WorldWideScience

Sample records for pressure controlled ventilation

  1. Tidal ventilation distribution during pressure-controlled ventilation and pressure support ventilation in post-cardiac surgery patients.

    Science.gov (United States)

    Blankman, P; VAN DER Kreeft, S M; Gommers, D

    2014-09-01

    Inhomogeneous ventilation is an important contributor to ventilator-induced lung injury. Therefore, this study examines homogeneity of lung ventilation by means of electrical impedance tomography (EIT) measurements during pressure-controlled ventilation (PCV) and pressure support ventilation (PSV) using the same ventilation pressures. Twenty mechanically ventilated patients were studied after cardiac surgery. On arrival at the intensive care unit, ventilation distribution was measured with EIT just above the diaphragm for 15 min. After awakening, PCV was switched to PSV and EIT measurements were again recorded. Tidal impedance variation, a measure of tidal volume, increased during PSV compared with PCV, despite using the same ventilation pressures (P = 0.045). The distribution of tidal ventilation to the dependent lung region was more pronounced during PSV compared with PCV, especially during the first half of the inspiration. An even distribution of tidal ventilation between the dependent and non-dependent lung regions was seen during PCV at lower tidal volumes (tidal volumes (≥ 8 ml/kg). In addition, the distribution of tidal ventilation was predominantly distributed to the dependent lung during PSV at low tidal volumes. In post-cardiac surgery patients, PSV showed improved ventilation of the dependent lung region due to the contribution of the diaphragm activity, which is even more pronounced during lower assist levels. © 2014 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  2. Right ventricular function during one-lung ventilation: effects of pressure-controlled and volume-controlled ventilation.

    Science.gov (United States)

    Al Shehri, Abdullah M; El-Tahan, Mohamed R; Al Metwally, Roshdi; Qutub, Hatem; El Ghoneimy, Yasser F; Regal, Mohamed A; Zien, Haytham

    2014-08-01

    To test the effects of pressure-controlled (PCV) and volume-controlled (VCV) ventilation during one-lung ventilation (OLV) for thoracic surgery on right ventricular (RV) function. A prospective, randomized, double-blind, controlled, crossover study. A single university hospital. Fourteen pairs of consecutive patients scheduled for elective thoracotomy. Patients were assigned randomly to ventilate the dependent lung with PCV or VCV mode, each in a randomized crossover order using tidal volume of 6 mL/kg, I: E ratio 1: 2.5, positive end-expiratory pressure (PEEP) of 5 cm H2O and respiratory rate adjusted to maintain normocapnia. Intraoperative changes in RV function (systolic and early diastolic tricuspid annular velocity (TAV), end-systolic volume (ESV), end-diastolic volume (EDV) and fractional area changes (FAC)), airway pressures, compliance and oxygenation index were recorded. The use of PCV during OLV resulted in faster systolic (10.1±2.39 vs. 5.8±1.67 cm/s, respectively), diastolic TAV (9.2±1.99 vs. 4.6±1.42 cm/s, respectively) (prights reserved.

  3. Model-based setting of inspiratory pressure and respiratory rate in pressure-controlled ventilation

    International Nuclear Information System (INIS)

    Schranz, C; Möller, K; Becher, T; Schädler, D; Weiler, N

    2014-01-01

    Mechanical ventilation carries the risk of ventilator-induced-lung-injury (VILI). To minimize the risk of VILI, ventilator settings should be adapted to the individual patient properties. Mathematical models of respiratory mechanics are able to capture the individual physiological condition and can be used to derive personalized ventilator settings. This paper presents model-based calculations of inspiration pressure (p I ), inspiration and expiration time (t I , t E ) in pressure-controlled ventilation (PCV) and a retrospective evaluation of its results in a group of mechanically ventilated patients. Incorporating the identified first order model of respiratory mechanics in the basic equation of alveolar ventilation yielded a nonlinear relation between ventilation parameters during PCV. Given this patient-specific relation, optimized settings in terms of minimal p I and adequate t E can be obtained. We then retrospectively analyzed data from 16 ICU patients with mixed pathologies, whose ventilation had been previously optimized by ICU physicians with the goal of minimization of inspiration pressure, and compared the algorithm's ‘optimized’ settings to the settings that had been chosen by the physicians. The presented algorithm visualizes the patient-specific relations between inspiration pressure and inspiration time. The algorithm's calculated results highly correlate to the physician's ventilation settings with r = 0.975 for the inspiration pressure, and r = 0.902 for the inspiration time. The nonlinear patient-specific relations of ventilation parameters become transparent and support the determination of individualized ventilator settings according to therapeutic goals. Thus, the algorithm is feasible for a variety of ventilated ICU patients and has the potential of improving lung-protective ventilation by minimizing inspiratory pressures and by helping to avoid the build-up of clinically significant intrinsic positive end

  4. Model-based setting of inspiratory pressure and respiratory rate in pressure-controlled ventilation.

    Science.gov (United States)

    Schranz, C; Becher, T; Schädler, D; Weiler, N; Möller, K

    2014-03-01

    Mechanical ventilation carries the risk of ventilator-induced-lung-injury (VILI). To minimize the risk of VILI, ventilator settings should be adapted to the individual patient properties. Mathematical models of respiratory mechanics are able to capture the individual physiological condition and can be used to derive personalized ventilator settings. This paper presents model-based calculations of inspiration pressure (pI), inspiration and expiration time (tI, tE) in pressure-controlled ventilation (PCV) and a retrospective evaluation of its results in a group of mechanically ventilated patients. Incorporating the identified first order model of respiratory mechanics in the basic equation of alveolar ventilation yielded a nonlinear relation between ventilation parameters during PCV. Given this patient-specific relation, optimized settings in terms of minimal pI and adequate tE can be obtained. We then retrospectively analyzed data from 16 ICU patients with mixed pathologies, whose ventilation had been previously optimized by ICU physicians with the goal of minimization of inspiration pressure, and compared the algorithm's 'optimized' settings to the settings that had been chosen by the physicians. The presented algorithm visualizes the patient-specific relations between inspiration pressure and inspiration time. The algorithm's calculated results highly correlate to the physician's ventilation settings with r = 0.975 for the inspiration pressure, and r = 0.902 for the inspiration time. The nonlinear patient-specific relations of ventilation parameters become transparent and support the determination of individualized ventilator settings according to therapeutic goals. Thus, the algorithm is feasible for a variety of ventilated ICU patients and has the potential of improving lung-protective ventilation by minimizing inspiratory pressures and by helping to avoid the build-up of clinically significant intrinsic positive end-expiratory pressure.

  5. Simulation of static pressure reset control in comfort ventilation

    DEFF Research Database (Denmark)

    Koulani, Chrysanthi Sofia; Prunescu, Remus Mihail; Hviid, Christian Anker

    2014-01-01

    Variable air volume (VAV) ventilation systems reduce fan power consumption compared to constant air volume (CAV) systems because they supply air according to the airflow demand. However VAV ventilation systems do not take fully into account the potential energy savings as the control strategy...... management system. In this way the operation of central plant equipment is adjusted in real time according to the actual pressure demand; this control scheme can be implemented by the static pressure reset (SPR) method. The SPR control method ensures that at least one damper remains fully opened; thus...... of the art is represented by the method of trim and respond based on pressure alarms. This study investigates the operation of the SPR control method of trim and respond based on pressure alarms in a CO2 demand application where large air volumes are provided to three classrooms. The investigation was based...

  6. A new design for high stability pressure-controlled ventilation for small animal lung imaging

    International Nuclear Information System (INIS)

    Kitchen, M J; Habib, A; Lewis, R A; Fouras, A; Dubsky, S; Wallace, M J; Hooper, S B

    2010-01-01

    We have developed a custom-designed ventilator to deliver a stable pressure to the lungs of small animals for use in imaging experiments. Our ventilator was designed with independent pressure vessels to separately control the Peak Inspiratory Pressure (PIP) and Positive End Expiratory Pressure (PEEP) to minimise pressure fluctuations during the ventilation process. The ventilator was computer controlled through a LabVIEW interface, enabling experimental manipulations to be performed remotely whilst simultaneously imaging the lungs in situ. Mechanical ventilation was successfully performed on newborn rabbit pups to assess the most effective ventilation strategies for aerating the lungs at birth. Highly stable pressures enabled reliable respiratory gated acquisition of projection radiographs and a stable prolonged (15 minute) breath-hold for high-resolution computed tomography of deceased rabbit pups at different lung volumes.

  7. A comparison of volume control and pressure-regulated volume control ventilation in acute respiratory failure

    Science.gov (United States)

    Guldager, Henrik; Nielsen, Soeren L; Carl, Peder; Soerensen, Mogens B

    1997-01-01

    Background: The aim of this study was to test the hypothesis that a new mode of ventilation (pressure-regulated volume control; PRVC) is associated with improvements in respiratory mechanics and outcome when compared with conventional volume control (VC) ventilation in patients with acute respiratory failure. We conducted a randomised, prospective, open, cross over trial on 44 patients with acute respiratory failure in the general intensive care unit of a university hospital. After a stabilization period of 8 h, a cross over trial of 2 × 2 h was conducted. Apart from the PRVC/VC mode, ventilator settings were comparable. The following parameters were recorded for each patient: days on ventilator, failure in the assigned mode of ventilation (peak inspiratory pressure > 50 cmH2O) and survival. Results: In the crossover trial, peak inspiratory pressure was significantly lower using PRVC than with VC (20 cmH2O vs 24 cmH2O, P < 0.0001). No other statistically significant differences were found. Conclusions: Peak inspiratory pressure was significantly lower during PRVC ventilation than during VC ventilation, and thus PRVC may be superior to VC in certain patients. However, in this small group of patients, we could not demonstrate that PRVC improved outcome. PMID:11056699

  8. Are tidal volume measurements in neonatal pressure-controlled ventilation accurate?

    Science.gov (United States)

    Chow, Lily C; Vanderhal, Andre; Raber, Jorge; Sola, Augusto

    2002-09-01

    Bedside pulmonary mechanics monitors (PMM) have become useful in ventilatory management in neonates. These monitors are used more frequently due to recent improvements in data-processing capabilities. PMM devices are often part of the ventilator or are separate units. The accuracy and reliability of these systems have not been carefully evaluated. We compared a single ventilatory parameter, tidal volume (V(t)), as measured by several systems. We looked at two freestanding PMMs: the Ventrak Respiratory Monitoring System (Novametrix, Wallingford, CT) and the Bicore CP-100 Neonatal Pulmonary Monitor (Allied Health Care Products, Riverside, CA), and three ventilators with built-in PMM: the VIP Bird Ventilator (Bird Products Corp., Palm Springs, CA), Siemens Servo 300A (Siemens-Elema AB, Solna, Sweden), and Drager Babylog 8000 (Drager, Inc., Chantilly, VA). A calibrated syringe (Hans Rudolph, Inc., Kansas City, MO) was used to deliver tidal volumes of 4, 10, and 20 mL to each ventilator system coupled with a freestanding PMM. After achieving steady state, six consecutive V(t) readings were taken simultaneously from the freestanding PMM and each ventilator. In a second portion of the bench study, we used pressure-control ventilation and measured exhaled tidal volume (V(te)) while ventilating a Bear Test Lung with the same three ventilators. We adjusted peak inspiratory pressure (PIP) under controlled conditions to achieve the three different targeted tidal volumes on the paired freestanding PMM. Again, six V(te) measurements were recorded for each tidal volume. Means and standard deviations were calculated.The percentage difference in measurement of V(t) delivered by calibrated syringe varied greatly, with the greatest discrepancy seen in the smallest tidal volumes, by up to 28%. In pressure control mode, V(te) as measured by the Siemens was significantly overestimated by 20-95%, with the biggest discrepancy at the smallest V(te), particularly when paired with the Bicore

  9. Optimized damper control of pressure and airflow in ventilation systems

    DEFF Research Database (Denmark)

    Koulani, Chrysanthi Sofia; Hviid, Christian Anker; Terkildsen, Søren

    2014-01-01

    Conventional control strategies in variable air volume (VAV) ventilation systems do not take fully into advantage the potential energy savings since the system operation is based on maintaining a constant static pressure (CSP) set point in the main duct irrespective of the actual pressure demand...... by using the Simulink programming tool which is addon software to MATLAB mathematical programming language. A model of a VAV ventilation system was created in Simulink based on the International Building Physics Toolbox (IBPT); the IBPT thermal zone was remodelled in order to calculate dynamically...... the airflow demand according to the zone air temperature. The performance of the Simulink model was evaluated based on the experimental setup of the ventilation system. The SPR control method established stable system operation and was proven efficient to maintain comfortable space conditions while reducing...

  10. Pressure dynamic characteristics of pressure controlled ventilation system of a lung simulator.

    Science.gov (United States)

    Shi, Yan; Ren, Shuai; Cai, Maolin; Xu, Weiqing; Deng, Qiyou

    2014-01-01

    Mechanical ventilation is an important life support treatment of critically ill patients, and air pressure dynamics of human lung affect ventilation treatment effects. In this paper, in order to obtain the influences of seven key parameters of mechanical ventilation system on the pressure dynamics of human lung, firstly, mechanical ventilation system was considered as a pure pneumatic system, and then its mathematical model was set up. Furthermore, to verify the mathematical model, a prototype mechanical ventilation system of a lung simulator was proposed for experimental study. Last, simulation and experimental studies on the air flow dynamic of the mechanical ventilation system were done, and then the pressure dynamic characteristics of the mechanical system were obtained. The study can be referred to in the pulmonary diagnostics, treatment, and design of various medical devices or diagnostic systems.

  11. Pressure Dynamic Characteristics of Pressure Controlled Ventilation System of a Lung Simulator

    Directory of Open Access Journals (Sweden)

    Yan Shi

    2014-01-01

    Full Text Available Mechanical ventilation is an important life support treatment of critically ill patients, and air pressure dynamics of human lung affect ventilation treatment effects. In this paper, in order to obtain the influences of seven key parameters of mechanical ventilation system on the pressure dynamics of human lung, firstly, mechanical ventilation system was considered as a pure pneumatic system, and then its mathematical model was set up. Furthermore, to verify the mathematical model, a prototype mechanical ventilation system of a lung simulator was proposed for experimental study. Last, simulation and experimental studies on the air flow dynamic of the mechanical ventilation system were done, and then the pressure dynamic characteristics of the mechanical system were obtained. The study can be referred to in the pulmonary diagnostics, treatment, and design of various medical devices or diagnostic systems.

  12. Pressure Dynamic Characteristics of Pressure Controlled Ventilation System of a Lung Simulator

    Science.gov (United States)

    Shi, Yan; Ren, Shuai; Cai, Maolin; Xu, Weiqing; Deng, Qiyou

    2014-01-01

    Mechanical ventilation is an important life support treatment of critically ill patients, and air pressure dynamics of human lung affect ventilation treatment effects. In this paper, in order to obtain the influences of seven key parameters of mechanical ventilation system on the pressure dynamics of human lung, firstly, mechanical ventilation system was considered as a pure pneumatic system, and then its mathematical model was set up. Furthermore, to verify the mathematical model, a prototype mechanical ventilation system of a lung simulator was proposed for experimental study. Last, simulation and experimental studies on the air flow dynamic of the mechanical ventilation system were done, and then the pressure dynamic characteristics of the mechanical system were obtained. The study can be referred to in the pulmonary diagnostics, treatment, and design of various medical devices or diagnostic systems. PMID:25197318

  13. Control of positive end-expiratory pressure (PEEP for small animal ventilators

    Directory of Open Access Journals (Sweden)

    Leão Nunes Marcelo V

    2010-07-01

    Full Text Available Abstract Background The positive end-expiratory pressure (PEEP for the mechanical ventilation of small animals is frequently obtained with water seals or by using ventilators developed for human use. An alternative mechanism is the use of an on-off expiratory valve closing at the moment when the alveolar pressure is equal to the target PEEP. In this paper, a novel PEEP controller (PEEP-new and the PEEP system of a commercial small-animal ventilator, both based on switching an on-off valve, are evaluated. Methods The proposed PEEP controller is a discrete integrator monitoring the error between the target PEEP and the airways opening pressure prior to the onset of an inspiratory cycle. In vitro as well as in vivo experiments with rats were carried out and the PEEP accuracy, settling time and under/overshoot were considered as a measure of performance. Results The commercial PEEP controller did not pass the tests since it ignores the airways resistive pressure drop, resulting in a PEEP 5 cmH2O greater than the target in most conditions. The PEEP-new presented steady-state errors smaller than 0.5 cmH2O, with settling times below 10 s and under/overshoot smaller than 2 cmH2O. Conclusion The PEEP-new presented acceptable performance, considering accuracy and temporal response. This novel PEEP generator may prove useful in many applications for small animal ventilators.

  14. Radon mitigation with mechanical supply and exhaust ventilation adjusted by a pressure control unit

    International Nuclear Information System (INIS)

    Kokotti, H.; Keskikuru, T.; Kalliokoski, P.

    1993-01-01

    Effective ventilation and positive or low negative pressure indoors are suggested to low indoor radon levels. The aim of this study is to develop and to test an equipment, which makes it possible to achieve simultaneously effective ventilation and minimum outdoor-pressure difference. The unit includes mechanical supply and exhaust air fans, a exchanger and a pressure control unit in direct digital control (DDC), which adjusts continuously air exchange based on the pressure difference transmitter information. (orig.). (8 refs., 6 figs.)

  15. A comparison of synchronized intermittent mandatory ventilation and pressure-regulated volume control ventilation in elderly patients with acute exacerbations of COPD and respiratory failure.

    Science.gov (United States)

    Chang, Suchi; Shi, Jindong; Fu, Cuiping; Wu, Xu; Li, Shanqun

    2016-01-01

    COPD is the third leading cause of death worldwide. Acute exacerbations of COPD may cause respiratory failure, requiring intensive care unit admission and mechanical ventilation. Intensive care unit patients with acute exacerbations of COPD requiring mechanical ventilation have higher mortality rates than other hospitalized patients. Although mechanical ventilation is the most effective intervention for these conditions, invasive ventilation techniques have yielded variable effects. We evaluated pressure-regulated volume control (PRVC) ventilation treatment efficacy and preventive effects on pulmonary barotrauma in elderly COPD patients with respiratory failure. Thirty-nine intubated patients were divided into experimental and control groups and treated with the PRVC and synchronized intermittent mandatory ventilation - volume control methods, respectively. Vital signs, respiratory mechanics, and arterial blood gas analyses were monitored for 2-4 hours and 48 hours. Both groups showed rapidly improved pH, partial pressure of oxygen (PaO2), and PaO2 per fraction of inspired O2 levels and lower partial pressure of carbon dioxide (PaCO2) levels. The pH and PaCO2 levels at 2-4 hours were lower and higher, respectively, in the test group than those in the control group (P0.05). Vital signs during 2-4 hours and 48 hours of treatment showed no statistical difference in either group (P>0.05). The level of peak inspiratory pressure in the experimental group after mechanical ventilation for 2-4 hours and 48 hours was significantly lower than that in the control group (P0.05). Among elderly COPD patients with respiratory failure, application of PRVC resulted in rapid improvement in arterial blood gas analyses while maintaining a low peak inspiratory pressure. PRVC can reduce pulmonary barotrauma risk, making it a safer protective ventilation mode than synchronized intermittent mandatory ventilation - volume control.

  16. [Treatment of acute respiratory distress syndrome using pressure and volume controlled ventilation with lung protective strategy].

    Science.gov (United States)

    Ge, Ying; Wan, Yong; Wang, Da-qing; Su, Xiao-lin; Li, Jun-ying; Chen, Jing

    2004-07-01

    To investigate the significance and effect of pressure controlled ventilation (PCV) as well as volume controlled ventilation (VCV) by lung protective strategy on respiratory mechanics, blood gas analysis and hemodynamics in patients with acute respiratory distress syndrome (ARDS). Fifty patients with ARDS were randomly divided into PCV and VCV groups with permissive hypercapnia and open lung strategy. Changes in respiratory mechanics, blood gas analysis and hemodynamics were compared between two groups. Peak inspiration pressure (PIP) in PCV group was significantly lower than that in VCV group, while mean pressure of airway (MPaw) was significantly higher than that in VCV after 24 hours mechanical ventilation. After 24 hours mechanical ventilation, there were higher central venous pressure (CVP) and slower heart rate (HR) in two groups, CVP was significantly higher in VCV compared with PCV, and PCV group had slower HR than VCV group, the two groups had no differences in mean blood pressure (MBP) at various intervals. All patients showed no ventilator-induced lung injury. Arterial blood oxygenations were obviously improved in two groups after 24 hours mechanical ventilation, PCV group had better partial pressure of oxygen in artery (PaO2) than VCV group. Both PCV and VCV can improve arterial blood oxygenations, prevent ventilator-induced lung injury, and have less disturbance in hemodynamic parameters. PCV with lung protective ventilatory strategy should be early use for patients with ARDS.

  17. A comparison of volume control and pressure-regulated volume control ventilation in acute respiratory failure

    OpenAIRE

    Guldager, Henrik; Nielsen, Soeren L; Carl, Peder; Soerensen, Mogens B

    1997-01-01

    Background: The aim of this study was to test the hypothesis that a new mode of ventilation (pressure-regulated volume control; PRVC) is associated with improvements in respiratory mechanics and outcome when compared with conventional volume control (VC) ventilation in patients with acute respiratory failure. We conducted a randomised, prospective, open, cross over trial on 44 patients with acute respiratory failure in the general intensive care unit of a university hospital. After a stabiliz...

  18. Randomized, controlled trial comparing synchronized intermittent mandatory ventilation and synchronized intermittent mandatory ventilation plus pressure support in preterm infants.

    Science.gov (United States)

    Reyes, Zenaida C; Claure, Nelson; Tauscher, Markus K; D'Ugard, Carmen; Vanbuskirk, Silvia; Bancalari, Eduardo

    2006-10-01

    Prolonged mechanical ventilation is associated with lung injury in preterm infants. In these infants, weaning from synchronized intermittent mandatory ventilation may be delayed by their inability to cope with increased respiratory loads. The addition of pressure support to synchronized intermittent mandatory ventilation can offset these loads and may facilitate weaning. The purpose of this work was to compare synchronized intermittent mandatory ventilation and synchronized intermittent mandatory ventilation plus pressure support in weaning from mechanical ventilation and the duration of supplemental oxygen dependency in preterm infants with respiratory failure. Preterm infants weighing 500 to 1000 g at birth who required mechanical ventilation during the first postnatal week were randomly assigned to synchronized intermittent mandatory ventilation or synchronized intermittent mandatory ventilation plus pressure support. In both groups, weaning followed a set protocol during the first 28 days. Outcomes were assessed during the first 28 days and until discharge or death. There were 107 infants enrolled (53 synchronized intermittent mandatory ventilation plus pressure support and 54 synchronized intermittent mandatory ventilation). Demographic and perinatal data, mortality, and morbidity did not differ between groups. During the first 28 days, infants in the synchronized intermittent mandatory ventilation plus pressure support group reached minimal ventilator settings and were extubated earlier than infants in the synchronized intermittent mandatory ventilation group. Total duration of mechanical ventilation, duration of oxygen dependency, and oxygen need at 36 weeks' postmenstrual age alone or combined with death did not differ between groups. However, infants in synchronized intermittent mandatory ventilation plus pressure support within the 700- to 1000-g birth weight strata had a shorter oxygen dependency. The results of this study suggest that the addition of

  19. A comparison of synchronized intermittent mandatory ventilation and pressure-regulated volume control ventilation in elderly patients with acute exacerbations of COPD and respiratory failure

    Directory of Open Access Journals (Sweden)

    Chang SC

    2016-05-01

    Full Text Available Suchi Chang,1 Jindong Shi,2 Cuiping Fu,1 Xu Wu,1 Shanqun Li1 1Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, 2Department of Respiratory Medicine, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai, People’s Republic of China Background: COPD is the third leading cause of death worldwide. Acute exacerbations of COPD may cause respiratory failure, requiring intensive care unit admission and mechanical ventilation. Intensive care unit patients with acute exacerbations of COPD requiring mechanical ventilation have higher mortality rates than other hospitalized patients. Although mechanical ventilation is the most effective intervention for these conditions, invasive ventilation techniques have yielded variable effects. Objective: We evaluated pressure-regulated volume control (PRVC ventilation treatment efficacy and preventive effects on pulmonary barotrauma in elderly COPD patients with respiratory failure. Patients and methods: Thirty-nine intubated patients were divided into experimental and control groups and treated with the PRVC and synchronized intermittent mandatory ventilation – volume control methods, respectively. Vital signs, respiratory mechanics, and arterial blood gas analyses were monitored for 2–4 hours and 48 hours. Results: Both groups showed rapidly improved pH, partial pressure of oxygen (PaO2, and PaO2 per fraction of inspired O2 levels and lower partial pressure of carbon dioxide (PaCO2 levels. The pH and PaCO2 levels at 2–4 hours were lower and higher, respectively, in the test group than those in the control group (P<0.05 for both; after 48 hours, blood gas analyses showed no statistical difference in any marker (P>0.05. Vital signs during 2–4 hours and 48 hours of treatment showed no statistical difference in either group (P>0.05. The level of peak inspiratory pressure in the experimental group after mechanical ventilation for 2–4 hours and 48

  20. Performance of current intensive care unit ventilators during pressure and volume ventilation.

    Science.gov (United States)

    Marchese, Andrew D; Sulemanji, Demet; Chipman, Daniel; Villar, Jesús; Kacmarek, Robert M

    2011-07-01

    Intensive-care mechanical ventilators regularly enter the market, but the gas-delivery capabilities of many have never been assessed. We evaluated 6 intensive-care ventilators in the pressure support (PS), pressure assist/control (PA/C), and volume assist/control (VA/C) modes, with lung-model mechanics combinations of compliance and resistance of 60 mL/cm H(2)O and 10 cm H(2)O/L/s, 60 mL/cm H(2)O and 5 cm H(2)O/L/s, and 30 mL/cm H(2)O and 10 cm H(2)O/L/s, and inspiratory muscle effort of 5 and 10 cm H(2)O. PS and PA/C were set to 15 cm H(2)O, and PEEP to 5 and 15 cm H(2)O in all modes. During VA/C, tidal volume was set at 500 mL and inspiratory time was set at 0.8 second. Rise time and termination criteria were set at the manufacturers' defaults, and to an optimal level during PS and PA/C. There were marked differences in ventilator performance in all 3 modes. VA/C had the greatest difficulty meeting lung model demand and the greatest variability across all tested scenarios and ventilators. From high to low inspiratory muscle effort, pressure-to-trigger, time for pressure to return to baseline, and triggering pressure-time product decreased in all modes. With increasing resistance and decreasing compliance, tidal volume, pressure-to-trigger, time-to-trigger, time for pressure to return to baseline, time to 90% of peak pressure, and pressure-time product decreased. There were large differences between the default and optimal settings for all the variables in PS and PA/C. Performance was not affected by PEEP. Most of the tested ventilators performed at an acceptable level during the majority of evaluations, but some ventilators performed inadequately during specific settings. Bedside clinical evaluation is needed.

  1. Open-lung protective ventilation with pressure control ventilation, high-frequency oscillation, and intratracheal pulmonary ventilation results in similar gas exchange, hemodynamics, and lung mechanics.

    Science.gov (United States)

    Sedeek, Khaled A; Takeuchi, Muneyuki; Suchodolski, Klaudiusz; Vargas, Sara O; Shimaoka, Motomu; Schnitzer, Jay J; Kacmarek, Robert M

    2003-11-01

    Pressure control ventilation (PCV), high-frequency oscillation (HFO), and intratracheal pulmonary ventilation (ITPV) may all be used to provide lung protective ventilation in acute respiratory distress syndrome, but the specific approach that is optimal remains controversial. Saline lavage was used to produce acute respiratory distress syndrome in 21 sheep randomly assigned to receive PCV, HFO, or ITPV as follows: positive end-expiratory pressure (PCV and ITPV) and mean airway pressure (HFO) were set in a pressure-decreasing manner after lung recruitment that achieved a ratio of Pao2/Fio2 > 400 mmHg. Respiratory rates were 30 breaths/min, 120 breaths/min, and 8 Hz, respectively, for PCV, ITPV, and HFO. Eucapnia was targeted with peak carinal pressure of no more than 35 cm H2O. Animals were then ventilated for 4 h. There were no differences among groups in gas exchange, lung mechanics, or hemodynamics. Tidal volume (PCV, 8.9 +/- 2.1 ml/kg; ITPV, 2.7 +/- 0.8 ml/kg; HFO, approximately 2.0 ml/kg) and peak carinal pressure (PCV, 30.6 +/- 2.6 cm H2O; ITPV, 22.3 +/- 4.8 cm H2O; HFO, approximately 24.3 cm H2O) were higher in PCV. Pilot histologic data showed greater interstitial hemorrhage and alveolar septal expansion in PCV than in HFO or ITPV. These data indicate that HFO, ITPV, and PCV when applied with an open-lung protective ventilatory strategy results in the same gas exchange, lung mechanics, and hemodynamic response, but pilot data indicate that lung injury may be greater with PCV.

  2. Effects of short-term pressure-controlled ventilation on gas exchange, airway pressures, and gas distribution in patients with acute lung injury/ARDS: comparison with volume-controlled ventilation.

    Science.gov (United States)

    Prella, Maura; Feihl, François; Domenighetti, Guido

    2002-10-01

    The potential clinical benefits of pressure-controlled ventilation (PCV) over volume-controlled ventilation (VCV) in patients with acute lung injury (ALI) or ARDS still remain debated. We compared PCV with VCV in patients with ALI/ARDS with respect to the following physiologic end points: (1) gas exchange and airway pressures, and (2) CT scan intrapulmonary gas distribution at end-expiration. Prospective, observational study. A multidisciplinary ICU in a nonuniversity, acute-care hospital. Ten patients with ALI or ARDS (9 men and 1 woman; age range, 17 to 80 years). Sequential ventilation in PCV and VCV with a constant inspiratory/expiratory ratio, tidal volume, respiratory rate, and total positive end-expiratory pressure; measurement of gas exchange and airway pressures; and achievement of CT sections at lung base, hilum, and apex for the quantitative analysis of lung densities and of aerated vs nonaerated zones. PaO(2), PaCO(2), and PaO(2)/fraction of inspired oxygen ratio levels did not differ between PCV and VCV. Peak airway pressure (Ppeak) was significantly lower in PCV compared with VCV (26 +/- 2 cm H(2)O vs 31 +/- 2 cm H(2)O; p mean +/- SEM). The surface areas of the nonaerated zones as well as the total areas at each section level were unchanged in PCV compared with VCV, except at the apex level, where there was a significantly greater nonaerated area in VCV (11 +/- 2 cm(2) vs 9 +/- 2 cm(2); p mean CT number of each lung (20 lungs from 10 patients) was similar in the two modes, as were the density values at the basal and apical levels; the hilum mean CT number was - 442 +/- 28 Hounsfield units (HU) in VCV and - 430 +/- 26 HU in PCV (p lower Ppeaks through the precise titration of the lung distending pressure, and might be applied to avoid regional overdistension by means of a more homogeneous gas distribution.

  3. Effect of mechanical pressure-controlled ventilation in patients with disturbed respiratory function during laparoscopic cholecystectomy

    Directory of Open Access Journals (Sweden)

    Šurbatović Maja

    2013-01-01

    Full Text Available Background/Aim: Laparoscopic cholecystectomy is considered to be the gold standard for laparoscopic surgical procedures. In ASA III patients with concomitant respiratory diseases, however, creation of pneumoperitoneum and the position of patients during surgery exert additional negative effect on intraoperative respiratory function, thus making a higher challenge for the anesthesiologist than for the surgeon. The aim of this study was to compare the effect of intermittent positive pressure ventilation (IPPV and pressure controlled ventilation (PCV during general anesthesia on respiratory function in ASA III patients submitted to laparoscopic cholecystectomy. Methods. The study included 60 patients randomized into two groups depending on the mode of ventilation: IPPV or PCV. Respiratory volume (VT, peak inspiratory pressure (PIP, compliance (C, end-tidal CO2 pressure (PETCO2, oxygen saturation (SpO2, partial pressures of O2, CO2 (PaO2 and PaCO2 and pH of arterial blood were recorded within four time intervals. Results. There were no statistically significant differences in VT, SpO2, PaO2, PaCO2 and pH values neither within nor between the two groups. In time interval t1 there were no statistically significant differences in PIP, C, PETCO2 values between the IPPV and the PCV group. But, in the next three time intervals there was a difference in PIP, C, and PETCO2 values between the two groups which ranged from statistically significant to highly significant; PIP was lower, C and PETCO2 were higher in the PCV group. Conclusion. Pressure controlled ventilation better maintains stability regarding intraoperative ventilatory parameters in ASA III patients with concomitant respiratory diseases during laparoscopic cholecystectomy.

  4. Comparison of airway pressure release ventilation to conventional mechanical ventilation in the early management of smoke inhalation injury in swine.

    Science.gov (United States)

    Batchinsky, Andriy I; Burkett, Samuel E; Zanders, Thomas B; Chung, Kevin K; Regn, Dara D; Jordan, Bryan S; Necsoiu, Corina; Nguyen, Ruth; Hanson, Margaret A; Morris, Michael J; Cancio, Leopoldo C

    2011-10-01

    The role of airway pressure release ventilation in the management of early smoke inhalation injury has not been studied. We compared the effects of airway pressure release ventilation and conventional mechanical ventilation on oxygenation in a porcine model of acute respiratory distress syndrome induced by wood smoke inhalation. Prospective animal study. Government laboratory animal intensive care unit. Thirty-three Yorkshire pigs. Smoke inhalation injury. Anesthetized female Yorkshire pigs (n = 33) inhaled room-temperature pine-bark smoke. Before injury, the pigs were randomized to receive conventional mechanical ventilation (n = 15) or airway pressure release ventilation (n = 12) for 48 hrs after smoke inhalation. As acute respiratory distress syndrome developed (PaO2/Fio2 ratio conventional mechanical ventilation for 48 hrs and served as time controls. Changes in PaO2/Fio2 ratio, tidal volume, respiratory rate, mean airway pressure, plateau pressure, and hemodynamic variables were recorded. Survival was assessed using Kaplan-Meier analysis. PaO2/Fio2 ratio was lower in airway pressure release ventilation vs. conventional mechanical ventilation pigs at 12, 18, and 24 hrs (p conventional mechanical ventilation animals between 30 and 48 hrs post injury (p animals between 6 and 48 hrs (p conventional mechanical ventilation and airway pressure release ventilation pigs. In this model of acute respiratory distress syndrome caused by severe smoke inhalation in swine, airway pressure release ventilation-treated animals developed acute respiratory distress syndrome faster than conventional mechanical ventilation-treated animals, showing a lower PaO2/Fio2 ratio at 12, 18, and 24 hrs after injury. At other time points, PaO2/Fio2 ratio was not different between conventional mechanical ventilation and airway pressure release ventilation.

  5. Analysis on ventilation pressure of fire area in longitudinal ventilation of underground tunnel

    Science.gov (United States)

    Li, Jiaxin; Li, Yanfeng; Feng, Xiao; Li, Junmei

    2018-03-01

    In order to solve the problem of ventilation pressure loss in the fire area under the fire condition, the wind pressure loss model of the fire area is established based on the thermodynamic equilibrium relation. The semi-empirical calculation formula is obtained by using the model experiment and CFD simulation. The validity of the formula is verified. The results show that the ventilation pressure loss in the fire zone is proportional to the convective heat release rate at the critical velocity, which is inversely proportional to the upstream ventilation velocity and the tunnel cross-sectional area. The proposed formula is consistent with the law of the tunnel fire test fitting formula that results are close, in contrast, the advantage lies in a clear theoretical basis and ventilation velocity values. The resistance of road tunnel ventilation system is calculated accurately and reliably, and then an effective emergency ventilation operation program is developed. It is necessary to consider the fire zone ventilation pressure loss. The proposed ventilation pressure loss formula can be used for design calculation after thorough verification.

  6. [Pressure support ventilation and proportional assist ventilation during weaning from mechanical ventilation].

    Science.gov (United States)

    Aguirre-Bermeo, H; Bottiroli, M; Italiano, S; Roche-Campo, F; Santos, J A; Alonso, M; Mancebo, J

    2014-01-01

    To compare tolerance, duration of mechanical ventilation (MV) and clinical outcomes during weaning from MV in patients subjected to either pressure support ventilation (PSV) or proportional assist ventilation (PAV). A prospective, observational study was carried out. Intensive Care Unit. A total of 40 consecutive subjects were allocated to either the PSV or the PAV group until each group contained 20 patients. Patients were included in the study when they met the criteria to begin weaning and the attending physician decided to initiate the weaning process. The physician selected the modality and set the ventilatory parameters. None. Demographic data, respiratory mechanics, ventilatory parameters, duration of MV, and clinical outcomes (reintubation, tracheostomy, mortality). Baseline characteristics were similar in both groups. No significant differences were observed between the PSV and PAV groups in terms of the total duration of MV (10 [5-18] vs. 9 [7-19] days; P=.85), reintubation (5 [31%] vs. 3 [19%]; P=.69), or mortality (4 [20%] vs. 5 [25%] deaths; P=1). Eight patients (40%) in the PSV group and 6 patients (30%) in the PAV group (P=.74) required a return to volume assist-control ventilation due to clinical deterioration. Tolerance, duration of MV and clinical outcomes during weaning from mechanical ventilation were similar in PSV and PAV. Copyright © 2013 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  7. The effect of pressure-controlled inverse ratio ventilation on lung protection in obese patients undergoing gynecological laparoscopic surgery.

    Science.gov (United States)

    Xu, Lili; Shen, Jianjun; Yan, Min

    2017-10-01

    To examine the effects of pressure-controlled inverse ratio ventilation (PCIRV) and volume-control ventilation (VCV) on arterial oxygenation, pulmonary function, hemodynamics, levels of surfactant protein A (SP-A), and tumor necrosis factor-α (TNF-α) in obese patients undergoing gynecological laparoscopic surgery. Sixty patients, body mass index (BMI) ≥30 kg/m 2 , scheduled for elective gynecological laparoscopic surgery were enrolled in the study. Patients were randomly allocated to receive either PCIRV with an inspiratory-expiratory (I:E) ratio of 1.5:1 (PCIRV group n = 30) or VCV with an I:E ratio of 1:2 (VCV group n = 30). Ventilation variables, viz. tidal volume (V T ), dynamic respiratory-system compliance (C RS ), driving pressure (ΔP = V T /C RS ), arterial blood oxygen partial pressure/fraction of inspiration oxygen (PaO 2 /FiO 2 ) and arterial blood carbon dioxide partial pressure (PaCO 2 ), were measured. Hemodynamic variables, viz. mean arterial pressure (MAP), heart rate (HR), and serum levels of SP-A and TNF-α, were also measured. When compared to patients in the VCV group, patients in the PCIRV group had higher V T , dynamic C RS , and PaO 2 /FiO 2 , and lower ΔP and PaCO 2 at 20 and 60 min after the start of pneumoperitoneum (p ventilation, promote gas exchange and oxygenation, and is associated with decreased levels of SP-A and TNF-α. These effects demonstrate improved lung protection provided by PCIRV in this patient population.

  8. Determination of respiratory system compliance during pressure support ventilation by small variations of pressure support.

    Science.gov (United States)

    Becher, Tobias; Schädler, Dirk; Rostalski, Philipp; Zick, Günther; Frerichs, Inéz; Weiler, Norbert

    2017-09-22

    In mechanically ventilated patients, measurement of respiratory system compliance (C rs ) is of high clinical interest. Spontaneous breathing activity during pressure support ventilation (PSV) can impede the correct assessment of C rs and also alter the true C rs by inducing lung recruitment. We describe a method for determination of C rs during PSV and assess its accuracy in a study on 20 mechanically ventilated patients. To assess C rs during pressure support ventilation (C rs,PSV ), we performed repeated changes in pressure support level by ± 2 cmH 2 O. C rs,PSV was calculated from the volume change induced by these changes in pressure support level, taking into account the inspiration time and the expiratory time constant. As reference methods, we used C rs , measured during volume controlled ventilation (C rs,VCV ). In a post-hoc analysis, we assessed C rs during the last 20% of the volume-controlled inflation (C rs,VCV20 ). Values were compared by linear regression and Bland-Altman methods comparison. Comparing C rs,PSV to the reference value C rs,VCV , we found a coefficient of determination (r 2 ) of 0.90, but a relatively high bias of - 7 ml/cm H 2 O (95% limits of agreement - 16.7 to + 2.7 ml/cmH 2 O). Comparison with C rs,VCV20 resulted in a negligible bias (- 1.3 ml/cmH 2 O, 95% limits of agreement - 13.9 to + 11.3) and r 2 of 0.81. We conclude that the novel method provides an estimate of end-inspiratory C rs during PSV. Despite its limited accuracy, it might be useful for non-invasive monitoring of C rs in patients undergoing pressure support ventilation.

  9. 21 CFR 868.5935 - External negative pressure ventilator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false External negative pressure ventilator. 868.5935 Section 868.5935 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... ventilator. (a) Identification. An external negative pressure ventilator (e.g., iron lung, cuirass) is a...

  10. Demand Controlled Ventilation and Classroom Ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mendell, Mark J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Davies, Molly [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Eliseeva, Ekaterina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Faulkner, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hong, Tienzen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sullivan, Douglas P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-05-01

    This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling.

  11. Demand controlled ventilation and classroom ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mendell, Mark J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Davies, Molly [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Eliseeva, Ekaterina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Faulkner, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hong, Tienzen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sullivan, Douglas P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-01-06

    This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling.

  12. Influence of bronchial diameter change on the airflow dynamics based on a pressure-controlled ventilation system.

    Science.gov (United States)

    Ren, Shuai; Cai, Maolin; Shi, Yan; Xu, Weiqing; Zhang, Xiaohua Douglas

    2018-03-01

    Bronchial diameter is a key parameter that affects the respiratory treatment of mechanically ventilated patients. In this paper, to reveal the influence of bronchial diameter on the airflow dynamics of pressure-controlled mechanically ventilated patients, a new respiratory system model is presented that combines multigeneration airways with lungs. Furthermore, experiments and simulation studies to verify the model are performed. Finally, through the simulation study, it can be determined that in airway generations 2 to 7, when the diameter is reduced to half of the original value, the maximum air pressure (maximum air pressure in lungs) decreases by nearly 16%, the maximum flow decreases by nearly 30%, and the total airway pressure loss (sum of each generation pressure drop) is more than 5 times the original value. Moreover, in airway generations 8 to 16, with increasing diameter, the maximum air pressure, maximum flow, and total airway pressure loss remain almost constant. When the diameter is reduced to half of the original value, the maximum air pressure decreases by 3%, the maximum flow decreases by nearly 5%, and the total airway pressure loss increases by 200%. The study creates a foundation for improvement in respiratory disease diagnosis and treatment. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Do new anesthesia ventilators deliver small tidal volumes accurately during volume-controlled ventilation?

    Science.gov (United States)

    Bachiller, Patricia R; McDonough, Joseph M; Feldman, Jeffrey M

    2008-05-01

    During mechanical ventilation of infants and neonates, small changes in tidal volume may lead to hypo- or hyperventilation, barotrauma, or volutrauma. Partly because breathing circuit compliance and fresh gas flow affect tidal volume delivery by traditional anesthesia ventilators in volume-controlled ventilation (VCV) mode, pressure-controlled ventilation (PCV) using a circle breathing system has become a common approach to minimizing the risk of mechanical ventilation for small patients, although delivered tidal volume is not assured during PCV. A new generation of anesthesia machine ventilators addresses the problems of VCV by adjusting for fresh gas flow and for the compliance of the breathing circuit. In this study, we evaluated the accuracy of new anesthesia ventilators to deliver small tidal volumes. Four anesthesia ventilator systems were evaluated to determine the accuracy of volume delivery to the airway during VCV at tidal volume settings of 100, 200, and 500 mL under different conditions of breathing circuit compliance (fully extended and fully contracted circuits) and lung compliance. A mechanical test lung (adult and infant) was used to simulate lung compliances ranging from 0.0025 to 0.03 L/cm H(2)O. Volumes and pressures were measured using a calibrated screen pneumotachograph and custom software. We tested the Smartvent 7900, Avance, and Aisys anesthesia ventilator systems (GE Healthcare, Madison, WI) and the Apollo anesthesia ventilator (Draeger Medical, Telford, PA). The Smartvent 7900 and Avance ventilators use inspiratory flow sensors to control the volume delivered, whereas the Aisys and Apollo ventilators compensate for the compliance of the circuit. We found that the anesthesia ventilators that use compliance compensation (Aisys and Apollo) accurately delivered both large and small tidal volumes to the airway of the test lung under conditions of normal and low lung compliance during VCV (ranging from 95.5% to 106.2% of the set tidal volume

  14. Continuous versus intermittent endotracheal cuff pressure control for the prevention of ventilator-associated respiratory infections in Vietnam: study protocol for a randomised controlled trial.

    Science.gov (United States)

    Dat, Vu Quoc; Geskus, Ronald B; Wolbers, Marcel; Loan, Huynh Thi; Yen, Lam Minh; Binh, Nguyen Thien; Chien, Le Thanh; Mai, Nguyen Thi Hoang; Phu, Nguyen Hoan; Lan, Nguyen Phu Huong; Hao, Nguyen Van; Long, Hoang Bao; Thuy, Tran Phuong; Kinh, Nguyen Van; Trung, Nguyen Vu; Phu, Vu Dinh; Cap, Nguyen Trung; Trinh, Dao Tuyet; Campbell, James; Kestelyn, Evelyne; Wertheim, Heiman F L; Wyncoll, Duncan; Thwaites, Guy Edward; van Doorn, H Rogier; Thwaites, C Louise; Nadjm, Behzad

    2018-04-04

    Ventilator-associated respiratory infection (VARI) comprises ventilator-associated pneumonia (VAP) and ventilator-associated tracheobronchitis (VAT). Although their diagnostic criteria vary, together these are the most common hospital-acquired infections in intensive care units (ICUs) worldwide, responsible for a large proportion of antibiotic use within ICUs. Evidence-based strategies for the prevention of VARI in resource-limited settings are lacking. Preventing the leakage of oropharyngeal secretions into the lung using continuous endotracheal cuff pressure control is a promising strategy. The aim of this study is to investigate the efficacy of automated, continuous endotracheal cuff pressure control in preventing the development of VARI and reducing antibiotic use in ICUs in Vietnam. This is an open-label randomised controlled multicentre trial. We will enrol 600 adult patients intubated for ≤ 24 h at the time of enrolment. Eligible patients will be stratified according to admission diagnosis (180 tetanus, 420 non-tetanus) and site and will be randomised in a 1:1 ratio to receive either (1) automated, continuous control of endotracheal cuff pressure or (2) intermittent measurement and control of endotracheal cuff pressure using a manual cuff pressure meter. The primary outcome is the occurrence of VARI, defined as either VAP or VAT during the ICU admission up to a maximum of 90 days after randomisation. Patients in both groups who are at risk for VARI will receive a standardised battery of investigations if their treating physician feels a new infection has occurred, the results of which will be used by an endpoint review committee, blinded to the allocated arm and independent of patient care, to determine the primary outcome. All enrolled patients will be followed for mortality and endotracheal tube cuff-related complications at 28 days and 90 days after randomisation. Other secondary outcomes include antibiotic use; days ventilated, in ICU and in hospital

  15. Prospective randomized crossover study of a new closed-loop control system versus pressure support during weaning from mechanical ventilation.

    Science.gov (United States)

    Clavieras, Noémie; Wysocki, Marc; Coisel, Yannael; Galia, Fabrice; Conseil, Matthieu; Chanques, Gerald; Jung, Boris; Arnal, Jean-Michel; Matecki, Stefan; Molinari, Nicolas; Jaber, Samir

    2013-09-01

    Intellivent is a new full closed-loop controlled ventilation that automatically adjusts both ventilation and oxygenation parameters. The authors compared gas exchange and breathing pattern variability of Intellivent and pressure support ventilation (PSV). In a prospective, randomized, single-blind design crossover study, 14 patients were ventilated during the weaning phase, with Intellivent or PSV, for two periods of 24 h in a randomized order. Arterial blood gases were obtained after 1, 8, 16, and 24 h with each mode. Ventilatory parameters were recorded continuously in a breath-by-breath basis during the two study periods. The primary endpoint was oxygenation, estimated by the calculation of the difference between the PaO2/FIO2 ratio obtained after 24 h of ventilation and the PaO2/FIO2 ratio obtained at baseline in each mode. The variability in the ventilatory parameters was also evaluated by the coefficient of variation (SD to mean ratio). There were no adverse events or safety issues requiring premature interruption of both modes. The PaO2/FIO2 (mean ± SD) ratio improved significantly from 245 ± 75 at baseline to 294 ± 123 (P = 0.03) after 24 h of Intellivent. The coefficient of variation of inspiratory pressure and positive end-expiratory pressure (median [interquartile range]) were significantly higher with Intellivent, 16 [11-21] and 15 [7-23]%, compared with 6 [5-7] and 7 [5-10]% in PSV. Inspiratory pressure, positive end-expiratory pressure, and FIO2 changes were adjusted significantly more often with Intellivent compared with PSV. Compared with PSV, Intellivent during a 24-h period improved the PaO2/FIO2 ratio in parallel with more variability in the ventilatory support and more changes in ventilation settings.

  16. Are there benefits or harm from pressure targeting during lung-protective ventilation?

    Science.gov (United States)

    MacIntyre, Neil R; Sessler, Curtis N

    2010-02-01

    Mechanically, breath design is usually either flow/volume-targeted or pressure-targeted. Both approaches can effectively provide lung-protective ventilation, but they prioritize different ventilation parameters, so their responses to changing respiratory-system mechanics and patient effort are different. These different response behaviors have advantages and disadvantages that can be important in specific circumstances. Flow/volume targeting guarantees a set minute ventilation but sometimes may be difficult to synchronize with patient effort, and it will not limit inspiratory pressure. In contrast, pressure targeting, with its variable flow, may be easier to synchronize and will limit inspiratory pressure, but it provides no control over delivered volume. Skilled clinicians can maximize benefits and minimize problems with either flow/volume targeting or pressure targeting. Indeed, as is often the case in managing complex life-support devices, it is operator expertise rather than the device design features that most impacts patient outcomes.

  17. Impact of ventilation/pressurization on indoor air contaminants in schools

    International Nuclear Information System (INIS)

    Shaughnessy, R.J.; Levetin, E.; Fisher, E.J.; Ligman, B.K.

    1993-01-01

    As part of a continuing technology development effort to control radon in schools, The U.S. Environmental Protection Agency's (EPA) School Evaluation Program (SEP) team in cooperation with U.S. EPA's Region 6 office has performed radon mitigation in two Southwestern United States schools utilizing the method of ventilation/pressurization control technology. Schools were inspected and IAQ measurements made with respect to carbon dioxide, bioaerosols, volatile organic compounds, and respirable particles. Premitigation results indicated poor ventilation conditions existed throughout the school buildings. Elevated levels of respirable particles were measured, yet no conclusions with respect to health could be implied. Post-mitigation results support, but do not prove the hypothesis that improved ventilation to control radon will also reduce other indicator indoor air contaminants. (orig.). (9 refs., 4 tabs.)

  18. [Lung protective ventilation. Ventilatory modes and ventilator parameters].

    Science.gov (United States)

    Schädler, Dirk; Weiler, Norbert

    2008-06-01

    Mechanical ventilation has a considerable potential for injuring the lung tissue. Therefore, attention has to be paid to the proper choice of ventilatory mode and settings to secure lung-protective ventilation whenever possible. Such ventilator strategy should account for low tidal volume ventilation (6 ml/kg PBW), limited plateau pressure (30 to 35 cm H2O) and positive end-expiratory pressure (PEEP). It is unclear whether pressure controlled or volume controlled ventilation with square flow profile is beneficial. The adjustment of inspiration and expiration time should consider the actual breathing mechanics and anticipate the generation of intrinsic PEEP. Ventilatory modes with the possibility of supporting spontaneous breathing should be used as soon as possible.

  19. Noninvasive Positive Pressure Ventilation or Conventional Mechanical Ventilation for Neonatal Continuous Positive Airway Pressure Failure

    Directory of Open Access Journals (Sweden)

    Zohreh Badiee

    2014-01-01

    Full Text Available Background: The aim of this study was to assess the success rate of nasal intermittent positive pressure ventilation (NIPPV for treatment of continuous positive airway pressure (CPAP failure and prevention of conventional ventilation (CV in preterm neonates. Methods: Since November 2012 to April 2013, a total number of 55 consecutive newborns with gestational ages of 26-35 weeks who had CPAP failure were randomly assigned to one of the two groups. The NIPPV group received NIPPV with the initial peak inspiratory pressure (PIP of 16-20 cmH 2 O and frequency of 40-60 breaths/min. The CV group received PIP of 12-20 cmH 2 O and frequency of 40-60 breaths/min. Results: About 74% of newborns who received NIPPV for management of CPAP failure responded to NIPPV and did not need intubation and mechanical ventilation. Newborns with lower postnatal age at entry to the study and lower 5 min Apgar score more likely had NIPPV failure. In addition, treatment failure was higher in newborns who needed more frequent doses of surfactant. Duration of oxygen therapy was 9.28 days in CV group and 7.77 days in NIPPV group (P = 0.050. Length of hospital stay in CV group and NIPPV groups were 48.7 and 41.7 days, respectively (P = 0.097. Conclusions: NIPPV could decrease the need for intubation and mechanical ventilation in preterm infants with CPAP failure.

  20. [Possibilities of bi-level positive pressure ventilation in chronic hypoventilation].

    Science.gov (United States)

    Saaresranta, Tarja; Anttalainen, Ulla; Polo, Olli

    2011-01-01

    During the last decade, noninvasive bi-level positive pressure ventilation has enabled respiratory support in inpatient wards and at home. In many cases, a bi-level airway pressure ventilator can be used to avoid artificial airway and respirator therapy, and may shorten hospital stay and save costs. The treatment alleviates the patient's dyspnea and fatigue, whereby the quality of life improves, and in certain situations also the life span increases. The implementation of bi-level positive pressure ventilation by the physician requires knowledge of the basics of respiratory physiology and familiarization with the bi-level airway pressure ventilator.

  1. The comparison of manual and LabVIEW-based fuzzy control on mechanical ventilation.

    Science.gov (United States)

    Guler, Hasan; Ata, Fikret

    2014-09-01

    The aim of this article is to develop a knowledge-based therapy for management of rats with respiratory distress. A mechanical ventilator was designed to achieve this aim. The designed ventilator is called an intelligent mechanical ventilator since fuzzy logic was used to control the pneumatic equipment according to the rat's status. LabVIEW software was used to control all equipments in the ventilator prototype and to monitor respiratory variables in the experiment. The designed ventilator can be controlled both manually and by fuzzy logic. Eight female Wistar-Albino rats were used to test the designed ventilator and to show the effectiveness of fuzzy control over manual control on pressure control ventilation mode. The anesthetized rats were first ventilated for 20 min manually. After that time, they were ventilated for 20 min by fuzzy logic. Student's t-test for p < 0.05 was applied to the measured minimum, maximum and mean peak inspiration pressures to analyze the obtained results. The results show that there is no statistical difference in the rat's lung parameters before and after the experiments. It can be said that the designed ventilator and developed knowledge-based therapy support artificial respiration of living things successfully. © IMechE 2014.

  2. Noninvasive ventilation.

    Science.gov (United States)

    Rabatin, J T; Gay, P C

    1999-08-01

    Noninvasive ventilation refers to the delivery of assisted ventilatory support without the use of an endotracheal tube. Noninvasive positive pressure ventilation (NPPV) can be delivered by using a volume-controlled ventilator, a pressure-controlled ventilator, a bilevel positive airway pressure ventilator, or a continuous positive airway pressure device. During the past decade, there has been a resurgence in the use of noninvasive ventilation, fueled by advances in technology and clinical trials evaluating its use. Several manufacturers produce portable devices that are simple to operate. This review describes the equipment, techniques, and complications associated with NPPV and also the indications for both short-term and long-term applications. NPPV clearly represents an important addition to the techniques available to manage patients with respiratory failure. Future clinical trials evaluating its many clinical applications will help to define populations of patients most apt to benefit from this type of treatment.

  3. Underground ventilation remote monitoring and control system

    International Nuclear Information System (INIS)

    Strever, M.T.; Wallace, K.G. Jr.; McDaniel, K.H.

    1995-01-01

    This paper presents the design and installation of an underground ventilation remote monitoring and control system at the Waste Isolation Pilot Plant. This facility is designed to demonstrate safe underground disposal of U.S. defense generated transuranic nuclear waste. To improve the operability of the ventilation system, an underground remote monitoring and control system was designed and installed. The system consists of 15 air velocity sensors and 8 differential pressure sensors strategically located throughout the underground facility providing real-time data regarding the status of the ventilation system. In addition, a control system was installed on the main underground air regulators. The regulator control system gives indication of the regulator position and can be controlled either locally or remotely. The sensor output is displayed locally and at a central surface location through the site-wide Central Monitoring System (CMS). The CMS operator can review all sensor data and can remotely operate the main underground regulators. Furthermore, the Virtual Address Extension (VAX) network allows the ventilation engineer to retrieve real-time ventilation data on his personal computer located in his workstation. This paper describes the types of sensors selected, the installation of the instrumentation, and the initial operation of the remote monitoring system

  4. MEASUREMENT OF FRICTIONAL PRESSURE DIFFERENTIALS DURING A VENTILATION SURVEY

    International Nuclear Information System (INIS)

    B.S. Prosser, PE; I.M. Loomis, PE, PhD

    2003-01-01

    During the course of a ventilation survey, both airflow quantity and frictional pressure losses are measured and quantified. The measurement of airflow has been extensively studied as the vast majority of ventilation standards/regulations are tied to airflow quantity or velocity. However, during the conduct of a ventilation survey, measurement of airflow only represents half of the necessary parameters required to directly calculate the airway resistance. The measurement of frictional pressure loss is an often misunderstood and misapplied part of the ventilation survey. This paper compares the two basic methods of frictional pressure drop measurements; the barometer and the gauge and tube. Personal experiences with each method will be detailed along with the authors' opinions regarding the applicability and conditions favoring each method

  5. Randomized controlled trial comparing nasal intermittent positive pressure ventilation and nasal continuous positive airway pressure in premature infants after tracheal extubation

    Directory of Open Access Journals (Sweden)

    Daniela Franco Rizzo Komatsu

    Full Text Available Summary Objective: To analyze the frequency of extubation failure in premature infants using conventional mechanical ventilation (MV after extubation in groups subjected to nasal intermittent positive pressure ventilation (nIPPV and continuous positive airway pressure (nCPAP. Method: Seventy-two premature infants with respiratory failure were studied, with a gestational age (GA ≤ 36 weeks and birth weight (BW > 750 g, who required tracheal intubation and mechanical ventilation. The study was controlled and randomized in order to ensure that the members of the groups used in the research were chosen at random. Randomization was performed at the time of extubation using sealed envelopes. Extubation failure was defined as the need for re-intubation and mechanical ventilation during the first 72 hours after extubation. Results: Among the 36 premature infants randomized to nIPPV, six (16.6% presented extubation failure in comparison to 11 (30.5% of the 36 premature infants randomized to nCPAP. There was no statistical difference between the two study groups regarding BW, GA, classification of the premature infant, and MV time. The main cause of extubation failure was the occurrence of apnea. Gastrointestinal and neurological complications did not occur in the premature infants participating in the study. Conclusion: We found that, despite the extubation failure of the group of premature infants submitted to nIPPV being numerically smaller than in premature infants submitted to nCPAP, there was no statistically significant difference between the two modes of ventilatory support after extubation.

  6. Bench test evaluation of volume delivered by modern ICU ventilators during volume-controlled ventilation.

    Science.gov (United States)

    Lyazidi, Aissam; Thille, Arnaud W; Carteaux, Guillaume; Galia, Fabrice; Brochard, Laurent; Richard, Jean-Christophe M

    2010-12-01

    During volume-controlled ventilation, part of the volume delivered is compressed into the circuit. To correct for this phenomenon, modern ventilators use compensation algorithms. Humidity and temperature also influence the delivered volume. In a bench study at a research laboratory in a university hospital, we compared nine ICU ventilators equipped with compensation algorithms, one with a proximal pneumotachograph and one without compensation. Each ventilator was evaluated under normal, obstructive, and restrictive conditions of respiratory mechanics. For each condition, three tidal volumes (V (T)) were set (300, 500, and 800 ml), with and without an inspiratory pause. The insufflated volume and the volume delivered at the Y-piece were measured independently, without a humidification device, under ambient temperature and pressure and dry gas conditions. We computed the actually delivered V (T) to the lung under body temperature and pressure and saturated water vapour conditions (BTPS). For target V (T) values of 300, 500, and 800 ml, actually delivered V (T) under BTPS conditions ranged from 261 to 396 ml (-13 to +32%), from 437 to 622 ml (-13 to +24%), and from 681 to 953 ml (-15 to +19%), respectively (p ventilators.

  7. Bench performance of ventilators during simulated paediatric ventilation.

    Science.gov (United States)

    Park, M A J; Freebairn, R C; Gomersall, C D

    2013-05-01

    This study compares the accuracy and capabilities of various ventilators using a paediatric acute respiratory distress syndrome lung model. Various compliance settings and respiratory rate settings were used. The study was done in three parts: tidal volume and FiO2 accuracy; pressure control accuracy and positive end-expiratory pressure (PEEP) accuracy. The parameters set on the ventilator were compared with either or both of the measured parameters by the test lung and the ventilator. The results revealed that none of the ventilators could consistently deliver tidal volumes within 1 ml/kg of the set tidal volume, and the discrepancy between the delivered volume and the volume measured by the ventilator varied greatly. The target tidal volume was 8 ml/kg, but delivered tidal volumes ranged from 3.6-11.4 ml/kg and the volumes measured by the ventilator ranged from 4.1-20.6 ml/kg. All the ventilators maintained pressure within 20% of the set pressure, except one ventilator which delivered pressures of up to 27% higher than the set pressure. Two ventilators maintained PEEP within 10% of the prescribed PEEP. The majority of the readings were also within 10%. However, three ventilators delivered, at times, PEEPs over 20% higher. In conclusion, as lung compliance decreases, especially in paediatric patients, some ventilators perform better than others. This study highlights situations where ventilators may not be able to deliver, nor adequately measure, set tidal volumes, pressure, PEEP or FiO2.

  8. Intra-operative protective mechanical ventilation in lung transplantation: a randomised, controlled trial.

    Science.gov (United States)

    Verbeek, G L; Myles, P S; Westall, G P; Lin, E; Hastings, S L; Marasco, S F; Jaffar, J; Meehan, A C

    2017-08-01

    Primary graft dysfunction occurs in up to 25% of patients after lung transplantation. Contributing factors include ventilator-induced lung injury, cardiopulmonary bypass, ischaemia-reperfusion injury and excessive fluid administration. We evaluated the feasibility, safety and efficacy of an open-lung protective ventilation strategy aimed at reducing ventilator-induced lung injury. We enrolled adult patients scheduled to undergo bilateral sequential lung transplantation, and randomly assigned them to either a control group (volume-controlled ventilation with 5 cmH 2 O, positive end-expiratory pressure, low tidal volumes (two-lung ventilation 6 ml.kg -1 , one-lung ventilation 4 ml.kg -1 )) or an alveolar recruitment group (regular step-wise positive end-expiratory pressure-based alveolar recruitment manoeuvres, pressure-controlled ventilation set at 16 cmH 2 O with 10 cmH 2 O positive end-expiratory pressure). Ventilation strategies were commenced from reperfusion of the first lung allograft and continued for the duration of surgery. Regular PaO 2 /F I O 2 ratios were calculated and venous blood samples collected for inflammatory marker evaluation during the procedure and for the first 24 h of intensive care stay. The primary end-point was the PaO 2 /F I O 2 ratio at 24 h after first lung reperfusion. Thirty adult patients were studied. The primary outcome was not different between groups (mean (SD) PaO 2 /F I O 2 ratio control group 340 (111) vs. alveolar recruitment group 404 (153); adjusted p = 0.26). Patients in the control group had poorer mean (SD) PaO 2 /F I O 2 ratios at the end of the surgical procedure and a longer median (IQR [range]) time to tracheal extubation compared with the alveolar recruitment group (308 (144) vs. 402 (154) (p = 0.03) and 18 (10-27 [5-468]) h vs. 15 (11-36 [5-115]) h (p = 0.01), respectively). An open-lung protective ventilation strategy during surgery for lung transplantation is feasible, safe and achieves favourable

  9. Performance of mechanical ventilators at the patient's home: a multicentre quality control study.

    Science.gov (United States)

    Farré, R; Navajas, D; Prats, E; Marti, S; Guell, R; Montserrat, J M; Tebe, C; Escarrabill, J

    2006-05-01

    Quality control procedures vary considerably among the providers of equipment for home mechanical ventilation (HMV). A multicentre quality control survey of HMV was performed at the home of 300 patients included in the HMV programmes of four hospitals in Barcelona. It consisted of three steps: (1) the prescribed ventilation settings, the actual settings in the ventilator control panel, and the actual performance of the ventilator measured at home were compared; (2) the different ventilator alarms were tested; and (3) the effect of differences between the prescribed settings and the actual performance of the ventilator on non-programmed readmissions of the patient was determined. Considerable differences were found between actual, set, and prescribed values of ventilator variables; these differences were similar in volume and pressure preset ventilators. The percentage of patients with a discrepancy between the prescribed and actual measured main ventilator variable (minute ventilation or inspiratory pressure) of more than 20% and 30% was 13% and 4%, respectively. The number of ventilators with built in alarms for power off, disconnection, or obstruction was 225, 280 and 157, respectively. These alarms did not work in two (0.9%), 52 (18.6%) and eight (5.1%) ventilators, respectively. The number of non-programmed hospital readmissions in the year before the study did not correlate with the index of ventilator error. This study illustrates the current limitations of the quality control of HMV and suggests that improvements should be made to ensure adequate ventilator settings and correct ventilator performance and ventilator alarm operation.

  10. Bi-level positive pressure ventilation and adaptive servo ventilation in patients with heart failure and Cheyne-Stokes respiration.

    Science.gov (United States)

    Fietze, Ingo; Blau, Alexander; Glos, Martin; Theres, Heinz; Baumann, Gert; Penzel, Thomas

    2008-08-01

    Nocturnal positive pressure ventilation (PPV) has been shown to be effective in patients with impaired left ventricular ejection fraction (LVEF) and Cheyne-Stokes respiration (CSR). We investigated the effect of a bi-level PPV and adaptive servo ventilation on LVEF, CSR, and quantitative sleep quality. Thirty-seven patients (New York heart association [NYHA] II-III) with LVEFCSR were investigated by electrocardiography (ECG), echocardiography and polysomnography. The CSR index (CSRI) was 32.3+/-16.2/h. Patients were randomly treated with bi-level PPV using the standard spontaneous/timed (S/T) mode or with adaptive servo ventilation mode (AutoSetCS). After 6 weeks, 30 patients underwent control investigations with ECG, echocardiography, and polysomnography. The CSRI decreased significantly to 13.6+/-13.4/h. LVEF increased significantly after 6 weeks of ventilation (from 25.1+/-8.5 to 28.8+/-9.8%, plevel PPV and adaptive servo ventilation: the CSRI decreased more in the AutoSetCS group while the LVEF increased more in the bi-level PPV group. Administration of PPV can successfully attenuate CSA. Reduced CSA may be associated with improved LVEF; however, this may depend on the mode of PPV. Changed LVEF is evident even in the absence of significant changes in blood pressure.

  11. Fuzzy logic controller for weaning neonates from mechanical ventilation.

    OpenAIRE

    Hatzakis, G. E.; Davis, G. M.

    2002-01-01

    Weaning from mechanical ventilation is the gradual detachment from any ventilatory support till normal spontaneous breathing can be fully resumed. To date, we have developed a fuzzy logic controller for weaning COPD adults using pressure support ventilation (PS). However, adults and newborns differ in the pathophysiology of lung disease. We therefore used our fuzzy logic-based weaning platform to develop modularized components for weaning newborns with lung disease. Our controller uses the he...

  12. Pressure analysis in ventilation ducts at bituminization facility

    International Nuclear Information System (INIS)

    Kikuchi, Naoki; Iimura, Masato; Takahashi, Yuki; Omori, Eiichi; Yamanouchi, Takamichi

    1997-09-01

    Pressure analysis in cell ventilation ducts at bituminization facility where the fire and explosion accident occured was carried out. This report also describes the results of bench mark calculations for computer code EVENT84 which was used for the accident analysis. The bench mark calculations were performed by comparing the analytical results by EVENT84 code with the experimental data of safety demonstration tests of ventilation system which were carried out by JAERI. We confirmed the applicability of EVENT84 code with the conservative results. The pressure analysis in cell ventilation ducts at bituminization facility were performed by comparing the analytical results of duct pressure by EVENT84 code with the yield stress of destroyed ducts by explosion, in order to estimate the scale of explosion. As a result, we could not explain the damage of ducts quantitatively, but we found the local pressure peaks analytically in downstream ducts where the serious damages were observed. (author)

  13. Servo-controlled pneumatic pressure oscillator for respiratory impedance measurements and high-frequency ventilation.

    Science.gov (United States)

    Kaczka, David W; Lutchen, Kenneth R

    2004-04-01

    The ability to provide forced oscillatory excitation of the respiratory system can be useful in mechanical impedance measurements as well as high frequency ventilation (HFV). Experimental systems currently used for generating forced oscillations are limited in their ability to provide high amplitude flows or maintain the respiratory system at a constant mean pressure during excitation. This paper presents the design and implementation of a pneumatic pressure oscillator based on a proportional solenoid valve. The device is capable of providing forced oscillatory excitations to the respiratory system over a bandwidth suitable for mechanical impedance measurements and HVF. It delivers high amplitude flows (> 1.4 l/s) and utilizes a servo-control mechanism to maintain a load at a fixed mean pressure during simultaneous oscillation. Under open-loop conditions, the device exhibited a static hysteresis of approximately 7%, while its dynamic magnitude and phase responses were flat out to 10 Hz. Broad-band measurement of total harmonic distortion was approximately 19%. Under closed-loop conditions, the oscillator was able to maintain a mechanical test load at both positive and negative mean pressures during oscillatory excitations from 0.1 to 10.0 Hz. Impedance of the test load agreed closely with theoretical predictions. We conclude that this servo-controlled oscillator can be a useful tool for respiratory impedance measurements as well as HFV.

  14. [Evaluation of tidal volume delivered by ventilators during volume-controlled ventilation].

    Science.gov (United States)

    Zhou, Juan; Yan, Yong; Cao, Desen

    2014-12-01

    To study the ways which ensure the delivery of enough tidal volume to patients under various conditions close to the demand of the physician. The volume control ventilation model was chosen, and the simulation lung type was active servo lung ASL 5000 or Michigan lung 1601. The air resistance, air compliance and lung type in simulation lungs were set. The tidal volume was obtained from flow analyzer PF 300. At the same tidal volume, the displaying values of tidal volume of E5, Servo i, Evital 4, and Evital XL ventilators with different lung types of patient, compliance of gas piping, leakage, gas types, etc. were evaluated. With the same setting tidal volume of a same ventilator, the tidal volume delivered to patients was different with different lung types of patient, compliance of gas piping, leakage, gas types, etc. Reducing compliance and increasing resistance of the patient lungs caused high peak airway pressure, the tidal volume was lost in gas piping, and the tidal volume be delivered to the patient lungs was decreased. If the ventilator did not compensate to leakage, the tidal volume delivered to the patient lungs was decreased. When the setting gas type of ventilator did not coincide with that applying to the patient, the tidal volume be delivered to the patient lungs might be different with the setting tidal volume of ventilator. To ensure the delivery of enough tidal volume to patients close to the demand of the physician, containable factors such as the compliance of gas piping, leakage, and gas types should be controlled.

  15. Human versus Computer Controlled Selection of Ventilator Settings: An Evaluation of Adaptive Support Ventilation and Mid-Frequency Ventilation

    Directory of Open Access Journals (Sweden)

    Eduardo Mireles-Cabodevila

    2012-01-01

    Full Text Available Background. There are modes of mechanical ventilation that can select ventilator settings with computer controlled algorithms (targeting schemes. Two examples are adaptive support ventilation (ASV and mid-frequency ventilation (MFV. We studied how different clinician-chosen ventilator settings are from these computer algorithms under different scenarios. Methods. A survey of critical care clinicians provided reference ventilator settings for a 70 kg paralyzed patient in five clinical/physiological scenarios. The survey-derived values for minute ventilation and minute alveolar ventilation were used as goals for ASV and MFV, respectively. A lung simulator programmed with each scenario’s respiratory system characteristics was ventilated using the clinician, ASV, and MFV settings. Results. Tidal volumes ranged from 6.1 to 8.3 mL/kg for the clinician, 6.7 to 11.9 mL/kg for ASV, and 3.5 to 9.9 mL/kg for MFV. Inspiratory pressures were lower for ASV and MFV. Clinician-selected tidal volumes were similar to the ASV settings for all scenarios except for asthma, in which the tidal volumes were larger for ASV and MFV. MFV delivered the same alveolar minute ventilation with higher end expiratory and lower end inspiratory volumes. Conclusions. There are differences and similarities among initial ventilator settings selected by humans and computers for various clinical scenarios. The ventilation outcomes are the result of the lung physiological characteristics and their interaction with the targeting scheme.

  16. Real-time detection of gastric insufflation related to facemask pressure-controlled ventilation using ultrasonography of the antrum and epigastric auscultation in nonparalyzed patients: a prospective, randomized, double-blind study.

    Science.gov (United States)

    Bouvet, Lionel; Albert, Marie-Laure; Augris, Caroline; Boselli, Emmanuel; Ecochard, René; Rabilloud, Muriel; Chassard, Dominique; Allaouchiche, Bernard

    2014-02-01

    The authors sought to determine the level of inspiratory pressure minimizing the risk of gastric insufflation while providing adequate pulmonary ventilation. The primary endpoint was the increase in incidence of gastric insufflation detected by ultrasonography of the antrum while inspiratory pressure for facemask pressure-controlled ventilation increased from 10 to 25 cm H2O. In this prospective, randomized, double-blind study, patients were allocated to one of the four groups (P10, P15, P20, and P25) defined by the inspiratory pressure applied during controlled-pressure ventilation: 10, 15, 20, and 25 cm H2O. Anesthesia was induced using propofol and remifentanil; no neuromuscular-blocking agent was administered. Once loss of eyelash reflex occurred, facemask ventilation was started for a 2-min period while gastric insufflation was detected by auscultation and by real-time ultrasonography of the antrum. The cross-sectional antral area was measured using ultrasonography before and after facemask ventilation. Respiratory parameters were recorded. Sixty-seven patients were analyzed. The authors registered statistically significant increases in incidences of gastric insufflation with inspiratory pressure, from 0% (group P10) to 41% (group P25) according to auscultation, and from 19 to 59% according to ultrasonography. In groups P20 and P25, detection of gastric insufflation by ultrasonography was associated with a statistically significant increase in the antral area. Lung ventilation was insufficient for group P10. Inspiratory pressure of 15 cm H2O allowed for reduced occurrence of gastric insufflation with proper lung ventilation during induction of anesthesia with remifentanil and propofol in nonparalyzed and nonobese patients. (Anesthesiology 2014; 120:326-34).

  17. Actual performance of mechanical ventilators in ICU: a multicentric quality control study.

    Science.gov (United States)

    Govoni, Leonardo; Dellaca', Raffaele L; Peñuelas, Oscar; Bellani, Giacomo; Artigas, Antonio; Ferrer, Miquel; Navajas, Daniel; Pedotti, Antonio; Farré, Ramon

    2012-01-01

    Even if the performance of a given ventilator has been evaluated in the laboratory under very well controlled conditions, inappropriate maintenance and lack of long-term stability and accuracy of the ventilator sensors may lead to ventilation errors in actual clinical practice. The aim of this study was to evaluate the actual performances of ventilators during clinical routines. A resistance (7.69 cmH(2)O/L/s) - elastance (100 mL/cmH(2)O) test lung equipped with pressure, flow, and oxygen concentration sensors was connected to the Y-piece of all the mechanical ventilators available for patients in four intensive care units (ICUs; n = 66). Ventilators were set to volume-controlled ventilation with tidal volume = 600 mL, respiratory rate = 20 breaths/minute, positive end-expiratory pressure (PEEP) = 8 cmH(2)O, and oxygen fraction = 0.5. The signals from the sensors were recorded to compute the ventilation parameters. The average ± standard deviation and range (min-max) of the ventilatory parameters were the following: inspired tidal volume = 607 ± 36 (530-723) mL, expired tidal volume = 608 ± 36 (530-728) mL, peak pressure = 20.8 ± 2.3 (17.2-25.9) cmH(2)O, respiratory rate = 20.09 ± 0.35 (19.5-21.6) breaths/minute, PEEP = 8.43 ± 0.57 (7.26-10.8) cmH(2)O, oxygen fraction = 0.49 ± 0.014 (0.41-0.53). The more error-prone parameters were the ones related to the measure of flow. In several cases, the actual delivered mechanical ventilation was considerably different from the set one, suggesting the need for improving quality control procedures for these machines.

  18. Ventilator-driven xenon ventilation studies

    International Nuclear Information System (INIS)

    Chilcoat, R.T.; Thomas, F.D.; Gerson, J.I.

    1984-01-01

    A modification of a common commercial Xe-133 ventilation device is described for mechanically assisted ventilation imaging. The patient's standard ventilator serves as the power source controlling the ventilatory rate and volume during the xenon study, but the gases in the two systems are not intermixed. This avoids contamination of the ventilator with radioactive xenon. Supplemental oxygen and positive end-expiratory pressure (PEEP) are provided if needed. The system can be converted quickly for conventional studies with spontaneous respiration

  19. [The clinical effect of airway pressure release ventilation for acute lung injury/acute respiratory distress syndrome].

    Science.gov (United States)

    Song, Shaohua; Tian, Huiyu; Yang, Xiufen; Hu, Zhenjie

    2016-01-01

    To evaluate the effect of airway pressure release ventilation (APRV) in patients with acute lung injury/acute respiratory distress syndrome (ALI/ARDS), to evaluate the extent of ventilator-induced lung injury (VILI), and to explore its possible mechanism. A prospective study was conducted in the Department of Critical Care Medicine of the First Hospital of Hebei Medical University from December 2010 to February 2012. The patients with ALI/ARDS were enrolled. They were randomly divided into two groups. The patients in APRV group were given APRV pattern, while those in control group were given lung protection ventilation, synchronized intermittent mandatory ventilation with positive end-expiratory pressure (SIMV+PEEP). All patients were treated with AVEA ventilator. The parameters such as airway peak pressure (Ppeak), mean airway pressure (Pmean), pulse oxygen saturation (SpO2), mean arterial pressure (MAP), heart rate (HR), central venous pressure (CVP), arterial blood gas, urine output (UO), the usage of sedation and muscle relaxation drugs were recorded. AVEA ventilator "turning point (Pflex) operation" was used to describe the quasi-static pressure volume curve (P-V curve). High and low inflection point (UIP, LIP) and triangular Pflex volume (Vdelta) were automatically measured and calculated. The ventilation parameters were set, and the 24-hour P-V curve was recorded again in order to be compared with subsequent results. Venous blood was collected before treatment, 24 hours and 48 hours after ventilation to measure lung surfactant protein D (SP-D) and large molecular mucus in saliva (KL-6) by enzyme linked immunosorbent assay (ELISA), and the correlation between the above two parameters and prognosis on 28 days was analyzed by multinomial logistic regression. Twenty-six patients with ALI/ARDS were enrolled, and 22 of them completed the test with 10 in APRV group and 12 in control group. The basic parameters and P-V curves between two groups were similar before

  20. Demand controlled ventilation for multi-family dwellings

    DEFF Research Database (Denmark)

    Mortensen, Dorthe Kragsig

    for centrally balanced DCV systems with heat recovery. A design expected to fulfill this requirement was investigated in detail with regard to its electricity consumption by evaluating a control strategy that resets the static pressure set point at part load. The results showed that this control strategy can......The present thesis “Demand controlled ventilation for multi-family dwellings” constitutes the summary of a three year project period during which demand specification and system design of demand controlled ventilation for residential buildings were studied. Most standards and buildings codes...... can be reduced compared to a system with constant air flow. A literature study on indoor pollutants in homes, their sources and their impact on humans formed the basis for the demand specification. Emission of pollutants in residential buildings roughly fall into constantly emitted background sources...

  1. Chest compression with a higher level of pressure support ventilation: effects on secretion removal, hemodynamics, and respiratory mechanics in patients on mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Wagner da Silva Naue

    2014-01-01

    Full Text Available OBJECTIVE: To determine the efficacy of chest compression accompanied by a 10-cmH2O increase in baseline inspiratory pressure on pressure support ventilation, in comparison with that of aspiration alone, in removing secretions, normalizing hemodynamics, and improving respiratory mechanics in patients on mechanical ventilation. METHODS: This was a randomized crossover clinical trial involving patients on mechanical ventilation for more than 48 h in the ICU of the Porto Alegre Hospital de Clínicas, in the city of Porto Alegre, Brazil. Patients were randomized to receive aspiration alone (control group or compression accompanied by a 10-cmH2O increase in baseline inspiratory pressure on pressure support ventilation (intervention group. We measured hemodynamic parameters, respiratory mechanics parameters, and the amount of secretions collected. RESULTS: We included 34 patients. The mean age was 64.2 ± 14.6 years. In comparison with the control group, the intervention group showed a higher median amount of secretions collected (1.9 g vs. 2.3 g; p = 0.004, a greater increase in mean expiratory tidal volume (16 ± 69 mL vs. 56 ± 69 mL; p = 0.018, and a greater increase in mean dynamic compliance (0.1 ± 4.9 cmH2O vs. 2.8 ± 4.5 cmH2O; p = 0.005. CONCLUSIONS: In this sample, chest compression accompanied by an increase in pressure support significantly increased the amount of secretions removed, the expiratory tidal volume, and dynamic compliance. (ClinicalTrials.gov Identifier:NCT01155648 [http://www.clinicaltrials.gov/

  2. Moderately high frequency ventilation with a conventional ventilator allows reduction of tidal volume without increasing mean airway pressure.

    Science.gov (United States)

    Cordioli, Ricardo Luiz; Park, Marcelo; Costa, Eduardo Leite Vieira; Gomes, Susimeire; Brochard, Laurent; Amato, Marcelo Britto Passos; Azevedo, Luciano Cesar Pontes

    2014-12-01

    The aim of this study was to explore if positive-pressure ventilation delivered by a conventional ICU ventilator at a moderately high frequency (HFPPV) allows a safe reduction of tidal volume (V T) below 6 mL/kg in a porcine model of severe acute respiratory distress syndrome (ARDS) and at a lower mean airway pressure than high-frequency oscillatory ventilation (HFOV). This is a prospective study. In eight pigs (median weight 34 [29,36] kg), ARDS was induced by pulmonary lavage and injurious ventilation. The animals were ventilated with a randomized sequence of respiratory rates: 30, 60, 90, 120, 150, followed by HFOV at 5 Hz. At each step, V T was adjusted to allow partial pressure of arterial carbon dioxide (PaCO2) to stabilize between 57 and 63 mmHg. Data are shown as median [P25th,P75th]. After lung injury, the PaO2/FiO2 (P/F) ratio was 92 [63,118] mmHg, pulmonary shunt 26 [17,31]%, and static compliance 11 [8,14] mL/cmH2O. Positive end-expiratory pressure (PEEP) was 14 [10,17] cmH2O. At 30 breaths/min, V T was higher than 6 (7.5 [6.8,10.2]) mL/kg, but at all higher frequencies, V T could be reduced and PaCO2 maintained, leading to reductions in plateau pressures and driving pressures. For frequencies of 60 to 150/min, V T progressively fell from 5.2 [5.1,5.9] to 3.8 [3.7,4.2] mL/kg (p mechanics, auto-PEEP generation, hemodynamics, or gas exchange. Mean airway pressure was maintained constant and was increased only during HFOV. During protective mechanical ventilation, HFPPV delivered by a conventional ventilator in a severe ARDS swine model safely allows further tidal volume reductions. This strategy also allowed decreasing airway pressures while maintaining stable PaCO2 levels.

  3. Controlled invasive mechanical ventilation strategies in obese patients undergoing surgery.

    Science.gov (United States)

    Maia, Lígia de Albuquerque; Silva, Pedro Leme; Pelosi, Paolo; Rocco, Patricia Rieken Macedo

    2017-06-01

    The obesity prevalence is increasing in surgical population. As the number of obese surgical patients increases, so does the demand for mechanical ventilation. Nevertheless, ventilatory strategies in this population are challenging, since obesity results in pathophysiological changes in respiratory function. Areas covered: We reviewed the impact of obesity on respiratory system and the effects of controlled invasive mechanical ventilation strategies in obese patients undergoing surgery. To date, there is no consensus regarding the optimal invasive mechanical ventilation strategy for obese surgical patients, and no evidence that possible intraoperative beneficial effects on oxygenation and mechanics translate into better postoperative pulmonary function or improved outcomes. Expert commentary: Before determining the ideal intraoperative ventilation strategy, it is important to analyze the pathophysiology and comorbidities of each obese patient. Protective ventilation with low tidal volume, driving pressure, energy, and mechanical power should be employed during surgery; however, further studies are required to clarify the most effective ventilation strategies, such as the optimal positive end-expiratory pressure and whether recruitment maneuvers minimize lung injury. In this context, an ongoing trial of intraoperative ventilation in obese patients (PROBESE) should help determine the mechanical ventilation strategy that best improves clinical outcome in patients with body mass index≥35kg/m 2 .

