WorldWideScience

Sample records for presynaptic gabaa receptors

  1. Photo-antagonism of the GABAA receptor.

    Science.gov (United States)

    Mortensen, Martin; Iqbal, Favaad; Pandurangan, Arun P; Hannan, Saad; Huckvale, Rosemary; Topf, Maya; Baker, James R; Smart, Trevor G

    2014-07-29

    Neurotransmitter receptor trafficking is fundamentally important for synaptic transmission and neural network activity. GABAA receptors and inhibitory synapses are vital components of brain function, yet much of our knowledge regarding receptor mobility and function at inhibitory synapses is derived indirectly from using recombinant receptors, antibody-tagged native receptors and pharmacological treatments. Here we describe the use of a set of research tools that can irreversibly bind to and affect the function of recombinant and neuronal GABAA receptors following ultraviolet photoactivation. These compounds are based on the competitive antagonist gabazine and incorporate a variety of photoactive groups. By using site-directed mutagenesis and ligand-docking studies, they reveal new areas of the GABA binding site at the interface between receptor β and α subunits. These compounds enable the selected inactivation of native GABAA receptor populations providing new insight into the function of inhibitory synapses and extrasynaptic receptors in controlling neuronal excitation.

  2. Metabotropic Regulation of Extrasynaptic GABAA Receptors

    Directory of Open Access Journals (Sweden)

    William Martin Connelly

    2013-10-01

    Full Text Available A large body of work now shows the importance of GABAA receptor-mediated tonic inhibition in regulating CNS function. However, outside of pathological conditions, there is relatively little evidence that the magnitude of tonic inhibition is itself under regulation. Here we review the mechanisms by which tonic inhibition is known to be modulated, and outline the potential behavioural consequences of this modulation. Specifically, we address the ability of protein kinase A and C to phosphorylate the extrasynaptic receptors responsible for the tonic GABAA current, and how G-protein coupled receptors can regulate tonic inhibition through these effectors. We then speculate about the possible functional consequences of regulating the magnitude of the tonic GABAA current.

  3. Prolonged cannabinoid exposure alters GABAA receptor mediated synaptic function in cultured hippocampal neurons

    Science.gov (United States)

    Deshpande, Laxmikant S.; Blair, Robert. E.; DeLorenzo, Robert. J.

    2011-01-01

    Developing cannabinoid based medication along with marijuana’s recreational use makes it important to investigate molecular adaptations the endocannabinoid system undergoes following prolonged use and withdrawal. Repeated cannabinoid administration results in development of tolerance and produces withdrawal symptoms that may include seizures. Here we employed electrophysiological and immunochemical techniques to investigate the effects of prolonged CB1 receptor agonist exposure on cultured hippocampal neurons. Approximately 60% of CB1 receptors colocalize to GABAergic terminals in hippocampal cultures. Prolonged treatment with the cannabinamimetic WIN 55,212-2 (+WIN, 1μM, 24-h) caused profound CB1 receptor downregulation accompanied by neuronal hyperexcitability. Furthermore, prolonged +WIN treatment resulted in increased GABA release as indicated by increased mIPSC frequency, a diminished GABAergic inhibition as indicated by reduction in mIPSC amplitude and a reduction in GABAA channel number. Additionally, surface staining for the GABAA β2/3 receptor subunits was decreased, while no changes in staining for the presynaptic vesicular GABA transporter were observed, indicating that GABAergic terminals remained intact. These findings demonstrate that agonist-induced downregulation of the CB1 receptor in hippocampal cultures results in neuronal hyperexcitability that may be attributed, in part, to alterations in both presynaptic GABA release mechanisms and postsynaptic GABAA receptor function demonstrating a novel role for cannabinoid-dependent presynaptic control of neuronal transmission. PMID:21324315

  4. Distinct roles of synaptic and extrasynaptic GABAA receptors in striatal inhibition dynamics

    Directory of Open Access Journals (Sweden)

    Ruixi eLuo

    2013-11-01

    Full Text Available Striatonigral and striatopallidal projecting medium spiny neurons (MSNs express dopamine D1 (D1+ and D2 receptors (D2+, respectively. Both classes receive extensive GABAergic input via expression of synaptic, perisynaptic and extrasynaptic GABAA receptors. The activation patterns of different presynaptic GABAergic neurons produce transient and sustained GABAA receptor-mediated conductance that fulfill distinct physiological roles. We performed single and dual whole cell recordings from striatal neurons in mice expressing fluorescent proteins in interneurons and MSNs. We report specific inhibitory dynamics produced by distinct activation patterns of presynaptic GABAergic neurons as source of synaptic, perisynaptic and extrasynaptic inhibition. Synaptic GABAA receptors in MSNs contain the α2, γ2 and a β subunit. In addition, there is evidence for the developmental increase of the α1 subunit that contributes to faster inhibitory postsynaptic current (IPSC. Tonic GABAergic currents in MSNs from adult mice are carried by extrasynaptic receptors containing the α4 and δ subunit, while in younger mice this current is mediated by receptors that contain the α5 subunit. Both forms of tonic currents are differentially expressed in D1+ and D2+ MSNs. This study extends these findings by relating presynaptic activation with pharmacological analysis of inhibitory conductance in mice where the β3 subunit is conditionally removed in fluorescently labeled D2+ MSNs and in mice with global deletion of the δ subunit. Our results show that responses to low doses of gaboxadol (2μM, a GABAA receptor agonist with preference to δ subunit, are abolished in the δ but not the β3 subunit knock out mice. This suggests that the β3 subunit is not a component of the adult extrasynaptic receptor pool, in contrast to what has been shown for tonic current in young mice. Deletion of the β3 subunit from D2+ MSNs however, removed slow spontaneous IPSCs, implicating its

  5. Dynamic mobility of functional GABAA receptors at inhibitory synapses.

    Science.gov (United States)

    Thomas, Philip; Mortensen, Martin; Hosie, Alastair M; Smart, Trevor G

    2005-07-01

    Importing functional GABAA receptors into synapses is fundamental for establishing and maintaining inhibitory transmission and for controlling neuronal excitability. By introducing a binding site for an irreversible inhibitor into the GABAA receptor alpha1 subunit channel lining region that can be accessed only when the receptor is activated, we have determined the dynamics of receptor mobility between synaptic and extrasynaptic locations in hippocampal pyramidal neurons. We demonstrate that the cell surface GABAA receptor population shows no fast recovery after irreversible inhibition. In contrast, after selective inhibition, the synaptic receptor population rapidly recovers by the import of new functional entities within minutes. The trafficking pathways that promote rapid importation of synaptic receptors do not involve insertion from intracellular pools, but reflect receptor diffusion within the plane of the membrane. This process offers the synapse a rapid mechanism to replenish functional GABAA receptors at inhibitory synapses and a means to control synaptic efficacy.

  6. Anaesthetic Impairment of Immune Function Is Mediated via GABAA Receptors

    Science.gov (United States)

    Wheeler, Daniel W.; Thompson, Andrew J.; Corletto, Federico; Reckless, Jill; Loke, Justin C. T.; Lapaque, Nicolas; Grant, Andrew J.; Mastroeni, Pietro; Grainger, David J.; Padgett, Claire L.; O'Brien, John A.; Miller, Nigel G. A.; Trowsdale, John

    2011-01-01

    Background GABAA receptors are members of the Cys-loop family of neurotransmitter receptors, proteins which are responsible for fast synaptic transmission, and are the site of action of wide range of drugs [1]. Recent work has shown that Cys-loop receptors are present on immune cells, but their physiological roles and the effects of drugs that modify their function in the innate immune system are currently unclear [2]. We are interested in how and why anaesthetics increase infections in intensive care patients; a serious problem as more than 50% of patients with severe sepsis will die [3]–[6]. As many anaesthetics act via GABAA receptors [7], the aim of this study was to determine if these receptors are present on immune cells, and could play a role in immunocompromising patients. Principal Findings We demonstrate, using RT-PCR, that monocytes express GABAA receptors constructed of α1, α4, β2, γ1 and/or δ subunits. Whole cell patch clamp electrophysiological studies show that GABA can activate these receptors, resulting in the opening of a chloride-selective channel; activation is inhibited by the GABAA receptor antagonists bicuculline and picrotoxin, but not enhanced by the positive modulator diazepam. The anaesthetic drugs propofol and thiopental, which can act via GABAA receptors, impaired monocyte function in classic immunological chemotaxis and phagocytosis assays, an effect reversed by bicuculline and picrotoxin. Significance Our results show that functional GABAA receptors are present on monocytes with properties similar to CNS GABAA receptors. The functional data provide a possible explanation as to why chronic propofol and thiopental administration can increase the risk of infection in critically ill patients: their action on GABAA receptors inhibits normal monocyte behaviour. The data also suggest a potential solution: monocyte GABAA receptors are insensitive to diazepam, thus the use of benzodiazepines as an alternative anesthetising agent may be

  7. Differential Modulation of GABAA and NMDA Receptors by an α7-nicotinic Acetylcholine Receptor Agonist in Chronic Glaucoma

    Directory of Open Access Journals (Sweden)

    Xujiao Zhou

    2017-12-01

    Full Text Available Presynaptic modulation of γ-aminobutyric acid (GABA release by an alpha7 nicotinic acetylcholine receptor (α7-nAChR agonist promotes retinal ganglion cell (RGC survival and function, as suggested by a previous study on a chronic glaucomatous model from our laboratory. However, the role of excitatory and inhibitory amino acid receptors and their interaction with α7-nAChR in physiological and glaucomatous events remains unknown. In this study, we investigated GABAA and N-methyl-D-aspartate (NMDA receptor activity in control and glaucomatous retinal slices and the regulation of amino acid receptor expression and function by α7-nAChR. Whole-cell patch-clamp recordings from RGCs revealed that the α7-nAChR specific agonist PNU-282987 enhanced the amplitude of currents elicited by GABA and reduced the amplitude of currents elicited by NMDA. The positive modulation of GABAA receptor and the negative modulation of NMDA receptor (NMDAR by PNU-282987-evoked were prevented by pre-administration of the α7-nAChR antagonist methyllycaconitine (MLA. The frequency and the amplitude of glutamate receptor-mediated miniature glutamatergic excitatory postsynaptic currents (mEPSCs were not significantly different between the control and glaucomatous RGCs. Additionally, PNU-282987-treated slices showed no alteration in the frequency or amplitude of mEPSCs relative to control RGCs. Moreover, we showed that expression of the α1 subunit of the GABAA receptor was downregulated and the expression of the NMDAR NR2B subunit was upregulated by intraocular pressure (IOP elevation, and the changes of high IOP were blocked by PNU-282987. In conclusion, retina GABAA and NMDARs are modulated positively and negatively, respectively, by activation of α7-nAChR in in vivo chronic glaucomatous models.

  8. PGE2 Modulates GABAA Receptors via an EP1 Receptor-Mediated Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Guang Yang

    2015-07-01

    Full Text Available Aims: PGE2 is one of the most abundant prostanoids in mammalian tissues, but its effect on neuronal receptors has not been well investigated. This study examines the effect of PGE2 on GABAA receptor currents in rat cerebellar granule neurons. Methods: GABAA currents were recorded using a patch-clamp technique. Cell surface and total protein of GABAA β1/2/3 subunits was carried out by Western blot analysis. Results: Upon incubation of neurons with PGE2 (1 µM for 60 minutes, GABAA currents were significantly potentiated. This PGE2-driven effect could be blocked by PKC or CaMKII inhibitors as well as EP1 receptor antagonist, and mimicked by PMA or EP1 receptor agonist. Furthermore, Western blot data showed that PGE2 did not increase the total expression level of GABAA receptors, but significantly increased surface levels of GABAA β1/2/3 subunits after 1 h of treatment. Consistently, both PKC and CaMKII inhibitors were able to reduce PGE2-induced increases in cell surface expression of GABAA receptors. Conclusion: Activation of either the PKC or CaMKII pathways by EP1 receptors mediates the PGE2-induced increase in GABAA currents. This suggests that upregulation of postsynaptic GABAA receptors by PGE2 may have profound effects on cerebellar functioning under physiological and pathological conditions.

  9. Presynaptic inhibition of synaptic transmission in the rat hippocampus by activation of muscarinic receptors: involvement of presynaptic calcium influx

    OpenAIRE

    Qian, Jing; Saggau, Peter

    1997-01-01

    Modulation of presynaptic voltage-dependent calcium channels (VDCCs) by muscarinic receptors at the CA3–CA1 synapse of rat hippocampal slices was investigated by using the calcium indicator fura-2. Stimulation-evoked presynaptic calcium transients ([Capre]t) and field excitatory postsynaptic potentials (fe.p.s.ps) were simultaneously recorded. The relationship between presynaptic calcium influx and synaptic transmission was studied.Activation of muscarinic receptors inhibited [Capre]t, thereb...

  10. Preparation of steroid sulfamates and their interaction with GABAA receptor

    Czech Academy of Sciences Publication Activity Database

    Kapras, Vojtěch; Šťastná, Eva; Chodounská, Hana; Pouzar, Vladimír; Krištofíková, Zdena

    2009-01-01

    Roč. 74, č. 4 (2009), s. 643-650 ISSN 0010-0765 R&D Projects: GA ČR(CZ) GA203/08/1498 Institutional research plan: CEZ:AV0Z40550506 Keywords : sulfamates * neurosteroids * GABAA receptors * pregnane Subject RIV: CC - Organic Chemistry Impact factor: 0.856, year: 2009

  11. Editing modifies the GABA(A) receptor subunit alpha3

    DEFF Research Database (Denmark)

    Ohlson, Johan; Pedersen, Jakob Skou; Haussler, David

    2007-01-01

    to find selectively edited sites and combined it with bioinformatic techniques that find stem-loop structures suitable for editing. We present here the first verified editing candidate detected by this screening procedure. We show that Gabra-3, which codes for the alpha3 subunit of the GABA(A) receptor...

  12. Modulatory Effects of Eschscholzia californica Alkaloids on Recombinant GABAA Receptors

    Directory of Open Access Journals (Sweden)

    Milan Fedurco

    2015-01-01

    Full Text Available The California poppy (Eschscholzia californica Cham. contains a variety of natural compounds including several alkaloids found exclusively in this plant. Because of the sedative, anxiolytic, and analgesic effects, this herb is currently sold in pharmacies in many countries. However, our understanding of these biological effects at the molecular level is still lacking. Alkaloids detected in E. californica could be hypothesized to act at GABAA receptors, which are widely expressed in the brain mainly at the inhibitory interneurons. Electrophysiological studies on a recombinant α1β2γ2 GABAA receptor showed no effect of N-methyllaurotetanine at concentrations lower than 30 μM. However, (S-reticuline behaved as positive allosteric modulator at the α3, α5, and α6 isoforms of GABAA receptors. The depressant properties of aerial parts of E. californica are assigned to chloride-current modulation by (S-reticuline at the α3β2γ2 and α5β2γ2 GABAA receptors. Interestingly, α1, α3, and α5 were not significantly affected by (R-reticuline, 1,2-tetrahydroreticuline, codeine, and morphine—suspected (S-reticuline metabolites in the rodent brain.

  13. In silico comparative genomic analysis of GABAA receptor transcriptional regulation

    Directory of Open Access Journals (Sweden)

    Joyce Christopher J

    2007-06-01

    Full Text Available Abstract Background Subtypes of the GABAA receptor subunit exhibit diverse temporal and spatial expression patterns. In silico comparative analysis was used to predict transcriptional regulatory features in individual mammalian GABAA receptor subunit genes, and to identify potential transcriptional regulatory components involved in the coordinate regulation of the GABAA receptor gene clusters. Results Previously unreported putative promoters were identified for the β2, γ1, γ3, ε, θ and π subunit genes. Putative core elements and proximal transcriptional factors were identified within these predicted promoters, and within the experimentally determined promoters of other subunit genes. Conserved intergenic regions of sequence in the mammalian GABAA receptor gene cluster comprising the α1, β2, γ2 and α6 subunits were identified as potential long range transcriptional regulatory components involved in the coordinate regulation of these genes. A region of predicted DNase I hypersensitive sites within the cluster may contain transcriptional regulatory features coordinating gene expression. A novel model is proposed for the coordinate control of the gene cluster and parallel expression of the α1 and β2 subunits, based upon the selective action of putative Scaffold/Matrix Attachment Regions (S/MARs. Conclusion The putative regulatory features identified by genomic analysis of GABAA receptor genes were substantiated by cross-species comparative analysis and now require experimental verification. The proposed model for the coordinate regulation of genes in the cluster accounts for the head-to-head orientation and parallel expression of the α1 and β2 subunit genes, and for the disruption of transcription caused by insertion of a neomycin gene in the close vicinity of the α6 gene, which is proximal to a putative critical S/MAR.

  14. GABAA receptor-expressing neurons promote consumption in Drosophila melanogaster.

    Science.gov (United States)

    Cheung, Samantha K; Scott, Kristin

    2017-01-01

    Feeding decisions are highly plastic and bidirectionally regulated by neurons that either promote or inhibit feeding. In Drosophila melanogaster, recent studies have identified four GABAergic interneurons that act as critical brakes to prevent incessant feeding. These GABAergic neurons may inhibit target neurons that drive consumption. Here, we tested this hypothesis by examining GABA receptors and neurons that promote consumption. We find that Resistance to dieldrin (RDL), a GABAA type receptor, is required for proper control of ingestion. Knockdown of Rdl in a subset of neurons causes overconsumption of tastants. Acute activation of these neurons is sufficient to drive consumption of appetitive substances and non-appetitive substances and acute silencing of these neurons decreases consumption. Taken together, these studies identify GABAA receptor-expressing neurons that promote Drosophila ingestive behavior and provide insight into feeding regulation.

  15. Metabolic Products of Linalool and Modulation of GABAA Receptors

    Directory of Open Access Journals (Sweden)

    Sinem Milanos

    2017-06-01

    Full Text Available Terpenoids are major subcomponents in aroma substances which harbor sedative physiological potential. We have demonstrated that various monoterpenoids such as the acyclic linalool enhance GABAergic currents in an allosteric manner in vitro upon overexpression of inhibitory α1β2 GABAA receptors in various expression systems. However, in plants or humans, i.e., following intake via inhalation or ingestion, linalool undergoes metabolic modifications including oxygenation and acetylation, which may affect the modulatory efficacy of the generated linalool derivatives. Here, we analyzed the modulatory potential of linalool derivatives at α1β2γ2 GABAA receptors upon transient overexpression. Following receptor expression control, electrophysiological recordings in a whole cell configuration were used to determine the chloride influx upon co-application of GABA EC10−30 together with the modulatory substance. Our results show that only oxygenated linalool metabolites at carbon 8 positively affect GABAergic currents whereas derivatives hydroxylated or carboxylated at carbon 8 were rather ineffective. Acetylated linalool derivatives resulted in non-significant changes of GABAergic currents. We can conclude that metabolism of linalool reduces its positive allosteric potential at GABAA receptors compared to the significant potentiation effects of the parent molecule linalool itself.

  16. Metabolic products of linalool and modulation of GABAA receptors

    Science.gov (United States)

    Milanos, Sinem; Elsharif, Shaimaa A.; Janzen, Dieter; Buettner, Andrea; Villmann, Carmen

    2017-06-01

    Terpenoids are major subcomponents in aroma substances which harbor sedative physiological potential. We have demonstrated that various monoterpenoids such as the acyclic linalool enhance GABAergic currents in an allosteric manner in vitro upon overexpression of inhibitory a1b2 GABAA receptors in various expression systems. However, in plants or humans, i.e. following intake via inhalation or ingestion, linalool undergoes metabolic modifications including oxygenation and acetylation, which may affect the modulatory efficacy of the generated linalool derivatives. Here, we analyzed the modulatory potential of linalool derivatives at a1b2g2 GABAA receptors upon transient overexpression. Following receptor expression control, electrophysiological recordings in a whole cell configuration were used to determine the chloride influx upon co-application of GABA EC5-10 together with the modulatory substance. Our results show that only oxygenated linalool metabolites at carbon 8 positively affect GABAergic currents whereas derivatives hydroxylated or carboxylated at carbon 8 were rather ineffective. Acetylated linalool derivatives resulted in non-significant changes of GABAergic currents. We can conclude that metabolism of linalool reduces its positive allosteric potential at GABAA receptors compared to the significant potentiation effects of the parent molecule linalool itself.

  17. Metabolic Products of Linalool and Modulation of GABAA Receptors

    OpenAIRE

    Sinem Milanos; Sinem Milanos; Shaimaa A. Elsharif; Dieter Janzen; Andrea Buettner; Andrea Buettner; Carmen Villmann

    2017-01-01

    Terpenoids are major subcomponents in aroma substances which harbor sedative physiological potential. We have demonstrated that various monoterpenoids such as the acyclic linalool enhance GABAergic currents in an allosteric manner in vitro upon overexpression of inhibitory α1β2 GABAA receptors in various expression systems. However, in plants or humans, i.e., following intake via inhalation or ingestion, linalool undergoes metabolic modifications including oxygenation and acetylation, which m...

  18. THIP, a hypnotic and antinociceptive drug, enhances a tonic GABAA receptor mediated conductance in mouse neocortex

    DEFF Research Database (Denmark)

    Drasbek, Kim Ryun; Jensen, Kimmo

    2006-01-01

    THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) is a selective GABA(A) receptor agonist with a preference for delta-subunit containing GABA(A) receptors. THIP is currently being tested in human trials for its hypnotic effects, displaying advantageous tolerance and addiction properties. Sinc...... suggest that THIP activates an extrasynaptic GABA(A) receptor-mediated conductance in the neocortex, which may alter the cortical network activity....

  19. Positron Emission Tomography (PET Quantification of GABAA Receptors in the Brain of Fragile X Patients.

    Directory of Open Access Journals (Sweden)

    Charlotte D'Hulst

    Full Text Available Over the last several years, evidence has accumulated that the GABAA receptor is compromised in animal models for fragile X syndrome (FXS, a common hereditary form of intellectual disability. In mouse and fly models, agonists of the GABAA receptor were able to rescue specific consequences of the fragile X mutation. Here, we imaged and quantified GABAA receptors in vivo in brain of fragile X patients using Positron Emission Topography (PET and [11C]flumazenil, a known high-affinity and specific ligand for the benzodiazepine site of GABAA receptors. We measured regional GABAA receptor availability in 10 fragile X patients and 10 control subjects. We found a significant reduction of on average 10% in GABAA receptor binding potential throughout the brain in fragile X patients. In the thalamus, the brain region showing the largest difference, the GABAA receptor availability was even reduced with 17%. This is one of the first reports of a PET study of human fragile X brain and directly demonstrates that the GABAA receptor availability is reduced in fragile X patients. The study reinforces previous hypotheses that the GABAA receptor is a potential target for rational pharmacological treatment of fragile X syndrome.

  20. Reciprocal developmental regulation of presynaptic ionotropic receptors

    Czech Academy of Sciences Publication Activity Database

    Tureček, Rostislav; Trussell O., Laurence

    2002-01-01

    Roč. 99, č. 21 (2002), s. 13884-13889 ISSN 0027-8424 Grant - others:US(XC) DC04450; US(XC) TW05406-01 Institutional research plan: CEZ:AV0Z5039906 Keywords : ionotropic receptors Subject RIV: FH - Neurology Impact factor: 10.701, year: 2002

  1. On the benzodiazepine binding pocket in GABAA receptors.

    Science.gov (United States)

    Berezhnoy, Dmytro; Nyfeler, Yves; Gonthier, Anne; Schwob, Hervé; Goeldner, Maurice; Sigel, Erwin

    2004-01-30

    Benzodiazepines are used for their sedative/hypnotic, anxiolytic, muscle relaxant, and anticonvulsive effects. They exert their actions through a specific high affinity binding site on the major inhibitory neurotransmitter receptor, the gamma-aminobutyric acid, type A (GABA(A)) receptor channel, where they act as positive allosteric modulators. To start to elucidate the relative positioning of benzodiazepine binding site ligands in their binding pocket, GABA(A) receptor residues thought to reside in the site were individually mutated to cysteine and combined with benzodiazepine analogs carrying substituents reactive to cysteine. Direct apposition of such reactive partners is expected to lead to an irreversible site-directed reaction. We describe here the covalent interaction of alpha(1)H101C with a reactive group attached to the C-7 position of diazepam. This interaction was studied at the level of radioactive ligand binding and at the functional level using electrophysiological methods. Covalent reaction occurs concomitantly with occupancy of the binding pocket. It stabilizes the receptor in its allosterically stimulated conformation. Covalent modification is not observed in wild type receptors or when using mutated alpha(1)H101C-containing receptors in combination with the reactive ligand pre-reacted with a sulfhydryl group, and the modification rate is reduced by the binding site ligand Ro15-1788. We present in addition evidence that gamma(2)Ala-79 is probably located in the access pathway of the ligand to its binding pocket.

  2. Presynaptic G Protein-Coupled Receptors: Gatekeepers of Addiction?

    Directory of Open Access Journals (Sweden)

    Kari A Johnson

    2016-11-01

    Full Text Available Drug abuse and addiction cause widespread social and public health problems, and the neurobiology underlying drug actions and drug use and abuse is an area of intensive research. Drugs of abuse alter synaptic transmission, and these actions contribute to acute intoxication as well as the chronic effects of abused substances. Transmission at most mammalian synapses involves neurotransmitter activation of two receptor subtypes, ligand-gated ion channels that mediate fast synaptic responses, and G protein-coupled receptors (GPCRs that have slower neuromodulatory actions. The GPCRs represent a large proportion of neurotransmitter receptors involved in almost all facets of nervous system function. In addition, these receptors are targets for many pharmacotherapeutic agents. Drugs of abuse directly or indirectly affect neuromodulation mediated by GPCRs, with important consequences for intoxication, drug taking and responses to prolonged drug exposure, withdrawal and addiction. Among the GPCRs are several subtypes involved in presynaptic inhibition, most of which are coupled to the Gi/o class of G protein. There is increasing evidence that these presynaptic Gi/o-coupled GPCRs have important roles in the actions of drugs of abuse, as well as behaviors related to these drugs. This topic will be reviewed, with particular emphasis on receptors for three neurotransmitters, dopamine (D1- and D2-like receptors, endocannabinoids (CB1 receptors and glutamate (group II metabotropic glutamate (mGlu receptors. The focus is on recent evidence from laboratory animal models (and some evidence in humans implicating these receptors in the acute and chronic effects of numerous abused drugs, as well as in the control of drug seeking and taking. The ability of drugs targeting these receptors to modify drug seeking behavior has raised the possibility of using compounds targeting these receptors for addiction pharmacotherapy. This topic is also discussed, with emphasis on

  3. Generation of functional inhibitory synapses incorporating defined combinations of GABA(A or glycine receptor subunits

    Directory of Open Access Journals (Sweden)

    Christine Laura Dixon

    2015-12-01

    Full Text Available Fast inhibitory neurotransmission in the brain is mediated by wide range of GABAA receptor (GABAAR and glycine receptor (GlyR isoforms, each with different physiological and pharmacological properties. Because multiple isoforms are expressed simultaneously in most neurons, it is difficult to define the properties of inhibitory postsynaptic currents mediated by individual isoforms in vivo. Although recombinant expression systems permit the expression of individual isoforms in isolation, they require exogenous agonist application which cannot mimic the dynamic neurotransmitter profile characteristic of native synapses. We describe a neuron-HEK293 cell co-culture technique for generating inhibitory synapses incorporating defined combinations of GABAAR or GlyR subunits. Primary neuronal cultures, prepared from embryonic rat cerebral cortex or spinal cord, are used to provide presynaptic GABAergic and glycinergic terminals, respectively. When the cultures are mature, HEK293 cells expressing the subunits of interest plus neuroligin 2A are plated onto the neurons, which rapidly form synapses onto HEK293 cells. Patch clamp electrophysiology is then used to analyze the physiological and pharmacological properties of the inhibitory postsynaptic currents mediated by the recombinant receptors. The method is suitable for investigating the kinetic properties or the effects of drugs on inhibitory postsynaptic currents mediated by defined GABAAR or GlyR isoforms of interest, the effects of hereditary disease mutations on the formation and function of both types of synapses, and synaptogenesis and synaptic clustering mechanisms. The entire cell preparation procedure takes 2 – 5 weeks.

  4. GABAA receptor partial agonists and antagonists

    DEFF Research Database (Denmark)

    Krall, Jacob; Balle, Thomas; Krogsgaard-Larsen, Niels

    2015-01-01

    to the local temporal pattern of GABA impact, enabling phasic or tonic inhibition. Specific GABAAR antagonists are essential tools for physiological and pharmacological elucidation of the different type of GABAAR inhibition. However, distinct selectivity among the receptor subtypes (populations) has been shown...... antagonists and describes the development of potent antagonists from partial agonists originally derived from the potent GABAAR agonist muscimol. In this process, several heterocyclic aromatic systems have been used in combination with structural models in order to map the orthosteric binding site...... and to reveal structural details to be used for obtaining potency and subtype selectivity. The challenges connected to functional characterization of orthosteric GABAAR partial agonists and antagonists, especially with regard to GABAAR stoichiometry and alternative binding sites are discussed. GABAAR...

  5. Anaesthetic impairment of immune function is mediated via GABA(A receptors.

    Directory of Open Access Journals (Sweden)

    Daniel W Wheeler

    2011-02-01

    Full Text Available GABA(A receptors are members of the Cys-loop family of neurotransmitter receptors, proteins which are responsible for fast synaptic transmission, and are the site of action of wide range of drugs. Recent work has shown that Cys-loop receptors are present on immune cells, but their physiological roles and the effects of drugs that modify their function in the innate immune system are currently unclear. We are interested in how and why anaesthetics increase infections in intensive care patients; a serious problem as more than 50% of patients with severe sepsis will die. As many anaesthetics act via GABA(A receptors, the aim of this study was to determine if these receptors are present on immune cells, and could play a role in immunocompromising patients.We demonstrate, using RT-PCR, that monocytes express GABA(A receptors constructed of α1, α4, β2, γ1 and/or δ subunits. Whole cell patch clamp electrophysiological studies show that GABA can activate these receptors, resulting in the opening of a chloride-selective channel; activation is inhibited by the GABA(A receptor antagonists bicuculline and picrotoxin, but not enhanced by the positive modulator diazepam. The anaesthetic drugs propofol and thiopental, which can act via GABA(A receptors, impaired monocyte function in classic immunological chemotaxis and phagocytosis assays, an effect reversed by bicuculline and picrotoxin.Our results show that functional GABA(A receptors are present on monocytes with properties similar to CNS GABA(A receptors. The functional data provide a possible explanation as to why chronic propofol and thiopental administration can increase the risk of infection in critically ill patients: their action on GABA(A receptors inhibits normal monocyte behaviour. The data also suggest a potential solution: monocyte GABA(A receptors are insensitive to diazepam, thus the use of benzodiazepines as an alternative anesthetising agent may be advantageous where infection is a life

  6. Anaesthetic impairment of immune function is mediated via GABA(A) receptors.

    Science.gov (United States)

    Wheeler, Daniel W; Thompson, Andrew J; Corletto, Federico; Reckless, Jill; Loke, Justin C T; Lapaque, Nicolas; Grant, Andrew J; Mastroeni, Pietro; Grainger, David J; Padgett, Claire L; O'Brien, John A; Miller, Nigel G A; Trowsdale, John; Lummis, Sarah C R; Menon, David K; Beech, John S

    2011-02-24

    GABA(A) receptors are members of the Cys-loop family of neurotransmitter receptors, proteins which are responsible for fast synaptic transmission, and are the site of action of wide range of drugs. Recent work has shown that Cys-loop receptors are present on immune cells, but their physiological roles and the effects of drugs that modify their function in the innate immune system are currently unclear. We are interested in how and why anaesthetics increase infections in intensive care patients; a serious problem as more than 50% of patients with severe sepsis will die. As many anaesthetics act via GABA(A) receptors, the aim of this study was to determine if these receptors are present on immune cells, and could play a role in immunocompromising patients. We demonstrate, using RT-PCR, that monocytes express GABA(A) receptors constructed of α1, α4, β2, γ1 and/or δ subunits. Whole cell patch clamp electrophysiological studies show that GABA can activate these receptors, resulting in the opening of a chloride-selective channel; activation is inhibited by the GABA(A) receptor antagonists bicuculline and picrotoxin, but not enhanced by the positive modulator diazepam. The anaesthetic drugs propofol and thiopental, which can act via GABA(A) receptors, impaired monocyte function in classic immunological chemotaxis and phagocytosis assays, an effect reversed by bicuculline and picrotoxin. Our results show that functional GABA(A) receptors are present on monocytes with properties similar to CNS GABA(A) receptors. The functional data provide a possible explanation as to why chronic propofol and thiopental administration can increase the risk of infection in critically ill patients: their action on GABA(A) receptors inhibits normal monocyte behaviour. The data also suggest a potential solution: monocyte GABA(A) receptors are insensitive to diazepam, thus the use of benzodiazepines as an alternative anesthetising agent may be advantageous where infection is a life

  7. Lipid raft integrity affects GABAA receptor, but not NMDA receptor modulation by psychopharmacological compounds.

    Science.gov (United States)

    Nothdurfter, Caroline; Tanasic, Sascha; Di Benedetto, Barbara; Uhr, Manfred; Wagner, Eva-Maria; Gilling, Kate E; Parsons, Chris G; Rein, Theo; Holsboer, Florian; Rupprecht, Rainer; Rammes, Gerhard

    2013-07-01

    Lipid rafts have been shown to play an important role for G-protein mediated signal transduction and the function of ligand-gated ion channels including their modulation by psychopharmacological compounds. In this study, we investigated the functional significance of the membrane distribution of NMDA and GABAA receptor subunits in relation to the accumulation of the tricyclic antidepressant desipramine (DMI) and the benzodiazepine diazepam (Diaz). In the presence of Triton X-100, which allowed proper separation of the lipid raft marker proteins caveolin-1 and flotillin-1 from the transferrin receptor, all receptor subunits were shifted to the non-raft fractions. In contrast, under detergent-free conditions, NMDA and GABAA receptor subunits were detected both in raft and non-raft fractions. Diaz was enriched in non-raft fractions without Triton X-100 in contrast to DMI, which preferentially accumulated in lipid rafts. Impairment of lipid raft integrity by methyl-β-cyclodextrine (MβCD)-induced cholesterol depletion did not change the inhibitory effect of DMI at the NMDA receptor, whereas it enhanced the potentiating effect of Diaz at the GABAA receptor at non-saturating concentrations of GABA. These results support the hypothesis that the interaction of benzodiazepines with the GABAA receptor likely occurs outside of lipid rafts while the antidepressant DMI acts on ionotropic receptors both within and outside these membrane microdomains.

  8. Presynaptic localization of histamine H3-receptors in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, K.; Mizuguchi, H.; Fukui, H.; Wada, H. (Osaka Univ. (Japan))

    1991-06-28

    The localization of histamine H3-receptors in subcellular fractions from the rat brain was examined in a (3H) (R) alpha-methylhistamine binding assay and compared with those of histamine H1- and adrenaline alpha 1- and alpha 2-receptors. Major (3H)(R) alpha-methylhistamine binding sites with increased specific activities ((3H)ligand binding vs. protein amount) were recovered from the P2 fraction by differential centrifugation. Minor (3H)(R)alpha-methylhistamine binding sites with increased specific activities were also detected in the P3 fraction. Further subfractionation of the P2 fraction by discontinuous sucrose density gradient centrifugation showed major recoveries of (3H)(R)alpha-methylhistamine binding in myelin (MYE) and synaptic plasma membrane (SPM) fractions. A further increase in specific activity was observed in the MYE fraction, but the SPM fraction showed no significant increase in specific activity. Adrenaline alpha 2-receptors, the pre-synaptic autoreceptors, in a (3H) yohimbine binding assay showed distribution patterns similar to histamine H3-receptors. On the other hand, post-synaptic histamine H1- and adrenaline alpha 1-receptors were closely localized and distributed mainly in the SPM fraction with increased specific activity. Only a negligible amount was recovered in the MYE fraction, unlike the histamine H3- and adrenaline alpha 2-receptors.

  9. Presynaptic localization of histamine H3-receptors in rat brain

    International Nuclear Information System (INIS)

    Fujimoto, K.; Mizuguchi, H.; Fukui, H.; Wada, H.

    1991-01-01

    The localization of histamine H3-receptors in subcellular fractions from the rat brain was examined in a [3H] (R) alpha-methylhistamine binding assay and compared with those of histamine H1- and adrenaline alpha 1- and alpha 2-receptors. Major [3H](R) alpha-methylhistamine binding sites with increased specific activities ([3H]ligand binding vs. protein amount) were recovered from the P2 fraction by differential centrifugation. Minor [3H](R)alpha-methylhistamine binding sites with increased specific activities were also detected in the P3 fraction. Further subfractionation of the P2 fraction by discontinuous sucrose density gradient centrifugation showed major recoveries of [3H](R)alpha-methylhistamine binding in myelin (MYE) and synaptic plasma membrane (SPM) fractions. A further increase in specific activity was observed in the MYE fraction, but the SPM fraction showed no significant increase in specific activity. Adrenaline alpha 2-receptors, the pre-synaptic autoreceptors, in a [3H] yohimbine binding assay showed distribution patterns similar to histamine H3-receptors. On the other hand, post-synaptic histamine H1- and adrenaline alpha 1-receptors were closely localized and distributed mainly in the SPM fraction with increased specific activity. Only a negligible amount was recovered in the MYE fraction, unlike the histamine H3- and adrenaline alpha 2-receptors

  10. Cyclohexanol analogues are positive modulators of GABAA receptor currents and act as general anaesthetics in vivo

    Science.gov (United States)

    GABAA receptors meet all the pharmacological criteria required to be considered important general anaesthetic targets. In the following study, the modulatory effects of various commercially available and novel cyclohexanol were investigated on recombinant human '-aminobutyric acid (GABAA, a1ß2'2s) r...

  11. GABAA Receptor α Subunits Differentially Contribute to Diazepam Tolerance after Chronic Treatment

    Science.gov (United States)

    Vinkers, Christiaan H.; van Oorschot, Ruud; Nielsen, Elsebet Ø.; Cook, James M.; Hansen, Henrik H.; Groenink, Lucianne; Olivier, Berend; Mirza, Naheed R.

    2012-01-01

    Background Within the GABAA-receptor field, two important questions are what molecular mechanisms underlie benzodiazepine tolerance, and whether tolerance can be ascribed to certain GABAA-receptor subtypes. Methods We investigated tolerance to acute anxiolytic, hypothermic and sedative effects of diazepam in mice exposed for 28-days to non-selective/selective GABAA-receptor positive allosteric modulators: diazepam (non-selective), bretazenil (partial non-selective), zolpidem (α1 selective) and TPA023 (α2/3 selective). In-vivo binding studies with [3H]flumazenil confirmed compounds occupied CNS GABAA receptors. Results Chronic diazepam treatment resulted in tolerance to diazepam's acute anxiolytic, hypothermic and sedative effects. In mice treated chronically with bretazenil, tolerance to diazepam's anxiolytic and hypothermic, but not sedative, effects was seen. Chronic zolpidem treatment resulted in tolerance to diazepam's hypothermic effect, but partial anxiolytic tolerance and no sedative tolerance. Chronic TPA023 treatment did not result in tolerance to diazepam's hypothermic, anxiolytic or sedative effects. Conclusions Our data indicate that: (i) GABAA-α2/α3 subtype selective drugs might not induce tolerance; (ii) in rodents quantitative and temporal variations in tolerance development occur dependent on the endpoint assessed, consistent with clinical experience with benzodiazepines (e.g., differential tolerance to antiepileptic and anxiolytic actions); (iii) tolerance to diazepam's sedative actions needs concomitant activation of GABAA-α1/GABAA-α5 receptors. Regarding mechanism, in-situ hybridization studies indicated no gross changes in expression levels of GABAA α1, α2 or α5 subunit mRNA in hippocampus or cortex. Since selective chronic activation of either GABAA α2, or α3 receptors does not engender tolerance development, subtype-selective GABAA drugs might constitute a promising class of novel drugs. PMID:22912786

  12. Dietary acetylenic oxylipin falcarinol differentially modulates GABAA receptors.

    Science.gov (United States)

    Czyzewska, Marta Magdalena; Chrobok, Lukasz; Kania, Alan; Jatczak, Magdalena; Pollastro, Federica; Appendino, Giovanni; Mozrzymas, Jerzy Wladyslaw

    2014-12-26

    The dietary oxylipins falcarinol (1a) and falcarindiol (1b) trap thiols by direct nucleophilic addition to their diyne system, but despite this, only falcarinol (1a) is a reversible agonist of cannabinoid receptors, providing a rationale for comparing their activity also on other neuronal targets. Because GABAA receptors (GABAARs) are exquisitely sensitive to polyacetylenic oxylipins in terms of either potentiation (falcarindiol, 1b) or inhibition (oenanthotoxin, 2a), the activity of 1a was investigated on synaptic (α1β2γ2L) and extrasynaptic (α1β2δ and α1β2) subtypes of GABAARs. Falcarinol (1a) significantly enhanced the amplitude of currents mediated by α1β2γ2L receptors, but this effect was associated with a use-dependent block. Conversely, α1β2 receptors were inhibited without any sign of use-dependent block for the entire range of concentrations tested (1-10 μM). Interestingly, responses mediated by α1β2δ receptors, showing no or very little macroscopic desensitization, were strongly potentiated by 1a, exhibiting a fading reminiscent of macroscopic desensitization. When compared to the activity of falcarindiol (1b), falcarinol (1a) showed a higher affinity for GABAARs and, overall, a substantially different profile of pharmacological action. Taken together, the present data support the view that modulation of GABAARs might underlie the insecticidal and sedative activity of falcarinol (1a).

  13. GABA_A receptor function is regulated by lipid bilayer elasticity

    DEFF Research Database (Denmark)

    Søgaard, Rikke; Werge, Thomas; Berthelsen, Camilla

    2006-01-01

    Docosahexaenoic acid ( DHA) and other polyunsaturated fatty acids ( PUFAs) promote GABA(A) receptor [ (3)H]-muscimol binding, and DHA increases the rate of GABAA receptor desensitization. Triton X-100, a structurally unrelated amphiphile, similarly promotes [ (3)H]-muscimol binding. The mechanism......( s) underlying these effects are poorly understood. DHA and Triton X-100, at concentrations that affect GABAA receptor function, increase the elasticity of lipid bilayers measured as decreased bilayer stiffness using gramicidin channels as molecular force transducers. We have previously shown...... that membrane protein function can be regulated by amphiphile-induced changes in bilayer elasticity and hypothesized that GABAA receptors could be similarly regulated. We therefore studied the effects of four structurally unrelated amphiphiles that decrease bilayer stiffness ( Triton X-100, octyl...

  14. Dual Modulators of GABA-A and Alpha 7 Nicotinic Receptors for Treating Autism

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0144 TITLE: Dual Modulators of GABA-A and Alpha 7 Nicotinic Receptors for Treating Autism PRINCIPAL INVESTIGATOR...SUBTITLE 5a. CONTRACT NUMBER Dual Modulators of GABA-A and Alpha 7 Nicotinic Receptors for Treating Autism 5b. GRANT NUMBER W81XWH-13-1-0144 5c...ABSTRACT Autism spectrum disorder (ASD) is a polygenic signaling disorder that may result, in part, from an imbalance in excitatory and inhibitory

  15. Modulation of GABAA receptor channel gating by pentobarbital

    Science.gov (United States)

    Steinbach, Joe Henry; Akk, Gustav

    2001-01-01

    We have studied the kinetic properties of channel gating of recombinant α1β2γ2L GABAA receptors transiently expressed in human embryonic kidney 293 cells, using the cell-attached, single-channel patch-clamp technique. The receptors were activated by GABA, β-alanine or piperidine-4-sulfonic acid (P4S), and the effects of pentobarbital (PB) on single-channel activity were examined. At relatively high concentrations of agonist, single-channel activity occurred in well-defined clusters. In global terms, PB increased the mean open time for events in clusters, without changing the mean closed time. The addition of PB shifted the curve relating the probability of being open in a cluster (Po) to lower agonist concentrations, and that shift could be accounted for by the changes in mean open time. The intracluster closed-time histograms contained four components. The durations and relative frequencies of these closed-dwell components were not affected by the presence of 40 μm PB, at any agonist concentration. The duration of one component was dependent upon the concentration of agonist used to activate the receptor. Accordingly, the inverse of the mean duration of this component will be called the effective opening rate. The channel-opening rate constant (β) was determined from the value of the effective opening rate at a saturating agonist concentration. β was about 1900 s−1 when the receptors were activated by GABA, 1500 s−1 when activated by β-alanine, and too low to be determined when P4S was administered. In the presence of 40 μm PB, β was about 1500 s−1 when the receptors were activated by GABA, 1400 s−1 when activated by β-alanine, and 50 s−1 when activated by P4S. Hence, the potentiating effect of PB is not mediated by a change in β. The concentration of agonist producing a half-maximal effective opening rate also remained unaffected in the presence of PB, indicating that receptor affinity for agonists is not influenced by PB. The distributions

  16. Tonically Active α5GABAA Receptors Reduce Motoneuron Excitability and Decrease the Monosynaptic Reflex

    Directory of Open Access Journals (Sweden)

    Martha Canto-Bustos

    2017-09-01

    Full Text Available Motoneurons, the final common path of the Central Nervous System (CNS, are under a complex control of its excitability in order to precisely translate the interneuronal pattern of activity into skeletal muscle contraction and relaxation. To fulfill this relevant function, motoneurons are provided with a vast repertoire of receptors and channels, including the extrasynaptic GABAA receptors which have been poorly investigated. Here, we confirmed that extrasynaptic α5 subunit-containing GABAA receptors localize with choline acetyltransferase (ChAT positive cells, suggesting that these receptors are expressed in turtle motoneurons as previously reported in rodents. In these cells, α5GABAA receptors are activated by ambient GABA, producing a tonic shunt that reduces motoneurons’ membrane resistance and affects their action potential firing properties. In addition, α5GABAA receptors shunted the synaptic excitatory inputs depressing the monosynaptic reflex (MSR induced by activation of primary afferents. Therefore, our results suggest that α5GABAA receptors may play a relevant physiological role in motor control.

  17. Incremental conductance levels of GABAA receptors in dopaminergic neurones of the rat substantia nigra pars compacta.

    Science.gov (United States)

    Guyon, A; Laurent, S; Paupardin-Tritsch, D; Rossier, J; Eugène, D

    1999-05-01

    1. Molecular and biophysical properties of GABAA receptors of dopaminergic (DA) neurones of the pars compacta of the rat substantia nigra were studied in slices and after acute dissociation. 2. Single-cell reverse transcriptase-multiplex polymerase chain reaction confirmed that DA neurones contained mRNAs encoding for the alpha3 subunit of the GABAA receptor, but further showed the presence of alpha4 subunit mRNAs. alpha2, beta1 and gamma1 subunit mRNAs were never detected. Overall, DA neurones present a pattern of expression of GABAA receptor subunit mRNAs containing mainly alpha3/4beta2/3gamma3. 3. Outside-out patches were excised from DA neurones and GABAA single-channel patch-clamp currents were recorded under low doses (1-5 microM) of GABA or isoguvacine, a selective GABAA agonist. Recordings presented several conductance levels which appeared to be integer multiples of an elementary conductance of 4-5 pS. This property was shared by GABAA receptors of cerebellar Purkinje neurones recorded in slices (however, with an elementary conductance of 3 pS). Only the 5-6 lowest levels were analysed. 4. A progressive change in the distribution of occupancy of these levels was observed when increasing the isoguvacine concentration (up to 10 microM) as well as when adding zolpidem (20-200 nM), a drug acting at the benzodiazepine binding site: both treatments enlarged the occupancy of the highest conductance levels, while decreasing that of the smallest ones. Conversely, Zn2+ (10 microM), a negative allosteric modulator of GABAA receptor channels, decreased the occupancy of the highest levels in favour of the lowest ones. 5. These properties of alpha3/4beta2/3gamma3-containing GABAA receptors would support the hypothesis of either single GABAA receptor channels with multiple open states or that of a synchronous recruitment of GABAA receptor channels that could involve their clustering in the membranes of DA neurones.

  18. GABAA receptor drugs and neuronal plasticity in reward and aversion: focus on the ventral tegmental area

    Directory of Open Access Journals (Sweden)

    Elena eVashchinkina

    2014-11-01

    Full Text Available GABAA receptors are the main fast inhibitory neurotransmitter receptors in the mammalian brain, and targets for many clinically important drugs widely used in the treatment of anxiety disorders, insomnia and in anesthesia. Nonetheless, there are significant risks associated with the long-term use of these drugs particularly related to development of tolerance and addiction. Addictive mechanisms of GABAA receptor drugs are poorly known, but recent findings suggest that those drugs may induce aberrant neuroadaptations in the brain reward circuitry. Recently, benzodiazepines, acting on synaptic GABAA receptors, and modulators of extrasynaptic GABAA receptors (THIP and neurosteroids have been found to induce plasticity in the ventral tegmental area (VTA dopamine neurons and their main target projections. Furthermore, depending whether synaptic or extrasynaptic GABAA receptor populations are activated, the behavioral outcome of repeated administration seems to correlate with rewarding or aversive behavioral responses, respectively. The VTA dopamine neurons project to forebrain centers such as the nucleus accumbens and medial prefrontal cortex, and receive afferent projections from these brain regions and especially from the extended amygdala and lateral habenula, forming the major part of the reward and aversion circuitry. Both synaptic and extrasynaptic GABAA drugs inhibit the VTA GABAergic interneurons, thus activating the VTA DA neurons by disinhibition and this way inducing glutamatergic synaptic plasticity. However, the GABAA drugs failed to alter synaptic spine numbers as studied from Golgi-Cox-stained VTA dendrites. Since the GABAergic drugs are known to depress the brain metabolism and gene expression, their likely way of inducing neuroplasticity in mature neurons is by disinhibiting the principal neurons, which remains to be rigorously tested for a number of clinically important anxiolytics, sedatives and anesthetics in different parts of

  19. GABAA receptor-mediated modulation of neuronal activity propagation upon tetanic stimulation in rat hippocampal slices.

    Science.gov (United States)

    Tominaga, Takashi; Tominaga, Yoko

    2010-10-01

    Tetanic stimulation (100 Hz), which can induce long-term potentiation in synaptic connections in the hippocampal CA1 region, causes γ-aminobutyric acid (GABA)(A) receptor-mediated long-lasting depolarization of postsynaptic neurons. However, it is not clear how this stimulation modulates neuronal activity propagation. We studied tetanic burst-induced neuronal responses in the hippocampal CA1 region by using optical-recording methods employing a voltage-sensitive dye and focused on GABA(A) receptor-mediated modulation. We observed that burst stimulation induced long-lasting depolarization and progressive decrease in individual excitatory postsynaptic potentials (EPSPs). Both these effects were suppressed by picrotoxin, a GABA(A) receptor antagonist. Under whole-cell voltage-clamp conditions, we observed a long-lasting inhibitory current (IPSC) and a prominent progressive decrease in the amplitude of the excitatory postsynaptic current (EPSC). Further, picrotoxin inhibited the IPSC and the progressive decrease in EPSC. The optically recorded long-lasting depolarization and progressive decrease of EPSPs were strongly dependent on the distance between the recording electrode and the stimulation site. Optical recordings performed across a wide swatch of CA1 revealed that the decrease in activity propagation was followed by facilitation of propagation after recovery and that this facilitation also depended on GABA(A) receptors. Intense activation of GABA(A) receptors is a key factor shaping the spatiotemporal patterns of high-frequency stimulation-induced responses in the CA1 region.

  20. New insights into the GABAA receptor structure and orthosteric ligand binding

    DEFF Research Database (Denmark)

    Sander, Tommy; Frølund, Bente Flensborg; Bruun, Anne Techau

    2011-01-01

    GABA(A) receptors (GABA(A) Rs) are ligand gated chloride ion channels that mediate overall inhibitory signaling in the CNS. A detailed understanding of their structure is important to gain insights in, e.g., ligand binding and functional properties of this pharmaceutically important target....... Homology modeling is a necessary tool in this regard because experimentally determined structures are lacking. Here we present an exhaustive approach for creating a high quality model of the a(1) ß(2) ¿(2) subtype of the GABA(A) R ligand binding domain, and we demonstrate its usefulness in understanding......, and its stability in molecular dynamics (MD) compared with that of the two homologous crystal structures. We then combined the model with extensive structure-activity relationships available from two homologous series of orthosteric GABA(A) R antagonists to create a detailed hypothesis for their binding...

  1. Altered GABAA Receptor Subunit Expression and Pharmacology in Human Angelman Syndrome Cortex

    Science.gov (United States)

    Roden, William H.; Peugh, Lindsey D.; Jansen, Laura A.

    2011-01-01

    The neurodevelopmental disorder Angelman syndrome is most frequently caused by deletion of the maternally-derived chromosome 15q11-q13 region, which includes not only the causative UBE3A gene, but also the β3-α5-γ3 GABAA receptor subunit gene cluster. GABAergic dysfunction has been hypothesized to contribute to the occurrence of epilepsy and cognitive and behavioral impairments in this condition. In the present study, analysis of GABAA receptor subunit expression and pharmacology was performed in cerebral cortex from four subjects with Angelman syndrome and compared to that from control tissue. The membrane fraction of frozen postmortem neocortical tissue was isolated and subjected to quantitative Western blot analysis. The ratios of β3/β2 and α5/α1 subunit protein expression in Angelman syndrome cortex were significantly decreased when compared with controls. An additional membrane fraction was injected into Xenopus oocytes, resulting in incorporation of the brain membrane vesicles with their associated receptors into the oocyte cellular membrane. Two-electrode voltage clamp analysis of GABAA receptor currents was then performed. Studies of GABAA receptor pharmacology in Angelman syndrome cortex revealed increased current enhancement by the α1-selective benzodiazepine site agonist zolpidem and by the barbiturate phenobarbital, while sensitivity to current inhibition by zinc was decreased. GABAA receptor affinity and modulation by neurosteroids were unchanged. This shift in GABAA receptor subunit expression and pharmacology in Angelman syndrome is consistent with impaired extrasynaptic but intact to augmented synaptic cortical GABAergic inhibition, which could contribute to the epileptic, behavioral, and cognitive phenotypes of the disorder. PMID:20692323

  2. GABA regulates the rat hypothalamic-pituitary-adrenocortical axis via different GABA-A receptor alpha-subtypes

    DEFF Research Database (Denmark)

    Mikkelsen, Jens D; Bundzikova, Jana; Larsen, Marianne Hald

    2008-01-01

    dependent on the composition of the GABA-A receptor subunits through which they act. We show here that positive modulators of alpha(1)-subtype containing GABA-A receptors with zolpidem (10 mg/kg) increase HPA activity in terms of increase in plasma corticosterone and induction of Fos in the PVN, whereas...

  3. Augmentation of Tonic GABAA Inhibition in Absence Epilepsy: Therapeutic Value of Inverse Agonists at Extrasynaptic GABAA Receptors

    Directory of Open Access Journals (Sweden)

    Adam C. Errington

    2011-01-01

    Full Text Available It is well established that impaired GABAergic inhibition within neuronal networks can lead to hypersynchronous firing patterns that are the typical cellular hallmark of convulsive epileptic seizures. However, recent findings have highlighted that a pathological enhancement of GABAergic signalling within thalamocortical circuits is a necessary and sufficient condition for nonconvulsive typical absence seizure genesis. In particular, increased activation of extrasynaptic GABAA receptors (eGABAAR and augmented “tonic” GABAA inhibition in thalamocortical neurons have been demonstrated across a range of genetic and pharmacological models of absence epilepsy. Moreover, evidence from monogenic mouse models (stargazer/lethargic and the polygenic Genetic Absence Epilepsy Rats from Strasbourg (GAERS indicate that the mechanism underlying eGABAAR gain of function is nonneuronal in nature and results from a deficiency in astrocytic GABA uptake through the GAT-1 transporter. These results challenge the existing theory that typical absence seizures are underpinned by a widespread loss of GABAergic function in thalamocortical circuits and illustrate a vital role for astrocytes in the pathology of typical absence epilepsy. Moreover, they explain why pharmacological agents that enhance GABA receptor function can initiate or exacerbate absence seizures and suggest a potential therapeutic role for inverse agonists at eGABAARs in absence epilepsy.

  4. Bicarbonate Contributes to GABAA Receptor-Mediated Neuronal Excitation in Surgically-Resected Human Hypothalamic Hamartomas

    Science.gov (United States)

    Do-Young, Kim; Fenoglio, Kristina A.; Kerrigan, John F.; Rho, Jong M.

    2009-01-01

    SUMMARY The role of bicarbonate (HCO3-) in GABAA receptor-mediated depolarization of human hypothalamic hamartoma (HH) neurons was investigated using cellular electrophysiological and calcium imaging techniques. Activation of GABAA receptors with muscimol (30 μM) provoked neuronal excitation in over 70% of large (18-22 μM) HH neurons in HCO3- buffer. Subsequent perfusion of HCO3--free HEPES buffer produced partial suppression of muscimol-induced excitation. Additionally, 53% of large HH neurons under HCO3--free conditions exhibited reduced intracellular calcium accumulation by muscimol. These results suggest that HCO3- efflux through GABAA receptors on a subpopulation of large HH neurons may contribute to membrane depolarization and subsequent activation of L-type calcium channels. PMID:19022626

  5. Temporal change in NMDA receptor signaling and GABAA receptor expression in rat caudal vestibular nucleus during motion sickness habituation.

    Science.gov (United States)

    Wang, Jun-Qin; Li, Hong-Xia; Chen, Xin-Min; Mo, Feng-Feng; Qi, Rui-Rui; Guo, Jun-Sheng; Cai, Yi-Ling

    2012-06-21

    Repeated exposure to a provocative motion stimulus leads to motion sickness habituation indicative of the existence of central processes to counteract the disturbing properties of the imposed motion. In the present study, we attempt to investigate whether NMDA and GABA(A) receptors in rat caudal vestibular nucleus neurons are involved in motion sickness habituation induced by repeated Ferris-wheel like rotation in daily session (2h/d). We showed that defecation response increased and spontaneous locomotion decreased within 4 sessions (sickness phase). They recovered back to the control level after 7 sessions (habituation phase). Western blot analysis found that NMDA receptor signal molecules: calmodulin protein kinase II and cAMP response element-binding protein (CREB) were both activated during sickness phase, while a prolonged CREB activation was also observed during habituation phase. Real-time quantitative PCR revealed an increase in c-fos and a decrease in Arc mRNA level during sickness phase. We also found an increase in GABA(A) receptor α1 subunit (GABA(A) α1) protein level in this stage. These results suggested that altered NMDA receptor signaling and GABA(A) receptor expression level in caudal vestibular nucleus were associated with motion sickness habituation. Furthermore, immunofluorescence and confocal laser scanning microscopy showed that the number of GABA(A) α1 immunolabeled neurons in caudal vestibular nucleus increased while the number of GABA(A) α1/Arc double labeled neurons and the average amount of Arc particle in soma of these neurons decreased during sickness phase. It suggested that GABA(A) receptor level might be negatively regulated by Arc protein in caudal vestibular nucleus neurons. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Role of the Wnt receptor Frizzled-1 in presynaptic differentiation and function

    Directory of Open Access Journals (Sweden)

    Alvarez Alejandra R

    2009-11-01

    Full Text Available Abstract Background The Wnt signaling pathway regulates several fundamental developmental processes and recently has been shown to be involved in different aspects of synaptic differentiation and plasticity. Some Wnt signaling components are localized at central synapses, and it is thus possible that this pathway could be activated at the synapse. Results We examined the distribution of the Wnt receptor Frizzled-1 in cultured hippocampal neurons and determined that this receptor is located at synaptic contacts co-localizing with presynaptic proteins. Frizzled-1 was found in functional synapses detected with FM1-43 staining and in synaptic terminals from adult rat brain. Interestingly, overexpression of Frizzled-1 increased the number of clusters of Bassoon, a component of the active zone, while treatment with the extracellular cysteine-rich domain (CRD of Frizzled-1 decreased Bassoon clustering, suggesting a role for this receptor in presynaptic differentiation. Consistent with this, treatment with the Frizzled-1 ligand Wnt-3a induced presynaptic protein clustering and increased functional presynaptic recycling sites, and these effects were prevented by co-treatment with the CRD of Frizzled-1. Moreover, in synaptically mature neurons Wnt-3a was able to modulate the kinetics of neurotransmitter release. Conclusion Our results indicate that the activation of the Wnt pathway through Frizzled-1 occurs at the presynaptic level, and suggest that the synaptic effects of the Wnt signaling pathway could be modulated by local activation through synaptic Frizzled receptors.

  7. Functional Characterization of Native, High-Affinity GABAA Receptors in Human Pancreatic β Cells

    Directory of Open Access Journals (Sweden)

    Sergiy V. Korol

    2018-04-01

    Full Text Available In human pancreatic islets, the neurotransmitter γ-aminobutyric acid (GABA is an extracellular signaling molecule synthesized by and released from the insulin-secreting β cells. The effective, physiological GABA concentration range within human islets is unknown. Here we use native GABAA receptors in human islet β cells as biological sensors and reveal that 100–1000 nM GABA elicit the maximal opening frequency of the single-channels. In saturating GABA, the channels desensitized and stopped working. GABA modulated insulin exocytosis and glucose-stimulated insulin secretion. GABAA receptor currents were enhanced by the benzodiazepine diazepam, the anesthetic propofol and the incretin glucagon-like peptide-1 (GLP-1 but not affected by the hypnotic zolpidem. In type 2 diabetes (T2D islets, single-channel analysis revealed higher GABA affinity of the receptors. The findings reveal unique GABAA receptors signaling in human islets β cells that is GABA concentration-dependent, differentially regulated by drugs, modulates insulin secretion and is altered in T2D. Keywords: GABA, GABAA receptor, Pancreatic islet, Type 2 diabetes

  8. α5-GABAA receptors negatively regulate MYC-amplified medulloblastoma growth.

    Science.gov (United States)

    Sengupta, Soma; Weeraratne, Shyamal Dilhan; Sun, Hongyu; Phallen, Jillian; Rallapalli, Sundari K; Teider, Natalia; Kosaras, Bela; Amani, Vladimir; Pierre-Francois, Jessica; Tang, Yujie; Nguyen, Brian; Yu, Furong; Schubert, Simone; Balansay, Brianna; Mathios, Dimitris; Lechpammer, Mirna; Archer, Tenley C; Tran, Phuoc; Reimer, Richard J; Cook, James M; Lim, Michael; Jensen, Frances E; Pomeroy, Scott L; Cho, Yoon-Jae

    2014-04-01

    Neural tumors often express neurotransmitter receptors as markers of their developmental lineage. Although these receptors have been well characterized in electrophysiological, developmental and pharmacological settings, their importance in the maintenance and progression of brain tumors and, importantly, the effect of their targeting in brain cancers remains obscure. Here, we demonstrate high levels of GABRA5, which encodes the α5-subunit of the GABAA receptor complex, in aggressive MYC-driven, "Group 3" medulloblastomas. We hypothesized that modulation of α5-GABAA receptors alters medulloblastoma cell survival and monitored biological and electrophysiological responses of GABRA5-expressing medulloblastoma cells upon pharmacological targeting of the GABAA receptor. While antagonists, inverse agonists and non-specific positive allosteric modulators had limited effects on medulloblastoma cells, a highly specific and potent α5-GABAA receptor agonist, QHii066, resulted in marked membrane depolarization and a significant decrease in cell survival. This effect was GABRA5 dependent and mediated through the induction of apoptosis as well as accumulation of cells in S and G2 phases of the cell cycle. Chemical genomic profiling of QHii066-treated medulloblastoma cells confirmed inhibition of MYC-related transcriptional activity and revealed an enrichment of HOXA5 target gene expression. siRNA-mediated knockdown of HOXA5 markedly blunted the response of medulloblastoma cells to QHii066. Furthermore, QHii066 sensitized GABRA5 positive medulloblastoma cells to radiation and chemotherapy consistent with the role of HOXA5 in directly regulating p53 expression and inducing apoptosis. Thus, our results provide novel insights into the synthetic lethal nature of α5-GABAA receptor activation in MYC-driven/Group 3 medulloblastomas and propose its targeting as a novel strategy for the management of this highly aggressive tumor.

  9. Positive allosteric modulation of GABA-A receptors reduces capsaicin-induced primary and secondary hypersensitivity in rats

    DEFF Research Database (Denmark)

    Hansen, Rikke Rie; Erichsen, Helle K; Brown, David T

    2012-01-01

    GABA-A receptor positive allosteric modulators (PAMs) mediate robust analgesia in animal models of pathological pain, in part via enhancing injury-induced loss of GABA-A-α2 and -α3 receptor function within the spinal cord. As yet, a lack of clinically suitable tool compounds has prevented...... this concept being tested in humans. Prior to assessing the efficacy of GABA-A receptor PAMs in a human volunteer pain model we have compared compounds capable of variously modulating GABA-A receptor function in comparable rat models of capsaicin-induced acute nocifensive flinching behaviour and secondary...

  10. α5-GABAA receptors negatively regulate MYC-amplified medulloblastoma growth

    OpenAIRE

    Sengupta, Soma; Weeraratne, Shyamal Dilhan; Sun, Hongyu; Phallen, Jillian; Rallapalli, Sundari K.; Teider, Natalia; Kosaras, Bela; Amani, Vladimir; Pierre-Francois, Jessica; Tang, Yujie; Nguyen, Brian; Yu, Furong; Schubert, Simone; Balansay, Brianna; Mathios, Dimitris

    2013-01-01

    Neural tumors often express neurotransmitter receptors as markers of their developmental lineage. Although these receptors have been well characterized in electrophysiological, developmental and pharmacological settings, their importance in the maintenance and progression of brain tumors, and importantly, the effect of their targeting in brain cancers remains obscure. Here, we demonstrate high levels of GABR5, which encodes the α-subunit of the GABAA receptor complex, in aggressive MYC-driven...

  11. Synthesis and GABAA receptor activity of A-homo analogues of neuroactive steroids

    Czech Academy of Sciences Publication Activity Database

    Dansey, M. V.; Di Chenna, P.; Valeiro, A. S.; Krištofíková, Z.; Chodounská, Hana; Kasal, Alexander; Burton, G.

    2010-01-01

    Roč. 45, č. 7 (2010), s. 3063-3069 ISSN 0223-5234 R&D Projects: GA ČR(CZ) GA203/08/1498 Institutional research plan: CEZ:AV0Z40550506 Keywords : A-homopregnane * neurosteroid * gamma-aminobutyric acid * GABAA receptor Subject RIV: CC - Organic Chemistry Impact factor: 3.193, year: 2010

  12. Probing the orthosteric binding site of GABAA receptors with heterocyclic GABA carboxylic acid bioisosteres

    DEFF Research Database (Denmark)

    Petersen, Jette G; Bergmann, Rikke; Krogsgaard-Larsen, Povl

    2013-01-01

    The ionotropic GABAA receptors (GABAARs) are widely distributed in the central nervous system where they play essential roles in numerous physiological and pathological processes. A high degree of structural heterogeneity of the GABAAR has been revealed and extensive effort has been made to devel...

  13. GABAA receptors in visual and auditory cortex and neural activity changes during basic visual stimulation

    Directory of Open Access Journals (Sweden)

    Pengmin eQin

    2012-12-01

    Full Text Available Recent imaging studies have demonstrated that levels of resting GABA in the visual cortex predict the degree of stimulus-induced activity in the same region. These studies have used the presentation of discrete visual stimulus; the change from closed eyes to open also represents a simple visual stimulus, however, and has been shown to induce changes in local brain activity and in functional connectivity between regions. We thus aimed to investigate the role of the GABA system, specifically GABAA receptors, in the changes in brain activity between the eyes closed (EC and eyes open (EO state in order to provide detail at the receptor level to complement previous studies of GABA concentrations. We conducted an fMRI study involving two different modes of the change from EC to EO: An EO and EC block design, allowing the modelling of the haemodynamic response, followed by longer periods of EC and EO to allow the measuring of functional connectivity. The same subjects also underwent [18F]Flumazenil PET measure GABAA receptor binding potentials. It was demonstrated that the local-to-global ratio of GABAA receptor binding potential in the visual cortex predicted the degree of changes in neural activity from EC to EO. This same relationship was also shown in the auditory cortex. Furthermore, the local-to-global ratio of GABAA receptor binding potential in the visual cortex also predicts the change of functional connectivity between visual and auditory cortex from EC to EO. These findings contribute to our understanding of the role of GABAA receptors in stimulus-induced neural activity in local regions and in inter-regional functional connectivity.

  14. Presynaptic Ionotropic Receptors Controlling and Modulating the Rules for Spike Timing-Dependent Plasticity

    Directory of Open Access Journals (Sweden)

    Matthijs B. Verhoog

    2011-01-01

    Full Text Available Throughout life, activity-dependent changes in neuronal connection strength enable the brain to refine neural circuits and learn based on experience. In line with predictions made by Hebb, synapse strength can be modified depending on the millisecond timing of action potential firing (STDP. The sign of synaptic plasticity depends on the spike order of presynaptic and postsynaptic neurons. Ionotropic neurotransmitter receptors, such as NMDA receptors and nicotinic acetylcholine receptors, are intimately involved in setting the rules for synaptic strengthening and weakening. In addition, timing rules for STDP within synapses are not fixed. They can be altered by activation of ionotropic receptors located at, or close to, synapses. Here, we will highlight studies that uncovered how network actions control and modulate timing rules for STDP by activating presynaptic ionotropic receptors. Furthermore, we will discuss how interaction between different types of ionotropic receptors may create “timing” windows during which particular timing rules lead to synaptic changes.

  15. GABA(A) receptor- and GABA transporter polymorphisms and risk for essential tremor

    DEFF Research Database (Denmark)

    Thier, S; Kuhlenbäumer, G; Lorenz, D

    2011-01-01

    Background:  Clinical features and animal models of essential tremor (ET) suggest gamma-aminobutyric acid A receptor (GABA(A) R) subunits and GABA transporters as putative candidate genes. Methods:  A total of 503 ET cases and 818 controls were investigated for an association between polymorphisms...... in 15 GABA(A) R and four GABA transporter genes and ET. Results:  Nine nominally significant tagging SNPs (P values from 4.9 × 10(-2) to 5.2 × 10(-4) ) were found in the hypothesis generation stage. Five SNPs were followed up in a second verification stage but failed to reach significance. (P values...... from 0.30 to 0.77). Discussion:  In our samples, no evidence of association between GABA(A) R and GABA transporter genes with ET was detected. Further studies are necessary to clarify the role of these genes in ET....

  16. Presynaptic Glycine Receptors Increase GABAergic Neurotransmission in Rat Periaqueductal Gray Neurons

    Directory of Open Access Journals (Sweden)

    Kwi-Hyung Choi

    2013-01-01

    Full Text Available The periaqueductal gray (PAG is involved in the central regulation of nociceptive transmission by affecting the descending inhibitory pathway. In the present study, we have addressed the functional role of presynaptic glycine receptors in spontaneous glutamatergic transmission. Spontaneous EPSCs (sEPSCs were recorded in mechanically dissociated rat PAG neurons using a conventional whole-cell patch recording technique under voltage-clamp conditions. The application of glycine (100 µM significantly increased the frequency of sEPSCs, without affecting the amplitude of sEPSCs. The glycine-induced increase in sEPSC frequency was blocked by 1 µM strychnine, a specific glycine receptor antagonist. The results suggest that glycine acts on presynaptic glycine receptors to increase the probability of glutamate release from excitatory nerve terminals. The glycine-induced increase in sEPSC frequency completely disappeared either in the presence of tetrodotoxin or Cd2+, voltage-gated Na+, or Ca2+ channel blockers, suggesting that the activation of presynaptic glycine receptors might depolarize excitatory nerve terminals. The present results suggest that presynaptic glycine receptors can regulate the excitability of PAG neurons by enhancing glutamatergic transmission and therefore play an important role in the regulation of various physiological functions mediated by the PAG.

  17. INSIGHTS INTO FUNCTIONAL PHARMACOLOGY OF α1 GABAA RECEPTORS: HOW MUCH DOES PARTIAL ACTIVATION AT THE BENZODIAZEPINE SITE MATTER?

    OpenAIRE

    Joksimović, Srđan; Varagic, Zdravko; Kovačević, Jovana; Van Linn, Michael; Milić, Marija; Rallapalli, Sundari; Timić, Tamara; Sieghart, Werner; Cook, James M.; Savić, Miroslav M.

    2013-01-01

    Synthesis of ligands inactive or low-active at α1 GABAA receptors has become the key concept for development of novel, more tolerable benzodiazepine (BZ)-like drugs. WYS8, a remarkably (105 times) α1-subtype selective partial positive modulator, may serve as a pharmacological tool for refining the role of α1 GABAA receptors in mediation of BZs’ effects. Here, the effects of WYS8 on GABA-induced currents and on diazepam-induced potentiation of recombinant BZ-sensitive GABAA receptors were stud...

  18. A novel GABA(A) alpha 5 receptor inhibitor with therapeutic potential.

    Science.gov (United States)

    Ling, István; Mihalik, Balázs; Etherington, Lori-An; Kapus, Gábor; Pálvölgyi, Adrienn; Gigler, Gábor; Kertész, Szabolcs; Gaál, Attila; Pallagi, Katalin; Kiricsi, Péter; Szabó, Éva; Szénási, Gábor; Papp, Lilla; Hársing, László G; Lévay, György; Spedding, Michael; Lambert, Jeremy J; Belelli, Delia; Barkóczy, József; Volk, Balázs; Simig, Gyula; Gacsályi, István; Antoni, Ferenc A

    2015-10-05

    Novel 2,3-benzodiazepine and related isoquinoline derivatives, substituted at position 1 with a 2-benzothiophenyl moiety, were synthesized to produce compounds that potently inhibited the action of GABA on heterologously expressed GABAA receptors containing the alpha 5 subunit (GABAA α5), with no apparent affinity for the benzodiazepine site. Substitutions of the benzothiophene moiety at position 4 led to compounds with drug-like properties that were putative inhibitors of extra-synaptic GABAA α5 receptors and had substantial blood-brain barrier permeability. Initial characterization in vivo showed that 8-methyl-5-[4-(trifluoromethyl)-1-benzothiophen-2-yl]-1,9-dihydro-2H-[1,3]oxazolo[4,5-h][2,3]benzodiazepin-2-one was devoid of sedative, pro-convulsive or motor side-effects, and enhanced the performance of rats in the object recognition test. In summary, we have discovered a first-in-class GABA-site inhibitor of extra-synaptic GABAA α5 receptors that has promising drug-like properties and warrants further development. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Hyperalgesic effect induced by barbiturates, midazolam and ethanol: pharmacological evidence for GABA-A receptor involvement

    Directory of Open Access Journals (Sweden)

    M.A.K.F. Tatsuo

    1997-02-01

    Full Text Available The involvement of GABA-A receptors in the control of nociception was studied using the tail-flick test in rats. Non-hypnotic doses of the barbiturates phenobarbital (5-50 mg/kg, pentobarbital (17-33 mg/kg, and thiopental (7.5-30 mg/kg, of the benzodiazepine midazolam (10 mg/kg or of ethanol (0.4-1.6 g/kg administered by the systemic route reduced the latency for the tail-flick response, thus inducing a 'hyperalgesic' state in the animals. In contrast, non-convulsant doses of the GABA-A antagonist picrotoxin (0.12-1.0 mg/kg administered systemically induced an increase in the latency for the tail-flick response, therefore characterizing an 'antinociceptive' state. Previous picrotoxin (0.12 mg/kg treatment abolished the hyperalgesic state induced by effective doses of the barbiturates, midazolam or ethanol. Since phenobarbital, midazolam and ethanol reproduced the described hyperalgesic effect of GABA-A-specific agonists (muscimol, THIP, which is specifically antagonized by the GABA-A antagonist picrotoxin, our results suggest that GABA-A receptors are tonically involved in the modulation of nociception in the rat central nervous system

  20. Triton X-100 inhibits agonist-induced currents and suppresses benzodiazepine modulation of GABA(A) receptors in Xenopus oocytes

    DEFF Research Database (Denmark)

    Søgaard, Rikke; Ebert, Bjarke; Klaerke, Dan

    2009-01-01

    Changes in lipid bilayer elastic properties have been proposed to underlie the modulation of voltage-gated Na(+) and L-type Ca(2+) channels and GABA(A) receptors by amphiphiles. The amphiphile Triton X-100 increases the elasticity of lipid bilayers at micromolar concentrations, assessed from its...... effects on gramicidin channel A appearance rate and lifetime in artificial lipid bilayers. In the present study, the pharmacological action of Triton-X 100 on GABA(A) receptors expressed in Xenopus laevis oocytes was examined. Triton-X 100 inhibited GABA(A) alpha(1)beta(3)gamma(2S) receptor currents...... in a noncompetitive, time- and voltage-dependent manner and increased the apparent rate and extent of desensitization at 10 muM, which is 30 fold below the critical micelle concentration. In addition, Triton X-100 induced picrotoxin-sensitive GABA(A) receptor currents and suppressed allosteric modulation...

  1. The Role of Parabrachial GABAA Receptors in Pain Modulation in Rats

    Directory of Open Access Journals (Sweden)

    kazem javanmardi

    2013-09-01

    Full Text Available Background & Objective: The parabrachial nucleus is a critical link in the transmission of short latency nociceptive information to midbrain neurons. GABA(A receptors have bidirectional roles in controlling nociception and are abundant in the parabrachial region . We examined the effects of bilateral intra parabrachial microinjection of different doses of the GABA(A receptor agonist, muscimol, and the GABA(A receptor antagonist, bicuculline, on pain modulation using a tail-flick test . Materials & Methods: Rats were anaesthetized with sodium pentobarbital (55 mg/kg and then special cannulas were inserted stereotaxically into the parabrachial nucleus. After 1 week of recovery, the effects of microinjection of muscimol, (62.5, 125,250 ng/side or bicuculline, (50,100,200 ng/side into the parabrachial on tail flick latencies were assessed. Tail-flick latencies were measured for 60 minutes every 5 min after drug microinjection. Results: Microinjection of muscimol (62.5, 125 ng/side and bicuculline (50,100,200 ng/side into the parabrachial did not have any statistically significant effect on tail-flick latency. Administration of, muscimol, (250 ng/side produced thermal hyperalgesia (P<0.05. Conclusion: The results of the present study showed that in this model of pain gaba a receptors in the paracrachial region are not Endogenously activated but these receptors in this region have a potential to affect pain modulation.

  2. Differential effects of diazepam treatment and withdrawal on recombinant GABAA receptor expression and functional coupling.

    Science.gov (United States)

    Svob Strac, Dubravka; Vlainić, Josipa; Jazvinsćak Jembrek, Maja; Pericić, Danka

    2008-12-30

    Prolonged exposure to benzodiazepines, drugs known to produce tolerance and dependence and also to be abused, leads to adaptive changes in GABA(A) receptors. To further explore the mechanisms responsible for these phenomena, we studied the effects of prolonged diazepam treatment on the recombinant alpha(1)beta(2)gamma(2S) GABA(A) receptors, stably expressed in human embryonic kidney (HEK) 293 cells. The results demonstrating that long-term (48 and 72 h) exposure of cells to a high concentration of diazepam (50 microM) enhanced the maximum number (B(max)) of [(3)H]flunitrazepam, [(3)H]muscimol and [(3)H]t-butylbicycloorthobenzoate ([(3)H]TBOB) binding sites, without changing their affinity (K(d)), suggested the up-regulation of GABA(A) receptors. As demonstrated by cell counting and WST-1 proliferation assay, the observed increase in receptor expression was not a consequence of stimulated growth of cells exposed to diazepam. Semi-quantitative RT-PCR and Western blot analysis, showing elevated levels of alpha(1) subunit mRNA as well as beta(2) and gamma(2) subunit proteins, respectively, suggested that prolonged high dose diazepam treatment induced de novo receptor synthesis by acting at both transcriptional and translational levels. The finding that the number of GABA(A) receptor binding sites returned to control value 24 h following diazepam withdrawal, makes this process less likely to account for the development of benzodiazepine tolerance and dependence. On the other hand, the results demonstrating that observed functional uncoupling between GABA and benzodiazepine binding sites persisted after the termination of diazepam treatment supported the hypothesis of its possible role in these phenomena.

  3. GABA(A receptor α subunits differentially contribute to diazepam tolerance after chronic treatment.

    Directory of Open Access Journals (Sweden)

    Christiaan H Vinkers

    Full Text Available Within the GABA(A-receptor field, two important questions are what molecular mechanisms underlie benzodiazepine tolerance, and whether tolerance can be ascribed to certain GABA(A-receptor subtypes.We investigated tolerance to acute anxiolytic, hypothermic and sedative effects of diazepam in mice exposed for 28-days to non-selective/selective GABA(A-receptor positive allosteric modulators: diazepam (non-selective, bretazenil (partial non-selective, zolpidem (α(1 selective and TPA023 (α(2/3 selective. In-vivo binding studies with [(3H]flumazenil confirmed compounds occupied CNS GABA(A receptors.Chronic diazepam treatment resulted in tolerance to diazepam's acute anxiolytic, hypothermic and sedative effects. In mice treated chronically with bretazenil, tolerance to diazepam's anxiolytic and hypothermic, but not sedative, effects was seen. Chronic zolpidem treatment resulted in tolerance to diazepam's hypothermic effect, but partial anxiolytic tolerance and no sedative tolerance. Chronic TPA023 treatment did not result in tolerance to diazepam's hypothermic, anxiolytic or sedative effects.OUR DATA INDICATE THAT: (i GABA(A-α(2/α(3 subtype selective drugs might not induce tolerance; (ii in rodents quantitative and temporal variations in tolerance development occur dependent on the endpoint assessed, consistent with clinical experience with benzodiazepines (e.g., differential tolerance to antiepileptic and anxiolytic actions; (iii tolerance to diazepam's sedative actions needs concomitant activation of GABA(A-α(1/GABA(A-α(5 receptors. Regarding mechanism, in-situ hybridization studies indicated no gross changes in expression levels of GABA(A α(1, α(2 or α(5 subunit mRNA in hippocampus or cortex. Since selective chronic activation of either GABA(A α(2, or α(3 receptors does not engender tolerance development, subtype-selective GABA(A drugs might constitute a promising class of novel drugs.

