WorldWideScience

Sample records for prepare hpc polymer

  1. Determining the polymer threshold amount for achieving robust drug release from HPMC and HPC matrix tablets containing a high-dose BCS class I model drug: in vitro and in vivo studies.

    Science.gov (United States)

    Klančar, Uroš; Baumgartner, Saša; Legen, Igor; Smrdel, Polona; Kampuš, Nataša Jeraj; Krajcar, Dejan; Markun, Boštjan; Kočevar, Klemen

    2015-04-01

    It is challenging to achieve mechanically robust drug-release profiles from hydrophilic matrices containing a high dose of a drug with good solubility. However, a mechanically robust drug release over prolonged period of time can be achieved, especially if the viscosity and amount of the polymer is sufficiently high, above the "threshold values." The goal of this research was to determine the hydroxypropyl cellulose (HPC) and hydroxypropyl methylcellulose (HPMC) polymer threshold amount that would enable robust drug release from matrix tablets containing a high dose of levetiracetam as a class I model drug according to the Biopharmaceutical Classification System (BCS). For this purpose, formulations containing HPC or HPMC of similar viscosity range, but in different amounts, were prepared. Based on the dissolution results, two final formulations were selected for additional in vitro and in vivo evaluation to confirm the robustness and to show bioequivalence. Tablets were exposed to various stress conditions in vitro with the use of different mechanically stress-inducing dissolution methods. The in vitro results were compared with in vivo results obtained from fasted and fed bioequivalence studies. Under both conditions, the formulations were bioequivalent and food had a negligible influence on the pharmacokinetic parameters C max and area under the curve (AUC). It was concluded that the drug release from both selected formulations is mechanically robust and that HPC and HPMC polymers with intrinsic viscosities above 9 dL/g and in quantities above 30% enable good mechanical resistance, which ensures bioequivalence. In addition, HPC matrices were found to be more mechanically robust compared to HPMC.

  2. Studies on applicability of press-coated tablets using hydroxypropylcellulose (HPC) in the outer shell for timed-release preparations.

    Science.gov (United States)

    Fukui, E; Uemura, K; Kobayashi, M

    2000-08-10

    Press-coated tablets, containing diltiazem hydrochloride (DIL) in the core tablet and coated with hydroxypropylcellulose (HPC) as the outer shell, were examined for applicability as timed-release tablets with a predetermined lag time and subsequent rapid drug release phase. Various types of press-coated tablets were prepared using a rotary tabletting machine and their DIL dissolution behavior was evaluated by the JP paddle method. The results indicated that tablets with the timed-release function could be prepared, and that the lag times were prolonged as the viscosity of HPC and the amount of the outer shell were increased. The lag times could be controlled widely by the above method, however, the compression load had little effect. Two different kinds of timed-release press-coated tablets that showed lag times of 3 and 6 h in the in vitro test (denoted PCT(L3) and PCT(L6), respectively) were administered to beagle dogs. DIL was first detected in the plasma more than 3 h after administration, and both tablets showed timed-release. The lag times showed a good agreement between the in vivo and in vitro tests in PCT(L3). However, the in vivo lag times were about 4 h in PCT(L6) and were much shorter than the in vitro lag time. The dissolution test was performed at different paddle rotation speeds, and good agreement was obtained between the in vivo and in vitro lag times at 150 rpm. This suggested that the effects of gastrointestinal peristalsis and contraction should also be taken into consideration for the further development of drug delivery systems.

  3. Sonochemical Preparation of Polymer Nanocomposites

    Directory of Open Access Journals (Sweden)

    Hyoung Jin Choi

    2009-06-01

    Full Text Available Thisreview covers sonochemical fabrication of polymer nanocomposites. In addition to its application to the synthesis of various polymeric systems, due to its powerful efficiency, sonochemistry has been widely used not only as the assistant of dispersion for nanomaterials such as carbon nanotubes (CNT and organophillic clay, but also as a special initiator to enhance polymerization for fabrication of polymer nanocomposites with CNT and metallic nanoparticles. Recent developments in the preparation of multi-walled carbon nanotube/polymer nanocomposites with polystyrene and PMMA, magnetic particle/CNT composites and polymer/clay nanocomposites along with their physical characteristics and potential engineering applications will be introduced. Physical characterizations include morphological, thermal, and rheological properties under either an applied electric or magnetic field.