  4. Variable pattern contamination control under positive pressure

    International Nuclear Information System (INIS)

    Philippi, H.M.

    1997-01-01

    Airborne contamination control in nuclear and biological laboratories is traditionally achieved by directing the space ventilation air at subatmospheric pressures in one fixed flow pattern. However, biological and nuclear contamination flow control in the new Biological Research Facility, to be commissioned at the Chalk River Laboratories in 1996, will have the flexibility to institute a number of contamination control patterns, all achieved at positive (above atmospheric) pressures. This flexibility feature, made possible by means of a digitally controlled ventilation system, changes the facility ventilation system from being a relatively rigid building service operated by plant personnel into a flexible building service which can be operated by the facility research personnel. This paper focuses on and describes the application of these unique contamination control features in the design of the new Biological Research Facility. 3 refs., 7 figs

  5. Variable pattern contamination control under positive pressure

    Energy Technology Data Exchange (ETDEWEB)

    Philippi, H.M. [Chalk River Labs., Ontario (Canada)

    1997-08-01

    Airborne contamination control in nuclear and biological laboratories is traditionally achieved by directing the space ventilation air at subatmospheric pressures in one fixed flow pattern. However, biological and nuclear contamination flow control in the new Biological Research Facility, to be commissioned at the Chalk River Laboratories in 1996, will have the flexibility to institute a number of contamination control patterns, all achieved at positive (above atmospheric) pressures. This flexibility feature, made possible by means of a digitally controlled ventilation system, changes the facility ventilation system from being a relatively rigid building service operated by plant personnel into a flexible building service which can be operated by the facility research personnel. This paper focuses on and describes the application of these unique contamination control features in the design of the new Biological Research Facility. 3 refs., 7 figs.

  6. Anaesthesia ventilators

    Directory of Open Access Journals (Sweden)

    Rajnish K Jain

    2013-01-01

    Full Text Available Anaesthesia ventilators are an integral part of all modern anaesthesia workstations. Automatic ventilators in the operating rooms, which were very simple with few modes of ventilation when introduced, have become very sophisticated with many advanced ventilation modes. Several systems of classification of anaesthesia ventilators exist based upon various parameters. Modern anaesthesia ventilators have either a double circuit, bellow design or a single circuit piston configuration. In the bellows ventilators, ascending bellows design is safer than descending bellows. Piston ventilators have the advantage of delivering accurate tidal volume. They work with electricity as their driving force and do not require a driving gas. To enable improved patient safety, several modifications were done in circle system with the different types of anaesthesia ventilators. Fresh gas decoupling is a modification done in piston ventilators and in descending bellows ventilator to reduce th incidence of ventilator induced volutrauma. In addition to the conventional volume control mode, modern anaesthesia ventilators also provide newer modes of ventilation such as synchronised intermittent mandatory ventilation, pressure-control ventilation and pressure-support ventilation (PSV. PSV mode is particularly useful for patients maintained on spontaneous respiration with laryngeal mask airway. Along with the innumerable benefits provided by these machines, there are various inherent hazards associated with the use of the ventilators in the operating room. To use these workstations safely, it is important for every Anaesthesiologist to have a basic understanding of the mechanics of these ventilators and breathing circuits.

  7. Anaesthesia ventilators.

    Science.gov (United States)

    Jain, Rajnish K; Swaminathan, Srinivasan

    2013-09-01

    Anaesthesia ventilators are an integral part of all modern anaesthesia workstations. Automatic ventilators in the operating rooms, which were very simple with few modes of ventilation when introduced, have become very sophisticated with many advanced ventilation modes. Several systems of classification of anaesthesia ventilators exist based upon various parameters. Modern anaesthesia ventilators have either a double circuit, bellow design or a single circuit piston configuration. In the bellows ventilators, ascending bellows design is safer than descending bellows. Piston ventilators have the advantage of delivering accurate tidal volume. They work with electricity as their driving force and do not require a driving gas. To enable improved patient safety, several modifications were done in circle system with the different types of anaesthesia ventilators. Fresh gas decoupling is a modification done in piston ventilators and in descending bellows ventilator to reduce th incidence of ventilator induced volutrauma. In addition to the conventional volume control mode, modern anaesthesia ventilators also provide newer modes of ventilation such as synchronised intermittent mandatory ventilation, pressure-control ventilation and pressure-support ventilation (PSV). PSV mode is particularly useful for patients maintained on spontaneous respiration with laryngeal mask airway. Along with the innumerable benefits provided by these machines, there are various inherent hazards associated with the use of the ventilators in the operating room. To use these workstations safely, it is important for every Anaesthesiologist to have a basic understanding of the mechanics of these ventilators and breathing circuits.

  8. Anaesthesia ventilators

    Science.gov (United States)

    Jain, Rajnish K; Swaminathan, Srinivasan

    2013-01-01

    Anaesthesia ventilators are an integral part of all modern anaesthesia workstations. Automatic ventilators in the operating rooms, which were very simple with few modes of ventilation when introduced, have become very sophisticated with many advanced ventilation modes. Several systems of classification of anaesthesia ventilators exist based upon various parameters. Modern anaesthesia ventilators have either a double circuit, bellow design or a single circuit piston configuration. In the bellows ventilators, ascending bellows design is safer than descending bellows. Piston ventilators have the advantage of delivering accurate tidal volume. They work with electricity as their driving force and do not require a driving gas. To enable improved patient safety, several modifications were done in circle system with the different types of anaesthesia ventilators. Fresh gas decoupling is a modification done in piston ventilators and in descending bellows ventilator to reduce th incidence of ventilator induced volutrauma. In addition to the conventional volume control mode, modern anaesthesia ventilators also provide newer modes of ventilation such as synchronised intermittent mandatory ventilation, pressure-control ventilation and pressure-support ventilation (PSV). PSV mode is particularly useful for patients maintained on spontaneous respiration with laryngeal mask airway. Along with the innumerable benefits provided by these machines, there are various inherent hazards associated with the use of the ventilators in the operating room. To use these workstations safely, it is important for every Anaesthesiologist to have a basic understanding of the mechanics of these ventilators and breathing circuits. PMID:24249886

  9. Dimensionless study on dynamics of pressure controlled mechanical ventilation system

    International Nuclear Information System (INIS)

    Shi, Yan; Niu, Jinglong; Cai, Maolin; Xu, Weiqing

    2015-01-01

    Dynamics of mechanical ventilation system can be referred in pulmonary diagnostics and treatments. In this paper, to conveniently grasp the essential characteristics of mechanical ventilation system, a dimensionless model of mechanical ventilation system is presented. For the validation of the mathematical model, a prototype mechanical ventilation system of a lung simulator is proposed. Through the simulation and experimental studies on the dimensionless dynamics of the mechanical ventilation system, firstly, the mathematical model is proved to be authentic and reliable. Secondly, the dimensionless dynamics of the mechanical ventilation system are obtained. Last, the influences of key parameters on the dimensionless dynamics of the mechanical ventilation system are illustrated. The study provides a novel method to study the dynamic of mechanical ventilation system, which can be referred in the respiratory diagnostics and treatment.

  10. Dimensionless study on dynamics of pressure controlled mechanical ventilation system

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yan; Niu, Jinglong; Cai, Maolin; Xu, Weiqing [Beihang University, Beijing (Korea, Republic of)

    2015-02-15

    Dynamics of mechanical ventilation system can be referred in pulmonary diagnostics and treatments. In this paper, to conveniently grasp the essential characteristics of mechanical ventilation system, a dimensionless model of mechanical ventilation system is presented. For the validation of the mathematical model, a prototype mechanical ventilation system of a lung simulator is proposed. Through the simulation and experimental studies on the dimensionless dynamics of the mechanical ventilation system, firstly, the mathematical model is proved to be authentic and reliable. Secondly, the dimensionless dynamics of the mechanical ventilation system are obtained. Last, the influences of key parameters on the dimensionless dynamics of the mechanical ventilation system are illustrated. The study provides a novel method to study the dynamic of mechanical ventilation system, which can be referred in the respiratory diagnostics and treatment.

  11. Performance potential of mechanical ventilation systems with minimized pressure loss

    DEFF Research Database (Denmark)

    Terkildsen, Søren; Svendsen, Svend

    2013-01-01

    simulations that quantify fan power consumption, heating demand and indoor environmental conditions. The system was designed with minimal pressure loss in the duct system and heat exchanger. Also, it uses state-of-the-art components such as electrostatic precipitators, diffuse ceiling inlets and demand......In many locations mechanical ventilation has been the most widely used principle of ventilation over the last 50 years but the conventional system design must be revised to comply with future energy requirements. This paper examines the options and describes a concept for the design of mechanical...... ventilation systems with minimal pressure loss and minimal energy use. This can provide comfort ventilation and avoid overheating through increased ventilation and night cooling. Based on this concept, a test system was designed for a fictive office building and its performance was documented using building...

  12. Severe bronchopulmonary dysplasia improved by noninvasive positive pressure ventilation: a case report

    Directory of Open Access Journals (Sweden)

    Mann Christian

    2011-09-01

    Full Text Available Abstract Introduction This is the first report to describe the feasibility and effectiveness of noninvasive positive pressure ventilation in the secondary treatment of bronchopulmonary dysplasia. Case presentation A former male preterm of Caucasian ethnicity delivered at 29 weeks gestation developed severe bronchopulmonary dysplasia. At the age of six months he was in permanent tachypnea and dyspnea and in need of 100% oxygen with a flow of 2.0 L/minute via a nasal cannula. Intermittent nocturnal noninvasive positive pressure ventilation was then administered for seven hours daily. The ventilator was set at a positive end-expiratory pressure of 6 cmH2O, with pressure support of 4 cmH2O, trigger at 1.4 mL/second, and a maximum inspiratory time of 0.7 seconds. Over the course of seven weeks, the patient's maximum daytime fraction of inspired oxygen via nasal cannula decreased from 1.0 to 0.75, his respiratory rate from 64 breaths/minute to 50 breaths/minute and carbon dioxide from 58 mmHg to 44 mmHg. Conclusion Noninvasive positive pressure ventilation may be a novel therapeutic option for established severe bronchopulmonary dysplasia. In the case presented, noninvasive positive pressure ventilation achieved sustained improvement in ventilation and thus prepared our patient for safe home oxygen therapy.

  13. Some infant ventilators do not limit peak inspiratory pressure reliably during active expiration.

    Science.gov (United States)

    Kirpalani, H; Santos-Lyn, R; Roberts, R

    1988-09-01

    In order to minimize barotrauma in newborn infants with respiratory failure, peak inspiratory pressures should not exceed those required for adequate gas exchange. We examined whether four commonly used pressure-limited, constant flow ventilators limit pressure reliably during simulated active expiration against the inspiratory stroke of the ventilator. Three machines of each type were tested at 13 different expiratory flow rates (2 to 14 L/min). Flow-dependent pressure overshoot above a dialed pressure limit of 20 cm H2O was observed in all machines. However, the magnitude differed significantly between ventilators from different manufacturers (p = .0009). Pressure overshoot above 20 cm H2O was consistently lowest in the Healthdyne (0.8 cm H2O at 2 L/min, 3.6 cm H2O at 14 L/min) and highest in the Bourns BP200 (3.0 cm H2O at 2 L/min, 15.4 cm H2O at 14 L/min). We conclude that peak inspiratory pressure overshoots on pressure-limited ventilators occur during asynchronous expiration. This shortcoming may contribute to barotrauma in newborn infants who "fight" positive-pressure ventilation.

  14. Multicentre randomised controlled trial to investigate the usefulness of continuous pneumatic regulation of tracheal cuff pressure for reducing ventilator-associated pneumonia in mechanically ventilated severe trauma patients: the AGATE study protocol.

    Science.gov (United States)

    Marjanovic, Nicolas; Frasca, Denis; Asehnoune, Karim; Paugam, Catherine; Lasocki, Sigismond; Ichai, Carole; Lefrant, Jean-Yves; Leone, Marc; Dahyot-Fizelier, Claire; Pottecher, Julien; Falcon, Dominique; Veber, Benoit; Constantin, Jean-Michel; Seguin, Sabrina; Guénézan, Jérémy; Mimoz, Olivier

    2017-08-07

    Severe trauma represents the leading cause of mortality worldwide. While 80% of deaths occur within the first 24 hours after trauma, 20% occur later and are mainly due to healthcare-associated infections, including ventilator-associated pneumonia (VAP). Preventing underinflation of the tracheal cuff is recommended to reduce microaspiration, which plays a major role in the pathogenesis of VAP. Automatic devices facilitate the regulation of tracheal cuff pressure, and their implementation has the potential to reduce VAP. The objective of this work is to determine whether continuous regulation of tracheal cuff pressure using a pneumatic device reduces the incidence of VAP compared with intermittent control in severe trauma patients. This multicentre randomised controlled and open-label trial will include patients suffering from severe trauma who are admitted within the first 24 hours, who require invasive mechanical ventilation to longer than 48 hours. Their tracheal cuff pressure will be monitored either once every 8 hours (control group) or continuously using a pneumatic device (intervention group). The primary end point is the proportion of patients that develop VAP in the intensive care unit (ICU) at day 28. The secondary end points include the proportion of patients that develop VAP in the ICU, early (≤7 days) or late (>7 days) VAP, time until the first VAP diagnosis, the number of ventilator-free days and antibiotic-free days, the length of stay in the ICU, the proportion of patients with ventilator-associated events and that die during their ICU stay. This protocol has been approved by the ethics committee of Poitiers University Hospital, and will be carried out according to the principles of the Declaration of Helsinki and the Good Clinical Practice guidelines. The results of this study will be disseminated through presentation at scientific conferences and publication in peer-reviewed journals. Clinical Trials NCT02534974. © Article author(s) (or

  15. A sigmoidal fit for pressure-volume curves of idiopathic pulmonary fibrosis patients on mechanical ventilation: clinical implications

    Directory of Open Access Journals (Sweden)

    Juliana C. Ferreira

    2011-01-01

    Full Text Available OBJECTIVE: Respiratory pressure-volume curves fitted to exponential equations have been used to assess disease severity and prognosis in spontaneously breathing patients with idiopathic pulmonary fibrosis. Sigmoidal equations have been used to fit pressure-volume curves for mechanically ventilated patients but not for idiopathic pulmonary fibrosis patients. We compared a sigmoidal model and an exponential model to fit pressure-volume curves from mechanically ventilated patients with idiopathic pulmonary fibrosis. METHODS: Six idiopathic pulmonary fibrosis patients and five controls underwent inflation pressure-volume curves using the constant-flow technique during general anesthesia prior to open lung biopsy or thymectomy. We identified the lower and upper inflection points and fit the curves with an exponential equation, V = A-B.e-k.P, and a sigmoid equation, V = a+b/(1+e-(P-c/d. RESULTS: The mean lower inflection point for idiopathic pulmonary fibrosis patients was significantly higher (10.5 ± 5.7 cm H2O than that of controls (3.6 ± 2.4 cm H2O. The sigmoidal equation fit the pressure-volume curves of the fibrotic and control patients well, but the exponential equation fit the data well only when points below 50% of the inspiratory capacity were excluded. CONCLUSION: The elevated lower inflection point and the sigmoidal shape of the pressure-volume curves suggest that respiratory system compliance is decreased close to end-expiratory lung volume in idiopathic pulmonary fibrosis patients under general anesthesia and mechanical ventilation. The sigmoidal fit was superior to the exponential fit for inflation pressure-volume curves of anesthetized patients with idiopathic pulmonary fibrosis and could be useful for guiding mechanical ventilation during general anesthesia in this condition.

  16. Comparison of nasal continuous positive airway pressure delivered by seven ventilators using simulated neonatal breathing.

    Science.gov (United States)

    Drevhammar, Thomas; Nilsson, Kjell; Zetterström, Henrik; Jonsson, Baldvin

    2013-05-01

    Nasal continuous positive airway pressure (NCPAP) is an established treatment for respiratory distress in neonates. Most modern ventilators are able to provide NCPAP. There have been no large studies examining the properties of NCPAP delivered by ventilators. The aim of this study was to compare pressure stability and imposed work of breathing (iWOB) for NCPAP delivered by ventilators using simulated neonatal breathing. Experimental in vitro study. Research laboratory in Sweden. None. Neonatal breathing was simulated using a mechanical lung simulator. Seven ventilators were tested at different CPAP levels using two breath profiles. Pressure stability and iWOB were determined. Results from three ventilators revealed that they provided a slight pressure support. For these ventilators, iWOB could not be calculated. There were large differences in pressure stability and iWOB between the tested ventilators. For simulations using the 3.4-kg breath profile, the pressure swings around the mean pressure were more than five times greater, and iWOB more than four times higher, for the system with the highest measured values compared with the system with the lowest. Overall, the Fabian ventilator was the most pressure stable system. Evita XL and SERVO-i were found more pressure stable than Fabian in some simulations. The results for iWOB were in accordance with pressure stability for systems that allowed determination of this variable. Some of the tested ventilators unexpectedly provided a minor degree of pressure support. In terms of pressure stability, we have not found any advantages of ventilators as a group compared with Bubble CPAP, Neopuff, and variable flow generators that were tested in our previous study. The variation between individual systems is great within both categories. The clinical importance of these findings needs further investigation.

  17. Physiologic Evaluation of Ventilation Perfusion Mismatch and Respiratory Mechanics at Different Positive End-expiratory Pressure in Patients Undergoing Protective One-lung Ventilation.

    Science.gov (United States)

    Spadaro, Savino; Grasso, Salvatore; Karbing, Dan Stieper; Fogagnolo, Alberto; Contoli, Marco; Bollini, Giacomo; Ragazzi, Riccardo; Cinnella, Gilda; Verri, Marco; Cavallesco, Narciso Giorgio; Rees, Stephen Edward; Volta, Carlo Alberto

    2018-03-01

    Arterial oxygenation is often impaired during one-lung ventilation, due to both pulmonary shunt and atelectasis. The use of low tidal volume (VT) (5 ml/kg predicted body weight) in the context of a lung-protective approach exacerbates atelectasis. This study sought to determine the combined physiologic effects of positive end-expiratory pressure and low VT during one-lung ventilation. Data from 41 patients studied during general anesthesia for thoracic surgery were collected and analyzed. Shunt fraction, high V/Q and respiratory mechanics were measured at positive end-expiratory pressure 0 cm H2O during bilateral lung ventilation and one-lung ventilation and, subsequently, during one-lung ventilation at 5 or 10 cm H2O of positive end-expiratory pressure. Shunt fraction and high V/Q were measured using variation of inspired oxygen fraction and measurement of respiratory gas concentration and arterial blood gas. The level of positive end-expiratory pressure was applied in random order and maintained for 15 min before measurements. During one-lung ventilation, increasing positive end-expiratory pressure from 0 cm H2O to 5 cm H2O and 10 cm H2O resulted in a shunt fraction decrease of 5% (0 to 11) and 11% (5 to 16), respectively (P ventilation, high positive end-expiratory pressure levels improve pulmonary function without increasing high V/Q and reduce driving pressure.

  18. The deflation limb of the pressure-volume relationship in infants during high-frequency ventilation.

    Science.gov (United States)

    Tingay, David G; Mills, John F; Morley, Colin J; Pellicano, Anastasia; Dargaville, Peter A

    2006-02-15

    The importance of applying high-frequency oscillatory ventilation with a high lung volume strategy in infants is well established. Currently, a lack of reliable methods for assessing lung volume limits clinicians' ability to achieve the optimum volume range. To map the pressure-volume relationship of the lung during high-frequency oscillatory ventilation in infants, to determine at what point ventilation is being applied clinically, and to describe the relationship between airway pressure, lung volume, and oxygenation. In 12 infants, a partial inflation limb and the deflation limb of the pressure-volume relationship were mapped using a quasi-static lung volume optimization maneuver. This involved stepwise airway pressure increments to total lung capacity, followed by decrements until the closing pressure of the lung was identified. Lung volume and oxygen saturation were recorded at each airway pressure. Lung volume was measured using respiratory inductive plethysmography. A distinct deflation limb could be mapped in each infant. Overall, oxygenation and lung volume were improved by applying ventilation on the deflation limb. Maximal lung volume and oxygenation occurred on the deflation limb at a mean airway pressure of 3 and 5 cm H(2)O below the airway pressure approximating total lung capacity, respectively. Using current ventilation strategies, all infants were being ventilated near the inflation limb. It is possible to delineate the deflation limb in infants receiving high-frequency oscillatory ventilation; in doing so, greater lung volume and oxygenation can be achieved, often at lower airway pressures.

  19. Transdiaphragmatic pressure in quadriplegic individuals ventilated by diaphragmatic pacemaker.

    Science.gov (United States)

    Garrido-García, H.; Martín-Escribano, P.; Palomera-Frade, J.; Arroyo, O.; Alonso-Calderón, J. L.; Mazaira-Alvarez, J.

    1996-01-01

    BACKGROUND: Electrophrenic pacing can be used in the management of ventilatory failure in quadriplegic patients. A study was undertaken to determine the pattern of transdiaphragmatic pressure (PDI) during the conditioning phase of electrophrenic pacing to see if it had a possible role in optimising the process of conditioning. METHODS: The tidal volume (TV) and PDI were measured in a group of six quadriplegic patients commencing ventilation by low frequency pulse stimulation (7-10 Hz) and low respiratory rate stimulation (quadriplegia due to high spinal injury can be maintained with ventilation by continuous electrophrenic pacing. The control criteria used in this study for pacing were tidal volume and the patient's tolerance, and the PDI measurement did not contribute any additional information to help with managing the conditioning process. PMID:8733497

  20. Hemodynamic differences between continual positive and two types of negative pressure ventilation.

    Science.gov (United States)

    Lockhat, D; Langleben, D; Zidulka, A

    1992-09-01

    In seven anesthetized dogs, ventilated with matching lung volumes, tidal volumes, and respiratory rates, we compared the effects on cardiac output (CO), arterial venous oxygen saturation difference (SaO2 - SVO2), and femoral and inferior vena cava pressure (1) intermittent positive pressure ventilation with positive end-expiratory pressure (CPPV); (2) iron-lung ventilation with negative end-expiratory pressure (ILV-NEEP); (3) grid and wrap ventilation with NEEP applied to the thorax and upper abdomen (G&W-NEEP). The values of CO and SaO2 - SVO2 with ILV-NEEP were similar to those with CPPV. However, with G&W-NEEP as compared with ILV-NEEP, mean CO was greater (2.9 versus 2.6 L/min, p = 0.02) and mean (SaO2 - SVO2) was lower (26.6% versus 28.3%, p = NS). Mean PFEM-IVC was higher with G&W-NEEP than with the other types of ventilation. We conclude that (1) ILV-NEEP is hemodynamically equivalent to CPPV and (2) G&W-NEEP has less adverse hemodynamic consequences. has less adverse hemodynamic consequences.

  1. Trigger performance of mid-level ICU mechanical ventilators during assisted ventilation: a bench study.

    Science.gov (United States)

    Ferreira, Juliana C; Chipman, Daniel W; Kacmarek, Robert M

    2008-09-01

    To compare the triggering performance of mid-level ICU mechanical ventilators with a standard ICU mechanical ventilator. Experimental bench study. The respiratory care laboratory of a university-affiliated teaching hospital. A computerized mechanical lung model, the IngMar ASL5000. Ten mid-level ICU ventilators were compared to an ICU ventilator at two levels of lung model effort, three combinations of respiratory mechanics (normal, COPD and ARDS) and two modes of ventilation, volume and pressure assist/control. A total of 12 conditions were compared. Performance varied widely among ventilators. Mean inspiratory trigger time was ventilators. The mean inspiratory delay time (time from initiation of the breath to return of airway pressure to baseline) was longer than that for the ICU ventilator for all tested ventilators except one. The pressure drop during triggering (Ptrig) was comparable with that of the ICU ventilator for only two ventilators. Expiratory Settling Time (time for pressure to return to baseline) had the greatest variability among ventilators. Triggering differences among these mid-level ICU ventilators and with the ICU ventilator were identified. Some of these ventilators had a much poorer triggering response with high inspiratory effort than the ICU ventilator. These ventilators do not perform as well as ICU ventilators in patients with high ventilatory demand.

  2. Demand controlled ventilation; Behovsstyrt ventilasjon

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Henning Holm

    2006-07-01

    The terms CAV and VAV have been known terms for many years in the ventilation business. The terms are also included in building regulations, but the time is now right to focus on demand controlled ventilation (DCV). The new building regulations and the accompanying energy framework underline the need for a more nuanced thinking when it comes to controlling ventilation systems. Descriptions and further details of the ventilation systems are provided (ml)

  3. Demand controlled ventilation in a bathroom

    DEFF Research Database (Denmark)

    Mortensen, Dorthe Kragsig; Nielsen, Toke Rammer; Topp, Claus

    2008-01-01

    consumption during periods where the demand for ventilation is low and poor indoor climate during periods where the demand for ventilation is high. Controlling the ventilation rate by demand can improve the energy performance of the ventilation system and the indoor climate. This paper compares the indoor...... climate and energy consumption of a Constant Air Volume (CAV) system and a Demand Controlled Ventilation (DCV) system for two different bathroom designs. The air change rate of the CAV system corresponded to 0.5h-1. The ventilation rate of the DCV system was controlled by occupancy and by the relative...

  4. A prototype of volume-controlled tidal liquid ventilator using independent piston pumps.

    Science.gov (United States)

    Robert, Raymond; Micheau, Philippe; Cyr, Stéphane; Lesur, Olivier; Praud, Jean-Paul; Walti, Hervé

    2006-01-01

    Liquid ventilation using perfluorochemicals (PFC) offers clear theoretical advantages over gas ventilation, such as decreased lung damage, recruitment of collapsed lung regions, and lavage of inflammatory debris. We present a total liquid ventilator designed to ventilate patients with completely filled lungs with a tidal volume of PFC liquid. The two independent piston pumps are volume controlled and pressure limited. Measurable pumping errors are corrected by a programmed supervisor module, which modifies the inserted or withdrawn volume. Pump independence also allows easy functional residual capacity modifications during ventilation. The bubble gas exchanger is divided into two sections such that the PFC exiting the lungs is not in contact with the PFC entering the lungs. The heating system is incorporated into the metallic base of the gas exchanger, and a heat-sink-type condenser is placed on top of the exchanger to retrieve PFC vapors. The prototype was tested on 5 healthy term newborn lambs (<5 days old). The results demonstrate the efficiency and safety of the prototype in maintaining adequate gas exchange, normal acido-basis equilibrium, and cardiovascular stability during a short, 2-hour total liquid ventilator. Airway pressure, lung volume, and ventilation scheme were maintained in the targeted range.

  5. Noninvasive positive pressure ventilation in acute asthmatic attack

    Directory of Open Access Journals (Sweden)

    A. Soroksky

    2010-03-01

    Full Text Available Asthma is characterised by reversible airway obstruction. In most patients, control of disease activity is easily achieved. However, in a small minority, asthma may be fatal. Between the two extremes lie patients with severe asthmatic attacks, refractory to standard treatment. These patients are at an increased risk of recurrent severe attacks, with respiratory failure, and mechanical ventilation. Invasive mechanical ventilation of the asthmatic patient is associated with a higher risk of complications and, therefore, is a measure of last resort. Noninvasive positive pressure ventilation (NPPV is another treatment modality that may be beneficial in patients with severe asthmatic attack who are at an increased risk of developing respiratory failure. These patients have the potential to benefit from early respiratory support in the form of NPPV. However, reports of NPPV in asthmatic patients are scarce, and its usage in asthmatic attacks is, therefore, still controversial. Only a few reports of NPPV in asthma have been published over the last decade. These studies mostly involve small numbers of patients and those who have problematic methodology. In this article we review the available evidence for NPPV in asthma and try to formulate our recommendations for NPPV application in asthma based on the available evidence and reports.

  6. The growing role of noninvasive ventilation in patients requiring prolonged mechanical ventilation.

    Science.gov (United States)

    Hess, Dean R

    2012-06-01

    For many patients with chronic respiratory failure requiring ventilator support, noninvasive ventilation (NIV) is preferable to invasive support by tracheostomy. Currently available evidence does not support the use of nocturnal NIV in unselected patients with stable COPD. Several European studies have reported benefit for high intensity NIV, in which setting of inspiratory pressure and respiratory rate are selected to achieve normocapnia. There have also been studies reporting benefit for the use of NIV as an adjunct to exercise training. NIV may be useful as an adjunct to airway clearance techniques in patients with cystic fibrosis. Accumulating evidence supports the use of NIV in patients with obesity hypoventilation syndrome. There is considerable observational evidence supporting the use of NIV in patients with chronic respiratory failure related to neuromuscular disease, and one randomized controlled trial reported that the use of NIV was life-prolonging in patients with amyotrophic lateral sclerosis. A variety of interfaces can be used to provide NIV in patients with stable chronic respiratory failure. The mouthpiece is an interface that is unique in this patient population, and has been used with success in patients with neuromuscular disease. Bi-level pressure ventilators are commonly used for NIV, although there are now a new generation of intermediate ventilators that are portable, have a long battery life, and can be used for NIV and invasive applications. Pressure support ventilation, pressure controlled ventilation, and volume controlled ventilation have been used successfully for chronic applications of NIV. New modes have recently become available, but their benefits await evidence to support their widespread use. The success of NIV in a given patient population depends on selection of an appropriate patient, selection of an appropriate interface, selection of an appropriate ventilator and ventilator settings, the skills of the clinician, the

  7. Sensor-based demand controlled ventilation

    Energy Technology Data Exchange (ETDEWEB)

    De Almeida, A.T. [Universidade de Coimbra (Portugal). Dep. Eng. Electrotecnica; Fisk, W.J. [Lawrence Berkeley National Lab., CA (United States)

    1997-07-01

    In most buildings, occupancy and indoor pollutant emission rates vary with time. With sensor-based demand-controlled ventilation (SBDCV), the rate of ventilation (i.e., rate of outside air supply) also varies with time to compensate for the changes in pollutant generation. In other words, SBDCV involves the application of sensing, feedback and control to modulate ventilation. Compared to ventilation without feedback, SBDCV offers two potential advantages: (1) better control of indoor pollutant concentrations; and (2) lower energy use and peak energy demand. SBDCV has the potential to improve indoor air quality by increasing the rate of ventilation when indoor pollutant generation rates are high and occupants are present. SBDCV can also save energy by decreasing the rate of ventilation when indoor pollutant generation rates are low or occupants are absent. After providing background information on indoor air quality and ventilation, this report provides a relatively comprehensive discussion of SBDCV. Topics covered in the report include basic principles of SBDCV, sensor technologies, technologies for controlling air flow rates, case studies of SBDCV, application of SBDCV to laboratory buildings, and research needs. SBDCV appears to be an increasingly attractive technology option. Based on the review of literature and theoretical considerations, the application of SBDCV has the potential to be cost-effective in applications with the following characteristics: (a) a single or small number of dominant pollutants, so that ventilation sufficient to control the concentration of the dominant pollutants provides effective control of all other pollutants; (b) large buildings or rooms with unpredictable temporally variable occupancy or pollutant emission; and (c) climates with high heating or cooling loads or locations with expensive energy.

  8. Demand Controlled Ventilation in a Combined Ventilation and Radiator System

    OpenAIRE

    Hesaraki, Arefeh; Holmberg, Sture

    2013-01-01

    With growing concerns for efficient and sustainable energy treatment in buildings there is a need for balanced and intelligent ventilation solutions. This paper presents a strategy for demand controlled ventilation with ventilation radiators, a combined heating and ventilation system. The ventilation rate was decreased from normal requirements (per floor area) of 0.375 l·s-1·m-2 to 0.100 l·s-1·m-2 when the residence building was un-occupied. The energy saving potential due to decreased ventil...

  9. Effects of positive end-expiratory pressure and recruitment maneuvers in a ventilator-induced injury mouse model.

    Directory of Open Access Journals (Sweden)

    Laura A Cagle

    Full Text Available Positive-pressure mechanical ventilation is an essential therapeutic intervention, yet it causes the clinical syndrome known as ventilator-induced lung injury. Various lung protective mechanical ventilation strategies have attempted to reduce or prevent ventilator-induced lung injury but few modalities have proven effective. A model that isolates the contribution of mechanical ventilation on the development of acute lung injury is needed to better understand biologic mechanisms that lead to ventilator-induced lung injury.To evaluate the effects of positive end-expiratory pressure and recruitment maneuvers in reducing lung injury in a ventilator-induced lung injury murine model in short- and longer-term ventilation.5-12 week-old female BALB/c mice (n = 85 were anesthetized, placed on mechanical ventilation for either 2 hrs or 4 hrs with either low tidal volume (8 ml/kg or high tidal volume (15 ml/kg with or without positive end-expiratory pressure and recruitment maneuvers.Alteration of the alveolar-capillary barrier was noted at 2 hrs of high tidal volume ventilation. Standardized histology scores, influx of bronchoalveolar lavage albumin, proinflammatory cytokines, and absolute neutrophils were significantly higher in the high-tidal volume ventilation group at 4 hours of ventilation. Application of positive end-expiratory pressure resulted in significantly decreased standardized histology scores and bronchoalveolar absolute neutrophil counts at low- and high-tidal volume ventilation, respectively. Recruitment maneuvers were essential to maintain pulmonary compliance at both 2 and 4 hrs of ventilation.Signs of ventilator-induced lung injury are evident soon after high tidal volume ventilation (as early as 2 hours and lung injury worsens with longer-term ventilation (4 hrs. Application of positive end-expiratory pressure and recruitment maneuvers are protective against worsening VILI across all time points. Dynamic compliance can be used guide

  10. Effects of positive end-expiratory pressure and recruitment maneuvers in a ventilator-induced injury mouse model

    Science.gov (United States)

    Franzi, Lisa M.; Linderholm, Angela L.; Last, Jerold A.; Adams, Jason Y.; Harper, Richart W.

    2017-01-01

    Background Positive-pressure mechanical ventilation is an essential therapeutic intervention, yet it causes the clinical syndrome known as ventilator-induced lung injury. Various lung protective mechanical ventilation strategies have attempted to reduce or prevent ventilator-induced lung injury but few modalities have proven effective. A model that isolates the contribution of mechanical ventilation on the development of acute lung injury is needed to better understand biologic mechanisms that lead to ventilator-induced lung injury. Objectives To evaluate the effects of positive end-expiratory pressure and recruitment maneuvers in reducing lung injury in a ventilator-induced lung injury murine model in short- and longer-term ventilation. Methods 5–12 week-old female BALB/c mice (n = 85) were anesthetized, placed on mechanical ventilation for either 2 hrs or 4 hrs with either low tidal volume (8 ml/kg) or high tidal volume (15 ml/kg) with or without positive end-expiratory pressure and recruitment maneuvers. Results Alteration of the alveolar-capillary barrier was noted at 2 hrs of high tidal volume ventilation. Standardized histology scores, influx of bronchoalveolar lavage albumin, proinflammatory cytokines, and absolute neutrophils were significantly higher in the high-tidal volume ventilation group at 4 hours of ventilation. Application of positive end-expiratory pressure resulted in significantly decreased standardized histology scores and bronchoalveolar absolute neutrophil counts at low- and high-tidal volume ventilation, respectively. Recruitment maneuvers were essential to maintain pulmonary compliance at both 2 and 4 hrs of ventilation. Conclusions Signs of ventilator-induced lung injury are evident soon after high tidal volume ventilation (as early as 2 hours) and lung injury worsens with longer-term ventilation (4 hrs). Application of positive end-expiratory pressure and recruitment maneuvers are protective against worsening VILI across all time points

  11. Effects of positive end-expiratory pressure and recruitment maneuvers in a ventilator-induced injury mouse model.

    Science.gov (United States)

    Cagle, Laura A; Franzi, Lisa M; Linderholm, Angela L; Last, Jerold A; Adams, Jason Y; Harper, Richart W; Kenyon, Nicholas J

    2017-01-01

    Positive-pressure mechanical ventilation is an essential therapeutic intervention, yet it causes the clinical syndrome known as ventilator-induced lung injury. Various lung protective mechanical ventilation strategies have attempted to reduce or prevent ventilator-induced lung injury but few modalities have proven effective. A model that isolates the contribution of mechanical ventilation on the development of acute lung injury is needed to better understand biologic mechanisms that lead to ventilator-induced lung injury. To evaluate the effects of positive end-expiratory pressure and recruitment maneuvers in reducing lung injury in a ventilator-induced lung injury murine model in short- and longer-term ventilation. 5-12 week-old female BALB/c mice (n = 85) were anesthetized, placed on mechanical ventilation for either 2 hrs or 4 hrs with either low tidal volume (8 ml/kg) or high tidal volume (15 ml/kg) with or without positive end-expiratory pressure and recruitment maneuvers. Alteration of the alveolar-capillary barrier was noted at 2 hrs of high tidal volume ventilation. Standardized histology scores, influx of bronchoalveolar lavage albumin, proinflammatory cytokines, and absolute neutrophils were significantly higher in the high-tidal volume ventilation group at 4 hours of ventilation. Application of positive end-expiratory pressure resulted in significantly decreased standardized histology scores and bronchoalveolar absolute neutrophil counts at low- and high-tidal volume ventilation, respectively. Recruitment maneuvers were essential to maintain pulmonary compliance at both 2 and 4 hrs of ventilation. Signs of ventilator-induced lung injury are evident soon after high tidal volume ventilation (as early as 2 hours) and lung injury worsens with longer-term ventilation (4 hrs). Application of positive end-expiratory pressure and recruitment maneuvers are protective against worsening VILI across all time points. Dynamic compliance can be used guide the frequency

  12. Ventilation systems as an effective tool for control of radon daughter concentration in mines

    International Nuclear Information System (INIS)

    Dory, A.B.

    1981-10-01

    Experience in mines shows that a very high concentration of radon daughters builds up in an unventilated dead end heading. Even minimal air movement results in a drastic reduction in radon daughter concentration. Designing the ventilation system to provide an optimized flow of fresh air into the workplace results in acceptable climatic conditions and radon daughter levels. The example of the Director fluorospar mine in Newfoundland is used to illustrate the actual design and operation of a ventilation system that provided effective radon daughter control. It was found at this mine that the age of the air underground should be kept as low as possible; that no areas of the mine should be left unventilated unless they could be kept at negative pressure; that a comparatively simple remote control and monitoring system helped stabilize ventilation and detected upsets; that the ventilation system should operate continuously, even when the mine is shut down for short periods; and that pressurization of the mine seemed to inhibit radon influx

  13. Control study of pulmonary surfactant combined with CPAP and BIPAP ventilation modes respectively in treatment of neonatal NRDS

    Directory of Open Access Journals (Sweden)

    Yao Liu

    2016-04-01

    Full Text Available Objective: To analyze the differences in effect of pulmonary surfactant combined with CPAP and BIPAP ventilation modes respectively in treatment of neonatal NRDS. Methods: A total of 50 cases of children with neonatal respiratory distress syndrome (NRDS born and receiving treatment in our hospital from August 2012 to January 2015 were selected as research subjects and randomly divided into observation group and control group, each with 25 cases. Control group received pulmonary surfactant combined with CPAP ventilation mode treatment, observation group received pulmonary surfactant combined with BIPAP ventilation mode treatment, and then differences in blood gas indicators and mechanical ventilation parameters, pulmonary artery pressure, endothelin and nitric oxide levels, blood coagulation and anticoagulation indicators and protein expression levels of CD24, TNF-α, IL-6 and IL-17A of two groups after treatment were compared. Results: PaO2, PH value and oxygenation index of observation group after treatment were higher than those of control group, and PaCO2, positive end-expiratory pressure, peak inspiratory pressure and inspired oxygen concentration were lower than those of control group; pulmonary artery pressure and EF-1 level of observation group after treatment were lower than those of control group, and NO level was higher than that of control group; PC, TPS and AT-Ⅲ levels of observation group after treatment were higher than those of control group, and D-D and vWF levels were lower than those of control group; protein expression of CD24 and IL-6 of observation group after treatment were lower than those of control group, and protein expression of TNF-α and IL-17A were higher than those of control group. Conclusion: Pulmonary surfactant combined with BIPAP ventilation mode treatment of children with NRDS can effectively optimize ventilation function and realize homeostasis, and it has active clinical significance.

  14. : ventilators for noninvasive ventilation

    OpenAIRE

    Fauroux , Brigitte; Leroux , Karl; Desmarais , Gilbert; Isabey , Daniel; Clément , Annick; Lofaso , Frédéric; Louis , Bruno

    2008-01-01

    International audience; The aim of the present study was to evaluate the performance characteristics of all the ventilators proposed for home noninvasive positive-pressure ventilation in children in France. The ventilators (one volume-targeted, 12 pressure-targeted and four dual) were evaluated on a bench which simulated six different paediatric ventilatory patterns. For each ventilator, the quality of the inspiratory and expiratory trigger and the ability to reach and maintain the preset pre...

  15. Intraoperative mechanical ventilation strategies in patients undergoing one-lung ventilation: a meta-analysis.

    Science.gov (United States)

    Liu, Zhen; Liu, Xiaowen; Huang, Yuguang; Zhao, Jing

    2016-01-01

    Postoperative pulmonary complications (PPCs), which are not uncommon in one-lung ventilation, are among the main causes of postoperative death after lung surgery. Intra-operative ventilation strategies can influence the incidence of PPCs. High tidal volume (V T) and increased airway pressure may lead to lung injury, while pressure-controlled ventilation and lung-protective strategies with low V T may have protective effects against lung injury. In this meta-analysis, we aim to investigate the effects of different ventilation strategies, including pressure-controlled ventilation (PCV), volume-controlled ventilation (VCV), protective ventilation (PV) and conventional ventilation (CV), on PPCs in patients undergoing one-lung ventilation. We hypothesize that both PV with low V T and PCV have protective effects against PPCs in one-lung ventilation. A systematic search (PubMed, EMBASE, the Cochrane Library, and Ovid MEDLINE; in May 2015) was performed for randomized trials comparing PCV with VCV or comparing PV with CV in one-lung ventilation. Methodological quality was evaluated using the Cochrane tool for risk. The primary outcome was the incidence of PPCs. The secondary outcomes included the length of hospital stay, intraoperative plateau airway pressure (Pplateau), oxygen index (PaO2/FiO2) and mean arterial pressure (MAP). In this meta-analysis, 11 studies (436 patients) comparing PCV with VCV and 11 studies (657 patients) comparing PV with CV were included. Compared to CV, PV decreased the incidence of PPCs (OR 0.29; 95 % CI 0.15-0.57; P < 0.01) and intraoperative Pplateau (MD -3.75; 95 % CI -5.74 to -1.76; P < 0.01) but had no significant influence on the length of hospital stay or MAP. Compared to VCV, PCV decreased intraoperative Pplateau (MD -1.46; 95 % CI -2.54 to -0.34; P = 0.01) but had no significant influence on PPCs, PaO2/FiO2 or MAP. PV with low V T was associated with the reduced incidence of PPCs compared to CV. However, PCV and VCV had similar

  16. Effects of Modes, Obesity, and Body Position on Non-invasive Positive Pressure Ventilation Success in the Intensive Care Unit: A Randomized Controlled Study.

    Science.gov (United States)

    Türk, Murat; Aydoğdu, Müge; Gürsel, Gül

    2018-01-01

    Different outcomes and success rates of non-invasive positive pressure ventilation (NPPV) in patients with acute hypercapnic respiratory failure (AHRF) still pose a significant problem in intensive care units. Previous studies investigating different modes, body positioning, and obesity-associated hypoventilation in patients with chronic respiratory failure showed that these factors may affect ventilator mechanics to achieve a better minute ventilation. This study tried to compare pressure support (BiPAP-S) and average volume targeted pressure support (AVAPS-S) modes in patients with acute or acute-on-chronic hypercapnic respiratory failure. In addition, short-term effects of body position and obesity within both modes were analyzed. We conducted a randomized controlled study in a 7-bed intensive care unit. The course of blood gas analysis and differences in ventilation variables were compared between BiPAP-S (n=33) and AVAPS-S (n=29), and between semi-recumbent and lateral positions in both modes. No difference was found in the length of hospital stay and the course of PaCO2, pH, and HCO3 levels between the modes. There was a mean reduction of 5.7±4.1 mmHg in the PaCO2 levels in the AVAPS-S mode, and 2.7±2.3 mmHg in the BiPAP-S mode per session (ppositioning had no notable effect in both modes. Although the decrease in the PaCO2 levels in the AVAPS-S mode per session was remarkably high, the course was similar in both modes. Furthermore, obesity and body positioning had no prominent effect on the PaCO2 response and ventilator mechanics. Post hoc power analysis showed that the sample size was not adequate to detect a significant difference between the modes.

  17. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury.

    Science.gov (United States)

    Yoshida, Takeshi; Uchiyama, Akinori; Matsuura, Nariaki; Mashimo, Takashi; Fujino, Yuji

    2012-05-01

    We investigated whether potentially injurious transpulmonary pressure could be generated by strong spontaneous breathing and exacerbate lung injury even when plateau pressure is limited to ventilation, each combined with weak or strong spontaneous breathing effort. Inspiratory pressure for low tidal volume ventilation was set at 10 cm H2O and tidal volume at 6 mL/kg. For moderate tidal volume ventilation, the values were 20 cm H2O and 7-9 mL/kg. The groups were: low tidal volume ventilation+spontaneous breathingweak, low tidal volume ventilation+spontaneous breathingstrong, moderate tidal volume ventilation+spontaneous breathingweak, and moderate tidal volume ventilation+spontaneous breathingstrong. Each group had the same settings for positive end-expiratory pressure of 8 cm H2O. Respiratory variables were measured every 60 mins. Distribution of lung aeration and alveolar collapse were histologically evaluated. Low tidal volume ventilation+spontaneous breathingstrong showed the most favorable oxygenation and compliance of respiratory system, and the best lung aeration. By contrast, in moderate tidal volume ventilation+spontaneous breathingstrong, the greatest atelectasis with numerous neutrophils was observed. While we applied settings to maintain plateau pressure at ventilation+spontaneous breathingstrong, transpulmonary pressure rose >33 cm H2O. Both minute ventilation and respiratory rate were higher in the strong spontaneous breathing groups. Even when plateau pressure is limited to mechanical ventilation, transpulmonary pressure and tidal volume should be strictly controlled to prevent further lung injury.

  18. High frequency jet ventilation and intermittent positive pressure ventilation. Effect of cerebral blood flow in patients after open heart surgery

    International Nuclear Information System (INIS)

    Pittet, J.F.; Forster, A.; Suter, P.M.

    1990-01-01

    Attenuation of ventilator-synchronous pressure fluctuations of intracranial pressure has been demonstrated during high frequency ventilation in animal and human studies, but the consequences of this effect on cerebral blood flow have not been investigated in man. We compared the effects of high frequency jet ventilation and intermittent positive pressure ventilation on CBF in 24 patients investigated three hours after completion of open-heart surgery. The patients were investigated during three consecutive periods with standard sedation (morphine, pancuronium): a. IPPV; b. HFJV; c. IPPV. Partial pressure of arterial CO 2 (PaCO 2 : 4.5-5.5 kPa) and rectal temperature (35.5 to 37.5 degree C) were maintained constant during the study. The CBF was measured by intravenous 133 Xe washout technique. The following variables were derived from the cerebral clearance of 133 Xe: the rapid compartment flow, the initial slope index, ie, a combination of the rapid and the slow compartment flows, and the ratio of fast compartment flow over total CBF (FF). Compared to IPPV, HFJV applied to result in the same mean airway pressure did not produce any change in pulmonary gas exchange, mean systemic arterial pressure, and cardiac index. Similarly, CBF was not significantly altered by HFJV. However, important variations of CBF values were observed in three patients, although the classic main determinants of CBF (PaCO 2 , cerebral perfusion pressure, Paw, temperature) remained unchanged. Our results suggest that in patients with normal systemic hemodynamics, the effects of HFJV and IPPV on CBF are comparable at identical levels of mean airway pressure

  19. Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anaesthesia: a meta-analysis of individual patient data.

    Science.gov (United States)

    Neto, Ary Serpa; Hemmes, Sabrine N T; Barbas, Carmen S V; Beiderlinden, Martin; Fernandez-Bustamante, Ana; Futier, Emmanuel; Gajic, Ognjen; El-Tahan, Mohamed R; Ghamdi, Abdulmohsin A Al; Günay, Ersin; Jaber, Samir; Kokulu, Serdar; Kozian, Alf; Licker, Marc; Lin, Wen-Qian; Maslow, Andrew D; Memtsoudis, Stavros G; Reis Miranda, Dinis; Moine, Pierre; Ng, Thomas; Paparella, Domenico; Ranieri, V Marco; Scavonetto, Federica; Schilling, Thomas; Selmo, Gabriele; Severgnini, Paolo; Sprung, Juraj; Sundar, Sugantha; Talmor, Daniel; Treschan, Tanja; Unzueta, Carmen; Weingarten, Toby N; Wolthuis, Esther K; Wrigge, Hermann; Amato, Marcelo B P; Costa, Eduardo L V; de Abreu, Marcelo Gama; Pelosi, Paolo; Schultz, Marcus J

    2016-04-01

    Protective mechanical ventilation strategies using low tidal volume or high levels of positive end-expiratory pressure (PEEP) improve outcomes for patients who have had surgery. The role of the driving pressure, which is the difference between the plateau pressure and the level of positive end-expiratory pressure is not known. We investigated the association of tidal volume, the level of PEEP, and driving pressure during intraoperative ventilation with the development of postoperative pulmonary complications. We did a meta-analysis of individual patient data from randomised controlled trials of protective ventilation during general anesthaesia for surgery published up to July 30, 2015. The main outcome was development of postoperative pulmonary complications (postoperative lung injury, pulmonary infection, or barotrauma). We included data from 17 randomised controlled trials, including 2250 patients. Multivariate analysis suggested that driving pressure was associated with the development of postoperative pulmonary complications (odds ratio [OR] for one unit increase of driving pressure 1·16, 95% CI 1·13-1·19; pprotective ventilation on development of pulmonary complications (p=0·027). In two studies that compared low with high PEEP during low tidal volume ventilation, an increase in the level of PEEP that resulted in an increase in driving pressure was associated with more postoperative pulmonary complications (OR 3·11, 95% CI 1·39-6·96; p=0·006). In patients having surgery, intraoperative high driving pressure and changes in the level of PEEP that result in an increase of driving pressure are associated with more postoperative pulmonary complications. However, a randomised controlled trial comparing ventilation based on driving pressure with usual care is needed to confirm these findings. None. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Inhibitory Effect of Nasal Intermittent Positive Pressure Ventilation on Gastroesophageal Reflux.

    Directory of Open Access Journals (Sweden)

    Danny Cantin

    Full Text Available Non-invasive intermittent positive pressure ventilation can lead to esophageal insufflations and in turn to gastric distension. The fact that the latter induces transient relaxation of the lower esophageal sphincter implies that it may increase gastroesophageal refluxes. We previously reported that nasal Pressure Support Ventilation (nPSV, contrary to nasal Neurally-Adjusted Ventilatory Assist (nNAVA, triggers active inspiratory laryngeal closure. This suggests that esophageal insufflations are more frequent in nPSV than in nNAVA. The objectives of the present study were to test the hypotheses that: i gastroesophageal refluxes are increased during nPSV compared to both control condition and nNAVA; ii esophageal insufflations occur more frequently during nPSV than nNAVA. Polysomnographic recordings and esophageal multichannel intraluminal impedance pHmetry were performed in nine chronically instrumented newborn lambs to study gastroesophageal refluxes, esophageal insufflations, states of alertness, laryngeal closure and respiration. Recordings were repeated without sedation in control condition, nPSV (15/4 cmH2O and nNAVA (~ 15/4 cmH2O. The number of gastroesophageal refluxes recorded over six hours, expressed as median (interquartile range, decreased during both nPSV (1 (0, 3 and nNAVA [1 (0, 3] compared to control condition (5 (3, 10, (p < 0.05. Meanwhile, the esophageal insufflation index did not differ between nPSV (40 (11, 61 h-1 and nNAVA (10 (9, 56 h-1 (p = 0.8. In conclusion, nPSV and nNAVA similarly inhibit gastroesophageal refluxes in healthy newborn lambs at pressures that do not lead to gastric distension. In addition, the occurrence of esophageal insufflations is not significantly different between nPSV and nNAVA. The strong inhibitory effect of nIPPV on gastroesophageal refluxes appears identical to that reported with nasal continuous positive airway pressure.

  1. Development of a Residential Integrated Ventilation Controller

    Energy Technology Data Exchange (ETDEWEB)

    Staff Scientist; Walker, Iain; Sherman, Max; Dickerhoff, Darryl

    2011-12-01

    The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20percent, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

  2. Actual performance of mechanical ventilators in ICU: a multicentric quality control study

    Directory of Open Access Journals (Sweden)

    Govoni L

    2012-12-01

    Full Text Available Leonardo Govoni,1 Raffaele L Dellaca,1 Oscar Peñuelas,2,3 Giacomo Bellani,4,5 Antonio Artigas,3,6 Miquel Ferrer,3,7 Daniel Navajas,3,8,9 Antonio Pedotti,1 Ramon Farré3,81TBM-Lab, Dipartimento di Bioingegneria, Politecnico di Milano University, Milano, Italy; 2Hospital Universitario de Getafe – CIBERES, Madrid, Spain; 3CIBER de Enfermedades Respiratorias, Bunyola, Spain; 4Department of Experimental Medicine, University of Milan, Bicocca, Italy; 5Department of Perioperative Medicine and Intensive Care, San Gerardo Hospital, Monza (MI, Italy; 6Critical Care Center, Sabadell Hospital, Corporació Sanitaria Universitaria Parc Tauli, Universitat Autonoma de Barcelona, CIBERES, Spain; 7Department of Pneumology, Hospital Clinic, IDIBAPS, Barcelona, Spain; 8Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universidad de Barcelona-IDIBAPS, Barcelona, Spain; 9Institut de Bioenginyeria de Catalunya, Barcelona, SpainAbstract: Even if the performance of a given ventilator has been evaluated in the laboratory under very well controlled conditions, inappropriate maintenance and lack of long-term stability and accuracy of the ventilator sensors may lead to ventilation errors in actual clinical practice. The aim of this study was to evaluate the actual performances of ventilators during clinical routines. A resistance (7.69 cmH2O/L/s – elastance (100 mL/cmH2O test lung equipped with pressure, flow, and oxygen concentration sensors was connected to the Y-piece of all the mechanical ventilators available for patients in four intensive care units (ICUs; n = 66. Ventilators were set to volume-controlled ventilation with tidal volume = 600 mL, respiratory rate = 20 breaths/minute, positive end-expiratory pressure (PEEP = 8 cmH2O, and oxygen fraction = 0.5. The signals from the sensors were recorded to compute the ventilation parameters. The average ± standard deviation and range (min–max of the ventilatory parameters were the following: inspired

  3. Adaptive support ventilation may deliver unwanted respiratory rate-tidal volume combinations in patients with acute lung injury ventilated according to an open lung concept.

    Science.gov (United States)

    Dongelmans, Dave A; Paulus, Frederique; Veelo, Denise P; Binnekade, Jan M; Vroom, Margreeth B; Schultz, Marcus J

    2011-05-01

    With adaptive support ventilation, respiratory rate and tidal volume (V(T)) are a function of the Otis least work of breathing formula. We hypothesized that adaptive support ventilation in an open lung ventilator strategy would deliver higher V(T)s to patients with acute lung injury. Patients with acute lung injury were ventilated according to a local guideline advising the use of lower V(T) (6-8 ml/kg predicted body weight), high concentrations of positive end-expiratory pressure, and recruitment maneuvers. Ventilation parameters were recorded when the ventilator was switched to adaptive support ventilation, and after recruitment maneuvers. If V(T) increased more than 8 ml/kg predicted body weight, airway pressure was limited to correct for the rise of V(T). Ten patients with a mean (±SD) Pao(2)/Fio(2) of 171 ± 86 mmHg were included. After a switch from pressure-controlled ventilation to adaptive support ventilation, respiratory rate declined (from 31 ± 5 to 21 ± 6 breaths/min; difference = 10 breaths/min, 95% CI 3-17 breaths/min, P = 0.008) and V(T) increased (from 6.5 ± 0.8 to 9.0 ± 1.6 ml/kg predicted body weight; difference = 2.5 ml, 95% CI 0.4-4.6 ml/kg predicted body weight, P = 0.02). Pressure limitation corrected for the rise of V(T), but minute ventilation declined, forcing the user to switch back to pressure-controlled ventilation. Adaptive support ventilation, compared with pressure-controlled ventilation in an open lung strategy setting, delivers a lower respiratory rate-higher V(T) combination. Pressure limitation does correct for the rise of V(T), but leads to a decline in minute ventilation.

  4. Home noninvasive positive pressure ventilation with built-in software in stable hypercapnic COPD: a short-term prospective, multicenter, randomized, controlled trial.

    Science.gov (United States)

    Zhou, Luqian; Li, Xiaoying; Guan, Lili; Chen, Jianhua; Guo, Bingpeng; Wu, Weiliang; Huo, Yating; Zhou, Ziqing; Liang, Zhenyu; Zhou, Yuqi; Tan, Jie; Chen, Xin; Song, Yuanlin; Chen, Rongchang

    2017-01-01

    The benefits of noninvasive positive pressure ventilation (NPPV) in patients with hypercapnic COPD are controversial. It is presumed that methodology and appropriate use of NIV ventilator might be crucial for the outcomes. With the new built-in software, the performance of NIV can be monitored at home, which can guarantee the compliance and appropriate use. This study investigated effects of home use of NIV in hypercapnia in COPD patients using the NIV ventilator with built-in software for monitoring. The current multicenter prospective, randomized, controlled trial enrolled patients with stable GOLD stages III and IV hypercapnic COPD. Patients were randomly assigned via a computer-generated randomization sequence, with a block size of four patients, to continue optimized treatment (control group) or to receive additional NPPV (intervention group) for 3 months. The primary outcome was arterial carbon dioxide pressure (PaCO 2 ). Data were derived from built-in software and analyzed every 4 weeks. Analysis was carried out with the intention to treat. This study is registered with ClinicalTrials.gov, number NCT02499718. Patients were recruited from 20 respiratory units in China from October 1, 2015, and recruitment was terminated with a record of the vital statistics on May 31, 2016. A total of 115 patients were randomly assigned to the NPPV group (n=57) or the control group (n=58). Patients complied well with NPPV therapy (mean [± standard deviation] day use 5.6±1.4 h). The mean estimation of leaks was 37.99±13.71 L/min. The changes in PaCO 2 (-10.41±0.97 vs -4.32±0.68 mmHg, P =0.03) and 6-min walk distance (6MWD) (38.2% vs 18.2%, P =0.02) were statistically significant in the NPPV group versus the control group. COPD assessment test (CAT) showed a positive trend ( P =0.06) in favor of the NPPV group. Pulmonary function and dyspnea were not different between groups. Ventilators equipped with built-in software provided methodology for monitoring NIV use at home

  5. Early application of airway pressure release ventilation may reduce the duration of mechanical ventilation in acute respiratory distress syndrome.

    Science.gov (United States)

    Zhou, Yongfang; Jin, Xiaodong; Lv, Yinxia; Wang, Peng; Yang, Yunqing; Liang, Guopeng; Wang, Bo; Kang, Yan

    2017-11-01

    Experimental animal models of acute respiratory distress syndrome (ARDS) have shown that the updated airway pressure release ventilation (APRV) methodologies may significantly improve oxygenation, maximize lung recruitment, and attenuate lung injury, without circulatory depression. This led us to hypothesize that early application of APRV in patients with ARDS would allow pulmonary function to recover faster and would reduce the duration of mechanical ventilation as compared with low tidal volume lung protective ventilation (LTV). A total of 138 patients with ARDS who received mechanical ventilation for mechanical ventilation from enrollment to day 28. The secondary endpoints included oxygenation, P plat , respiratory system compliance, and patient outcomes. Compared with the LTV group, patients in the APRV group had a higher median number of ventilator-free days {19 [interquartile range (IQR) 8-22] vs. 2 (IQR 0-15); P mechanical ventilation and ICU stay.

  6. Mask pressure effects on the nasal bridge during short-term noninvasive ventilation

    Science.gov (United States)

    Brill, Anne-Kathrin; Pickersgill, Rachel; Moghal, Mohammad; Morrell, Mary J.; Simonds, Anita K.

    2018-01-01

    The aim of this study was to assess the influence of different masks, ventilator settings and body positions on the pressure exerted on the nasal bridge by the mask and subjective comfort during noninvasive ventilation (NIV). We measured the pressure over the nasal bridge in 20 healthy participants receiving NIV via four different NIV masks (three oronasal masks, one nasal mask) at three different ventilator settings and in the seated or supine position. Objective pressure measurements were obtained with an I-Scan pressure-mapping system. Subjective comfort of the mask fit was assessed with a visual analogue scale. The masks exerted mean pressures between 47.6±29 mmHg and 91.9±42.4 mmHg on the nasal bridge. In the supine position, the pressure was lower in all masks (57.1±31.9 mmHg supine, 63.9±37.3 mmHg seated; pmasks, a change of inspiratory positive airway pressure (IPAP) did not influence the objective pressure over the nasal bridge. Subjective discomfort was associated with higher IPAP and positively correlated with the pressure on the skin. Objective measurement of pressure on the skin during mask fitting might be helpful for mask selection. Mask fitting in the supine position should be considered in the clinical routine. PMID:29637077

  7. Application of the Novel Ventilation Mode FLow-Controlled EXpiration (FLEX): A Crossover Proof-of-Principle Study in Lung-Healthy Patients.

    Science.gov (United States)

    Wirth, Steffen; Springer, Sebastian; Spaeth, Johannes; Borgmann, Silke; Goebel, Ulrich; Schumann, Stefan

    2017-10-01

    Traditionally, mechanical ventilation is achieved via active lung inflation during inspiration and passive lung emptying during expiration. By contrast, the novel FLEX (FLow-controlled EXpiration) ventilator mode actively decreases the rate of lung emptying. We investigated whether FLEX can be used during intraoperative mechanical ventilation of lung-healthy patients. In 30 adult patients scheduled for neurosurgical procedures, we studied respiratory system mechanics, regional ventilation, oxygenation, and hemodynamics during ventilation with and without FLEX at positive end-expiratory pressure (PEEP) of 5 and 7 cm H2O. The FLEX system was integrated into the expiratory limb and modified the expiratory flow profile by continuously changing expiratory resistance according to a computer-controlled algorithm. Mean airway pressure increased with PEEP by 1.9 cm H2O and with FLEX by 1 cm H2O (all P ventilated during general anesthesia. FLEX improves the homogeneous distribution of ventilation in the lungs.

  8. Ventilation systems as an effective tool for control of radon daughter concentration in mines

    International Nuclear Information System (INIS)

    Dory, A.B.

    1981-10-01

    Introduced with a brief discussion of the key role of ventilation in controlling mine atmospheres, the effects of the design of the ventilation system on the control of radon daughter concentrations are illustrated with specific reference to Alcan's Director Mine, St-Lawrence, Nfld. (This fluorspar mine was found to have high radon concentrations due to mine water bringing in dissolved radon.) After a discussion of the health physics history of the mine, the various phases of the ventilation system design and the general results are detailed. The author draws some conclusions having general application to the design of any mine with a radon or thoron daughter concentration. These include minimizing the 'age' of the air; the need for continuous ventilation in all areas; the value of remote control and monitoring; and the benefits of mine pressurization

  9. Assisted Ventilation in Patients with Acute Respiratory Distress Syndrome: Lung-distending Pressure and Patient-Ventilator Interaction

    NARCIS (Netherlands)

    Doorduin, J.; Sinderby, C.A.; Beck, J.; Hoeven, J.G. van der; Heunks, L.M.

    2015-01-01

    BACKGROUND: In patients with acute respiratory distress syndrome (ARDS), the use of assisted mechanical ventilation is a subject of debate. Assisted ventilation has benefits over controlled ventilation, such as preserved diaphragm function and improved oxygenation. Therefore, higher level of

  10. A bench study of intensive-care-unit ventilators: new versus old and turbine-based versus compressed gas-based ventilators

    Science.gov (United States)

    Thille, Arnaud W.; Lyazidi, Aissam; Richard, Jean-Christophe M.; Galia, Fabrice; Brochard, Laurent

    2009-01-01

    Objective To compare 13 commercially available, new-generation, intensive-care-unit (ICU) ventilators regarding trigger function, pressurization capacity during pressure-support ventilation (PSV), accuracy of pressure measurements and expiratory resistance. Design and Setting Bench study at a research laboratory in a university hospital. Material Four turbine-based ventilators and nine conventional servo-valve compressed-gas ventilators were tested using a two-compartment lung model. Results Three levels of effort were simulated. Each ventilator was evaluated at four PSV levels (5, 10, 15, and 20 cm H2O), with and without positive end-expiratory pressure (5 cm H2O, Trigger function was assessed as the time from effort onset to detectable pressurization. Pressurization capacity was evaluated using the airway pressure-time product computed as the net area under the pressure-time curve over the first 0.3 s after inspiratory effort onset. Expiratory resistance was evaluated by measuring trapped volume in controlled ventilation. Significant differences were found across the ventilators, with a range of triggering-delay from 42 ms to 88 ms for all conditions averaged (Pventilators at PSV5 and three at PSV10, suggesting an inability to unload patient’s effort. On average, turbine-based ventilators performed better than conventional ventilators, which showed no improvement compared to a 2000 bench comparison. Conclusion Technical performances of trigger function, pressurization capacity and expiratory resistance vary considerably across new-generation ICU ventilators. ICU ventilators seem to have reached a technical ceiling in recent years, and some ventilators still perform inadequately. PMID:19352622

  11. Air ventilation/controlling facility

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Kazuhiro; Kinoshita, Shoichiro

    1997-12-12

    When all electricity supply from the outside of a power plant are lost, a power generator directly connected to an emergency steam turbine which is driven by steams introduced from a nuclear reactor is driven to supply electricity required in the power plant. Cool water prepared by a refrigerator is used as cooling water in an air ventilation/controlling facility of a room equipped with the power generating facility. As the refrigerator, a refrigerator of an existent emergency air cooling water system for an auxiliary air ventilation/controlling equipment is used. This can extend the period of time till the temperature of the room where the power generator is disposed exceeds the temperature range capable of keeping the integrity of the power generator even when all the AC power supply are lost to inactivate the function of the air ventilation/controlling system. (I.S.)

  12. Spontaneous blood pressure oscillations in mechanically ventilated patients with sepsis

    DEFF Research Database (Denmark)

    Berg, Ronan M G; Plovsing, Ronni R; Greve, Anders M

    2016-01-01

    OBJECTIVE: In the present hypothesis-generating study, we investigated whether spontaneous blood pressure oscillations are suppressed to lower frequencies, and whether abolished oscillations are associated with an adverse outcome in mechanically ventilated patients with sepsis. METHODS: We...... retrospectively subjected invasive steady-state blood pressure recordings from 65 mechanically ventilated patients with sepsis to spectral analysis. Modified spectral bands were visually identified by plotting spectral power against frequency. RESULTS: Modified middle-frequency and low-frequency (MF' and LF......') oscillations were absent in 9% and 22% of the patients, respectively. In patients in whom spontaneous blood pressure oscillations were preserved, the MF' oscillations occurred at 0.021 Hz (median, interquartile range 0.013-0.030), whereas the LF' oscillations occurred at 0.009 Hz (median, interquartile range 0...

  13. Dynamic Characteristics of Mechanical Ventilation System of Double Lungs with Bi-Level Positive Airway Pressure Model

    Directory of Open Access Journals (Sweden)

    Dongkai Shen

    2016-01-01

    Full Text Available In recent studies on the dynamic characteristics of ventilation system, it was considered that human had only one lung, and the coupling effect of double lungs on the air flow can not be illustrated, which has been in regard to be vital to life support of patients. In this article, to illustrate coupling effect of double lungs on flow dynamics of mechanical ventilation system, a mathematical model of a mechanical ventilation system, which consists of double lungs and a bi-level positive airway pressure (BIPAP controlled ventilator, was proposed. To verify the mathematical model, a prototype of BIPAP system with a double-lung simulators and a BIPAP ventilator was set up for experimental study. Lastly, the study on the influences of key parameters of BIPAP system on dynamic characteristics was carried out. The study can be referred to in the development of research on BIPAP ventilation treatment and real respiratory diagnostics.

  14. Low tidal volume mechanical ventilation against no ventilation during cardiopulmonary bypass heart surgery (MECANO): study protocol for a randomized controlled trial.

    Science.gov (United States)

    Nguyen, Lee S; Merzoug, Messaouda; Estagnasie, Philippe; Brusset, Alain; Law Koune, Jean-Dominique; Aubert, Stephane; Waldmann, Thierry; Grinda, Jean-Michel; Gibert, Hadrien; Squara, Pierre

    2017-12-02

    Postoperative pulmonary complications are a leading cause of morbidity and mortality after cardiac surgery. There are no recommendations on mechanical ventilation associated with cardiopulmonary bypass (CPB) during surgery and anesthesiologists perform either no ventilation (noV) at all during CPB or maintain low tidal volume (LTV) ventilation. Indirect evidence points towards better pulmonary outcomes when LTV is performed but no large-scale prospective trial has yet been published in cardiac surgery. The MECANO trial is a single-center, double-blind, randomized, controlled trial comparing two mechanical ventilation strategies, noV and LTV, during cardiac surgery with CPB. In total, 1500 patients are expected to be included, without any restrictions. They will be randomized between noV and LTV on a 1:1 ratio. The noV group will receive no ventilation during CPB. The LTV group will receive 5 breaths/minute with a tidal volume of 3 mL/kg and positive end-expiratory pressure of 5 cmH2O. The primary endpoint will be a composite of all-cause mortality, early respiratory failure defined as a ratio of partial pressure of oxygen/fraction of inspired oxygen ventilation, mechanical ventilation or high-flow oxygen) at 2 days after arrival in the ICU or ventilator-acquired pneumonia defined by the Center of Disease Control. Lung recruitment maneuvers will be performed in the noV and LTV groups at the end of surgery and at arrival in ICU with an insufflation at +30 cmH20 for 5 seconds. Secondary endpoints are those composing the primary endpoint with the addition of pneumothorax, CPB duration, quantity of postoperative bleeding, red blood cell transfusions, revision surgery requirements, length of stay in the ICU and in the hospital and total hospitalization costs. Patients will be followed until hospital discharge. The MECANO trial is the first of its kind to compare in a double-blind design, a no-ventilation to a low-tidal volume strategy for mechanical ventilation during

  15. A historical perspective on ventilator management.

    Science.gov (United States)

    Shapiro, B A

    1994-02-01

    Paralysis via neuromuscular blockade in ICU patients requires mechanical ventilation. This review historically addresses the technological advances and scientific information upon which ventilatory management concepts are based, with special emphasis on the influence such concepts have had on the use of neuromuscular blocking agents. Specific reference is made to the scientific information and technological advances leading to the newer concepts of ventilatory management. Information from > 100 major studies in the peer-reviewed medical literature, along with the author's 25 yrs of clinical experience and academic involvement in acute respiratory care is presented. Nomenclature related to ventilatory management is specifically defined and consistently utilized to present and interpret the data. Pre-1970 ventilatory management is traced from the clinically unacceptable pressure-limited devices to the reliable performance of volume-limited ventilators. The scientific data and rationale that led to the concept of relatively large tidal volume delivery are reviewed in the light of today's concerns regarding alveolar overdistention, control-mode dyssynchrony, and auto-positive end-expiratory pressure. Also presented are the post-1970 scientific rationales for continuous positive airway pressure/positive end-expiratory pressure therapy, avoidance of alveolar hyperxia, and partial ventilatory support techniques (intermittent mandatory ventilation/synchronized intermittent mandatory ventilation). The development of pressure-support devices is discussed and the capability of pressure-control techniques is presented. The rationale for more recent concepts of total ventilatory support to avoid ventilator-induced lung injury is presented. The traditional techniques utilizing volume-preset ventilators with relatively large tidal volumes remain valid and desirable for the vast majority of patients requiring mechanical ventilation. Neuromuscular blockade is best avoided in these

  16. Mechanical breath profile of airway pressure release ventilation: the effect on alveolar recruitment and microstrain in acute lung injury.

    Science.gov (United States)

    Kollisch-Singule, Michaela; Emr, Bryanna; Smith, Bradford; Roy, Shreyas; Jain, Sumeet; Satalin, Joshua; Snyder, Kathy; Andrews, Penny; Habashi, Nader; Bates, Jason; Marx, William; Nieman, Gary; Gatto, Louis A

    2014-11-01

    Improper mechanical ventilation settings can exacerbate acute lung injury by causing a secondary ventilator-induced lung injury. It is therefore important to establish the mechanism by which the ventilator induces lung injury to develop protective ventilation strategies. It has been postulated that the mechanism of ventilator-induced lung injury is the result of heterogeneous, elevated strain on the pulmonary parenchyma. Acute lung injury has been associated with increases in whole-lung macrostrain, which is correlated with increased pathology. However, the effect of mechanical ventilation on alveolar microstrain remains unknown. To examine whether the mechanical breath profile of airway pressure release ventilation (APRV), consisting of a prolonged pressure-time profile and brief expiratory release phase, reduces microstrain. In a randomized, nonblinded laboratory animal study, rats were randomized into a controlled mandatory ventilation group (n = 3) and an APRV group (n = 3). Lung injury was induced by polysorbate lavage. A thoracotomy was performed and an in vivo microscope was placed on the lungs to measure alveolar mechanics. In the controlled mandatory ventilation group, multiple levels of positive end-expiratory pressure (PEEP; 5, 10, 16, 20, and 24 cm H2O) were tested. In the APRV group, decreasing durations of expiratory release (time at low pressure [T(low)]) were tested. The T(low) was set to achieve ratios of termination of peak expiratory flow rate (T-PEFR) to peak expiratory flow rate (PEFR) of 10%, 25%, 50%, and 75% (the smaller this ratio is [ie, 10%], the more time the lung is exposed to low pressure during the release phase, which decreases end-expiratory lung volume and potentiates derecruitment). Alveolar perimeters were measured at peak inspiration and end expiration using digital image analysis, and strain was calculated by normalizing the change in alveolar perimeter length to the original length. Macrostrain was measured by volume

  17. Endotracheal tube resistance and inertance in a model of mechanical ventilation of newborns and small infants—the impact of ventilator settings on tracheal pressure swings

    International Nuclear Information System (INIS)

    Hentschel, Roland; Buntzel, Julia; Guttmann, Josef; Schumann, Stefan

    2011-01-01

    Resistive properties of endotracheal tubes (ETTs) are particularly relevant in newborns and small infants who are generally ventilated through ETTs with a small inner diameter. The ventilation rate is also high and the inspiratory time (ti) is short. These conditions effectuate high airway flows with excessive flow acceleration, so airway resistance and inertance play an important role. We carried out a model study to investigate the impact of varying ETT size, lung compliance and ventilator settings, such as peak inspiratory pressure (PIP), positive end expiratory pressure (PEEP) and inspiratory time (ti) on the pressure–flow characteristics with respect to the resistive and inertive properties of the ETT. Pressure at the Y piece was compared to direct measurement of intratracheal pressure (P trach ) at the tip of the ETT, and pressure drop (ΔP ETT ) was calculated. Applying published tube coefficients (Rohrer's constants and inertance), P trach was calculated from ventilator readings and compared to measured P trach using the root-mean-square error. The most relevant for ΔP ETT was the ETT size, followed by (in descending order) PIP, compliance, ti and PEEP, with gas flow velocity being the principle in common for all these parameters. Depending on the ventilator settings ΔP ETT exceeded 8 mbar in the smallest 2.0 mm ETT. Consideration of inertance as an additional effect in this setting yielded a better agreement of calculated versus measured P trach than Rohrer's constants alone. We speculate that exact tracheal pressure tracings calculated from ventilator readings by applying Rohrer's equation and the inertance determination to small size ETTs would be helpful. As an integral part of ventilator software this would (1) allow an estimate of work of breathing and implementation of an automatic tube compensation, and (2) be important for gentle ventilation in respiratory care, especially of small infants, since it enables the physician to

  18. Leakage Characteristics of Dual-Cannula Fenestrated Tracheostomy Tubes during Positive Pressure Ventilation: A Bench Study

    Directory of Open Access Journals (Sweden)

    Thomas Berlet

    2016-01-01

    Full Text Available This study compared the leakage characteristics of different types of dual-cannula fenestrated tracheostomy tubes during positive pressure ventilation. Fenestrated Portex® Blue Line Ultra®, TRACOE® twist, or Rüsch® Traceofix® tracheostomy tubes equipped with nonfenestrated inner cannulas were tested in a tracheostomy-lung simulator. Transfenestration pressures and transfenestration leakage rates were measured during positive pressure ventilation. The impact of different ventilation modes, airway pressures, temperatures, and simulated static lung compliance settings on leakage characteristics was assessed. We observed substantial differences in transfenestration pressures and transfenestration leakage rates. The leakage rates of the best performing tubes were <3.5% of the delivered minute volume. At body temperature, the leakage rates of these tracheostomy tubes were <1%. The tracheal tube design was the main factor that determined the leakage characteristics. Careful tracheostomy tube selection permits the use of fenestrated tracheostomy tubes in patients receiving positive pressure ventilation immediately after stoma formation and minimises the risk of complications caused by transfenestration gas leakage, for example, subcutaneous emphysema.

  19. Variable versus conventional lung protective mechanical ventilation during open abdominal surgery: study protocol for a randomized controlled trial

    NARCIS (Netherlands)

    Spieth, Peter M.; Güldner, Andreas; Uhlig, Christopher; Bluth, Thomas; Kiss, Thomas; Schultz, Marcus J.; Pelosi, Paolo; Koch, Thea; Gama de Abreu, Marcelo

    2014-01-01

    General anesthesia usually requires mechanical ventilation, which is traditionally accomplished with constant tidal volumes in volume- or pressure-controlled modes. Experimental studies suggest that the use of variable tidal volumes (variable ventilation) recruits lung tissue, improves pulmonary

  20. Extubation success in premature infants with respiratory distress syndrome treated with bi-level nasal continuous positive airway pressure versus nasal intermittent positive pressure ventilation.

    Science.gov (United States)

    Thomas, Patricia E; LeFlore, Judy

    2013-01-01

    Infants born prematurely with respiratory distress syndrome are at high risk for complications from mechanical ventilation. Strategies are needed to minimize their days on the ventilator. The purpose of this study was to compare extubation success rates in infants treated with 2 different types of continuous positive airway pressure devices. A retrospective cohort study design was used. Data were retrieved from electronic medical records for patients in a large, metropolitan, level III neonatal intensive care unit. A sample of 194 premature infants with respiratory distress syndrome was selected, 124 of whom were treated with nasal intermittent positive pressure ventilation and 70 with bi-level variable flow nasal continuous positive airway pressure (bi-level nasal continuous positive airway pressure). Infants in both groups had high extubation success rates (79% of nasal intermittent positive pressure ventilation group and 77% of bi-level nasal continuous positive airway pressure group). Although infants in the bi-level nasal continuous positive airway pressure group were extubated sooner, there was no difference in duration of oxygen therapy between the 2 groups. Promoting early extubation and extubation success is a vital strategy to reduce complications of mechanical ventilation that adversely affect premature infants with respiratory distress syndrome.

  1. Natural ventilation for reducing airborne infection in hospitals

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Hua [School of Energy and Environment, Southeast University, Nanjing (China); Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong (China); Li, Yuguo; Ching, W.H.; Sun, H.Q. [Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong (China); Seto, W.H.; Ching, Patricia [Department of Microbiology, Queen Mary Hospital, Hong Kong (China)

    2010-03-15

    High ventilation rate is shown to be effective for reducing cross-infection risk of airborne diseases in hospitals and isolation rooms. Natural ventilation can deliver much higher ventilation rate than mechanical ventilation in an energy-efficient manner. This paper reports a field measurement of naturally ventilated hospital wards in Hong Kong and presents a possibility of using natural ventilation for infection control in hospital wards. Our measurements showed that natural ventilation could achieve high ventilation rates especially when both the windows and the doors were open in a ward. The highest ventilation rate recorded in our study was 69.0 ACH. The airflow pattern and the airflow direction were found to be unstable in some measurements with large openings. Mechanical fans were installed in a ward window to create a negative pressure difference. Measurements showed that the negative pressure difference was negligible with large openings but the overall airflow was controlled in the expected direction. When all the openings were closed and the exhaust fans were turned on, a reasonable negative pressure was created although the air temperature was uncontrolled. The high ventilation rate provided by natural ventilation can reduce cross-infection of airborne diseases, and thus it is recommended for consideration of use in appropriate hospital wards for infection control. Our results also demonstrated a possibility of converting an existing ward using natural ventilation to a temporary isolation room through installing mechanical exhaust fans. (author)

  2. [Preventing Facial Pressure Injuries in Patients Who Use Noninvasive Positive Pressure Ventilators: The Efficiency of Dressings].

    Science.gov (United States)

    Tai, Chia-Hua; Hsu, Mei-Yu

    2016-10-01

    Noninvasive positive pressure ventilation (NPPV) provides ventilation without tracheal intubation. Facial pressure injury is a recognized complication of this technique, making the prevention of facial pressure injuries an important issue for NPPV patients. The present study compared the effects of foam dressing and hydrocolloid dressing in preventing facial pressure injuries in NPPV patients. A randomized clinical trial was used to evaluate participants that were referred from the intensive care unit of a medical center in eastern Taiwan. Participants were randomized into two groups: the foam dressing group and the hydrocolloid dressing group. Statistics used in analysis were: analysis mean, standard deviation, chi-square, independent t-test, and the generalized estimating equation. Sixty participants were enrolled as participants. The incidence rate of facial pressure injury was 11.7% (7/60). No significant difference was found between the two groups in terms of duration of NPPV use, incidence of facial pressure injury, and occurrence time of facial pressure injury. However, the hydrocolloid dressing group had a higher usage amount than the foam dressing group (p < .05). Foam and hydrocolloid dressings are both helpful in preventing facial pressure injury when used in conjunction with regular skin assessments.

  3. [Anesthesia ventilators].

    Science.gov (United States)

    Otteni, J C; Beydon, L; Cazalaà, J B; Feiss, P; Nivoche, Y

    1997-01-01

    To review anaesthesia ventilators in current use in France by categories of ventilators. References were obtained from computerized bibliographic search. (Medline), recent review articles, the library of the service and personal files. Anaesthesia ventilators can be allocated into three groups, depending on whether they readminister expired gases or not or allow both modalities. Contemporary ventilators provide either constant volume ventilation, or constant pressure ventilation, with or without a pressure plateau. Ventilators readministering expired gases after CO2 absorption, or closed circuit ventilators, are either of a double- or a single-circuit design. Double-circuit ventilators, or pneumatical bag or bellows squeezers, or bag-in-bottle or bellows-in-bottle (or box) ventilators, consist of a primary, or driving circuit (bottle or box) and a secondary or patient circuit (including a bag or a bellows or membrane chambers). Bellows-in-bottle ventilators have either standing bellows ascending at expiration, or hanging bellows, descending at expiration. Ascending bellows require a positive pressure of about 2 cmH2O throughout exhalation to allow the bellows to refill. The expired gas volume is a valuable indicator for leak and disconnection. Descending bellows generate a slight negative pressure during exhalation. In case of leak or disconnection they aspirate ambient air and cannot act therefore as an indicator for integrity of the circuit and the patient connection. Closed circuit ventilators with a single-circuit (patient circuit) include a insufflating device consisting either in a bellows or a cylinder with a piston, operated by a electric or pneumatic motor. As the hanging bellows of the double circuit ventilators, they generate a slight negative pressure during exhalation and aspirate ambient air in case of leak or disconnection. Ventilators not designed for the readministration of expired gases, or open circuit ventilators, are generally stand

  4. Setting individualized positive end-expiratory pressure level with a positive end-expiratory pressure decrement trial after a recruitment maneuver improves oxygenation and lung mechanics during one-lung ventilation.

    Science.gov (United States)

    Ferrando, Carlos; Mugarra, Ana; Gutierrez, Andrea; Carbonell, Jose Antonio; García, Marisa; Soro, Marina; Tusman, Gerardo; Belda, Francisco Javier

    2014-03-01

    We investigated whether individualized positive end-expiratory pressure (PEEP) improves oxygenation, ventilation, and lung mechanics during one-lung ventilation compared with standardized PEEP. Thirty patients undergoing thoracic surgery were randomly allocated to the study or control group. Both groups received an alveolar recruitment maneuver at the beginning and end of one-lung ventilation. After the alveolar recruitment maneuver, the control group had their lungs ventilated with a 5 cm·H2O PEEP, while the study group had their lungs ventilated with an individualized PEEP level determined by a PEEP decrement trial. Arterial blood samples, lung mechanics, and volumetric capnography were recorded at multiple timepoints throughout the procedure. The individualized PEEP values in study group were higher than the standardized PEEP values (10 ± 2 vs 5 cm·H2O; P decrement trial than with a standardized 5 cm·H2O of PEEP.