  4. Decreased GABAA receptor binding in the medullary serotonergic system in the sudden infant death syndrome.

    Science.gov (United States)

    Broadbelt, Kevin G; Paterson, David S; Belliveau, Richard A; Trachtenberg, Felicia L; Haas, Elisabeth A; Stanley, Christina; Krous, Henry F; Kinney, Hannah C

    2011-09-01

    γ-Aminobutyric acid (GABA) neurons in the medulla oblongata help regulate homeostasis, in part through interactions with the medullary serotonergic (5-HT) system. Previously, we reported abnormalities in multiple 5-HT markers in the medullary 5-HT system of infants dying from sudden infant death syndrome (SIDS), suggesting that 5-HT dysfunction is involved in its pathogenesis. Here, we tested the hypothesis that markers of GABAA receptors are decreased in the medullary 5-HT system in SIDS cases compared with controls. Using tissue receptor autoradiography with the radioligand H-GABA, we found 25% to 52% reductions in GABAA receptor binding density in 7 of 10 key nuclei sampled of the medullary 5-HT system in the SIDS cases (postconceptional age [PCA] = 51.7 ± 8.3, n = 28) versus age-adjusted controls (PCA = 55.3 ± 13.5, n = 8) (p ≤ 0.04). By Western blotting, there was 46.2% reduction in GABAAα3 subunit levels in the gigantocellularis (component of the medullary 5-HT system) of SIDS cases (PCA = 53.9 ± 8.4, n = 24) versus controls (PCA = 55.3 ± 8.3, n = 8) (56.8% standard in SIDS cases vs 99.35% in controls; p = 0.026). These data suggest that medullary GABAA receptors are abnormal in SIDS infants and that SIDS is a complex disorder of a homeostatic network in the medulla that involves deficits of the GABAergic and 5-HT systems.

  5. The GABAA receptor agonist THIP is neuroprotective in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Kristensen, Bjarne Winther; Noraberg, Jens; Zimmer, Jens

    2003-01-01

    The potential neuroprotective effects of the GABA(A) receptor agonists THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) and muscimol, and the selective GluR5 kainate receptor agonist ATPA ((RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid), which activates GABAergic interneu......The potential neuroprotective effects of the GABA(A) receptor agonists THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) and muscimol, and the selective GluR5 kainate receptor agonist ATPA ((RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid), which activates GABAergic...... interneurons, were examined in hippocampal slice cultures exposed to N-methyl-D-aspartate (NMDA). The NMDA-induced excitotoxicity was quantified by densitometric measurements of propidium iodide (PI) uptake. THIP (100-1000 microM) was neuroprotective in slice cultures co-exposed to NMDA (10 microM) for 48 h......, while muscimol (100-1000 microM) and ATPA (1-3 microM) were without effect. The results demonstrate that direct GABA(A) agonism can mediate neuroprotection in the hippocampus in vitro as previously suggested in vivo....

  6. Neto Auxiliary Subunits Regulate Interneuron Somatodendritic and Presynaptic Kainate Receptors to Control Network Inhibition

    Directory of Open Access Journals (Sweden)

    Megan S. Wyeth

    2017-08-01

    Full Text Available Although Netos are considered auxiliary subunits critical for kainate receptor (KAR function, direct evidence for their regulation of native KARs is limited. Because Neto KAR regulation is GluK subunit/Neto isoform specific, such regulation must be determined in cell-type-specific contexts. We demonstrate Neto1/2 expression in somatostatin (SOM-, cholecystokinin/cannabinoid receptor 1 (CCK/CB1-, and parvalbumin (PV-containing interneurons. KAR-mediated excitation of these interneurons is contingent upon Neto1 because kainate yields comparable effects in Neto2 knockouts and wild-types but fails to excite interneurons or recruit inhibition in Neto1 knockouts. In contrast, presynaptic KARs in CCK/CB1 interneurons are dually regulated by both Neto1 and Neto2. Neto association promotes tonic presynaptic KAR activation, dampening CCK/CB1 interneuron output, and loss of this brake in Neto mutants profoundly increases CCK/CB1 interneuron-mediated inhibition. Our results confirm that Neto1 regulates endogenous somatodendritic KARs in diverse interneurons and demonstrate Neto regulation of presynaptic KARs in mature inhibitory presynaptic terminals.

  7. Depression of presynaptic excitation by the activation of vanilloid receptor 1 in the rat spinal dorsal horn revealed by optical imaging

    Directory of Open Access Journals (Sweden)

    Ikeda Hiroshi

    2006-02-01

    Full Text Available Abstract In this study, we show that capsaicin (CAP depresses primary afferent fiber terminal excitability by acting on vanilloid receptor 1 (TRPV1 channels of primary afferent fibers in adenosine 5'-triphosphate (ATP- and temperature-dependent manner using two optical imaging methods. First, transverse slices of spinal cord were stained with a voltage-sensitive dye and the net excitation in the spinal dorsal horn was recorded. Prolonged treatment (>20 min with the TRPV1 channel agonist, CAP, resulted in a long-lasting inhibition of the net excitation evoked by single-pulse stimulation of C fiber-activating strength. A shorter application of CAP inhibited the excitation in a concentration-dependent manner and the inhibition was reversed within several minutes. This inhibition was Ca++-dependent, was antagonized by the TRPV1 channel antagonist, capsazepine (CPZ, and the P2X and P2Y antagonist, suramin, and was facilitated by the P2Y agonist, uridine 5'-triphosphate (UTP. The inhibition of excitation was unaffected by bicuculline and strychnine, antagonists of GABAA and glycine receptors, respectively. Raising the perfusate temperature to 39°C from 27°C inhibited the excitation (-3%/°C. This depressant effect was antagonized by CPZ and suramin, but not by the P2X antagonist, 2', 3'-O-(2,4,6-trinitrophenyl adenosine 5'-triphosphate (TNP-ATP. Second, in order to record the presynaptic excitation exclusively, we stained the primary afferent fibers anterogradely from the dorsal root. CAP application and a temperature increase from 27°C to 33°C depressed the presynaptic excitation, and CPZ antagonized these effects. Thus, this study showed that presynaptic excitability is modulated by CAP, temperature, and ATP under physiological conditions, and explains the reported central actions of CAP. These results may have clinical importance, especially for the control of pain.

  8. Gene expression changes in GABA(A receptors and cognition following chronic ketamine administration in mice.

    Directory of Open Access Journals (Sweden)

    Sijie Tan

    Full Text Available Ketamine is a well-known anesthetic agent and a drug of abuse. Despite its widespread use and abuse, little is known about its long-term effects on the central nervous system. The present study was designed to evaluate the effect of long-term (1- and 3-month ketamine administration on learning and memory and associated gene expression levels in the brain. The Morris water maze was used to assess spatial memory and gene expression changes were assayed using Affymetrix Genechips; a focus on the expression of GABA(A receptors that mediate a tonic inhibition in the brain, was confirmed by quantitative real-time PCR and western blot. Compared with saline controls, there was a decline in learning and memory performance in the ketamine-treated mice. Genechip results showed that 110 genes were up-regulated and 136 genes were down-regulated. An ontology analysis revealed the most significant effects of ketamine were on GABA(A receptors. In particular, there was a significant up-regulation of both mRNA and protein levels of the alpha 5 subunit (Gabra5 of the GABA(A receptors in the prefrontal cortex. In conclusion, chronic exposure to ketamine impairs working memory in mice, which may be explained at least partly by up-regulation of Gabra5 subunits in the prefrontal cortex.

  9. GABAA receptor-mediated input change on orexin neurons following sleep deprivation in mice.

    Science.gov (United States)

    Matsuki, T; Takasu, M; Hirose, Y; Murakoshi, N; Sinton, C M; Motoike, T; Yanagisawa, M

    2015-01-22

    Orexins are bioactive peptides, which have been shown to play a pivotal role in vigilance state transitions: the loss of orexin-producing neurons (orexin neurons) leads to narcolepsy with cataplexy in the human. However, the effect of the need for sleep (i.e., sleep pressure) on orexin neurons remains largely unknown. Here, we found that immunostaining intensities of the α1 subunit of the GABAA receptor and neuroligin 2, which is involved in inhibitory synapse specialization, on orexin neurons of mouse brain were significantly increased by 6-h sleep deprivation. In contrast, we noted that immunostaining intensities of the α2, γ2, and β2/3 subunits of the GABAA receptor and Huntingtin-associated protein 1, which is involved in GABAAR trafficking, were not changed by 6-h sleep deprivation. Using a slice patch recording, orexin neurons demonstrated increased sensitivity to a GABAA receptor agonist together with synaptic plasticity changes after sleep deprivation when compared with an ad lib sleep condition. In summary, the GABAergic input property of orexin neurons responds rapidly to sleep deprivation. This molecular response of orexin neurons may thus play a role in the changes that accompany the need for sleep following prolonged wakefulness, in particular the decreased probability of a transition to wakefulness once recovery sleep has begun. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Hippocampal Extracellular Signal-Regulated Kinase Signaling has a Role in Passive Avoidance Memory Retrieval Induced by GABAA Receptor Modulation in Mice

    OpenAIRE

    Kim, Dong Hyun; Kim, Jong Min; Park, Se Jin; Lee, Seungheon; Shin, Chan Young; Cheong, Jae Hoon; Ryu, Jong Hoon

    2011-01-01

    Available evidence strongly suggests that the γ-aminobutyric acid type A (GABAA) receptor has a crucial role in memory retrieval. However, the signaling mechanisms underlying the role of GABAA receptor modulation in memory retrieval are unclear. We conducted one-trial passive avoidance task with pre-retention trial drug administration in the hippocampus to test the effects of GABAA receptor modulation on memory retrieval. We further tested the co-involvement of signaling molecules: extracellu...

  11. [3H]Ethynylbicycloorthobenzoate ([3H]EBOB) binding in recombinant GABAA receptors.

    Science.gov (United States)

    Yagle, Monica A; Martin, Michael W; de Fiebre, Christopher M; de Fiebre, NancyEllen C; Drewe, John A; Dillon, Glenn H

    2003-12-01

    Ethynylbicycloorthobenzoate (EBOB) is a recently developed ligand that binds to the convulsant site of the GABAA receptor. While a few studies have examined the binding of [3H]EBOB in vertebrate brain tissue and insect preparations, none have examined [3H]EBOB binding in preparations that express known configurations of the GABAA receptor. We have thus examined [3H]EBOB binding in HEK293 cells stably expressing human alpha1beta2gamma2 and alpha2beta2gamma2 GABAA receptors, and the effects of CNS convulsants on its binding. The ability of the CNS convulsants to displace the prototypical convulsant site ligand, [35S]TBPS, was also assessed. Saturation analysis revealed [3H]EBOB binding at a single site, with a K(d) of approximately 9 nM in alpha1beta2gamma2 and alpha2beta2gamma2 receptors. Binding of both [3H]EBOB and [35S]TBPS was inhibited by dieldrin, lindane, tert-butylbicycloorthobenzoate (TBOB), PTX, TBPS, and pentylenetetrazol (PTZ) at one site in a concentration-dependent fashion. Affinities were in the high nM to low microM range for all compounds except PTZ (low mM range), and the rank order of potency for these convulsants to displace [3H]EBOB and [35S]TBPS was the same. Low [GABA] stimulated [3H]EBOB binding, while higher [GABA] (greater than 10 microM) inhibited [3H]EBOB binding. Overall, our data demonstrate that [3H]EBOB binds to a single, high affinity site in alpha1beta2gamma2 and alpha2beta2gamma2 GABAA receptors, and modulation of its binding is similar to that seen with [35S]TBPS. [3H]EBOB has a number of desirable traits that may make it preferable to [35S]TBPS for analysis of the convulsant site of the GABAA receptor.

  12. INSIGHTS INTO FUNCTIONAL PHARMACOLOGY OF α1 GABAA RECEPTORS: HOW MUCH DOES PARTIAL ACTIVATION AT THE BENZODIAZEPINE SITE MATTER?

    Science.gov (United States)

    Joksimović, Srđan; Varagic, Zdravko; Kovačević, Jovana; Van Linn, Michael; Milić, Marija; Rallapalli, Sundari; Timić, Tamara; Sieghart, Werner; Cook, James M.; Savić, Miroslav M.

    2013-01-01

    Synthesis of ligands inactive or low-active at α1 GABAA receptors has become the key concept for development of novel, more tolerable benzodiazepine (BZ)-like drugs. WYS8, a remarkably (105 times) α1-subtype selective partial positive modulator, may serve as a pharmacological tool for refining the role of α1 GABAA receptors in mediation of BZs’ effects. Here, the effects of WYS8 on GABA-induced currents and on diazepam-induced potentiation of recombinant BZ-sensitive GABAA receptors were studied in more detail. In addition, the behavioral profile of WYS8 (0.2, 1 and 10 mg/kg i.p.), on its own and in combination with diazepam, was tested in the spontaneous locomotor activity, elevated plus maze, grip strength, rotarod and pentylenetetrazole tests. WYS8, applied at an in vivo attainable concentration of 100 nM, reduced the stimulation of GABA currents by 1 μM diazepam by 57% at α1β3γ2, but not at α2β3γ2, α3β3γ2, or α5β3γ2 GABAA receptors. The administration of WYS8 alone induced negligible behavioral consequences. When combined with diazepam, WYS8 caused a reduced sedation, muscle relaxation and anticonvulsant activity, as compared to this BZ alone, whereas ataxia was preserved, and the anxiolytic effect of 2 mg/kg diazepam was unmasked. Hence, a partial instead of full activation at α1 GABAA receptors did not necessarily result in the attenuation of the effects assumed to be mediated by activation of these receptors, or in the full preservation of the effects mediated by activation of other GABAA receptors. Thus, the role of α1 GABAA receptors appears more complex than that proposed by genetic studies. PMID:23685860

  13. Partial Agonism of Taurine at Gamma-Containing Native and Recombinant GABAA Receptors

    Science.gov (United States)

    Kletke, Olaf; Gisselmann, Guenter; May, Andrea; Hatt, Hanns; A. Sergeeva, Olga

    2013-01-01

    Taurine is a semi-essential sulfonic acid found at high concentrations in plasma and mammalian tissues which regulates osmolarity, ion channel activity and glucose homeostasis. The structural requirements of GABAA-receptors (GABAAR) gated by taurine are not yet known. We determined taurine potency and efficacy relative to GABA at different types of recombinant GABAAR occurring in central histaminergic neurons of the mouse hypothalamic tuberomamillary nucleus (TMN) which controls arousal. At binary α1/2β1/3 receptors taurine was as efficient as GABA, whereas incorporation of the γ1/2 subunit reduced taurine efficacy to 60–90% of GABA. The mutation γ2F77I, which abolishes zolpidem potentiation, significantly reduced taurine efficacy at recombinant and native receptors compared to the wild type controls. As taurine was a full- or super- agonist at recombinant αxβ1δ-GABAAR, we generated a chimeric γ2 subunit carrying the δ subunit motif around F77 (MTVFLH). At α1/2β1γ2(MTVFLH) receptors taurine became a super-agonist, similar to δ-containing ternary receptors, but remained a partial agonist at β3-containing receptors. In conclusion, using site-directed mutagenesis we found structural determinants of taurine’s partial agonism at γ-containing GABAA receptors. Our study sheds new light on the β1 subunit conferring the widest range of taurine-efficacies modifying GABAAR function under (patho)physiological conditions. PMID:23637894

  14. Partial agonism of taurine at gamma-containing native and recombinant GABAA receptors.

    Directory of Open Access Journals (Sweden)

    Olaf Kletke

    Full Text Available Taurine is a semi-essential sulfonic acid found at high concentrations in plasma and mammalian tissues which regulates osmolarity, ion channel activity and glucose homeostasis. The structural requirements of GABAA-receptors (GABAAR gated by taurine are not yet known. We determined taurine potency and efficacy relative to GABA at different types of recombinant GABAAR occurring in central histaminergic neurons of the mouse hypothalamic tuberomamillary nucleus (TMN which controls arousal. At binary α(1/2β(1/3 receptors taurine was as efficient as GABA, whereas incorporation of the γ(1/2 subunit reduced taurine efficacy to 60-90% of GABA. The mutation γ(2F77I, which abolishes zolpidem potentiation, significantly reduced taurine efficacy at recombinant and native receptors compared to the wild type controls. As taurine was a full- or super- agonist at recombinant αxβ1δ-GABAAR, we generated a chimeric γ(2 subunit carrying the δ subunit motif around F77 (MTVFLH. At α(1/2β(1γ2(MTVFLH receptors taurine became a super-agonist, similar to δ-containing ternary receptors, but remained a partial agonist at β3-containing receptors. In conclusion, using site-directed mutagenesis we found structural determinants of taurine's partial agonism at γ-containing GABAA receptors. Our study sheds new light on the β1 subunit conferring the widest range of taurine-efficacies modifying GABAAR function under (pathophysiological conditions.

  15. Chronic prenatal ethanol exposure alters hippocampal GABA(A) receptors and impairs spatial learning in the guinea pig.

    Science.gov (United States)

    Iqbal, U; Dringenberg, H C; Brien, J F; Reynolds, J N

    2004-04-02

    Chronic prenatal ethanol exposure (CPEE) can injure the developing brain, and may lead to the fetal alcohol syndrome (FAS). Previous studies have demonstrated that CPEE upregulates gamma-aminobutyric acid type A (GABA(A)) receptor expression in the cerebral cortex, and decreases functional synaptic plasticity in the hippocampus, in the adult guinea pig. This study tested the hypothesis that CPEE increases GABA(A) receptor expression in the hippocampus of guinea pig offspring that exhibit cognitive deficits in a hippocampal-dependent spatial learning task. Timed, pregnant guinea pigs were treated with ethanol (4 g/kg maternal body weight per day), isocaloric-sucrose/pair-feeding, or water throughout gestation. GABA(A) receptor subunit protein expression in the hippocampus was measured at two development ages: near-term fetus and young adult. In young adult guinea pig offspring, CPEE increased spontaneous locomotor activity in the open-field and impaired task acquisition in the Morris water maze. CPEE did not change GABA(A) receptor subunit protein expression in the near-term fetal hippocampus, but increased expression of the beta2/3-subunit of the GABA(A) receptor in the hippocampus of young adult offspring. CPEE did not change either [(3)H]flunitrazepam binding or GABA potentiation of [(3)H]flunitrazepam binding, but decreased the efficacy of allopregnanolone potentiation of [(3)H]flunitrazepam binding, to hippocampal GABA(A) receptors in adult offspring. Correlational analysis revealed a relationship between increased spontaneous locomotor activity and growth restriction in the hippocampus induced by CPEE. Similarly, an inverse relationship was found between performance in the water maze and the efficacy of allopregnanolone potentiation of [(3)H]flunitrazepam binding in the hippocampus. These data suggest that alterations in hippocampal GABA(A) receptor expression and pharmacological properties contribute to hippocampal-related behavioral and cognitive deficits

  16. Neurosteroids, GABAA receptors and neurosteroid based drugs: are we witnessing the dawn of the new psychiatric drugs?

    Directory of Open Access Journals (Sweden)

    Ante Tvrdeić

    2016-03-01

    Full Text Available In broad biological terms, neurosteroids can be defined as a class of endogenous steroids synthesized in the brain or in peripheral steroidogenic tissues having potent and relatively selective activity on brain gamma-aminobutyric acid A (GABAA receptors. In this regard, the most important neurosteroids are allopregnanolone and allotetrahydrodeoxycorticosterone (allo THDOC. These α-reduced derivatives of pregnenolone and progesterone act as positive allosteric modulators of GABAA receptors. As such, they potentiate the inhibitory action of GABA on GABAA receptors and produce a wide spectrum of behavioral actions ranging from anxiolytic, anticonvulsive, sedative, hypnotic, amnestic (loss of memory, myorelaxant, and anesthetic effects. Sulfated derivatives of pregnenolone and dehydroepiandrosterone ,pregnenolone sulfate (PS and dehydroepianddrosterone sulfate (DHEAS, are also very important neurosteroids. In contrast to allopregnolone and alloTHDOC, PS and DHEAS induce excitatory effect on neurons because they facilitate the block of GABAA receptors. The spectrum of behavioral effects of PS and DHEAS consists of analeptic, anxiogenic, proconvulsive, and anamnestic (cognitive enhancing. The purpose of this review paper is to analyze recent research in the field of neurosteroids and neurosteroid-based drugs with emphasis on interaction of neurosteroids with brain GABAA receptors. This article also provides an overview of neurosteroids-based strategies for the development of innovative therapeutic approaches. GABAA receptor modulating steroids (GAMS, GABAA receptor modulating steroid antagonists (GAMSA, and translocator protein (TSPO activators are examples of innovative therapeutic approaches in treating clinically important neurological and psychiatric diseases. Consequently, the therapeutic potential of GAMS, GAMSA, and TSPO activators will be briefly evaluated.

  17. Presynaptic GABAB Receptors Regulate Hippocampal Synapses during Associative Learning in Behaving Mice.

    Directory of Open Access Journals (Sweden)

    M Teresa Jurado-Parras

    Full Text Available GABAB receptors are the G-protein-coupled receptors for GABA, the main inhibitory neurotransmitter in the central nervous system. Pharmacological activation of GABAB receptors regulates neurotransmission and neuronal excitability at pre- and postsynaptic sites. Electrophysiological activation of GABAB receptors in brain slices generally requires strong stimulus intensities. This raises the question as to whether behavioral stimuli are strong enough to activate GABAB receptors. Here we show that GABAB1a-/- mice, which constitutively lack presynaptic GABAB receptors at glutamatergic synapses, are impaired in their ability to acquire an operant learning task. In vivo recordings during the operant conditioning reveal a deficit in learning-dependent increases in synaptic strength at CA3-CA1 synapses. Moreover, GABAB1a-/- mice fail to synchronize neuronal activity in the CA1 area during the acquisition process. Our results support that activation of presynaptic hippocampal GABAB receptors is important for acquisition of a learning task and for learning-associated synaptic changes and network dynamics.

  18. N-Ethylmaleimide Dissociates α7 ACh Receptor from a Complex with NSF and Promotes Its Delivery to the Presynaptic Membrane.

    Science.gov (United States)

    Nishizaki, Tomoyuki

    2016-08-01

    N-Ethylmaleimide (NEM)-sensitive factor (NSF) associates with soluble NSF attachment protein (SNAP), that binds to SNAP receptors (SNAREs) including syntaxin, SNAP25, and synaptobrevin. The complex of NSF/SNAP/SNAREs plays a critical role in the regulation of vesicular traffic. The present study investigated NEM-regulated α7 ACh receptor translocation. NSF associated with β-SNAP and the SNAREs syntaxin 1 and synaptobrevin 2 in the rat hippocampus. NSF also associated with the α7 ACh receptor subunit, the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluA1 and GluA2, and the γ-aminobutyric acid A (GABAA) receptor γ2 subunit. NEM, an inhibitor of NSF, significantly dissociated the α7 ACh receptor subunit from a complex with NSF and increased cell surface localization of the receptor subunit, but such effect was not obtained with the GluA1, GluA2 or γ2 subunits. NEM, alternatively, dissociated synaptobrevin 2 from an assembly of NSF/β-SNAP/syntaxin 1/synaptobrevin 2. NEM significantly increased the rate of nicotine-triggered AMPA receptor-mediated miniature excitatory postsynaptic currents, without affecting the amplitude, in rat hippocampal slices. The results of the present study indicate that NEM releases the α7 ACh receptor subunit and synaptobrevin 2 from an assembly of α7 ACh receptor subunit/NSF/β-SNAP/syntaxin 1/synaptobrevin 2, thereby promoting delivery of the α7 ACh receptor subunit to presynaptic membrane.

  19. Nootropic α7 nicotinic receptor allosteric modulator derived from GABAA receptor modulators

    Science.gov (United States)

    Ng, Herman J.; Whittemore, Edward R.; Tran, Minhtam B.; Hogenkamp, Derk J.; Broide, Ron S.; Johnstone, Timothy B.; Zheng, Lijun; Stevens, Karen E.; Gee, Kelvin W.

    2007-01-01

    Activation of brain α7 nicotinic acetylcholine receptors (α7 nAChRs) has broad therapeutic potential in CNS diseases related to cognitive dysfunction, including Alzheimer's disease and schizophrenia. In contrast to direct agonist activation, positive allosteric modulation of α7 nAChRs would deliver the clinically validated benefits of allosterism to these indications. We have generated a selective α7 nAChR-positive allosteric modulator (PAM) from a library of GABAA receptor PAMs. Compound 6 (N-(4-chlorophenyl)-α-[[(4-chloro-phenyl)amino]methylene]-3-methyl-5-isoxazoleacet-amide) evokes robust positive modulation of agonist-induced currents at α7 nAChRs, while preserving the rapid native characteristics of desensitization, and has little to no efficacy at other ligand-gated ion channels. In rodent models, it corrects sensory-gating deficits and improves working memory, effects consistent with cognitive enhancement. Compound 6 represents a chemotype for allosteric activation of α7 nAChRs, with therapeutic potential in CNS diseases with cognitive dysfunction. PMID:17470817

  20. Nootropic alpha7 nicotinic receptor allosteric modulator derived from GABAA receptor modulators.

    Science.gov (United States)

    Ng, Herman J; Whittemore, Edward R; Tran, Minhtam B; Hogenkamp, Derk J; Broide, Ron S; Johnstone, Timothy B; Zheng, Lijun; Stevens, Karen E; Gee, Kelvin W

    2007-05-08

    Activation of brain alpha7 nicotinic acetylcholine receptors (alpha7 nAChRs) has broad therapeutic potential in CNS diseases related to cognitive dysfunction, including Alzheimer's disease and schizophrenia. In contrast to direct agonist activation, positive allosteric modulation of alpha7 nAChRs would deliver the clinically validated benefits of allosterism to these indications. We have generated a selective alpha7 nAChR-positive allosteric modulator (PAM) from a library of GABAA receptor PAMs. Compound 6 (N-(4-chlorophenyl)-alpha-[[(4-chloro-phenyl)amino]methylene]-3-methyl-5-isoxazoleacet-amide) evokes robust positive modulation of agonist-induced currents at alpha7 nAChRs, while preserving the rapid native characteristics of desensitization, and has little to no efficacy at other ligand-gated ion channels. In rodent models, it corrects sensory-gating deficits and improves working memory, effects consistent with cognitive enhancement. Compound 6 represents a chemotype for allosteric activation of alpha7 nAChRs, with therapeutic potential in CNS diseases with cognitive dysfunction.

  1. Inter-Synaptic Lateral Diffusion of GABAA Receptors Shapes Inhibitory Synaptic Currents.

    Science.gov (United States)

    de Luca, Emanuela; Ravasenga, Tiziana; Petrini, Enrica Maria; Polenghi, Alice; Nieus, Thierry; Guazzi, Stefania; Barberis, Andrea

    2017-07-05

    The lateral mobility of neurotransmitter receptors has been shown to tune synaptic signals. Here we report that GABAA receptors (GABAARs) can diffuse between adjacent dendritic GABAergic synapses in long-living desensitized states, thus laterally spreading "activation memories" between inhibitory synapses. Glutamatergic activity limits this inter-synaptic diffusion by trapping GABAARs at excitatory synapses. This novel form of activity-dependent hetero-synaptic interplay is likely to modulate dendritic synaptic signaling. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Unsaturated free fatty acids increase benzodiazepine receptor agonist binding depending on the subunit composition of the GABAA receptor complex.

    Science.gov (United States)

    Witt, M R; Westh-Hansen, S E; Rasmussen, P B; Hastrup, S; Nielsen, M

    1996-11-01

    It has been shown previously that unsaturated free fatty acids (FFAs) strongly enhance the binding of agonist benzodiazepine receptor ligands and GABAA receptor ligands in the CNS in vitro. To investigate the selectivity of this effect, recombinant human GABAA/benzodiazepine receptor complexes formed by different subunit compositions (alpha x beta y gamma 2, x = 1, 2, 3, and 5; y = 1, 2, and 3) were expressed using the baculovirus-transfected Sf9 insect cell system. At 10(-4) M, unsaturated FFAs, particularly arachidonic (20:4) and docosahexaenoic (22:6) acids, strongly stimulated (> 200% of control values) the binding of [3H]flunitrazepam ([3H]FNM) to the alpha 3 beta 2 gamma 2 receptor combination in whole cell preparations. No effect or small increases in levels of unsaturated FFAs on [3H]FNM binding to alpha 1 beta x gamma 2 and alpha 2 beta x gamma 2 receptor combinations were observed, and weak effects (130% of control values) were detected using the alpha 5 beta 2 gamma 2 receptor combination. The saturated FFAs, stearic and palmitic acids, were without effect on [3H]FNM binding to any combination of receptor complexes. The hydroxylated unsaturated FFAs, ricinoleic and ricinelaidic acids, were shown to decrease the binding of [3H]FNM only if an alpha 1 beta 2 gamma 2 receptor combination was used. Given the heterogeneity of the GABAA/ benzodiazepine receptor subunit distribution in the CNS, the effects of FFAs on the benzodiazepine receptor can be assumed to vary at both cellular and regional levels.

  3. Structural domains of the human GABAA receptor β3 subunit involved in the actions of pentobarbital

    Science.gov (United States)

    Serafini, Ruggero; Bracamontes, John; Steinbach, Joe Henry

    2000-01-01

    This study was conducted to search for the residues of the β3 subunit which affect pentobarbital action on the γ-aminobutyric acid type A (GABAA) receptor. Three chimeras were constructed by joining the GABAA receptor β3 subunit to the ρ1 subunit. For each chimera, the N-terminal sequence was derived from the β3 subunit and the C-terminal sequence from the ρ1 subunit, with junctions located between the membrane-spanning regions M2 and M3, in the middle of M2, or in M1, respectively.In receptors obtained by the coexpression of α1 with the chimeric subunits, in contrast with those obtained by the coexpression of α1 and β3, pentobarbital exhibited lower potentiation of GABA-evoked responses, and in the direct gating of Cl− currents, an increase in the EC50 together with a marked decrease in the relative maximal efficacy compared with that of GABA.Estimates of the channel opening probability through variance analysis and single-channel recordings of one chimeric subunit showed that the reduced relative efficacy for gating largely resulted from an increase in gating by GABA, with little change in efficacy of pentobarbital.A fit of the time course of the response by the predictions of a class of reaction schemes is consistent with the conclusion that the change in the concentration dependence of activation by pentobarbital is due to a change in pentobarbital affinity for the receptor. Therefore, the data suggest that residues of the β3 subunit involved in pentobarbital binding to GABAA receptors are located downstream from the middle of the M2 region. PMID:10790149

  4. Presynaptic serotonin 2A receptors modulate thalamocortical plasticity and associative learning

    Science.gov (United States)

    Barre, Alexander; Berthoux, Coralie; De Bundel, Dimitri; Valjent, Emmanuel; Bockaert, Joël; Marin, Philippe; Bécamel, Carine

    2016-01-01

    Higher-level cognitive processes strongly depend on a complex interplay between mediodorsal thalamus nuclei and the prefrontal cortex (PFC). Alteration of thalamofrontal connectivity has been involved in cognitive deficits of schizophrenia. Prefrontal serotonin (5-HT)2A receptors play an essential role in cortical network activity, but the mechanism underlying their modulation of glutamatergic transmission and plasticity at thalamocortical synapses remains largely unexplored. Here, we show that 5-HT2A receptor activation enhances NMDA transmission and gates the induction of temporal-dependent plasticity mediated by NMDA receptors at thalamocortical synapses in acute PFC slices. Expressing 5-HT2A receptors in the mediodorsal thalamus (presynaptic site) of 5-HT2A receptor-deficient mice, but not in the PFC (postsynaptic site), using a viral gene-delivery approach, rescued the otherwise absent potentiation of NMDA transmission, induction of temporal plasticity, and deficit in associative memory. These results provide, to our knowledge, the first physiological evidence of a role of presynaptic 5-HT2A receptors located at thalamocortical synapses in the control of thalamofrontal connectivity and the associated cognitive functions. PMID:26903620

  5. Binge drinking: in search of its molecular target via the GABAA receptor

    Directory of Open Access Journals (Sweden)

    Andrew R.S.T. Yang

    2011-10-01

    Full Text Available Binge drinking, frequently referred to clinically as problem or hazardous drinking, is a pattern of excessive alcohol intake characterized by blood alcohol levels [BALs] > 0.08 g% within a 2 h period. Here, we show that overexpression of α1 subunits of the GABAA receptor contributes to binge drinking, and further document that this involvement is related to the neuroanatomical localization of 1 receptor subunits. Using a herpes simplex virus amplicon vector to deliver small interference RNA [siRNA], we showed that siRNA specific for the a1 subunit [pHSVsiLA1] caused profound, long-term, and selective reduction of gene expression, receptor density, and binge drinking in high alcohol drinking [HAD] rats when delivered into the ventral pallidum [VP]. Scrambled siRNA [pHSVsiNC] delivered similarly into the VP failed to alter gene expression, receptor density, or binge drinking. Silencing of the 1 gene in the VP, however, failed to alter binge sucrose or water intake. These results, along with our prior research, provide compelling evidence that the a1-containing GABAA receptor subunits are critical in the regulation of binge-like patterns of excessive drinking. Collectively, these data may be useful in the development of gene-based and novel pharmacological approaches for the treatment of excessive drinking.

  6. Probing α4βδ GABAA Receptor Heterogeneity

    DEFF Research Database (Denmark)

    Hoestgaard-Jensen, Kirsten; Dalby, Nils Ole; Krall, Jacob

    2014-01-01

    in cerebellar granule cells. In contrast, the compound did not elicit significant currents in dentate gyrus granule cells or in striatal medium spiny neurons (MSNs), indicating predominant expression of extrasynaptic α4β2δ receptors in these cells. Interestingly, Thio-THIP evoked differential degrees...... recorded from dentate gyrus granule cells, most likely by targeting perisynaptic α4βδ receptors expressed at distal dendrites of these cells. Being the first published ligand capable of discriminating between β2- and β3-containing receptor subtypes, Thio-THIP could be a valuable tool in explorations...

  7. Key modulatory role of presynaptic adenosine A2A receptors in cortical neurotransmission to the striatal direct pathway.

    Science.gov (United States)

    Quiroz, César; Luján, Rafael; Uchigashima, Motokazu; Simoes, Ana Patrícia; Lerner, Talia N; Borycz, Janusz; Kachroo, Anil; Canas, Paula M; Orru, Marco; Schwarzschild, Michael A; Rosin, Diane L; Kreitzer, Anatol C; Cunha, Rodrigo A; Watanabe, Masahiko; Ferré, Sergi

    2009-11-18

    Basal ganglia processing results from a balanced activation of direct and indirect striatal efferent pathways, which are controlled by dopamine D1 and D2 receptors, respectively. Adenosine A2A receptors are considered novel antiparkinsonian targets, based on their selective postsynaptic localization in the indirect pathway, where they modulate D2 receptor function. The present study provides evidence for the existence of an additional, functionally significant, segregation of A2A receptors at the presynaptic level. Using integrated anatomical, electrophysiological, and biochemical approaches, we demonstrate that presynaptic A2A receptors are preferentially localized in cortical glutamatergic terminals that contact striatal neurons of the direct pathway, where they exert a selective modulation of corticostriatal neurotransmission. Presynaptic striatal A2A receptors could provide a new target for the treatment of neuropsychiatric disorders.

  8. Key Modulatory Role of Presynaptic Adenosine A2A Receptors in Cortical Neurotransmission to the Striatal Direct Pathway

    Directory of Open Access Journals (Sweden)

    César Quiroz

    2009-01-01

    Full Text Available Basal ganglia processing results from a balanced activation of direct and indirect striatal efferent pathways, which are controlled by dopamine D1 and D2 receptors, respectively. Adenosine A2A receptors are considered novel antiparkinsonian targets, based on their selective postsynaptic localization in the indirect pathway, where they modulate D2 receptor function. The present study provides evidence for the existence of an additional, functionally significant, segregation of A2A receptors at the presynaptic level. Using integrated anatomical, electrophysiological, and biochemical approaches, we demonstrate that presynaptic A2A receptors are preferentially localized in cortical glutamatergic terminals that contact striatal neurons of the direct pathway, where they exert a selective modulation of corticostriatal neurotransmission. Presynaptic striatal A2A receptors could provide a new target for the treatment of neuropsychiatric disorders.

  9. Plasticity of glutamate and GABAA receptors in the hippocampus of patients with Alzheimer's disease.

    Science.gov (United States)

    Armstrong, David M; Sheffield, Roxanne; Mishizen-Eberz, Amanda J; Carter, Troy L; Rissman, Robert A; Mizukami, Katsuyoshi; Ikonomovic, Milos D

    2003-10-01

    In Alzheimer's disease (AD) it is well known that specific regions of the brain are particularly vulnerable to the pathologic insults of the disease. In particular, the hippocampus is affected very early in the disease and by end stage AD is ravaged by neurofibrillary tangles and senile plaques (i.e., the pathologic hallmarks of AD). Throughout the past several years our laboratory has sought to determine the molecular mechanisms underlying the selective vulnerability of neurons in AD. To this end, we employed immunohistochemical, biochemical, and in situ hybrization methods to examine glutamate and gamma-aminobutyric acid (GABAA) receptor subtypes in the hippocampus of patients displaying the full spectrum of AD pathology. Despite the fact that the hippocampus is characterized by a marked loss of neurons in the late stages of the disease, our data demonstrate a rather remarkable preservation among some glutamate and GABAA receptor subtypes. Collectively, our data support the view that the relatively constant levels of selected receptor subtypes represent a compensatory up-regulation of these receptors subunits in surviving neurons. The demonstration that glutamate and GABA receptor subunits are comparably unaffected implies that even in the terminal stages of the discase the brain is "attempting" to maintain a balance in excitatory and inhibitory tone. Our data also support the concept that receptor subunits are differentially affected in AD with some subunits displaying no change while others display alterations in protein and mRNA levels within selected regions of the hippocampus. Although many of these changes are modest, they do suggest that the subunit composition of these receptors may be altered and hence affect the pharmacokinetic and physiological properties of the receptor. The latter findings stress the importance of understanding the subunit composition of individual glutamate/GABA receptors in the diseased brain prior to the development of drugs

  10. First direct electron microscopic visualization of a tight spatial coupling between GABAA-receptors and voltage-sensitive calcium channels

    DEFF Research Database (Denmark)

    Hansen, G H; Belhage, B; Schousboe, A

    1992-01-01

    Using cerebellar granule neurons in culture it was demonstrated that exposure of the cells to the GABAA receptor agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) leads to an increase in the number of voltage-gated calcium channels as revealed by quantitative preembedding indirect imm...... of THIP-treated cultures. This suggests that primarily low affinity GABAA-receptors are closely associated with Ca2+ channels and this may be important for the ability of these receptors to mediate an inhibitory action on transmitter release even under extreme depolarizing conditions....

  11. A versatile optical tool for studying synaptic GABAA receptor trafficking.

    Science.gov (United States)

    Lorenz-Guertin, Joshua M; Wilcox, Madeleine R; Zhang, Ming; Larsen, Mads B; Pilli, Jyotsna; Schmidt, Brigitte F; Bruchez, Marcel P; Johnson, Jon W; Waggoner, Alan S; Watkins, Simon C; Jacob, Tija C

    2017-11-15

    Live-cell imaging methods can provide critical real-time receptor trafficking measurements. Here, we describe an optical tool to study synaptic γ-aminobutyric acid (GABA) type A receptor (GABA A R) dynamics through adaptable fluorescent-tracking capabilities. A fluorogen-activating peptide (FAP) was genetically inserted into a GABA A R γ2 subunit tagged with pH-sensitive green fluorescent protein (γ2 pH FAP). The FAP selectively binds and activates Malachite Green (MG) dyes that are otherwise non-fluorescent in solution. γ2 pH FAP GABA A Rs are expressed at the cell surface in transfected cortical neurons, form synaptic clusters and do not perturb neuronal development. Electrophysiological studies show γ2 pH FAP GABA A Rs respond to GABA and exhibit positive modulation upon stimulation with the benzodiazepine diazepam. Imaging studies using γ2 pH FAP-transfected neurons and MG dyes show time-dependent receptor accumulation into intracellular vesicles, revealing constitutive endosomal and lysosomal trafficking. Simultaneous analysis of synaptic, surface and lysosomal receptors using the γ2 pH FAP-MG dye approach reveals enhanced GABA A R turnover following a bicucculine-induced seizure paradigm, a finding not detected by standard surface receptor measurements. To our knowledge, this is the first application of the FAP-MG dye system in neurons, demonstrating the versatility to study nearly all phases of GABA A R trafficking. © 2017. Published by The Company of Biologists Ltd.

  12. A Review of the Updated Pharmacophore for the Alpha 5 GABA(A Benzodiazepine Receptor Model

    Directory of Open Access Journals (Sweden)

    Terry Clayton

    2015-01-01

    Full Text Available An updated model of the GABA(A benzodiazepine receptor pharmacophore of the α5-BzR/GABA(A subtype has been constructed prompted by the synthesis of subtype selective ligands in light of the recent developments in both ligand synthesis, behavioral studies, and molecular modeling studies of the binding site itself. A number of BzR/GABA(A α5 subtype selective compounds were synthesized, notably α5-subtype selective inverse agonist PWZ-029 (1 which is active in enhancing cognition in both rodents and primates. In addition, a chiral positive allosteric modulator (PAM, SH-053-2′F-R-CH3 (2, has been shown to reverse the deleterious effects in the MAM-model of schizophrenia as well as alleviate constriction in airway smooth muscle. Presented here is an updated model of the pharmacophore for α5β2γ2 Bz/GABA(A receptors, including a rendering of PWZ-029 docked within the α5-binding pocket showing specific interactions of the molecule with the receptor. Differences in the included volume as compared to α1β2γ2, α2β2γ2, and α3β2γ2 will be illustrated for clarity. These new models enhance the ability to understand structural characteristics of ligands which act as agonists, antagonists, or inverse agonists at the Bz BS of GABA(A receptors.

  13. Aripiprazole Increases the PKA Signalling and Expression of the GABAA Receptor and CREB1 in the Nucleus Accumbens of Rats.

    Science.gov (United States)

    Pan, Bo; Lian, Jiamei; Huang, Xu-Feng; Deng, Chao

    2016-05-01

    The GABAA receptor is implicated in the pathophysiology of schizophrenia and regulated by PKA signalling. Current antipsychotics bind with D2-like receptors, but not the GABAA receptor. The cAMP-responsive element-binding protein 1 (CREB1) is also associated with PKA signalling and may be related to the positive symptoms of schizophrenia. This study investigated the effects of antipsychotics in modulating D2-mediated PKA signalling and its downstream GABAA receptors and CREB1. Rats were treated orally with aripiprazole (0.75 mg/kg, ter in die (t.i.d.)), bifeprunox (0.8 mg/kg, t.i.d.), haloperidol (0.1 mg/kg, t.i.d.) or vehicle for 1 week. The levels of PKA-Cα and p-PKA in the prefrontal cortex (PFC), nucleus accumbens (NAc) and caudate putamen (CPu) were detected by Western blots. The mRNA levels of Gabrb1, Gabrb2, Gabrb3 and Creb1, and their protein expression were measured by qRT-PCR and Western blots, respectively. Aripiprazole elevated the levels of p-PKA and the ratio of p-PKA/PKA in the NAc, but not the PFC and CPu. Correlated with this elevated PKA signalling, aripiprazole elevated the mRNA and protein expression of the GABAA (β-1) receptor and CREB1 in the NAc. While haloperidol elevated the levels of p-PKA and the ratio of p-PKA/PKA in both NAc and CPu, it only tended to increase the expression of the GABAA (β-1) receptor and CREB1 in the NAc, but not the CPu. Bifeprunox had no effects on PKA signalling in these brain regions. These results suggest that aripiprazole has selective effects on upregulating the GABAA (β-1) receptor and CREB1 in the NAc, probably via activating PKA signalling.

  14. Studying cerebellar circuits by remote control of selected neuronal types with GABA-A receptors

    Directory of Open Access Journals (Sweden)

    William Wisden

    2009-12-01

    Full Text Available Although GABA-A receptor-mediated inhibition of cerebellar Purkinje cells by molecular layer interneurons (MLIs has been studied intensely on the cellular level, it has remained unclear how this inhibition regulates cerebellum-dependent behaviour. We have implemented two complementary approaches to investigate the function of the MLI-Purkinje cell synapse on the behavioral level. In the first approach we permanently disrupted inhibitory fast synaptic transmission at the synapse by genetically removing the postsynaptic GABA-A receptors from Purkinje cells (PC-Δγ2 mice. We found that chronic disruption of the MLI-Purkinje cell synapse strongly impaired cerebellar learning of the vestibular occular reflex (VOR, presumably by disrupting the temporal patterns of Purkinje cell activity. However, in PC-Δγ2 mice the baseline VOR reflex was only mildly affected; indeed PC-Δγ2 mice showed no ataxia or gait abnormalities suggesting that MLI control of Purkinje cell activity is either not involved in ongoing motor tasks or that the system has found a way to compensate for its loss. To investigate the latter possibility we have developed an alternative genetic technique; we made the MLI-Purkinje cell synapse selectively sensitive to rapid manipulation with the GABAA receptor modulator zolpidem (PC-γ2-swap mice. Minutes after intraperitoneal zolpidem injection, these PC-γ2-swap mice developed severe motor abnormalities, revealing a substantial contribution of the MLI-Purkinje cell synapse to real time motor control. The cell-type selective permanent knockout of synaptic GABAergic input, and the fast reversible modulation of GABAergic input at the same synapse illustrate how pursuing both strategies gives a fuller view.

  15. γ1-Containing GABA-A Receptors Cluster at Synapses Where they Mediate Slower Synaptic Currents than γ2-Containing GABA-A Receptors

    Directory of Open Access Journals (Sweden)

    Christine L. Dixon

    2017-06-01

    Full Text Available GABA-A receptors (GABAARs are pentameric ligand-gated ion channels that are assembled mainly from α (α1–6, β (β1–3 and γ (γ1–3 subunits. Although GABAARs containing γ2L subunits mediate most of the inhibitory neurotransmission in the brain, significant expression of γ1 subunits is seen in the amygdala, pallidum and substantia nigra. However, the location and function of γ1-containing GABAARs in these regions remains unclear. In “artificial” synapses, where the subunit composition of postsynaptic receptors is specifically controlled, γ1 incorporation slows the synaptic current decay rate without affecting channel deactivation, suggesting that γ1-containing receptors are not clustered and therefore activated by diffuse neurotransmitter. However, we show that γ1-containing receptors are localized at neuronal synapses and form clusters in both synaptic and extrasynaptic regions. In addition, they exhibit rapid membrane diffusion and a higher frequency of exchange between synaptic and perisynaptic populations compared to γ2L-containing GABAARs. A point mutation in the large intracellular domain and a pharmacological analysis reveal that when a single non-conserved γ2L residue is mutated to its γ1 counterpart (T349L, the synaptic current decay is slowed from γ2L- to γ1-like without changing the clustering or diffusion properties of the receptors. In addition, previous fast perfusion and single channel kinetic experiments revealed no difference in the intrinsic closing rates of γ2L- and γ1-containing receptors when expressed in HEK293 cells. These observations together with Monte Carlo simulations of synaptic function confirm that decreased clustering does not control γ1-containing GABAAR kinetics. Rather, they suggest that γ1- and γ2L-containing receptors exhibit differential synaptic current decay rates due to differential gating dynamics when localized at the synapse.

  16. Basolateral amygdala GABA-A receptors mediate stress-induced memory retrieval impairment in rats.

    Science.gov (United States)

    Sardari, Maryam; Rezayof, Ameneh; Khodagholi, Fariba; Zarrindast, Mohammad-Reza

    2014-04-01

    The present study was designed to investigate the involvement of GABA-A receptors of the basolateral amygdala (BLA) in the impairing effect of acute stress on memory retrieval. The BLAs of adult male Wistar rats were bilaterally cannulated and memory retrieval was measured in a step-through type passive avoidance apparatus. Acute stress was evoked by placing the animals on an elevated platform for 10, 20 and 30 min. The results indicated that exposure to 20 and 30 min stress, but not 10 min, before memory retrieval testing (pre-test exposure to stress) decreased the step-through latency, indicating stress-induced memory retrieval impairment. Intra-BLA microinjection of a GABA-A receptor agonist, muscimol (0.005-0.02 μg/rat), 5 min before exposure to an ineffective stress (10 min exposure to stress) induced memory retrieval impairment. It is important to note that pre-test intra-BLA microinjection of the same doses of muscimol had no effect on memory retrieval in the rats unexposed to 10 min stress. The blockade of GABA-A receptors of the BLA by injecting an antagonist, bicuculline (0.4-0.5 μg/rat), 5 min before 20 min exposure to stress, prevented stress-induced memory retrieval. Pre-test intra-BLA microinjection of the same doses of bicuculline (0.4-0.5 μg/rat) in rats unexposed to 20 min stress had no effect on memory retrieval. In addition, pre-treatment with bicuculline (0.1-0.4 μg/rat, intra-BLA) reversed muscimol (0.02 μg/rat, intra-BLA)-induced potentiation on the effect of stress in passive avoidance learning. It can be concluded that pre-test exposure to stress can induce memory retrieval impairment and the BLA GABA-A receptors may be involved in stress-induced memory retrieval impairment.

  17. In vitro blood-brain barrier permeability predictions for GABAA receptor modulating piperine analogs

    DEFF Research Database (Denmark)

    Eigenmann, Daniela Elisabeth; Dürig, Carmen; Jähne, Evelyn Andrea

    2016-01-01

    The alkaloid piperine from black pepper (Piper nigrum L.) and several synthetic piperine analogs were recently identified as positive allosteric modulators of γ-aminobutyric acid type A (GABAA) receptors. In order to reach their target sites of action, these compounds need to enter the brain......-like endothelial cells (BLEC) model, and a primary animal (bovine endothelial/rat astrocytes co-culture) model. For each compound, quantitative UHPLC-MS/MS methods in the range of 5.00-500ng/mL in the corresponding matrix were developed, and permeability coefficients in the three BBB models were determined...

  18. Unique presynaptic alpha 2-receptor selectivity and specificity of the antihypertensive agent moxonidine.

    Science.gov (United States)

    Armah, B I

    1988-10-01

    The characteristics of the alpha-receptor activating property of the new antihypertensive agent moxonidine (4-chloro-N-(4, 5-dihydro-1H-imidazol-2-yl)-6-methyl-2-methyl-5-pyrimidinamine, BDF 5895) was studied using peripheral vasculature and brain membranes of various animals. Moxonidine exerted a full agonist effect in elevating diastolic blood pressure in the pithed rat. Activation of postsynaptic alpha 1- and alpha 2-receptors contribute to the vasoconstrictory effect in rats. In the vasculature of the rabbit, moxonidine was a full agonist at presynaptic alpha 2-receptors in inhibiting transmitter release induced by electrical stimulation of pulmonary artery strips. At postsynaptic sites, exogenously applied moxonidine was a full agonist at alpha 1-receptors in the isolated aorta, pulmonary artery and vena cava of the rabbit. Selectivity for alpha 2-receptors in the pulmonary artery was 106-fold. In rat brain membranes, moxonidine showed 288-fold greater selectivity for alpha 2-receptors, when the displacement of [3H]-rauwolscine was compared with the displacement of [3H]-prazosin. On the whole, clonidine exhibited greater potency than moxonidine on both alpha-receptor subtypes, but moxonidine consistently showed greater alpha 2-receptor selectivity than clonidine. In the guinea pig myocardium, moxonidine caused neither bradycardia nor tachycardia in the isolated right atrium and produced a negligible positive inotropic effect at 100 mumol/l in the isolated papillary muscle.

  19. Modulation of GABAA Receptors in the Treatment of Epilepsy.

    Science.gov (United States)

    Palma, Eleonora; Ruffolo, Gabriele; Cifelli, Pierangelo; Roseti, Cristina; Vliet, Erwin A van; Aronica, Eleonora

    2017-01-01

    A variety of evidence suggested that an imbalance in excitatory and inhibitory neurotransmission could be one of the pathophysiological mechanisms underlying the occurrence and progression of seizures. Understanding the causes of this imbalance may provide essential insight into the basic mechanisms of epilepsy and may uncover novel targets for future drug therapies. Accordingly, GABA is the most important inhibitory neurotransmitter in the CNS and its receptors (e.g., GABAARs) can still be relevant targets of new antiepileptic drugs (AEDs). Up to now, a variety of modulating agents that directly or indirectly act at GABAARs have been proposed for restoring the physiological balance of excitation and inhibition in the epileptogenic brain. While benzodiazepine, barbiturates and allosteric modulators of GABAARs are well-known for their anticonvulsant effect, new compounds as modulators of chloride homeostasis or phytocannabinoids are not completely unraveled and their antiepileptic action is still matter of debate. In addition, several inflammatory mediators as cytokines and chemokines play an important role in the modulation of GABAAR function, even if further research is needed to translate these new findings from the bench to the bedside. Finally yet importantly, a new frontier in epilepsy research is represented by the observation that specific small noncoding RNAs, namely miRNAs, may regulate GABAAR function paving the road to therapeutic approaches based on the modulation of gene expression. Here, we review key physiological, neuropathological and functional studies that altogether strengthen the role of modulation of GABAARs function as therapeutic target. The discovery of the novel molecular mechanisms underlying the GABAergic transmission in epilepsy represents another heavy piece in the "epileptic puzzle". Even if GABAAR is an old story in the pharmacology of the epilepsy, the reviewed findings suggest that new players in the scenario need to be considered

  20. Presynaptic adenosine receptor-mediated regulation of diverse thalamocortical short-term plasticity in the mouse whisker pathway

    Directory of Open Access Journals (Sweden)

    Giovanni eFerrati

    2016-02-01

    Full Text Available Short-term synaptic plasticity (STP sets the sensitivity of a synapse to incoming activity and determines the temporal patterns that it best transmits. In driver thalamocortical (TC synaptic populations, STP is dominated by depression during stimulation from rest. However, during ongoing stimulation, lemniscal TC connections onto layer 4 neurons in mouse barrel cortex express variable STP. Each synapse responds to input trains with a distinct pattern of depression or facilitation around its mean steady-state response. As a result, in common with other synaptic populations, lemniscal TC synapses express diverse rather than uniform dynamics, allowing for a rich representation of temporally varying stimuli. Here we show that this STP diversity is regulated presynaptically. Presynaptic adenosine receptors of the A1R type, but not kainate receptors, modulate STP behavior. Blocking the receptors does not eliminate diversity, indicating that diversity is related to heterogeneous expression of multiple mechanisms in the pathway from presynaptic calcium influx to neurotransmitter release.

  1. The Role of GABAA Receptor in Antispasmodic Activity of Hydroalcholic Extract of Petroselinum Crispum (Parsley Seed in Rat Ileum

    Directory of Open Access Journals (Sweden)

    Feryal Savary

    2017-01-01

    Full Text Available Abstract Background: Parsley is one of the medicinal herbs used for gastrointestinal disorders. However, spasmolytic activity of Petroselinum crispum (parsley extract has been reported, there is a lack of information to support the mechanism of this antispasmodic activity. Taking this into account, the purpose of the present work was to investigate the role of GABAA receptor on antispasmodic activity of the hydroalcoholic extract of parsley seed in isolated rat ileum. Materials and Methods: In this study, terminal portion of ileum (2 cm was dissected out and mounted in an organ bath containing air bubbled Tyrode solution (37οC, pH=7.4. Under 1gr resting tension, ileal contraction was induced by KCl (60 mM and recorded isotonically. The effects of non-cumulative (0.1-0.5 mg/ml concentrations of extract on KCl-induced contractions were examined. After evaluating the effect of agonist and antagonist GABAA receptor, the effect of parsley extract was assessed in the presence of muscimol (25 µM and bicuculline (10 µM as agonist and antagonist of GABAA, respectively. Results: Parsley seed extract reduced the KCl-induced ileal contraction in a concentration-dependent manner (n=7, p<0.001. Both muscimol and bicuculline exerted relaxant effect on ileal contraction (n=7, p<0.05, p<0.01, respectively. Surprisingly, agonist and antagonist of GABAA both potentiated the spasmolytic effect of extract (0.2 mg/ml. Altogether, spasmolytic effect of extract was not attenuated in the presence of GABAA antagonist. Conclusion: It seems that GABAA receptor is not involved in the antispasmodic effect of parsley seeds extract in rat ileum.

  2. Presynaptic selectivity of a ligand for serotonin 1A receptors revealed by in vivo PET assays of rat brain.

    Directory of Open Access Journals (Sweden)

    Takeaki Saijo

    Full Text Available A novel investigational antidepressant with high affinity for the serotonin transporter and the serotonin 1A (5-HT(1A receptor, called Wf-516 (structural formula: (2S-1-[4-(3,4-dichlorophenylpiperidin-1-yl]-3-[2-(5-methyl-1,3,4-oxadiazol-2-ylbenzo[b]furan-4-yloxy]propan-2-ol monohydrochloride, has been found to exert a rapid therapeutic effect, although the mechanistic basis for this potential advantage remains undetermined. We comparatively investigated the pharmacokinetics and pharmacodynamics of Wf-516 and pindolol by positron emission tomographic (PET and autoradiographic assays of rat brains in order to elucidate their molecular interactions with presynaptic and postsynaptic 5-HT(1A receptors. In contrast to the full receptor occupancy by pindolol in PET measurements, the binding of Wf-516 to 5-HT(1A receptors displayed limited capacity, with relatively high receptor occupancy being achieved in regions predominantly containing presynaptic receptors. This selectivity was further proven by PET scans of neurotoxicant-treated rats deficient in presynaptic 5-HT(1A receptors. In addition, [(35S]guanosine 5'-O-[γ-thio]triphosphate autoradiography indicated a partial agonistic ability of Wf-516 for 5-HT(1A receptors. This finding has lent support to reports that diverse partial agonists for 5-HT(1A receptors exert high sensitivity for presynaptic components. Thus, the present PET data suggest a relatively high capacity of presynaptic binding sites for partial agonists. Since our in vitro and ex vivo autoradiographies failed to illustrate these distinct features of Wf-516, in vivo PET imaging is considered to be, thus far, the sole method capable of pharmacokinetically demonstrating the unique actions of Wf-516 and similar new-generation antidepressants.

  3. Flavonoid Myricetin Modulates GABAA Receptor Activity through Activation of Ca2+ Channels and CaMK-II Pathway

    Directory of Open Access Journals (Sweden)

    Xiao Hu Zhang

    2012-01-01

    Full Text Available The flavonoid myricetin is found in several sedative herbs, for example, the St. John's Wort, but its influence on sedation and its possible mechanism of action are unknown. Using patch-clamp technique on a brain slice preparation, the present study found that myricetin promoted GABAergic activity in the neurons of hypothalamic paraventricular nucleus (PVN by increasing the decay time and frequency of the inhibitory currents mediated by GABAA receptor. This effect of myricetin was not blocked by the GABAA receptor benzodiazepine- (BZ- binding site antagonist flumazenil, but by KN-62, a specific inhibitor of the Ca2+/calmodulin-stimulated protein kinase II (CaMK-II. Patch clamp and live Ca2+ imaging studies found that myricetin could increase Ca2+ current and intracellular Ca2+ concentration, respectively, via T- and L-type Ca2+ channels in rat PVN neurons and hypothalamic primary culture neurons. Immunofluorescence staining showed increased phosphorylation of CaMK-II after myricetin incubation in primary culture of rat hypothalamic neurons, and the myricetin-induced CaMK-II phosphorylation was further confirmed by Western blotting in PC-12 cells. The present results suggest that myricetin enhances GABAA receptor activity via calcium channel/CaMK-II dependent mechanism, which is distinctively different from that of most existing BZ-binding site agonists of GABAA receptor.

  4. GABAA receptor in the thalamic specific relay system contributes to the propofol-induced somatosensory cortical suppression in rat.

    Science.gov (United States)

    Zhang, Yu; Wang, Chaoping; Zhang, Yi; Zhang, Lin; Yu, Tian

    2013-01-01

    Interaction with the gamma-aminobutyric-acid-type-A (GABAA) receptors is recognized as an important component of the mechanism of propofol, a sedative-hypnotic drug commonly used as anesthetic. However the contribution of GABAA receptors to the central nervous system suppression is still not well understood, especially in the thalamocortical network. In the present study, we investigated if intracerebral injection of bicuculline (a GABAA receptor antagonist) into the thalamus ventral posteromedial nucleus (VPM, a thalamus specific relay nuclei that innervated S1 mostly) could reverse propofol-induced cortical suppression, through recording the changes of both spontaneous and somatosensory neural activities in rat's somatosensory cortex (S1). We found that after injection of bicuculline into VPM, significant increase of neural activities were observed in all bands of local field potentials (total band, 182±6%), while the amplitude of all components in somatosensory evoked potentials were also increased (negative, 121±9% and positive, 124±6%).These data support that the potentiation of GABAA receptor-mediated synaptic inhibition in a thalamic specific relay system seems to play a crucial role in propofol-induced cortical suppression in the somatosensory cortex of rats.

  5. Light and electron microscopic localization of GABAA-receptors on cultured cerebellar granule cells and astrocytes using immunohistochemical techniques

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Hösli, E; Belhage, B

    1991-01-01

    . At the light microscope level specific staining of GABAA-receptors was localized in various types of neurones in explant cultures of rat cerebellum using the indirect peroxidase-antiperoxidase (PAP) technique, whereas no specific staining was found in astrocytes. At the electron microscope level labeling...

  6. Functional Properties and Mechanism of Action of PPTQ, an Allosteric Agonist and Low Nanomolar Positive Allosteric Modulator at GABAA Receptors

    DEFF Research Database (Denmark)

    Madjroh, Nawid; Olander, Emma Rie; Bundgaard, Christoffer

    2018-01-01

    The former sedative-hypnotic and recreational drug methaqualone (Quaalude) is a moderately potent, non-selective positive allosteric modulator (PAM) at GABAA receptors (GABAARs) (Hammer et al., 2015). In the present study, we have identified a novel methaqualone analog, 2-phenyl-3-(p...

  7. Functional sites involved in modulation of the GABAA receptor channel by the intravenous anesthetics propofol, etomidate and pentobarbital.

    Science.gov (United States)

    Maldifassi, Maria C; Baur, Roland; Sigel, Erwin

    2016-06-01

    GABAA receptors are the major inhibitory neurotransmitter receptors in the brain and are the target for many clinically important drugs. Among the many modulatory compounds are also the intravenous anesthetics propofol and etomidate, and barbiturates. The mechanism of receptor modulation by these compounds is of mayor relevance. The site of action of these compounds has been located to subunit interfaces in the intra-membrane region of the receptor. In α1β2γ2 GABAA receptors there are five such interfaces, two β+/α- and one each of α+/β-, α+/γ- and γ+/β- subunit interfaces. We have used reporter mutations located in the second trans-membrane region in different subunits to probe the effects of changes at these subunit interfaces on modulation by propofol, etomidate and pentobarbital. We provide evidence for the fact that each of these compounds either modulates through a different set of subunit interfaces or through the same set of subunit interfaces to a different degree. As a GABAA receptor pentamer harbors two β+/α- subunit interfaces, we used concatenated receptors to dissect the contribution of individual interfaces and show that only one of these interfaces is important for receptor modulation by etomidate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Hippocampal extracellular signal-regulated kinase signaling has a role in passive avoidance memory retrieval induced by GABAA Receptor modulation in mice.

    Science.gov (United States)

    Kim, Dong Hyun; Kim, Jong Min; Park, Se Jin; Lee, Seungheon; Shin, Chan Young; Cheong, Jae Hoon; Ryu, Jong Hoon

    2012-04-01

    Available evidence strongly suggests that the γ-aminobutyric acid type A (GABA(A)) receptor has a crucial role in memory retrieval. However, the signaling mechanisms underlying the role of GABA(A) receptor modulation in memory retrieval are unclear. We conducted one-trial passive avoidance task with pre-retention trial drug administration in the hippocampus to test the effects of GABA(A) receptor modulation on memory retrieval. We further tested the co-involvement of signaling molecules: extracellular signal-regulated kinase (ERK), Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), and cAMP responsive element-binding protein (CREB). First, we observed that the phosphorylation of hippocampal ERK was required for memory retrieval during the task. Accordingly, to investigate whether GABA(A) receptor activation or inhibition induces ERK phosphorylation during memory retrieval, drugs that target the GABA(A) receptor were administered into the hippocampus before the retention trial. Muscimol, a GABA(A) receptor agonist, and diazepam, an agonist to benzodiazepine-binding site of GABA(A) receptor, blocked retention trial-induced ERK phosphorylation and impaired memory retrieval. Furthermore, co-treatment with sub-effective dose of U0126, a mitogen-activated protein kinase inhibitor, blocked the upregulation of ERK phosphorylation and impaired memory retrieval, and bicuculline methiodide (BMI), a GABA(A) receptor antagonist, increased ERK phosphorylation induced by the retention trial and facilitated memory retrieval. Finally, the effects of BMI were blocked by the co-application of a sub-effective dose of U0126. These results suggest that GABA(A) receptor-mediated memory retrieval is closely related to ERK activity.

  9. Inhibition of GABAA receptor chloride channel by quinolones and norfloxacin-biphenylacetic acid hybrid compounds.

    Science.gov (United States)

    Ito, Y; Miyasaka, T; Fukuda, H; Akahane, K; Kimura, Y

    1996-01-01

    Receptor binding studies have shown that the combination of some new quinolone antibacterial agents with 4-biphenylacetic acid (BPAA), a metabolite of fenbufen, inhibits GABAA receptors. In order to elucidate further the mechanism of these drug interactions, the effect of quinolone antibacterial agents on muscimol-stimulated 36Cl- uptake in rat cerebral cortical synaptoneurosomes was investigated in the absence or presence of BPAA. In the absence of BPAA, quinolones such as norfloxacin (NFLX) and enoxacin attenuated muscimol-stimulated 36Cl- uptake at 10 microM and above. In combination with 10 microM BPAA, the inhibitory effect of these drugs was potentiated and there was a parallel shift of the inhibition curves to the left for these drugs. BPAA alone (1 and 10 microM) did not affect basal or muscimol-stimulated 36Cl- uptake. Hybrid molecules of NFLX and BPAA were synthesized and their inhibitory potency was also investigated. Inhibition curves of muscimol-stimulated 36Cl- uptake revealed that a hybrid with a -CONH(CH2)3- chain between NFLX and BPAA (flexible structure) (1 nM-20 microM) inhibited muscimol-stimulated 36Cl- uptake more potently than did the combination of NFLX (10 nm-100 microM) and 10 microM BPAA. In contrast, another hybrid linked by -CONH-(stretched structure) exhibited a weak inhibitory effect at 10 microM. These results suggest that quinolones in combination with BPAA bind to GABAA receptors, thus inhibiting Cl- channel activity, and that the inhibitory potency of quinolones may be enhanced by an intermolecular interaction with BPAA.

  10. Pancreatic and snake venom presynaptically active phospholipases A2 inhibit nicotinic acetylcholine receptors.

    Science.gov (United States)

    Vulfius, Catherine A; Kasheverov, Igor E; Kryukova, Elena V; Spirova, Ekaterina N; Shelukhina, Irina V; Starkov, Vladislav G; Andreeva, Tatyana V; Faure, Grazyna; Zouridakis, Marios; Tsetlin, Victor I; Utkin, Yuri N

    2017-01-01

    Phospholipases A2 (PLA2s) are enzymes found throughout the animal kingdom. They hydrolyze phospholipids in the sn-2 position producing lysophospholipids and unsaturated fatty acids, agents that can damage membranes. PLA2s from snake venoms have numerous toxic effects, not all of which can be explained by phospholipid hydrolysis, and each enzyme has a specific effect. We have earlier demonstrated the capability of several snake venom PLA2s with different enzymatic, cytotoxic, anticoagulant and antiproliferative properties, to decrease acetylcholine-induced currents in Lymnaea stagnalis neurons, and to compete with α-bungarotoxin for binding to nicotinic acetylcholine receptors (nAChRs) and acetylcholine binding protein. Since nAChRs are implicated in postsynaptic and presynaptic activities, in this work we probe those PLA2s known to have strong presynaptic effects, namely β-bungarotoxin from Bungarus multicinctus and crotoxin from Crotalus durissus terrificus. We also wished to explore whether mammalian PLA2s interact with nAChRs, and have examined non-toxic PLA2 from porcine pancreas. It was found that porcine pancreatic PLA2 and presynaptic β-bungarotoxin blocked currents mediated by nAChRs in Lymnaea neurons with IC50s of 2.5 and 4.8 μM, respectively. Crotoxin competed with radioactive α-bungarotoxin for binding to Torpedo and human α7 nAChRs and to the acetylcholine binding protein. Pancreatic PLA2 interacted similarly with these targets; moreover, it inhibited radioactive α-bungarotoxin binding to the water-soluble extracellular domain of human α9 nAChR, and blocked acetylcholine induced currents in human α9α10 nAChRs heterologously expressed in Xenopus oocytes. These and our earlier results show that all snake PLA2s, including presynaptically active crotoxin and β-bungarotoxin, as well as mammalian pancreatic PLA2, interact with nAChRs. The data obtained suggest that this interaction may be a general property of all PLA2s, which should be proved by

  11. Pancreatic and snake venom presynaptically active phospholipases A2 inhibit nicotinic acetylcholine receptors.

    Directory of Open Access Journals (Sweden)

    Catherine A Vulfius

    Full Text Available Phospholipases A2 (PLA2s are enzymes found throughout the animal kingdom. They hydrolyze phospholipids in the sn-2 position producing lysophospholipids and unsaturated fatty acids, agents that can damage membranes. PLA2s from snake venoms have numerous toxic effects, not all of which can be explained by phospholipid hydrolysis, and each enzyme has a specific effect. We have earlier demonstrated the capability of several snake venom PLA2s with different enzymatic, cytotoxic, anticoagulant and antiproliferative properties, to decrease acetylcholine-induced currents in Lymnaea stagnalis neurons, and to compete with α-bungarotoxin for binding to nicotinic acetylcholine receptors (nAChRs and acetylcholine binding protein. Since nAChRs are implicated in postsynaptic and presynaptic activities, in this work we probe those PLA2s known to have strong presynaptic effects, namely β-bungarotoxin from Bungarus multicinctus and crotoxin from Crotalus durissus terrificus. We also wished to explore whether mammalian PLA2s interact with nAChRs, and have examined non-toxic PLA2 from porcine pancreas. It was found that porcine pancreatic PLA2 and presynaptic β-bungarotoxin blocked currents mediated by nAChRs in Lymnaea neurons with IC50s of 2.5 and 4.8 μM, respectively. Crotoxin competed with radioactive α-bungarotoxin for binding to Torpedo and human α7 nAChRs and to the acetylcholine binding protein. Pancreatic PLA2 interacted similarly with these targets; moreover, it inhibited radioactive α-bungarotoxin binding to the water-soluble extracellular domain of human α9 nAChR, and blocked acetylcholine induced currents in human α9α10 nAChRs heterologously expressed in Xenopus oocytes. These and our earlier results show that all snake PLA2s, including presynaptically active crotoxin and β-bungarotoxin, as well as mammalian pancreatic PLA2, interact with nAChRs. The data obtained suggest that this interaction may be a general property of all PLA2s, which

  12. Subregion-specific modulation of excitatory input and dopaminergic output in the striatum by tonically activated glycine and GABAA receptors

    Directory of Open Access Journals (Sweden)

    Louise eAdermark

    2011-10-01

    Full Text Available The flow of cortical information through the basal ganglia is a complex spatiotemporal pattern of increased and decreased firing. The striatum is the biggest input nucleus to the basal ganglia and the aim of this study was to assess the role of inhibitory GABAA and glycine receptors in regulating synaptic activity in the dorsolateral (DLS and ventral striatum (nucleus accumbens, nAc. Local field potential recordings from coronal brain slices of juvenile and adult Wistar rats showed that GABAA receptors and strychnine-sensitive glycine receptors are tonically activated and inhibit excitatory input to the DLS and to the nAc. Strychnine-induced disinhibition of glutamatergic transmission was insensitive to the muscarinic receptor inhibitor scopolamine (10 µM, inhibited by the nicotinic acetylcholine receptor antagonist mecamylamine (10 µM and blocked by GABAA receptor inhibitors, suggesting that tonically activated glycine receptors depress excitatory input to the striatum through modulation of cholinergic and GABAergic neurotransmission. As an end-product example of striatal GABAergic output in vivo we measured dopamine release in the DLS and nAc by microdialysis in the awake and freely moving rat. Reversed dialysis of bicuculline (50 μM in perfusate only increased extrasynaptic dopamine levels in the nAc, while strychnine administered locally (200 μM in perfusate decreased dopamine output by 60% in both the DLS and nAc. Our data suggest that GABAA and glycine receptors are tonically activated and modulate striatal transmission in a partially sub-region specific manner.

  13. Low nanomolar GABA effects at extrasynaptic a4ß1/ß3delta GABAA receptor subtypes indicate a different binding mode for GABA at these receptors

    DEFF Research Database (Denmark)

    Karim, Nasiara; Wellendorph, Petrine; Absalom, Nathan

    2012-01-01

    Ionotropic GABA(A) receptors are a highly heterogenous population of receptors assembled from a combination of multiple subunits. The aims of this study were to characterize the potency of GABA at human recombinant d-containing extrasynaptic GABA(A) receptors expressed in Xenopus oocytes using...... the two-electrode voltage clamp technique, and to investigate, using site-directed mutagenesis, the molecular determinants for GABA potency at a4ß3d GABA(A) receptors. a4/d-Containing GABA(A) receptors displayed high sensitivity to GABA, with mid-nanomolar concentrations activating a4ß1d (EC(50)=24n......M) and a4ß3d (EC(50)=12nM) receptors. In the majority of oocytes expressing a4ß3d subtypes, GABA produced a biphasic concentration-response curve, and activated the receptor with low and high concentrations (EC(50)(1)=16nM; EC(50)(2)=1.2µM). At a4ß2d, GABA had low micromolar activity (EC(50)=1µ...

  14. 3D-QSAR model of flavonoids binding at benzodiazepine site in GABAA receptors.

    Science.gov (United States)

    Huang, X; Liu, T; Gu, J; Luo, X; Ji, R; Cao, Y; Xue, H; Wong, J T; Wong, B L; Pei, G; Jiang, H; Chen, K

    2001-06-07

    With flavone as a structural template, three-dimensional quantitative structure-activity relationship (3D-QSAR) studies and ab initio calculations were performed on a series of flavonoids. A reasonable pharmacophore model was built through CoMFA, CoMSIA, and HQSAR analyses and electrostatic potential calculations. A plausible binding mode for flavonoids with GABA(A) receptors was rationalized. On the basis of the commonly recognized binding site, the specific S1 and S2 subsites relating to substituent positions were proposed. The different binding affinities could be explained according to the frontier orbitals and electrostatic potential (ESP) maps. The ESP could be used as a novel starting point for designing more selective BZ-binding-site ligands.

  15. Activation of GABAA receptors containing the α4 subunit by GABA and pentobarbital

    Science.gov (United States)

    Akk, Gustav; Bracamontes, John; Steinbach, Joe Henry

    2004-01-01

    The activation properties of GABAA receptors containing α4β2γ2 and α4β2δ subunits were examined in the presence of GABA or pentobarbital. The receptors were expressed transiently in HEK 293 cells, and the electrophysiological experiments were carried out using cell-attached single-channel patch clamp or whole-cell macroscopic recordings. The data show that GABA is a stronger activator of α4β2γ2 receptors than α4β2δ receptors. Single-channel clusters were recorded from α4β2γ2 receptors in the presence of 10–5000 μm GABA. The maximal intracluster open probability was 0.35, with a half-maximal response elicited by 32 μm GABA. Simultaneous kinetic analysis of single-channel currents obtained at various GABA concentrations yields a channel opening rate constant of 250 s−1, and a KD of 20 μm. In contrast, only isolated openings were observed in the presence of GABA for the α4β2δ receptor. Pentobarbital was a strong activator of both α4β2γ2 and α4β2δ receptors. The maximal cluster open probability, recorded in the presence of 100 μm pentobarbital, was 0.7. At higher pentobarbital concentrations, the cluster open probability was reduced, probably due to channel block. The results from single-channel experiments were confirmed by macroscopic recordings from HEK cells in the presence of GABA or pentobarbital. PMID:14966300

  16. Diazepam-bound GABAA receptor models identify new benzodiazepine binding-site ligands

    Science.gov (United States)

    Richter, Lars; de Graaf, Chris; Sieghart, Werner; Varagic, Zdravko; Mörzinger, Martina; de Esch, Iwan J P; Ecker, Gerhard F; Ernst, Margot

    2012-01-01

    Benzodiazepines exert their anxiolytic, anticonvulsant, muscle-relaxant and sedative-hypnotic properties by allosterically enhancing the action of GABA at GABAA receptors via their benzodiazepine-binding site. Although these drugs have been used clinically since 1960, the molecular basis of this interaction is still not known. By using multiple homology models and an un biased docking protocol, we identified a binding hypothesis for the diazepam-bound structure of the benzodiazepine site, which was confirmed by experimental evidence. Moreover, two independent virtual screening approaches based on this structure identified known benzodiazepine-site ligands from different structural classes and predicted potential new ligands for this site. Receptor-binding assays and electrophysiological studies on recombinant receptors confirmed these predictions and thus identified new chemotypes for the benzodiazepine-binding site. Our results support the validity of the diazepam-bound structure of the benzodiazepine-binding pocket, demonstrate its suitability for drug discovery and pave the way for structure-based drug design. PMID:22446838

  17. Decreased agonist sensitivity of human GABA(A) receptors by an amino acid variant, isoleucine to valine, in the alpha1 subunit.

    Science.gov (United States)

    Westh-Hansen, S E; Rasmussen, P B; Hastrup, S; Nabekura, J; Noguchi, K; Akaike, N; Witt, M R; Nielsen, M

    1997-06-25

    Recombinant human GABA(A) receptors were investigated in vitro by coexpression of cDNAs coding for alpha1, beta2, and gamma2 subunits in the baculovirus/Sf-9 insect cell system. We report that a single amino acid exchange (isoleucine 121 to valine 121) in the N-terminal, extracellular part of the alpha1 subunit induces a marked decrease in agonist GABA(A) receptor ligand sensitivity. The potency of muscimol and GABA to inhibit the binding of the GABA(A) receptor antagonist [3H]SR 95531 (2-(3-carboxypropyl)-3-amino-6-(4-methoxyphenyl)pyridazinium bromide) was higher in receptor complexes of alpha1(ile 121) beta2gamma2 than in those of alpha1(val 121) beta2gamma2 (IC50 values were 32-fold and 26-fold lower for muscimol and GABA, respectively). The apparent affinity of the GABA(A) receptor antagonist bicuculline methiodide to inhibit the binding of [3H]SR 95531 did not differ between the two receptor complex variants. Electrophysiological measurements of GABA induced whole-cell Cl- currents showed a ten-fold decrease in the GABA(A) receptor sensitivity of alpha1 (val 121) beta2gamma2 as compared to alpha1(ile 121) beta2gamma2 receptor complexes. Thus, a relatively small change in the primary structure of the alpha1 subunit leads to a decrease selective for GABA(A) receptor sensitivity to agonist ligands, since no changes were observed in a GABA(A) receptor antagonist affinity and benzodiazepine receptor binding.

  18. Ethanol activation of protein kinase A regulates GABA-A receptor subunit expression in the cerebral cortex and contributes to ethanol-induced hypnosis

    Directory of Open Access Journals (Sweden)

    Sandeep eKumar

    2012-04-01

    Full Text Available Protein kinases are implicated in neuronal cell functions such as modulation of ion channel function, trafficking and synaptic excitability. Both protein kinase C (PKC and A (PKA are involved in regulation of γ-aminobutyric acid type A (GABA-A receptors through phosphorylation. However, the role of PKA in regulating GABA-A receptors following acute ethanol exposure is not known. The present study investigated the role of PKA in ethanol effects on GABA-A receptor α1 subunit expression in the P2 synaptosomal fraction of the rat cerebral cortex. Additionally, GABA-related behaviors were also examined. Rats were administered ethanol (2.0 – 3.5 g/kg or saline and PKC, PKA and GABA-A receptor α1 subunit levels were measured by Western blot analysis. Ethanol (3.5 g/kg transiently increased GABA-A receptor α1 subunit expression and PKA RIIβ subunit expression at similar time points whereas PKA RIIα was increased at later time points. In contrast, PKC isoform expression remained unchanged. Notably, the moderate ethanol dose (2.0g/kg had no effect on GABA-A α1 subunit levels although PKA RIIα and RIIβ were increased at 10 and 60 minutes, when PKC isozymes are also known to be elevated. To determine if PKA activation was responsible for the ethanol-induced elevation of GABA-A α1 subunits, the PKA antagonist H89 was administered to rats prior to ethanol exposure. H89 administration prevented ethanol-induced increases in GABA-A receptor α1 subunit expression. Moreover, increasing PKA activity intracerebroventricularly with Sp-cAMP prior to a hypnotic dose of ethanol increased ethanol-induced loss of righting reflex duration. This effect appears to be mediated in part by GABA-A receptors as increasing PKA activity also increased the duration of muscimol-induced loss of righting reflex. Overall these data suggest that PKA mediates ethanol-induced GABA-A receptor expression and contributes to ethanol behavioral effects involving GABA-A receptors.