  4. Molecularly imprinted polymers for bioanalytical sample preparation.

    Science.gov (United States)

    Gama, Mariana Roberto; Bottoli, Carla Beatriz Grespan

    2017-02-01

    Molecularly imprinted polymers (MIP) are stable polymers with molecular recognition abilities, provided by the presence of a template during their synthesis, and are excellent materials with high selectivity for sample preparation in bioanalytical methods. This short review discusses aspects of MIP preparation and its applications as a sorbent material in pharmaceutical and biomedical analysis. MIP in different extraction configurations, including classical solid-phase extraction, solid-phase microextraction, magnetic molecularly imprinted solid-phase extraction, microextraction by packed sorbent and solid-phase extraction in pipette tips, are used to illustrate the good performance of this type of sorbent for sample preparation procedures of complex matrices, especially prior to bioanalytical approaches.

  5. HPC: Rent or Buy

    Science.gov (United States)

    Fredette, Michelle

    2012-01-01

    "Rent or buy?" is a question people ask about everything from housing to textbooks. It is also a question universities must consider when it comes to high-performance computing (HPC). With the advent of Amazon's Elastic Compute Cloud (EC2), Microsoft Windows HPC Server, Rackspace's OpenStack, and other cloud-based services, researchers now have…

  6. HPC: Rent or Buy

    Science.gov (United States)

    Fredette, Michelle

    2012-01-01

    "Rent or buy?" is a question people ask about everything from housing to textbooks. It is also a question universities must consider when it comes to high-performance computing (HPC). With the advent of Amazon's Elastic Compute Cloud (EC2), Microsoft Windows HPC Server, Rackspace's OpenStack, and other cloud-based services, researchers now have…

  7. Paravirtualization for HPC Systems

    Energy Technology Data Exchange (ETDEWEB)

    Youseff, L; Wolski, R; Gorda, B; Krintz, C

    2006-10-12

    Virtualization has become increasingly popular for enabling full system isolation, load balancing, and hardware multiplexing. This wide-spread use is the result of novel techniques such as paravirtualization that make virtualization systems practical and efficient. Paravirtualizing systems export an interface that is slightly different from the underlying hardware but that significantly streamlines and simplifies the virtualization process. In this work, we investigate the efficacy of using paravirtualizing software for performance-critical HPC kernels and applications. Such systems are not currently employed in HPC environments due to their perceived overhead. However, virtualization systems offer tremendous potential for benefiting HPC systems by facilitating application isolation, portability, operating system customization, and program migration. We present a comprehensive performance evaluation of Xen, a low-overhead, Linux-based, virtual machine monitor (VMM), for paravirtualization of HPC cluster systems at Lawrence Livermore National Lab (LLNL). We consider four categories of micro-benchmarks from the HPC Challenge (HPCC) and LLNL ASCI Purple suites to evaluate a wide range of subsystem-specific behaviors. In addition, we employ macro-benchmarks and HPC application to evaluate overall performance in a real setting. We also employ statistically sound methods to compare the performance of a paravirtualized kernel against three popular Linux operating systems: RedHat Enterprise 4 (RHEL4) for build versions 2.6.9 and 2.6.12 and the LLNL CHAOS kernel, a specialized version of RHEL4. Our results indicate that Xen is very efficient and practical for HPC systems.

  8. Preparation of Thin Metal Layers on Polymers

    Directory of Open Access Journals (Sweden)

    J. Siegel

    2007-01-01

    Full Text Available Continuous gold layers of increasing thickness were prepared by the vacuum deposition method on pristine and plasma modified sheets of  PE, PET and PTFE. Various surface profiles were obtained. The surface morphology was studied using atomic force microscopy (AFM. The continuity of the metal layer on the polymer surface was validated by measuring its electrical resistance. Changes in the wettability of the plasma treated polymers were evaluated by measuring the aging curves. These were obtained as the dependence of contact angle on ageing time. 