  5. Using a Ventilation Controller to Optimize Residential Passive Ventilation For Energy and Indoor Air Quality

    Energy Technology Data Exchange (ETDEWEB)

    Turner, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-08-01

    One way to reduce the energy impact of providing residential ventilation is to use passive and hybrid systems. However, these passive and hybrid (sometimes called mixed-mode) systems must still meet chronic and acute health standards for ventilation. This study uses a computer simulation approach to examine the energy and indoor air quality (IAQ) implications of passive and hybrid ventilation systems, in 16 California climate zones. Both uncontrolled and flow controlled passive stacks are assessed. A new hybrid ventilation system is outlined that uses an intelligent ventilation controller to minimise energy use, while ensuring chronic and acute IAQ standards are met. ASHRAE Standard 62.2-2010 – the United States standard for residential ventilation - is used as the chronic standard, and exposure limits for PM2.5, formaldehyde and NO2 are used as the acute standards.The results show that controlled passive ventilation and hybrid ventilation can be used in homes to provide equivalent IAQ to continuous mechanical ventilation, for less use of energy.

  6. Nuclear ventilation installations. Method of control of the scrubbing coefficient of iodine trap

    International Nuclear Information System (INIS)

    1982-12-01

    The present standard aims at defining a method to control the scrubbing coefficient of radioactive iodine trapping systems, used in nuclear ventilation installations. It applies to the installations where the trapping, efficiency of radioactive iodine has to be known, tested and compared to a reference value generally included in the safety reports. It applies to the installations where the absolute pressure of the air in the ventilation systems is above 1,4. 10 5 Pa (1,4 Bar) [fr

  7. Patient-ventilator asynchrony affects pulse pressure variation prediction of fluid responsiveness.

    Science.gov (United States)

    Messina, Antonio; Colombo, Davide; Cammarota, Gianmaria; De Lucia, Marta; Cecconi, Maurizio; Antonelli, Massimo; Corte, Francesco Della; Navalesi, Paolo

    2015-10-01

    During partial ventilatory support, pulse pressure variation (PPV) fails to adequately predict fluid responsiveness. This prospective study aims to investigate whether patient-ventilator asynchrony affects PPV prediction of fluid responsiveness during pressure support ventilation (PSV). This is an observational physiological study evaluating the response to a 500-mL fluid challenge in 54 patients receiving PSV, 27 without (Synch) and 27 with asynchronies (Asynch), as assessed by visual inspection of ventilator waveforms by 2 skilled blinded physicians. The area under the curve was 0.71 (confidence interval, 0.57-0.83) for the overall population, 0.86 (confidence interval, 0.68-0.96) in the Synch group, and 0.53 (confidence interval, 0.33-0.73) in the Asynch group (P = .018). Sensitivity and specificity of PPV were 78% and 89% in the Synch group and 36% and 46% in the Asynch group. Logistic regression showed that the PPV prediction was influenced by patient-ventilator asynchrony (odds ratio, 8.8 [2.0-38.0]; P < .003). Of the 27 patients without asynchronies, 12 had a tidal volume greater than or equal to 8 mL/kg; in this subgroup, the rate of correct classification was 100%. Patient-ventilator asynchrony affects PPV performance during partial ventilatory support influencing its efficacy in predicting fluid responsiveness. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Newer nonconventional modes of mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Preet Mohinder Singh

    2014-01-01

    Full Text Available The conventional modes of ventilation suffer many limitations. Although they are popularly used and are well-understood, often they fail to match the patient-based requirements. Over the years, many small modifications in ventilators have been incorporated to improve patient outcome. The ventilators of newer generation respond to patient′s demands by additional feedback systems. In this review, we discuss the popular newer modes of ventilation that have been accepted in to clinical practice. Various intensive care units over the world have found these modes to improve patient ventilator synchrony, decrease ventilator days and improve patient safety. The various modes discusses in this review are: Dual control modes (volume assured pressure support, volume support, Adaptive support ventilation, proportional assist ventilation, mandatory minute ventilation, Bi-level airway pressure release ventilation, (BiPAP, neurally adjusted ventilatory assist and NeoGanesh. Their working principles with their advantages and clinical limitations are discussed in brief.

  9. Work of breathing during lung-protective ventilation in patients with acute lung injury and acute respiratory distress syndrome: a comparison between volume and pressure-regulated breathing modes.

    Science.gov (United States)

    Kallet, Richard H; Campbell, Andre R; Dicker, Rochelle A; Katz, Jeffrey A; Mackersie, Robert C

    2005-12-01

    Pressure-control ventilation (PCV) and pressure-regulated volume-control (PRVC) ventilation are used during lung-protective ventilation because the high, variable, peak inspiratory flow rate (V (I)) may reduce patient work of breathing (WOB) more than the fixed V (I) of volume-control ventilation (VCV). Patient-triggered breaths during PCV and PRVC may result in excessive tidal volume (V(T)) delivery unless the inspiratory pressure is reduced, which in turn may decrease the peak V (I). We tested whether PCV and PRVC reduce WOB better than VCV with a high, fixed peak V (I) (75 L/min) while also maintaining a low V(T) target. Fourteen nonconsecutive patients with acute lung injury or acute respiratory distress syndrome were studied prospectively, using a random presentation of ventilator modes in a crossover, repeated-measures design. A target V(T) of 6.4 + 0.5 mL/kg was set during VCV and PRVC. During PCV the inspiratory pressure was set to achieve the same V(T). WOB and other variables were measured with a pulmonary mechanics monitor (Bicore CP-100). There was a nonsignificant trend toward higher WOB (in J/L) during PCV (1.27 + 0.58 J/L) and PRVC (1.35 + 0.60 J/L), compared to VCV (1.09 + 0.59 J/L). While mean V(T) was not statistically different between modes, in 40% of patients, V(T) markedly exceeded the lung-protective ventilation target during PRVC and PCV. During lung-protective ventilation, PCV and PRVC offer no advantage in reducing WOB, compared to VCV with a high flow rate, and in some patients did not allow control of V(T) to be as precise.

  10. JACoW Virtual control commissioning for a large critical ventilation system: The CMS cavern use case

    CERN Document Server

    Booth, William; Bradu, Benjamin; Sourisseau, Samuel

    2018-01-01

    The current cavern ventilation control system of the CMS experiment at CERN is based on components which are already obsolete: the SCADA system, or close to the end of life: the PLCs. The control system is going to be upgraded during the LHC Long Shutdown 2 (2019-2020) and will be based on the CERN industrial control standard: UNICOS employing WinCC OA as SCADA and Schneider PLCs. Due to the critical nature of the CMS ventilation installation and the short allowed downtime, the approach was to design an environment based on the virtual commissioning of the new control. This solution uses a first principles model of the ventilation system to simulate the real process. The model was developed with the modelling and simulation software EcosimPro. In addition, the current control application of the cavern ventilation will also be re-engineered as it is not completely satisfactory in some transients where many sequences are performed manually and some pressure fluctuations observed could potentially cause issues t...

  11. Backrest position in prevention of pressure ulcers and ventilator-associated pneumonia: conflicting recommendations.

    Science.gov (United States)

    Burk, Ruth Srednicki; Grap, Mary Jo

    2012-01-01

    Pressure ulcers and ventilator-associated pneumonia (VAP) are both common in acute and critical care settings and are considerable sources of morbidity, mortality, and health care costs. To prevent pressure ulcers, guidelines limit bed backrest elevation to less than 30 degrees, whereas recommendations to reduce VAP include use of backrest elevations of 30 degrees or more. Although a variety of risk factors beyond patient position have been identified for both pressure ulcers and VAP, this article will focus on summarizing the major evidence for each of these apparently conflicting positioning strategies and discuss implications for practice in managing mechanically ventilated patients with risk factors for both pressure ulcers and VAP. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Intraoperative and postoperative evaluation of low tidal volume combined with low-level positive end-expiratory pressure ventilation in laparoscopic surgery in elderly patients

    Directory of Open Access Journals (Sweden)

    Ye-Qiu Li

    2016-01-01

    Full Text Available Objective: To evaluate intraoperative and postoperative condition of low tidal volume combined with low-level positive end-expiratory pressure ventilation in laparoscopic surgery in elderly patients. Methods: A total of 176 cases of elderly patients (more than 60 years old receiving laparoscopic surgery in our hospital from July 2013 to July 2015 were selected as research subjects and randomly divided into observation group and control group, each group included 88 cases, control group received conventional ventilation strategy, observation group received low tidal volume combined with low-level positive end-expiratory pressure ventilation strategy, and then levels of hemodynamic indexes, respiratory mechanical indexes, serology indexes and cerebral vessel related indexes, etc of two groups were compared. Results: Intraoperative and postoperative heart rate and mean arterial pressure levels of observation group were lower than those of control group, arterial partial pressure of oxygen and oxygenation index levels were higher than those of control group and differences had statistical significance (P<0.05; intraoperative APIP and Pplat values of observation group were lower than those of control group, Cs value was higher than that of control group and differences had statistical significance (P<0.05; intraoperative and postoperative serum IL-8 and TNF-α levels of observation group were lower than those of control group, IL-10 level was higher than that of control group and differences had statistical significance (P<0.05; intraoperative and postoperative PjvO2, SjvO2 and CjvO2 levels of observation group were higher than those of control group, Da-jvO2 level was lower than that of control group and differences had statistical significance (P<0.05. Conclusions: When elderly patients receive laparoscopic surgery, the use of low tidal volume combined with low-level positive end-expiratory pressure ventilation strategy can stabilize hemodynamic

  13. Standardization of pulmonary ventilation technique using volume-controlled ventilators in rats with congenital diaphragmatic hernia

    Directory of Open Access Journals (Sweden)

    Rodrigo Melo Gallindo

    Full Text Available OBJECTIVE: To standardize a technique for ventilating rat fetuses with Congenital Diaphragmatic Hernia (CDH using a volume-controlled ventilator. METHODS: Pregnant rats were divided into the following groups: a control (C; b exposed to nitrofen with CDH (CDH; and c exposed to nitrofen without CDH (N-. Fetuses of the three groups were randomly divided into the subgroups ventilated (V and non-ventilated (N-V. Fetuses were collected on day 21.5 of gestation, weighed and ventilated for 30 minutes using a volume-controlled ventilator. Then the lungs were collected for histological study. We evaluated: body weight (BW, total lung weight (TLW, left lung weight (LLW, ratios TLW / BW and LLW / BW, morphological histology of the airways and causes of failures of ventilation. RESULTS: BW, TLW, LLW, TLW / BW and LLW / BW were higher in C compared with N- (p 0.05. The morphology of the pulmonary airways showed hypoplasia in groups N- and CDH, with no difference between V and N-V (p <0.05. The C and N- groups could be successfully ventilated using a tidal volume of 75 ìl, but the failure of ventilation in the CDH group decreased only when ventilated with 50 ìl. CONCLUSION: Volume ventilation is possible in rats with CDH for a short period and does not alter fetal or lung morphology.

  14. Performance characteristics of seven bilevel mechanical ventilators in pressure-support mode with different cycling criteria: a comparative bench study.

    Science.gov (United States)

    Chen, Yuqing; Cheng, Kewen; Zhou, Xin

    2015-01-26

    Pressure support ventilation from a bilevel device is a standard technique for non-invasive home ventilation. A bench study was designed to compare the performance and patient-ventilator synchronization of 7 bilevel ventilators, in the presence of system leaks. Ventilators were connected to a Hans Rudolph Series 1101 lung simulator (compliance, 50 mL/cmH2O; expiratory resistance, 20 cmH2O/L/s; respiratory rate, 15 breaths/min; inspiratory time, 1.0 s). All ventilators were set at 15 cmH2O pressure support and 5 cmH2O positive end-expiratory pressure. Tests were conducted at 2 system leaks (12-15 and 25-28 L/min). The performance characteristics and patient-ventilator asynchrony were assessed, including flow, airway pressure, time, and workload. The Breas Vivo30 could not synchronize with the simulator (frequent auto-triggering) at a leak of 25-28 L/min, but provided stable assisted ventilation when the leak was 12-15 L/min. Missed efforts and back-up ventilation occurred for the Weinmann VENTImotion and Airox Smartair Plus, requiring adjustment of trigger effort. All ventilators had a short trigger delay time (ventilators, possibly due to software algorithm differences. Adjusting the cycling criteria settings can alter the shape of the inspiratory phase and peak expiratory flow, and improve patient-ventilator synchrony.

  15. Advanced Controls for Residential Whole-House Ventilation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Turner, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sherman, Max [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-08-01

    Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health and compliance with standards, such as ASHRAE 62.2. Ventilation systems incur an energy penalty on the home via fan power used to drive the airflow, and the additional space-conditioning load associated with heating or cooling the ventilation air. Finding a balance between IAQ and energy use is important if homes are to be adequately ventilated while not increasing the energy burden. This study used computer simulations to examine RIVEC the Residential Integrated Ventilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. Four different whole-house ventilation systems were simulated, both with and without RIVEC, so that the energy and IAQ results could be compared. Simulations were conducted for 13 US climate zones, three house designs, and three envelope leakage values. The results showed that the RIVEC controller could typically return ventilation energy savings greater than 40percent without compromising long-term chronic or short-term acute exposures to relevant indoor contaminants. Critical and average peak power loads were also reduced as a consequence of using RIVEC.

  16. Intelligent ventilation in the intensive care unit

    Directory of Open Access Journals (Sweden)

    Sigal Sviri

    2012-08-01

    Full Text Available Objectives. Automated, microprocessor-controlled, closed-loop mechanical ventilation has been used in our Medical Intensive Care Unit (MICU at the Hadassah Hebrew-University Medical Center for the past 15 years; for 10 years it has been the primary (preferred ventilator modality. Design and setting. We describe our clinical experience with adaptive support ventilation (ASV over a 6-year period, during which time ASV-enabled ventilators became more readily available and were used as the primary (preferred ventilators for all patients admitted to the MICU. Results. During the study period, 1 220 patients were ventilated in the MICU. Most patients (84% were ventilated with ASV on admission. The median duration of ventilation with ASV was 6 days. The weaning success rate was 81%, and tracheostomy was required in 13%. Sixty-eight patients (6% with severe hypoxia and high inspiratory pressures were placed on pressure-controlled ventilation, in most cases to satisfy a technical requirement for precise and conservative administration of inhaled nitric oxide. The overall pneumothorax rate was less than 3%, and less than 1% of patients who were ventilated only using ASV developed pneumothorax. Conclusions. ASV is a safe and acceptable mode of ventilation for complicated medical patients, with a lower than usual ventilation complication rate.

  17. Delivery of tidal volume from four anaesthesia ventilators during volume-controlled ventilation: a bench study.

    Science.gov (United States)

    Wallon, G; Bonnet, A; Guérin, C

    2013-06-01

    Tidal volume (V(T)) must be accurately delivered by anaesthesia ventilators in the volume-controlled ventilation mode in order for lung protective ventilation to be effective. However, the impact of fresh gas flow (FGF) and lung mechanics on delivery of V(T) by the newest anaesthesia ventilators has not been reported. We measured delivered V(T) (V(TI)) from four anaesthesia ventilators (Aisys™, Flow-i™, Primus™, and Zeus™) on a pneumatic test lung set with three combinations of lung compliance (C, ml cm H2O(-1)) and resistance (R, cm H2O litre(-1) s(-2)): C60R5, C30R5, C60R20. For each CR, three FGF rates (0.5, 3, 10 litre min(-1)) were investigated at three set V(T)s (300, 500, 800 ml) and two values of PEEP (0 and 10 cm H2O). The volume error = [(V(TI) - V(Tset))/V(Tset)] ×100 was computed in body temperature and pressure-saturated conditions and compared using analysis of variance. For each CR and each set V(T), the absolute value of the volume error significantly declined from Aisys™ to Flow-i™, Zeus™, and Primus™. For C60R5, these values were 12.5% for Aisys™, 5% for Flow-i™ and Zeus™, and 0% for Primus™. With an increase in FGF, absolute values of the volume error increased only for Aisys™ and Zeus™. However, in C30R5, the volume error was minimal at mid-FGF for Aisys™. The results were similar at PEEP 10 cm H2O. Under experimental conditions, the volume error differed significantly between the four new anaesthesia ventilators tested and was influenced by FGF, although this effect may not be clinically relevant.

  18. Use of dynamic CT in acute respiratory distress syndrome (ARDS) with comparison of positive and negative pressure ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Helm, Emma; Babyn, Paul [Hospital for Sick Children, Department of Diagnostic Imaging, Toronto (Canada); Talakoub, Omid; Alirezaie, Javad [Ryerson University, Department of Electrical and Computer Engineering, Toronto, ON (Canada); Grasso, Francesco; Engelberts, Doreen; Kavanagh, Brian P. [Hospital for Sick Children and the University of Toronto, Departments of Anesthesia and Critical Care Medicine and the Program in Pulmonary and Experimental Medicine, Toronto (Canada)

    2009-01-15

    Negative pressure ventilation via an external device ('iron lung') has the potential to provide better oxygenation with reduced barotrauma in patients with ARDS. This study was designed to see if oxygenation differences between positive and negative ventilation could be explained by CT. Six anaesthetized rabbits had ARDS induced by repeated saline lavage. Rabbits were ventilated with positive pressure ventilation (PPV) and negative pressure ventilation (NPV) in turn. Dynamic CT images were acquired over the respiratory cycle. A computer-aided method was used to segment the lung and calculate the range of CT densities within each slice. Volumes of ventilated lung and atelectatic lung were measured over the respiratory cycle. NPV was associated with an increased percentage of ventilated lung and decreased percentage of atelectatic lung. The most significant differences in ventilation and atelectasis were seen at mid-inspiration and mid-expiration (ventilated lung NPV=61%, ventilated lung PPV=47%, p<0.001; atelectatic lung NPV=10%, atelectatic lung PPV 19%, p<0.001). Aeration differences were not significant at end-inspiration. Dynamic CT can show differences in lung aeration between positive and negative ventilation in ARDS. These differences would not be appreciated if only static breath-hold CT was used. (orig.)

  19. Effect of an automatic triggering and cycling system on comfort and patient-ventilator synchrony during pressure support ventilation.

    Science.gov (United States)

    Vasconcelos, Renata dos S; Melo, Luíz Henrique de P; Sales, Raquel P; Marinho, Liégina S; Deulefeu, Flávio C; Reis, Ricardo C; Alves-de-Almeida, Mirizana; Holanda, Marcelo A

    2013-01-01

    The digital Auto-Trak™ system is a technology capable of automatically adjusting the triggering and cycling mechanisms during pressure support ventilation (PSV). To compare Auto-Trak with conventional settings in terms of patient-ventilator synchrony and discomfort. Twelve healthy volunteers underwent PSV via the mouth by breathing through an endotracheal tube. In the conventional setting, a pressure support of 8 cm H2O with flow cycling (25% peak inspiratory flow) and a sensitivity of 1 cm H2O was adjusted. In Auto-Trak the triggering and cycling were automatically set. Discomfort, effort of breathing, and the asynchrony index (AI) were assessed. In a complementary bench study, the inspiratory and expiratory time delays were quantified for both settings in three mechanical models: 'normal', obstructive (COPD), and restrictive (ARDS), using the ASL 5000 simulator. In the volunteer study the AI and the discomfort scores did not differ statistically between the two settings. In the bench investigation the use of Auto-Trak was associated with a greater triggering delay in the COPD model and earlier expiratory cycling in the ARDS model but with no asynchronic events. Use of the Auto-Trak system during PSV showed similar results in comparison to the conventional adjustments with respect to patient-ventilator synchrony and discomfort in simulated conditions of invasive mechanical ventilation. Copyright © 2013 S. Karger AG, Basel.

  20. Application of fuzzy control in naturally ventilated buildings for summer conditions

    Energy Technology Data Exchange (ETDEWEB)

    Eftekhari, M.M. [Loughborough University (United Kingdom). Department of Civil and Building Engineering; Marjanovic, L.D. [University of Belgrade (Yugoslavia). Faculty of Mechanical Engineering

    2003-08-01

    The objective of this work is to develop a fuzzy controller for naturally ventilated buildings. Approximate reasoning has proven to be in many cases more successful control strategy than classically designed controlled scheme. In this paper the process of designing a supervisory control to provide thermal comfort and adequate air distribution inside a single-sided naturally ventilated test room is described. The controller is based on fuzzy logic reasoning and sets of linguistic rules in forms of IF-THEN rules are used. The inputs to the controller are the outside wind velocity, direction, outside and inside temperatures. The output is the position of the opening. A selection of membership functions for input and output variables are described and analysed. The control strategy consisting of the expert rules is then validated using experimental data from a naturally ventilated test room. The test room is located in a sheltered area and air flow inside the room, the air pressures and velocities across the openings together with indoor air temperature and velocity at four locations and six different levels were measured. Validation of the controller is performed in the test room by measuring the air distribution and thermal comfort inside the room with no control action. These data are then compared to the air temperature and velocity with the controller in action. The initial results are presented here, which shows that the controller is capable of providing better thermal comfort inside the room. (author)

  1. Breathing circuit compliance and accuracy of displayed tidal volume during pressure-controlled ventilation of infants: A quality improvement project.

    Science.gov (United States)

    Glenski, Todd A; Diehl, Carrie; Clopton, Rachel G; Friesen, Robert H

    2017-09-01

    Anesthesia machines have evolved to deliver desired tidal volumes more accurately by measuring breathing circuit compliance during a preuse self-test and then incorporating the compliance value when calculating expired tidal volume. The initial compliance value is utilized in tidal volume calculation regardless of whether the actual compliance of the breathing circuit changes during a case, as happens when corrugated circuit tubing is manually expanded after the preuse self-test but before patient use. We noticed that the anesthesia machine preuse self-test was usually performed on nonexpanded pediatric circuit tubing, and then the breathing circuit was subsequently expanded for clinical use. We aimed to demonstrate that performing the preuse self-test in that manner could lead to incorrectly displayed tidal volume on the anesthesia machine monitor. The goal of this quality improvement project was to change the usual practice and improve the accuracy of displayed tidal volume in infants undergoing general anesthesia. There were four stages of the project: (i) gathering baseline data about the performance of the preuse self-test and using infant and adult test lungs to measure discrepancies of displayed tidal volumes when breathing circuit compliance was changed after the initial preuse self-test; (ii) gathering clinical data during pressure-controlled ventilation comparing anesthesia machine displayed tidal volume with actual spirometry tidal volume in patients less than 10 kg before (machine preuse self-test performed while the breathing circuit was nonexpanded) and after an intervention (machine preuse self-test performed after the breathing circuit was fully expanded); (iii) performing department-wide education to help implement practice change; (iv) gathering postintervention data to determine the prevalence of proper machine preuse self-test. At constant pressure-controlled ventilation through fully expanded circuit tubing, displayed tidal volume was 83

  2. Modes of mechanical ventilation for the operating room.

    Science.gov (United States)

    Ball, Lorenzo; Dameri, Maddalena; Pelosi, Paolo

    2015-09-01

    Most patients undergoing surgical procedures need to be mechanically ventilated, because of the impact of several drugs administered at induction and during maintenance of general anaesthesia on respiratory function. Optimization of intraoperative mechanical ventilation can reduce the incidence of post-operative pulmonary complications and improve the patient's outcome. Preoxygenation at induction of general anaesthesia prolongs the time window for safe intubation, reducing the risk of hypoxia and overweighs the potential risk of reabsorption atelectasis. Non-invasive positive pressure ventilation delivered through different interfaces should be considered at the induction of anaesthesia morbidly obese patients. Anaesthesia ventilators are becoming increasingly sophisticated, integrating many functions that were once exclusive to intensive care. Modern anaesthesia machines provide high performances in delivering the desired volumes and pressures accurately and precisely, including assisted ventilation modes. Therefore, the physicians should be familiar with the potential and pitfalls of the most commonly used intraoperative ventilation modes: volume-controlled, pressure-controlled, dual-controlled and assisted ventilation. Although there is no clear evidence to support the advantage of any one of these ventilation modes over the others, protective mechanical ventilation with low tidal volume and low levels of positive end-expiratory pressure (PEEP) should be considered in patients undergoing surgery. The target tidal volume should be calculated based on the predicted or ideal body weight rather than on the actual body weight. To optimize ventilation monitoring, anaesthesia machines should include end-inspiratory and end-expiratory pause as well as flow-volume loop curves. The routine administration of high PEEP levels should be avoided, as this may lead to haemodynamic impairment and fluid overload. Higher PEEP might be considered during surgery longer than 3 h

  3. Ventilation air conditioner for a reactor container

    International Nuclear Information System (INIS)

    Ikegame, Noboru; Nakagawa, Takeshi.

    1980-01-01

    Purpose: To suppress the variations in the internal pressure of a reactor container and smoothly ventilate the reactor container. Constitution: The air conditioner provides an air-flow-rate-control damper, a purge-air supply fan, and a filter device in the air-supply pipe of a reactor container. Furthermore, it provides a pressure difference detector at a part of the container. The air-flow-rate-control damper is connected electrically through a position-modulator-comparison amplifier to the pressure difference detector. When the filtration becomes insufficient by clogging of the filter device and the internal pressure increased abruptly in the container, the pressure-difference detector can detect it, and the damper is operated by a pressure regulator and the comparator so as to control the air flow to the container. Thus, the internal pressure variation is controlled so as to easily ventilate the container. (J.P.N.)

  4. [Study of setting of ventilator volume tidal and airway pressure alarm threshold with continuous extra-sternum heart compression in cardiopulmonary resuscitation].

    Science.gov (United States)

    Luo, Jian-yu; Wang, Xiao-yuan; Cai, Tian-bin; Jiang, Wen-fang

    2013-02-01

    To investigate the setting of ventilator volume tidal (VT) and airway pressure alarm threshold during cardiopulmonary resuscitation (CPR) by continuous extra-sternum heart compression. Forty cases with respiration and cardiac arrest in the department of critical care medicine were randomly divided into low VT ventilation group and conventional VT group. Both groups were given the volume control mode. In the low VT ventilation group, VT was set on 6 - 7 ml/kg, and high pressure alarm threshold was adjusted to 60 cm H2O by the conventional 40 cm H2O during CPR. In the conventional VT group, VT and high pressure alarm threshold were set at 8 - 12 ml/kg and 40 cm H2O, respectively. Real-time actual VT, peak inspiratory pressure (PIP), and arterial blood gas test, blood lactic acid at 10 minutes and 30 minutes after CPR were observed. At 10 minutes after CPR, in the low VT ventilation group, arterial blood pH, arterial partial pressure of oxygen (PaO2), arterial partial pressure of carbon dioxide (PaCO2), HCO3(-), arterial oxygen saturation (SaO2) and blood lactic acid were better as compared with those in the conventional VT ventilation group (pH: 7.21±0.09 vs. 7.13±0.07, PaO2: 45.35±5.92 mm Hg vs. 40.70±4.70 mm Hg, PaCO2: 57.10±7.59 mm Hg vs. 61.60±5.47 mm Hg, HCO3(-): 18.50±3.50 mmol/L vs. 14.75±2.65 mmol/L, SaO2: 0.796±0.069 vs. 0.699±0.066, blood lactic acid: 7.07±1.60 mmol/L vs. 8.13±1.56 mmol/L, all P<0.05). The success rate of resuscitation in the low VT ventilation group was higher than that of the conventional VT ventilation group (45% vs. 15%, P<0.05), and PIP (cm H2O) of low VT ventilation group was lower than that of the conventional VT group (37.25±7.99 cm H2O vs. 42.70±7.40 cm H2O, P<0.05). In all the patients in both groups barotrauma did not occur. The strategy of low ventilator VT (6 - 7 ml/kg) with appropriate elevation of airway pressure alarm threshold was better than that of conventional ventilation setting, with no increase in

  5. Patient-Ventilator Dyssynchrony

    Directory of Open Access Journals (Sweden)

    Elvira-Markela Antonogiannaki

    2017-11-01

    Full Text Available In mechanically ventilated patients, assisted mechanical ventilation (MV is employed early, following the acute phase of critical illness, in order to eliminate the detrimental effects of controlled MV, most notably the development of ventilator-induced diaphragmatic dysfunction. Nevertheless, the benefits of assisted MV are often counteracted by the development of patient-ventilator dyssynchrony. Patient-ventilator dyssynchrony occurs when either the initiation and/or termination of mechanical breath is not in time agreement with the initiation and termination of neural inspiration, respectively, or if the magnitude of mechanical assist does not respond to the patient’s respiratory demand. As patient-ventilator dyssynchrony has been associated with several adverse effects and can adversely influence patient outcome, every effort should be made to recognize and correct this occurrence at bedside. To detect patient-ventilator dyssynchronies, the physician should assess patient comfort and carefully inspect the pressure- and flow-time waveforms, available on the ventilator screen of all modern ventilators. Modern ventilators offer several modifiable settings to improve patient-ventilator interaction. New proportional modes of ventilation are also very helpful in improving patient-ventilator interaction.

  6. Efficacy of respiratory muscle training in weaning of mechanical ventilation in patients with mechanical ventilation for 48hours or more: A Randomized Controlled Clinical Trial.

    Science.gov (United States)

    Sandoval Moreno, L M; Casas Quiroga, I C; Wilches Luna, E C; García, A F

    2018-02-02

    To evaluate the efficacy of respiratory muscular training in the weaning of mechanical ventilation and respiratory muscle strength in patients on mechanical ventilation of 48hours or more. Randomized controlled trial of parallel groups, double-blind. Ambit: Intensive Care Unit of a IV level clinic in the city of Cali. 126 patients in mechanical ventilation for 48hours or more. The experimental group received daily a respiratory muscle training program with treshold, adjusted to 50% of maximal inspiratory pressure, additional to standard care, conventional received standard care of respiratory physiotherapy. MAIN INTEREST VARIABLES: weaning of mechanical ventilation. Other variables evaluated: respiratory muscle strength, requirement of non-invasive mechanical ventilation and frequency of reintubation. intention-to-treat analysis was performed with all variables evaluated and analysis stratified by sepsis condition. There were no statistically significant differences in the median weaning time of the MV between the groups or in the probability of extubation between groups (HR: 0.82 95% CI: 0.55-1.20 P=.29). The maximum inspiratory pressure was increased in the experimental group on average 9.43 (17.48) cmsH20 and in the conventional 5.92 (11.90) cmsH20 (P=.48). The difference between the means of change in maximal inspiratory pressure was 0.46 (P=.83 95%CI -3.85 to -4.78). respiratory muscle training did not demonstrate efficacy in the reduction of the weaning period of mechanical ventilation nor in the increase of respiratory muscle strength in the study population. Registered study at ClinicalTrials.gov (NCT02469064). Copyright © 2017 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  7. Neurally Adjusted Ventilatory Assist After Pediatric Cardiac Surgery: Clinical Experience and Impact on Ventilation Pressures.

    Science.gov (United States)

    Crulli, Benjamin; Khebir, Mariam; Toledano, Baruch; Vobecky, Suzanne; Poirier, Nancy; Emeriaud, Guillaume

    2018-02-01

    After pediatric cardiac surgery, ventilation with high airway pressures can be detrimental to right ventricular function and pulmonary blood flow. Neurally adjusted ventilatory assist (NAVA) improves patient-ventilator interactions, helping maintain spontaneous ventilation. This study reports our experience with the use of NAVA in children after a cardiac surgery. We hypothesize that using NAVA in this population is feasible and allows for lower ventilation pressures. We retrospectively studied all children ventilated with NAVA (invasively or noninvasively) after undergoing cardiac surgery between January 2013 and May 2015 in our pediatric intensive care unit. The number and duration of NAVA episodes were described. For the first period of invasive NAVA in each subject, detailed clinical and ventilator data in the 4 h before and after the start of NAVA were extracted. 33 postoperative courses were included in 28 subjects with a median age of 3 [interquartile range (IQR) 1-12] months. NAVA was used invasively in 27 courses for a total duration of 87 (IQR 15-334) h per course. Peak inspiratory pressures and mean airway pressures decreased significantly after the start of NAVA (mean differences of 5.8 cm H 2 O (95% CI 4.1-7.5) and 2.0 cm H 2 O (95% CI 1.2-2.8), respectively, P < .001 for both). There was no significant difference in vital signs or blood gas values. NAVA was used noninvasively in 14 subjects, over 79 (IQR 25-137) h. NAVA could be used in pediatric subjects after cardiac surgery. The significant decrease in airway pressures observed after transition to NAVA could have a beneficial impact in this specific population, which should be investigated in future interventional studies. Copyright © 2018 by Daedalus Enterprises.

  8. Utilization of the lower inflection point of the pressure-volume curve results in protective conventional ventilation comparable to high frequency oscillatory ventilation in an animal model of acute respiratory distress syndrome

    Directory of Open Access Journals (Sweden)

    Felipe S. Rossi

    2008-01-01

    Full Text Available INTRODUCTION: Studies comparing high frequency oscillatory and conventional ventilation in acute respiratory distress syndrome have used low values of positive end-expiratory pressure and identified a need for better recruitment and pulmonary stability with high frequency. OBJECTIVE: To compare conventional and high frequency ventilation using the lower inflection point of the pressure-volume curve as the determinant of positive end-expiratory pressure to obtain similar levels of recruitment and alveolar stability. METHODS: After lung lavage of adult rabbits and lower inflection point determination, two groups were randomized: conventional (positive end-expiratory pressure = lower inflection point; tidal volume=6 ml/kg and high frequency ventilation (mean airway pressures= lower inflection point +4 cmH2O. Blood gas and hemodynamic data were recorded over 4 h. After sacrifice, protein analysis from lung lavage and histologic evaluation were performed. RESULTS: The oxygenation parameters, protein and histological data were similar, except for the fact that significantly more normal alveoli were observed upon protective ventilation. High frequency ventilation led to lower PaCO2 levels. DISCUSSION: Determination of the lower inflection point of the pressure-volume curve is important for setting the minimum end expiratory pressure needed to keep the airways opened. This is useful when comparing different strategies to treat severe respiratory insufficiency, optimizing conventional ventilation, improving oxygenation and reducing lung injury. CONCLUSIONS: Utilization of the lower inflection point of the pressure-volume curve in the ventilation strategies considered in this study resulted in comparable efficacy with regards to oxygenation and hemodynamics, a high PaCO2 level and a lower pH. In addition, a greater number of normal alveoli were found after protective conventional ventilation in an animal model of acute respiratory distress syndrome.

  9. Simulation of late inspiratory rise in airway pressure during pressure support ventilation.

    Science.gov (United States)

    Yu, Chun-Hsiang; Su, Po-Lan; Lin, Wei-Chieh; Lin, Sheng-Hsiang; Chen, Chang-Wen

    2015-02-01

    Late inspiratory rise in airway pressure (LIRAP, Paw/ΔT) caused by inspiratory muscle relaxation or expiratory muscle contraction is frequently seen during pressure support ventilation (PSV), although the modulating factors are unknown. We investigated the effects of respiratory mechanics (normal, obstructive, restrictive, or mixed), inspiratory effort (-2, -8, or -15 cm H2O), flow cycle criteria (5-40% peak inspiratory flow), and duration of inspiratory muscle relaxation (0.18-0.3 s) on LIRAP during PSV using a lung simulator and 4 types of ventilators. LIRAP occurred with all lung models when inspiratory effort was medium to high and duration of inspiratory muscle relaxation was short. The normal lung model was associated with the fastest LIRAP, whereas the obstructive lung model was associated with the slowest. Unless lung mechanics were normal or mixed, LIRAP was unlikely to occur when inspiratory effort was low. Different ventilators were also associated with differences in LIRAP speed. Except for within the restrictive lung model, changes in flow cycle level did not abolish LIRAP if inspiratory effort was medium to high. Increased duration of inspiratory relaxation also led to the elimination of LIRAP. Simulation of expiratory muscle contraction revealed that LIRAP occurred only when expiratory muscle contraction occurred sometime after the beginning of inspiration. Our simulation study reveals that both respiratory resistance and compliance may affect LIRAP. Except for under restrictive lung conditions, LIRAP is unlikely to be abolished by simply lowering flow cycle criteria when inspiratory effort is strong and relaxation time is rapid. LIRAP may be caused by expiratory muscle contraction when it occurs during inspiration. Copyright © 2015 by Daedalus Enterprises.

  10. Fuzzy Control of Tidal volume, Respiration number and Pressure value

    OpenAIRE

    Hasan Guler; Fikret Ata

    2010-01-01

    In this study, control of tidal volume, respiration number and pressure value which are arrived to patient at mechanical ventilator device which is used in intensive care units were performed with fuzzy logic controller. The aim of this system is to reduce workload of aneshesiologist. By calculating tidal volume, respiration number and pressure value, the error Pe(k) between reference pressure value (Pref) and pressure of gas given ill person (Phasta) and error change rate ;#948;Pe(k) were co...

  11. Development of an Outdoor Temperature-Based Control Algorithm for Residential Mechanical Ventilation Control

    Energy Technology Data Exchange (ETDEWEB)

    Less, Brennan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tang, Yihuan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-06-01

    Smart ventilation systems use controls to ventilate more during those periods that provide either an energy or IAQ advantage (or both) and less during periods that provide a dis advantage. Using detailed building simulations, this study addresses one of the simplest and lowest cost types of smart controllers —outdoor temperature- based control. If the outdoor temperature falls below a certain cut- off, the fan is simply turned off. T he main principle of smart ventilation used in this study is to shift ventilation from time periods with large indoor -outdoor temperature differences, to periods where these differences are smaller, and their energy impacts are expected to be less. Energy and IAQ performance are assessed relative to a base case of a continuously operated ventilation fan sized to comply with ASHRAE 62.2-2013 whole house ventilation requirements. In order to satisfy 62.2-2013, annual pollutant exposure must be equivalent between the temperature controlled and continuous fan cases. This requires ventilation to be greater than 62.2 requirements when the ventilation system operates. This is achieved by increasing the mechanical ventilation system air flow rates.

  12. Continuous monitoring of natural ventilation pressure at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Loomis, I.M.; Wallace, K.G.

    1993-01-01

    The Waste Isolation Pilot Plant (WIPP) is a US Department of Energy research and development facility designed to demonstrate the permanent, safe disposal of US defense-generated transuranic waste. The waste storage horizon is 655 m (2150 ft) below surface in bedded salt. To date the WIPP project has not emplaced any waste. There are three intake shafts used to supply air to the underground. All air is exhausted through a single return shaft. The total design airflow during normal operations is 200 m 3 /s (424,000 cfm). The ventilation system is designed to provide separate air splits to construction, experimental, and storage activities. Separation is achieved by isolating the storage circuit from the construction or experimental circuits with bulkheads. Any air leakage must be towards the storage area of the facility. Field studies have shown that the pressure differential necessary to maintain the correct leakage direction is susceptible to the effects of natural ventilation; therefore, extensive studies and analyses have been conducted to quantify the natural ventilation effects on the WIPP underground airflow system. A component of this work is a monitoring system designed to measure the air properties necessary for calculation of the natural ventilation pressure (NVP). This monitoring system consists of measuring dry bulb temperature, relative humidity, and barometric pressure at strategic location on surface and underground. The psychometric parameters of the air are measured every fifteen minutes. From these data, trends can be determined showing the impact of NVP on the ventilation system during diurnal variations in surface climate. Both summer and winter conditions have been studied. To the author's knowledge this is the first reported instance of automatic and continuous production of time and temperature variant NVPs. This paper describes the results of the initial monitoring study

  13. Demand controlled ventilation in single-family homes; Behovstyret ventilation til enfamiliehuse

    Energy Technology Data Exchange (ETDEWEB)

    Rammer Nielsen, T.; Drivsholm, C.; Rudolph Hansen, M.P.; Kragh, J.

    2009-12-15

    This project investigated two different control strategies: A simple and cheap strategy and an advanced and expensive strategy: 1. Simple control: The ventilation rate is varied only on the whole building level giving an average ventilation rate of either 0.1 l/(s m{sup 2}) or 0.35 l/(s m{sup 2}). The air change rate is controlled by sensors in the air handling unit measuring relative humidity, temperature and CO{sub 2}. The control is based on the CO{sub 2}-concentration and absolute humidity in the supply air and exhaust air. A fixed set point for the difference in CO{sub 2}-concentration between the exhaust and supply is used to decide if the ventilation rate is low or high. As supplement to the CO{sub 2} control the difference in absolute humidity between exhaust and supply is used to assure that the ventilation remain at the high level if there is a high level of humidity in the house. 2. Advanced control: The air change rate is varied dynamically for all living rooms giving an average air change for the house between 0.1 l/(s m{sup 2}) and 0.35 l/(s m{sup 2}). The air change rate in the living rooms is controlled by CO{sub 2}-sensors in each room and dampers in the room supply duct. Relative humidity is measured in the rooms with high moisture production to ensure that the highest air exchange is activated if the relative humidity in one of these rooms is too high. Even though the two strategies have been implemented and tested for a long period of time, only the simple control can be recommended. The simple control ensures that the air quality is almost the same as if the house was ventilated constantly at the high ventilation rate. Also the simple control only requires two CO{sub 2} sensors, two relative humidity sensors and two temperature sensors in the air handling unit. These sensors should be checked from time to time e.g. when filters are exchanged. The simple control is today used in meeting rooms, office rooms and daycare facilities in a modified

  14. Effect of driving pressure on mortality in ARDS patients during lung protective mechanical ventilation in two randomized controlled trials.

    Science.gov (United States)

    Guérin, Claude; Papazian, Laurent; Reignier, Jean; Ayzac, Louis; Loundou, Anderson; Forel, Jean-Marie

    2016-11-29

    Driving pressure (ΔPrs) across the respiratory system is suggested as the strongest predictor of hospital mortality in patients with acute respiratory distress syndrome (ARDS). We wonder whether this result is related to the range of tidal volume (V T ). Therefore, we investigated ΔPrs in two trials in which strict lung-protective mechanical ventilation was applied in ARDS. Our working hypothesis was that ΔPrs is a risk factor for mortality just like compliance (Crs) or plateau pressure (Pplat,rs) of the respiratory system. We performed secondary analysis of data from 787 ARDS patients enrolled in two independent randomized controlled trials evaluating distinct adjunctive techniques while they were ventilated as in the low V T arm of the ARDSnet trial. For this study, we used V T , positive end-expiratory pressure (PEEP), Pplat,rs, Crs, ΔPrs, and respiratory rate recorded 24 hours after randomization, and compared them between survivors and nonsurvivors at day 90. Patients were followed for 90 days after inclusion. Cox proportional hazard modeling was used for mortality at day 90. If colinearity between ΔPrs, Crs, and Pplat,rs was verified, specific Cox models were used for each of them. Both trials enrolled 805 patients of whom 787 had day-1 data available, and 533 of these survived. In the univariate analysis, ΔPrs averaged 13.7 ± 3.7 and 12.8 ± 3.7 cmH 2 O (P = 0.002) in nonsurvivors and survivors, respectively. Colinearity between ΔPrs, Crs and Pplat,rs, which was expected as these variables are mathematically coupled, was statistically significant. Hazard ratios from the Cox models for day-90 mortality were 1.05 (1.02-1.08) (P = 0.005), 1.05 (1.01-1.08) (P = 0.008) and 0.985 (0.972-0.985) (P = 0.029) for ΔPrs, Pplat,rs and Crs, respectively. PEEP and V T were not associated with death in any model. When ventilating patients with low V T , ΔPrs is a risk factor for death in ARDS patients, as is Pplat,rs or Crs. As our data

  15. Pressure support ventilation vs Continuous positive airway pressure for treating of acute cardiogenic pulmonary edema: A pilot study.

    Science.gov (United States)

    Pagano, Antonio; Numis, Fabio G; Rosato, Valerio; Russo, Teresa; Porta, Giovanni; Bosso, Giorgio; Serra, Claudia; Masarone, Mario; Visone, Giuseppe; Paladino, Fiorella

    2018-04-24

    Non-invasive ventilation is usually adopted as a support to medical therapy in patients with acute pulmonary edema, but which modality between Pressure Support Ventilation (PSV) and Continuous Positive Airway Pressure (CPAP) has better favourable effects is not been yet well known. Aim of this observational study was to provide data on these different non-invasive ventilation modalities in the management of acute cardiogenic pulmonary edema. One-hundred-fifty-three patients consecutively admitted to the Emergency Room of two different Center were enrolled and randomly assigned to CPAP or PSV. Data relative to mortality, need of endotracheal intubation, sequential blood gas analysis were compared. Furthermore, there were no significant differences regarding mortality in the two groups, but patients treated with PSV had a significant lower rate of endotracheal intubation and a higher improvement of blood gas analyses parameters. In conclusion, our data support only a slight advantage in favour to PSV versus CPAP. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Early predictors of success of non-invasive positive pressure ventilation in hypercapnic respiratory failure.

    Science.gov (United States)

    Bhattacharyya, D; Prasad, Bnbm; Tampi, P S; Ramprasad, R

    2011-10-01

    Non-invasive positive pressure ventilation (NIPPV) has emerged as a significant advancement in the management of acute hypercapnic respiratory failure. Patients with hypercapnic respiratory failure requiring ventilation therapy (respiratory rate [RR] of > 30 breaths per minutes, PaCO2 > 55 mmHg and arterial pH success group and these parameters continued to improve even after four and 24 hours of NIPPV treatment. Out of 24 (24%) patients who failed to respond, 13 (54%) needed endotracheal intubation within one hour. The failure group had higher baseline HR than the success group. Improvement in HR, RR, pH, and PCO2 one hour after putting the patient on NIPPV predicts success of non-invasive positive pressure ventilation in hypercapnic respiratory failure.

  17. The Conceptual Design of High Pressure Reversible Axial Tunnel Ventilation Fans

    Directory of Open Access Journals (Sweden)

    A. G. Sheard

    2012-01-01

    Full Text Available Tunnel ventilation fans, classically, must have the ability to both supply and extract air from a tunnel system, with the operator's choice dependent on the tunnel ventilation system's operating mode most appropriate at any given point in time. Consequently, tunnel ventilation fans must incorporate a reversible aerodynamic design which limits the maximum fan pressure rise. This paper presents three high pressure reversible fan concepts. These comprise a two-stage counter rotating fan, a single-stage high speed fan, and a two-stage fan with a single motor and impeller on each end of the motor shaft. The authors consider the relative merits of each concept. The third concept offers the most compact fan, transform, silencer, and damper package size. The authors discuss the mechanical design challenges that occur with a two-stage fan with a single motor and impeller on each end of the motor shaft. They present and consider a selected motor bearing arrangement and casing design for maintainability. Finally, the authors present both prototype fan and full-scale package aerodynamic and acoustic performance, before discussing the challenges presented by high temperature certification in accordance with the requirements of EN 12101-3: 2012.

  18. New modes of assisted mechanical ventilation.

    Science.gov (United States)

    Suarez-Sipmann, F

    2014-05-01

    Recent major advances in mechanical ventilation have resulted in new exciting modes of assisted ventilation. Compared to traditional ventilation modes such as assisted-controlled ventilation or pressure support ventilation, these new modes offer a number of physiological advantages derived from the improved patient control over the ventilator. By implementing advanced closed-loop control systems and using information on lung mechanics, respiratory muscle function and respiratory drive, these modes are specifically designed to improve patient-ventilator synchrony and reduce the work of breathing. Depending on their specific operational characteristics, these modes can assist spontaneous breathing efforts synchronically in time and magnitude, adapt to changing patient demands, implement automated weaning protocols, and introduce a more physiological variability in the breathing pattern. Clinicians have now the possibility to individualize and optimize ventilatory assistance during the complex transition from fully controlled to spontaneous assisted ventilation. The growing evidence of the physiological and clinical benefits of these new modes is favoring their progressive introduction into clinical practice. Future clinical trials should improve our understanding of these modes and help determine whether the claimed benefits result in better outcomes. Copyright © 2013 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  19. Dangerous Pressurization and Inappropriate Alarms during Water Occlusion of the Expiratory Circuit of Commonly Used Infant Ventilators.

    Directory of Open Access Journals (Sweden)

    Murray Hinder

    Full Text Available Non-invasive continuous positive airways pressure is commonly a primary respiratory therapy delivered via multi-purpose ventilators in premature newborns. Expiratory limb occlusion due to water accumulation or 'rainout' from gas humidification is a frequent issue. A case of expiratory limb occlusion due to rainout causing unexpected and excessive repetitive airway pressurisation in a Draeger VN500 prompted a systematic bench test examination of currently available ventilators.To assess neonatal ventilator response to partial or complete expiratory limb occlusion when set to non-invasive continuous positive airway pressure mode.Seven commercially available neonatal ventilators connected to a test lung using a standard infant humidifier circuit with partial and/or complete expiratory limb occlusion were examined in a bench test study. Each ventilator was set to deliver 6 cmH2O in non-invasive mode and respiratory mechanics data for 75%, 80% and 100% occlusion were collected.Several ventilators responded inappropriately with complete occlusion by cyclical pressurisation/depressurisation to peak pressures of between 19·4 and 64·6 cm H2O at rates varying between 2 to 77 inflations per minute. Tidal volumes varied between 10·1 and 24·3mL. Alarm responses varied from 'specific' (tube occluded to 'ambiguous' (Safety valve open. Carefusion Avea responded by continuing to provide the set distending pressure and displaying an appropriate alarm message. Draeger Babylog 8000 did not alarm with partial occlusions and incorrectly displayed airways pressure at 6·1cmH2O compared to the measured values of 13cmH2O.This study found a potential for significant adverse ventilator response due to complete or near complete expiratory limb occlusion in CPAP mode.

  20. Dependence of radon level on ventilation systems in residences

    International Nuclear Information System (INIS)

    Kokotti, H.

    1995-01-01

    The concentration of indoor radon and radon entry from soil into a house are expected to increase with increasing radon concentration in soil pores, and indoor radon concentration is expected to decrease with increasing ventilation rate. Depressurization, which can be caused by the stack effect, by wind and by unbalanced ventilation, creates different pressure conditions in a house and in the soil beneath it. To reveal the possible differences in radon removal and entry resulting from different ventilation systems, radon concentrations were determined in three similar slab-on-grade buildings provided with mechanical supply and exhaust ventilation, mechanical exhaust or natural ventilation. To limitate the effect of differences in soil parameters, the houses were constructed on the same gravel esker in Kuopio. Thus, the variation in radon entry as a result of different depressurisation of the houses (caused by unbalanced mechanical ventilation systems) could also be observed. In addition, the effect of pressurisation on living rooms could be determined in five slab-on-grade houses constructed on the same esker in Hollola. Mechanical supply and exhaust ventilation system controlled by measured indoor-outdoor pressure difference, was installed in the six houses. The seasonal variation with and without controlled pressure conditions were followed in a slab-on-grade house constructed on a gravel esker in Rekola. Long-term radon concentrations were observed to correlate negatively with air exchange rates. However, the removal effect of ventilation was found to be disturbed by negative pressure due to the stack effect and/or to unbalanced mechanical ventilation. (91 refs., 17 figs., 10 tabs.)

  1. Fuzzy logic controller for weaning neonates from mechanical ventilation.

    Science.gov (United States)

    Hatzakis, G E; Davis, G M

    2002-01-01

    Weaning from mechanical ventilation is the gradual detachment from any ventilatory support till normal spontaneous breathing can be fully resumed. To date, we have developed a fuzzy logic controller for weaning COPD adults using pressure support ventilation (PS). However, adults and newborns differ in the pathophysiology of lung disease. We therefore used our fuzzy logic-based weaning platform to develop modularized components for weaning newborns with lung disease. Our controller uses the heart rate (HR), respiratory rate (RR), tidal volume (VT) and oxygen saturation (SaO2) and their trends deltaHR/deltat, deltaVT/deltat and deltaSaO2/deltat to evaluate, respectively, the Current and Trend weaning status of the newborn. Through appropriate fuzzification of these vital signs, Current and Trend weaning status can quantitatively determine the increase/decrease in the synchronized intermittent mandatory ventilation (SIMV) setting. The post-operative weaning courses of 10 newborns, 82+/-162 days old, were assessed at 2-hour intervals for 68+/-39 days. The SIMV levels, proposed by our algorithm, were matched to those levels actually applied. For 60% of the time both values coincided. For the remaining 40%, our algorithm suggested lower SIMV support than what was applied. The Area Under the Curve for integrated ventilatory support over time was 1203+/-846 for standard ventilatory strategies and 1152+/-802 for fuzzy controller. This suggests that the algorithm, approximates the actual weaning progression, and may advocate a more aggressive strategy. Moreover, the core of the fuzzy controller facilitates adaptation for body size and diversified disease patterns and sets the premises as an infant-weaning tool.

  2. Reducing pressure ulcers in patients with prolonged acute mechanical ventilation: a quasi-experimental study.

    Science.gov (United States)

    Loudet, Cecilia Inés; Marchena, María Cecilia; Maradeo, María Roxana; Fernández, Silvia Laura; Romero, María Victoria; Valenzuela, Graciela Esther; Herrera, Isabel Eustaquia; Ramírez, Martha Teresa; Palomino, Silvia Rojas; Teberobsky, Mariana Virginia; Tumino, Leandro Ismael; González, Ana Laura; Reina, Rosa; Estenssoro, Elisa

    2017-01-01

    To determine the effectiveness of a quality management program in reducing the incidence and severity of pressure ulcers in critical care patients. This was a quasi-experimental, before-and-after study that was conducted in a medical-surgical intensive care unit. Consecutive patients who had received mechanical ventilation for ≥ 96 hours were included. A "Process Improvement" team designed a multifaceted interventional process that consisted of an educational session, a pressure ulcer checklist, a smartphone application for lesion monitoring and decision-making, and a "family prevention bundle". Fifty-five patients were included in Pre-I group, and 69 were included in the Post-I group, and the incidence of pressure ulcers in these groups was 41 (75%) and 37 (54%), respectively. The median time for pressure ulcers to develop was 4.5 [4 - 5] days in the Pre-I group and 9 [6 - 20] days in the Post-I group after admission for each period. The incidence of advanced-grade pressure ulcers was 27 (49%) in the Pre-I group and 7 (10%) in the Post-I group, and finally, the presence of pressure ulcers at discharge was 38 (69%) and 18 (26%), respectively (p pressure ulcers. The duration of mechanical ventilation and the presence of organ failure were positively associated with the development of pressure ulcers, while the multifaceted intervention program acted as a protective factor. A quality program based on both a smartphone application and family participation can reduce the incidence and severity of pressure ulcers in patients on prolonged acute mechanical ventilation.

  3. Influences of Duration of Inspiratory Effort, Respiratory Mechanics, and Ventilator Type on Asynchrony With Pressure Support and Proportional Assist Ventilation.

    Science.gov (United States)

    Vasconcelos, Renata S; Sales, Raquel P; Melo, Luíz H de P; Marinho, Liégina S; Bastos, Vasco Pd; Nogueira, Andréa da Nc; Ferreira, Juliana C; Holanda, Marcelo A

    2017-05-01

    Pressure support ventilation (PSV) is often associated with patient-ventilator asynchrony. Proportional assist ventilation (PAV) offers inspiratory assistance proportional to patient effort, minimizing patient-ventilator asynchrony. The objective of this study was to evaluate the influence of respiratory mechanics and patient effort on patient-ventilator asynchrony during PSV and PAV plus (PAV+). We used a mechanical lung simulator and studied 3 respiratory mechanics profiles (normal, obstructive, and restrictive), with variations in the duration of inspiratory effort: 0.5, 1.0, 1.5, and 2.0 s. The Auto-Trak system was studied in ventilators when available. Outcome measures included inspiratory trigger delay, expiratory trigger asynchrony, and tidal volume (V T ). Inspiratory trigger delay was greater in the obstructive respiratory mechanics profile and greatest with a effort of 2.0 s (160 ms); cycling asynchrony, particularly delayed cycling, was common in the obstructive profile, whereas the restrictive profile was associated with premature cycling. In comparison with PSV, PAV+ improved patient-ventilator synchrony, with a shorter triggering delay (28 ms vs 116 ms) and no cycling asynchrony in the restrictive profile. V T was lower with PAV+ than with PSV (630 mL vs 837 mL), as it was with the single-limb circuit ventilator (570 mL vs 837 mL). PAV+ mode was associated with longer cycling delays than were the other ventilation modes, especially for the obstructive profile and higher effort values. Auto-Trak eliminated automatic triggering. Mechanical ventilation asynchrony was influenced by effort, respiratory mechanics, ventilator type, and ventilation mode. In PSV mode, delayed cycling was associated with shorter effort in obstructive respiratory mechanics profiles, whereas premature cycling was more common with longer effort and a restrictive profile. PAV+ prevented premature cycling but not delayed cycling, especially in obstructive respiratory mechanics

  4. A Case of Shunting Postoperative Patent Foramen Ovale Under Mechanical Ventilation Controlled by Different Ventilator Settings.

    Science.gov (United States)

    Pragliola, Claudio; Di Michele, Sara; Galzerano, Domenico

    2017-06-07

    A 56-year old male with ischemic heart disease and an unremarkable preoperative echocardiogram underwent surgical coronary revascularization. An intraoperative post pump trans-esophageal echocardiogram (TOE) performed while the patient was being ventilated at a positive end expiratory pressure (PEEP) of 8 cm H 2 O demonstrated a right to left interatrial shunt across a patent foramen ovale (PFO). Whereas oxygen saturation was normal, a reduction of the PEEP to 3 cm H 2 O led to the complete resolution of the shunt with no change in arterial blood gases. Attempts to increase the PEEP level above 3 mmHg resulted in recurrence of the interatrial shunt. The remaining of the TEE was unremarkable. Mechanical ventilation, particularly with PEEP, causes an increase in intrathoracic pressure. The resulting rise in right atrial pressure, mostly during inspiration, may unveil and pop open an unrecognized PFO, thus provoking a right to left shunt across a seemingly intact interatrial septum. This phenomenon increases the risk of paradoxical embolism and can lead to hypoxemia. The immediate management would be to adjust the ventilatory settings to a lower PEEP level. A routine search for a PFO should be performed in ventilated patients who undergo a TEE.

  5. A case of shunting postoperative patent foramen ovale under mechanical ventilation controlled by different ventilator settings

    Directory of Open Access Journals (Sweden)

    Claudio Pragliola

    2017-08-01

    Full Text Available A 56-year old male with ischemic heart disease and an unremarkable preoperative echocardiogram underwent surgical coronary revascularization. An intraoperative post pump trans-esophageal echocardiogram (TOE performed while the patient was being ventilated at a positive end expiratory pressure (PEEP of 8 cm H2O demonstrated a right to left interatrial shunt across a patent foramen ovale (PFO. Whereas oxygen saturation was normal, a reduction of the PEEP to 3 cm H2O led to the complete resolution of the shunt with no change in arterial blood gases. Attempts to increase the PEEP level above 3 mmHg resulted in recurrence of the interatrial shunt. The remaining of the TEE was unremarkable. Mechanical ventilation, particularly with PEEP, causes an increase in intrathoracic pressure. The resulting rise in right atrial pressure, mostly during inspiration, may unveil and pop open an unrecognized PFO, thus provoking a right to left shunt across a seemingly intact interatrial septum. This phenomenon increases the risk of paradoxical embolism and can lead to hypoxemia. The immediate management would be to adjust the ventilatory settings to a lower PEEP level. A routine search for a PFO should be performed in ventilated patients who undergo a TEE.

  6. Rationale and study design of PROVHILO - a worldwide multicenter randomized controlled trial on protective ventilation during general anesthesia for open abdominal surgery.

    Science.gov (United States)

    Hemmes, Sabrine N T; Severgnini, Paolo; Jaber, Samir; Canet, Jaume; Wrigge, Hermann; Hiesmayr, Michael; Tschernko, Edda M; Hollmann, Markus W; Binnekade, Jan M; Hedenstierna, Göran; Putensen, Christian; de Abreu, Marcelo Gama; Pelosi, Paolo; Schultz, Marcus J

    2011-05-06

    Post-operative pulmonary complications add to the morbidity and mortality of surgical patients, in particular after general anesthesia >2 hours for abdominal surgery. Whether a protective mechanical ventilation strategy with higher levels of positive end-expiratory pressure (PEEP) and repeated recruitment maneuvers; the "open lung strategy", protects against post-operative pulmonary complications is uncertain. The present study aims at comparing a protective mechanical ventilation strategy with a conventional mechanical ventilation strategy during general anesthesia for abdominal non-laparoscopic surgery. The PROtective Ventilation using HIgh versus LOw positive end-expiratory pressure ("PROVHILO") trial is a worldwide investigator-initiated multicenter randomized controlled two-arm study. Nine hundred patients scheduled for non-laparoscopic abdominal surgery at high or intermediate risk for post-operative pulmonary complications are randomized to mechanical ventilation with the level of PEEP at 12 cmH(2)O with recruitment maneuvers (the lung-protective strategy) or mechanical ventilation with the level of PEEP at maximum 2 cmH(2)O without recruitment maneuvers (the conventional strategy). The primary endpoint is any post-operative pulmonary complication. The PROVHILO trial is the first randomized controlled trial powered to investigate whether an open lung mechanical ventilation strategy in short-term mechanical ventilation prevents against postoperative pulmonary complications. ISRCTN: ISRCTN70332574.

  7. Variable versus conventional lung protective mechanical ventilation during open abdominal surgery: study protocol for a randomized controlled trial.

    Science.gov (United States)

    Spieth, Peter M; Güldner, Andreas; Uhlig, Christopher; Bluth, Thomas; Kiss, Thomas; Schultz, Marcus J; Pelosi, Paolo; Koch, Thea; Gama de Abreu, Marcelo

    2014-05-02

    General anesthesia usually requires mechanical ventilation, which is traditionally accomplished with constant tidal volumes in volume- or pressure-controlled modes. Experimental studies suggest that the use of variable tidal volumes (variable ventilation) recruits lung tissue, improves pulmonary function and reduces systemic inflammatory response. However, it is currently not known whether patients undergoing open abdominal surgery might benefit from intraoperative variable ventilation. The PROtective VARiable ventilation trial ('PROVAR') is a single center, randomized controlled trial enrolling 50 patients who are planning for open abdominal surgery expected to last longer than 3 hours. PROVAR compares conventional (non-variable) lung protective ventilation (CV) with variable lung protective ventilation (VV) regarding pulmonary function and inflammatory response. The primary endpoint of the study is the forced vital capacity on the first postoperative day. Secondary endpoints include further lung function tests, plasma cytokine levels, spatial distribution of ventilation assessed by means of electrical impedance tomography and postoperative pulmonary complications. We hypothesize that VV improves lung function and reduces systemic inflammatory response compared to CV in patients receiving mechanical ventilation during general anesthesia for open abdominal surgery longer than 3 hours. PROVAR is the first randomized controlled trial aiming at intra- and postoperative effects of VV on lung function. This study may help to define the role of VV during general anesthesia requiring mechanical ventilation. Clinicaltrials.gov NCT01683578 (registered on September 3 3012).

  8. Associations between positive end-expiratory pressure and outcome of patients without ARDS at onset of ventilation: a systematic review and meta-analysis of randomized controlled trials

    NARCIS (Netherlands)

    Serpa Neto, Ary; Filho, Roberto Rabello; Cherpanath, Thomas; Determann, Rogier; Dongelmans, Dave A.; Paulus, Frederique; Tuinman, Pieter Roel; Pelosi, Paolo; de Abreu, Marcelo Gama; Schultz, Marcus J.

    2016-01-01

    The aim of this investigation was to compare ventilation at different levels of positive end-expiratory pressure (PEEP) with regard to clinical important outcomes of intensive care unit (ICU) patients without acute respiratory distress syndrome (ARDS) at onset of ventilation. Meta-analysis of

  9. Successful use of non-invasive positive pressure ventilation in a complicated flail chest

    International Nuclear Information System (INIS)

    Al-Ansari, Mariam A.

    2006-01-01

    The current advanced trauma life support manual states that patients with significant hypoxia (namely, SaO2<90% on room air) as a result of pulmonary contusion should be intubated and ventilated within the first hour of injury. Recently, several researchers have shown improved outcomes when patients with acute respiratory failure are managed with noninvasive positive pressure ventilation (NIPPV). Trauma patients may also benefit from this therapy. We report a case of 15-year-old boy who isolated flail chest and pulmonary contusion, who was intubated in the emergency room, and was managed successfully with the NIPPV in the intensive care unit (ICU) despite, having had aspiration pneumonia early in the course of her stay. After initial stabilization, he failed a spontaneous breathing trial. Due to absence of contraindications to the use of NIPPV, the patient was extubated on day 7 (from pressure ventilation of 15 cmH2O and positive end expiratory pressure of 8 cm H2O) to immediate NIPPV use. Three days later (after a total of 50 hours of NIPPV use in the ICU) the patient was successfully discharged home. (author)

  10. Interfaces and ventilator settings for long-term noninvasive ventilation in COPD patients

    Directory of Open Access Journals (Sweden)

    Callegari J

    2017-06-01

    Full Text Available Jens Callegari,1 Friederike Sophie Magnet,1 Steven Taubner,1 Melanie Berger,2 Sarah Bettina Schwarz,1 Wolfram Windisch,1 Jan Hendrik Storre3,4 1Department of Pneumology, Cologne-Merheim Hospital, Kliniken der Stadt Koeln, Witten/Herdecke University Hospital, 2Department of Pneumology, Malteser Hospital St Hildegardis, Cologne, 3Department of Pneumology, University Medical Hospital, Freiburg, 4Department of Intensive Care, Sleep Medicine and Mechanical Ventilation, Asklepios Fachkliniken Munich-Gauting, Gauting, Germany Introduction: The establishment of high-intensity (HI noninvasive ventilation (NIV that targets elevated PaCO2 has led to an increase in the use of long-term NIV to treat patients with chronic hypercapnic COPD. However, the role of the ventilation interface, especially in more aggressive ventilation strategies, has not been systematically assessed.Methods: Ventilator settings and NIV compliance were assessed in this prospective cross-sectional monocentric cohort study of COPD patients with pre-existing NIV. Daytime ­arterialized blood gas analyses and lung function testing were also performed. The primary end point was the distribution among study patients of interfaces (full-face masks [FFMs] vs nasal masks [NMs] in a real-life setting.Results: The majority of the 123 patients studied used an FFM (77%, while 23% used an NM. Ventilation settings were as follows: mean ± standard deviation (SD inspiratory positive airway pressure (IPAP was 23.2±4.6 mbar and mean ± SD breathing rate was 16.7±2.4/minute. Pressure support ventilation (PSV mode was used in 52.8% of patients, while assisted pressure-controlled ventilation (aPCV was used in 47.2% of patients. Higher IPAP levels were associated with an increased use of FFMs (IPAP <21 mbar: 73% vs IPAP >25 mbar: 84%. Mean compliance was 6.5 hours/day, with no differences between FFM (6.4 hours/day and NM (6.7 hours/day users. PaCO2 assessment of ventilation quality revealed

  11. Tunnel Ventilation Control Using Reinforcement Learning Methodology

    Science.gov (United States)

    Chu, Baeksuk; Kim, Dongnam; Hong, Daehie; Park, Jooyoung; Chung, Jin Taek; Kim, Tae-Hyung

    The main purpose of tunnel ventilation system is to maintain CO pollutant concentration and VI (visibility index) under an adequate level to provide drivers with comfortable and safe driving environment. Moreover, it is necessary to minimize power consumption used to operate ventilation system. To achieve the objectives, the control algorithm used in this research is reinforcement learning (RL) method. RL is a goal-directed learning of a mapping from situations to actions without relying on exemplary supervision or complete models of the environment. The goal of RL is to maximize a reward which is an evaluative feedback from the environment. In the process of constructing the reward of the tunnel ventilation system, two objectives listed above are included, that is, maintaining an adequate level of pollutants and minimizing power consumption. RL algorithm based on actor-critic architecture and gradient-following algorithm is adopted to the tunnel ventilation system. The simulations results performed with real data collected from existing tunnel ventilation system and real experimental verification are provided in this paper. It is confirmed that with the suggested controller, the pollutant level inside the tunnel was well maintained under allowable limit and the performance of energy consumption was improved compared to conventional control scheme.

  12. Modelling and Simulation of Volume Controlled Mechanical Ventilation System

    Directory of Open Access Journals (Sweden)

    Yan Shi

    2014-01-01

    Full Text Available Volume controlled mechanical ventilation system is a typical time-delay system, which is applied to ventilate patients who cannot breathe adequately on their own. To illustrate the influences of key parameters of the ventilator on the dynamics of the ventilated respiratory system, this paper firstly derived a new mathematical model of the ventilation system; secondly, simulation and experimental results are compared to verify the mathematical model; lastly, the influences of key parameters of ventilator on the dynamics of the ventilated respiratory system are carried out. This study can be helpful in the VCV ventilation treatment and respiratory diagnostics.

  13. D0 Cryo Ventilation Fan Controls and Monitoring

    International Nuclear Information System (INIS)

    Markley, D.

    1990-01-01

    This engineering note describes how exhaust fan 6 (EF-6) and exhaust fan 7 (EF-7) are controlled and monitored. Since these two fans are a vital link in the ODH safety system, they will be monitored, controlled and periodically operated by the programmable logic controller (PLC). If there should be a fault in the ventilation system, the PLC will print a warning message to the cryo control room printer and flash a descriptive warning on the ODH/ventilation graphics page. This fault is also logged to the Xpresslink graphics alarm page and to an alarm history hard disk file. The ventilation failure is also an input to the auto dialer which will continue it's automatic sequence until acknowledged. EF-6 delivers 13000 C.F.M. and is considered emergency ventilation. EF-7 delivers 4500 C.F.M. and will run 24 hrs a day. Both ventilation fans are located in an enclosed closet in the TRD gas room. Their ductwork, both inlets and outlets run along side the pipe chase, but are separated by an airtight wall. Their combination motor control starter cabinets are located in the TRD room in plain visible sight of the fans with the closet door open. The fans have signs that state they are automatically controlled and can energize at any time.

  14. Pressure Ulcer Incidence in Patients Wearing Nasal-Oral Versus Full-Face Noninvasive Ventilation Masks.

    Science.gov (United States)

    Schallom, Marilyn; Cracchiolo, Lisa; Falker, Antoinette; Foster, Jennifer; Hager, JoAnn; Morehouse, Tamara; Watts, Peggy; Weems, Linda; Kollef, Marin

    2015-07-01

    Device-related pressure ulcers from noninvasive ventilation masks alter skin integrity and cause patients discomfort. To examine the incidence, location, and stage of pressure ulcers and patients' comfort with a nasal-oral mask compared with a full-face mask. A before-after study of a convenience sample of patients with noninvasive ventilation orders in 5 intensive care units was conducted. Two groups of 100 patients each received either the nasal-oral mask or the full-face mask. Skin was assessed before the mask was applied and every 12 hours after that or upon mask removal. Comfort levels were assessed every 12 hours on a Likert scale of 1 to 5 (1, most comfortable). A pressure ulcer developed in 20% of patients in the nasal-oral mask group and 2% of patients in the full-face mask group (P face mask (mean [SD], 1.9 [1.1]) than with the nasal-oral mask (mean [SD], 2.7 [1.2], P face mask and 25 (SD, 20.7) and 92% for nasal-oral mask. No patients who had a pressure ulcer develop with the nasal-oral mask had a pressure ulcer develop with the full-face mask. The full-face mask resulted in significantly fewer pressure ulcers and was more comfortable for patients. The full-face mask is a reasonable alternative to traditional nasal-oral masks for patients receiving noninvasive ventilation. ©2015 American Association of Critical-Care Nurses.

  15. Cardiopulmonary function and oxygen delivery during total liquid ventilation.

    Science.gov (United States)

    Tsagogiorgas, Charalambos; Alb, Markus; Herrmann, Peter; Quintel, Michael; Meinhardt, Juergen P

    2011-10-01

    Total liquid ventilation (TLV) with perfluorocarbons has shown to improve cardiopulmonary function in the injured and immature lung; however there remains controversy over the normal lung. Hemodynamic effects of TLV in the normal lung currently remain undetermined. This study compared changes in cardiopulmonary and circulatory function caused by either liquid or gas tidal volume ventilation. In a prospective, controlled study, 12 non-injured anesthetized, adult New Zealand rabbits were primarily conventionally gas-ventilated (CGV). After instrumentation for continuous recording of arterial (AP), central venous (CVP), left artrial (LAP), pulmonary arterial pressures (PAP), and cardiac output (CO) animals were randomized into (1) CGV group and (2) TLV group. In the TLV group partial liquid ventilation was initiated with instillation of perfluoroctylbromide (12 ml/kg). After 15 min, TLV was established for 3 hr applying a volume-controlled, pressure-limited, time-cycled ventilation mode using a double-piston configured TLV. Controls (CGV) remained gas-ventilated throughout the experiment. During TLV, heart rate, CO, PAP, MAP, CVP, and LAP as well as derived hemodynamic variables, arterial and mixed venous blood gases, oxygen delivery, PVR, and SVR did not differ significantly compared to CGV. Liquid tidal volumes suitable for long-term TLV in non-injured rabbits do not significantly impair CO, blood pressure, and oxygen dynamics when compared to CGV. Copyright © 2011 Wiley-Liss, Inc.

  16. Assessing the influence of mechanical ventilation on blood gases and blood pressure in rattlesnakes

    DEFF Research Database (Denmark)

    Bertelsen, Mads Frost; Buchanan, Rasmus; Jensen, Heidi Meldgaard

    2014-01-01

    OBJECTIVE: To characterize the impact of mechanical positive pressure ventilation on heart rate (HR), arterial blood pressure, blood gases, lactate, glucose, sodium, potassium and calcium concentrations in rattlesnakes during anesthesia and the subsequent recovery period. STUDY DESIGN: Prospectiv...

  17. Battery life of portable home ventilators: effects of ventilator settings.

    Science.gov (United States)

    Falaize, Line; Leroux, Karl; Prigent, Hélène; Louis, Bruno; Khirani, Sonia; Orlikowski, David; Fauroux, Brigitte; Lofaso, Frédéric

    2014-07-01

    The battery life (BL) of portable home ventilator batteries is reported by manufacturers. The aim of this study was to evaluate the effects of ventilator mode, breathing frequency, PEEP, and leaks on the BL of 5 commercially available portable ventilators. The effects of the ventilator mode (volume controlled-continuous mandatory ventilation [VC-CMV] vs pressure support ventilation [PSV]), PEEP 5 cm H2O, breathing frequency (10, 15, and 20 breaths/min), and leaks during both volume-targeted ventilation and PSV on the BL of 5 ventilators (Elisée 150, Monnal T50, PB560, Vivo 50, and Trilogy 100) were evaluated. Each ventilator was ventilated with a test lung at a tidal volume of 700 ml and an inspiratory time of 1.2 s in the absence of leaks. Switching from PSV to VC-CMV or the addition of PEEP did not significantly change ventilator BL. The increase in breathing frequency from 10 to 20 breaths/min decreased the BL by 18 ± 11% (P = .005). Leaks were associated with an increase in BL during the VC-CMV mode (18 ± 20%, P = .04) but a decrease in BL during the PSV mode (-13 ± 15%, P = .04). The BL of home ventilators depends on the ventilator settings. BL is not affected by the ventilator mode (VC-CMV or PSV) or the addition of PEEP. BL decreases with an increase in breathing frequency and during leaks with a PSV mode, whereas leaks increase the duration of ventilator BL during VC-CMV. Copyright © 2014 by Daedalus Enterprises.

  18. A new positive pressure ventilation delivery system: its impact on lung ventilation studies that are technically inadequate or non diagnostic

    International Nuclear Information System (INIS)

    Bui, C.; Leiper, C.; Lee, K.; Saunders, C.; Dixson, H.; Elison, B.; Bennett, G.; Gibian, T.; Rutland, J.; Tse, V.; Elzein, H.; Babicheva, R.

    2000-01-01

    Full text: The objective of this study was to evaluate the efficacy and safety of an improved Positive Pressure Ventilation Delivery System (PVDS) in the investigation of Pulmonary Embolism (PE). The major component of PVDS is a commercially available, self-inflating 1.6L Hudson Resuscitator Bag, filled with either oxygen or air (if the patient has CO 2 retention), which is squeezed by the operator to push Technegas from the Technegas Generator Chamber to the patient via the Patient Administration Set synchronously with patient inspiration. 27 spontaneously breathing in-patients (12 males, 15 females, age range 64-89, 21 with chronic airflow limitation), whose conventional lung ventilation images were technically inadequate or non diagnostic, were re-scanned using PVDS within four days after the conventional ventilation study. Randomised blinded visual interpretation of conventional ventilation/perfusion scan vs. PVDS-assisted ventilation/perfusion scan was performed by consensus reading with two experienced observers. In conclusion PVDS was safe and well tolerated. PVDS improved the image quality of the lung ventilation scans in this cohort of patients. This technique has the potential to improve the accuracy of lung scanning in patients with severe lung disease. Copyright (2000) The Australian and New Zealand Society of Nuclear Medicine Inc

  19. Rationale and study design of PROVHILO - a worldwide multicenter randomized controlled trial on protective ventilation during general anesthesia for open abdominal surgery

    Directory of Open Access Journals (Sweden)

    Hedenstierna Göran

    2011-05-01

    Full Text Available Abstract Background Post-operative pulmonary complications add to the morbidity and mortality of surgical patients, in particular after general anesthesia >2 hours for abdominal surgery. Whether a protective mechanical ventilation strategy with higher levels of positive end-expiratory pressure (PEEP and repeated recruitment maneuvers; the "open lung strategy", protects against post-operative pulmonary complications is uncertain. The present study aims at comparing a protective mechanical ventilation strategy with a conventional mechanical ventilation strategy during general anesthesia for abdominal non-laparoscopic surgery. Methods The PROtective Ventilation using HIgh versus LOw positive end-expiratory pressure ("PROVHILO" trial is a worldwide investigator-initiated multicenter randomized controlled two-arm study. Nine hundred patients scheduled for non-laparoscopic abdominal surgery at high or intermediate risk for post-operative pulmonary complications are randomized to mechanical ventilation with the level of PEEP at 12 cmH2O with recruitment maneuvers (the lung-protective strategy or mechanical ventilation with the level of PEEP at maximum 2 cmH2O without recruitment maneuvers (the conventional strategy. The primary endpoint is any post-operative pulmonary complication. Discussion The PROVHILO trial is the first randomized controlled trial powered to investigate whether an open lung mechanical ventilation strategy in short-term mechanical ventilation prevents against postoperative pulmonary complications. Trial registration ISRCTN: ISRCTN70332574

  20. Flow-synchronized nasal intermittent positive pressure ventilation in the preterm infant: development of a project

    Directory of Open Access Journals (Sweden)

    Corrado Moretti

    2013-06-01

    Full Text Available This manuscript describes the experience of our team in developing a flow-triggered nasal respiratory support for the neonate and its related clinical applications. Although mechanical ventilation (MV via an endotracheal tube has undoubtedly led to improvement in neonatal survival in the last 40 years, the prolonged use of this technique may predispose the infant to the development of many possible complications, first of all, bronchopulmonary dysplasia (BPD. Avoiding mechanical ventilation is thought to be a critical goal, and different modes of non invasive respiratory support may reduce the intubation rate: nasal continuous positive airway pressure (NCPAP, nasal intermittent positive pressure ventilation (NIPPV and its more advantageous form, synchronized nasal intermittent positive pressure ventilation (SNIPPV. SNIPPV was initially performed by a capsule placed on the baby’s abdomen. To overcome the disadvantages of the abdominal capsule, our team decided to create a flow-sensor that could be interposed between the nasal prongs and the Y piece. Firstly we developed a hot-wire flow-sensor to trigger the ventilator and we showed that flow-SNIPPV can support the inspiratory effort in the post-extubation period more effectively than NCPAP. But, although accurate, the proper functioning of the hot-wire flow-sensor was easily compromised by secretions or moisture, and therefore we started to use as flow-sensor a simpler differential pressure transducer. In a following trial using the new device, we were able to demonstrate that flow-SNIPPV was more effective than conventional NCPAP in decreasing extubation failure in preterm infants who had been ventilated for respiratory distress syndrome (RDS. More recently we used flow-SNIPPV as the primary mode of ventilation, after surfactant replacement, reducing MV need and favorably affecting short-term morbidities of treated premature infants. We also successfully applied SNIPPV to treat apnea of

  1. A prospective crossover comparison of neurally adjusted ventilatory assist and pressure-support ventilation in a pediatric and neonatal intensive care unit population.

    LENUS (Irish Health Repository)

    Breatnach, Cormac

    2012-02-01

    OBJECTIVE: To compare neurally adjusted ventilatory assist ventilation with pressure-support ventilation. DESIGN: Prospective, crossover comparison study. SETTING: Tertiary care pediatric and neonatal intensive care unit. PATIENTS: Sixteen ventilated infants and children: mean age = 9.7 months (range = 2 days-4 yrs) and mean weight = 6.2 kg (range = 2.4-13.7kg). INTERVENTIONS: A modified nasogastric tube was inserted and correct positioning was confirmed. Patients were ventilated in pressure-support mode with a pneumatic trigger for a 30-min period and then in neurally adjusted ventilatory assist mode for up to 4 hrs. MEASUREMENTS AND MAIN RESULTS: Data collected for comparison included activating trigger (neural vs. pneumatic), peak and mean airway pressures, expired minute and tidal volumes, heart rate, respiratory rate, pulse oximetry, end-tidal CO2 and arterial blood gases. Synchrony was improved in neurally adjusted ventilatory assist mode with 65% (+\\/-21%) of breaths triggered neurally vs. 35% pneumatically (p < .001) and 85% (+\\/-8%) of breaths cycled-off neurally vs. 15% pneumatically (p = .0001). The peak airway pressure in neurally adjusted ventilatory assist mode was significantly lower than in pressure-support mode with a 28% decrease in pressure after 30 mins (p = .003) and 32% decrease after 3 hrs (p < .001). Mean airway pressure was reduced by 11% at 30 mins (p = .13) and 9% at 3 hrs (p = .31) in neurally adjusted ventilatory assist mode although this did not reach statistical significance. Patient hemodynamics and gas exchange remained stable for the study period. No adverse patient events or device effects were noted. CONCLUSIONS: In a neonatal and pediatric intensive care unit population, ventilation in neurally adjusted ventilatory assist mode was associated with improved patient-ventilator synchrony and lower peak airway pressure when compared with pressure-support ventilation with a pneumatic trigger. Ventilating patients in this new mode

  2. Low tidal volume and high positive end-expiratory pressure mechanical ventilation results in increased inflammation and ventilator-associated lung injury in normal lungs.

    Science.gov (United States)

    Hong, Caron M; Xu, Da-Zhong; Lu, Qi; Cheng, Yunhui; Pisarenko, Vadim; Doucet, Danielle; Brown, Margaret; Aisner, Seena; Zhang, Chunxiang; Deitch, Edwin A; Delphin, Ellise

    2010-06-01

    Protective mechanical ventilation with low tidal volume (Vt) and low plateau pressure reduces mortality and decreases the length of mechanical ventilation in patients with acute respiratory distress syndrome. Mechanical ventilation that will protect normal lungs during major surgical procedures of long duration may improve postoperative outcomes. We performed an animal study comparing 3 ventilation strategies used in the operating room in normal lungs. We compared the effects on pulmonary mechanics, inflammatory mediators, and lung tissue injury. Female pigs were randomized into 3 groups. Group H-Vt/3 (n = 6) was ventilated with a Vt of 15 mL/kg predicted body weight (PBW)/positive end-expiratory pressure (PEEP) of 3 cm H(2)O, group L-Vt/3 (n = 6) with a Vt of 6 mL/kg PBW/PEEP of 3 cm H(2)O, and group L-Vt/10 (n = 6) with a Vt of 6 mL/kg PBW/PEEP of 10 cm H(2)O, for 8 hours. Hemodynamics, airway mechanics, arterial blood gases, and inflammatory markers were monitored. Bronchoalveolar lavage (BAL) was analyzed for inflammatory markers and protein concentration. The right lower lobe was assayed for mRNA of specific cytokines. The right lower lobe and right upper lobe were evaluated histologically. In contrast to groups H-Vt/3 and L-Vt/3, group L-Vt/10 exhibited a 6-fold increase in inflammatory mediators in BAL (P ventilation with high PEEP resulted in increased production of inflammatory markers. Low PEEP resulted in lower levels of inflammatory markers. High Vt/low PEEP resulted in less histologic lung injury.

  3. Pulmonary lesion induced by low and high positive end-expiratory pressure levels during protective ventilation in experimental acute lung injury.