  19. 5-HT1A receptor blockade reverses GABA(A) receptor alpha(3) subunit-mediated anxiolytic effects on stress-induced hyperthermia

    NARCIS (Netherlands)

    Vinkers, Christiaan H.; van Oorschot, Ruud; Korte, S. Mechiel; Olivier, Berend; Groenink, Lucianne

    Stress-related disorders are associated with dysfunction of both serotonergic and GABAergic pathways, and clinically effective anxiolytics act via both neurotransmitter systems. As there is evidence that the GABA(A) and the serotonin receptor system interact, a serotonergic component in the

  20. βCCT, AN ANTAGONIST SELECTIVE FOR α1 GABAA RECEPTORS, REVERSES DIAZEPAM WITHDRAWAL-INDUCED ANXIETY IN RATS

    Science.gov (United States)

    Divljaković, Jovana; Milić, Marija; Namjoshi, Ojas A.; Tiruveedhula, Veera V.; Timić, Tamara; Cook, James M.; Savić, Miroslav M.

    2012-01-01

    The abrupt discontinuation of prolonged benzodiazepine treatment elicits a withdrawal syndrome with increased anxiety as a major symptom. The neural mechanisms underlying benzodiazepine physical dependence are still insufficiently understood. Flumazenil, the non-selective antagonist of the benzodiazepine binding site of GABAA receptors was capable of preventing and reversing the increased anxiety during benzodiazepine withdrawal in animals and humans in some, but not all studies. On the other hand, a number of data suggest that GABAA receptors containing α1 subunits are critically involved in processes developing during prolonged use of benzodiazepines, such are tolerance to sedative effects, liability to physical dependence and addiction. Hence, we investigated in the elevated plus maze the level of anxiety 24 h following 21 days of diazepam treatment and the influence of flumazenil or a preferential α1-subunit selective antagonist βCCt on diazepam withdrawal syndrome in rats. Abrupt cessation of protracted once-daily intraperitoneal administration of 2 mg/kg diazepam induced a withdrawal syndrome, measured by increased anxiety-like behavior in the elevated plus maze 24 h after treatment cessation. Acute challenge with either flumazenil (10 mg/kg) or βCCt (1.25, 5 and 20 mg/kg) alleviated the diazepam withdrawal-induced anxiety. Moreover, both antagonists induced an anxiolytic-like response close, though not identical, to that seen with acute administration of diazepam. These findings imply that the mechanism by which antagonism at GABAA receptors may reverse the withdrawal-induced anxiety involves the α1 subunit and prompt further studies aimed at linking the changes in behavior with possible adaptive changes in subunit expression and function of GABAA receptors. PMID:23149168

  1. Benzodiazepine modulation of partial agonist efficacy and spontaneously active GABAA receptors supports an allosteric model of modulation

    OpenAIRE

    Downing, Scott S; Lee, Yan T; Farb, David H; Gibbs, Terrell T

    2005-01-01

    Benzodiazepines (BZDs) have been used extensively for more than 40 years because of their high therapeutic index and low toxicity. Although BZDs are understood to act primarily as allosteric modulators of GABAA receptors, the mechanism of modulation is not well understood.The applicability of an allosteric model with two binding sites for γ-aminobutyric acid (GABA) and one for a BZD-like modulator was investigated.This model predicts that BZDs should enhance the efficacy of partial agonists.C...

  2. Presynaptic membrane receptors in acetylcholine release modulation in the neuromuscular synapse.

    Science.gov (United States)

    Tomàs, Josep; Santafé, Manel M; Garcia, Neus; Lanuza, Maria A; Tomàs, Marta; Besalduch, Núria; Obis, Teresa; Priego, Mercedes; Hurtado, Erica

    2014-05-01

    Over the past few years, we have studied, in the mammalian neuromuscular junction (NMJ), the local involvement in transmitter release of the presynaptic muscarinic ACh autoreceptors (mAChRs), purinergic adenosine autoreceptors (P1Rs), and trophic factor receptors (TFRs; for neurotrophins and trophic cytokines) during development and in the adult. At any given moment, the way in which a synapse works is largely the logical outcome of the confluence of these (and other) metabotropic signalling pathways on intracellular kinases, which phosphorylate protein targets and materialize adaptive changes. We propose an integrated interpretation of the complementary function of these receptors in the adult NMJ. The activity of a given receptor group can modulate a given combination of spontaneous, evoked, and activity-dependent release characteristics. For instance, P1Rs can conserve resources by limiting spontaneous quantal leak of ACh (an A1 R action) and protect synapse function, because stimulation with adenosine reduces the magnitude of depression during repetitive activity. The overall outcome of the mAChRs seems to contribute to upkeep of spontaneous quantal output of ACh, save synapse function by decreasing the extent of evoked release (mainly an M2 action), and reduce depression. We have also identified several links among P1Rs, mAChRs, and TFRs. We found a close dependence between mAChR and some TFRs and observed that the muscarinic group has to operate correctly if the tropomyosin-related kinase B receptor (trkB) is also to operate correctly, and vice versa. Likewise, the functional integrity of mAChRs depends on P1Rs operating normally. Copyright © 2014 Wiley Periodicals, Inc.

  3. GABA-A Receptor Modulation and Anticonvulsant, Anxiolytic, and Antidepressant Activities of Constituents from Artemisia indica Linn

    Directory of Open Access Journals (Sweden)

    Imran Khan

    2016-01-01

    Full Text Available Artemisia indica, also known as “Mugwort,” has been widely used in traditional medicines. However, few studies have investigated the effects of nonvolatile components of Artemisia indica on central nervous system’s function. Fractionation of Artemisia indica led to the isolation of carnosol, ursolic acid, and oleanolic acid which were evaluated for their effects on GABA-A receptors in electrophysiological studies in Xenopus oocytes and were subsequently investigated in mouse models of acute toxicity, convulsions (pentylenetetrazole induced seizures, depression (tail suspension and forced swim tests, and anxiety (elevated plus maze and light/dark box paradigms. Carnosol, ursolic acid, and oleanolic acid were found to be positive modulators of α1β2γ2L GABA-A receptors and the modulation was antagonized by flumazenil. Carnosol, ursolic acid, and oleanolic acid were found to be devoid of any signs of acute toxicity (50–200 mg/kg but elicited anticonvulsant, antidepressant, and anxiolytic activities. Thus carnosol, ursolic acid, and oleanolic acid demonstrated CNS activity in mouse models of anticonvulsant, antidepressant, and anxiolysis. The anxiolytic activity of all three compounds was ameliorated by flumazenil suggesting a mode of action via the benzodiazepine binding site of GABA-A receptors.

  4. Expression of specific ionotropic glutamate and GABA-A receptor subunits is decreased in central amygdala of alcoholics

    Directory of Open Access Journals (Sweden)

    Zhe eJin

    2014-09-01

    Full Text Available The central nucleus of amygdala (CeA has a role for mediating fear and anxiety responses. It is also involved in emotional imbalance caused by alcohol abuse and dependence and in regulating relapse to alcohol abuse. Growing evidences suggest that excitatory glutamatergic and inhibitory γ-aminobutyric acid-ergic (GABAergic transmissions in the CeA are affected by chronic alcohol exposure. Human post-mortem CeA samples from male alcoholics (n=9 and matched controls (n=9 were assayed for the expression level of ionotropic glutamate and GABA-A receptors subunit mRNAs using quantitative real-time reverse transcription-PCR (RT-qPCR. Our data revealed that out of the 16 ionotropic glutamate receptor subunits, mRNAs encoding two AMPA [2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-ylpropanoic acid] receptor subunits GluA1 and GluA4; one kainate receptor subunit GluK2; one NMDA (N-methyl-D-aspartate receptor subunit GluN2D and one delta receptor subunit GluD2 were significantly decreased in the CeA of alcoholics. In contrast, of the 19 GABA-A receptor subunits, only the mRNA encoding the α2 subunit was significantly down-regulated in the CeA of the alcoholics as compared with control subjects. Our findings imply that the down-regulation of specific ionotropic glutamate and GABA-A receptor subunits in the CeA of alcoholics may represent one of the molecular substrates underlying the new balance between excitatory and inhibitory neurotransmission in alcohol dependence.

  5. Activation of α6-containing GABAA receptors by pentobarbital occurs through a different mechanism than activation by GABA

    Science.gov (United States)

    Fisher, Matthew T.; Fisher, Janet L.

    2010-01-01

    The GABAA receptors are ligand-gated chloride channels which are the targets for many clinically used sedatives, including the barbiturates. The barbiturate pentobarbital acts through multiple sites on the GABAA receptor. At low concentrations (μM), it acts as a positive allosteric modulator while at higher concentrations it can directly activate the receptor. This agonist action is influenced by the subunit composition of the receptor, and pentobarbital is a more effective agonist than GABA only at receptors containing an α6 subunit. The conformational change that translates GABA binding into channel opening is known to involve a lysine residue located in an extracellular domain between the 2nd and 3rd transmembrane domains. Mutations of this residue disrupt activation of the channel by GABA and have been linked to inherited epilepsy. Pentobarbital binds to the receptor at a different agonist site than GABA, but could use a common signal transduction mechanism to gate the channel. To address this question, we compared the effect of a mutating the homologous lysine residue in the α1 or α6 subunits (K278 or K277, respectively) to methionine on direct activation of recombinant GABAA receptors by GABA or pentobarbital. We found that this mutation reduced GABA sensitivity for both α1 and α6 subunits, but affected pentobarbital sensitivity only for the α1 subunit. This suggests that pentobarbital acts through a distinct signal transduction pathway at the α6 subunit, which may account for its greater efficacy compared to GABA at receptors containing this subunit. PMID:20109529

  6. Activation of alpha6-containing GABAA receptors by pentobarbital occurs through a different mechanism than activation by GABA.

    Science.gov (United States)

    Fisher, Matthew T; Fisher, Janet L

    2010-03-08

    The GABA(A) receptors are ligand-gated chloride channels which are the targets for many clinically used sedatives, including the barbiturates. The barbiturate pentobarbital acts through multiple sites on the GABA(A) receptor. At low concentrations (muM), it acts as a positive allosteric modulator while at higher concentrations it can directly activate the receptor. This agonist action is influenced by the subunit composition of the receptor, and pentobarbital is a more effective agonist than GABA only at receptors containing an alpha6 subunit. The conformational change that translates GABA binding into channel opening is known to involve a lysine residue located in an extracellular domain between the 2nd and 3rd transmembrane domains. Mutations of this residue disrupt activation of the channel by GABA and have been linked to inherited epilepsy. Pentobarbital binds to the receptor at a different agonist site than GABA, but could use a common signal transduction mechanism to gate the channel. To address this question, we compared the effect of a mutating the homologous lysine residue in the alpha1 or alpha6 subunits (K278 or K277, respectively) to methionine on direct activation of recombinant GABA(A) receptors by GABA or pentobarbital. We found that this mutation reduced GABA sensitivity for both alpha1 and alpha6 subunits, but affected pentobarbital sensitivity only for the alpha1 subunit. This suggests that pentobarbital acts through a distinct signal transduction pathway at the alpha6 subunit, which may account for its greater efficacy compared to GABA at receptors containing this subunit.

  7. The effects of serotonin1A receptor on female mice body weight and food intake are associated with the differential expression of hypothalamic neuropeptides and the GABAA receptor.

    Science.gov (United States)

    Butt, Isma; Hong, Andrew; Di, Jing; Aracena, Sonia; Banerjee, Probal; Shen, Chang-Hui

    2014-10-01

    Both common eating disorders anorexia nervosa and bulimia nervosa are characteristically diseases of women. To characterize the role of the 5-HT1A receptor (5-HT1A-R) in these eating disorders in females, we investigated the effect of saline or 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) treatment on feeding behavior and body weight in adult WT female mice and in adult 5-HT1A-R knockout (KO) female mice. Our results showed that KO female mice have lower food intake and body weight than WT female mice. Administration of 8-OH-DPAT decreased food intake but not body weight in WT female mice. Furthermore, qRT-PCR was employed to analyze the expression levels of neuropeptides, γ-aminobutyric acid A receptor subunit β (GABAA β subunits) and glutamic acid decarboxylase in the hypothalamic area. The results showed the difference in food intake between WT and KO mice was accompanied by differential expression of POMC, CART and GABAA β2, and the difference in body weight between WT and KO mice was associated with significantly different expression levels of CART and GABAA β2. As such, our data provide new insight into the role of 5-HT1A-R in both feeding behavior and the associated expression of neuropeptides and the GABAA receptor. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. A reinforcing circuit action of extrasynaptic GABAA receptor modulators on cerebellar granule cell inhibition.

    Directory of Open Access Journals (Sweden)

    Vijayalakshmi Santhakumar

    Full Text Available GABAA receptors (GABARs are the targets of a wide variety of modulatory drugs which enhance chloride flux through GABAR ion channels. Certain GABAR modulators appear to acutely enhance the function of δ subunit-containing GABAR subtypes responsible for tonic forms of inhibition. Here we identify a reinforcing circuit mechanism by which these drugs, in addition to directly enhancing GABAR function, also increase GABA release. Electrophysiological recordings in cerebellar slices from rats homozygous for the ethanol-hypersensitive (α6100Q allele show that modulators and agonists selective for δ-containing GABARs such as THDOC, ethanol and THIP (gaboxadol increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs in granule cells. Ethanol fails to augment granule cell sIPSC frequency in the presence of glutamate receptor antagonists, indicating that circuit mechanisms involving granule cell output contribute to ethanol-enhancement of synaptic inhibition. Additionally, GABAR antagonists decrease ethanol-induced enhancement of Golgi cell firing. Consistent with a role for glutamatergic inputs, THIP-induced increases in Golgi cell firing are abolished by glutamate receptor antagonists. Moreover, THIP enhances the frequency of spontaneous excitatory postsynaptic currents in Golgi cells. Analyses of knockout mice indicate that δ subunit-containing GABARs are required for enhancing GABA release in the presence of ethanol and THIP. The limited expression of the GABAR δ subunit protein within the cerebellar cortex suggests that an indirect, circuit mechanism is responsible for stimulating Golgi cell GABA release by drugs selective for extrasynaptic isoforms of GABARs. Such circuit effects reinforce direct actions of these positive modulators on tonic GABAergic inhibition and are likely to contribute to the potent effect of these compounds as nervous system depressants.

  9. Presynaptic Adenosine Receptor-Mediated Regulation of Diverse Thalamocortical Short-Term Plasticity in the Mouse Whisker Pathway

    Science.gov (United States)

    Ferrati, Giovanni; Martini, Francisco J.; Maravall, Miguel

    2016-01-01

    Short-term synaptic plasticity (STP) sets the sensitivity of a synapse to incoming activity and determines the temporal patterns that it best transmits. In “driver” thalamocortical (TC) synaptic populations, STP is dominated by depression during stimulation from rest. However, during ongoing stimulation, lemniscal TC connections onto layer 4 neurons in mouse barrel cortex express variable STP. Each synapse responds to input trains with a distinct pattern of depression or facilitation around its mean steady-state response. As a result, in common with other synaptic populations, lemniscal TC synapses express diverse rather than uniform dynamics, allowing for a rich representation of temporally varying stimuli. Here, we show that this STP diversity is regulated presynaptically. Presynaptic adenosine receptors of the A1R type, but not kainate receptors (KARs), modulate STP behavior. Blocking the receptors does not eliminate diversity, indicating that diversity is related to heterogeneous expression of multiple mechanisms in the pathway from presynaptic calcium influx to neurotransmitter release. PMID:26941610

  10. Plasticity of GABAA receptor diffusion dynamics at the axon initial segment

    Directory of Open Access Journals (Sweden)

    James eMuir

    2014-06-01

    Full Text Available The axon initial segment (AIS, a site of action potential initiation, undergoes activity-dependent homeostatic repositioning to fine-tune neuronal activity. However, little is known about the behaviour of GABAA receptors (GABAARs at synapses made onto the axon and especially the AIS. Here, we study the clustering and lateral diffusion of GABAARs in the AIS under baseline conditions, and find that GABAAR lateral mobility is lower in the AIS than dendrites. We find differences in axonal clustering and lateral mobility between GABAARs containing the α1 or α2 subunits, which are known to localize differentially to the AIS. Interestingly, we find that chronic activity driving AIS repositioning does not alter GABAergic synapse location along the axon, but decreases GABAAR cluster size at the AIS. Moreover, in response to chronic depolarization, GABAAR diffusion is strikingly increased in the AIS, and not in dendrites, and this is coupled with a decrease in synaptic residency time of GABAARs at the AIS. We also demonstrate that activation of L-type voltage-gated calcium channels is important for regulating GABAAR lateral mobility at the AIS during chronic depolarization. Modulation of GABAAR diffusion dynamics at the AIS in response to prolonged activity may be a novel mechanism for regulating GABAergic control of information processing.

  11. Differential effects of thiopental and pentobarbital on spinal GABA(A) receptors.

    Science.gov (United States)

    Yang, Chuan-Xiu; Zhang, Xiao-Bing; Gong, Neng; Wang, Meng-Ya; Xu, Tian-Le

    2008-10-01

    General anesthetics thiopental and pentobarbital possess very similar chemical structures whereas their clinical potency is quite different. The underlying molecular mechanism is not fully understood. This study was designed to assess the differential effects of thiopental and pentobarbital on GABA(A) receptors of mechanically dissociated rat spinal dorsal horn neurons by using whole-cell patch-clamp technique. Pentobarbital, at a concentration of 30 microM, which markedly enhanced sub-saturated GABA-induced current (I(GABA)), had no effect on thiopental-induced maximal current. Similarly, the pentobarbital-induced maximal current was also not affected by 30 microM thiopental. Moreover, a linear summation of thiopental-induced maximal current and pentobarbital-induced sub-maximal current was observed. In addition, pentobarbital failed to further enhance I(GABA) in the presence of thiopental at a concentration with maximal modulatory effects on I(GABA), and vice versa. Our results thus suggest that thiopental and pentobarbital might exert the GABA mimetic effects independently, but share a common mechanism to produce the GABA modulatory effects.

  12. Glutamate AMPA/kainate receptors, not GABA(A) receptors, mediate estradiol-induced sex differences in the hypothalamus.

    Science.gov (United States)

    Todd, Brigitte J; Schwarz, Jaclyn M; Mong, Jessica A; McCarthy, Margaret M

    2007-02-15

    Sex differences in brain morphology underlie physiological and behavioral differences between males and females. During the critical perinatal period for sexual differentiation in the rat, gonadal steroids act in a regionally specific manner to alter neuronal morphology. Using Golgi-Cox impregnation, we examined several parameters of neuronal morphology in postnatal day 2 (PN2) rats. We found that in the ventromedial nucleus of the hypothalamus (VMN) and in areas just dorsal and just lateral to the VMN that there was a sex difference in total dendritic spine number (males greater) that was abolished by treating female neonates with exogenous testosterone. Dendritic branching was similarly sexually differentiated and hormonally modulated in the VMN and dorsal to the VMN. We then used spinophilin, a protein that positively correlates with the amount of dendritic spines, to investigate the mechanisms underlying these sex differences. Estradiol, which mediates most aspects of masculinization and is the aromatized product of testosterone, increased spinophilin levels in female PN2 rats to that of males. Muscimol, an agonist at GABA(A) receptors, did not affect spinophilin protein levels in either male or female neonates. Kainic acid, an agonist at glutamatergic AMPA/kainate receptors, mimicked the effect of estradiol in females. Antagonizing AMPA/kainate receptors with NBQX prevented the estradiol-induced increase in spinophilin in females but did not affect spinophilin level in males. (c) 2007 Wiley Periodicals, Inc.

  13. Flumazenil decreases surface expression of α4β2δ GABAA receptors by increasing the rate of receptor internalization.

    Science.gov (United States)

    Kuver, Aarti; Smith, Sheryl S

    2016-01-01

    Increases in expression of α4βδ GABAA receptors (GABARs), triggered by fluctuations in the neurosteroid THP (3α-OH-5α[β]-pregnan-20-one), are associated with changes in mood and cognition. We tested whether α4βδ trafficking and surface expression would be altered by in vitro exposure to flumazenil, a benzodiazepine ligand which reduces α4βδ expression in vivo. We first determined that flumazenil (100 nM-100 μM, IC50=∼1 μM) acted as a negative modulator, reducing GABA (10 μM)-gated current in the presence of 100 nM THP (to increase receptor efficacy), assessed with whole cell patch clamp recordings of recombinant α4β2δ expressed in HEK-293 cells. Surface expression of recombinant α4β2δ receptors was detected using a 3XFLAG reporter at the C-terminus of α4 (α4F) using confocal immunocytochemical techniques following 48 h exposure of cells to GABA (10 μM)+THP (100 nM). Flumazenil (10 μM) decreased surface expression of α4F by ∼60%, while increasing its intracellular accumulation, after 48 h. Reduced surface expression of α4β2δ after flumazenil treatment was confirmed by decreases in the current responses to 100 nM of the GABA agonist gaboxadol. Flumazenil-induced decreases in surface expression of α4β2δ were prevented by the dynamin blocker, dynasore, and by leupeptin, which blocks lysosomal enzymes, suggesting that flumazenil is acting to increase endocytosis and lysosomal degradation of the receptor. Flumazenil increased the rate of receptor removal from the cell surface by 2-fold, assessed using botulinum toxin B to block insertion of new receptors. These findings may suggest new therapeutic strategies for regulation of α4β2δ expression using flumazenil. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. An Investigation of the Differential Effects of Ursane Triterpenoids from Centella asiatica, and Their Semisynthetic Analogues, on GABAA Receptors.

    Science.gov (United States)

    Hamid, Kaiser; Ng, Irene; Tallapragada, Vikram J; Váradi, Linda; Hibbs, David E; Hanrahan, Jane; Groundwater, Paul W

    2016-09-01

    The ursane triterpenoids, asiatic acid 1 and madecassic acid 2, are the major pharmacological constituents of Centella asiatica, commonly known as Gotu Kola, which is used traditionally for the treatment of anxiety and for the improvement of cognition and memory. Using the two-electrode voltage-clamp technique, these triterpenes, and some semisynthetic derivatives, were found to exhibit selective negative modulation of different subtypes of the GABAA receptor expressed in Xenopus laevis oocytes. Despite differing by only one hydroxyl group, asiatic acid 1 was found to be a negative modulator of the GABA-induced current at α1 β2 γ2L, α2 β2 γ2L and α5 β3 γ2L GABAA receptors, while madecassic acid 2 was not. Asiatic acid 1 exhibited the greatest effect at α1 β2 γ2L (IC50 37.05 μm), followed by α5 β3 γ2L (IC50 64.05 μm) then α2 β2 γ2L (IC50 427.2 μm) receptors. Conversion of the carboxylic acid group of asiatic acid 1 to a carboxamide group (2α,3β,23-trihydroxy-urs-12-en-28-amide 5) resulted in enhanced inhibition at both the α1 β2 γ2L (IC50 14.07 μm) and α2 β2 γ2L receptor subtypes (IC50 28.41 μm). The results of this study, and the involvement of α5 -containing GABAA receptors in cognition and memory, suggest that asiatic acid 1 may be a lead compound for the enhancement of cognition and memory. © 2016 John Wiley & Sons A/S.

  15. Identification of amino acids involved in histamine potentiation of GABA(A receptors

    Directory of Open Access Journals (Sweden)

    Ulrike eThiel

    2015-05-01

    Full Text Available Histamine is a neurotransmitter involved in a number of physiological and neuronal functions. In mammals, such as humans and rodents, the histaminergic neurons found in the tuberomamillary nucleus (TMN project widely throughout the central nervous system (CNS. Histamine acts as positive modulator of GABA(A receptors (GABA(ARs and, in high concentrations (10 mM, as negative modulator of the strychnine-sensitive glycine receptor. However, the exact molecular mechanisms by which histamine acts on GABA(ARs are unknown. In our study, we aimed to identify amino acids potentially involved in the modulatory effect of histamine on GABA(ARs. We expressed GABA(ARs with 12 different point mutations in Xenopus laevis oocytes and characterized the effect of histamine on GABA-induced currents using the two-electrode voltage clamp technique. Our data demonstrate that the amino acid residues ß2(N265 and ß2(M286, which are important for modulation by propofol, are not involved in the action of histamine. However, we found that histamine modulation is dependent on the amino acid residues alpha1(R120, ß2(Y157, ß3(D163, ß3(V175 and ß3(Q185. We showed that the amino acid residues ß2(Y157 and ß3(Q185 mediate the positive modulatory effect of histamine on GABA-induced currents, whereas alpha1(R120 and ß2(D163 form a potential histamine interaction site in GABA(ARs.

  16. Sustained activation of GABAA receptors in the suprachiasmatic nucleus mediates light-induced phase delays of the circadian clock: a novel function of ionotropic receptors.

    Science.gov (United States)

    Hummer, Daniel L; Ehlen, J Christopher; Larkin, Tony E; McNeill, John K; Pamplin, John R; Walker, Colton A; Walker, Phillip V; Dhanraj, Daryl R; Albers, H Elliott

    2015-07-01

    The suprachiasmatic nucleus (SCN) contains a circadian clock that generates endogenous rhythmicity and entrains that rhythmicity with the day-night cycle. The neurochemical events that transduce photic input within the SCN and mediate entrainment by resetting the molecular clock have yet to be defined. Because GABA is contained in nearly all SCN neurons we tested the hypothesis that GABA serves as this signal in studies employing Syrian hamsters (Mesocricetus auratus). Activation of GABAA receptors was found to be necessary and sufficient for light to induce phase delays of the clock. Remarkably, the sustained activation of GABAA receptors for more than three consecutive hours was necessary to phase-delay the clock. The duration of GABAA receptor activation required to induce phase delays would not have been predicted by either the prevalent theory of circadian entrainment or by expectations regarding the duration of ionotropic receptor activation necessary to produce functional responses. Taken together, these data identify a novel neurochemical mechanism essential for phase-delaying the 'master' circadian clock within the SCN as well as identifying an unprecedented action of an amino acid neurotransmitter involving the sustained activation of ionotropic receptors. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  17. Differential regulation of synaptic and extrasynaptic α4 GABA(A) receptor populations by protein kinase A and protein kinase C in cultured cortical neurons.

    Science.gov (United States)

    Bohnsack, John Peyton; Carlson, Stephen L; Morrow, A Leslie

    2016-06-01

    The GABAA α4 subunit exists in two distinct populations of GABAA receptors. Synaptic GABAA α4 receptors are localized at the synapse and mediate phasic inhibitory neurotransmission, while extrasynaptic GABAA receptors are located outside of the synapse and mediate tonic inhibitory transmission. These receptors have distinct pharmacological and biophysical properties that contribute to interest in how these different subtypes are regulated under physiological and pathological states. We utilized subcellular fractionation procedures to separate these populations of receptors in order to investigate their regulation by protein kinases in cortical cultured neurons. Protein kinase A (PKA) activation decreases synaptic α4 expression while protein kinase C (PKC) activation increases α4 subunit expression, and these effects are associated with increased β3 S408/409 or γ2 S327 phosphorylation respectively. In contrast, PKA activation increases extrasynaptic α4 and δ subunit expression, while PKC activation has no effect. Our findings suggest synaptic and extrasynaptic GABAA α4 subunit expression can be modulated by PKA to inform the development of more specific therapeutics for neurological diseases that involve deficits in GABAergic transmission. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Role of the amygdala GABA-A receptors in ACPA-induced deficits during conditioned fear learning.

    Science.gov (United States)

    Nasehi, Mohammad; Roghani, Farnaz; Ebrahimi-Ghiri, Mohaddeseh; Zarrindast, Mohammad-Reza

    2017-05-01

    The basolateral amygdala (BLA) is a key structure for the emotional processing and storage of memories associated with emotional events, especially fear. On the other hand, endocannabinoids and CB1 receptors play a key role in learning and memory partly through long-term synaptic depression of GABAergic synapses in the BLA. The aim of this study was to explore the effects of GABA-A receptor agonist and antagonist in the fear-related memory acquisition deficits induced by ACPA (a selective CB1 cannabinoid receptor agonist). This study used context and tone fear conditioning paradigms to assess fear-related memory in male NMRI mice. Our results showed that the pre-training intraperitoneal administration of ACPA (0.5mg/kg) or (0.1 and 0.5mg/kg) decreased the percentage of freezing time in the contextual and tone fear conditioning, respectively. This indicated an impaired context- or tone-dependent fear memory acquisition. Moreover, the pre-training intra-BLA microinjection of GABA-A receptor agonist, muscimol, at 0.05 and 0.5μg/mouse impaired context-dependent fear memory, while the same doses of GABA-A antagonist, bicuculline, impaired tone-dependent fear memory. However, a subthreshold dose of muscimol or bicuculline increased the effect of ACPA at 0.1 and 0.5 or 0.05mg/kg on context- or tone-dependent fear memory, respectively. In addition, bicuculline at the lower dose increased the ACPA response on locomotor activity compared to its respective group. Such findings highlighted an interaction between BLA GABAergic and cannabinoidergic systems during the acquisition phase of conditioned fear memories. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. The GLP-1 Receptor Agonist Exendin-4 and Diazepam Differentially Regulate GABAA Receptor-Mediated Tonic Currents in Rat Hippocampal CA3 Pyramidal Neurons

    Science.gov (United States)

    Korol, Sergiy V.; Jin, Zhe; Birnir, Bryndis

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) is a metabolic hormone that is secreted in a glucose-dependent manner and enhances insulin secretion. GLP-1 receptors are also found in the brain where their signalling affects neuronal activity. We have previously shown that the GLP-1 receptor agonists, GLP-1 and exendin-4 enhanced GABA-activated synaptic and tonic currents in rat hippocampal CA3 pyramidal neurons. The hippocampus is the centre for memory and learning and is important for cognition. Here we examined if exendin-4 similarly enhanced the GABA-activated currents in the presence of the benzodiazepine diazepam. In whole-cell recordings in rat brain slices, diazepam (1 μM), an allosteric positive modulator of GABAA receptors, alone enhanced the spontaneous inhibitory postsynaptic current (sIPSC) amplitude and frequency by a factor of 1.3 and 1.6, respectively, and doubled the tonic GABAA current normally recorded in the CA3 pyramidal cells. Importantly, in the presence of exendin-4 (10 nM) plus diazepam (1 μM), only the tonic but not the sIPSC currents transiently increased as compared to currents recorded in the presence of diazepam alone. The results suggest that exendin-4 potentiates a subpopulation of extrasynaptic GABAA receptors in the CA3 pyramidal neurons. PMID:25927918

  20. The GLP-1 Receptor Agonist Exendin-4 and Diazepam Differentially Regulate GABAA Receptor-Mediated Tonic Currents in Rat Hippocampal CA3 Pyramidal Neurons.

    Directory of Open Access Journals (Sweden)

    Sergiy V Korol

    Full Text Available Glucagon-like peptide-1 (GLP-1 is a metabolic hormone that is secreted in a glucose-dependent manner and enhances insulin secretion. GLP-1 receptors are also found in the brain where their signalling affects neuronal activity. We have previously shown that the GLP-1 receptor agonists, GLP-1 and exendin-4 enhanced GABA-activated synaptic and tonic currents in rat hippocampal CA3 pyramidal neurons. The hippocampus is the centre for memory and learning and is important for cognition. Here we examined if exendin-4 similarly enhanced the GABA-activated currents in the presence of the benzodiazepine diazepam. In whole-cell recordings in rat brain slices, diazepam (1 μM, an allosteric positive modulator of GABAA receptors, alone enhanced the spontaneous inhibitory postsynaptic current (sIPSC amplitude and frequency by a factor of 1.3 and 1.6, respectively, and doubled the tonic GABAA current normally recorded in the CA3 pyramidal cells. Importantly, in the presence of exendin-4 (10 nM plus diazepam (1 μM, only the tonic but not the sIPSC currents transiently increased as compared to currents recorded in the presence of diazepam alone. The results suggest that exendin-4 potentiates a subpopulation of extrasynaptic GABAA receptors in the CA3 pyramidal neurons.

  1. GABAA Receptor Activity Shapes the Formation of Inhibitory Synapses between Developing Medium Spiny Neurons

    Directory of Open Access Journals (Sweden)

    Jessica eArama

    2015-08-01

    Full Text Available Basal ganglia play an essential role in motor coordination and cognitive functions. The GABAergic medium spiny neurons (MSNs account for ~95 % of all the neurons in this brain region. Central to the normal functioning of MSNs is integration of synaptic activity arriving from the glutamatergic corticostriatal and thalamostriatal afferents, with synaptic inhibition mediated by local interneurons and MSN axon collaterals. In this study we have investigated how the specific types of GABAergic synapses between the MSNs develop over time, and how the activity of GABAA receptors (GABAARs influences this development. Isolated embryonic (E17 MSNs form a homogenous population in vitro and display spontaneous synaptic activity and functional properties similar to their in vivo counterparts. In dual whole-cell recordings of synaptically connected pairs of MSNs, action potential-activated synaptic events were detected between 7 and 14 days in vitro (DIV, which coincided with the shift in GABAAR operation from depolarization to hyperpolarization, as detected indirectly by intracellular calcium imaging. In parallel, the predominant subtypes of inhibitory synapses, which innervate dendrites of MSNs and contain GABAAR α1 or α2 subunits, underwent distinct changes in the size of postsynaptic clusters, with α1 becoming smaller and α2 larger over time, while both the percentage and the size of mixed α1/α2-postsynaptic clusters were increased. When activity of GABAARs was under chronic blockade between 4-7 DIV, the structural properties of these synapses remained unchanged. In contrast, chronic inhibition of GABAARs between7-14 DIV led to reduction in size of α1- and α1/α2-postsynaptic clusters and a concomitant increase in number and size of α2-postsynaptic clusters. Thus, the main subtypes of GABAergic synapses formed by MSNs are regulated by GABAAR activity, but in opposite directions, and thus appear to be driven by different molecular mechanisms.

  2. Modification of Male Courtship Motivation by Olfactory Habituation via the GABAA Receptor in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Shin-Ichiro Tachibana

    Full Text Available A male-specific component, 11-cis-vaccenyl acetate (cVA works as an anti-aphrodisiac pheromone in Drosophila melanogaster. The presence of cVA on a male suppresses the courtship motivation of other males and contributes to suppression of male-male homosexual courtship, while the absence of cVA on a female stimulates the sexual motivation of nearby males and enhances the male-female interaction. However, little is known how a male distinguishes the presence or absence of cVA on a target fly from either self-produced cVA or secondhand cVA from other males in the vicinity. In this study, we demonstrate that male flies have keen sensitivity to cVA; therefore, the presence of another male in the area reduces courtship toward a female. This reduced level of sexual motivation, however, could be overcome by pretest odor exposure via olfactory habituation to cVA. Real-time imaging of cVA-responsive sensory neurons using the neural activity sensor revealed that prolonged exposure to cVA decreased the levels of cVA responses in the primary olfactory center. Pharmacological and genetic screening revealed that signal transduction via GABAA receptors contributed to this olfactory habituation. We also found that the habituation experience increased the copulation success of wild-type males in a group. In contrast, transgenic males, in which GABA input in a small subset of local neurons was blocked by RNAi, failed to acquire the sexual advantage conferred by habituation. Thus, we illustrate a novel phenomenon in which olfactory habituation positively affects sexual capability in a competitive environment.

  3. Acute sleep deprivation preconditions the heart against ischemia/ reperfusion injury: the role of central GABA-A receptors

    Directory of Open Access Journals (Sweden)

    Hoda Parsa

    2017-11-01

    Full Text Available Objective(s: Central γ-aminobutyric acid (GABA neurotransmission modulates cardiovascular functions and sleep. Acute sleep deprivation (ASD affects functions of various body organs via different mechanisms. Here, we evaluated the effect of ASD on cardiac ischemia/reperfusion injury (IRI, and studied the role of GABA-A receptor inhibition in central nucleus of amygdala (CeA by assessing nitric oxide (NO and oxidative stress. Materials and Methods: The CeA in sixty male Wistar rats was cannulated for saline or bicuculline (GABA-A receptor antagonist administration. All animals underwent 30 min of coronary occlusion (ischemia, followed by 2 hr reperfusion (IR. The five experimental groups (n=12 included are as follows: IR: received saline; BIC+IR: received Bicuculline; MLP+IR: received saline, followed by the placement of animals in an aquarium with multiple large platforms; ASD+IR: underwent ASD in an aquarium with multiple small platforms; and BIC+ASD+IR: received bicuculline prior to ASD. Results: Bicuculline administration increased the malondialdehyde levels and infarct size, and decreased the NO metabolites levels and endothelial nitric oxide synthase (eNOS gene expression in infarcted and non-infarcted areas in comparison to IR group. ASD reduced malondialdehyde levels and infarct size and increased NO metabolites, corticosterone levels and eNOS expression in infarcted and non-infarcted areas as compared to the IR group. Levels of malondialdehyde were increased while levels of NO metabolites, corticosterone and eNOS expression in infarcted and non-infarcted areas were reduced in the BIC+ASD+IR as compared to the ASD+IR group. Conclusion: Blockade of GABA-A receptors in the CeA abolishes ASD-induced cardioprotection by suppressing oxidative stress and NO production.

  4. Cyclohexanol analogues are positive modulators of GABA(A) receptor currents and act as general anaesthetics in vivo.

    Science.gov (United States)

    Hall, Adam C; Griffith, Theanne N; Tsikolia, Maia; Kotey, Francesca O; Gill, Nikhila; Humbert, Danielle J; Watt, Erin E; Yermolina, Yuliya A; Goel, Shikha; El-Ghendy, Bahaa; Hall, C Dennis

    2011-09-30

    GABA(A) receptors meet all the pharmacological criteria required to be considered important general anaesthetic targets. In the following study, the modulatory effects of various commercially available and novel cyclohexanols were investigated on recombinant human γ-aminobutyric acid (GABA(A), α(1)β(2)γ(2s)) receptors expressed in Xenopus oocytes, and compared to the modulatory effects on GABA currents observed with exposures to the intravenous anaesthetic agent, propofol. Submaximal EC(20) GABA currents were typically enhanced by co-applications of 3-300 μM cyclohexanols. For instance, at 30 μM 2,6-diisopropylcyclohexanol (a novel compound) GABA responses were increased ~3-fold (although similar enhancements were achieved at 3 μM propofol). As regards rank order for modulation by the cyclohexanol analogues at 30 μM, the % enhancements for 2,6-dimethylcyclohexanol~2,6-diethylcyclohexanol~2,6-diisopropylcyclohexanol~2,6-di-sec-butylcyclohexanol ≫2,6-di-tert-butylcyclohexanol~4-tert-butylcyclohexanol>cyclohexanol~cyclopentanol~2-methylcyclohexanol. We further tested the potencies of the cyclohexanol analogues as general anaesthetics using a tadpole in vivo assay. Both 2,6-diisopropylcyclohexanol and 2,6-dimethylcyclohexanol were effective as anaesthetics with EC(50)s of 14.0 μM and 13.1 μM respectively, while other cyclohexanols with bulkier side chains were less potent. In conclusion, our data indicate that cyclohexanols are both positive modulators of GABA(A) receptors currents and anaesthetics. The positioning and size of the alkyl groups at the 2 and 6 positions on the cyclohexanol ring were critical determinants of activity. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Identification and cloning of a gamma 3 subunit splice variant of the human GABA(A) receptor.

    Science.gov (United States)

    Poulsen, C F; Christjansen, K N; Hastrup, S; Hartvig, L

    2000-05-31

    cDNA sequences encoding two forms of the GABA(A) gamma 3 receptor subunit were cloned from human hippocampus. The nucleotide sequences differ by the absence (gamma 3S) or presence (gamma 3L) of 18 bp located in the presumed intracellular loop between transmembrane region (TM) III and IV. The extra 18 bp in the gamma 3L subunit generates a consensus site for phosphorylation by protein kinase C (PKC). Analysis of human genomic DNA encoding the gamma 3 subunit reveals that the 18 bp insert is contiguous with the upstream proximal exon.

  6. Increased GABA-A receptor binding and reduced connectivity at the motor cortex in children with hemiplegic cerebral palsy: a multimodal investigation using 18F-fluoroflumazenil PET, immunohistochemistry, and MR imaging.

    Science.gov (United States)

    Park, Hae-Jeong; Kim, Chul Hoon; Park, Eun Sook; Park, Bumhee; Oh, So Ra; Oh, Maeng-Keun; Park, Chang Il; Lee, Jong Doo

    2013-08-01

    γ-aminobutyric acid (GABA)-A receptor-mediated neural transmission is important to promote practice-dependent plasticity after brain injury. This study investigated alterations in GABA-A receptor binding and functional and anatomic connectivity within the motor cortex in children with cerebral palsy (CP). We conducted (18)F-fluoroflumazenil PET on children with hemiplegic CP to investigate whether in vivo GABA-A receptor binding is altered in the ipsilateral or contralateral hemisphere of the lesion site. To evaluate changes in the GABA-A receptor subunit after prenatal brain injury, we performed GABA-A receptor immunohistochemistry using rat pups with a diffuse hypoxic ischemic insult. We also performed diffusion tensor MR imaging and resting-state functional MR imaging on the same children with hemiplegic CP to investigate alterations in anatomic and functional connectivity at the motor cortex with increased GABA-A receptor binding. In children with hemiplegic CP, the (18)F-fluoroflumazenil binding potential was increased within the ipsilateral motor cortex. GABA-A receptors with the α1 subunit were highly expressed exclusively within cortical layers III, IV, and VI of the motor cortex in rat pups. The motor cortex with increased GABA-A receptor binding in children with hemiplegic CP had reduced thalamocortical and corticocortical connectivity, which might be linked to increased GABA-A receptor distribution in cortical layers in rats. Increased expression of the GABA-A receptor α1 subunit within the ipsilateral motor cortex may be an important adaptive mechanism after prenatal brain injury in children with CP but may be associated with improper functional connectivity after birth and have adverse effects on the development of motor plasticity.

  7. Evidence that a hybrid molecule of norfloxacin and biphenylacetic acid is a potent antagonist at the GABAA receptor.

    Science.gov (United States)

    Imanishi, T; Akahane, K; Akaike, N

    1996-01-01

    The combination of some fluorinated quinolone antimicrobials and certain non-steroidal anti-inflammatory drugs (NSAIDs), such as fenbufen, has been reported to elicit serious convulsions in humans. Fluoroquinolones, including norfloxacin (NFLX) and NSAIDs synergistically inhibit GABAA receptors. The mechanism(s) of the synergism, however, at present remains unclear. In the present study, the hypothesis that NFLX and biphenylacetic acid (BPA), an active metabolite of fenbufen, undergo an intermolecular interaction to produce a more potent GABAA antagonist, was investigated by examining the effects of two hybrid molecules of NFLX linked with BPA on GABA-evoked whole cell currents, recorded from rat hippocampal neurons using the perforated-patch clamp technique. Hybrid-1, with a -CONH(CH2)3- chain between NFLX and BPA, inhibited the GABA response more potently than co-treatment with NFLX and BPA. In contrast, hybrid-2 with a -CONH- chain between NFLX and BPA, exhibited only a weak inhibition of the GABA response. The characterization of the inhibition of the GABA response in the presence of hybrid-1 was similar to that of the combination of NFLX and BPA regarding the following: (1) there was a rightward parallel shift of the concentration-response curve of GABA at lower concentrations and a suppression of the maximal response to GABA at higher concentrations; (2) it was voltage-independent; and (3) there was no influence on the reversal potential of the GABA response. These results therefore suggest that NFLX and BPA interact with the GABAA receptor at nearby sites and thus suppress the GABA response.

  8. Xanomeline quasi-irreversibly bound to an ectopic site can stimulate presynaptic M2 receptors via the orthosteric binding site

    Czech Academy of Sciences Publication Activity Database

    Machová, Eva; El-Fakahany, E. E.; Doležal, Vladimír

    2005-01-01

    Roč. 94, č. S2 (2005), s. 90-90 ISSN 0022-3042. [Biennial Meeting of the International Society for Neurochemistry and the European Society for Neurochemistry /20./. 21.08.2005-26.08.2005, Innsbruck] R&D Projects: GA AV ČR(CZ) IAA5011206; GA ČR(CZ) GA305/05/0452 Institutional research plan: CEZ:AV0Z50110509 Keywords : xanomeline * presynaptic M2 receptor * acetylcholine release * brain cortex * wash-resistant binding Subject RIV: ED - Physiology

  9. Effects of Chronic Ethanol Consumption on Rat GABAA and Strychnine-sensitive Glycine Receptors Expressed by Lateral/Basolateral Amygdala Neurons

    Science.gov (United States)

    McCool, Brian A.; Frye, Gerald D.; Pulido, Marisa D.; Botting, Shaleen K.

    2010-01-01

    It is well known that the anxiolytic potential of ethanol is maintained during chronic exposure. We have confirmed this using a light-dark box paradigm following chronic ethanol ingestion via a liquid diet. However, cessation from chronic ethanol exposure is known to cause severe withdrawal anxiety. These opposing effects on anxiety likely result from neuro-adaptations of neurotransmitter systems within the brain regions regulating anxiety. Recent work highlights the importance of amygdala ligand-gated chloride channels in the expression of anxiety. We have therefore examined the effects of chronic ethanol exposure on GABAA and strychnine-sensitive glycine receptors expressed by acutely isolated adult rat lateral/basolateral amygdala neurons. Chronic ethanol exposure increased the functional expression of GABAA receptors in acutely isolated basolateral amygdala neurons without altering strychnine-sensitive glycine receptors. Neither the acute ethanol nor benzodiazepine sensitivity of either receptor system was affected. We explored the likelihood that subunit composition might influence each receptor’s response to chronic ethanol. Importantly, when expressed in a mammalian heterologous system, GABAA receptors composed of unique α subunits were differentially sensitive to acute ethanol. Likewise, the presence of the β subunit appeared to influence the acute ethanol sensitivity of glycine receptors containing the α2 subunit. Our results suggest that the facilitation of GABAA receptors during chronic ethanol exposure may help explain the maintenance of ethanol’s anti-anxiety effects during chronic ethanol exposure. Furthermore, the subunit composition of GABAA and strychnine-sensitive glycine receptors may ultimately influence the response of each system to chronic ethanol exposure. PMID:12560122

  10. Chronic administration of aripiprazole activates GSK3?-dependent signalling pathways, and up-regulates GABAA receptor expression and CREB1 activity in rats

    OpenAIRE

    Pan, Bo; Huang, Xu-Feng; Deng, Chao

    2016-01-01

    Aripiprazole is a D2-like receptor (D2R) partial agonist with a favourable clinical profile. Previous investigations indicated that acute and short-term administration of aripiprazole had effects on PKA activity, GSK3?-dependent pathways, GABAA receptors, NMDA receptor and CREB1 in the brain. Since antipsychotics are used chronically in clinics, the present study investigated the long-term effects of chronic oral aripiprazole treatment on these cellular signalling pathways, in comparison with...

  11. Lateral Orbitofrontal Cortical Modulation on the Medial Prefrontal Cortex-Amygdala Pathway: Differential Regulation of Intra-Amygdala GABAA and GABAB Receptors.

    Science.gov (United States)

    Chang, Chun-Hui

    2017-07-01

    The basolateral complex of the amygdala receives inputs from neocortical areas, including the medial prefrontal cortex and lateral orbitofrontal cortex. Earlier studies have shown that lateral orbitofrontal cortex activation exerts an inhibitory gating on medial prefrontal cortex-amygdala information flow. Here we examined the individual role of GABAA and GABAB receptors in this process. In vivo extracellular single-unit recordings were done in anesthetized rats. We searched amygdala neurons that fire in response to medial prefrontal cortex activation, tested lateral orbitofrontal cortex gating at different delays (lateral orbitofrontal cortex-medial prefrontal cortex delays: 25, 50, 100, 250, 500, and 1000 milliseconds), and examined differential contribution of GABAA and GABAB receptors with iontophoresis. Relative to baseline, lateral orbitofrontal cortex stimulation exerted an inhibitory modulatory gating on the medial prefrontal cortex-amygdala pathway and was effective up to a long delay of 500 ms (long-delay latencies at 100, 250, and 500 milliseconds). Moreover, blockade of intra-amygdala GABAA receptors with bicuculline abolished the lateral orbitofrontal cortex inhibitory gating at both short- (25 milliseconds) and long-delay (100 milliseconds) intervals, while blockade of GABAB receptors with saclofen reversed the inhibitory gating at long delay (100 milliseconds) only. Among the majority of the neurons examined (8 of 9), inactivation of either GABAA or GABAB receptors during baseline did not change evoked probability per se, suggesting that local feed-forward inhibitory mechanism is pathway specific. Our results suggest that the effect of lateral orbitofrontal cortex inhibitory modulatory gating was effective up to 500 milliseconds and that intra-amygdala GABAA and GABAB receptors differentially modulate the short- and long-delay lateral orbitofrontal cortex inhibitory gating on the medial prefrontal cortex-amygdala pathway.

  12. GABA-A and NMDA receptor expression is altered in the caudate but not the putamen of the postmortem brains of alcoholics.

    Directory of Open Access Journals (Sweden)

    Amol K Bhandage

    2014-12-01

    Full Text Available Chronic consumption of alcohol by humans has been shown to lead to impairment of executive and cognitive functions. Here we have studied the changes that take place in the dorsal striatum in post-mortem brains of alcoholics and normal controls. The results show a significant change in the expression of both the excitatory ionotropic glutamate receptor and the inhibitory GABA-A receptor subunit genes in the caudate but not the putamen of the striatum. The mRNA levels in the caudate encoding the glutamate receptor subunit GluN2A and the GABA-A receptor subunits δ, ε and ρ2 were significantly decreased whereas the GluD1, GluD2 and the GABA-A γ1 mRNA levels were significantly increased in the alcoholics as compared to controls. Interestingly in controls, 11 glutamate and 5 GABA-A receptor genes were more prominently (fold-increase varied from 1.24 to 2.91 expressed in the caudate than the putamen. We have previously shown in post-mortem samples from alcoholics that the expression level of glutamate and GABA-A receptor genes in the dorsal-lateral prefrontal cortex is similar to that of normal controls (Jin et al., 2011a;Jin et al., 2014b. This is in contrast to the present study. As the caudate is vital for automatic thinking, the results indicate that the balance between voluntary and automatic control of behaviours is altered in alcoholics. Our results suggest that there may be diminished executive control on goal-directed alcohol-seeking behaviour and, rather, a shift to greater striatal control over behaviours that may be critical in the progress of becoming an alcoholic.

  13. GABA(A receptor-mediated acceleration of aging-associated memory decline in APP/PS1 mice and its pharmacological treatment by picrotoxin.

    Directory of Open Access Journals (Sweden)

    Yuji Yoshiike

    Full Text Available Advanced age and mutations in the genes encoding amyloid precursor protein (APP and presenilin (PS1 are two serious risk factors for Alzheimer's disease (AD. Finding common pathogenic changes originating from these risks may lead to a new therapeutic strategy. We observed a decline in memory performance and reduction in hippocampal long-term potentiation (LTP in both mature adult (9-15 months transgenic APP/PS1 mice and old (19-25 months non-transgenic (nonTg mice. By contrast, in the presence of bicuculline, a GABA(A receptor antagonist, LTP in adult APP/PS1 mice and old nonTg mice was larger than that in adult nonTg mice. The increased LTP levels in bicuculline-treated slices suggested that GABA(A receptor-mediated inhibition in adult APP/PS1 and old nonTg mice was upregulated. Assuming that enhanced inhibition of LTP mediates memory decline in APP/PS1 mice, we rescued memory deficits in adult APP/PS1 mice by treating them with another GABA(A receptor antagonist, picrotoxin (PTX, at a non-epileptic dose for 10 days. Among the saline vehicle-treated groups, substantially higher levels of synaptic proteins such as GABA(A receptor alpha1 subunit, PSD95, and NR2B were observed in APP/PS1 mice than in nonTg control mice. This difference was insignificant among PTX-treated groups, suggesting that memory decline in APP/PS1 mice may result from changes in synaptic protein levels through homeostatic mechanisms. Several independent studies reported previously in aged rodents both an increased level of GABA(A receptor alpha1 subunit and improvement of cognitive functions by long term GABA(A receptor antagonist treatment. Therefore, reduced LTP linked to enhanced GABA(A receptor-mediated inhibition may be triggered by aging and may be accelerated by familial AD-linked gene products like Abeta and mutant PS1, leading to cognitive decline that is pharmacologically treatable at least at this stage of disease progression in mice.

  14. How microelectrode array-based chick forebrain neuron biosensors respond to glutamate NMDA receptor antagonist AP5 and GABAA receptor antagonist musimol

    Directory of Open Access Journals (Sweden)

    Serena Y. Kuang

    2016-09-01

    Full Text Available We have established a long-term, stable primary chick forebrain neuron (FBN culture on a microelectrode array platform as a biosensor system for neurotoxicant screening and for neuroelectrophysiological studies for multiple purposes. This paper reports some of our results, which characterize the biosensor pharmacologically. Dose-response experiments were conducted using NMDA receptor antagonist AP5 and GABAA receptor agonist musimol (MUS. The chick FBN biosensor (C-FBN-biosensor responds to the two agents in a pattern similar to that of rodent counterparts; the estimated EC50s (the effective concentration that causes 50% inhibition of the maximal effect are 2.3 μM and 0.25 μM, respectively. Intercultural and intracultural reproducibility and long-term reusability of the C-FBN-biosensor are addressed and discussed. A phenomenon of sensitization of the biosensor that accompanies intracultural reproducibility in paired dose-response experiments for the same agent (AP5 or MUS is reported. The potential application of the C-FBN-biosensor as an alternative to rodent biosensors in shared sensing domains (NMDA receptor and GABAA receptor is suggested. Keywords: Biosensor, Microelectrode array, Neurotoxicity, Chick forebrain neuron, AP5, Musimol

  15. Maternal restraint stress delays maturation of cation-chloride cotransporters and GABAA receptor subunits in the hippocampus of rat pups at puberty

    Directory of Open Access Journals (Sweden)

    Bovorn Veerawatananan

    2016-06-01

    Full Text Available The GABAergic synapse undergoes structural and functional maturation during early brain development. Maternal stress alters GABAergic synapses in the pup's brain that are associated with the pathophysiology of neuropsychiatric disorders in adults; however, the mechanism for this is still unclear. In this study, we examined the effects of maternal restraint stress on the development of Cation-Chloride Cotransporters (CCCs and the GABAA receptor α1 and α5 subunits in the hippocampus of rat pups at different postnatal ages. Our results demonstrate that maternal restraint stress induces a transient but significant increase in the level of NKCC1 (Sodium–Potassium Chloride Cotransporter 1 only at P14, followed by a brief, yet significant increase in the level of KCC2 (Potassium-Chloride Cotransporter 2 at P21, which then decreases from P28 until P40. Thus, maternal stress alters NKCC1 and KCC2 ratio in the hippocampus of rat pups, especially during P14 to P28. Maternal restraint stress also caused biphasic changes in the level of GABAA receptor subunits in the pup's hippocampus. GABAA receptor α1 subunit gradually increased at P14 then decreased thereafter. On the contrary, GABAA receptor α5 subunit showed a transient decrease followed by a long-term increase from P21 until P40. Altogether, our study suggested that the maternal restraint stress might delay maturation of the GABAergic system by altering the expression of NKCC1, KCC2 and GABAA receptor α1 and α5 subunits in the hippocampus of rat pups. These changes demonstrate the dysregulation of inhibitory neurotransmission during early life, which may underlie the pathogenesis of psychiatric diseases at adolescence.

  16. Functional expression of the GABAA receptor alpha2 and alpha3 subunits at synapses between intercalated medial paracapsular neurons of mouse amygdala

    Directory of Open Access Journals (Sweden)

    Raffaella eGeracitano

    2012-05-01

    Full Text Available In the amygdala, GABAergic neurons in the intercalated medial paracapsular cluster (Imp have been suggested to play a key role in fear learning and extinction. These neurons project to the central amygdaloid nucleus and to other areas within and outside the amygdala. In addition, they give rise to local collaterals that innervate other neurons in the Imp. Several drugs, including benzodiazepines, are allosteric modulators of GABA-A receptors. Benzodiazepines have both anxiolytic and sedative actions, which are mediated through GABA-A receptors containing alpha2/3 and alpha1 subunits, respectively. To establish whether alpha1 or alpha2/3 subunits are expressed at Imp cell synapses, we used paired recordings of anatomically-identified Imp neurons and high resolution immunocytochemistry in the mouse. We observed that a selective alpha3 subunit agonist, TP003 (100 nM, significantly increased the decay time constant of the unitary IPSCs. A similar effect was also induced by zolpidem (10 microM or by diazepam (1 microM. In contrast, lower doses of zolpidem (0.1-1 microM did not significantly alter the kinetics of the unitary IPSCs. Accordingly, immunocytochemical experiments established that the alpha2 and alpha3, but not the alpha1 subunits of the GABA-A receptors, were present at Imp cell synapses of the mouse amygdala. These results define, for the first time, some of the functional GABA-A receptor subunits expressed at synapses of Imp cells. The data also provide an additional rationale to prompt the search of GABA-A receptor alpha3 selective ligands as improved anxiolytic drugs.

  17. Quantitative Electroencephalography Within Sleep/Wake States Differentiates GABAA Modulators Eszopiclone and Zolpidem From Dual Orexin Receptor Antagonists in Rats

    Science.gov (United States)

    Fox, Steven V; Gotter, Anthony L; Tye, Spencer J; Garson, Susan L; Savitz, Alan T; Uslaner, Jason M; Brunner, Joseph I; Tannenbaum, Pamela L; McDonald, Terrence P; Hodgson, Robert; Yao, Lihang; Bowlby, Mark R; Kuduk, Scott D; Coleman, Paul J; Hargreaves, Richard; Winrow, Christopher J; Renger, John J

    2013-01-01

    Dual orexin receptor antagonists (DORAs) induce sleep by blocking orexin 1 and orexin 2 receptor-mediated activities responsible for regulating wakefulness. DORAs represent a potential alternative mechanism to the current standard of care that includes the γ-aminobutyric acid (GABA)A receptor-positive allosteric modulators, eszopiclone and zolpidem. This work uses an innovative method to analyze electroencephalogram (EEG) spectral frequencies within sleep/wake states to differentiate the effects of GABAA modulators from DORA-22, an analog of the DORA MK-6096, in Sprague–Dawley rats. The effects of low, intermediate, and high doses of eszopiclone, zolpidem, and DORA-22 were examined after first defining each compound's ability to promote sleep during active-phase dosing. The EEG spectral frequency power within specific sleep stages was calculated in 1-Hz intervals from 1 to 100 Hz within each sleep/wake state for the first 4 h after the dose. Eszopiclone and zolpidem produced marked, dose-responsive disruptions in sleep stage-specific EEG spectral profiles compared with vehicle treatment. In marked contrast, DORA-22 exhibited marginal changes in the spectral profile, observed only during rapid eye movement sleep, and only at the highest dose tested. Moreover, while eszopiclone- and zolpidem-induced changes were evident in the inactive period, the EEG spectral responses to DORA-22 were absent during this phase. These results suggest that DORA-22 differs from eszopiclone and zolpidem whereby DORA-22 promotes somnolence without altering the neuronal network EEG activity observed during normal sleep. PMID:23722242

  18. Molecular determinants of desensitization and assembly of the chimeric GABA(A) receptor subunits (alpha1/gamma2) and (gamma2/alpha1) in combinations with beta2 and gamma2

    DEFF Research Database (Denmark)

    Elster, L; Kristiansen, U; Pickering, D S

    2001-01-01

    Two gamma-aminobutyric acid(A) (GABA(A)) receptor chimeras were designed in order to elucidate the structural requirements for GABA(A) receptor desensitization and assembly. The (alpha1/gamma2) and (gamma2/alpha1) chimeric subunits representing the extracellular N-terminal domain of alpha1 or gam...... receptor with respect to the direct activation by pentobarbital. This suggests differences in the mechanism of channel activation for pentobarbital and GABA....

  19. GABAA receptor γ2 subunit knockdown mice have enhanced anxiety-like behavior but unaltered hypnotic response to benzodiazepines

    Directory of Open Access Journals (Sweden)

    De Blas Angel L

    2005-04-01

    Full Text Available Abstract Background Gamma-aminobutyric acid type A receptors (GABAA-Rs are the major inhibitory receptors in the mammalian brain and are modulated by a number of sedative/hypnotic drugs including benzodiazepines and anesthetics. The significance of specific GABAA-Rs subunits with respect to behavior and in vivo drug responses is incompletely understood. The γ2 subunit is highly expressed throughout the brain. Global γ2 knockout mice are insensitive to the hypnotic effects of diazepam and die perinatally. Heterozygous γ2 global knockout mice are viable and have increased anxiety-like behaviors. To further investigate the role of the γ2 subunit in behavior and whole animal drug action, we used gene targeting to create a novel mouse line with attenuated γ2 expression, i.e., γ2 knockdown mice. Results Knockdown mice were created by inserting a neomycin resistance cassette into intron 8 of the γ2 gene. Knockdown mice, on average, showed a 65% reduction of γ2 subunit mRNA compared to controls; however γ2 gene expression was highly variable in these mice, ranging from 10–95% of normal. Immunohistochemical studies demonstrated that γ2 protein levels were also variably reduced. Pharmacological studies using autoradiography on frozen brain sections demonstrated that binding of the benzodiazepine site ligand Ro15-4513 was decreased in mutant mice compared to controls. Behaviorally, knockdown mice displayed enhanced anxiety-like behaviors on the elevated plus maze and forced novelty exploration tests. Surprisingly, mutant mice had an unaltered response to hypnotic doses of the benzodiazepine site ligands diazepam, midazolam and zolpidem as well as ethanol and pentobarbital. Lastly, we demonstrated that the γ2 knockdown mouse line can be used to create γ2 global knockout mice by crossing to a general deleter cre-expressing mouse line. Conclusion We conclude that: 1 insertion of a neomycin resistance gene into intron 8 of the γ2 gene variably

  20. Sex-dependent anti-stress effect of an α5 subunit containing GABAA receptor positive allosteric modulator

    Directory of Open Access Journals (Sweden)

    Sean C. Piantadosi

    2016-11-01

    Full Text Available Rationale: Current first-line treatments for stress-related disorders such as Major Depressive Disorder (MDD act on monoaminergic systems and take weeks to achieve a therapeutic effect with poor response and low remission rates. Recent research has implicated the GABAergic system in the pathophysiology of depression, including deficits in interneurons targeting the dendritic compartment of cortical pyramidal cells. Objectives: The present study evaluates whether SH-053-2'F-R-CH3 (denoted α5-PAM, a positive allosteric modulator selective for α5-subunit containing GABAA receptors found predominantly on cortical pyramidal cell dendrites has anti-stress effects. Methods: Female and male C57BL6/J mice were exposed to unpredictable chronic mild stress (UCMS and treated with α5-PAM acutely (30 minutes prior to assessing behavior or chronically before being assessed behaviorally. Results: Acute and chronic α5-PAM treatments produce a pattern of decreased stress-induced behaviors (denoted as behavioral emotionality across various tests in female, but not in male mice. Behavioral Z-scores calculated across a panel of tests designed to best model the range and heterogeneity of human symptomatology confirmed that acute and chronic α5-PAM treatments consistently produce significant decreases in behavioral emotionality in several independent cohorts of females. The behavioral responses to α5-PAM could not be completely accounted for by differences in drug brain disposition between female and male mice. In mice exposed to UCMS, expression of the Gabra5 gene was increased in the frontal cortex after acute treatment and in hippocampus after chronic treatment with α5-PAM in females only, and these expression changes correlated with behavioral emotionality. Conclusions: We showed that acute and chronic positive modulation of α5 subunit-containing GABAA receptors elicit anti-stress effects in a sex-dependent manner, suggesting novel therapeutic modalities.

  1. Antinociceptive effects of fisetin against diabetic neuropathic pain in mice: Engagement of antioxidant mechanisms and spinal GABAA receptors.

    Science.gov (United States)

    Zhao, Xin; Li, Xin-Lin; Liu, Xin; Wang, Chuang; Zhou, Dong-Sheng; Ma, Qing; Zhou, Wen-Hua; Hu, Zhen-Yu

    2015-12-01

    Peripheral painful neuropathy is one of the most common complications in diabetes and necessitates improved treatment. Fisetin, a naturally occurring flavonoid, has been reported to exert antidepressant-like effect in previous studies. As antidepressant drugs are employed clinically to treat neuropathic pain, this work aimed to investigate whether fisetin possess beneficial effect on diabetic neuropathic pain and explore the mechanism(s). We subjected mice to diabetes by a single intraperitoneal (i.p.) injection of streptozotocin (200mg/kg), and von Frey test or Hargreaves test was used to assess mechanical allodynia or thermal hyperalgesia, respectively. Chronic treatment of diabetic mice with fisetin not only ameliorated the established symptoms of thermal hyperalgesia and mechanical allodynia, but also arrested the development of neuropathic pain when given at low doses. Although chronic fisetin administration did not impact on the symptom of hyperglycemia in diabetic mice, it reduced exacerbated oxidative stress in tissues of spinal cord, dorsal root ganglion (DRG) and sciatic verve. Furthermore, the analgesic actions of fisetin were abolished by repetitive co-treatment with the reactive oxygen species (ROS) donor tert-butyl hydroperoxide (t-BOOH), but potentiated by the ROS scavenger phenyl-N-tert-butylnitrone (PBN). Finally, acute blockade of spinal GABAA receptors by bicuculline totally counteracted such fisetin analgesia. These findings indicate that chronic fisetin treatment can delay or correct neuropathic hyperalgesia and allodynia in mice with type 1 diabetes. Mechanistically, the present fisetin analgesia may be associated with its antioxidant activity, and spinal GABAA receptors are likely rendered as downstream targets. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Correction for Inhibition Leads to an Allosteric Co-Agonist Model for Pentobarbital Modulation and Activation of α1β3γ2L GABAA Receptors.

    Directory of Open Access Journals (Sweden)

    Alexis M Ziemba

    Full Text Available Pentobarbital, like propofol and etomidate, produces important general anesthetic effects through GABAA receptors. Photolabeling also indicates that pentobarbital binds to some of the same sites where propofol and etomidate act. Quantitative allosteric co-agonist models for propofol and etomidate account for modulatory and agonist effects in GABAA receptors and have proven valuable in establishing drug site characteristics and for functional analysis of mutants. We therefore sought to establish an allosteric co-agonist model for pentobarbital activation and modulation of α1β3γ2L receptors, using a novel approach to first correct pentobarbital activation data for inhibitory effects in the same concentration range.Using oocyte-expressed α1β3γ2L GABAA receptors and two-microelectrode voltage-clamp, we quantified modulation of GABA responses by a low pentobarbital concentration and direct effects of high pentobarbital concentrations, the latter displaying mixed agonist and inhibitory effects. We then isolated and quantified pentobarbital inhibition in activated receptors using a novel single-sweep "notch" approach, and used these results to correct steady-state direct activation for inhibition.Combining results for GABA modulation and corrected direct activation, we estimated receptor open probability and optimized parameters for a Monod-Wyman-Changeux allosteric co-agonist model. Inhibition by pentobarbital was consistent with two sites with IC50s near 1 mM, while co-agonist model parameters suggest two allosteric pentobarbital agonist sites characterized by KPB ≈ 5 mM and high efficacy. The results also indicate that pentobarbital may be a more efficacious agonist than GABA.Our novel approach to quantifying both inhibitory and co-agonist effects of pentobarbital provides a basis for future structure-function analyses of GABAA receptor mutations in putative pentobarbital binding sites.

  3. Correction for Inhibition Leads to an Allosteric Co-Agonist Model for Pentobarbital Modulation and Activation of α1β3γ2L GABAA Receptors.

    Science.gov (United States)

    Ziemba, Alexis M; Forman, Stuart A

    2016-01-01

    Pentobarbital, like propofol and etomidate, produces important general anesthetic effects through GABAA receptors. Photolabeling also indicates that pentobarbital binds to some of the same sites where propofol and etomidate act. Quantitative allosteric co-agonist models for propofol and etomidate account for modulatory and agonist effects in GABAA receptors and have proven valuable in establishing drug site characteristics and for functional analysis of mutants. We therefore sought to establish an allosteric co-agonist model for pentobarbital activation and modulation of α1β3γ2L receptors, using a novel approach to first correct pentobarbital activation data for inhibitory effects in the same concentration range. Using oocyte-expressed α1β3γ2L GABAA receptors and two-microelectrode voltage-clamp, we quantified modulation of GABA responses by a low pentobarbital concentration and direct effects of high pentobarbital concentrations, the latter displaying mixed agonist and inhibitory effects. We then isolated and quantified pentobarbital inhibition in activated receptors using a novel single-sweep "notch" approach, and used these results to correct steady-state direct activation for inhibition. Combining results for GABA modulation and corrected direct activation, we estimated receptor open probability and optimized parameters for a Monod-Wyman-Changeux allosteric co-agonist model. Inhibition by pentobarbital was consistent with two sites with IC50s near 1 mM, while co-agonist model parameters suggest two allosteric pentobarbital agonist sites characterized by KPB ≈ 5 mM and high efficacy. The results also indicate that pentobarbital may be a more efficacious agonist than GABA. Our novel approach to quantifying both inhibitory and co-agonist effects of pentobarbital provides a basis for future structure-function analyses of GABAA receptor mutations in putative pentobarbital binding sites.

  4. Presynaptic inhibition of spontaneous acetylcholine release mediated by P2Y receptors at the mouse neuromuscular junction.

    Science.gov (United States)

    De Lorenzo, S; Veggetti, M; Muchnik, S; Losavio, A

    2006-09-29

    At the neuromuscular junction, ATP is co-released with the neurotransmitter acetylcholine (ACh) and once in the synaptic space, it is degraded to the presynaptically active metabolite adenosine. Intracellular recordings were performed on diaphragm fibers of CF1 mice to determine the action of extracellular ATP (100 muM) and the slowly hydrolysable ATP analog 5'-adenylylimidodiphosphate lithium (betagamma-imido ATP) (30 muM) on miniature end-plate potential (MEPP) frequency. We found that application of ATP and betagamma-imido ATP decreased spontaneous secretion by 45.3% and 55.9% respectively. 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX), a selective A(1) adenosine receptor antagonist and alpha,beta-methylene ADP sodium salt (alphabeta-MeADP), which is an inhibitor of ecto-5'-nucleotidase, did not prevent the inhibitory effect of ATP, demonstrating that the nucleotide is able to modulate spontaneous ACh release through a mechanism independent of the action of adenosine. Blockade of Ca(2+) channels by both, Cd(2+) or the combined application of nitrendipine and omega-conotoxin GVIA (omega-CgTx) (L-type and N-type Ca(2+) channel antagonists, respectively) prevented the effect of betagamma-imido ATP, indicating that the nucleotide modulates Ca(2+) influx through the voltage-dependent Ca(2+) channels related to spontaneous secretion. betagamma-Imido ATP-induced modulation was antagonized by the non-specific P2 receptor antagonist suramin and the P2Y receptor antagonist 1-amino-4-[[4-[[4-chloro-6-[[3(or4)-sulfophenyl] amino]-1,3,5-triazin-2-yl]amino]-3-sulfophenyl] amino]-9,10-dihydro-9,10-dioxo-2-anthracenesulfonic acid (reactive blue-2), but not by pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid) tetrasodium salt (PPADS), which has a preferential antagonist effect on P2X receptors. Pertussis toxin and N-ethylmaleimide (NEM), which are blockers of G(i/o) proteins, prevented the action of the nucleotide, suggesting that the effect is mediated by P2Y receptors

  5. Activation of Glycine and Extrasynaptic GABAA Receptors by Taurine on the Substantia Gelatinosa Neurons of the Trigeminal Subnucleus Caudalis

    Directory of Open Access Journals (Sweden)

    Thi Thanh Hoang Nguyen

    2013-01-01

    Full Text Available The substantia gelatinosa (SG of the trigeminal subnucleus caudalis (Vc has been known for the processing and transmission of orofacial nociceptive information. Taurine, one of the most plentiful free amino-acids in humans, has proved to be involved in pain modulation. In this study, using whole-cell patch clamp technique, we investigated the direct membrane effects of taurine and the action mechanism behind taurine-mediated responses on the SG neurons of the Vc. Taurine showed non-desensitizing and repeatable membrane depolarizations and inward currents which remained in the presence of amino-acid receptors blocking cocktail (AARBC with tetrodotoxin, indicating that taurine acts directly on the postsynaptic SG neurons. Further, application of taurine at different doses (10 μM to 3 mM showed a concentration dependent depolarizations and inward currents with the EC50 of 84.3 μM and 723 μM, respectively. Taurine-mediated responses were partially blocked by picrotoxin (50 μM and almost completely blocked by strychnine (2 μM, suggesting that taurine-mediated responses are via glycine receptor (GlyR activation. In addition, taurine (1 mM activated extrasynaptic GABAA receptor (GABAAR-mediated currents. Taken together, our results indicate that taurine can be a target molecule for orofacial pain modulation through the activation of GlyRs and/or extrasynaptic GABAARs on the SG neurons.

  6. Activation of Glycine and Extrasynaptic GABAA Receptors by Taurine on the Substantia Gelatinosa Neurons of the Trigeminal Subnucleus Caudalis

    Science.gov (United States)

    Bhattarai, Janardhan Prasad; Park, Soo Joung; Han, Seong Kyu

    2013-01-01

    The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc) has been known for the processing and transmission of orofacial nociceptive information. Taurine, one of the most plentiful free amino-acids in humans, has proved to be involved in pain modulation. In this study, using whole-cell patch clamp technique, we investigated the direct membrane effects of taurine and the action mechanism behind taurine-mediated responses on the SG neurons of the Vc. Taurine showed non-desensitizing and repeatable membrane depolarizations and inward currents which remained in the presence of amino-acid receptors blocking cocktail (AARBC) with tetrodotoxin, indicating that taurine acts directly on the postsynaptic SG neurons. Further, application of taurine at different doses (10 μM to 3 mM) showed a concentration dependent depolarizations and inward currents with the EC50 of 84.3 μM and 723 μM, respectively. Taurine-mediated responses were partially blocked by picrotoxin (50 μM) and almost completely blocked by strychnine (2 μM), suggesting that taurine-mediated responses are via glycine receptor (GlyR) activation. In addition, taurine (1 mM) activated extrasynaptic GABAA receptor (GABAAR)-mediated currents. Taken together, our results indicate that taurine can be a target molecule for orofacial pain modulation through the activation of GlyRs and/or extrasynaptic GABAARs on the SG neurons. PMID:24379976

  7. Attenuating GABA(A) receptor signaling in dopamine neurons selectively enhances reward learning and alters risk preference in mice.

    Science.gov (United States)

    Parker, Jones G; Wanat, Matthew J; Soden, Marta E; Ahmad, Kinza; Zweifel, Larry S; Bamford, Nigel S; Palmiter, Richard D

    2011-11-23

    Phasic dopamine (DA) transmission encodes the value of reward-predictive stimuli and influences both learning and decision-making. Altered DA signaling is associated with psychiatric conditions characterized by risky choices such as pathological gambling. These observations highlight the importance of understanding how DA neuron activity is modulated. While excitatory drive onto DA neurons is critical for generating phasic DA responses, emerging evidence suggests that inhibitory signaling also modulates these responses. To address the functional importance of inhibitory signaling in DA neurons, we generated mice lacking the β3 subunit of the GABA(A) receptor specifically in DA neurons (β3-KO mice) and examined their behavior in tasks that assessed appetitive learning, aversive learning, and risk preference. DA neurons in midbrain slices from β3-KO mice exhibited attenuated GABA-evoked IPSCs. Furthermore, electrical stimulation of excitatory afferents to DA neurons elicited more DA release in the nucleus accumbens of β3-KO mice as measured by fast-scan cyclic voltammetry. β3-KO mice were more active than controls when given morphine, which correlated with potential compensatory upregulation of GABAergic tone onto DA neurons. β3-KO mice learned faster in two food-reinforced learning paradigms, but extinguished their learned behavior normally. Enhanced learning was specific for appetitive tasks, as aversive learning was unaffected in β3-KO mice. Finally, we found that β3-KO mice had enhanced risk preference in a probabilistic selection task that required mice to choose between a small certain reward and a larger uncertain reward. Collectively, these findings identify a selective role for GABA(A) signaling in DA neurons in appetitive learning and decision-making.

  8. Early continuous white noise exposure alters auditory spatial sensitivity and expression of GAD65 and GABAA receptor subunits in rat auditory cortex.

    Science.gov (United States)

    Xu, Jinghong; Yu, Liping; Cai, Rui; Zhang, Jiping; Sun, Xinde

    2010-04-01

    Sensory experiences have important roles in the functional development of the mammalian auditory cortex. Here, we show how early continuous noise rearing influences spatial sensitivity in the rat primary auditory cortex (A1) and its underlying mechanisms. By rearing infant rat pups under conditions of continuous, moderate level white noise, we found that noise rearing markedly attenuated the spatial sensitivity of A1 neurons. Compared with rats reared under normal conditions, spike counts of A1 neurons were more poorly modulated by changes in stimulus location, and their preferred locations were distributed over a larger area. We further show that early continuous noise rearing induced significant decreases in glutamic acid decarboxylase 65 and gamma-aminobutyric acid (GABA)(A) receptor alpha1 subunit expression, and an increase in GABA(A) receptor alpha3 expression, which indicates a returned to the juvenile form of GABA(A) receptor, with no effect on the expression of N-methyl-D-aspartate receptors. These observations indicate that noise rearing has powerful adverse effects on the maturation of cortical GABAergic inhibition, which might be responsible for the reduced spatial sensitivity.

  9. Chronic morphine selectively sensitizes the effect of D1 receptor agonist on presynaptic glutamate release in basolateral amygdala neurons that project to prelimbic cortex.

    Science.gov (United States)

    Song, Jiaojiao; Chen, Ming; Dong, Yi; Lai, Bin; Zheng, Ping

    2018-05-01

    Drug addiction is a brain disorder characterized by chronic, compulsive use of drugs. Previous studies have found a number of chronic morphine-induced changes in the brain at molecular levels. A study from our lab showed that chronic morphine-induced increase in the expression of presynaptic D1 receptors in basolateral amygdala (BLA) neurons played an important role in environmental cue-induced retrieval of morphine withdrawal memory. However, the downstream neurocircuitry of chronic morphine-induced increase presynaptic D1 receptors in the BLA remains to be elucidated. Using retrogradely labelling technique combined with whole-cell patch-clamp methods, our results showed that (1) chronic morphine sensitized the effect of D1 receptor agonist on presynaptic glutamate release in BLA neurons that projected to the prelimbic cortex (PrL), but had no influence on that in BLA neurons that projected to the nucleus accumbens (NAc) or the CA1 of the hippocampus; (2) chronic morphine sensitized the effect of D1 receptor agonist on action potential firing in BLA neurons that projected to the PrL, but without affecting the intrinsic excitability and the sensitivity of postsynaptic glutamate receptors to glutamate in BLA neurons that projected to the PrL. These results suggest that chronic morphine selectively sensitizes the effect of D1 receptor agonist on presynaptic glutamate release in BLA neurons that project to PrL and induces a sensitization of the effect of D1 receptor agonist on action potential firing in BLA neurons that project to the PrL. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Bortezomib induces neuropathic pain through protein kinase C-mediated activation of presynaptic NMDA receptors in the spinal cord.

    Science.gov (United States)

    Xie, Jing-Dun; Chen, Shao-Rui; Chen, Hong; Pan, Hui-Lin

    2017-09-01

    Chemotherapeutic drugs, including bortezomib, often cause painful peripheral neuropathy, which is a severe dose-limiting adverse effect experienced by many cancer patients. The glutamate N-methyl-d-aspartate receptors (NMDARs) at the spinal cord level are critically involved in the synaptic plasticity associated with neuropathic pain. In this study, we determined whether treatment with bortezomib, a proteasome inhibitor, affects the NMDAR activity of spinal dorsal horn neurons. Systemic treatment with bortezomib in rats did not significantly affect postsynaptic NMDAR currents elicited by puff application of NMDA directly to dorsal horn neurons. Bortezomib treatment markedly increased the baseline frequency of miniature excitatory postsynaptic currents (EPSCs), which was completely normalized by the NMDAR antagonist 2-amino-5-phosphonopentanoic acid (AP5). AP5 also reduced the amplitude of monosynaptic EPSCs evoked by dorsal root stimulation in bortezomib-treated, but not vehicle-treated, rats. Furthermore, inhibition of protein kinase C (PKC) with chelerythrine fully reversed the increased frequency of miniature EPSCs and the amplitude of evoked EPSCs in bortezomib-treated rats. Intrathecal injection of AP5 and chelerythrine both profoundly attenuated mechanical allodynia and hyperalgesia induced by systemic treatment with bortezomib. In addition, treatment with bortezomib induced striking membrane translocation of PKC-βII, PKC-δ, and PKC-ε in the dorsal root ganglion. Our findings indicate that bortezomib treatment potentiates nociceptive input from primary afferent nerves via PKC-mediated tonic activation of presynaptic NMDARs. Targeting presynaptic NMDARs and PKC at the spinal cord level may be an effective strategy for treating chemotherapy-induced neuropathic pain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Antidepressant dose of taurine increases mRNA expression of GABAA receptor α2 subunit and BDNF in the hippocampus of diabetic rats.