  9. Preparation of biomimetic photoresponsive polymer springs.

    Science.gov (United States)

    Iamsaard, Supitchaya; Villemin, Elise; Lancia, Federico; Aβhoff, Sarah-Jane; Fletcher, Stephen P; Katsonis, Nathalie

    2016-10-01

    Polymer springs that twist under irradiation with light, in a manner that mimics how plant tendrils twist and turn under the effect of differential expansion in different sections of the plant, show potential for soft robotics and the development of artificial muscles. The soft springs prepared using this protocol are typically 1 mm wide, 50 μm thick and up to 10 cm long. They are made from liquid crystal polymer networks in which an azobenzene derivative is introduced covalently as a molecular photo-switch. The polymer network is prepared by irradiation of a twist cell filled with a mixture of shape-persistent liquid crystals, liquid crystals having reactive end groups, molecular photo-switches, some chiral dopant and a small amount of photoinitiator. After postcuring, the soft polymer film is removed and cut into springs, the geometry of which is determined by the angle of cut. The material composing the springs is characterized by optical microscopy, scanning electron microscopy and tensile strength measurements. The springs operate at ambient temperature, by mimicking the orthogonal contraction mechanism that is at the origin of plant coiling. They shape-shift under irradiation with UV light and can be pre-programmed to either wind or unwind, as encoded in their geometry. Once illumination is stopped, the springs return to their initial shape. Irradiation with visible light accelerates the shape reversion.

  10. Macroporous Monolithic Polymers: Preparation and Applications

    Directory of Open Access Journals (Sweden)

    Cecilia Inés Alvarez Igarzabal

    2009-12-01

    Full Text Available In the last years, macroporous monolithic materials have been introduced as a new and useful generation of polymers used in different fields. These polymers may be prepared in a simple way from a homogenous mixture into a mold and contain large interconnected pores or channels allowing for high flow rates at moderate pressures. Due to their porous characteristics, they could be used in different processes, such as stationary phases for different types of chromatography, high-throughput bioreactors and in microfluidic chip applications. This review reports the contributions of several groups working in the preparation of different macroporous monoliths and their modification by immobilization of specific ligands on the products for specific purposes.

  11. Preparation and Charcterization of Konjac Superabsorbent Polymer

    Institute of Scientific and Technical Information of China (English)

    JIANG Fatang; LI Wanfen; ZHAN Xiaohui; CHEN Guofeng; ZHOU Jun; HUANG Jing; ZHANG Shenghua

    2006-01-01

    A superabsorbent polymer was prepared by grafting sodium acrylate (SA) onto Konjac flour using potassium persulfate (KPS) and N, N'-methylene bis acrylamide (MBA) as an initiator and crosslinker , respectively. The effect of various preparation conditions on its water absorbency was investigated. When the Konjac Flour content was 3.0 g , the acrylic acid ( AA ) content was 30.0 g, the amount of initiator was 0.150 g, the neutralization degree of monomer was 85% , the reaction temperature was 60 ℃ and the amount of crosslinker was 0.025 g, the polymer's absorbency was 750 times in pure water and 279 times in tap water at ambient temperature. It had also high water retention. The graft efficiency reached 67%. The analyses of FT-IR and SEM indicate that sodium acrylate is grafted on the polysaccharides of Konjac flour.

  12. 2014 HPC Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, Barbara [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    Our commitment is to support you through delivery of an IT environment that provides mission value by transforming the way you use, protect, and access information. We approach this through technical innovation, risk management, and relationships with our workforce, Laboratories leadership, and policy makers nationwide. This second edition of our HPC Annual Report continues our commitment to communicate the details and impact of Sandia’s large-scale computing resources that support the programs associated with our diverse mission areas. A key tenet to our approach is to work with our mission partners to understand and anticipate their requirements and formulate an investment strategy that is aligned with those Laboratories priorities. In doing this, our investments include not only expanding the resources available for scientific computing and modeling and simulation, but also acquiring large-scale systems for data analytics, cloud computing, and Emulytics. We are also investigating new computer architectures in our advanced systems test bed to guide future platform designs and prepare for changes in our code development models. Our initial investments in large-scale institutional platforms that are optimized for Informatics and Emulytics work are serving a diverse customer base. We anticipate continued growth and expansion of these resources in the coming years as the use of these analytic techniques expands across our mission space. If your program could benefit from an investment in innovative systems, please work through your Program Management Unit ’s Mission Computing Council representatives to engage our teams.

