtained on the physical metallurgy, mechanical properties and corrosion resistance of the alloys both before and after irradiation is described and the results are reviewed. Although the requirement for cladding to operate at elevated temperatures is not longer of prime importance, the development work has demonstrated that with some further optimisation some of the alloys might present a viable alternative to Zircaloy-2 for in-reactor operation at approximately 300 0 C in oxygenated coolants. With regard especially to nodular oxidation resistance these alloys, based on modest additions of niobium to zirconium, tend to be better than Zircaloy-2 but their performance does not consistently approach that of Zr-2 1/2% Nb. (author)

  16. Thermal performance of a vegetated cladding system on facade walls

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, C.Y.; Chu, L.M. [Department of Biology, The Chinese University of Hong Kong, Science Center, Shatin, NT, Hong Kong (China); Cheung, Ken K.S. [Housing Department, Hong Kong SAR Government, Kowloon, Hong Kong (China)

    2010-08-15

    An experimental approach is used to assess the effect of vegetation on the thermal performance of a vertical greening system, which comprised of turf-based vertical planting modules, on an elevated facade wall of a public housing apartment. Despite temperature fluctuations in the various compartments external and internal to a concrete wall, the vegetated cladding reduced interior temperatures and delayed the transfer of solar heat, which consequently reduced power consumption in air-conditioning compared with a building envelope with bare concrete. Vegetation cover led to a different pattern of temperature fluctuations on wall surfaces, which may affect the comfort of occupants even after sunset. The cooling effect which was closely associated with the area covered by living plants and moisture in the growth medium, demonstrated the value of maintaining a healthy vegetation cover beyond visual amenity. Marked variation in moisture distribution along the vertical profile of the growth medium highlighted a concern rarely addressed in planting on ground. Substrate moisture measured at randomly selected locations would underestimate the water stress in some plants and impair their survival. (author)

  17. Characterization of Cassini GPHS fueled clad production girth welds

    International Nuclear Information System (INIS)

    Franco-Ferreira, E.A.; Moyer, M.W.; Reimus, M.A.H.; Placr, A.; Howard, B.D.

    2000-01-01

    Fueled clads for radioisotope power systems are produced by encapsulating 238 PuO 2 in iridium alloy cups, which are joined at their equators by gas tungsten arc welding. Cracking problems at the girth weld tie-in area during production of the Galileo/Ulysses GPHS capsules led to the development of a first-generation ultrasonic test for girth weld inspection at the Savannah River Plant. A second-generation test and equipment with significantly improved sensitivity and accuracy were jointly developed by the Oak Ridge Y-12 Plant and Westinghouse Savannah River Company for use during the production of Cassini GPHS capsules by the Los Alamos National Laboratory. The test consisted of Lamb wave ultrasonic scanning of the entire girth weld from each end of the capsule combined with a time-of-flight evaluation to aid in characterizing nonrelevant indications. Tangential radiography was also used as a supplementary test for further evaluation of reflector geometry. Each of the 317 fueled GP HS capsules, which were girth welded for the Cassini Program, was subjected to a series of nondestructive tests that included visual, dimensional, helium leak rate, and ultrasonic testing. Thirty-three capsules were rejected prior to ultrasonic testing. Of the 44 capsules rejected by the standard ultrasonic test, 22 were upgraded to flight quality through supplementary testing for an overall process acceptance rate of 82.6%. No confirmed instances of weld cracking were found

  18. Laser stereolithography by multilayer cladding of metal powders

    Science.gov (United States)

    Jendrzejewski, Rafal; Rabczuk, Grazyna T.; Zaremba, R.; Sliwinski, Gerard

    1998-07-01

    3D-structures obtained by means of laser cladding of the metal alloy powders: bronze B10 and stellite 6 and the process parameters are studied experimentally. The structures are made trace-on-trace by remelting of the metal powder injected into the focusing region of the 1.2 kW CO2 laser beam. For the powder and sample feeding rates of 8-22 g/min and 0.4-1.2 m/min, respectively, and the applied beam intensities not exceeding 2 X 105 W cm-2 the process is stable and regular traces connected via fusion zones are produced for each material. The thickness of these zones does not exceed several per cent of the layer height. The process results in the efficient formation of multilayer structures. From their geometry the effect of energy coupling and interaction parameters are deduced. Moreover, the microanalysis by means of SEM- and optical photographs of samples produced under different experimental conditions confirms the expected mechanical properties, low porosity and highly homogenous structure of the multilayers. In addition to the known material stellite 6 the bronze B10 is originally proposed for a rapid prototyping.