    Science.gov (United States)

    Caletti, Greice; Almeida, Felipe Borges; Agnes, Grasiela; Nin, Maurício Schüler; Barros, Helena Maria Tannhauser; Gomez, Rosane

    2015-04-15

    Diabetes mellitus is a metabolic disorder associated with higher risk for depression. Diabetic rats present depressive-like behaviors and taurine, one of the most abundant free amino acids in the brain, reverses this depressive behaviors. Because taurine is a GABAA agonist modulator, we hypothesize that its antidepressant effect results from the interaction on this system by changing α2 GABAA receptor subunit expression, beside changes on BDNF mRNA, and memory in diabetic rats. Streptozotocin-diabetic and non-diabetic Wistar rats were daily injected with 100mg/kg of taurine or saline, intraperitoneally, for 30 days. At the end of the experiment, rats were exposed to the novel object recognition memory. Later they were euthanized, the brains were weighed, and the hippocampus was dissected for α2 GABAA subunit and BDNF mRNA expression. Real-time quantitative PCR (qPCR) showed that diabetic rats presented lower α2 GABAA subunit and BDNF mRNA expression than non-diabetic rats and taurine increased both parameters in these sick rats. Taurine also reversed the lower brain weight and improved the short-term memory in diabetic rats. Thus, the taurine antidepressant effect may be explained by interference with the GABA system, in line to its neuroprotective effect showed here by preventing brain weight loss and improving memory in diabetic rats. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Regulation of dopamine presynaptic markers and receptors in the striatum of DJ-1 and Pink1 knockout rats

    Science.gov (United States)

    Sun, Jianjun; Kouranova, Evguenia; Cui, Xiaoxia; Mach, Robert H.; Xu, Jinbin

    2014-01-01

    Pathogenic autosomal recessive mutations in the DJ-1 (Park7) or the PTEN-induced putative kinase 1 (Pink1 or PARK6) genes are associated with familial Parkinson’s disease (PD). It is not well known regarding the pathological mechanisms involving the DJ-1 and Pink1 mutations. Here we characterized DJ-1 and Pink1 knockout rats both through expression profiling and using quantitative autoradiography to measure the densities of the dopamine D1, D2, D3 receptors, vesicular monoamine transporter type-2 (VMAT2) and dopamine transporter (DAT) in the striatum of transgenic rats and wild type controls. Expression profiling with a commercially available array of 84 genes known to be involved in PD indicated that only the target gene was significantly downregulated in each transgenic rat model. D1 receptor, VMAT2, and DAT were measured using [3H]SCH23390, [3H]dihydrotetrabenazine, and [3H]WIN35428, respectively. No significant changes were observed in the density of DAT in either model. Although the densities of VMAT2 and D1 receptor were unchanged in Pink1 knockout, but both were increased in DJ-1 knockout rats. The densities of D2 and D3 receptors, determined by mathematical analysis of binding of radioligands [3H]WC-10 and [3H]raclopride, were significantly increased in both knockout models. These distinctive changes in the expression of dopamine presynaptic markers and receptors in the striatum may reflect different compensatory regulation of dopamine system in DJ-1 versus Pink1 knockout rat models of familial PD. PMID:24157858

  13. Duration of treatment and activation of α1-containing GABAA receptors variably affect the level of anxiety and seizure susceptibility after diazepam withdrawal in rats.

    Science.gov (United States)

    Kovačević, Jovana; Timić, Tamara; Tiruveedhula, Veera V; Batinić, Bojan; Namjoshi, Ojas A; Milić, Marija; Joksimović, Srđan; Cook, James M; Savić, Miroslav M

    2014-05-01

    Long-term use of benzodiazepine-type drugs may lead to physical dependence, manifested by withdrawal syndrome after abrupt cessation of treatment. The aim of the present study was to investigate the influence of duration of treatment, as well as the role of α1-containing GABAA receptors, in development of physical dependence to diazepam, assessed through the level of anxiety and susceptibility to pentylenetetrazole (PTZ)-induced seizures, 24h after withdrawal from protracted treatment in rats. Withdrawal of 2mg/kg diazepam after 28, but not after 14 or 21 days of administration led to an anxiety-like behavior in the elevated plus maze. Antagonism of the diazepam effects at α1-containing GABAA receptors, achieved by daily administration of the neutral modulator βCCt (5mg/kg), did not affect the anxiety level during withdrawal. An increased susceptibility to PTZ-induced seizures was observed during diazepam withdrawal after 21 and 28 days of treatment. Daily co-administration of βCCt further decreased the PTZ-seizure threshold after 21 days of treatment, whilst it prevented the diazepam withdrawal-elicited decrease of the PTZ threshold after 28 days of treatment. In conclusion, the current study suggests that the role of α1-containing GABAA receptors in mediating the development of physical dependence may vary based on the effect being studied and duration of protracted treatment. Moreover, the present data supports previous findings that the lack of activity at α1-containing GABAA receptors is not sufficient to eliminate physical dependence liability of ligands of the benzodiazepine type. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Activation of GABA-A receptors during postnatal brain development increases anxiety- and depression-related behaviors in a time- and dose-dependent manner in adult mice.

    Science.gov (United States)

    Salari, Ali-Akbar; Bakhtiari, Amir; Homberg, Judith R

    2015-08-01

    Disturbances of the gamma-amino butyric acid-ergic (GABAergic) system during postnatal development can have long-lasting consequences for later life behavior, like the individual's response to stress. However, it is unclear which postnatal windows of sensitivity to GABA-ergic modulations are associated with what later-life behavioral outcomes. Therefore, we sought to determine whether neonatal activation of the GABA-A receptor during two postnatal periods, an early window (postnatal day 3-5) and a late window (postnatal day 14-16), can affect anxiety- and depression-related behaviors in male mice in later life. To this end, mice were treated with either saline or muscimol (50, 100, 200, 300 and 500μg/kg) during the early and late postnatal periods. An additional group of mice was treated with the GABA-A receptor antagonist bicuculline+muscimol. When grown to adulthood male mice were exposed to behavioral tests to measure anxiety- and depression-related behaviors. Baseline and stress-induced corticosterone (CORT) levels were also measured. The results indicate that early postnatal and to a lesser extent later postnatal exposure to the GABA-A receptor agonist muscimol increased anxiety-like behavior and stress-induced CORT levels in adults. Moreover, the early postnatal treatment with muscimol increased depression-like behavior with increasing baseline CORT levels. The anxiogenic and depression-like later-life consequences could be antagonized by bicuculline. Our findings suggest that GABA-A receptor signaling during early-life can influence anxiety- and depression-related behaviors in a time- and dose-dependent manner in later life. Our findings help to increase insight in the developmental mechanisms contributing to stress-related disorders. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  15. Expression of the GABA(A) receptor alpha6 subunit in cultured cerebellar granule cells is developmentally regulated by activation of GABA(A) receptors

    DEFF Research Database (Denmark)

    Carlson, B X; Belhage, B; Hansen, Gert Helge

    1997-01-01

    Da (alpha6 subunit) radioactive peaks in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In contrast, THIP-treated granule cells at 8 DIV demonstrated a small but significant decrease from control cultures in the photoincorporation of [3H]Ro15-4513 in the 51-kDa peak; however...... that the major effect of THIP was to increase alpha6 subunit clustering on granule cell bodies as well as neurites, 15-fold and sixfold, respectively. Using in situ hybridization, a small THIP-induced increase in alpha6 mRNA was detected at 4 DIV; however, no effect was apparent at 8 DIV. These data suggest......(A) receptor subunit. Membranes prepared from these cultures were photolabeled with the imidazobenzodiazepine [3H]Ro15-4513. In THIP-treated cultures at 4 days in vitro (DIV), photolabeled [3H]Ro15-4513 binding in membranes was significantly increased for both the 51 kilodalton, kDa, (alpha1 subunit) and 56-k...

  16. Allopregnanolone suppresses diabetes-induced neuropathic pain and motor deficit through inhibition of GABAA receptor down-regulation in the spinal cord of diabetic rats

    Directory of Open Access Journals (Sweden)

    Samira Afrazi

    2014-05-01

    Full Text Available Objective(s:Painful diabetic neuropathy is associated with hyperexcitability and hyperactivity of spinal cord neurons. However, its underlying pathophysiological mechanisms have not been fully clarified. Induction of excitatory/inhibitory neurotransmission imbalance at the spinal cord seems to account for the abnormal neuronal activity in diabetes. Protective properties of neurosteroids have been demonstrated in numerous cellular and animal models of neurodegeneration. Materials and Methods: Here, the protective effects of allopregnanolone, a neurosteroid were investigated in an in vivo model of diabetic neuropathy. The tail-flick test was used to assess the nociceptive threshold. Diabetes was induced by injection of 50 mg/kg (IP streptozotocin. Seven weeks after the induction of diabetes, the dorsal half of the lumbar spinal cord was assayed for the expression of γ2 subunit of GABAA receptor using semiquantitative RT-PCR. Results: The data shows that allopregnanolone (5 and 20 mg/kg markedly ameliorated diabetes-induced thermal hyperalgesia and motor deficit. The weights of diabetic rats that received 5 and 20 mg/kg allopregnanolone did not significantly reduce during the time course of study. Furthermore, this neurosteroid could inhibit GABAA receptor down-regulation induced by diabetes in the rat spinal cord. Conclusion: The data revealed that allopregnanolone has preventive effects against hyperglycemic-induced neuropathic pain and motor deficit which are related to the inhibition of GABAA receptor down-regulation.

  17. Melatonin modulation of presynaptic nicotinic acetylcholine receptors located on short noradrenergic neurons of the rat vas deferens: a pharmacological characterization

    Directory of Open Access Journals (Sweden)

    Zago W.M.

    1999-01-01

    Full Text Available Melatonin, the pineal hormone produced during the dark phase of the light-dark cycle, modulates neuronal acetylcholine receptors located presynaptically on nerve terminals of the rat vas deferens. Recently we showed the presence of high affinity nicotine-binding sites during the light phase, and low and high affinity binding sites during the dark phase. The appearance of the low affinity binding sites was due to the nocturnal melatonin surge and could be mimicked by exposure to melatonin in vitro. The aim of the present research was to identify the receptor subtypes responsible for the functional response during the light and the dark phase. The rank order of potency of agonists was dimethylphenylpiperazinium (DMPP = cytisine > nicotine > carbachol and DMPP = nicotine = cytisine > carbachol, during the light and dark phase, respectively, due to an increase in apparent affinity for nicotine. Mecamylamine similarly blocked the DMPP response during the light and the dark phase, while the response to nicotine was more efficiently blocked during the light phase. In contrast, methyllycaconitine inhibited the nicotine-induced response only at 21:00 h. Since a7 nicotinic acetylcholine receptors (nAChRs have low affinity for nicotine in binding assays, we suggest that a mixed population composed of a3ß4 - plus a7-bearing nAChR subtypes is present at night. This plasticity in receptor subtypes is probably driven by melatonin since nicotine-induced contraction in organs from animals sacrificed at 15:00 h and incubated with melatonin (100 pg/ml, 4 h is not totally blocked by mecamylamine. Thus melatonin, by acting directly on the short adrenergic neurons that innervate the rat vas deferens, induces the appearance of the low affinity binding site, probably an a7 nAChR subtype.

  18. Glycine and GABAA receptors mediate tonic and phasic inhibitory processes that contribute to prepulse inhibition in the goldfish startle network

    Directory of Open Access Journals (Sweden)

    Paul C.P. Curtin

    2015-03-01

    Full Text Available Prepulse inhibition (PPI is understood as an inhibitory process that attenuates sensory flow during early stages (20-1000ms of information processing. Here, we applied in vivo electrophysiology and pharmacology to determine if prepulse inhibition (PPI is mediated by glycine receptors (GlyRs and/or GABAA receptors (GABAARs in the goldfish auditory startle circuit. Specifically, we used selective antagonists to dissect the contributions of target receptors on sound-evoked postsynaptic potentials (PSPs recorded in the neurons that initiate startle, the Mauthner-cells (M-cell. We found that strychnine, a GlyR antagonist, disrupted a fast-activated (5 ms and rapidly (< 50ms decaying (feed-forward inhibitory process that disrupts PPI at 20 ms prepulse/pulse inter-stimulus intervals (ISI. Additionally we observed increases of the evoked postsynaptic potential (PSP peak amplitude (+87.43 ± 21.53%; N=9 and duration (+204 ± 48.91%, N=9. In contrast, treatment with bicuculline, a GABAAR antagonist, caused a general reduction in PPI across all tested ISIs (20-500 ms, essentially eliminating PPI at ISIs from 20-100 ms. Bicuculline also increased PSP peak amplitude (+133.8 ± 10.3%, N=5 and PSP duration (+284.95 ± 65.64%, N=5. Treatment with either antagonist also tonically increased post-synaptic excitability in the M-cells, reflected by an increase in the magnitude of antidromically-evoked action potentials (APs by 15.07 ± 3.21%, N=7 and 16.23 ± 7.08%, N=5 for strychnine and bicuculline, respectively. These results suggest that GABAARs and GlyRs are functionally segregated to short- and longer-lasting sound-evoked (phasic inhibitory processes that contribute to PPI, with the mediation of tonic inhibition by both receptor systems being critical for gain control within the M-cell startle circuit.

  19. GABA(A receptors containing the α2 subunit are critical for direction-selective inhibition in the retina.

    Directory of Open Access Journals (Sweden)

    Olivia Nicola Auferkorte

    Full Text Available Far from being a simple sensor, the retina actively participates in processing visual signals. One of the best understood aspects of this processing is the detection of motion direction. Direction-selective (DS retinal circuits include several subtypes of ganglion cells (GCs and inhibitory interneurons, such as starburst amacrine cells (SACs. Recent studies demonstrated a surprising complexity in the arrangement of synapses in the DS circuit, i.e. between SACs and DS ganglion cells. Thus, to fully understand retinal DS mechanisms, detailed knowledge of all synaptic elements involved, particularly the nature and localization of neurotransmitter receptors, is needed. Since inhibition from SACs onto DSGCs is crucial for generating retinal direction selectivity, we investigate here the nature of the GABA receptors mediating this interaction. We found that in the inner plexiform layer (IPL of mouse and rabbit retina, GABA(A receptor subunit α2 (GABA(AR α2 aggregated in synaptic clusters along two bands overlapping the dendritic plexuses of both ON and OFF SACs. On distal dendrites of individually labeled SACs in rabbit, GABA(AR α2 was aligned with the majority of varicosities, the cell's output structures, and found postsynaptically on DSGC dendrites, both in the ON and OFF portion of the IPL. In GABA(AR α2 knock-out (KO mice, light responses of retinal GCs recorded with two-photon calcium imaging revealed a significant impairment of DS responses compared to their wild-type littermates. We observed a dramatic drop in the proportion of cells exhibiting DS phenotype in both the ON and ON-OFF populations, which strongly supports our anatomical findings that α2-containing GABA(ARs are critical for mediating retinal DS inhibition. Our study reveals for the first time, to the best of our knowledge, the precise functional localization of a specific receptor subunit in the retinal DS circuit.

  20. Pharmacologically Counteracting a Phenotypic Difference in Cerebellar GABAA Receptor Response to Alcohol Prevents Excessive Alcohol Consumption in a High Alcohol-Consuming Rodent Genotype.

    Science.gov (United States)

    Kaplan, Josh Steven; Nipper, Michelle A; Richardson, Ben D; Jensen, Jeremiah; Helms, Melinda; Finn, Deborah Ann; Rossi, David James

    2016-08-31

    Cerebellar granule cell GABAA receptor responses to alcohol vary as a function of alcohol consumption phenotype, representing a potential neural mechanism for genetic predilection for alcohol abuse (Kaplan et al., 2013; Mohr et al., 2013). However, there are numerous molecular targets of alcohol in the cerebellum, and it is not known how they interact to affect cerebellar processing during consumption of socially relevant amounts of alcohol. Importantly, direct evidence for a causative role of the cerebellum in alcohol consumption phenotype is lacking. Here we determined that concentrations of alcohol that would be achieved in the blood after consumption of 1-2 standard units (9 mm) suppresses transmission through the cerebellar cortex in low, but not high, alcohol consuming rodent genotypes (DBA/2J and C57BL/6J mice, respectively). This genotype-selective suppression is mediated exclusively by enhancement of granule cell GABAA receptor currents, which only occurs in DBA/2J mice. Simulating the DBA/2J cellular phenotype in C57BL/6J mice by infusing the GABAA receptor agonist, 4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridine-3-ol hydrochloride, into cerebellar lobules IV-VI, in vivo, significantly reduced their alcohol consumption and blood alcohol concentrations achieved. 4,5,6,7-Tetrahydroisoxazolo-[5,4-c]pyridine-3-ol hydrochloride infusions also significantly decreased sucrose consumption, but they did not affect consumption of water or general locomotion. Thus, genetic differences in cerebellar response to alcohol contributes to alcohol consumption phenotype, and targeting the cerebellar GABAA receptor system may be a clinically viable therapeutic strategy for reducing excessive alcohol consumption. Alcohol abuse is a leading cause of preventable death and illness; and although alcohol use disorders are 50%-60% genetically determined, the cellular and molecular mechanisms of such genetic influences are largely unknown. Here we demonstrate that genetic differences in

  1. The influence of stress at puberty on mood and learning: Role of the α4βδ GABAA receptor

    Science.gov (United States)

    Smith, Sheryl S.

    2012-01-01

    It is well-known that the onset of puberty is associated with changes in mood as well as cognition. Stress can have an impact on these outcomes, which in many cases, can be more influential in females, suggesting that gender differences exist. The adolescent period is a vulnerable time for the onset of certain psychopathologies, including anxiety disorders, depression and eating disorders, which are also more prevalent in females. One factor which may contribute to stress-triggered anxiety at puberty is the GABAA receptor (GABAR), which is known to play a pivotal role in anxiety. Expression of α4βδ GABARs increases on the dendrites of CA1 pyramidal cells at the onset of puberty in the hippocampus, part of the limbic circuitry which governs emotion. This receptor is a sensitive target for the stress steroid THP (3α-OH-5[α]β-pregnan-20-one), which paradoxically reduces inhibition and increases anxiety during the pubertal period (~PND 35–44) of female mice in contrast to its usual effect to enhance inhibition and reduce anxiety. Spatial learning and synaptic plasticity are also adversely impacted at puberty, likely a result of increased expression of α4βδ GABARs on the dendritic spines of CA1 hippocampal pyramidal cells, which are essential for consolidation of memory. This review will focus on the role of these receptors in mediating behavioral changes at puberty. Stress-mediated changes in mood and cognition in early adolescence may have relevance for the expression of psychopathologies in adulthood. PMID:23079628

  2. Simultaneous optical recording in multiple cells by digital holographic microscopy of chloride current associated to activation of the ligand-gated chloride channel GABA(A) receptor.

    Science.gov (United States)

    Jourdain, Pascal; Boss, Daniel; Rappaz, Benjamin; Moratal, Corinne; Hernandez, Maria-Clemencia; Depeursinge, Christian; Magistretti, Pierre Julius; Marquet, Pierre

    2012-01-01

    Chloride channels represent a group of targets for major clinical indications. However, molecular screening for chloride channel modulators has proven to be difficult and time-consuming as approaches essentially rely on the use of fluorescent dyes or invasive patch-clamp techniques which do not lend themselves to the screening of large sets of compounds. To address this problem, we have developed a non-invasive optical method, based on digital holographic microcopy (DHM), allowing monitoring of ion channel activity without using any electrode or fluorescent dye. To illustrate this approach, GABA(A) mediated chloride currents have been monitored with DHM. Practically, we show that DHM can non-invasively provide the quantitative determination of transmembrane chloride fluxes mediated by the activation of chloride channels associated with GABA(A) receptors. Indeed through an original algorithm, chloride currents elicited by application of appropriate agonists of the GABA(A) receptor can be derived from the quantitative phase signal recorded with DHM. Finally, chloride currents can be determined and pharmacologically characterized non-invasively simultaneously on a large cellular sampling by DHM.

  3. Simultaneous optical recording in multiple cells by digital holographic microscopy of chloride current associated to activation of the ligand-gated chloride channel GABA(A receptor.

    Directory of Open Access Journals (Sweden)

    Pascal Jourdain

    Full Text Available Chloride channels represent a group of targets for major clinical indications. However, molecular screening for chloride channel modulators has proven to be difficult and time-consuming as approaches essentially rely on the use of fluorescent dyes or invasive patch-clamp techniques which do not lend themselves to the screening of large sets of compounds. To address this problem, we have developed a non-invasive optical method, based on digital holographic microcopy (DHM, allowing monitoring of ion channel activity without using any electrode or fluorescent dye. To illustrate this approach, GABA(A mediated chloride currents have been monitored with DHM. Practically, we show that DHM can non-invasively provide the quantitative determination of transmembrane chloride fluxes mediated by the activation of chloride channels associated with GABA(A receptors. Indeed through an original algorithm, chloride currents elicited by application of appropriate agonists of the GABA(A receptor can be derived from the quantitative phase signal recorded with DHM. Finally, chloride currents can be determined and pharmacologically characterized non-invasively simultaneously on a large cellular sampling by DHM.

  4. Kampo medicine: Evaluation of the pharmacological activity of 121 herbal drugs on GABA(A and 5 HT3A receptors

    Directory of Open Access Journals (Sweden)

    Katrin M Hoffmann

    2016-07-01

    Full Text Available Kampo medicine is a form of Japanese phytotherapy originating from traditional Chinese medicine (TCM. During the last several decades, much attention has been paid to the pharmacological effects of these medical plants and its constituents. However, in many cases, a systematic screening of Kampo remedies to determine pharmacologically relevant targets is still lacking. In this study, we performed a broad screening of Kampo remedies to look for pharmacologically relevant 5 HT3A and GABA(A receptor ligands. Several of the Kampo remedies are currently used for symptoms such as nausea, emesis, gastrointestinal motility disorders, anxiety, restlessness or insomnia. Therefore, we analyzed the pharmacological effects of 121 herbal drugs from Kampo medicine as ethanol tinctures on heterologously expressed 5 HT3A and GABA(A receptors, due to the involvement of these receptors in such pathophysiological processes. The tinctures of Lindera aggregata (radix and Leonurus japonicus (herba were the most effective inhibitory compounds on the 5 HT3A receptor. Further investigation of known ingredients in these compounds led to the identification of leonurine from Leonurus as a new natural 5 HT3A receptor antagonist. We also identified several potentiating herbs (e.g., Magnolia officinalis (cortex, Syzygium aromaticum (flos and Panax ginseng (radix for the GABAA receptor, which are all traditionally used for their sedative or anxiolytic effects. A variety of tinctures with antagonistic effects, for instance Salvia miltiorrhiza (radix were also detected. Therefore, this study reveals new insights into the pharmacological action of a broad spectrum of herbal drugs from Kampo, allowing a better understanding of their physiological effects and clinical applications.

  5. GABAA receptor endocytosis in the basolateral amygdala is critical to the reinstatement of fear memory measured by fear-potentiated startle.

    Science.gov (United States)

    Lin, Hui-Ching; Tseng, Yu-Chou; Mao, Sheng-Chun; Chen, Po-See; Gean, Po-Wu

    2011-06-15

    Reinstatement represents a phenomenon that may be used to model the effects of retraumatization observed in patients with posttraumatic stress disorder (PTSD). In this study, we found intraperitoneal injection of the β-adrenergic receptor antagonist propranolol (10 mg/kg) 1 h before reinstatement training attenuated reinstatement of fear memory in rats. Conversely, reinstatement was facilitated by intra-amygdalar administration of β-adrenergic receptor agonist isoproterenol (Iso; 2 μg per side) 30 min before reinstatement training. The frequency and amplitude of the miniature IPSC (mIPSC) and the surface expression of the β3 and γ2 subunits of the GABA(A) receptor (GABA(A)R) were significantly lower in reinstated than in extinction rats, whereas the AMPA/NMDA ratio and the surface expression of GluR1 and GluR2 in the amygdala did not differ between groups. In amygdala slices, Iso-induced decrease in the surface β3 subunit of GABA(A) receptor was blocked by a Tat-conjugated dynamin function-blocking peptide (Tat-P4) pretreatment (10 μm for 30 min). By contrast, Tat-scramble peptide had no effect. Intravenous injection (3 μmol/kg) or intra-amygdalar infusion (30 pmol per side) of Tat-P4 interfered with reinstatement. Reinstatement increased the association between protein phosphatase 2A (PP2A) and the β3 subunit of the GABA(A)R, which was abolished by PP1/PP2A inhibitors okadaic acid and calyculin A. These results suggest the involvement of β-adrenergic receptor activation and GABA(A) receptor endocytosis in the amygdala for the reinstatement in fear memory.

  6. Fast and Slow Inhibition in the Visual Thalamus Is Influenced by Allocating GABAA Receptors with Different γ Subunits

    Directory of Open Access Journals (Sweden)

    Zhiwen Ye

    2017-04-01

    Full Text Available Cell-type specific differences in the kinetics of inhibitory postsynaptic conductance changes (IPSCs are believed to impact upon network dynamics throughout the brain. Much attention has focused on how GABAA receptor (GABAAR α and β subunit diversity will influence IPSC kinetics, but less is known about the influence of the γ subunit. We have examined whether GABAAR γ subunit heterogeneity influences IPSC properties in the thalamus. The γ2 subunit gene was deleted from GABAARs selectively in the dorsal lateral geniculate nucleus (dLGN. The removal of the γ2 subunit from the dLGN reduced the overall spontaneous IPSC (sIPSC frequency across all relay cells and produced an absence of IPSCs in a subset of relay neurons. The remaining slower IPSCs were both insensitive to diazepam and zinc indicating the absence of the γ2 subunit. Because these slower IPSCs were potentiated by methyl-6,7-dimethoxy-4-ethyl-β-carboline-3-carboxylate (DMCM, we propose these IPSCs involve γ1 subunit-containing GABAAR activation. Therefore, γ subunit heterogeneity appears to influence the kinetics of GABAAR-mediated synaptic transmission in the visual thalamus in a cell-selective manner. We suggest that activation of γ1 subunit-containing GABAARs give rise to slower IPSCs in general, while faster IPSCs tend to be mediated by γ2 subunit-containing GABAARs.

  7. Activity blockade and GABAA receptor blockade produce synaptic scaling through chloride accumulation in embryonic spinal motoneurons and interneurons.

    Directory of Open Access Journals (Sweden)

    Casie Lindsly

    Full Text Available Synaptic scaling represents a process whereby the distribution of a cell's synaptic strengths are altered by a multiplicative scaling factor. Scaling is thought to be a compensatory response that homeostatically controls spiking activity levels in the cell or network. Previously, we observed GABAergic synaptic scaling in embryonic spinal motoneurons following in vivo blockade of either spiking activity or GABAA receptors (GABAARs. We had determined that activity blockade triggered upward GABAergic scaling through chloride accumulation, thus increasing the driving force for these currents. To determine whether chloride accumulation also underlies GABAergic scaling following GABAAR blockade we have developed a new technique. We expressed a genetically encoded chloride-indicator, Clomeleon, in the embryonic chick spinal cord, which provides a non-invasive fast measure of intracellular chloride. Using this technique we now show that chloride accumulation underlies GABAergic scaling following blockade of either spiking activity or the GABAAR. The finding that GABAAR blockade and activity blockade trigger scaling via a common mechanism supports our hypothesis that activity blockade reduces GABAAR activation, which triggers synaptic scaling. In addition, Clomeleon imaging demonstrated the time course and widespread nature of GABAergic scaling through chloride accumulation, as it was also observed in spinal interneurons. This suggests that homeostatic scaling via chloride accumulation is a common feature in many neuronal classes within the embryonic spinal cord and opens the possibility that this process may occur throughout the nervous system at early stages of development.

  8. A Unified Model of the GABA(A) Receptor Comprising Agonist and Benzodiazepine Binding Sites

    DEFF Research Database (Denmark)

    Kongsbak, Kristine Grønning; Bergmann, Rikke; Sørensen, Pernille Louise

    2013-01-01

    We present a full-length a1b2c2 GABA receptor model optimized for agonists and benzodiazepine (BZD) allosteric modulators. We propose binding hypotheses for the agonists GABA, muscimol and THIP and for the allosteric modulator diazepam (DZP). The receptor model is primarily based on the glutamate...

  9. Molecular basis of the alternative recruitment of GABA(A) versus glycine receptors through gephyrin

    DEFF Research Database (Denmark)

    Maric, Hans-Michael; Kasaragod, Vikram Babu; Hausrat, Torben Johann

    2014-01-01

    γ-Aminobutyric acid type A and glycine receptors (GABA(A)Rs, GlyRs) are the major inhibitory neurotransmitter receptors and contribute to many synaptic functions, dysfunctions and human diseases. GABA(A)Rs are important drug targets regulated by direct interactions with the scaffolding protein ge...

  10. Block of GABA(A) receptor ion channel by penicillin: electrophysiological and modeling insights toward the mechanism.

    Science.gov (United States)

    Rossokhin, Alexey V; Sharonova, Irina N; Bukanova, Julia V; Kolbaev, Sergey N; Skrebitsky, Vladimir G

    2014-11-01

    GABA(A) receptors (GABA(A)R) mainly mediate fast inhibitory neurotransmission in the central nervous system. Different classes of modulators target GABA(A)R properties. Penicillin G (PNG) belongs to the class of noncompetitive antagonists blocking the open GABA(A)R and is a prototype of β-lactam antibiotics. In this study, we combined electrophysiological and modeling approaches to investigate the peculiarities of PNG blockade of GABA-activated currents recorded from isolated rat Purkinje cells and to predict the PNG binding site. Whole-cell patch-сlamp recording and fast application system was used in the electrophysiological experiments. PNG block developed after channel activation and increased with membrane depolarization suggesting that the ligand binds within the open channel pore. PNG blocked stationary component of GABA-activated currents in a concentration-dependent manner with IC50 value of 1.12mM at -70mV. The termination of GABA and PNG co-application was followed by a transient tail current. Protection of the tail current from bicuculline block and dependence of its kinetic parameters on agonist affinity suggest that PNG acts as a sequential open channel blocker that prevents agonist dissociation while the channel remains blocked. We built the GABA(A)R models based on nAChR and GLIC structures and performed an unbiased systematic search of the PNG binding site. Monte-Carlo energy minimization was used to find the lowest energy binding modes. We have shown that PNG binds close to the intracellular vestibule. In both models the maximum contribution to the energy of ligand-receptor interactions revealed residues located on the level of 2', 6' and 9' rings formed by a bundle of M2 transmembrane segments, indicating that these residues most likely participate in PNG binding. The predicted structural models support the described mechanism of PNG block. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Antagonism of the Ethanol-Like Discriminative Stimulus Effects of Ethanol, Pentobarbital, and Midazolam in Cynomolgus Monkeys Reveals Involvement of Specific GABAA Receptor SubtypesS⃞

    Science.gov (United States)

    Rogers, Laura S. M.; Grant, Kathleen A.

    2009-01-01

    The γ-aminobutyric acid (GABA)A receptors mediating the discriminative stimulus effects of ethanol were studied by comparing the potency of ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazol(1,5-a)benzodiazepine-3-carboxylate (Ro15-4513) and ethyl 8-fluoro-5,6-dihydro-5-methyl-6-oxo-4H-imidazol(1,5-a)-benzodiazepine-3-carboxylate (flumazenil, Ro15-1788) to antagonize ethanol, pentobarbital (PB), and midazolam substitution for ethanol. Ro15-4513 has high affinity for receptors containing α4/6 and α5 subunits and lower affinity for α1, α2, and α3 subunits. Flumazenil is nonselective for GABAA receptors containing α1, α2, α3, and α5 subunits and has low affinity for α4/6-containing receptors. Male (n = 9) and female (n = 8) cynomolgus monkeys (Macaca fascicularis) were trained to discriminate ethanol (1.0 or 2.0 g/kg i.g., 30-min pretreatment) from water. Ethanol, PB, and midazolam dose-dependently substituted for ethanol (80% ethanol-appropriate responding). Ro15-4513 (0.003–0.56 mg/kg i.m., 5-min pretreatment) shifted the ethanol, PB, and midazolam dose-response functions rightward in a vast majority of monkeys tested (15/15, 16/17, and 11/12, respectively). In contrast, flumazenil (0.30–10.0 mg/kg i.m., 5-min pretreatment) shifted the ethanol, PB, and midazolam dose-response functions rightward in 9 of 16, 12 of 16, and 7 of 9 monkeys tested, respectively. In the monkeys showing antagonism with both Ro15-4513 and flumazenil, ethanol and PB substitution were antagonized more potently by Ro15-4513 than by flumazenil, whereas midazolam substitution was antagonized with similar potency. There were no sex or training dose differences, with the exception that flumazenil failed to antagonize ethanol substitution in males trained to discriminate 2.0 g/kg ethanol. GABAA receptors with high affinity for Ro15-4513 (i.e., containing α4/6 and α5 subunits) may be particularly important mediators of the multiple discriminative stimulus effects of ethanol

  12. GABAA receptor B subunit expression in the superior frontal cortex of human alcoholics

    International Nuclear Information System (INIS)

    Buckley, S.T.; Dodd, P.R.

    2001-01-01

    Full text: Changes in GABA A receptor pharmacology can be ascribed to alterations in expression of specific GABA A receptor subunits. Ethanol is known to be a potent agonist of the GABA A receptor. Chronic abuse of alcohol in humans results in damage of selective brain regions such as the superior frontal cortex (SFC), leading to neuronal cell loss. Studies in our laboratory 1 and elsewhere 2 have shown differences in expression of a number of GABA A receptor subunits in chronic human alcoholism. This suggests that alterations in GABA A receptor composition may be involved in the pathogenesis of alcoholic brain damage. We analysed the expression of the β 1 ,β 2 and β 3 isoforms of the GABA A receptor by a competitive reverse transcription polymerase chain reaction (RT-PCR) technique, which utilised an internal standard (IS) for quantitation. 35 S-dATP was incorporated to enable visualisation of the PCR products. Human brain tissue was obtained at autopsy and stored in 0.32 M sucrose at -80 deg C. Total RNA was extracted from pathologically susceptible and spared regions, SFC and motor cortex respectively,of 22 control and 22 alcoholic patients. 1 μg of total RNA from each sample was co-amplified with 0.5 pg of IS and a ratio determined. A standard consisting of known amounts of β 1 cRNA titrated against 0.5 pg of IS enabled a standard curve to be generated for quantitation of each unknown sample. The samples were subjected to polyacrylamide gel electrophoresis and the dried gel exposed to a phosphorimager screen. Data analysis was performed using the ImageQuant program. Initial results indicate that there is a reduction in expression of all the β transcripts in alcoholics when compared with controls, which supports the hypothesis that the GABA A receptor is altered by alcohol abuse. Supported by NHMRC. Copyright (2001) Australian Neuroscience Society

  13. Differential distribution of GABAA receptor subunits in soma and processes of cerebellar granule cells: effects of maturation and a GABA agonist

    DEFF Research Database (Denmark)

    Elster, L; Hansen, Gert Helge; Belhage, B

    1995-01-01

    or absence of the GABAA receptor agonist 4,5,6,7-tetrahydroisoxazolo[5,4c]pyridin-3-ol (THIP). THIP (150 microM) induced a 2-fold increase in the number of alpha 1 and beta 2/3 subunits in both cell bodies and processes in 4-day-old cultures. Extending the culture period to 8 days led to a polarization......Quantitative analysis of the density of alpha 1 and beta 2/3 GABAA receptor subunits was performed at the electron microscope level after indirect pre-embedding immunogold labeling with subunit-specific antibodies of rat cerebellar granule cell cultures grown for 4 or 8 days and in the presence...... of the receptor expression, since the increase in the number of subunits selectively was observed in the processes. Moreover, a general subcellular differentiation of the receptor population was observed in all culture conditions, since the ratio between the two subunits (beta 2/3; alpha 1) was four times higher...

  14. Differential effects of presynaptic versus postsynaptic adenosine A2A receptor blockade on Δ9-tetrahydrocannabinol (THC) self-administration in squirrel monkeys.

    Science.gov (United States)

    Justinová, Zuzana; Redhi, Godfrey H; Goldberg, Steven R; Ferré, Sergi

    2014-05-07

    Different doses of an adenosine A2A receptor antagonist MSX-3 [3,7-dihydro-8-[(1E)-2-(3-ethoxyphenyl)ethenyl]-7 methyl-3-[3-(phosphooxy)propyl-1-(2 propynil)-1H-purine-2,6-dione] were found previously to either decrease or increase self-administration of cannabinoids delta-9-tetrahydrocannabinol (THC) or anandamide in squirrel monkeys. It was hypothesized that the decrease observed with a relatively low dose of MSX-3 was related to blockade of striatal presynaptic A2A receptors that modulate glutamatergic neurotransmission, whereas the increase observed with a higher dose was related to blockade of postsynaptic A2A receptors localized in striatopallidal neurons. This hypothesis was confirmed in the present study by testing the effects of the preferential presynaptic and postsynaptic A2A receptor antagonists SCH-442416 [2-(2-furanyl)-7-[3-(4-methoxyphenyl)propyl]-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine] and KW-6002 [(E)-1, 3-diethyl-8-(3,4-dimethoxystyryl)-7-methyl-3,7-dihydro-1H-purine-2,6-dione], respectively, in squirrel monkeys trained to intravenously self-administer THC. SCH-442416 produced a significant shift to the right of the THC self-administration dose-response curves, consistent with antagonism of the reinforcing effects of THC. Conversely, KW-6002 produced a significant shift to the left, consistent with potentiation of the reinforcing effects of THC. These results show that selectively blocking presynaptic A2A receptors could provide a new pharmacological approach to the treatment of marijuana dependence and underscore corticostriatal glutamatergic neurotransmission as a possible main mechanism involved in the rewarding effects of THC.

  15. Ovarian cycle-linked plasticity of δ-GABAA receptor subunits in hippocampal interneurons affects γ oscillations in vivo

    Directory of Open Access Journals (Sweden)

    Albert Miklos Barth

    2014-08-01

    Full Text Available GABAA receptors containing δ subunits (δ-GABAARs are GABA-gated ion channels with extra- and perisynaptic localization, strong sensitivity to neurosteroids (NS, and a high degree of plasticity. In selective brain regions they are expressed on specific principal cells and interneurons (INs, and generate a tonic conductance that controls neuronal excitability and oscillations. Plasticity of δ-GABAARs in principal cells has been described during states of altered NS synthesis including acute stress, puberty, ovarian cycle, pregnancy and the postpartum period, with direct consequences on neuronal excitability and network dynamics. The defining network events implicated in cognitive function, memory formation and encoding are γ oscillations (30-120 Hz, a well-timed loop of excitation and inhibition between principal cells and PV-expressing INs (PV+INs. The δ-GABAARs of INs can modify γ oscillations, and a lower expression of δ-GABAARs on INs during pregnancy alters γ frequency recorded in vitro. The ovarian cycle is another physiological event with large fluctuations in NS levels and δ-GABAARs. Stages of the cycle are paralleled by swings in memory performance, cognitive function, and mood in both humans and rodents. Here we show δ-GABAARs changes during the mouse ovarian cycle in hippocampal cell types, with enhanced expression during diestrus in principal cells and specific INs. The plasticity of δ-GABAARs on PV-INs decreases the magnitude of γ oscillations continuously recorded in area CA1 throughout several days in vivo during diestrus and increases it during estrus. Such recurring changes in γ magnitude were not observed in non-cycling wild-type (WT females, cycling females lacking δ-GABAARs only on PV-INs (PV-Gabrd-/-, and in male mice during a time course equivalent to the ovarian cycle. Our findings may explain the impaired memory and cognitive performance experienced by women with premenstrual syndrome (PMS or premenstrual

  16. Altered GABAA receptor expression in brainstem nuclei and SUDEP in Gabrg2(+/Q390X) mice associated with epileptic encephalopathy.

    Science.gov (United States)

    Xia, Geqing; P Pourali, Sarah; Warner, Timothy A; Zhang, Chun-Qing; L Macdonald, Robert; Kang, Jing-Qiong

    2016-07-01

    Sudden unexpected death in epilepsy (SUDEP) is the leading cause for death in individuals with epilepsy. The frequency of SUDEP correlates with the severity of epilepsies and lack of response to antiepileptic drug treatment, but the underlying mechanisms of SUDEP have not been elucidated fully. GABRG2(Q390X) is a mutation associated with the epileptic encephalopathy Dravet syndrome (DS) and with genetic epilepsy with febrile seizures plus (GEFS+) in patients. The Gabrg2(+/Q390X) knockin (KI) mouse phenocopies the major features of DS and GEFS+ and has SUDEP throughout life. The Gabrg2(+/-) knockout (KO) mouse is associated with infrequent absence seizures and represents a model of mild absence epilepsy syndrome without increased mortality. To explore the basis for SUDEP in DS and GEFS+, we compared mutant γ2 subunit and wild-type α1 and β2/3 subunit expression in mice in brainstem nuclei associated with respiratory function including the solitary tract, pre-Botzinger complex and Kolliker-Fuse nuclei. We found that synaptic GABAA receptors were reduced while intracellular nonfunctional γ2(Q390X) subunits were increased in the heterozygous DS and GEFS+ KI mice, but not in the heterozygous absence epilepsy KO mice. Given the critical role of these nuclei in cardiorespiratory function, it is likely the impaired GABAergic transmission and neuronal dysfunction in these brainstem nuclei are involved in the cardiorespiratory collapse in SUDEP. The study provides novel mechanistic insights into cardiorespiratory failure of SUDEP. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. GABA-A receptors play a minor role in cortical epileptic afterdischarges in immature rats

    Czech Academy of Sciences Publication Activity Database

    Tabashidze, Nana; Mareš, Pavel

    2011-01-01

    Roč. 1412, - (2011), s. 102-107 ISSN 0006-8993 R&D Projects: GA ČR(CZ) GAP304/10/1274; GA MŠk(CZ) ME08045 Institutional research plan: CEZ:AV0Z50110509 Keywords : Bicuculline * GABA -A receptors * cortical epileptic afterdischarges * immature rats Subject RIV: FH - Neurology Impact factor: 2.728, year: 2011

  18. Single-cell genetic expression of mutant GABAA receptors causing Human genetic epilepsy alters dendritic spine and GABAergic bouton formation in a mutation-specific manner

    Directory of Open Access Journals (Sweden)

    Pamela eLachance-Touchette

    2014-10-01

    Full Text Available Mutations in genes encoding for GABAA receptor subunits is a well-established cause of genetic generalized epilepsy. GABA neurotransmission is implicated in several developmental processes including neurite outgrowth and synapse formation. Alteration in excitatory/inhibitory synaptic activities plays a critical role in epilepsy, thus here we investigated whether mutations in α1 subunit of GABAA receptor may affect dendritic spine and GABAergic bouton formation. In particular, we examined the effects of three mutations of the GABRA1 gene (D219N, A322D and K353delins18X that were found in a cohort of families with genetic generalized epilepsy. We used a novel single-cell genetic approach, by preparing cortical organotypic cultures from GABRA1flox/flox mice and simultaneously inactivating endogenous GABRA1 and transfecting mutant α1 subunits in single glutamatergic pyramidal cells and basket GABAergic interneurons by biolistic transfection. We found that GABRA1-/- GABAergic cells showed reduced innervation field, which was rescued by co-expressing α1-A322D and α1-WT but not α1-D219N. We further found that the expression of the most severe GABRA1 missense mutation (α1-A322D induced a striking increase of spine density in pyramidal cells along with an increase in the number of mushroom-like spines. In addition, α1-A322D expression in GABAergic cells slightly increased perisomatic bouton density, whereas other mutations did not alter bouton formation. All together, these results suggest that the effects of different GABAAR mutations on GABAergic bouton and dendritic spine formation are specific to the mutation and cannot be always explained by a simple loss-of-function gene model. The use of single cell genetic manipulation in organotypic cultures may provide a better understanding of the specific and distinct neural circuit alterations caused by different GABAA receptor subunit mutations and will help define the pathophysiology of genetic

  19. Little evidence of a role for the α1GABAA subunit-containing receptor in a rhesus monkey model of alcohol drinking.

    Science.gov (United States)

    Sawyer, Eileen K; Moran, Casey; Sirbu, Madelynn H; Szafir, Melissa; Van Linn, Michael; Namjoshi, Ojas; Phani Babu Tiruveedhula, V V N; Cook, James M; Platt, Donna M

    2014-04-01

    Alcohol potentiates GABAergic neurotransmission via action at the GABAA receptor. α1 subunit-containing GABAA receptors have been implicated as mediators, in part, of the behavioral and abuse-related effects of alcohol in rodents. We systematically investigated the effects of 1 α1-preferring benzodiazepine agonist, zolpidem, and 2 antagonists, β-carboline-3-carboxylate-tert-butyl ester (βCCT) and 3-propoxy-β-carboline hydrochloride (3-PBC), on oral self-administration of alcohol (2% w/v) or sucrose solution and observable behavior in rhesus macaques. We compared these effects to those of the nonselective benzodiazepine agonist triazolam, antagonist flumazenil, and inverse agonist β-carboline carboxylate (βCCE). Alcohol and sucrose solutions maintained reliable baseline drinking behavior across the study. The α1-preferring compounds did not affect intake, number of sipper extensions, or blood alcohol levels (BALs) at any of the doses tested. Zolpidem, βCCT, and 3-PBC increased latency to first sipper extension in animals self-administering alcohol, but not sucrose, solution. Triazolam exerted biphasic effects on alcohol-drinking behavior, increasing intake at low doses but decreasing BAL and increasing latency at higher doses. At doses higher than those effective in alcohol-drinking animals, triazolam increased sucrose intake and latency. Flumazenil nonsystematically increased number of extensions for alcohol but decreased BAL, with no effects on sucrose drinking. βCCE decreased sipper extensions for alcohol and increased latency for first sucrose sipper extension, but full dose-effect relationships could not be determined due to seizures at higher doses. Alcohol-drinking animals appeared more sensitive to the effects of GABAergic compounds on drinking behavior. However, these results do not support a strong contribution of α1GABAA receptors to the reinforcing effects of alcohol in primates. Copyright © 2013 by the Research Society on Alcoholism.

  20. Euphorbia hirta reverses chronic stress-induced anxiety and mediates its action through the GABA(A) receptor benzodiazepine receptor-Cl(-) channel complex.

    Science.gov (United States)

    Anuradha, H; Srikumar, B N; Shankaranarayana Rao, B S; Lakshmana, M

    2008-01-01

    Chronic stress is known to result in impairment of learning and memory and precipitate several affective disorders including depression and anxiety. Drugs of natural origin are known to possess several effects on the central nervous system and are emerging as promising alternative therapies. In this context, the hydroalcoholic extract of Euphorbia hirta (Eh) was evaluated for anxiolytic property in chronically stressed rats subjected to elevated plus maze (EPM) and open field test (OFT). Eh treatment (200 mg/kg, p.o.; seven days) showed marked anti-anxiety activity in chronic immobilization stress. In contrast, the forced swim stress-induced anxiety was only partially decreased by Eh. Co-treatment of rats with flumazenil (0.5 mg/kg, i.p.), bicuculline (1 mg/kg, i.p.) or picrotoxin (1 mg/kg, i.p.) resulted in a significant reduction of anxiolytic effect of Eh indicating that its actions are mediated through GABA(A) receptor-benzodiazepine receptor-Cl(-) channel complex. Thus, our studies indicate that Eh is a potential anxiolytic drug, which might be beneficial in the treatment of stress-induced anxiety disorders.

  1. Crystal structures of a GABAA-receptor chimera reveal new endogenous neurosteroid-binding sites.

    Science.gov (United States)

    Laverty, Duncan; Thomas, Philip; Field, Martin; Andersen, Ole J; Gold, Matthew G; Biggin, Philip C; Gielen, Marc; Smart, Trevor G

    2017-11-01

    γ-Aminobutyric acid receptors (GABA A Rs) are vital for controlling excitability in the brain. This is emphasized by the numerous neuropsychiatric disorders that result from receptor dysfunction. A critical component of most native GABA A Rs is the α subunit. Its transmembrane domain is the target for many modulators, including endogenous brain neurosteroids that impact anxiety, stress and depression, and for therapeutic drugs, such as general anesthetics. Understanding the basis for the modulation of GABA A R function requires high-resolution structures. Here we present the first atomic structures of a GABA A R chimera at 2.8-Å resolution, including those bound with potentiating and inhibitory neurosteroids. These structures define new allosteric binding sites for these modulators that are associated with the α-subunit transmembrane domain. Our findings will enable the exploitation of neurosteroids for therapeutic drug design to regulate GABA A Rs in neurological disorders.

  2. GABA(B), not GABA(A) receptors play a role in cortical postictal refractoriness

    Czech Academy of Sciences Publication Activity Database

    Mareš, Pavel; Kubová, Hana

    2015-01-01

    Roč. 88, Jan 2015 (2015), s. 99-102 ISSN 0028-3908 R&D Projects: GA MŠk(CZ) LH11015; GA ČR(CZ) GAP302/10/0971; GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:67985823 Keywords : cortical seizures * postictal refractoriness * GABA receptors * pharmacology Subject RIV: FH - Neurology Impact factor: 4.936, year: 2015

  3. Activity of B-Nor Analogues of Neurosteroids on the GABAA Receptor in Primary Neuronal Cultures

    Czech Academy of Sciences Publication Activity Database

    Suňol, C.; García, D. A.; Bujons, J.; Krištofíková, Zdena; Matyáš, Libor; Babot, Z.; Kasal, Alexander

    2006-01-01

    Roč. 49, č. 11 (2006), s. 3225-3224 ISSN 0022-2623 R&D Projects: GA ČR(CZ) GA203/06/1605 Grant - others:FEDER(ES) SAF20003-04930; CIRIT(ES) 2001SGR00355 Institutional research plan: CEZ:AV0Z40550506 Keywords : neurosteroid * GABA A receptor * B-nor steroids * 7-nor steroids Subject RIV: CC - Organic Chemistry Impact factor: 5.115, year: 2006

  4. Prodynorphin gene deletion increased anxiety-like behaviours, impaired the anxiolytic effect of bromazepam and altered GABAA receptor subunits gene expression in the amygdala.

    Science.gov (United States)

    Femenía, Teresa; Pérez-Rial, Sandra; Urigüen, Leyre; Manzanares, Jorge

    2011-01-01

    This study evaluated the role of prodynorphin gene in the regulation of anxiety and associated molecular mechanisms. Emotional responses were assessed using the light-dark test, elevated plus maze and social interaction tests in prodynorphin knockout and wild-type mice. Corticotrophin releasing factor and proopiomelanocortin gene expressions in the hypothalamus were evaluated after restraint stress using in situ hybridization. The anxiolytic efficacy of bromazepam and GABA(A) receptor subunits gene expression in the amygdala were also assessed in both genotypes. The deletion of prodynorphin increased anxiety-like behaviours and proopiomelanocortin gene expression in the arcuate nucleus (two-fold). Moreover, the anxiolytic action of bromazepam was significantly attenuated in the mutant mice. Decreased GABA(A)γ(2) and increased GABA(A)β(2) gene expression receptor subunits were found in the amygdala of prodynorphin knockout mice. These results indicate that deletion of prodynorphin gene is associated with increased anxiety-like behaviours, enhanced sensibility response to stress stimuli, reduced anxiolytic efficacy of bromazepam and altered expression of the GABA(A) receptor subunits.

  5. Rat intra-hippocampal NMDA infusion induces cell-specific damage and changes in expression of NMDA and GABAA receptor subunits.

    Science.gov (United States)

    Rambousek, Lukas; Kleteckova, Lenka; Kubesova, Anna; Jirak, Daniel; Vales, Karel; Fritschy, Jean-Marc

    2016-06-01

    Excessive stimulation of NMDA receptors with glutamate or other potent agonists such as NMDA leads to excitotoxicity and neural injury. In this study, we aimed to provide insight into an animal model of brain excitotoxic damage; single unilateral infusion of NMDA at mild dose into the hippocampal formation. NMDA infusion induced chronic, focal neurodegeneration in the proximity of the injection site. The lesion was accompanied by severe and progressive neuroinflammation and affected preferentially principal neurons while sparing GABAergic interneurons. Furthermore, the unilateral lesion did not cause significant impairment of spatial learning abilities. Finally, GluN1 and GluN2B subunits of NMDA receptor were significantly upregulated up to 3 days after the NMDA infusion, while GABAA α5 subunit was downregulated at 30 days after the lesion. Taken together, a single infusion of NMDA into the hippocampal formation represents an animal model of excitotoxicity-induced chronic neurodegeneration of principal neurons accompanied by severe neuroinflammation and subunit specific changes in NMDA and GABAA receptors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. A stress steroid triggers anxiety via increased expression of α4βδ GABAA receptors in methamphetamine dependence.

    Science.gov (United States)

    Shen, H; Mohammad, A; Ramroop, J; Smith, S S

    2013-12-19

    Methamphetamine (METH) is an addictive stimulant drug. In addition to drug craving and lethargy, METH withdrawal is associated with stress-triggered anxiety. However, the cellular basis for this stress-triggered anxiety is not understood. The present results suggest that during METH withdrawal (24h) following chronic exposure (3mg/kg, i.p. for 3-5weeks) of adult, male mice, the effect of one neurosteroid released by stress, 3α,5α-THP (3α-OH-5α-pregnan-20-one), and its 3α,5β isomer reverse to trigger anxiety assessed by the acoustic startle response (ASR), in contrast to their usual anti-anxiety effects. This novel effect of 3α,5β-THP was due to increased (three-fold) hippocampal expression of α4βδ GABAA receptors (GABARs) during METH withdrawal (24h-4weeks) because anxiogenic effects of 3α,5β-THP were not seen in α4-/- mice. 3α,5β-THP reduces current at these receptors when it is hyperpolarizing, as observed during METH withdrawal. As a result, 3α,5β-THP (30nM) increased neuronal excitability, assessed with current clamp and cell-attached recordings in CA1hippocampus, one CNS site which regulates anxiety. α4βδ GABARs were first increased 1h after METH exposure and recovered 6weeks after METH withdrawal. Similar increases in α4βδ GABARs and anxiogenic effects of 3α,5β-THP were noted in rats during METH withdrawal (24h). In contrast, the ASR was increased by chronic METH treatment in the absence of 3α,5β-THP administration due to its stimulant effect. Although α4βδ GABARs were increased by chronic METH treatment, the GABAergic current recorded from hippocampal neurons at this time was a depolarizing, shunting inhibition, which was potentiated by 3α,5β-THP. This steroid reduced neuronal excitability and anxiety during chronic METH treatment, consistent with its typical effect. Flumazenil (10mg/kg, i.p., 3×) reduced α4βδ expression and prevented the anxiogenic effect of 3α,5β-THP after METH withdrawal. Our findings suggest a novel

  7. The Direct Actions of GABA, 2'-Methoxy-6-Methylflavone and General Anaesthetics at β3γ2L GABAA Receptors: Evidence for Receptors with Different Subunit Stoichiometries.

    Science.gov (United States)

    Chua, Han Chow; Absalom, Nathan L; Hanrahan, Jane R; Viswas, Raja; Chebib, Mary

    2015-01-01

    2'-Methoxy-6-methylflavone (2'MeO6MF) is an anxiolytic flavonoid which has been shown to display GABAA receptor (GABAAR) β2/3-subunit selectivity, a pharmacological profile similar to that of the general anaesthetic etomidate. Electrophysiological studies suggest that the full agonist action of 2'MeO6MF at α2β3γ2L GABAARs may mediate the flavonoid's in vivo effects. However, we found variations in the relative efficacy of 2'MeO6MF (2'MeO6MF-elicited current responses normalised to the maximal GABA response) at α2β3γ2L GABAARs due to the presence of mixed receptor populations. To understand which receptor subpopulation(s) underlie the variations observed, we conducted a systematic investigation of 2'MeO6MF activity at all receptor combinations that could theoretically form (α2, β3, γ2L, α2β3, α2γ2L, β3γ2L and α2β3γ2L) in Xenopus oocytes using the two-electrode voltage clamp technique. We found that 2'MeO6MF activated non-α-containing β3γ2L receptors. In an attempt to establish the optimal conditions to express a uniform population of these receptors, we found that varying the relative amounts of β3:γ2L subunit mRNAs resulted in differences in the level of constitutive activity, the GABA concentration-response relationships, and the relative efficacy of 2'MeO6MF activation. Like 2'MeO6MF, general anaesthetics such as etomidate and propofol also showed distinct levels of relative efficacy across different injection ratios. Based on these results, we infer that β3γ2L receptors may form with different subunit stoichiometries, resulting in the complex pharmacology observed across different injection ratios. Moreover, the discovery that GABA and etomidate have direct actions at the α-lacking β3γ2L receptors raises questions about the structural requirements for their respective binding sites at GABAARs.

  8. GABAA receptors, but not dopamine, serotonin or NMDA receptors, are increased in the frontal cortex from schizophrenic subjects

    International Nuclear Information System (INIS)

    Daen, B.; Hussain, T.; Scarr, E.; Tomaskovic, E.; Kitsoulis, S.; Pavey, G.; Hill, C.; Keks, N.; Opeskin, K.; Copolov, D.L.

    1998-01-01

    Full text: Having shown changed 5HT 2A receptor density in the frontal cortex (FC) from schizophrenic subjects (1) we now report on further studies of the molecular neuroanatomy of the FC in schizophrenia. We used in situ radioligand binding and autoradiography to measure the density of [ 3 H]8OH-DPAT (1 nM) binding (5HT 1A receptors) and [ 3 H]GR113808 (2.4nM) binding (5HT 4 receptors) in Brodmann's areas (BA) 8, 9 and 10 from 10 schizophrenic and 10 controls subjects. In addition, [ 3 H]muscimol (100 nM) binding (GABA A receptors), [ 3 H]TCP (20nM) binding (NMDA receptors), [ 3 H]SCH 23390 (3nM) binding (DA D 1 like receptors) and [ 3 H]YM-09151-2 (4nM) binding (DA D 2 -like receptors) was measured in BA 9 from 17 schizophrenic and 17 control subjects. Subjects were matched for age and sex and the post-mortem interval for tissue collection did not differ. There was a significant increase (18%) in the density of GABA A receptors in BA 9 from subjects with schizophrenia (p<0.05) with no change in NMDA, dopamine or serotonin receptors. These data support the hypothesis that there are selective changes in neurotransmitter receptors in the FC of subjects with schizophrenia. It is not yet clear if such changes contribute to the pathology of the illness. Copyright (1998) Australian Neuroscience Society

  9. Dopamine synapse is a neuroligin-2–mediated contact between dopaminergic presynaptic and GABAergic postsynaptic structures

    Science.gov (United States)

    Uchigashima, Motokazu; Ohtsuka, Toshihisa; Kobayashi, Kazuto; Watanabe, Masahiko

    2016-01-01

    Midbrain dopamine neurons project densely to the striatum and form so-called dopamine synapses on medium spiny neurons (MSNs), principal neurons in the striatum. Because dopamine receptors are widely expressed away from dopamine synapses, it remains unclear how dopamine synapses are involved in dopaminergic transmission. Here we demonstrate that dopamine synapses are contacts formed between dopaminergic presynaptic and GABAergic postsynaptic structures. The presynaptic structure expressed tyrosine hydroxylase, vesicular monoamine transporter-2, and plasmalemmal dopamine transporter, which are essential for dopamine synthesis, vesicular filling, and recycling, but was below the detection threshold for molecules involving GABA synthesis and vesicular filling or for GABA itself. In contrast, the postsynaptic structure of dopamine synapses expressed GABAergic molecules, including postsynaptic adhesion molecule neuroligin-2, postsynaptic scaffolding molecule gephyrin, and GABAA receptor α1, without any specific clustering of dopamine receptors. Of these, neuroligin-2 promoted presynaptic differentiation in axons of midbrain dopamine neurons and striatal GABAergic neurons in culture. After neuroligin-2 knockdown in the striatum, a significant decrease of dopamine synapses coupled with a reciprocal increase of GABAergic synapses was observed on MSN dendrites. This finding suggests that neuroligin-2 controls striatal synapse formation by giving competitive advantage to heterologous dopamine synapses over conventional GABAergic synapses. Considering that MSN dendrites are preferential targets of dopamine synapses and express high levels of dopamine receptors, dopamine synapse formation may serve to increase the specificity and potency of dopaminergic modulation of striatal outputs by anchoring dopamine release sites to dopamine-sensing targets. PMID:27035941

  10. Differential antagonism of tetramethylenedisulfotetramine-induced seizures by agents acting at NMDA and GABAA receptors

    International Nuclear Information System (INIS)

    Shakarjian, Michael P.; Velíšková, Jana; Stanton, Patric K.; Velíšek, Libor

    2012-01-01

    Tetramethylenedisulfotetramine (TMDT) is a highly lethal neuroactive rodenticide responsible for many accidental and intentional poisonings in mainland China. Ease of synthesis, water solubility, potency, and difficulty to treat make TMDT a potential weapon for terrorist activity. We characterized TMDT-induced convulsions and mortality in male C57BL/6 mice. TMDT (ip) produced a continuum of twitches, clonic, and tonic–clonic seizures decreasing in onset latency and increasing in severity with increasing dose; 0.4 mg/kg was 100% lethal. The NMDA antagonist, ketamine (35 mg/kg) injected ip immediately after the first TMDT-induced seizure, did not change number of tonic–clonic seizures or lethality, but increased the number of clonic seizures. Doubling the ketamine dose decreased tonic–clonic seizures and eliminated lethality through a 60 min observation period. Treating mice with another NMDA antagonist, MK-801, 0.5 or 1 mg/kg ip, showed similar effects as low and high doses of ketamine, respectively, and prevented lethality, converting status epilepticus EEG activity to isolated interictal discharges. Treatment with these agents 15 min prior to TMDT administration did not increase their effectiveness. Post-treatment with the GABA A receptor allosteric enhancer diazepam (5 mg/kg) greatly reduced seizure manifestations and prevented lethality 60 min post-TMDT, but ictal events were evident in EEG recordings and, hours post-treatment, mice experienced status epilepticus and died. Thus, TMDT is a highly potent and lethal convulsant for which single-dose benzodiazepine treatment is inadequate in managing electrographic seizures or lethality. Repeated benzodiazepine dosing or combined application of benzodiazepines and NMDA receptor antagonists is more likely to be effective in treating TMDT poisoning. -- Highlights: ► TMDT produces convulsions and lethality at low doses in mice. ► Diazepam pre- or post-treatments inhibit TMDT-induced convulsions and death.

  11. Roles of hippocampal GABA(A) and muscarinic receptors in consolidation of context memory and context-shock association in contextual fear conditioning: a double dissociation study.

    Science.gov (United States)

    Chang, Shih-Dar; Liang, K C

    2012-07-01

    Contextual fear conditioning involves forming a context representation and associating it to a shock, both of which involved the dorsal hippocampus (DH) according to our recent findings. This study tested further whether the two processes may rely on different neurotransmitter systems in the DH. Male Wistar rats with cannula implanted into the DH were subjected to a two-phase training paradigm of contextual fear conditioning to separate context learning from context-shock association in two consecutive days. Immediately after each training phase, different groups of rats received bilateral intra-DH infusion of the GABA(A) agonist muscimol, 5HT(1A) agonist 8-OH-DPAT, NMDA antagonist APV or muscarinic antagonist scopolamine at various doses. On the third day, freezing behavior was tested in the conditioning context. Results showed that intra-DH infusion of muscimol impaired conditioned freezing only if it was given after context learning. In contrast, scopolamine impaired conditioned freezing only if it was given after context-shock training. Posttraining infusion of 8-OH-DPAT or APV had no effect on conditioned freezing when the drug was given at either phase. These results showed double dissociation for the hippocampal GABAergic and cholinergic systems in memory consolidation of contextual fear conditioning: forming context memory required deactivation of the GABA(A) receptors, while forming context-shock memory involved activation of the muscarinic receptors. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Synthesis, Modelling, and Anticonvulsant Studies of New Quinazolines Showing Three Highly Active Compounds with Low Toxicity and High Affinity to the GABA-A Receptor

    Directory of Open Access Journals (Sweden)

    Mohamed F. Zayed

    2017-01-01

    Full Text Available Some novel fluorinated quinazolines (5a–j were designed and synthesized to be evaluated for their anticonvulsant activity and their neurotoxicity. Structures of all newly synthesized compounds were confirmed by their infrared (IR, mass spectrometry (MS spectra, 1H nuclear magnetic resonance (NMR, 13C-NMR, and elemental analysis (CHN. The anticonvulsant activity was evaluated by a subcutaneous pentylenetetrazole (scPTZ test and maximal electroshock (MES-induced seizure test, while neurotoxicity was evaluated by a rotorod test. The molecular docking was performed for all newly-synthesized compounds to assess their binding affinities to the GABA-A receptor in order to rationalize their anticonvulsant activities in a qualitative way. The data obtained from the molecular modeling was correlated with that obtained from the biological screening. These data showed considerable anticonvulsant activity for all newly-synthesized compounds. Compounds 5b, 5c, and 5d showed the highest binding affinities toward the GABA-A receptor, along with the highest anticonvulsant activities in experimental mice. These compounds also showed low neurotoxicity and low toxicity in the median lethal dose test compared to the reference drugs. A GABA enzymatic assay was performed for these highly active compounds to confirm the obtained results and explain the possible mechanism for anticonvulsant action. The most active compounds might be used as leads for future modification and optimization.

  13. Dopamine D3 receptor-dependent changes in alpha6 GABAA subunit expression in striatum modulate anxiety-like behaviour: Responsiveness and tolerance to diazepam.

    Science.gov (United States)

    Leggio, Gian Marco; Torrisi, Sebastiano Alfio; Castorina, Alessandro; Platania, Chiara Bianca Maria; Impellizzeri, Agata Antonia Rita; Fidilio, Annamaria; Caraci, Filippo; Bucolo, Claudio; Drago, Filippo; Salomone, Salvatore

    2015-09-01

    Increasing evidence indicates that central dopamine (DA) neurotransmission is involved in pathophysiology of anxiety, in particular the DA receptor subtype 3 (D3R). We previously reported that D3R null mice (D3R(-/-)) exhibit low baseline anxiety levels and that acutely administrated diazepam is more effective in D3R(-/-) than in wild type (WT) when tested in the elevated plus maze test (EPM). Here we tested the hypothesis that genetic deletion or pharmacological blockade of D3R affect GABAA subunit expression, which in turn modulates anxiety-like behaviour as well as responsiveness and tolerance to diazepam. D3R(-/-) mice exhibited tolerance to diazepam (0.5mg/kg, i.p.), assessed by EPM, as fast as after 3 day-treatment, performing similarly to untreated D3R(-/-) mice; conversely, WT exhibited tolerance to diazepam after a 14-21 day-treatment. Analysis of GABAA α6 subunit mRNA expression by qPCR in striatum showed that it was about 15-fold higher in D3R(-/-) than in WT. Diazepam treatment did not modify α6 expression in D3R(-/-), but progressively increased α6 expression in WT, to the level of untreated D3R(-/-) after 14-21 day-treatment. BDNF mRNA expression in striatum was remarkably (>10-fold) increased after 3 days of diazepam-treatment in both WT and D3R(-/-); such expression level, however, slowly declined below control levels, by 14-21 days. Following a 7 day-treatment with the selective D3R antagonist SB277011A, WT exhibited a fast tolerance to diazepam accompanied by a robust increase in α6 subunit expression. In conclusion, genetic deletion or pharmacological blockade of D3R accelerate the development of tolerance to repeated administrations of diazepam and increase α6 subunit expression, a GABAA subunit that has been linked to diazepam insensitivity. Modulation of GABAA receptor by DA transmission may be involved in the mechanisms of anxiety and, if occurring in humans, may have therapeutic relevance following repeated use of drugs targeting D3R

  14. Evidence for Tonic Control by the GABAA Receptor of Extracellular D-Serine Concentrations in the Medial Prefrontal Cortex of Rodents

    Directory of Open Access Journals (Sweden)

    Asami Umino

    2017-08-01

    Full Text Available Endogenous D-serine is a putative dominant co-agonist for the N-methyl-D-aspartate glutamate receptor (NMDAR in the mammalian forebrain. Although the NMDAR regulates the higher order brain functions by interacting with various neurotransmitter systems, the possible interactions between D-serine and an extra-glutamatergic system largely remain elusive. For the first time, we show in the rat and mouse using an in vivo microdialysis technique that the extracellular D-serine concentrations are under tonic increasing control by a major inhibitory transmitter, GABA, via the GABAA (GABAAR in the medial prefrontal cortex (mPFC. Thus, an intra-mPFC infusion of a selective GABAAR antagonist, bicuculline (BIC, caused a concentration-dependent and reversible decrease in the extracellular levels of D-serine in the rat mPFC without affecting those of another intrinsic NMDAR coagonist, glycine and an NMDAR agonist, L-glutamate. The decreasing effects of BIC were eliminated by co-infusion of a selective GABAA agonist, muscimol (MUS and were mimicked by a GABAA antagonist, gabazine (GBZ. In contrast, selective blockade of the GABAB or homomeric ρGABAA (formerly GABAC receptor by saclofen or (1,2,5,6-tetrahydropyridin-4-yl-methylphosphinic acid (TPMPA, respectively, failed to downregulate the prefrontal extracellular D-serine levels. Moreover, the local BIC application attenuated the ability of NMDA given to the mPFC to increase the cortical extracellular concentrations of taurine, indicating the hypofunction of the NMDAR. Finally, in the mouse mPFC, the reduction of the extracellular D-serine levels by a local injection of BIC into the prefrontal portion was replicated, and was precluded by inhibition of the neuronal or glial activity by co-local injection with tetrodotoxin (TTX or fluorocitrate (Fluo, respectively. These findings suggest that the GABAAR-mediated regulation of the D-serine signaling may exert fine-tuning of the NMDAR function and require both

  15. Valerian inhibits rat hepatocarcinogenesis by activating GABA(A) receptor-mediated signaling.

    Science.gov (United States)

    Kakehashi, Anna; Kato, Ayumi; Ishii, Naomi; Wei, Min; Morimura, Keiichirou; Fukushima, Shoji; Wanibuchi, Hideki

    2014-01-01

    Valerian is widely used as a traditional medicine to improve the quality of sleep due to interaction of several active components with the γ-aminobutyric acid (GABA) A receptor (GABA(A)R) system. Recently, activation of GABA signaling in stem cells has been reported to suppress cell cycle progression in vivo. Furthermore, possible inhibitory effects of GABA(A)R agonists on hepatocarcinogenesis have been reported. The present study was performed to investigate modulating effects of Valerian on hepatocarcinogenesis using a medium-term rat liver bioassay. Male F344 rats were treated with one of the most powerful Valerian species (Valeriana sitchensis) at doses of 0, 50, 500 and 5000 ppm in their drinking water after initiation of hepatocarcinogenesis with diethylnitrosamine (DEN). Formation of glutathione S-transferase placental form positive (GST-P(+)) foci was significantly inhibited by Valerian at all applied doses compared with DEN initiation control rats. Generation of 8-hydroxy-2'-deoxyguanosine in the rat liver was significantly suppressed by all doses of Valerian, likely due to suppression of Nrf2, CYP7A1 and induction of catalase expression. Cell proliferation was significantly inhibited, while apoptosis was induced in areas of GST-P(+) foci of Valerian groups associated with suppression of c-myc, Mafb, cyclin D1 and induction of p21(Waf1/Cip1), p53 and Bax mRNA expression. Interestingly, expression of the GABA(A)R alpha 1 subunit was observed in GST-P(+) foci of DEN control rats, with significant elevation associated with Valerian treatment. These results indicate that Valerian exhibits inhibitory effects on rat hepatocarcinogenesis by inhibiting oxidative DNA damage, suppressing cell proliferation and inducing apoptosis in GST-P(+) foci by activating GABA(A)R-mediated signaling.

  16. Auditory thalamic circuits and GABAA receptor function: Putative mechanisms in tinnitus pathology.

    Science.gov (United States)

    Caspary, Donald M; Llano, Daniel A

    2017-06-01

    Tinnitus is defined as a phantom sound (ringing in the ears), and can significantly reduce the quality of life for those who suffer its effects. Ten to fifteen percent of the general adult population report symptoms of tinnitus with 1-2% reporting that tinnitus negatively impacts their quality of life. Noise exposure is the most common cause of tinnitus and the military environment presents many challenging high-noise situations. Military noise levels can be so intense that standard hearing protection is not adequate. Recent studies suggest a role for inhibitory neurotransmitter dysfunction in response to noise-induced peripheral deafferentation as a key element in the pathology of tinnitus. The auditory thalamus, or medial geniculate body (MGB), is an obligate auditory brain center in a unique position to gate the percept of sound as it projects to auditory cortex and to limbic structures. Both areas are thought to be involved in those individuals most impacted by tinnitus. For MGB, opposing hypotheses have posited either a tinnitus-related pathologic decrease or pathologic increase in GABAergic inhibition. In sensory thalamus, GABA mediates fast synaptic inhibition via synaptic GABA A receptors (GABA A Rs) as well as a persistent tonic inhibition via high-affinity extrasynaptic GABA A Rs and slow synaptic inhibition via GABA B Rs. Down-regulation of inhibitory neurotransmission, related to partial peripheral deafferentation, is consistently presented as partially underpinning neuronal hyperactivity seen in animal models of tinnitus. This maladaptive plasticity/Gain Control Theory of tinnitus pathology (see Auerbach et al., 2014; Richardson et al., 2012) is characterized by reduced inhibition associated with increased spontaneous and abnormal neuronal activity, including bursting and increased synchrony throughout much of the central auditory pathway. A competing hypothesis suggests that maladaptive oscillations between the MGB and auditory cortex

  17. A randomised trial of a pre-synaptic stimulator of DA2-dopaminergic and alpha2-adrenergic receptors on morbidity and mortality in patients with heart failure

    DEFF Research Database (Denmark)

    Torp-Pedersen, Christian; Køber, Lars; Carlsen, Jan E

    2008-01-01

    Background: By pre-synaptic stimulation of DA(2)-dopaminergic and alpha(2)-adrenergic receptors, nolomirole inhibits norepinephrine secretion from sympathetic nerve endings. We performed a clinical study with nolomirole in patients with heart failure (HF). Methods: The study was designed as a mul.......i.d. of nolomirole was not beneficial (or harmful) in patients with heart failure. (c) 2007 European Society of Cardiology. Published by Elsevier B.V. All rights reserved Udgivelsesdato: 2008/1......Background: By pre-synaptic stimulation of DA(2)-dopaminergic and alpha(2)-adrenergic receptors, nolomirole inhibits norepinephrine secretion from sympathetic nerve endings. We performed a clinical study with nolomirole in patients with heart failure (HF). Methods: The study was designed...... as a multicentre, double blind, parallel group trial of 5 mg b.i.d. of nolomirole (n=501) versus placebo (n=499) in patients with severe left ventricular systolic dysfunction, recently in New York Heart Association (NYHA) class III/IV. The primary endpoint was time to all cause death or hospitalisation for HF...

  18. In vivo neurochemical evidence that newly synthesised GABA activates GABA(B), but not GABA(A), receptors on dopaminergic nerve endings in the nucleus accumbens of freely moving rats.

    NARCIS (Netherlands)

    Saigusa, T.; Aono, Y.; Sekino, R.; Uchida, T.; Takada, K.; Oi, Y.; Koshikawa, N.; Cools, A.R.

    2012-01-01

    GABA released from accumbal GABAergic interneurons plays an inhibitory role in the regulation of dopamine efflux through GABA(B) and GABA(A) receptors located on accumbal dopaminergic nerve endings. The cytosolic newly synthesised GABA alters vesicular GABA levels and, accordingly, the amount of

  19. Affinities and densities of high-affinity [3H]muscimol (GABA-A) binding sites and of central benzodiazepine receptors are unchanged in autopsied brain tissue from cirrhotic patients with hepatic encephalopathy

    International Nuclear Information System (INIS)

    Butterworth, R.F.; Lavoie, J.; Giguere, J.F.; Pomier-Layrargues, G.

    1988-01-01

    The integrity of GABA-A receptors and of central benzodiazepine receptors was evaluated in membrane preparations from prefrontal cortex and caudate nuclei obtained at autopsy from nine cirrhotic patients who died in hepatic coma and an equal number of age-matched control subjects. Histopathological studies revealed Alzheimer Type II astrocytosis in all cases in the cirrhotic group; controls were free from neurological, psychiatric or hepatic diseases. Binding to GABA-A receptors was studied using [ 3 H]muscimol as radioligand. The integrity of central benzodiazepine receptors was evaluated using [ 3 H]flunitrazepam and [ 3 H]Ro15-1788. Data from saturation binding assays was analyzed by Scatchard plot. No modifications of either affinities (Kd) or densities (Bmax) of [ 3 H]muscimol of central benzodiazepine binding sites were observed. These findings do not support recent suggestions that alterations of either high-affinity GABA or benzodiazepine receptors play a significant role in the pathogenesis of hepatic encephalopathy

  20. Different forms of glycine- and GABAA-receptor mediated inhibitory synaptic transmission in mouse superficial and deep dorsal horn neurons

    Directory of Open Access Journals (Sweden)

    Brichta Alan M

    2009-11-01

    Full Text Available Abstract Background Neurons in superficial (SDH and deep (DDH laminae of the spinal cord dorsal horn receive sensory information from skin, muscle, joints and viscera. In both regions, glycine- (GlyR and GABAA-receptors (GABAARs contribute to fast synaptic inhibition. For rat, several types of GABAAR coexist in the two regions and each receptor type provides different contributions to inhibitory tone. Recent work in mouse has discovered an additional type of GlyR, (containing alpha 3 subunits in the SDH. The contribution of differing forms of the GlyR to sensory processing in SDH and DDH is not understood. Methods and Results Here we compare fast inhibitory synaptic transmission in mouse (P17-37 SDH and DDH using patch-clamp electrophysiology in transverse spinal cord slices (L3-L5 segments, 23°C. GlyR-mediated mIPSCs were detected in 74% (25/34 and 94% (25/27 of SDH and DDH neurons, respectively. In contrast, GABAAR-mediated mIPSCs were detected in virtually all neurons in both regions (93%, 14/15 and 100%, 18/18. Several Gly- and GABAAR properties also differed in SDH vs. DDH. GlyR-mediated mIPSC amplitude was smaller (37.1 ± 3.9 vs. 64.7 ± 5.0 pA; n = 25 each, decay time was slower (8.5 ± 0.8 vs. 5.5 ± 0.3 ms, and frequency was lower (0.15 ± 0.03 vs. 0.72 ± 0.13 Hz in SDH vs. DDH neurons. In contrast, GABAAR-mediated mIPSCs had similar amplitudes (25.6 ± 2.4, n = 14 vs. 25. ± 2.0 pA, n = 18 and frequencies (0.21 ± 0.08 vs. 0.18 ± 0.04 Hz in both regions; however, decay times were slower (23.0 ± 3.2 vs. 18.9 ± 1.8 ms in SDH neurons. Mean single channel conductance underlying mIPSCs was identical for GlyRs (54.3 ± 1.6 pS, n = 11 vs. 55.7 ± 1.8, n = 8 and GABAARs (22.7 ± 1.7 pS, n = 10 vs. 22.4 ± 2.0 pS, n = 11 in both regions. We also tested whether the synthetic endocanabinoid, methandamide (methAEA, had direct effects on Gly- and GABAARs in each spinal cord region. MethAEA (5 μM reduced GlyR-mediated mIPSC frequency in SDH

  1. SAHA (Vorinostat Corrects Inhibitory Synaptic Deficits Caused by Missense Epilepsy Mutations to the GABAA Receptor γ2 Subunit

    Directory of Open Access Journals (Sweden)

    Nela Durisic

    2018-03-01

    Full Text Available The GABAA receptor (GABAAR α1 subunit A295D epilepsy mutation reduces the surface expression of α1A295Dβ2γ2 GABAARs via ER-associated protein degradation. Suberanilohydroxamic acid (SAHA, also known as Vorinostat was recently shown to correct the misfolding of α1A295D subunits and thereby enhance the functional surface expression of α1A295Dβ2γ2 GABAARs. Here we investigated whether SAHA can also restore the surface expression of γ2 GABAAR subunits that incorporate epilepsy mutations (N40S, R43Q, P44S, R138G known to reduce surface expression via ER-associated protein degradation. As a control, we also investigated the γ2K289M epilepsy mutation that impairs gating without reducing surface expression. Effects of mutations were evaluated on inhibitory postsynaptic currents (IPSCs mediated by the major synaptic α1β2γ2 GABAAR isoform. Recordings were performed in neuron-HEK293 cell artificial synapses to minimise contamination by GABAARs of undefined subunit composition. Transfection with α1β2γ2N40S, α1β2γ2R43Q, α1β2γ2P44S and α1β2γ2R138G subunits produced IPSCs with decay times slower than those of unmutated α1β2γ2 GABAARs due to the low expression of mutant γ2 subunits and the correspondingly high expression of slow-decaying α1β2 GABAARs. SAHA pre-treatment significantly accelerated the decay time constants of IPSCs consistent with the upregulation of mutant γ2 subunit expression. This increase in surface expression was confirmed by immunohistochemistry. SAHA had no effect on either the IPSC kinetics or surface expression levels of α1β2γ2K289M GABAARs, confirming its specificity for ER-retained mutant γ2 subunits. We also found that α1β2γ2K289M GABAARs and SAHA-treated α1β2γ2R43Q, α1β2γ2P44S and α1β2γ2R138G GABAARs all mediated IPSCs that decayed at significantly faster rates than wild type receptors as temperature was increased from 22 to 40°C. This may help explain why these mutations cause febrile

  2. Tolerance to the sedative and anxiolytic effects of diazepam is associated with different alterations of GABAA receptors in rat cerebral cortex.