    Science.gov (United States)

    Pássaro, Caroline P; Silva, Pedro L; Rzezinski, Andréia F; Abrantes, Simone; Santiago, Viviane R; Nardelli, Liliane; Santos, Raquel S; Barbosa, Carolina M L; Morales, Marcelo M; Zin, Walter A; Amato, Marcelo B P; Capelozzi, Vera L; Pelosi, Paolo; Rocco, Patricia R M

    2009-03-01

    To investigate the effects of low and high levels of positive end-expiratory pressure (PEEP), without recruitment maneuvers, during lung protective ventilation in an experimental model of acute lung injury (ALI). Prospective, randomized, and controlled experimental study. University research laboratory. Wistar rats were randomly assigned to control (C) [saline (0.1 mL), intraperitoneally] and ALI [paraquat (15 mg/kg), intraperitoneally] groups. After 24 hours, each group was further randomized into four groups (six rats each) at different PEEP levels = 1.5, 3, 4.5, or 6 cm H2O and ventilated with a constant tidal volume (6 mL/kg) and open thorax. Lung mechanics [static elastance (Est, L) and viscoelastic pressure (DeltaP2, L)] and arterial blood gases were measured before (Pre) and at the end of 1-hour mechanical ventilation (Post). Pulmonary histology (light and electron microscopy) and type III procollagen (PCIII) messenger RNA (mRNA) expression were measured after 1 hour of mechanical ventilation. In ALI group, low and high PEEP levels induced a greater percentage of increase in Est, L (44% and 50%) and DeltaP2, L (56% and 36%) in Post values related to Pre. Low PEEP yielded alveolar collapse whereas high PEEP caused overdistension and atelectasis, with both levels worsening oxygenation and increasing PCIII mRNA expression. In the present nonrecruited ALI model, protective mechanical ventilation with lower and higher PEEP levels than required for better oxygenation increased Est, L and DeltaP2, L, the amount of atelectasis, and PCIII mRNA expression. PEEP selection titrated for a minimum elastance and maximum oxygenation may prevent lung injury while deviation from these settings may be harmful.

  4. Protective mechanical ventilation in United Kingdom critical care units: A multicentre audit.

    Science.gov (United States)

    Newell, Christopher P; Martin, Matthew J; Richardson, Neil; Bourdeaux, Christopher P

    2017-05-01

    Lung protective ventilation is becoming increasingly used for all critically ill patients being mechanically ventilated on a mandatory ventilator mode. Compliance with the universal application of this ventilation strategy in intensive care units in the United Kingdom is unknown. This 24-h audit of ventilation practice took place in 16 intensive care units in two regions of the United Kingdom. The mean tidal volume for all patients being ventilated on a mandatory ventilator mode was 7.2(±1.4) ml kg -1 predicted body weight and overall compliance with low tidal volume ventilation (≤6.5 ml kg -1 predicted body weight) was 34%. The mean tidal volume for patients ventilated with volume-controlled ventilation was 7.0(±1.2) ml kg -1 predicted body weight and 7.9(±1.8) ml kg -1 predicted body weight for pressure-controlled ventilation ( P  < 0.0001). Overall compliance with recommended levels of positive end-expiratory pressure was 72%. Significant variation in practice existed both at a regional and individual unit level.

  5. Synchronized mechanical ventilation for respiratory support in newborn infants.

    Science.gov (United States)

    Greenough, Anne; Murthy, Vadivelam; Milner, Anthony D; Rossor, Thomas E; Sundaresan, Adesh

    2016-08-19

    During synchronised mechanical ventilation, positive airway pressure and spontaneous inspiration coincide. If synchronous ventilation is provoked, adequate gas exchange should be achieved at lower peak airway pressures, potentially reducing baro/volutrauma, air leak and bronchopulmonary dysplasia. Synchronous ventilation can potentially be achieved by manipulation of rate and inspiratory time during conventional ventilation and employment of patient-triggered ventilation. To compare the efficacy of:(i) synchronised mechanical ventilation, delivered as high-frequency positive pressure ventilation (HFPPV) or patient-triggered ventilation (assist control ventilation (ACV) and synchronous intermittent mandatory ventilation (SIMV)), with conventional ventilation or high-frequency oscillation (HFO);(ii) different types of triggered ventilation (ACV, SIMV, pressure-regulated volume control ventilation (PRVCV), SIMV with pressure support (PS) and pressure support ventilation (PSV)). We used the standard search strategy of the Cochrane Neonatal Review group to search the Cochrane Central Register of Controlled Trials (CENTRAL 2016, Issue 5), MEDLINE via PubMed (1966 to June 5 2016), EMBASE (1980 to June 5 2016), and CINAHL (1982 to June 5 2016). We also searched clinical trials databases, conference proceedings, and the reference lists of retrieved articles for randomised controlled trials and quasi-randomised trials. Randomised or quasi-randomised clinical trials comparing synchronised ventilation delivered as HFPPV to CMV, or ACV/SIMV to CMV or HFO in neonates. Randomised trials comparing different triggered ventilation modes (ACV, SIMV, SIMV plus PS, PRVCV and PSV) in neonates. Data were collected regarding clinical outcomes including mortality, air leaks (pneumothorax or pulmonary interstitial emphysema (PIE)), severe intraventricular haemorrhage (grades 3 and 4), bronchopulmonary dysplasia (BPD) (oxygen dependency beyond 28 days), moderate/severe BPD (oxygen

  6. Diffuse Ceiling Ventilation

    DEFF Research Database (Denmark)

    Zhang, Chen; Yu, Tao; Heiselberg, Per Kvols

    with conventional ventilation systems (mixing or displacement ventilation), diffuse ceiling ventilation can significantly reduce or even eliminate draught risk in the occupied zone. Moreover, this ventilation system presents a promising opportunity for energy saving, because of the low pressure loss, extended free...

  7. Volume-Targeted Ventilation in the Neonate: Benchmarking Ventilators on an Active Lung Model.

    Science.gov (United States)

    Krieger, Tobias J; Wald, Martin

    2017-03-01

    Mechanically ventilated neonates have been observed to receive substantially different ventilation after switching ventilator models, despite identical ventilator settings. This study aims at establishing the range of output variability among 10 neonatal ventilators under various breathing conditions. Relative benchmarking test of 10 neonatal ventilators on an active neonatal lung model. Neonatal ICU. Ten current neonatal ventilators. Ventilators were set identically to flow-triggered, synchronized, volume-targeted, pressure-controlled, continuous mandatory ventilation and connected to a neonatal lung model. The latter was configured to simulate three patients (500, 1,500, and 3,500 g) in three breathing modes each (passive breathing, constant active breathing, and variable active breathing). Averaged across all weight conditions, the included ventilators delivered between 86% and 110% of the target tidal volume in the passive mode, between 88% and 126% during constant active breathing, and between 86% and 120% under variable active breathing. The largest relative deviation occurred during the 500 g constant active condition, where the highest output machine produced 147% of the tidal volume of the lowest output machine. All machines deviate significantly in volume output and ventilation regulation. These differences depend on ventilation type, respiratory force, and patient behavior, preventing the creation of a simple conversion table between ventilator models. Universal neonatal tidal volume targets for mechanical ventilation cannot be transferred from one ventilator to another without considering necessary adjustments.

  8. Implementation of a Goal-Directed Mechanical Ventilation Order Set Driven by Respiratory Therapists Improves Compliance With Best Practices for Mechanical Ventilation.

    Science.gov (United States)

    Radosevich, Misty A; Wanta, Brendan T; Meyer, Todd J; Weber, Verlin W; Brown, Daniel R; Smischney, Nathan J; Diedrich, Daniel A

    2017-01-01

    Data regarding best practices for ventilator management strategies that improve outcomes in acute respiratory distress syndrome (ARDS) are readily available. However, little is known regarding processes to ensure compliance with these strategies. We developed a goal-directed mechanical ventilation order set that included physician-specified lung-protective ventilation and oxygenation goals to be implemented by respiratory therapists (RTs). We sought as a primary outcome to determine whether an RT-driven order set with predefined oxygenation and ventilation goals could be implemented and associated with improved adherence with best practice. We evaluated 1302 patients undergoing invasive mechanical ventilation (1693 separate episodes of invasive mechanical ventilation) prior to and after institution of a standardized, goal-directed mechanical ventilation order set using a controlled before-and-after study design. Patient-specific goals for oxygenation partial pressure of oxygen in arterial blood (Pao 2 ), ARDS Network [Net] positive end-expiratory pressure [PEEP]/fraction of inspired oxygen [Fio 2 ] table use) and ventilation (pH, partial pressure of carbon dioxide) were selected by prescribers and implemented by RTs. Compliance with the new mechanical ventilation order set was high: 88.2% compliance versus 3.8% before implementation of the order set ( P mechanical ventilation, intensive care unit (ICU) length of stay, and in-hospital or ICU mortality. A standardized best practice mechanical ventilation order set can be implemented by a multidisciplinary team and is associated with improved compliance to written orders and adherence to the ARDSNet PEEP/Fio 2 table.

  9. B-Plant Canyon Ventilation Control System Description; FINAL

    International Nuclear Information System (INIS)

    MCDANIEL, K.S.

    1999-01-01

    Project W-059 installed a new B Plant Canyon Ventilation System. Monitoring and control of the system is implemented by the Canyon Ventilation Control System (CVCS). This document describes the CVCS system components which include a Programmable Logic Controller (PLC) coupled with an Operator Interface Unit (OIU) and application software. This document also includes an Alarm Index specifying the setpoints and technical basis for system analog and digital alarms

  10. Protective intraoperative ventilation with higher versus lower levels of positive end-expiratory pressure in obese patients (PROBESE): study protocol for a randomized controlled trial.

    Science.gov (United States)

    Bluth, T; Teichmann, R; Kiss, T; Bobek, I; Canet, J; Cinnella, G; De Baerdemaeker, L; Gregoretti, C; Hedenstierna, G; Hemmes, S N; Hiesmayr, M; Hollmann, M W; Jaber, S; Laffey, J G; Licker, M J; Markstaller, K; Matot, I; Müller, G; Mills, G H; Mulier, J P; Putensen, C; Rossaint, R; Schmitt, J; Senturk, M; Serpa Neto, A; Severgnini, P; Sprung, J; Vidal Melo, M F; Wrigge, H; Schultz, M J; Pelosi, P; Gama de Abreu, M

    2017-04-28

    Postoperative pulmonary complications (PPCs) increase the morbidity and mortality of surgery in obese patients. High levels of positive end-expiratory pressure (PEEP) with lung recruitment maneuvers may improve intraoperative respiratory function, but they can also compromise hemodynamics, and the effects on PPCs are uncertain. We hypothesized that intraoperative mechanical ventilation using high PEEP with periodic recruitment maneuvers, as compared with low PEEP without recruitment maneuvers, prevents PPCs in obese patients. The PRotective Ventilation with Higher versus Lower PEEP during General Anesthesia for Surgery in OBESE Patients (PROBESE) study is a multicenter, two-arm, international randomized controlled trial. In total, 2013 obese patients with body mass index ≥35 kg/m 2 scheduled for at least 2 h of surgery under general anesthesia and at intermediate to high risk for PPCs will be included. Patients are ventilated intraoperatively with a low tidal volume of 7 ml/kg (predicted body weight) and randomly assigned to PEEP of 12 cmH 2 O with lung recruitment maneuvers (high PEEP) or PEEP of 4 cmH 2 O without recruitment maneuvers (low PEEP). The occurrence of PPCs will be recorded as collapsed composite of single adverse pulmonary events and represents the primary endpoint. To our knowledge, the PROBESE trial is the first multicenter, international randomized controlled trial to compare the effects of two different levels of intraoperative PEEP during protective low tidal volume ventilation on PPCs in obese patients. The results of the PROBESE trial will support anesthesiologists in their decision to choose a certain PEEP level during general anesthesia for surgery in obese patients in an attempt to prevent PPCs. ClinicalTrials.gov identifier: NCT02148692. Registered on 23 May 2014; last updated 7 June 2016.

  11. Modeling and Control of Livestock Ventilation Systems and Indoor Environments

    DEFF Research Database (Denmark)

    Wu, Zhuang; Heiselberg, Per; Stoustrup, Jakob

    2005-01-01

    The hybrid ventilation systems have been widely used for livestock barns to provide optimum indoor climate by controlling the ventilation rate and air flow distribution within the ventilated building structure. The purpose of this paper is to develop models for livestock ventilation systems and i...

  12. Partial liquid ventilation improves lung function in ventilation-induced lung injury

    NARCIS (Netherlands)

    G.F. Vazquez de Anda; R.A. Lachmann; S.J.C. Verbrugge (Serge); D.A.M.P.J. Gommers (Diederik); J.J. Haitsma (Jack); B.F. Lachmann (Burkhard)

    2001-01-01

    textabstractDisturbances in lung function and lung mechanics are present after ventilation with high peak inspiratory pressures (PIP) and low levels of positive end-expiratory pressure (PEEP). Therefore, the authors investigated whether partial liquid ventilation can re-establish

  13. Injurious mechanical ventilation in the normal lung causes a progressive pathologic change in dynamic alveolar mechanics.

    Science.gov (United States)

    Pavone, Lucio A; Albert, Scott; Carney, David; Gatto, Louis A; Halter, Jeffrey M; Nieman, Gary F

    2007-01-01

    Acute respiratory distress syndrome causes a heterogeneous lung injury, and without protective mechanical ventilation a secondary ventilator-induced lung injury can occur. To ventilate noncompliant lung regions, high inflation pressures are required to 'pop open' the injured alveoli. The temporal impact, however, of these elevated pressures on normal alveolar mechanics (that is, the dynamic change in alveolar size and shape during ventilation) is unknown. In the present study we found that ventilating the normal lung with high peak pressure (45 cmH(2)0) and low positive end-expiratory pressure (PEEP of 3 cmH(2)O) did not initially result in altered alveolar mechanics, but alveolar instability developed over time. Anesthetized rats underwent tracheostomy, were placed on pressure control ventilation, and underwent sternotomy. Rats were then assigned to one of three ventilation strategies: control group (n = 3, P control = 14 cmH(2)O, PEEP = 3 cmH(2)O), high pressure/low PEEP group (n = 6, P control = 45 cmH(2)O, PEEP = 3 cmH(2)O), and high pressure/high PEEP group (n = 5, P control = 45 cmH(2)O, PEEP = 10 cmH(2)O). In vivo microscopic footage of subpleural alveolar stability (that is, recruitment/derecruitment) was taken at baseline and than every 15 minutes for 90 minutes following ventilator adjustments. Alveolar recruitment/derecruitment was determined by measuring the area of individual alveoli at peak inspiration (I) and end expiration (E) by computer image analysis. Alveolar recruitment/derecruitment was quantified by the percentage change in alveolar area during tidal ventilation (%I - E Delta). Alveoli were stable in the control group for the entire experiment (low %I - E Delta). Alveoli in the high pressure/low PEEP group were initially stable (low %I - E Delta), but with time alveolar recruitment/derecruitment developed. The development of alveolar instability in the high pressure/low PEEP group was associated with histologic lung injury. A large change in

  14. Multifaceted bench comparative evaluation of latest intensive care unit ventilators.

    Science.gov (United States)

    Garnier, M; Quesnel, C; Fulgencio, J-P; Degrain, M; Carteaux, G; Bonnet, F; Similowski, T; Demoule, A

    2015-07-01

    Independent bench studies using specific ventilation scenarios allow testing of the performance of ventilators in conditions similar to clinical settings. The aims of this study were to determine the accuracy of the latest generation ventilators to deliver chosen parameters in various typical conditions and to provide clinicians with a comprehensive report on their performance. Thirteen modern intensive care unit ventilators were evaluated on the ASL5000 test lung with and without leakage for: (i) accuracy to deliver exact tidal volume (VT) and PEEP in assist-control ventilation (ACV); (ii) performance of trigger and pressurization in pressure support ventilation (PSV); and (iii) quality of non-invasive ventilation algorithms. In ACV, only six ventilators delivered an accurate VT and nine an accurate PEEP. Eleven devices failed to compensate VT and four the PEEP in leakage conditions. Inspiratory delays differed significantly among ventilators in invasive PSV (range 75-149 ms, P=0.03) and non-invasive PSV (range 78-165 ms, Pventilation algorithms efficiently prevented the decrease in pressurization capacities and PEEP levels induced by leaks in, respectively, 10 and 12 out of the 13 ventilators. We observed real heterogeneity of performance amongst the latest generation of intensive care unit ventilators. Although non-invasive ventilation algorithms appear to maintain adequate pressurization efficiently in the case of leakage, basic functions, such as delivered VT in ACV and pressurization in PSV, are often less reliable than the values displayed by the device suggest. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. [Effectiveness of nasal positive pressure ventilation in the management of acute refractory left ventricular insufficiency].

    Science.gov (United States)

    Chesi, G; Pinelli, G; Galimberti, D; Navazio, A; Montanari, P

    1994-04-01

    Ehen refractory to optimal medical treatment cardiogenic pulmonary edema requires mechanical ventilation as a last therapeutic resource. In recent years an increasing number of authors reported their experience in the management of acute or subacute respiratory failure with non-invasive mechanical ventilation by nasal mask. Encouraged by the first promising results reported in literature we experimented this new therapeutic tool in a first group of seven elderly patients (mean age: 76.57--range: 65-89); they all had been admitted for severe cardiogenic pulmonary edema unresponsive to maximal doses of the conventional drugs available for treating acute decompensated heart failure. The enrolled patients were treated with intermittent ventilation administered by nasal mask at selected values of inspiratory positive airway pressure (IPAP) that were comprised between 10 and 20 cm H2O. At the same time an expiratory positive airway pressure (EPAP) at values comprised between 3 and 8 cm H2O was applied. Ventilation was continued for variable periods of 3-24 hours until acceptable values of PaO2 and PaCO2 were obtained. The ventilation modality was spontaneous, spontaneous-time or timed depending on the patients' level of consciousness at starting time. A good short-term outcome was achieved in all the patients regardless of the ventilation modality applied. The main blood gas alteration was severe hypercapnia with acidosis in three patients, while the other four presented critical hypoxemia unresponsive to simple oxygen supply even if delivered by high-flow Venturi mask. Four of our seven patients were discharged from hospital in satisfactory haemodynamic conditions; the remaining three died during hospitalization from refractory heart failure. In this our preliminary experience the therapeutic approach with nasal positive pressure ventilation (NPPV) and EPAP proved to be very effective to improve the signs and symptoms of acute refractory cardiogenic pulmonary edema as

  16. Experimental intra-abdominal hypertension influences airway pressure limits for lung protective mechanical ventilation.

    Science.gov (United States)

    Cortes-Puentes, Gustavo A; Cortes-Puentes, Luis A; Adams, Alexander B; Anderson, Christopher P; Marini, John J; Dries, David J

    2013-06-01

    Intra-abdominal hypertension (IAH) and abdominal compartment syndrome (ACS) may complicate monitoring of pulmonary mechanics owing to their impact on the respiratory system. However, recommendations for mechanical ventilation of patients with IAH/ACS and the interpretation of thoracoabdominal interactions remain unclear. Our study aimed to characterize the influence of elevated intra-abdominal pressure (IAP) and positive end-expiratory pressure (PEEP) on airway plateau pressure (PPLAT) and bladder pressure (PBLAD). Nine deeply anesthetized swine were mechanically ventilated via tracheostomy: volume-controlled mode at tidal volume (VT) of 10 mL/kg, frequency of 15, inspiratory-expiratory ratio of 1:2, and PEEP of 1 and 10 cm H2O (PEEP1 and PEEP10, respectively). A tracheostomy tube was placed in the peritoneal cavity, and IAP levels of 5, 10, 15, 20, and 25 mm Hg were applied, using a continuous positive airway pressure system. At each IAP level, PBLAD and airway pressure measurements were performed during both PEEP1 and PEEP10. PBLAD increased as experimental IAP rose (y = 0.83x + 0.5; R = 0.98; p < 0.001 at PEEP1). Minimal underestimation of IAP by PBLAD was observed (-2.5 ± 0.8 mm Hg at an IAP of 10-25 mm Hg). Applying PEEP10 did not significantly affect the correlation between experimental IAP and PBLAD. Approximately 50% of the PBLAD (in cm H2O) was reflected by changes in PPLAT, regardless of the PEEP level applied. Increasing IAP did not influence hemodynamics at any level of IAP generated. With minimal underestimation, PBLAD measurements closely correlated with experimentally regulated IAP, independent of the PEEP level applied. For each PEEP level applied, a constant proportion (approximately 50%) of measured PBLAD (in cm H2O) was reflected in PPLAT. A higher safety threshold for PPLAT should be considered in the setting of IAH/ACS as the clinician considers changes in VT. A strategy of reducing VT to cap PPLAT at widely recommended values may not be

  17. Continuous positive airway pressure and conventional mechanical ventilation in the treatment of meconium aspiration syndrome.

    Science.gov (United States)

    Goldsmith, J P

    2008-12-01

    Meconium aspiration syndrome (MAS) is a complex syndrome that ranges in severity from mild respiratory distress to severe respiratory failure, persistent pulmonary hypertension of the newborn and sometimes death. Understanding of the syndrome's complicated pathophysiology will help determine the appropriate treatment strategy, including the use of continuous positive airway pressure (CPAP), conventional mechanical ventilation (CMV) and other therapies. Approximately 30 to 50% of infants diagnosed with MAS will require CPAP or mechanical ventilation. The optimum modes of ventilation for MAS are not known. Very few studies have been conducted to determine 'best' ventilatory strategies. Despite the introduction, over the last two decades, of innovative ventilatory treatments for this disease (for example, surfactant, high-frequency ventilation, inhaled nitric oxide, extracorporeal membrane oxygenation), the majority of infants can be successfully managed with CPAP or mechanical ventilation alone.

  18. Peak Pressures and PaO2/FiO2 Ratios Are Associated With Adverse Outcomes in Patients on Mechanical Ventilators.

    Science.gov (United States)

    Whiting, Jeremy; Edriss, Hawa; Yang, Shengping; Nugent, Kenneth

    2016-06-01

    Patients requiring mechanical ventilation can have complications related to their underlying diseases and hospital-related events. It is possible that easily obtained information early in the course of mechanical ventilation can provide information about important outcomes. Medical records from 281 episodes of mechanical ventilation in the medical intensive care unit were reviewed to collect information on patient demographics, admitting diagnoses, laboratory tests, duration of mechanical ventilation, the development of ventilator-associated events and mortality. Ventilator pressures from day 2 were analyzed for this study. Most patients (72.7%) were ≥50 years, 53.8% were men and 66.3% had a body mass index (BMI) ≥ 25kg/m(2).The mean Acute Physiology and Chronic Healthy Evaluation II score was 13.6 ± 5.9. The median initial PaO2/FiO2 was 240 with interquartile range of 177-414. The median duration of ventilation was 4 days (interquartile range: 2-9 days). A PaO2/FiO2 ratio 500, and a BMI > 30kg/m(2) was associated with decreased mortality compared with normal BMIs. A PaO2/FiO2 ratio 30kg/m(2) were all associated with having a ventilator-associated event. There was a positive correlation between peak pressure (day 2) and the duration of ventilation (r = 0.263, P = 0.007). Easily available information collected on day 2 of mechanical ventilation can help identify patients at risk for poor outcomes, including the duration of mechanical ventilation, the development of ventilator-associated complications and mortality. Prospective studies measuring peak pressures are needed to evaluate the utility of this simple measurement in the management of patients requiring mechanical ventilation. Published by Elsevier Inc.

  19. Ventilation practices in subarachnoid hemorrhage: a cohort study exploring the use of lung protective ventilation.

    Science.gov (United States)

    Marhong, Jonathan D; Ferguson, Niall D; Singh, Jeffrey M

    2014-10-01

    Acute respiratory distress syndrome (ARDS) is common following aneurysmal subarachnoid hemorrhage (SAH), but the influence of mechanical ventilator settings on its development is unclear. We sought to determine adherence to lung protective thresholds in ventilated patients with SAH and describe the association between ventilator settings and subsequent development of ARDS. We conducted a retrospective cohort study of consecutive patients receiving mechanical ventilation within 72 h of SAH at a single academic center. Ventilator settings and blood gas data were collected twice daily for the first 7 days of ventilation along with ICU and hospital outcomes. Lung protective ventilation was defined as follows: tidal volume ≤8 mL/kg of predicted body weight, positive end-expiratory pressure (PEEP) ≥5 cm H(2)O, and peak or plateau pressure ≤30 cm H(2)O. The development of ARDS was ascertained retrospectively by PaO(2)/FiO(2) ≤300 with new bilateral lung opacities on chest X-ray within one day of hypoxemia. We identified 62 patients who underwent early mechanical ventilation following SAH. PS and Continuous Positive Airway Pressure were common ventilator modes with a median tidal volume of 7.8 mL/kg [interquartile range 6.8-8.8], median peak pressure of 14 cm H(2)O [IQR 12-17], and median PEEP of 5 cm H(2)O [IQR 5-6]. Adherence to tidal volumes ≤8 mL/kg was seen in 64 % of all observations and peak pressures protective criteria were seen in 58 % of all observations. Thirty-one patients (50 %) were determined to have ARDS. ARDS patients were more frequently ventilated with a peak pressure >30 cm H(2)O (11.3 % of ARDS ventilation days vs. 0 % of non-ARDS ventilation days; p mechanical ventilation frequently breathe spontaneously, generating tidal volumes above usual protective thresholds regardless of meeting ARDS criteria. In patients with SAH, the presence of an additional ARDS risk factor should prompt close screening for the development of ARDS and

  20. Optimization of Occupancy Based Demand Controlled Ventilation in Residences

    DEFF Research Database (Denmark)

    Mortensen, Dorthe Kragsig; Walker, Iain; Sherman, Max

    2011-01-01

    Although it has been used for many years in commercial buildings, the application of demand controlled ventilation in residences is limited. In this study we used occupant exposure to pollutants integrated over time (referred to as "dose") as the metric to evaluate the effectiveness and air quality...... implications of demand controlled ventilation in residences. We looked at air quality for two situations. The first is that typically used in ventilation standards: the exposure over a long term. The second is to look at peak exposures that are associated with time variations in ventilation rates and pollutant...... when occupied. We used analytical solutions to the continuity equation to determine the ventilation effectiveness and the long-term chronic dose and peak acute exposure for a representative range of occupancy periods, pollutant generation rates and airflow rates. The results of the study showed that we...

  1. Control of ventilation system when changing of its topology

    International Nuclear Information System (INIS)

    Koketayev, A.I.

    2009-01-01

    The complex ventilation systems of modern coal and ore mines can be described by multidimensional and highly bound graphs. Because of changes in topology, it is very difficult to control ventilation systems in the event of emergency situations such as rock bumps, roof caving, sudden gas outburst, quicksand intrusion, or mine flooding. Special mathematical tools are needed to consider such changes and to determine the corresponding conditions of a mine's ventilation needs. This paper presented a system to simulate the behaviour of mine ventilation system. The system considered changes in topology as well as timely measures for support of necessary air quantity for safe conditions for miners in underground mine workings. The paper presented the details of the study with particular reference to the calculation of ventilation conditions; graphs and sub-graphs of the ventilation system; and corresponding equations. It was concluded that the simulated system would allow users to simulate the behaviour of the mine ventilation system when changing its topology in a timely manner and to take measures to control the required volume of air to ensure safe working conditions for underground miners. 3 refs., 1 fig.

  2. Intelligent ventilation in the intensive care unit

    African Journals Online (AJOL)

    Automated, microprocessor-controlled, closed-loop mechanical ventilation has been used ... Sixty-eight patients (6%) with severe hypoxia and high inspiratory pressures were ... At any breath, the controller compares target and actual data for.

  3. Inspiratory time and tidal volume during intermittent positive pressure ventilation.

    OpenAIRE

    Field, D; Milner, A D; Hopkin, I E

    1985-01-01

    We measured the tidal volume achieved during intermittent positive pressure ventilation using various inspiratory times with a minimum of 0.2 seconds. Results indicate that tidal volume shows no reduction with inspiratory times down to 0.4 seconds. An inspiratory time of 0.3 seconds, however, is likely to reduce tidal volume by 8%, and at 0.2 seconds a 22% fall may be anticipated.

  4. Lung-protective ventilation in intensive care unit and operation room : Tidal volume size, level of positive end-expiratory pressure and driving pressure

    NARCIS (Netherlands)

    Serpa Neto, A.

    2017-01-01

    Several investigations have shown independent associations between three ventilator settings – tidal volume size, positive end–expiratory pressure (PEEP) and driving pressure – and outcomes in patients with the acute respiratory distress syndrome (ARDS). There is an increasing notion that similar

  5. Face Masks for Noninvasive Ventilation: Fit, Excess Skin Hydration, and Pressure Ulcers.

    Science.gov (United States)

    Visscher, Marty O; White, Cynthia C; Jones, Jennifer M; Cahill, Thomas; Jones, Donna C; Pan, Brian S

    2015-11-01

    Pressure ulcers (stages III and IV) are serious safety events (ie, never events). Healthcare institutions are no longer reimbursed for costs to care for affected patients. Medical devices are the leading cause of pediatric pressure ulcers. Face masks for noninvasive ventilation were associated with a high percentage of pressure ulcers at our institution. A prospective cohort study investigated factors contributing to pressure ulcer development in 50 subjects using face masks for noninvasive ventilation. Color imaging, 3-dimensional surface imaging, and skin hydration measurements were used to identify early skin compromise and evaluate 3 interventions to reduce trauma: (1) a silicone foam dressing, (2) a water/polyethylene oxide hydrogel dressing, and (3) a flexible cloth mask. A novel mask fit technique was used to examine the impact of fit on the potential for skin compromise. Fifty subjects age 10.4 ± 9.1 y participated with color images for 22, hydration for 34, and mask fit analysis for 16. Of these, 69% had diagnoses associated with craniofacial anomalies. Stage I pressure ulcers were the most common injury. Skin hydration difference was 317 ± 29 for sites with erythema versus 75 ± 28 for sites without erythema (P skin erythema and pressure ulcers. This fit method is currently being utilized to select best-fit masks from available options, to identify the potential areas of increased tissue pressure, and to prevent skin injuries and their complications. Improvement of mask fit is an important priority for improving respiratory outcomes. Strategies to maintain normal skin hydration are important for protecting tissue integrity. Copyright © 2015 by Daedalus Enterprises.

  6. Backrest position in prevention of pressure ulcers and ventilator-associated pneumonia: Conflicting recommendations

    OpenAIRE

    Burk, Ruth Srednicki; Jo Grap, Mary

    2012-01-01

    Pressure ulcers and ventilator-associated pneumonia (VAP) are both common in acute and critical care settings and are considerable sources of morbidity, mortality, and health care costs. To prevent pressure ulcers, guidelines limit bed backrest elevation to less than 30 degrees, whereas recommendations to reduce VAP include use of backrest elevations of 30 degrees or more. Although a variety of risk factors beyond patient position have been identified for both pressure ulcers and VAP, this ar...

  7. Realtime mine ventilation simulation

    International Nuclear Information System (INIS)

    McDaniel, K.H.

    1997-01-01

    This paper describes the development of a Windows based, interactive mine ventilation simulation software program at the Waste Isolation Pilot Plant (WIPP). To enhance the operation of the underground ventilation system, Westinghouse Electric Corporation developed the program called WIPPVENT. While WIPPVENT includes most of the functions of the commercially available simulation program VNETPC and uses the same subroutine to calculate airflow distributions, the user interface has been completely rewritten as a Windows application with screen graphics. WIPPVENT is designed to interact with WIPP ventilation monitoring systems through the sitewise Central monitoring System. Data can be continuously collected from the Underground Ventilation Remote Monitoring and Control System (e.g., air quantity and differential pressure) and the Mine Weather Stations (psychrometric data). Furthermore, WIPPVENT incorporates regulator characteristic curves specific to the site. The program utilizes this data to create and continuously update a REAL-TIME ventilation model. This paper discusses the design, key features, and interactive capabilities of WIPPVENT

  8. Response of Preterm Infants to 2 Noninvasive Ventilatory Support Systems: Nasal CPAP and Nasal Intermittent Positive-Pressure Ventilation.

    Science.gov (United States)

    Silveira, Carmen Salum Thomé; Leonardi, Kamila Maia; Melo, Ana Paula Carvalho Freire; Zaia, José Eduardo; Brunherotti, Marisa Afonso Andrade

    2015-12-01

    Noninvasive ventilation (NIV) in preterm infants is currently applied using intermittent positive pressure (2 positive-pressure levels) or in a conventional manner (one pressure level). However, there are no studies in the literature comparing the chances of failure of these NIV methods. The aim of this study was to evaluate the occurrence of failure of 2 noninvasive ventilatory support systems in preterm neonates over a period of 48 h. A randomized, prospective, clinical study was conducted on 80 newborns (gestational age CPAP and 40 infants with nasal intermittent positive-pressure ventilation (NIPPV). The occurrence of apnea, progression of respiratory distress, nose bleeding, and agitation was defined as ventilation failure. The need for intubation and re-intubation after failure was also observed. There were no significant differences in birth characteristics between groups. Ventilatory support failure was observed in 25 (62.5%) newborns treated with nasal CPAP and in 12 (30%) newborns treated with NIPPV, indicating an association between NIV failure and the absence of intermittent positive pressure (odds ratio [OR] 1.22, P CPAP failure. After failure, 25% (OR 0.33) of the newborns receiving nasal CPAP and 12.5% (OR 0.14) receiving NIPPV required invasive mechanical ventilation. Ventilatory support failure was significantly more frequent when nasal CPAP was used. Copyright © 2015 by Daedalus Enterprises.

  9. High Frequency Oscillatory Ventilation

    Directory of Open Access Journals (Sweden)

    AC Bryan

    1996-01-01

    Full Text Available High frequency oscillatory (HFO ventilation using low tidal volume and peak airway pressures is extremely efficient at eliminating carbon dioxide and raising pH in the newborn infant with acute respiratory failure. Improvement in oxygenation requires a strategy of sustained or repetitive inflations to 25 to 30 cm H2O in order to place the lung on the deflation limb of the pressure-volume curve. This strategy has also been shown to decrease the amount of secondary lung injury in animal models. Experience of the use of HFO ventilation as a rescue therapy as well as several published controlled trials have shown improved outcomes and a decrease in the use of extracorporeal membrane oxygenation when it has been used in newborns.

  10. Intraoperative protective mechanical ventilation for prevention of postoperative pulmonary complications: a comprehensive review of the role of tidal volume, positive end-expiratory pressure, and lung recruitment maneuvers.

    Science.gov (United States)

    Güldner, Andreas; Kiss, Thomas; Serpa Neto, Ary; Hemmes, Sabrine N T; Canet, Jaume; Spieth, Peter M; Rocco, Patricia R M; Schultz, Marcus J; Pelosi, Paolo; Gama de Abreu, Marcelo

    2015-09-01

    Postoperative pulmonary complications are associated with increased morbidity, length of hospital stay, and mortality after major surgery. Intraoperative lung-protective mechanical ventilation has the potential to reduce the incidence of postoperative pulmonary complications. This review discusses the relevant literature on definition and methods to predict the occurrence of postoperative pulmonary complication, the pathophysiology of ventilator-induced lung injury with emphasis on the noninjured lung, and protective ventilation strategies, including the respective roles of tidal volumes, positive end-expiratory pressure, and recruitment maneuvers. The authors propose an algorithm for protective intraoperative mechanical ventilation based on evidence from recent randomized controlled trials.

  11. Short-term airing by natural ventilation - modeling and control strategies.

    Science.gov (United States)

    Perino, M; Heiselberg, P

    2009-10-01

    The need to improve the energy efficiency of buildings requires new and more efficient ventilation systems. It has been demonstrated that innovative operating concepts that make use of natural ventilation seem to be more appreciated by occupants. This kind of system frequently integrates traditional mechanical ventilation components with natural ventilation devices, such as motorized windows and louvers. Among the various ventilation strategies that are currently available, buoyancy driven single-sided natural ventilation has proved to be very effective and can provide high air change rates for temperature and IAQ control. However, in order to promote a wider applications of these systems, an improvement in the knowledge of their working principles and the availability of new design and simulation tools is necessary. In this context, the paper analyses and presents the results of a research that was aimed at developing and validating numerical models for the analysis of buoyancy driven single-sided natural ventilation systems. Once validated, these models can be used to optimize control strategies in order to achieve satisfactory indoor comfort conditions and IAQ. Practical Implications Numerical and experimental analyses have proved that short-term airing by intermittent ventilation is an effective measure to satisfactorily control IAQ. Different control strategies have been investigated to optimize the capabilities of the systems. The proposed zonal model has provided good performances and could be adopted as a design tool, while CFD simulations can be profitably used for detailed studies of the pollutant concentration distribution in a room and to address local discomfort problems.

  12. Continuous use of an adaptive lung ventilation controller in critically ...

    African Journals Online (AJOL)

    1995-05-05

    May 5, 1995 ... Adaptive lung ventilation (ALV) refers to closed-loop mechanical ventilation designed to work ... optimise the controller performance, the volume controller .... PawEE), vital capacity IYC), an index of airway resistance relative to ...

  13. Analytical and experimental analysis of a low-pressure heat exchanger suitable for passive ventilation

    DEFF Research Database (Denmark)

    Hviid, Christian Anker; Svendsen, Svend

    2011-01-01

    AbstractA core element in sustainable ventilation systems is the heat recovery system. Conventional heat recovery systems have a high pressure drop that acts as blockage to naturally driven airflow. The heat recovery system we propose here consists of two separated air-to-liquid heat exchangers...... interconnected by a liquid loop powered by a pump ideal as a component in a heat recovery system for passive ventilation systems. This paper describes the analytical framework and the experimental development of one exchanger in the liquid-loop. The exchanger was constructed from the 8mm plastic tubing...... that is commonly used in water-based floor-heating systems. The pressure loss and temperature exchange efficiency was measured. For a design airflow rate of 560L/s, the pressure loss was 0.37Pa and the efficiency was 75.6%. The experimental results agree well with the literature or numerical fluid calculations...

  14. Comparison of the New Adult Ventilator-Associated Event Criteria to the Centers for Disease Control and Prevention Pediatric Ventilator-Associated Pneumonia Definition (PNU2) in a Population of Pediatric Traumatic Brain Injury Patients.

    Science.gov (United States)

    Cirulis, Meghan M; Hamele, Mitchell T; Stockmann, Chris R; Bennett, Tellen D; Bratton, Susan L

    2016-02-01

    The new Centers for Disease Control and Prevention paradigm for ventilator-associated events is intended to simplify surveillance of infectious and noninfectious complications of mechanical ventilation in adults. We assessed the ventilator-associated events algorithm in pediatric patients. A retrospective observational cohort study. This single-center study took place in a PICU at an urban academic medical facility. Pediatric (ages 0-18 yr old) trauma patients with moderate-to-severe traumatic brain injury ventilated for greater than or equal to 2 days. We assessed for pediatric ventilator-associated pneumonia (as defined by current Centers for Disease Control and Prevention PNU2 guidelines), adult ventilator-associated events, and an experimental ventilator-associated events definition modified for pediatric patients. We compared ventilator-associated events to ventilator-associated pneumonia to calculate the test characteristics. Thirty-nine of 119 patients (33%) developed ventilator-associated pneumonia. Sensitivity of the adult ventilator-associated condition definition was 23% (95% CI, 11-39%), which increased to 56% (95% CI, 40-72%) using the modified pediatric ventilator-associated pneumonia criterion. Specificity reached 100% for both original and modified pediatric probable ventilator-associated pneumonia using ventilator-associated events criteria. Children who developed ventilator-associated pneumonia or ventilator-associated condition had similar baseline characteristics: age, mechanism of injury, injury severity scores, and use of an intracranial pressure monitor. Diagnosis of ventilator-associated pneumonia and ventilator-associated condition portended similarly unfavorable outcomes: longer median duration of ventilation, ICU and hospital length of stay, and more discharges to rehabilitation, home health, or nursing care compared with patients with no pulmonary complication. Both current and modified ventilator-associated events criteria have poor

  15. Use of Respiratory Support in the Biphase Ventilation Airway Mode in the Newborn

    Directory of Open Access Journals (Sweden)

    S. N. Koval

    2006-01-01

    Full Text Available Biphasic positive airway pressure (BIPAP (also known as DuoPAP, BiLevel, BiVent, PCV+, SPAP is a mode of ventilation with cycling variations between two continuous positive airway pressure levels. It is a mixture of pressure controlled ventilation and spontaneous breathing, which is unrestricted in each phase of the respiratory cycle. The volume displacement caused by the difference between Phigh and Plow airway pressure level. The phase time ratio (PTR — the BIPAP frequency is calculated as the ratio between the durations of the two pressure phases, a PTR greater than 1:1 is called APRV (airway pressure release ventilation. In patients with ARDS maintained spontaneous breathing with BIPAP resulted in lower venous admixture and better arterial blood oxygenation as compared with A/C. Only a few studies with BIPAP have been performed in newborn and infants until now. We studied the use of BIPAP in newborn (body mass > 3kg and randomised 40 patients with respiratory failure for ventilation with BIPAP (n=20 or conventional mechanical ventilatory support (assist-control A/C — synchronised intermittent mandatory ventilation (SIMV (n=20. The Pediatric Risk of Mortality score (PRISM were collected for each patient. Fentanyl, diazepam, GABA were used as sedatives and adjusted in accordance with the Cook scale. We compared ventilatory parameters, information pertaining to pulmonary function and oxygen delivery, cardiac output, additional descriptors of organ system functions, duration and complications of ventilation and number and dosages of sedatives administered. All the patients that we intended to ventilate with BIPAP were successfully ventilated, we can conclude that biphasic ventilatory support suitable mode of ventilation for newborn with a decreased need of analgetics and sedatives than A/C. Finally, BIPAP is an a effective safe, and easy to use for personal mode of mechanical ventilatory support in newborn. 

  16. Technology for noninvasive mechanical ventilation: looking into the black box

    Directory of Open Access Journals (Sweden)

    Ramon Farré

    2016-03-01

    Full Text Available Current devices for providing noninvasive respiratory support contain sensors and built-in intelligence for automatically modifying ventilation according to the patient's needs. These devices, including automatic continuous positive airway pressure devices and noninvasive ventilators, are technologically complex and offer a considerable number of different modes of ventilation and setting options, the details of which are sometimes difficult to capture by the user. Therefore, better predicting and interpreting the actual performance of these ventilation devices in clinical application requires understanding their functioning principles and assessing their performance under well controlled bench test conditions with simulated patients. This concise review presents an updated perspective of the theoretical basis of intelligent continuous positive airway pressure and noninvasive ventilation devices, and of the tools available for assessing how these devices respond under specific ventilation phenotypes in patients requiring breathing support.

  17. [Management of patients receiving home respiratory care with tracheostomy and positive-pressure ventilation].

    Science.gov (United States)

    Aoki, Masashi

    2013-01-01

    On March 11, 2011, the Great East Japan Earthquake occurred and a massive tsunami hit the northeastern coast of Japan. In Miyagi prefecture in Tokoku district, 49 patients with amyotrophic lateral sclerosis were supported by home respiratory care with tracheostomy and positive-pressure ventilation at that time. Among them, two patients were died in the tsunami and 25 patients were forced to evacuate to hospitals. We should hurry to submit a guideline for medical transportation for patients with neuromuscular diseases requiring artificial ventilation. We also should research the disaster medicine in the field of neurology.

  18. Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems

    OpenAIRE

    Sherman, Max H.

    2011-01-01

    Existing ventilation standards, including American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) Standard 62.2, specify continuous operation of a defined mechanical ventilation system to provide minimum ventilation, with time-based intermittent operation as an option. This requirement ignores several factors and concerns including: other equipment such as household exhaust fans that might incidentally provide ventilation, negative impacts of ventilation when outd...

  19. Work of breathing using different interfaces in spontaneous positive pressure ventilation: helmet, face-mask, and endotracheal tube.

    Science.gov (United States)

    Oda, Shinya; Otaki, Kei; Yashima, Nozomi; Kurota, Misato; Matsushita, Sachiko; Kumasaka, Airi; Kurihara, Hutaba; Kawamae, Kaneyuki

    2016-08-01

    Noninvasive positive pressure ventilation (NPPV) using a helmet is expected to cause inspiratory trigger delay due to the large collapsible and compliant chamber. We compared the work of breathing (WOB) of NPPV using a helmet or a full face-mask with that of invasive ventilation by tracheal intubation. We used a lung model capable of simulating spontaneous breathing (LUNGOO; Air Water Inc., Japan). LUNGOO was set at compliance (C) = 50 mL/cmH2O and resistance (R) = 5 cmH2O/L/s for normal lung simulation, C = 20 mL/cmH2O and R = 5 cmH2O/L/s for restrictive lung, and C = 50 mL/cmH2O and R = 20 cmH2O/L/s for obstructive lung. Muscle pressure was fixed at 25 cmH2O and respiratory rate at 20 bpm. Pressure support ventilation and continuous positive airway pressure were performed with each interface placed on a dummy head made of reinforced plastic that was connected to LUNGOO. We tested the inspiratory WOB difference between the interfaces with various combinations of ventilator settings (positive end-expiratory pressure 5 cmH2O; pressure support 0, 5, and 10 cmH2O). In the normal lung and restrictive lung models, WOB decreased more with the face-mask than the helmet, especially when accompanied by the level of pressure support. In the obstructive lung model, WOB with the helmet decreased compared with the other two interfaces. In the mixed lung model, there were no significant differences in WOB between the three interfaces. NPPV using a helmet is more effective than the other interfaces for WOB in obstructive lung disease.

  20. Positive outcome of average volume-assured pressure support mode of a Respironics V60 Ventilator in acute exacerbation of chronic obstructive pulmonary disease: a case report

    Directory of Open Access Journals (Sweden)

    Okuda Miyuki

    2012-09-01

    Full Text Available Abstract Introduction We were able to treat a patient with acute exacerbation of chronic obstructive pulmonary disease who also suffered from sleep-disordered breathing by using the average volume-assured pressure support mode of a Respironics V60 Ventilator (Philips Respironics: United States. This allows a target tidal volume to be set based on automatic changes in inspiratory positive airway pressure. This removed the need to change the noninvasive positive pressure ventilation settings during the day and during sleep. The Respironics V60 Ventilator, in the average volume-assured pressure support mode, was attached to our patient and improved and stabilized his sleep-related hypoventilation by automatically adjusting force to within an acceptable range. Case presentation Our patient was a 74-year-old Japanese man who was hospitalized for treatment due to worsening of dyspnea and hypoxemia. He was diagnosed with acute exacerbation of chronic obstructive pulmonary disease and full-time biphasic positive airway pressure support ventilation was initiated. Our patient was temporarily provided with portable noninvasive positive pressure ventilation at night-time following an improvement in his condition, but his chronic obstructive pulmonary disease again worsened due to the recurrence of a respiratory infection. During the initial exacerbation, his tidal volume was significantly lower during sleep (378.9 ± 72.9mL than while awake (446.5 ± 63.3mL. A ventilator that allows ventilation to be maintained by automatically adjusting the inspiratory force to within an acceptable range was attached in average volume-assured pressure support mode, improving his sleep-related hypoventilation, which is often associated with the use of the Respironics V60 Ventilator. Polysomnography performed while our patient was on noninvasive positive pressure ventilation revealed obstructive sleep apnea syndrome (apnea-hypopnea index = 14, suggesting that his chronic

  1. Tomography assessment of lung hyper inflation areas within cats in a pressure controlled ventilation staggered; Avaliacao tomografica das areas de de hiperinsuflacao pulmonar em gatos submetidos a ventilacao controlada a pressao escalonada

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Alessandro Rodrigues de Carvalho, E-mail: doutorevet@hotmail.com [Universidade de Sao Paulo (FM/USP), SP (Brazil). Faculdade de Medicina. Programa de Anestesiologia; Fantoni, Denise Tabacchi; Ambrosio, Aline Magalhaes [Universidade de Sao Paulo (FMVZ/USP), SP (Brazil). Faculdade de Medicina Veterinaria e Zootecnia; Santos, Jaqueline Franca dos; Villamizar, Lenin Arturo [Universidade de Sao Paulo (FMVZ/USP), SP (Brazil). Faculdade de Medicina Veterinaria e Zootecnia. Programa de Cirurgia; Pinto, Ana Carolina Brandao de Campos Fonseca [Universidade de Sao Paulo (USP), SP (Brazil). Faculdade de Medicina Veterinaria e Zootecnia. Disciplina de Diagnostico por Imagem; Martins, Thiago do Amaral [UFAPE Vet Intenziv, Itapecerica da Serra, SP (Brazil); Malbouisson, Luis Marcelo Sa [Universidade de Sao Paulo (HC/USP), SP (Brazil). Faculdade de Medicina. UTI Anestesiologica

    2012-07-01

    Mechanical ventilation is essential for oxygen supply during anesthesia. Some strategies are related to lung injury associated with mechanical ventilation. 10 cats, 4±1 kg, 1-6 years old, induced and maintained with propofol (6mg/kg, 0,5mg/kg/min) placed in supine position, subjected to pressure controlled ventilation (PCV) in oxygen at 40% with 5cmH{sub 2}O peak pressure in 'ZEEP' for 20 minutes, rising in 2cmH{sub 2}O installments peak pressure every five minutes until it reached 15cmH{sub 2}O. Moments P5, P7, P9, P11, P13, P15. Respiratory rate and inspiratory time were held on 15 movements per minute and 1 second regardless their EtCO{sub 2}. Muscle relaxation achieved by rocuronium bollus (1mg/kg/IV). Immediately, at each increase on pressure was performed a 4 seconds' inspiratory pause to allow the five millimeters CT slice of diaphragmatic region followed by hemogasometric and cardiorespiratory variables collected. P5 had the smallest hyperinflated area (3,24±4,02) Compared to other moments. P5 blood gases showed acidaemia (7,257±0,08) for mild respiratory acidosis (45±9.2) with good oxygenation (178±40.8mmHg) compared to other times which obtained reduction of CO{sub 2} and an increased pH. As the increase in peak pressure was observed increased distension of the lung parenchyma, a fact related to possible risk of lung injury in prolonged periods. 5cmH{sub 2}O pressure was demonstrated to be less harmful due to its lower hyper inflated areas that other moments, even with a low pH and high CO{sub 2}, being corrected by increasing respiratory rate.

  2. Radon mitigation in schools utilising heating, ventilating and air conditioning systems

    International Nuclear Information System (INIS)

    Fisher, G.; Ligman, B.; Brennan, T.; Shaughnessy, R.; Turk, B.H.; Snead, B.

    1994-01-01

    As part of a continuing radon in schools technology development effort, EPA's School Evaluation Team has performed radon mitigation in schools by the method of ventilation/pressurisation control technology. Ventilation rates were increased, at a minimum, to meet the American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE) standard, Ventilation for Acceptable Indoor Air Quality (ASHRAE 62-1989). This paper presents the results and the preliminary evaluations which led to the team's decision to implement this technology. Factors considered include energy penalties, comfort, indoor air quality (IAQ), building shell tightness, and equipment costs. Cost benefit of heat recovery ventilation was also considered. Earlier results of the SEP team's efforts have indicated a severe ventilation problem within the schools of the United States. Two case studies are presented where HVAC technology was implemented for controlling radon concentrations. One involved the installation of a heat recovery ventilator to depressurise a crawl space and provide ventilation to the classrooms which previously had no mechanical ventilation. The other involved the restoration of a variable air volume system in a two-storey building. The HVAC system's controls were restored and modified to provide a constant building pressure differential to control the entry of radon. Pre-mitigation and post-mitigation indoor air pollutant measurements were taken, including radon, carbon dioxide (CO 2 ), particulates, and bio-aerosols. Long-term monitoring of radon, CO 2 , building pressure differentials, and indoor/outdoor temperature and relative humidity is presented. (author)

  3. Initial mechanical ventilator settings and lung protective ventilation in the ED.

    Science.gov (United States)

    Wilcox, Susan R; Richards, Jeremy B; Fisher, Daniel F; Sankoff, Jeffrey; Seigel, Todd A

    2016-08-01

    Mechanical ventilation with low tidal volumes has been shown to improve outcomes for patients both with and without acute respiratory distress syndrome. This study aims to characterize mechanically ventilated patients in the emergency department (ED), describe the initial ED ventilator settings, and assess for associations between lung protective ventilation strategies in the ED and outcomes. This was a multicenter, prospective, observational study of mechanical ventilation at 3 academic EDs. We defined lung protective ventilation as a tidal volume of less than or equal to 8 mL/kg of predicted body weight and compared outcomes for patients ventilated with lung protective vs non-lung protective ventilation, including inhospital mortality, ventilator days, intensive care unit length of stay, and hospital length of stay. Data from 433 patients were analyzed. Altered mental status without respiratory pathology was the most common reason for intubation, followed by trauma and respiratory failure. Two hundred sixty-one patients (60.3%) received lung protective ventilation, but most patients were ventilated with a low positive end-expiratory pressure, high fraction of inspired oxygen strategy. Patients were ventilated in the ED for a mean of 5 hours and 7 minutes but had few ventilator adjustments. Outcomes were not significantly different between patients receiving lung protective vs non-lung protective ventilation. Nearly 40% of ED patients were ventilated with non-lung protective ventilation as well as with low positive end-expiratory pressure and high fraction of inspired oxygen. Despite a mean ED ventilation time of more than 5 hours, few patients had adjustments made to their ventilators. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Effect of nature-based sounds' intervention on agitation, anxiety, and stress in patients under mechanical ventilator support: a randomised controlled trial.

    Science.gov (United States)

    Saadatmand, Vahid; Rejeh, Nahid; Heravi-Karimooi, Majideh; Tadrisi, Sayed Davood; Zayeri, Farid; Vaismoradi, Mojtaba; Jasper, Melanie

    2013-07-01

    Few studies have been conducted to investigate the effect of nature-based sounds (N-BS) on agitation, anxiety level and physiological signs of stress in patients under mechanical ventilator support. Non-pharmacological nursing interventions such as N-BS can be less expensive and efficient ways to alleviate anxiety and adverse effects of sedative medications in patients under mechanical ventilator support. This study was conducted to identify the effect of the nature-based sounds' intervention on agitation, anxiety level and physiological stress responses in patients under mechanical ventilation support. A randomized placebo-controlled trial design was used to conduct this study. A total of 60 patients aged 18-65 years under mechanical ventilation support in an intensive care unit were randomly assigned to the control and experimental groups. The patients in the intervention group received 90 min of N-BS. Pleasant nature sounds were played to the patients using media players and headphones. Patients' physiological signs were taken immediately before the intervention and at the 30th, 60th, 90th minutes and 30 min after the procedure had finished. The physiological signs of stress assessed were heart rate, respiratory rate, and blood pressure. Data were collected over eight months from Oct 2011 to June 2012. Anxiety levels and agitation were assessed using the Faces Anxiety Scale and Richmond Agitation Sedation Scale, respectively. The experimental group had significantly lower systolic blood pressure, diastolic blood pressure, anxiety and agitation levels than the control group. These reductions increased progressively in the 30th, 60th, 90th minutes, and 30 min after the procedure had finished indicating a cumulative dose effect. N-BS can provide an effective method of decreasing potentially harmful physiological responses arising from anxiety in mechanically ventilated patients. Nurses can incorporate N-BS intervention as a non-pharmacologic intervention into the

  5. [Domiciliary noninvasive positive pressure ventilation in chronic alveolar hypoventilation].

    Science.gov (United States)

    Casas, J P; Robles, A M; Pereyra, M A; Abbona, H L; López, A M

    2000-01-01

    Effectiveness of treatment with domiciliary nocturnal noninvasive positive pressure ventilation is analyzed in a group of patients with chronic alveolar hypoventilation of different etiologies. It was applied with two levels of pressure (BiPAP) via nasal mask. Criteria for evaluation were symptomatology and improvement in gas exchange. Data were analyzed by Student t tests. A total of 13 patients were included, mean age 55.7 range 20 to 76 years (5 male 8 female). Main diagnosis was tuberculosis in 6, four of them having had surgical procedure (thoracoplasty 2, frenicectomy 1 and neumonectomy 1), myopathy 3 (myasthenia gravis 1, muscular dystrophy 1 and diaphragmatic paralysis 1), obesity-hypoventilation syndrome 1, escoliosis 1, bronchiectasis 1 and cystic fibrosis 1. These last two patients were on waiting list for lung transplantation. At the moment of consultation, the symptoms were: dysnea 13/13 (100%), astenia 13/13 (100%), hypersomnolency 10/13 (77%), cephalea 9/13 (69%), leg edema 6/13 (46%), loss of memory 6/13 (46%). Regarding gas exchange, they showed hypoxemia and hypercapnia. Mean follow up was of 2.2 years (range 6 months to 4 years). Within the year, all 13 patients became less dyspneic. Astenia, hypersomnolency, cephalea, leg edema and memory loss disappeared. Improvement in gas exchange was: PaO2/FiO2 from 269 +/- 65.4 (basal) to 336.7 +/- 75.3 post-treatment (p = 0.0018). PaCO2 from 70.77 +/- 25.48 mmHg (basal) to 46.77 +/- 8.14 mmHg (p = 0.0013). Ventilatory support was discontinued en 5 patients: three because of pneumonia requiring intubation and conventional mechanical ventilation, two of them died and one is still with tracheostomy; One patient with bronchiectasis and one with cystic fibrosis were transplanted. The remaining eight patients are stable. In conclusion, chronic alveolar hypoventilation can be effectively treated with domiciliary nocturnal noninvasive ventilation. Long term improvement in symptomatology and arterial blood gases

  6. Ventilation systems

    International Nuclear Information System (INIS)

    Gossler

    1980-01-01

    The present paper deals with - controlled area ventilation systems - ventilation systems for switchgear-building and control-room - other ventilation systems for safety equipments - service systems for ventilation systems. (orig./RW)

  7. Heliox allows for lower minute volume ventilation in an animal model of ventilator-induced lung injury.

    Directory of Open Access Journals (Sweden)

    Charlotte J Beurskens

    Full Text Available BACKGROUND: Helium is a noble gas with a low density, allowing for lower driving pressures and increased carbon dioxide (CO2 diffusion. Since application of protective ventilation can be limited by the development of hypoxemia or acidosis, we hypothesized that therefore heliox facilitates ventilation in an animal model of ventilator-induced lung injury. METHODS: Sprague-Dawley rats (N=8 per group were mechanically ventilated with heliox (50% oxygen; 50% helium. Controls received a standard gas mixture (50% oxygen; 50% air. VILI was induced by application of tidal volumes of 15 mL kg(-1; lung protective ventilated animals were ventilated with 6 mL kg(-1. Respiratory parameters were monitored with a pneumotach system. Respiratory rate was adjusted to maintain arterial pCO2 within 4.5-5.5 kPa, according to hourly drawn arterial blood gases. After 4 hours, bronchoalveolar lavage fluid (BALF was obtained. Data are mean (SD. RESULTS: VILI resulted in an increase in BALF protein compared to low tidal ventilation (629 (324 vs. 290 (181 μg mL(-1; p<0.05 and IL-6 levels (640 (8.7 vs. 206 (8.7 pg mL(-1; p<0.05, whereas cell counts did not differ between groups after this short course of mechanical ventilation. Ventilation with heliox resulted in a decrease in mean respiratory minute volume ventilation compared to control (123 ± 0.6 vs. 146 ± 8.9 mL min(-1, P<0.001, due to a decrease in respiratory rate (22 (0.4 vs. 25 (2.1 breaths per minute; p<0.05, while pCO2 levels and tidal volumes remained unchanged, according to protocol. There was no effect of heliox on inspiratory pressure, while compliance was reduced. In this mild lung injury model, heliox did not exert anti-inflammatory effects. CONCLUSIONS: Heliox allowed for a reduction in respiratory rate and respiratory minute volume during VILI, while maintaining normal acid-base balance. Use of heliox may be a useful approach when protective tidal volume ventilation is limited by the development of

  8. Single-sided Natural Ventilation Driven by a Combination of Wind Pressure and Temperature Difference

    DEFF Research Database (Denmark)

    Larsen, Tine Steen; Heiselberg, Per

    2007-01-01

    Natural ventilation is a commonly used principle when ventilation systems for buildings are designed. The ventilation can either be obtained by automatically controlled openings in the building envelope, or it can just be the simple action of opening a door or a window to let the fresh air in...

  9. A knowledge- and model-based system for automated weaning from mechanical ventilation: technical description and first clinical application.

    Science.gov (United States)

    Schädler, Dirk; Mersmann, Stefan; Frerichs, Inéz; Elke, Gunnar; Semmel-Griebeler, Thomas; Noll, Oliver; Pulletz, Sven; Zick, Günther; David, Matthias; Heinrichs, Wolfgang; Scholz, Jens; Weiler, Norbert

    2014-10-01

    To describe the principles and the first clinical application of a novel prototype automated weaning system called Evita Weaning System (EWS). EWS allows an automated control of all ventilator settings in pressure controlled and pressure support mode with the aim of decreasing the respiratory load of mechanical ventilation. Respiratory load takes inspired fraction of oxygen, positive end-expiratory pressure, pressure amplitude and spontaneous breathing activity into account. Spontaneous breathing activity is assessed by the number of controlled breaths needed to maintain a predefined respiratory rate. EWS was implemented as a knowledge- and model-based system that autonomously and remotely controlled a mechanical ventilator (Evita 4, Dräger Medical, Lübeck, Germany). In a selected case study (n = 19 patients), ventilator settings chosen by the responsible physician were compared with the settings 10 min after the start of EWS and at the end of the study session. Neither unsafe ventilator settings nor failure of the system occurred. All patients were successfully transferred from controlled ventilation to assisted spontaneous breathing in a mean time of 37 ± 17 min (± SD). Early settings applied by the EWS did not significantly differ from the initial settings, except for the fraction of oxygen in inspired gas. During the later course, EWS significantly modified most of the ventilator settings and reduced the imposed respiratory load. A novel prototype automated weaning system was successfully developed. The first clinical application of EWS revealed that its operation was stable, safe ventilator settings were defined and the respiratory load of mechanical ventilation was decreased.

  10. Pharmacologic Interventions to Improve Splanchnic Oxygenation During Ventilation with Positive End-Expiratory Pressure

    NARCIS (Netherlands)

    Fournell, A.; Scheeren, T. W. L.; Picker, O.; Schwarte, L. A.; Wolf, M; Bucher, HU; Rudin, M; VanHuffel, S; Wolf, U; Bruley, DF; Harrison, DK

    2012-01-01

    Mechanical ventilation with positive end-expiratory pressure (PEEP) is an indispensable tool in the management of respiratory failure to preserve or improve lung function and systemic oxygenation. However, PEEP per se may also, as has been shown in experimental animals, impair regional

  11. Ventilation therapy for patients suffering from obstructive lung diseases.

    Science.gov (United States)

    Jungblut, Sven A; Heidelmann, Lena M; Westerfeld, Andreas; Frickmann, Hagen; Körber, Mareike K; Zautner, Andreas E

    2014-01-01

    Severe bronchial obstruction due to one of the major pulmonary diseases: asthma, COPD, or emphysema often requires mechanical ventilation support. Otherwise, patients are at risk of severe hypooxygenation with consecutive overloading and dilatation of the right cardiac ventricle with subsequent failure. This review focuses on how to manage a calculated ventilation therapy of patients suffering from bronchial obstruction and relevant patents. Options and pitfalls of invasive and non-invasive ventilation in the intensive care setting regarding clinical improvement and final outcome are discussed. The non-invasive ventilation is very efficient in treating acute or chronic respiratory failure in COPD patients and is capable of shortening the duration of hospitalization. Further non-invasive ventilation can successfully support the weaning after a long-lasting ventilation therapy and improve the prognosis of COPD patients. "Permissive hypercapnia" is unequivocally established in invasive ventilation therapy of severe bronchial obstruction in situations of limited ventilation. When intrinsic positive end-expiratory pressure (PEEP) and elevated airways resistance are present PEEP may be useful although external-PEEP application relieves over-inflation only in selected patients with airway obstruction during controlled mechanical ventilation. Upper limit of airways peak pressure used in "protective ventilation" of adult respiratory distress syndrome (ARDS) patients can be exceeded under certain circumstances.

  12. Predictive value of pulse pressure variation for fluid responsiveness in septic patients using lung-protective ventilation strategies.

    Science.gov (United States)

    Freitas, F G R; Bafi, A T; Nascente, A P M; Assunção, M; Mazza, B; Azevedo, L C P; Machado, F R

    2013-03-01

    The applicability of pulse pressure variation (ΔPP) to predict fluid responsiveness using lung-protective ventilation strategies is uncertain in clinical practice. We designed this study to evaluate the accuracy of this parameter in predicting the fluid responsiveness of septic patients ventilated with low tidal volumes (TV) (6 ml kg(-1)). Forty patients after the resuscitation phase of severe sepsis and septic shock who were mechanically ventilated with 6 ml kg(-1) were included. The ΔPP was obtained automatically at baseline and after a standardized fluid challenge (7 ml kg(-1)). Patients whose cardiac output increased by more than 15% were considered fluid responders. The predictive values of ΔPP and static variables [right atrial pressure (RAP) and pulmonary artery occlusion pressure (PAOP)] were evaluated through a receiver operating characteristic (ROC) curve analysis. Thirty-four patients had characteristics consistent with acute lung injury or acute respiratory distress syndrome and were ventilated with high levels of PEEP [median (inter-quartile range) 10.0 (10.0-13.5)]. Nineteen patients were considered fluid responders. The RAP and PAOP significantly increased, and ΔPP significantly decreased after volume expansion. The ΔPP performance [ROC curve area: 0.91 (0.82-1.0)] was better than that of the RAP [ROC curve area: 0.73 (0.59-0.90)] and pulmonary artery occlusion pressure [ROC curve area: 0.58 (0.40-0.76)]. The ROC curve analysis revealed that the best cut-off for ΔPP was 6.5%, with a sensitivity of 0.89, specificity of 0.90, positive predictive value of 0.89, and negative predictive value of 0.90. Automatized ΔPP accurately predicted fluid responsiveness in septic patients ventilated with low TV.

  13. Nasal mask ventilation is better than face mask ventilation in edentulous patients.

    Science.gov (United States)

    Kapoor, Mukul Chandra; Rana, Sandeep; Singh, Arvind Kumar; Vishal, Vindhya; Sikdar, Indranil

    2016-01-01

    Face mask ventilation of the edentulous patient is often difficult as ineffective seating of the standard mask to the face prevents attainment of an adequate air seal. The efficacy of nasal ventilation in edentulous patients has been cited in case reports but has never been investigated. Consecutive edentulous adult patients scheduled for surgery under general anesthesia with endotracheal intubation, during a 17-month period, were prospectively evaluated. After induction of anesthesia and administration of neuromuscular blocker, lungs were ventilated with a standard anatomical face mask of appropriate size, using a volume controlled anesthesia ventilator with tidal volume set at 10 ml/kg. In case of inadequate ventilation, the mask position was adjusted to achieve best-fit. Inspired and expired tidal volumes were measured. Thereafter, the face mask was replaced by a nasal mask and after achieving best-fit, the inspired and expired tidal volumes were recorded. The difference in expired tidal volumes and airway pressures at best-fit with the use of the two masks and number of patients with inadequate ventilation with use of the masks were statistically analyzed. A total of 79 edentulous patients were recruited for the study. The difference in expiratory tidal volumes with the use of the two masks at best-fit was statistically significant (P = 0.0017). Despite the best-fit mask placement, adequacy of ventilation could not be achieved in 24.1% patients during face mask ventilation, and 12.7% patients during nasal mask ventilation and the difference was statistically significant. Nasal mask ventilation is more efficient than standard face mask ventilation in edentulous patients.

  14. Assessment of blood gas parameters and the degree of inflammation in noninvasive positive pressure ventilation combined with aminophylline treatment of COPD complicated with type II respiratory failure

    Directory of Open Access Journals (Sweden)

    Jin-Ru Zhang

    2016-10-01

    Full Text Available Objective: To analyze the effect of noninvasive positive pressure ventilation combined with aminophylline therapy on blood gas parameters and the degree of inflammation in patients with COPD and type II respiratory failure. Methods: A total of 80 patients with COPD and type Ⅱ respiratory failure were randomly divided into observation group and control group (n=40, control group received symptomatic treatment + aminophylline treatment, observation group received symptomatic treatment + aminophylline + noninvasive positive pressure ventilation treatment, and then differences in blood gas parameters, pulmonary function parameters, hemorheology parameters and inflammatory factor levels were compared between two groups of patients after treatment. Results: Radial artery pH and PO2 values of observation group after treatment were higher than those of control group while PCO2, Cl- and CO2CP values were lower than those of control group; pulmonary function parameters FVC, FEV1, FEF25-75, MMF, PEF and FRC values of observation group after treatment were higher than those of control group; whole blood viscosity (150 s- and 10 s-, plasma viscosity, fibrinogen, erythrocyte aggregation index and erythrocyte rigidity index values in peripheral venous blood of observation group after treatment were lower than those of control group; serum IL-17, IL-33, TREM-1, sICAM-1 and PGE2 levels of observation group after treatment were lower than those of control group. Conclusion: Noninvasive positive pressure ventilation combined with aminophylline can optimize the respiratory function of patients with COPD and type II respiratory failure and improve blood gas parameters and the degree of inflammation.

  15. Short-term effects of positive expiratory airway pressure in patients being weaned from mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Marcelo de Mello Rieder

    2009-05-01

    Full Text Available OBJECTIVE: To investigate the feasibility and the cardiorespiratory effects of using positive expiratory airway pressure, a physiotherapeutic tool, in comparison with a T-tube, to wean patients from mechanical ventilation. METHODS/DESIGN: A prospective, randomized, cross-over study. SETTING: Two intensive care units. PATIENTS AND INTERVENTIONS: We evaluated forty patients who met weaning criteria and had been mechanically-ventilated for more than 48 hours, mean age 59 years, including 23 males. All patients were submitted to the T-tube and Expiratory Positive Airway Pressure devices, at 7 cm H2O, during a 30-minute period. Cardiorespiratory variables including work of breathing, respiratory rate (rr, peripheral oxygen saturation (SpO2, heart rate (hr, systolic, diastolic and mean arterial pressures (SAP, DAP, MAP were measured in the first and thirtieth minutes. The condition was analyzed as an entire sample set (n=40 and was also divided into subconditions: chronic obstructive pulmonary disease (n=14 and non-chronic obstructive pulmonary disease (non- chronic obstructive pulmonary disease (n=26 categories. Comparisons were made using a t-test and Analysis of Variance. The level of significance was p < 0.05. RESULTS: Our data showed an increase in work of breathing in the first and thirtieth minutes in the EPAP condition (0.86+ 0.43 and 1.02+1.3 as compared with the T-tube condition (0.25+0.26 and 0.26+0.35 (p<0.05, verified by the flow-sensor monitor (values in J/L. No statistical differences were observed when comparing the Expiratory Positive Airway Pressure and T-tube conditions with regard to cardiorespiratory measurements. The same result was observed for both chronic obstructive pulmonary disease and non- chronic obstructive pulmonary disease subconditions. CONCLUSIONS: Our study demonstrated that, in weaning patients from mechanical ventilation, the use of a fixed level of Expiratory Positive Airway Pressure caused an increase in work of

  16. Independent lung ventilation in a newborn with asymmetric acute lung injury due to respiratory syncytial virus: a case report

    Directory of Open Access Journals (Sweden)

    Di Nardo Matteo

    2008-06-01

    Full Text Available Abstract Introduction Independent lung ventilation is a form of protective ventilation strategy used in adult asymmetric acute lung injury, where the application of conventional mechanical ventilation can produce ventilator-induced lung injury and ventilation-perfusion mismatch. Only a few experiences have been published on the use of independent lung ventilation in newborn patients. Case presentation We present a case of independent lung ventilation in a 16-day-old infant of 3.5 kg body weight who had an asymmetric lung injury due to respiratory syncytial virus bronchiolitis. We used independent lung ventilation applying conventional protective pressure controlled ventilation to the less-compromised lung, with a respiratory frequency proportional to the age of the patient, and a pressure controlled high-frequency ventilation to the atelectatic lung. This was done because a single tube conventional ventilation protective strategy would have exposed the less-compromised lung to a high mean airways pressure. The target of independent lung ventilation is to provide adequate gas exchange at a safe mean airways pressure level and to expand the atelectatic lung. Independent lung ventilation was accomplished for 24 hours. Daily chest radiograph and gas exchange were used to evaluate the efficacy of independent lung ventilation. Extubation was performed after 48 hours of conventional single-tube mechanical ventilation following independent lung ventilation. Conclusion This case report demonstrates the feasibility of independent lung ventilation with two separate tubes in neonates as a treatment of an asymmetric acute lung injury.

  17. Evaluation of ventilators used during transport of critically ill patients: a bench study.

    Science.gov (United States)

    Boussen, Salah; Gainnier, Marc; Michelet, Pierre

    2013-11-01

    To evaluate the most recent transport ventilators' operational performance regarding volume delivery in controlled mode, trigger function, and the quality of pressurization in pressure support mode. Eight recent transport ventilators were included in a bench study in order to evaluate their accuracy to deliver a set tidal volume under normal resistance and compliance conditions, ARDS conditions, and obstructive conditions. The performance of the triggering system was assessed by the measure of the decrease in pressure and the time delay required to open the inspiratory valve. The quality of pressurization was obtained by computing the integral of the pressure-time curve for the first 300 ms and 500 ms after the onset of inspiration. For the targeted tidal volumes of 300, 500, and 800 mL the errors ranged from -3% to 48%, -7% to 18%, and -5% to 25% in the normal conditions, -4% to 27%, -2% to 35%, and -3% to 35% in the ARDS conditions, and -4% to 53%, -6% to 30%, and -30% to 28% in the obstructive conditions. In pressure support mode the pressure drop range was 0.4-1.7 cm H2O, the trigger delay range was 68-198 ms, and the pressurization performance (percent of ideal pressurization, as measured by pressure-time product at 300 ms and 500 ms) ranges were -9% to 44% at 300 ms and 6%-66% at 500 ms (P ventilators. The most recent turbine ventilators outperformed the pneumatic ventilators. The best performers among the turbine ventilators proved comparable to modern ICU ventilators.

  18. Performance of Leak Compensation in All-Age ICU Ventilators During Volume-Targeted Neonatal Ventilation: A Lung Model Study.

    Science.gov (United States)

    Itagaki, Taiga; Bennett, Desmond J; Chenelle, Christopher T; Fisher, Daniel F; Kacmarek, Robert M

    2017-01-01

    Volume-targeted ventilation is increasingly used in low birthweight infants because of the potential for reducing volutrauma and avoiding hypocapnea. However, it is not known what level of air leak is acceptable during neonatal volume-targeted ventilation when leak compensation is activated concurrently. Four ICU ventilators (Servo-i, PB980, V500, and Avea) were compared in available invasive volume-targeted ventilation modes (pressure control continuous spontaneous ventilation [PC-CSV] and pressure control continuous mandatory ventilation [PC-CMV]). The Servo-i and PB980 were tested with (+) and without (-) their proximal flow sensor. The V500 and Avea were tested with their proximal flow sensor as indicated by their manufacturers. An ASL 5000 lung model was used to simulate 4 neonatal scenarios (body weight 0.5, 1, 2, and 4 kg). The ASL 5000 was ventilated via an endotracheal tube with 3 different leaks. Two minutes of data were collected after each change in leak level, and the asynchrony index was calculated. Tidal volume (V T ) before and after the change in leak was assessed. The differences in delivered V T between before and after the change in leak were within ±5% in all scenarios with the PB980 (-/+) and V500. With the Servo-i (-/+), baseline V T was ≥10% greater than set V T during PC-CSV, and delivered V T markedly changed with leak. The Avea demonstrated persistent high V T in all leak scenarios. Across all ventilators, the median asynchrony index was 1% (interquartile range 0-27%) in PC-CSV and 1.8% (0-45%) in PC-CMV. The median asynchrony index was significantly higher in the Servo-i (-/+) than in the PB980 (-/+) and V500 in 1 and 2 kg scenarios during PC-CSV and PC-CMV. The PB980 and V500 were the only ventilators to acclimate to all leak scenarios and achieve targeted V T . Further clinical investigation is needed to validate the use of leak compensation during neonatal volume-targeted ventilation. Copyright © 2017 by Daedalus Enterprises.

  19. Effect of adjuvant noninvasive positive pressure ventilation on blood gas parameters, cardiac function and inflammatory state in patients with COPD and type II respiratory failure

    Directory of Open Access Journals (Sweden)

    You-Ming Zhu1

    2017-03-01

    Full Text Available Objective: T o analyze the effect of adjuvant noninvasive positive pressure ventilation on blood gas parameters, cardiac function and inflammatory state in patients with chronic obstructive pulmonary disease (COPD and type II respiratory failure. Methods: 90 patients with COPD and type II respiratory failure were randomly divided into observation group and control group (n=45. Control group received conventional therapy, observation group received conventional therapy + adjuvant noninvasive positive pressure ventilation, and differences in blood gas parameters, cardiac function, inflammatory state, etc., were compared between two groups of patients 2 weeks after treatment. Results: Arterial blood gas parameters pH and alveolar-arterial partial pressure of oxygen [P(A-aO2] levels of observation group were higher than those of control group while, potassium ion (K+, chloride ion (Cl﹣ and carbon dioxide combining power (CO2CP levels were lower than those of control group 2 weeks after treatment; echocardiography parameters Doppler-derived tricuspid lateral annular systolic velocity (DTIS and pulmonary arterial velocity (PAV levels were lower than those of control group (P<0.05 while pulmonary artery accelerating time (PAACT, left ventricular enddiastolic dimension (LVDd and right atrioventricular tricuspid annular plane systolic excursion (TAPSE levels were higher than those of control group (P<0.05; serum cardiac function indexes adiponectin (APN, Copeptin, N-terminal pro-B-type natriuretic peptide (NT-proBNP, cystatin C (CysC, growth differentiation factor-15 (GDF-15 and heart type fatty acid binding protein (H-FABP content were lower than those of control group (P<0.05; serum inflammatory factors hypersensitive C-reactive protein (hs-CRP, tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, IL-8, IL-10, and transforming growth factor-β1 (TGF-β1 content were lower than those of control group (P<0.05. Conclusions: Adjuvant

  20. Comparative performances analysis of neonatal ventilators.

    Science.gov (United States)

    Baldoli, Ilaria; Tognarelli, Selene; Scaramuzzo, Rosa T; Ciantelli, Massimiliano; Cecchi, Francesca; Gentile, Marzia; Sigali, Emilio; Ghirri, Paolo; Boldrini, Antonio; Menciassi, Arianna; Laschi, Cecilia; Cuttano, Armando

    2015-02-08

    Mechanical ventilation is a therapeutic action for newborns with respiratory diseases but may have side effects. Correct equipment knowledge and training may limit human errors. We aimed to test different neonatal mechanical ventilators' performances by an acquisition module (a commercial pressure sensor plus an isolated chamber and a dedicated software). The differences (ΔP) between peak pressure values and end-expiration pressure were investigated for each ventilator. We focused on discrepancies among measured and imposed pressure data. A statistical analysis was performed. We investigated the measured/imposed ΔP relation. The ΔP do not reveal univocal trends related to ventilation setting parameters and the data distributions were non-Gaussian. Measured ΔP represent a significant parameter in newborns' ventilation, due to the typical small volumes. The investigated ventilators showed different tendencies. Therefore, a deep specific knowledge of the intensive care devices is mandatory for caregivers to correctly exploit their operating principles.

  1. Bilevel vs ICU ventilators providing noninvasive ventilation: effect of system leaks: a COPD lung model comparison.

    Science.gov (United States)

    Ferreira, Juliana C; Chipman, Daniel W; Hill, Nicholas S; Kacmarek, Robert M

    2009-08-01

    Noninvasive positive-pressure ventilation (NPPV) modes are currently available on bilevel and ICU ventilators. However, little data comparing the performance of the NPPV modes on these ventilators are available. In an experimental bench study, the ability of nine ICU ventilators to function in the presence of leaks was compared with a bilevel ventilator using the IngMar ASL5000 lung simulator (IngMar Medical; Pittsburgh, PA) set at a compliance of 60 mL/cm H(2)O, an inspiratory resistance of 10 cm H(2)O/L/s, an expiratory resistance of 20 cm H(2)O/ L/s, and a respiratory rate of 15 breaths/min. All of the ventilators were set at 12 cm H(2)O pressure support and 5 cm H(2)O positive end-expiratory pressure. The data were collected at baseline and at three customized leaks. At baseline, all of the ventilators were able to deliver adequate tidal volumes, to maintain airway pressure, and to synchronize with the simulator, without missed efforts or auto-triggering. As the leak was increased, all of the ventilators (except the Vision [Respironics; Murrysville, PA] and Servo I [Maquet; Solna, Sweden]) needed adjustment of sensitivity or cycling criteria to maintain adequate ventilation, and some transitioned to backup ventilation. Significant differences in triggering and cycling were observed between the Servo I and the Vision ventilators. The Vision and Servo I were the only ventilators that required no adjustments as they adapted to increasing leaks. There were differences in performance between these two ventilators, although the clinical significance of these differences is unclear. Clinicians should be aware that in the presence of leaks, most ICU ventilators require adjustments to maintain an adequate tidal volume.

  2. Evaporation Controlled Emission in Ventilated Rooms

    DEFF Research Database (Denmark)

    Topp, Claus; Nielsen, Peter V.; Heiselberg, Per

    -scale ventilated room when the emission is fully or partly evaporation controlled. The objective of the present research work has been to investigate the change of emission rates from small-scale experiments to full-scale ventilated rooms and to investigate the influence of the local air velocity field near......Emission of volatile organic compounds (VOCs) from materials is traditionally determined from tests carried out in small-scale test chambers. However, a difference in scale may lead to a difference in the measured emission rate in a small-scale test chamber and the actual emission rate in a full...

  3. Natural Ventilation Driven by Wind and Temperature Difference

    DEFF Research Database (Denmark)

    Larsen, Tine Steen

    Natural ventilation is a commonly used principle when buildings are being ventilated. It can be controlled by openings in the building envelope, which open or close depending on the need of air inside the building. It can also be the simple action of just opening a door or a window to let the fresh...... driving forces are still wind pressure and temperature differences as with cross-ventilation, but here the turbulence in the wind and the pulsating flow near the opening also affect the flow through the opening. From earlier work, some design expressions already exist, but none of these include...... the incidence angle of the wind, which is an important parameter in this type of ventilation. Several wind tunnel experiments are made and from the results of these, a new design expression is made which includes the wind pressure, temperature difference, incidence angle of the wind and the fluctuations...

  4. Use of Respiratory Support in the Biphase Ventilation Airway Mode in the Newborn

    OpenAIRE

    S. N. Koval; A. Ye. Kulagin

    2006-01-01

    Biphasic positive airway pressure (BIPAP) (also known as DuoPAP, BiLevel, BiVent, PCV+, SPAP) is a mode of ventilation with cycling variations between two continuous positive airway pressure levels. It is a mixture of pressure controlled ventilation and spontaneous breathing, which is unrestricted in each phase of the respiratory cycle. The volume displacement caused by the difference between Phigh and Plow airway pressure level. The phase time ratio (PTR — the BIPAP frequency) is calculated ...

  5. Automatic control of arterial carbon dioxide tension in mechanically ventilated patients.

    Science.gov (United States)

    Fernando, Tyrone; Cade, John; Packer, John

    2002-12-01

    This paper presents a method of controlling the arterial carbon dioxide tension of patients receiving mechanical ventilation. Controlling of the CO2 tension is achieved by regulating the ventilator initiated breath frequency and also volume per breath.

  6. Facial pressure zones of an oronasal interface for noninvasive ventilation: a computer model analysis

    Directory of Open Access Journals (Sweden)

    Luana Souto Barros

    2014-12-01

    Full Text Available OBJECTIVE: To study the effects of an oronasal interface (OI for noninvasive ventilation, using a three-dimensional (3D computational model with the ability to simulate and evaluate the main pressure zones (PZs of the OI on the human face. METHODS: We used a 3D digital model of the human face, based on a pre-established geometric model. The model simulated soft tissues, skull, and nasal cartilage. The geometric model was obtained by 3D laser scanning and post-processed for use in the model created, with the objective of separating the cushion from the frame. A computer simulation was performed to determine the pressure required in order to create the facial PZs. We obtained descriptive graphical images of the PZs and their intensity. RESULTS: For the graphical analyses of each face-OI model pair and their respective evaluations, we ran 21 simulations. The computer model identified several high-impact PZs in the nasal bridge and paranasal regions. The variation in soft tissue depth had a direct impact on the amount of pressure applied (438-724 cmH2O. CONCLUSIONS: The computer simulation results indicate that, in patients submitted to noninvasive ventilation with an OI, the probability of skin lesion is higher in the nasal bridge and paranasal regions. This methodology could increase the applicability of biomechanical research on noninvasive ventilation interfaces, providing the information needed in order to choose the interface that best minimizes the risk of skin lesion.

  7. Studies about pressure variations and their effects during a fire in a confined and forced ventilated enclosure: safety consequences in the case of a nuclear facility

    International Nuclear Information System (INIS)

    Hugues Pretrel; Laurent Bouilloux; Jerome Richard

    2005-01-01

    Full text of publication follows: In a nuclear facility, the cells are confined and forced ventilated and some of them are equipped with isolation devices designed to close in case of a fire. So, if a fire occurred, the pressure variations in the cell could be important. This contribution presents the safety concerns related to pressure variation effects (propagation of smokes and/or flames through the fire barriers, propagation of radioactive material) and the research works carried out by the french 'Institut de Radioprotection et de Surete Nucleaire' (IRSN) on this topic. These research works are composed of two different studies. The first study permits to quantify the overpressure and depression levels and to reveal the influence of the fire heat release rate (HRR), of the characteristics of the cell, of the ventilation layout (especially the airflow resistances of the ventilation branches) and of the control of the fire dampers. This study is based on three sets of experimental tests performed in three large-scale facilities of various dimensions (3600 m3, 400 m3 and 120 m3 in volume) and with several settings of the ventilation network. The analysis focuses on the conditions that lead to significant overpressure and depression peaks and identifies the level of fire HRR and airflow resistances for which pressure peaks may become a safety concern. The second study allows to characterise the behaviour of sectorisation and containment equipments subject to pressure stresses. The mechanical resistance of some equipments (doors, fire dampers) subject to pressure stresses as well as the aeraulic behaviour of this equipment (gas leak rates) are determined in order to assess the potential transfer of contamination in the ventilation networks. (authors)

  8. The effects of intraoperative lung protective ventilation with positive end-expiratory pressure on blood loss during hepatic resection surgery: A secondary analysis of data from a published randomised control trial (IMPROVE).