  19. Energy efficacy used to score organic refuse pretreatment processes for hydrogen anaerobic production.

    Science.gov (United States)

    Ruggeri, Bernardo; Luongo Malave, Andrea C; Bernardi, Milena; Fino, Debora

    2013-11-01

    The production of hydrogen through Anaerobic Digestion (AD) has been investigated to verify the efficacy of several pretreatment processes. Three types of waste with different carbon structures have been tested to obtain an extensive representation of the behavior of the materials present in Organic Waste (OW). The following types of waste were selected: Sweet Product Residue (SPR), i.e., confectionary residue removed from the market after the expiration date, Organic Waste Market (OWM) refuse from a local fruit and vegetable market, and Coffee Seed Skin (CSS) waste from a coffee production plant. Several pretreatment processes have been applied, including physical, chemical, thermal, and ultrasonic processes and a combination of these processes. Two methods have been used for the SPR to remove the packaging, manual (SPR) and mechanical (SPRex). A pilot plant that is able to extrude the refuse to 200atm was utilized. Two parameters have been used to score the different pretreatment processes: efficiency (ξ), which takes into account the amount of energy produced in the form of hydrogen compared with the available energy embedded in the refuse, and efficacy (η), which compares the efficiency obtained using the pretreated refuse with that obtained using the untreated refuse. The best result obtained for the SPR was the basic pretreatment, with η=6.4, whereas the thermal basic pretreatment gave the highest value, η=17.0 for SPRex. The best result for the OWM was obtained through a combination of basic/thermal pretreatments with η=9.9; lastly, the CSS residue with ultrasonic pretreatment produced the highest quantity of hydrogen, η=5.2. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Pellet Cladding Mechanical Interaction Modeling Using the Extended Finite Element Method

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Benjamin W.; Jiang, Wen; Dolbow, John E.; Peco, Christian

    2016-09-01

    As a brittle material, the ceramic UO2 used as light water reactor fuel experiences significant fracturing throughout its life, beginning with the first rise to power of fresh fuel. This has multiple effects on the thermal and mechanical response of the fuel/cladding system. One such effect that is particularly important is that when there is mechanical contact between the fuel and cladding, cracks that extending from the outer surface of the fuel into the volume of the fuel cause elevated stresses in the adjacent cladding, which can potentially lead to cladding failure. Modeling the thermal and mechanical response of the cladding in the vicinity of these surface-breaking cracks in the fuel can provide important insights into this behavior to help avoid operating conditions that could lead to cladding failure. Such modeling has traditionally been done in the context of finite-element-based fuel performance analysis by modifying the fuel mesh to introduce discrete cracks. While this approach is effective in capturing the important behavior at the fuel/cladding interface, there are multiple drawbacks to explicitly incorporating the cracks in the finite element mesh. Because the cracks are incorporated in the original mesh, the mesh must be modified for cracks of specified location and depth, so it is difficult to account for crack propagation and the formation of new cracks at other locations. The extended finite element method (XFEM) has emerged in recent years as a powerful method to represent arbitrary, evolving, discrete discontinuities within the context of the finite element method. Development work is underway by the authors to implement XFEM in the BISON fuel performance code, and this capability has previously been demonstrated in simulations of fracture propagation in ceramic nuclear fuel. These preliminary demonstrations have included only the fuel, and excluded the cladding for simplicity. This paper presents initial results of efforts to apply XFEM to

  1. Pretreatment of Hanford purex plant first-cycle waste

    International Nuclear Information System (INIS)

    Gibson, M.W.; Gerboth, D.M.; Peters, B.B.