    Science.gov (United States)

    Ferreri, M C; Gutiérrez, M L; Gravielle, M C

    2015-12-03

    The clinical use of benzodiazepines is limited by the development of tolerance to their pharmacological effects. Tolerance to each of the pharmacological actions of benzodiazepines develops at different rates. The aim of this work was to investigate the mechanism of tolerance by performing behavioral tests in combination with biochemical studies. To this end, we administered prolonged treatments of diazepam to rats for 7 or 14 days. Tolerance to the sedative effects of diazepam was detected by means of the open field test after the 7- and 14-day treatments, whereas tolerance to the anxiolytic actions of benzodiazepine manifested following only the 14-day treatment in the elevated plus maze. The cerebral cortical concentrations of diazepam did not decline after the diazepam treatments, indicating that tolerance was not due to alterations in pharmacokinetic factors. The uncoupling of GABA/benzodiazepine site interactions and an increase in the degree of phosphorylation of the GABAA receptor γ2 subunit at serine 327 in the cerebral cortex were produced by day 7 of diazepam treatment and persisted after 14 days of exposure to benzodiazepine. Thus, these alterations could be part of the mechanism of tolerance to the sedative effects of diazepam. An increase in the percentage of α1-containing GABAA receptors in the cerebral cortex was observed following the 14-day treatment with diazepam but not the 7-day treatment, suggesting that tolerance to the anxiolytic effects is associated with a change in receptor subunit composition. The understanding of the molecular bases of tolerance could be important for the development of new drugs that maintain their efficacies over long-term treatments. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. ( sup 3 H)RO15-4513 binding to cerebellar diazepam-sensitive and insensitive GABAA receptors is unchanged by one week of ethanol intake

    Energy Technology Data Exchange (ETDEWEB)

    Martin, M.W.; Chen, J.P.; Wallis, C.; Lal, H. (Texas Coll. of Osteopathic Medicine, Fort Worth (United States))

    1992-02-26

    ({sup 3}H)RO15-4513, a partial inverse agonist at GABAA receptors, binds to two sites in cerebellar membranes, one sensitive (DZ-S) and one insensitive (DZ-IS) to inhibition by diazepam. These binding sites may represent different isoforms of the GABAA receptor and may play a role in ethanol (EtOH) dependence. The authors tested the hypothesis that chronic intake of EtOH induces changes in the binding properties of one or both of these putative GABBA receptors. Rats were fed a liquid diet of 4.5% EtOH for 7 d, gavaged with a 3g/kg dose of EtOH, and then sacrificed after 2 h, 12 h, or 4.5 d. Binding of ({sup 3}H)RO15-4513 to cerebellar membranes was performed in the absence or presence of 10{mu}M diazepam (DZ-IS binding); DZ-S binding was calculated as the difference between total and DZ-IS. Nonlinear regression analysis showed that each class of binding site fit a model of mass action binding to a single, noninteractive population of sites. No significant difference was observed between any of the treatment groups in the apparent affinity (Kd) for ({sup 3}H)RO15-4513 at total, DZ-S, or DZ-IS sites following chronic EtOH intake or withdrawal. In addition, no significant difference was observed in the apparent number of DZ-S or DZ-IS binding sites or the ratio of DZ-S to DZ-IS.

  4. GABAAα1 and GABAAρ1 subunits are expressed in cultured human RPE cells and GABAA receptor agents modify the intracellular calcium concentration.

    Science.gov (United States)

    Cheng, Zhen-Ying; Wang, Xu-Ping; Schmid, Katrina L; Han, Xu-Guang; Song, Hui; Tang, Xin

    2015-01-01

    Gamma-aminobutyric acid A (GABAA) receptors (GABAARs), which are ionotropic receptors involving chloride channels, have been identified in various neural (e.g., mouse retinal ganglion cells) and nonneural cells (e.g., mouse lens epithelial cells) regulating the intracellular calcium concentration ([Ca(2+)]i). GABAAR β-subunit protein has been isolated in the cultured human and rat RPE, and GABAAα1 and GABAAρ1 mRNAs and proteins are present in the chick RPE. The purpose of this study was to investigate the expression of GABAAα1 and GABAAρ1, two important subunits in forming functional GABAARs, in the cultured human RPE, and further to explore whether altering receptor activation modifies [Ca(2+)]i. Human RPE cells were separately cultured from five donor eye cups. Real-time PCR, western blots, and immunofluorescence were used to test for GABAAα1 and GABAAρ1 mRNAs and proteins. The effects of the GABAAR agonist muscimol, antagonist picrotoxin, or the specific GABAAρ antagonist 1,2,5,6-tetrahydropyridin-4-yl) methylphosphinic acid (TPMPA) on [Ca(2+)]i in cultured human RPE were demonstrated using Fluo3-AM. Both GABAAα1 and GABAAρ1 mRNAs and proteins were identified in cultured human RPE cells; antibody staining was mainly localized to the cell membrane and was also present in the cytoplasm but not in the nucleus. Muscimol (100 μM) caused a transient increase of the [Ca(2+)]i in RPE cells regardless of whether Ca(2+) was added to the buffer. Muscimol-induced increases in the [Ca(2+)]i were inhibited by pretreatment with picrotoxin (300 μM) or TPMPA (500 μM). GABAAα1 and GABAAρ1 are expressed in cultured human RPE cells, and GABAA agents can modify [Ca(2+)]i.

  5. Deficits in the activity of presynaptic γ-aminobutyric acid type B receptors contribute to altered neuronal excitability in fragile X syndrome.

    Science.gov (United States)

    Kang, Ji-Yong; Chadchankar, Jayashree; Vien, Thuy N; Mighdoll, Michelle I; Hyde, Thomas M; Mather, Robert J; Deeb, Tarek Z; Pangalos, Menelas N; Brandon, Nicholas J; Dunlop, John; Moss, Stephen J

    2017-04-21

    The behavioral and anatomical deficits seen in fragile X syndrome (FXS) are widely believed to result from imbalances in the relative strengths of excitatory and inhibitory neurotransmission. Although modified neuronal excitability is thought to be of significance, the contribution that alterations in GABAergic inhibition play in the pathophysiology of FXS are ill defined. Slow sustained neuronal inhibition is mediated by γ-aminobutyric acid type B (GABA B ) receptors, which are heterodimeric G-protein-coupled receptors constructed from R1a and R2 or R1b and R2 subunits. Via the activation of G i/o , they limit cAMP accumulation, diminish neurotransmitter release, and induce neuronal hyperpolarization. Here we reveal that selective deficits in R1a subunit expression are seen in Fmr1 knock-out mice (KO) mice, a widely used animal model of FXS, but the levels of the respective mRNAs were unaffected. Similar trends of R1a expression were seen in a subset of FXS patients. GABA B receptors (GABA B Rs) exert powerful pre- and postsynaptic inhibitory effects on neurotransmission. R1a-containing GABA B Rs are believed to mediate presynaptic inhibition in principal neurons. In accordance with this result, deficits in the ability of GABA B Rs to suppress glutamate release were seen in Fmr1-KO mice. In contrast, the ability of GABA B Rs to suppress GABA release and induce postsynaptic hyperpolarization was unaffected. Significantly, this deficit contributes to the pathophysiology of FXS as the GABA B R agonist ( R )-baclofen rescued the imbalances between excitatory and inhibitory neurotransmission evident in Fmr1-KO mice. Collectively, our results provided evidence that selective deficits in the activity of presynaptic GABA B Rs contribute to the pathophysiology of FXS. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Differential presynaptic and postsynaptic expression of m1-m4 muscarinic acetylcholine receptors at the perforant pathway/granule cell synapse.

    Science.gov (United States)

    Rouse, S T; Gilmor, M L; Levey, A I

    1998-09-01

    A family of muscarinic acetylcholine receptor proteins mediates diverse pre- and postsynaptic functions in the hippocampus. However the roles of individual receptors are not understood. The present study identified the pre- and postsynaptic muscarinic acetylcholine receptors at the perforant pathway synapses in rat brain using a combination of lesioning, immunocytochemistry and electron microscopic techniques. Entorhinal cortex lesions resulted in lamina-specific reductions of m2, m3, and m4 immunoreactivity in parallel with the degeneration of the medial and lateral perforant pathway terminals in the middle and outer thirds of the molecular layer, respectively. In contrast, granule cell lesions selectively reduced m1 and m3 receptors consistent with degeneration of postsynaptic dendrites. Direct visualization of m1-m4 by electron microscopic immunocytochemistry confirmed their differential pre- and postsynaptic localizations. Together, these findings provide strong evidence for both redundancy and spatial selectivity of presynaptic (m2, m3 and m4) and postsynaptic (m1 and m3) muscarinic acetylcholine receptors at the perforant pathway synapse.

  7. Slow GABAA mediated synaptic transmission in rat visual cortex

    Directory of Open Access Journals (Sweden)

    Sceniak Michael P

    2008-01-01

    Full Text Available Abstract Background Previous reports of inhibition in the neocortex suggest that inhibition is mediated predominantly through GABAA receptors exhibiting fast kinetics. Within the hippocampus, it has been shown that GABAA responses can take the form of either fast or slow response kinetics. Our findings indicate, for the first time, that the neocortex displays synaptic responses with slow GABAA receptor mediated inhibitory postsynaptic currents (IPSCs. These IPSCs are kinetically and pharmacologically similar to responses found in the hippocampus, although the anatomical specificity of evoked responses is unique from hippocampus. Spontaneous slow GABAA IPSCs were recorded from both pyramidal and inhibitory neurons in rat visual cortex. Results GABAA slow IPSCs were significantly different from fast responses with respect to rise times and decay time constants, but not amplitudes. Spontaneously occurring GABAA slow IPSCs were nearly 100 times less frequent than fast sIPSCs and both were completely abolished by the chloride channel blocker, picrotoxin. The GABAA subunit-specific antagonist, furosemide, depressed spontaneous and evoked GABAA fast IPSCs, but not slow GABAA-mediated IPSCs. Anatomical specificity was evident using minimal stimulation: IPSCs with slow kinetics were evoked predominantly through stimulation of layer 1/2 apical dendritic zones of layer 4 pyramidal neurons and across their basal dendrites, while GABAA fast IPSCs were evoked through stimulation throughout the dendritic arborization. Many evoked IPSCs were also composed of a combination of fast and slow IPSC components. Conclusion GABAA slow IPSCs displayed durations that were approximately 4 fold longer than typical GABAA fast IPSCs, but shorter than GABAB-mediated inhibition. The anatomical and pharmacological specificity of evoked slow IPSCs suggests a unique origin of synaptic input. Incorporating GABAA slow IPSCs into computational models of cortical function will help

  8. Administration of the GABAA receptor antagonist picrotoxin into rat supramammillary nucleus induces c-Fos in reward-related brain structures. Supramammillary picrotoxin and c-Fos expression

    Directory of Open Access Journals (Sweden)

    Shin Rick

    2010-08-01

    Full Text Available Abstract Background Picrotoxin blocks GABAA receptors, whose activation typically inhibits neuronal firing activity. We recently found that rats learn to selectively self-administer picrotoxin or bicuculline, another GABAA receptor antagonist, into the supramammillary nucleus (SuM, a posterior hypothalamic structure localized anterior to the ventral tegmental area. Other drugs such as nicotine or the excitatory amino acid AMPA are also self-administered into the SuM. The SuM appears to be functionally linked with the mesolimbic dopamine system and is closely connected with other brain structures that are implicated in motivational processes, including the prefrontal cortex, septal area, preoptic area, lateral hypothalamic area and dorsal raphe nucleus. Here, we hypothesized that these brain structures are activated by picrotoxin injections into the SuM. Results Picrotoxin administration into the SuM markedly facilitated locomotion and rearing. Further, it increased c-Fos expression in this region, suggesting blockade of tonic inhibition and thus the disinhibition of local neurons. This manipulation also increased c-Fos expression in structures including the ventral tegmental area, medial shell of the nucleus accumbens, medial prefrontal cortex, septal area, preoptic area, lateral hypothalamic area and dorsal raphe nucleus. Conclusions Picrotoxin administration into the SuM appears to disinhibit local neurons and recruits activation of brain structures associated with motivational processes, including the mesolimbic dopamine system, prefrontal cortex, septal area, preoptic area, lateral hypothalamic area and dorsal raphe nucleus. These regions may be involved in mediating positive motivational effects triggered by intra-SuM picrotoxin.

  9. Short-term treatment with the GABAA receptor antagonist pentylenetetrazole produces a sustained pro-cognitive benefit in a mouse model of Down's syndrome.

    Science.gov (United States)

    Colas, D; Chuluun, B; Warrier, D; Blank, M; Wetmore, D Z; Buckmaster, P; Garner, C C; Heller, H C

    2013-07-01

    Down's syndrome is a common genetic cause of intellectual disability, for which there are no drug therapies. Mechanistic studies in a model of Down's syndrome [Ts65Dn (TS) mice] demonstrated that impaired cognitive function was due to excessive neuronal inhibitory tone. These deficits were normalized by low doses of GABAA receptor antagonists in adult animals. In this study, we explore the therapeutic potential of pentylenetetrazole, a GABAA receptor antagonist with a history of safe use in humans. Long-term memory was assessed by the novel object recognition test in different cohorts of TS mice after a delay following a short-term chronic treatment with pentylenetetrazole. Seizure susceptibility, an index of treatment safety, was studied by means of EEG, behaviour and hippocampus morphology. EEG spectral analysis was used as a bio-marker of the treatment. PTZ has a wide therapeutic window (0.03-3 mg·kg(-1)) that is >10-1000-fold below its seizure threshold and chronic pentylenetetrazole treatment did not lower the seizure threshold. Short-term, low, chronic dose regimens of pentylenetetrazole elicited long-lasting (>1 week) normalization of cognitive function in young and aged mice. Pentylenetetrazole effectiveness was dependent on the time of treatment; cognitive performance improved after treatment during the light (inactive) phase, but not during the dark (active) phase. Chronic pentylenetetrazole treatment normalized EEG power spectra in TS mice. Low doses of pentylenetetrazole were safe, produced long-lasting cognitive improvements and have the potential of fulfilling an unmet therapeutic need in Down's syndrome. © 2013 The Authors. British Journal of Pharmacology © 2013 The British Pharmacological Society.

  10. A tryptic hydrolysate from bovine milk αs1-casein enhances pentobarbital-induced sleep in mice via the GABAA receptor.

    Science.gov (United States)

    Dela Peña, Irene Joy I; Kim, Hee Jin; de la Peña, June Bryan; Kim, Mikyung; Botanas, Chrislean Jun; You, Kyung Yi; Woo, Taeseon; Lee, Yong Soo; Jung, Jae-Chul; Kim, Kyung-Mi; Cheong, Jae Hoon

    2016-10-15

    Studies have shown that enzymatic hydrolysis of casein, the primary protein component of cow's milk, produces peptides with various biological activities, and some of these peptides may have sleep-promoting effects. In the present study, we evaluated the sedative and sleep-promoting effects of bovine αS1-casein tryptic hydrolysate (CH), containing a decapeptide αS1-casein known as alpha-casozepine. CH was orally administered to ICR mice at various concentrations (75, 150, 300, or 500mg/kg). An hour after administration, assessment of its sedative (open-field and rota-rod tests) and sleep-potentiating effects (pentobarbital-induced sleeping test and EEG monitoring) were conducted. Although a trend can be observed, CH treatment did not significantly alter the spontaneous locomotor activity and motor function of mice in the open-field and rota-rod tests. On the other hand, CH (150mg/kg, respectively) enhanced the sleep induced by pentobarbital sodium in mice. It also promoted slow-wave (delta) EEG activity in rats; a pattern indicative of sleep or relaxation. These behavioral results indicate that CH has sleep-promoting effects, but no or has minimal sedative effects. To elucidate the probable mechanism behind the effects of CH, we examined its action on intracellular chloride ion influx in cultured human neuroblastoma cells. CH dose-dependently increased chloride ion influx, which was blocked by co-administration of bicuculline, a competitive GABAA receptor antagonist. Taken together, the results of the present study suggest that CH has sleep-promoting properties which are probably mediated through the GABAA receptor-chloride ion channel complex. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. High-level expression and purification of Cys-loop ligand-gated ion channels in a tetracycline-inducible stable mammalian cell line: GABAA and serotonin receptors.

    Science.gov (United States)

    Dostalova, Zuzana; Liu, Aiping; Zhou, Xiaojuan; Farmer, Sarah L; Krenzel, Eileen S; Arevalo, Enrique; Desai, Rooma; Feinberg-Zadek, Paula L; Davies, Paul A; Yamodo, Innocent H; Forman, Stuart A; Miller, Keith W

    2010-09-01

    The human neuronal Cys-loop ligand-gated ion channel superfamily of ion channels are important determinants of human behavior and the target of many drugs. It is essential for their structural characterization to achieve high-level expression in a functional state. The aim of this work was to establish stable mammalian cell lines that enable high-level heterologous production of pure receptors in a state that supports agonist-induced allosteric conformational changes. In a tetracycline-inducible stable human embryonic kidney cells (HEK293S) cell line, GABA(A) receptors containing α1 and β3 subunits could be expressed with specific activities of 29-34 pmol/mg corresponding to 140-170 pmol/plate, the highest expression level reported so far. Comparable figures for serotonin (5-HT(3A)) receptors were 49-63 pmol/mg and 245-315 pmol/plate. The expression of 10 nmol of either receptor in suspension in a bioreactor required 0.3-3.0 L. Both receptor constructs had a FLAG epitope inserted at the N-terminus and could be purified in one step after solubilization using ANTI-FLAG affinity chromatography with yields of 30-40%. Purified receptors were functional. Binding of the agonist [(3)H]muscimol to the purified GABA(A)R was enhanced allosterically by the general anesthetic etomidate, and purified 5-hydroxytryptamine-3A receptor supported serotonin-stimulated cation flux when reconstituted into lipid vesicles. Copyright © 2010 The Protein Society.

  12. Computational prediction of MicroRNAs targeting GABA receptors and experimental verification of miR-181, miR-216 and miR-203 targets in GABA-A receptor

    Directory of Open Access Journals (Sweden)

    Zhao Chunling

    2012-02-01

    Full Text Available Abstract Background GABA receptors are well known as the inhibitory receptors in the central nervous system and are also found in peripheral tissues. We have previously shown that GABA receptors are involved in lung development and fluid homeostasis. However, the microRNAs that regulate GABA receptors have not yet been identified. Results In this study, we used the online software, TargetScan and miRanda, to query the microRNAs that directly target GABA receptors and then selected some of them to verify experimentally using 3'-UTR reporter assays. Computational approaches predict many microRNA binding sites on the 3'-UTR of GABAA receptors, but not on GABAC receptors. 3'-UTR reporter assays only verified miR-181, miR-216, and miR-203 as the microRNAs that target GABA receptor α1-subunit among 10 microRNAs tested. Conclusions Our studies reinforce that microRNA target prediction needs to be verified experimentally. The identification of microRNAs that target GABA receptors provides a basis for further studies of post-transcriptional regulation of GABA receptors.

  13. Regulation of synaptic inhibition by phospho-dependent binding of the AP2 complex to a YECL motif in the GABAA receptor γ2 subunit

    Science.gov (United States)

    Kittler, Josef T.; Chen, Guojun; Kukhtina, Viktoria; Vahedi-Faridi, Ardeschir; Gu, Zhenglin; Tretter, Verena; Smith, Katharine R.; McAinsh, Kristina; Arancibia-Carcamo, I. Lorena; Saenger, Wolfram; Haucke, Volker; Yan, Zhen; Moss, Stephen J.

    2008-01-01

    The regulation of the number of γ2-subunit-containing GABAA receptors (GABAARs) present at synapses is critical for correct synaptic inhibition and animal behavior. This regulation occurs, in part, by the controlled removal of receptors from the membrane in clathrin-coated vesicles, but it remains unclear how clathrin recruitment to surface γ2-subunit-containing GABAARs is regulated. Here, we identify a γ2-subunit-specific Yxxφ-type-binding motif for the clathrin adaptor protein, AP2, which is located within a site for γ2-subunit tyrosine phosphorylation. Blocking GABAAR-AP2 interactions via this motif increases synaptic responses within minutes. Crystallographic and biochemical studies reveal that phosphorylation of the Yxxφ motif inhibits AP2 binding, leading to increased surface receptor number. In addition, the crystal structure provides an explanation for the high affinity of this motif for AP2 and suggests that γ2-subunit-containing heteromeric GABAARs may be internalized as dimers or multimers. These data define a mechanism for tyrosine kinase regulation of GABAAR surface levels and synaptic inhibition. PMID:18305175

  14. Regulation of synaptic inhibition by phospho-dependent binding of the AP2 complex to a YECL motif in the GABAA receptor gamma2 subunit.

    Science.gov (United States)

    Kittler, Josef T; Chen, Guojun; Kukhtina, Viktoria; Vahedi-Faridi, Ardeschir; Gu, Zhenglin; Tretter, Verena; Smith, Katharine R; McAinsh, Kristina; Arancibia-Carcamo, I Lorena; Saenger, Wolfram; Haucke, Volker; Yan, Zhen; Moss, Stephen J

    2008-03-04

    The regulation of the number of gamma2-subunit-containing GABA(A) receptors (GABA(A)Rs) present at synapses is critical for correct synaptic inhibition and animal behavior. This regulation occurs, in part, by the controlled removal of receptors from the membrane in clathrin-coated vesicles, but it remains unclear how clathrin recruitment to surface gamma2-subunit-containing GABA(A)Rs is regulated. Here, we identify a gamma2-subunit-specific Yxxvarphi-type-binding motif for the clathrin adaptor protein, AP2, which is located within a site for gamma2-subunit tyrosine phosphorylation. Blocking GABA(A)R-AP2 interactions via this motif increases synaptic responses within minutes. Crystallographic and biochemical studies reveal that phosphorylation of the Yxxvarphi motif inhibits AP2 binding, leading to increased surface receptor number. In addition, the crystal structure provides an explanation for the high affinity of this motif for AP2 and suggests that gamma2-subunit-containing heteromeric GABA(A)Rs may be internalized as dimers or multimers. These data define a mechanism for tyrosine kinase regulation of GABA(A)R surface levels and synaptic inhibition.

  15. Rubimetide, humanin, and MMK1 exert anxiolytic-like activities via the formyl peptide receptor 2 in mice followed by the successive activation of DP1, A2A, and GABAA receptors.

    Science.gov (United States)

    Zhao, Hui; Sonada, Soushi; Yoshikawa, Akihiro; Ohinata, Kousaku; Yoshikawa, Masaaki

    2016-09-01

    Rubimetide (Met-Arg-Trp), which had been isolated as an antihypertensive peptide from an enzymatic digest of spinach ribulose-bisphosphate carboxylase/oxygenase (Rubisco), showed anxiolytic-like activity prostaglandin (PG) D2-dependent manner in the elevated plus-maze test after administration at a dose of 0.1mg/kg (ip.) or 1mg/kg (p.o.) in male mice of ddY strain. In this study, we found that rubimetide has weak affinities for the FPR1 and FPR2, subtypes of formyl peptide receptor (FPR). The anxiolytic-like activity of rubimetide (0.1mg/kg, ip.) was blocked by WRW4, an antagonist of FPR2, but not by Boc-FLFLF, an antagonist of FPR1, suggesting that the anxiolytic-like activity was mediated by the FPR2. Humanin, an endogenous agonist peptide of the FPR2, exerted an anxiolytic-like activity after intracerebroventricular (icv) administration, which was also blocked by WRW4. MMK1, a synthetic agonist peptide of the FPR2, also exerted anxiolytic-like activity. Thus, FPR2 proved to mediate anxiolytic-like effect as the first example of central effect exerted by FPR agonists. As well as the anxiolytic-like activity of rubimetide, that of MMK1 was blocked by BW A868C, an antagonist of the DP1-receptor. Furthermore, anxiolytic-like activity of rubimetide was blocked by SCH58251 and bicuculline, antagonists for adenosine A2A and GABAA receptors, respectively. From these results, it is concluded that the anxiolytic-like activities of rubimetide and typical agonist peptides of the FPR2 were mediated successively by the PGD2-DP1 receptor, adenosine-A2A receptor, and GABA-GABAA receptor systems downstream of the FPR2. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Involvement of prelimbic medial prefrontal cortex in panic-like elaborated defensive behaviour and innate fear-induced antinociception elicited by GABAA receptor blockade in the dorsomedial and ventromedial hypothalamic nuclei: role of the endocannabinoid CB1 receptor.

    Science.gov (United States)

    Freitas, Renato Leonardo de; Salgado-Rohner, Carlos José; Hallak, Jaime Eduardo Cecílio; Crippa, José Alexandre de Souza; Coimbra, Norberto Cysne

    2013-09-01

    It has been shown that GABAA receptor blockade in the dorsomedial and ventromedial hypothalamic nuclei (DMH and VMH, respectively) induces elaborated defensive behavioural responses accompanied by antinociception, which has been utilized as an experimental model of panic attack. Furthermore, the prelimbic (PL) division of the medial prefrontal cortex (MPFC) has been related to emotional reactions and the processing of nociceptive information. The aim of the present study was to investigate the possible involvement of the PL cortex and the participation of local cannabinoid CB1 receptors in the elaboration of panic-like reactions and in innate fear-induced antinociception. Elaborated fear-induced responses were analysed during a 10-min period in an open-field test arena. Microinjection of the GABAA receptor antagonist bicuculline into the DMH/VMH evoked panic-like behaviour and fear-induced antinociception, which was decreased by microinjection of the non-selective synaptic contact blocker cobalt chloride in the PL cortex. Moreover, microinjection of AM251 (25, 100 or 400 pmol), an endocannabinoid CB1 receptor antagonist, into the PL cortex also attenuated the defensive behavioural responses and the antinociception that follows innate fear behaviour elaborated by DMH/VMH. These data suggest that the PL cortex plays an important role in the organization of elaborated forward escape behaviour and that this cortical area is also involved in the elaboration of innate fear-induced antinociception. Additionally, CB1 receptors in the PL cortex modulate both panic-like behaviours and fear-induced antinociception elicited by disinhibition of the DMH/VMH through microinjection of bicuculline.

  17. Do N-arachidonyl-glycine (NA-glycine and 2-arachidonoyl glycerol (2-AG share mode of action and the binding site on the β2 subunit of GABAA receptors?

    Directory of Open Access Journals (Sweden)

    Roland Baur

    2013-09-01

    Full Text Available NA-glycine is an endogenous lipid molecule with analgesic properties, which is structurally similar to the endocannabinoids 2-AG and anandamide but does not interact with cannabinoid receptors. NA-glycine has been suggested to act at the G-protein coupled receptors GPR18 and GPR92. Recently, we have described that NA-glycine can also modulate recombinant α1β2γ2 GABAA receptors. Here we characterize in more detail this modulation and investigate the relationship of its binding site with that of the endocannabinoid 2-AG.

  18. Mutagenesis and computational docking studies support the existence of a histamine binding site at the extracellular β3+β3- interface of homooligomeric β3 GABAA receptors.

    Science.gov (United States)

    Hoerbelt, Paul; Ramerstorfer, Joachim; Ernst, Margot; Sieghart, Werner; Thomson, Jeffrey L; Hough, Lindsay B; Fleck, Mark W

    2016-09-01

    Histamine is an important neurotransmitter that exerts its physiological actions through H1-4 metabotropic receptors in mammals. It also directly activates ionotropic GABAA receptor (GABAAR) β3 homooligomers and potentiates GABA responses in αβ heterooligomers in vitro, but the respective histamine binding sites in GABAARs are unknown. We hypothesized that histamine binds at the extracellular β+β- interface at a position homologous to the GABA binding site of heterooligomeric GABAARs. To test this, we individually mutated several residues at the putative ligand binding minus side of a rat GABAAR β3 wild type subunit and of a β3 subunit that was made insensitive to trace Zn(2+) inhibition [β3(H267A); called (Z)β3]. (Z)β3, (Z)β3(Y62L), (Z)β3(Q64A), (Z)β3(Q64E), α1(Z)β3, or α1(Z)β3(Y62L) receptors were studied in HEK293T cells using whole cell voltage clamp recording. β3, β3(Y62C), β3(Q64C), β3(N41C), β3(D43C), β3(A45C) or β3(M115C) receptors were examined in Xenopus oocytes using two-electrode voltage clamp. Histamine directly activated (Z)β3 and β3 homooligomers and potentiated GABA actions in α1(Z)β3 heterooligomers. Receptors containing (Z)β3(Y62L), β3(Y62C) and β3(D43C) showed markedly reduced histamine potency, but homo- and heterooligomers with (Z)β3(Q64E) exhibited increased potency. The GABAAR αβ(γ) competitive antagonist bicuculline elicited sub-maximal agonist currents through (Z)β3 homooligomers, the potency of which was strongly decreased by (Z)β3(Y62L). Mutations β3(N41C), β3(A45C) and β3(M115C) disturbed receptor expression or assembly. Computational docking into the crystal structure of homooligomeric β3 receptors resulted in a histamine pose highly consistent with the experimental findings, suggesting that histamine activates β3 receptors via a site homologous to the GABA site in αβγ receptors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. A Multifaceted GABAA Receptor Modulator: Functional Properties and Mechanism of Action of the Sedative-Hypnotic and Recreational Drug Methaqualone (Quaalude)

    Science.gov (United States)

    Hammer, Harriet; Bader, Benjamin M.; Ehnert, Corina; Bundgaard, Christoffer; Bunch, Lennart; Hoestgaard-Jensen, Kirsten; Schroeder, Olaf H.-U.; Bastlund, Jesper F.; Gramowski-Voß, Alexandra

    2015-01-01

    In the present study, we have elucidated the functional characteristics and mechanism of action of methaqualone (2-methyl-3-o-tolyl-4(3H)-quinazolinone, Quaalude), an infamous sedative-hypnotic and recreational drug from the 1960s–1970s. Methaqualone was demonstrated to be a positive allosteric modulator at human α1,2,3,5β2,3γ2S GABAA receptors (GABAARs) expressed in Xenopus oocytes, whereas it displayed highly diverse functionalities at the α4,6β1,2,3δ GABAAR subtypes, ranging from inactivity (α4β1δ), through negative (α6β1δ) or positive allosteric modulation (α4β2δ, α6β2,3δ), to superagonism (α4β3δ). Methaqualone did not interact with the benzodiazepine, barbiturate, or neurosteroid binding sites in the GABAAR. Instead, the compound is proposed to act through the transmembrane β(+)/α(–) subunit interface of the receptor, possibly targeting a site overlapping with that of the general anesthetic etomidate. The negligible activities displayed by methaqualone at numerous neurotransmitter receptors and transporters in an elaborate screening for additional putative central nervous system (CNS) targets suggest that it is a selective GABAAR modulator. The mode of action of methaqualone was further investigated in multichannel recordings from primary frontal cortex networks, where the overall activity changes induced by the compound at 1–100 μM concentrations were quite similar to those mediated by other CNS depressants. Finally, the free methaqualone concentrations in the mouse brain arising from doses producing significant in vivo effects in assays for locomotion and anticonvulsant activity correlated fairly well with its potencies as a modulator at the recombinant GABAARs. Hence, we propose that the multifaceted functional properties exhibited by methaqualone at GABAARs give rise to its effects as a therapeutic and recreational drug. PMID:26056160

  20. Selective enhancement of glutamate-mediated pressor responses after GABAA receptor blockade in the RVLM of sedentary versus spontaneous wheel running rats

    Science.gov (United States)

    Mueller, Patrick J.; Mischel, Nicholas A.

    2012-01-01

    Overactivity of the sympathetic nervous system (SNS) is a hallmark of many cardiovascular diseases. It is also well-known that physical inactivity independently contributes to cardiovascular diseases, likely in part via increased SNS activity. Recent work from our laboratory has demonstrated increased SNS responses in sedentary animals following either direct activation or disinhibition of the rostral ventrolateral medulla (RVLM), an integral cardiovascular brainstem region. These data led us to hypothesize that the interaction between excitation and inhibition of the RVLM is altered in sedentary versus physically active animals. To test this hypothesis, we recorded mean arterial pressure (MAP) and lumbar sympathetic nerve activity (LSNA) in Inactin anesthetized rats that were housed for 8–12 weeks with or without access to a running wheel. Pressor responses to direct activation of the RVLM with glutamate were similar between groups under intact conditions. However, blockade of γ-aminobutyric acid (GABA)A receptors with bicuculline selectively enhanced pressor responses to glutamate in sedentary animals. Interestingly, LSNA responses to glutamate were not enhanced in sedentary versus active animals in the presence or absence of tonic GABAergic tone. These results suggest that sedentary compared to active conditions enhance GABAergic inhibition of glutamate-sensitive neurons in the RVLM that are involved in blood pressure regulation, and by mechanisms that do not involve LSNA. We also speculate that regular physical activity has differential effects on SNS activity to specific vascular beds and may reduce the risk of developing cardiovascular diseases via changes occurring in the RVLM. PMID:23189062

  1. Correlating Fluorescence and High-Resolution Scanning Electron Microscopy (HRSEM) for the study of GABAA receptor clustering induced by inhibitory synaptic plasticity

    KAUST Repository

    Orlando, Marta

    2017-10-17

    Both excitatory and inhibitory synaptic contacts display activity dependent dynamic changes in their efficacy that are globally termed synaptic plasticity. Although the molecular mechanisms underlying glutamatergic synaptic plasticity have been extensively investigated and described, those responsible for inhibitory synaptic plasticity are only beginning to be unveiled. In this framework, the ultrastructural changes of the inhibitory synapses during plasticity have been poorly investigated. Here we combined confocal fluorescence microscopy (CFM) with high resolution scanning electron microscopy (HRSEM) to characterize the fine structural rearrangements of post-synaptic GABAA Receptors (GABAARs) at the nanometric scale during the induction of inhibitory long-term potentiation (iLTP). Additional electron tomography (ET) experiments on immunolabelled hippocampal neurons allowed the visualization of synaptic contacts and confirmed the reorganization of post-synaptic GABAAR clusters in response to chemical iLTP inducing protocol. Altogether, these approaches revealed that, following the induction of inhibitory synaptic potentiation, GABAAR clusters increase in size and number at the post-synaptic membrane with no other major structural changes of the pre- and post-synaptic elements.

  2. Immunocytochemical demonstration of M1 muscarinic acetylcholine receptors at the presynaptic and postsynaptic membranes of rat diaphragm endplates

    Czech Academy of Sciences Publication Activity Database

    Malomouzh, A. I.; Arkhipova, S. S.; Nikolsky, E. E.; Vyskočil, František

    2011-01-01

    Roč. 60, č. 1 (2011), s. 185-188 ISSN 0862-8408 R&D Projects: GA AV ČR(CZ) IAA500110905; GA ČR GA202/09/0806 Institutional research plan: CEZ:AV0Z50110509 Keywords : skeletal muscle * M1 muscarinic receptor Subject RIV: ED - Physiology Impact factor: 1.555, year: 2011

  3. Xanomeline wash-resistantly bound to presynaptic M2 and M4 muscarinic receptors decreases the evoked release of acetylcholine

    Czech Academy of Sciences Publication Activity Database

    Machová, Eva; Jakubík, Jan; El-Fakahany, E. E.; Doležal, Vladimír

    2007-01-01

    Roč. 101, Suppl.1 (2007), s. 52-53 ISSN 0022-3042. [ESN - meeting /17./ - Conference on Advances in Molecular Mechanims and Disorders /3./. 19.05.2007-22.05.2007, Salamanca] R&D Projects: GA MŠk(CZ) LC554; GA ČR(CZ) GA305/05/0452 Grant - others:NIH(US) NS25732 Institutional research plan: CEZ:AV0Z50110509 Keywords : cpo1 * xanomeline * muscarinic receptor Subject RIV: FH - Neurology

  4. Characterization of GABAA receptor ligands with automated patch-clamp using human neurons derived from pluripotent stem cells.

    Science.gov (United States)

    Yuan, Nina Y; Poe, Michael M; Witzigmann, Christopher; Cook, James M; Stafford, Douglas; Arnold, Leggy A

    Automated patch clamp is a recent but widely used technology to assess pre-clinical drug safety. With the availability of human neurons derived from pluripotent stem cells, this technology can be extended to determine CNS effects of drug candidates, especially those acting on the GABA A receptor. iCell Neurons (Cellular Dynamics International, A Fujifilm Company) were cultured for ten days and analyzed by patch clamp in the presence of agonist GABA or in combination with positive allosteric GABA A receptor modulators. Both efficacy and affinity were determined. In addition, mRNA of GABA A receptor subunits were quantified by qRT-PCR. We have shown that iCell Neurons are compatible with the IonFlux microfluidic system of the automated patch clamp instrument. Resistance ranging from 15 to 25MΩ was achieved for each trap channel of patch clamped cells in a 96-well plate format. GABA induced a robust change of current with an EC 50 of 0.43μM. Positive GABA A receptor modulators diazepam, HZ-166, and CW-04-020 exhibited EC 50 values of 0.42μM, 1.56μM, and 0.23μM, respectively. The α2/α3/α5 selective compound HZ-166-induced the highest potentiation (efficacy) of 810% of the current induced by 100nM GABA. Quantification of GABA A receptor mRNA in iCell Neurons revealed high levels of α5 and β3 subunits and low levels of α1, which is similar to the configuration in human neonatal brain. iCell Neurons represent a new cellular model to characterize GABAergic compounds using automated patch clamp. These cells have excellent representation of cellular GABA A receptor distribution that enable determination of total small molecule efficacy and affinity as measured by cell membrane current change. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Distinct presynaptic regulation of dopamine release through NMDA receptors in striosome- and matrix-enriched areas of the rat striatum

    International Nuclear Information System (INIS)

    Krebs, M.O.; Trovero, F.; Desban, M.; Gauchy, C.; Glowinski, J.; Kemel, M.L.

    1991-01-01

    Striosome- and matrix-enriched striatal zones were defined in coronal and sagittal brain sections of the rat, on the basis of 3 H-naloxone binding to mu-opiate receptors (a striosome-specific marker). Then, using a new in vitro microsuperfusion device, the NMDA (50 microM)-evoked release of newly synthesized 3 H-dopamine ( 3 H-DA) was examined in these four striatal areas under Mg(2+)-free conditions. The amplitudes of the responses were different in striosomal (171 +/- 6% and 161 +/- 5% of the spontaneous release) than in matrix areas (223 +/- 6% and 248 +/- 12%), even when glycine (1 or 100 microM) was coapplied (in the presence of 1 microM strychnine). In the four areas, the NMDA-evoked release of 3 H-DA was blocked completely by Mg 2+ (1 mM) or (+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclohepten-5,10-imine maleate (MK-801; 1 microM) and almost totally abolished by kynurenate (100 microM). Because the tetrodotoxin (TTX)-resistant NMDA-evoked release of 3 H-DA was similar in striosome- (148 +/- 5% and 152 +/- 6%) or matrix-enriched (161 +/- 5% and 156 +/- 7%) areas, the indirect (TTX-sensitive) component of NMDA-evoked responses, which involves striatal neurons and/or afferent fibers, seems more important in the matrix- than in the striosome-enriched areas. The modulation of DA release by cortical glutamate and/or aspartate-containing inputs through NMDA receptors in the matrix appears thus to be partly distinct from that observed in the striosomes, providing some functional basis for the histochemical striatal heterogeneity

  6. Distinct presynaptic regulation of dopamine release through NMDA receptors in striosome- and matrix-enriched areas of the rat striatum

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, M.O.; Trovero, F.; Desban, M.; Gauchy, C.; Glowinski, J.; Kemel, M.L. (College de France, Paris (France))

    1991-05-01

    Striosome- and matrix-enriched striatal zones were defined in coronal and sagittal brain sections of the rat, on the basis of {sup 3}H-naloxone binding to mu-opiate receptors (a striosome-specific marker). Then, using a new in vitro microsuperfusion device, the NMDA (50 microM)-evoked release of newly synthesized {sup 3}H-dopamine ({sup 3}H-DA) was examined in these four striatal areas under Mg(2+)-free conditions. The amplitudes of the responses were different in striosomal (171 +/- 6% and 161 +/- 5% of the spontaneous release) than in matrix areas (223 +/- 6% and 248 +/- 12%), even when glycine (1 or 100 microM) was coapplied (in the presence of 1 microM strychnine). In the four areas, the NMDA-evoked release of {sup 3}H-DA was blocked completely by Mg{sup 2}{sup +} (1 mM) or (+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclohepten-5,10-imine maleate (MK-801; 1 microM) and almost totally abolished by kynurenate (100 microM). Because the tetrodotoxin (TTX)-resistant NMDA-evoked release of {sup 3}H-DA was similar in striosome- (148 +/- 5% and 152 +/- 6%) or matrix-enriched (161 +/- 5% and 156 +/- 7%) areas, the indirect (TTX-sensitive) component of NMDA-evoked responses, which involves striatal neurons and/or afferent fibers, seems more important in the matrix- than in the striosome-enriched areas. The modulation of DA release by cortical glutamate and/or aspartate-containing inputs through NMDA receptors in the matrix appears thus to be partly distinct from that observed in the striosomes, providing some functional basis for the histochemical striatal heterogeneity.

  7. The effects of repeated zolpidem treatment on tolerance, withdrawal-like symptoms, and GABAA receptor mRNAs profile expression in mice: comparison with diazepam.

    Science.gov (United States)

    Wright, Brittany T; Gluszek, Catherine F; Heldt, Scott A

    2014-08-01

    Zolpidem is a short-acting, non-benzodiazepine hypnotic that acts as a full agonist at α1-containing GABAA receptors. Overall, zolpidem purportedly has fewer instances of abuse and dependence than traditionally used benzodiazepines. However, several studies have shown that zolpidem may be more similar to benzodiazepines in terms of behavioral tolerance and withdrawal symptoms. In the current study, we examined whether subchronic zolpidem or diazepam administration produced deficits in zolpidem's locomotor-impairing effects, anxiety-like behaviors, and changes in GABAAR subunit messenger RNA (mRNA). Mice were given subchronic injections of either zolpidem (10 mg/kg), diazepam (20 mg/kg), or vehicle twice daily for 7 days. On day 8, mice were given a challenge dose of zolpidem (2 mg/kg) or vehicle before open field testing. Another set of mice underwent the same injection regimen but were sacrificed on day 8 for qRT-PCR analysis. We found that subchronic zolpidem and diazepam administration produced deficits in the acute locomotor-impairing effects of zolpidem and increased anxiety-like behaviors 1 day after drug termination. In addition, we found that subchronic treatment of zolpidem and diazepam induced distinct but overlapping GABAAR subunit mRNA changes in the cortex but few changes in the hippocampus, amygdala, or prefrontal cortex. Levels of mRNA measured in separate mice after a single injection of either zolpidem or diazepam revealed no mRNA changes. In mice, subchronic treatment of zolpidem and diazepam can produce deficits in the locomotor-impairing effects of zolpidem, anxiety-like withdrawal symptoms, and subunit-specific mRNA changes.

  8. Roles of taurine-mediated tonic GABAA receptor activation in the radial migration of neurons in the fetal mouse cerebral cortex

    Directory of Open Access Journals (Sweden)

    Tomonori eFurukawa

    2014-03-01

    Full Text Available γ-Aminobutyric acid (GABA depolarizes embryonic cerebrocortical neurons and continuous activation of the GABAA receptor (GABAAR contributes to their tonic depolarization. Although multiple reports have demonstrated a role of GABAAR activation in neocortical development, including in migration, most of these studies have used pharmacological blockers. Herein, we performed in utero electroporation in GABA synthesis-lacking homozygous GAD67-GFP knock-in mice (GAD67GFP/GFP to label neurons born in the ventricular zone. Three days after electroporation, there were no differences in the distribution of labeled cells between the genotypes. The dose-response properties of cells labeled to detect GABA were equivalent among genotypes. However, continuous blockade of GABAAR with the GABAAR antagonist SR95531 accelerated radial migration. This effect of GABAAR blockade in GAD67GFP/GFP mice suggested a role for alternative endogenous GABAAR agonists. Thus, we tested the role of taurine, which is derived from maternal blood but is abundant in the fetal brain. The taurine-evoked currents in labeled cells were mediated by GABAAR. Taurine uptake was blocked by a taurine transporter inhibitor, 2-(guanidinoethanesulfonic acid (GES, and taurine release was blocked by a volume-sensitive anion channel blocker, 4-(2-butyl-6,7-dichlor-2-cyclopentylindan-1-on-5-yl oxobutyric acid (DCPIB, as examined through high-performance liquid chromatography (HPLC. GES increased the extracellular taurine concentration and induced an inward shift of the holding current, which was reversed by SR95531. In a taurine-deficient mouse model, the GABAAR-mediated tonic currents were greatly reduced, and radial migration was accelerated. As the tonic currents were equivalent among the genotypes of GAD67-GFP knock-in mice, taurine, rather than GABA, might play a major role as an endogenous agonist of embryonic tonic GABAAR conductance, regulating the radial migration of neurons in the

  9. MAM-2201, a synthetic cannabinoid drug of abuse, suppresses the synaptic input to cerebellar Purkinje cells via activation of presynaptic CB1 receptors.

    Science.gov (United States)

    Irie, Tomohiko; Kikura-Hanajiri, Ruri; Usami, Makoto; Uchiyama, Nahoko; Goda, Yukihiro; Sekino, Yuko

    2015-08-01

    Herbal products containing synthetic cannabinoids-initially sold as legal alternatives to marijuana-have become major drugs of abuse. Among the synthetic cannabinoids, [1-(5-fluoropentyl)-1H-indol-3-yl](4-methyl-1-naphthalenyl)-methanone (MAM-2201) has been recently detected in herbal products and has psychoactive and intoxicating effects in humans, suggesting that MAM-2201 alters brain function. Nevertheless, the pharmacological actions of MAM-2201 on cannabinoid receptor type 1 (CB1R) and neuronal functions have not been elucidated. We found that MAM-2201 acted as an agonist of human CB1Rs expressed in AtT-20 cells. In whole-cell patch-clamp recordings made from Purkinje cells (PCs) in slice preparations of the mouse cerebellum, we also found that MAM-2201 inhibited glutamate release at parallel fiber-PC synapses via activation of presynaptic CB1Rs. MAM-2201 inhibited neurotransmitter release with an inhibitory concentration 50% of 0.36 μM. MAM-2201 caused greater inhibition of neurotransmitter release than Δ(9)-tetrahydrocannabinol within the range of 0.1-30 μM and JWH-018, one of the most popular and potent synthetic cannabinoids detected in the herbal products, within the range of 0.03-3 μM. MAM-2201 caused a concentration-dependent suppression of GABA release onto PCs. Furthermore, MAM-2201 induced suppression of glutamate release at climbing fiber-PC synapses, leading to reduced dendritic Ca(2+) transients in PCs. These results suggest that MAM-2201 is likely to suppress neurotransmitter release at CB1R-expressing synapses in humans. The reduction of neurotransmitter release from CB1R-containing synapses could contribute to some of the symptoms of synthetic cannabinoid intoxication including impairments in cerebellum-dependent motor coordination and motor learning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Augmentative effect of spinosin on pentobarbital-induced loss of righting reflex in mice associated with presynaptic 5-HT1A receptor.

    Science.gov (United States)

    Wang, Li-En; Zhang, Xue-Qiong; Yin, Yan-Qi; Zhang, Yong-He

    2012-02-01

    This study investigated whether spinosin potentiates pentobarbital-induced loss of righting reflex (LORR) in mice via 5-HT(1A) receptors. Our primary endpoint for sedation was LORR. In addition, the basal rectal temperature was measured. The results demonstrated that the 5-HT(1A) agonist 8-OH-DPAT (s.c.) induced reductions in duration of LORR at 0.1, 0.5 and 1.0 mg/kg (P pentobarbital (45 mg/kg, i.p.)-treated mice. This effect of 8-OH-DPAT was antagonized either by 5-HT(1A) antagonist p-MPPI (5 mg/kg, i.p.) or by spinosin (15 mg/kg, i.g.) with significance, respectively. Co-administration of spinosin and p-MPPI both at ineffective doses (spinosin at 5.0 mg/kg, i.g. and p-MPPI at 1.0 mg/kg, i.p.) showed significant augmentative effects in reducing latency to LORR, and increasing LORR duration (P pentobarbital-treated mice. On the other hand, spinosin inhibited 8-OH-DPAT-induced hypothermia, which has been generally attributed to the activation of somatodendritic 5-HT(1A) autoreceptors in mice. Based on our previous results and the present data, it should be presumed that presynaptic 5-HT(1A) autoreceptor mechanisms may be involved in the inhibitory effect of spinosin on 8-OH-DPAT-induced hypothermia and also in the potentiating effect of spinosin on pentobarbital-induced LORR in mice. © 2011 The Authors. JPP © 2011 Royal Pharmaceutical Society.

  11. p-Coumaric acid activates the GABA-A receptor in vitro and is orally anxiolytic in vivo.

    Science.gov (United States)

    Scheepens, Arjan; Bisson, Jean-Francois; Skinner, Margot

    2014-02-01

    The increasing prevalence and social burden of subclinical anxiety in the western world represents a significant psychosocial and financial cost. Consumers are favouring a more natural and nonpharmacological approach for alleviating the effects of everyday stress and anxiety. The gamma-aminobutyric acid (GABA) receptor is the primary mediator of central inhibitory neurotransmission, and GABA-receptor agonists are well known to convey anxiolytic effects. Using an in vitro screening approach to identify naturally occurring phytochemical GABA agonists, we discovered the plant secondary metabolite p-coumaric acid to have significant GABAergic activity, an effect that could be blocked by co-administration of the specific GABA-receptor antagonist, picrotoxin. Oral administration of p-coumaric acid to rodents induced a significant anxiolytic effect in vivo as measured using the elevated plus paradigm, in line with the effects of oral diazepam. Given that p-coumaric acid is reasonably well absorbed following oral consumption in man and is relatively nontoxic, it may be suitable for the formulation of a safe and effective anxiolytic functional food. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Neurosteroid effects at α4βδ GABAA receptors alter spatial learning and synaptic plasticity in CA1 hippocampus across the estrous cycle of the mouse.

    Science.gov (United States)

    Sabaliauskas, Nicole; Shen, Hui; Molla, Jonela; Gong, Qi Hua; Kuver, Aarti; Aoki, Chiye; Smith, Sheryl S

    2015-09-24

    Fluctuations in circulating levels of ovarian hormones have been shown to regulate cognition (Sherwin and Grigorova, 2011. Fertil. Steril. 96, 399-403; Shumaker et al., 2004. JAMA. 291, 2947-2958), but increases in estradiol on the day of proestrus yield diverse outcomes: In vivo induction of long-term potentiation (LTP), a model of learning, is reduced in the morning, but optimal in the afternoon (Warren et al., 1995. Brain Res. 703, 26-30). The mechanism underlying this discrepancy is not known. Here, we show that impairments in both CA1 hippocampal LTP and spatial learning observed on the morning of proestrus are due to increased dendritic expression of α4βδ GABAA receptors (GABARs) on CA1 pyramidal cells, as assessed by electron microscopic (EM) techniques, compared with estrus and diestrus. LTP induction and spatial learning were robust, however, when assessed on the morning of proestrus in α4-/- mice, implicating these receptors in mediating impaired plasticity. Although α4βδ expression remained elevated on the afternoon of proestrus, increases in 3α-OH-THP (3α-OH-5α-pregnan-20-one) decreased inhibition by reducing outward current through α4βδ GABARs (Shen et al., 2007. Nat. Neurosci. 10, 469-477), in contrast to the usual effect of this steroid to enhance inhibition. Proestrous levels of 3α-OH-THP reversed the deficits in LTP and spatial learning, an effect prevented by the inactive metabolite 3β-OH-THP (10 mg/kg, i.p.), which antagonizes actions of 3α-OH-THP. In contrast, administration of 3α-OH-THP (10 mg/kg, i.p.) on the morning of proestrus improved spatial learning scores 150-300%. These findings suggest that cyclic fluctuations in ovarian steroids can induce changes in cognition via α4βδ GABARs that are dependent upon 3α-OH-THP. This article is part of a Special Issue entitled SI: Brain and Memory. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. GABA receptor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Doo [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    GABA is primary an inhibitory neurotransmitter that is localized in inhibitory interneurons. GABA is released from presynaptic terminals and functions by binding to GABA receptors. There are two types of GABA receptors, GABA{sub A}-receptor that allows chloride to pass through a ligand gated ion channel and GABA{sub B}-receptor that uses G-proteins for signaling. The GABA{sub A}-receptor has a GABA binding site as well as a benzodiazepine binding sites, which modulate GABA{sub A}-receptor function. Benzodiazepine GABAA receptor imaging can be accomplished by radiolabeling derivates that activates benzodiazepine binding sites. There has been much research on flumazenil (FMZ) labeled with {sup 11}C-FMZ, a benzodiazepine derivate that is a selective, reversible antagonist to GABAA receptors. Recently, {sup 18}F-fluoroflumazenil (FFMZ) has been developed to overcome {sup 11}C's short half-life. {sup 18}F-FFMZ shows high selective affinity and good pharmacodynamics, and is a promising PET agent with better central benzodiazepine receptor imaging capabilities. In an epileptic focus, because the GABA/benzodiazepine receptor amount is decreased, using '1{sup 1}C-FMZ PET instead of {sup 18}F-FDG, PET, restrict the foci better and may also help find lesions better than high resolution MR. GABA{sub A} receptors are widely distributed in the cerebral cortex, and can be used as an viable neuronal marker. Therefore it can be used as a neuronal cell viability marker in cerebral ischemia. Also, GABA-receptors decrease in areas where neuronal plasticity develops, therefore, GABA imaging can be used to evaluate plasticity. Besides these usages, GABA receptors are related with psychological diseases, especially depression and schizophrenia as well as cerebral palsy, a motor-related disorder, so further in-depth studies are needed for these areas.

  14. GABA receptor imaging

    International Nuclear Information System (INIS)

    Lee, Jong Doo

    2007-01-01

    GABA is primary an inhibitory neurotransmitter that is localized in inhibitory interneurons. GABA is released from presynaptic terminals and functions by binding to GABA receptors. There are two types of GABA receptors, GABA A -receptor that allows chloride to pass through a ligand gated ion channel and GABA B -receptor that uses G-proteins for signaling. The GABA A -receptor has a GABA binding site as well as a benzodiazepine binding sites, which modulate GABA A -receptor function. Benzodiazepine GABAA receptor imaging can be accomplished by radiolabeling derivates that activates benzodiazepine binding sites. There has been much research on flumazenil (FMZ) labeled with 11 C-FMZ, a benzodiazepine derivate that is a selective, reversible antagonist to GABAA receptors. Recently, 18 F-fluoroflumazenil (FFMZ) has been developed to overcome 11 C's short half-life. 18 F-FFMZ shows high selective affinity and good pharmacodynamics, and is a promising PET agent with better central benzodiazepine receptor imaging capabilities. In an epileptic focus, because the GABA/benzodiazepine receptor amount is decreased, using '1 1 C-FMZ PET instead of 18 F-FDG, PET, restrict the foci better and may also help find lesions better than high resolution MR. GABA A receptors are widely distributed in the cerebral cortex, and can be used as an viable neuronal marker. Therefore it can be used as a neuronal cell viability marker in cerebral ischemia. Also, GABA-receptors decrease in areas where neuronal plasticity develops, therefore, GABA imaging can be used to evaluate plasticity. Besides these usages, GABA receptors are related with psychological diseases, especially depression and schizophrenia as well as cerebral palsy, a motor-related disorder, so further in-depth studies are needed for these areas

  15. Reduced GABAA receptor density contralateral to a potentially epileptogenic MRI abnormality in a patient with complex partial seizures

    International Nuclear Information System (INIS)

    Kuwert, T.; Stodieck, S.R.G.; Puskas, C.; Diehl, B.; Puskas, Z.; Schuierer, G.; Vollet, B.; Schober, O.

    1996-01-01

    Imaging cerebral GABA A receptor density (GRD) with single-photon emission tomography (SPET) and iodine-123 iomazenil is highly accurate in lateralizing epileptogenic foci in patients with complex partial seizures of temporal origin. Limited knowledge exists on how iomazenil SPET compares with magnetic resonance imaging (MRI) in this regard. We present a patient with complex partial seizures in whom MRI had identified an arachnoid cyst anterior to the tip of the left temporal lobe. Contralaterally to this structural abnormality, interictal electroencephalography (EEG) performed after sleep deprivation disclosed an intermittent frontotemporal dysrhythmic focus with slow and sharp waves. On iomazenil SPET images GRD was significantly reduced in the right temporal lobe and thus contralaterally to the MRI abnormality, but ipsilaterally to the pathological EEG findings. These data suggest that iomazenil SPET may significantly contribute to the presurgical evaluation of epileptic patients even when MRI identifies potentialy epileptogenic structural lesions. (orig.)

  16. Presynaptic nicotinic α7 and non-α7 receptors stimulate endogenous GABA release from rat hippocampal synaptosomes through two mechanisms of action.

    Directory of Open Access Journals (Sweden)

    Stefania Zappettini

    Full Text Available BACKGROUND: Although converging evidence has suggested that nicotinic acetylcholine receptors (nAChR play a role in the modulation of GABA release in rat hippocampus, the specific involvement of different nAChR subtypes at presynaptic level is still a matter of debate. In the present work we investigated, using selective α7 and α4β2 nAChR agonists, the presence of different nAChR subtypes on hippocampal GABA nerve endings to assess to what extent and through which mechanisms they stimulate endogenous GABA release. METHODOLOGY/FINDINGS: All agonists elicited GABA overflow. Choline (Ch-evoked GABA overflow was dependent to external Ca(2+, but unaltered in the presence of Cd(2+, tetrodotoxin (TTX, dihydro-β-erythroidine (DHβE and 1-(4,4-Diphenyl-3-butenyl-3-piperidinecarboxylic acid hydrochloride SKF 89976A. The effect of Ch was blocked by methyllycaconitine (MLA, α-bungarotoxin (α-BTX, dantrolene, thapsigargin and xestospongin C, suggesting that GABA release might be triggered by Ca(2+ entry into synaptosomes through the α7 nAChR channel with the involvement of calcium from intracellular stores. Additionally, 5-Iodo-A-85380 dihydrochloride (5IA85380 elicited GABA overflow, which was Ca(2+ dependent, blocked by Cd(2+, and significantly inhibited by TTX and DHβE, but unaffected by MLA, SKF 89976A, thapsigargin and xestospongin C and dantrolene. These findings confirm the involvement of α4β2 nAChR in 5IA85380-induced GABA release that seems to occur following membrane depolarization and opening calcium channels. CONCLUSIONS/SIGNIFICANCE: Rat hippocampal synaptosomes possess both α7 and α4β2 nAChR subtypes, which can modulate GABA release via two distinct mechanisms of action. The finding that GABA release evoked by the mixture of sub-maximal concentration of 5IA85380 plus sub-threshold concentrations of Ch was significantly larger than that elicited by the sum of the effects of the two agonists is compatible with the possibility that

  17. Frequency-dependent depression of excitatory synaptic transmission is independent of activation of MCPG-sensitive presynaptic metabotropic glutamate receptors in cultured hippocampal neurons.

    Science.gov (United States)

    Maki, R; Cummings, D D; Dichter, M A

    1995-10-01

    1. A paired-pulse paradigm, and a high-frequency train followed by a test pulse, were used to investigate the possible role of presynaptic metabotropic glutamate receptors (mGluRs) in frequency-dependent modulation of the amplitude of excitatory post-synaptic currents (EPSCs). Paired whole cell patch-clamp recordings from monosynaptically connected hippocampal neurons maintained in very low-density cultures were performed, using the mGluR antagonist (RS)-alpha-methyl-4-carboxyphenylglycine (MCPG, 500 microM) and the mGluR agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid [(1S,3R)-ACPD, 100 microM]. 2. Paired-pulse depression (PPD) was observed in all the excitatory pairs recorded. The average PPD ratio (amplitude of the 2nd EPSC divided by the amplitude of the 1st EPSC) was 0.80 +/- 0.1 (SD) (n = 8). Application of the mGluR antagonist MCPG had no effect on the amplitude of the EPSCs and did not affect the ratio of the two EPSCs (PPD ratio 0.79 +/- 0.2). 3. The amplitudes of 10 successive EPSCs stimulated at a high frequency (20 Hz) decremented on average in both 4 mM extracellular Ca2+ (n = 5) and in 1 mM extracellular Ca2+ (n = 6). In all pairs tested, posttetanic depression (PTD) was observed (PTD ratio 0.7 +/- 0.2). Bath application of MCPG (500 microM) did not affect the amplitudes of the EPSCs during the train; MCPG also did not affect PTD. 4. The mGluR agonist (1S,3R)-ACPD depressed the amplitudes of the EPSCs in both the paired-pulse (1st EPSC, 35 +/- 9%; 2nd EPSC, 36 +/- 10%) and posttetanic pulse (1 and 4 mM extracellular Ca2+) paradigms. The amount of depression observed, both PPD and PTD, remained unaffected by application of (1S,3R)-ACPD. Coapplication of the antagonist MCPG (500 microM) blocked the effects of (1S,3R)-ACPD (100 microM). 5. We conclude that frequency-dependent depression of EPSC amplitudes occurs independent of endogenous activation of MCPG-sensitive mGluRs in cultured hippocampal neurons. Moreover, we demonstrate that exogenous

  18. GABAA receptor subunit expression changes in the human Alzheimer's disease hippocampus, subiculum, entorhinal cortex and superior temporal gyrus.

    Science.gov (United States)

    Kwakowsky, Andrea; Calvo-Flores Guzmán, Beatriz; Pandya, Madhavi; Turner, Clinton; Waldvogel, Henry J; Faull, Richard L

    2018-02-27

    Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system. GABA type A receptors (GABA A Rs) are severely affected in Alzheimer's disease (AD). However, the distribution and subunit composition of GABA A Rs in the AD brain are not well understood. This is the first comprehensive study to show brain region- and cell layer-specific alterations in the expression of the GABA A R subunits α1-3, α5, β1-3 and γ2 in the human AD hippocampus, entorhinal cortex and superior temporal gyrus (STG). In late-stage AD tissue samples using immunohistochemistry we found significant alteration of all investigated GABA A Rs subunits except for α3 and β1 that were well preserved. The most prominent changes include an increase in GABA A R α1 expression associated with AD in all layers of the CA3 region, in the stratum (str.) granulare and hilus of the dentate gyrus (DG). We found a significant increase in GABA A R α2 expression in the str. oriens of the CA1-3, str. radiatum of the CA2,3 and decrease in the str. pyramidale of the CA1 region in AD cases. In AD there was a significant increase in GABA A R α5 subunit expression in str. pyramidale, str. oriens of the CA1 region and decrease in the STG. We also found a significant decrease in the GABA A R β3 subunit immunoreactivity in the str. oriens of the CA2, str. granulare and str. moleculare of the DG. In conclusion, these findings indicate that the expression of the GABA A R subunits shows brain region- and layer-specific alterations in AD, and these changes could significantly influence and alter GABA A R function in the disease. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Increased GABA(A receptor ε-subunit expression on ventral respiratory column neurons protects breathing during pregnancy.

    Directory of Open Access Journals (Sweden)

    Keith B Hengen

    Full Text Available GABAergic signaling is essential for proper respiratory function. Potentiation of this signaling with allosteric modulators such as anesthetics, barbiturates, and neurosteroids can lead to respiratory arrest. Paradoxically, pregnant animals continue to breathe normally despite nearly 100-fold increases in circulating neurosteroids. ε subunit-containing GABA(ARs are insensitive to positive allosteric modulation, thus we hypothesized that pregnant rats increase ε subunit-containing GABA(AR expression on brainstem neurons of the ventral respiratory column (VRC. In vivo, pregnancy rendered respiratory motor output insensitive to otherwise lethal doses of pentobarbital, a barbiturate previously used to categorize the ε subunit. Using electrode array recordings in vitro, we demonstrated that putative respiratory neurons of the preBötzinger Complex (preBötC were also rendered insensitive to the effects of pentobarbital during pregnancy, but unit activity in the VRC was rapidly inhibited by the GABA(AR agonist, muscimol. VRC unit activity from virgin and post-partum females was potently inhibited by both pentobarbital and muscimol. Brainstem ε subunit mRNA and protein levels were increased in pregnant rats, and GABA(AR ε subunit expression co-localized with a marker of rhythm generating neurons (neurokinin 1 receptors in the preBötC. These data support the hypothesis that pregnancy renders respiratory motor output and respiratory neuron activity insensitive to barbiturates, most likely via increased ε subunit-containing GABA(AR expression on respiratory rhythm-generating neurons. Increased ε subunit expression may be critical to preserve respiratory function (and life despite increased neurosteroid levels during pregnancy.

  20. Subunit compensation and plasticity of synaptic GABAA receptors induced by ethanol in α4 subunit knockout mice

    Directory of Open Access Journals (Sweden)

    Asha eSuryanarayanan

    2011-09-01

    Full Text Available There is considerable evidence that ethanol (EtOH potentiates γ-aminobutyric acid type A receptor (GABAAR action, but only GABAARs containing δ subunits appear sensitive to low mM EtOH. The α4 and δ subunits co-assemble into GABAARs which are relatively highly expressed at extrasynaptic locations in the dentate gyrus where they mediate tonic inhibition. We previously demonstrated reversible- and time-dependent changes in GABAAR function and subunit composition in rats after single-dose EtOH intoxication. We concluded that early tolerance to EtOH occurs by over-activation and subsequent internalization of EtOH-sensitive extrasynaptic α4βδ-GABAARs. Based on this hypothesis, any highly EtOH-sensitive GABAARs should be subject to internalization following exposure to suitably high EtOH doses. To test this, we studied the GABAARs in mice with a global deletion of the α4 subunit (KO. The dentate granule cells (DGCs of these mice exhibited greatly reduced tonic currents and greatly reduced potentiation by acutely applied EtOH, whereas synaptic currents showed heightened sensitivity to low EtOH concentrations. The hippocampus of naive KO mice showed reduced δ subunit protein levels, but increased α2, and γ2 levels compared to wild-type (WT controls, suggesting at least partial compensation by these subunits in synaptic, highly EtOH-sensitive GABAARs of KO mice. In WT mice, cross-linking and Western blot analysis at 1 h after an EtOH challenge (3.5 g/kg, i.p. revealed increased intracellular fraction of the α1, α4 and δ, but not α2, α5 or γ2 subunits. By contrast, we observed significant internalization of α1, α2, δ, and γ2 subunits after a similar EtOH challenge in KO mice. Synaptic currents from naïve KO mice were more sensitive to potentiation by zolpidem (0.3 μM, requiring α1/α2, inactive at α4/5 GABAARs than those from naïve WT mice. At 1 h after EtOH, synaptic currents of WT mice were unchanged, whereas those of KO mice

  1. Progesterone Exerts a Neuromodulatory Effect on Turning Behavior of Hemiparkinsonian Male Rats: Expression of 3α-Hydroxysteroid Oxidoreductase and Allopregnanolone as Suggestive of GABAA Receptors Involvement

    Directory of Open Access Journals (Sweden)

    Roberto Yunes

    2015-01-01

    Full Text Available There is a growing amount of evidence for a neuroprotective role of progesterone and its neuroactive metabolite, allopregnanolone, in animal models of neurodegenerative diseases. By using a model of hemiparkinsonism in male rats, injection of the neurotoxic 6-OHDA in left striatum, we studied progesterone’s effects on rotational behavior induced by amphetamine or apomorphine. Also, in order to find potential explanatory mechanisms, we studied expression and activity of nigrostriatal 3α-hydroxysteroid oxidoreductase, the enzyme that catalyzes progesterone to its active metabolite allopregnanolone. Coherently, we tested allopregnanolone for a possible neuromodulatory effect on rotational behavior. Also, since allopregnanolone is known as a GABAA modulator, we finally examined the action of GABAA antagonist bicuculline. We found that progesterone, in addition to an apparent neuroprotective effect, also increased ipsilateral expression and activity of 3α-hydroxysteroid oxidoreductase. It was interesting to note that ipsilateral administration of allopregnanolone reversed a clear sign of motor neurodegeneration, that is, contralateral rotational behavior. A possible GABAA involvement modulated by allopregnanolone was shown by the blocking effect of bicuculline. Our results suggest that early administration of progesterone possibly activates genomic mechanisms that promote neuroprotection subchronically. This, in turn, could be partially mediated by fast, nongenomic, actions of allopregnanolone acting as an acute modulator of GABAergic transmission.

  2. Neonatal domoic acid increases receptor density of α2 adrenoceptors and GABAA α5 receptors in limbic brain regions of adult rats

    DEFF Research Database (Denmark)

    Thomsen, Majken; Lillethorup, Thea Pinholt; Wegener, Gregers

    -14 with saline or low sub-convulsive doses of the glutamate agonist DOM (20µg/kg), weaned on day 22 and left undisturbed except for routine husbandry. At ~120 days of age the rats were euthanized by decapitation. The brains were removed, frozen in isopentane/dry ice and cut into 20 µM thick slices. Receptor...

  3. Muscarinic Long-Term Enhancement of Tonic and Phasic GABAA Inhibition in Rat CA1 Pyramidal Neurons

    Science.gov (United States)

    Domínguez, Soledad; Fernández de Sevilla, David; Buño, Washington

    2016-01-01

    Acetylcholine (ACh) regulates network operation in the hippocampus by controlling excitation and inhibition in rat CA1 pyramidal neurons (PCs), the latter through gamma-aminobutyric acid type-A receptors (GABAARs). Although, the enhancing effects of ACh on GABAARs have been reported (Dominguez et al., 2014, 2015), its role in regulating tonic GABAA inhibition has not been explored in depth. Therefore, we aimed at determining the effects of the activation of ACh receptors on responses mediated by synaptic and extrasynaptic GABAARs. Here, we show that under blockade of ionotropic glutamate receptors ACh, acting through muscarinic type 1 receptors, paired with post-synaptic depolarization induced a long-term enhancement of tonic GABAA currents (tGABAA) and puff-evoked GABAA currents (pGABAA). ACh combined with depolarization also potentiated IPSCs (i.e., phasic inhibition) in the same PCs, without signs of interactions of synaptic responses with pGABAA and tGABAA, suggesting the contribution of two different GABAA receptor pools. The long-term enhancement of GABAA currents and IPSCs reduced the excitability of PCs, possibly regulating plasticity and learning in behaving animals. PMID:27833531

  4. Presynaptic muscarinic acetylcholine autoreceptors (M1, M2 and M4 subtypes), adenosine receptors (A1 and A2A) and tropomyosin-related kinase B receptor (TrkB) modulate the developmental synapse elimination process at the neuromuscular junction.

    Science.gov (United States)

    Nadal, Laura; Garcia, Neus; Hurtado, Erica; Simó, Anna; Tomàs, Marta; Lanuza, Maria A; Santafé, Manel; Tomàs, Josep

    2016-06-23

    The development of the nervous system involves an initially exuberant production of neurons that make an excessive number of synaptic contacts. The initial overproduction of synapses promotes connectivity. Hebbian competition between axons with different activities (the least active are punished) leads to the loss of roughly half of the overproduced elements and this refines connectivity and increases specificity. The neuromuscular junction is innervated by a single axon at the end of the synapse elimination process and, because of its relative simplicity, has long been used as a model for studying the general principles of synapse development. The involvement of the presynaptic muscarinic ACh autoreceptors may allow for the direct competitive interaction between nerve endings through differential activity-dependent acetylcholine release in the synaptic cleft. Then, the most active ending may directly punish the less active ones. Our previous results indicate the existence in the weakest axons on the polyinnervated neonatal NMJ of an ACh release inhibition mechanism based on mAChR coupled to protein kinase C and voltage-dependent calcium channels. We suggest that this mechanism plays a role in the elimination of redundant neonatal synapses. Here we used confocal microscopy and quantitative morphological analysis to count the number of brightly fluorescent axons per endplate in P7, P9 and P15 transgenic B6.Cg-Tg (Thy1-YFP)16 Jrs/J mice. We investigate the involvement of individual mAChR M1-, M2- and M4-subtypes in the control of axonal elimination after the Levator auris longus muscle had been exposed to agonist and antagonist in vivo. We also analysed the role of adenosine receptor subtypes (A1 and A2A) and the tropomyosin-related kinase B receptor. The data show that postnatal axonal elimination is a regulated multireceptor mechanism that guaranteed the monoinnervation of the neuromuscular synapses. The three receptor sets considered (mAChR, AR and TrkB receptors

  5. Zolpidem, a selective GABA(A) receptor alpha1 subunit agonist, induces comparable Fos expression in oxytocinergic neurons of the hypothalamic paraventricular and accessory but not supraoptic nuclei in the rat

    DEFF Research Database (Denmark)

    Kiss, Alexander; Søderman, Andreas; Bundzikova, Jana

    2006-01-01

    Functional activation of oxytocinergic (OXY) cells in the hypothalamic paraventricular (PVN), supraoptic (SON), and accessory (ACC) nuclei was investigated in response to acute treatment with Zolpidem (a GABA(A) receptor agonist with selectivity for alpha(1) subunits) utilizing dual Fos...... contemporaneousness within the cells of the principal and accessory magnocellular nuclei in response to Zolpidem treatment. The present study provides a comparative background that may help in the further understanding of a possible extend of Zolpidem effect on the brain...... significant activations were also seen in certain groups of accessory structures including the circular nucleus (13.99+/-3.43%), small clusters of accessory neurons (10.55+/-1.94%), and the lateral hypothalamic perivascular nucleus (9.42+/-2.74%). Between the naive and vehicle controls, the dual Fos...

  6. Signal regulatory proteins (SIRPS) are secreted presynaptic organizing molecules.

    Science.gov (United States)

    Umemori, Hisashi; Sanes, Joshua R

    2008-12-05

    Formation of chemical synapses requires exchange of organizing signals between the synaptic partners. Using synaptic vesicle aggregation in cultured neurons as a marker of presynaptic differentiation, we purified candidate presynaptic organizers from mouse brain. A major bioactive species was the extracellular domain of signal regulatory protein alpha (SIRP-alpha), a transmembrane immunoglobulin superfamily member concentrated at synapses. The extracellular domain of SIRP-alpha is cleaved and shed in a developmentally regulated manner. The presynaptic organizing activity of SIRP-alpha is mediated in part by CD47. SIRP-alpha homologues, SIRP-beta and -gamma also have synaptic vesicle clustering activity. The effects of SIRP-alpha are distinct from those of another presynaptic organizer, FGF22: the two proteins induced vesicle clusters of different sizes, differed in their ability to promote neurite branching, and acted through different receptors and signaling pathways. SIRP family proteins may act together with other organizing molecules to pattern synapses.

  7. Presynaptic molecular determinants of quantal size

    Directory of Open Access Journals (Sweden)

    Shigeo eTakamori

    2016-02-01

    Full Text Available The quantal hypothesis for the release of neurotransmitters at the chemical synapse has gained wide acceptance since it was first worked out at the motor endplate in frog skeletal muscle in the 1950s. Considering the morphological identification of synaptic vesicles at the nerve terminals that appeared to be homogeneous in size, the hypothesis proposed that signal transduction at synapses is mediated by the release of neurotransmitters packed in synaptic vesicles that are individually uniform in size; the amount of transmitter in a synaptic vesicle is called a quantum. Although quantal size – the amplitude of the postsynaptic response elicited by the release of neurotransmitters from a single vesicle – clearly depends on the number and sensitivity of the postsynaptic receptors, accumulating evidence has also indicated that the amount of neurotransmitters stored in synaptic vesicles can be altered by various presynaptic factors. Here, I provide an overview of the concepts and underlying presynaptic molecular underpinnings that may regulate quantal size.

  8. GABAB receptor deficiency causes failure of neuronal homeostasis in hippocampal networks.

    Science.gov (United States)

    Vertkin, Irena; Styr, Boaz; Slomowitz, Edden; Ofir, Nir; Shapira, Ilana; Berner, David; Fedorova, Tatiana; Laviv, Tal; Barak-Broner, Noa; Greitzer-Antes, Dafna; Gassmann, Martin; Bettler, Bernhard; Lotan, Ilana; Slutsky, Inna

    2015-06-23

    Stabilization of neuronal activity by homeostatic control systems is fundamental for proper functioning of neural circuits. Failure in neuronal homeostasis has been hypothesized to underlie common pathophysiological mechanisms in a variety of brain disorders. However, the key molecules regulating homeostasis in central mammalian neural circuits remain obscure. Here, we show that selective inactivation of GABAB, but not GABA(A), receptors impairs firing rate homeostasis by disrupting synaptic homeostatic plasticity in hippocampal networks. Pharmacological GABA(B) receptor (GABA(B)R) blockade or genetic deletion of the GB(1a) receptor subunit disrupts homeostatic regulation of synaptic vesicle release. GABA(B)Rs mediate adaptive presynaptic enhancement to neuronal inactivity by two principle mechanisms: First, neuronal silencing promotes syntaxin-1 switch from a closed to an open conformation to accelerate soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly, and second, it boosts spike-evoked presynaptic calcium flux. In both cases, neuronal inactivity removes tonic block imposed by the presynaptic, GB(1a)-containing receptors on syntaxin-1 opening and calcium entry to enhance probability of vesicle fusion. We identified the GB(1a) intracellular domain essential for the presynaptic homeostatic response by tuning intermolecular interactions among the receptor, syntaxin-1, and the Ca(V)2.2 channel. The presynaptic adaptations were accompanied by scaling of excitatory quantal amplitude via the postsynaptic, GB(1b)-containing receptors. Thus, GABA(B)Rs sense chronic perturbations in GABA levels and transduce it to homeostatic changes in synaptic strength. Our results reveal a novel role for GABA(B)R as a key regulator of population firing stability and propose that disruption of homeostatic synaptic plasticity may underlie seizure's persistence in the absence of functional GABA(B)Rs.

  9. Synapse-specific and compartmentalized expression of presynaptic homeostatic potentiation.

    Science.gov (United States)

    Li, Xiling; Goel, Pragya; Chen, Catherine; Angajala, Varun; Chen, Xun; Dickman, Dion K

    2018-04-05

    Postsynaptic compartments can be specifically modulated during various forms of synaptic plasticity, but it is unclear whether this precision is shared at presynaptic terminals. Presynaptic Homeostatic Plasticity (PHP) stabilizes neurotransmission at the Drosophila neuromuscular junction, where a retrograde enhancement of presynaptic neurotransmitter release compensates for diminished postsynaptic receptor functionality. To test the specificity of PHP induction and expression, we have developed a genetic manipulation to reduce postsynaptic receptor expression at one of the two muscles innervated by a single motor neuron. We find that PHP can be induced and expressed at a subset of synapses, over both acute and chronic time scales, without influencing transmission at adjacent release sites. Further, homeostatic modulations to CaMKII, vesicle pools, and functional release sites are compartmentalized and do not spread to neighboring pre- or post-synaptic structures. Thus, both PHP induction and expression mechanisms are locally transmitted and restricted to specific synaptic compartments. © 2018, Li et al.

  10. Glycolysis selectively shapes the presynaptic action potential waveform.

    Science.gov (United States)

    Lujan, Brendan; Kushmerick, Christopher; Banerjee, Tania Das; Dagda, Ruben K; Renden, Robert

    2016-12-01

    Mitochondria are major suppliers of cellular energy in neurons; however, utilization of energy from glycolysis vs. mitochondrial oxidative phosphorylation (OxPhos) in the presynaptic compartment during neurotransmission is largely unknown. Using presynaptic and postsynaptic recordings from the mouse calyx of Held, we examined the effect of acute selective pharmacological inhibition of glycolysis or mitochondrial OxPhos on multiple mechanisms regulating presynaptic function. Inhibition of glycolysis via glucose depletion and iodoacetic acid (1 mM) treatment, but not mitochondrial OxPhos, rapidly altered transmission, resulting in highly variable, oscillating responses. At reduced temperature, this same treatment attenuated synaptic transmission because of a smaller and broader presynaptic action potential (AP) waveform. We show via experimental manipulation and ion channel modeling that the altered AP waveform results in smaller Ca 2+ influx, resulting in attenuated excitatory postsynaptic currents (EPSCs). In contrast, inhibition of mitochondria-derived ATP production via extracellular pyruvate depletion and bath-applied oligomycin (1 μM) had no significant effect on Ca 2+ influx and did not alter the AP waveform within the same time frame (up to 30 min), and the resultant EPSC remained unaffected. Glycolysis, but not mitochondrial OxPhos, is thus required to maintain basal synaptic transmission at the presynaptic terminal. We propose that glycolytic enzymes are closely apposed to ATP-dependent ion pumps on the presynaptic membrane. Our results indicate a novel mechanism for the effect of hypoglycemia on neurotransmission. Attenuated transmission likely results from a single presynaptic mechanism at reduced temperature: a slower, smaller AP, before and independent of any effect on synaptic vesicle release or receptor activity. Copyright © 2016 the American Physiological Society.

  11. A multilevel prediction of physiological response to challenge: Interactions among child maltreatment, neighborhood crime, endothelial nitric oxide synthase gene (eNOS), and GABA(A) receptor subunit alpha-6 gene (GABRA6).

    Science.gov (United States)

    Lynch, Michael; Manly, Jody Todd; Cicchetti, Dante

    2015-11-01

    Physiological response to stress has been linked to a variety of healthy and pathological conditions. The current study conducted a multilevel examination of interactions among environmental toxins (i.e., neighborhood crime and child maltreatment) and specific genetic polymorphisms of the endothelial nitric oxide synthase gene (eNOS) and GABA(A) receptor subunit alpha-6 gene (GABRA6). One hundred eighty-six children were recruited at age 4. The presence or absence of child maltreatment as well as the amount of crime that occurred in their neighborhood during the previous year were determined at that time. At age 9, the children were brought to the lab, where their physiological response to a cognitive challenge (i.e., change in the amplitude of the respiratory sinus arrhythmia) was assessed and DNA samples were collected for subsequent genotyping. The results confirmed that complex Gene × Gene, Environment × Environment, and Gene × Environment interactions were associated with different patterns of respiratory sinus arrhythmia reactivity. The implications for future research and evidence-based intervention are discussed.