    Science.gov (United States)

    Neuschwander, Arthur; Futier, Emmanuel; Jaber, Samir; Pereira, Bruno; Eurin, Mathilde; Marret, Emmanuel; Szymkewicz, Olga; Beaussier, Marc; Paugam-Burtz, Catherine

    2016-04-01

    During high-risk abdominal surgery the use of a multi-faceted lung protective ventilation strategy composed of low tidal volumes, positive end-expiratory pressure (PEEP) and recruitment manoeuvres, has been shown to improve clinical outcomes. It has been speculated, however, that mechanical ventilation using PEEP might increase intraoperative bleeding during liver resection. To study the impact of mechanical ventilation with PEEP on bleeding during hepatectomy. Post-hoc analysis of a randomised controlled trial. Seven French university teaching hospitals from January 2011 to August 2012. Patients scheduled for liver resection surgery. In the Intraoperative Protective Ventilation trial, patients scheduled for major abdominal surgery were randomly assigned to mechanical ventilation using low tidal volume, PEEP between 6 and 8  cmH2O and recruitment manoeuvres (lung protective ventilation strategy) or higher tidal volume, zero PEEP and no recruitment manoeuvres (non-protective ventilation strategy). The primary endpoint was intraoperative blood loss volume. A total of 79 (19.8%) patients underwent liver resections (41 in the lung protective and 38 in the non-protective group). The median (interquartile range) amount of intraoperative blood loss was 500 (200 to 800)  ml and 275 (125 to 800)  ml in the non-protective and lung protective ventilation groups, respectively (P = 0.47). Fourteen (35.0%) and eight (21.5%) patients were transfused in the non-protective and lung protective groups, respectively (P = 0.17), without a statistically significant difference in the median (interquartile range) number of red blood cells units transfused [2.5 (2 to 4) units and 3 (2 to 6) units in the two groups, respectively; P = 0.54]. During hepatic surgery, mechanical ventilation using PEEP within a multi-faceted lung protective strategy was not associated with increased bleeding compared with non-protective ventilation using zero PEEP. The current study was not

  9. Correlation between central venous pressure and peripheral venous pressure with passive leg raise in patients on mechanical ventilation.

    Science.gov (United States)

    Kumar, Dharmendra; Ahmed, Syed Moied; Ali, Shahna; Ray, Utpal; Varshney, Ankur; Doley, Kashmiri

    2015-11-01

    Central venous pressure (CVP) assesses the volume status of patients. However, this technique is not without complications. We, therefore, measured peripheral venous pressure (PVP) to see whether it can replace CVP. To evaluate the correlation and agreement between CVP and PVP after passive leg raise (PLR) in critically ill patients on mechanical ventilation. Prospective observational study in Intensive Care Unit. Fifty critically ill patients on mechanical ventilation were included in the study. CVP and PVP measurements were taken using a water column manometer. Measurements were taken in the supine position and subsequently after a PLR of 45°. Pearson's correlation and Bland-Altman's analysis. This study showed a fair correlation between CVP and PVP after a PLR of 45° (correlation coefficient, r = 0.479; P = 0.0004) when the CVP was correlation was good when the CVP was >10 cmH2O. Bland-Altman analysis showed 95% limits of agreement to be -2.912-9.472. PVP can replace CVP for guiding fluid therapy in critically ill patients.

  10. Effect of lung-protective ventilation with lower tidal volumes on clinical outcomes among patients undergoing surgery: a meta-analysis of randomized controlled trials.

    Science.gov (United States)

    Gu, Wan-Jie; Wang, Fei; Liu, Jing-Chen

    2015-02-17

    In anesthetized patients undergoing surgery, the role of lung-protective ventilation with lower tidal volumes is unclear. We performed a meta-analysis of randomized controlled trials (RCTs) to evaluate the effect of this ventilation strategy on postoperative outcomes. We searched electronic databases from inception through September 2014. We included RCTs that compared protective ventilation with lower tidal volumes and conventional ventilation with higher tidal volumes in anesthetized adults undergoing surgery. We pooled outcomes using a random-effects model. The primary outcome measures were lung injury and pulmonary infection. We included 19 trials (n=1348). Compared with patients in the control group, those who received lung-protective ventilation had a decreased risk of lung injury (risk ratio [RR] 0.36, 95% confidence interval [CI] 0.17 to 0.78; I2=0%) and pulmonary infection (RR 0.46, 95% CI 0.26 to 0.83; I2=8%), and higher levels of arterial partial pressure of carbon dioxide (standardized mean difference 0.47, 95% CI 0.18 to 0.75; I2=65%). No significant differences were observed between the patient groups in atelectasis, mortality, length of hospital stay, length of stay in the intensive care unit or the ratio of arterial partial pressure of oxygen to fraction of inspired oxygen. Anesthetized patients who received ventilation with lower tidal volumes during surgery had a lower risk of lung injury and pulmonary infection than those given conventional ventilation with higher tidal volumes. Implementation of a lung-protective ventilation strategy with lower tidal volumes may lower the incidence of these outcomes. © 2015 Canadian Medical Association or its licensors.

  11. Initial treatment of respiratory distress syndrome with nasal intermittent mandatory ventilation versus nasal continuous positive airway pressure: A randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Amir-Mohammad Armanian

    2014-01-01

    Full Text Available Background: Neonatal respiratory distress syndrome (RDS in premature infants who survived and its complications are a common problem. Due to high morbidity and mechanical ventilation (MV nowadays researchers in interested minimizing MV. To determine, in very low birth weight (BW preterm neonates with RDS, if initial treatment with nasal intermittent mandatory ventilation (early NIMV compared with early nasal continuous positive airway pressure (early NCPAP obtains more favorable outcomes in terms of the duration of treatment, and the need for endotracheal tube ventilation. Methods: In this single-center randomized control trial study, infants (BW ≤ 1500 g and/or gestational age ≤ 34 weeks with respiratory distress were considered eligible. Forty-four infants were randomly assigned to receive early-NIMV and 54 comparable infants to early-NCPAP. Surfactants were given, when FIO 2 requirement was of >30%. Primary outcomes were failure of noninvasive respiratory support, that is, the need for MV in the first 48 h of life and for the duration of noninvasive respiratory support in each group. Results: 98 infants were enrolled (44 in the NIMV and 54 in the NCPAP group. The Preventive power of MV of NIMV usage (95.5% was not lower than the NCPAP (98.1% strength (hazard ratio: 0.21 (95% confidence interval: 0.02-2.66; P: 0.23. The duration of noninvasive respiratory support in the NIMV group was significantly shorter than NCPAP (the median (range was 24 (18.00-48.00 h versus 48.00 (22.00-120.00 h in NIMV versus NCPAP groups; P < 0.001. Similarly, the duration of dependency on oxygen was less, for NIMV (the median (range was 96.00 (41.00-504.00 h versus144.00 (70.00-1130.00 h in NIMV versus NCPAP groups; P: 0.009. Interestingly, time to full enteral feeds and length of hospital stay were more favorable in the NIMV versus the NCPAP group. Conclusions: Initial treatment of RDS with NIMV was safe, and well tolerated. Furthermore, NIMV had excellent

  12. Reduced local immune response with continuous positive airway pressure during one-lung ventilation for oesophagectomy

    NARCIS (Netherlands)

    Verhage, R. J. J.; Boone, J.; Rijkers, G. T.; Cromheecke, G. J.; Kroese, A. C.; Weijs, T. J.; Borel Rinkes, I. H. M.; van Hillegersberg, R.

    2014-01-01

    Background. Transthoracic oesophagectomy requires prolonged one-lung ventilation causing systemic and local inflammatory responses. Application of continuous positive airway pressure (CPAP) to the collapsed lung potentially reduces pulmonary damage, hypoxia, and consequent inflammation. This

  13. Recommended Ventilation Strategies for Energy-Efficient Production Homes

    Energy Technology Data Exchange (ETDEWEB)

    Roberson, J.; Brown, R.; Koomey, J.; Warner, J.; Greenberg, S.

    1998-12-01

    This report evaluates residential ventilation systems for the U.S. Environmental Protection Agency's (EPA's) ENERGY STAR{reg_sign} Homes program and recommends mechanical ventilation strategies for new, low-infiltration, energy-efficient, single-family, ENERGY STAR production (site-built tract) homes in four climates: cold, mixed (cold and hot), hot humid, and hot arid. Our group in the Energy Analysis Department at Lawrence Berkeley National Lab compared residential ventilation strategies in four climates according to three criteria: total annualized costs (the sum of annualized capital cost and annual operating cost), predominant indoor pressure induced by the ventilation system, and distribution of ventilation air within the home. The mechanical ventilation systems modeled deliver 0.35 air changes per hour continuously, regardless of actual infiltration or occupant window-opening behavior. Based on the assumptions and analysis described in this report, we recommend independently ducted multi-port supply ventilation in all climates except cold because this strategy provides the safety and health benefits of positive indoor pressure as well as the ability to dehumidify and filter ventilation air. In cold climates, we recommend that multi-port supply ventilation be balanced by a single-port exhaust ventilation fan, and that builders offer balanced heat-recovery ventilation to buyers as an optional upgrade. For builders who continue to install forced-air integrated supply ventilation, we recommend ensuring ducts are airtight or in conditioned space, installing a control that automatically operates the forced-air fan 15-20 minutes during each hour that the fan does not operate for heating or cooling, and offering ICM forced-air fans to home buyers as an upgrade.

  14. The 30-year evolution of airway pressure release ventilation (APRV).

    Science.gov (United States)

    Jain, Sumeet V; Kollisch-Singule, Michaela; Sadowitz, Benjamin; Dombert, Luke; Satalin, Josh; Andrews, Penny; Gatto, Louis A; Nieman, Gary F; Habashi, Nader M

    2016-12-01

    Airway pressure release ventilation (APRV) was first described in 1987 and defined as continuous positive airway pressure (CPAP) with a brief release while allowing the patient to spontaneously breathe throughout the respiratory cycle. The current understanding of the optimal strategy to minimize ventilator-induced lung injury is to "open the lung and keep it open". APRV should be ideal for this strategy with the prolonged CPAP duration recruiting the lung and the minimal release duration preventing lung collapse. However, APRV is inconsistently defined with significant variation in the settings used in experimental studies and in clinical practice. The goal of this review was to analyze the published literature and determine APRV efficacy as a lung-protective strategy. We reviewed all original articles in which the authors stated that APRV was used. The primary analysis was to correlate APRV settings with physiologic and clinical outcomes. Results showed that there was tremendous variation in settings that were all defined as APRV, particularly CPAP and release phase duration and the parameters used to guide these settings. Thus, it was impossible to assess efficacy of a single strategy since almost none of the APRV settings were identical. Therefore, we divided all APRV studies divided into two basic categories: (1) fixed-setting APRV (F-APRV) in which the release phase is set and left constant; and (2) personalized-APRV (P-APRV) in which the release phase is set based on changes in lung mechanics using the slope of the expiratory flow curve. Results showed that in no study was there a statistically significant worse outcome with APRV, regardless of the settings (F-ARPV or P-APRV). Multiple studies demonstrated that P-APRV stabilizes alveoli and reduces the incidence of acute respiratory distress syndrome (ARDS) in clinically relevant animal models and in trauma patients. In conclusion, over the 30 years since the mode's inception there have been no strict

  15. Application of mid-frequency ventilation in an animal model of lung injury: a pilot study.

    Science.gov (United States)

    Mireles-Cabodevila, Eduardo; Chatburn, Robert L; Thurman, Tracy L; Zabala, Luis M; Holt, Shirley J; Swearingen, Christopher J; Heulitt, Mark J

    2014-11-01

    Mid-frequency ventilation (MFV) is a mode of pressure control ventilation based on an optimal targeting scheme that maximizes alveolar ventilation and minimizes tidal volume (VT). This study was designed to compare the effects of conventional mechanical ventilation using a lung-protective strategy with MFV in a porcine model of lung injury. Our hypothesis was that MFV can maximize ventilation at higher frequencies without adverse consequences. We compared ventilation and hemodynamic outcomes between conventional ventilation and MFV. This was a prospective study of 6 live Yorkshire pigs (10 ± 0.5 kg). The animals were subjected to lung injury induced by saline lavage and injurious conventional mechanical ventilation. Baseline conventional pressure control continuous mandatory ventilation was applied with V(T) = 6 mL/kg and PEEP determined using a decremental PEEP trial. A manual decision support algorithm was used to implement MFV using the same conventional ventilator. We measured P(aCO2), P(aO2), end-tidal carbon dioxide, cardiac output, arterial and venous blood oxygen saturation, pulmonary and systemic vascular pressures, and lactic acid. The MFV algorithm produced the same minute ventilation as conventional ventilation but with lower V(T) (-1 ± 0.7 mL/kg) and higher frequency (32.1 ± 6.8 vs 55.7 ± 15.8 breaths/min, P ventilation and MFV for mean airway pressures (16.1 ± 1.3 vs 16.4 ± 2 cm H2O, P = .75) even when auto-PEEP was higher (0.6 ± 0.9 vs 2.4 ± 1.1 cm H2O, P = .02). There were no significant differences in any hemodynamic measurements, although heart rate was higher during MFV. In this pilot study, we demonstrate that MFV allows the use of higher breathing frequencies and lower V(T) than conventional ventilation to maximize alveolar ventilation. We describe the ventilatory or hemodynamic effects of MFV. We also demonstrate that the application of a decision support algorithm to manage MFV is feasible. Copyright © 2014 by Daedalus Enterprises.

  16. Mine engineering and ventilation problems unique to the control of radon daughters

    International Nuclear Information System (INIS)

    Rock, R.L.

    1975-01-01

    Quality and quantity of ventilation are the two interrelated but key factors in any radon-daughter control programme. The better the intake air quality (little or no contamination from radon and its daughters), the less are the total air requirements for ventilation of active mining areas. Engineering principles for quantity distribution of air through underground working areas are straightforward and the formulae and theories governing forced ventilation are not within the scope of this paper. Rather, this paper discusses the principal methods of utilizing mine planning to facilitate radon-daughter control and also treats the more subtle features of mine ventilation which are especially critical in the ventilation of mines where radon gas constitutes an environmental contamination problem. (author)

  17. Comparison of intraoperative volume and pressure-controlled ventilation modes in patients who undergo open heart surgery.

    Science.gov (United States)

    Hoşten, Tülay; Kuş, Alparslan; Gümüş, Esra; Yavuz, Şadan; İrkil, Serhat; Solak, Mine

    2017-02-01

    Respiratory problems occur more frequently in patients who undergo open heart surgery. Intraoperative and postoperative ventilation strategies can prevent these complications and reduce mortality. We hypothesized that PCV would have better effects on gas exchange, lung mechanics and hemodynamics compared to VCV in CABG surgery. Our primary outcome was to compare the PaO 2 /FiO 2 ratio. Patients were randomized into two groups, (VCV, PCV) consisting of 30 individuals each. Two patients were excluded from the study. I/E ratio was adjusted to 1:2 and, RR:10/min fresh air gas flow was set at 3L/min in all patients. In the VCV group TV was set at 8 mL/kg of the predicted body weight. In the PCV group, peak inspiratory pressure was adjusted to the same tidal volume with the VCV group. PaO2/FiO2 was found to be higher with PCV at the end of the surgery. Time to extubation and ICU length of stay was shorter with PCV. Ppeak was similar in both groups. Pplateau was lower and Pmean was higher at the and of the surgery with PCV compared to VCV. The hemodynamic effects of both ventilation modes were found to be similar. PVC may be preferable to VCV in patients who undergo open heart surgery. However, it would be convenient if our findings are supported by similar studies.

  18. Echocardiographic evaluation during weaning from mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Luciele Medianeira Schifelbain

    2011-01-01

    Full Text Available INTRODUCTION: Echocardiographic, electrocardiographic and other cardiorespiratory variables can change during weaning from mechanical ventilation. OBJECTIVES: To analyze changes in cardiac function, using Doppler echocardiogram, in critical patients during weaning from mechanical ventilation, using two different weaning methods: pressure support ventilation and T-tube; and comparing patient subgroups: success vs. failure in weaning. METHODS: Randomized crossover clinical trial including patients under mechanical ventilation for more than 48 h and considered ready for weaning. Cardiorespiratory variables, oxygenation, electrocardiogram and Doppler echocardiogram findings were analyzed at baseline and after 30 min in pressure support ventilation and T-tube. Pressure support ventilation vs. T-tube and weaning success vs. failure were compared using ANOVA and Student's t-test. The level of significance was p<0.05. RESULTS: Twenty-four adult patients were evaluated. Seven patients failed at the first weaning attempt. No echocardiographic or electrocardiographic differences were observed between pressure support ventilation and T-tube. Weaning failure patients presented increases in left atrium, intraventricular septum thickness, posterior wall thickness and diameter of left ventricle and shorter isovolumetric relaxation time. Successfully weaned patients had higher levels of oxygenation. CONCLUSION: No differences were observed between Doppler echocardiographic variables and electrocardiographic and other cardiorespiratory variables during pressure support ventilation and T-tube. However cardiac structures were smaller, isovolumetric relaxation time was larger, and oxygenation level was greater in successfully weaned patients

  19. Positive pressure ventilation in the management of acute and chronic cardiac failure: a systematic review and meta-analysis.

    Science.gov (United States)

    Nadar, Sunil; Prasad, Neeraj; Taylor, Rod S; Lip, Gregory Y H

    2005-03-18

    Chronic heart failure (CHF) is a common condition and is associated with excess morbidity and mortality, in spite of the many advances in its treatment. Chronic stable heart failure is also associated with an increased incidence of sleep-related breathing disorders, such as central sleep apnoea (CSA) and Cheyne Stokes respiration (CSR). Continuous positive airways pressure (CPAP) has been shown to alleviate the symptoms of CHF, improve left ventricular function and oxygenation. To a certain extent, CPAP also abolishes sleep-related breathing disorders in patients with chronic heart failure. In patients with acute pulmonary oedema, the use of positive pressure ventilation improves cardiac haemodynamic indices, as well as symptoms and oxygenation, and is associated with a lower need for intubation. However, some studies have cast doubts about its safety and suggest a higher rate of myocardial infarction associated with its use. In our opinion, non-invasive positive pressure ventilation and CPAP offers an adjunctive mode of therapy in patients with acute pulmonary oedema and chronic heart failure, who may not be suitable for intubation and in those not responsive to conventional therapies. Non-invasive ventilation also helps to improve oxygenation in those patients with exhaustion and respiratory acidosis. Many trials are still ongoing and the results of these studies would throw more light on the present role of non-invasive ventilation in the management of CHF.

  20. Noninvasive positive pressure ventilation in unplanned extubation

    Energy Technology Data Exchange (ETDEWEB)

    Eryuksel, Emel; Sait, Karakurt; Celikel, Turgay [Dept. of Pulmonary and Critical Care, Marmara Univ. Hospital, (Turkey)

    2009-07-01

    Unplanned extubation is quite common in intensive care unit (ICU) patients receiving mechanical ventilatory support. The present study aimed to investigate the effectiveness of noninvasive positive pressure ventilation (NPPV) in patients with unplanned extubation. A total of 15 patients (12 male, age: 57 + - 24 years, APACHE II score: 19 + - 7) monitored at the medical ICU during the year 2004 who developed unplanned extubation were included in the study. NPPV was tried in all of them following unplanned extubation. Indications for admission to the ICU were as follows: nine patients with pneumonia, three with status epilepticus, one with gastrointestinal bleeding, one with cardiogenic pulmonary edema and one with diffuse alveolar bleeding. Eleven of the patients (74%) were at the weaning period at the time of unplanned extubation. Among these 11 patients, NPPV was successful in 10 (91%) and only one (9%) was reintubated due to the failure of NPPV. The remaining four patients (26%) had pneumonia and none of them were at the weaning period at the time of extubation, but their requirement for mechanical ventilation was gradually decreasing. Unfortunately, an NPPV attempt for 6-8 h failed and these patients were reintubated. Patients with unplanned extubation before the weaning criteria are met should be intubated immediately. On the other hand, when extubation develops during the weaning period, NPPV may be an alternative. The present study was conducted with a small number of patients, and larger studies on the effectiveness of NPPV in unplanned extubation are warranted for firm conclusions. (author)

  1. Noninvasive positive pressure ventilation in unplanned extubation

    International Nuclear Information System (INIS)

    Eryuksel, Emel; Karakurt Sait; Celikel, Turgay

    2009-01-01

    Unplanned extubation is quite common in intensive care unit (ICU) patients receiving mechanical ventilatory support. The present study aimed to investigate the effectiveness of noninvasive positive pressure ventilation (NPPV) in patients with unplanned extubation. A total of 15 patients (12 male, age: 57 + - 24 years, APACHE II score: 19 + - 7) monitored at the medical ICU during the year 2004 who developed unplanned extubation were included in the study. NPPV was tried in all of them following unplanned extubation. Indications for admission to the ICU were as follows: nine patients with pneumonia, three with status epilepticus, one with gastrointestinal bleeding, one with cardiogenic pulmonary edema and one with diffuse alveolar bleeding. Eleven of the patients (74%) were at the weaning period at the time of unplanned extubation. Among these 11 patients, NPPV was successful in 10 (91%) and only one (9%) was reintubated due to the failure of NPPV. The remaining four patients (26%) had pneumonia and none of them were at the weaning period at the time of extubation, but their requirement for mechanical ventilation was gradually decreasing. Unfortunately, an NPPV attempt for 6-8 h failed and these patients were reintubated. Patients with unplanned extubation before the weaning criteria are met should be intubated immediately. On the other hand, when extubation develops during the weaning period, NPPV may be an alternative. The present study was conducted with a small number of patients, and larger studies on the effectiveness of NPPV in unplanned extubation are warranted for firm conclusions. (author)

  2. Comparison of different inspiratory triggering settings in automated ventilators during cardiopulmonary resuscitation in a porcine model.

    Science.gov (United States)

    Tan, Dingyu; Xu, Jun; Shao, Shihuan; Fu, Yangyang; Sun, Feng; Zhang, Yazhi; Hu, Yingying; Walline, Joseph; Zhu, Huadong; Yu, Xuezhong

    2017-01-01

    Mechanical ventilation via automated in-hospital ventilators is quite common during cardiopulmonary resuscitation. It is not known whether different inspiratory triggering sensitivity settings of ordinary ventilators have different effects on actual ventilation, gas exchange and hemodynamics during resuscitation. 18 pigs enrolled in this study were anaesthetized and intubated. Continuous chest compressions and mechanical ventilation (volume-controlled mode, 100% O2, respiratory rate 10/min, and tidal volumes 10ml/kg) were performed after 3 minutes of ventricular fibrillation. Group trig-4, trig-10 and trig-20 (six pigs each) were characterized by triggering sensitivities of 4, 10 and 20 (cmH2O for pressure-triggering and L/min for flow-triggering), respectively. Additionally, each pig in each group was mechanically ventilated using three types of inspiratory triggering (pressure-triggering, flow-triggering and turned-off triggering) of 5 minutes duration each, and each animal matched with one of six random assortments of the three different triggering settings. Blood gas samples, respiratory and hemodynamic parameters for each period were all collected and analyzed. In each group, significantly lower actual respiratory rate, minute ventilation volume, mean airway pressure, arterial pH, PaO2, and higher end-tidal carbon dioxide, aortic blood pressure, coronary perfusion pressure, PaCO2 and venous oxygen saturation were observed in the ventilation periods with a turned-off triggering setting compared to those with pressure- or flow- triggering (all PVentilation with pressure- or flow-triggering tends to induce hyperventilation and deteriorating gas exchange and hemodynamics during CPR. A turned-off patient triggering or a pressure-triggering of 20 cmH2O is preferred for ventilation when an ordinary inpatient hospital ventilator is used during resuscitation.

  3. Performance comparison of 15 transport ventilators.

    Science.gov (United States)

    Chipman, Daniel W; Caramez, Maria P; Miyoshi, Eriko; Kratohvil, Joseph P; Kacmarek, Robert M

    2007-06-01

    Numerous mechanical ventilators are designed and marketed for use in patient transport. The complexity of these ventilators differs considerably, but very few data exist to compare their operational capabilities. Using bench and animal models, we studied 15 currently available transport ventilators with regard to their physical characteristics, gas consumption (duration of an E-size oxygen cylinder), battery life, ease of use, need for compressed gas, ability to deliver set ventilation parameters to a test lung under 3 test conditions, and ability to maintain ventilation and oxygenation in normal and lung-injured sheep. Most of the ventilators tested were relatively simple to operate and had clearly marked controls. Oxygen cylinder duration ranged from 30 min to 77 min. Battery life ranged from 70 min to 8 hours. All except 3 of the ventilators were capable of providing various F(IO2) values. Ten of the ventilators had high-pressure and patient-disconnect alarms. Only 6 of the ventilators were able to deliver all settings as specifically set on the ventilator during the bench evaluation. Only 4 of the ventilators were capable of maintaining ventilation, oxygenation, and hemodynamics in both the normal and the lung-injured sheep. Only 2 of the ventilators met all the trial targets in all the bench and animal tests. With many of the ventilators, certain of the set ventilation parameters were inaccurate (differed by > 10% from the values from a cardiopulmonary monitor). The physical characteristics and high gas consumption of some of these ventilators may render them less desirable for patient transport.

  4. Effects of Pressure Support Ventilation May Be Lost at High Exercise Intensities in People with COPD.

    Science.gov (United States)

    Anekwe, David; de Marchie, Michel; Spahija, Jadranka

    2017-06-01

    Pressure support ventilation (PSV) may be used for exercise training in chronic obstructive pulmonary disease (COPD), but its acute effect on maximum exercise capacity is not fully known. The objective of this study was to evaluate the effect of 10 cm H 2 O PSV and a fixed PSV level titrated to patient comfort at rest on maximum exercise workload (WLmax), breathing pattern and metabolic parameters during a symptom-limited incremental bicycle test in individuals with COPD. Eleven individuals with COPD (forced expiratory volume in one second: 49 ± 16%; age: 64 ± 7 years) performed three exercise tests: without a ventilator, with 10 cm H 2 O of PSV and with a fixed level titrated to comfort at rest, using a SERVO-i ventilator. Tests were performed in randomized order and at least 48 hours apart. The WLmax, breathing pattern, metabolic parameters, and mouth pressure (Pmo) were compared using repeated measures analysis of variance. Mean PSV during titration was 8.2 ± 4.5 cm H 2 O. There was no difference in the WLmax achieved during the three tests. At rest, PSV increased the tidal volume, minute ventilation, and mean inspiratory flow with a lower end-tidal CO 2 ; this was not sustained at peak exercise. Pmo decreased progressively (decreased unloading) with PSV at workloads close to peak, suggesting the ventilator was unable to keep up with the increased ventilatory demand at high workloads. In conclusion, with a Servo-i ventilator, 10 cm H 2 O of PSV and a fixed level of PSV established by titration to comfort at rest, is ineffective for the purpose of achieving higher exercise workloads as the acute physiological effects may not be sustained at peak exercise.

  5. The Society for Translational Medicine: clinical practice guidelines for mechanical ventilation management for patients undergoing lobectomy.

    Science.gov (United States)

    Gao, Shugeng; Zhang, Zhongheng; Brunelli, Alessandro; Chen, Chang; Chen, Chun; Chen, Gang; Chen, Haiquan; Chen, Jin-Shing; Cassivi, Stephen; Chai, Ying; Downs, John B; Fang, Wentao; Fu, Xiangning; Garutti, Martínez I; He, Jianxing; He, Jie; Hu, Jian; Huang, Yunchao; Jiang, Gening; Jiang, Hongjing; Jiang, Zhongmin; Li, Danqing; Li, Gaofeng; Li, Hui; Li, Qiang; Li, Xiaofei; Li, Yin; Li, Zhijun; Liu, Chia-Chuan; Liu, Deruo; Liu, Lunxu; Liu, Yongyi; Ma, Haitao; Mao, Weimin; Mao, Yousheng; Mou, Juwei; Ng, Calvin Sze Hang; Petersen, René H; Qiao, Guibin; Rocco, Gaetano; Ruffini, Erico; Tan, Lijie; Tan, Qunyou; Tong, Tang; Wang, Haidong; Wang, Qun; Wang, Ruwen; Wang, Shumin; Xie, Deyao; Xue, Qi; Xue, Tao; Xu, Lin; Xu, Shidong; Xu, Songtao; Yan, Tiansheng; Yu, Fenglei; Yu, Zhentao; Zhang, Chunfang; Zhang, Lanjun; Zhang, Tao; Zhang, Xun; Zhao, Xiaojing; Zhao, Xuewei; Zhi, Xiuyi; Zhou, Qinghua

    2017-09-01

    Patients undergoing lobectomy are at significantly increased risk of lung injury. One-lung ventilation is the most commonly used technique to maintain ventilation and oxygenation during the operation. It is a challenge to choose an appropriate mechanical ventilation strategy to minimize the lung injury and other adverse clinical outcomes. In order to understand the available evidence, a systematic review was conducted including the following topics: (I) protective ventilation (PV); (II) mode of mechanical ventilation [e.g., volume controlled (VCV) versus pressure controlled (PCV)]; (III) use of therapeutic hypercapnia; (IV) use of alveolar recruitment (open-lung) strategy; (V) pre-and post-operative application of positive end expiratory pressure (PEEP); (VI) Inspired Oxygen concentration; (VII) Non-intubated thoracoscopic lobectomy; and (VIII) adjuvant pharmacologic options. The recommendations of class II are non-intubated thoracoscopic lobectomy may be an alternative to conventional one-lung ventilation in selected patients. The recommendations of class IIa are: (I) Therapeutic hypercapnia to maintain a partial pressure of carbon dioxide at 50-70 mmHg is reasonable for patients undergoing pulmonary lobectomy with one-lung ventilation; (II) PV with a tidal volume of 6 mL/kg and PEEP of 5 cmH 2 O are reasonable methods, based on current evidence; (III) alveolar recruitment [open lung ventilation (OLV)] may be beneficial in patients undergoing lobectomy with one-lung ventilation; (IV) PCV is recommended over VCV for patients undergoing lung resection; (V) pre- and post-operative CPAP can improve short-term oxygenation in patients undergoing lobectomy with one-lung ventilation; (VI) controlled mechanical ventilation with I:E ratio of 1:1 is reasonable in patients undergoing one-lung ventilation; (VII) use of lowest inspired oxygen concentration to maintain satisfactory arterial oxygen saturation is reasonable based on physiologic principles; (VIII) Adjuvant drugs

  6. [Effect of transpulmonary pressure-directed mechanical ventilation on respiration in severe acute pancreatitis patient with intraabdominal hypertension].

    Science.gov (United States)

    Wu, Xiaoyan; Zheng, Ruiqiang; Lin, Hua; Zhuang, Zhiqing; Zhang, Min; Yan, Peixia

    2015-10-20

    To assess the effect of mehanical ventilation (MV) guided by transpulmonary pressure (Ptp) on respiratory mechanics and gas exchange in severe acute pancreatitis patient with intraabdominal hypertension. Twelve severe acute pancreatitis patient with intraabdominal hypertension and acute respiratory distress syndrome(ARDS) underwent mechanical ventilation were involved from Jan to Dec 2013. PEEP levels were set to achieve a Ptp of 0 to 10 cm of water at end expiration. We also limited tidal volume to keep Ptp at less than 25 cm of water at end inspiration. Respiratory mechanics and gas-exchange were measured. Plat pressure (Pplat) increased and the compliance of chest wall (Ccw) decreased when intraabdominal pressure (IAP) increased. Pplat correlated with IAP positively (r2=0.741 9, P0.05). Compared with baseline, after guiding MV with Ptp, the Level of PEEP (14.6±4.2) cmH2O vs (8.3±2.0) cmH2O, and Ptp-e (1.5±0.5) cmH2O vs (-2.3±1.4) cmH2O increased (P0.05). Ptp-e correlated with PEEP (r2=0.549, P0.05). Compared with baseline, lung compliance (CL) (48.1±10.3) cmH2O vs (25.7±6.4) cmH2O and oxygenation index (PaO2/FiO2) (235±48) mmHg vs (160±35) mmHg improved obviously (P0.05). Transpulmonary pressure-directed mechanical ventilation in ARDS secondary to severe acute pancreatitis patient with intraabdominal hypertension could not only recruit the collapsed alveoli, improve lung compliance, increase oxygenation index and decrease dead space ventilation but also monitor lung stress to avoid alveoli overinflation, which might be lung protective.

  7. Gravity predominates over ventilatory pattern in the prevention of ventilator-associated pneumonia.

    Science.gov (United States)

    Li Bassi, Gianluigi; Marti, Joan Daniel; Saucedo, Lina; Rigol, Montserrat; Roca, Ignasi; Cabanas, Maria; Muñoz, Laura; Ranzani, Otavio Tavares; Giunta, Valeria; Luque, Nestor; Esperatti, Mariano; Gabarrus, Albert; Fernandez, Laia; Rinaudo, Mariano; Ferrer, Miguel; Ramirez, Jose; Vila, Jordi; Torres, Antoni

    2014-09-01

    In the semirecumbent position, gravity-dependent dissemination of pathogens has been implicated in the pathogenesis of ventilator-associated pneumonia. We compared the preventive effects of a ventilatory strategy, aimed at decreasing pulmonary aspiration and enhancing mucus clearance versus the Trendelenburg position. Prospective randomized animal study. Animal research facility, University of Barcelona, Spain. Twenty-four Large White-Landrace pigs. Pigs were intubated and on mechanical ventilation for 72 hours. Following surgical preparation, pigs were randomized to be positioned: 1) in semirecumbent/prone position, ventilated with a duty cycle (TITTOT) of 0.33 and without positive end-expiratory pressure (control); 2) as in the control group, positive end-expiratory pressure of 5 cm H2O and TITTOT to achieve a mean expiratory-inspiratory flow bias of 10 L/min (treatment); 3) in Trendelenburg/prone position and ventilated as in the control group (Trendelenburg). Following randomization, Pseudomonas aeruginosa was instilled into the oropharynx. Mucus clearance rate was measured through fluoroscopic tracking of tracheal markers. Microspheres were instilled into the subglottic trachea to assess pulmonary aspiration. Ventilator-associated pneumonia was confirmed by histological/microbiological studies. The mean expiratory-inspiratory flow in the treatment, control, and Trendelenburg groups were 10.7 ± 1.7, 1.8 ± 3.7 and 4.3 ± 2.8 L/min, respectively (p gravity-dependent translocation of oropharyngeal pathogens and development of ventilator-associated pneumonia. These findings further substantiate the primary role of gravity in the pathogenesis of ventilator-associated pneumonia.

  8. Monitoring of noninvasive ventilation by built-in software of home bilevel ventilators: a bench study.

    Science.gov (United States)

    Contal, Olivier; Vignaux, Laurence; Combescure, Christophe; Pepin, Jean-Louis; Jolliet, Philippe; Janssens, Jean-Paul

    2012-02-01

    Current bilevel positive-pressure ventilators for home noninvasive ventilation (NIV) provide physicians with software that records items important for patient monitoring, such as compliance, tidal volume (Vt), and leaks. However, to our knowledge, the validity of this information has not yet been independently assessed. Testing was done for seven home ventilators on a bench model adapted to simulate NIV and generate unintentional leaks (ie, other than of the mask exhalation valve). Five levels of leaks were simulated using a computer-driven solenoid valve (0-60 L/min) at different levels of inspiratory pressure (15 and 25 cm H(2)O) and at a fixed expiratory pressure (5 cm H(2)O), for a total of 10 conditions. Bench data were compared with results retrieved from ventilator software for leaks and Vt. For assessing leaks, three of the devices tested were highly reliable, with a small bias (0.3-0.9 L/min), narrow limits of agreement (LA), and high correlations (R(2), 0.993-0.997) when comparing ventilator software and bench results; conversely, for four ventilators, bias ranged from -6.0 L/min to -25.9 L/min, exceeding -10 L/min for two devices, with wide LA and lower correlations (R(2), 0.70-0.98). Bias for leaks increased markedly with the importance of leaks in three devices. Vt was underestimated by all devices, and bias (range, 66-236 mL) increased with higher insufflation pressures. Only two devices had a bias ventilation must be aware of differences in the estimation of leaks and Vt by ventilator software. Also, leaks are reported in different ways according to the device used.

  9. Ventilator associated pneumonia and infection control

    Directory of Open Access Journals (Sweden)

    Alp Emine

    2006-04-01

    Full Text Available Abstract Ventilator associated pneumonia (VAP is the leading cause of morbidity and mortality in intensive care units. The incidence of VAP varies from 7% to 70% in different studies and the mortality rates are 20–75% according to the study population. Aspiration of colonized pathogenic microorganisms on the oropharynx and gastrointestinal tract is the main route for the development of VAP. On the other hand, the major risk factor for VAP is intubation and the duration of mechanical ventilation. Diagnosis remains difficult, and studies showed the importance of early initiation of appropriate antibiotic for prognosis. VAP causes extra length of stay in hospital and intensive care units and increases hospital cost. Consequently, infection control policies are more rational and will save money.

  10. AsthmaVent – Effect of Ventilation on Asthma Control

    DEFF Research Database (Denmark)

    Hogaard, Nina Viskum; Rubak, Sune Leisgaard Mørck; Halken, Susanne

    sensitive towards. Reducing this exposure may improve the asthma control in these children. Previous studies give conflicting information on the effect of mechanical ventilation on asthma control in children. Objectives We aim at investigating whether mechanical ventilation is capable of improving indoor...... air quality in the home and health outcomes in the outpatient clinic every three months. Fig. 1 and 2. Primary outcome is reduction in minimal effective dose of inhalation steroid. Secondary endpoints….. Perspectives Asthma patients and their families rely on good evidence-based advice on behavior...

  11. Performance of ICU ventilators during noninvasive ventilation with large leaks in a total face mask: a bench study.

    Science.gov (United States)

    Nakamura, Maria Aparecida Miyuki; Costa, Eduardo Leite Vieira; Carvalho, Carlos Roberto Ribeiro; Tucci, Mauro Roberto

    2014-01-01

    Discomfort and noncompliance with noninvasive ventilation (NIV) interfaces are obstacles to NIV success. Total face masks (TFMs) are considered to be a very comfortable NIV interface. However, due to their large internal volume and consequent increased CO2 rebreathing, their orifices allow proximal leaks to enhance CO2 elimination. The ventilators used in the ICU might not adequately compensate for such leakage. In this study, we attempted to determine whether ICU ventilators in NIV mode are suitable for use with a leaky TFM. This was a bench study carried out in a university research laboratory. Eight ICU ventilators equipped with NIV mode and one NIV ventilator were connected to a TFM with major leaks. All were tested at two positive end-expiratory pressure (PEEP) levels and three pressure support levels. The variables analyzed were ventilation trigger, cycling off, total leak, and pressurization. Of the eight ICU ventilators tested, four did not work (autotriggering or inappropriate turning off due to misdetection of disconnection); three worked with some problems (low PEEP or high cycling delay); and one worked properly. The majority of the ICU ventilators tested were not suitable for NIV with a leaky TFM.

  12. Performance of ICU ventilators during noninvasive ventilation with large leaks in a total face mask: a bench study* **

    Science.gov (United States)

    Nakamura, Maria Aparecida Miyuki; Costa, Eduardo Leite Vieira; Carvalho, Carlos Roberto Ribeiro; Tucci, Mauro Roberto

    2014-01-01

    Objective: Discomfort and noncompliance with noninvasive ventilation (NIV) interfaces are obstacles to NIV success. Total face masks (TFMs) are considered to be a very comfortable NIV interface. However, due to their large internal volume and consequent increased CO2 rebreathing, their orifices allow proximal leaks to enhance CO2 elimination. The ventilators used in the ICU might not adequately compensate for such leakage. In this study, we attempted to determine whether ICU ventilators in NIV mode are suitable for use with a leaky TFM. Methods: This was a bench study carried out in a university research laboratory. Eight ICU ventilators equipped with NIV mode and one NIV ventilator were connected to a TFM with major leaks. All were tested at two positive end-expiratory pressure (PEEP) levels and three pressure support levels. The variables analyzed were ventilation trigger, cycling off, total leak, and pressurization. Results: Of the eight ICU ventilators tested, four did not work (autotriggering or inappropriate turning off due to misdetection of disconnection); three worked with some problems (low PEEP or high cycling delay); and one worked properly. Conclusions: The majority of the ICU ventilators tested were not suitable for NIV with a leaky TFM. PMID:25029653

  13. Ventilation and ventilation/perfusion ratios

    International Nuclear Information System (INIS)

    Valind, S.O.

    1989-01-01

    The thesis is based on five different papers. The labelling of specific tracer compounds with positron emitting radionuclides enables a range of structural, physiological and biochemical parameters in the lung to be measured non-invasively, using positron emission tomography. This concept affords a unique opportunity for in vivo studies of different expressions of pulmonary pathophysiology at the regional level. The present thesis describes the application of positron emission tomography to the measurements of ventilation and ventilation/perfusion ratios using inert gas tracers, neon-19 and nitrogen-13 respectively. The validity of the methods applied was investigated with respect to the transport of inert gas tracers in the human lung. Both ventilation and the ventilation/perfusion ratio may be obtained with errors less than 10 % in the normal lung. In disease, however, errors may increase in those instances where the regional ventilation is very low or the intra-regional gas flow distribution is markedly nonuniform. A 2-3 fold increase in ventilation was demonstrated in normal nonsmoking subjects going from ventral to dorsal regions in the supine posture. These large regional differences could be well explained by the intrinsic elastic properties of lung tissue, considering the gravitational gradient in transpulmonary pressure. In asymptomatic smokers substantial regional ventilatroy abnormalities were found whilst the regional gas volume was similar in smokers and nonsmokers. The uncoupling between ventilation and gas volume probably reflects inflammatory changes in the airways. The regional differences in dV/dt/dQ/dt were relatively small and blood flow was largely matched to ventilation in the supine posture. However, small regions of lung with very low ventilation, unmatched by blood flow commonly exists in the most dependent parts of the lung in both smokers and nonsmokers. (29 illustrations, 7 tables, 113 references)

  14. Variability in Usual Care Mechanical Ventilation for Pediatric Acute Respiratory Distress Syndrome: Time for a Decision Support Protocol?

    Science.gov (United States)

    Newth, Christopher J L; Sward, Katherine A; Khemani, Robinder G; Page, Kent; Meert, Kathleen L; Carcillo, Joseph A; Shanley, Thomas P; Moler, Frank W; Pollack, Murray M; Dalton, Heidi J; Wessel, David L; Berger, John T; Berg, Robert A; Harrison, Rick E; Holubkov, Richard; Doctor, Allan; Dean, J Michael; Jenkins, Tammara L; Nicholson, Carol E

    2017-11-01

    Although pediatric intensivists philosophically embrace lung protective ventilation for acute lung injury and acute respiratory distress syndrome, we hypothesized that ventilator management varies. We assessed ventilator management by evaluating changes to ventilator settings in response to blood gases, pulse oximetry, or end-tidal CO2. We also assessed the potential impact that a pediatric mechanical ventilation protocol adapted from National Heart Lung and Blood Institute acute respiratory distress syndrome network protocols could have on reducing variability by comparing actual changes in ventilator settings to those recommended by the protocol. Prospective observational study. Eight tertiary care U.S. PICUs, October 2011 to April 2012. One hundred twenty patients (age range 17 d to 18 yr) with acute lung injury/acute respiratory distress syndrome. Two thousand hundred arterial and capillary blood gases, 3,964 oxygen saturation by pulse oximetry, and 2,757 end-tidal CO2 values were associated with 3,983 ventilator settings. Ventilation mode at study onset was pressure control 60%, volume control 19%, pressure-regulated volume control 18%, and high-frequency oscillatory ventilation 3%. Clinicians changed FIO2 by ±5 or ±10% increments every 8 hours. Positive end-expiratory pressure was limited at ~10 cm H2O as oxygenation worsened, lower than would have been recommended by the protocol. In the first 72 hours of mechanical ventilation, maximum tidal volume/kg using predicted versus actual body weight was 10.3 (8.5-12.9) (median [interquartile range]) versus 9.2 mL/kg (7.6-12.0) (p Ventilator management varies substantially in children with acute respiratory distress syndrome. Opportunities exist to minimize variability and potentially injurious ventilator settings by using a pediatric mechanical ventilation protocol offering adequately explicit instructions for given clinical situations. An accepted protocol could also reduce confounding by mechanical

  15. Nuclear waste repository ventilation system studies

    International Nuclear Information System (INIS)

    Smith, P.R.; Hensel, E.C.; Leslie, I.H.; Schultheis, T.M.; Walls, J.R.; Gregory, W.S.

    1993-01-01

    Ventilation studies of the Waste Isolation Pilot Plant described in this article were performed by personnel from New Mexico State University in collaboration with Sandia National Laboratories, Los Alamos National Laboratory, and Westinghouse Corporation. The following research tasks were performed: 1) High-efficiency particulate air filters of the type used at the Waste Isolation Pilot Plant were loaded with salt aerosol from the site, 2) Filter resistance as a function of salt mass and flow rate was established for later use in computer simulations, 3) Filter efficiency was measured during the loading tests to establish a relation between efficiency and salt loading, 4) The structural strength of the salt-loaded high-efficiency filters was investigated by subjecting the filters to pressure transients of the types expected from fires, explosions and tornados, 5) Computer codes, obtained from Los Alamos National Laboratory, were used to model the ventilation systems and study their response to accident-induced pressure transients and heat fluxes, 6) Partial verification of the computer simulations was obtained by comparing normal operation of the ventilation systems to predicted normal operation, 7) A feasibility study using model-based control of the ventilation systems was initiated and will be completed during the second year of the project. (author) 12 figs., 16 refs

  16. Neurally adjusted ventilatory assist compared to other forms of triggered ventilation for neonatal respiratory support.

    Science.gov (United States)

    Rossor, Thomas E; Hunt, Katie A; Shetty, Sandeep; Greenough, Anne

    2017-10-27

    Effective synchronisation of infant respiratory effort with mechanical ventilation may allow adequate gas exchange to occur at lower peak airway pressures, potentially reducing barotrauma and volutrauma and development of air leaks and bronchopulmonary dysplasia. During neurally adjusted ventilatory assist ventilation (NAVA), respiratory support is initiated upon detection of an electrical signal from the diaphragm muscle, and pressure is provided in proportion to and synchronous with electrical activity of the diaphragm (EADi). Compared to other modes of triggered ventilation, this may provide advantages in improving synchrony. Primary• To determine whether NAVA, when used as a primary or rescue mode of ventilation, results in reduced rates of bronchopulmonary dysplasia (BPD) or death among term and preterm newborn infants compared to other forms of triggered ventilation• To assess the safety of NAVA by determining whether it leads to greater risk of intraventricular haemorrhage (IVH), periventricular leukomalacia, or air leaks when compared to other forms of triggered ventilation Secondary• To determine whether benefits of NAVA differ by gestational age (term or preterm)• To determine whether outcomes of cross-over trials performed during the first two weeks of life include peak pressure requirements, episodes of hypocarbia or hypercarbia, oxygenation index, and the work of breathing SEARCH METHODS: We performed searches of the Cochrane Central Register of Controlled Trials (CENTRAL) in the Cohrane Library; MEDLINE via Ovid SP (January 1966 to March 2017); Embase via Ovid SP (January 1980 to March 2017); the Cumulative Index to Nursing and Allied Health Literature (CINAHL) via EBSCO host (1982 to March 2017); and the Web of Science (1985 to 2017). We searched abstracts from annual meetings of the Pediatric Academic Societies (PAS) (2000 to 2016); meetings of the European Society of Pediatric Research (published in Pediatric Research); and meetings of the

  17. Data on respiratory variables in critically ill patients with acute respiratory failure placed on proportional assist ventilation with load adjustable gain factors (PAV+

    Directory of Open Access Journals (Sweden)

    Dimitris Georgopoulos

    2016-09-01

    Full Text Available The data show respiratory variables in 108 critically ill patients with acute respiratory failure placed on proportional assist ventilation with load adjustable gain factors (PAV+ after at least 36 h on passive mechanical ventilation. PAV+ was continued for 48 h until the patients met pre-defined criteria either for switching to controlled modes or for breathing without ventilator assistance. Data during passive mechanical ventilation and during PAV+ are reported. Data are acquired from the whole population, as well as from patients with and without acute respiratory distress syndrome. The reported variables are tidal volume, driving pressure (ΔP, the difference between static end-inspiratory plateau pressure and positive end-expiratory airway pressure, respiratory system compliance and resistance, and arterial blood gasses. The data are supplemental to our original research article, which described individual ΔP in these patients and examined how it related to ΔP when the same patients were ventilated with passive mechanical ventilation using the currently accepted lung-protective strategy “Driving pressure during assisted mechanical ventilation. Is it controlled by patient brain?” [1]. Keywords: Tidal volume, Compliance, Driving pressure

  18. Ventilation distribution measured with EIT at varying levels of pressure support and Neurally Adjusted Ventilatory Assist in patients with ALI.

    Science.gov (United States)

    Blankman, Paul; Hasan, Djo; van Mourik, Martijn S; Gommers, Diederik

    2013-06-01

    The purpose of this study was to compare the effect of varying levels of assist during pressure support (PSV) and Neurally Adjusted Ventilatory Assist (NAVA) on the aeration of the dependent and non-dependent lung regions by means of Electrical Impedance Tomography (EIT). We studied ten mechanically ventilated patients with Acute Lung Injury (ALI). Positive-End Expiratory Pressure (PEEP) and PSV levels were both 10 cm H₂O during the initial PSV step. Thereafter, we changed the inspiratory pressure to 15 and 5 cm H₂O during PSV. The electrical activity of the diaphragm (EAdi) during pressure support ten was used to define the initial NAVA gain (100 %). Thereafter, we changed NAVA gain to 150 and 50 %, respectively. After each step the assist level was switched back to PSV 10 cm H₂O or NAVA 100 % to get a new baseline. The EIT registration was performed continuously. Tidal impedance variation significantly decreased during descending PSV levels within patients, whereas not during NAVA. The dorsal-to-ventral impedance distribution, expressed according to the center of gravity index, was lower during PSV compared to NAVA. Ventilation contribution of the dependent lung region was equally in balance with the non-dependent lung region during PSV 5 cm H₂O, NAVA 50 and 100 %. Neurally Adjusted Ventilatory Assist ventilation had a beneficial effect on the ventilation of the dependent lung region and showed less over-assistance compared to PSV in patients with ALI.

  19. Safety demonstration tests on pressure rise in ventilation system and blower integrity of a fuel-reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Takada, Junichi; Suzuki, Motoe; Tsukamoto, Michio; Koike, Tadao; Nishio, Gunji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-12-01

    In JAERI, the demonstration test was carried out as a part of safety researches of the fuel-reprocessing plant using a large-scale facility consist of cells, ducts, dumpers, HEPA filters and a blower, when an explosive burning due to a rapid reaction of thermal decomposition for solvent/nitric acid occurs in a cell of the reprocessing plant. In the demonstration test, pressure response propagating through the facility was measured under a blowing of air from a pressurized tank into the cell in the facility to elucidate an influence of pressure rise in the ventilation system. Consequently, effective pressure decrease in the facility was given by a configuration of cells and ducts in the facility. In the test, transient responses of HEPA filters and the blower by the blowing of air were also measured to confirm the integrity. So that, it is confirmed that HEPA filters and the blower under pressure loading were sufficient to maintain the integrity. The content described in this report will contribute to safety assessment of the ventilation system in the event of explosive burning in the reprocessing plant. (author)

  20. Impact of Different Ventilation Strategies on Driving Pressure, Mechanical Power, and Biological Markers During Open Abdominal Surgery in Rats.

    Science.gov (United States)

    Maia, Lígia de A; Samary, Cynthia S; Oliveira, Milena V; Santos, Cintia L; Huhle, Robert; Capelozzi, Vera L; Morales, Marcelo M; Schultz, Marcus J; Abreu, Marcelo G; Pelosi, Paolo; Silva, Pedro L; Rocco, Patricia Rieken Macedo

    2017-10-01

    Intraoperative mechanical ventilation may yield lung injury. To date, there is no consensus regarding the best ventilator strategy for abdominal surgery. We aimed to investigate the impact of the mechanical ventilation strategies used in 2 recent trials (Intraoperative Protective Ventilation [IMPROVE] trial and Protective Ventilation using High versus Low PEEP [PROVHILO] trial) on driving pressure (ΔPRS), mechanical power, and lung damage in a model of open abdominal surgery. Thirty-five Wistar rats were used, of which 28 were anesthetized, and a laparotomy was performed with standardized bowel manipulation. Postoperatively, animals (n = 7/group) were randomly assigned to 4 hours of ventilation with: (1) tidal volume (VT) = 7 mL/kg and positive end-expiratory pressure (PEEP) = 1 cm H2O without recruitment maneuvers (RMs) (low VT/low PEEP/RM-), mimicking the low-VT/low-PEEP strategy of PROVHILO; (2) VT = 7 mL/kg and PEEP = 3 cm H2O with RMs before laparotomy and hourly thereafter (low VT/moderate PEEP/4 RM+), mimicking the protective ventilation strategy of IMPROVE; (3) VT = 7 mL/kg and PEEP = 6 cm H2O with RMs only before laparotomy (low VT/high PEEP/1 RM+), mimicking the strategy used after intubation and before extubation in PROVHILO; or (4) VT = 14 mL/kg and PEEP = 1 cm H2O without RMs (high VT/low PEEP/RM-), mimicking conventional ventilation used in IMPROVE. Seven rats were not tracheotomized, operated, or mechanically ventilated, and constituted the healthy nonoperated and nonventilated controls. Low VT/moderate PEEP/4 RM+ and low VT/high PEEP/1 RM+, compared to low VT/low PEEP/RM- and high VT/low PEEP/RM-, resulted in lower ΔPRS (7.1 ± 0.8 and 10.2 ± 2.1 cm H2O vs 13.9 ± 0.9 and 16.9 ± 0.8 cm H2O, respectively; Pmechanical power (63 ± 7 and 79 ± 20 J/min vs 110 ± 10 and 120 ± 20 J/min, respectively; P = .007). Low VT/high PEEP/1 RM+ was associated with less alveolar collapse than low VT/low PEEP/RM- (P = .03). E-cadherin expression was higher in

  1. Effects of assisted and variable mechanical ventilation on cardiorespiratory interactions in anesthetized pigs

    International Nuclear Information System (INIS)

    Beda, Alessandro; Güldner, Andreas; Carvalho, Nadja C; Franke, Susanne; Uhlig, Christopher; Koch, Thea; De Abreu, Marcelo Gama; Simpson, David M; Pelosi, Paolo

    2012-01-01

    The physiological importance of respiratory sinus arrhythmia (RSA) and cardioventilatory coupling (CVC) has not yet been fully elucidated, but these phenomena might contribute to improve ventilation/perfusion matching, with beneficial effects on gas exchange. Furthermore, decreased RSA amplitude has been suggested as an indicator of impaired autonomic control and poor clinical outcome, also during positive-pressure mechanical ventilation (MV). However, it is currently unknown how different modes of MV, including variable tidal volumes (V T ), affect RSA and CVC during anesthesia. We compared the effects of pressure controlled (PCV) versus pressure assisted (PSV) ventilation, and of random variable versus constant V T , on RSA and CVC in eight anesthetized pigs. At comparable depth of anesthesia, global hemodynamics, and ventilation, RSA amplitude increased from 20 ms in PCV to 50 ms in PSV (p < 0.05). CVC was detected (using proportional Shannon entropy of the interval between each inspiration onset and the previous R-peak in ECG) in two animals in PCV and seven animals in PSV. Variable V T did not significantly influence these phenomena. Furthermore, heart period and systolic arterial pressure oscillations were in phase during PCV but in counter-phase during PSV. At the same depth of anesthesia in pigs, PSV increases RSA amplitude and CVC compared to PCV. Our data suggest that the central respiratory drive, but not the baroreflex or the mechano-electric feedback in the heart, is the main mechanism behind the RSA increase. Hence, differences in RSA and CVC between mechanically ventilated patients might reflect the difference in ventilation mode rather than autonomic impairment. Also, since gas exchange did not increase from PCV to PSV, it is questionable whether RSA has any significance in improving ventilation/perfusion matching during MV. (paper)

  2. Effects of assisted and variable mechanical ventilation on cardiorespiratory interactions in anesthetized pigs.

    Science.gov (United States)

    Beda, Alessandro; Güldner, Andreas; Simpson, David M; Carvalho, Nadja C; Franke, Susanne; Uhlig, Christopher; Koch, Thea; Pelosi, Paolo; de Abreu, Marcelo Gama

    2012-03-01

    The physiological importance of respiratory sinus arrhythmia (RSA) and cardioventilatory coupling (CVC) has not yet been fully elucidated, but these phenomena might contribute to improve ventilation/perfusion matching, with beneficial effects on gas exchange. Furthermore, decreased RSA amplitude has been suggested as an indicator of impaired autonomic control and poor clinical outcome, also during positive-pressure mechanical ventilation (MV). However, it is currently unknown how different modes of MV, including variable tidal volumes (V(T)), affect RSA and CVC during anesthesia. We compared the effects of pressure controlled (PCV) versus pressure assisted (PSV) ventilation, and of random variable versus constant V(T), on RSA and CVC in eight anesthetized pigs. At comparable depth of anesthesia, global hemodynamics, and ventilation, RSA amplitude increased from 20 ms in PCV to 50 ms in PSV (p < 0.05). CVC was detected (using proportional Shannon entropy of the interval between each inspiration onset and the previous R-peak in ECG) in two animals in PCV and seven animals in PSV. Variable V(T) did not significantly influence these phenomena. Furthermore, heart period and systolic arterial pressure oscillations were in phase during PCV but in counter-phase during PSV. At the same depth of anesthesia in pigs, PSV increases RSA amplitude and CVC compared to PCV. Our data suggest that the central respiratory drive, but not the baroreflex or the mechano-electric feedback in the heart, is the main mechanism behind the RSA increase. Hence, differences in RSA and CVC between mechanically ventilated patients might reflect the difference in ventilation mode rather than autonomic impairment. Also, since gas exchange did not increase from PCV to PSV, it is questionable whether RSA has any significance in improving ventilation/perfusion matching during MV.

  3. Lung-Protective Ventilation Strategies for Relief from Ventilator-Associated Lung Injury in Patients Undergoing Craniotomy: A Bicenter Randomized, Parallel, and Controlled Trial

    Directory of Open Access Journals (Sweden)

    Chaoliang Tang

    2017-01-01

    Full Text Available Current evidence indicates that conventional mechanical ventilation often leads to lung inflammatory response and oxidative stress, while lung-protective ventilation (LPV minimizes the risk of ventilator-associated lung injury (VALI. This study evaluated the effects of LPV on relief of pulmonary injury, inflammatory response, and oxidative stress among patients undergoing craniotomy. Sixty patients undergoing craniotomy received either conventional mechanical (12 mL/kg tidal volume [VT] and 0 cm H2O positive end-expiratory pressure [PEEP]; CV group or protective lung (6 mL/kg VT and 10 cm H2O PEEP; PV group ventilation. Hemodynamic variables, lung function indexes, and inflammatory and oxidative stress markers were assessed. The PV group exhibited greater dynamic lung compliance and lower respiratory index than the CV group during surgery (P0.05. Patients receiving LPV during craniotomy exhibited low perioperative inflammatory response, oxidative stress, and VALI.

  4. Seasonal Temperature Variations controlling Cave Ventilation Processes in Cueva Larga, Puerto Rico

    Science.gov (United States)

    Winter, A.; Vieten, R.; Warken, S. F.; Schrӧder-Ritzrau, A.; Miller, T. E.; Scholz, D.

    2016-12-01

    Two years of monthly monitoring result in much better understanding of ventilation processes in caves. Cueva Larga, a tropical cave in Puerto Rico is 1440 m long with a large main passage (about 116,000 m3). Cave air pCO2 in the main passage varied seasonally, between 600 ppm in winter and 1800 ppm in summer. The seasonal variability in cave pCO2 made it possible to estimate a cave air exchange time of 36±5 days and a winter ventilation rate of 3,200±800 m3/day for the main cave passage. Calculations of virtual temperature and differences between cave and surface temperature show that the seasonal temperature cycle is the main driver of the alternation between a well-ventilated winter mode and a near-stagnant summer mode. The winter mode is characterized by a positive buoyancy contrast at night leading to maximal cave ventilation, while during summer ventilation is at a minimum. Between winter and summer, a transitional mode of partial cave ventilation is observed. On shorter time scales (diurnal to weekly), cave pCO2 is also influenced by atmospheric pressure but this variation is one order of magnitude lower than the seasonal pCO2 change. The cave morphology of Cueva Larga including its large volume, tubular shape and the obstructed cave entrance geometry are important boundary conditions for the observed ventilation patterns. Our findings emphasize that cave systems with varying morphology have to be studied individually in order to correctly describe ventilation processes.

  5. High-Frequency Percussive Ventilation and Low Tidal Volume Ventilation in Burns: A Randomized Controlled Trial

    Science.gov (United States)

    2010-01-01

    incidence of ventilator-associated pneumonia ( VAP ) in patients with inha- lation injury when supported with HFPV compared with conventional modes of...mean ratio of PaO2 to FIO2 was 58 6 with a mean positive end- expiratory pressure of 22 2 cm H2O before rescue. Two of these patients were...a sample size of 110 patients in each arm would have been required to detect a difference in VAP with 80% power. A multicentered study would be

  6. The Society for Translational Medicine: clinical practice guidelines for mechanical ventilation management for patients undergoing lobectomy

    Science.gov (United States)

    Zhang, Zhongheng; Brunelli, Alessandro; Chen, Chang; Chen, Chun; Chen, Gang; Chen, Haiquan; Chen, Jin-Shing; Cassivi, Stephen; Chai, Ying; Downs, John B.; Fang, Wentao; Fu, Xiangning; Garutti, Martínez I.; He, Jianxing; Hu, Jian; Huang, Yunchao; Jiang, Gening; Jiang, Hongjing; Jiang, Zhongmin; Li, Danqing; Li, Gaofeng; Li, Hui; Li, Qiang; Li, Xiaofei; Li, Yin; Li, Zhijun; Liu, Chia-Chuan; Liu, Deruo; Liu, Lunxu; Liu, Yongyi; Ma, Haitao; Mao, Weimin; Mao, Yousheng; Mou, Juwei; Ng, Calvin Sze Hang; Petersen, René H.; Qiao, Guibin; Rocco, Gaetano; Ruffini, Erico; Tan, Lijie; Tan, Qunyou; Tong, Tang; Wang, Haidong; Wang, Qun; Wang, Ruwen; Wang, Shumin; Xie, Deyao; Xue, Qi; Xue, Tao; Xu, Lin; Xu, Shidong; Xu, Songtao; Yan, Tiansheng; Yu, Fenglei; Yu, Zhentao; Zhang, Chunfang; Zhang, Lanjun; Zhang, Tao; Zhang, Xun; Zhao, Xiaojing; Zhao, Xuewei; Zhi, Xiuyi; Zhou, Qinghua

    2017-01-01

    Patients undergoing lobectomy are at significantly increased risk of lung injury. One-lung ventilation is the most commonly used technique to maintain ventilation and oxygenation during the operation. It is a challenge to choose an appropriate mechanical ventilation strategy to minimize the lung injury and other adverse clinical outcomes. In order to understand the available evidence, a systematic review was conducted including the following topics: (I) protective ventilation (PV); (II) mode of mechanical ventilation [e.g., volume controlled (VCV) versus pressure controlled (PCV)]; (III) use of therapeutic hypercapnia; (IV) use of alveolar recruitment (open-lung) strategy; (V) pre-and post-operative application of positive end expiratory pressure (PEEP); (VI) Inspired Oxygen concentration; (VII) Non-intubated thoracoscopic lobectomy; and (VIII) adjuvant pharmacologic options. The recommendations of class II are non-intubated thoracoscopic lobectomy may be an alternative to conventional one-lung ventilation in selected patients. The recommendations of class IIa are: (I) Therapeutic hypercapnia to maintain a partial pressure of carbon dioxide at 50–70 mmHg is reasonable for patients undergoing pulmonary lobectomy with one-lung ventilation; (II) PV with a tidal volume of 6 mL/kg and PEEP of 5 cmH2O are reasonable methods, based on current evidence; (III) alveolar recruitment [open lung ventilation (OLV)] may be beneficial in patients undergoing lobectomy with one-lung ventilation; (IV) PCV is recommended over VCV for patients undergoing lung resection; (V) pre- and post-operative CPAP can improve short-term oxygenation in patients undergoing lobectomy with one-lung ventilation; (VI) controlled mechanical ventilation with I:E ratio of 1:1 is reasonable in patients undergoing one-lung ventilation; (VII) use of lowest inspired oxygen concentration to maintain satisfactory arterial oxygen saturation is reasonable based on physiologic principles; (VIII) Adjuvant drugs

  7. Respiratory training during rehabilitation of acute organic fluorine-poisoned patients treated by non-invasive positive pressure ventilation.

    Science.gov (United States)

    Liu, L; Liu, D Z; Wang, Q P; Zhu, Z L; Li, H M; Lu, X Y

    2017-01-01

    This paper aimed to analyze the effects of respiratory training on pulmonary function during the rehabilitation period for acute organic fluorine-poisoned patients treated by non-invasive positive pressure ventilation (NIPPV). Sixty-two acute organic fluorine-poisoned patients admitted to the Xinxiang Central Hospital, Xinxiang City, China, from May 2012 to March 2016 were selected and randomly divided into an observation group and a control group, with 31 cases in each. Both groups received NIPPV. The patients in the control group exercised daily, while the patients in the observation group received contracting lips-abdominal breathing training. The therapeutic effects, pulmonary ventilation function, serum levels of α-antitrypsin1 (α-AT1), surfactant protein D (SP-D), neutrophil elastase (NE), transforming growth factor beta 1 (TGF-β1), and quality of life were analyzed and compared between the two groups both before and after the administration of treatment. The total effective rate of the observation group was 93.55%, which was significantly higher when compared with the control group (74.19%) (P less than 0.05). The levels of forced expiratory volume in one second (FEV1), FEV1/FVC ratio, vital capacity (VC), carbon monoxide diffusion capacity (DLco), and maximal voluntary ventilation (MVV) of the observation group were better when compared with the control group and had statistical significance (P less than 0.05). Before treatment, the serum levels of α-AT1, SP-D, NE, and TGF-β1, and quality of life had no statistical significance in either group (P>0.05); after treatment, these indexes and the quality of life for the observation group were significantly higher when compared with the control group, with statistical significance (P less than 0.05). The respiratory training in acute organic fluorine-poisoned patients treated by NIPPV can improve the serum indexes, dilute toxicity, and recover pulmonary function, which play key roles in improving the

  8. Ammonia emissions in tunnel-ventilated broiler houses

    Directory of Open Access Journals (Sweden)

    KAO Lima

    2011-12-01

    Full Text Available Gas production in broiler houses and their emissions are closely related to the microclimate established inside the house according to air temperature, humidity, and velocity. Therefore, the internal house environment is influenced by building typology and ventilation system. The objective of the present study was to evaluate ammonia emission rates in broiler houses equipped with different ventilation systems (negative or positive pressure and litter conditions (new or built-up. The environment of six commercial broiler houses was evaluated internal and external NH3 concentrations. Ventilation rates were recorded to estimate ammonia emission rates. The efficiency of circulation and exhaust fans was assessed, and higher ventilation rates were determined in negative-pressure houses due to the higher flow of the fans. Houses with new litter increased ammonia emission rates along the rearing period, indicating the relationship between gas emissions, bird age and ventilation rates, and presented a typical curve of NH3 emission increase. Negative-pressure houses with built-up litter presented higher emission rates during the first rearing week due to the high NH3 concentration during the brooding period, when the ventilation rates required to maintain chick thermal comfort are low. Although the results of the present study indicate an advantage of the positive-pressure systems as to gas emissions, further research is needed reduce gas emissions in broiler houses with negative-pressure systems.

  9. Effect of tubing condensate on non-invasive positive pressure ventilators tested under simulated clinical conditions.

    Science.gov (United States)

    Hart, Diana Elizabeth; Forman, Mark; Veale, Andrew G

    2011-09-01

    Water condensate in the humidifier tubing can affect bi-level ventilation by narrowing tube diameter and increasing airflow resistance. We investigated room temperature and tubing type as ways to reduce condensate and its effect on bi-level triggering and pressure delivery. In this bench study, the aim was to test the hypothesis that a relationship exists between room temperature and tubing condensate. Using a patient simulator, a Res-med bi-level device was set to 18/8 cm H(2)O and run for 6 h at room temperatures of 16°C, 18°C and 20°C. The built-in humidifier was set to a low, medium or high setting while using unheated or insulated tubing or replaced with a humidifier using heated tubing. Humidifier output, condensate, mask pressure and triggering delay of the bi-level were measured at 1 and 6 h using an infrared hygrometer, metric weights, Honeywell pressure transducer and TSI pneumotach. When humidity output exceeded 17.5 mg H(2)O/L, inspiratory pressure fell by 2-15 cm H(2)O and triggering was delayed by 0.2-0.9 s. Heating the tubing avoided any such ventilatory effect whereas warmer room temperatures or insulating the tubing were of marginal benefit. Users of bi-level ventilators need to be aware of this problem and its solution. Bi-level humidifier tubing may need to be heated to ensure correct humidification, pressure delivery and triggering.

  10. Skeletal muscle oxygen pressure fields in artificially ventilated, critically ill patients

    International Nuclear Information System (INIS)

    Lund, N.; Jorfeldt, L.; Lewis, D.H.; Oedman, S.

    1980-01-01

    The MDO (Mehrdraht Dostmund Oberflaeche) oxygen electrode was used in a study of skeletal muscle oxygen pressure fields, presented as histograms, in critically ill patients artificially ventilated with gas mixtures of different oxygen concentrations. The histograms were compared with forearm blood flow measurements performed with strain gauge plethysmography. Local blood flow and permeability-surface area product (PS) were also studied by the simultaneous clearances of 133 xenon and 51 Cr-EDTA. The histogram distribution type was normal, i.e. approximately Gaussian, at arterial oxygen pressure levels between 10 and 18 kPa. At arterial oxygen pressures outside this range the histogram distribution types were abnormal, i.e. they showed a non-symmetrical distribution of oxygen pressure values, but their mean was approximately the same as in the normal histogram. However, there were significantly higher tissue oxygen pressure mean values in the patients (3.43 kPa) than in a group of healthy human volunteers (2.25 kPa). Mean forearm blood flow and the clearances of 133 xenon and 51 Cr-EDTA showed marked variations during the measurements both intraindividually and interindividually. Mean forearm blood flow and mean clearances of 133 xenon showed opposite trends compared with arterial oxygen pressures. Mean clearances of 51 Cr-EDTA and mean PS showed minor variations at the different arterial oxygen pressure levels. (author)

  11. Multicenter comparative study of conventional mechanical gas ventilation to tidal liquid ventilation in oleic acid injured sheep.

    Science.gov (United States)

    Wolfson, Marla R; Hirschl, Ronald B; Jackson, J Craig; Gauvin, France; Foley, David S; Lamm, Wayne J E; Gaughan, John; Shaffer, Thomas H

    2008-01-01

    We performed a multicenter study to test the hypothesis that tidal liquid ventilation (TLV) would improve cardiopulmonary, lung histomorphological, and inflammatory profiles compared with conventional mechanical gas ventilation (CMV). Sheep were studied using the same volume-controlled, pressure-limited ventilator systems, protocols, and treatment strategies in three independent laboratories. Following baseline measurements, oleic acid lung injury was induced and animals were randomized to 4 hours of CMV or TLV targeted to "best PaO2" and PaCO2 35 to 60 mm Hg. The following were significantly higher (p ventilation, physiologic shunt, plasma lactate, lung interleukin-6, interleukin-8, myeloperoxidase, and composite total injury score. No significant laboratories by treatment group interactions were found. In summary, TLV resulted in improved cardiopulmonary physiology at lower ventilatory requirements with more favorable histological and inflammatory profiles than CMV. As such, TLV offers a feasible ventilatory alternative as a lung protective strategy in this model of acute lung injury.

  12. Influence of tidal volume on ventilation inhomogeneity assessed by electrical impedance tomography during controlled mechanical ventilation

    International Nuclear Information System (INIS)

    Becher, T; Kott, M; Schädler, D; Vogt, B; Meinel, T; Weiler, N; Frerichs, I

    2015-01-01

    The global inhomogeneity (GI) index is a parameter of ventilation inhomogeneity that can be calculated from images of tidal ventilation distribution obtained by electrical impedance tomography (EIT). It has been suggested that the GI index may be useful for individual adjustment of positive end-expiratory pressure (PEEP) and for guidance of ventilator therapy. The aim of the present work was to assess the influence of tidal volume (V_T) on the GI index values. EIT data from 9 patients with acute respiratory distress syndrome ventilated with a low and a high V_T of 5   ±   1 (mean  ±  SD) and 9   ±   1 ml kg"−"1 predicted body weight at a high and a low level of PEEP (PEEP_h_i_g_h, PEEP_l_o_w) were analyzed. PEEP_h_i_g_h and PEEP_l_o_w were set 2 cmH_2O above and 5 cmH_2O below the lower inflection point of a quasi-static pressure volume loop, respectively. The lower inflection point was identified at 8.1   ±   1.4 (mean  ±  SD) cmH_2O, resulting in a PEEP_h_i_g_h of 10.1   ±   1.4 and a PEEP_l_o_w of 3.1   ±   1.4 cmH_2O. At PEEP_h_i_g_h, we found no significant trend in GI index with low V_T when compared to high V_T (0.49   ±   0.15 versus 0.44   ±   0.09, p = 0.13). At PEEP_l_o_w, we found a significantly higher GI index with low V_T compared to high V_T (0.66   ±   0.19 versus 0.59   ±   0.17, p = 0.01). When comparing the PEEP levels, we found a significantly lower GI index at PEEP_h_i_g_h both for high and low V_T. We conclude that high V_T may lead to a lower GI index, especially at low PEEP settings. This should be taken into account when using the GI index for individual adjustment of ventilator settings. (paper)

  13. Radioactive waste tank ventilation system incorporating tritium control

    Energy Technology Data Exchange (ETDEWEB)

    Rice, P.D. [ICF Kaiser Hanford Company, Richland, WA (United States)

    1997-08-01

    This paper describes the development of a ventilation system for radioactive waste tanks at the U.S. Department of Energy`s (DOE) Hanford Site in Richland, Washington. The unique design of the system is aimed at cost-effective control of tritiated water vapor. The system includes recirculation ventilation and cooling for each tank in the facility and a central exhaust air clean-up train that includes a low-temperature vapor condenser and high-efficiency mist eliminator (HEME). A one-seventh scale pilot plant was built and tested to verify predicted performance of the low-temperature tritium removal system. Tests were conducted to determine the effectiveness of the removal of condensable vapor and soluble and insoluble aerosols and to estimate the operating life of the mist eliminator. Definitive design of the ventilation system relied heavily on the test data. The unique design features of the ventilation system will result in far less release of tritium to the atmosphere than from conventional high-volume dilution systems and will greatly reduce operating costs. NESHAPs and TAPs NOC applications have been approved, and field construction is nearly complete. Start-up is scheduled for late 1996. 3 refs., 4 figs., 2 tabs.

  14. Successful management of drug-induced hypercapnic acidosis with naloxone and noninvasive positive pressure ventilation.

    Science.gov (United States)

    Agrafiotis, Michalis; Tryfon, Stavros; Siopi, Demetra; Chassapidou, Georgia; Galanou, Artemis; Tsara, Venetia

    2015-02-01

    A 74-year-old man was referred to our hospital due to deteriorating level of consciousness and desaturation. His Glasgow Coma Scale was 6, and his pupils were constricted but responded to light. Chest radiograph was negative for significant findings. Arterial blood gas evaluation on supplemental oxygen revealed severe acute on chronic respiratory acidosis: pH 7.15; PCO2, 133 mm Hg; PO2,64 mm Hg; and HCO3, 31 mmol/L. He regained full consciousness (Glasgow Coma Scale, 15) after receiving a 0.4 mg dose of naloxone, but because of persistent severe respiratory acidosis (pH 7.21; PCO2, 105 mm Hg), he was immediately commenced on noninvasive positive pressure ventilation (NIV) displaying a remarkable improvement in arterial blood gas values within the next few hours. However, in the days that followed, he remained dependent on NIV, and he was finally discharged on a home mechanical ventilation prescription. In cases of drug-induced respiratory depression, NIV should be regarded as an acceptable treatment, as it can provide ventilatory support without the increased risks associated with invasive mechanical ventilation.

  15. Increasing the inspiratory time and I:E ratio during mechanical ventilation aggravates ventilator-induced lung injury in mice.

    Science.gov (United States)

    Müller-Redetzky, Holger C; Felten, Matthias; Hellwig, Katharina; Wienhold, Sandra-Maria; Naujoks, Jan; Opitz, Bastian; Kershaw, Olivia; Gruber, Achim D; Suttorp, Norbert; Witzenrath, Martin

    2015-01-28

    Lung-protective ventilation reduced acute respiratory distress syndrome (ARDS) mortality. To minimize ventilator-induced lung injury (VILI), tidal volume is limited, high plateau pressures are avoided, and positive end-expiratory pressure (PEEP) is applied. However, the impact of specific ventilatory patterns on VILI is not well defined. Increasing inspiratory time and thereby the inspiratory/expiratory ratio (I:E ratio) may improve oxygenation, but may also be harmful as the absolute stress and strain over time increase. We thus hypothesized that increasing inspiratory time and I:E ratio aggravates VILI. VILI was induced in mice by high tidal-volume ventilation (HVT 34 ml/kg). Low tidal-volume ventilation (LVT 9 ml/kg) was used in control groups. PEEP was set to 2 cm H2O, FiO2 was 0.5 in all groups. HVT and LVT mice were ventilated with either I:E of 1:2 (LVT 1:2, HVT 1:2) or 1:1 (LVT 1:1, HVT 1:1) for 4 hours or until an alternative end point, defined as mean arterial blood pressure below 40 mm Hg. Dynamic hyperinflation due to the increased I:E ratio was excluded in a separate group of animals. Survival, lung compliance, oxygenation, pulmonary permeability, markers of pulmonary and systemic inflammation (leukocyte differentiation in lung and blood, analyses of pulmonary interleukin-6, interleukin-1β, keratinocyte-derived chemokine, monocyte chemoattractant protein-1), and histopathologic pulmonary changes were analyzed. LVT 1:2 or LVT 1:1 did not result in VILI, and all individuals survived the ventilation period. HVT 1:2 decreased lung compliance, increased pulmonary neutrophils and cytokine expression, and evoked marked histologic signs of lung injury. All animals survived. HVT 1:1 caused further significant worsening of oxygenation, compliance and increased pulmonary proinflammatory cytokine expression, and pulmonary and blood neutrophils. In the HVT 1:1 group, significant mortality during mechanical ventilation was observed. According to the "baby lung

  16. Effect of Mechanical Ventilation Mode Type on Intra- and Postoperative Blood Loss in Patients Undergoing Posterior Lumbar Interbody Fusion Surgery: A Randomized Controlled Trial.

    Science.gov (United States)

    Kang, Woon-Seok; Oh, Chung-Sik; Kwon, Won-Kyoung; Rhee, Ka Young; Lee, Yun Gu; Kim, Tae-Hoon; Lee, Suk Ha; Kim, Seong-Hyop

    2016-07-01

    The aim of study was to evaluate the effect of mechanical ventilation mode type, pressure-controlled ventilation (PCV), or volume-controlled ventilation (VCV) on intra- and postoperative surgical bleeding in patients undergoing posterior lumbar interbody fusion (PLIF) surgery. This was a prospective, randomized, single-blinded, and parallel study that included 56 patients undergoing PLIF and who were mechanically ventilated using PCV or VCV. A permuted block randomization was used with a computer-generated list. The hemodynamic and respiratory parameters were measured after anesthesia induction in supine position, 5 min after patients were changed from supine to prone position, at the time of skin closure, and 5 min after the patients were changed from prone to supine position. The amount of intraoperative surgical bleeding, fluid administration, urine output, and transfusion requirement were measured at the end of surgery. The amount of postoperative bleeding and transfusion requirement were recorded every 24 h for 72 h. The primary outcome was the amount of intraoperative surgical bleeding, and 56 patients were analyzed. The amount of intraoperative surgical bleeding was significantly less in the PCV group than that in the VCV group (median, 253.0 [interquartile range, 179.0 to 316.5] ml in PCV group vs. 382.5 [328.0 to 489.5] ml in VCV group; P patients undergoing PLIF, which may be related to lower intraoperative peak inspiratory pressure.

  17. Airway pressure release ventilation and biphasic positive airway pressure: a systematic review of definitional criteria.

    Science.gov (United States)

    Rose, Louise; Hawkins, Martyn

    2008-10-01

    The objective of this study was to identify the definitional criteria for the pressure-limited and time-cycled modes: airway pressure release ventilation (APRV) and biphasic positive airway pressure (BIPAP) available in the published literature. Systematic review. Medline, PubMed, Cochrane, and CINAHL databases (1982-2006) were searched using the following terms: APRV, BIPAP, Bilevel and lung protective strategy, individually and in combination. Two independent reviewers determined the paper eligibility and abstracted data from 50 studies and 18 discussion articles. Of the 50 studies, 39 (78%) described APRV, and 11 (22%) described BIPAP. Various study designs, populations, or outcome measures were investigated. Compared to BIPAP, APRV was described more frequently as extreme inverse inspiratory:expiratory ratio [18/39 (46%) vs. 0/11 (0%), P = 0.004] and used rarely as a noninverse ratio [2/39 (5%) vs. 3/11 (27%), P = 0.06]. One (9%) BIPAP and eight (21%) APRV studies used mild inverse ratio (>1:1 to branding may further add to confusion. Generic naming of modes and consistent definitional parameters may improve consistency of patient response for a given mode and assist with clinical implementation.

  18. Frequency and Intensive Care Related Risk Factors of Pneumothorax in Ventilated Neonates

    Directory of Open Access Journals (Sweden)

    Ramesh Bhat Yellanthoor

    2014-01-01

    Full Text Available Objectives. Relationships of mechanical ventilation to pneumothorax in neonates and care procedures in particular are rarely studied. We aimed to evaluate the relationship of selected ventilator variables and risk events to pneumothorax. Methods. Pneumothorax was defined as accumulation of air in pleural cavity as confirmed by chest radiograph. Relationship of ventilator mode, selected settings, and risk procedures prior to detection of pneumothorax was studied using matched controls. Results. Of 540 neonates receiving mechanical ventilation, 10 (1.85% were found to have pneumothorax. Respiratory distress syndrome, meconium aspiration syndrome, and pneumonia were the underlying lung pathology. Pneumothorax mostly (80% occurred within 48 hours of life. Among ventilated neonates, significantly higher percentage with pneumothorax received mandatory ventilation than controls (70% versus 20%; P20 cm H2O and overventilation were not significantly associated with pneumothorax. More cases than controls underwent care procedures in the preceding 3 hours of pneumothorax event. Mean airway pressure change (P=0.052 and endotracheal suctioning (P=0.05 were not significantly associated with pneumothorax. Reintubation (P=0.003, and bagging (P=0.015 were significantly associated with pneumothorax. Conclusion. Pneumothorax among ventilated neonates occurred at low frequency. Mandatory ventilation and selected care procedures in the preceding 3 hours had significant association.

  19. Frequency and Intensive Care Related Risk Factors of Pneumothorax in Ventilated Neonates

    Science.gov (United States)

    Bhat Yellanthoor, Ramesh; Ramdas, Vidya

    2014-01-01

    Objectives. Relationships of mechanical ventilation to pneumothorax in neonates and care procedures in particular are rarely studied. We aimed to evaluate the relationship of selected ventilator variables and risk events to pneumothorax. Methods. Pneumothorax was defined as accumulation of air in pleural cavity as confirmed by chest radiograph. Relationship of ventilator mode, selected settings, and risk procedures prior to detection of pneumothorax was studied using matched controls. Results. Of 540 neonates receiving mechanical ventilation, 10 (1.85%) were found to have pneumothorax. Respiratory distress syndrome, meconium aspiration syndrome, and pneumonia were the underlying lung pathology. Pneumothorax mostly (80%) occurred within 48 hours of life. Among ventilated neonates, significantly higher percentage with pneumothorax received mandatory ventilation than controls (70% versus 20%; P 20 cm H2O and overventilation were not significantly associated with pneumothorax. More cases than controls underwent care procedures in the preceding 3 hours of pneumothorax event. Mean airway pressure change (P = 0.052) and endotracheal suctioning (P = 0.05) were not significantly associated with pneumothorax. Reintubation (P = 0.003), and bagging (P = 0.015) were significantly associated with pneumothorax. Conclusion. Pneumothorax among ventilated neonates occurred at low frequency. Mandatory ventilation and selected care procedures in the preceding 3 hours had significant association. PMID:24876958

  20. A mathematical model for carbon dioxide elimination: an insight for tuning mechanical ventilation.

    Science.gov (United States)

    Pomprapa, Anake; Schwaiberger, David; Lachmann, Burkhard; Leonhardt, Steffen

    2014-01-01

    The aim is to provide better understanding of carbon dioxide (CO2) elimination during ventilation for both the healthy and atelectatic condition, derived in a pressure-controlled mode. Therefore, we present a theoretical analysis of CO2 elimination of healthy and diseased lungs. Based on a single-compartment model, CO2 elimination is mathematically modeled and its contours were plotted as a function of temporal settings and driving pressure. The model was validated within some level of tolerance on an average of 4.9% using porcine dynamics. CO2 elimination is affected by various factors, including driving pressure, temporal variables from mechanical ventilator settings, lung mechanics and metabolic rate. During respiratory care, CO2 elimination is a key parameter for bedside monitoring, especially for patients with pulmonary disease. This parameter provides valuable insight into the status of an atelectatic lung and of cardiopulmonary pathophysiology. Therefore, control of CO2 elimination should be based on the fine tuning of the driving pressure and temporal ventilator settings. However, for critical condition of hypercapnia, airway resistance during inspiration and expiration should be additionally measured to determine the optimal percent inspiratory time (%TI) to maximize CO2 elimination for treating patients with hypercapnia.