    1987-01-01

    A process has been developed to pretreat neutralized, first-cycle high-level waste from the fuels reprocessing facility (PUREX Plant) at the Hanford Site. The process separates solids from the supernate liquid, which contains soluble salts. The solids, including most of the fission products and transuranic elements, may then be vitrified for disposal, while the low-level supernate stream may be processed into a less expensive grout waste form. The process also includes ion exchange treatment of the separated supernate stream to remove radiocesium. A flow sheet based on these operations was completed to support a planned demonstration of the process in the Hanford site B Plant canyon facility

  2. Corrosion and corrosion-friction properties of plasma cladding wear-resistant layer on Fe-based alloy

    Science.gov (United States)

    Zhang, Dekun; Yu, Ruoqi; Chen, Kai; Yang, Xuehui; Liu, Yuan; Yin, Yan

    2018-02-01

    Plasma cladding technology is used to prepare a plasma cladding gradient wear-resistant layer, and the corrosion and corrosion-friction properties of the plasma cladding wear-resistant layer are analyzed. The results indicate that under pure immersion corrosion, the plasma gradient cladding wear-resisting layer has better corrosion resistance compared with that of single cladding specimen. No obvious corrosion traces occur on the corrosion surface. Under corrosion-friction conditions, the variety law of friction coefficient can be divided into four stages: rapid decline zone, slight increase zone, fluctuation zone and steady zone. The fluctuation ranges of friction coefficient and wear loss greatly reduce compared with those of dry friction. Furthermore, the wear scar has no obvious corrosion traces. The wear mechanism of the substrate is corrosion wear, adhesive wear, abrasive wear and fatigue wear, while the plasma cladding gradient wear-resistant layer is given priority to with adhesive wear and abrasive wear.

  3. Method for pretreating lignocellulosic biomass

    Science.gov (United States)

    Kuzhiyil, Najeeb M.; Brown, Robert C.; Dalluge, Dustin Lee

    2015-08-18

    The present invention relates to a method for pretreating lignocellulosic biomass containing alkali and/or alkaline earth metal (AAEM). The method comprises providing a lignocellulosic biomass containing AAEM; determining the amount of the AAEM present in the lignocellulosic biomass; identifying, based on said determining, the amount of a mineral acid sufficient to completely convert the AAEM in the lignocellulosic biomass to thermally-stable, catalytically-inert salts; and treating the lignocellulosic biomass with the identified amount of the mineral acid, wherein the treated lignocellulosic biomass contains thermally-stable, catalytically inert AAEM salts.

  4. Anaerobic Digestion of Saline Creeping Wild Ryegrass for Biogas Production and Pretreatment of Particleboard Material

    Science.gov (United States)

    The objective of this research was to develop an integrated process to produce biogas and high-quality particleboard using saline creeping wild ryegrass (CWR), Leymus triticoides through anaerobic digestion (AD). Besides producing biogas, AD also serves as a pretreatment method to remove the wax la...

  5. Effects of sulphiting and osmotic pre-treatments on the effective ...

    African Journals Online (AJOL)

    Air dehydration of fruits has been reported to be limiting in some factors especially on the drying kinetics and quality of the dried fruits. Removal of moisture during drying is attributed to these. This study was designed to evaluate the effects of sulphiting and osmotic pretreatments on effective diffusion coefficient (Deff) of air ...

  6. Cold alkaline extraction as a pretreatment for bioethanol production from eucalyptus, sugarcane bagasse and sugarcane straw

    International Nuclear Information System (INIS)

    Carvalho, Danila Morais de; Sevastyanova, Olena; Queiroz, José Humberto de; Colodette, Jorge Luiz

    2016-01-01

    Highlights: • Mathematical approach to optimize the process of cold alkaline extraction. • Hemicelluloses and lignin removal from biomasses by cold alkaline extraction. • Higher xylan and lignin removal for straw during pretreatment. • Formation of pseudo-extractives for eucalyptus during pretreatment. • Higher ethanol production for pretreated sugarcane straw. - Abstract: Optimal conditions for the cold alkaline extraction (CAE) pretreatment of eucalyptus, sugarcane bagasse and sugarcane straw are proposed in view of their subsequent bioconversion into ethanol through the semi-simultaneous saccharification and fermentation (SSSF) process (with presaccharification followed by simultaneous saccharification and fermentation, or SSF). The optimum conditions, which are identified based on an experiment with a factorial central composite design, resulted in the removal of 46%, 52% and 61% of the xylan and 15%, 37% and 45% of the lignin for eucalyptus, bagasse and straw, respectively. The formation of pseudo-extractives was observed during the CAE of eucalyptus. Despite the similar glucose concentration and yield for all biomasses after 12 h of presaccharification, the highest yield (0.065 g ethanol /g biomass ), concentrations (5.74 g L −1 ) and volumetric productivity for ethanol (0.57 g L −1 h −1 ) were observed for the sugarcane straw. This finding was most likely related to the improved accessibility of cellulose that resulted from the removal of the largest amount of xylan and lignin.