  12. Involvement of medial septal glutamate and GABA(A) receptors in behaviour-induced acetylcholine release in the hippocampus : A dual probe microdialysis study

    NARCIS (Netherlands)

    Moor, E; Schirm, E; Jacso, J; Westerink, BHC

    1998-01-01

    In the present study, the role of medial septal receptors in behaviour-induced increase in acetylcholine (ACh) release in hippocampus was investigated using dual-probe microdialysis in combination with a simple behavioural procedure, gamma-Aminobutyric acid (GABA) and glutamate receptor agonists and

  13. Rat intra-hippocampal NMDA infusion induces cell-specific damage and changes in expression of NMDA and GABA(A) receptor subunits

    Czech Academy of Sciences Publication Activity Database

    Rambousek, Lukáš; Kletečková, Lenka; Kubesová, A.; Jirák, D.; Valeš, Karel; Fritschy, J.M.

    2016-01-01

    Roč. 105, Jun (2016), s. 594-606 ISSN 0028-3908 R&D Projects: GA ČR(CZ) GBP304/12/G069; GA ČR(CZ) GA14-20613S; GA ČR(CZ) GAP303/12/1464 Institutional support: RVO:67985823 Keywords : excitotoxicity * NMDA receptor * GABA A receptor * hippocampus * neuroinflammation * neurodegeneration * interneurons * spatial learning * carousel maze Subject RIV: FH - Neurology Impact factor: 5.012, year: 2016

  14. Phospho-dependent binding of the clathrin AP2 adaptor complex to GABAA receptors regulates the efficacy of inhibitory synaptic transmission

    OpenAIRE

    Kittler, Josef T.; Chen, Guojun; Honing, Stephan; Bogdanov, Yury; McAinsh, Kristina; Arancibia-Carcamo, I. Lorena; Jovanovic, Jasmina N.; Pangalos, Menelas N.; Haucke, Volker; Yan, Zhen; Moss, Stephen J.

    2005-01-01

    The efficacy of synaptic inhibition depends on the number of γ-aminobutyric acid type A receptors (GABAARs) expressed on the cell surface of neurons. The clathrin adaptor protein 2 (AP2) complex is a critical regulator of GABAAR endocytosis and, hence, surface receptor number. Here, we identify a previously uncharacterized atypical AP2 binding motif conserved within the intracellular domains of all GABAAR β subunit isoforms. This AP2 binding motif (KTHLRRRSSQLK in the β3 subunit) incorporates...

  15. Wash-Resistantly Bound Xanomeline Inhibits Acetylcholine Release by Persistent Activation of Presynaptic M2 and M4 Muscarinic Receptors in Rat Brain

    Czech Academy of Sciences Publication Activity Database

    Machová, Eva; Jakubík, Jan; El-Fakahany, E. E.; Doležal, Vladimír

    2007-01-01

    Roč. 322, č. 1 (2007), s. 316-323 ISSN 0022-3565 R&D Projects: GA ČR(CZ) GA305/05/0452; GA MŠk(CZ) LC554 Grant - others:-(US) NS25743 Institutional research plan: CEZ:AV0Z50110509 Keywords : acetylcholine * xanomeline * muscarinic receptor Subject RIV: ED - Physiology Impact factor: 4.003, year: 2007

  16. The GABAA receptor α and β subunits but not the density of muscimol binding sites are altered in the auditory-linguistic association cortex of subjects with schizophrenia

    International Nuclear Information System (INIS)

    Farnbach-Pralong, D.; Bradbury, R.; Tomaskovic, E.; Copolov, D.; Dean, B.

    1998-01-01

    Full text: An increase in the density of postsynaptic GABA A receptors has recently been reported in the prefrontal cortex of subjects with schizophrenia. This increase has been hypothesised to represent an up-regulation in response a decrease in the density of GABAergic interneurons. In order to determine whether the GABA A receptor is also altered in the auditory-linguistic association cortex of the schizophrenic brain, we used quantitative autoradiography to measure the density of that receptor in tissue obtained at autopsy from 20 control subjects and 20 subjects with schizophrenia matched for sex and age. The density of GABA A receptors was measured as the difference in the binding of the specific ligand [ 3 H]muscimol (100 nM) in the presence or in the absence of 10 5 M SR95531. There was no significant difference in the density of [ 3 H]muscimol binding between tissue from schizophrenic (554.9±20,5 fmol/mg TE) and non-schizophrenic (580.1±26.2 fmol/mg TE) subjects. The abundance of the α and β subunits of the GABA A receptor was also measured in particulate membranes prepared from tissue from 6 control and 6 schizophrenic subjects using Western blots. Detection with monoclonal antibodies and chemiluminescence showed that in tissue from control subjects, there was a significant correlation between the levels of α and β subunits (r=0.817, p=0.047). However, there was no such correlation in tissue from schizophrenic subjects (r=0.265, p=0.61), where in 2 subjects large levels of β-subunit were not matched by similar levels of α subunit. These preliminary results suggest mat there may be a failure for up-regulated GABA A receptor subunits to assemble into functional receptors in this brain region for some subjects with schizophrenia. Copyright (1998) Australian Neuroscience Society

  17. Dysfunctional Presynaptic M2 Receptors in the Presence of Chronically High Acetylcholine Levels: Data from the PRiMA Knockout Mouse.

    Science.gov (United States)

    Mohr, Franziska; Krejci, Eric; Zimmermann, Martina; Klein, Jochen

    2015-01-01

    The muscarinic M2 receptor (M2R) acts as a negative feedback regulator in central cholinergic systems. Activation of the M2 receptor limits acetylcholine (ACh) release, especially when ACh levels are increased because acetylcholinesterase (AChE) activity is acutely inhibited. Chronically high ACh levels in the extracellular space, however, were reported to down-regulate M2R to various degrees. In the present study, we used the PRiMA knockout mouse which develops severely reduced AChE activity postnatally to investigate ACh release, and we used microdialysis to investigate whether the function of M2R to reduce ACh release in vivo was impaired in adult PRiMA knockout mice. We first show that striatal and hippocampal ACh levels, while strongly increased, still respond to AChE inhibitors. Infusion or injection of oxotremorine, a muscarinic M2 agonist, reduced ACh levels in wild-type mice but did not significantly affect ACh levels in PRiMA knockout mice or in wild-type mice in which ACh levels were artificially increased by infusion of neostigmine. Scopolamine, a muscarinic antagonist, increased ACh levels in wild-type mice receiving neostigmine, but not in wild-type mice or in PRiMA knockout mice. These results demonstrate that M2R are dysfunctional and do not affect ACh levels in PRiMA knockout mice, likely because of down-regulation and/or loss of receptor-effector coupling. Remarkably, this loss of function does not affect cognitive functions in PRiMA knockout mice. Our results are discussed in the context of AChE inhibitor therapy as used in dementia.

  18. GLP-1 and Exendin-4 Transiently Enhance GABA(A) Receptor-Mediated Synaptic and Tonic Currents in Rat Hippocampal CA3 Pyramidal Neurons

    OpenAIRE

    Korol, Sergiy V.; Jin, Zhe; Babateen, Omar; Birnir, Bryndis

    2015-01-01

    GLP-1 is a hormone that stimulates insulin secretion. Receptors for GLP-1 are also found in the brain, including the hippocampus, the centre for memory and learning. Diabetes mellitus is a risk factor for decreased memory functions. We studied effects of GLP-1 and exendin-4, a GLP-1 receptor agonist, on γ-aminobutyric acid (GABA) signaling in hippocampal CA3 pyramidal neurons. GABA is the main inhibitory neurotransmitter and decreases neuronal excitability. GLP-1 (0.01 – 1 nmol/L) transiently...

  19. Repeated intermittent alcohol exposure during the third trimester-equivalent increases expression of the GABA(A) receptor δ subunit in cerebellar granule neurons and delays motor development in rats.

    Science.gov (United States)

    Diaz, Marvin R; Vollmer, Cyndel C; Zamudio-Bulcock, Paula A; Vollmer, William; Blomquist, Samantha L; Morton, Russell A; Everett, Julie C; Zurek, Agnieszka A; Yu, Jieying; Orser, Beverley A; Valenzuela, C Fernando

    2014-04-01

    Exposure to ethanol (EtOH) during fetal development can lead to long-lasting alterations, including deficits in fine motor skills and motor learning. Studies suggest that these are, in part, a consequence of cerebellar damage. Cerebellar granule neurons (CGNs) are the gateway of information into the cerebellar cortex. Functionally, CGNs are heavily regulated by phasic and tonic GABAergic inhibition from Golgi cell interneurons; however, the effect of EtOH exposure on the development of GABAergic transmission in immature CGNs has not been investigated. To model EtOH exposure during the 3rd trimester-equivalent of human pregnancy, neonatal pups were exposed intermittently to high levels of vaporized EtOH from postnatal day (P) 2 to P12. This exposure gradually increased pup serum EtOH concentrations (SECs) to ∼60 mM (∼0.28 g/dl) during the 4 h of exposure. EtOH levels gradually decreased to baseline 8 h after the end of exposure. Surprisingly, basal tonic and phasic GABAergic currents in CGNs were not significantly affected by postnatal alcohol exposure (PAE). However, PAE increased δ subunit expression at P28 as detected by immunohistochemical and western blot analyses. Also, electrophysiological studies with an agonist that is highly selective for δ-containing GABA(A) receptors, 4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridine-3-ol (THIP), showed an increase in THIP-induced tonic current. Behavioral studies of PAE rats did not reveal any deficits in motor coordination, except for a delay in the acquisition of the mid-air righting reflex that was apparent at P15 to P18. These findings demonstrate that repeated intermittent exposure to high levels of EtOH during the equivalent of the last trimester of human pregnancy has significant but relatively subtle effects on motor coordination and GABAergic transmission in CGNs in rats. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Phospho-dependent binding of the clathrin AP2 adaptor complex to GABAA receptors regulates the efficacy of inhibitory synaptic transmission.

    Science.gov (United States)

    Kittler, Josef T; Chen, Guojun; Honing, Stephan; Bogdanov, Yury; McAinsh, Kristina; Arancibia-Carcamo, I Lorena; Jovanovic, Jasmina N; Pangalos, Menelas N; Haucke, Volker; Yan, Zhen; Moss, Stephen J

    2005-10-11

    The efficacy of synaptic inhibition depends on the number of gamma-aminobutyric acid type A receptors (GABA(A)Rs) expressed on the cell surface of neurons. The clathrin adaptor protein 2 (AP2) complex is a critical regulator of GABA(A)R endocytosis and, hence, surface receptor number. Here, we identify a previously uncharacterized atypical AP2 binding motif conserved within the intracellular domains of all GABA(A)R beta subunit isoforms. This AP2 binding motif (KTHLRRRSSQLK in the beta3 subunit) incorporates the major sites of serine phosphorylation within receptor beta subunits, and phosphorylation within this site inhibits AP2 binding. Furthermore, by using surface plasmon resonance, we establish that a peptide (pepbeta3) corresponding to the AP2 binding motif in the GABA(A)R beta3 subunit binds to AP2 with high affinity only when dephosphorylated. Moreover, the pepbeta3 peptide, but not its phosphorylated equivalent (pepbeta3-phos), enhanced the amplitude of miniature inhibitory synaptic current and whole cell GABA(A)R current. These effects of pepbeta3 on GABA(A)R current were occluded by inhibitors of dynamin-dependent endocytosis supporting an action of pepbeta3 on GABA(A)R endocytosis. Therefore phospho-dependent regulation of AP2 binding to GABA(A)Rs provides a mechanism to specify receptor cell surface number and the efficacy of inhibitory synaptic transmission.

  1. A case of relapsing encephalitis positive for gamma aminobutyric acid (GABA)A receptor antibody associated with Type B3 thymoma.

    Science.gov (United States)

    Kitano, Takaya; Kinoshita, Makoto; Shimazu, Kohki; Fushimi, Hiroaki; Omori, Kenichi; Hazama, Takanori

    2016-11-29

    A 87-year-old female presented with subacute progression of cognitive decline. Fluid-attenuated inversion recovery images of brain MRI showed multifocal high-intensity lesions. Thoracic CT image revealed the presence of thymoma, and serum autoantibody screening showed positivity for anti-gamma aminobutyric acid (GABA) A receptor antibody. Histopathological analysis confirmed type B3 thymoma after thymectomy. The patient received both plasmapheresis and intravenous methylprednisolone therapy, and showed remarkable amelioration of clinical symptoms and MRI abnormal high intensity. However, after 2 month from the clinical recovery, the patient showed recurrence of brain lesions and intravenous methylprednisolone monotherapy was performed. Continuation of oral steroid therapy was required to maintain the quienscent state of inflammation within the central nervous system. Anti-GABA A receptor antibody is a recently discovered novel autoantibody associated with autoimmue encephalitis. Due to the limited number of literature reported, clinical course and therapeutic response of GABA A receptor antibody encephalitis remains elusive. Here we reported a rare case of GABA A receptor antibody encephalitis with type B3 thymoma. Clinical, radiological and therapeutic courses described in our report highlight the importance of immunotherapy for treatment of the disease.

  2. Effects of Nigella sativa on apoptosis and GABAA receptor density in cerebral cortical and hippocampal neurons in pentylenetetrazol induced kindling in rats.

    Science.gov (United States)

    Meral, I; Esrefoglu, M; Dar, K A; Ustunova, S; Aydin, M S; Demirtas, M; Arifoglu, Y

    2016-11-01

    We investigated the effects of Nigella sativa on apoptosis and gamma-aminobutyric acid (GABA A ) receptor density in cerebral cortical and hippocampal neurons in a pentylenetetrazol (PTZ)-induced kindling model in rats. The PTZ kindling model was produced by injecting PTZ in subconvulsive doses to rats on days 1, 3, 5, 8, 10, 12, 15, 17, 19, 22 and 24 of the study into animals of PTZ treated (PTZ) and PTZ + N. sativa treated (PTZ + NS) groups. Clonic and tonic seizures were induced by injecting a convulsive dose of PTZ on day 26 of the study. Rats in the PTZ + NS group were treated also with a 10 mg/kg methanolic extract of N. sativa 2 h before each PTZ injection. Rats in the control group were treated with 4 ml/kg saline. The number of neurons that expressed GABA A receptors in the hippocampus and cerebral cortex of rats in the PTZ and PTZ + NS groups increased significantly. There was no significant difference in the number of GABA A receptors between the PTZ and PTZ + NS groups. GABA A receptor density of the neurons in the cerebral cortex, but not hippocampus, was increased in PTZ group compared to controls. We observed a significant increase in the number of apoptotic neurons in the cerebral cortex of rats of both the PTZ and PTZ + NS groups compared to controls. We observed a significant decrease in the number of the apoptotic neurons in the cerebral cortex of rats in the PTZ + NS group compared to the PTZ group. N. sativa treatment ameliorated the PTZ induced neurodegeneration in the cerebral cortex as reflected by neuronal apoptosis and neuronal GABA A receptor frequency.

  3. Loss of ethanol conditioned taste aversion and motor stimulation in knockin mice with ethanol-insensitive α2-containing GABA(A) receptors.

    Science.gov (United States)

    Blednov, Y A; Borghese, C M; McCracken, M L; Benavidez, J M; Geil, C R; Osterndorff-Kahanek, E; Werner, D F; Iyer, S; Swihart, A; Harrison, N L; Homanics, G E; Harris, R A

    2011-01-01

    GABA type A receptors (GABA(A)-Rs) are potential targets of ethanol. However, there are multiple subtypes of this receptor, and, thus far, individual subunits have not been definitively linked with specific ethanol behavioral actions. Interestingly, though, a chromosomal cluster of four GABA(A)-R subunit genes, including α2 (Gabra2), was associated with human alcoholism (Am J Hum Genet 74:705-714, 2004; Pharmacol Biochem Behav 90:95-104, 2008; J Psychiatr Res 42:184-191, 2008). The goal of our study was to determine the role of receptors containing this subunit in alcohol action. We designed an α2 subunit with serine 270 to histidine and leucine 277 to alanine mutations that was insensitive to potentiation by ethanol yet retained normal GABA sensitivity in a recombinant expression system. Knockin mice containing this mutant subunit were tested in a range of ethanol behavioral tests. These mutant mice did not develop the typical conditioned taste aversion in response to ethanol and showed complete loss of the motor stimulant effects of ethanol. Conversely, they also demonstrated changes in ethanol intake and preference in multiple tests. The knockin mice showed increased ethanol-induced hypnosis but no difference in anxiolytic effects or recovery from acute ethanol-induced motor incoordination. Overall, these studies demonstrate that the effects of ethanol at GABAergic synapses containing the α2 subunit are important for specific behavioral effects of ethanol that may be relevant to the genetic linkage of this subunit with human alcoholism.

  4. Functional characterization of the 1,5-benzodiazepine clobazam and its major active metabolite N-desmethylclobazam at human GABA(A receptors expressed in Xenopus laevis oocytes.

    Directory of Open Access Journals (Sweden)

    Harriet Hammer

    Full Text Available The 1,5-benzodiazepine clobazam is indicated for the adjunctive treatment of seizures associated with Lennox-Gastaut syndrome in patients 2 years of age or older in the United States, and for treatment of anxiety and various forms of epilepsy elsewhere. Clobazam has been reported to exhibit different in vivo adverse effects and addiction liability profile than the classic 1,4-benzodiazepines. In this study, it was investigated whether the in vitro pharmacological properties of clobazam and its major active metabolite N-desmethylclobazam could explain some of these clinical differences. The functional properties of the two 1,5-benzodiazepines were characterized at the human γ-aminobutyric acid type A receptor (GABA(AR subtypes α1β2γ(2S, α2β2γ(2S, α3β2γ(2S, α5β2γ(2S and α6β2δ expressed in Xenopus laevis oocytes by use of two-electrode voltage-clamp electrophysiology and compared to those exhibited by the 1,4-benzodiazepine clonazepam. All three compounds potentiated GABA EC20-evoked responses through the α(1,2,3,5β2γ(2S GABA(ARs in a reversible and concentration-dependent manner, with each displaying similar EC50 values at the four subtypes. Furthermore, the degrees of potentiation of the GABA EC20 currents through the four receptors mediated by saturating modulator concentrations did not differ substantially for any of the three benzodiazepines. The three compounds were substantially less potent (200-3900 fold as positive allosteric modulators at the α6β2δ GABA(AR than at the α(1,2,3,5β2γ(2S receptors. Interestingly, however, clobazam and especially N-desmethylclobazam were highly efficacious potentiators of α6β2δ receptor signaling. Although this activity component is unlikely to contribute to the in vivo effects of clobazam/N-desmethylclobazam, the 1,5-benzodiazepine could constitute an interesting lead for novel modulators targeting this low-affinity binding site in GABAARs. In conclusion, the non

  5. A multifaceted GABAA receptor modulator: Functional properties and mechanism of action of the sedative-hypnotic and recreational drug methaqualone (Quaalude)

    DEFF Research Database (Denmark)

    Hammer, Harriet; Bader, Benjamin M.; Ehnert, C

    2015-01-01

    anesthetic etomidate. The negligible activities displayed by methaqualone at numerous neurotransmitter receptors and transporters in an elaborate screening for additional putative central nervous system (CNS) targets suggest that it is a selective GABAAR modulator. The mode of action of methaqualone......In the present study, we have elucidated the functional characteristics and mechanism of action of methaqualone (2-methyl-3-o-tolyl-4(3H)-quinazolinone, Quaalude), an infamous sedative-hypnotic and recreational drug from the 1960s-1970s. Methaqualone was demonstrated to be a positive allosteric...... to its effects as a therapeutic and recreational drug....

  6. Presynaptic Dopamine D2 Receptors Modulate [3H]GABA Release at StriatoPallidal Terminals via Activation of PLC → IP3 → Calcineurin and Inhibition of AC → cAMP → PKA Signaling Cascades.

    Science.gov (United States)

    Jijón-Lorenzo, Rafael; Caballero-Florán, Isaac Hiram; Recillas-Morales, Sergio; Cortés, Hernán; Avalos-Fuentes, José Arturo; Paz-Bermúdez, Francisco Javier; Erlij, David; Florán, Benjamín

    2018-02-21

    Striatal dopamine D2 receptors activate the PLC → IP3 → Calcineurin-signaling pathway to modulate the neural excitability of En+ Medium-sized Spiny GABAergic neurons (MSN) through the regulation of L-type Ca 2+ channels. Presynaptic dopaminergic D2 receptors modulate GABA release at striatopallidal terminals through L-type Ca 2+ channels as well, but their signaling pathway is still undetermined. Since D2 receptors are Gi/o-coupled and negatively modulate adenylyl cyclase (AC), we investigated whether presynaptic D2 receptors modulate GABA release through the same signaling cascade that controls excitability in the striatum or by the inhibition of AC and decreased PKA activity. Activation of D2 receptors stimulated formation of [ 3 H]IP 1 and decreased Forskolin-stimulated [ 3 H]cAMP accumulation in synaptosomes from rat Globus Pallidus. D2 receptor activation with Quinpirole in the presence of L 745,870 decreased, in a dose-dependent manner, K + -induced [ 3 H]GABA release in pallidal slices. The effect was prevented by the pharmacological blockade of Gi/o βγ subunit effects with Gallein, PLC with U 73122, IP3 receptor activation with 4-APB, Calcineurin with FK506. In addition, when release was stimulated with Forskolin to activate AC, D2 receptors also decreased K + -induced [ 3 H]GABA release, an effect occluded with the effect of the blockade of PKA with H89 or stimulation of release with the cAMP analog 8-Br-cAMP. These data indicate that D2 receptors modulate [ 3 H]GABA release at striatopallidal terminals by activating the PLC → IP3 → Calcineurin-signaling cascade, the same one that modulates excitability in soma. Additionally, D2 receptors inhibit release when AC is active. Both mechanisms appear to converge to regulate the activity of presynaptic L-type Ca 2+ channels. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. GABAA increases calcium in subventricular zone astrocyte-like cells through L- and T-type voltage-gated calcium channels

    Directory of Open Access Journals (Sweden)

    Stephanie Z Young

    2010-04-01

    Full Text Available In the adult neurogenic subventricular zone (SVZ, the behavior of astrocyte-like cells and some of their functions depend on changes in intracellular Ca2+ levels and tonic GABAA receptor activation. However, it is unknown whether, and if so how, GABAA receptor activity regulates intracellular Ca2+ dynamics in SVZ astrocytes. To monitor Ca2+ activity selectively in astrocyte-like cells, we used two lines of transgenic mice expressing either GFP fused to a Gq-coupled receptor or DsRed under the human glial fibrillary acidic protein (hGFAP promoter. GABAA receptor activation induced Ca2+ increases in 40-50% of SVZ astrocytes. GABAA-induced Ca2+ increases were prevented with nifedipine and mibefradil, blockers of L- and T-type voltage-gated calcium channels (VGCC. The L-type Ca2+ channel activator BayK 8644 increased the percentage of GABAA-responding astrocyte-like cells to 75%, suggesting that the majority of SVZ astrocytes express functional VGCCs. SVZ astrocytes also displayed spontaneous Ca2+ activity, the frequency of which was regulated by tonic GABAA receptor activation. These data support a role for ambient GABA in tonically regulating intracellular Ca2+ dynamics through GABAA receptors and VGCC in a subpopulation of astrocyte-like cells in the postnatal SVZ.

  8. Distinct α subunit variations of the hypothalamic GABAA receptor triplets (αβγ are linked to hibernating state in hamsters

    Directory of Open Access Journals (Sweden)

    Alò Raffaella

    2010-09-01

    Full Text Available Abstract Background The structural arrangement of the γ-aminobutyric acid type A receptor (GABAAR is known to be crucial for the maintenance of cerebral-dependent homeostatic mechanisms during the promotion of highly adaptive neurophysiological events of the permissive hibernating rodent, i.e the Syrian golden hamster. In this study, in vitro quantitative autoradiography and in situ hybridization were assessed in major hypothalamic nuclei. Reverse Transcription Reaction-Polymerase chain reaction (RT-PCR tests were performed for specific GABAAR receptor subunit gene primers synthases of non-hibernating (NHIB and hibernating (HIB hamsters. Attempts were made to identify the type of αβγ subunit combinations operating during the switching ON/OFF of neuronal activities in some hypothalamic nuclei of hibernators. Results Both autoradiography and molecular analysis supplied distinct expression patterns of all α subunits considered as shown by a strong (p 1 ratio (over total α subunits considered in the present study in the medial preoptic area (MPOA and arcuate nucleus (Arc of NHIBs with respect to HIBs. At the same time α2 subunit levels proved to be typical of periventricular nucleus (Pe and Arc of HIB, while strong α4 expression levels were detected during awakening state in the key circadian hypothalamic station, i.e. the suprachiasmatic nucleus (Sch; 60%. Regarding the other two subunits (β and γ, elevated β3 and γ3 mRNAs levels mostly characterized MPOA of HIBs, while prevalently elevated expression concentrations of the same subunits were also typical of Sch, even though this time during the awakening state. In the case of Arc, notably elevated levels were obtained for β3 and γ2 during hibernating conditions. Conclusion We conclude that different αβγ subunits are operating as major elements either at the onset of torpor or during induction of the arousal state in the Syrian golden hamster. The identification of a brain regional

  9. Correlating Fluorescence and High-Resolution Scanning Electron Microscopy (HRSEM) for the study of GABAA receptor clustering induced by inhibitory synaptic plasticity.

    Science.gov (United States)

    Orlando, Marta; Ravasenga, Tiziana; Petrini, Enrica Maria; Falqui, Andrea; Marotta, Roberto; Barberis, Andrea

    2017-10-23

    Both excitatory and inhibitory synaptic contacts display activity dependent dynamic changes in their efficacy that are globally termed synaptic plasticity. Although the molecular mechanisms underlying glutamatergic synaptic plasticity have been extensively investigated and described, those responsible for inhibitory synaptic plasticity are only beginning to be unveiled. In this framework, the ultrastructural changes of the inhibitory synapses during plasticity have been poorly investigated. Here we combined confocal fluorescence microscopy (CFM) with high resolution scanning electron microscopy (HRSEM) to characterize the fine structural rearrangements of post-synaptic GABA A Receptors (GABA A Rs) at the nanometric scale during the induction of inhibitory long-term potentiation (iLTP). Additional electron tomography (ET) experiments on immunolabelled hippocampal neurons allowed the visualization of synaptic contacts and confirmed the reorganization of post-synaptic GABA A R clusters in response to chemical iLTP inducing protocol. Altogether, these approaches revealed that, following the induction of inhibitory synaptic potentiation, GABA A R clusters increase in size and number at the post-synaptic membrane with no other major structural changes of the pre- and post-synaptic elements.

  10. GABA(A) Increases Calcium in Subventricular Zone Astrocyte-Like Cells Through L- and T-Type Voltage-Gated Calcium Channels

    DEFF Research Database (Denmark)

    Young, Stephanie Z; Platel, Jean-Claude; Nielsen, Jakob V

    2010-01-01

    intracellular Ca(2+) dynamics in SVZ astrocytes. To monitor Ca(2+) activity selectively in astrocyte-like cells, we used two lines of transgenic mice expressing either GFP fused to a Gq-coupled receptor or DsRed under the human glial fibrillary acidic protein (hGFAP) promoter. GABA(A) receptor activation......In the adult neurogenic subventricular zone (SVZ), the behavior of astrocyte-like cells and some of their functions depend on changes in intracellular Ca(2+) levels and tonic GABA(A) receptor activation. However, it is unknown whether, and if so how, GABA(A) receptor activity regulates......-like cells to 75%, suggesting that the majority of SVZ astrocytes express functional VGCCs. SVZ astrocytes also displayed spontaneous Ca(2+) activity, the frequency of which was regulated by tonic GABA(A) receptor activation. These data support a role for ambient GABA in tonically regulating intracellular Ca...

  11. The Small GTPase Rac1 Contributes to Extinction of Aversive Memories of Drug Withdrawal by Facilitating GABAA Receptor Endocytosis in the vmPFC.

    Science.gov (United States)

    Wang, Weisheng; Ju, Yun-Yue; Zhou, Qi-Xin; Tang, Jian-Xin; Li, Meng; Zhang, Lei; Kang, Shuo; Chen, Zhong-Guo; Wang, Yu-Jun; Ji, Hui; Ding, Yu-Qiang; Xu, Lin; Liu, Jing-Gen

    2017-07-26

    Extinction of aversive memories has been a major concern in neuropsychiatric disorders, such as anxiety disorders and drug addiction. However, the mechanisms underlying extinction of aversive memories are not fully understood. Here, we report that extinction of conditioned place aversion (CPA) to naloxone-precipitated opiate withdrawal in male rats activates Rho GTPase Rac1 in the ventromedial prefrontal cortex (vmPFC) in a BDNF-dependent manner, which determines GABA A receptor (GABA A R) endocytosis via triggering synaptic translocation of activity-regulated cytoskeleton-associated protein (Arc) through facilitating actin polymerization. Active Rac1 is essential and sufficient for GABA A R endocytosis and CPA extinction. Knockdown of Rac1 expression within the vmPFC of rats using Rac1-shRNA suppressed GABA A R endocytosis and CPA extinction, whereas expression of a constitutively active form of Rac1 accelerated GABA A R endocytosis and CPA extinction. The crucial role of GABA A R endocytosis in the LTP induction and CPA extinction is evinced by the findings that blockade of GABA A R endocytosis by a dynamin function-blocking peptide (Myr-P4) abolishes LTP induction and CPA extinction. Thus, the present study provides first evidence that Rac1-dependent GABA A R endocytosis plays a crucial role in extinction of aversive memories and reveals the sequence of molecular events that contribute to learning experience modulation of synaptic GABA A R endocytosis. SIGNIFICANCE STATEMENT This study reveals that Rac1-dependent GABA A R endocytosis plays a crucial role in extinction of aversive memories associated with drug withdrawal and identifies Arc as a downstream effector of Rac1 regulations of synaptic plasticity as well as learning and memory, thereby suggesting therapeutic targets to promote extinction of the unwanted memories. Copyright © 2017 the authors 0270-6474/17/377096-15$15.00/0.

  12. Liver biomarker and in vitro assessment confirm the hepatic origin of aminotransferase elevations lacking histopathological correlate in beagle dogs treated with GABAA receptor antagonist NP260

    International Nuclear Information System (INIS)

    Harrill, Alison H.; Eaddy, John S.; Rose, Kelly; Cullen, John M.; Ramanathan, Lakshmi; Wanaski, Stephen; Collins, Stephen; Ho, Yu; Watkins, Paul B.; LeCluyse, Edward L.

    2014-01-01

    NP260 was designed as a first-in-class selective antagonist of α4-subtype GABA A receptors that had promising efficacy in animal models of pain, epilepsy, psychosis, and anxiety. However, development of NP260 was complicated following a 28-day safety study in dogs in which pronounced elevations of serum aminotransferase levels were observed, although there was no accompanying histopathological indication of hepatocellular injury. To further investigate the liver effects of NP260, we assayed stored serum samples from the 28-day dog study for liver specific miRNA (miR-122) as well as enzymatic biomarkers glutamate dehydrogenase and sorbitol dehydrogenase, which indicate liver necrosis. Cytotoxicity assessments were conducted in hepatocytes derived from dog, rat, and human liver samples to address the species specificity of the liver response to NP260. All biomarkers, except ALT, returned toward baseline by Day 29 despite continued drug treatment, suggesting adaptation to the initial injury. In vitro analysis of the toxicity potential of NP260 to primary hepatocytes indicated a relative sensitivity of dog > human > rat, which may explain, in part, why the liver effects were not evident in the rodent safety studies. Taken together, the data indicate that a diagnostic biomarker approach, coupled with sensitive in vitro screening strategies, may facilitate interpretation of toxicity potential when an adaptive event masks the underlying toxicity. - Highlights: • NP260 caused ALT elevations in dogs without evidence of hepatocellular injury. • SDH, GLDH, and miRNA-122 elevations occurred, confirming hepatocellular necrosis. • NP260 toxicity is greater in dog and human hepatocytes than in rat hepatocytes. • Species sensitivity may explain why the rodent studies failed to indicate risk. • Diagnostic biomarkers and hepatocyte studies aid interpretation of hepatotoxicity

  13. Decreased surface expression of the δ subunit of the GABAA receptor contributes to reduced tonic inhibition in dentate granule cells in a mouse model of fragile X syndrome.

    Science.gov (United States)

    Zhang, Nianhui; Peng, Zechun; Tong, Xiaoping; Lindemeyer, A Kerstin; Cetina, Yliana; Huang, Christine S; Olsen, Richard W; Otis, Thomas S; Houser, Carolyn R

    2017-11-01

    While numerous changes in the GABA system have been identified in models of Fragile X Syndrome (FXS), alterations in subunits of the GABA A receptors (GABA A Rs) that mediate tonic inhibition are particularly intriguing. Considering the key role of tonic inhibition in controlling neuronal excitability, reduced tonic inhibition could contribute to FXS-associated disorders such as hyperactivity, hypersensitivity, and increased seizure susceptibility. The current study has focused on the expression and function of the δ subunit of the GABA A R, a major subunit involved in tonic inhibition, in granule cells of the dentate gyrus in the Fmr1 knockout (KO) mouse model of FXS. Electrophysiological studies of dentate granule cells revealed a marked, nearly four-fold, decrease in tonic inhibition in the Fmr1 KO mice, as well as reduced effects of two δ subunit-preferring pharmacological agents, THIP and DS2, supporting the suggestion that δ subunit-containing GABA A Rs are compromised in the Fmr1 KO mice. Immunohistochemistry demonstrated a small but statistically significant decrease in δ subunit labeling in the molecular layer of the dentate gyrus in Fmr1 KO mice compared to wildtype (WT) littermates. The discrepancy between the large deficits in GABA-mediated tonic inhibition in granule cells in the Fmr1 KO mice and only modest reductions in immunolabeling of the δ subunit led to studies of surface expression of the δ subunit. Cross-linking experiments followed by Western blot analysis demonstrated a small, non-significant decrease in total δ subunit protein in the hippocampus of Fmr1 KO mice, but a four-fold decrease in surface expression of the δ subunit in these mice. No significant changes were observed in total or surface expression of the α4 subunit protein, a major partner of the δ subunit in the forebrain. Postembedding immunogold labeling for the δ subunit demonstrated a large, three-fold, decrease in the number of symmetric synapses with

  14. Participation of GABAA Chloride Channels in the Anxiolytic-Like Effects of a Fatty Acid Mixture

    Directory of Open Access Journals (Sweden)

    Juan Francisco Rodríguez-Landa

    2013-01-01

    Full Text Available Human amniotic fluid and a mixture of eight fatty acids (FAT-M identified in this maternal fluid (C12:0, lauric acid, 0.9 μg%; C14:0, myristic acid, 6.9 μg%; C16:0, palmitic acid, 35.3 μg%; C16:1, palmitoleic acid, 16.4 μg%; C18:0, stearic acid, 8.5 μg%; C18:1cis, oleic acid, 18.4 μg%; C18:1trans, elaidic acid, 3.5 μg%; C18:2, linoleic acid, 10.1 μg% produce anxiolytic-like effects that are comparable to diazepam in Wistar rats, suggesting the involvement of γ-aminobutyric acid-A (GABAA receptors, a possibility not yet explored. Wistar rats were subjected to the defensive burying test, elevated plus maze, and open field test. In different groups, three GABAA receptor antagonists were administered 30 min before FAT-M administration, including the competitive GABA binding antagonist bicuculline (1 mg/kg, GABAA benzodiazepine antagonist flumazenil (5 mg/kg, and noncompetitive GABAA chloride channel antagonist picrotoxin (1 mg/kg. The FAT-M exerted anxiolytic-like effects in the defensive burying test and elevated plus maze, without affecting locomotor activity in the open field test. The GABAA antagonists alone did not produce significant changes in the behavioral tests. Picrotoxin but not bicuculline or flumazenil blocked the anxiolytic-like effect of the FAT-M. Based on the specific blocking action of picrotoxin on the effects of the FAT-M, we conclude that the FAT-M exerted its anxiolytic-like effects through GABAA receptor chloride channels.

  15. Stereoselectivity of presynaptic autoreceptors modulating dopamine release

    International Nuclear Information System (INIS)

    Arbilla, S.; Langer, S.Z.

    1981-01-01

    The effects of the (R)- and (S)-enantiomers of sulpiride and butaclamol were studied on the spontaneous and field stimulation-evoked release of total radioactivity from slices of rabbit caudate nucleus prelabelled with [ 3 H]dopamine. (S)-Sulpiride in concentrations ranging from 0.01-1μM enhanced the electrically evoked release of [ 3 H]dopamine while (R)-sulpiride was 10 times less potent than (S)-sulpiride. Exposure to (S)-butaclamol (0.1-1 μM) but not to (R)-butaclamol (0.1-10μM) enhanced the field-stimulated release of [ 3 H]dopamine. The facilitatory effects of (S)- and (R)-sulpiride and (S)-butaclamol on the stimulated release of the labelled neurotransmitter were observed under conditions in which these drugs did not modify the spontaneous outflow of radioactivity. Only the active enantiomers of sulpiride and butaclamol antagonized the inhibition by apomorphine (1μM) of the stimulated release of [ 3 H]dopamine. Our results indicate that the presynaptic inhibitory dopamine autoreceptors modulating the stimulation-evoked release of [ 3 H]dopamine in the caudate nucleus are, like the classical postsynaptic dopamine receptors, chemically stereoselective. (Auth.)

  16. Phospho-dependent Accumulation of GABABRs at Presynaptic Terminals after NMDAR Activation.

    Science.gov (United States)

    Hannan, Saad; Gerrow, Kim; Triller, Antoine; Smart, Trevor G

    2016-08-16

    Here, we uncover a mechanism for regulating the number of active presynaptic GABAB receptors (GABABRs) at nerve terminals, an important determinant of neurotransmitter release. We find that GABABRs gain access to axon terminals by lateral diffusion in the membrane. Their relative accumulation is dependent upon agonist activation and the presence of the two distinct sushi domains that are found only in alternatively spliced GABABR1a subunits. Following brief activation of NMDA receptors (NMDARs) using glutamate, GABABR diffusion is reduced, causing accumulation at presynaptic terminals in a Ca(2+)-dependent manner that involves phosphorylation of GABABR2 subunits at Ser783. This signaling cascade indicates how synaptically released glutamate can initiate, via a feedback mechanism, increased levels of presynaptic GABABRs that limit further glutamate release and excitotoxicity. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Phospho-dependent Accumulation of GABABRs at Presynaptic Terminals after NMDAR Activation

    Directory of Open Access Journals (Sweden)

    Saad Hannan

    2016-08-01

    Full Text Available Here, we uncover a mechanism for regulating the number of active presynaptic GABAB receptors (GABABRs at nerve terminals, an important determinant of neurotransmitter release. We find that GABABRs gain access to axon terminals by lateral diffusion in the membrane. Their relative accumulation is dependent upon agonist activation and the presence of the two distinct sushi domains that are found only in alternatively spliced GABABR1a subunits. Following brief activation of NMDA receptors (NMDARs using glutamate, GABABR diffusion is reduced, causing accumulation at presynaptic terminals in a Ca2+-dependent manner that involves phosphorylation of GABABR2 subunits at Ser783. This signaling cascade indicates how synaptically released glutamate can initiate, via a feedback mechanism, increased levels of presynaptic GABABRs that limit further glutamate release and excitotoxicity.

  18. Does human presynaptic striatal dopamine function predict social conformity?

    Science.gov (United States)

    Stokes, Paul R A; Benecke, Aaf; Puraite, Julita; Bloomfield, Michael A P; Shotbolt, Paul; Reeves, Suzanne J; Lingford-Hughes, Anne R; Howes, Oliver; Egerton, Alice

    2014-03-01

    Socially desirable responding (SDR) is a personality trait which reflects either a tendency to present oneself in an overly positive manner to others, consistent with social conformity (impression management (IM)), or the tendency to view one's own behaviour in an overly positive light (self-deceptive enhancement (SDE)). Neurochemical imaging studies report an inverse relationship between SDR and dorsal striatal dopamine D₂/₃ receptor availability. This may reflect an association between SDR and D₂/₃ receptor expression, synaptic dopamine levels or a combination of the two. In this study, we used a [¹⁸F]-DOPA positron emission tomography (PET) image database to investigate whether SDR is associated with presynaptic dopamine function. Striatal [¹⁸F]-DOPA uptake, (k(i)(cer), min⁻¹), was determined in two independent healthy participant cohorts (n=27 and 19), by Patlak analysis using a cerebellar reference region. SDR was assessed using the revised Eysenck Personality Questionnaire (EPQ-R) Lie scale, and IM and SDE were measured using the Paulhus Deception Scales. No significant associations were detected between Lie, SDE or IM scores and striatal [¹⁸F]-DOPA k(i)(cer). These results indicate that presynaptic striatal dopamine function is not associated with social conformity and suggests that social conformity may be associated with striatal D₂/₃ receptor expression rather than with synaptic dopamine levels.

  19. Expression of presynaptic markers in a neurodevelopmental animal model with relevance to schizophrenia

    DEFF Research Database (Denmark)

    Karlsen, Anna S; Kaalund, Sanne Simone; Møller, Morten

    2013-01-01

    Administration of N-methyl-D-aspartate receptor antagonist phencyclidine (PCP) to rat pups at postnatal day (PND) 7, 9, and 11 [neonatal PCP (neoPCP) model] induces cognitive deficits similar to those observed in schizophrenia. Expression of presynaptic SNARE protein, synaptosomal......-associated protein of 25 kDa (Snap25), has been shown to be downregulated in postmortem brains from patients with schizophrenia. The present study was designed to investigate the long-term effects of neoPCP administration on expression of presynaptic markers altered in schizophrenia. Using radioactive in...

  20. Tyrosine-induced release of dopamine is under inhibitory control of presynaptic dopamine D2 and, probably, D3 receptors in the dorsal striatum, but not in the nucleus accumbens

    NARCIS (Netherlands)

    Fusa, K.; Saigusa, T.; Koshikawa, N.; Cools, A.R.

    2002-01-01

    Stimulation of dopamine D2-like receptors decreases extracellular dopamine in the dorsal striatum and the nucleus accumbens. It is unknown whether the role of these receptors differs from that of dopamine D3 receptors. It is also unknown to what extent the role of these two types of receptors varies

  1. Tyrosine-induced release of dopamine is under inhibitory control of presynaptic dopamine D2 and, probably, D3 receptors in the dorsal striatum, but not in the nucleus accumbens.

    NARCIS (Netherlands)

    Fusa, K.; Saigusa, T.; Koshikawa, N.; Cools, A.R.

    2002-01-01

    Stimulation of dopamine D2-like receptors decreases extracellular dopamine in the dorsal striatum and the nucleus accumbens. It is unknown whether the role of these receptors differs from that of dopamine D3 receptors. It is also unknown to what extent the role of these two types of receptors varies

  2. 5-HT2A-mGlu2/3 receptor complex in rat spinal cord glutamatergic nerve endings: A 5-HT2Ato mGlu2/3 signalling to amplify presynaptic mechanism of auto-control of glutamate exocytosis.

    Science.gov (United States)

    Olivero, Guendalina; Grilli, Massimo; Vergassola, Matteo; Bonfiglio, Tommaso; Padolecchia, Cristina; Garrone, Beatrice; Di Giorgio, Francesco Paolo; Tongiani, Serena; Usai, Cesare; Marchi, Mario; Pittaluga, Anna

    2018-05-01

    Presynaptic mGlu2/3 autoreceptors exist in rat spinal cord nerve terminals as suggested by the finding that LY379268 inhibited the 15 mM KCl-evoked release of [ 3 H]D-aspartate ([ 3 H]D-Asp) in a LY341495-sensitive manner. Spinal cord glutamatergic nerve terminals also possess presynaptic release-regulating 5-HT 2A heteroreceptors. Actually, the 15 mM KCl-evoked [ 3 H]D-Asp exocytosis from spinal cord synaptosomes was reduced by the 5-HT 2A agonist (±)DOI, an effect reversed by the 5-HT 2A antagonists MDL11,939, MDL100907, ketanserin and trazodone (TZD). We investigated whether mGlu2/3 and 5-HT 2A receptors colocalize and cross-talk in these terminals and if 5-HT 2A ligands modulate the mGlu2/3-mediated control of glutamate exocytosis. Western blot analysis and confocal microscopy highlighted the presence of mGlu2/3 and 5-HT 2A receptor proteins in spinal cord VGLUT1 positive synaptosomes, where mGlu2/3 and 5-HT 2A receptor immunoreactivities largely colocalize. Furthermore, mGlu2/3 immunoprecipitates from spinal cord synaptosomes were also 5-HT 2A immunopositive. Interestingly, the 100 pM LY379268-induced reduction of the 15 mM KCl-evoked [ 3 H]D-Asp overflow as well as its inhibition by 100 nM (±)DOI became undetectable when the two agonists were concomitantly added. Conversely, 5-HT 2A antagonists (MDL11,939, MDL100907, ketanserin and TZD) reinforced the release-regulating activity of mGlu2/3 autoreceptors. Increased expression of mGlu2/3 receptor proteins in synaptosomal plasmamembranes paralleled the gain of function of the mGlu2/3 autoreceptors elicited by 5-HT 2A antagonists. Based on these results, we propose that in spinal cord glutamatergic terminals i) mGlu2/3 and 5-HT 2A receptors colocalize and interact one each other in an antagonist-like manner, ii) 5-HT 2A antagonists are indirect positive allosteric modulator of mGlu2/3 autoreceptors controlling glutamate exocytosis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Presynaptic calcium signalling in cerebellar mossy fibres

    DEFF Research Database (Denmark)

    Thomsen, Louiza Bohn; Jörntell, Henrik; Midtgaard, Jens

    2010-01-01

    affected burst firing in mossy fibres; this paired-pulse depression was reduced by GABA B antagonists. While our results indicated that a presynaptic rosette electrophysiologically functioned as a unit, topical GABA application showed that calcium signals in the branches of complex rosettes could......Whole-cell recordings were obtained from mossy fibre terminals in adult turtles in order to characterize the basic membrane properties. Calcium imaging of presynaptic calcium signals was carried out in order to analyse calcium dynamics and presynaptic GABA B inhibition. A tetrodotoxin (TTX......)-sensitive fast Na(+) spike faithfully followed repetitive depolarizing pulses with little change in spike duration or amplitude, while a strong outward rectification dominated responses to long-lasting depolarizations. High-threshold calcium spikes were uncovered following addition of potassium channel blockers...

  4. Exocytosis: using amperometry to study presynaptic mechanisms of neurotoxicity

    NARCIS (Netherlands)

    Westerink, R.H.S.

    2004-01-01

    The development of carbon fiber microelectrode amperometry enabled detailed investigation of the presynaptic response at the single cell level with single vesicle resolution. Consequently, amperometry allowed for detailed studies into the presynaptic mechanisms underlying neurotoxicity. This review

  5. The GABAA Antagonist DPP-4-PIOL Selectively Antagonises Tonic over Phasic GABAergic Currents in Dentate Gyrus Granule Cells

    DEFF Research Database (Denmark)

    Boddum, Kim; Frølund, Bente; Kristiansen, Uffe

    2014-01-01

    that phasic and tonic GABAA receptor currents can be selectively inhibited by the antagonists SR 95531 and the 4-PIOL derivative, 4-(3,3-diphenylpropyl)-5-(4-piperidyl)-3-isoxazolol hydrobromide (DPP-4-PIOL), respectively. In dentate gyrus granule cells, SR 95531 was found approximately 4 times as potent...

  6. Paradoxical effects of GABA-A modulators may explain sex steroid induced negative mood symptoms in some persons

    NARCIS (Netherlands)

    Bäckström, T.; Haage, D.; Löfgren, M.; Johansson, I. M.; Strömberg, J.; Nyberg, S.; Andréen, L.; Ossewaarde, L.; van Wingen, G. A.; Turkmen, S.; Bengtsson, S. K.

    2011-01-01

    Some women have negative mood symptoms, caused by progestagens in hormonal contraceptives or sequential hormone therapy or by progesterone in the luteal phase of the menstrual cycle, which may be attributed to metabolites acting on the GABA-A receptor. The GABA system is the major inhibitory system

  7. Axonal and presynaptic RNAs are locally transcribed in glial cells.

    Science.gov (United States)

    Giuditta, Antonio; Chun, Jong Tai; Eyman, Maria; Cefaliello, Carolina; Bruno, Anna Paola; Crispino, Marianna

    2007-01-01

    In the last few years, the long-standing opinion that axonal and presynaptic proteins are exclusively derived from the neuron cell body has been substantially modified by the demonstration that active systems of protein synthesis are present in axons and nerve terminals. These observations have raised the issue of the cellular origin of the involved RNAs, which has been generally attributed to the neuron soma. However, data gathered in a number of model systems indicated that axonal RNAs are synthesized in the surrounding glial cells. More recent experiments on the perfused squid giant axon have definitively proved that axoplasmic RNAs are transcribed in periaxonal glia. Their delivery to the axon occurs by a modulatory mechanism based on the release of neurotransmitters from the stimulated axon and on their binding to glial receptors. In additional experiments on squid optic lobe synaptosomes, presynaptic RNA has been also shown to be synthesized locally, presumably in nearby glia. Together with a wealth of literature data, these observations indicate that axons and nerve terminals are endowed with a local system of gene expression that supports the maintenance and plasticity of these neuronal domains.

  8. SNAP-25, a known presynaptic protein with emerging postsynaptic functions.

    Directory of Open Access Journals (Sweden)

    Flavia eAntonucci

    2016-03-01

    Full Text Available A hallmark of synaptic specializations is their dependence on highly organized complexes of proteins that interact with each other. The loss or modification of key synaptic proteins directly affects the properties of such networks, ultimately impacting synaptic function. SNAP-25 is a component of the SNARE complex, which is central to synaptic vesicle exocytosis, and, by directly interacting with different calcium channels subunits, it negatively modulates neuronal voltage-gated calcium channels, thus regulating intracellular calcium dynamics. The SNAP-25 gene has been associated with distinct brain diseases, including Attention Deficit Hyperactivity Disorder (ADHD, schizophrenia and bipolar disorder, indicating that the protein may act as a shared biological substrate among different synaptopathies. The mechanisms by which alterations in SNAP-25 may concur to these psychiatric diseases are still undefined, although alterations in neurotransmitter release have been indicated as potential causative processes. This review summarizes recent work showing that SNAP-25 not only controls exo/endocytic processes at the presynaptic terminal, but also regulates postsynaptic receptor trafficking, spine morphogenesis and plasticity, thus opening the possibility that SNAP-25 defects may contribute to psychiatric diseases by impacting not only presynaptic but also postsynaptic functions.

  9. GABA(B) receptor modulation of serotonin neurons in the dorsal raphé nucleus and escalation of aggression in mice.

    Science.gov (United States)

    Takahashi, Aki; Shimamoto, Akiko; Boyson, Christopher O; DeBold, Joseph F; Miczek, Klaus A

    2010-09-01

    The serotonin (5-HT) system in the brain has been studied more than any other neurotransmitter for its role in the neurobiological basis of aggression. However, which mechanisms modulate the 5-HT system to promote escalated aggression is not clear. We here explore the role of GABAergic modulation in the raphé nuclei, from which most 5-HT in the forebrain originates, on escalated aggression in male mice. Pharmacological activation of GABA(B), but not GABA(A), receptors in the dorsal raphé nucleus (DRN) escalated aggressive behaviors. In contrast, GABA agonists did not escalate aggressive behaviors after microinjection into the median raphé nucleus. The aggression-heightening effect of the GABA(B) agonist baclofen depended on the activation of 5-HT neurons in the DRN because it was blocked by coadministration of the 5-HT(1A) agonist 8-OH-DPAT [((+/-)-8-hydroxy-2-(di-n-propylamino)tetralin) hydrobromide] (DPAT), which acts on autoreceptors and inhibits 5-HT neural activity. In vivo microdialysis showed that GABA(B) activation in the DRN increased extracellular 5-HT level in the medial prefrontal cortex. This may be attributable to an indirect action via presynaptic GABA(B) receptors. The presynaptic GABA(B) receptors suppress Ca(2+) channel activity and inhibit neurotransmission, and the coadministration of N-type Ca(2+) channel blocker facilitated the effect of baclofen. These findings suggest that the indirect disinhibition of 5-HT neuron activity by presynaptic GABA(B) receptors on non-5-HT neurons in the DRN is one of the neurobiological mechanisms of escalated aggression.

  10. Extrasynaptic and postsynaptic receptors in glycinergic and GABAergic neurotransmission: a division of labor?

    Directory of Open Access Journals (Sweden)

    Emilie Muller

    2008-03-01

    Full Text Available Glycine and GABA mediate inhibitory neurotransmission in the spinal cord and central nervous system. The general concept of neurotransmission is now challenged by the contribution of both phasic activation of postsynaptic glycine and GABAA receptors (GlyRs and GABAARs, respectively and tonic activity of these receptors located at extrasynaptic sites. GlyR and GABAAR kinetics depend on several parameters, including subunit composition, subsynaptic localization and activation mode. Postsynaptic and extrasynaptic receptors display different subunit compositions and are activated by fast presynaptic and slow paracrine release of neurotransmitters, respectively. GlyR and GABAAR functional properties also rely on their aggregation level, which is higher at postsynaptic densities than at extrasynaptic loci. Finally, these receptors can co-aggregate at mixed inhibitory postsynaptic densities where they cross-modulate their activity, providing another parameter of functional complexity. GlyR and GABAAR density at postsynaptic sites results from the balance between their internalization and insertion in the plasma membrane, but also on their lateral diffusion from and to the postsynaptic loci. The dynamic exchange of receptors between synaptic and extrasynaptic sites and their functional adaptation in terms of kinetics point out a new adaptive process of inhibitory neurotransmission.

  11. Acute desensitization of presynaptic GABA(B)-mediated inhibition and induction of epileptiform discharges in the neonatal rat hippocampus

    NARCIS (Netherlands)

    Tosetti, P; Bakels, R; Colin-Le Brun, [No Value; Ferrand, N; Gaiarsa, JL; Caillard, O

    The consequences of sustained activation of GABA(B) receptors on GABA(B)-mediated inhibition and network activity were investigated in the neonatal rat hippocampus using whole-cell and extracellular field recordings. GABA(B)-mediated presynaptic control of gamma-aminobutyric acid (GABA) release

  12. Two GABAA responses with distinct kinetics in a sound localization circuit.

    Science.gov (United States)

    Tang, Zheng-Quan; Lu, Yong

    2012-08-15

    The temporal characteristics and functional diversity of GABAergic inhibition are determined by the spatiotemporal neurotransmitter profile, intrinsic properties of GABAA receptors, and other factors. Here, we report two distinct GABAA responses and the underlying mechanisms in neurons of the chicken nucleus laminaris (NL), the first encoder of interaural time difference for sound localization in birds. The time course of the postsynaptic GABAA currents in NL neurons, recorded with whole-cell voltage clamp, differed between different characteristic frequency (CF) regions. Compared to low-CF (LF) neurons, middle/high-CF (MF/HF) neurons had significantly slower IPSCs, with a 2.6-fold difference in the decay time constants of spontaneous IPSCs and a 5.3-fold difference in the decay of IPSCs elicited by single-pulse stimulus. Such differences were especially dramatic when IPSCs were elicited by train stimulations at physiologically relevant frequencies, and at high stimulus intensities. To account for these distinct GABAA responses, we showed that MF/HF neurons exhibited more prominent asynchronous release of GABA. Supporting this observation, replacement of extracellular Ca2+ with Sr2+ increased the decay of IPSCs in LF neurons, and EGTA-AM reduced the decay of IPSCs in MF/HF neurons. Furthermore, pharmacological evidence suggests that GABA spillover plays a greater role in prolonging the IPSCs of MF/HF neurons. Consequently, under whole-cell current clamp, synaptically released GABA produced short- and long-lasting suppression of the neuronal excitability of LF and MF/HF neurons, respectively. Taken together, these results suggest that the GABAergic inputs to NL neurons may exert a dynamic modulation of interaural time difference (ITD) coding in a CF-dependent manner.

  13. Selective GABA(A) α5 positive allosteric modulators improve cognitive function in aged rats with memory impairment.

    Science.gov (United States)

    Koh, Ming Teng; Rosenzweig-Lipson, Sharon; Gallagher, Michela

    2013-01-01

    A condition of excess activity in the hippocampal formation is observed in the aging brain and in conditions that confer additional risk during aging for Alzheimer's disease. Compounds that act as positive allosteric modulators at GABA(A) α5 receptors might be useful in targeting this condition because GABA(A) α5 receptors mediate tonic inhibition of principal neurons in the affected network. While agents to improve cognitive function in the past focused on inverse agonists, which are negative allosteric modulators at GABA(A) α5 receptors, research supporting that approach used only young animals and predated current evidence for excessive hippocampal activity in age-related conditions of cognitive impairment. Here, we used two compounds, Compound 44 [6,6-dimethyl-3-(3-hydroxypropyl)thio-1-(thiazol-2-yl)-6,7-dihydro-2-benzothiophen-4(5H)-one] and Compound 6 [methyl 3,5-diphenylpyridazine-4-carboxylate], with functional activity as potentiators of γ-aminobutyric acid at GABA(A) α5 receptors, to test their ability to improve hippocampal-dependent memory in aged rats with identified cognitive impairment. Improvement was obtained in aged rats across protocols differing in motivational and performance demands and across varying retention intervals. Significant memory improvement occurred after either intracereboventricular infusion with Compound 44 (100 μg) in a water maze task or systemic administration with Compound 6 (3 mg/kg) in a radial arm maze task. Furthermore, systemic administration improved behavioral performance at dosing shown to provide drug exposure in the brain and in vivo receptor occupancy in the hippocampus. These data suggest a novel approach to improve neural network function in clinical conditions of excess hippocampal activity. This article is part of a Special Issue entitled 'Cognitive Enhancers'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Localization of Presynaptic Plasticity Mechanisms Enables Functional Independence of Synaptic and Ectopic Transmission in the Cerebellum

    Directory of Open Access Journals (Sweden)

    Katharine L. Dobson

    2015-01-01

    Full Text Available In the cerebellar molecular layer parallel fibre terminals release glutamate from both the active zone and from extrasynaptic “ectopic” sites. Ectopic release mediates transmission to the Bergmann glia that ensheathe the synapse, activating Ca2+-permeable AMPA receptors and glutamate transporters. Parallel fibre terminals exhibit several forms of presynaptic plasticity, including cAMP-dependent long-term potentiation and endocannabinoid-dependent long-term depression, but it is not known whether these presynaptic forms of long-term plasticity also influence ectopic transmission to Bergmann glia. Stimulation of parallel fibre inputs at 16 Hz evoked LTP of synaptic transmission, but LTD of ectopic transmission. Pharmacological activation of adenylyl cyclase by forskolin caused LTP at Purkinje neurons, but only transient potentiation at Bergmann glia, reinforcing the concept that ectopic sites lack the capacity to express sustained cAMP-dependent potentiation. Activation of mGluR1 caused depression of synaptic transmission via retrograde endocannabinoid signalling but had no significant effect at ectopic sites. In contrast, activation of NMDA receptors suppressed both synaptic and ectopic transmission. The results suggest that the signalling mechanisms for presynaptic LTP and retrograde depression by endocannabinoids are restricted to the active zone at parallel fibre synapses, allowing independent modulation of synaptic transmission to Purkinje neurons and ectopic transmission to Bergmann glia.

  15. Evidence against the unitary hypothesis of agonist and antagonist action at presynaptic adrenoceptors.

    Science.gov (United States)

    Kalsner, S.

    1982-01-01

    1 The concept that presynaptic receptors regulate noradrenergic transmitter release via a system of inhibitory receptors mediating negative feedback relies on a supposed association between increases in stimulation-induced efflux of [3H]-noradrenaline by antagonists and blockade by them of the inhibitory effects of exogenous noradrenaline. 2 It was shown in guinea-pig ureter, that yohimbine (3 X 10(-7)M), a presumed selective presynaptic antagonist, increased transmitter efflux substantially at 1 Hz and 5 Hz with 100 pulses, purportedly representing antagonism of the inhibitory effect of locally released noradrenaline but did not reduce the inhibitory effect of exogenous noradrenaline (1.8 X 10(-6)M or 1.8 X 10(-7)M) except in one case. 3 Additionally, the inhibitory effect of oxymetazoline (1.0 X 10(-7)M or 1.0 X 10(-8)M) on stimulation-induced efflux was in no way antagonized by yohimbine (3 X 10(-7)M). 4 It is concluded that the increased efflux of [3H]-noradrenaline produced by antagonists and the decreased efflux produced by exogenous agonists may represent actions at different loci and that the hypothesis of presynaptic feedback regulatory sites is still not substantiated. PMID:6128040

  16. Dishevelled proteins are associated with olfactory sensory neuron presynaptic terminals.

    Directory of Open Access Journals (Sweden)

    Diego J Rodriguez-Gil

    Full Text Available Olfactory sensory neurons (OSNs project their axons from the olfactory epithelium toward the olfactory bulb (OB in a heterogeneous and unsorted arrangement. However, as the axons approach the glomerular layer of the OB, axons from OSNs expressing the same odorant receptor (OR sort and converge to form molecularly homogeneous glomeruli. Axon guidance cues, cell adhesion molecules, and OR induced activity have been implicated in the final targeting of OSN axons to specific glomeruli. Less understood, and often controversial, are the mechanisms used by OSN axons to initially navigate from the OE toward the OB. We previously demonstrated a role for Wnt and Frizzled (Fz molecules in OSN axon extension and organization within the olfactory nerve. Building on that we now turned our attention to the downstream signaling cascades from Wnt-Fz interactions. Dishevelled (Dvl is a key molecule downstream of Fz receptors. Three isoforms of Dvl with specific as well as overlapping functions are found in mammals. Here, we show that Dvl-1 expression is restricted to OSNs in the dorsal recess of the nasal cavity, and labels a unique subpopulation of glomeruli. Dvl-2 and Dvl-3 have a widespread distribution in both the OE and OB. Both Dvl-1 and Dvl-2 are associated with intra-glomerular pre-synaptic OSN terminals, suggesting a role in synapse formation/stabilization. Moreover, because Dvl proteins were observed in all OSN axons, we hypothesize that they are important determinants of OSN cell differentiation and axon extension.

  17. Action potential broadening in a presynaptic channelopathy

    Science.gov (United States)

    Begum, Rahima; Bakiri, Yamina; Volynski, Kirill E.; Kullmann, Dimitri M.

    2016-07-01

    Brain development and interictal function are unaffected in many paroxysmal neurological channelopathies, possibly explained by homoeostatic plasticity of synaptic transmission. Episodic ataxia type 1 is caused by missense mutations of the potassium channel Kv1.1, which is abundantly expressed in the terminals of cerebellar basket cells. Presynaptic action potentials of small inhibitory terminals have not been characterized, and it is not known whether developmental plasticity compensates for the effects of Kv1.1 dysfunction. Here we use visually targeted patch-clamp recordings from basket cell terminals of mice harbouring an ataxia-associated mutation and their wild-type littermates. Presynaptic spikes are followed by a pronounced afterdepolarization, and are broadened by pharmacological blockade of Kv1.1 or by a dominant ataxia-associated mutation. Somatic recordings fail to detect such changes. Spike broadening leads to increased Ca2+ influx and GABA release, and decreased spontaneous Purkinje cell firing. We find no evidence for developmental compensation for inherited Kv1.1 dysfunction.

  18. γ-aminobutyric acidA (GABAA) receptor regulates ERK1/2 phosphorylation in rat hippocampus in high doses of Methyl Tert-Butyl Ether (MTBE)-induced impairment of spatial memory

    International Nuclear Information System (INIS)

    Zheng Gang; Zhang Wenbin; Zhang Yun; Chen Yaoming; Liu Mingchao; Yao Ting; Yang Yanxia; Zhao Fang; Li Jingxia; Huang Chuanshu; Luo Wenjing; Chen Jingyuan

    2009-01-01

    Experimental and occupational exposure to Methyl Tert-Butyl Ether (MTBE) has been reported to induce neurotoxicological and neurobehavioral effects, such as headache, nausea, dizziness, and disorientation, etc. However, the molecular mechanisms involved in MTBE-induced neurotoxicity are still not well understood. In the present study, we investigated the effects of MTBE on spatial memory and the expression and function of GABA A receptor in the hippocampus. Our results demonstrated that intraventricular injection of MTBE impaired the performance of the rats in a Morris water maze task, and significantly increased the expression of GABA A receptor α1 subunit in the hippocampus. The phosphorylation of ERK1/2 decreased after the MTBE injection. Furthermore, the decreased ability of learning and the reduction of phosphorylated ERK1/2 level of the MTBE-treated rats was partly reversed by bicuculline injected 30 min before the training. These results suggested that MTBE exposure could result in impaired spatial memory. GABA A receptor may play an important role in the MTBE-induced impairment of learning and memory by regulating the phosphorylation of ERK in the hippocampus.

  19. Molecular determinants of desensitization and assembly of the chimeric GABA(A) receptor subunits (alpha1/gamma2) and (gamma2/alpha1) in combinations with beta2 and gamma2

    DEFF Research Database (Denmark)

    Elster, L; Kristiansen, U; Pickering, D S

    2001-01-01

    , as opposed to the staining of the (gamma2/alpha1)-containing receptors, which was only slightly higher than background. To explain this, the (alpha1/gamma2) and (gamma2/alpha1) chimeras may act like alpha1 and gamma2 subunits, respectively, indicating that the extracellular N-terminal segment is important...... in combination with beta2 or beta2gamma2. Surprisingly, the (alpha1/gamma2)(gamma2/alpha1)beta2 subunit combination did desensitize, indicating that the C-terminal segment of the alpha1 subunit may be important for desensitization. Moreover, desensitization was observed for the (alpha1/gamma2)beta2gamma2...

  20. PRESYNAPTIC DOPAMINE MODULATION BY STIMULANT SELF ADMINISTRATION

    Science.gov (United States)

    España, Rodrigo A.; Jones, Sara R.

    2013-01-01

    The mesolimbic dopamine system is an essential participant in the initiation and modulation of various forms of goal-directed behavior, including drug reinforcement and addiction processes. Dopamine neurotransmission is increased by acute administration of all drugs of abuse, including the stimulants cocaine and amphetamine. Chronic exposure to these drugs via voluntary self-administration provides a model of stimulant abuse that is useful in evaluating potential behavioral and neurochemical adaptations that occur during addiction. This review describes commonly used methodologies to measure dopamine and baseline parameters of presynaptic dopamine regulation, including exocytotic release and reuptake through the dopamine transporter in the nucleus accumbens core, as well as dramatic adaptations in dopamine neurotransmission and drug sensitivity that occur with acute non-contingent and chronic, contingent self-administration of cocaine and amphetamine. PMID:23277050

  1. Sepsis causes presynaptic histamine H3 and alpha2-adrenergic dysfunction in canine myocardium.

    Science.gov (United States)

    Cheng, Zao-Qin; Bose, Deepak; Jacobs, Han; Light, R Bruce; Mink, Steven N

    2002-11-01

    Histamine H3 receptors and alpha2-adrenoceptors are presynaptic receptors that modulate norepinephrine (NE) release from sympathetic nerves innervating the cardiovascular system. We previously showed that cardiac H3 receptors are activated in sepsis, and that this activation leads to a decrease in the adrenergic response (AR) [J. Appl. Physiol. 85 (1998) 1693-1701] H3-receptors and alpha2-receptors appear to be coupled to GTP binding regulatory proteins (G) that modulate transmitter release by reducing calcium current into the nerve terminals through neuronal calcium channels. There may also be interaction between H3-receptors and alpha2-receptors on AR that may occur either at the receptor or a more downstream level. In the present study, we examined the effect of septic plasma on AR in a canine ventricular preparation in which field stimulation was used to produce AR. We determined whether there was interaction between H(3)-receptors and alpha2-adrenoceptors and tested whether H3 activation would attenuate the alpha2-agonist and alpha2-antagonist effects of clonidine and yohimbine, respectively. We also determined whether the mechanism by which septic plasma decreases the adrenergic response involves inactivation of an inhibitory G protein and used pertussis toxin (PTX) to assess this effect. We found that septic plasma attenuated AR produced by field stimulation, and that this decrease was mediated by a PTX sensitive inhibitory G protein. H3 activation also attenuated the alpha2-agonist and alpha2-antagonist effects on adrenergic activation as compared with nonseptic plasma. We conclude that presynaptic sympathetic dysfunction may contribute to cardiovascular collapse in sepsis.

  2. Local synthesis of axonal and presynaptic RNA in squid model systems.

    Science.gov (United States)

    Eyman, Maria; Cefaliello, Carolina; Ferrara, Eugenia; De Stefano, Rosanna; Lavina, Zeno Scotto; Crispino, Marianna; Squillace, Angela; van Minnen, Jan; Kaplan, Barry B; Giuditta, Antonio

    2007-01-01

    The presence of active systems of protein synthesis in axons and nerve endings raises the question of the cellular origin of the corresponding RNAs. Our present experiments demonstrate that, besides a possible derivation from neuronal cell bodies, axoplasmic RNAs originate in periaxonal glial cells and presynaptic RNAs derive from nearby cells, presumably glial cells. Indeed, in perfused squid giant axons, delivery of newly synthesized RNA to the axon perfusate is strongly stimulated by axonal depolarization or agonists of glial glutamate and acetylcholine receptors. Likewise, incubation of squid optic lobe slices with [3H]uridine leads to a marked accumulation of [3H]RNA in the large synaptosomes derived from the nerve terminals of retinal photoreceptor neurons. As the cell bodies of these neurons lie outside the optic lobe, the data demonstrate that presynaptic RNA is locally synthesized, presumably by perisynaptic glial cells. Overall, our results support the view that axons and presynaptic regions are endowed with local systems of gene expression which may prove essential for the maintenance and plasticity of these extrasomatic neuronal domains.

  3. The GABA-A benzodiazepine receptor complex: Role of pet and spect in neurology and psychiatry; Der GABA-A-benzodiazepinrezeptorkomplex: Rolle von PET und SPECT in Neurologie und Psychiatrie

    Energy Technology Data Exchange (ETDEWEB)

    Juengling, F.D. [Abt. fuer Nuklearmedizin, Radiologie III, Universitaetsklinik Ulm (Germany); Schaefer, M.; Heinz, A. [Klinik fuer Psychiatrie und Psychotherapie, Charite, Humboldt-Univ. zu Berlin (Germany)

    2002-09-01

    Nuclear medicine imaging techniques such as positron emission tomography (PET) and single photon emission tomography (SPECT) for selective depiction of GABA-A-benzodiazepine receptor (GBZR) binding are complementary investigations in the diagnostic process of neurological and psychiatric disorders. This review summarizes the current knowledge about options and limitations of PET and SPECT for in vivo diagnostics in neurology and psychiatry. The growing importance of GBZR-imaging for the understanding of pathophysiology and pharmacological treatment in different psychiatric syndromes is discussed. (orig.) [German] Mit der Entwicklung selektiver Liganden fuer den GABA-A-Benzodiazepinrezeptorkomplex (GBZR) hat die nuklearmedizinische Bildgebung mittels positronen-emissionstomographie (PET) und single-photon-emissionscomputertomographie (SPECT) einen festen Stellenwert fuer Klinik und Forschung in der Neurologie und Psychiatrie erlangt. Die vorliegende Ueberblicksarbeit fasst den aktuellen Wissensstand von Anwendungsmoeglichkeiten und -grenzen der nuklearmedizinischen Bildgebung der GBZR in vivo zusammen und beleuchtet ihren klinischen Nutzen. Die wachsende Bedeutung fuer das Verstaendnis der Pathophysiologie und pharmakotherapeutischer Konzepte unterschiedlicher psychiatrischer Erkrankungen wird herausgestellt. (orig.)

  4. Inflammatory mediators potentiate high affinity GABA(A) currents in rat dorsal root ganglion neurons.

    Science.gov (United States)

    Lee, Kwan Yeop; Gold, Michael S

    2012-06-19

    Following acute tissue injury action potentials may be initiated in afferent processes terminating in the dorsal horn of the spinal cord that are propagated back out to the periphery, a process referred to as a dorsal root reflex (DRR). The DRR is dependent on the activation of GABA(A) receptors. The prevailing hypothesis is that DRR is due to a depolarizing shift in the chloride equilibrium potential (E(Cl)) following an injury-induced activation of the Na(+)-K(+)-Cl(-)-cotransporter. Because inflammatory mediators (IM), such as prostaglandin E(2) are also released in the spinal cord following tissue injury, as well as evidence that E(Cl) is already depolarized in primary afferents, an alternative hypothesis is that an IM-induced increase in GABA(A) receptor mediated current (I(GABA)) could underlie the injury-induced increase in DRR. To test this hypothesis, we explored the impact of IM (prostaglandin E(2) (1 μM), bradykinin (10 μM), and histamine (1 μM)) on I(GABA) in dissociated rat dorsal root ganglion (DRG) neurons with standard whole cell patch clamp techniques. IM potentiated I(GABA) in a subpopulation of medium to large diameter capsaicin insensitive DRG neurons. This effect was dependent on the concentration of GABA, manifest only at low concentrations (emergence of injury-induced DRR. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. A presynaptic role for PKA in synaptic tagging and memory

    NARCIS (Netherlands)

    Park, Alan Jung; Havekes, Robbert; Choi, Jennifer H K; Luczak, Vincent; Nie, Ting; Huang, Ted; Abel, Ted

    2014-01-01

    Protein kinase A (PKA) and other signaling molecules are spatially restricted within neurons by A-kinase anchoring proteins (AKAPs). Although studies on compartmentalized PKA signaling have focused on postsynaptic mechanisms, presynaptically anchored PKA may contribute to synaptic plasticity and

  6. The structure and function of presynaptic endosomes

    Energy Technology Data Exchange (ETDEWEB)

    Jähne, Sebastian, E-mail: sebastian.jaehne1@stud.uni-goettingen.de [Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Humboldtallee 23, 37073 Göttingen (Germany); International Max Planck Research School for Neurosciences, 37077 Göttingen (Germany); Rizzoli, Silvio O. [Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Humboldtallee 23, 37073 Göttingen (Germany); Helm, Martin S., E-mail: martin.helm@med.uni-goettingen.de [Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Humboldtallee 23, 37073 Göttingen (Germany); International Max Planck Research School for Molecular Biology, 37077 Göttingen (Germany)

    2015-07-15

    The function of endosomes and of endosome-like structures in the presynaptic compartment is still controversial. This is in part due to the absence of a consensus on definitions and markers for these compartments. Synaptic endosomes are sometimes seen as stable organelles, permanently present in the synapse. Alternatively, they are seen as short-lived intermediates in synaptic vesicle recycling, arising from the endocytosis of large vesicles from the plasma membrane, or from homotypic fusion of small vesicles. In addition, the potential function of the endosome is largely unknown in the synapse. Some groups have proposed that the endosome is involved in the sorting of synaptic vesicle proteins, albeit others have produced data that deny this possibility. In this review, we present the existing evidence for synaptic endosomes, we discuss their potential functions, and we highlight frequent technical pitfalls in the analysis of this elusive compartment. We also sketch a roadmap to definitely determine the role of synaptic endosomes for the synaptic vesicle cycle. Finally, we propose a common definition of synaptic endosome-like structures.

  7. Shaping Neuronal Network Activity by Presynaptic Mechanisms.

    Directory of Open Access Journals (Sweden)

    Ayal Lavi

    2015-09-01

    Full Text Available Neuronal microcircuits generate oscillatory activity, which has been linked to basic functions such as sleep, learning and sensorimotor gating. Although synaptic release processes are well known for their ability to shape the interaction between neurons in microcircuits, most computational models do not simulate the synaptic transmission process directly and hence cannot explain how changes in synaptic parameters alter neuronal network activity. In this paper, we present a novel neuronal network model that incorporates presynaptic release mechanisms, such as vesicle pool dynamics and calcium-dependent release probability, to model the spontaneous activity of neuronal networks. The model, which is based on modified leaky integrate-and-fire neurons, generates spontaneous network activity patterns, which are similar to experimental data and robust under changes in the model's primary gain parameters such as excitatory postsynaptic potential and connectivity ratio. Furthermore, it reliably recreates experimental findings and provides mechanistic explanations for data obtained from microelectrode array recordings, such as network burst termination and the effects of pharmacological and genetic manipulations. The model demonstrates how elevated asynchronous release, but not spontaneous release, synchronizes neuronal network activity and reveals that asynchronous release enhances utilization of the recycling vesicle pool to induce the network effect. The model further predicts a positive correlation between vesicle priming at the single-neuron level and burst frequency at the network level; this prediction is supported by experimental findings. Thus, the model is utilized to reveal how synaptic release processes at the neuronal level govern activity patterns and synchronization at the network level.

  8. Demonstration of the dynamic mass redistribution label-free technology as a useful cell-based pharmacological assay for endogenously expressed GABAA receptors

    DEFF Research Database (Denmark)

    Klein, Anders Bue; Nittegaard-Nielsen, Mia; Christensen, Julie T.

    2015-01-01

    the immortalized IMR-32 neuroblastoma cell line, which expresses relatively high levels of several endogenous GABAA receptor subunits, we show that GABA produces concentration-dependent cellular responses that can be measured and quantified in real-time. With the aid of the GABAA receptor-specific agonist muscimol...

  9. Anxiolytic-like effect of lavender essential oil inhalation in mice: participation of serotonergic but not GABAA/benzodiazepine neurotransmission.

    Science.gov (United States)

    Chioca, Lea R; Ferro, Marcelo M; Baretta, Irinéia P; Oliveira, Sara M; Silva, Cássia R; Ferreira, Juliano; Losso, Estela M; Andreatini, Roberto

    2013-05-20

    Lavandula angustifolia (lavender) inhalation has been used in folk medicine for the treatment of anxiety, and clinical and animal studies have corroborated its anxiolytic effect, although its mechanism of action is still not fully understood. The objective of the present study was to determine whether the GABAA/benzodiazepine complex or serotonin neurotransmission mediates the anxiolytic-like effect of lavender essential oil. Male Swiss mice were subjected to the marble-burying test after being exposed to the aroma of lavender essential oil (1-5%), amyl acetate (5%; used as a behaviorally neutral odor), or distilled water for 15 min via inhalation. Additionally, the effect of 5% lavender essential oil was also evaluated in mice subjected to the elevated plus maze. GABAA/benzodiazepine mediation was evaluated by pretreating the mice with the GABAA receptor antagonist picrotoxin before the marble burying test and [(3)H]flunitrazepam binding to the benzodiazepine site on the GABAA receptor. Serotonergic mediation was studied by pretreating the mice with O-methyl-[3H]-N-(2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl)-N-(2-pyridinyl) cyclohexanecarboxamide trihydrochloride (WAY100635), a serotonin 5-HT1A receptor antagonist before the marble burying test. We also evaluated changes in the pharmacologically induced serotonin syndrome and the effects of combined administration of subeffective doses of lavender essential oil and the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). Lavender essential oil (1-5%) decreased the number of marbles buried compared with the control and amyl acetate groups. In the elevated plus maze, 5% lavender essential oil inhalation increased the percentage of time spent on and number of entries into the open arms compared with controls. No effect was seen in the number of closed arm entries or number of beam interruptions in the automated activity chamber. Pretreatment with the GABAA receptor antagonist picrotoxin (0.5mg

  10. Conditional regulation of neurosteroid sensitivity of GABAA receptors

    NARCIS (Netherlands)

    Brussaard, A.B.; Koksma, J.J.

    2003-01-01

    Nongenomic gonadal steroid feedback to oxytocin containing neurons in the supraoptic nucleus of the hypothalamus is mediated via the neurosteroid allopregnanolone (3α-OH-DHP) that acts as an allosteric modulator of the postsynaptic GABA

  11. Separate and combined effects of the GABAA positive allosteric modulator diazepam and Δ9-THC in humans discriminating Δ9-THC

    Science.gov (United States)

    Lile, Joshua A.; Kelly, Thomas H.; Hays, Lon R.

    2014-01-01

    Background Our previous research suggested the involvement γ-aminobutyric acid (GABA), in particular the GABAB receptor subtype, in the interoceptive effects of Δ9-tetrahydrocannabinol (Δ9-THC). The aim of the present study was to determine the potential involvement of the GABAA receptor subtype by assessing the separate and combined effects of the GABAA positive allosteric modulator diazepam and Δ9-THC using pharmacologically selective drug-discrimination procedures. Methods Ten cannabis users learned to discriminate 30 mg oral Δ9-THC from placebo and then received diazepam (5 and 10 mg), Δ9-THC (5, 15 and 30 mg) and placebo, alone and in combination. Self-report, task performance and physiological measures were also collected. Results Δ9-THC functioned as a discriminative stimulus, produced subjective effects typically associated with cannabinoids (e.g., High, Stoned, Like Drug) and elevated heart rate. Diazepam alone impaired performance on psychomotor performance tasks and increased ratings on a limited number of self-report questionnaire items (e.g., Any Effect, Sedated), but did not substitute for the Δ9-THC discriminative stimulus or alter the Δ9-THC discrimination dose-response function. Similarly, diazepam had limited impact on the other behavioral effects of Δ9-THC. Conclusions These results suggest that the GABAA receptor subtype has minimal involvement in the interoceptive effects of Δ9-THC, and by extension cannabis, in humans. PMID:25124305

  12. Separate and combined effects of the GABAA positive allosteric modulator diazepam and Δ⁹-THC in humans discriminating Δ⁹-THC.