  1. Comparison of actual tidal volume in neonatal lung model volume control ventilation using three ventilators.

    Science.gov (United States)

    Toyama, H; Endo, Y; Ejima, Y; Matsubara, M; Kurosawa, S

    2011-07-01

    In neonates, small changes in tidal volumes (V(T)) may lead to complications. Previous studies have shown a significant difference between ventilator-measured tidal volume and tidal volume delivered (actual V(T)). We evaluated the accuracy of three different ventilators to deliver small V(T) during volume-controlled ventilation. We tested Servo 300, 840 ventilator and Evita 4 Neoflow ventilators with lung models simulating normal and injured neonatal lung compliance models. Gas volume delivered from the ventilator into the test circuit (V(TV)) and actual V(T) to the test lung were measured using Ventrak respiration monitors at set V(T) (30 ml). The gas volume increase of the breathing circuit was then calculated. Tidal volumes of the SV300 and PB840 in both lung models were similar to the set V(T) and the actual tidal volumes in the injured model (20.7 ml and 19.8 ml, respectively) were significantly less than that in the normal model (27.4 ml and 23.4 ml). PB840 with circuit compliance compensation could not improve the actual V(T). V(TV) of the EV4N in the normal and the injured models (37.8 ml and 46.6 ml) were markedly increased compared with set V(T), and actual V(T) were similar to set V(T) in the normal and injured model (30.2 ml and 31.9 ml, respectively). EV4N measuring V(T) close to the lung could match actual V(T) to almost the same value as the set V(T) however the gas volume of the breathing circuit was increased. If an accurate value for the patient's actual V(T) is needed, this V(T) must be measured by a sensor located between the Y-piece and the tracheal tube.

  2. Ventilation system in the RA reactor building - design specifications

    International Nuclear Information System (INIS)

    Badrljica, R.

    1984-09-01

    Protective role of the ventilation system of nuclear facilities involve construction of ventilation barriers which prevent release of radioactive particulates or gases, elimination od radioactive particulates and gases from the air which is released from contaminated zones into the reactor environment. Ventilation barriers are created by dividing the building into a number of ventilation zones with different sub pressure compared to the atmospheric pressure. The RA reactor building is divided into four ventilation zones. First zone is the zone of highest risk. It includes reactor core with horizontal experimental channels, underground rooms of the primary coolant system (D 2 O), helium system, hot cells and the space above the the reactor core. Second zone is the reactor hall and the room for irradiated fuel storage. The third zone includes corridors in the basement, ground floor and first floor where the probability of contamination is small. The fourth zone includes the annex where the contamination risk is low. There is no have natural air circulation in the reactor building. Ventilators for air input and outlet maintain the sub pressure in the building (pressure lower than the atmospheric pressure). This prevents release of radioactivity into the atmosphere [sr

  3. Efficiency of Continuous Positive Airway Pressure or High-Frequency Jet Ventilation by Means a Nasooral Mask in the Treatment of Pulmonary Edema

    Directory of Open Access Journals (Sweden)

    J. Salantay

    2008-01-01

    Full Text Available Objective: to compare the efficiency of continuous positive airway pressure (CPAP and high-frequency jet ventilation by means of a mask (HFJV-M in the treatment of cardiogenic edema of the lung. Design: a retrospective study. Setting: Department of Anesthesiology and Intensive Medicine, Hospital NsP, Vranov, Slovakia. Subjects and methods. A hundred and ninety-six patients with varying cardiogenic edema of the lung were divided into 3 groups according to the severity of pulmonary edema (PE. By taking into account comparable pharmacotherapy, mean airway pressure, and FiO2, the authors compared the efficiency of CPAP (n=64 and HFJV-M (n=101 from the rate of changes in respiration rate, blood oxygenation, acid-base balance, and the duration of ventilation support and the length of stay in the intensive care unit (ICU. The results were assessed by the unpaired Student’s test. The procedure of artificial ventilation via HFJV-M was approved by the Professional and Ethics Committee, Ministry of Health in the Republic of Slovakia, in 1989 for clinical application. Results. Comparison of CPAP or HFJV-M used in mild PE that was called Phase 1 of PE revealed no statistically significant differences in the parameters being assessed. In severer forms of PE characterized as Phases 2 and 3, the use of HFJV-M in the first 3 hours of ventilation maintenance caused a rapider reduction in spontaneous respiration rate from 25—33 per min to 18—22 per min (p>0.01. The application of HFJV-M also showed a statistically significant difference in the correction rate of PaO2, pH, and oxygenation index (PaO2/FIO2 (p>0.01 predominantly within the first 2 hours of therapy. Comparison of the mean duration of necessary ventilation maintenance (CPAP versus HFJV-M: 10.9 versus 6.8 hours and the mean length of stay in the ICU (CPAP versus HFJV-N: 2.7 versus 2 days revealed a statistically significant difference (p>0.01 and p>0.05, respectively. Only 6.6% of the HFJV-M group

  4. Ventilação mecânica volume-controlada versus pressão controlada em modelo canino de lesão pulmonar aguda: efeitos cardiorrespiratórios e sobre o custo de oxigênio da respiração Volume controlled ventilation versus pressure controlled ventilation in a canine acute lung injury model: effects on cardiorespiratory parameters and oxygen cost of breathing

    Directory of Open Access Journals (Sweden)

    BRUNO DO VALLE PINHEIRO

    2002-01-01

    Full Text Available Introdução: Persiste a questão sobre se há vantagens mecânicas ou de trocas gasosas no uso da ventilação pressão-controlada (VPC sobre a ciclada a volume (VCV. Objetivos: Comparar, de forma randômica, a VPC com a VCV com fluxo desacelerado nos modos assistido e controlado em modelo experimental de lesão pulmonar aguda. Métodos: Sete cães com lesão pulmonar aguda grave (PaO2/FIO2 Background: It is questionable whether pressure-controlled ventilation (PCV has advantages over volume-cycled ventilation (VCV. Objectives: To compare PCV to VCV with decelerating flow profile during assisted and controlled modes in an acute lung injury experimental model. Methods: Severe acute lung injury (PaO2/FIO2 < 100 mmHg was induced by oleic acid IV infusion (0.05 mg/kg in seven dogs. The animals were submitted to PCV and VCV in a randomized sequence. After 40 minutes in the assisted mode, ventilation was changed to the controlled mode after neuromuscular blockade. The tidal volume and the inspiratory time were kept constant throughout the experiment. Results: There were no differences in gas exchange (PaO2 and PaCO2, cardiac output or oxygen delivery (DO2 between VCV and PCV. The same was observed regarding maximum airway and plateau pressures, and also to the static compliance. Oxygen consumption (VO2 after neuromuscular blockade was 124 ± 48 in VCV versus 143 ± 50 ml/min in PCV, p = 0.42. In the assisted mode, there was a statistical trend of a higher VO2 in PCV (219 ± 72 versus 154 ± 67 ml/min in VCV, p = 0.06, that was associated with a statistical trend of a higher oxygen cost of breathing (OCB during assisted PCV, although without statistical significance (31 ± 77 in VCV versus 75 ± 96 ml/min in PCV, p = 0.23, and also in a lower PvO2 (34 ± 7 in PCV versus 42 ± 6 ml/min in VCV, p = 0.02. These occurred despite a higher maximum inspiratory flow in the assisted mode in PCV (58 ± 9 versus 48 ± 4 L/min in VCV, p = 0.01. In both VCV and

  5. Sustained inflation and incremental mean airway pressure trial during conventional and high-frequency oscillatory ventilation in a large porcine model of acute respiratory distress syndrome

    Directory of Open Access Journals (Sweden)

    Wunder Christian

    2006-06-01

    Full Text Available Abstract Background To compare the effect of a sustained inflation followed by an incremental mean airway pressure trial during conventional and high-frequency oscillatory ventilation on oxygenation and hemodynamics in a large porcine model of early acute respiratory distress syndrome. Methods Severe lung injury (Ali was induced in 18 healthy pigs (55.3 ± 3.9 kg, mean ± SD by repeated saline lung lavage until PaO2 decreased to less than 60 mmHg. After a stabilisation period of 60 minutes, the animals were randomly assigned to two groups: Group 1 (Pressure controlled ventilation; PCV: FIO2 = 1.0, PEEP = 5 cmH2O, VT = 6 ml/kg, respiratory rate = 30/min, I:E = 1:1; group 2 (High-frequency oscillatory ventilation; HFOV: FIO2 = 1.0, Bias flow = 30 l/min, Amplitude = 60 cmH2O, Frequency = 6 Hz, I:E = 1:1. A sustained inflation (SI; 50 cmH2O for 60s followed by an incremental mean airway pressure (mPaw trial (steps of 3 cmH2O every 15 minutes were performed in both groups until PaO2 no longer increased. This was regarded as full lung inflation. The mPaw was decreased by 3 cmH2O and the animals reached the end of the study protocol. Gas exchange and hemodynamic data were collected at each step. Results The SI led to a significant improvement of the PaO2/FiO2-Index (HFOV: 200 ± 100 vs. PCV: 58 ± 15 and TAli: 57 ± 12; p 2-reduction (HFOV: 42 ± 5 vs. PCV: 62 ± 13 and TAli: 55 ± 9; p Ali: 6.1 ± 1 vs. T75: 3.4 ± 0.4; PCV: TAli: 6.7 ± 2.4 vs. T75: 4 ± 0.5; p Conclusion A sustained inflation followed by an incremental mean airway pressure trial in HFOV improved oxygenation at a lower mPaw than during conventional lung protective ventilation. HFOV but not PCV resulted in normocapnia, suggesting that during HFOV there are alternatives to tidal ventilation to achieve CO2-elimination in an "open lung" approach.

  6. Protective garment ventilation system

    Science.gov (United States)

    Lang, R. (Inventor)

    1970-01-01

    A method and apparatus for ventilating a protective garment, space suit system, and/or pressure suits to maintain a comfortable and nontoxic atmosphere within is described. The direction of flow of a ventilating and purging gas in portions of the garment may be reversed in order to compensate for changes in environment and activity of the wearer. The entire flow of the ventilating gas can also be directed first to the helmet associated with the garment.

  7. Combined Effects of Ventilation Mode and Positive End-Expiratory Pressure on Mechanics, Gas Exchange and the Epithelium in Mice with Acute Lung Injury

    Science.gov (United States)

    Thammanomai, Apiradee; Hamakawa, Hiroshi; Bartolák-Suki, Erzsébet; Suki, Béla

    2013-01-01

    The accepted protocol to ventilate patients with acute lung injury is to use low tidal volume (VT) in combination with recruitment maneuvers or positive end-expiratory pressure (PEEP). However, an important aspect of mechanical ventilation has not been considered: the combined effects of PEEP and ventilation modes on the integrity of the epithelium. Additionally, it is implicitly assumed that the best PEEP-VT combination also protects the epithelium. We aimed to investigate the effects of ventilation mode and PEEP on respiratory mechanics, peak airway pressures and gas exchange as well as on lung surfactant and epithelial cell integrity in mice with acute lung injury. HCl-injured mice were ventilated at PEEPs of 3 and 6 cmH2O with conventional ventilation (CV), CV with intermittent large breaths (CVLB) to promote recruitment, and a new mode, variable ventilation, optimized for mice (VVN). Mechanics and gas exchange were measured during ventilation and surfactant protein (SP)-B, proSP-B and E-cadherin levels were determined from lavage and lung homogenate. PEEP had a significant effect on mechanics, gas exchange and the epithelium. The higher PEEP reduced lung collapse and improved mechanics and gas exchange but it also down regulated surfactant release and production and increased epithelial cell injury. While CVLB was better than CV, VVN outperformed CVLB in recruitment, reduced epithelial injury and, via a dynamic mechanotransduction, it also triggered increased release and production of surfactant. For long-term outcome, selection of optimal PEEP and ventilation mode may be based on balancing lung physiology with epithelial injury. PMID:23326543

  8. Protective ventilation of preterm lambs exposed to acute chorioamnionitis does not reduce ventilation-induced lung or brain injury.

    Science.gov (United States)

    Barton, Samantha K; Moss, Timothy J M; Hooper, Stuart B; Crossley, Kelly J; Gill, Andrew W; Kluckow, Martin; Zahra, Valerie; Wong, Flora Y; Pichler, Gerhard; Galinsky, Robert; Miller, Suzanne L; Tolcos, Mary; Polglase, Graeme R

    2014-01-01

    The onset of mechanical ventilation is a critical time for the initiation of cerebral white matter (WM) injury in preterm neonates, particularly if they are inadvertently exposed to high tidal volumes (VT) in the delivery room. Protective ventilation strategies at birth reduce ventilation-induced lung and brain inflammation and injury, however its efficacy in a compromised newborn is not known. Chorioamnionitis is a common antecedent of preterm birth, and increases the risk and severity of WM injury. We investigated the effects of high VT ventilation, after chorioamnionitis, on preterm lung and WM inflammation and injury, and whether a protective ventilation strategy could mitigate the response. Pregnant ewes (n = 18) received intra-amniotic lipopolysaccharide (LPS) 2 days before delivery, instrumentation and ventilation at 127±1 days gestation. Lambs were either immediately euthanased and used as unventilated controls (LPSUVC; n = 6), or were ventilated using an injurious high VT strategy (LPSINJ; n = 5) or a protective ventilation strategy (LPSPROT; n = 7) for a total of 90 min. Mean arterial pressure, heart rate and cerebral haemodynamics and oxygenation were measured continuously. Lungs and brains underwent molecular and histological assessment of inflammation and injury. LPSINJ lambs had poorer oxygenation than LPSPROT lambs. Ventilation requirements and cardiopulmonary and systemic haemodynamics were not different between ventilation strategies. Compared to unventilated lambs, LPSINJ and LPSPROT lambs had increases in pro-inflammatory cytokine expression within the lungs and brain, and increased astrogliosis (pVentilation after acute chorioamnionitis, irrespective of strategy used, increases haemodynamic instability and lung and cerebral inflammation and injury. Mechanical ventilation is a potential contributor to WM injury in infants exposed to chorioamnionitis.

  9. Neonatal and adult ICU ventilators to provide ventilation in neonates, infants, and children: a bench model study.

    Science.gov (United States)

    Vignaux, Laurence; Piquilloud, Lise; Tourneux, Pierre; Jolliet, Philippe; Rimensberger, Peter C

    2014-10-01

    Using a bench test model, we investigated the hypothesis that neonatal and/or adult ventilators equipped with neonatal/pediatric modes currently do not reliably administer pressure support (PS) in neonatal or pediatric patient groups in either the absence or presence of air leaks. PS was evaluated in 4 neonatal and 6 adult ventilators using a bench model to evaluate triggering, pressurization, and cycling in both the absence and presence of leaks. Delivered tidal volumes were also assessed. Three patients were simulated: a preterm infant (resistance 100 cm H2O/L/s, compliance 2 mL/cm H2O, inspiratory time of the patient [TI] 400 ms, inspiratory effort 1 and 2 cm H2O), a full-term infant (resistance 50 cm H2O/L/s, compliance 5 mL/cm H2O, TI 500 ms, inspiratory effort 2 and 4 cm H2O), and a child (resistance 30 cm H2O/L/s, compliance 10 mL/cm H2O, TI 600 ms, inspiratory effort 5 and 10 cm H2O). Two PS levels were tested (10 and 15 cm H2O) with and without leaks and with and without the leak compensation algorithm activated. Without leaks, only 2 neonatal ventilators and one adult ventilator had trigger delays under a given predefined acceptable limit (1/8 TI). Pressurization showed high variability between ventilators. Most ventilators showed TI in excess high enough to seriously impair patient-ventilator synchronization (> 50% of the TI of the subject). In some ventilators, leaks led to autotriggering and impairment of ventilation performance, but the influence of leaks was generally lower in neonatal ventilators. When a noninvasive ventilation algorithm was available, this was partially corrected. In general, tidal volume was calculated too low by the ventilators in the presence of leaks; the noninvasive ventilation algorithm was able to correct this difference in only 2 adult ventilators. No ventilator performed equally well under all tested conditions for all explored parameters. However, neonatal ventilators tended to perform better in the presence of leaks

  10. Evaluation of local exhaust ventilation system performance for control of Fe2O3 dust at an iron making unit

    Directory of Open Access Journals (Sweden)

    Mahdi Jamshidi Rastani

    2016-06-01

    Full Text Available Introduction: Adherence to the design values and ventilation standards (VS after installing and also maintaining continuous work of ventilation system with maximum performance throughout its life are amongst the reasons of ventilation systems monitoring. Therefore, the aim of this study was to evaluate performance of local exhaust ventilation system for control of dust by measuring the operating parameters and also to compare it with ventilation standards (VS and design values. Material and Method: The present research is a descriptive and cross-sectional study, conducted in three sections of measuring, monitoring and evaluating the operating parameters on hoods, channels and fan of ventilation system based on the current status of the system, documentation (design, and recommended standards (VS. Static pressure, velocity pressure, surface area, and flow rate were measured based on the recommendations of various sources and ACGIH industrial ventilation manual, and the data were compared with the design and recommended values, using the SPSS software version 16.   Result: The results of paired sample t-test between flow rate and velocities of design and current status, showed significant differences in various parts. Accordingly, the results revealed a reduction of more than 50% in the design duct velocity compared to the current duct velocity, while design duct velocity is 1.3 more than the standard duct velocity of current status, and current duct velocity is about 65% of standard duct velocity. Conclusion: The reduction and nonconformity of the results of measurements of operating parameters (after a minimum of two decades with design and standard values are corroborant and sufficient reason for obstructions, abrasions, leaks, imbalance of system ducts and their inefficiency in some branches. Since there is no base line measurements for system (supposing that the system worked with maximum amounts of setup time, one of the reasons for these

  11. A comparison of leak compensation in acute care ventilators during noninvasive and invasive ventilation: a lung model study.

    Science.gov (United States)

    Oto, Jun; Chenelle, Christopher T; Marchese, Andrew D; Kacmarek, Robert M

    2013-12-01

    Although leak compensation has been widely introduced to acute care ventilators to improve patient-ventilator synchronization in the presence of system leaks, there are no data on these ventilators' ability to prevent triggering and cycling asynchrony. The goal of this study was to evaluate the ability of leak compensation in acute care ventilators during invasive and noninvasive ventilation (NIV). Using a lung simulator, the impact of system leaks was compared on 7 ICU ventilators and 1 dedicated NIV ventilator during triggering and cycling at 2 respiratory mechanics (COPD and ARDS models) settings, various modes of ventilation (NIV mode [pressure support ventilation], and invasive mode [pressure support and continuous mandatory ventilation]), and 2 PEEP levels (5 and 10 cm H(2)O). Leak levels used were up to 35-36 L/min in NIV mode and 26-27 L/min in invasive mode. Although all of the ventilators were able to synchronize with the simulator at baseline, only 4 of the 8 ventilators synchronized to all leaks in NIV mode, and 2 of the 8 ventilators in invasive mode. The number of breaths to synchronization was higher during increasing than during decreasing leak. In the COPD model, miss-triggering occurred more frequently and required a longer time to stabilize tidal volume than in the ARDS model. The PB840 required fewer breaths to synchronize in both invasive and noninvasive modes, compared with the other ventilators (P ventilators. The PB840 and the V60 were the only ventilators to acclimate to all leaks, but there were differences in performance between these 2 ventilators. It is not clear if these differences have clinical importance.

  12. Energy efficient ventilation based on demand humidity control. Demonstration project with 49 apartments in Soenderborg

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The aim of the project is to demonstrate how the overall energy consumption in apartment buildings can be reduced through a combination of: 1) Energy efficient ventilation based on demand humidity control; 2) Energy efficient design of the building shell including passive solar and seasonally flexible sunspaces; 3) Use of low temperature heating system. The 3 blocks in the project, each with 16 apartments, are furnished with 3 different ventilation systems: 1) Standard exhaust system according to building codes; 2) Ventilation system with humidity control. Each room is furnished with an air inlet valve controlled by a processor, which monitors the humidity; 3) Standard ventilation system with heat recovery. (au)

  13. [Lung protective ventilation - pathophysiology and diagnostics].

    Science.gov (United States)

    Uhlig, Stefan; Frerichs, Inéz

    2008-06-01

    Mechanical ventilation may lead to lung injury depending on the ventilatory settings (e.g. pressure amplitudes, endexpiratory pressures, frequency) and the length of mechanical ventilation. Particularly in the inhomogeneously injured lungs of ARDS patients, alveolar overextension results in volutrauma, cyclic opening and closure of alveolar units in atelectrauma. Particularly important appears to be the fact that these processes may also cause biotrauma, i.e. the ventilator-induced hyperactivation of inflammatory responses in the lung. These side effects are reduced, but not eliminated with the currently recommended ventilation strategy with a tidal volume of 6 ml/kg idealized body weight. It is our hope that in the future optimization of ventilator settings will be facilated by bedside monitoring of novel indices of respiratory mechanics such as the stress index or the Slice technique, and by innovative real-time imaging technologies such as electrical impedance tomography.

  14. A NEW EXHAUST VENTILATION SYSTEM DESIGN SOFTWARE

    Directory of Open Access Journals (Sweden)

    H. Asilian Mahabady

    2007-09-01

    Full Text Available A Microsoft Windows based ventilation software package is developed to reduce time-consuming and boring procedure of exhaust ventilation system design. This program Assure accurate and reliable air pollution control related calculations. Herein, package is tentatively named Exhaust Ventilation Design Software which is developed in VB6 programming environment. Most important features of Exhaust Ventilation Design Software that are ignored in formerly developed packages are Collector design and fan dimension data calculations. Automatic system balance is another feature of this package. Exhaust Ventilation Design Software algorithm for design is based on two methods: Balance by design (Static pressure balance and design by Blast gate. The most important section of software is a spreadsheet that is designed based on American Conference of Governmental Industrial Hygienists calculation sheets. Exhaust Ventilation Design Software is developed so that engineers familiar with American Conference of Governmental Industrial Hygienists datasheet can easily employ it for ventilation systems design. Other sections include Collector design section (settling chamber, cyclone, and packed tower, fan geometry and dimension data section, a unit converter section (that helps engineers to deal with units, a hood design section and a Persian HTML help. Psychometric correction is also considered in Exhaust Ventilation Design Software. In Exhaust Ventilation Design Software design process, efforts are focused on improving GUI (graphical user interface and use of programming standards in software design. Reliability of software has been evaluated and results show acceptable accuracy.

  15. Performance of the New Turbine Mid-Level Critical Care Ventilators.

    Science.gov (United States)

    Delgado, Carlos; Romero, Jose E; Puig, Jaume; Izquierdo, Ana; Ferrando, Carlos; Belda, F Javier; Soro, Marina

    2017-01-01

    During recent years, ventilators using turbines as flow-generating systems have become increasingly more relevant. This bench study was designed to compare triggering and pressurization of 7 turbine mid-level ICU ventilators. We used a dual-chamber lung model to test 7 mid-level ICU ventilators in pressure support mode with levels of 10, 15, and 20 cm H 2 O with 2 PEEP levels of 5 cm H 2 O and the minimum level allowed by the ventilator. A ventilator was connected to the master chamber to simulate 2 different effort levels. Pressure drop, trigger delay time, time to minimum pressure, and pressure time products (PTP) during trigger and the first 300 and 500 ms were analyzed. In the trigger evaluation, the Savina had the highest delay time, whereas the C2, the V60, and the Trilogy had the lowest pressure drops and PTP values in both effort levels. In pressurization capacity assessment using ideal PTP300 and PTP500 percentages, the C2 and the V680 had the best results, and the Carina and the Savina had lower values, with no differences between both effort levels. Differences between PEEP levels did not seem to be relevant. Pressure support mode for tested ventilators worked properly, but pressurization capacity and trigger function performance were clearly superior in the newest machines. The use of PEEP did not modify the results. Copyright © 2017 by Daedalus Enterprises.

  16. Summary of human responses to ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Seppanen, Olli A.; Fisk, William J.

    2004-06-01

    The effects of ventilation on indoor air quality and health is a complex issue. It is known that ventilation is necessary to remove indoor generated pollutants from indoor air or dilute their concentration to acceptable levels. But, as the limit values of all pollutants are not known, the exact determination of required ventilation rates based on pollutant concentrations and associated risks is seldom possible. The selection of ventilation rates has to be based also on epidemiological research (e.g. Seppanen et al., 1999), laboratory and field experiments (e.g. CEN 1996, Wargocki et al., 2002a) and experience (e.g. ECA 2003). Ventilation may also have harmful effects on indoor air quality and climate if not properly designed, installed, maintained and operated as summarized by Seppdnen (2003). Ventilation may bring indoors harmful substances that deteriorate the indoor environment. Ventilation also affects air and moisture flow through the building envelope and may lead to moisture problems that deteriorate the structures of the building. Ventilation changes the pressure differences over the structures of building and may cause or prevent the infiltration of pollutants from structures or adjacent spaces. Ventilation is also in many cases used to control the thermal environment or humidity in buildings. Ventilation can be implemented with various methods which may also affect health (e.g. Seppdnen and Fisk, 2002, Wargocki et al., 2002a). In non residential buildings and hot climates, ventilation is often integrated with air-conditioning which makes the operation of ventilation system more complex. As ventilation is used for many purposes its health effects are also various and complex. This paper summarizes the current knowledge on positive and negative effects of ventilation on health and other human responses. The focus of the paper is on office-type working environment and residential buildings. In the industrial premises the problems of air quality are usually

  17. [Likeness between respiratory responses on CO2 in conditions of natural breathing and voluntary-controlled mechanical ventilation].

    Science.gov (United States)

    Pogodin, M A; Granstrem, M P; Dimitrienko, A I

    2007-04-01

    We did Read CO2 rebreathing tests in 8 adult males. Both at natural breathing, and at self-controlled mechanical ventilation, volunteers increased ventilation proportionally to growth end-tidal PCO2. Inside individual distinctions of responses to CO2 during controlled mechanical ventilation are result of the voluntary motor control.

  18. Automatic detection of AutoPEEP during controlled mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Nguyen Quang-Thang

    2012-06-01

    Full Text Available Abstract Background Dynamic hyperinflation, hereafter called AutoPEEP (auto-positive end expiratory pressure with some slight language abuse, is a frequent deleterious phenomenon in patients undergoing mechanical ventilation. Although not readily quantifiable, AutoPEEP can be recognized on the expiratory portion of the flow waveform. If expiratory flow does not return to zero before the next inspiration, AutoPEEP is present. This simple detection however requires the eye of an expert clinician at the patient’s bedside. An automatic detection of AutoPEEP should be helpful to optimize care. Methods In this paper, a platform for automatic detection of AutoPEEP based on the flow signal available on most of recent mechanical ventilators is introduced. The detection algorithms are developed on the basis of robust non-parametric hypothesis testings that require no prior information on the signal distribution. In particular, two detectors are proposed: one is based on SNT (Signal Norm Testing and the other is an extension of SNT in the sequential framework. The performance assessment was carried out on a respiratory system analog and ex-vivo on various retrospectively acquired patient curves. Results The experiment results have shown that the proposed algorithm provides relevant AutoPEEP detection on both simulated and real data. The analysis of clinical data has shown that the proposed detectors can be used to automatically detect AutoPEEP with an accuracy of 93% and a recall (sensitivity of 90%. Conclusions The proposed platform provides an automatic early detection of AutoPEEP. Such functionality can be integrated in the currently used mechanical ventilator for continuous monitoring of the patient-ventilator interface and, therefore, alleviate the clinician task.

  19. Effect of flashlight guidance on manual ventilation performance in cardiopulmonary resuscitation: A randomized controlled simulation study.

    Science.gov (United States)

    Kim, Ji Hoon; Beom, Jin Ho; You, Je Sung; Cho, Junho; Min, In Kyung; Chung, Hyun Soo

    2018-01-01

    Several auditory-based feedback devices have been developed to improve the quality of ventilation performance during cardiopulmonary resuscitation (CPR), but their effectiveness has not been proven in actual CPR situations. In the present study, we investigated the effectiveness of visual flashlight guidance in maintaining high-quality ventilation performance. We conducted a simulation-based, randomized, parallel trial including 121 senior medical students. All participants were randomized to perform ventilation during 2 minutes of CPR with or without flashlight guidance. For each participant, we measured mean ventilation rate as a primary outcome and ventilation volume, inspiration velocity, and ventilation interval as secondary outcomes using a computerized device system. Mean ventilation rate did not significantly differ between flashlight guidance and control groups (P = 0.159), but participants in the flashlight guidance group exhibited significantly less variation in ventilation rate than participants in the control group (Pguidance group. Our results demonstrate that flashlight guidance is effective in maintaining a constant ventilation rate and interval. If confirmed by further studies in clinical practice, flashlight guidance could be expected to improve the quality of ventilation performed during CPR.

  20. January 2015 Phoenix pulmonary journal club: noninvasive ventilation in acute respiratory failure

    Directory of Open Access Journals (Sweden)

    Mathew M

    2015-01-01

    Full Text Available No abstract available. Article truncated after 150 words. Noninvasive positive pressure ventilation has expanded its role in the treatment of both chronic and acute respiratory failure. Its initial use in conditions such as obstructive sleep apnea, neuromuscular disease and tracheobronchomalacia, have been shown to improve quality of life and reduce mortality. Over the past 20 years studies have looked at using noninvasive ventilation in the management of acute respiratory failure from pulmonary edema, asthma and COPD exacerbations. During this month's journal club we reviewed 3 articles evaluating the efficacy of noninvasive ventilation in acute respiratory failure. Gupta D, Nath A, Agarwal R, Behera D. A prospective randomized controlled trial on the efficacy of noninvasive ventilation in severe acute asthma. Respir Care. 2010;55(5:536-43. [PubMed] This was a small unblinded randomized controlled trial (RCT looking at the efficacy using noninvasive ventilation (NIV in acute asthma. A total of 53 patients were included and divided into 2 groups of 28 patients ...

  1. Lung recruitment during mechanical positive pressure ventilation in the PICU: what can be learned from the literature?

    NARCIS (Netherlands)

    Halbertsma, F.J.; Hoeven, J.G. van der

    2005-01-01

    A literature review was conducted to assess the evidence for recruitment manoeuvres used in conventional mechanical positive pressure ventilation. A total of 61 studies on recruitment manoeuvres were identified: 13 experimental, 31 ICU, 6 PICU and 12 anaesthesia studies. Recruitment appears to be a

  2. Control Strategies for Ventilative Cooling of Overheated Houses

    DEFF Research Database (Denmark)

    Psomas, Theofanis Ch.; Heiselberg, Per Kvols; Duer, Karsten

    2016-01-01

    -family house from the 1970s. The case study is renovated deeply and high- efficient (nZEB) creating two different scenarios. Mechanical ventilation system and manual control of the openings for both renovation scenarios cannot sufficiently eliminate the overheating risk indoors. The discharge coefficient...

  3. Numerical simulation of volume-controlled mechanical ventilated respiratory system with 2 different lungs.

    Science.gov (United States)

    Shi, Yan; Zhang, Bolun; Cai, Maolin; Zhang, Xiaohua Douglas

    2017-09-01

    Mechanical ventilation is a key therapy for patients who cannot breathe adequately by themselves, and dynamics of mechanical ventilation system is of great significance for life support of patients. Recently, models of mechanical ventilated respiratory system with 1 lung are used to simulate the respiratory system of patients. However, humans have 2 lungs. When the respiratory characteristics of 2 lungs are different, a single-lung model cannot reflect real respiratory system. In this paper, to illustrate dynamic characteristics of mechanical ventilated respiratory system with 2 different lungs, we propose a mathematical model of mechanical ventilated respiratory system with 2 different lungs and conduct experiments to verify the model. Furthermore, we study the dynamics of mechanical ventilated respiratory system with 2 different lungs. This research study can be used for improving the efficiency and safety of volume-controlled mechanical ventilation system. Copyright © 2016 John Wiley & Sons, Ltd.

  4. The effect of entrainment site and inspiratory pressure on the delivery of oxygen therapy during non-invasive mechanical ventilation (NIMV in acute COPD patients

    Directory of Open Access Journals (Sweden)

    Sundeep Kaul

    2006-12-01

    Full Text Available Supplemental O2 is frequently added to bi-level non-invasive ventilation circuits to maintain Sa,O2 >90%. Oxygen can be added at several points & in the presence of different inspiratory pressures. The effect of varying entrainment sites and inspiratory pressures (IPAP on PO2, PCO2, Fio2, inspiratory triggering and expiratory triggering in COPD patients is unknown. 18 patients with stable COPD (mean FEV1 47% participated in the study. Oxygen was added at 4 sites in the ventilatory circuit (site 1: between mask and exhalation port; site 2: just distal to exhalation port; site 3: at ventilator outlet; site 4: directly into the mask via an inlet. The effect of varying entrainment sites and inspiratory pressures on arterial PO2, PCO2, FIO2, was recorded at 3 mins. The same full face mask (Respironics, Image 3 & ventilator (Respironics, BIPAP ST 30 was used.

  5. VENTILATION NEEDS DURING CONSTRUCTION

    International Nuclear Information System (INIS)

    C.R. Gorrell

    1998-01-01

    The purpose of this analysis is to determine ventilation needs during construction and development of the subsurface repository and develop systems to satisfy those needs. For this analysis, construction is defined as pre-emplacement excavation and development is excavation that takes place simultaneously with emplacement. The three options presented in the ''Overall Development and Emplacement Ventilation Systems'' analysis (Reference 5.5) for development ventilation will be applied to construction ventilation in this analysis as well as adding new and updated ventilation factors to each option for both construction and development. The objective of this analysis is to develop a preferred ventilation system to support License Application Design. The scope of this analysis includes: (1) Description of ventilation conditions; (2) Ventilation factors (fire hazards, dust control, construction logistics, and monitoring and control systems); (3) Local ventilation alternatives; (4) Global ventilation options; and (5) Evaluation of options

  6. Positional effects on distribution of ventilation in chronic obstructive pulmonary disease

    International Nuclear Information System (INIS)

    Shim, C.; Chun, K.J.; Williams, M.H. Jr.; Blaufox, M.D.

    1986-01-01

    Ventilation is distributed predominantly to the dependent lung in normal persons in the decubitus position. We evaluated the distribution of ventilation in four patients with mild-to-moderate chronic obstructive pulmonary disease using 81mKr gas. Patients were tested in the sitting and right and left decubitus positions with and without the application of positive end expiratory pressure (PEEP). In contrast to findings in controls, ventilation was predominantly distributed to the nondependent lung in patients in the decubitus position. Mean ventilation in the right lung decreased from 51% of the total in the sitting position to 31% in the right decubitus position; it increased with the application of 10 cm PEEP. Reduced ventilation in the dependent lung most likely is caused by closure of the airways after a decrease in volume. Application of PEEP resulted in increased lung volume and preferential distribution of ventilation to the dependent lung

  7. Energy efficient demand controlled ventilation in single family houses

    DEFF Research Database (Denmark)

    Nielsen, Toke Rammer; Drivsholm, Christian

    2010-01-01

    This paper presents a strategy for a simple demand controlled ventilation system for single family houses where all sensors and controls are located in the air handling unit. The strategy is based on sensing CO2-concentration and moisture content in the outdoor air and exhaust air. The CO2...

  8. Control of Airborne Infectious Diseases in Ventilated Spaces

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    2009-01-01

    We protect ourselves from airborne cross-infection in the indoor environment by supplying fresh air to a room by natural or mechanical ventilation. The air is distributed in the room according to different principles: mixing ventilation, displacement ventilation, etc. A large amount of air...... to have high ventilation effectiveness. Furthermore, personalized ventilation may reduce the risk of cross-infection, and in some cases, it can also reduce the source of infection. Personalized ventilation can especially be used in hospital wards, aircraft cabins and, in general, where people are in fixed...

  9. Optimal design and control of buoyancy-driven ventilation

    DEFF Research Database (Denmark)

    Terpager Andersen, Karl

    2016-01-01

    Relationships between airflow rates and opening areas of importance for design and control are analysed for buoyancy-driven ventilation in a room with two openings and uniform temperature. The optimal ratio between the inlet and outlet areas is found. The consequences of deviations from the optimum...

  10. Assessing ventilation system performance in isolation rooms

    Energy Technology Data Exchange (ETDEWEB)

    Balocco, Carla [Department of Energy Engineering ' ' Sergio Stecco' ' , via S. Marta 3, Firenze (Italy); Lio, Pietro [Computer Laboratory, University of Cambridge, 15 JJ Thompson Avenue, CB03FD Cambridge (United Kingdom)

    2011-01-15

    In this paper numerical transient simulations were used to investigate the air flow patterns, distribution and velocity, and the particulate dispersion inside an existing typical hospitalization room equipped with an advanced Heating Ventilation Air Conditioning (HVAC), with Variable Air Volume (VAV) primary air system designed for immune-suppressed patients never modelled before. The three-dimensional models of the room consider different, most typical, positions of the patients. Results indicate the best conditions for the high induction air inlet diffuser and the scheme of pressures imposed in the room to provide the effective means of controlling flows containing virus droplets. We believe that our work exemplifies the usefulness of numerical investigations of HVAC performances in real situations and provides important recommendations towards disease control and careful design and optimization of ventilation in hospital settings. (author)

  11. High-frequency percussive ventilation attenuates lung injury in a rabbit model of gastric juice aspiration.

    Science.gov (United States)

    Allardet-Servent, Jérôme; Bregeon, Fabienne; Delpierre, Stéphane; Steinberg, Jean-Guillaume; Payan, Marie-José; Ravailhe, Sylvie; Papazian, Laurent

    2008-01-01

    To test the effects of high-frequency percussive ventilation (HFPV) compared with high-frequency oscillatory ventilation (HFOV) and low-volume conventional mechanical ventilation (LVCMV), on lung injury course in a gastric juice aspiration model. Prospective, randomized, controlled, in-vivo animal study. University animal research laboratory. Forty-three New Zealand rabbits. Lung injury was induced by intratracheal instillation of human gastric juice in order to achieve profound hypoxaemia (PaO2/FIO2ventilated for 4h after randomization in one of the following four groups: HFPV (median pressure 15cmH2O); LVCMV (VT 6mlkg(-1) and PEEP set to reach 15cmH2O plateau pressure); HFOV (mean pressure 15cmH2O); and a high-volume control group HVCMV (VT 12ml kg(-1) and ZEEP). Static respiratory compliance increased after the ventilation period in the HFPV, LVMCV and HFOV groups, in contrast with the HVCMV group. PaO2/FIO2 improved similarly in the HFPV, LVCMV and HFOV groups, and remained lower in the HVCMV group than in the three others. Lung oedema, myeloperoxidase and histological lung injury score were higher in the HVCMV group, but not different among all others. Arterial lactate markedly increased after 4h of ventilation in the HVCMV group, while lower but similar levels were observed in the three other groups. HFPV, like HFOV and protective CMV, improves respiratory mechanics and oxygenation, and attenuates lung damage. The HFPV provides attractive lung protection, but further studies should confirm these results before introducing HFPV into the clinical arena.

  12. A dynamic ventilation model for gravity sewer networks.

    Science.gov (United States)

    Wang, Y C; Nobi, N; Nguyen, T; Vorreiter, L

    2012-01-01

    To implement any effective odour and corrosion control technology in the sewer network, it is imperative that the airflow through gravity sewer airspaces be quantified. This paper presents a full dynamic airflow model for gravity sewer systems. The model, which is developed using the finite element method, is a compressible air transport model. The model has been applied to the North Head Sewerage Ocean Outfall System (NSOOS) and calibrated using the air pressure and airflow data collected during October 2008. Although the calibration is focused on forced ventilation, the model can be applied to natural ventilation as well.

  13. Performance of ventilators compatible with magnetic resonance imaging: a bench study.

    Science.gov (United States)

    Chikata, Yusuke; Okuda, Nao; Izawa, Masayo; Onodera, Mutsuo; Nishimura, Masaji

    2015-03-01

    Magnetic resonance imaging (MRI) is indispensable for diagnosing brain and spinal cord abnormalities. Magnetic components cannot be used during MRI procedures; therefore, patient support equipment must use MRI-compatible materials. However, little is known of the performance of MRI-compatible ventilators. At commonly used settings, we tested the delivered tidal volume (V(T)), F(IO2), PEEP, and operation of the high-inspiratory-pressure-relief valves of 4 portable MRI-compatible ventilators (Pneupac VR1, ParaPAC 200DMRI, CAREvent MRI, iVent201) and one ICU ventilator (Servo-i). Each ventilator was set in volume control/continuous mandatory ventilation mode. Breathing frequency and V(T) were tested at 10 breaths/min and 300, 500, and 700 mL, respectively. The Pneupac VR1 has fixed V(T) and frequency combinations, so it was tested at V(T) = 300 mL and 20 breaths/min, V(T) = 500 mL and 12 breaths/min, and V(T) = 800 mL and 10 breaths/min. F(IO2) was 0.6 and 1.0. At the air-mix setting, F(IO2) was fixed at 0.5 with the Pneupac VR1, 0.45 with the ParaPAC 200DMRI, and 0.6 with the CAREvent MRI. PEEP was set at 5 and 10 cm H2O, and pressure relief was set at 30 and 40 cm H2O. V(T) error varied widely among ventilators (-28.1 to 25.5%). As V(T) increased, error decreased with the Pneupac VR1, ParaPAC 200DMRI, and CAREvent MRI (P ventilators (-29.2 to 42.5%). Only the Servo-i maintained V(T), F(IO2), and PEEP at set levels. The pressure-relief valves worked in all ventilators. None of the MRI-compatible ventilators maintained V(T), F(IO2), and PEEP at set levels. Vital signs of patients with unstable respiratory mechanics should be monitored during transport and MRI. Copyright © 2015 by Daedalus Enterprises.

  14. Oxygenation with T-piece versus self-inflating bag for ventilation of extremely preterm infants at birth: a randomized controlled trial.

    LENUS (Irish Health Repository)

    Dawson, Jennifer A

    2011-06-01

    To investigate whether infants < 29 weeks gestation who receive positive pressure ventilation (PPV) immediately after birth with a T-piece have higher oxygen saturation (SpO₂) measurements at 5 minutes than infants ventilated with a self inflating bag (SIB).

  15. Development of Smart Ventilation Control Algorithms for Humidity Control in High-Performance Homes in Humid U.S. Climates

    Energy Technology Data Exchange (ETDEWEB)

    Less, Brennan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ticci, Sara [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-04-11

    Past field research and simulation studies have shown that high performance homes experience elevated indoor humidity levels for substantial portions of the year in humid climates. This is largely the result of lower sensible cooling loads, which reduces the moisture removed by the cooling system. These elevated humidity levels lead to concerns about occupant comfort, health and building durability. Use of mechanical ventilation at rates specified in ASHRAE Standard 62.2-2013 are often cited as an additional contributor to humidity problems in these homes. Past research has explored solutions, including supplemental dehumidification, cooling system operational enhancements and ventilation system design (e.g., ERV, supply, exhaust, etc.). This project’s goal is to develop and demonstrate (through simulations) smart ventilation strategies that can contribute to humidity control in high performance homes. These strategies must maintain IAQ via equivalence with ASHRAE Standard 62.2-2013. To be acceptable they must not result in excessive energy use. Smart controls will be compared with dehumidifier energy and moisture performance. This work explores the development and performance of smart algorithms for control of mechanical ventilation systems, with the objective of reducing high humidity in modern high performance residences. Simulations of DOE Zero-Energy Ready homes were performed using the REGCAP simulation tool. Control strategies were developed and tested using the Residential Integrated Ventilation (RIVEC) controller, which tracks pollutant exposure in real-time and controls ventilation to provide an equivalent exposure on an annual basis to homes meeting ASHRAE 62.2-2013. RIVEC is used to increase or decrease the real-time ventilation rate to reduce moisture transport into the home or increase moisture removal. This approach was implemented for no-, one- and two-sensor strategies, paired with a variety of control approaches in six humid climates (Miami

  16. Weaning newborn infants from mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Paolo Biban

    2013-06-01

    Full Text Available Invasive mechanical ventilation is a life-saving procedure which is largely used in neonatal intensive care units, particularly in very premature newborn infants. However, this essential treatment may increase mortality and cause substantial morbidity, including lung or airway injuries, unplanned extubations, adverse hemodynamic effects, analgosedative dependency and severe infectious complications, such as ventilator-associated pneumonia. Therefore, limiting the duration of airway intubation and mechanical ventilator support is crucial for the neonatologist, who should aim to a shorter process of discontinuing mechanical ventilation as well as an earlier appreciation of readiness for spontaneous breathing trials. Unfortunately, there is scarce information about the best ways to perform an effective weaning process in infants undergoing mechanical ventilation, thus in most cases the weaning course is still based upon the individual judgment of the attending clinician. Nonetheless, some evidence indicate that volume targeted ventilation modes are more effective in reducing the duration of mechanical ventilation than traditional pressure limited ventilation modes, particularly in very preterm babies. Weaning and extubation directly from high frequency ventilation could be another option, even though its effectiveness, when compared to switching and subsequent weaning and extubating from conventional ventilation, is yet to be adequately investigated. Some data suggest the use of weaning protocols could reduce the weaning time and duration of mechanical ventilation, but better designed prospective studies are still needed to confirm these preliminary observations. Finally, the implementation of short spontaneous breathing tests in preterm infants has been shown to be beneficial in some centres, favoring an earlier extubation at higher ventilatory settings compared with historical controls, without worsening the extubation failure rate. Further

  17. Mechanical ventilation with lower tidal volumes and positive end-expiratory pressure prevents pulmonary inflammation in patients without preexisting lung injury.

    Science.gov (United States)

    Wolthuis, Esther K; Choi, Goda; Dessing, Mark C; Bresser, Paul; Lutter, Rene; Dzoljic, Misa; van der Poll, Tom; Vroom, Margreeth B; Hollmann, Markus; Schultz, Marcus J

    2008-01-01

    Mechanical ventilation with high tidal volumes aggravates lung injury in patients with acute lung injury or acute respiratory distress syndrome. The authors sought to determine the effects of short-term mechanical ventilation on local inflammatory responses in patients without preexisting lung injury. Patients scheduled to undergo an elective surgical procedure (lasting > or = 5 h) were randomly assigned to mechanical ventilation with either higher tidal volumes of 12 ml/kg ideal body weight and no positive end-expiratory pressure (PEEP) or lower tidal volumes of 6 ml/kg and 10 cm H2O PEEP. After induction of anesthesia and 5 h thereafter, bronchoalveolar lavage fluid and/or blood was investigated for polymorphonuclear cell influx, changes in levels of inflammatory markers, and nucleosomes. Mechanical ventilation with lower tidal volumes and PEEP (n = 21) attenuated the increase of pulmonary levels of interleukin (IL)-8, myeloperoxidase, and elastase as seen with higher tidal volumes and no PEEP (n = 19). Only for myeloperoxidase, a difference was found between the two ventilation strategies after 5 h of mechanical ventilation (P volumes and PEEP may limit pulmonary inflammation in mechanically ventilated patients without preexisting lung injury. The specific contribution of both lower tidal volumes and PEEP on the protective effects of the lung should be further investigated.

  18. Respiratory mechanics in infants with severe bronchiolitis on controlled mechanical ventilation.

    Science.gov (United States)

    Cruces, Pablo; González-Dambrauskas, Sebastián; Quilodrán, Julio; Valenzuela, Jorge; Martínez, Javier; Rivero, Natalia; Arias, Pablo; Díaz, Franco

    2017-10-06

    Analysis of respiratory mechanics during mechanical ventilation (MV) is able to estimate resistive, elastic and inertial components of the working pressure of the respiratory system. Our aim was to discriminate the components of the working pressure of the respiratory system in infants on MV with severe bronchiolitis admitted to two PICU's. Infants younger than 1 year old with acute respiratory failure caused by severe bronchiolitis underwent neuromuscular blockade, tracheal intubation and volume controlled MV. Shortly after intubation studies of pulmonary mechanics were performed using inspiratory and expiratory breath hold. The maximum inspiratory and expiratory flow (QI and QE) as well as peak inspiratory (PIP), plateau (PPL) and total expiratory pressures (tPEEP) were measured. Inspiratory and expiratory resistances (RawI and RawE) and Time Constants (K TI and K TE ) were calculated. We included 16 patients, of median age 2.5 (1-5.8) months. Bronchiolitis due to respiratory syncytial virus was the main etiology (93.8%) and 31.3% had comorbidities. Measured respiratory pressures were PIP 29 (26-31), PPL 24 (20-26), tPEEP 9 [8-11] cmH2O. Elastic component of the working pressure was significantly higher than resistive and both higher than threshold (tPEEP - PEEP) (P mechanics of infants with severe bronchiolitis receiving MV shows that the elastic component of the working pressure of the respiratory system is the most important. The elastic and resistive components in conjunction with flow profile are characteristic of restrictive diseases. A better understanding of lung mechanics in this group of patients may lead to change the traditional ventilatory approach to severe bronchiolitis.

  19. A case-control study on the clinical impact of ventilator associated tracheobronchitis in adult patients who did not develop ventilator associated pneumonia.

    Science.gov (United States)

    Cantón-Bulnes, María Luisa; González-García, María Ascensión; García-Sánchez, Manuela; Arenzana-Seisdedos, Ángel; Garnacho-Montero, José

    2018-02-05

    The main objective was to determine whether ventilator-associated tracheobronchitis (VAT) is related to increased length of ICU stay. Secondary endpoints included prolongation of hospital stay, as well as, ICU and hospital mortality. A retrospective matched case-control study. Each case was matched with a control for duration of ventilation (± 2 days until development of ventilator-associated tracheobronchitis), disease severity (Acute Physiology and Chronic Health Evaluation II) at admission ± 3, diagnostic category and age ±10 years. Critically ill adults admitted to a polyvalent 30-beds ICU with the diagnosis of VAT in the period 2013-2016. We identified 76 cases of VAT admitted to our ICU during the study period. No adequate controls were found for 3 patients with VAT. There were no significant differences in demographic characteristics, reasons for admission and comorbidities. Patients with VAT had a longer ICU length of stay, median 22 days (14-35), compared to controls, median 15 days (8-27), p=.02. Ventilator days were also significantly increased in VAT patients, median 18 (9-28) versus 9 days (5-16), p=.03. There was no significant difference in total hospital length of stay 40 (28-61) vs. 35days (23-54), p=.32; ICU mortality (20.5 vs. 31.5% p=.13) and hospital mortality (30.1 vs. 43.8% p=.09). We performed a subanalysis of patients with microbiologically proven VAT receiving adequate antimicrobial treatment and did not observe significant differences between cases and the corresponding controls. VAT is associated with increased length of intensive care unit stay and longer duration of mechanical ventilation. This effect disappears when patients receive appropriate empirical treatment. Copyright © 2018 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  20. Heliox allows for lower minute volume ventilation in an animal model of ventilator-induced lung injury

    NARCIS (Netherlands)

    Beurskens, Charlotte J.; Aslami, Hamid; de Beer, Friso M.; Vroom, Margreeth B.; Preckel, Benedikt; Horn, Janneke; Juffermans, Nicole P.

    2013-01-01

    Helium is a noble gas with a low density, allowing for lower driving pressures and increased carbon dioxide (CO2) diffusion. Since application of protective ventilation can be limited by the development of hypoxemia or acidosis, we hypothesized that therefore heliox facilitates ventilation in an

  1. Positive pressure ventilation in a patient with a right upper lobar bronchocutaneous fistula: right upper bronchus occlusion using the cuff of a left-sided double lumen endobronchial tube.

    Science.gov (United States)

    Omori, Chieko; Toyama, Hiroaki; Takei, Yusuke; Ejima, Yutaka; Yamauchi, Masanori

    2017-08-01

    In patients with a bronchocutaneous fistula, positive pressure ventilation leads to air leakage and potential hypoxemia. A male patient with a right upper bronchocutaneous fistula was scheduled for esophageal reconstruction. His preoperative chest computed tomography image revealed aeration in the right middle and lower lobe, a large bulla in the left upper lobe, and pleural effusion and pneumonia in the left lower lobe. Therefore, left one-lung ventilation was considered to result in hypoxemia. Before anesthesia induction, the bronchocutaneous fistula was covered with gauze and film to prevent air leakage. After anesthesia induction, mask ventilation was performed with a peak positive pressure of 10 cmH 2 O. A left-sided double lumen endobronchial tube (DLT) was then inserted into the right main bronchus for occluding only the right superior bronchus, and two-lung ventilation was performed to minimize airway pressure and maintain oxygenation, which did not cause air leakage through the fistula. During anesthesia, no ventilation-related difficulty was faced. The method of inserting a left-sided DLT into the right main bronchus and occluding the right upper bronchus selectively by bronchial cuff is considered to be an option for mechanical ventilation in patients with a right upper bronchial fistula, as demonstrated in the present case.

  2. Mechanical ventilators in the hot zone: effects of a CBRN filter on patient protection and battery life.

    Science.gov (United States)

    Blakeman, Thomas C; Toth, Peter; Rodriquez, Dario; Branson, Richard D

    2010-09-01

    In a contaminated environment, respiratory protection for ventilator dependent patients can be achieved by attaching a chemical, biological, radiological, or nuclear (CBRN) filter to the air intake port of a portable ventilator. We evaluated the effect of the filter on battery performance of four portable ventilators in a laboratory setting. Each ventilator was attached to a test lung. Ventilator settings were: assist control (AC) mode, respiratory rate 35 bpm, tidal volume 450 ml, positive end-expiratory pressure (PEEP) 10 cm H(2)O, inspiratory time 0.8 s, and FIO(2) 0.21. Ventilators were operated until the battery was fully discharged. We also evaluated the ventilators' ability to deliver all the gas through the CBRN filter and analyzed the pressures required to breathe through the anti-asphyxiation valve of a failed device. The range of battery life varied widely across different ventilator models (99.8-562.6 min). There was no significant difference in battery life (pventilator dependent patients when environmental contamination is present, although conditions exist where all gas does not pass through the filter with some ventilators under normal operating conditions. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Can mechanical ventilation strategies reduce chronic lung disease?

    Science.gov (United States)

    Donn, Steven M; Sinha, Sunil K

    2003-12-01

    Chronic lung disease (CLD) continues to be a significant complication in newborn infants undergoing mechanical ventilation for respiratory failure. Although the aetiology of CLD is multifactorial, specific factors related to mechanical ventilation, including barotrauma, volutrauma and atelectrauma, have been implicated as important aetiologic mechanisms. This article discusses the ways in which these factors might be manipulated by various mechanical ventilatory strategies to reduce ventilator-induced lung injury. These include continuous positive airway pressure, permissive hypercapnia, patient-triggered ventilation, volume-targeted ventilation, proportional assist ventilation, high-frequency ventilation and real-time monitoring.

  4. The role of high airway pressure and dynamic strain on ventilator-induced lung injury in a heterogeneous acute lung injury model.

    Science.gov (United States)

    Jain, Sumeet V; Kollisch-Singule, Michaela; Satalin, Joshua; Searles, Quinn; Dombert, Luke; Abdel-Razek, Osama; Yepuri, Natesh; Leonard, Antony; Gruessner, Angelika; Andrews, Penny; Fazal, Fabeha; Meng, Qinghe; Wang, Guirong; Gatto, Louis A; Habashi, Nader M; Nieman, Gary F

    2017-12-01

    Acute respiratory distress syndrome causes a heterogeneous lung injury with normal and acutely injured lung tissue in the same lung. Improperly adjusted mechanical ventilation can exacerbate ARDS causing a secondary ventilator-induced lung injury (VILI). We hypothesized that a peak airway pressure of 40 cmH 2 O (static strain) alone would not cause additional injury in either the normal or acutely injured lung tissue unless combined with high tidal volume (dynamic strain). Pigs were anesthetized, and heterogeneous acute lung injury (ALI) was created by Tween instillation via a bronchoscope to both diaphragmatic lung lobes. Tissue in all other lobes was normal. Airway pressure release ventilation was used to precisely regulate time and pressure at both inspiration and expiration. Animals were separated into two groups: (1) over-distension + high dynamic strain (OD + H DS , n = 6) and (2) over-distension + low dynamic strain (OD + L DS , n = 6). OD was caused by setting the inspiratory pressure at 40 cmH 2 O and dynamic strain was modified by changing the expiratory duration, which varied the tidal volume. Animals were ventilated for 6 h recording hemodynamics, lung function, and inflammatory mediators followed by an extensive necropsy. In normal tissue (N T ), OD + L DS caused minimal histologic damage and a significant reduction in BALF total protein (p < 0.05) and MMP-9 activity (p < 0.05), as compared with OD + H DS . In acutely injured tissue (ALI T ), OD + L DS resulted in reduced histologic injury and pulmonary edema (p < 0.05), as compared with OD + H DS . Both N T and ALI T are resistant to VILI caused by OD alone, but when combined with a H DS , significant tissue injury develops.

  5. Experimental analysis of fuzzy controlled energy efficient demand controlled ventilation economizer cycle variable air volume air conditioning system

    Directory of Open Access Journals (Sweden)

    Rajagopalan Parameshwaran

    2008-01-01

    Full Text Available In the quest for energy conservative building design, there is now a great opportunity for a flexible and sophisticated air conditioning system capable of addressing better thermal comfort, indoor air quality, and energy efficiency, that are strongly desired. The variable refrigerant volume air conditioning system provides considerable energy savings, cost effectiveness and reduced space requirements. Applications of intelligent control like fuzzy logic controller, especially adapted to variable air volume air conditioning systems, have drawn more interest in recent years than classical control systems. An experimental analysis was performed to investigate the inherent operational characteristics of the combined variable refrigerant volume and variable air volume air conditioning systems under fixed ventilation, demand controlled ventilation, and combined demand controlled ventilation and economizer cycle techniques for two seasonal conditions. The test results of the variable refrigerant volume and variable air volume air conditioning system for each techniques are presented. The test results infer that the system controlled by fuzzy logic methodology and operated under the CO2 based mechanical ventilation scheme, effectively yields 37% and 56% per day of average energy-saving in summer and winter conditions, respectively. Based on the experimental results, the fuzzy based combined system can be considered to be an alternative energy efficient air conditioning scheme, having significant energy-saving potential compared to the conventional constant air volume air conditioning system.

  6. Mild hypothermia attenuates changes in respiratory system mechanics and modifies cytokine concentration in bronchoalveolar lavage fluid during low lung volume ventilation.

    Science.gov (United States)

    Dostál, P; Senkeřík, M; Pařízková, R; Bareš, D; Zivný, P; Zivná, H; Cerný, V

    2010-01-01

    Hypothermia was shown to attenuate ventilator-induced lung injury due to large tidal volumes. It is unclear if the protective effect of hypothermia is maintained under less injurious mechanical ventilation in animals without previous lung injury. Tracheostomized rats were randomly allocated to non-ventilated group (group C) or ventilated groups of normothermia (group N) and mild hypothermia (group H). After two hours of mechanical ventilation with inspiratory fraction of oxygen 1.0, respiratory rate 60 min(-1), tidal volume 10 ml x kg(-1), positive end-expiratory pressure (PEEP) 2 cm H2O or immediately after tracheostomy in non-ventilated animals inspiratory pressures were recorded, rats were sacrificed, pressure-volume (PV) curve of respiratory system constructed, bronchoalveolar lavage (BAL) fluid and aortic blood samples obtained. Group N animals exhibited a higher rise in peak inspiratory pressures in comparison to group H animals. Shift of the PV curve to right, higher total protein and interleukin-6 levels in BAL fluid were observed in normothermia animals in comparison with hypothermia animals and non-ventilated controls. Tumor necrosis factor-alpha was lower in the hypothermia group in comparison with normothermia and non-ventilated groups. Mild hypothermia attenuated changes in respiratory system mechanics and modified cytokine concentration in bronchoalveolar lavage fluid during low lung volume ventilation in animals without previous lung injury.

  7. Constant depression fan system a novel glovebox ventilation system

    International Nuclear Information System (INIS)

    Milliner, W.V.

    1995-01-01

    In a conventional glovebox ventilation system the depression within the glovebox under normal operation is controlled by instrumentation. In the event of a breach the pressure within the box rises to atmospheric pressure, this pressure rise is detected by instrumentation which in turn operates a quick opening damper in a high depression extract to achieve a 1 metre/sec (200 fpm) inflow through the breach, which can take up to 2 seconds to establish. This system, although widely used, suffers from two distinct drawbacks: It takes a finite time to achieve the containment velocity of 1 metre/sec. It relies upon instrumentation to achieve its objectives. A new glovebox ventilation system has been developed by AWE to overcome these drawbacks. This is the Constant Depression Fan System (CDFS) which is based on an extract fan with a flat characteristic. This achieves all the requirements for the ventilation of gloveboxes and has the advantages that: It has only one moving part - the extract fan. It requires NO INSTRUMENTATION to achieve its objectives. It achieves the containment velocity of 1 metre/sec in the shortest possible time - approximately 0.2 seconds - and tests have shown that containment is maintained under breach conditions. Thus the CDFS is SAFER, SIMPLER and MORE RELIABLE

  8. Constant depression fan system a novel glovebox ventilation system

    Energy Technology Data Exchange (ETDEWEB)

    Milliner, W.V. [AME plc., Aldermaston (United Kingdom)

    1995-02-01

    In a conventional glovebox ventilation system the depression within the glovebox under normal operation is controlled by instrumentation. In the event of a breach the pressure within the box rises to atmospheric pressure, this pressure rise is detected by instrumentation which in turn operates a quick opening damper in a high depression extract to achieve a 1 metre/sec (200 fpm) inflow through the breach, which can take up to 2 seconds to establish. This system, although widely used, suffers from two distinct drawbacks: It takes a finite time to achieve the containment velocity of 1 metre/sec. It relies upon instrumentation to achieve its objectives. A new glovebox ventilation system has been developed by AWE to overcome these drawbacks. This is the Constant Depression Fan System (CDFS) which is based on an extract fan with a flat characteristic. This achieves all the requirements for the ventilation of gloveboxes and has the advantages that: It has only one moving part - the extract fan. It requires NO INSTRUMENTATION to achieve its objectives. It achieves the containment velocity of 1 metre/sec in the shortest possible time - approximately 0.2 seconds - and tests have shown that containment is maintained under breach conditions. Thus the CDFS is SAFER, SIMPLER and MORE RELIABLE.

  9. Update: Non-Invasive Positive Pressure Ventilation in Chronic Respiratory Failure Due to COPD.

    Science.gov (United States)

    Altintas, Nejat

    2016-01-01

    Long-term non-invasive positive pressure ventilation (NPPV) has widely been accepted to treat chronic hypercapnic respiratory failure arising from different etiologies. Although the survival benefits provided by long-term NPPV in individuals with restrictive thoracic disorders or stable, slowly-progressing neuromuscular disorders are overwhelming, the benefits provided by long-term NPPV in patients with chronic obstructive pulmonary disease (COPD) remain under question, due to a lack of convincing evidence in the literature. In addition, long-term NPPV reportedly failed in the classic trials to improve important physiological parameters such as arterial blood gases, which might serve as an explanation as to why long-term NPPV has not been shown to substantially impact on survival. However, high intensity NPPV (HI-NPPV) using controlled NPPV with the highest possible inspiratory pressures tolerated by the patient has recently been described as a new and promising approach that is well-tolerated and is also capable of improving important physiological parameters such as arterial blood gases and lung function. This clearly contrasts with the conventional approach of low-intensity NPPV (LI-NPPV) that uses considerably lower inspiratory pressures with assisted forms of NPPV. Importantly, HI-NPPV was very recently shown to be superior to LI-NPPV in terms of improved overnight blood gases, and was also better tolerated than LI-NPPV. Furthermore, HI-NPPV, but not LI-NPPV, improved dyspnea, lung function and disease-specific aspects of health-related quality of life. A recent study showed that long-term treatment with NPPV with increased ventilatory pressures that reduced hypercapnia was associated with significant and sustained improvements in overall mortality. Thus, long-term NPPV seems to offer important benefits in this patient group, but the treatment success might be dependent on effective ventilatory strategies.

  10. Individualised perioperative open-lung approach versus standard protective ventilation in abdominal surgery (iPROVE): a randomised controlled trial.

    Science.gov (United States)

    Ferrando, Carlos; Soro, Marina; Unzueta, Carmen; Suarez-Sipmann, Fernando; Canet, Jaume; Librero, Julián; Pozo, Natividad; Peiró, Salvador; Llombart, Alicia; León, Irene; India, Inmaculada; Aldecoa, Cesar; Díaz-Cambronero, Oscar; Pestaña, David; Redondo, Francisco J; Garutti, Ignacio; Balust, Jaume; García, Jose I; Ibáñez, Maite; Granell, Manuel; Rodríguez, Aurelio; Gallego, Lucía; de la Matta, Manuel; Gonzalez, Rafael; Brunelli, Andrea; García, Javier; Rovira, Lucas; Barrios, Francisco; Torres, Vicente; Hernández, Samuel; Gracia, Estefanía; Giné, Marta; García, María; García, Nuria; Miguel, Lisset; Sánchez, Sergio; Piñeiro, Patricia; Pujol, Roger; García-Del-Valle, Santiago; Valdivia, José; Hernández, María J; Padrón, Oto; Colás, Ana; Puig, Jaume; Azparren, Gonzalo; Tusman, Gerardo; Villar, Jesús; Belda, Javier

    2018-03-01

    The effects of individualised perioperative lung-protective ventilation (based on the open-lung approach [OLA]) on postoperative complications is unknown. We aimed to investigate the effects of intraoperative and postoperative ventilatory management in patients scheduled for abdominal surgery, compared with standard protective ventilation. We did this prospective, multicentre, randomised controlled trial in 21 teaching hospitals in Spain. We enrolled patients who were aged 18 years or older, were scheduled to have abdominal surgery with an expected time of longer than 2 h, had intermediate-to-high-risk of developing postoperative pulmonary complications, and who had a body-mass index less than 35 kg/m 2 . Patients were randomly assigned (1:1:1:1) online to receive one of four lung-protective ventilation strategies using low tidal volume plus positive end-expiratory pressure (PEEP): open-lung approach (OLA)-iCPAP (individualised intraoperative ventilation [individualised PEEP after a lung recruitment manoeuvre] plus individualised postoperative continuous positive airway pressure [CPAP]), OLA-CPAP (intraoperative individualised ventilation plus postoperative CPAP), STD-CPAP (standard intraoperative ventilation plus postoperative CPAP), or STD-O 2 (standard intraoperative ventilation plus standard postoperative oxygen therapy). Patients were masked to treatment allocation. Investigators were not masked in the operating and postoperative rooms; after 24 h, data were given to a second investigator who was masked to allocations. The primary outcome was a composite of pulmonary and systemic complications during the first 7 postoperative days. We did the primary analysis using the modified intention-to-treat population. This trial is registered with ClinicalTrials.gov, number NCT02158923. Between Jan 2, 2015, and May 18, 2016, we enrolled 1012 eligible patients. Data were available for 967 patients, whom we included in the final analysis. Risk of pulmonary and systemic

  11. Mechanical ventilation during extracorporeal membrane oxygenation.

    Science.gov (United States)

    Schmidt, Matthieu; Pellegrino, Vincent; Combes, Alain; Scheinkestel, Carlos; Cooper, D Jamie; Hodgson, Carol

    2014-01-21

    The timing of extracorporeal membrane oxygenation (ECMO) initiation and its outcome in the management of respiratory and cardiac failure have received considerable attention, but very little attention has been given to mechanical ventilation during ECMO. Mechanical ventilation settings in non-ECMO studies have been shown to have an effect on survival and may also have contributed to a treatment effect in ECMO trials. Protective lung ventilation strategies established for non-ECMO-supported respiratory failure patients may not be optimal for more severe forms of respiratory failure requiring ECMO support. The influence of positive end-expiratory pressure on the reduction of the left ventricular compliance may be a matter of concern for patients receiving ECMO support for cardiac failure. The objectives of this review were to describe potential mechanisms for lung injury during ECMO for respiratory or cardiac failure, to assess the possible benefits from the use of ultra-protective lung ventilation strategies and to review published guidelines and expert opinions available on mechanical ventilation-specific management of patients requiring ECMO, including mode and ventilator settings. Articles were identified through a detailed search of PubMed, Ovid, Cochrane databases and Google Scholar. Additional references were retrieved from the selected studies. Growing evidence suggests that mechanical ventilation settings are important in ECMO patients to minimize further lung damage and improve outcomes. An ultra-protective ventilation strategy may be optimal for mechanical ventilation during ECMO for respiratory failure. The effects of airway pressure on right and left ventricular afterload should be considered during venoarterial ECMO support of cardiac failure. Future studies are needed to better understand the potential impact of invasive mechanical ventilation modes and settings on outcomes.

  12. Mathematics of Ventilator-induced Lung Injury.

    Science.gov (United States)

    Rahaman, Ubaidur

    2017-08-01

    Ventilator-induced lung injury (VILI) results from mechanical disruption of blood-gas barrier and consequent edema and releases of inflammatory mediators. A transpulmonary pressure (P L ) of 17 cmH 2 O increases baby lung volume to its anatomical limit, predisposing to VILI. Viscoelastic property of lung makes pulmonary mechanics time dependent so that stress (P L ) increases with respiratory rate. Alveolar inhomogeneity in acute respiratory distress syndrome acts as a stress riser, multiplying global stress at regional level experienced by baby lung. Limitation of stress (P L ) rather than strain (tidal volume [V T ]) is the safe strategy of mechanical ventilation to prevent VILI. Driving pressure is the noninvasive surrogate of lung strain, but its relations to P L is dependent on the chest wall compliance. Determinants of lung stress (V T , driving pressure, positive end-expiratory pressure, and inspiratory flow) can be quantified in terms of mechanical power, and a safe threshold can be determined, which can be used in decision-making between safe mechanical ventilation and extracorporeal lung support.

  13. What is the best site for measuring the effect of ventilation on the pulse oximeter waveform?

    Science.gov (United States)

    Shelley, Kirk H; Jablonka, Denis H; Awad, Aymen A; Stout, Robert G; Rezkanna, Hoda; Silverman, David G

    2006-08-01

    The cardiac pulse is the predominant feature of the pulse oximeter (plethysmographic) waveform. Less obvious is the effect of ventilation on the waveform. There have been efforts to measure the effect of ventilation on the waveform to determine respiratory rate, tidal volume, and blood volume. We measured the relative strength of the effect of ventilation on the reflective plethysmographic waveform at three different sites: the finger, ear, and forehead. The plethysmographic waveforms from 18 patients undergoing positive pressure ventilation during surgery and 10 patients spontaneously breathing during renal dialysis were collected. The respiratory signal was isolated from the waveform using spectral analysis. It was found that the respiratory signal in the pulse oximeter waveform was more than 10 times stronger in the region of the head when compared with the finger. This was true with both controlled positive pressure ventilation and spontaneous breathing. A significant correlation was demonstrated between the estimated blood loss from surgical procedures and the impact of ventilation on ear plethysmographic data (r(s) = 0.624, P = 0.006).

  14. Protective ventilation reduces Pseudomonas aeruginosa growth in lung tissue in a porcine pneumonia model.

    Science.gov (United States)

    Sperber, Jesper; Nyberg, Axel; Lipcsey, Miklos; Melhus, Åsa; Larsson, Anders; Sjölin, Jan; Castegren, Markus

    2017-08-31

    Mechanical ventilation with positive end expiratory pressure and low tidal volume, i.e. protective ventilation, is recommended in patients with acute respiratory distress syndrome. However, the effect of protective ventilation on bacterial growth during early pneumonia in non-injured lungs is not extensively studied. The main objectives were to compare two different ventilator settings on Pseudomonas aeruginosa growth in lung tissue and the development of lung injury. A porcine model of severe pneumonia was used. The protective group (n = 10) had an end expiratory pressure of 10 cm H 2 O and a tidal volume of 6 ml x kg -1 . The control group (n = 10) had an end expiratory pressure of 5 cm H 2 O and a tidal volume of 10 ml x kg -1 . 10 11 colony forming units of Pseudomonas aeruginosa were inoculated intra-tracheally at baseline, after which the experiment continued for 6 h. Two animals from each group received only saline, and served as sham animals. Lung tissue samples from each animal were used for bacterial cultures and wet-to-dry weight ratio measurements. The protective group displayed lower numbers of Pseudomonas aeruginosa (p protective group was unchanged (p protective ventilation with lower tidal volume and higher end expiratory pressure has the potential to reduce the pulmonary bacterial burden and the development of lung injury.

  15. Model Predictive Control of the Hybrid Ventilation for Livestock

    DEFF Research Database (Denmark)

    Wu, Zhuang; Stoustrup, Jakob; Trangbæk, Klaus

    2006-01-01

    In this paper, design and simulation results of Model Predictive Control (MPC) strategy for livestock hybrid ventilation systems and associated indoor climate through variable valve openings and exhaust fans are presented. The design is based on thermal comfort parameters for poultry in barns...

  16. Evaluation of transport ventilators at mild simulated altitude: a bench study in a hypobaric chamber.

    Science.gov (United States)

    Boussen, Salah; Coulange, Mathieu; Fournier, Marc; Gainnier, Marc; Michelet, Pierre; Micoli, Christophe; Negrel, Lionel

    2014-08-01

    Previous studies on ventilators used for air transport showed significant effects of altitude, in particular with regard to accuracy of the tidal volume (VT) and breathing frequency. The aim of the study was to evaluate transport ventilators under hypobaric conditions. We conducted a bench study of 6 transport ventilators in a Comex hypobaric chamber to simulate mild altitude (1,500 m [4,920 feet] and 2,500 m [8,200 feet]). The ventilators were connected to a test lung to evaluate their accuracy: (1) to deliver a set VT under normal resistance and compliance conditions at F(IO2) = 0.6 and 1, (2) to establish a set PEEP (0, 5, 10, and 15 cm H2O), and (3) to establish a set inspiratory pressure in pressure controlled mode, (4) at a F(IO2) setting, and (5) and at a frequency setting. Four ventilators kept an average relative error in VT of ventilator was affected by the altitude only at F(IO2) = 1. The Osiris 3 ventilator had > 40% error even at 1,500 m. We found no change in frequency as a function of altitude for any ventilators studied. No clinically important differences were found between all altitudes with the PEEP or inspiratory pressure setting. Although F(IO2) was affected by altitude, the average error did not exceed 11%, and it is unclear whether this fact is an experimental artifact. We have shown that most of the new transport ventilators tested require no setting adjustment at moderate altitude and are as safe at altitude as at sea level under normal respiratory conditions. Older technologies still deliver more volume with altitude in volumetric mode.

  17. Methylene Blue in Ventilator-Induced Lung Injury after Pneumonectomy: an Experimental Study

    Directory of Open Access Journals (Sweden)

    Ye. V Suborov

    2007-01-01

    Full Text Available Objective: to study the expediency and efficiency of using methylene blue (MB on a model of pneumectomy (PE and subsequent ventilator-induced lung injury (VILI in sheep. Materials and methods. The study was conducted at the Research Laboratory of University of Tromse. The experiment included 23 sheep weighing 41.0±4.9 kg. Thoracotomy and right-sided pneumonectomy were performed in the animals under general anesthesia and controlled artificial ventilation. After measurement of the parameters of systemic hemodynamics and extravascular water of the lung (EVWL, the animals were divided into 3 groups: 1 a control group (CG, n=7 with a tidal volume (TV of 6 ml/kg and an end-expiratory positive pressure (PEEP of 2 cm H2O; 2 a VILI group (n=9 with a TV of 12 ml/kg and a PEEP of 0 cm H2O; 3 a group of MB (n=7 that was given in parallel with a damaging ventilation mode. The thermodilution technique (using a Cold Z-021 monitor, (Pulsion, Germany was employed to measure volumetric parameters and EVWL. The parameters of pulmonary hemodynamics, respiratory mechanics, and blood gas composition were recorded. Results: After its reduction at PE, EVWL index increased during damaging ventilation in the VILI and MB groups. In addition, there was an increase in pulmonary artery wedge pressure after PE in the MB and VILI groups. In the latter group, arterial hypoxemia was observed at the end of the experiment. Along with this, after PE pulmonary compliance decreased and airway pressure elevated in the VILI and MB groups. Conclusion: In the presented model of VILI, MB does not prevent the development of postp-neumectomic edema of the lung. Key words: thermochromodilution, acute lung injury, pneumectomy, ventilator-induced lung injury, postpneumectomic edema of the lung, methylene blue.

  18. Effects of sevoflurane on ventilator induced lung injury in a healthy lung experimental model.

    Science.gov (United States)

    Romero, A; Moreno, A; García, J; Sánchez, C; Santos, M; García, J

    2016-01-01

    Ventilator-induced lung injury (VILI) causes a systemic inflammatory response in tissues, with an increase in IL-1, IL-6 and TNF-α in blood and tissues. Cytoprotective effects of sevoflurane in different experimental models are well known, and this protective effect can also be observed in VILI. The objective of this study was to assess the effects of sevoflurane in VILI. A prospective, randomized, controlled study was designed. Twenty female rats were studied. The animals were mechanically ventilated, without sevoflurane in the control group and sevoflurane 3% in the treated group (SEV group). VILI was induced applying a maximal inspiratory pressure of 35 cmH2O for 20 min without any positive end-expiratory pressure for 20 min (INJURY time). The animals were then ventilated 30 min with a maximal inspiratory pressure of 12 cmH2O and 3 cmH2O positive end-expiratory pressure (time 30 min POST-INJURY), at which time the animals were euthanized and pathological and biomarkers studies were performed. Heart rate, invasive blood pressure, pH, PaO2, and PaCO2 were recorded. The lung wet-to-dry weight ratio was used as an index of lung edema. No differences were found in the blood gas analysis parameters or heart rate between the 2 groups. Blood pressure was statistically higher in the control group, but still within the normal clinical range. The percentage of pulmonary edema and concentrations of TNF-α and IL-6 in lung tissue in the SEV group were lower than in the control group. Sevoflurane attenuates VILI in a previous healthy lung in an experimental subclinical model in rats. Copyright © 2015 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Alterations in the rate of limb movement using a lower body positive pressure treadmill do not influence respiratory rate or phase III ventilation.

    Science.gov (United States)

    Buono, Michael J; Burnsed-Torres, Marissa; Hess, Bethany; Lopez, Kristine; Ortiz, Catherine; Girodo, Ariel; Lolli, Karen; Bloom, Brett; Bailey, David; Kolkhorst, Fred W

    2015-01-01

    The purpose of this study was to determine the effect of alterations in rate of limb movement on Phase III ventilation during exercise, independent of metabolic rate, gait style, and treadmill incline. Subjects completed five submaximal exercise bouts on a lower body positive pressure treadmill (AlterG P 200). The percent body weight for the five exercise bouts was 100, 87, 75, 63, and 50% and each was matched for carbon dioxide production (V CO2 ). Naturally, to match the V CO2 while reducing the body weight up to 50% of normal required a significant increase in the treadmill speed from 3.0 ± 0.1 to 4.1 ± 0.2 mph, which resulted in a significant (P body weight) to 133 ± 6 at 4.1 mph (i.e., 50% of body weight). The most important finding was that significant increases in step frequency did not significantly alter minute ventilation or respiratory rate. Such results do not support an important role for the rate of limb movement in Phase III ventilation during submaximal exercise, when metabolic rate, gait style, and treadmill incline are controlled.

  20. Improved Performance of Personalized Ventilation by Control of the Convection Flow around Occupant Body

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho Dimitrov; Melikov, Arsen Krikor; Krenek, Miroslav

    2009-01-01

    This paper reports on methods of control of the free convection flow around human body aiming at improvement of inhaled air quality for occupants at workstations with personalized ventilation (PV). Two methods of control were developed and explored: passive - blocking the free convection developm......This paper reports on methods of control of the free convection flow around human body aiming at improvement of inhaled air quality for occupants at workstations with personalized ventilation (PV). Two methods of control were developed and explored: passive - blocking the free convection......-scale test room with background mixing ventilation. Thermal manikin with realistic free convection flow was used. The PV supplied air from front/above towards the face. All measurements were performed under isothermal conditions at 20 °C and 26 °C. The air in the test room was mixed with tracer gas, while...

  1. Argonne Fuel Cycle Facility ventilation system -- modeling and results

    International Nuclear Information System (INIS)

    Mohr, D.; Feldman, E.E.; Danielson, W.F.

    1995-01-01

    This paper describes an integrated study of the Argonne-West Fuel Cycle Facility (FCF) interconnected ventilation systems during various operations. Analyses and test results include first a nominal condition reflecting balanced pressures and flows followed by several infrequent and off-normal scenarios. This effort is the first study of the FCF ventilation systems as an integrated network wherein the hydraulic effects of all major air systems have been analyzed and tested. The FCF building consists of many interconnected regions in which nuclear fuel is handled, transported and reprocessed. The ventilation systems comprise a large number of ducts, fans, dampers, and filters which together must provide clean, properly conditioned air to the worker occupied spaces of the facility while preventing the spread of airborne radioactive materials to clean am-as or the atmosphere. This objective is achieved by keeping the FCF building at a partial vacuum in which the contaminated areas are kept at lower pressures than the other worker occupied spaces. The ventilation systems of FCF and the EBR-II reactor are analyzed as an integrated totality, as demonstrated. We then developed the network model shown in Fig. 2 for the TORAC code. The scope of this study was to assess the measured results from the acceptance/flow balancing testing and to predict the effects of power failures, hatch and door openings, single-failure faulted conditions, EBR-II isolation, and other infrequent operations. The studies show that the FCF ventilation systems am very controllable and remain stable following off-normal events. In addition, the FCF ventilation system complex is essentially immune to reverse flows and spread of contamination to clean areas during normal and off-normal operation

  2. Limiting volume with modern ventilators.

    Science.gov (United States)

    Wing, Thomas J; Haan, Lutana; Ashworth, Lonny J; Anderson, Jeff

    2015-06-01

    The acute respiratory distress syndrome (ARDS) network low tidal-volume study comparing tidal volumes of 12 ml/kg versus 6 ml/kg was published in 2000. The study was stopped early as data revealed a 22% relative reduction in mortality rate when using 6 ml/kg tidal volume. The current generation of critical care ventilators allows the tidal volume to be set during volume-targeted, assist/control (volume A/C); however, some ventilators include options that may prevent the tidal volume from being controlled. The purpose of this bench study was to evaluate the delivered tidal volume, when these options are active, in a spontaneously breathing lung model using an electronic breathing simulator. Four ventilators were evaluated: CareFusion AVEA (AVEA), Dräger Evita® XL (Evita XL), Covidien Puritan Bennett® 840(TM) (PB 840), and Maquet SERVO-i (SERVO-i). Each ventilator was connected to the Hans Rudolph Electronic Breathing Simulator at an amplitude of 0 cm H2O and then 10 cm H2O. All four ventilators were set to deliver volume A/C, tidal volume 400 ml, respiratory rate 20 bpm, positive end-expiratory pressure 5 cm H2O, peak flowrate 60 L/min. The displayed tidal volume was recorded for each ventilator at the above settings with additional options OFF and then ON. The AVEA has two options in volume A/C: demand breaths and V-sync. When activated, these options allow the patient to exceed the set tidal volume. When using the Evita XL, the option AutoFlow can be turned ON or OFF, and when this option is ON, the tidal volume may vary. The PB 840 does not have any additional options that affect volume delivery, and it maintains the set tidal volume regardless of patient effort. The SERVO-i's demand valve allows additional flow if the patient's inspiratory flowrate exceeds the set flowrate, increasing the delivered tidal volume; this option can be turned OFF with the latest software upgrade. Modern ventilators have an increasing number of optional settings. These settings may

  3. Controlling ventilation for safe escape from coal mine fires

    Energy Technology Data Exchange (ETDEWEB)

    Wala, A M [University of Kentucky, Lexington, KY (United States). Mining Engineering Dept.