  7. Laboratory Demonstration of the Pretreatment Process with Caustic and Oxidative Leaching Using Actual Hanford Tank Waste

    Energy Technology Data Exchange (ETDEWEB)

    Fiskum, Sandra K.; Billing, Justin M.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Shimskey, Rick W.; Snow, Lanee A.

    2009-01-01

    This report describes the bench-scale pretreatment processing of actual tank waste materials through the entire baseline WTP pretreatment flowsheet in an effort to demonstrate the efficacy of the defined leaching processes on actual Hanford tank waste sludge and the potential impacts on downstream pretreatment processing. The test material was a combination of reduction oxidation (REDOX) tank waste composited materials containing aluminum primarily in the form of boehmite and dissolved S saltcake containing Cr(III)-rich entrained solids. The pretreatment processing steps tested included • caustic leaching for Al removal • solids crossflow filtration through the cell unit filter (CUF) • stepwise solids washing using decreasing concentrations of sodium hydroxide with filtration through the CUF • oxidative leaching using sodium permanganate for removing Cr • solids filtration with the CUF • follow-on solids washing and filtration through the CUF • ion exchange processing for Cs removal • evaporation processing of waste stream recycle for volume reduction • combination of the evaporated product with dissolved saltcake. The effectiveness of each process step was evaluated by following the mass balance of key components (such as Al, B, Cd, Cr, Pu, Ni, Mn, and Fe), demonstrating component (Al, Cr, Cs) removal, demonstrating filterability by evaluating filter flux rates under various processing conditions (transmembrane pressure, crossflow velocities, wt% undissolved solids, and PSD) and filter fouling, and identifying potential issues for WTP. The filterability was reported separately (Shimskey et al. 2008) and is not repeated herein.

  8. A contribution to the question of stress-corrosion cracking of austenitic stainless steel cladding in nuclear power plants

    International Nuclear Information System (INIS)

    Kupka, I.; Mrkous, P.

    1977-01-01

    A brief review is presented of the basic types of corrosion damage (uniform corrosion, intergranular corrosion, stress corrosion) and their influence on operational safety are estimated. Corrosion cracking is analyzed of austenitic stainless steel cladding taking into account the adverse impact of coolant and stress (both operational and residual) in a light water reactor primary circuit. Experimental data are given of residual stresses in the stainless steel clad material, as well as their magnitude and distribution after cladding and heat treatment. (author)

  9. Structural cladding /clad structures

    DEFF Research Database (Denmark)

    Beim, Anne

    2012-01-01

    the question of how materials are understood, handled and manifested when dealt with in architectural work and thus in building constructions. The question of ma-terial nature, the embedded properties and how materials perform when applied and transformed into constructions have been a central guiding rule...... or shared premise across architectural form making and building practices throughout centuries. However – today quite different regimes of thought define how building construction are to be designed and constructed. These are primarily driven by economic interest or environmental considerations dealt...... of materials, the structural features and the construction details of building systems in selected architectural works. With a particular focus at heavy constructions made of solid wood and masonry, and light weight constructions made of wooden frame structures and steel profiles, it is the intention...

  10. Structural cladding /clad structures:

    DEFF Research Database (Denmark)

    Beim, Anne

    2013-01-01

    tendencies, which can be traced in the use of materials, the structural features and the construction details of building systems in selected architectural works. With a particular focus at heavy constructions made of solid wood and masonry, and light weight constructions made of wooden frame structures...

  11. Influence of processing variables and alloy chemistry on the corrosion behavior of ZIRLO nuclear fuel cladding

    International Nuclear Information System (INIS)

    Comstock, R.J.; Sabol, G.P.; Schoenberger, G.