    Science.gov (United States)

    Lile, Joshua A; Kelly, Thomas H; Hays, Lon R

    2014-10-01

    Our previous research suggested the involvement of γ-aminobutyric acid (GABA), in particular the GABAB receptor subtype, in the interoceptive effects of Δ(9)-tetrahydrocannabinol (Δ(9)-THC). The aim of the present study was to determine the potential involvement of the GABAA receptor subtype by assessing the separate and combined effects of the GABAA positive allosteric modulator diazepam and Δ(9)-THC using pharmacologically selective drug-discrimination procedures. Ten cannabis users learned to discriminate 30 mg oral Δ(9)-THC from placebo and then received diazepam (5 and 10mg), Δ(9)-THC (5, 15 and 30 mg) and placebo, alone and in combination. Self-report, task performance and physiological measures were also collected. Δ(9)-THC functioned as a discriminative stimulus, produced subjective effects typically associated with cannabinoids (e.g., High, Stoned, Like Drug) and elevated heart rate. Diazepam alone impaired performance on psychomotor performance tasks and increased ratings on a limited number of self-report questionnaire items (e.g., Any Effect, Sedated), but did not substitute for the Δ(9)-THC discriminative stimulus or alter the Δ(9)-THC discrimination dose-response function. Similarly, diazepam had limited impact on the other behavioral effects of Δ(9)-THC. These results suggest that the GABAA receptor subtype has minimal involvement in the interoceptive effects of Δ(9)-THC, and by extension cannabis, in humans. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. A presynaptic role for PKA in synaptic tagging and memory.

    Science.gov (United States)

    Park, Alan Jung; Havekes, Robbert; Choi, Jennifer Hk; Luczak, Vince; Nie, Ting; Huang, Ted; Abel, Ted

    2014-10-01

    Protein kinase A (PKA) and other signaling molecules are spatially restricted within neurons by A-kinase anchoring proteins (AKAPs). Although studies on compartmentalized PKA signaling have focused on postsynaptic mechanisms, presynaptically anchored PKA may contribute to synaptic plasticity and memory because PKA also regulates presynaptic transmitter release. Here, we examine this issue using genetic and pharmacological application of Ht31, a PKA anchoring disrupting peptide. At the hippocampal Schaffer collateral CA3-CA1 synapse, Ht31 treatment elicits a rapid decay of synaptic responses to repetitive stimuli, indicating a fast depletion of the readily releasable pool of synaptic vesicles. The interaction between PKA and proteins involved in producing this pool of synaptic vesicles is supported by biochemical assays showing that synaptic vesicle protein 2 (SV2), Rim1, and SNAP25 are components of a complex that interacts with cAMP. Moreover, acute treatment with Ht31 reduces the levels of SV2. Finally, experiments with transgenic mouse lines, which express Ht31 in excitatory neurons at the Schaffer collateral CA3-CA1 synapse, highlight a requirement for presynaptically anchored PKA in pathway-specific synaptic tagging and long-term contextual fear memory. These results suggest that a presynaptically compartmentalized PKA is critical for synaptic plasticity and memory by regulating the readily releasable pool of synaptic vesicles. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Presynaptic inhibition of GABAergic synaptic transmission by adenosine in mouse hypothalamic hypocretin neurons.

    Science.gov (United States)

    Xia, J X; Xiong, J X; Wang, H K; Duan, S M; Ye, J N; Hu, Z A

    2012-01-10

    Hypocretin neurons in the lateral hypothalamus, a new wakefulness-promoting center, have been recently regarded as an important target involved in endogenous adenosine-regulating sleep homeostasis. The GABAergic synaptic transmissions are the main inhibitory afferents to hypocretin neurons, which play an important role in the regulation of excitability of these neurons. The inhibitory effect of adenosine, a homeostatic sleep-promoting factor, on the excitatory glutamatergic synaptic transmissions in hypocretin neurons has been well documented, whether adenosine also modulates these inhibitory GABAergic synaptic transmissions in these neurons has not been investigated. In this study, the effect of adenosine on inhibitory postsynaptic currents (IPSCs) in hypocretin neurons was examined by using perforated patch-clamp recordings in the acute hypothalamic slices. The findings demonstrated that adenosine suppressed the amplitude of evoked IPSCs in a dose-dependent manner, which was completely abolished by 8-cyclopentyltheophylline (CPT), a selective antagonist of adenosine A1 receptor but not adenosine A2 receptor antagonist 3,7-dimethyl-1-(2-propynyl) xanthine. A presynaptic origin was suggested as following: adenosine increased paired-pulse ratio as well as reduced GABAergic miniature IPSC frequency without affecting the miniature IPSC amplitude. Further findings demonstrated that when the frequency of electrical stimulation was raised to 10 Hz, but not 1 Hz, a time-dependent depression of evoked IPSC amplitude was detected in hypocretin neurons, which could be partially blocked by CPT. However, under a higher frequency at 100 Hz stimulation, CPT had no action on the depressed GABAergic synaptic transmission induced by such tetanic stimulation in these hypocretin neurons. These results suggest that endogenous adenosine generated under certain stronger activities of synaptic transmissions exerts an inhibitory effect on GABAergic synaptic transmission in hypocretin

  15. Persistent GABAA/C responses to gabazine, taurine and beta-alanine in rat hypoglossal motoneurons.

    Science.gov (United States)

    Chesnoy-Marchais, D

    2016-08-25

    In hypoglossal motoneurons, a sustained anionic current, sensitive to a blocker of ρ-containing GABA receptors, (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) and insensitive to bicuculline, was previously shown to be activated by gabazine. In order to better characterize the receptors involved, the sensitivity of this atypical response to pentobarbital (30μM), allopregnanolone (0.3μM) and midazolam (0.5μM) was first investigated. Pentobarbital potentiated the response, whereas the steroid and the benzodiazepine were ineffective. The results indicate the involvement of hybrid heteromeric receptors, including at least a GABA receptor ρ subunit and a γ subunit, accounting for the pentobarbital-sensitivity. The effects of the endogenous β amino acids, taurine and β-alanine, which are released under various pathological conditions and show neuroprotective properties, were then studied. In the presence of the glycine receptor blocker strychnine (1μM), both taurine (0.3-1mM) and β-alanine (0.3mM) activated sustained anionic currents, which were partly blocked by TPMPA (100μM). Thus, both β amino acids activated ρ-containing GABA receptors in hypoglossal motoneurons. Bicuculline (20μM) reduced responses to taurine and β-alanine, but small sustained responses persisted in the presence of both strychnine and bicuculline. Responses to β-alanine were slightly increased by allopregnanolone, indicating a contribution of the bicuculline- and neurosteroid-sensitive GABAA receptors underlying tonic inhibition in these motoneurons. Since sustained activation of anionic channels inhibits most mature principal neurons, the ρ-containing GABA receptors permanently activated by taurine and β-alanine might contribute to some of their neuroprotective properties under damaging overexcitatory situations. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Dichotomous Effects of Mu Opioid Receptor Activation on Striatal Low-Threshold Spike Interneurons

    Directory of Open Access Journals (Sweden)

    Rasha Elghaba

    2017-12-01

    Full Text Available Striatal low-threshold spike interneurons (LTSIs are tonically active neurons that express GABA and nitric oxide synthase and are involved in information processing as well as neurovascular coupling. While mu opioid receptors (MORs and their ligand encephalin are prominent in the striatum, their action on LTSIs has not been investigated. We addressed this issue carrying out whole-cell recordings in transgenic mice in which the NPY-expressing neurons are marked with green fluorescent protein (GFP. The MOR agonist (D-Ala(2, N-MePhe(4, Gly-ol-enkephalin (DAMGO produced dual effects on subpopulations of LTSIs. DAMGO caused inhibitory effects, accompanied by decreases of spontaneous firing, in 62% of LTSIs, while depolarizing effects (accompanied by an increase in spontaneous firing were observed in 23% of LTSIs tested. The dual effects of DAMGO persisted in the presence of tetrodotoxin (TTX, a sodium channel blocker or in the presence of the nicotinic acetylcholine receptor antagonist mecamylamine. However, in the presence of either the GABAA receptor antagonist picrotoxin or the muscarinic cholinergic receptor antagonist atropine, DAMGO only elicited inhibitory effects on LTSIs. Furthermore, we found that DAMGO decreased the amplitude and frequency of spontaneous GABAergic events. Unexpectedly, these effects of DAMGO on spontaneous GABAergic events disappeared after blocking of the muscarinic and nicotinic cholinergic blockers, showing that GABA inputs to LTSIs are not directly modulated by presynaptic MORs. These finding suggest that activation of MORs affect LTSIs both directly and indirectly, through modulation of GABAergic and cholinergic tones. The complex balance between direct and indirect effects determines the net effect of DAMGO on LTSIs.

  17. Presynaptic inhibition of spontaneous acetylcholine release induced by adenosine at the mouse neuromuscular junction.

    Science.gov (United States)

    De Lorenzo, Silvana; Veggetti, Mariela; Muchnik, Salomón; Losavio, Adriana

    2004-05-01

    1. At the mouse neuromuscular junction, adenosine (AD) and the A(1) agonist 2-chloro-N(6)-cyclopentyl-adenosine (CCPA) induce presynaptic inhibition of spontaneous acetylcholine (ACh) release by activation of A(1) AD receptors through a mechanism that is still unknown. To evaluate whether the inhibition is mediated by modulation of the voltage-dependent calcium channels (VDCCs) associated with tonic secretion (L- and N-type VDCCs), we measured the miniature end-plate potential (mepp) frequency in mouse diaphragm muscles. 2. Blockade of VDCCs by Cd(2+) prevented the effect of the CCPA. Nitrendipine (an L-type VDCC antagonist) but not omega-conotoxin GVIA (an N-type VDCC antagonist) blocked the action of CCPA, suggesting that the decrease in spontaneous mepp frequency by CCPA is associated with an action on L-type VDCCs only. 3. As A(1) receptors are coupled to a G(i/o) protein, we investigated whether the inhibition of PKA or the activation of PKC is involved in the presynaptic inhibition mechanism. Neither N-(2[p-bromocinnamylamino]-ethyl)-5-isoquinolinesulfonamide (H-89, a PKA inhibitor), nor 1-(5-isoquinolinesulfonyl)-2-methyl-piperazine (H-7, a PKC antagonist), nor phorbol 12-myristate 13-acetate (PHA, a PKC activator) modified CCPA-induced presynaptic inhibition, suggesting that these second messenger pathways are not involved. 4. The effect of CCPA was eliminated by the calmodulin antagonist N-(6-aminohexil)-5-chloro-1-naphthalenesulfonamide hydrochloride (W-7) and by ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid-acetoxymethyl ester epsilon6TDelta-BM, which suggests that the action of CCPA to modulate L-type VDCCs may involve Ca(2+)-calmodulin. 5. To investigate the action of CCPA on diverse degrees of nerve terminal depolarization, we studied its effect at different external K(+) concentrations. The effect of CCPA on ACh secretion evoked by 10 mm K(+) was prevented by the P/Q-type VDCC antagonist omega-agatoxin IVA. 6. CCPA failed to

  18. The clinical benefit of imaging striatal dopamine transporters with [123I]FP-CIT SPET in differentiating patients with presynaptic parkinsonism from those with other forms of parkinsonism

    International Nuclear Information System (INIS)

    Booij, J.; Speelman, J.DE.; Horstink, M. W.I.M.; Wolters, E.C.

    2001-01-01

    , and in three cases no conclusive diagnosis was established, but presynaptic parkinsonism was excluded clinically. A clinical diagnosis of presynaptic parkinsonism was established in two cases: one case of multiple system atrophy (in this patient loss of dopamine D 2 receptors was found with [ 123 I]iodobenzamide SPET performed 2 weeks after [ 123 I]FP-CIT imaging) and one case of Parkinson's disease. Our data suggest that the positive predictive value of [ 123 I]FP-CIT imaging is very high, and although the negative predictive value is lower, dopamine transporter imaging offers the prospect of a quick, objective method to confirm or exclude presynaptic parkinsonism in inconclusive cases. (orig.)

  19. Nootropic agents enhance the recruitment of fast GABAA inhibition in rat neocortex.

    Science.gov (United States)

    Ling, Douglas S F; Benardo, Larry S

    2005-07-01

    It is widely believed that nootropic (cognition-enhancing) agents produce their therapeutic effects by augmenting excitatory synaptic transmission in cortical circuits, primarily through positive modulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptors (AMPARs). However, GABA-mediated inhibition is also critical for cognition, and enhanced GABA function may be likewise therapeutic for cognitive disorders. Could nootropics act through such a mechanism as well? To address this question, we examined the effects of nootropic agents on excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs) recorded from layer V pyramidal cells in acute slices of somatosensory cortex. Aniracetam, a positive modulator of AMPA/kainate receptors, increased the peak amplitude of evoked EPSCs and the amplitude and duration of polysynaptic fast IPSCs, manifested as a greater total charge carried by IPSCs. As a result, the EPSC/IPSC ratio of total charge was decreased, representing a shift in the excitation-inhibition balance that favors inhibition. Aniracetam did not affect the magnitude of either monosynaptic IPSCs (mono-IPSCs) recorded in the presence of excitatory amino acid receptor antagonists, or miniature IPSCs (mIPSCs) recorded in the presence of tetrodotoxin. However, the duration of both mono-IPSCs and mIPSCs was prolonged, suggesting that aniracetam also directly modulates GABAergic transmission. Cyclothiazide, a preferential modulator of AMPAR function, enhanced the magnitude and duration of polysynaptic IPSCs, similar to aniracetam, but did not affect mono-IPSCs. Concanavalin A, a kainate receptor modulator, had little effect on EPSCs or IPSCs, suggesting there was no contribution from kainate receptor activity. These findings indicate that AMPAR modulators strengthen inhibition in neocortical pyramidal cells, most likely by altering the kinetics of AMPARs on synaptically connected interneurons and possibly by modulating GABA(A) receptor responses

  20. RIM genes differentially contribute to organizing presynaptic release sites.

    Science.gov (United States)

    Kaeser, Pascal S; Deng, Lunbin; Fan, Mingming; Südhof, Thomas C

    2012-07-17

    Tight coupling of Ca(2+) channels to the presynaptic active zone is critical for fast synchronous neurotransmitter release. RIMs are multidomain proteins that tether Ca(2+) channels to active zones, dock and prime synaptic vesicles for release, and mediate presynaptic plasticity. Here, we use conditional knockout mice targeting all RIM isoforms expressed by the Rims1 and Rims2 genes to examine the contributions and mechanism of action of different RIMs in neurotransmitter release. We show that acute single deletions of each Rims gene decreased release and impaired vesicle priming but did not alter the extracellular Ca(2+)-responsiveness of release (which for Rims gene mutants is a measure of presynaptic Ca(2+) influx). Moreover, single deletions did not affect the synchronization of release (which depends on the close proximity of Ca(2+) channels to release sites). In contrast, deletion of both Rims genes severely impaired the Ca(2+) responsiveness and synchronization of release. RIM proteins may act on Ca(2+) channels in two modes: They tether Ca(2+) channels to active zones, and they directly modulate Ca(2+)-channel inactivation. The first mechanism is essential for localizing presynaptic Ca(2+) influx to nerve terminals, but the role of the second mechanism remains unknown. Strikingly, we find that although the RIM2 C(2)B domain by itself significantly decreased Ca(2+)-channel inactivation in transfected HEK293 cells, it did not rescue any aspect of the RIM knockout phenotype in cultured neurons. Thus, RIMs primarily act in release as physical Ca(2+)-channel tethers and not as Ca(2+)-channel modulators. Different RIM proteins compensate for each other in recruiting Ca(2+) channels to active zones, but contribute independently and incrementally to vesicle priming.

  1. Presynaptic Active Zone Density during Development and Synaptic Plasticity.

    Science.gov (United States)

    Clarke, Gwenaëlle L; Chen, Jie; Nishimune, Hiroshi

    2012-01-01

    Neural circuits transmit information through synapses, and the efficiency of synaptic transmission is closely related to the density of presynaptic active zones, where synaptic vesicles are released. The goal of this review is to highlight recent insights into the molecular mechanisms that control the number of active zones per presynaptic terminal (active zone density) during developmental and stimulus-dependent changes in synaptic efficacy. At the neuromuscular junctions (NMJs), the active zone density is preserved across species, remains constant during development, and is the same between synapses with different activities. However, the NMJ active zones are not always stable, as exemplified by the change in active zone density during acute experimental manipulation or as a result of aging. Therefore, a mechanism must exist to maintain its density. In the central nervous system (CNS), active zones have restricted maximal size, exist in multiple numbers in larger presynaptic terminals, and maintain a constant density during development. These findings suggest that active zone density in the CNS is also controlled. However, in contrast to the NMJ, active zone density in the CNS can also be increased, as observed in hippocampal synapses in response to synaptic plasticity. Although the numbers of known active zone proteins and protein interactions have increased, less is known about the mechanism that controls the number or spacing of active zones. The following molecules are known to control active zone density and will be discussed herein: extracellular matrix laminins and voltage-dependent calcium channels, amyloid precursor proteins, the small GTPase Rab3, an endocytosis mechanism including synaptojanin, cytoskeleton protein spectrins and β-adducin, and a presynaptic web including spectrins. The molecular mechanisms that organize the active zone density are just beginning to be elucidated.

  2. Presynaptic active zone density during development and synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Gwenaëlle L Clarke

    2012-02-01

    Full Text Available Neural circuits transmit information through synapses, and the efficiency of synaptic transmission is closely related to the density of presynaptic active zones, where synaptic vesicles are released. The goal of this review is to highlight recent insights into the molecular mechanisms that control the number of active zones per presynaptic terminal (active zone density during developmental and stimulus-dependent changes in synaptic efficacy. At the neuromuscular junctions (NMJs, the active zone density is preserved across species, remains constant during development, and is the same between synapses with different activities. However, the NMJ active zones are not always stable, as exemplified by the change in active zone density during acute experimental manipulation or as a result of aging. Therefore, a mechanism must exist to maintain its density. In the central nervous system (CNS, active zones have restricted maximal size, exist in multiple numbers in larger presynaptic terminals, and maintain a constant density during development. These findings suggest that active zone density in the CNS is also controlled. However, in contrast to the NMJ, active zone density in the CNS can also be increased, as observed in hippocampal synapses in response to synaptic plasticity. Although the numbers of known active zone proteins and protein interactions have increased, less is known about the mechanism that controls the number or spacing of active zones. The following molecules are known to control active zone density and will be discussed herein: extracellular matrix laminins and voltage-dependent calcium channels, amyloid precursor proteins, the small GTPase Rab3, an endocytosis mechanism including synaptojanin, cytoskeleton protein spectrins and β-adducin, and a presynaptic web including spectrins. The molecular mechanisms that organize the active zone density are just beginning to be elucidated.

  3. Coupling of exocytosis and endocytosis at the presynaptic active zone.

    Science.gov (United States)

    Maritzen, Tanja; Haucke, Volker

    2018-02-01

    Brain function depends on the ability of neurons to communicate with each other via the regulated exocytosis of neurotransmitter-containing synaptic vesicles (SVs) at specialized presynaptic release sites termed active zones (AZs). The presynaptic AZ comprises an assembly of large multidomain proteins that link the machinery for vesicle fusion to sites of voltage-dependent Ca 2+ entry. Following SV fusion at AZ release sites SV membranes are retrieved by compensatory endocytosis, and SVs are reformed. Recent data suggest that Ca 2+ -triggered SV exocytosis at AZs and endocytic retrieval of SVs may be functionally and physically linked. Here we discuss the evidence supporting such exo-endocytic coupling as well as possible modes and mechanisms that may underlie coupling of exocytosis and endocytosis at and around AZs in presynaptic nerve terminals. As components of the exo-endocytic machinery at synapses have been linked to neurological and neuropsychiatric disorders, understanding the mechanisms that couple exocytosis and endocytosis at AZs may be of importance for developing novel therapies to treat these diseases. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  4. Single cocaine exposure does not alter striatal pre-synaptic dopamine function in mice: an [18 F]-FDOPA PET study.

    Science.gov (United States)

    Bonsall, David R; Kokkinou, Michelle; Veronese, Mattia; Coello, Christopher; Wells, Lisa A; Howes, Oliver D

    2017-12-01

    Cocaine is a recreational drug of abuse that binds to the dopamine transporter, preventing reuptake of dopamine into pre-synaptic terminals. The increased presence of synaptic dopamine results in stimulation of both pre- and post-synaptic dopamine receptors, considered an important mechanism by which cocaine elicits its reinforcing properties. However, the effects of acute cocaine administration on pre-synaptic dopamine function remain unclear. Non-invasive imaging techniques such as positron emission tomography have revealed impaired pre-synaptic dopamine function in chronic cocaine users. Similar impairments have been seen in animal studies, with microdialysis experiments indicating decreased basal dopamine release. Here we use micro positron emission tomography imaging techniques in mice to measure dopamine synthesis capacity and determine the effect of acute cocaine administration of pre-synaptic dopamine function. We show that a dose of 20 mg/kg cocaine is sufficient to elicit hyperlocomotor activity, peaking 15-20 min post treatment (p cocaine treatment (KiCer: 0.0097 per min vs. 0.0112 per min in vehicle controls, p > 0.05). Furthermore, expression levels of two key enzymes related to dopamine synthesis, tyrosine hydroxylase and aromatic l-amino acid decarboxylase, within the striatum of scanned mice were not significantly affected by acute cocaine pre-treatment (p > 0.05). Our findings suggest that while the regulation of dopamine synthesis and release in the striatum have been shown to change with chronic cocaine use, leading to a reduced basal tone, these adaptations to pre-synaptic dopaminergic neurons are not initiated following a single exposure to the drug. © 2017 International Society for Neurochemistry.

  5. Rosiglitazone Suppresses In Vitro Seizures in Hippocampal Slice by Inhibiting Presynaptic Glutamate Release in a Model of Temporal Lobe Epilepsy.

    Directory of Open Access Journals (Sweden)

    Shi-Bing Wong

    Full Text Available Peroxisomal proliferator-activated receptor gamma (PPARγ is a nuclear hormone receptor whose agonist, rosiglitazone has a neuroprotective effect to hippocampal neurons in pilocarpine-induced seizures. Hippocampal slice preparations treated in Mg2+ free medium can induce ictal and interictal-like epileptiform discharges, which is regarded as an in vitro model of N-methyl-D-aspartate (NMDA receptor-mediated temporal lobe epilepsy (TLE. We applied rosiglitazone in hippocampal slices treated in Mg2+ free medium. The effects of rosiglitazone on hippocampal CA1-Schaffer collateral synaptic transmission were tested. We also examined the neuroprotective effect of rosiglitazone toward NMDA excitotoxicity on cultured hippocampal slices. Application of 10 μM rosiglitazone significantly suppressed amplitude and frequency of epileptiform discharges in CA1 neurons. Pretreatment with the PPARγ antagonist GW9662 did not block the effect of rosiglitazone on suppressing discharge frequency, but reverse the effect on suppressing discharge amplitude. Application of rosiglitazone suppressed synaptic transmission in the CA1-Schaffer collateral pathway. By miniature excitatory-potential synaptic current (mEPSC analysis, rosiglitazone significantly suppressed presynaptic neurotransmitter release. This phenomenon can be reversed by pretreating PPARγ antagonist GW9662. Also, rosiglitazone protected cultured hippocampal slices from NMDA-induced excitotoxicity. The protective effect of 10 μM rosiglitazone was partially antagonized by concomitant high dose GW9662 treatment, indicating that this effect is partially mediated by PPARγ receptors. In conclusion, rosiglitazone suppressed NMDA receptor-mediated epileptiform discharges by inhibition of presynaptic neurotransmitter release. Rosiglitazone protected hippocampal slice from NMDA excitotoxicity partially by PPARγ activation. We suggest that rosiglitazone could be a potential agent to treat patients with TLE.

  6. Intra-axonal Synthesis of SNAP25 Is Required for the Formation of Presynaptic Terminals

    Directory of Open Access Journals (Sweden)

    Andreia F.R. Batista

    2017-09-01

    Full Text Available Localized protein synthesis is a mechanism for developing axons to react acutely and in a spatially restricted manner to extracellular signals. As such, it is important for many aspects of axonal development, but its role in the formation of presynapses remains poorly understood. We found that the induced assembly of presynaptic terminals required local protein synthesis. Newly synthesized proteins were detectable at nascent presynapses within 15 min of inducing synapse formation in isolated axons. The transcript for the t-SNARE protein SNAP25, which is required for the fusion of synaptic vesicles with the plasma membrane, was recruited to presynaptic sites and locally translated. Inhibition of intra-axonal SNAP25 synthesis affected the clustering of SNAP25 and other presynaptic proteins and interfered with the release of synaptic vesicles from presynaptic sites. This study reveals a critical role for the axonal synthesis of SNAP25 in the assembly of presynaptic terminals.

  7. Serotonin Receptors in Hippocampus

    Science.gov (United States)

    Berumen, Laura Cristina; Rodríguez, Angelina; Miledi, Ricardo; García-Alcocer, Guadalupe

    2012-01-01

    Serotonin is an ancient molecular signal and a recognized neurotransmitter brainwide distributed with particular presence in hippocampus. Almost all serotonin receptor subtypes are expressed in hippocampus, which implicates an intricate modulating system, considering that they can be localized as autosynaptic, presynaptic, and postsynaptic receptors, even colocalized within the same cell and being target of homo- and heterodimerization. Neurons and glia, including immune cells, integrate a functional network that uses several serotonin receptors to regulate their roles in this particular part of the limbic system. PMID:22629209

  8. Protective Effects of Testosterone on Presynaptic Terminals against Oligomeric β-Amyloid Peptide in Primary Culture of Hippocampal Neurons

    Directory of Open Access Journals (Sweden)

    Chi-Fai Lau

    2014-01-01

    Full Text Available Increasing lines of evidence support that testosterone may have neuroprotective effects. While observational studies reported an association between higher bioavailable testosterone or brain testosterone levels and reduced risk of Alzheimer’s disease (AD, there is limited understanding of the underlying neuroprotective mechanisms. Previous studies demonstrated that testosterone could alleviate neurotoxicity induced by β-amyloid (Aβ, but these findings mainly focused on neuronal apoptosis. Since synaptic dysfunction and degeneration are early events during the pathogenesis of AD, we aim to investigate the effects of testosterone on oligomeric Aβ-induced synaptic changes. Our data suggested that exposure of primary cultured hippocampal neurons to oligomeric Aβ could reduce the length of neurites and decrease the expression of presynaptic proteins including synaptophysin, synaptotagmin, and synapsin-1. Aβ also disrupted synaptic vesicle recycling and protein folding machinery. Testosterone preserved the integrity of neurites and the expression of presynaptic proteins. It also attenuated Aβ-induced impairment of synaptic exocytosis. By using letrozole as an aromatase antagonist, we further demonstrated that the effects of testosterone on exocytosis were unlikely to be mediated through the estrogen receptor pathway. Furthermore, we showed that testosterone could attenuate Aβ-induced reduction of HSP70, which suggests a novel mechanism that links testosterone and its protective function on Aβ-induced synaptic damage. Taken together, our data provide further evidence on the beneficial effects of testosterone, which may be useful for future drug development for AD.

  9. Regulation of presynaptic Ca2+, synaptic plasticity and contextual fear conditioning by a N-terminal β-amyloid fragment.

    Science.gov (United States)

    Lawrence, James L M; Tong, Mei; Alfulaij, Naghum; Sherrin, Tessi; Contarino, Mark; White, Michael M; Bellinger, Frederick P; Todorovic, Cedomir; Nichols, Robert A

    2014-10-22

    Soluble β-amyloid has been shown to regulate presynaptic Ca(2+) and synaptic plasticity. In particular, picomolar β-amyloid was found to have an agonist-like action on presynaptic nicotinic receptors and to augment long-term potentiation (LTP) in a manner dependent upon nicotinic receptors. Here, we report that a functional N-terminal domain exists within β-amyloid for its agonist-like activity. This sequence corresponds to a N-terminal fragment generated by the combined action of α- and β-secretases, and resident carboxypeptidase. The N-terminal β-amyloid fragment is present in the brains and CSF of healthy adults as well as in Alzheimer's patients. Unlike full-length β-amyloid, the N-terminal β-amyloid fragment is monomeric and nontoxic. In Ca(2+) imaging studies using a model reconstituted rodent neuroblastoma cell line and isolated mouse nerve terminals, the N-terminal β-amyloid fragment proved to be highly potent and more effective than full-length β-amyloid in its agonist-like action on nicotinic receptors. In addition, the N-terminal β-amyloid fragment augmented theta burst-induced post-tetanic potentiation and LTP in mouse hippocampal slices. The N-terminal fragment also rescued LTP inhibited by elevated levels of full-length β-amyloid. Contextual fear conditioning was also strongly augmented following bilateral injection of N-terminal β-amyloid fragment into the dorsal hippocampi of intact mice. The fragment-induced augmentation of fear conditioning was attenuated by coadministration of nicotinic antagonist. The activity of the N-terminal β-amyloid fragment appears to reside largely in a sequence surrounding a putative metal binding site, YEVHHQ. These findings suggest that the N-terminal β-amyloid fragment may serve as a potent and effective endogenous neuromodulator. Copyright © 2014 the authors 0270-6474/14/3414210-09$15.00/0.

  10. Distinct presynaptic control of dopamine release in striosomal and matrix areas of the cat caudate nucleus

    International Nuclear Information System (INIS)

    Kemel, M.L.; Desban, M.; Glowinski, J.; Gauchy, C.

    1989-01-01

    By use of a sensitive in vitro microsuperfusion method, the cholinergic presynaptic control of dopamine release was investigated in a prominent striosome (areas poor in acetylcholinesterase activity) located within the core of cat caudate nucleus and also in adjacent matrix area. The spontaneous release of [ 3 H]dopamine continuously synthesized from [ 3 H]tyrosine in the matrix area was found to be twice that in the striosomal area; the spontaneous and potassium-evoked releases of [ 3 H]dopamine were calcium-dependent in both compartments. With 10 -6 M tetrodotoxin, 5 x 10 -5 M acetylcholine stimulated [ 3 H]dopamine release in both striosomal and matrix areas, effects completely antagonized by atropine, thus showing the involvement of muscarinic receptors located on dopaminergic nerve terminals. Experiments without tetrodotoxin revealed a more complex regulation of dopamine release in the matrix: (i) in contrast to results seen in the striosome, acetylcholine induced only a transient stimulatory effect on matrix dopamine release. (ii) Although 10 -6 M atropine completely abolished the cholinergic stimulatory effect on [ 3 H]dopamine release in striosomal area, delayed and prolonged stimulation of [ 3 H] dopamine release was seen with atropine in the matrix. The latter effect was completely abolished by the nicotinic antagonist pempidine. Therefore, in the matrix, in addition to its direct (tetrodotoxin-insensitive) facilitatory action on [ 3 H]dopamine release, acetylcholine exerts two indirect (tetrodotoxin-sensitive) opposing effects: an inhibition and a stimulation of [ 3 H]dopamine release mediated by muscarinic and nicotinic receptors, respectively

  11. Muscarinic receptor compensation in hippocampus of alzheimer patients

    International Nuclear Information System (INIS)

    Nordberg, A.; Larsson, C.; Adolfsson, R.; Alafuzoff, I.; Winblad, B.

    1983-01-01

    The activity of the acetylcholine synthesizing enzyme choline acetyltransferase (ChAT) (presynaptic marker) and number of muscarine-like receptor binding sites have been measured in the hippocampus from eight individuals with senile dementia of Alzheimer type (SDAT) and ten controls. A negative correlation (r=0.80; p<0.05) was found between the ChAT activity and the number of muscarine-like receptors in the SDAT group but not in the controls. The findings might indicate an ongoing compensatory receptor mechanism as a response to changes in presynaptic cholinergic activity. (Author)

  12. Conditional gene deletion reveals functional redundancy of GABAB receptors in peripheral nociceptors in vivo

    NARCIS (Netherlands)

    Gangadharan, Vijayan; Agarwal, Nitin; Brugger, Stefan; Tegeder, Imgard; Bettler, Bernhard; Kuner, Rohini; Kurejova, Martina

    2009-01-01

    BACKGROUND: gamma-aminobutyric acid (GABA) is an important inhibitory neurotransmitter which mainly mediates its effects on neurons via ionotropic (GABA(A)) and metabotropic (GABA(B)) receptors. GABA(B) receptors are widely expressed in the central and the peripheral nervous system. Although there

  13. The presynaptic machinery at the synapse of C. elegans.

    Science.gov (United States)

    Calahorro, Fernando; Izquierdo, Patricia G

    2018-03-12

    Synapses are specialized contact sites that mediate information flow between neurons and their targets. Important physical interactions across the synapse are mediated by synaptic adhesion molecules. These adhesions regulate formation of synapses during development and play a role during mature synaptic function. Importantly, genes regulating synaptogenesis and axon regeneration are conserved across the animal phyla. Genetic screens in the nematode Caenorhabditis elegans have identified a number of molecules required for synapse patterning and assembly. C. elegans is able to survive even with its neuronal function severely compromised. This is in comparison with Drosophila and mice where increased complexity makes them less tolerant to impaired function. Although this fact may reflect differences in the function of the homologous proteins in the synapses between these organisms, the most likely interpretation is that many of these components are equally important, but not absolutely essential, for synaptic transmission to support the relatively undemanding life style of laboratory maintained C. elegans. Here, we review research on the major group of synaptic proteins, involved in the presynaptic machinery in C. elegans, showing a strong conservation between higher organisms and highlight how C. elegans can be used as an informative tool for dissecting synaptic components, based on a simple nervous system organization.

  14. Whereas Short-Term Facilitation Is Presynaptic, Intermediate-Term Facilitation Involves Both Presynaptic and Postsynaptic Protein Kinases and Protein Synthesis

    Science.gov (United States)

    Jin, Iksung; Kandel, Eric R.; Hawkins, Robert D.

    2011-01-01

    Whereas short-term plasticity involves covalent modifications that are generally restricted to either presynaptic or postsynaptic structures, long-term plasticity involves the growth of new synapses, which by its nature involves both pre- and postsynaptic alterations. In addition, an intermediate-term stage of plasticity has been identified that…

  15. An increase in spinal dehydroepiandrosterone sulfate (DHEAS) enhances NMDA-induced pain via phosphorylation of the NR1 subunit in mice: involvement of the sigma-1 receptor.

    Science.gov (United States)

    Yoon, Seo-Yeon; Roh, Dae-Hyun; Seo, Hyoung-Sig; Kang, Suk-Yun; Moon, Ji-Young; Song, Sunok; Beitz, Alvin J; Lee, Jang-Hern

    2010-11-01

    Our laboratory has recently demonstrated that an increase in the spinal neurosteroid, dehydroepiandrosterone sulfate (DHEAS) facilitates nociception via the activation of sigma-1 receptors and/or the allosteric inhibition GABA(A) receptors. Several lines of evidence have suggested that DHEAS positively modulates N-methyl-d-aspartate (NMDA) receptor activity within the central nervous system. Moreover, we have demonstrated that the activation of sigma-1 receptors increases NMDA receptor activity. Since NMDA receptors play a key role in the enhancement of pain perception, the present study was designed to determine whether spinally administered DHEAS modulates NMDA receptor-mediated nociceptive activity and whether this effect is mediated by sigma-1 or GABA(A) receptors. Intrathecal (i.t.) DHEAS was found to significantly potentiate i.t. NMDA-induced spontaneous pain behaviors. Subsequent immunohistochemical analysis demonstrated that i.t. DHEAS also increased protein kinase C (PKC)- and protein kinase A (PKA)-dependent phosphorylation of the NMDA receptor subunit NR1 (pNR1), which was used as a marker of NMDA receptor sensitization. The sigma-1 receptor antagonist, BD-1047, but not the GABA(A) receptor agonist, muscimol, dose-dependently suppressed DHEAS's facilitatory effect on NMDA-induced nociception and pNR1 expression. In addition, pretreatment with either a PKC or PKA blocker significantly reduced the facilitatory effect of DHEAS on NMDA-induced nociception. Conversely the GABA(A) receptor antagonist, bicuculline did not affect NMDA-induced pain behavior or pNR1 expression. The results of this study suggest that the DHEAS-induced enhancement of NMDA-mediated nociception is dependent on an increase in PKC- and PKA-dependent pNR1. Moreover, this effect of DHEAS on NMDA receptor activity is mediated by the activation of spinal sigma-1 receptors and not through the inhibition of GABA(A) receptors. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Potentiating action of propofol at GABAA receptors of retinal bipolar cells

    DEFF Research Database (Denmark)

    Yue, Lan; Xie, An; Bruzik, Karol S

    2011-01-01

    Purpose. Propofol (2,6-diisopropyl phenol), a widely used systemic anesthetic, is known to potentiate GABA(A) receptor activity in a number of CNS neurons and to produce changes in electroretinographically recorded responses of the retina. However, little is known about propofol's effects...... on specific retinal neurons. The authors investigated the action of propofol on GABA-elicited membrane current responses of retinal bipolar cells, which have both GABA(A) and GABA(C) receptors. Methods. Single, enzymatically dissociated bipolar cells obtained from rat retina were treated with propofol...

  17. Effects of propofol and pentobarbital on calcium concentration in presynaptic boutons on a rat hippocampal neuron.

    Science.gov (United States)

    Ito, Shinichi; Sugiyama, Hitomi; Kitahara, Seiko; Ikemoto, Yoshimi; Yokoyama, Takeshi

    2011-10-01

    Numerous reports suggest that intravenously administered (IV) anesthetics affect postsynaptic events in the central nervous system. However, there is little evidence about how general anesthetics influence the presynaptic processes. The level of presynaptic calcium (Ca(2+)) concentration ([Ca(2+)](pre)) regulates neurotransmitter release. In this study, we investigated the effects of anesthetic propofol IV and the barbiturate pentobarbital on neurotransmitter release by measuring [Ca(2+)](pre) in the presynaptic nerve terminals (boutons) on a dissociated single hippocampal rat neuron. Sprague-Dawley rats 10-14 days old were decapitated under pentobarbital anesthesia, and brain slices were prepared. The hippocampal CA1 area was touched with a fire-polished glass pipette, which vibrated horizontally, and neurons were dissociated, along with the attached presynaptic boutons. The presynaptic boutons were visualized under a confocal laser-scanning microscope after staining with FM1-43 dye, and [Ca(2+)](pre) was measured with acetoxymethyl ester of fluo-3 (fluo-3 AM). High potassium (K(+)) (15-90 mM) increased the [Ca(2+)](pre) in the Ca(2+)-containing solution in a concentration-dependent manner. Whereas propofol (10 μM) and pentobarbital (300 μM) suppressed the high K(+) (60 mM)-induced increase in [Ca(2+)](pre) in the boutons attached to the dendrite, they did not affect [Ca(2+)](pre) in the boutons attached to the soma or dendrite base. As a large majority of excitatory synapses are located on dendritic spines, these agents may affect Ca(2+) mobilization in the excitatory presynaptic boutons. Propofol and pentobarbital may affect neurotransmitter release from the excitatory presynaptic nerve terminals due to inhibition of increase in [Ca(2+)](pre).

  18. Reactive oxygen species contribute to the presynaptic action of extracellular ATP at the frog neuromuscular junction

    Science.gov (United States)

    Giniatullin, AR; Grishin, SN; Sharifullina, ER; Petrov, AM; Zefirov, AL; Giniatullin, RA

    2005-01-01

    During normal cell metabolism the production of intracellular ATP is associated with the generation of reactive oxygen species (ROS), which appear to be important signalling molecules. Both ATP and ROS can be released extracellularly by skeletal muscle during intense activity. Using voltage clamp recording combined with imaging and biochemical assay of ROS, we tested the hypothesis that at the neuromuscular junction extracellular ATP generates ROS to inhibit transmitter release from motor nerve endings. We found that ATP produced the presynaptic inhibitory action on multiquantal end-plate currents. The inhibitory action of ATP (but not that of adenosine) was significantly reduced by several antioxidants or extracellular catalase, which breaks down H2O2. Consistent with these data, the depressant effect of ATP was dramatically potentiated by the pro-oxidant Fe2+. Exogenous H2O2 reproduced the depressant effects of ATP and showed similar sensitivity to anti- and pro-oxidants. While NO also inhibited synaptic transmission, inhibitors of the NO-producing cascade did not prevent the depressant action of ATP. The ferrous oxidation in xylenol orange assay showed the increase of ROS production by ATP and 2-MeSADP but not by adenosine. Suramin, a non-selective antagonist of P2 receptors, and pertussis toxin prevented the action of ATP on ROS production. Likewise, imaging with the ROS-sensitive dye carboxy-2′,7′-dichlorodihydrofluorescein revealed increased production of ROS in the muscle treated with ATP or ADP while UTP or adenosine had no effect. Thus, generation of ROS contributed to the ATP-mediated negative feedback mechanism controlling quantal secretion of ACh from the motor nerve endings. PMID:15774519

  19. receptores

    Directory of Open Access Journals (Sweden)

    Salete Regina Daronco Benetti

    2006-01-01

    Full Text Available Se trata de un estudio etnográfico, que tuvo lo objetivo de interpretar el sistema de conocimiento y del significado atribuidos a la sangre referente a la transfusión sanguínea por los donadores y receptores de un banco de sangre. Para la colecta de las informaciones se observaron los participantes y la entrevista etnográfica se realizó el análisis de dominio, taxonómicos y temáticos. Los dominios culturales fueron: la sangre es vida: fuente de vida y alimento valioso; creencias religiosas: fuentes simbólicas de apoyos; donación sanguínea: un gesto colaborador que exige cuidarse, gratifica y trae felicidad; donación sanguínea: fuente simbólica de inseguridad; estar enfermo es una condición para realizar transfusión sanguínea; transfusión sanguínea: esperanza de vida; Creencias populares: transfusión sanguínea como riesgo para la salud; donadores de sangre: personas benditas; donar y recibir sangre: como significado de felicidad. Temática: “líquido precioso que origina, sostiene, modifica la vida, provoca miedo e inseguridad”.

  20. N-cadherin induces partial differentiation of cholinergic presynaptic terminals in heterologous cultures of brainstem neurons and CHO cells

    Directory of Open Access Journals (Sweden)

    Richard J Flannery

    2012-12-01

    Full Text Available N-cadherin is a calcium-sensitive cell adhesion molecule commonly expressed at synaptic junctions and contributes to formation and maturation of synaptic contacts. This study used heterologous cell cultures of brainstem cholinergic neurons and transfected Chinese Hamster Ovary (CHO cells to examine whether N-cadherin is sufficient to induce differentiation of cholinergic presynaptic terminals. Brainstem nuclei isolated from transgenic mice expressing EGFP under the control of choline acetyltransferase transcriptional regulatory elements (ChATBACEGFP were cultured as tissue explants for five days and cocultured with transfected CHO cells for an additional two days. Immunostaining for synaptic vesicle proteins SV2 and synapsin I revealed a ~3-fold increase in the area of SV2 immunolabeling over N-cadherin expressing CHO cells, and this effect was enhanced by coexpression of p120-catenin. Synapsin I immunolabeling per axon length was also increased on N-cadherin expressing CHO cells but required coexpression of p120-catenin. To determine whether N-cadherin induces formation of neurotransmitter release sites, whole-cell voltage-clamp recordings of CHO cells expressing alpha-3 and beta-4 nicotinic acetylcholine receptor (nAChR subunits in contact with cholinergic axons were used to monitor excitatory postsynaptic potentials (EPSPs and miniature EPSPs (mEPSPs. EPSPs and mEPSPs were not detected in both, control and in N-cadherin expressing CHO cells in the absence or presence of tetrodotoxin. These results indicate that expression of N-cadherin in non-neuronal cells is sufficient to initiate differentiation of presynaptic cholinergic terminals by inducing accumulation of synaptic vesicles; however, development of readily detectable mature cholinergic release sites and/or clustering of postsynaptic nAChR may require expression of additional synaptogenic proteins.

  1. Synthesis and docking study on thiadiazolo[3,2-a][1,3]diazepin-8(5H-one derivatives as selective GABA(A agonists

    Directory of Open Access Journals (Sweden)

    Mohammad javad Taghizadeh

    2016-09-01

    Full Text Available HIE-124 is a new member of ultra-short acting hypnotics’ drug family. In this research, the synthesis of analogues of HIE-124 drug in the heterocyclic thiazole ring replaced to thiadiazole, will be presented. Thiadiazolodiazepines during a two-step reaction starting from the amino thiadiazole resulted from-various derivatives of benzoic acid and thiosemicarbazide were synthesized. In the first step, the reaction of synthetic raw material 2-amino thiadiazole and 4-chlorobutyrilchloride in toluene solvent give the 4-chloro-N-(5-(methyl/aryl-1,3,4-thiadiazol-2-yl butanamide intermediate. In the next step, from the cyclization reaction of this intermediate ring in the presence of base under reflux, the target products are synthesized. Structure of products was identified based on IR, HNMR and CNMR spectroscopy analysis. Then, the procedure of docking of ligands were performed on the active site of GABAA that the common residues involved in allosteric modulators such as enzodiazepines and HIE-124 include ASN82, ASN81, PHE79, MET1, TYR106, ALA38 and AlA168. Consequently, These Docking calculations suggest that these new compounds might be having better interaction results between receptor (GABAA than HIE-124.

  2. Gastrodiae Rhizoma Ethanol Extract Enhances Pentobarbital-Induced Sleeping Behaviors and Rapid Eye Movement Sleep via the Activation of GABAA-ergic Transmission in Rodents

    Directory of Open Access Journals (Sweden)

    Jae Joon Choi

    2014-01-01

    Full Text Available This research was designed to identify whether Gastrodiae Rhizoma ethanol extract (GREE enhances pentobarbital-induced sleep via  γ-aminobutyric acid- (GABA- ergic systems and modulated sleep architectures in animals. GREE (25, 50, and 100 mg/kg, p.o. inhibited locomotor activity in mice, in a dose-dependent manner. GREE not only prolonged total sleep time, but also reduced sleep latency time in pentobarbital (42 mg/kg-treated mice. Subhypnotic pentobarbital (28 mg/kg, i.p. also increased the number of total sleeping animals in concomitant administration of GREE. GREE (100 mg/kg alone reduced the count of sleep-wake cycles in electroencephalogram. Furthermore, GREE increased total sleep time and rapid eye movement (REM sleep. From the in vitro experiments, GREE increased intracellular chloride level in primary cultured cerebellar granule cells. Protein expressions of glutamine acid decarboxylase (GAD and GABAA receptors subtypes by western blot were increased. Therefore, our study suggested that GREE enhances pentobarbital-induced sleeping behaviors and increased REM via the activation of GABAA-ergic transmission in rodents.

  3. Allosteric modulation of retinal GABA receptors by ascorbic acid

    Science.gov (United States)

    Calero, Cecilia I.; Vickers, Evan; Moraga Cid, Gustavo; Aguayo, Luis G.; von Gersdorff, Henrique; Calvo, Daniel J.

    2011-01-01

    Summary Ionotropic γ-aminobutyric acid receptors (GABAA and GABAC) belong to the cys-loop receptor family of ligand-gated ion channels. GABAC receptors are highly expressed in the retina, mainly localized at the axon terminals of bipolar cells. Ascorbic acid, an endogenous redox agent, modulates the function of diverse proteins, and basal levels of ascorbic acid in the retina are very high. However, the effect of ascorbic acid on retinal GABA receptors has not been studied. Here we show that the function of GABAC and GABAA receptors is regulated by ascorbic acid. Patch-clamp recordings from bipolar cell terminals in goldfish retinal slices revealed that GABAC receptor-mediated currents activated by tonic background levels of extracellular GABA, and GABAC currents elicited by local GABA puffs, are both significantly enhanced by ascorbic acid. In addition, a significant rundown of GABA-puff evoked currents was observed in the absence of ascorbic acid. GABA-evoked Cl- currents mediated by homomeric ρ1 GABAC receptors expressed in Xenopus laevis oocytes were also potentiated by ascorbic acid in a concentration-dependent, stereospecific, reversible, and voltage-independent manner. Studies involving the chemical modification of sulfhydryl groups showed that the two cys-loop cysteines and histidine 141, all located in the ρ1 subunit extracellular domain, each play a key role in the modulation of GABAC receptors by ascorbic acid. Additionally, we show that retinal GABAA IPSCs and heterologously expressed GABAA receptor currents are similarly augmented by ascorbic acid. Our results suggest that ascorbic acid may act as an endogenous agent capable of potentiating GABAergic neurotransmission in the CNS. PMID:21715633

  4. Expression of the GABA(A) receptor alpha6 subunit in cultured cerebellar granule cells is developmentally regulated by activation of GABA(A) receptors

    DEFF Research Database (Denmark)

    Carlson, B X; Belhage, B; Hansen, Gert Helge

    1997-01-01

    Da (alpha6 subunit) radioactive peaks in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In contrast, THIP-treated granule cells at 8 DIV demonstrated a small but significant decrease from control cultures in the photoincorporation of [3H]Ro15-4513 in the 51-kDa peak; however...... that the major effect of THIP was to increase alpha6 subunit clustering on granule cell bodies as well as neurites, 15-fold and sixfold, respectively. Using in situ hybridization, a small THIP-induced increase in alpha6 mRNA was detected at 4 DIV; however, no effect was apparent at 8 DIV. These data suggest...

  5. Degeneracy in the regulation of short-term plasticity and synaptic filtering by presynaptic mechanisms.

    Science.gov (United States)

    Mukunda, Chinmayee L; Narayanan, Rishikesh

    2017-04-15

    We develop a new biophysically rooted, physiologically constrained conductance-based synaptic model to mechanistically account for short-term facilitation and depression, respectively through residual calcium and transmitter depletion kinetics. We address the specific question of how presynaptic components (including voltage-gated ion channels, pumps, buffers and release-handling mechanisms) and interactions among them define synaptic filtering and short-term plasticity profiles. Employing global sensitivity analyses (GSAs), we show that near-identical synaptic filters and short-term plasticity profiles could emerge from disparate presynaptic parametric combinations with weak pairwise correlations. Using virtual knockout models, a technique to address the question of channel-specific contributions within the GSA framework, we unveil the differential and variable impact of each ion channel on synaptic physiology. Our conclusions strengthen the argument that parametric and interactional complexity in biological systems should not be viewed from the limited curse-of-dimensionality standpoint, but from the evolutionarily advantageous perspective of providing functional robustness through degeneracy. Information processing in neurons is known to emerge as a gestalt of pre- and post-synaptic filtering. However, the impact of presynaptic mechanisms on synaptic filters has not been quantitatively assessed. Here, we developed a biophysically rooted, conductance-based model synapse that was endowed with six different voltage-gated ion channels, calcium pumps, calcium buffer and neurotransmitter-replenishment mechanisms in the presynaptic terminal. We tuned our model to match the short-term plasticity profile and band-pass structure of Schaffer collateral synapses, and performed sensitivity analyses to demonstrate that presynaptic voltage-gated ion channels regulated synaptic filters through changes in excitability and associated calcium influx. These sensitivity analyses

  6. RIM determines Ca2+ channel density and vesicle docking at the presynaptic active zone

    Science.gov (United States)

    Han, Yunyun; Kaeser, Pascal S.; Südhof, Thomas C.; Schneggenburger, Ralf

    2012-01-01

    At presynaptic active zones, neurotransmitter release is initiated by the opening of voltage-gated Ca2+ channels close to docked vesicles. The mechanisms that enrich Ca2+ channels at active zones are, however, largely unknown, possibly because of the limited presynaptic accessibility of most synapses. Here, we have established a Cre-lox based conditional knock-out approach at a presynaptically accessible CNS synapse, the calyx of Held, to directly study the functions of RIM proteins. Removal of all RIM1/2 isoforms strongly reduced the presynaptic Ca2+ channel density, revealing a new role of RIM proteins in Ca2+ channel targeting. Removal of RIMs also reduced the readily-releasable pool, paralleled by a similar reduction of the number of docked vesicles, and the Ca2+ channel - vesicle coupling was decreased. Thus, RIM proteins co-ordinately regulate key functions for fast transmitter release: enabling a high presynaptic Ca2+ channel density, and vesicle docking at the active zone. PMID:21262468

  7. Muscle Contraction Regulates BDNF/TrkB Signaling to Modulate Synaptic Function through Presynaptic cPKCα and cPKCβI

    Directory of Open Access Journals (Sweden)

    Erica Hurtado

    2017-05-01

    Full Text Available The neurotrophin brain-derived neurotrophic factor (BDNF acts via tropomyosin-related kinase B receptor (TrkB to regulate synapse maintenance and function in the neuromuscular system. The potentiation of acetylcholine (ACh release by BDNF requires TrkB phosphorylation and Protein Kinase C (PKC activation. BDNF is secreted in an activity-dependent manner but it is not known if pre- and/or postsynaptic activities enhance BDNF expression in vivo at the neuromuscular junction (NMJ. Here, we investigated whether nerve and muscle cell activities regulate presynaptic conventional PKC (cPKCα and βI via BDNF/TrkB signaling to modulate synaptic strength at the NMJ. To differentiate the effects of presynaptic activity from that of muscle contraction, we stimulated the phrenic nerve of rat diaphragms (1 Hz, 30 min with or without contraction (abolished by μ-conotoxin GIIIB. Then, we performed ELISA, Western blotting, qRT-PCR, immunofluorescence and electrophysiological techniques. We found that nerve-induced muscle contraction: (1 increases the levels of mature BDNF protein without affecting pro-BDNF protein or BDNF mRNA levels; (2 downregulates TrkB.T1 without affecting TrkB.FL or p75 neurotrophin receptor (p75 levels; (3 increases presynaptic cPKCα and cPKCβI protein level through TrkB signaling; and (4 enhances phosphorylation of cPKCα and cPKCβI. Furthermore, we demonstrate that cPKCβI, which is exclusively located in the motor nerve terminals, increases activity-induced acetylcholine release. Together, these results show that nerve-induced muscle contraction is a key regulator of BDNF/TrkB signaling pathway, retrogradely activating presynaptic cPKC isoforms (in particular cPKCβI to modulate synaptic function. These results indicate that a decrease in neuromuscular activity, as occurs in several neuromuscular disorders, could affect the BDNF/TrkB/PKC pathway that links pre- and postsynaptic activity to maintain neuromuscular function.

  8. Complex GABAB receptor complexes: how to generate multiple functionally distinct units from a single receptor

    Directory of Open Access Journals (Sweden)

    Chanjuan eXU

    2014-02-01

    Full Text Available The main inhibitory neurotransmitter, GABA, acts on both ligand-gated and G protein-coupled receptors, the GABAA/C and GABAB receptors, respectively. The later play important roles in modulating many synapses, both at the pre- and post-synaptic levels, and are then still considered as interesting targets to treat a number of brain diseases, including addiction. For many years, several subtypes of GABAB receptors were expected, but cloning revealed only two genes that work in concert to generate a single type of GABAB receptor composed of two subunits. Here we will show that the signaling complexity of this unit receptor type can be largely increased through various ways, including receptor stoichiometry, subunit isoforms, membrane expression and localization, crosstalk with other receptors or interacting proteins. These recent data revealed how complexity of a receptor unit can be increased, observation that certainly are not unique to the GABAB receptor.

  9. Lipid raft localization of GABA A receptor and Na+, K+-ATPase in discrete microdomain clusters in rat cerebellar granule cells

    DEFF Research Database (Denmark)

    Dalskov, Stine-Mathilde; Immerdal, Lissi; Niels-Christiansen, Lise-Lotte W

    2005-01-01

    and Na(+), K(+)-ATPase were largely soluble in ice cold Triton X-100. This indicates that Brij 98 extraction defines an unusual type of cholesterol-independent lipid rafts that harbour membrane proteins also associated with underlying scaffolding/cytoskeletal proteins such as gephyrin (GABA(A) receptor......The microdomain localization of the GABA(A) receptor in rat cerebellar granule cells was studied by subcellular fractionation and fluorescence- and immunogold electron microscopy. The receptor resided in lipid rafts, prepared at 37 degrees C by extraction with the nonionic detergent Brij 98......, reflecting clustering of the two proteins in separate membrane microdomains. Both proteins were observed in patchy "hot spots" at the cell surface as well as in isolated lipid rafts. Their insolubility in Brij 98 was only marginally affected by methyl-beta-cyclodextrin. In contrast, both the GABA(A) receptor...

  10. Presynaptic Dopamine Synthesis Capacity in Schizophrenia and Striatal Blood Flow Change During Antipsychotic Treatment and Medication-Free Conditions.

    Science.gov (United States)

    Eisenberg, Daniel Paul; Yankowitz, Lisa; Ianni, Angela M; Rubinstein, Dani Y; Kohn, Philip D; Hegarty, Catherine E; Gregory, Michael D; Apud, José A; Berman, Karen F

    2017-10-01

    Standard-of-care biological treatment of schizophrenia remains dependent upon antipsychotic medications, which demonstrate D 2 receptor affinity and elicit variable, partial clinical responses via neural mechanisms that are not entirely understood. In the striatum, where D 2 receptors are abundant, antipsychotic medications may affect neural function in studies of animals, healthy volunteers, and patients, yet the relevance of this to pharmacotherapeutic actions remains unresolved. In this same brain region, some individuals with schizophrenia may demonstrate phenotypes consistent with exaggerated dopaminergic signaling, including alterations in dopamine synthesis capacity; however, the hypothesis that dopamine system characteristics underlie variance in medication-induced regional blood flow changes has not been directly tested. We therefore studied a cohort of 30 individuals with schizophrenia using longitudinal, multi-session [ 15 O]-water and [ 18 F]-FDOPA positron emission tomography to determine striatal blood flow during active atypical antipsychotic medication treatment and after at least 3 weeks of placebo treatment, along with presynaptic dopamine synthesis capacity (ie, DOPA decarboxylase activity). Regional striatal blood flow was significantly higher during active treatment than during the placebo condition. Furthermore, medication-related increases in ventral striatal blood flow were associated with more robust amelioration of excited factor symptoms during active medication and with higher dopamine synthesis capacity. These data indicate that atypical medications enact measureable physiological alterations in limbic striatal circuitry that vary as a function of dopaminergic tone and may have relevance to aspects of therapeutic responses.

  11. In vivo imaging of cerebral serotonin transporter and serotonin(2A) receptor binding in 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") and hallucinogen users

    DEFF Research Database (Denmark)

    Erritzoe, David; Frøkjær, Vibe; Holst, Klaus K

    2011-01-01

    Both hallucinogens and 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") have direct agonistic effects on postsynaptic serotonin(2A) receptors, the key site for hallucinogenic actions. In addition, MDMA is a potent releaser and reuptake inhibitor of presynaptic serotonin.......Both hallucinogens and 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") have direct agonistic effects on postsynaptic serotonin(2A) receptors, the key site for hallucinogenic actions. In addition, MDMA is a potent releaser and reuptake inhibitor of presynaptic serotonin....

  12. Closing the gap: long-term presynaptic plasticity in brain function and disease.

    Science.gov (United States)

    Monday, Hannah R; Castillo, Pablo E

    2017-08-01

    Synaptic plasticity is critical for experience-dependent adjustments of brain function. While most research has focused on the mechanisms that underlie postsynaptic forms of plasticity, comparatively little is known about how neurotransmitter release is altered in a long-term manner. Emerging research suggests that many of the features of canonical 'postsynaptic' plasticity, such as associativity, structural changes and bidirectionality, also characterize long-term presynaptic plasticity. Recent studies demonstrate that presynaptic plasticity is a potent regulator of circuit output and function. Moreover, aberrant presynaptic plasticity is a convergent factor of synaptopathies like schizophrenia, addiction, and Autism Spectrum Disorders, and may be a potential target for treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Axonal and presynaptic protein synthesis: new insights into the biology of the neuron.

    Science.gov (United States)

    Giuditta, Antonio; Kaplan, Barry B; van Minnen, Jan; Alvarez, Jaime; Koenig, Edward

    2002-08-01

    The presence of a local mRNA translation system in axons and terminals was proposed almost 40 years ago. Over the ensuing period, an impressive body of evidence has grown to support this proposal -- yet the nerve cell body is still considered to be the only source of axonal and presynaptic proteins. To dispel this lingering neglect, we now present the wealth of recent observations bearing on this central idea, and consider their impact on our understanding of the biology of the neuron. We demonstrate that extrasomatic translation sites, which are now well recognized in dendrites, are also present in axonal and presynaptic compartments.

  14. Calcium Assists Dopamine Release by Preventing Aggregation on the Inner Leaflet of Presynaptic Vesicles

    DEFF Research Database (Denmark)

    Mokkila, Sini; Postila, Pekka A.; Rissanen, Sami

    2017-01-01

    . The inner leaflets of presynaptic vesicles, which are responsible for releasing neurotransmitters into the synaptic cleft, are mainly composed of neutral lipids such as phosphatidylcholine and phosphatidylethanolamine. The neutrality of the lipid head group region, enhanced by a low pH level, should limit...

  15. Presynaptic mechanisms of L-DOPA-induced dyskinesia: the findings, the debate, the therapeutic implications.

    Directory of Open Access Journals (Sweden)

    M Angela eCenci

    2014-12-01

    Full Text Available The dopamine precursor L-DOPA has been the most effective treatment for Parkinson´s disease (PD for over 40 years. However, the response to this treatment changes during the progression of PD, and most patients develop dyskinesias (abnormal involuntary movements and motor fluctuations within a few years of L-DOPA therapy. There is wide consensus that these motor complications depend on both pre- and post-synaptic disturbances of nigrostriatal dopamine transmission. Several presynaptic mechanisms converge to generate large dopamine swings in the brain concomitant with the peaks-and-troughs of plasma L-DOPA levels, while post-synaptic changes engender abnormal functional responses in dopaminoceptive neurons. While this general picture is well-accepted, the relative contribution of different factors remains a matter of debate. A particularly animated debate has been growing around putative players on the presynaptic side of the cascade. To what extent do presynaptic disturbances in dopamine transmission depend on deficiency/dysfunction of the dopamine transporter, aberrant release of dopamine from serotonin neurons, or gliovascular mechanisms? And does noradrenaline (which is synthetized from dopamine play a role? This review article will summarize key findings, controversies, and pending questions regarding the presynaptic mechanisms of L-DOPA-induced dyskinesia. Intriguingly, the debate around these mechanisms has spurred research into previously unexplored facets of brain plasticity that have far-reaching implications to the treatment of neuropsychiatric disease.

  16. Axonal and presynaptic protein synthesis: new insights into the biology of the neuron

    NARCIS (Netherlands)

    Giuditta, A.; Kaplan, B.B.; van Minnen, J.; Alvarez, J.; Koenig, E.

    2002-01-01

    The presence of a local mRNA translation system in axons and terminals was proposed almost 40 years ago. Over the ensuing period, an impressive body of evidence has grown to support this proposal - yet the nerve cell body is still considered to be the only source of axonal and presynaptic proteins.

  17. Intersession reliability of Hoffmann reflex gain and presynaptic inhibition in the human soleus muscle.

    Science.gov (United States)

    Hayes, Bradley T; Hicks-Little, Charlie A; Harter, Rod A; Widrick, Jeffrey J; Hoffman, Mark A

    2009-12-01

    Hayes BT, Hicks-Little CA, Harter RA, Widrick JJ, Hoffman MA. Intersession reliability of Hoffmann reflex gain and presynaptic inhibition in the human soleus muscle. To determine the day-to-day reliability of Hoffmann reflex (H-reflex) gain and presynaptic inhibition of spinal reflexes in the human soleus muscle. Controlled trial. Research laboratory. Volunteers (N=30; mean +/- SD age, 23.4+/-3.9y; height, 175.64+/-10.87cm; mass, 84.50+/-24.18kg) with no history of lower extremity pathology and/or injury participated. Subjects lay prone with the head, shoulders, arms, and hips supported in a static position by a massage body pillow and the ankle positioned at 90 degrees . Recording electrodes were placed over the soleus and tibialis anterior muscle bellies, and the stimulating electrodes were positioned over the tibial nerve in the popliteal space and the common peroneal nerve near the fibular head. The H-reflex and motor wave recruitment curves were then measured and recorded. Presynaptic inhibition was also assessed in the soleus muscle, and a conditioning stimulation of the common peroneal nerve (1 x motor threshold = motor threshold) was used prior to soleus H-reflex measurement. Two testing sessions took place between 2 and 7 days, and each session occurred at the same time of day. Assessments of H-reflex gain and presynaptic inhibition yielded test-retest reliability of R equal to . 95 and .91, respectively. Measures of presynaptic inhibition and H-reflex gain (H slope/M slope) in the human soleus muscle are consistent and reliable day to day.

  18. Expression of GABAergic receptors in mouse taste receptor cells.

    Directory of Open Access Journals (Sweden)

    Margaret R Starostik

    Full Text Available BACKGROUND: Multiple excitatory neurotransmitters have been identified in the mammalian taste transduction, with few studies focused on inhibitory neurotransmitters. Since the synthetic enzyme glutamate decarboxylase (GAD for gamma-aminobutyric acid (GABA is expressed in a subset of mouse taste cells, we hypothesized that other components of the GABA signaling pathway are likely expressed in this system. GABA signaling is initiated by the activation of either ionotropic receptors (GABA(A and GABA(C or metabotropic receptors (GABA(B while it is terminated by the re-uptake of GABA through transporters (GATs. METHODOLOGY/PRINCIPAL FINDINGS: Using reverse transcriptase-PCR (RT-PCR analysis, we investigated the expression of different GABA signaling molecules in the mouse taste system. Taste receptor cells (TRCs in the circumvallate papillae express multiple subunits of the GABA(A and GABA(B receptors as well as multiple GATs. Immunocytochemical analyses examined the distribution of the GABA machinery in the circumvallate papillae. Both GABA(A-and GABA(B- immunoreactivity were detected in the peripheral taste receptor cells. We also used transgenic mice that express green fluorescent protein (GFP in either the Type II taste cells, which can respond to bitter, sweet or umami taste stimuli, or in the Type III GAD67 expressing taste cells. Thus, we were able to identify that GABAergic receptors are expressed in some Type II and Type III taste cells. Mouse GAT4 labeling was concentrated in the cells surrounding the taste buds with a few positively labeled TRCs at the margins of the taste buds. CONCLUSIONS/SIGNIFICANCE: The presence of GABAergic receptors localized on Type II and Type III taste cells suggests that GABA is likely modulating evoked taste responses in the mouse taste bud.

  19. The presynaptic microtubule cytoskeleton in physiological and pathological conditions: lessons from Fragile X Syndrome and Hereditary Spastic Paraplegias

    Directory of Open Access Journals (Sweden)

    Felipe Bodaleo

    2016-07-01

    Full Text Available The capacity of the nervous system to generate neuronal networks relies on the establishment and maintenance of synaptic contacts. Synapses are composed of functionally different presynaptic and postsynaptic compartments. An appropriate synaptic architecture is required to provide the structural basis that supports synaptic transmission, a process involving changes in cytoskeletal dynamics. Actin microfilaments are the main cytoskeletal components present at both presynaptic and postsynaptic terminals in glutamatergic synapses. However, in the last few years it has been demonstrated that microtubules (MTs transiently invade dendritic spines, promoting their maturation. Nevertheless, the presence and functions of MTs at the presynaptic site are still a matter of debate. Early electron microscopy (EM studies revealed that MTs are present in the presynaptic terminals of the central nervous system (CNS where they interact with synaptic vesicles (SVs and reach the active zone. These observations have been reproduced by several EM protocols; however, there is empirical heterogeneity in detecting presynaptic MTs, since they appear to be both labile and unstable. Moreover, increasing evidence derived from studies in the fruit fly neuromuscular junction proposes different roles for MTs in regulating presynaptic function in physiological and pathological conditions. In this review, we summarize the main findings that support the presence and roles of MTs at presynaptic terminals, integrating descriptive and biochemical analyses, and studies performed in invertebrate genetic models.

  20. Dopamine Receptors and Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Shin Hisahara

    2011-01-01

    Full Text Available Parkinson's disease (PD is a progressive extrapyramidal motor disorder. Pathologically, this disease is characterized by the selective dopaminergic (DAergic neuronal degeneration in the substantia nigra. Correcting the DA deficiency in PD with levodopa (L-dopa significantly attenuates the motor symptoms; however, its effectiveness often declines, and L-dopa-related adverse effects emerge after long-term treatment. Nowadays, DA receptor agonists are useful medication even regarded as first choice to delay the starting of L-dopa therapy. In advanced stage of PD, they are also used as adjunct therapy together with L-dopa. DA receptor agonists act by stimulation of presynaptic and postsynaptic DA receptors. Despite the usefulness, they could be causative drugs for valvulopathy and nonmotor complication such as DA dysregulation syndrome (DDS. In this paper, physiological characteristics of DA receptor familyare discussed. We also discuss the validity, benefits, and specific adverse effects of pharmaceutical DA receptor agonist.

  1. Differential alterations in the expression of neurotransmitter receptors in inner retina following loss of photoreceptors in rd1 mouse.

    Directory of Open Access Journals (Sweden)

    Prerna Srivastava

    Full Text Available Loss of photoreceptors leads to significant remodeling in inner retina of rd1 mouse, a widely used model of retinal degeneration. Several morphological and physiological alterations occur in the second- and third-order retinal neurons. Synaptic activity in the excitatory bipolar cells and the predominantly inhibitory amacrine cells is enhanced. Retinal ganglion cells (RGCs exhibit hyperactivity and aberrant spiking pattern, which adversely affects the quality of signals they can carry to the brain. To further understand the pathophysiology of retinal degeneration, and how it may lead to aberrant spiking in RGCs, we asked how loss of photoreceptors affects some of the neurotransmitter receptors in rd1 mouse. Using Western blotting, we measured the levels of several neurotransmitter receptors in adult rd1 mouse retina. We found significantly higher levels of AMPA, glycine and GABAa receptors, but lower levels of GABAc receptors in rd1 mouse than in wild-type. Since GABAa receptor is expressed in several retinal layers, we employed quantitative immunohistochemistry to measure GABAa receptor levels in specific retinal layers. We found that the levels of GABAa receptors in inner plexiform layer of wild-type and rd1 mice were similar, whereas those in outer plexiform layer and inner nuclear layer combined were higher in rd1 mouse. Specifically, we found that the number of GABAa-immunoreactive somas in the inner nuclear layer of rd1 mouse retina was significantly higher than in wild-type. These findings provide further insights into neurochemical remodeling in the inner retina of rd1 mouse, and how it might lead to oscillatory activity in RGCs.

  2. Insulin reduces neuronal excitability by turning on GABA(A channels that generate tonic current.

    Directory of Open Access Journals (Sweden)

    Zhe Jin

    Full Text Available Insulin signaling to the brain is important not only for metabolic homeostasis but also for higher brain functions such as cognition. GABA (γ-aminobutyric acid decreases neuronal excitability by activating GABA(A channels that generate phasic and tonic currents. The level of tonic inhibition in neurons varies. In the hippocampus, interneurons and dentate gyrus granule cells normally have significant tonic currents under basal conditions in contrast to the CA1 pyramidal neurons where it is minimal. Here we show in acute rat hippocampal slices that insulin (1 nM "turns on" new extrasynaptic GABA(A channels in CA1 pyramidal neurons resulting in decreased frequency of action potential firing. The channels are activated by more than million times lower GABA concentrations than synaptic channels, generate tonic currents and show outward rectification. The single-channel current amplitude is related to the GABA concentration resulting in a single-channel GABA affinity (EC(50 in intact CA1 neurons of 17 pM with the maximal current amplitude reached with 1 nM GABA. They are inhibited by GABA(A antagonists but have novel pharmacology as the benzodiazepine flumazenil and zolpidem are inverse agonists. The results show that tonic rather than synaptic conductances regulate basal neuronal excitability when significant tonic conductance is expressed and demonstrate an unexpected hormonal control of the inhibitory channel subtypes and excitability of hippocampal neurons. The insulin-induced new channels provide a specific target for rescuing cognition in health and disease.

  3. New insight into the role of the β3 subunit of the GABAA-R in development, behavior, body weight regulation, and anesthesia revealed by conditional gene knockout

    Directory of Open Access Journals (Sweden)

    Hileman Stanley M

    2007-10-01

    Full Text Available Abstract Background The β3 subunit of the γ-aminobutyric acid type A receptor (GABAA-R has been reported to be important for palate formation, anesthetic action, and normal nervous system function. This subunit has also been implicated in the pathogenesis of Angelman syndrome and autism spectrum disorder. To further investigate involvement of this subunit, we previously produced mice with a global knockout of β3. However, developmental abnormalities, compensation, reduced viability, and numerous behavioral abnormalities limited the usefulness of that murine model. To overcome many of these limitations, a mouse line with a conditionally inactivated β3 gene was engineered. Results Gene targeting and embryonic stem cell technologies were used to create mice in which exon 3 of the β3 subunit was flanked by loxP sites (i.e., floxed. Crossing the floxed β3 mice to a cre general deleter mouse line reproduced the phenotype of the previously described global knockout. Pan-neuronal knockout of β3 was achieved by crossing floxed β3 mice to Synapsin I-cre transgenic mice. Palate development was normal in pan-neuronal β3 knockouts but ~61% died as neonates. Survivors were overtly normal, fertile, and were less sensitive to etomidate. Forebrain selective knockout of β3 was achieved using α CamKII-cre transgenic mice. Palate development was normal in forebrain selective β3 knockout mice. These knockouts survived the neonatal period, but ~30% died between 15–25 days of age. Survivors had reduced reproductive fitness, reduced sensitivity to etomidate, were hyperactive, and some became obese. Conclusion Conditional inactivation of the β3 gene revealed novel insight into the function of this GABAA-R subunit. The floxed β3 knockout mice described here will be very useful for conditional knockout studies to further investigate the role of the β3 subunit in development, ethanol and anesthetic action, normal physiology, and pathophysiologic processes.

  4. Interplay between presynaptic and postsynaptic activities is required for dendritic plasticity and synaptogenesis in the supraoptic nucleus.

    Science.gov (United States)

    Chevaleyre, Vivien; Moos, Francoise C; Desarménien, Michel G

    2002-01-01

    Developing oxytocin and vasopressin (OT/AVP) supraoptic nucleus (SON) neurons positively autocontrol their electrical activity via dendritic release of their respective peptide. The effects of this autocontrol are maximum during the second postnatal week (PW2), when the dendritic arbor transiently increases and glutamatergic postsynaptic potentials appear. Here, we studied the role and interaction of dendritic OT/AVP release and glutamate release in dendritic plasticity and synaptogenesis in SON. In vivo treatment with the peptides antagonists or with an NMDA antagonist suppressed the transient increase in dendritic arbor of SON neurons at the beginning of PW2. Incubation of acute slices with these compounds decreased the dendritic arbor on a short time scale (3-8 hr) in slices of postnatal day 7 (P7) to P9 rats. Conversely, application of OT/AVP or NMDA increased dendritic branches in slices of P3-P6 rats. Their effects were inhibited by blockade of electrical activity, voltage-gated Ca2+ channels, or intracellular Ca2+ mobilization. They were also interdependent because both OT/AVP and NMDA (but not AMPA) receptor activation were required for increasing the dendritic arbor. Part of this interdependence probably results from a retrograde action of the peptides facilitating glutamate release. Finally, blocking OT/AVP receptors by in vivo treatment with the peptides antagonists during development decreased spontaneous glutamatergic synaptic activity recorded in young adults. These results show that an interplay between postsynaptic dendritic peptide release and presynaptic glutamate release is involved in the transient increase in dendritic arbor of SON neurons and indicate that OT/AVP are required for normal synaptogenesis of glutamatergic inputs in SON.

  5. Memory impairment due to fipronil pesticide exposure occurs at the GABAA receptor level, in rats.

    Science.gov (United States)

    Godinho, Antonio Francisco; de Oliveira Souza, Ana Carolina; Carvalho, Caio Cristóvão; Horta, Daniel França; De Fraia, Daniel; Anselmo, Fabio; Chaguri, João Leandro; Faria, Caique Aparecido

    2016-10-15

    Fipronil (F) a pesticide considered of second generation cause various toxic effects in target and non-target organisms including humans in which provoke neurotoxicity, having the antagonism of gamma-amino butyric acid (GABA) as their main mechanism for toxic action. GABAergic system has been involved in processes related to the memory formation and consolidation. The present work studied the importance of GABA to the mechanisms involved in the very early development of fipronil-induced memory impairment in rats. Memory behavior was assessed using new object recognition task (ORT) and eight radial arm maze task (8-RAM) to study effects on cognitive and spatial memory. Locomotor behavior was assessed using open field task (OF). The dose of fipronil utilized was studied through a pilot experiment. The GABA antagonist picrotoxin (P) was used to enhance fipronil effects on GABAergic system. Fipronil or picrotoxin decrease memory studied in ORT and 8-RAM tasks. Additionally, F and P co-exposure enhanced effects on memory compared to controls, F, and P, suggesting strongly a GABAergic effect. Weight gain modulation and fipronil in blood were utilized as animal's intoxication indicators. In conclusion, here we report that second-generation pesticides, such as fipronil, can have toxic interactions with the CNS of mammals and lead to memory impairment by modulating the GABAergic system. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Hypothermic activity of acetaminophen; Involvement of GABAA receptor, theoretical and experimental studies

    Directory of Open Access Journals (Sweden)

    Nematollah Ahangar

    2016-05-01

    Results:Diazepam induced hypothermia was reversed by flumazenil or picrotoxin. Rats injected with APAP displayed dose- and time-related hypothermia. For combined administration, the hypothermic effect of APAP (200 mg/kg was strongly reduced by pretreatment with picrotoxin or flumazenil P

  7. Kavain, the Major Constituent of the Anxiolytic Kava Extract, Potentiates GABAA Receptors

    DEFF Research Database (Denmark)

    Chua, Han Chow; Christensen, Emilie H T; Hoestgaard-Jensen, Kirsten

    2016-01-01

    Extracts of the pepper plant kava (Piper methysticum) are effective in alleviating anxiety in clinical trials. Despite the long-standing therapeutic interest in kava, the molecular target(s) of the pharmacologically active constituents, kavalactones have not been established. γ-Aminobutyric acid......, but the degree of enhancement was greater at α4β2δ than at α1β2γ2L GABAARs. The modulatory effect of kavain was unaffected by flumazenil, indicating that kavain did not enhance GABAARs via the classical benzodiazepine binding site. The β3N265M point mutation which has been previously shown to profoundly decrease...... anaesthetic sensitivity, also diminished kavain-mediated potentiation. To our knowledge, this study is the first report of the functional characteristics of a single kavalactone at distinct GABAAR subtypes, and presents the first experimental evidence in support of a direct interaction between a kavalactone...

  8. The GABA(A) receptor is an FMRP target with therapeutic potential in fragile X syndrome

    NARCIS (Netherlands)

    Braat, Sien; D'Hulst, Charlotte; Heulens, Inge; De Rubeis, Silvia; Mientjes, Edwin; Nelson, David L.; Willemsen, Rob; Bagni, Claudia; Van Dam, Debby; De Deyn, Peter P.; Kooy, R. Frank

    2015-01-01

    Previous research indicates that the GABA(A)ergic system is involved in the pathophysiology of the fragile X syndrome, a frequent form of inherited intellectual disability and associated with autism spectrum disorder. However, the molecular mechanism underlying GABA(A)ergic deficits has remained

  9. Molecular, pharmacological and functional properties of GABAA receptors in anterior pituitary cells

    Czech Academy of Sciences Publication Activity Database

    Zemková, H.W.; Bjelobaba, I.; Tomič, M.; Zemková, Hana; Stojilkovic, S. S.

    2008-01-01

    Roč. 586, č. 13 (2008), s. 3097-3111 ISSN 0022-3751 R&D Projects: GA ČR GA305/07/0681 Institutional research plan: CEZ:AV0Z50110509 Keywords : gonadotrophs * lactotrophs * GABA Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 4.605, year: 2008

  10. GABAA Receptor-Mediated Activity in a Model of Cortical Dysplasia

    Science.gov (United States)

    2012-06-29

    involves translocation of the nucleus in the direction of the leading process (4) retraction of the trailing process and (5) detachment of cell from...of the neuronal cytoskeleton to control locomotion, and cues that signal migrating cells to cease locomotion and detach from radial glia cells are...embryonic lethality. Nat Genet 19:333-339. Holt CE, Bertsch TW, Ellis HM, Harris WA (1988). Cellular determination in the Xenopus retina is independent

  11. DYSFUNCTIONAL PRESYNAPTIC ALPHA-2-ADRENOCEPTORS EXPOSE FACILITATORY BETA-2-ADRENOCEPTORS IN THE VASCULATURE OF SPONTANEOUSLY HYPERTENSIVE RATS

    NARCIS (Netherlands)

    REMIE, R; VANROSSUM, JXM; COPPES, RP; ZAAGSMA, J

    1992-01-01

    Previous studies on spontaneously hypertensive rats (SHR) have yielded inconsistent information about functional aberrations of the presynaptic alpha(2)- and beta(2)-adrenoceptor-mediated modulation of sympathetic neurotransmitter release. In the present investigation we studied the capacity of

  12. Immobilization induces changes in presynaptic control of group Ia afferents in healthy humans

    DEFF Research Database (Denmark)

    Jensen, Jesper Lundbye; Nielsen, Jens Bo

    2008-01-01

    Neural plasticity occurs throughout adult life in response to maturation, use and disuse. Recent studies have documented that H-reflex amplitudes increase following a period of immobilization. To elucidate the mechanisms contributing to the increase in H-reflex size following immobilization we...... immobilized the left foot and ankle joint for 2 weeks in 12 able-bodied subjects. Disynaptic reciprocal inhibition of soleus (SOL) motoneurones and presynaptic control of SOL group Ia afferents was measured before and after the immobilization as well as following 2 weeks of recovery. Following immobilization...... inhibition of SOL Ia afferents and taken together suggest that GABAergic presynaptic inhibition of the SOL Ia afferents is decreased following 2 weeks of immobilization. The depression of the SOL H-reflex when evoked at intervals shorter than 10 s (homosynaptic post-activation depression) also decreased...