    1966-04-01

    If a fire occurs outby an underground coal mine section, the immediate safe evacuation of miners from the working section should always take precedence. Unfortunately, in many cases, the dedicated escapeway (escape routes) for the evacuation of the miners become contaminated by the byproducts of fire from the adjacent entries. The purpose of this paper is to present the ventilation-control process that would keep the escapeway free from contaminants and, thus, available for travel. A few scenarios of mine fires in longwall development panels are analysed and discussed. To perform these studies, a mine-fire simulator (MFS) was used. This (MFS) provides a dynamic representation of the fire`s progress (in real time) and gives a color-graphic visualization of the spready of oxygen, combustion products and temperature of the gases throughout the ventilation system. Also presented and discussed are ways in which the MFS can be used as a training and teaching tool for miners and particularly, for ventilation and safety specialists. 7 refs., 10 figs.

  4. Protective mechanical ventilation, why use it?

    Science.gov (United States)

    Seiberlich, Emerson; Santana, Jonas Alves; Chaves, Renata de Andrade; Seiberlich, Raquel Carvalho

    2011-01-01

    Mechanical ventilation (MV) strategies have been modified over the last decades with a tendency for increasingly lower tidal volumes (VT). However, in patients without acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) the use of high VTs is still very common. Retrospective studies suggest that this practice can be related to mechanical ventilation-associated ALI. The objective of this review is to search for evidence to guide protective MV in patients with healthy lungs and to suggest strategies to properly ventilate lungs with ALI/ARDS. A review based on the main articles that focus on the use of strategies of mechanical ventilation was performed. Consistent studies to determine which would be the best way to ventilate a patient with healthy lungs are lacking. Expert recommendations and current evidence presented in this article indicate that the use of a VT lower than 10 mL.kg(-1), associated with positive end-expiratory pressure (PEEP) ≥ 5 cmH(2)O without exceeding a pressure plateau of 15 to 20 cmH(2)O could minimize alveolar stretching at the end of inspiration and avoid possible inflammation or alveolar collapse. Copyright © 2011 Elsevier Editora Ltda. All rights reserved.

  5. Natural ventilation for the prevention of airborne contagion.

    Science.gov (United States)

    Escombe, A Roderick; Oeser, Clarissa C; Gilman, Robert H; Navincopa, Marcos; Ticona, Eduardo; Pan, William; Martínez, Carlos; Chacaltana, Jesus; Rodríguez, Richard; Moore, David A J; Friedland, Jon S; Evans, Carlton A

    2007-02-01

    Institutional transmission of airborne infections such as tuberculosis (TB) is an important public health problem, especially in resource-limited settings where protective measures such as negative-pressure isolation rooms are difficult to implement. Natural ventilation may offer a low-cost alternative. Our objective was to investigate the rates, determinants, and effects of natural ventilation in health care settings. The study was carried out in eight hospitals in Lima, Peru; five were hospitals of "old-fashioned" design built pre-1950, and three of "modern" design, built 1970-1990. In these hospitals 70 naturally ventilated clinical rooms where infectious patients are likely to be encountered were studied. These included respiratory isolation rooms, TB wards, respiratory wards, general medical wards, outpatient consulting rooms, waiting rooms, and emergency departments. These rooms were compared with 12 mechanically ventilated negative-pressure respiratory isolation rooms built post-2000. Ventilation was measured using a carbon dioxide tracer gas technique in 368 experiments. Architectural and environmental variables were measured. For each experiment, infection risk was estimated for TB exposure using the Wells-Riley model of airborne infection. We found that opening windows and doors provided median ventilation of 28 air changes/hour (ACH), more than double that of mechanically ventilated negative-pressure rooms ventilated at the 12 ACH recommended for high-risk areas, and 18 times that with windows and doors closed (p ventilation than modern naturally ventilated rooms (40 versus 17 ACH; p natural ventilation exceeded mechanical (p ventilated rooms 39% of susceptible individuals would become infected following 24 h of exposure to untreated TB patients of infectiousness characterised in a well-documented outbreak. This infection rate compared with 33% in modern and 11% in pre-1950 naturally ventilated facilities with windows and doors open. Opening windows and

  6. Protective lung ventilation in operating room: a systematic review.

    Science.gov (United States)

    Futier, E; Constantin, J M; Jaber, S

    2014-06-01

    Postoperative pulmonary and extrapulmonary complications adversely affect clinical outcomes and healthcare utilization, so that prevention has become a measure of the quality of perioperative care. Mechanical ventilation is an essential support therapy to maintain adequate gas exchange during general anesthesia for surgery. Mechanical ventilation using high tidal volume (VT) (between 10 and 15 mL/kg) has been historically encouraged to prevent hypoxemia and atelectasis formation in anesthetized patients undergoing abdominal and thoracic surgery. However, there is accumulating evidence from both experimental and clinical studies that mechanical ventilation, especially the use of high VT and plateau pressure, may potentially aggravate or even initiate lung injury. Ventilator-associated lung injury can result from cyclic alveolar overdistension of non-dependent lung tissue, and repetitive opening and closing of dependent lung tissue resulting in ultrastructural damage at the junction of closed and open alveoli. Lung-protective ventilation, which refers to the use of lower VT and limited plateau pressure to minimize overdistension, and positive end-expiratory pressure to prevent alveolar collapse at end-expiration, was shown to improve outcome in critically ill patients with acute respiratory distress syndrome (ARDS). It has been recently suggested that this approach might also be beneficial in a broader population, especially in critically ill patients without ARDS at the onset of mechanical ventilation. There is, however, little evidence regarding a potential beneficial effect of lung protective ventilation during surgery, especially in patients with healthy lungs. Although surgical patients are frequently exposed to much shorter periods of mechanical ventilation, this is an important gap in knowledge given the number of patients receiving mechanical ventilation in the operating room. This review developed the benefits of lung protective ventilation during surgery

  7. Surfactant impairment after mechanical ventilation with large alveolar surface area changes and effects of positive end-expiratory pressure

    NARCIS (Netherlands)

    S.J.C. Verbrugge (Serge); S.H. Bohm; D.A.M.P.J. Gommers (Diederik); L.J.I. Zimmermann (Luc); B.F. Lachmann (Burkhard)

    1998-01-01

    textabstractWe have assessed the effects of overinflation on surfactant function and composition in rats undergoing ventilation for 20 min with 100% oxygen at a peak inspiratory pressure of 45 cm H2O, with or without PEEP 10 cm H2O (groups 45/10 and 45/0, respectively).

  8. Technique and clinical applications of full-inflation and end-exhalation controlled-ventilation chest CT in infants and young children

    International Nuclear Information System (INIS)

    Long, F.R.; Castile, R.G.

    2001-01-01

    Background. The inability of young children to cooperate with breath holding limits the usefulness of chest CT. Objective. To describe the technique and utility of a non-invasive method called controlled-ventilation CT (CVCT) for obtaining motion-free full-inflation and end-exhalation images of the lung in infants and young children. Materials and methods. Eighty-seven children (ages 1 week to 5 years, mean 2 years) underwent CVCT of the chest during suspended respiration at full-lung inflation and end-exhalation for a variety of clinical indications. Respiratory pauses were produced using conscious sedation and positive-pressure face-mask ventilation. Forty-one of 87 children had recordings of respiratory motion during CVCT. Results. Respiratory pause lengths increased with age (P < 0.003), were highly reproducible (r = 0.85), and lasted sufficiently long to be practical for full-inflation (24 ± 9 s) and end-exhalation (12 ± 5 s) CT scanning. Full-inflation CVCT was useful in evaluating tracheal and bronchial stenosis, bronchial wall thickening, early bronchiectasis, bronchial fistula, extent of interstitial fibrosis, and lung nodules. End-exhalation CVCT was useful in evaluating tracheomalacia and air trapping. Conclusion. Controlled-ventilation chest CT is a practical and reliable technique that promises to be clinically useful for a number of clinical indications in infants and young children. (orig.)

  9. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, Armin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bergey, Daniel [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-02-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  10. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, Armin [Building Science Corporation, Somerville, MA (United States); Bergey, Daniel [Building Science Corporation, Somerville, MA (United States)

    2014-02-01

    In this project, Building America research team Building Science Corporation tested the effectiveness of ventilation systems at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. This was because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four system factor categories: balance, distribution, outside air source, and recirculation filtration. Recommended system factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  11. Constant-flow ventilation in canine experimental pulmonary emphysema.

    Science.gov (United States)

    Hachenberg, T; Wendt, M; Meyer, J; Struckmeier, O; Lawin, P

    1989-07-01

    The efficacy of constant-flow ventilation (CFV) was investigated in eight mongrel dogs before (control-phase) and after development of papain-induced panlobular emphysema (PLE-phase). For CFV, heated, humidified and oxygen-enriched air was continuously delivered via two catheters positioned within each mainstem bronchus at flow rates (V) of 0.33, 0.5 and 0.66 l/s. Data obtained during intermittent positive pressure ventilation (IPPV) served as reference. In the control-phase, Pao2 was lower (P less than or equal to 0.05) and alveolo-arterial O2 difference (P(A-a)O2) was higher (P less than or equal to 0.01) during CFV at all flow rates when compared with IPPV. This may be due to inhomogeneities of intrapulmonary gas distribution and increased ventilation-perfusion (VA/Q) mismatching. Paco2 and V showed a hyperbolic relationship; constant normocapnia (5.3 kPa) was achieved at 0.48 +/- 0.21 l/s (V53). Development of PLE resulted in an increase of functional residual capacity (FRC), residual volume (RV) and static compliance (Cstat) (P less than or equal to 0.05). PaO2 had decreased and P(A-a)O2 had increased (P less than or equal to 0.05), indicating moderate pulmonary dysfunction. Oxygenation during CFV was not significantly different in the PLE-phase when compared with the control-phase. Paco2 and V showed a hyperbolic relationship and V5.3 was even lower than in the control-group (0.42 +/- 0.13 l/s). In dogs with emphysematous lungs CFV maintains sufficient gas exchange. This may be due to preferential ventilation of basal lung units, thereby counterbalancing the effects of impaired lung morphometry and increased airtrapping. Conventional mechanical ventilation is more effective in terms of oxygenation and CO2-elimination.

  12. Bone conduction noise exposure via ventilators in the neonatal intensive care unit.

    Science.gov (United States)

    Kazemizadeh Gol, Mohammad Abraham; Black, Angela; Sidman, James

    2015-10-01

    To demonstrate that neonatal ventilators can expose patients to high noise levels through bone conduction (BC) as well as air conduction (AC). Observational study. Three ventilators and various settings on a positive airway pressure machine (continuous, high bilevel, and low bilevel pressure) were tested. A sound level meter was used to measure the noise levels at a set distance from the ventilator to represent AC, on the ventilator circuit to represent BC at the alveolus, and within the ventilator circuit. The BC sound levels (74.1, 81.1, 86, 89.2 dBC) were significantly higher than the AC sound levels (72.8, 72.9, 70, 71.7 dBC) for the jet ventilator, continuous positive airway pressure setting, low bilevel setting, and high bilevel setting, respectively (P ventilator circuit ranged from 94.9 to 113.2 dBC depending on the machine/setting and was significantly louder than both AC or BC for all machines/settings (P ventilator dependent noise levels present on and within ventilation circuitry that could be presented to the infant via BC. NA © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  13. Non-invasive ventilation with neurally adjusted ventilatory assist in newborns.

    Science.gov (United States)

    Stein, Howard; Beck, Jennifer; Dunn, Michael

    2016-06-01

    Neurally adjusted ventilatory assist (NAVA) is a mode of ventilation in which both the timing and degree of ventilatory assist are controlled by the patient. Since NAVA uses the diaphragm electrical activity (Edi) as the controller signal, it is possible to deliver synchronized non-invasive NAVA (NIV-NAVA) regardless of leaks and to monitor continuously patient respiratory pattern and drive. Advantages of NIV-NAVA over conventional modes include improved patient-ventilator interaction, reliable respiratory monitoring and self-regulation of respiratory support. In theory, these characteristics make NIV-NAVA an ideal mode to provide effective, appropriate non-invasive support to newborns with respiratory insufficiency. NIV-NAVA has been successfully used clinically in neonates as a mode of ventilation to prevent intubation, to allow early extubation, and as a novel way to deliver nasal continuous positive airway pressure. The use of NAVA in neonates is described with an emphasis on studies and clinical experience with NIV-NAVA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Stroke volume variation compared with pulse pressure variation and cardiac index changes for prediction of fluid responsiveness in mechanically ventilated patients

    Directory of Open Access Journals (Sweden)

    Randa Aly Soliman

    2015-04-01

    Conclusions: Baseline stroke volume variation ⩾8.15% predicted fluid responsiveness in mechanically ventilated patients with acute circulatory failure. The study also confirmed the ability of pulse pressure variation to predict fluid responsiveness.

  15. [Correlation between end-tidal carbon dioxide and partial pressure of arterial carbon dioxide in ventilated newborns].

    Science.gov (United States)

    Feng, Jin-Xing; Liu, Xiao-Hong; Huang, Hui-Jun; Yu, Zhen-Zhu; Yang, Hui; He, Liu-Fang

    2014-05-01

    To study the correlation between end-tidal carbon dioxide (PetCO2) and partial pressure of arterial carbon dioxide (PaCO2) in ventilated newborns. Thirty-one ventilated newborn underwent mainstream PetCO2 monitoring; meanwhile, arterial blood gas analysis was performed. The correlation and consistency between PetCO2 and PaCO2 were assessed. A total of 85 end-tidal and arterial CO2 pairs were obtained from 31 ventilated newborns. The mean PetCO2 (41±10 mm Hg) was significantly lower than the corresponding mean PaCO2 (46±11 mm Hg) (Plimits of consistency, -3.3 to 13.6 mmHg), and 5% (4/85) of the points were beyond the 95%CI. When the oxygenation index (OI) was less than 300 mm Hg (n=48), there was a significant positive correlation between PetCO2 and PaCO2 (r=0.85, Plimits of consistency, -2.6 to 14.5 mm Hg), and 4.2% (2/48) of the points were beyond the 95%CI. When the OI was more than 300 mm Hg (n=37), there was also a significant positive correlation between PetCO2 and PaCO2 (r=0.91, Plimits of consistency, -3.9 to 12.1 mm Hg), and 5% (2/37) of the points were beyond the 95%CI. There is a good correlation and consistency between PetCO2 and PaCO2 in ventilated newborns.

  16. Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD)

    Science.gov (United States)

    McCurdy, BR

    2012-01-01

    Executive Summary In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions. After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses. The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html. Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive

  17. Related factors to semi-recumbent position compliance and pressure ulcers in patients with invasive mechanical ventilation: An observational study (CAPCRI study).

    Science.gov (United States)

    Llaurado-Serra, Mireia; Ulldemolins, Marta; Fernandez-Ballart, Joan; Guell-Baro, Rosa; Valentí-Trulls, Teresa; Calpe-Damians, Neus; Piñol-Tena, Angels; Pi-Guerrero, Mercedes; Paños-Espinosa, Cristina; Sandiumenge, Alberto; Jimenez-Herrera, María F

    2016-09-01

    Semi-recumbent position is recommended to prevent ventilator-associated pneumonia. Its implementation, however, is below optimal. We aimed to assess real semi-recumbent position compliance and the degree of head-of-bed elevation in Spanish intensive care units, along with factors determining compliance and head-of-bed elevation and their relationship with the development of pressure ulcers. Finally, we investigated the impact that might have the diagnosis of pressure ulcers in the attitude toward head-of-bed elevation. We performed a prospective, multicenter, observational study in 6 intensive care units. Inclusion criteria were patients ≥18 years old and expected to remain under mechanical ventilator for ≥48h. Exclusion criteria were patients with contraindications for semi-recumbent position from admission, mechanical ventilation during the previous 7 days and prehospital intubation. Head-of-bed elevation was measured 3 times/day for a maximum of 28 days using the BOSCH GLM80(®) device. The variables collected related to patient admission, risk of pressure ulcers and the measurements themselves. Bivariate and multivariate analyses were carried out using multiple binary logistic regression and linear regression as appropriate. Statistical significance was set at preplacement therapy, nursing shift, open abdomen, abdominal vacuum therapy and agitation. Twenty-five patients (9.1%) developed a total of 34 pressure ulcers. The diagnosis of pressure ulcers did not affect the head-of-bed elevation. In the multivariate analysis, head-of-bed elevation was not identified as an independent risk factor for pressure ulcers. Semi-recumbent position compliance is below optimal despite the fact that it seems achievable most of the time. Factors that affect semi-recumbent position include the particular intensive care unit, abdominal conditions, renal replacement therapy, agitation and bed type. Head-of-bed elevation was not related to the risk of pressure ulcers. Efforts

  18. Nonassociative learning promotes respiratory entrainment to mechanical ventilation.

    Directory of Open Access Journals (Sweden)

    Shawna M MacDonald

    Full Text Available BACKGROUND: Patient-ventilator synchrony is a major concern in critical care and is influenced by phasic lung-volume feedback control of the respiratory rhythm. Routine clinical application of positive end-expiratory pressure (PEEP introduces a tonic input which, if unopposed, might disrupt respiratory-ventilator entrainment through sustained activation of the vagally-mediated Hering-Breuer reflex. We suggest that this potential adverse effect may be averted by two differentiator forms of nonassociative learning (habituation and desensitization of the Hering-Breuer reflex via pontomedullary pathways. METHODOLOGY/PRINCIPAL FINDINGS: We tested these hypotheses in 17 urethane-anesthetized adult Sprague-Dawley rats under controlled mechanical ventilation. Without PEEP, phrenic discharge was entrained 1:1 to the ventilator rhythm. Application of PEEP momentarily dampened the entrainment to higher ratios but this effect was gradually adapted by nonassociative learning. Bilateral electrolytic lesions of the pneumotaxic center weakened the adaptation to PEEP, whereas sustained stimulation of the pneumotaxic center weakened the entrainment independent of PEEP. In all cases, entrainment was abolished after vagotomy. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate an important functional role for pneumotaxic desensitization and extra-pontine habituation of the Hering-Breuer reflex elicited by lung inflation: acting as buffers or high-pass filters against tonic vagal volume input, these differentiator forms of nonassociative learning help to restore respiratory-ventilator entrainment in the face of PEEP. Such central sites-specific habituation and desensitization of the Hering-Breuer reflex provide a useful experimental model of nonassociative learning in mammals that is of particular significance in understanding respiratory rhythmogenesis and coupled-oscillator entrainment mechanisms, and in the clinical management of mechanical ventilation in

  19. Jet Ventilation during Rigid Bronchoscopy in Adults: A Focused Review

    Directory of Open Access Journals (Sweden)

    Laurie Putz

    2016-01-01

    Full Text Available The indications for rigid bronchoscopy for interventional pulmonology have increased and include stent placements and transbronchial cryobiopsy procedures. The shared airway between anesthesiologist and pulmonologist and the open airway system, requiring specific ventilation techniques such as jet ventilation, need a good understanding of the procedure to reduce potentially harmful complications. Appropriate adjustment of the ventilator settings including pause pressure and peak inspiratory pressure reduces the risk of barotrauma. High frequency jet ventilation allows adequate oxygenation and carbon dioxide removal even in cases of tracheal stenosis up to frequencies of around 150 min−1; however, in an in vivo animal model, high frequency jet ventilation along with normal frequency jet ventilation (superimposed high frequency jet ventilation has been shown to improve oxygenation by increasing lung volume and carbon dioxide removal by increasing tidal volume across a large spectrum of frequencies without increasing barotrauma. General anesthesia with a continuous, intravenous, short-acting agent is safe and effective during rigid bronchoscopy procedures.

  20. Mathematics of an automatic control system for ventilation of gassy coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Puchkov, L.A.; Bakhvalov, L.A.; Kravchenko, A.G.

    1987-09-01

    Describes and presents a circuit diagram of an automatic control system introduced to control ventilation in the Kommunist mine belonging to the Oktyabr'ugol' coal mining association. The system comprises: sensors to register the parameters of the mine atmosphere (e.g. methane and air flow rate); communications channels and remote control devices to convert and transmit the data; a CM-4 computer with a high-speed processor, an 128-256 kByte operating memory, external memory devices, polydiaphragm air flow controllers, devices for controlling the electric drive of the main ventilation system, devices for collecting, processing and displaying the data. This system uses two groups of algorithms: algorithms for a data subsystem responsible for centralized control of the mine atmosphere parameters and a control subsystem which forms and implements the necessary control commands. The main software is the DISMAIN program. Introducing this system increased the productivity of the mine by 2%, reduced energy consumption by 5-7% and increased safety levels. 2 refs

  1. Impact of Fire Ventilation on General Ventilation in the Building

    Science.gov (United States)

    Zender-Świercz, Ewa; Telejko, Marek

    2017-10-01

    The fire of building is a threat to its users. The biggest threat is generation, during lifetime of fire, hot gases and smoke. The purpose of quick and efficient evacuation from the area covered by the fire, at first step the escape routes have to be secured from smokiness. The smoke ventilation systems are used for this purpose. The proper design and execution of smoke ventilation is important not only because of the safety, but also of the maintenance of comfort in the building at a time when there is no fire. The manuscript presents the effect of incorrectly realized smoke ventilation in the stairwell of the medium building. The analysis shows that the flaps of smoke ventilation located in the stairwell may have a significant impact on the proper functioning of mechanical ventilation in the period when there is no fire. The improperly installed or incorrect insulated components cause perturbation of air flow and they change pressure distribution in the building. The conclusion of the analysis is the need to include the entire technical equipment of the building during the design and realization of its individual elements. The impact of various installations at each other is very important, and the omission of any of them can cause disturbances in the proper work of another.

  2. Influence of ventilation strategies on indoor radon concentrations based on a semiempirical model for Florida-style houses

    International Nuclear Information System (INIS)

    Hintenlang, D.E.; Al-Ahmady, K.K.

    1994-01-01

    Measurements in a full-scale experimental facility are used to benchmark a semiempirical model for predicting indoor radon concentrations for Florida-style houses built using slab-on-grade construction. The model is developed to provide time-averaged indoor radon concentrations from quantitative relationships between the time-dependent radon entry and elimination mechanisms that have been demonstrated to be important for this style of residential construction. The model successfully predicts indoor radon concentrations in the research structure for several pressure and ventilation conditions. Parametric studies using the model illustrate how different ventilation strategies affect indoor radon concentrations. It is demonstrated that increasing house ventilation rates by increasing the effective leakage area of the house shell does not reduce indoor radon concentrations as effectively as increasing house ventilation rates by controlled duct ventilation associated with the heating, ventilating, and air conditioning system. The latter strategy provides the potential to minimize indoor radon concentrations while providing positive control over the quality of infiltration air. 9 refs., 5 figs

  3. Successful 1:1 proportion ventilation with a unique device for independent lung ventilation using a double-lumen tube without complications in the supine and lateral decubitus positions. A pilot study.

    Directory of Open Access Journals (Sweden)

    Michał Kowalczyk

    Full Text Available Adequate blood oxygenation and ventilation/perfusion matching should be main goal of anaesthetic and intensive care management. At present, one of the methods of improving gas exchange restricted by ventilation/perfusion mismatching is independent ventilation with two ventilators. Recently, however, a unique device has been developed, enabling ventilation of independent lungs in 1:1, 2:1, 3:1, and 5:1 proportions. The main goal of the study was to evaluate the device's utility, precision and impact on pulmonary mechanics. Secondly- to measure the gas distribution in supine and lateral decubitus position.69 patients who underwent elective thoracic surgery were eligible for the study. During general anaesthesia, after double lumen tube intubation, the aforementioned control system was placed between the anaesthetic machine and the patient. In the supine and lateral decubitus (left/right positions, measurements of conventional and independent (1:1 proportion ventilation were performed separately for each lung, including the following: tidal volume, peak pressure and dynamic compliance.Our results show that conventional ventilation using Robertshaw tube in the supine position directs 47% of the tidal volume to the left lung and 53% to the right lung. Furthermore, in the left lateral position, 44% is directed to the dependent lung and 56% to the non-dependent lung. In the right lateral position, 49% is directed to the dependent lung and 51% to the non-dependent lung. The control system positively affected non-dependent and dependent lung ventilation by delivering equal tidal volumes into both lungs with no adverse effects, regardless of patient's position.We report that gas distribution is uneven during conventional ventilation using Robertshaw tube in the supine and lateral decubitus positions. However, this recently released control system enables precise and safe independent ventilation in the supine and the left and right lateral decubitus

  4. FCT (functional computed tomography) evaluation of the lung volumes at different PEEP (positive-end expiratory pressure) ventilation pattern, in mechanical ventilated patients

    International Nuclear Information System (INIS)

    Papi, M.G.; Di Segni, R.; Mazzetti, G.; Staffa, F.; Conforto, F.; Calimici, R.; Salvi, A.; Matteucci, G.

    2007-01-01

    Purpose To evaluate with FCT (functional computed tomography) total lung volume and fractional lung volumes at different PEEP (positive end expiratory pressure) values in acute mechanically ventilated patients. Methods Nine ICU (intensive care unity) patients (1 lung pneumonia, 2 polytrauma, 2 sepsis, 3 brain surgery, 1 pulmonary embolism); mean age 48 ± 15 years, 6 male, 3 female; GE 16 MDCT scan was performed with acquisition from apex to diaphragma in seven seca at different PEEP values. Raw CT data were analysed by an advantage workstation to obtain volume density masks and histograms of both lungs and each lung and these density ranges were applied: - 1000 - 950 hyper-ventilated lung, -900 - 650 well aerated lung, -950 - 500 all aerated lung, -500 + 200 lung tissue. Total and fractional lung volumes, Hounsfield unit (HU) were calculated and compared at different PEEP values (0, 5, 10, 15 cm H 2 O). In four patients lung volumes were compared between the more and the less involved lung at increased PEEP. Statistic analysis: comparison means-medians tests. Results Data calculated at five PEEP showed unexpected decrease of total lung volume and increase of lung density (HU); proportionally no significant improvement of oxigenation. (orig.)

  5. FCT (functional computed tomography) evaluation of the lung volumes at different PEEP (positive-end expiratory pressure) ventilation pattern, in mechanical ventilated patients

    Energy Technology Data Exchange (ETDEWEB)

    Papi, M.G.; Di Segni, R.; Mazzetti, G.; Staffa, F. [Dept. of Radiology, S. Giovanni HS, Rome (Italy); Conforto, F.; Calimici, R.; Salvi, A. [Dept. of Anesthesiology, S. Giovanni HS, Rome (Italy); Matteucci, G. [Dept. of Pneumology, S. Giovanni HS, Rome (Italy)

    2007-06-15

    Purpose To evaluate with FCT (functional computed tomography) total lung volume and fractional lung volumes at different PEEP (positive end expiratory pressure) values in acute mechanically ventilated patients. Methods Nine ICU (intensive care unity) patients (1 lung pneumonia, 2 polytrauma, 2 sepsis, 3 brain surgery, 1 pulmonary embolism); mean age 48 {+-} 15 years, 6 male, 3 female; GE 16 MDCT scan was performed with acquisition from apex to diaphragma in seven seca at different PEEP values. Raw CT data were analysed by an advantage workstation to obtain volume density masks and histograms of both lungs and each lung and these density ranges were applied: - 1000 - 950 = hyper-ventilated lung, -900 - 650 well aerated lung, -950 - 500 all aerated lung, -500 + 200 lung tissue. Total and fractional lung volumes, Hounsfield unit (HU) were calculated and compared at different PEEP values (0, 5, 10, 15 cm H{sub 2}O). In four patients lung volumes were compared between the more and the less involved lung at increased PEEP. Statistic analysis: comparison means-medians tests. Results Data calculated at five PEEP showed unexpected decrease of total lung volume and increase of lung density (HU); proportionally no significant improvement of oxigenation. (orig.)

  6. Assessment of dynamic mechanical properties of the respiratory system during high-frequency oscillatory ventilation*.

    Science.gov (United States)

    Dellacà, Raffaele L; Zannin, Emanuela; Ventura, Maria L; Sancini, Giulio; Pedotti, Antonio; Tagliabue, Paolo; Miserocchi, Giuseppe

    2013-11-01

    1) To investigate the possibility of estimating respiratory system impedance (Zrs, forced oscillation technique) by using high-amplitude pressure oscillations delivered during high-frequency oscillatory ventilation; 2) to characterize the relationship between Zrs and continuous distending pressure during an increasing/decreasing continuous distending pressure trial; 3) to evaluate how the optimal continuous distending pressure identified by Zrs relates to the point of maximal curvature of the deflation limb of the quasi-static pressure-volume curve. Prospective laboratory animal investigation. Experimental medicine laboratory. Eight New Zealand rabbits. The rabbits were ventilated with high-frequency oscillatory ventilation. Zrs was measured while continuous distending pressure was increased and decreased between 2 and 26 cm H2O in 1-minute steps of 4 cm H2O. At each step, a low-amplitude (6 cm H2O) sinusoidal signal was alternated with a high-amplitude (18 cm H2O) asymmetric high-frequency oscillatory ventilation square pressure waveform. Pressure-volume curves were determined at the end of the continuous distending pressure trial. All measurements were repeated after bronchoalveolar lavage. Zrs was estimated from flow and pressure measured at the inlet of the tracheal tube and expressed as resistance (Rrs) and reactance (Xrs). Linear correlation between the values, measured by applying the small-amplitude sinusoidal signal and the ventilator waveform, was good for Xrs (r = 0.95 ± 0.04) but not for Rrs (r = 0.60 ± 0.34). Following lavage, the Xrs-continuous distending pressure curves presented a maximum on the deflation limb, identifying an optimal continuous distending pressure that was, on average, 1.1 ± 1.7 cm H2O below the point of maximal curvature of the deflation limb of the pressure-volume curves. Xrs can be accurately measured during high-frequency oscillatory ventilation without interrupting ventilation and/or connecting additional devices. An optimal

  7. Field and Laboratory Testing of Approaches to Smart Whole-House Mechanical Ventilation Control

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Eric [Florida Solar Energy Center, Cocoa, FL (United States); Fenaughty, Karen [Florida Solar Energy Center, Cocoa, FL (United States); Parker, Danny [Florida Solar Energy Center, Cocoa, FL (United States); Lubliner, Michael [Washington State Univ., Pullman, WA (United States); Howard, Luke [Washington State Univ., Pullman, WA (United States)

    2018-01-15

    Whole-house mechanical ventilation is a critical component to a comprehensive strategy for good indoor air quality (IAQ). However, due to lack of integration with standard heating and cooling systems, and perceptions from a portion of the homebuilding industry about risks related to increased energy use, increased cost, and decreased comfort, voluntary and code-required adoption varies amongst regions. Smart ventilation controls (SVC) balance energy consumption, comfort, and IAQ by optimizing mechanical ventilation operation to reduce the heating and/or cooling loads, improve management of indoor moisture, and maintain IAQ equivalence according to ASHRAE 62.2.

  8. Field and Laboratory Testing of Approaches to Smart Whole-House Mechanical Ventilation Control

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Eric [Florida Solar Energy Center, Cocoa, FL (United States); Fenaughty, Karen [Florida Solar Energy Center, Cocoa, FL (United States); Parker, Danny [Florida Solar Energy Center, Cocoa, FL (United States); Lubiner, Michael [Washington State Univ., Pullman, WA (United States); Howard, Luke [Washington State Univ., Pullman, WA (United States)

    2018-01-29

    Whole-house mechanical ventilation is a critical component to a comprehensive strategy for good indoor air quality (IAQ). However, due to lack of integration with standard heating and cooling systems, and perceptions from a portion of the homebuilding industry about risks related to increased energy use, increased cost, and decreased comfort, voluntary and code-required adoption varies among regions. Smart ventilation controls (SVC) balance energy consumption, comfort, and IAQ by optimizing mechanical ventilation operation to reduce the heating and/or cooling loads, improve management of indoor moisture, and maintain IAQ equivalence according to ASHRAE 62.2.

  9. Comparison of two modes of ventilation after fast-track cardiac surgery: Adaptive support ventilation versus synchronized intermittent mandatory ventilation

    International Nuclear Information System (INIS)

    Aghadavoudi, O.

    2012-01-01

    Objective: There is substantial debate regarding the appropriate protocol for ventilatory management in fast-track cardiac anesthesia (FTCA). This study was carried out to assess and compare the risks and benefits of respiratory weaning based on adaptive support ventilation (ASV) and synchronized intermittent mandatory ventilation (SIMV) after uncomplicated cardiac surgery. Methodology: In a randomized clinical trial, after receiving approval of the Department Research Committee and informed consent from study subjects, 100 patients undergoing elective coronary artery bypass graft (CABG) surgery with cardiopulmonary bypass (CPB) were enrolled during a 4-month period at a university-based hospital. After surgery and admission to the intensive care unit (ICU), patients were randomized to ASV and SIMV groups. Arterial blood gas (ABG) and hemodynamic variables, respiratory and ventilator characteristics including lung compliance, rapid shallow breathing index (RSBI), tidal volume (TV), respiratory rate (RR), peak inspiratory pressure (P peak), mean airway pressure (p mean), Pao2/FIo2, duration of mechanical ventilation and tracheal intubation, and length of ICU stay were recorded and compared between the two groups. The data were analyzed in 82 patients after considering the exclusion criteria. Results: There were no differences between ASV and SIMV groups in demographics and preoperative characteristics. The duration of tracheal intubation and the length of ICU stay were similar in both groups. There were no statistically and clinically relevant differences between the two groups in ABG, hemodynamic changes, and respiratory and ventilator characteristics during ICU stay. Conclusion: Although ASV may facilitate postoperative respiratory management in FTCA, both ASV and SIMV provide similarly safe and practicable respiratory weaning in the cardiac ICU. The evaluation of potential advantages in patient outcomes and resource utilization of respiratory weaning based on ASV

  10. Patients with cardiac arrest are ventilated two times faster than guidelines recommend : An observational prehospital study using tracheal pressure measurement

    NARCIS (Netherlands)

    Maertens, Vicky L.; De Smedt, Lieven E. G.; Lemoyne, Sabine; Huybrechts, Sofie A. M.; Wouters, Kristien; Kalmar, Alain F.; Monsieurs, Koenraad G.

    Aim: To measure ventilation rate using tracheal airway pressures in prehospitally intubated patients with and without cardiac arrest. Methods: Prospective observational study. In 98 patients (57 with and 41 without cardiac arrest) an air-filled catheter was inserted into the endotracheal tube and

  11. How is mechanical ventilation employed in a pediatric intensive care unit in Brazil?

    Directory of Open Access Journals (Sweden)

    Dafne Cardoso Bourguignon da Silva

    2009-01-01

    Full Text Available OBJECTIVE: to investigate the relationship between mechanical ventilation and mortality and the practice of mechanical ventilation applied in children admitted to a high-complexity pediatric intensive care unit in the city of São Paulo, Brazil. DESIGN: Prospective cohort study of all consecutive patients admitted to a Brazilian high-complexity PICU who were placed on mechanical ventilation for 24 hours or more, between October 1st, 2005 and March 31st, 2006. RESULTS: Of the 241 patients admitted, 86 (35.7% received mechanical ventilation for 24 hours or more. Of these, 49 met inclusion criteria and were thus eligible to participate in the study. Of the 49 patients studied, 45 had chronic functional status. The median age of participants was 32 months and the median length of mechanical ventilation use was 6.5 days. The major indication for mechanical ventilation was acute respiratory failure, usually associated with severe sepsis / septic shock. Pressure ventilation modes were the standard ones. An overall 10.37% incidence of Acute Respiratory Distress Syndrome was found, in addition to tidal volumes > 8 ml/kg, as well as normo- or hypocapnia. A total of 17 children died. Risk factors for mortality within 28 days of admission were initial inspiratory pressure, pH, PaO2/FiO2 ratio, oxygenation index and also oxygenation index at 48 hours of mechanical ventilation. Initial inspiratory pressure was also a predictor of mechanical ventilation for periods longer than 7 days. CONCLUSION: Of the admitted children, 35.7% received mechanical ventilation for 24 h or more. Pressure ventilation modes were standard. Of the children studied, 91% had chronic functional status. There was a high incidence of Acute Respiratory Distress Syndrome, but a lung-protective strategy was not fully implemented. Inspiratory pressure at the beginning of mechanical ventilation was a predictor of mortality within 28 days and of a longer course of mechanical ventilation.

  12. Ventilative Cooling

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; Kolokotroni, Maria

    This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state-of-the-art of ventil......This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state......-of-the-art of ventilative cooling potentials and limitations, its consideration in current energy performance regulations, available building components and control strategies and analysis methods and tools. In addition, the report provides twenty six examples of operational buildings using ventilative cooling ranging from...

  13. Subsurface Ventilation System Description Document

    Energy Technology Data Exchange (ETDEWEB)

    Eric Loros

    2001-07-25

    The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

  14. Subsurface Ventilation System Description Document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-12

    The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

  15. Effect Of Pressure Support Versus Unassisted Breathing Through A Tracheostomy Collar On Weaning Duration In Patients Requiring Prolonged Mechanical Ventilation: A Randomized Trial

    Science.gov (United States)

    Jubran, Amal; Grant, Brydon J.B.; Duffner, Lisa A.; Collins, Eileen G.; Lanuza, Dorothy M.; Hoffman, Leslie A.; Tobin, Martin J.

    2013-01-01

    Context Patients requiring prolonged mechanical ventilation (more than 21 days) are commonly weaned at long-term acute care hospitals (LTACHs). The most effective method of weaning such patients has not been investigated. Objective To compare weaning duration with pressure support versus unassisted breathing through a tracheostomy (trach collar) in patients transferred to a LTACH for weaning from prolonged ventilation. Design, Settings, and Participants Between 2000 and 2010, a randomized study was conducted in tracheotomized patients transferred to a single LTACH for weaning from prolonged ventilation. Of 500 patients who underwent a five-day screening procedure, 316 failed and were randomly assigned to wean with pressure support (n=155) or a trach collar (n=161). Six- and twelve-month survival was also determined. Main outcome measure Primary outcome was weaning duration. Secondary outcome was survival at six and twelve months after enrollment. Results Of 316 patients, four were withdrawn and not included in analysis. Of 152 patients in the pressure-support arm, 68 (44.7%) were weaned; 22 (14.5%) died. Of 160 patients in the trach-collar arm, 85 (53.1%) were weaned; 16 (10.0%) died. Median weaning time was shorter with trach collar than with pressure support: 15 [interquartile range, 8–25] versus 19 [12–31] days, p=0.004. The hazard ratio (HR) for successful weaning rate was higher with trach collar than with pressure support (HR, 1.43; 95% confidence interval [CI], 1.03–1.98, p<0.03) after adjusting for baseline clinical covariates. Trach collar achieved faster weaning than did pressure support among subjects who failed the screening procedure at 12–120 hours (HR, 3.33; 95% CI, 1.44–7.70, p<0.01), whereas weaning time was equivalent with the two methods in patients who failed the screening procedure within 0–12 hours. Mortality was equivalent in the pressure-support and trach-collar arms at six months (55.9% versus 51.3%; 4.7 difference, 95% CI −6

  16. Effect of pressure support vs unassisted breathing through a tracheostomy collar on weaning duration in patients requiring prolonged mechanical ventilation: a randomized trial.

    Science.gov (United States)

    Jubran, Amal; Grant, Brydon J B; Duffner, Lisa A; Collins, Eileen G; Lanuza, Dorothy M; Hoffman, Leslie A; Tobin, Martin J

    2013-02-20

    Patients requiring prolonged mechanical ventilation (>21 days) are commonly weaned at long-term acute care hospitals (LTACHs). The most effective method of weaning such patients has not been investigated. To compare weaning duration with pressure support vs unassisted breathing through a tracheostomy collar in patients transferred to an LTACH for weaning from prolonged ventilation. Between 2000 and 2010, a randomized study was conducted in tracheotomized patients transferred to a single LTACH for weaning from prolonged ventilation. Of 500 patients who underwent a 5-day screening procedure, 316 did not tolerate the procedure and were randomly assigned to receive weaning with pressure support (n = 155) or a tracheostomy collar (n = 161). Survival at 6- and 12-month time points was also determined. Primary outcome was weaning duration. Secondary outcome was survival at 6 and 12 months after enrollment. Of 316 patients, 4 were withdrawn and not included in analysis. Of 152 patients in the pressure-support group, 68 (44.7%) were weaned; 22 (14.5%) died. Of 160 patients in the tracheostomy collar group, 85 (53.1%) were weaned; 16 (10.0%) died. Median weaning time was shorter with tracheostomy collar use (15 days; interquartile range [IQR], 8-25) than with pressure support (19 days; IQR, 12-31), P = .004. The hazard ratio (HR) for successful weaning rate was higher with tracheostomy collar use than with pressure support (HR, 1.43; 95% CI, 1.03-1.98; P = .033) after adjusting for baseline clinical covariates. Use of the tracheostomy collar achieved faster weaning than did pressure support among patients who did not tolerate the screening procedure between 12 and 120 hours (HR, 3.33; 95% CI, 1.44-7.70; P = .005), whereas weaning time was equivalent with the 2 methods in patients who did not tolerate the screening procedure within 0 to 12 hours. Mortality was equivalent in the pressure-support and tracheostomy collar groups at 6 months (55.92% vs 51.25%; 4.67% difference, 95

  17. Alterations in the Rate of Limb Movement Using a Lower Body Positive Pressure Treadmill Do Not Influence Respiratory Rate or Phase III Ventilation

    Directory of Open Access Journals (Sweden)

    Michael J. Buono

    2015-01-01

    Full Text Available The purpose of this study was to determine the effect of alterations in rate of limb movement on Phase III ventilation during exercise, independent of metabolic rate, gait style, and treadmill incline. Subjects completed five submaximal exercise bouts on a lower body positive pressure treadmill (AlterG P 200. The percent body weight for the five exercise bouts was 100, 87, 75, 63, and 50% and each was matched for carbon dioxide production (VCO2. Naturally, to match the VCO2 while reducing the body weight up to 50% of normal required a significant increase in the treadmill speed from 3.0±0.1 to 4.1±0.2 mph, which resulted in a significant (P<0.05 increase in the mean step frequency (steps per minute from 118±10 at 3 mph (i.e., 100% of body weight to 133±6 at 4.1 mph (i.e., 50% of body weight. The most important finding was that significant increases in step frequency did not significantly alter minute ventilation or respiratory rate. Such results do not support an important role for the rate of limb movement in Phase III ventilation during submaximal exercise, when metabolic rate, gait style, and treadmill incline are controlled.

  18. Systematic review of non-invasive positive pressure ventilation for chronic respiratory failure.

    Science.gov (United States)

    Hannan, Liam M; Dominelli, Giulio S; Chen, Yi-Wen; Darlene Reid, W; Road, Jeremy

    2014-02-01

    This systematic review examined the effect of non-invasive positive pressure ventilation (NIPPV) on patient reported outcomes (PROs) and survival for individuals with or at risk of chronic respiratory failure (CRF). Randomised controlled trials (RCTs) and prospective non-randomised studies in those treated with NIPPV for CRF were identified from electronic databases, reference lists and grey literature. Diagnostic groups included in the review were amyotrophic lateral sclerosis/motor neuron disease (ALS/MND), Duchenne muscular dystrophy (DMD), restrictive thoracic disease (RTD) and obesity hypoventilation syndrome (OHS). Eighteen studies were included and overall study quality was weak. Those with ALS/MND had improved somnolence and fatigue as well as prolonged survival with NIPPV. For OHS, improvements in somnolence and fatigue, dyspnoea and sleep quality were demonstrated, while for RTD, measures of dyspnoea, sleep quality, physical function and health, mental and emotional health and social function improved. There was insufficient evidence to form conclusions regarding the effect of NIPPV for those with DMD. This review has demonstrated that NIPPV influences PROs differently depending on the underlying cause of CRF. These findings may provide assistance to patients and clinicians to determine the relative costs and benefits of NIPPV therapy and also highlight areas in need of further research. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Low-energy mechanical ventilation

    DEFF Research Database (Denmark)

    Andersen, Claus Wessel; Hviid, Christian Anker

    2014-01-01

    and with as little energy consumption as 41.1 kWh/m2/year including heating and all building services with no use of renewable energy such as PVcells or solar heating. One of the key means of reaching the objectives was to implement mechanical ventilation with low pressure loss and therefore low energy consumption....... The project consists of two buildings, building one is 6 stories high, and building two is 4 stories high. The buildings have a gross area of 50,500 m2 including underground parking. The ventilation and indoor climate concept was to use mechanical ventilation together with mechanical cooling and fanassisted......, with an average of 1.1 kJ/m3. The yearly mean SFP based on estimated runtime is approx. 0.8 kJ/m3. The case shows the unlocked potential that lies within mechanical ventilation for nearzero energy consuming buildings....

  20. Modeled effectiveness of ventilation with contaminant control devices on indoor air quality in a swine farrowing facility.

    Science.gov (United States)

    Anthony, T Renée; Altmaier, Ralph; Park, Jae Hong; Peters, Thomas M

    2014-01-01

    Because adverse health effects experienced by swine farm workers in concentrated animal feeding operations (CAFOs) have been associated with exposure to dust and gases, efforts to reduce exposures are warranted, particularly in winter seasons when exposures increase due to decreased ventilation. Simulation of air quality and operating costs for ventilating swine CAFO, including treating and recirculating air through a farrowing room, was performed using mass and energy balance equations over a 90-day winter season. System operation required controlling heater operation to achieve room temperatures optimal to ensure animal health (20 to 22.5 °C). Five air pollution control devices, four room ventilation rates, and five recirculation patterns were examined. Inhalable dust concentrations were easily reduced using standard industrial air pollution control devices, including a cyclone, filtration, and electrostatic precipitator. Operating ventilation systems at 0.94 m3 s(-1) (2000 cfm) with 75 to 100% recirculation of treated air from cyclone, electrostatic precipitator, and shaker dust filtration system achieves adequate particle control with operating costs under $1.00 per pig produced ($0.22 to 0.54), although carbon dioxide (CO2) concentrations approach 2000 ppm using in-room ventilated gas fired heaters. In no simulation were CO2 concentrations below industry recommended concentrations (1540 ppm), but alternative heating devices could reduce CO2 to acceptable concentrations. While this investigation does not represent all production swine farrowing barns, which differ in characteristics including room dimensions and swine occupancy, the simulation model and ventilation optimization methods can be applied to other production sites. This work shows that ventilation may be a cost-effective control option in the swine industry to reduce exposures.

  1. Effect of continuous positive airway pressure ventilation on prethrombotic state in patients with obstructive sleep apnea-hypopnea syndrome

    International Nuclear Information System (INIS)

    Guo Dianbao; Chen Xiangkun; Sheng Chunyong; Zhang Yingying

    2009-01-01

    To investigate the prethrombotic state (PTS) in patients with obstructive sleep apnea syndrome (OS-AS) and the effect of continuous positive airway pressure ventilation (CPAP) on their PTS, the blood samples of 49 patients with OSAS were taken before treatment and on day 30 after treatment respectively. The platelet aggregation ( PAG), P-selections, endothdlin-1 (ET-1) and plasma vom willebrand factor (vWF) in 49 patients and 42 health controls were detected by radioimmunoassay and enzyme-immunoassay. The results showed that the PAG, P-selections, ET-1 and vWF in patients with OSAS before treatment were significantly higher than those after treatment and in control group (P 0.05). The results indicate that there were PTS in most patients with OSAS before treatment. The activity of platelet could be corrected, and the function of endotheliocyte could be repaired after CPAP treatment. It had certain effect in lightening the clinical symptoms. (authors)

  2. Elective use of the Ventrain for upper airway obstruction during high-frequency jet ventilation.

    Science.gov (United States)

    Fearnley, Robert A; Badiger, Sheela; Oakley, Richard J; Ahmad, Imran

    2016-09-01

    The safety of high pressure source ventilation (jet ventilation) is dependent upon upper airway patency to facilitate adequate passive expiration and prevent increasing intrathoracic pressure and its associated deleterious sequelae. Distortions in airway anatomy may make passive expiration inadequate or impossible in some patients. We report the elective use of the Ventrain device to provide ventilation in a clinical setting of upper airway obstruction in a patient with post radiation fibrosis that had previously prevented passive expiration during attempted high pressure source ventilation. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Pleural liquid and kinetic friction coefficient of mesothelium after mechanical ventilation.

    Science.gov (United States)

    Bodega, Francesca; Sironi, Chiara; Porta, Cristina; Zocchi, Luciano; Agostoni, Emilio

    2015-01-15

    Volume and protein concentration of pleural liquid in anesthetized rabbits after 1 or 3h of mechanical ventilation, with alveolar pressure equal to atmospheric at end expiration, were compared to those occurring after spontaneous breathing. Moreover, coefficient of kinetic friction between samples of visceral and parietal pleura, obtained after spontaneous or mechanical ventilation, sliding in vitro at physiological velocity under physiological load, was determined. Volume of pleural liquid after mechanical ventilation was similar to that previously found during spontaneous ventilation. This finding is contrary to expectation of Moriondo et al. (2005), based on measurement of lymphatic and interstitial pressure. Protein concentration of pleural liquid after mechanical ventilation was also similar to that occurring after spontaneous ventilation. Coefficient of kinetic friction after mechanical ventilation was 0.023±0.001, similar to that obtained after spontaneous breathing. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Application of adaptive fuzzy control technology to pressure control of a pressurizer

    Institute of Scientific and Technical Information of China (English)

    YANG Ben-kun; BIAN Xin-qian; GUO Wei-lai

    2005-01-01

    A pressurizer is one of important equipment in a pressurized water reactor plant. It is used to maintain the pressure of primary coolant within allowed range because the sharp change of coolant pressure affects the security of reactor,therefor,the study of pressurizer's pressure control methods is very important. In this paper, an adaptive fuzzy controller is presented for pressure control of a pressurizer in a nuclear power plant. The controller can on-line tune fuzzy control rules and parameters by self-learning in the actual control process, which possesses the way of thinking like human to make a decision. The simulation results for a pressurized water reactor plant show that the adaptive fuzzy controller has optimum and intelligent characteristics, which prove the controller is effective.

  5. Dependency of radon entry on pressure difference

    International Nuclear Information System (INIS)

    Kokotti, H.; Kalliokoski, P.

    1992-01-01

    Radon levels, ventilation rate and pressure differences were monitored continuously in four apartment houses with different ventilation systems. Two of them were ventilated by mechanical exhaust, one by mechanical supply and exhaust, and one by natural ventilation. The two-storey houses were constructed from concrete elements on a slab and located on a gravel esker. It was surprising to find that increasing the ventilation rate increased levels of radon in the apartments. Increased ventilation caused increased outdoor-indoor pressure difference, which in turn increased the entry rate of radon and counteracted the diluting effect of ventilation. The increase was significant when the outdoor-indoor pressure difference exceeded 5 Pa. Especially in the houses with mechanical exhaust ventilation the pressure difference was the most important factor of radon entry rate, and contributed up to several hundred Bq m -3 h -1 . (Author)

  6. Fast or Slow Rescue Ventilations: A Predictive Model of Gastric Inflation.

    Science.gov (United States)

    Fitz-Clarke, John R

    2018-05-01

    Rescue ventilations are given during respiratory and cardiac arrest. Tidal volume must assure oxygen delivery; however, excessive pressure applied to an unprotected airway can cause gastric inflation, regurgitation, and pulmonary aspiration. The optimal technique provides mouth pressure and breath duration that minimize gastric inflation. It remains unclear if breath delivery should be fast or slow, and how inflation time affects the division of gas flow between the lungs and esophagus. A physiological model was used to predict and compare rates of gastric inflation and to determine ideal ventilation duration. Gas flow equations were based on standard pulmonary physiology. Gastric inflation was assumed to occur whenever mouth pressure exceeded lower esophageal sphincter pressure. Mouth pressure profiles that approximated mouth-to-mouth ventilation and bag-valve-mask ventilation were investigated. Target tidal volumes were set to 0.6 and 1.0 L. Compliance and airway resistance were varied. Rapid breaths shorter than 1 s required high mouth pressures, up to 25 cm H 2 O to achieve the target lung volume, which thus promotes gastric inflation. Slow breaths longer than 1 s permitted lower mouth pressures but increased time over which airway pressure exceeded lower esophageal sphincter pressure. The gastric volume increased with breath durations that exceeded 1 s for both mouth pressure profiles. Breath duration of ∼1.0 s caused the least gastric inflation in most scenarios. Very low esophageal sphincter pressure favored a shift toward 0.5 s. High resistance and low compliance each increased gastric inflation and altered ideal breath times. The model illustrated a general theory of optimal rescue ventilation. Breath duration with an unprotected airway should be 1 s to minimize gastric inflation. Short pressure-driven and long duration-driven gastric inflation regimens provide a unifying explanation for results in past studies. Copyright © 2018 by Daedalus Enterprises.

  7. Current concepts of protective ventilation during general anaesthesia

    NARCIS (Netherlands)

    Serpa Neto, Ary; Schultz, Marcus J.; Slutsky, Arthur S.

    2015-01-01

    Mechanical ventilation with high tidal volumes (VT) has been common practice in operating theatres because this strategy recruits collapsed lung tissue and improves ventilation-perfusion mismatch, thus decreasing the need for high inspired oxygen concentrations. Positive end-expiratory pressure

  8. Wind Extraction for Natural Ventilation

    Science.gov (United States)

    Fagundes, Tadeu; Yaghoobian, Neda; Kumar, Rajan; Ordonez, Juan

    2017-11-01

    Due to the depletion of energy resources and the environmental impact of pollution and unsustainable energy resources, energy consumption has become one of the main concerns in our rapidly growing world. Natural ventilation, a traditional method to remove anthropogenic and solar heat gains, proved to be a cost-effective, alternative method to mechanical ventilation. However, while natural ventilation is simple in theory, its detailed design can be a challenge, particularly for wind-driven ventilation, which its performance highly involves the buildings' form, surrounding topography, turbulent flow characteristics, and climate. One of the main challenges with wind-driven natural ventilation schemes is due to the turbulent and unpredictable nature of the wind around the building that impose complex pressure loads on the structure. In practice, these challenges have resulted in founding the natural ventilation mainly on buoyancy (rather than the wind), as the primary force. This study is the initial step for investigating the physical principals of wind extraction over building walls and investigating strategies to reduce the dependence of the wind extraction on the incoming flow characteristics and the target building form.

  9. Intraoperative mechanical ventilation: state of the art.

    Science.gov (United States)

    Ball, Lorenzo; Costantino, Federico; Orefice, Giulia; Chandrapatham, Karthikka; Pelosi, Paolo

    2017-10-01

    Mechanical ventilation is a cornerstone of the intraoperative management of the surgical patient and is still mandatory in several surgical procedures. In the last decades, research focused on preventing postoperative pulmonary complications (PPCs), both improving risk stratification through the use of predictive scores and protecting the lung adopting so-called protective ventilation strategies. The aim of this review was to give an up-to-date overview of the currently suggested intraoperative ventilation strategies, along with their pathophysiologic rationale, with a focus on challenging conditions, such as obesity, one-lung ventilation and cardiopulmonary bypass. While anesthesia and mechanical ventilation are becoming increasingly safe practices, the contribution to surgical mortality attributable to postoperative lung injury is not negligible: for these reasons, the prevention of PPCs, including the use of protective mechanical ventilation is mandatory. Mechanical ventilation should be optimized providing an adequate respiratory support while minimizing unwanted negative effects. Due to the high number of surgical procedures performed daily, the impact on patients' health and healthcare costs can be relevant, even when new strategies result in an apparently small improvement of outcome. A protective intraoperative ventilation should include a low tidal volume of 6-8 mL/kg of predicted body weight, plateau pressures ideally below 16 cmH2O, the lowest possible driving pressure, moderate-low PEEP levels except in obese patients, laparoscopy and long surgical procedures that might benefit of a slightly higher PEEP. The work of the anesthesiologist should start with a careful preoperative visit to assess the risk, and a close postoperative monitoring.

  10. Adaptive servo ventilation for central sleep apnoea in heart failure: SERVE-HF on-treatment analysis.

    Science.gov (United States)

    Woehrle, Holger; Cowie, Martin R; Eulenburg, Christine; Suling, Anna; Angermann, Christiane; d'Ortho, Marie-Pia; Erdmann, Erland; Levy, Patrick; Simonds, Anita K; Somers, Virend K; Zannad, Faiez; Teschler, Helmut; Wegscheider, Karl

    2017-08-01

    This on-treatment analysis was conducted to facilitate understanding of mechanisms underlying the increased risk of all-cause and cardiovascular mortality in heart failure patients with reduced ejection fraction and predominant central sleep apnoea randomised to adaptive servo ventilation versus the control group in the SERVE-HF trial.Time-dependent on-treatment analyses were conducted (unadjusted and adjusted for predictive covariates). A comprehensive, time-dependent model was developed to correct for asymmetric selection effects (to minimise bias).The comprehensive model showed increased cardiovascular death hazard ratios during adaptive servo ventilation usage periods, slightly lower than those in the SERVE-HF intention-to-treat analysis. Self-selection bias was evident. Patients randomised to adaptive servo ventilation who crossed over to the control group were at higher risk of cardiovascular death than controls, while control patients with crossover to adaptive servo ventilation showed a trend towards lower risk of cardiovascular death than patients randomised to adaptive servo ventilation. Cardiovascular risk did not increase as nightly adaptive servo ventilation usage increased.On-treatment analysis showed similar results to the SERVE-HF intention-to-treat analysis, with an increased risk of cardiovascular death in heart failure with reduced ejection fraction patients with predominant central sleep apnoea treated with adaptive servo ventilation. Bias is inevitable and needs to be taken into account in any kind of on-treatment analysis in positive airway pressure studies. Copyright ©ERS 2017.

  11. Liquid ventilation.

    Science.gov (United States)

    Sarkar, Suman; Paswan, Anil; Prakas, S

    2014-01-01

    Human have lungs to breathe air and they have no gills to breath liquids like fish. When the surface tension at the air-liquid interface of the lung increases as in acute lung injury, scientists started to think about filling the lung with fluid instead of air to reduce the surface tension and facilitate ventilation. Liquid ventilation (LV) is a technique of mechanical ventilation in which the lungs are insufflated with an oxygenated perfluorochemical liquid rather than an oxygen-containing gas mixture. The use of perfluorochemicals, rather than nitrogen as the inert carrier of oxygen and carbon dioxide offers a number of advantages for the treatment of acute lung injury. In addition, there are non-respiratory applications with expanding potential including pulmonary drug delivery and radiographic imaging. It is well-known that respiratory diseases are one of the most common causes of morbidity and mortality in intensive care unit. During the past few years several new modalities of treatment have been introduced. One of them and probably the most fascinating, is of LV. Partial LV, on which much of the existing research has concentrated, requires partial filling of lungs with perfluorocarbons (PFC's) and ventilation with gas tidal volumes using conventional mechanical ventilators. Various physico-chemical properties of PFC's make them the ideal media. It results in a dramatic improvement in lung compliance and oxygenation and decline in mean airway pressure and oxygen requirements. No long-term side-effect reported.

  12. Design Features of Modern Mechanical Ventilators.

    Science.gov (United States)

    MacIntyre, Neil

    2016-12-01

    A positive-pressure breath ideally should provide a V T that is adequate for gas exchange and appropriate muscle unloading while minimizing any risk for injury or discomfort. The latest generation of ventilators uses sophisticated feedback systems to sculpt positive-pressure breaths according to patient effort and respiratory system mechanics. Currently, however, these new control strategies are not totally closed-loop systems. This is because the automatic input variables remain limited, some clinician settings are still required, and the specific features of the perfect breath design still are not entirely clear. Despite these limitations, there are some rationale for many of these newer feedback features. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Intraoperative mechanical ventilation for the pediatric patient.

    Science.gov (United States)

    Kneyber, Martin C J

    2015-09-01

    Invasive mechanical ventilation is required when children undergo general anesthesia for any procedure. It is remarkable that one of the most practiced interventions such as pediatric mechanical ventilation is hardly supported by any scientific evidence but rather based on personal experience and data from adults, especially as ventilation itself is increasingly recognized as a harmful intervention that causes ventilator-induced lung injury. The use of low tidal volume and higher levels of positive end-expiratory pressure became an integral part of lung-protective ventilation following the outcomes of clinical trials in critically ill adults. This approach has been readily adopted in pediatric ventilation. However, a clear association between tidal volume and mortality has not been ascertained in pediatrics. In fact, experimental studies have suggested that young children might be less susceptible to ventilator-induced lung injury. As such, no recommendations on optimal lung-protective ventilation strategy in children with or without lung injury can be made. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Mobile communication devices causing interference in invasive and noninvasive ventilators.

    Science.gov (United States)

    Dang, Bao P; Nel, Pierre R; Gjevre, John A

    2007-06-01

    The aim of this study was to assess if common mobile communication systems would cause significant interference on mechanical ventilation devices and at what distances would such interference occur. We tested all the invasive and noninvasive ventilatory devices used within our region. This consisted of 2 adult mechanical ventilators, 1 portable ventilator, 2 pediatric ventilators, and 2 noninvasive positive pressure ventilatory devices. We operated the mobile devices from the 2 cellular communication systems (digital) and 1 2-way radio system used in our province at varying distances from the ventilators and looked at any interference they created. We tested the 2-way radio system, which had a fixed operation power output of 3.0 watts, the Global Systems for Mobile Communication cellular system, which had a maximum power output of 2.0 watts and the Time Division Multiple Access cellular system, which had a maximum power output of 0.2 watts on our ventilators. The ventilators were ventilating a plastic lung at fixed settings. The mobile communication devices were tested at varying distances starting at zero meter from the ventilator and in all operation modes. The 2-way radio caused the most interference on some of the ventilators, but the maximum distance of interference was 1.0 m. The Global Systems for Mobile Communication system caused significant interference only at 0 m and minor interference at 0.5 m on only 1 ventilator. The Time Division Multiple Access system caused no interference at all. Significant interference consisted of a dramatic rise and fluctuation of the respiratory rate, pressure, and positive end-expiratory pressure of the ventilators with no normalization when the mobile device was removed. From our experiment on our ventilators with the communication systems used in our province, we conclude that mobile communication devices such as cellular phones and 2-way radios are safe and cause no interference unless operated at very close distances of

  15. Buoyancy and Pressure Driven Flow of Hot Gases in Vertical Shafts with Natural and Forced Ventilation

    Science.gov (United States)

    Tamm, Gunnar; Jaluria, Yogesh

    2003-11-01

    An experimental investigation has been carried out on the buoyancy and pressure induced flow of hot gases in vertical shafts, in order to simulate the propagation of combustion products in elevator shafts due to fire in multilevel buildings. Various geometrical configurations are studied, with regard to natural and forced ventilation imposed at the top or bottom of the vertical shaft. The aspect ratio is taken at a fixed value of 6 and the inflow conditions for the hot gases, at a vent near the bottom, are varied in terms of the Reynolds and Grashof numbers. Temperature measurements within the shaft allow a detailed study of the steady state thermal fields, from which optimal means for smoke alleviation in high-rise building fires may be developed. Flow visualization is also used to study the flow characteristics. The results obtained indicate a wall plume as the primary transport mechanism. Flow recirculation dominates at high Grashof number flows, while increased Reynolds numbers gives rise to greater mixing in the shaft. The development and stability of the flow and its effect on the spread of smoke and hot gases are assessed for the different shaft configurations and inlet conditions. It is found that the fastest smoke removal and lowest shaft temperatures occur for a configuration with natural ventilation at the top and forced ventilation up from the shaft bottom. It is also shown that forced ventilation can be used to arrest smoke spread, as well as to dilute the effects of the fire.

  16. CDC releases ventilator-associated events criteria

    Directory of Open Access Journals (Sweden)

    Robbins RA

    2017-01-01

    Full Text Available No abstract available. Article truncated at 150 words. A new term has been coined by the CDC, ventilator-associated events (VAEs (1. In 2011, the CDC convened a working group composed of members of several stakeholder organizations to address the limitations of the definition of ventilator-associated pneumonia (VAP definition (2. The organizations represented in the Working Group include: the Critical Care Societies Collaborative (the American Association of Critical-Care Nurses, the American College of Chest Physicians, the American Thoracic Society, and the Society for Critical Care Medicine; the American Association for Respiratory Care; the Association of Professionals in Infection Control and Epidemiology; the Council of State and Territorial Epidemiologists; the Healthcare Infection Control Practices Advisory Committee’s Surveillance Working Group; the Infectious Diseases Society of America; and the Society for Healthcare Epidemiology of America. VAEs are defined by an increase oxygen (>0.2 in FiO2 or positive end-expiratory pressure (PEEP (≥3 cm H2O, after a previous stable baseline of at least 2 …

  17. Study on collaborative optimization control of ventilation and radon reduction system based on multi-agent technology

    International Nuclear Information System (INIS)

    Dai Jianyong; Meng Lingcong; Zou Shuliang

    2015-01-01

    According to the radioactive safety features such as radon and its progeny, combined with the theory of ventilation system, structure of multi-agent system for ventilation and radon reduction system is constructed with the application of multi agent technology. The function attribute of the key agent and the connection between the nodes in the multi-agent system are analyzed to establish the distributed autonomous logic structure and negotiation mechanism of multi agent system of ventilation and radon reduction system, and thus to implement the coordination optimization control of the multi-agent system. The example analysis shows that the system structure of the multi-agent system of ventilation and reducing radon system and its collaborative mechanism can improve and optimize the radioactive pollutants control, which provides a theoretical basis and important application prospect. (authors)

  18. Monitoring and energetic performance of two similar semi-closed greenhouse ventilation systems

    International Nuclear Information System (INIS)

    Coomans, Mathias; Allaerts, Koen; Wittemans, Lieve; Pinxteren, Dave

    2013-01-01

    Highlights: • Measurements on two semi-closed greenhouses and two traditional open greenhouses. • Mechanical and natural ventilation for dehumidification and cooling. • Analyses and comparison of installation controls, indoor climate and energy flows. • Examination of air-to-air heat recuperation efficiency in ventilation unit. • Using the semi-closed systems amounted to energy savings of 13% and 28%. - Abstract: Horticulture is an energy intensive industry when dealing with cold climates such as Western Europe. High energy prices and on-going pressure from international competition are raising demand for energy efficient solutions. In search of reducing greenhouse energy consumption, this study investigates semi-closed systems combining controlled mechanical and natural ventilation with thermal screens. Ventilated greenhouse systems (semi-closed) have been implemented in the greenhouse compartments of two Belgian horticulture research facilities: the Research Station for Vegetable Production Sint-Katelijne-Waver (PSKW) and the Research Center Hoogstraten (PCH). Additionally, two reference compartments were included for comparison of the results. The greenhouses were part of a long-term monitoring campaign in which detailed measurements with a high time resolution were gathered by a central monitoring system. A large amount of data was processed and analysed, including outdoor and indoor climatic parameters, system controls and installation measurements. The ventilated greenhouses obtained energy savings of 13% and 28% for PSKW and PCH respectively, without substantial impact on crop production or indoor climate conditions when compared to the reference compartments. A considerable amount of heat was recovered by the heat recuperation stage in the ventilation unit of PCH, accounting for 12% of the total heat demand. In general, it was demonstrated that the greenhouse heat demand can be reduced significantly by controlled dehumidification with mechanical

  19. Chest physiotherapy in mechanically ventilated children: a review.

    Science.gov (United States)

    Krause, M F; Hoehn, T

    2000-05-01

    Many physicians, nurses, and respiratory care practitioners consider chest physiotherapy (CP) a standard therapy in mechanically ventilated children beyond the newborn period. CP includes percussion, vibration, postural drainage, assisted coughing, and suctioning via the endotracheal tube. We searched the medical literature by using the key words "chest physiotherapy" and "chest physical therapy" (among others) by means of the MEDLINE and Current Contents databases. Because of the paucity of objective data, we examined all reports dealing with this topic, including studies on adult patients. For data extraction, not enough material existed to perform a meta-analysis. Despite its widespread use, almost no literature dealing with this treatment modality in pediatric patients exists. Studies with mechanically ventilated pediatric and adult patients have shown that CP is the most irritating routine intensive care procedure to patients. An increase in oxygen consumption often occurs when a patient receives CP accompanied by an elevation in heart rate, blood pressure, and intracranial pressure. CP leads to short-term decreases in oxygen, partial pressure in the blood, and major fluctuations in cardiac output. Changes in these vital signs and other variables may be even more pronounced in pediatric patients because the lung of a child is characterized by a higher closing capacity and the chest walls are characterized by a much higher compliance, thus predisposing the child to the development of atelectasis secondary to percussion and vibration. CP in mechanically ventilated children may not be considered a standard therapy. Controlled studies examining the impact of CP on the duration of mechanical ventilatory support, critical illness, and hospital stay are needed.

  20. Modulating ventilation - low cost VAV for office buildings. [Variable Air Volume]; Modulerende ventilation - low cost VAV til kontor-bygninger. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Hoej Christensen, A.; Olsen, Hans; Drivsholm, C.

    2012-02-15

    The report describes a concept for renovating older existing Constant Air Volume (CAV) ventilation systems to modulating low-cost Variable Air Volume (VAV) systems. The concept is based on the total ventilated area being divided into appropriate indoor climate zones, which can cover from one to several offices with similar climate needs. For this initial climate assessment two relatively ''simple'' tools were developed that can estimate the temperature level in one room from the ventilation airflow, heat loads, etc.: - BSimFast (24-hour mean temperature calculation according to SBI-196, 2000); - BSimLight (Temperature simulation based on Danvak Textbook of Heat and Climate Technology). The concept of 'one room' can also be extended to 'one zone' with appropriate assumptions. However, only one mean room temperature is calculated. The different climate zones were equipped with Halton HFB control unit at the air supply and exhaust side. The project the following feedback options were used: - HFB unit's damper opening degree (0 to 90 degrees); - HFB unit's current flow; - HFB unit's exhaust temperature; and feedback from: - Frequency transformer (fan speed); - The central static duct pressure at the ventilation unit. In the project a control algorithm is developed that ensures a robust control of the entire ventilation system without adverse cyclic variations, based among other things on the exhaust temperature for each climate zone, and with the requirement that at least one throttle valve is always at least 80% open. It turned out that information on the current partial air volumes was necessary in addition to the individual throttle settings. Otherwise, a cyclic variations could not be controlled..Thus, it was the exhaust temperature from individual climate zones that defined the respective volumes of air. The concept was implemented on a complete CAV system and on part of a large CAV system, respectively. (LN)

  1. Oral mask ventilation is more effective than face mask ventilation after nasal surgery.

    Science.gov (United States)

    Yazicioğlu, Dilek; Baran, Ilkay; Uzumcugil, Filiz; Ozturk, Ibrahim; Utebey, Gulten; Sayın, M Murat

    2016-06-01

    To evaluate and compare the face mask (FM) and oral mask (OM) ventilation techniques during anesthesia emergence regarding tidal volume, leak volume, and difficult mask ventilation (DMV) incidence. Prospective, randomized, crossover study. Operating room, training and research hospital. American Society of Anesthesiologists physical status I and II adult patients scheduled for nasal surgery. Patients in group FM-OM received FM ventilation first, followed by OM ventilation, and patients in group OM-FM received OM ventilation first, followed by FM ventilation, with spontaneous ventilation after deep extubation. The FM ventilation was applied with the 1-handed EC-clamp technique. The OM was placed only over the mouth, and the 1-handed EC-clamp technique was used again. A child's size FM was used for the OM ventilation technique, the mask was rotated, and the inferior part of the mask was placed toward the nose. The leak volume (MVleak), mean airway pressure (Pmean), and expired tidal volume (TVe) were assessed with each mask technique for 3 consecutive breaths. A mask ventilation grade ≥3 was considered DMV. DMV occurred more frequently during FM ventilation (75% with FM vs 8% with OM). In the FM-first sequence, the mean TVe was 249±61mL with the FM and 455±35mL with the OM (P=.0001), whereas in the OM-first sequence, it was 276±81mL with the FM and 409±37mL with the OM (P=.0001). Regardless of the order used, the OM technique significantly decreased the MVleak and increased the TVe when compared to the FM technique. During anesthesia emergence after nasal surgery the OM may offer an effective ventilation method as it decreases the incidence of DMV and the gas leak around the mask and provides higher tidal volume delivery compared with FM ventilation. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Performance analysis of a new design of office diffuse ceiling ventilation system

    DEFF Research Database (Denmark)

    Fan, Jianhua; Hviid, Christian Anker; Yang, Honglu

    2013-01-01

    This paper aims to document and analyse performance of a new design of diffuse ceiling ventilation system in a typical office room. A full scale measurement is carried out in a climate chamber with an office setup at the Technical University of Denmark. Indoor air temperatures, air speeds, wall...... surface temperatures, pressure loss of the ceiling and ventilation effectiveness are measured for an air change rate of 3.5 h-1 and 5.1 h -1 respectively. A computational fluid dynamics model of the office with the diffuse ceiling ventilation system is built and validated by the full scale measurement....... The measurements of pressure loss across the ceiling show a low pressure drop between the plenum and the occupied zone. Ventilation effectiveness is measured to be close to 1 on average under the tested conditions. It is shown that the diffuse ceiling ventilation system is able to remove indoor pollutant...

  3. Positioning of sensors for control of ventilation systems in broiler houses: a case study

    Directory of Open Access Journals (Sweden)

    Thayla Morandi Ridolfi de Carvalho Curi

    Full Text Available ABSTRACT Ventilation systems are incorporated at intensive poultry farms to control environment conditions and thermal comfort of broilers. The ventilation system operates based on environmental data, particularly measured by sensors of temperature and relative humidity. Sensors are placed at different positions of the facility. Quality, number and positioning of the sensors are critical factors to achieve an efficient performance of the system. For this reason, a strategic positioning of the sensors associated to controllers could support the maintenance and management of the microclimate inside the facility. This research aims to identify the three most representative points for the positioning of sensors in order to support the ventilation system during the critical period from 12h00 to 15h00 on summer days. Temperature, relative humidity and wind speed were measured in four different tunnel ventilated barns at the final stage of the production cycle. The descriptive analysis was performed on these data. The Temperature and Humidity Index (THI was also calculated. Then, the geostatistical analysis of THI was performed by GS+ and the position of sensors was determined by ordinary kriging. The methodology was able to detect the most representative points for the positioning of sensors in a case study (southeastern Brazil. The results suggested that this strategic positioning would help controllers to obtain a better inference of the microclimate during the studied period (the hottest microclimate, considered critical in Brazil. In addition, these results allow developing a future road map for a decision support system based on 24 h monitoring of the ventilation systems in broiler houses.

  4. Lung-protective ventilation in abdominal surgery.

    Science.gov (United States)

    Futier, Emmanuel; Jaber, Samir

    2014-08-01

    To provide the most recent and relevant clinical evidence regarding the use of prophylactic lung-protective mechanical ventilation in abdominal surgery. Evidence is accumulating, suggesting an association between intraoperative mechanical ventilation strategy and postoperative pulmonary complications in patients undergoing abdominal surgery. Nonprotective ventilator settings, especially high tidal volume (>10-12 ml/kg), very low level of positive end-expiratory pressure (PEEP, ventilator-associated lung injury in patients with healthy lungs. Stimulated by the previous findings in patients with acute respiratory distress syndrome, the use of lower tidal volume ventilation is becoming increasingly more common in the operating room. However, lowering tidal volume, though important, is only part of the overall multifaceted approach of lung-protective mechanical ventilation. Recent data provide compelling evidence that prophylactic lung-protective mechanical ventilation using lower tidal volume (6-8 ml/kg of predicted body weight), moderate PEEP (6-8 cm H2O), and recruitment maneuvers is associated with improved functional or physiological and clinical postoperative outcome in patients undergoing abdominal surgery. The use of prophylactic lung-protective ventilation can help in improving the postoperative outcome.

  5. Variable versus conventional lung protective mechanical ventilation during open abdominal surgery (PROVAR): a randomised controlled trial

    NARCIS (Netherlands)

    Spieth, P. M.; Güldner, A.; Uhlig, C.; Bluth, T.; Kiss, T.; Conrad, C.; Bischlager, K.; Braune, A.; Huhle, R.; Insorsi, A.; Tarantino, F.; Ball, L.; Schultz, M. J.; Abolmaali, N.; Koch, T.; Pelosi, P.; Gama de Abreu, M.

    2018-01-01

    Experimental studies showed that controlled variable ventilation (CVV) yielded better pulmonary function compared to non-variable ventilation (CNV) in injured lungs. We hypothesized that CVV improves intraoperative and postoperative respiratory function in patients undergoing open abdominal surgery.

  6. Ventilation of uranium mines

    International Nuclear Information System (INIS)

    Francois, Y.; Pradel, J.; Zettwoog, P.; Dumas, M.

    1975-01-01

    In the first part of the paper the authors describe the ventilation of French mines in terms of the primary ventilation system, which brings the outside air close to the working places using the overall structure of the mine to form the airways, and the secondary ventilation system, which is for the distribution of the primary air or for the ventilation of the development drifts and blind tunnels. Brief mention is made of the French regulations on the ventilation of mines in general and uranium mines in particular. The authors describe the equipment used and discuss the installed capacities and air flow per man and per working place. The difficulties encountered in properly ventilating various types of working places are mentioned, such as sublevel development drifts, reinforced stopes, and storage chambers with an artificial crown. The second part of the paper is devoted to computer calculations of the primary ventilation system. It is explained why the Commissariat a l'energie atomique has found it necessary to make these calculations. Without restating the mathematical theories underlying the methods employed, the authors demonstrate how simple measuring instruments and a small-size computer can be used to solve the ventilation problems arising in French mines. Emphasis is given to the layout of the ventilation system and to air flow and negative pressure measurements at the base of the mine. The authors show how calculations can be applied to new heading operations, a change in resistance, the replacement or addition of a ventilator, and a new air inlet or outlet. The authors come to the conclusion that since ventilation is at present the most reliable way of avoiding the pollution of mines, a thorough knowledge of the capabilities in this respect can often help improve working conditions. Despite the progress made, however, constant surveillance of the ventilation systems in uranium mines by a separate team with no responsibility for production problems is

  7. Ventilation of uranium mines

    International Nuclear Information System (INIS)

    Francois, Y.; Pradel, J.; Zettwoog, P.; Dumas, M.

    1975-01-01

    In the first part of the paper the authors describe the ventilation of French mines in terms of the primary ventilation system, which brings the outside air close to the working places using the overall structure of the mine to form the airways, and the secondary ventilation system, which is for the distribution of the primary air or for the ventilation of the development drifts and blind tunnels. Brief mention is made of the French regulations on the ventilation of mines in general and uranium mines in particular. The authors describe the equipment used and discuss the installed capacities and air flow per man and per working place. The difficulties encountered in properly ventilating various types of working places are mentioned, such as sub-level development drifts, reinforced stopes, and storage chambers with an artificial crown. The second part of the paper is devoted to computer calculations of the primary ventilation system. It is explained why the Commissariat a l'energie atomique has found it necessary to make these calculations. Without restating the mathematical theories underlying the methods employed, the authors demonstrate how simple measuring instruments and a small-size computer can be used to solve the ventilation problems arising in French mines. Emphasis is given to the layout of the ventilation system and to air flow and negative pressure measurements at the base of the mine. The authors show how calculations can be applied to new heading operations, a change in resistance, the replacement or addition of a ventilator, and a new air inlet or outlet. The authors come to the conclusion that since ventilation is at present the most reliable way of avoiding the pollution of mines, a thorough knowledge of the capabilities in this respect can often help improve working conditions. Despite the progress made, however, constant surveillance of the ventilation systems in uranium mines by a separate team with no responsibility for production problems is

  8. Formaldehyde and acetaldehyde exposure mitigation in US residences: In-home measurements of ventilation control and source control

    Energy Technology Data Exchange (ETDEWEB)

    Hult, Erin L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Willem, Henry [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Phillip N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hotchi, Toshifumi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Russell, Marion L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singer, Brett C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-10-01

    Measurements were taken in new US residences to assess the extent to which ventilation and source control can mitigate formaldehyde exposure. Increasing ventilation consistently lowered indoor formaldehyde concentrations. However, at a reference air exchange rate of 0.35 h-1, increasing ventilation was up to 60% less effective than would be predicted if the emission rate were constant. This is consistent with formaldehyde emission rates decreasing as air concentrations increase, as observed in chamber studies. In contrast, measurements suggest acetaldehyde emission was independent of ventilation rate. To evaluate the effectiveness of source control, formaldehyde concentrations were measured in Leadership in Energy and Environmental Design (LEED) certified/Indoor airPLUS homes constructed with materials certified to have low emission rates of volatile organic compounds (VOC). At a reference air exchange rate of 0.35 h-1, and adjusting for home age, temperature and relative humidity, formaldehyde concentrations in homes built with low-VOC materials were 42% lower on average than in reference new homes with conventional building materials. Without adjustment, concentrations were 27% lower in the low-VOC homes. The mean and standard deviation of formaldehyde concentration were 33 μg m-3 and 22 μg m-3 for low-VOC homes and 45 μg m-3 and 30 μg m-3 for conventional.

  9. Components for containment enclosures. Part 4: Ventilation and gas-cleaning systems such as filters, traps, safety and regulation valves, control and protection devices

    International Nuclear Information System (INIS)

    2001-01-01

    ISO 11933 consists of the following parts, under the general title Components for containment enclosures: Part 1: Glove/bag ports, bungs for glove/bag ports, enclosure rings and interchangeable units; Part 2: Gloves, welded bags, gaiters for remote-handling tongs and for manipulators; Part 3: Transfer systems such as plain doors, airlock chambers, double door transfer systems, leaktight connections for waste drums; Part 4: Ventilation and gas-cleaning systems such as filters, traps, safety and regulation valves, control and protection devices; Part 5: Penetrations for electrical and fluid circuits. This part of ISO 11933 specifies the design criteria and the characteristics of various components used for ventilation and gas-cleaning in containment enclosures. These components are either directly fixed to the containment enclosure wall, or used in the environment of a shielded or unshielded containment enclosure or line of such enclosures. They can be used alone or in conjunction with other mechanical components, including those specified in ISO 11933-1 and ISO 11933-3. This part of ISO 11933 is applicable to: filtering devices, including high-efficiency particulate air (HEPA) filters and iodine traps; safety valves and pressure regulators; systems ensuring the mechanical protection of containment enclosures; control and pressure-measurement devices

  10. FLOW-i ventilator performance in the presence of a circle system leak.

    Science.gov (United States)

    Lucangelo, Umberto; Ajčević, Miloš; Accardo, Agostino; Borelli, Massimo; Peratoner, Alberto; Comuzzi, Lucia; Zin, Walter A

    2017-04-01

    Recently, the FLOW-i anaesthesia ventilator was developed based on the SERVO-i intensive care ventilator. The aim of this study was to test the FLOW-i's tidal volume delivery in the presence of a leak in the breathing circuit. We ventilated a test lung model in volume-, pressure-, and pressure-regulated volume-controlled modes (VC, PC, and PRVC, respectively) with a FLOW-i. First, the circuit remained airtight and the ventilator was tested with fresh gas flows of 6, 1, and 0.3 L/min in VC, PC, and PRVC modes and facing 4 combinations of different resistive and elastic loads. Second, a fixed leak in the breathing circuit was introduced and the measurements repeated. In the airtight system, FLOW-i maintained tidal volume (VT) and circuit pressure at approximately the set values, independently of respiratory mode, load, or fresh gas flow. In the leaking circuit, set VT = 500 mL, FLOW-i delivered higher VTs in PC (about 460 mL) than in VC and PRVC, where VTs were substantially less than 500 mL. Interestingly, VT did not differ appreciably from 6 to 0.3 L/min of fresh air flow among the 3 ventilatory modes. In the absence of leakage, peak inspiratory pressures were similar, while they were 35-45 % smaller in PRVC and VC than in PC mode in the presence of leaks. In conclusion, FLOW-i maintained VT (down to fresh gas flows of 0.3 L/min) to 90 % of its preset value in PC mode, which was 4-5 times greater than in VC or PRVC modes.

  11. Characterization of the Airflow from a Bottom Hung Window under Natural Ventilation

    DEFF Research Database (Denmark)

    Svidt, Kjeld; Heiselberg, Per; Nielsen, Peter V.

    This paper describes the results of laboratory measurements of the airflow from a bottom hung window mounted near the ceiling of a ventilated room. In the laboratory set-up it was possible to control the temperature difference and the airflow rate through the window. The pressure drop through...

  12. Comparing the effects of rise time and inspiratory cycling criteria on 6 different mechanical ventilators.

    Science.gov (United States)

    Gonzales, Joshua F; Russian, Christopher J; Gregg Marshall, S; Collins, Kevin P

    2013-03-01

    Inspiratory rise time and cycling criteria are important settings in pressure support ventilation. The purpose of this study was to investigate the impact of minimum and maximum rise time and inspiratory cycling criteria settings on 6 new generation ventilators. Our hypothesis was there would be a difference in the exhaled tidal volume, inspiratory time, and peak flow among 6 different ventilators, based, on change in rise time and cycling criteria. The research utilized a breathing simulator and 4 different ventilator models. All mechanical ventilators were set to a spontaneous mode of ventilation with settings of pressure support 8 cm H2O and PEEP of 5 cm H2O. A minimum and maximum setting for rise time and cycling criteria were examined. Exhaled tidal volume, inspiratory time, and peak flow measurements were recorded for each simulation. Significant (P ventilator. Significant differences in exhaled tidal volume, inspiratory time, and peak flow were observed by adjusting rise time and cycling criteria. This research demonstrates that during pressure support ventilation strategy, adjustments in rise time and/or cycling criteria can produce changes in inspiratory parameters. Obviously, this finding has important implications for practitioners who utilize a similar pressure support strategy when conducting a ventilator wean. Additionally, this study outlines major differences among ventilator manufacturers when considering inspiratory rise time and cycling criteria.