    1996-01-01

    Variations in the thermal heat treatments used during the fabrication of ZIRLO (Zr-1Nb-1Sn-0.1Fe) fuel clad tubing and in ZIRLO alloy chemistry were explored to develop a further understanding of the relationship between processing, microstructure, and cladding corrosion performance. Heat treatment variables included intermediate tube annealing temperatures as well as a beta-phase heat treatment during the latter stages of the tube reduction schedule. Chemistry variables included deviations in niobium and tin content from the nominal composition. The effects of both heat treatment and chemistry on corrosion behavior were assessed by autoclave tests in both pure and lithiated water and high-temperature steam. Analytical electron microscopy demonstrated that the best out-reactor corrosion performance is obtained for microstructures containing a fine distribution of beta-niobium and Zr-Nb-Fe particles. Deviations from this microstructure, such as the presence of beta-zirconium phase, tend to degrade corrosion resistance. ZIRLO fuel cladding was irradiated in four commercial reactors. In all cases, the microstructure in the cladding included beta-niobium and Zr-Nb-Fe particles. ZIRLO fuel cladding processed with a late-stage beta heat treatment to further refine the second-phase particle size exhibited in-reactor corrosion behavior that was similar to reference ZIRLO cladding. Variations of the in-reactor corrosion behavior of ZIRLO were correlated to tin content, with higher oxide thickness observed in the ZIRLO cladding containing higher tin. The results of these studies indicate that optimum corrosion performance of ZIRLO is achieved by maintaining a uniform distribution of fine second-phase particles and controlled levels of tin

  12. High Temperature Fuel Cladding Chemical Interactions Between TRIGA Fuels and 304 Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Emmanuel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Keiser, Jr., Dennis D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Forsmann, Bryan [Boise State Univ., ID (United States); Janney, Dawn E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Henley, Jody [Idaho National Lab. (INL), Idaho Falls, ID (United States); Woolstenhulme, Eric C. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-02-01

    High-temperature fuel-cladding chemical interactions (FCCI) between TRIGA (Training, Research, Isotopes, General Atomics) fuel elements and the 304 stainless steel (304SS) are of interest to develop an understanding of the fuel behavior during transient reactor scenarios. TRIGA fuels are composed of uranium (U) particles dispersed in a zirconium-hydride (Zr-H) matrix. In reactor, the fuel is encased in 304-stainless-steel (304SS) or Incoloy 800 clad tubes. At high temperatures, the fuel can readily interact with the cladding, resulting in FCCI. A number of FCCI can take place in this system. Interactions can be expected between the cladding and the Zr-H matrix, and/or between the cladding and the U-particles. Other interactions may be expected between the Zr-H matrix and the U-particles. Furthermore, the fuel contains erbium-oxide (Er-O) additions. Interactions can also be expected between the Er-O, the cladding, the Zr-H and the U-particles. The overall result is that very complex interactions may take place as a result of fuel and cladding exposures to high temperatures. This report discusses the characterization of the baseline fuel microstructure in the as-received state (prior to exposure to high temperature), characterization of the fuel after annealing at 950C for 24 hours and the results from diffusion couple experiments carries out at 1000C for 5 and 24 hours. Characterization was carried out via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) with sample preparation via focused ion beam in situ-liftout-technique.

  13. Simulations of Failure via Three-Dimensional Cracking in Fuel Cladding for Advanced Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Hongbing [Univ. of Texas, Austin, TX (United States); Bukkapatnam, Satish; Harimkar, Sandip; Singh, Raman; Bardenhagen, Scott

    2014-01-09

    Enhancing performance of fuel cladding and duct alloys is a key means of increasing fuel burnup. This project will address the failure of fuel cladding via three-dimensional cracking models. Researchers will develop a simulation code for the failure of the fuel cladding and validate the code through experiments. The objective is to develop an algorithm to determine the failure of fuel cladding in the form of three-dimensional cracking due to prolonged exposure under varying conditions of pressure, temperature, chemical environment, and irradiation. This project encompasses the following tasks: 1. Simulate 3D crack initiation and growth under instantaneous and/or fatigue loads using a new variant of the material point method (MPM); 2. Simulate debonding of the materials in the crack path using cohesive elements, considering normal and shear traction separation laws; 3. Determine the crack propagation path, considering damage of the materials incorporated in the cohesive elements to allow the energy release rate to be minimized; 4. Simulate the three-dimensional fatigue crack growth as a function of loading histories; 5. Verify the simulation code by comparing results to theoretical and numerical studies available in the literature; 6. Conduct experiments to observe the crack path and surface profile in unused fuel cladding and validate against simulation results; and 7. Expand the adaptive mesh refinement infrastructure parallel processing environment to allow adaptive mesh refinement at the 3D crack fronts and adaptive mesh merging in the wake of cracks. Fuel cladding is made of materials such as stainless steels and ferritic steels with added alloying elements, which increase stability and durability under irradiation. As fuel cladding is subjected to water, chemicals, fission gas, pressure, high temperatures, and irradiation while in service, understanding performance is essential. In the fast fuel used in advanced burner reactors, simulations of the nuclear