  13. 123-I ioflupane (Datscan) presynaptic nigrostriatal imaging in patients with movement disorders

    International Nuclear Information System (INIS)

    Soriano Castrejon, Angel; Garcia Vicente, Ana Maria; Cortes Romera, Montserrat; Rodado Marina, Sonia; Poblete Garcia, Victor Manuel; Ruiz Solis, Sebastian Ruiz; Talavera Rubio, Maria del Prado; Vaamonde Cano, Julia

    2005-01-01

    123-I Ioflupane (Datscan) presynaptic imaging has been shown to have a significant utility in the assessment of patients with movement disorders 123 I Ioflupane SPECT is able to distinguish between Parkinson's disease (PD) and other forms of parkinsonism without degeneration of the nigrostriatal pathway, including a common movement disorder such as essential tremor, and to assess disease progression in PD and other neuro degenerative disorders involving the substantia nigra. (author)

  14. New Treatments for Drug-Resistant Epilepsy that Target Presynaptic Transmitter Release

    Science.gov (United States)

    2015-07-01

    and 280nm using a BioMate 5 UV- visible spectrophotometer (Thermo Spectronic, Waltham, Massachusetts, USA). The integrity of the extracted RNA was...presynaptic P/Q-type voltage-dependent calcium channel to reduce glutamate release. In a different study, local perfusion with LEV (10, 30 and 100M) alone...the brain was used for protein expression analysis (western blotting) as described above while the other hemisphere was used for mRNA extraction . As

  15. No consistent bioenergetic defects in presynaptic nerve terminals isolated from mouse models of Alzheimer’s disease

    OpenAIRE

    Choi, Sung W.; Gerencser, Akos A.; Ng, Ryan; Flynn, James M.; Melov, Simon; Danielson, Steven R.; Gibson, Bradford W.; Nicholls, David G.; Bredesen, Dale E.; Brand, Martin D.

    2012-01-01

    Depressed cortical energy supply and impaired synaptic function are predominant associations of Alzheimer’s disease (AD). To test the hypothesis that presynaptic bioenergetic deficits are associated with the progression of AD pathogenesis, we compared bioenergetic variables of cortical and hippocampal presynaptic nerve terminals (synaptosomes) from commonly used mouse models with AD-like phenotypes (J20 age 6 months, Tg2576 age 16 months and APP/PS age 9 and 14 months) to ag...

  16. Presynaptic active zones of mammalian neuromuscular junctions: Nanoarchitecture and selective impairments in aging.

    Science.gov (United States)

    Badawi, Yomna; Nishimune, Hiroshi

    2018-02-01

    Neurotransmitter release occurs at active zones, which are specialized regions of the presynaptic membrane. A dense collection of proteins at the active zone provides a platform for molecular interactions that promote recruitment, docking, and priming of synaptic vesicles. At mammalian neuromuscular junctions (NMJs), muscle-derived laminin β2 interacts with presynaptic voltage-gated calcium channels to organize active zones. The molecular architecture of presynaptic active zones has been revealed using super-resolution microscopy techniques that combine nanoscale resolution and multiple molecular identification. Interestingly, the active zones of adult NMJs are not stable structures and thus become impaired during aging due to the selective degeneration of specific active zone proteins. This review will discuss recent progress in the understanding of active zone nanoarchitecture and the mechanisms underlying active zone organization in mammalian NMJs. Furthermore, we will summarize the age-related degeneration of active zones at NMJs, and the role of exercise in maintaining active zones. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  17. Alternative Splicing of P/Q-Type Ca2+ Channels Shapes Presynaptic Plasticity

    Directory of Open Access Journals (Sweden)

    Agnes Thalhammer

    2017-07-01

    Full Text Available Alternative splicing of pre-mRNAs is prominent in the mammalian brain, where it is thought to expand proteome diversity. For example, alternative splicing of voltage-gated Ca2+ channel (VGCC α1 subunits can generate thousands of isoforms with differential properties and expression patterns. However, the impact of this molecular diversity on brain function, particularly on synaptic transmission, which crucially depends on VGCCs, is unclear. Here, we investigate how two major splice isoforms of P/Q-type VGCCs (Cav2.1[EFa/b] regulate presynaptic plasticity in hippocampal neurons. We find that the efficacy of P/Q-type VGCC isoforms in supporting synaptic transmission is markedly different, with Cav2.1[EFa] promoting synaptic depression and Cav2.1[EFb] synaptic facilitation. Following a reduction in network activity, hippocampal neurons upregulate selectively Cav2.1[EFa], the isoform exhibiting the higher synaptic efficacy, thus effectively supporting presynaptic homeostatic plasticity. Therefore, the balance between VGCC splice variants at the synapse is a key factor in controlling neurotransmitter release and presynaptic plasticity.

  18. Protein synthesizing units in presynaptic and postsynaptic domains of squid neurons.

    Science.gov (United States)

    Martin, R; Vaida, B; Bleher, R; Crispino, M; Giuditta, A

    1998-11-01

    Putative protein synthesizing domains, called plaques, are characterized in the squid giant synapse and axon and in terminals of squid photoreceptor neurons. Plaques are oval-shaped formations of about 1 microm in size, which (1) generate signals that have spectroscopic electron energy loss characteristics of ribosomes, (2) exhibit ribonuclease-sensitive binding of YOYO-1, a fluorescent RNA/DNA dye, and (3) in part hybridize with a poly(dT) oligonucleotide. In the giant synapse plaques are abundant in the postsynaptic area, but are absent in the presynaptic terminal. In the cortical layer of the optic lobes, plaques are localized in the large carrot-shaped presynaptic terminals of photoreceptor neurons, where they are surrounded by synaptic vesicles and mitochondria. Biochemical and autoradiographic data have documented that the protein synthetic activity of squid optic lobe synaptosomes is largely due to the presynaptic terminals of the photoreceptor neurons. The identification of ribosomes and poly(A+)-mRNA in the plaques indicates that these structures are sites of local protein synthesis in synaptic domains.

  19. Regarding the unitary theory of agonist and antagonist action at presynaptic adrenoceptors.

    Science.gov (United States)

    Kalsner, S; Abdali, S A

    2001-06-01

    1. The linkage between potentiation of field stimulation-induced noradrenaline release and blockade of the presynaptic inhibitory effect of exogenous noradrenaline by a presynaptic antagonist was examined in superfused rabbit aorta preparations. 2. Rauwolscine clearly potentiated the release of noradrenaline in response to 100 pulses at 2 Hz but reduced the capacity of noradrenaline to inhibit transmitter release to a questionable extent, and then only when comparisons were made with untreated, rather then to rauwolscine-treated, controls. 3. Aortic preparations exposed for 60 min to rauwolscine followed by superfusion with antagonist-free Krebs for 60 min retained the potentiation of stimulation-induced transmitter release but no antagonism of the noradrenaline-induced inhibition could be detected at either of two noradrenaline concentrations when comparisons were made with rauwolscine treated controls. 4. Comparisons of the inhibitory effect of exogenous noradrenaline (1.8 x 10-6 M) on transmitter efflux in the presence and absence of rauwolscine pretreatment revealed that the antagonist enhanced rather than antagonized the presynaptic inhibition by noradrenaline. 5 It is concluded that the unitary hypothesis that asserts that antagonist enhancement of transmitter release and its blockade of noradrenaline induced inhibition are manifestations of a unitary event are not supportable.

  20. Monitoring single-synapse glutamate release and presynaptic calcium concentration in organised brain tissue.

    Science.gov (United States)

    Jensen, Thomas P; Zheng, Kaiyu; Tyurikova, Olga; Reynolds, James P; Rusakov, Dmitri A

    2017-06-01

    Brain function relies in large part on Ca 2+ -dependent release of the excitatory neurotransmitter glutamate from neuronal axons. Establishing the causal relationship between presynaptic Ca 2+ dynamics and probabilistic glutamate release is therefore a fundamental quest across neurosciences. Its progress, however, has hitherto depended primarily on the exploration of either cultured nerve cells or giant central synapses accessible to direct experimental probing in situ. Here we show that combining patch-clamp with time-resolved imaging of Ca 2+ -sensitive fluorescence lifetime of Oregon Green BAPTA-1 (Tornado-FLIM) enables readout of single spike-evoked presynaptic Ca 2+ concentration dynamics, with nanomolar sensitivity, in individual neuronal axons in acute brain slices. In parallel, intensity Tornado imaging of a locally expressed extracellular optical glutamate sensor iGluSnFr provides direct monitoring of single-quantum, single-synapse glutamate releases in situ. These two methods pave the way for simultaneous registration of presynaptic Ca 2+ dynamics and transmitter release in an intact brain at the level of individual synapses. Copyright © 2017. Published by Elsevier Ltd.

  1. No consistent bioenergetic defects in presynaptic nerve terminals isolated from mouse models of Alzheimer's disease.

    Science.gov (United States)

    Choi, Sung W; Gerencser, Akos A; Ng, Ryan; Flynn, James M; Melov, Simon; Danielson, Steven R; Gibson, Bradford W; Nicholls, David G; Bredesen, Dale E; Brand, Martin D

    2012-11-21

    Depressed cortical energy supply and impaired synaptic function are predominant associations of Alzheimer's disease (AD). To test the hypothesis that presynaptic bioenergetic deficits are associated with the progression of AD pathogenesis, we compared bioenergetic variables of cortical and hippocampal presynaptic nerve terminals (synaptosomes) from commonly used mouse models with AD-like phenotypes (J20 age 6 months, Tg2576 age 16 months, and APP/PS age 9 and 14 months) to age-matched controls. No consistent bioenergetic deficiencies were detected in synaptosomes from the three models; only APP/PS cortical synaptosomes from 14-month-old mice showed an increase in respiration associated with proton leak. J20 mice were chosen for a highly stringent investigation of mitochondrial function and content. There were no significant differences in the quality of the synaptosomal preparations or the mitochondrial volume fraction. Furthermore, respiratory variables, calcium handling, and membrane potentials of synaptosomes from symptomatic J20 mice under calcium-imposed stress were not consistently impaired. The recovery of marker proteins during synaptosome preparation was the same, ruling out the possibility that the lack of functional bioenergetic defects in synaptosomes from J20 mice was due to the selective loss of damaged synaptosomes during sample preparation. Our results support the conclusion that the intrinsic bioenergetic capacities of presynaptic nerve terminals are maintained in these symptomatic AD mouse models.

  2. Synthesis and pharmacological evaluation of 6-aminonicotinic acid analogues as novel γ-aminobutyric acidA receptor agonists

    DEFF Research Database (Denmark)

    Petersen, Jette Gellert; Sørensen, Troels Ersted; Damgaard, Maria

    2014-01-01

    interaction field calculations and docking studies in a α1β2γ2 GABAA receptor homology model, and were confirmed by affinities of substituted analogues of 3. The tight steric requirements observed for the remarkably few GABAAR agonists reported to date is challenged by our findings. New openings for agonist...

  3. Dual orexin receptor antagonists show distinct effects on locomotor performance, ethanol interaction and sleep architecture relative to gamma-aminobutyric acid-A receptor modulators

    Directory of Open Access Journals (Sweden)

    Andres D. Ramirez

    2013-12-01

    Full Text Available Dual orexin receptor antagonists (DORAs are a potential treatment for insomnia that function by blocking both the orexin 1 and orexin 2 receptors. The objective of the current study was to further confirm the impact of therapeutic mechanisms targeting insomnia on locomotor coordination and ethanol interaction using DORAs and gamma-aminobutyric acid (GABA-A receptor modulators of distinct chemical structure and pharmacologic properties in the context of sleep-promoting potential. The current study compared rat motor co-ordination after administration of DORAs, DORA-12 and almorexant, and GABA-A receptor modulators, zolpidem, eszopiclone and diazepam, alone or each in combination with ethanol. Motor performance was assessed by measuring time spent walking on a rotarod apparatus. Zolpidem, eszopiclone and diazepam (0.3–30 mg/kg administered orally [PO] impaired rotarod performance in a dose-dependent manner. Furthermore, all three GABA-A receptor modulators potentiated ethanol- (0.25–1.25 g/kg induced impairment on the rotarod. By contrast, neither DORA-12 (10–100 mg/kg, PO nor almorexant (30–300 mg/kg, PO impaired motor performance alone or in combination with ethanol. In addition, distinct differences in sleep architecture were observed between ethanol, GABA-A receptor modulators (zolpidem, eszopiclone and diazepam and DORA-12 in electroencephalogram studies in rats. These findings provide further evidence that orexin receptor antagonists have an improved motor side-effect profile compared with currently available sleep-promoting agents based on preclinical data and strengthen the rationale for further evaluation of these agents in clinical development.

  4. Progesterone receptor antagonist CDB-4124 increases depression-like behavior in mice without affecting locomotor ability

    OpenAIRE

    Beckley, Ethan H.; Scibelli, Angela C.; Finn, Deborah A.

    2010-01-01

    Progesterone withdrawal has been proposed as an underlying factor in premenstrual syndrome and postpartum depression. Progesterone withdrawal induces forced swim test (FST) immobility in mice, a depression-like behavior, but the contribution of specific receptors to this effect is unclear. The role of progesterone’s GABAA receptor-modulating metabolite allopregnanolone in depression- and anxiety-related behaviors has been extensively documented, but little attention has been paid to the role ...

  5. Effects of presynaptic mutations on a postsynaptic Cacna1s calcium channel colocalized with mGluR6 at mouse photoreceptor ribbon synapses.

    Science.gov (United States)

    Specht, Dana; Wu, Shu-Biao; Turner, Paul; Dearden, Peter; Koentgen, Frank; Wolfrum, Uwe; Maw, Marion; Brandstätter, Johann Helmut; tom Dieck, Susanne

    2009-02-01

    Photoreceptor ribbon synapses translate light-dependent changes of membrane potential into graded transmitter release via L-type voltage-dependent calcium channel (VDCC) activity. Functional abnormalities (e.g., a reduced electroretinogram b-wave), arising from mutations of presynaptic proteins, such as Bassoon and the VDCCalpha1 subunit Cacna1f, have been shown to altered transmitter release. L-type VDCCalpha1 subtype expression in wild-type and mutant mice was examined, to investigate the underlying pathologic mechanism. Two antisera against Cacna1f, and a Cacna1f mouse mutant (Cacna1fDeltaEx14-17) were generated. Immunocytochemistry for L-type VDCCalpha1 subunits and additional synaptic marker proteins was performed in wild-type, BassoonDeltaEx4-5 and Cacna1fDeltaEx14-17 mice. Active zone staining at photoreceptor ribbon synapses with a panalpha1 antibody colocalized with staining for Cacna1f in wild-type mouse retina. Similarly, in the BassoonDeltaEx4-5 mouse, residual mislocalized staining for panalpha1 and Cacna1f showed colocalization. Unlike the presynaptic location of Cacna1f and panalpha1 antibody staining, the skeletal muscle VDCCalpha1 subunit Cacna1s was present postsynaptically at ON-bipolar cell dendrites, where it colocalized with metabotropic glutamate receptor 6 (mGluR6). Surprisingly, Cacna1s labeling was severely downregulated in the BassoonDeltaEx4-5 and Cacna1fDeltaEx14-17 mutants. Subsequent analyses revealed severely reduced ON-bipolar cell dendritic expression of the sarcoplasmic reticulum Ca(2+) ATPase Serca2 in both mouse mutants and of mGluR6 in the Cacna1fDeltaEx14-17 mutant. Presynaptic mutations leading to reduced photoreceptor-to-bipolar cell signaling are associated with disturbances in protein expression within postsynaptic dendrites. Moreover, detection of Cacna1s and Serca2 in ON-bipolar cell dendrites in wild-type animals suggests a putative role in regulation of postsynaptic Ca(2+) flux.

  6. Conductive Hearing Loss Has Long-Lasting Structural and Molecular Effects on Presynaptic and Postsynaptic Structures of Auditory Nerve Synapses in the Cochlear Nucleus.

    Science.gov (United States)

    Clarkson, Cheryl; Antunes, Flora M; Rubio, Maria E

    2016-09-28

    Sound deprivation by conductive hearing loss increases hearing thresholds, but little is known about the response of the auditory brainstem during and after conductive hearing loss. Here, we show in young adult rats that 10 d of monaural conductive hearing loss (i.e., earplugging) leads to hearing deficits that persist after sound levels are restored. Hearing thresholds in response to clicks and frequencies higher than 8 kHz remain increased after a 10 d recovery period. Neural output from the cochlear nucleus measured at 10 dB above threshold is reduced and followed by an overcompensation at the level of the lateral lemniscus. We assessed whether structural and molecular substrates at auditory nerve (endbulb of Held) synapses in the cochlear nucleus could explain these long-lasting changes in hearing processing. During earplugging, vGluT1 expression in the presynaptic terminal decreased and synaptic vesicles were smaller. Together, there was an increase in postsynaptic density (PSD) thickness and an upregulation of GluA3 AMPA receptor subunits on bushy cells. After earplug removal and a 10 d recovery period, the density of synaptic vesicles increased, vesicles were also larger, and the PSD of endbulb synapses was larger and thicker. The upregulation of the GluA3 AMPAR subunit observed during earplugging was maintained after the recovery period. This suggests that GluA3 plays a role in plasticity in the cochlear nucleus. Our study demonstrates that sound deprivation has long-lasting alterations on structural and molecular presynaptic and postsynaptic components at the level of the first auditory nerve synapse in the auditory brainstem. Despite being the second most prevalent form of hearing loss, conductive hearing loss and its effects on central synapses have received relatively little attention. Here, we show that 10 d of monaural conductive hearing loss leads to an increase in hearing thresholds, to an increased central gain upstream of the cochlear nucleus at

  7. GABA and benzodiazepine receptors in the gerbil brain after transient ischemia: demonstration by quantitative receptor autoradiography

    International Nuclear Information System (INIS)

    Onodera, H.; Sato, G.; Kogure, K.

    1987-01-01

    Quantitative receptor autoradiography was used to measure the binding of gamma-aminobutyric acid (GABA) and benzodiazepine receptors after ischemia by means of transient occlusion of bilateral common carotid arteries in the gerbil. [ 3 H]Muscimol was used to label the GABAA receptors and [ 3 H]flunitrazepam to label central type benzodiazepine receptors. In the superolateral convexities of the frontal cortices, [ 3 H]muscimol binding was increased in 60% of the animals killed 3 days after ischemia, and decreased in 67% of the animals killed 27 days after ischemia. Twenty-seven days after ischemia, [ 3 H]flunitrazepam binding in the substantia nigra pars reticulata increased to 252% of the control, though the increase in [ 3 H]muscimol binding was not significant. In the dorsolateral region of the caudate putamen, marked neuronal necrosis and depletion of both [ 3 H]muscimol and [ 3 H]flunitrazepam binding sites were observed 27 days after ischemia, the ventromedial region being left intact. In spite of the depletion of pyramidal cells in the CA1 region of the hippocampus, both [ 3 H]muscimol and [ 3 H]flunitrazepam binding sites were preserved 27 days after ischemia. Since our previous study revealed that adenosine A1 binding sites were depleted in the CA1 subfield of the hippocampus after ischemia correlating with neuronal damage, GABAA and benzodiazepine receptors may not be distributed predominantly on the pyramidal cells in the CA1 region

  8. Serotonin, dopamine and noradrenaline adjust actions of myelinated afferents via modulation of presynaptic inhibition in the mouse spinal cord.

    Science.gov (United States)

    García-Ramírez, David L; Calvo, Jorge R; Hochman, Shawn; Quevedo, Jorge N

    2014-01-01

    Gain control of primary afferent neurotransmission at their intraspinal terminals occurs by several mechanisms including primary afferent depolarization (PAD). PAD produces presynaptic inhibition via a reduction in transmitter release. While it is known that descending monoaminergic pathways complexly regulate sensory processing, the extent these actions include modulation of afferent-evoked PAD remains uncertain. We investigated the effects of serotonin (5HT), dopamine (DA) and noradrenaline (NA) on afferent transmission and PAD. Responses were evoked by stimulation of myelinated hindlimb cutaneous and muscle afferents in the isolated neonatal mouse spinal cord. Monosynaptic responses were examined in the deep dorsal horn either as population excitatory synaptic responses (recorded as extracellular field potentials; EFPs) or intracellular excitatory postsynaptic currents (EPSCs). The magnitude of PAD generated intraspinally was estimated from electrotonically back-propagating dorsal root potentials (DRPs) recorded on lumbar dorsal roots. 5HT depressed the DRP by 76%. Monosynaptic actions were similarly depressed by 5HT (EFPs 54%; EPSCs 75%) but with a slower time course. This suggests that depression of monosynaptic EFPs and DRPs occurs by independent mechanisms. DA and NA had similar depressant actions on DRPs but weaker effects on EFPs. IC50 values for DRP depression were 0.6, 0.8 and 1.0 µM for 5HT, DA and NA, respectively. Depression of DRPs by monoamines was nearly-identical in both muscle and cutaneous afferent-evoked responses, supporting a global modulation of the multimodal afferents stimulated. 5HT, DA and NA produced no change in the compound antidromic potentials evoked by intraspinal microstimulation indicating that depression of the DRP is unrelated to direct changes in the excitability of intraspinal afferent fibers, but due to metabotropic receptor activation. In summary, both myelinated afferent-evoked DRPs and monosynaptic transmission in the

  9. Serotonin, dopamine and noradrenaline adjust actions of myelinated afferents via modulation of presynaptic inhibition in the mouse spinal cord.

    Directory of Open Access Journals (Sweden)

    David L García-Ramírez

    Full Text Available Gain control of primary afferent neurotransmission at their intraspinal terminals occurs by several mechanisms including primary afferent depolarization (PAD. PAD produces presynaptic inhibition via a reduction in transmitter release. While it is known that descending monoaminergic pathways complexly regulate sensory processing, the extent these actions include modulation of afferent-evoked PAD remains uncertain. We investigated the effects of serotonin (5HT, dopamine (DA and noradrenaline (NA on afferent transmission and PAD. Responses were evoked by stimulation of myelinated hindlimb cutaneous and muscle afferents in the isolated neonatal mouse spinal cord. Monosynaptic responses were examined in the deep dorsal horn either as population excitatory synaptic responses (recorded as extracellular field potentials; EFPs or intracellular excitatory postsynaptic currents (EPSCs. The magnitude of PAD generated intraspinally was estimated from electrotonically back-propagating dorsal root potentials (DRPs recorded on lumbar dorsal roots. 5HT depressed the DRP by 76%. Monosynaptic actions were similarly depressed by 5HT (EFPs 54%; EPSCs 75% but with a slower time course. This suggests that depression of monosynaptic EFPs and DRPs occurs by independent mechanisms. DA and NA had similar depressant actions on DRPs but weaker effects on EFPs. IC50 values for DRP depression were 0.6, 0.8 and 1.0 µM for 5HT, DA and NA, respectively. Depression of DRPs by monoamines was nearly-identical in both muscle and cutaneous afferent-evoked responses, supporting a global modulation of the multimodal afferents stimulated. 5HT, DA and NA produced no change in the compound antidromic potentials evoked by intraspinal microstimulation indicating that depression of the DRP is unrelated to direct changes in the excitability of intraspinal afferent fibers, but due to metabotropic receptor activation. In summary, both myelinated afferent-evoked DRPs and monosynaptic

  10. Neurturin overexpression in dopaminergic neurons induces presynaptic and postsynaptic structural changes in rats with chronic 6-hydroxydopamine lesion.

    Directory of Open Access Journals (Sweden)

    David Reyes-Corona

    Full Text Available The structural effect of neurturin (NRTN on the nigrostriatal dopaminergic system in animals remains unknown, although NRTN has been shown to be effective in Parkinson's disease animal models. Herein, we aimed to demonstrate that NRTN overexpression in dopaminergic neurons stimulates both neurite outgrowths in the nigrostriatal pathway and striatal dendritic spines in aging rats with chronic 6-hydroxydopamine (6-OHDA lesion. At week 12 after lesion, pTracer-mNRTN-His or pGreenLantern-1 plasmids were intranigrally transfected using the NTS-polyplex nanoparticles system. We showed that the transgenic expression in dopaminergic neurons remained until the end of the study (12 weeks. Only animals expressing NRTN-His showed recovery of tyrosine hydroxylase (TH+ cells (28 ± 2%, their neurites (32 ± 2% and the neuron-specific cytoskeletal marker β-III-tubulin in the substantia nigra; striatal TH(+ fibers were also recovered (52 ± 3%, when compared to the healthy condition. Neurotensin receptor type 1 levels were also significantly recovered in the substantia nigra and striatum. Dopamine recovery was 70 ± 4% in the striatum and complete in the substantia nigra. The number of dendritic spines of striatal medium spiny neurons was also significantly increased, but the recovery was not complete. Drug-activated circling behavior decreased by 73 ± 2% (methamphetamine and 89 ± 1% (apomorphine. Similar decrease was observed in the spontaneous motor behavior. Our results demonstrate that NRTN causes presynaptic and postsynaptic restoration of the nigrostriatal dopaminergic system after a 6-OHDA-induced chronic lesion. However, those improvements did not reach the healthy condition, suggesting that NRTN exerts lesser neurotrophic effects than other neurotrophic approaches.

  11. Acute and sustained effects of methylphenidate on cognition and presynaptic dopamine metabolism: an [18F]FDOPA PET study.

    Science.gov (United States)

    Schabram, Ina; Henkel, Karsten; Mohammadkhani Shali, Siamak; Dietrich, Claudia; Schmaljohann, Jörn; Winz, Oliver; Prinz, Susanne; Rademacher, Lena; Neumaier, Bernd; Felzen, Marc; Kumakura, Yoshitaka; Cumming, Paul; Mottaghy, Felix M; Gründer, Gerhard; Vernaleken, Ingo

    2014-10-29

    Methylphenidate (MPH) inhibits the reuptake of dopamine and noradrenaline. PET studies with MPH challenge show increased competition at postsynaptic D2/3-receptors, thus indirectly revealing presynaptic dopamine release. We used [(18)F]fluorodopamine ([(18)F]FDOPA)-PET in conjunction with the inlet-outlet model (IOM) of Kumakura et al. (2007) to investigate acute and long-term changes in dopamine synthesis capacity and turnover in nigrostriatal fibers of healthy subjects with MPH challenge. Twenty healthy human females underwent two dynamic [(18)F]FDOPA PET scans (124 min; slow bolus-injection; arterial blood sampling), with one scan in untreated baseline condition and the other after MPH administration (0.5 mg/kg, p.o.), in randomized order. Subjects underwent cognitive testing at each PET session. Time activity curves were obtained for ventral putamen and caudate and were analyzed according to the IOM to obtain the regional net-uptake of [(18)F]FDOPA (K; dopamine synthesis capacity) as well as the [(18)F]fluorodopamine washout rate (kloss, index of dopamine turnover). MPH substantially decreased kloss in putamen (-22%; p = 0.003). In the reversed treatment order group (MPH/no drug), K was increased by 18% at no drug follow-up. The magnitude of K at the no drug baseline correlated with cognitive parameters. Furthermore, individual kloss changes correlated with altered cognitive performance under MPH. [(18)F]FDOPA PET in combination with the IOM detects an MPH-evoked decrease in striatal dopamine turnover, in accordance with the known acute pharmacodynamics of MPH. Furthermore, the scan-ordering effect on K suggested that a single MPH challenge persistently increased striatal dopamine synthesis capacity. Attenuation of dopamine turnover by MPH is linked to enhanced cognitive performance in healthy females. Copyright © 2014 the authors 0270-6474/14/3414769-08$15.00/0.

  12. Intrathecal 5-methoxy-N,N-dimethyltryptamine in mice modulates 5-HT1 and 5-HT3 receptors.

    Science.gov (United States)

    Alhaider, A A; Hamon, M; Wilcox, G L

    1993-11-09

    The antinociceptive effects of intrathecally administered 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT), a potent 5-HT receptor agonist, were studied in three behavioral tests in mice: the tail-flick test and the intrathecal substance P and N-methyl-D-aspartic acid (NMDA) assays. Intrathecal administration of 5-MeO-DMT (4.6-92 nmol/mouse) produced a significant prolongation of the tail-flick latency. This action was blocked by 5-HT3 and gamma-aminobutyric acidA (GABAA) receptor antagonists but not by 5-HT2, 5-HT1A, 5-HT1B or 5-HT1S receptor antagonists. Binding studies indicated that 5-MeO-DMT had very low affinity for 5-HT3 receptors. 5-MeO-DMT inhibited biting behavior while increasing scratching behavior induced by intrathecally administered substance P. The inhibition of biting behavior was antagonized by intrathecal co-administration of 5-HT1B and GABAA receptor antagonists while 5-HT1A, 5-HT1S, 5-HT2 and 5-HT3 receptor antagonists had no effect. 5-MeO-DMT-enhanced scratching behavior was inhibited by all the antagonists used except ketanserin and bicuculline, suggesting the involvement of 5-HT1A, 5-HT1B, 5-HT1S, 5-HT3 and GABAA receptors. NMDA-induced biting behavior was inhibited by 5-MeO-DMT pretreatment; this action was antagonized by 5-HT1B, 5-HT3 and GABAA receptor antagonists. The involvement of these receptors in 5-MeO-DMT action suggests that it may promote release of 5-HT (5-hydroxytryptamine, serotonin).

  13. The inhibitory effects of presynaptic alpha-adrenoceptor agonists on contractions of guinea-pig ileum and mouse vas deferens in the morphine-dependent and withdrawn states produced in vitro.

    Science.gov (United States)

    Gillan, M. G.; Kosterlitz, H. W.; Robson, L. E.; Waterfield, A. A.

    1979-01-01

    1 Isolated ilea from guinea-pigs implanted with morphine pellets were stimulated coaxially, either with or without morphine present in the bath fluid, and the longitudinal contractions recorded. 2 In the absence of morphine the inhibitory effects of the presynaptic alpha-adrenoceptor agonists, clonidine and oxymetazoline were much reduced and the dose-response curve was flat. This state of 'withdrawal' was readily reversed by morphine and levorphanol but not its inactive (+)-isomer, dextrophan. 3 The kappa-agonists, ketazocine and ethylketazocine, also restored the effects of clonidine as did the opioid peptides Tyr-D-Ala-Gly-Phe-D-Leu, acting preferentially on delta-receptors, and Tyr-D-Ala-Gly-MePhe-Met(O)-ol, acting mainly on micro-receptors. 4 The inhibitory effects of adrenaline and adenosine 3',5'-diphosphate were reduced at low but not at high concentrations. 5 In contrast, the inhibitory effect of clonidine on the electrically evoked contractions of vasa deferentia from mice implanted with morphine pellets was not abolished by the lack of morphine in the bath fluid or by addition of naloxone. 6 A possible explanation is suggested for the loss of the inhibitory effects of presynaptic alpha-adrenoceptor agonists in the withdrawn state of the dependent ileum. PMID:37965

  14. Local synthesis of nuclear-encoded mitochondrial proteins in the presynaptic nerve terminal.

    Science.gov (United States)

    Gioio, A E; Eyman, M; Zhang, H; Lavina, Z S; Giuditta, A; Kaplan, B B

    2001-06-01

    One of the central tenets in neuroscience has been that the protein constituents of distal compartments of the neuron (e.g., the axon and nerve terminal) are synthesized in the nerve cell body and are subsequently transported to their ultimate sites of function. In contrast to this postulate, we have established previously that a heterogeneous population of mRNAs and biologically active polyribosomes exist in the giant axon and presynaptic nerve terminals of the photoreceptor neurons in squid. We report that these mRNA populations contain mRNAs for nuclear-encoded mitochondrial proteins to include: cytochrome oxidase subunit 17, propionyl-CoA carboxylase (EC 6.4.1.3), dihydrolipoamide dehydrogenase (EC 1.8.1.4), and coenzyme Q subunit 7. The mRNA for heat shock protein 70, a chaperone protein known to be involved in the import of proteins into mitochondria, has also been identified. Electrophoretic gel analysis of newly synthesized proteins in the synaptosomal fraction isolated from the squid optic lobe revealed that the large presynaptic terminals of the photoreceptor neuron contain a cytoplasmic protein synthetic system. Importantly, a significant amount of the cycloheximide resistant proteins locally synthesized in the terminal becomes associated with mitochondria. PCR analysis of RNA from synaptosomal polysomes establishes that COX17 and CoQ7 mRNAs are being actively translated. Taken together, these findings indicate that proteins required for the maintenance of mitochondrial function are synthesized locally in the presynaptic nerve terminal, and call attention to the intimacy of the relationship between the terminal and its energy generating system. J. Neurosci. Res. 64:447-453, 2001. Published 2001 Wiley-Liss, Inc.

  15. Control of autophagosome axonal retrograde flux by presynaptic activity unveiled using botulinum neurotoxin type a.

    Science.gov (United States)

    Wang, Tong; Martin, Sally; Papadopulos, Andreas; Harper, Callista B; Mavlyutov, Timur A; Niranjan, Dhevahi; Glass, Nick R; Cooper-White, Justin J; Sibarita, Jean-Baptiste; Choquet, Daniel; Davletov, Bazbek; Meunier, Frédéric A

    2015-04-15

    Botulinum neurotoxin type A (BoNT/A) is a highly potent neurotoxin that elicits flaccid paralysis by enzymatic cleavage of the exocytic machinery component SNAP25 in motor nerve terminals. However, recent evidence suggests that the neurotoxic activity of BoNT/A is not restricted to the periphery, but also reaches the CNS after retrograde axonal transport. Because BoNT/A is internalized in recycling synaptic vesicles, it is unclear which compartment facilitates this transport. Using live-cell confocal and single-molecule imaging of rat hippocampal neurons cultured in microfluidic devices, we show that the activity-dependent uptake of the binding domain of the BoNT/A heavy chain (BoNT/A-Hc) is followed by a delayed increase in retrograde axonal transport of BoNT/A-Hc carriers. Consistent with a role of presynaptic activity in initiating transport of the active toxin, activity-dependent uptake of BoNT/A in the terminal led to a significant increase in SNAP25 cleavage detected in the soma chamber compared with nonstimulated neurons. Surprisingly, most endocytosed BoNT/A-Hc was incorporated into LC3-positive autophagosomes generated in the nerve terminals, which then underwent retrograde transport to the cell soma, where they fused with lysosomes both in vitro and in vivo. Blocking autophagosome formation or acidification with wortmannin or bafilomycin A1, respectively, inhibited the activity-dependent retrograde trafficking of BoNT/A-Hc. Our data demonstrate that both the presynaptic formation of autophagosomes and the initiation of their retrograde trafficking are tightly regulated by presynaptic activity. Copyright © 2015 the authors 0270-6474/15/356179-16$15.00/0.

  16. The amyloid precursor protein – a novel player within the molecular array of presynaptic nanomachines

    Directory of Open Access Journals (Sweden)

    Melanie eLassek

    2016-01-01

    Full Text Available More than 20 years ago the amyloid precursor protein (APP was identified as the precursor protein of the Aβ peptide, the main component of senile plaques in brains affected by Alzheimer´s disease. The pathophysiology of AD, characterized by a massive loss of synapses, cognitive decline, and behavioral changes was in principle attributed to the accumulation of Aβ. Within the last decades, much effort has gone into understanding the molecular basis of the progression of Alzheimer´s disease. However, little is known about the actual physiological function of amyloid precursor proteins. Allocating APP to the proteome of the structurally and functionally dynamic presynaptic active zone highlights APP as a hitherto unknown player within the setting of the presynapse. The molecular array of presynaptic nanomachines comprising the life cycle of synaptic vesicles, exo- and endocytosis, cytoskeletal rearrangements, and mitochondrial activity provides a balance between structural and functional maintenance and diversity. The generation of genetically designed mouse models further deciphered APP as an essential player in synapse formation and plasticity. Deletion of APP causes an age-dependent phenotype: while younger mice revealed almost no physiological impairments, this condition was changed in the elderly mice. Interestingly, the proteomic composition of neurotransmitter release sites already revealed substantial changes at young age. These changes point to a network that incorporates APP into a cluster of nanomachines. Currently, the underlying mechanism of how APP acts within these machines is still elusive. Within the scope of this review, we shall construct a network of APP interaction partners within the presynaptic active zone. Furthermore, we intend to outline how deletion of APP affects this network during space and time leading to impairments in learning and memory. These alterations may provide a molecular link to the pathogenesis of

  17. RIM proteins tether Ca2+-channels to presynaptic active zones via a direct PDZ-domain interaction

    Science.gov (United States)

    Kaeser, Pascal S.; Deng, Lunbin; Wang, Yun; Dulubova, Irina; Liu, Xinran; Rizo, Josep; Südhof, Thomas C.

    2011-01-01

    SUMMARY At a synapse, fast synchronous neurotransmitter release requires localization of Ca2+-channels to presynaptic active zones. How Ca2+-channels are recruited to active zones, however, remains unknown. Using unbiased yeast two-hybrid screens, we here identify a direct interaction of the central PDZ-domain of the active-zone protein RIM with the C-termini of presynaptic N- and P/Q-type Ca2+-channels, but not L-type Ca2+-channels. To test the physiological significance of this interaction, we generated conditional knockout mice lacking all presynaptic RIM isoforms. Deletion of all RIMs ablated most neurotransmitter release by simultaneously impairing the priming of synaptic vesicles and by decreasing the presynaptic localization of Ca2+-channels. Strikingly, rescue of the decreased Ca2+-channel localization required the RIM PDZ-domain, whereas rescue of vesicle priming required the RIM N-terminus. We propose that RIMs tether N- and P/Q-type Ca2+-channels to presynaptic active zones via a direct PDZ-domain mediated interaction, thereby enabling fast, synchronous triggering of neurotransmitter release at a synapse. PMID:21241895

  18. Pharmacology of the hypothermic response to 5-HT1A receptor activation in humans.

    Science.gov (United States)

    Lesch, K P; Poten, B; Söhnle, K; Schulte, H M

    1990-01-01

    The selective 5-HT1A receptor ligand ipsapirone (IPS) caused dose-related hypothermia in humans. The response was attenuated by the nonselective 5-HT1/2 receptor antagonist metergoline and was completely antagonized by the nonselective beta-adrenoceptor antagonist pindolol, which interacts stereoselectively with the 5-HT1A receptor. The selective beta 1-adrenergic antagonist betaxolol had no effect. The findings indicate that IPS-induced hypothermia specifically involves activation of (presynaptic) 5-HT1A receptors. Therefore, the hypothermic response to IPS may provide a convenient in vivo paradigma to assess the function of the presynaptic 5-HT receptor in affective disorders and its involvement in the effects of psychotropic drugs.

  19. Protein synthesis in presynaptic endings from squid brain: modulation by calcium ions.

    Science.gov (United States)

    Benech, J C; Crispino, M; Kaplan, B B; Giuditta, A

    1999-03-15

    Previous biochemical, autoradiographic, and ultrastructural data have shown that, in the synaptosomal fraction of the squid optic lobe, protein synthesis is largely due to the presynaptic terminals of the retinal photoreceptor neurons (Crispino et al. [1993a] Mol. Cell. Neurosci. 4:366-374; Crispino et al. [1993b] J. Neurochem. 61:1144-1146; Crispino et al. [1997] J. Neurosci. 17:7694-7702). We now report that this process is close to its maximum at the basal concentration of cytosolic Ca++, and is markedly inhibited when the concentration of this ion is either decreased or increased. This conclusion is supported by the results of experiments with: 1) compounds known to increase the level of cytosolic Ca++, such as A23187, ionomycin, thapsigargin, and caffeine; 2) compounds sequestering cytosolic calcium ions such as BAPTA-AM; and 3) agents that block the role of Ca++ as second messenger, such as TFP and W7, which inhibit calmodulin, and calphostin, which inhibits protein kinase C. We conclude that variations in the level of cytosolic Ca++ induced in presynaptic terminals by neuronal activity may contribute to the modulation of the local synthesis of protein.

  20. Deformation of attractor landscape via cholinergic presynaptic modulations: a computational study using a phase neuron model.

    Directory of Open Access Journals (Sweden)

    Takashi Kanamaru

    Full Text Available Corticopetal acetylcholine (ACh is released transiently from the nucleus basalis of Meynert (NBM into the cortical layers and is associated with top-down attention. Recent experimental data suggest that this release of ACh disinhibits layer 2/3 pyramidal neurons (PYRs via muscarinic presynaptic effects on inhibitory synapses. Together with other possible presynaptic cholinergic effects on excitatory synapses, this may result in dynamic and temporal modifications of synapses associated with top-down attention. However, the system-level consequences and cognitive relevance of such disinhibitions are poorly understood. Herein, we propose a theoretical possibility that such transient modifications of connectivity associated with ACh release, in addition to top-down glutamatergic input, may provide a neural mechanism for the temporal reactivation of attractors as neural correlates of memories. With baseline levels of ACh, the brain returns to quasi-attractor states, exhibiting transitive dynamics between several intrinsic internal states. This suggests that top-down attention may cause the attention-induced deformations between two types of attractor landscapes: the quasi-attractor landscape (Q-landscape, present under low-ACh, non-attentional conditions and the attractor landscape (A-landscape, present under high-ACh, top-down attentional conditions. We present a conceptual computational model based on experimental knowledge of the structure of PYRs and interneurons (INs in cortical layers 1 and 2/3 and discuss the possible physiological implications of our results.

  1. Pre-synaptic control of remote fear extinction in the neocortex

    Directory of Open Access Journals (Sweden)

    Gisella eVetere

    2012-06-01

    Full Text Available Consolidation of remote memory enhances immediate early genes induction (IEGs, augments the expression of the presynaptic growth associated protein 43 (GAP-43, and increases the density and size of dendritic spines in anterior cingulate (aCC and infra-limbic (ILC cortices. Remote memory extinction, however, does not uniformly alter consolidation-induced structural changes. In the aCC, the density, but not the size, of spines is reset to pseudo-conditioning levels while novel thin spines are formed in the ILC. Whether IEGs and GAP-43 also undergo region-specific changes upon remote memory extinction is undetermined. Here we confirm in the same batch of mice that c-Fos induction and GAP-43 expression are increased in both the aCC and the ILC 36 days after contextual fear conditioning. We then show that, in both regions, remote memory extinction is associated with decrease of c-Fos induction but no change in GAP-43 expression thus revealing similar, although protein-specific, pre-synaptic adaptations in aCC and ILC neurons. These observations, in addition to our previous report of region-specific post-synaptic structural changes, disclose a complex pattern of extinction-driven neocortical alterations suitable to support erasure or reinstatement of fear according to the environment demand.

  2. Optogenetic probing and manipulation of the calyx-type presynaptic terminal in the embryonic chick ciliary ganglion.

    Science.gov (United States)

    Egawa, Ryo; Hososhima, Shoko; Hou, Xubin; Katow, Hidetaka; Ishizuka, Toru; Nakamura, Harukazu; Yawo, Hiromu

    2013-01-01

    The calyx-type synapse of chick ciliary ganglion (CG) has been intensively studied for decades as a model system for the synaptic development, morphology and physiology. Despite recent advances in optogenetics probing and/or manipulation of the elementary steps of the transmitter release such as membrane depolarization and Ca(2+) elevation, the current gene-manipulating methods are not suitable for targeting specifically the calyx-type presynaptic terminals. Here, we evaluated a method for manipulating the molecular and functional organization of the presynaptic terminals of this model synapse. We transfected progenitors of the Edinger-Westphal (EW) nucleus neurons with an EGFP expression vector by in ovo electroporation at embryonic day 2 (E2) and examined the CG at E8-14. We found that dozens of the calyx-type presynaptic terminals and axons were selectively labeled with EGFP fluorescence. When a Brainbow construct containing the membrane-tethered fluorescent proteins m-CFP, m-YFP and m-RFP, was introduced together with a Cre expression construct, the color coding of each presynaptic axon facilitated discrimination among inter-tangled projections, particularly during the developmental re-organization period of synaptic connections. With the simultaneous expression of one of the chimeric variants of channelrhodopsins, channelrhodopsin-fast receiver (ChRFR), and R-GECO1, a red-shifted fluorescent Ca(2+)-sensor, the Ca(2+) elevation was optically measured under direct photostimulation of the presynaptic terminal. Although this optically evoked Ca(2+) elevation was mostly dependent on the action potential, a significant component remained even in the absence of extracellular Ca(2+). It is suggested that the photo-activation of ChRFR facilitated the release of Ca(2+) from intracellular Ca(2+) stores directly or indirectly. The above system, by facilitating the molecular study of the calyx-type presynaptic terminal, would provide an experimental platform for unveiling

  3. Optogenetic probing and manipulation of the calyx-type presynaptic terminal in the embryonic chick ciliary ganglion.

    Directory of Open Access Journals (Sweden)

    Ryo Egawa

    Full Text Available The calyx-type synapse of chick ciliary ganglion (CG has been intensively studied for decades as a model system for the synaptic development, morphology and physiology. Despite recent advances in optogenetics probing and/or manipulation of the elementary steps of the transmitter release such as membrane depolarization and Ca(2+ elevation, the current gene-manipulating methods are not suitable for targeting specifically the calyx-type presynaptic terminals. Here, we evaluated a method for manipulating the molecular and functional organization of the presynaptic terminals of this model synapse. We transfected progenitors of the Edinger-Westphal (EW nucleus neurons with an EGFP expression vector by in ovo electroporation at embryonic day 2 (E2 and examined the CG at E8-14. We found that dozens of the calyx-type presynaptic terminals and axons were selectively labeled with EGFP fluorescence. When a Brainbow construct containing the membrane-tethered fluorescent proteins m-CFP, m-YFP and m-RFP, was introduced together with a Cre expression construct, the color coding of each presynaptic axon facilitated discrimination among inter-tangled projections, particularly during the developmental re-organization period of synaptic connections. With the simultaneous expression of one of the chimeric variants of channelrhodopsins, channelrhodopsin-fast receiver (ChRFR, and R-GECO1, a red-shifted fluorescent Ca(2+-sensor, the Ca(2+ elevation was optically measured under direct photostimulation of the presynaptic terminal. Although this optically evoked Ca(2+ elevation was mostly dependent on the action potential, a significant component remained even in the absence of extracellular Ca(2+. It is suggested that the photo-activation of ChRFR facilitated the release of Ca(2+ from intracellular Ca(2+ stores directly or indirectly. The above system, by facilitating the molecular study of the calyx-type presynaptic terminal, would provide an experimental platform for

  4. Distribution of glycine receptors on the surface of the mature calyx of Held nerve terminal

    Czech Academy of Sciences Publication Activity Database

    Trojanová, Johana; Kulik, A.; Janáček, Jiří; Králíková, Michaela; Syka, Josef; Tureček, Rostislav

    2014-01-01

    Roč. 8, OCT 6 (2014), s. 120 ISSN 1662-5110 R&D Projects: GA ČR(CZ) GAP303/11/0131; GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:68378041 ; RVO:67985823 Keywords : pre-embedding immunoelectron microscopy * presynaptic * glycine receptor Subject RIV: FH - Neurology Impact factor: 3.568, year: 2014

  5. Functional modulation of cerebral gamma-aminobutyric acidA receptor/benzodiazepine receptor/chloride ion channel complex with ethyl beta-carboline-3-carboxylate: Presence of independent binding site for ethyl beta-carboline-3-carboxylate

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, J.; Kuriyama, K. (Kyoto Prefectural Univ. of Medicine (Japan))

    1990-05-01

    Effect of ethyl beta-carboline-3-carboxylate (beta-CCE) on the function of gamma-aminobutyric acid (GABA)A receptor/benzodiazepine receptor/chloride ion channel complex was studied. Beta-CCE noncompetitively and competitively inhibited (3H)flunitrazepam binding to benzodiazepine receptor, but not (3H)muscimol binding to GABAA receptor as well as t-(3H)butylbicycloorthobenzoate (( 3H) TBOB) binding to chloride ion channel, in particulate fraction of the mouse brain. Ro15-1788 also inhibited competitively (3H) flunitrazepam binding. On the other hand, the binding of beta-(3H)CCE was inhibited noncompetitively and competitively by clonazepam and competitively by Ro15-1788. In agreement with these results, benzodiazepines-stimulated (3H)muscimol binding was antagonized by beta-CCE and Ro15-1788. Gel column chromatography for the solubilized fraction from cerebral particulate fraction by 0.2% sodium deoxycholate (DOC-Na) in the presence of 1 M KCl indicated that beta-(3H)CCE binding site was eluted in the same fraction (molecular weight, 250,000) as the binding sites for (3H)flunitrazepam, (3H)muscimol and (3H)TBOB. GABA-stimulated 36Cl- influx into membrane vesicles prepared from the bovine cerebral cortex was stimulated and attenuated by flunitrazepam and beta-CCE, respectively. These effects of flunitrazepam and beta-CCE on the GABA-stimulated 36Cl- influx were antagonized by Ro15-1788. The present results suggest that the binding site for beta-CCE, which resides on GABAA receptor/benzodiazepine receptor/chloride ion channel complex, may be different from that for benzodiazepine. Possible roles of beta-CCE binding site in the allosteric inhibitions on benzodiazepine binding site as well as on the functional coupling between chloride ion channel and GABAA receptor are also suggested.

  6. Short-term memory impairment after isoflurane in mice is prevented by the α5 γ-aminobutyric acid type A receptor inverse agonist L-655,708.

    Science.gov (United States)

    Saab, Bechara J; Maclean, Ashley J B; Kanisek, Marijana; Zurek, Agnieszka A; Martin, Loren J; Roder, John C; Orser, Beverley A

    2010-11-01

    Memory blockade is an essential component of the anesthetic state. However, postanesthesia memory deficits represent an undesirable and poorly understood adverse effect. Inhibitory α5 subunit-containing γ-aminobutyric acid subtype A receptors (α5GABAA) are known to play a critical role in memory processes and are highly sensitive to positive modulation by anesthetics. We postulated that inhibiting the activity of α5GABAA receptors during isoflurane anesthesia would prevent memory deficits in the early postanesthesia period. Mice were pretreated with L-655,708, an α5GABAA receptor-selective inverse agonist, or vehicle. They were then exposed to isoflurane for 1 h (1.3%, or 1 minimum alveolar concentration, or air-oxygen control). Then, either 1 or 24 h later, mice were conditioned in fear-associated contextual and cued learning paradigms. In addition, the effect of L-655,708 on the immobilizing dose of isoflurane was studied. Motor coordination, sedation, anxiety, and the concentration of isoflurane in the brain at 5 min, 1 h, and 24 h after isoflurane were also examined. Motor and sensory function recovered within minutes after termination of isoflurane administration. In contrast, a robust deficit in contextual fear memory persisted for at least 24 h. The α5GABAA receptor inverse agonist, L-655,708, completely prevented memory deficits without changing the immobilizing dose of isoflurane. Trace concentrations of isoflurane were measured in the brain 24 h after treatment. Memory deficits occurred long after the sedative, analgesic, and anxiolytic effects of isoflurane subsided. L-655,708 prevented memory deficit, suggesting that an isoflurane interaction at α5GABAA receptors contributes to memory impairment during the early postanesthesia period.

  7. The brain GABA-benzodiazepine receptor alpha-5 subtype in autism spectrum disorder: a pilot [(11)C]Ro15-4513 positron emission tomography study.

    Science.gov (United States)

    Mendez, Maria Andreina; Horder, Jamie; Myers, Jim; Coghlan, Suzanne; Stokes, Paul; Erritzoe, David; Howes, Oliver; Lingford-Hughes, Anne; Murphy, Declan; Nutt, David

    2013-05-01

    GABA (gamma-amino-butyric-acid) is the primary inhibitory neurotransmitter in the human brain. It has been proposed that the symptoms of autism spectrum disorders (ASDs) are the result of deficient GABA neurotransmission, possibly including reduced expression of GABAA receptors. However, this hypothesis has not been directly tested in living adults with ASD. In this preliminary investigation, we used Positron Emission Tomography (PET) with the benzodiazepine receptor PET ligand [(11)C]Ro15-4513 to measure α1 and α5 subtypes of the GABAA receptor levels in the brain of three adult males with well-characterized high-functioning ASD compared with three healthy matched volunteers. We found significantly lower [(11)C]Ro15-4513 binding throughout the brain of participants with ASD (p < 0.0001) compared with controls. Planned region of interest analyses also revealed significant reductions in two limbic brain regions, namely the amygdala and nucleus accumbens bilaterally. Further analysis suggested that these results were driven by lower levels of the GABAA α5 subtype. These results provide initial evidence of a GABAA α5 deficit in ASD and support further investigations of the GABA system in this disorder. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Growing Evidence for Heterogeneous Synaptic Localization of 5-HT2A Receptors.

    Science.gov (United States)

    Bécamel, Carine; Berthoux, Coralie; Barre, Alexander; Marin, Philippe

    2017-05-17

    The serotonin 2A (5-HT2A) receptor subtype continues to attract attention as a target for numerous psychoactive drugs including psychedelic hallucinogens, antidepressants, anxiolytics, and atypical antipsychotics. 5-HT2A receptors are a principal G protein-coupled receptor subtype mediating the excitatory effects of serotonin. Nonetheless, pre- vs postsynaptic localization of 5HT2A receptors, relative to glutamatergic synapses, has remained controversial. Here, we discuss recent findings highlighting the existence and roles of presynaptic 5-HT2A receptors in regulating glutamatergic transmission and cognition.

  9. Presynaptic Regulation of Leptin in a Defined Lateral Hypothalamus-Ventral Tegmental Area Neurocircuitry Depends on Energy State.

    Science.gov (United States)

    Liu, Jing-Jing; Bello, Nicholas T; Pang, Zhiping P

    2017-12-06

    Synaptic transmission controls brain activity and behaviors, including food intake. Leptin, an adipocyte-derived hormone, acts on neurons located in the lateral hypothalamic area (LHA) to maintain energy homeostasis and regulate food intake behavior. The specific synaptic mechanisms, cell types, and neural projections mediating this effect remain unclear. In male mice, using pathway-specific retrograde tracing, whole-cell patch-clamp recordings and post hoc cell type identification, we found that leptin reduces excitatory synaptic strength onto both melanin-concentrating hormone- and orexin-expressing neurons projecting from the LHA to the ventral tegmental area (VTA), which may affect dopamine signaling and motivation for feeding. A presynaptic mechanism mediated by distinct intracellular signaling mechanisms may account for this regulation by leptin. The regulatory effects of leptin depend on intact leptin receptor signaling. Interestingly, the synaptic regulatory function of leptin in the LHA-to-VTA neuronal pathway is highly sensitive to energy states: both energy deficiency (acute fasting) and excessive energy storage (high-fat diet-induced obesity) blunt the effect of leptin. These data revealed that leptin may regulate synaptic transmission in the LHA-to-VTA neurocircuitry in an inverted "U-shape" fashion dependent on plasma glucose levels and related to metabolic states. SIGNIFICANCE STATEMENT The lateral hypothalamic area (LHA) to ventral tegmental area (VTA) projection is an important neural pathway involved in balancing whole-body energy states and reward. We found that the excitatory synaptic inputs to both orexin- and melanin-concentrating hormone expressing LHA neurons projecting to the VTA were suppressed by leptin, a peptide hormone derived from adipocytes that signals peripheral energy status to the brain. Interestingly, energy states seem to affect how leptin regulates synaptic transmission since both the depletion of energy induced by acute food

  10. Learning and retrieval behavior in recurrent neural networks with pre-synaptic dependent homeostatic plasticity

    Science.gov (United States)

    Mizusaki, Beatriz E. P.; Agnes, Everton J.; Erichsen, Rubem; Brunnet, Leonardo G.

    2017-08-01

    The plastic character of brain synapses is considered to be one of the foundations for the formation of memories. There are numerous kinds of such phenomenon currently described in the literature, but their role in the development of information pathways in neural networks with recurrent architectures is still not completely clear. In this paper we study the role of an activity-based process, called pre-synaptic dependent homeostatic scaling, in the organization of networks that yield precise-timed spiking patterns. It encodes spatio-temporal information in the synaptic weights as it associates a learned input with a specific response. We introduce a correlation measure to evaluate the precision of the spiking patterns and explore the effects of different inhibitory interactions and learning parameters. We find that large learning periods are important in order to improve the network learning capacity and discuss this ability in the presence of distinct inhibitory currents.

  11. Changes in presynaptic release, but not reuptake, of bioamines induced by long-term antidepressant treatment

    International Nuclear Information System (INIS)

    Dolzhenko, A.T.; Komissarov, I.V.

    1986-01-01

    This paper describes an investigation into the effect of long-term administration of antidepressants on neuronal uptake of NA and 5-HT and on their release, induced by electrical stimulation, in rat brain slices. The effects of the test substances on neuronal uptake of 14 C-NA and 3 H-5-HT by the slices was investigated. Values of IC 50 and EC 2 were found and compared in the experiments and control. The inhibitory effect of clonidine (10 -4 M) and of 5-HT (10 -5 M) on presynaptic release of 14 C-NA and 3 H-5-HT also was studied in brain slices from intact rats and rats treated for two weeks with antidepressants

  12. Mutations in STX1B, encoding a presynaptic protein, cause fever-associated epilepsy syndromes

    DEFF Research Database (Denmark)

    Schubert, J.; Siekierska, A.; Langlois, M.

    2014-01-01

    Febrile seizures affect 2-4% of all children(1) and have a strong genetic component(2). Recurrent mutations in three main genes (SCN1A, SCN1B and GABRG2)(3-5) have been identified that cause febrile seizures with or without epilepsy. Here we report the identification of mutations in STX1B, encoding...... syntaxin-1B(6), that are associated with both febrile seizures and epilepsy. Whole-exome sequencing in independent large pedigrees(7,8) identified cosegregating STX1B mutations predicted to cause an early truncation or an in-frame insertion or deletion. Three additional nonsense or missense mutations....... Wild-type human syntaxin-1B but not a mutated protein rescued the effects of stx1b knockdown in zebrafish. Our results thus implicate STX1B and the presynaptic release machinery in fever-associated epilepsy syndromes....

  13. The presynaptic Munc13-1 binds alcohol and modulates alcohol self-administration in Drosophila

    Science.gov (United States)

    Das, Joydip; Xu, Shiyu; Pany, Satyabrata; Guillory, Ashley; Shah, Vrutant; Roman, Gregg W.

    2013-01-01

    Munc13-1 is a presynaptic active-zone protein essential for neurotransmitter release and involved in presynaptic plasticity in brain. Ethanol, butanol and octanol quenched the intrinsic fluorescence of the C1 domain of Munc13-1 with EC50s of 52 mM, 26 mM and 0.7 mM, respectively. Photoactive azialcohols photolabeled Munc13-1 C1 exclusively at Glu-582, which was identified by mass spectrometry. Mutation of Glu-582 to alanine, leucine and histidine reduced the alcohol binding two- to five-fold. Circular dichroism studies suggested that binding of alcohol increased the stability of the wild type Munc13-1 compared with the mutants. If Munc13-1 plays some role in the neural effects of alcohol in vivo, changes in the activity of this protein should produce differences in the behavioral responses to ethanol. We tested this prediction with a loss-of-function mutation in the conserved Dunc-13 in Drosophila melanogaster. The Dunc-13P84200/+ heterozygotes have 50% wild type levels of Dunc-13 mRNA and display a very robust increase in ethanol self-administration. This phenotype is reversed by the expression of the rat Munc13-1 protein within the Drosophila nervous system. The present studies indicate that Munc13-1 C1 has binding site(s) for alcohols and Munc13-1 activity is sufficient to restore normal self-administration to Drosophila mutants deficient in Dunc-13 activity. PMID:23692447

  14. Electrical receptive fields of retinal ganglion cells: Influence of presynaptic neurons.

    Science.gov (United States)

    Maturana, Matias I; Apollo, Nicholas V; Garrett, David J; Kameneva, Tatiana; Cloherty, Shaun L; Grayden, David B; Burkitt, Anthony N; Ibbotson, Michael R; Meffin, Hamish

    2018-02-01

    Implantable retinal stimulators activate surviving neurons to restore a sense of vision in people who have lost their photoreceptors through degenerative diseases. Complex spatial and temporal interactions occur in the retina during multi-electrode stimulation. Due to these complexities, most existing implants activate only a few electrodes at a time, limiting the repertoire of available stimulation patterns. Measuring the spatiotemporal interactions between electrodes and retinal cells, and incorporating them into a model may lead to improved stimulation algorithms that exploit the interactions. Here, we present a computational model that accurately predicts both the spatial and temporal nonlinear interactions of multi-electrode stimulation of rat retinal ganglion cells (RGCs). The model was verified using in vitro recordings of ON, OFF, and ON-OFF RGCs in response to subretinal multi-electrode stimulation with biphasic pulses at three stimulation frequencies (10, 20, 30 Hz). The model gives an estimate of each cell's spatiotemporal electrical receptive fields (ERFs); i.e., the pattern of stimulation leading to excitation or suppression in the neuron. All cells had excitatory ERFs and many also had suppressive sub-regions of their ERFs. We show that the nonlinearities in observed responses arise largely from activation of presynaptic interneurons. When synaptic transmission was blocked, the number of sub-regions of the ERF was reduced, usually to a single excitatory ERF. This suggests that direct cell activation can be modeled accurately by a one-dimensional model with linear interactions between electrodes, whereas indirect stimulation due to summated presynaptic responses is nonlinear.

  15. Prophylactic versus Therapeutic Fingolimod: Restoration of Presynaptic Defects in Mice Suffering from Experimental Autoimmune Encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Tommaso Bonfiglio

    Full Text Available Fingolimod, the first oral, disease-modifying therapy for MS, has been recently proposed to modulate glutamate transmission in the central nervous system (CNS of mice suffering from Experimental Autoimmune Encephalomyelitis (EAE and in MS patients. Our study aims at investigating whether oral fingolimod recovers presynaptic defects that occur at different stages of disease in the CNS of EAE mice. In vivo prophylactic (0.3 mg/kg for 14 days, from the 7th day post immunization, d.p.i, the drug dissolved in the drinking water fingolimod significantly reduced the clinical symptoms and the anxiety-related behaviour in EAE mice. Spinal cord inflammation, demyelination and glial cell activation are markers of EAE progression. These signs were ameliorated following oral fingolimod administration. Glutamate exocytosis was shown to be impaired in cortical and spinal cord terminals isolated from EAE mice at 21 ± 1 d.p.i., while GABA alteration emerged only at the spinal cord level. Prophylactic fingolimod recovered these presynaptic defects, restoring altered glutamate and GABA release efficiency. The beneficial effect occurred in a dose-dependent, region-specific manner, since lower (0.1-0.03 mg/kg doses restored, although to a different extent, synaptic defects in cortical but not spinal cord terminals. A delayed reduction of glutamate, but not of GABA, exocytosis was observed in hippocampal terminals of EAE mice at 35 d.p.i. Therapeutic (0.3 mg/kg, from 21 d.p.i. for 14 days fingolimod restored glutamate exocytosis in the cortex and in the hippocampus of EAE mice at 35 ± 1 d.p.i. but not in the spinal cord, where also GABAergic defects remained unmodified. These results improve our knowledge of the molecular events accounting for the beneficial effects elicited by fingolimod in demyelinating disorders.

  16. Effects of the aminoglycoside antibiotics, streptomycin and neomycin, on neuromuscular transmission. I. Presynaptic considerations.

    Science.gov (United States)

    Fiekers, J F

    1983-06-01

    The effects of two aminoglycoside antibiotics, streptomycin and neomycin, were studied in voltage-clamped transected twitch fibers of the costocutaneous muscles of garter snakes (species Thamnophis). The concentration-dependent effects of each antibiotic were quantitated by measuring miniature end-plate currents (mepcs) and evoked end-plate currents (epcs) in a single fiber before and in the presence of a wide range of concentrations of each antibiotic. The amplitude and the kinetics of these currents were studied and estimates of the quantal content of evoked transmitter release determined by the direct method of mean ratios, epc/mepc. A distinct separation was obtained between the concentrations of each antibiotic which demonstrated either pre- or postsynaptic actions. Both streptomycin and neomycin produced a concentration-dependent reduction in epc amplitude at concentrations which did not reduce mepc amplitude. Thus, the primary site of action for these antibiotics was considered of presynaptic origin. Streptomycin was approximately one-tenth as active as neomycin in reducing quantal release of acetylcholine. The marked depression in epc amplitude and quantal content produced by high concentrations of each antibiotic were reversed by elevating the external calcium concentration. Double logarithmic plots of the relationship between external calcium concentration and epc amplitude yielded a slope of approximately 3.8 in control physiological solution. In the presence of blocking concentrations of each antibiotic, increasing the external calcium concentration caused a parallel shift to the right of this relationship. These results suggest that the major mechanism for the neuromuscular depression produced by these aminoglycoside antibiotics is a competitive antagonism with calcium for a common presynaptic site required for evoked transmitter release.

  17. In Vivo Imaging of Cerebral Serotonin Transporter and Serotonin(2A) Receptor Binding in 3,4-Methylenedioxymethamphetamine (MDMA or "Ecstasy") and Hallucinogen Users

    DEFF Research Database (Denmark)

    Erritzoe, David; Frokjaer, Vibe G.; Holst, Klaus K.

    2011-01-01

    Context: Both hallucinogens and 3,4-methylenedioxy-methamphetamine( MDMA or "ecstasy") have direct agonistic effects on postsynaptic serotonin(2A) receptors, the key site for hallucinogenic actions. In addition, MDMA is a potent releaser and reuptake inhibitor of presynaptic serotonin.Objective: ......Context: Both hallucinogens and 3,4-methylenedioxy-methamphetamine( MDMA or "ecstasy") have direct agonistic effects on postsynaptic serotonin(2A) receptors, the key site for hallucinogenic actions. In addition, MDMA is a potent releaser and reuptake inhibitor of presynaptic serotonin...

  18. Rescue of Deficient Amygdala Tonic γ-Aminobutyric Acidergic Currents in the Fmr−/y Mouse Model of Fragile X Syndrome by a Novel γ-Aminobutyric Acid Type A Receptor-Positive Allosteric Modulator

    Science.gov (United States)

    Martin, Brandon S.; Martinez-Botella, Gabriel; Loya, Carlos M.; Salituro, Francesco G.; Robichaud, Albert J.; Huntsman, Molly M.; Ackley, Mike A.; Doherty, James J.; Corbin, Joshua G.

    2017-01-01

    Alterations in the ratio of excitatory to inhibitory transmission are emerging as a common component of many nervous system disorders, including autism spectrum disorders (ASDs). Tonic γ-aminobutyric acidergic (GABAergic) transmission provided by peri- and extrasynaptic GABA type A (GABAA) receptors powerfully controls neuronal excitability and plasticity and, therefore, provides a rational therapeutic target for normalizing hyperexcitable networks across a variety of disorders, including ASDs. Our previous studies revealed tonic GABAergic deficits in principal excitatory neurons in the basolateral amygdala (BLA) in the Fmr1−/y knockout (KO) mouse model fragile X syndrome. To correct amygdala deficits in tonic GABAergic neurotransmission in Fmr1−/y KO mice, we developed a novel positive allosteric modulator of GABAA receptors, SGE-872, based on endogenously active neurosteroids. This study shows that SGE-872 is nearly as potent and twice as efficacious for positively modulating GABAA receptors as its parent molecule, allopregnanolone. Furthermore, at submicromolar concentrations (≤1 µM), SGE-872 is selective for tonic, extrasynaptic α4β3δ-containing GABAA receptors over typical synaptic α1β2γ2 receptors. We further find that SGE-872 strikingly rescues the tonic GABAergic transmission deficit in principal excitatory neurons in the Fmr1−/y KO BLA, a structure heavily implicated in the neuropathology of ASDs. Therefore, the potent and selective action of SGE-872 on tonic GABAA receptors containing α4 subunits may represent a novel and highly useful therapeutic avenue for ASDs and related disorders involving hyperexcitability of neuronal networks. PMID:26308557

  19. A cation-pi interaction in the binding site of the glycine receptor is mediated by a phenylalanine residue

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Millen, Kat S; Hanek, Ariele P

    2008-01-01

    Cys-loop receptor binding sites characteristically contain many aromatic amino acids. In nicotinic ACh and 5-HT3 receptors, a Trp residue forms a cation-pi interaction with the agonist, whereas in GABA(A) receptors, a Tyr performs this role. The glycine receptor binding site, however, contains...... of fluorinated Phe derivatives using unnatural amino acid mutagenesis. The data reveal a clear correlation between the glycine EC(50) value and the cation-pi binding ability of the fluorinated Phe derivatives at position 159, but not at positions 207 or 63, indicating a single cation-pi interaction between...

  20. Super-resolution microscopy reveals presynaptic localization of the ALS / FTD related protein FUS in hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Michael eSchoen

    2016-01-01

    Full Text Available Fused in Sarcoma (FUS is a multifunctional RNA- / DNA-binding protein, which is involved in the pathogenesis of the neurodegenerative disorders amyotrophic lateral sclerosis (ALS and frontotemporal dementia (FTD. A common hallmark of these disorders is the abnormal accumulation of mutated FUS protein in the cytoplasm. Under normal conditions FUS is confined to the nuclear compartment, in neurons however, additional somatodendritic localization can be observed. In this study, we carefully analyzed the subcellular localization of endogenous FUS at synaptic sites of hippocampal neurons which are among the most affected cell types in frontotemporal dementia with FUS pathology. We could confirm a strong nuclear localization of FUS as well as its prominent and widespread neuronal expression throughout the adult and developing rat brain, particularly in the hippocampus, the cerebellum and the outer layers of the cortex. Intriguingly, FUS was also consistently observed at synaptic sites as detected by neuronal subcellular fractionation as well as by immunolabeling. To define a pre- and / or postsynaptic localization of FUS, we employed super-resolution fluorescence localization microscopy. FUS was found to be localized within the axon terminal in close proximity to the presynaptic vesicle protein Synaptophysin1 and adjacent to the active zone protein Bassoon, but well separated from the postsynaptic protein PSD-95. Having shown the presynaptic localization of FUS in the nervous system, a novel extranuclear role of FUS at neuronal contact sites has to be considered. Since there is growing evidence that local presynaptic translation might also be an important mechanism for plasticity, FUS - like the fragile X mental retardation protein FMRP - might act as one of the presynaptic RNA-binding proteins regulating this machinery. Our observation of presynaptic FUS should foster further investigations to determine its role in neurodegenerative diseases such as

  1. Clobazam and its active metabolite N-desmethylclobazam display significantly greater affinities for α₂- versus α₁-GABA(A-receptor complexes.

    Directory of Open Access Journals (Sweden)

    Henrik Sindal Jensen

    Full Text Available Clobazam (CLB, a 1,5-benzodiazepine (BZD, was FDA-approved in October 2011 for the adjunctive treatment of seizures associated with Lennox-Gastaut syndrome (LGS in patients 2 years and older. BZDs exert various CNS effects through allosteric modulation of GABAA receptors. The structurally distinct, 1,4-BZD clonazepam (CLN is also approved to treat LGS. The precise mechanisms of action and clinical efficacy of both are unknown. Data show that the GABAA α₁-subunit-selective compound zolpidem [ZOL] exhibits hypnotic/sedative effects. Conversely, data from knock-in mice carrying BZD binding site mutations suggest that the α₂ subunit mediates anticonvulsant effects, without sedative actions. Hence, the specific pattern of interactions across the GABAA receptor complexes of BZDs might be reflected in their clinical efficacies and adverse effect profiles. In this study, GABAA-receptor binding affinities of CLB, N-desmethylclobazam (N-CLB, the major metabolite of CLB, CLN, and ZOL were characterized with native receptors from rat-brain homogenates and on cloned receptors from HEK293 cells transfected with combinations of α (α₁, α₂, α₃, or α₅, β₂, and γ₂ subtypes. Our results demonstrate that CLB and N-CLB have significantly greater binding affinities for α₂- vs. α₁-receptor complexes, a difference not observed for CLN, for which no distinction between α₂ and α₁ receptors was observed. Our experiments with ZOL confirmed the high preference for α₁ receptors. These results provide potential clues to a new understanding of the pharmacologic modes of action of CLB and N-CLB.

  2. Mechanisms of Kappa Opioid Receptor Potentiation of Dopamine D2 Receptor Function in Quinpirole-Induced Locomotor Sensitization in Rats

    Science.gov (United States)

    Escobar, Angélica P; González, Marcela P; Meza, Rodrigo C; Noches, Verónica; Henny, Pablo; Gysling, Katia; España, Rodrigo A; Fuentealba, José A

    2017-01-01

    Abstract Background Increased locomotor activity in response to the same stimulus is an index of behavioral sensitization observed in preclinical models of drug addiction and compulsive behaviors. Repeated administration of quinpirole, a D2/D3 dopamine agonist, induces locomotor sensitization. This effect is potentiated and accelerated by co-administration of U69593, a kappa opioid receptor agonist. The mechanism underlying kappa opioid receptor potentiation of quinpirole-induced locomotor sensitization remains to be elucidated. Methods Immunofluorescence anatomical studies were undertaken in mice brain slices and rat presynaptic synaptosomes to reveal kappa opioid receptor and D2R pre- and postsynaptic colocalization in the nucleus accumbens. Tonic and phasic dopamine release in the nucleus accumbens of rats repeatedly treated with U69593 and quinpirole was assessed by microdialysis and fast scan cyclic voltammetry. Results Anatomical data show that kappa opioid receptor and D2R colocalize postsynaptically in medium spiny neurons of the nucleus accumbens and the highest presynaptic colocalization occurs on the same dopamine terminals. Significantly reduced dopamine levels were observed in quinpirole, and U69593-quinpirole treated rats, explaining sensitization of D2R. Presynaptic inhibition induced by kappa opioid receptor and D2R of electrically evoked dopamine release was faster in U69593-quinpirole compared with quinpirole-repeatedly treated rats. Conclusions Pre- and postsynaptic colocalization of kappa opioid receptor and D2R supports a role for kappa opioid receptor potentiating both the D2R inhibitory autoreceptor function and the inhibitory action of D2R on efferent medium spiny neurons. Kappa opioid receptor co-activation accelerates D2R sensitization by contributing to decrease dopamine release in the nucleus accumbens. PMID:28531297

  3. Discovery of α-Substituted Imidazole-4-acetic Acid Analogues as a Novel Class of ρ1 γ-Aminobutyric Acid Type A Receptor Antagonists with Effect on Retinal Vascular Tone

    DEFF Research Database (Denmark)

    Krall, Jacob; Brygger, Benjamin M.; Sigurðardóttir, Sara B.

    2016-01-01

    The ρ-containing γ-aminobutyric acid type A receptors (GABAA Rs) play an important role in controlling visual signaling. Therefore, ligands that selectively target these GABAA Rs are of interest. In this study, we demonstrate that the partial GABAA R agonist imidazole-4-acetic acid (IAA) is able...... to penetrate the blood-brain barrier in vivo; we prepared a series of α- and N-alkylated, as well as bicyclic analogues of IAA to explore the structure-activity relationship of this scaffold focusing on the acetic acid side chain of IAA. The compounds were prepared via IAA from l-histidine by an efficient...... minimal-step synthesis, and their pharmacological properties were characterized at native rat GABAA Rs in a [(3) H]muscimol binding assay and at recombinant human α1 β2 γ2S and ρ1  GABAA Rs using the FLIPR™ membrane potential assay. The (+)-α-methyl- and α-cyclopropyl-substituted IAA analogues ((+)-6...

  4. Localization of mineralocorticoid receptors at mammalian synapses.

    Directory of Open Access Journals (Sweden)

    Eric M Prager

    Full Text Available In the brain, membrane associated nongenomic steroid receptors can induce fast-acting responses to ion conductance and second messenger systems of neurons. Emerging data suggest that membrane associated glucocorticoid and mineralocorticoid receptors may directly regulate synaptic excitability during times of stress when adrenal hormones are elevated. As the key neuron signaling interface, the synapse is involved in learning and memory, including traumatic memories during times of stress. The lateral amygdala is a key site for synaptic plasticity underlying conditioned fear, which can both trigger and be coincident with the stress response. A large body of electrophysiological data shows rapid regulation of neuronal excitability by steroid hormone receptors. Despite the importance of these receptors, to date, only the glucocorticoid receptor has been anatomically localized to the membrane. We investigated the subcellular sites of mineralocorticoid receptors in the lateral amygdala of the Sprague-Dawley rat. Immunoblot analysis revealed the presence of mineralocorticoid receptors in the amygdala. Using electron microscopy, we found mineralocorticoid receptors expressed at both nuclear including: glutamatergic and GABAergic neurons and extra nuclear sites including: presynaptic terminals, neuronal dendrites, and dendritic spines. Importantly we also observed mineralocorticoid receptors at postsynaptic membrane densities of excitatory synapses. These data provide direct anatomical evidence supporting the concept that, at some synapses, synaptic transmission is regulated by mineralocorticoid receptors. Thus part of the stress signaling response in the brain is a direct modulation of the synapse itself by adrenal steroids.

  5. Pharmacology and function of melatonin receptors

    International Nuclear Information System (INIS)

    Dubocovich, M.L.

    1988-01-01

    The hormone melatonin is secreted primarily from the pineal gland, with highest levels occurring during the dark period of a circadian cycle. This hormone, through an action in the brain, appears to be involved in the regulation of various neural and endocrine processes that are cued by the daily change in photoperiod. This article reviews the pharmacological characteristics and function of melatonin receptors in the central nervous system, and the role of melatonin in mediating physiological functions in mammals. Melatonin and melatonin agonists, at picomolar concentrations, inhibit the release of dopamine from retina through activation of a site that is pharmacologically different from a serotonin receptor. These inhibitory effects are antagonized by the novel melatonin receptor antagonist luzindole (N-0774), which suggests that melatonin activates a presynaptic melatonin receptor. In chicken and rabbit retina, the pharmacological characteristics of the presynaptic melatonin receptor and the site labeled by 2-[125I]iodomelatonin are identical. It is proposed that 2-[125I]iodomelatonin binding sites (e.g., chicken brain) that possess the pharmacological characteristics of the retinal melatonin receptor site (order of affinities: 2-iodomelatonin greater than 6-chloromelatonin greater than or equal to melatonin greater than or equal to 6,7-di-chloro-2-methylmelatonin greater than 6-hydroxymelatonin greater than or equal to 6-methoxymelatonin greater than N-acetyltryptamine greater than or equal to luzindole greater than N-acetyl-5-hydroxytryptamine greater than 5-methoxytryptamine much greater than 5-hydroxytryptamine) be classified as ML-1 (melatonin 1). The 2-[125I]iodomelatonin binding site of hamster brain membranes possesses different binding and pharmacological characteristics from the retinal melatonin receptor site and should be classified as ML-2. 64 references

  6. Positive allosteric modulation of the GHB high-affinity binding site by the GABAA receptor modulator monastrol and the flavonoid catechin

    DEFF Research Database (Denmark)

    Eghorn, Laura Friis; Høstgaard-Jensen, Kirsten; Kongstad, Kenneth Thermann

    2014-01-01

    whether GHB high-affinity binding sites are also sensitive to allosteric modulation, we screened both known GABAA receptor ligands and a library of natural compounds in the rat cortical membrane GHB specific high-affinity [3H]NCS-382 binding assay. Two hits were identified: Monastrol, a positive...... allosteric modulator of GABA function at δ-containing GABAA receptors, and the naturally occurring flavonoid catechin. These compounds increased [3H]NCS-382 binding to 185-272% in high micromolar concentrations. Monastrol and (+)-catechin significantly reduced [3H]NCS-382 dissociation rates and induced...... modulation was critically probe-dependent. Both monastrol and (+)-catechin were agonists at recombinant α4β3δ receptors expressed in Xenopus laevis oocytes. When monastrol and GHB were co-applied no changes were seen compared to the individual responses. In summary, we have identified the compounds monastrol...

  7. Presynaptic control of group Ia afferents in relation to acquisition of a visuo-motor skill in healthy humans

    DEFF Research Database (Denmark)

    Perez, Monica A.; Lungholt, Bjarke K.S.; Nielsen, Jens Bo

    2005-01-01

    Sensory information continuously converges on the spinal cord during a variety of motor behaviours. Here, we examined presynaptic control of group Ia afferents in relation to acquisition of a novel motor skill. We tested whether repetition of two motor tasks with different degrees of difficulty...... of the monosynaptic Ia facilitation of the soleus H-reflex evoked by femoral nerve stimulation. The D1 inhibition was increased and the femoral nerve facilitation was decreased following the visuo-motor skill task, suggesting an increase in presynaptic inhibition of Ia afferents. No changes were observed...... in the disynaptic reciprocal Ia inhibition. Somatosensory evoked potentials (SEPs) evoked by stimulation of the tibial nerve (TN) were also unchanged, suggesting that transmission in ascending pathways was unaltered following the visuo-motor skill task. Together these observations suggest that a selective...

  8. Intra-Amniotic LPS Induced Region-Specific Changes in Presynaptic Bouton Densities in the Ovine Fetal Brain

    Directory of Open Access Journals (Sweden)

    Eveline Strackx

    2015-01-01

    Full Text Available Rationale. Chorioamnionitis has been associated with increased risk for fetal brain damage. Although, it is now accepted that synaptic dysfunction might be responsible for functional deficits, synaptic densities/numbers after a fetal inflammatory challenge have not been studied in different regions yet. Therefore, we tested in this study the hypothesis that LPS-induced chorioamnionitis caused profound changes in synaptic densities in different regions of the fetal sheep brain. Material and Methods. Chorioamnionitis was induced by a 10 mg intra-amniotic LPS injection at two different exposure intervals. The fetal brain was studied at 125 days of gestation (term = 150 days either 2 (LPS2D group or 14 days (LPS14D group after LPS or saline injection (control group. Synaptophysin immunohistochemistry was used to quantify the presynaptic density in layers 2-3 and 5-6 of the motor cortex, somatosensory cortex, entorhinal cortex, and piriforme cortex, in the nucleus caudatus and putamen and in CA1/2, CA3, and dentate gyrus of the hippocampus. Results. There was a significant reduction in presynaptic bouton densities in layers 2-3 and 5-6 of the motor cortex and in layers 2-3 of the entorhinal and the somatosensory cortex, in the nucleus caudate and putamen and the CA1/2 and CA3 of the hippocampus in the LPS2D compared to control animals. Only in the motor cortex and putamen, the presynaptic density was significantly decreased in the LPS14 D compared to the control group. No changes were found in the dentate gyrus of the hippocampus and the piriforme cortex. Conclusion. We demonstrated that LPS-induced chorioamnionitis caused a decreased density in