  13. [Effects of noninvasive proportional assist vs pressure support ventilation on respiratory work in chronic obstructive pulmonary disease patients with hypercapnia].

    Science.gov (United States)

    Zhang, J H; Luo, Q; Zhang, H J; Chen, R C

    2017-06-12

    Objective: To investigate the effect of noninvasive proportional assist ventilation (PAV) on respiratory work in chronic obstructive pulmonary disease(COPD) patients, in comparison to noninvasive pressure support ventilation(PSV). Methods: Ten severe COPD patients with hypercapnia during acute exacerbation were examined. The baseline inspiratory pressure of PSV (PS) and the assistance level of PAV(PA) were titrated by patients' tolerance. In addition to the baseline PS and PA, an additional decrease by 25% (PS-=75% PS, PA-=75% PA) or increase by 25% (PS+ =125% PS, PA+ =125% PA) of the assist level were applied to the patients. After the assessment of unassisted spontaneous breathing (SB), the patient was placed on the 6 levels of noninvasive-PSV and noninvasive-PAV in random sequence. Each level lasted at least 20 minutes. Respiratory rate (RR), tidal volume (Vt), and respiratory work(Wex, Wip and Wv) were measured. Asynchrony index (AI) was calculated. Results: During ventilation, Vt was significantly higher with each assist level than with SB. The Vt was significant increased with PS+ than with PA+ . An increase in expiratory work(Wex) and decrease in inspiratory work(Wip) were observed respectively, with the increasing assist level. The inspiratory muscles assessed by Wip were more unloaded at PS compared with PA [PS: (1.59±1.27) J/min vs PA: (4.99±3.48) J/min P increased with the increasing assist level of PSV [PS-: (0.46±0.57)%, PS: (1.36±1.24)% PS+ : (5.26±4.77)]. No asynchrony events were observed at PA- and PA. "Runaway" (expiratory asynchrony) was observed during PA+ [AI: (2.62±2.72)%]. Conclusions: Noninvasive-PAV can increase the Vt and decrease the Wip of the COPD patients with hypercapnia and avoid the over-assistance. The "Runaway" will occur at assist level higher than that set by tolerance. Physiological data can monitor the patient's responses and the ventilator-patient interaction, which may provide objective criteria for ventilator setting.

  14. Causes Of Low Efficiency Of Combined Ventilation System In Coal Mines In Resolving The Problem Of Air Leaks (Inflows) Between Levels And Surface

    Science.gov (United States)

    Popov, Valeriy; Filatov, Yuriy; Lee, Hee; Golik, Anatoliy

    2017-11-01

    The paper discusses the problem of the underground mining safety control. The long-term air intake to coal accumulations is reviewed as one of the reasons of endogenous fires during mining. The methods of combating air leaks (inflows) in order to prevent endogenous fires are analyzed. The calculations showing the discrepancy between the design calculations for the mine ventilation, disregarding a number of mining-andgeological and mining-engineering factors, and the actual conditions of mining are given. It is proved that the conversion of operating mines to combined (pressure and exhaust) ventilation system in order to reduce the endogenous fire hazard of underground mining is unreasonable due to impossibility of providing an optimal distribution of aerodynamic pressure in mines. The conversion does not exclude the entry of air into potentially hazardous zones of endogenous fires. The essence of the combined application of positive and negative control methods for the distribution of air pressure is revealed. It consists of air doors installation in easily ventilated airways and installation of pressure equalization chambers equipped with auxiliary fans near the stoppings, working sections and in parallel airways.The effectiveness of the combined application of negative and positive control methods for the air pressure distribution in order to reduce endogenous fire hazard of mining operations is proved.

  15. Ventilation Positive Pressure Intervention Effect on Indoor Air Quality in a School Building with Moisture Problems

    Directory of Open Access Journals (Sweden)

    Camilla Vornanen-Winqvist

    2018-01-01

    Full Text Available This case study investigates the effects of ventilation intervention on measured and perceived indoor air quality (IAQ in a repaired school where occupants reported IAQ problems. Occupants’ symptoms were suspected to be related to the impurities leaked indoors through the building envelope. The study’s aim was to determine whether a positive pressure of 5–7 Pa prevents the infiltration of harmful chemical and microbiological agents from structures, thus decreasing symptoms and discomfort. Ventilation intervention was conducted in a building section comprising 12 classrooms and was completed with IAQ measurements and occupants’ questionnaires. After intervention, the concentration of total volatile organic compounds (TVOC and fine particulate matter (PM2.5 decreased, and occupants’ negative perceptions became more moderate compared to those for other parts of the building. The indoor mycobiota differed in species composition from the outdoor mycobiota, and changed remarkably with the intervention, indicating that some species may have emanated from an indoor source before the intervention.

  16. Ventilation Positive Pressure Intervention Effect on Indoor Air Quality in a School Building with Moisture Problems

    Science.gov (United States)

    Vornanen-Winqvist, Camilla; Järvi, Kati; Toomla, Sander; Ahmed, Kaiser; Andersson, Maria A.; Mikkola, Raimo; Marik, Tamás; Salonen, Heidi

    2018-01-01

    This case study investigates the effects of ventilation intervention on measured and perceived indoor air quality (IAQ) in a repaired school where occupants reported IAQ problems. Occupants’ symptoms were suspected to be related to the impurities leaked indoors through the building envelope. The study’s aim was to determine whether a positive pressure of 5–7 Pa prevents the infiltration of harmful chemical and microbiological agents from structures, thus decreasing symptoms and discomfort. Ventilation intervention was conducted in a building section comprising 12 classrooms and was completed with IAQ measurements and occupants’ questionnaires. After intervention, the concentration of total volatile organic compounds (TVOC) and fine particulate matter (PM2.5) decreased, and occupants’ negative perceptions became more moderate compared to those for other parts of the building. The indoor mycobiota differed in species composition from the outdoor mycobiota, and changed remarkably with the intervention, indicating that some species may have emanated from an indoor source before the intervention. PMID:29385772

  17. Ventilation Positive Pressure Intervention Effect on Indoor Air Quality in a School Building with Moisture Problems.

    Science.gov (United States)

    Vornanen-Winqvist, Camilla; Järvi, Kati; Toomla, Sander; Ahmed, Kaiser; Andersson, Maria A; Mikkola, Raimo; Marik, Tamás; Kredics, László; Salonen, Heidi; Kurnitski, Jarek

    2018-01-30

    This case study investigates the effects of ventilation intervention on measured and perceived indoor air quality (IAQ) in a repaired school where occupants reported IAQ problems. Occupants' symptoms were suspected to be related to the impurities leaked indoors through the building envelope. The study's aim was to determine whether a positive pressure of 5-7 Pa prevents the infiltration of harmful chemical and microbiological agents from structures, thus decreasing symptoms and discomfort. Ventilation intervention was conducted in a building section comprising 12 classrooms and was completed with IAQ measurements and occupants' questionnaires. After intervention, the concentration of total volatile organic compounds (TVOC) and fine particulate matter (PM 2.5 ) decreased, and occupants' negative perceptions became more moderate compared to those for other parts of the building. The indoor mycobiota differed in species composition from the outdoor mycobiota, and changed remarkably with the intervention, indicating that some species may have emanated from an indoor source before the intervention.

  18. Review of low-energy construction, air tightness, ventilation strategies and indoor radon: results from Finnish houses and apartments

    International Nuclear Information System (INIS)

    Arvela, H.; Holmgren, O.; Reisbacka, H.; Vinha, J.

    2014-01-01

    Low-energy and passive house construction practices are characterised by increased insulation, high air tightness of the building shell and controlled mechanical ventilation with heat recovery. As a result of the interaction of mechanical ventilation and high air tightness, the pressure difference in a building can be markedly enhanced. This may lead to elevated indoor radon levels. Minor leakages in the foundation can affect the radon concentration, even in the case where such leaks do not markedly reduce the total air tightness. The potential for high pressures to affect indoor radon concentrations markedly increases when the air tightness ACH 50 , i.e. the air change per hour induced by a pressure difference of 50 Pa, is -1 . Pressure differences in Finnish low-rise residential houses having mechanical supply and exhaust ventilation with heat recovery (MSEV) are typically 2-3 Pa, clearly lower than the values of 5-9 Pa in houses with only mechanical exhaust ventilation (MEV). In MSEV houses, radon concentrations are typically 30 % lower than in MEV houses. In new MSEV houses with an ACH50 of 0.6 h -1 , the limit for passive construction, the analytical estimates predict an increase of 100 % in the radon concentration compared with older houses with an ACH50 of 4.0 h -1 . This poses a challenge for efficient radon prevention in new construction. Radon concentrations are typically 30 % lower in houses with two storeys compared with only one storey. The introduction of an MSEV ventilation strategy in typically very airtight apartments has markedly reduced pressure differences and radon concentrations. (authors)

  19. Roles of sunlight and natural ventilation for controlling infection: historical and current perspectives.

    Science.gov (United States)

    Hobday, R A; Dancer, S J

    2013-08-01

    Infections caught in buildings are a major global cause of sickness and mortality. Understanding how infections spread is pivotal to public health yet current knowledge of indoor transmission remains poor. To review the roles of natural ventilation and sunlight for controlling infection within healthcare environments. Comprehensive literature search was performed, using electronic and library databases to retrieve English language papers combining infection; risk; pathogen; and mention of ventilation; fresh air; and sunlight. Foreign language articles with English translation were included, with no limit imposed on publication date. In the past, hospitals were designed with south-facing glazing, cross-ventilation and high ceilings because fresh air and sunlight were thought to reduce infection risk. Historical and recent studies suggest that natural ventilation offers protection from transmission of airborne pathogens. Particle size, dispersal characteristics and transmission risk require more work to justify infection control practices concerning airborne pathogens. Sunlight boosts resistance to infection, with older studies suggesting potential roles for surface decontamination. Current knowledge of indoor transmission of pathogens is inadequate, partly due to lack of agreed definitions for particle types and mechanisms of spread. There is recent evidence to support historical data on the effects of natural ventilation but virtually none for sunlight. Modern practice of designing healthcare buildings for comfort favours pathogen persistence. As the number of effective antimicrobial agents declines, further work is required to clarify absolute risks from airborne pathogens along with any potential benefits from additional fresh air and sunlight. Copyright © 2013 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  20. Feasibility of Protective Ventilation During Elective Supratentorial Neurosurgery: A Randomized, Crossover, Clinical Trial.

    Science.gov (United States)

    Ruggieri, Francesco; Beretta, Luigi; Corno, Laura; Testa, Valentina; Martino, Enrico A; Gemma, Marco

    2017-06-30

    Traditional ventilation approaches, providing high tidal volumes (Vt), produce excessive alveolar distention and lung injury. Protective ventilation, employing lower Vt and positive end-expiratory pressure (PEEP), is an attractive alternative also for neuroanesthesia, when prolonged mechanical ventilation is needed. Nevertheless, protective ventilation during intracranial surgery may exert dangerous effects on intracranial pressure (ICP). We tested the feasibility of a protective ventilation strategy in neurosurgery. Our monocentric, double-blind, 1:1 randomized, 2×2 crossover study aimed at studying the effect size and variability of ICP in patients undergoing elective supratentorial brain tumor removal and alternatively ventilated with Vt 9 mL/kg-PEEP 0 mm Hg and Vt 7 mL/kg-PEEP 5 mm Hg. Respiratory rate was adjusted to maintain comparable end-tidal carbon dioxide between ventilation modes. ICP was measured through a subdural catheter inserted before dural opening. Forty patients were enrolled; 8 (15%) were excluded after enrollment. ICP did not differ between traditional and protective ventilation (11.28±5.37, 11 [7 to 14.5] vs. 11.90±5.86, 11 [8 to 15] mm Hg; P=0.541). End-tidal carbon dioxide (28.91±2.28, 29 [28 to 30] vs. 28.00±2.17, 28 [27 to 29] mm Hg; Pprotective ventilation. Blood pressure, heart rate, and body temperature did not differ between ventilation modes. Dural tension was "acceptable for surgery" in all cases. ICP differences between ventilation modes were not affected by ICP values under traditional ventilation (coefficient=0.067; 95% confidence interval, -0.278 to 0.144; P=0.523). Protective ventilation is a feasible alternative to traditional ventilation during elective neurosurgery.

  1. Reducing indoor radon concentrations by passive subslab ventilation

    International Nuclear Information System (INIS)

    Jiranek, M.

    2005-01-01

    The primary objective of our study was to establish whether passive soil ventilation systems installed under existing houses have an effect on indoor radon concentrations. Experiments were conducted in two single-family houses. The soil ventilation under each house consists of the network of flexible perforated pipes laid into the layer of coarse gravel of the minimal thickness 150 mm. Soil air from the perforated pipes is ventilated by means of the vertical exhaust pipe that runs through the heated part of the house and ends above the roof of the house. At the top of the vertical exhaust a wind turbine is mounted in order to improve the stack effect during the windy weather .In addition to the soil ventilation both houses were provided with new floors composed of concrete slab and radon proof insulation made of LDPE membrane. The efficiency of passive soil ventilation systems varies within the year in dependence on the temperature gradient and wind speed. Preliminary results indicate that temperature gradient predominates. However the maximum under-pressure at the base of the vertical exhaust pipe caused by temperature differences is not so high. During one-year observation period the maximum temperature related under-pressure was only -8 Pa. The wind effect starts to be noticeable for speeds higher than 5 m/s and more apparent becomes for speeds above 10 m/s. The maximum values of under-pressure due to wind forces were measured within the range - 20 Pa and -30 Pa for wind speeds from 20 m/s to 25 m/s. Quite significant variations of the subslab under-pressure within one day were observed. The maximum under pressure was measured at late night or early morning when the outdoor temperature was the lowest. Annual variations were also confirmed. During the winter the temperature gradient is higher than in the summer time and thus the subslab under-pressure is consistently higher in the winter. Preliminary results indicate that passive soil ventilation systems with

  2. Hybrid ventilation - functional technology or an ism in architecture?; Hybrid ventilation - funksjonell teknologi eller en isme i arkitekturen?

    Energy Technology Data Exchange (ETDEWEB)

    Amdahl, Leif

    2003-07-01

    Hybrid ventilation is launched in bold full-scale tests at many places in Norway. The article asks if this is nostalgia, like a kind of back-to-nature thinking, or does it mean innovation and sustainability? So far the insight into this type of ventilation is rather modest, and only few of the actors in the sector can be said to master the theory behind it. The author has visited a recently completed building in Levanger and describes his impression. There are three equal ventilation systems in the building, each having its own intake tower and culvert system for air supply to the individual rooms. In spite of the low intake velocity, under special weather circumstances, snow drifts all the way on to the filters. The air supply to the various rooms takes place diffusely as displacement ventilation, but the positions of the inlet valves on the external walls are dangerously close to the working places, which may cause trouble for different furnishing. The supply- and exhaust fans are pressure controlled, which works well. Heat recovery is based on water/glycol and dimensioned for 50 per cent efficiency. As a preliminary conclusion, the author considers the system as one of more ways of achieving a good indoor environment without complaints. But he does not understand why this type of ducts yields cleaner and better air than ordinary steel sheet ducts.

  3. Investigation of induced recirculation during planned ventilation system maintenance

    Science.gov (United States)

    Pritchard, C.J.; Scott, D.F.; Noll, J.D.; Voss, B.; Leonis, D.

    2015-01-01

    The Office of Mine Safety and Health Research (OMSHR) investigated ways to increase mine airflow to underground metal/nonmetal (M/NM) mine working areas to improve miners’ health and safety. One of those areas is controlled recirculation. Because the quantity of mine air often cannot be increased, reusing part of the ventilating air can be an effective alternative, if implemented properly, until the capacity of the present system is improved. The additional airflow can be used to provide effective dilution of contaminants and higher flow velocities in the underground mine environment. Most applications of controlled recirculation involve taking a portion of the return air and passing it back into the intake to increase the air volume delivered to the desired work areas. OMSHR investigated a Nevada gold mine where shaft rehabilitation was in progress and one of the two main fans was shut down to allow reduced air velocity for safe shaft work. Underground booster fan operating pressures were kept constant to maintain airflow to work areas, inducing controlled recirculation in one work zone. Investigation into system behavior and the effects of recirculation on the working area during times of reduced primary ventilation system airflow would provide additional information on implementation of controlled recirculation into the system and how these events affect M/NM ventilation systems. The National Institute for Occupational Safety and Health monitored the ventilation district when both main fans were operating and another scenario with one of the units turned off for maintenance. Airflow and contaminants were measured to determine the exposure effects of induced recirculation on miner health. Surveys showed that 19% controlled recirculation created no change in the overall district airflow distribution and a small reduction in district fresh air intake. Total dust levels increased only modestly and respirable dust levels were also low. Diesel particulate matter

  4. Out-of-hospital noninvasive ventilation: epidemiology, technology and equipment

    Directory of Open Access Journals (Sweden)

    John Scott Baird

    2012-04-01

    Full Text Available Noninvasive ventilation has been utilized successfully in the pre- and out-of-hospital settings for a variety of disorders, including respiratory distress syndrome in neonates, neurologic and pulmonary diseases in infants and children, and heart failure as well as chronic obstructive pulmonary disease in adults. A variety of interfaces as well as mechanical positive pressure devices have been used: simple continuous positive airway pressure devices are available which do not require sophisticated equipment, while a broad spectrum of ventilators have been used to provide bilevel positive airway pressure. Extensive training of transport teams may be important, particularly when utilizing bilevel positive airway pressure in infants and children.

  5. Risk factors for mortality in ventilator-associated tracheobronchitis: a case-control study.

    Science.gov (United States)

    Pontes, Leonilda Giani; Menezes, Fernando Gatti de; Gonçalves, Priscila; Toniolo, Alexandra do Rosário; Silva, Claudia Vallone; Kawagoe, Julia Yaeko; Santos, Camila Marques Dos; Castagna, Helena Maria Fernandes; Martino, Marinês Dalla Valle; Corrêa, Luci

    2017-01-01

    To describe the microbiological characteristics and to assess the risk factors for mortality of ventilator-associated tracheobronchitis in a case-control study of intensive care patients. This case-control study was conducted over a 6-year period in a 40-bed medical-surgical intensive care unit in a tertiary care, private hospital in São Paulo, Brazil. Case patients were identified using the Nosocomial Infection Control Committee database. For the analysis of risk factors, matched control subjects were selected from the same institution at a 1:8.8 ratio, between January 2006 and December 2011. A total of 40 episodes of ventilator-associated tracheobronchitis were evaluated in 40 patients in the intensive care unit, and 354 intensive care patients who did not experience tracheobronchitis were included as the Control Group. During the 6-year study period, a total of 42 organisms were identified (polymicrobial infections were 5%) and 88.2% of all the microorganisms identified were Gram-negative. Using a logistic regression model, we found the following independent risk factors for mortality in ventilator-associated tracheobronchitis patients: Acute Physiology and Chronic Health Evaluation I score (odds ratio 1.18 per unit of score; 95%CI: 1.05-1.38; p=0.01), and duration of mechanical ventilation (odds ratio 1.09 per day of mechanical ventilation; 95%CI: 1.03-1.17; p=0.004). Our study provided insight into the risk factors for mortality and microbiological characteristics of ventilator-associated tracheobronchitis. Descrever as características microbiológicas e avaliar os fatores de risco para mortalidade na traqueobronquite associada à ventilação mecânica em um estudo caso-controle de pacientes de terapia intensiva. Estudo realizado ao longo de 6 anos em uma unidade de terapia intensiva médico-cirúrgica de 40 leitos, em um hospital privado e de nível terciário em São Paulo, Brasil. O Grupo Caso foi identificado usando o banco de dados da Comissão de

  6. Cardiac effects of positive pressure ventilation in ARDS assessed by NT-proBNP, Troponin T and Troponin I

    Directory of Open Access Journals (Sweden)

    Yasser Sadek Nassar

    2013-01-01

    Although the increase in cardiac markers are insignificant, yet they point to the potentially harmful role played by high PEEP, low PH and low PaO2/FiO2 ratio on the heart. Currently, no clinically relevant conclusion can be drawn apart from the recommendation to attempt to lower PEEP and shorten the duration of positive pressure ventilation, even in patients with structurally normal hearts.

  7. Equivalence in Ventilation and Indoor Air Quality

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max; Walker, Iain; Logue, Jennifer

    2011-08-01

    We ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American Society of Heating, Refrigerating, and Air-Conditioning Enginners [ASHRAE] Standard 62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing energy consumption or improving IAQ or comfort. Variable ventilation is one innovative strategy. To use variable ventilation in a way that meets standards, it is necessary to have a method for determining equivalence in terms of either ventilation or indoor air quality. This study develops methods to calculate either equivalent ventilation or equivalent IAQ. We demonstrate that equivalent ventilation can be used as the basis for dynamic ventilation control, reducing peak load and infiltration of outdoor contaminants. We also show that equivalent IAQ could allow some contaminants to exceed current standards if other contaminants are more stringently controlled.

  8. Hybrid Ventilation Air Flow Process

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols

    The scope of this annex is therefore to obtain better knowledge of the use of hybrid ventilation technologies. The annex focus on development of control strategies for hybrid ventilation, on development of methods to predict hybrid ventilation performance in office buildings and on implementation...

  9. Evaluation of Intensive Care Unit Ventilators at Altitude.

    Science.gov (United States)

    Blakeman, Thomas; Rodriquez, Dario; Petro, Michael; Branson, Richard

    Devices may forgo US military air worthiness and safety testing in an attempt to expedite the availability of critical assets such as mechanical ventilators with a waiver for one-time use in extenuating circumstances. We evaluated two Intensive Care Unit (ICU) level ventilators: Drager Evita XL and Puritan Bennett (PB) 840 in an altitude chamber at sea level and altitudes of 8,000 and 16,000 feet. Altitude affected delivered tidal volumes (VTs) in volume control mode (VCV) and Pressure Regulated Volume Controlled (PRVC) mode at altitude with the Evita XL but the differences were not considered clinically important with the PB 840. Sixty-seven percent of the V T s were outside the ASTM standard of ± 10% of set V T with the Evita XL at altitude. The PB 840 did not deliver V T s that were larger than the ASTM standard up to an altitude of 16,000 feet while the majority of the delivered V T s with the Därger XL were greater than the ASTM standard. This could present a patient safety issue. Caregivers must be aware of the capabilities and limitations of ICU ventilators when utilized in a hypobaric environment in order to provide safe care. Copyright © 2017 Air Medical Journal Associates. All rights reserved.

  10. Heliox Improves Carbon Dioxide Removal during Lung Protective Mechanical Ventilation.

    Science.gov (United States)

    Beurskens, Charlotte J; Brevoord, Daniel; Lagrand, Wim K; van den Bergh, Walter M; Vroom, Margreeth B; Preckel, Benedikt; Horn, Janneke; Juffermans, Nicole P

    2014-01-01

    Introduction. Helium is a noble gas with low density and increased carbon dioxide (CO2) diffusion capacity. This allows lower driving pressures in mechanical ventilation and increased CO2 diffusion. We hypothesized that heliox facilitates ventilation in patients during lung-protective mechanical ventilation using low tidal volumes. Methods. This is an observational cohort substudy of a single arm intervention study. Twenty-four ICU patients were included, who were admitted after a cardiac arrest and mechanically ventilated for 3 hours with heliox (50% helium; 50% oxygen). A fixed protective ventilation protocol (6 mL/kg) was used, with prospective observation for changes in lung mechanics and gas exchange. Statistics was by Bonferroni post-hoc correction with statistical significance set at P ventilation, respiratory rate decreased (25 ± 4 versus 23 ± 5 breaths min(-1), P = 0.010). Minute volume ventilation showed a trend to decrease compared to baseline (11.1 ± 1.9 versus 9.9 ± 2.1 L min(-1), P = 0.026), while reducing PaCO2 levels (5.0 ± 0.6 versus 4.5 ± 0.6 kPa, P = 0.011) and peak pressures (21.1 ± 3.3 versus 19.8 ± 3.2 cm H2O, P = 0.024). Conclusions. Heliox improved CO2 elimination while allowing reduced minute volume ventilation in adult patients during protective mechanical ventilation.

  11. Mechanisms of natural ventilation in livestock buildings

    DEFF Research Database (Denmark)

    Rong, Li; Bjerg, Bjarne; Batzanas, Thomas

    2016-01-01

    Studies on the mechanisms of natural ventilation in livestock buildings are reviewed and influences on discharge and pressure coefficients are discussed. Compared to studies conducted on buildings for human occupation and industrial buildings which focus on thermal comfort, ventilation systems......, indoor air quality, building physics and energy etc., our understanding of the mechanisms involved in natural ventilation of livestock buildings are still limited to the application of the orifice equation. It has been observed that the assumptions made for application of the orifice equation...... are not valid for wind-induced cross ventilation through large openings. This review identifies that the power balance model, the concept of stream tube and the local dynamic similarity model has helped in the fundamental understanding of wind-induced natural ventilation in buildings for human occupation...

  12. Bench tests of simple, handy ventilators for pandemics: performance, autonomy, and ergonomy.

    Science.gov (United States)

    L'Her, Erwan; Roy, Annie

    2011-06-01

    It has been pointed out that in the wake of a virulent flu strain, patients with survivable illness will die from lack of resources unless more ventilators are made available. Numerous disaster-type ventilators are available, but few evaluations have been performed. To compare simple, lightweight, and handy ventilators that could be used in the initial care of patients with respiratory distress. We bench-tested 4 volume-cycled ventilators (Carevent ALS, EPV100, Pneupac VR1, and Medumat Easy) and 2 pressure-cycled ventilators (Oxylator EMX and VAR-Plus). We studied their general physical characteristics, sonometry, gas consumption, technical performance, ergonomy, and user-friendliness. With a test lung we assessed performance at F(IO(2)) of 0.50 and 1.0, set compliance of 30, 70, and 120 mL/cm H(2)O, and set resistance of 5, 10, and 20 cm H(2)O/L/s. To study user-friendliness and ergonomy we conducted, in randomized order, 7 or 8 objective, quantitative tests and 2 subjective tests. Compliance and resistance strongly affected tidal volume with the pressure-cycled ventilators (from 418 ± 49 mL to 1,377 ± 444 mL with the VAR-Plus, at the lowest pressure level), whereas the volume-cycled ventilators provided a consistent tidal volume in the face of changing test lung characteristics. We are concerned that the pressure-cycled ventilators did not provide a consistent tidal volume, and under certain conditions the volume delivered would be unsafe (too large or too small). Most of the volume-cycled ventilators proved to be technically efficient and reliable. Their reliability, portability, and ease of use could make them valuable in natural disasters and mass-casualty events.

  13. Energy efficient biological air cleaning for farm stable ventilation; Energieffektiv biologisk luftrensning til staldventilation

    Energy Technology Data Exchange (ETDEWEB)

    Groenborg Nicolaisen, C.; Hansen, Mads P.R. [Teknologisk Institut, Aarhus (Denmark); Stroem, J.; Soerensen, Keld [DXT. Danish Exergy Technology A/S, Skoerping (Denmark); Goetke, C. [Lokalenergi Aarhus, Viby J. (Denmark); Morsing, S.; Soerensen, Lars C. [SKOV A/S, Roslev (Denmark); Ladegaerd Jensen, T.; Pedersen, Poul [Videncenter for svineproduktion, Copenhagen (Denmark)

    2013-05-01

    The project has been designed to reduce energy consumption for air purification by 30% while having a payback period of maximum 3 years. The project has achieved very significant results which are far above the target. Particularly satisfying is the wide range of new components that are launched in late 2012. By implementing the newly developed system at 100% cleaning (LPC 13 ventilators and Dynamic multistep control) in relation to Best Practice (SKOV's original system with DA600 fans) in a concrete pigsty, a saving of 61% and a simple payback of 1.7 years is achieved. Similarly, it is found that the energy used for pump operation can be reduced by 37% with the new Dynamic sprinkling control. At 20% cleaning a potential saving of 15% per year and a payback period of between 0 and 5 years was found, which is dependent on the desired performance as the capacities in the bio-filter's upper capacity range between 26 thousand to 30 thousand m3 / h entails costs for an additional extraction unit in the new solution. Furthermore, the newly developed components proved highly suitable for standard installations without air cleaning where a savings potential is 53% and the payback period 1.5 years. Product-wise, the project formed the basis for the development of: 1. New energy-efficient ventilation units (LPC11, 12,13) that are suitable for air purification; 2. A new energy-saving control principle (Dynamic Multi-Step) which is particularly suitable for low-energy ventilators; 3. A new energy-saving flow measurement system for ventilating ducts (Dynamic air to the central exhaust); 4. An energy-saving pressure control in common ducts (pressure control as a function of outside temperature); 5. Proposal for a new energy-saving pump operation for sprinkling of biological filters (Dynamic sprinkling). (LN)

  14. Effects of lung protective mechanical ventilation associated with permissive respiratory acidosis on regional extra-pulmonary blood flow in experimental ARDS.

    Science.gov (United States)

    Hering, Rudolf; Kreyer, Stefan; Putensen, Christian

    2017-10-27

    Lung protective mechanical ventilation with limited peak inspiratory pressure has been shown to affect cardiac output in patients with ARDS. However, little is known about the impact of lung protective mechanical ventilation on regional perfusion, especially when associated with moderate permissive respiratory acidosis. We hypothesized that lung protective mechanical ventilation with limited peak inspiratory pressure and moderate respiratory acidosis results in an increased cardiac output but unequal distribution of blood flow to the different organs of pigs with oleic-acid induced ARDS. Twelve pigs were enrolled, 3 died during instrumentation and induction of lung injury. Thus, 9 animals received pressure controlled mechanical ventilation with a PEEP of 5 cmH 2 O and limited peak inspiratory pressure (17 ± 4 cmH 2 O) versus increased peak inspiratory pressure (23 ± 6 cmH 2 O) in a crossover-randomized design and were analyzed. The sequence of limited versus increased peak inspiratory pressure was randomized using sealed envelopes. Systemic and regional hemodynamics were determined by double indicator dilution technique and colored microspheres, respectively. The paired student t-test and the Wilcoxon test were used to compare normally and not normally distributed data, respectively. Mechanical ventilation with limited inspiratory pressure resulted in moderate hypercapnia and respiratory acidosis (PaCO 2 71 ± 12 vs. 46 ± 9 mmHg, and pH 7.27 ± 0.05 vs. 7.38 ± 0.04, p respiratory acidosis was associated with an increase in cardiac output. However, the better systemic blood flow was not uniformly directed to the different organs. This observation may be of clinical interest in patients, e.g. with cardiac, renal and cerebral pathologies.

  15. Simulation of thermal environment in a three-layer vinyl greenhouse by natural ventilation control

    Science.gov (United States)

    Jin, Tea-Hwan; Shin, Ki-Yeol; Yoon, Si-Won; Im, Yong-Hoon; Chang, Ki-Chang

    2017-11-01

    A high energy, efficient, harmonious, ecological greenhouse has been highlighted by advanced future agricultural technology recently. This greenhouse is essential for expanding the production cycle toward growth conditions through combined thermal environmental control. However, it has a negative effect on farming income via huge energy supply expenses. Because not only production income, but operating costs related to thermal load for thermal environment control is important in farming income, it needs studies such as a harmonious ecological greenhouse using natural ventilation control. This study is simulated for energy consumption and thermal environmental conditions in a three-layered greenhouse by natural ventilation using window opening. A virtual 3D model of a three-layered greenhouse was designed based on the real one in the Gangneung area. This 3D model was used to calculate a thermal environment state such as indoor temperature, relative humidity, and thermal load in the case of a window opening rate from 0 to 100%. There was also a heat exchange operated for heating or cooling controlled by various setting temperatures. The results show that the cooling load can be reduced by natural ventilation control in the summer season, and the heat exchange capacity for heating can also be simulated for growth conditions in the winter season.

  16. Simulation of thermal environment in a three-layer vinyl greenhouse by natural ventilation control

    Directory of Open Access Journals (Sweden)

    Jin Tea-Hwan

    2017-01-01

    Full Text Available A high energy, efficient, harmonious, ecological greenhouse has been highlighted by advanced future agricultural technology recently. This greenhouse is essential for expanding the production cycle toward growth conditions through combined thermal environmental control. However, it has a negative effect on farming income via huge energy supply expenses. Because not only production income, but operating costs related to thermal load for thermal environment control is important in farming income, it needs studies such as a harmonious ecological greenhouse using natural ventilation control. This study is simulated for energy consumption and thermal environmental conditions in a three-layered greenhouse by natural ventilation using window opening. A virtual 3D model of a three-layered greenhouse was designed based on the real one in the Gangneung area. This 3D model was used to calculate a thermal environment state such as indoor temperature, relative humidity, and thermal load in the case of a window opening rate from 0 to 100%. There was also a heat exchange operated for heating or cooling controlled by various setting temperatures. The results show that the cooling load can be reduced by natural ventilation control in the summer season, and the heat exchange capacity for heating can also be simulated for growth conditions in the winter season.

  17. Developing a new, national approach to surveillance for ventilator-associated events*.

    Science.gov (United States)

    Magill, Shelley S; Klompas, Michael; Balk, Robert; Burns, Suzanne M; Deutschman, Clifford S; Diekema, Daniel; Fridkin, Scott; Greene, Linda; Guh, Alice; Gutterman, David; Hammer, Beth; Henderson, David; Hess, Dean; Hill, Nicholas S; Horan, Teresa; Kollef, Marin; Levy, Mitchell; Septimus, Edward; VanAntwerpen, Carole; Wright, Don; Lipsett, Pamela

    2013-11-01

    To develop and implement an objective, reliable approach to surveillance for ventilator-associated events in adult patients. The Centers for Disease Control and Prevention (CDC) convened a Ventilator-Associated Pneumonia (VAP) Surveillance Definition Working Group in September 2011. Working Group members included representatives of stakeholder societies and organizations and federal partners. The Working Group finalized a three-tier, adult surveillance definition algorithm for ventilator-associated events. The algorithm uses objective, readily available data elements and can identify a broad range of conditions and complications occurring in mechanically ventilated adult patients, including but not limited to VAP. The first tier definition, ventilator-associated condition (VAC), identifies patients with a period of sustained respiratory deterioration following a sustained period of stability or improvement on the ventilator, defined by changes in the daily minimum fraction of inspired oxygen or positive end-expiratory pressure. The second tier definition, infection-related ventilator-associated complication (IVAC), requires that patients with VAC also have an abnormal temperature or white blood cell count, and be started on a new antimicrobial agent. The third tier definitions, possible and probable VAP, require that patients with IVAC also have laboratory and/or microbiological evidence of respiratory infection. Ventilator-associated events surveillance was implemented in January 2013 in the CDC's National Healthcare Safety Network. Modifications to improve surveillance may be made as additional data become available and users gain experience with the new definitions.

  18. Early postoperative alterations of ventilation parameters after tracheostomy in major burn injuries

    Directory of Open Access Journals (Sweden)

    Mailänder, Peter

    2010-01-01

    Full Text Available Purpose: In patients with major burn injuries mechanical ventilation is often required for longer periods. Tracheostomy (TS plays an integral role in airway management. We investigated the effect of TS on ventilation parameters within 8 hours after TS. Materials: A retrospective analysis of severely burned patients admitted to the burn unit of a German University Hospital was performed. Ventilation parameters 8 hours before and after TS were registered. Results: A retrospective analysis of 20 patients which received surgical TS was performed. Mean age was 52±19 years. Mean abbreviated burned severity index (ABSI was 8.3±2.2. A mechanical ventilation was required for 14.3±4.8 days. TS was performed on day 7±4. Inspiratory oxygen concentration (FiO2 (p<0.001, peak inspiratory pressure (p<0.001, positive end-expiratory pressure (p=0.003 and pulmonary resistance (p<0.001 were reduced significantly after TS. The arterial partial pressure of oxygen/FiO2-ratio increased significantly after TS (p<0.001. Conclusions: We demonstrate that TS reduces invasiveness of ventilation in severely burned patients and by this can optimize lung protective ventilation strategy.

  19. Noninvasive ventilation in hypoxemic respiratory failure

    Directory of Open Access Journals (Sweden)

    Raja Dhar

    2016-01-01

    Full Text Available Noninvasive ventilation (NIV refers to positive pressure ventilation delivered through a noninvasive interface (nasal mask, facemask, or nasal plugs etc. Over the past decade its use has become more common as its benefits are increasingly recognized. This review will focus on the evidence supporting the use of NIV in various conditions resulting in acute hypoxemic respiratory failure (AHRF, that is, non-hypercapnic patients having acute respiratory failure in the absence of a cardiac origin or underlying chronic pulmonary disease. Outcomes depend on the patient's diagnosis and clinical characteristics. Patients should be monitored closely for signs of noninvasive ventilation failure and promptly intubated before a crisis develops. The application of noninvasive ventilation by a trained and experienced team, with careful patient selection, should optimize patient outcomes.

  20. Trial of early noninvasive ventilation for ALS: A pilot placebo-controlled study.

    Science.gov (United States)

    Jacobs, Teresa L; Brown, Devin L; Baek, Jonggyu; Migda, Erin M; Funckes, Timothy; Gruis, Kirsten L

    2016-11-01

    To evaluate the use and tolerability of noninvasive positive pressure ventilation (NIV) in patients with amyotrophic lateral sclerosis (ALS) early in their disease by comparing active NIV and sham NIV in patients not yet eligible for NIV use as recommended by practice guidelines. This was a single-center, prospective, double-blind, randomized, placebo (sham)-controlled pilot trial. Patients with ALS were randomized to receive either sham NIV or active NIV and underwent active surveillance approximately every 3 months until they reached a forced vital capacity (FVC) NIV for clinical symptom management. In total, 54 participants were randomized. The mean NIV use was 2.0 hours (95% confidence interval [CI] 1.1-3.0) per day in the sham NIV treatment group and 3.3 hours (CI 2.0-4.6) per day in the active NIV group, which did not differ by treatment group (p = 0.347). The majority of sham NIV participants (88%) and active NIV participants (73%) reported only mild or no problem with NIV use. Difference of change in FVC through the treatment period by group (0.44 per month) favored active NIV (p = 0.049). Survival and changes in maximal inspiratory or expiratory pressure did not differ between treatment groups. The efficacy of early NIV in ALS should be tested in randomized, placebo-controlled trials. The trial is registered on clinicaltrials.gov (NCT00580593). This study provides Class II evidence that for patients with ALS, adherence with NIV and sham NIV are similar. © 2016 American Academy of Neurology.

  1. Music interventions for mechanically ventilated patients.

    Science.gov (United States)

    Bradt, Joke; Dileo, Cheryl

    2014-01-01

    Controlled Trials (1998 to March 2014), the National Research Register (2000 to September 2007), and NIH CRISP (all to March 2014). We handsearched music therapy journals and reference lists, and contacted relevant experts to identify unpublished manuscripts. There was no language restriction. The original search was performed in January 2010. We included all randomized and quasi-randomized controlled trials that compared music interventions and standard care with standard care alone for mechanically ventilated patients. Two review authors independently extracted the data and assessed the methodological quality of included studies. We contacted authors to obtain missing data where needed. Where possible, results for continuous outcomes were presented in meta-analyses using mean differences and standardized mean differences. Post-test scores were used. In cases of significant baseline difference, we used change scores. For dichotomous outcomes, we presented the results as risk ratios. We identified six new trials for this update. In total, the evidence for this review rests on 14 trials (805 participants). Music listening was the main intervention used, and 13 of the studies did not include a trained music therapist. Results indicated that music listening may be beneficial for anxiety reduction in mechanically ventilated patients. Specifically, music listening resulted, on average, in an anxiety reduction that was 1.11 standard deviation units greater (95% CI -1.75 to -0.47, P = 0.0006) than in the standard care group. This is considered a large and clinically significant effect. Findings indicated that listening to music consistently reduced respiratory rate and systolic blood pressure, suggesting a relaxation response. Furthermore, one large-scale study reported greater reductions in sedative and analgesic intake in the music listening group compared to the control group, and two other studies reported trends for reduction in sedative and analgesic intake for the music

  2. Decrease in delivery room intubation rates after use of nasal intermittent positive pressure ventilation in the delivery room for resuscitation of very low birth weight infants.

    Science.gov (United States)

    Biniwale, Manoj; Wertheimer, Fiona

    2017-07-01

    The literature supports minimizing duration of invasive ventilation to decrease lung injury in premature infants. Neonatal Resuscitation Program recommended use of non-invasive ventilation (NIV) in delivery room for infants requiring prolonged respiratory support. To evaluate the impact of implementation of non-invasive ventilation (NIV) using nasal intermittent positive pressure ventilation (NIPPV) for resuscitation in very low birth infants. Retrospective study was performed after NIPPV was introduced in the delivery room and compared with infants receiving face mask to provide positive pressure ventilation for resuscitation of very low birth weight infants prior to its use. Data collected from 119 infants resuscitated using NIPPV and 102 infants resuscitated with a face mask in a single institution. The primary outcome was the need for endotracheal intubation in the delivery room. Data was analyzed using IBM SPSS Statistics software version 24. A total of 31% of infants were intubated in the delivery room in the NIPPV group compared to 85% in the Face mask group (p=rates were 11% in the NIPPV group and 31% in the Face mask group (p<0.001). Epinephrine administration was also lower in NIPPV group (2% vs. 8%; P=0.03). Only 38% infants remained intubated at 24hours of age in the NIPPV group compared to 66% in the Face mask group (p<0.001). Median duration of invasive ventilation in the NIPPV group was shorter (2days) compared to the Face mask group (11days) (p=0.01). The incidence of air-leaks was not significant between the two groups. NIPPV was safely and effectively used in the delivery room settings to provide respiratory support for VLBW infants with less need for intubation, chest compressions, epinephrine administration and subsequent invasive ventilation. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Uranium mine ventilation

    International Nuclear Information System (INIS)

    Katam, K.; Sudarsono

    1982-01-01

    Uranium mine ventilation system aimed basically to control and decreasing the air radioactivity in mine caused by the radon emanating from uranium ore. The control and decreasing the air ''age'' in mine, with adding the air consumption volume, increasing the air rate consumption, closing the mine-out area; using closed drainage system. Air consumption should be 60m 3 /minute for each 9m 2 uranium ore surfaces with ventilation rate of 15m/minute. (author)

  4. Evaluation of local exhaust ventilation system performance for control of Fe2O3 dust at an iron making unit

    OpenAIRE

    Mahdi Jamshidi Rastani; Farshid Ghorbani Shahna; Abdolrahman Bahrami; Somayeh Hosseini

    2016-01-01

    Introduction: Adherence to the design values and ventilation standards (VS) after installing and also maintaining continuous work of ventilation system with maximum performance throughout its life are amongst the reasons of ventilation systems monitoring. Therefore, the aim of this study was to evaluate performance of local exhaust ventilation system for control of dust by measuring the operating parameters and also to compare it with ventilation standards (VS) and design values. Material...

  5. Respiratory System Mechanics During Low Versus High Positive End-Expiratory Pressure in Open Abdominal Surgery: A Substudy of PROVHILO Randomized Controlled Trial

    NARCIS (Netherlands)

    D'Antini, Davide; Huhle, Robert; Herrmann, Jacob; Sulemanji, Demet S.; Oto, Jun; Raimondo, Pasquale; Mirabella, Lucia; Hemmes, Sabrine N. T.; Schultz, Marcus J.; Pelosi, Paolo; Kaczka, David W.; Vidal Melo, Marcos Francisco; Gama de Abreu, Marcelo; Cinnella, Gilda

    2018-01-01

    In the 2014 PROtective Ventilation using HIgh versus LOw positive end-expiratory pressure (PROVHILO) trial, intraoperative low tidal volume ventilation with high positive end-expiratory pressure (PEEP = 12 cm H2O) and lung recruitment maneuvers did not decrease postoperative pulmonary complications

  6. CO2 MONITORING FOR DEMAND CONTROLLED VENTILATION IN COMMERCIAL BUILDINGS

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J.; Sullivan, Douglas P.; Faulkner, David; Eliseeva, Ekaterina

    2010-03-17

    Carbon dioxide (CO{sub 2}) sensors are often deployed in commercial buildings to obtain CO{sub 2} data that are used, in a process called demand-controlled ventilation, to automatically modulate rates of outdoor air ventilation. The objective is to keep ventilation rates at or above design specifications and code requirements and also to save energy by avoiding excessive ventilation rates. Demand controlled ventilation is most often used in spaces with highly variable and sometime dense occupancy. Reasonably accurate CO{sub 2} measurements are needed for successful demand controlled ventilation; however, prior research has suggested substantial measurement errors. Accordingly, this study evaluated: (a) the accuracy of 208 CO{sub 2} single-location sensors located in 34 commercial buildings, (b) the accuracy of four multi-location CO{sub 2} measurement systems that utilize tubing, valves, and pumps to measure at multiple locations with single CO{sub 2} sensors, and (c) the spatial variability of CO{sub 2} concentrations within meeting rooms. The field studies of the accuracy of single-location CO{sub 2} sensors included multi-concentration calibration checks of 90 sensors in which sensor accuracy was checked at multiple CO{sub 2} concentrations using primary standard calibration gases. From these evaluations, average errors were small, -26 ppm and -9 ppm at 760 and 1010 ppm, respectively; however, the averages of the absolute values of error were 118 ppm (16%) and 138 ppm (14%), at concentrations of 760 and 1010 ppm, respectively. The calibration data are generally well fit by a straight line as indicated by high values of R{sup 2}. The Title 24 standard specifies that sensor error must be certified as no greater than 75 ppm for a period of five years after sensor installation. At 1010 ppm, 40% of sensors had errors greater than {+-}75 ppm and 31% of sensors has errors greater than {+-}100 ppm. At 760 ppm, 47% of sensors had errors greater than {+-}75 ppm and 37% of

  7. The performances of standard and ResMed masks during bag-valve-mask ventilation.

    Science.gov (United States)

    Lee, Hyoung Youn; Jeung, Kyung Woon; Lee, Byung Kook; Lee, Seung Joon; Jung, Yong Hun; Lee, Geo Sung; Min, Yong Il; Heo, Tag

    2013-01-01

    A tight mask seal is frequently difficult to obtain and maintain during single-rescuer bag-valve-mask (BVM) ventilation. The ResMed mask (Bella Vista, NSW, Australia) is a continuous-positive-airway-pressure mask (CM) designed for noninvasive ventilation. In this study, we compared the ventilation performances of a standard mask (SM) and a ResMed CM using a simulation manikin in an out-of-hospital single-rescuer BVM ventilation scenario. Thirty emergency medical technicians (EMTs) performed two 2-minute attempts to ventilate a simulation manikin using BVM ventilation, alternatively, with the SM or the ResMed CM in a randomized order. Ventilation parameters including tidal volume and peak airway pressure were measured using computer analysis software connected to the simulation manikin. Successful volume delivery was defined as delivery of 440-540 mL of tidal volume in accord with present cardiopulmonary resuscitation guidelines. BVM ventilation using the ResMed CM produced higher mean (± standard deviation) tidal volumes (452 ± 50 mL vs. 394 ± 113 mL, p = 0.014) and had a higher proportion of successful volume deliveries (65.3% vs. 26.7%, p < 0.001) than that using the SM. Peak airway pressure was higher in BVM ventilation using the ResMed CM (p = 0.035). Stomach insufflation did not occur during either method. Twenty-nine of the participants (96.7%) preferred BVM ventilation using the ResMed CM. BVM ventilations using ResMed CM resulted in a significantly higher proportion of successful volume deliveries meeting the currently recommended range of tidal volume. Clinical studies are needed to determine the value of the ResMed CM for BVM ventilation.

  8. Study on pollution control in residential kitchen based on the push-pull ventilation system

    DEFF Research Database (Denmark)

    Zhou, Bin; Chen, Feng; Dong, Zhibo

    2016-01-01

    Highlights •The push-pull ventilation system is proposed to improve IAQ inside kitchen, where air is supplied through slot air curtain and then exhausted through range hood. •CO2 reduction efficiency with application of air curtain in experiment and simulation in breathing zone was 23.7% and 23.......1%, respectively. •By orthogonal method, the influence of factors on pollution control of the push-pull ventilation system was presented....

  9. The impact of aerosolized mucolytic agents on the airflow resistance of bacterial filters used in mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Han-Chung Hu

    2015-08-01

    Conclusion: This study demonstrated the aerosolized mucolytic agents could increase the pressure drop of the bacterial filters during mechanical ventilation. The pressure drop of the bacterial filters was higher with 10% acetylcysteine. It is critical to continuously monitor the expiration resistance, auto-positive end-expiratory pressure, and ventilator output waveform when aerosolized 10% acetylcysteine was used in mechanical ventilation patients.

  10. Positive pressure ventilation with the open lung concept optimizes gas exchange and reduces ventilator-induced lung injury in newborn piglets

    NARCIS (Netherlands)

    van Kaam, Anton H.; de Jaegere, Anne; Haitsma, Jack J.; van Aalderen, Wim M.; Kok, Joke H.; Lachmann, Burkhard

    2003-01-01

    Previous studies demonstrated that high-frequency oscillatory ventilation using the open lung concept (OLC resulted in superior gas exchange and a reduction in ventilator-induced lung injury (VILI). We hypothesized that these beneficial effects could also be achieved by applying the OLC during

  11. Injurious mechanical ventilation in the normal lung causes a progressive pathologic change in dynamic alveolar mechanics

    OpenAIRE

    Pavone, Lucio A; Albert, Scott; Carney, David; Gatto, Louis A; Halter, Jeffrey M; Nieman, Gary F

    2007-01-01

    Introduction Acute respiratory distress syndrome causes a heterogeneous lung injury, and without protective mechanical ventilation a secondary ventilator-induced lung injury can occur. To ventilate noncompliant lung regions, high inflation pressures are required to 'pop open' the injured alveoli. The temporal impact, however, of these elevated pressures on normal alveolar mechanics (that is, the dynamic change in alveolar size and shape during ventilation) is unknown. In the present study we ...

  12. Differential Effects of Endotracheal Suctioning on Gas Exchanges in Patients with Acute Respiratory Failure under Pressure-Controlled and Volume-Controlled Ventilation

    Directory of Open Access Journals (Sweden)

    Xiao-Wei Liu

    2015-01-01

    Full Text Available This study was conducted to evaluate the effects of open endotracheal suctioning on gas exchange and respiratory mechanics in ARF patients under the modes of PCV or VCV. Ninety-six ARF patients were treated with open endotracheal suctioning and their variations in respiratory mechanics and gas exchange after the suctions were compared. Under PCV mode, compared with the initial level of tidal volume (VT, ARF patients showed 30.0% and 27.8% decrease at 1 min and 10 min, respectively. Furthermore, the initial respiratory system compliance (Crs decreased by 29.6% and 28.5% at 1 min and 10 min, respectively. Under VCV mode, compared with the initial level, 38.6% and 37.5% increase in peak airway pressure (PAP were found at 1 min and 10 min, respectively. Under PCV mode, the initial PaO2 increased by 6.4% and 10.2 % at 3 min and 10 min, respectively, while 18.9% and 30.6% increase of the initial PaO2 were observed under VCV mode. Summarily, endotracheal suctioning may impair gas exchange and decrease lung compliance in ARF patients receiving mechanical ventilation under both PCV and VCV modes, but endotracheal suctioning effects on gas exchange were more severe and longer-lasting under PCV mode than VCV.

  13. Personalizing mechanical ventilation for acute respiratory distress syndrome.

    Science.gov (United States)

    Berngard, S Clark; Beitler, Jeremy R; Malhotra, Atul

    2016-03-01

    Lung-protective ventilation with low tidal volumes remains the cornerstone for treating patient with acute respiratory distress syndrome (ARDS). Personalizing such an approach to each patient's unique physiology may improve outcomes further. Many factors should be considered when mechanically ventilating a critically ill patient with ARDS. Estimations of transpulmonary pressures as well as individual's hemodynamics and respiratory mechanics should influence PEEP decisions as well as response to therapy (recruitability). This summary will emphasize the potential role of personalized therapy in mechanical ventilation.

  14. Causes Of Low Efficiency Of Combined Ventilation System In Coal Mines In Resolving The Problem Of Air Leaks (Inflows Between Levels And Surface

    Directory of Open Access Journals (Sweden)

    Popov Valeriy

    2017-01-01

    Full Text Available The paper discusses the problem of the underground mining safety control. The long-term air intake to coal accumulations is reviewed as one of the reasons of endogenous fires during mining. The methods of combating air leaks (inflows in order to prevent endogenous fires are analyzed. The calculations showing the discrepancy between the design calculations for the mine ventilation, disregarding a number of mining-andgeological and mining-engineering factors, and the actual conditions of mining are given. It is proved that the conversion of operating mines to combined (pressure and exhaust ventilation system in order to reduce the endogenous fire hazard of underground mining is unreasonable due to impossibility of providing an optimal distribution of aerodynamic pressure in mines. The conversion does not exclude the entry of air into potentially hazardous zones of endogenous fires. The essence of the combined application of positive and negative control methods for the distribution of air pressure is revealed. It consists of air doors installation in easily ventilated airways and installation of pressure equalization chambers equipped with auxiliary fans near the stoppings, working sections and in parallel airways.The effectiveness of the combined application of negative and positive control methods for the air pressure distribution in order to reduce endogenous fire hazard of mining operations is proved.

  15. Nuclear power plant control room ventilation system design for meeting general criterion 19

    International Nuclear Information System (INIS)

    Murphy, K.G.; Campe, K.M.

    1975-01-01

    The requirement for protection of control room personnel against radiation is specified in General Design Criterion 19 of Appendix A, 10 CFR Part 50. The evaluation of a control room design, especially its emergency ventilation system, with respect to radiation protection primarily consists of determining the radiation doses to control room personnel under accident conditions. The accident dose assessment involves modeling and evaluation of radiological source terms, atmospheric transport of airborne activity, and protection features of the control room ventilation system. Some of the assumptions and conservatisms used in the dose analyses are based on the technical review experience of existing or proposed control room designs. A review of over 50 control room designs has revealed a great variety of design concepts, not all of which seem to have been based on radiation protection criteria. A summary of the basic control room protection requirements, design features, dose acceptance criteria, and an outline of the methods used by the Regulatory staff for accident dose evaluation are presented. (U.S.)

  16. Heliox Improves Carbon Dioxide Removal during Lung Protective Mechanical Ventilation

    Directory of Open Access Journals (Sweden)

    Charlotte J. Beurskens

    2014-01-01

    Full Text Available Introduction. Helium is a noble gas with low density and increased carbon dioxide (CO2 diffusion capacity. This allows lower driving pressures in mechanical ventilation and increased CO2 diffusion. We hypothesized that heliox facilitates ventilation in patients during lung-protective mechanical ventilation using low tidal volumes. Methods. This is an observational cohort substudy of a single arm intervention study. Twenty-four ICU patients were included, who were admitted after a cardiac arrest and mechanically ventilated for 3 hours with heliox (50% helium; 50% oxygen. A fixed protective ventilation protocol (6 mL/kg was used, with prospective observation for changes in lung mechanics and gas exchange. Statistics was by Bonferroni post-hoc correction with statistical significance set at P<0.017. Results. During heliox ventilation, respiratory rate decreased (25±4 versus 23±5 breaths min−1, P=0.010. Minute volume ventilation showed a trend to decrease compared to baseline (11.1±1.9 versus 9.9±2.1 L min−1, P=0.026, while reducing PaCO2 levels (5.0±0.6 versus 4.5±0.6 kPa, P=0.011 and peak pressures (21.1±3.3 versus 19.8±3.2 cm H2O, P=0.024. Conclusions. Heliox improved CO2 elimination while allowing reduced minute volume ventilation in adult patients during protective mechanical ventilation.

  17. Case Report of a Pressure Ulcer Occurring Over the Nasal Bridge Due to a Non-Invasive Ventilation Facial Mask.

    Science.gov (United States)

    Rathore, Farooq A; Ahmad, Faria; Zahoor, Muhammad Umar U

    2016-10-03

    Non-invasive ventilation (NIV) is used in patients with respiratory failure, sleep apnoea, and dyspnoea related to pulmonary oedema. NIV is provided through a facial mask. Many complications of NIV facial masks have been reported, including the breakdown of facial skin. We report a case of an elderly male admitted with multiple co-morbidities. The facial mask was applied continuously for NIV, without any relief or formal monitoring of the underlying skin. It resulted in a Grade II pressure ulcer. We discuss the possible mechanism and offer advice for prevention of such device-related pressure ulcers.

  18. Randomized crossover trial of a pressure sensing visual feedback system to improve mask fitting in noninvasive ventilation.

    Science.gov (United States)

    Brill, Anne-Kathrin; Moghal, Mohammad; Morrell, Mary J; Simonds, Anita K

    2017-10-01

    A good mask fit, avoiding air leaks and pressure effects on the skin are key elements for a successful noninvasive ventilation (NIV). However, delivering practical training for NIV is challenging, and it takes time to build experience and competency. This study investigated whether a pressure sensing system with real-time visual feedback improved mask fitting. During an NIV training session, 30 healthcare professionals (14 trained in mask fitting and 16 untrained) performed two mask fittings on the same healthy volunteer in a randomized order: one using standard mask-fitting procedures and one with additional visual feedback on mask pressure on the nasal bridge. Participants were required to achieve a mask fit with low mask pressure and minimal air leak (mask fit and staff- confidence were measured. Compared with standard mask fitting, a lower pressure was exerted on the nasal bridge using the feedback system (71.1 ± 17.6 mm Hg vs 63.2 ± 14.6 mm Hg, P mask-fitting training, resulted in a lower pressure on the skin and better mask fit for the volunteer, with increased staff confidence. © 2017 Asian Pacific Society of Respirology.

  19. Computational study of smoke flow control in garage fires and optimization of the ventilation system

    Directory of Open Access Journals (Sweden)

    Banjac Miloš J.

    2009-01-01

    Full Text Available With the aim of evaluating capabilities of a ventilation system to control the spread of smoke in the emergency operating mode, thereby providing conditions for safe evacuation of people from a fire-struck area, computational fluid dynamics simulation of a fire in a semi-bedded garage was conducted. Using the experimental results of combustion dynamics of a passenger car on fire, optimal positions of ventilation openings were determined. According to recommendations by DIN EN 12101 standard, the operating modes of a ventilation system were verified and optimal start time of the smoke extraction system was defined.

  20. Control of Single-room Ventilation with Regenerative Heat Recovery for Indoor Climate and Energy Performance

    DEFF Research Database (Denmark)

    Smith, Kevin Michael; Svendsen, Svend

    2016-01-01

    constructions and will soon require 85%. The development of single-room ventilation units may aim for these requirements as a result. The exhaust temperatures in highly efficient heat exchangers may approach outdoor levels. The cold exhaust cannot contain ample moisture, so vapour will condense on the heat...... exchanger. Available literature suggests that uncoated rotary heat exchangers transfer this condensate to the supply air, so the drying capacity of the ventilation system may be severely limited. This could raise indoor relative humidities to unsafe levels, which could promote the growth of dust......-mites and mould. Controls may increase drying capacity by increasing ventilation airflow, but this may not be sufficient to limit moisture-related risks. This research investigated the added demand-control measure of reducing variable heat recovery to increase drying capacity when using an uncoated rotary heat...

  1. Impact of the humidification device on intubation rate during noninvasive ventilation with ICU ventilators: results of a multicenter randomized controlled trial.

    Science.gov (United States)

    Lellouche, François; L'Her, E; Abroug, F; Deye, N; Rodriguez, P O; Rabbat, A; Jaber, S; Fartoukh, M; Conti, G; Cracco, C; Richard, J C; Ricard, J D; Mal, H; Mentec, H; Loisel, F; Lacherade, J C; Taillé, S; Brochard, L

    2014-02-01

    The use of heat and moisture exchangers (HME) during noninvasive ventilation (NIV) can increase the work of breathing, decrease alveolar ventilation, and deliver less humidity in comparison with heated humidifiers (HH). We tested the hypothesis that the use of HH during NIV with ICU ventilators for patients with acute respiratory failure would decrease the rate of intubation (primary endpoint) as compared with HME. We conducted a multicenter randomized controlled study in 15 centers. After stratification by center and type of respiratory failure (hypoxemic or hypercapnic), eligible patients were randomized to receive NIV with HH or HME. Of the 247 patients included, 128 patients were allocated to the HME group and 119 to the HH group. Patients were comparable at baseline. The intubation rate was not significantly different: 29.7% in the HME group and 36.9% in the HH group (p = 0.28). PaCO2 did not significantly differ between the two arms, even in the subgroup of hypercapnic patients. No significant difference was observed for NIV duration, ICU and hospital LOS, or ICU mortality (HME 14.1 vs. HH 21.5%, p = 0.18). In this study, the short-term physiological benefits of HH in comparison with HME during NIV with ICU ventilators were not observed, and no difference in intubation rate was found. The physiologic effects may have been obscured by leaks or other important factors in the clinical settings. This study does not support the recent recommendation favoring the use of HH during NIV with ICU ventilators.

  2. A randomized comparison of different ventilator strategies during thoracotomy for pulmonary resection.

    Science.gov (United States)

    Maslow, Andrew D; Stafford, Todd S; Davignon, Kristopher R; Ng, Thomas

    2013-07-01

    Protective lung ventilation is reported to benefit patients with acute respiratory distress syndrome. It is not known whether protective lung ventilation is also beneficial to patients undergoing single-lung ventilation for elective pulmonary resection. In an institutional review board-approved prospective randomized trial, 34 patients undergoing elective pulmonary resection requiring single-lung ventilation were enrolled. Informed consent was obtained. Patients were randomized to 1 of 2 groups: (1) high tidal volume (Hi-TV) of 10 mL/kg, rate of 7 breaths/min, and zero positive end-expiratory pressure or (2) low tidal volume (Lo-TV) of 5 mL/kg, rate of 14 breaths/min, and 5 cmH2O positive end-expiratory pressure. Ventilator settings were continued during both double- and single-lung ventilation. Pulmonary functions, hemodynamics, and postoperative outcomes were recorded. Patient demographics, operative characteristics, intraoperative hemodynamics, and postoperative pain and sedation scores were similar between the 2 groups. During most time periods, airway pressures (peak and plateau) were significantly higher in the Hi-TV group; however, plateau pressures remained less than 30 cmH2O at all times for all patients. The Hi-TV group had significantly lower arterial carbon dioxide tension, less arterial carbon dioxide tension-end-tidal carbon dioxide gradient, lower alveolar dead space ratio, and higher dynamic pulmonary compliance. There were no differences in postoperative morbidity and hospital days between the 2 groups, but atelectasis scores on postoperative days 1 and 2 were lower in the Hi-TV group. The use of Hi-TV during single-lung ventilation for pulmonary resection resulted in no increase in morbidity and was associated with less hypercarbia, less dead space ventilation, better dynamic compliance, and less postoperative atelectasis. Copyright © 2013 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  3. Evaluation of Mechanical Ventilator Use with Liquid Oxygen Systems

    Science.gov (United States)

    2017-02-22

    Endotracheal tubes, high-volume, low-pressure, tracheal wall injury 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF...ventilators to the LOX devices. Ventilator settings were as follows : respiratory rate 35 breaths/min, inspiratory time 0.8 seconds, tidal volume 450 mL

  4. Measurement of lung tissue dynamics in artificially ventilated rats with optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Schnabel Christian

    2017-09-01

    Full Text Available Diseases of lung tissue and the airways become a major task for medical care and health care systems in modern industrial countries in the future. Suitable treatment methods and strategies for lung support and artificial ventilation are of dare need. Besides the obvious importance as life-saving intervention, the effects of usually used over-pressure ventilation onto the sensitive alveolar tissue are insufficiently understood. Therefore, it is of great interest to characterize lung tissue during artificial ventilation at the alveolar level. Those measurements can be used to link micromechanics of alveolar structures to mechanical properties of the whole lung like compliance and resistance measured at the ventilator device. This can be done only in animal experiments due to the fact that imaging techniques used in human diagnostics like CT or MRT fail to resolve alveolar tissue structures. The disadvantage of high-resolution techniques like optical coherence tomography (OCT or intravital microscopy (IVM is the need of a surgical access to the lung due to the limitation in penetration depth of these techniques. Furthermore, imaging dynamic processes with high-resolution imaging techniques during uninterrupted artificial ventilation is a challenging task. In this study, we present a measurement setup for combined imaging of conventional pressure-controlled ventilated rats and the visualization of volume changes of alveolar structures during one cycle of breath. A custom-made OCT system in combination with a triggered scanning algorithm was used to acquire time-resolved 3D OCT image data. Furthermore, this system was combined with a self-adapting autofocus function for intravital microscopy to track the lung surface keeping the tissue in focal plane. The combination of new dynamic measurement modes for OCT and IVM allows new insights into alveolar tissue and will promote the understanding of mechanical behavior during artificial ventilation.

  5. A Turbine-Driven Ventilator Improves Adherence to Advanced Cardiac Life Support Guidelines During a Cardiopulmonary Resuscitation Simulation.

    Science.gov (United States)

    Allen, Scott G; Brewer, Lara; Gillis, Erik S; Pace, Nathan L; Sakata, Derek J; Orr, Joseph A

    2017-09-01

    Research has shown that increased breathing frequency during cardiopulmonary resuscitation is inversely correlated with systolic blood pressure. Rescuers often hyperventilate during cardiopulmonary resuscitation (CPR). Current American Heart Association advanced cardiac life support recommends a ventilation rate of 8-10 breaths/min. We hypothesized that a small, turbine-driven ventilator would allow rescuers to adhere more closely to advanced cardiac life support (ACLS) guidelines. Twenty-four ACLS-certified health-care professionals were paired into groups of 2. Each team performed 4 randomized rounds of 2-min cycles of CPR on an intubated mannikin, with individuals altering between compressions and breaths. Two rounds of CPR were performed with a self-inflating bag, and 2 rounds were with the ventilator. The ventilator was set to deliver 8 breaths/min, pressure limit 22 cm H 2 O. Frequency, tidal volume (V T ), peak inspiratory pressure, and compression interruptions (hands-off time) were recorded. Data were analyzed with a linear mixed model and Welch 2-sample t test. The median (interquartile range [IQR]) frequency with the ventilator was 7.98 (7.98-7.99) breaths/min. Median (IQR) frequency with the self-inflating bag was 9.5 (8.2-10.7) breaths/min. Median (IQR) ventilator V T was 0.5 (0.5-0.5) L. Median (IQR) self-inflating bag V T was 0.6 (0.5-0.7) L. Median (IQR) ventilator peak inspiratory pressure was 22 (22-22) cm H 2 O. Median (IQR) self-inflating bag peak inspiratory pressure was 30 (27-35) cm H 2 O. Mean ± SD hands-off times for ventilator and self-inflating bag were 5.25 ± 2.11 and 6.41 ± 1.45 s, respectively. When compared with a ventilator, volunteers ventilated with a self-inflating bag within ACLS guidelines. However, volunteers ventilated with increased variation, at higher V T levels, and at higher peak pressures with the self-inflating bag. Hands-off time was also significantly lower with the ventilator. (ClinicalTrials.gov registration NCT

  6. Seven Ventilators Challenged With Leaks During Neonatal Nasal CPAP: An Experimental Pilot Study.

    Science.gov (United States)

    Drevhammar, Thomas; Nilsson, Kjell; Zetterström, Henrik; Jonsson, Baldvin

    2015-07-01

    Nasal CPAP is the most common respiratory support for neonates. Several factors are considered important for effective treatment, including leaks at the patient interface and the delivery of pressure-stable CPAP. Investigations of pressure stability during leaks should include both the change in the mean delivered CPAP and the pressure variation during each breath. The aim of this study was to examine the response of ventilators delivering nasal CPAP when challenged with leaks at the patient interface. Seven ventilators providing nasal CPAP at 4 cm H2O were challenged with leaks during simulated neonatal breathing. Leak was applied for 15 consecutive breaths at a constant level (1-4 L/min). The 2 aspects of pressure stability were evaluated by measuring the mean delivered CPAP and the amplitude of pressure swings before, during, and after leaks. The ability to maintain the delivered CPAP and the amplitude of pressure swings varied greatly among the 7 ventilators before, during, and after leaks. Four of the ventilators tested have built-in leak compensation. There was no simple relationship between maintaining delivered CPAP during leaks and providing CPAP with low pressure swing amplitude. Maintaining the delivered CPAP and providing this without pressure swings are 2 separate aspects of pressure stability, and investigations concerning the clinical importance of pressure stability should address both aspects. This study also shows that compensation for leaks does not necessarily provide pressure-stable CPAP. Copyright © 2015 by Daedalus Enterprises.

  7. Lung function studied by servo-controlled ventilator and respiratory mass spectrometer

    International Nuclear Information System (INIS)

    Piiper, J.

    1987-01-01

    The gas exchange function of lungs is studied. The gas concentration, measured by mass spectrometry and the lung volume and rate of change of lung volume are discussed. A servo-controlled ventilator is presented. Several experimental projects performed on anesthetized paralyzed dogs are reported. (M.A.C.) [pt

  8. Intensive care unit ventilation for the non-intensivist

    African Journals Online (AJOL)

    Mode classification: volume versus pressure targeting. There is no evidence to ... and so most modern ventilators can be set up by the technician to directly display the .... mechanics: transpulmonary pressure and lung volume. Crit Care. 2013 ...

  9. Ventilation of high-speed flows, an alternating methodology for the ventilator design

    International Nuclear Information System (INIS)

    Saldarriaga V, Juan G.; Navarrete, J.; Galeano B, Luis A.

    1996-01-01

    This article is about a research developed at Universidad de los Andes on the ventilation of high velocity flows as prevention against cavitations erosion. The research was a consequence of the results found in the physical model of the Guavio River Hydroelectric Project near Bogota and was based in a general model study of a spillway with ventilation system, which did not represent a particular prototype. In the Guavio study one conclusion was obtained:in every ventilation system there are three unknowns which are the air discharge injected to the water flow (design object variable), the sub pressure under the water jet and the jump length of that jet. In the research those three variables were studied using dimensional analysis and multivariable regressions in order to find a set of three equations that allow the design of this type of structures. The new equations are more general than those reported in technical literature

  10. Mechanical ventilation and the total artificial heart: optimal ventilator trigger to avoid post-operative autocycling - a case series and literature review

    Directory of Open Access Journals (Sweden)

    Arabia Francisco A

    2010-05-01

    Full Text Available Abstract Many patients with end-stage cardiomyopathy are now being implanted with Total Artificial Hearts (TAHs. We have observed individual cases of post-operative mechanical ventilator autocycling with a flow trigger, and subsequent loss of autocycling after switching to a pressure trigger. These observations prompted us to do a retrospective review of all TAH devices placed at our institution between August 2007 and May 2009. We found that in the immediate post-operative period following TAH placement, autocycling was present in 50% (5/10 of cases. There was immediate cessation of autocycling in all patients after being changed from a flow trigger of 2 L/minute to a pressure trigger of 2 cm H2O. The autocycling group was found to have significantly higher CVP values than the non-autocycling group (P = 0.012. Our data suggest that mechanical ventilator autocycling may be resolved or prevented by the use of a pressure trigger rather than a flow trigger setting in patients with TAHs who require mechanical ventilation.

  11. Improving safety margins for control room habitability, through heating/ventilation/air conditioning modifications

    International Nuclear Information System (INIS)

    Beach, D.R.; Fillingim, W.; Bell, G.; Eurich, R.G.

    1989-01-01

    The Fort Calhoun power station began operation in September 1973. Since that time, modifications to the plant have required the addition of a substantial number of electrical and control components in the control room, which has resulted in an increased heat load in this area. Additionally, NUREG-0737, Item III.D.3.4, imposed requirements on the ventilating system related to protection of personnel from the effects of toxic and radioactive gas releases, which were not considered in the original design. Omaha Public Power District (OPPD) has recently undertaken a major modification to the Fort Calhoun station control room ventilating system to improve the safety margins for control room habitability. The goals of the modification were to achieve adequate cooling capacity with fully redundant equipment, improve habitability under accident conditions, and eliminate several potential problems related to steam line break and equipment qualification. Additionally, the scope of the project grew as design problems emerged

  12. Lung ventilation injures areas with discrete alveolar flooding, in a surface tension-dependent fashion.

    Science.gov (United States)

    Wu, You; Kharge, Angana Banerjee; Perlman, Carrie E

    2014-10-01

    With proteinaceous-liquid flooding of discrete alveoli, a model of the edema pattern in the acute respiratory distress syndrome, lung inflation over expands aerated alveoli adjacent to flooded alveoli. Theoretical considerations suggest that the overexpansion may be proportional to surface tension, T. Yet recent evidence indicates proteinaceous edema liquid may not elevate T. Thus whether the overexpansion is injurious is not known. Here, working in the isolated, perfused rat lung, we quantify fluorescence movement from the vasculature to the alveolar liquid phase as a measure of overdistension injury to the alveolar-capillary barrier. We label the perfusate with fluorescence; micropuncture a surface alveolus and instill a controlled volume of nonfluorescent liquid to obtain a micropunctured-but-aerated region (control group) or a region with discrete alveolar flooding; image the region at a constant transpulmonary pressure of 5 cmH2O; apply five ventilation cycles with a positive end-expiratory pressure of 0-20 cmH2O and tidal volume of 6 or 12 ml/kg; return the lung to a constant transpulmonary pressure of 5 cmH2O; and image for an additional 10 min. In aerated areas, ventilation is not injurious. With discrete alveolar flooding, all ventilation protocols cause sustained injury. Greater positive end-expiratory pressure or tidal volume increases injury. Furthermore, we determine T and find injury increases with T. Inclusion of either plasma proteins or Survanta in the flooding liquid does not alter T or injury. Inclusion of 2.7-10% albumin and 1% Survanta together, however, lowers T and injury. Contrary to expectation, albumin inclusion in our model facilitates exogenous surfactant activity. Copyright © 2014 the American Physiological Society.

  13. Mechanical ventilation in abdominal surgery.

    Science.gov (United States)

    Futier, E; Godet, T; Millot, A; Constantin, J-M; Jaber, S

    2014-01-01

    One of the key challenges in perioperative care is to reduce postoperative morbidity and mortality. Patients who develop postoperative morbidity but survive to leave hospital have often reduced functional independence and long-term survival. Mechanical ventilation provides a specific example that may help us to shift thinking from treatment to prevention of postoperative complications. Mechanical ventilation in patients undergoing surgery has long been considered only as a modality to ensure gas exchange while allowing maintenance of anesthesia with delivery of inhaled anesthetics. Evidence is accumulating, however, suggesting an association between intraoperative mechanical ventilation strategy and postoperative pulmonary function and clinical outcome in patients undergoing abdominal surgery. Non-protective ventilator settings, especially high tidal volume (VT) (>10-12mL/kg) and the use of very low level of positive end-expiratory pressure (PEEP) (PEEPventilator-associated lung injury in patients with healthy lungs. Stimulated by previous findings in patients with acute respiratory distress syndrome, the use of lower tidal volume ventilation is becoming increasingly more common in the operating room. However, lowering tidal volume, though important, is only part of the overall multifaceted approach of lung protective mechanical ventilation. In this review, we aimed at providing the most recent and relevant clinical evidence regarding the use of mechanical ventilation in patients undergoing abdominal surgery. Copyright © 2014 Société française d’anesthésie et de réanimation (Sfar). Published by Elsevier SAS. All rights reserved.

  14. Effects of Natural Sounds on Pain: A Randomized Controlled Trial with Patients Receiving Mechanical Ventilation Support.

    Science.gov (United States)

    Saadatmand, Vahid; Rejeh, Nahid; Heravi-Karimooi, Majideh; Tadrisi, Sayed Davood; Vaismoradi, Mojtaba; Jordan, Sue

    2015-08-01

    Nonpharmacologic pain management in patients receiving mechanical ventilation support in critical care units is under investigated. Natural sounds may help reduce the potentially harmful effects of anxiety and pain in hospitalized patients. The aim of this study was to examine the effect of pleasant, natural sounds on self-reported pain in patients receiving mechanical ventilation support, using a pragmatic parallel-arm, randomized controlled trial. The study was conducted in a general adult intensive care unit of a high-turnover teaching hospital, in Tehran, Iran. Between October 2011 and June 2012, we recruited 60 patients receiving mechanical ventilation support to the intervention (n = 30) and control arms (n = 30) of a pragmatic parallel-group, randomized controlled trial. Participants in both arms wore headphones for 90 minutes. Those in the intervention arm heard pleasant, natural sounds, whereas those in the control arm heard nothing. Outcome measures included the self-reported visual analog scale for pain at baseline; 30, 60, and 90 minutes into the intervention; and 30 minutes post-intervention. All patients approached agreed to participate. The trial arms were similar at baseline. Pain scores in the intervention arm fell and were significantly lower than in the control arm at each time point (p natural sounds via headphones is a simple, safe, nonpharmacologic nursing intervention that may be used to allay pain for up to 120 minutes in patients receiving mechanical ventilation support. Copyright © 2015 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.

  15. High bias gas flows increase lung injury in the ventilated preterm lamb.

    Directory of Open Access Journals (Sweden)

    Katinka P Bach

    Full Text Available BACKGROUND: Mechanical ventilation of preterm babies increases survival but can also cause ventilator-induced lung injury (VILI, leading to the development of bronchopulmonary dysplasia (BPD. It is not known whether shear stress injury from gases flowing into the preterm lung during ventilation contributes to VILI. METHODS: Preterm lambs of 131 days' gestation (term = 147 d were ventilated for 2 hours with a bias gas flow of 8 L/min (n = 13, 18 L/min (n = 12 or 28 L/min (n = 14. Physiological parameters were measured continuously and lung injury was assessed by measuring mRNA expression of early injury response genes and by histological analysis. Control lung tissue was collected from unventilated age-matched fetuses. Data were analysed by ANOVA with a Tukey post-hoc test when appropriate. RESULTS: High bias gas flows resulted in higher ventilator pressures, shorter inflation times and decreased ventilator efficiency. The rate of rise of inspiratory gas flow was greatest, and pulmonary mRNA levels of the injury markers, EGR1 and CTGF, were highest in lambs ventilated with bias gas flows of 18 L/min. High bias gas flows resulted in increased cellular proliferation and abnormal deposition of elastin, collagen and myofibroblasts in the lung. CONCLUSIONS: High ventilator bias gas flows resulted in increased lung injury, with up-regulation of acute early response genes and increased histological lung injury. Bias gas flows may, therefore, contribute to VILI and BPD.

  16. Applications and Energy Consumption of Demand Controlled Ventilation Systems. Modelling, Simulation and Implementation of Modular Built Dynamical VAV Systems and Control Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Bjoern R.

    2002-07-01

    This thesis discusses many topics of heating and ventilation. This is because the ventilation system is an integrated part of its host building. The functionality and effectiveness of the ventilation system are very much dependent on the building's architectural design, its internal materials, its occupants, its air tightness characteristics and its placement in the terrain. Although this thesis emphasizes strongly on VAV (Variable Air Volume) systems and, in particular, modelling and simulation of such systems, it touches a range of important HVAC related issues. The scope is however, limited to the field of comfort ventilation. That is because ventilation in industrial environments often is subject to separate regulations, and requires other and specialized methods of design and evaluation of ventilation performance. The main objectives have been to: (1) Develop mathematical models for VAV components and systems. (2) Evaluate existing and develop new strategies for VAV demand controlled ventilation by system simulation. (3) Investigate the potential for saving energy and the impact on indoor climate. The development of mathematical models and simulation of VAV systems are given quite much attention compared to the other topics discussed.

  17. Haemodynamics and oxygenation improvement induced by high frequency percussive ventilation in a patient with hypoxia following cardiac surgery: a case report

    Directory of Open Access Journals (Sweden)

    Persi Bruno

    2010-10-01

    Full Text Available Abstract Introduction High frequency percussive ventilation is a ventilatory technique that delivers small bursts of high flow respiratory gas into the lungs at high rates. It is classified as a pneumatically powered, pressure-regulated, time-cycled, high-frequency flow interrupter modality of ventilation. High frequency percussive ventilation improves the arterial partial pressure of oxygen with the same positive end expiratory pressure and fractional inspiratory oxygen level as conventional ventilation using a minor mean airway pressure in an open circuit. It reduces the barotraumatic events in a hypoxic patient who has low lung-compliance. To the best of our knowledge, there have been no papers published about this ventilation modality in patients with severe hypoxaemia after cardiac surgery. Case presentation A 75-year-old Caucasian man with an ejection fraction of 27 percent, developed a lung infection with severe hypoxaemia [partial pressure of oxygen/fractional inspiratory oxygen of 90] ten days after cardiac surgery. Conventional ventilation did not improve the gas exchange. He was treated with high frequency percussive ventilation for 12 hours with a low conventional respiratory rate (five per minute. His cardiac output and systemic and pulmonary pressures were monitored. Compared to conventional ventilation, high frequency percussive ventilation gives an improvement of the partial pressure of oxygen from 90 to 190 mmHg with the same fractional inspiratory oxygen and positive end expiratory pressure level. His right ventricular stroke work index was lowered from 19 to seven g-m/m2/beat; his pulmonary vascular resistance index from 267 to 190 dynes•seconds/cm5/m2; left ventricular stroke work index from 28 to 16 gm-m/m2/beat; and his pulmonary arterial wedge pressure was lowered from 32 to 24 mmHg with a lower mean airway pressure compared to conventional ventilation. His cardiac index (2.7 L/min/m2 and ejection fraction (27 percent

  18. Evaluation of 4 new generation portable ventilators.

    Science.gov (United States)

    Blakeman, Thomas C; Branson, Richard D

    2013-02-01

    Portable ventilators are increasingly utilized in the intra- and inter-hospital transport of patients. We evaluated 4 portable ventilators, Impact EMV, CareFusion LTV 1200, Newport HT70, and Hamilton T1, in terms of triggering, delivered tidal volume (V(T)) accuracy, battery duration, delivered F(IO(2)) accuracy, and gas consumption. Triggering was tested using a microprocessor controlled breathing simulator that simulated a weak, normal, and aggressive inspiratory effort using muscle pressures of -2, -4, and -8 cm H2O respectively. Delivered V(T) and F(IO(2)) accuracy were evaluated across a range of operation. To determine gas consumption, the ventilators were attached to an E type oxygen cylinder and operated at an F(IO(2)) of 1.0 until the tank was depleted. Battery duration was tested by operating each ventilator at an F(IO(2)) of 0.21 until the device ceased to operate. Differences remain among devices in several aspects of the testing protocol. Gas consumption ranged from 9.2 to 16 L/min. Battery duration ranged from 101 to 640 min. Triggering performance varied among devices but was consistent breath to breath within the same device, using the fastest and slowest rise time settings. F(IO(2)) accuracy varied at the low range on the 50 mL V(T) setting with one device, and at the high range on both the 50 mL and 500 mL V(T) settings with another. Manufacturers continue to improve the performance of portable ventilators. All the ventilators we tested performed well on V(T) delivery across a range of settings, using both the internal drive mechanism (F(IO(2)) 0.21) and compressed oxygen (F(IO(2)) 1.0). Two of the ventilators were unable to deliver accurate F(IO(2)) across the range of V(T). None of the devices was clearly superior to the others in all aspects of our evaluation. © 2013 Daedalus Enterprises.

  19. APRV Mode in Ventilator Induced Lung Injury (VILI

    Directory of Open Access Journals (Sweden)

    Ata Mahmoodpoor

    2014-01-01

    Full Text Available Ventilator-Induced Lung Injury (VILI, being a significant iatrogenic complication in the ICU patients, is associated with high morbidity and mortality. Numerous approaches, protocols and ventilation modes have been introduced and examined to decrease the incidence of VILI in the ICU patients. Airway pressure release ventilation (APRV, firstly introduced by Stock and Downs in 1987, applies higher Continuous Positive Airway Pressure (CPAP levels in prolonged periods (P and T high in order to preserve satisfactory lung volume and consequently alveolar recruitment. This mode benefits a time-cycled release phase to a lower set of pressure for a short period of time (P and T low i.e. release time (1,2. While some advantages have been introduced for APRV such as efficiently recruited alveoli over time, more homogeneous ventilation, less volutrauma, probable stabilization of patent alveoli and reduction in atelectrauma, protective effects of APRV on lung damage only seem to be substantial if spontaneous breathing responds to more than 30% of total minute ventilation (3. APRV in ARDS patients should be administered cautiously; T low<0.6 seconds, for recruiting collapsed alveoli; however overstretching of alveoli especially during P high should not be neglected and appropriate sedation considered. The proposed advantages for APRV give the impression of being outstanding; however, APRV, as a non-physiologic inverse ratio mode of ventilation, might result in inflammation mainly due to impaired patient-ventilator interaction explaining the negative or minimally desirable effects of APRV on inflammation (4. Consequently, continuous infusion of neuromuscular blocking drugs during ARDS has been reported to reduce mortality (5. There are insufficient confirming data on the superiority of APRV above other ventilatory methods in regard to oxygenation, hemodynamics, regional blood flow, patient comfort and length of mechanical ventilation. Based on current findings

  20. Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Toke Rammer; Svendsen, Sv Aa Højgaard

    1999-01-01

    The note concerns ventilation in residential buildings. Describes components in ventilation systems, electric energy consumption and different ventilation systems with heat exchanger.......The note concerns ventilation in residential buildings. Describes components in ventilation systems, electric energy consumption and different ventilation systems with heat exchanger....