  14. The promoting effects of manganese on biological pretreatment with Irpex lacteus and enzymatic hydrolysis of corn stover.

    Science.gov (United States)

    Song, Lili; Ma, Fuying; Zeng, Yelin; Zhang, Xiaoyu; Yu, Hongbo

    2013-05-01

    The effect of metal ions on biological pretreatment was evaluated for improving subsequent enzymatic hydrolysis. Results showed that the efficiency of fungal pretreatment was greatly improved with manganese supplement in biomass. After enzymatic hydrolysis of 28-d pretreated corn stover, maximum glucose yield was 308.98 mg/g corn stover with manganese supplement, which increased by 61.39% as compared to the conventional fungal pretreatment. Furthermore, manganese also enhanced the production of ethanol, corresponding to a high ethanol conversion (83.39%). Manganese greatly improved the delignification of Irpex lacteus specially. Correspondingly, the efficiency of saccharification and fermentation was closely related to the removal of lignin. This study showed a promising effect of manganese on fungal pretreatment and the production of biofuels. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Research on microstructure properties of the TiC/Ni-Fe-Al coating prepared by laser cladding technology

    Science.gov (United States)

    Jiao, Junke; Xu, Zifa; Zan, Shaoping; Zhang, Wenwu; Sheng, Liyuan

    2017-10-01

    In this paper, the laser cladding method was used to preparation the TiC reinforced Ni-Fe-Al coating on the Ni base superalloy. The Ti/Ni-Fe-Al powder was preset on the Ni base superalloy and the powder layer thickness is 0.5mm. A fiber laser was used the melting Ti/Ni-Fe-Al powder in an inert gas environment. The shape of the cladding layer was tested using laser scanning confocal microscope (LSCM) under different cladding parameters such as the laser power, the melting velocity and the defocused amount. The microstructure, the micro-hardness was tested by LSCM, SEM, Vickers hardness tester. The test result showed that the TiC particles was distributed uniformly in the cladding layer and hardness of the cladding layer was improved from 180HV to 320HV compared with the Ni-Fe-Al cladding layer without TiC powder reinforced, and a metallurgical bonding was produced between the cladding layer and the base metal. The TiC powder could make the Ni-Fe-Al cladding layer grain refining, and the more TiC powder added in the Ni-Fe-Al powder, the smaller grain size was in the cladding layer.

  16. Pretreatment of textile dyeing wastewater using an anoxic baffled reactor.

    Science.gov (United States)

    Kong, Huoliang; Wu, Huifang

    2008-11-01

    A study on pretreatment of textile dyeing wastewater was carried out using an anoxic baffled reactor (ABR) at wastewater temperatures of 5-31.1 degrees C. When hydraulic retention time (HRT) was 8h, the color of outflow of ABR was only 40 times at 5 degrees C and it could satisfy the professional discharge standard (grade-1) of textile and dyeing industry of China (GB4287-92). The total COD removal efficiency of ABR was 34.6%, 47.5%, 50.0%, 53.3%, 54.7% and 58.1% at 5, 9.7, 14.9, 19.7, 23.5 and 31.1 degrees C, respectively. Besides, after the wastewater being pre-treated by ABR when HRT was 6h and 8h, the BOD5/COD value rose from 0.30 of inflow to 0.46 of outflow and from 0.30 of inflow to 0.40 of outflow, respectively. Experimental results indicated that ABR was a very feasible process to decolorize and pre-treat the textile dyeing wastewater at ambient temperature. Moreover, a kinetic simulation of organic matter degradation in ABR at six different wastewater temperatures was carried through. The kinetic analysis showed the organic matter degradation was a first-order reaction. The reaction activation energy was 19.593 kJ mol(-1) and the temperature coefficient at 5-31.1 degrees C was 1.028.

  17. Boron removal from saline water by a microbial desalination cell integrated with donnan dialysis

    OpenAIRE

    Ping, Q.; Abu-Reesh, I.M.; He, Z.

    2015-01-01

    Boron has toxic effects on plant growth and thus its removal is necessary from desalinated saline water for irrigation application. Microbial desalination cells (MDCs) are a new approach for effective desalination but boron removal has not been addressed before. Herein, MDCs were studied for boron removal with aid of Donnan Dialysis (DD). The alkaline solution generated by the MDC cathode was used to ionize boric acid to facilitate boron removal. An MDC system with DD pretreatment removed 60 ...

  18. Removing Bureaucracy

    Science.gov (United States)

    2015-08-01

    11 Defense AT&L: July–August 2015 Removing Bureaucracy Katharina G. McFarland McFarland is Assistant Secretary of Defense for Acquisition. I once...involvement from all of the Service warfighting areas came together to scrub the program requirements due to concern over the “ bureaucracy ” and... Bureaucracy ” that focuses on reducing cycle time, staffing time and all forms of inefficiencies. This includes review of those burdens that Congress

  19. Eddy-Current Testing of Thin-Walled Cladding Tubes

    International Nuclear Information System (INIS)

    Verstappen, C.; Deknock, R.; Neider, R.; Brabers, M.; Meester, P. de

    1965-01-01

    In view of an extended programme on the evaluation of properties and defects of stainless-steel and Zircaloy thin-walled tubes, a basic study has been made of the optimum test conditions for applying eddy-current test methods. An electronic apparatus has been built to define these conditions for a great variety of test problems. Therefore, it was necessary to have the possibility of changing the frequency over a wide range and to measure the two components of the complex impedance of the test coil separately. This has die advantage over a measurement of the absolute value of the impedance change since this value has little meaning in view of the change of the properties of the test object. The actual apparatus allows the precise and sensitive measurement of the real and imaginary components of any test coil in a frequency range from 0.1 - 500 kHz. A special type of modulation device has been developed. The apparatus is not considered as an actual testing apparatus; by determining optimum conditions for each case,- it enables a relatively simple and specific apparatus to be built. Up to now, a detailed study of relationships between physical and electrical properties of a specimen and the test-coil impedance has been performed for tubular fuel-cladding materials. Frequency and coil configurations are established for wall-thickness measurements and a particular apparatus has been constructed; the accuracy is better than 1% and changes between inner and outer diameter variations can be discriminated. Other specific apparatus are studied and proposed. (author) [fr

  20. Cladding glass ceramic for use in high powered lasers

    Science.gov (United States)

    Marker, Alexander J.; Campbell, John H.

    1998-01-01

    A Cu-doped/Fe-doped low expansion glass ceramic composition comprising in Wt. %: SiO{sub 2} 50--65; Al{sub 2}O{sub 3} 18--27; P{sub 2}O{sub 5} 0--10; Li{sub 2}O 2--6; Na{sub 2}O 0--2; K{sub 2}O 0--2; B{sub 2}O{sub 3} 0--1; MgO 0--4; ZnO 0--5; CaO 0--4; BaO 0--5; TiO{sub 2} 1--3; ZrO{sub 3} 1--3; As{sub 2}O{sub 3} 0--1.5; Sb{sub 2}O{sub 3} 0--1.5; CuO 0--3; and Fe{sub 2}O{sub 3} 0--1 wherein the total amount of SiO{sub 2}, Al{sub 2}O{sub 3} and P{sub 2}O{sub 5} is 80--89 wt. %, and said glass ceramic contains as a dopant 0.1--3 wt. % CuO, 0.1--1 wt. % Fe{sub 2}O{sub 3} or a combined CuO+Fe{sub 2}O{sub 3} amount of 0.1--4 wt. %. The glass ceramic composition is suitable for use as a cladding material for solid laser energy storage mediums as well as for use in beam attenuators for measuring laser energy level and beam blocks or beam dumps used for absorbing excess or unused laser energy.