  13. Preparation and degradation mechanisms of biodegradable polymer: a review

    Science.gov (United States)

    Zeng, S. H.; Duan, P. P.; Shen, M. X.; Xue, Y. J.; Wang, Z. Y.

    2016-07-01

    Polymers are difficult to degrade completely in Nature, and their catabolites may pollute the environment. In recent years, biodegradable polymers have become the hot topic in people's daily life with increasing interest, and a controllable polymer biodegradation is one of the most important directions for future polymer science. This article presents the main preparation methods for biodegradable polymers and discusses their degradation mechanisms, the biodegradable factors, recent researches and their applications. The future researches of biodegradable polymers are also put forward.

  14. Preparation of Conductive Polymer Graphite (PG) Composites

    Science.gov (United States)

    Munirah Abdullah, Nur; Saddam Kamarudin, M.; Rus, Anika Zafiah M.; Abdullah, M. F. L.

    2017-08-01

    The preparation of conductive polymer graphite (PG) composites thin film is described. The thickness of the PG composites due to slip casting method was set approximately ~0.1 mm. The optical microscope (OM) and fourier transform infra-red spectroscopy (FTIR) has been operated to distinguish the structure-property relationships scheme of PG composites. It shows that the graphite is homogenously dispersed in polymer matrix composites. The electrical characteristics of the PG composite were measured at room temperature and the electrical conductivity (σ) was discovered with respect of its resistivity (Ω). By achieving conductivity of 103 S/m, it is proven that at certain graphite weight loading (PG20, PG25 and PG30) attributes to electron pathway in PG composites.

  15. Preparation and characterization of gatifloxacin-loaded sodium alginate hydrogel membranes supplemented with hydroxypropyl methylcellulose and hydroxypropyl cellulose polymers for wound dressing

    Science.gov (United States)

    Prabu, Durai; Majdalawieh, Amin F.; Abu-Yousef, Imad A.; Inbasekaran, Kadambari; Balasubramaniam, Tharani; Nallaperumal, Narayanan; Gunasekar, Conjeevaram J.

    2016-01-01

    Introduction: The aim of this study is to evaluate gatifloxacin-loaded sodium alginate hydrogel membranes, supplemented with glycerol (a plasticizer), glutaraldehyde (a cross-linking agent), and hydroxypropyl methylcellulose (HPMC) or hydroxypropyl cellulose (HPC) polymers, as potential wound dressing materials based on their physicochemical properties and the sustain-release phenomenon. Materials and Methods: The physicochemical properties of the prepared hydrogel membranes were evaluated by several methods including Fourier transform infrared and differential scanning calorimetry. Different techniques were used to assess the swelling behavior, tensile strength and elongation, % moisture absorption, % moisture loss, water vapor transmission rate (WVTR), and microbial penetration for the hydrogel membranes. In vitro gatifloxacin release from the hydrogel membranes was examined using the United States Pharmacopeia XXIII dissolution apparatus. Four kinetics models (zero-order, first-order, Higuchi equation, and Korsmeyer-Peppas equation) were applied to study drug release kinetics. Results: The addition of glycerol, glutaraldehyde, HPMC, and HPC polymers resulted in a considerable increase in the tensile strength and flexibility/elasticity of the hydrogel membranes. WVTR results suggest that hydrated hydrogel membranes can facilitate water vapor transfer. None of the hydrogel membranes supported microbial growth. HPMC-treated and HPC-treated hydrogel membranes allow slow, but sustained, release of gatifloxacin for 48 h. Drug release kinetics revealed that both diffusion and dissolution play an important role in gatifloxacin release. Conclusions: Given their physicochemical properties and gatifloxacin release pattern, HPMC-treated and HPC-treated hydrogel membranes exhibit effective and sustained drug release. Furthermore, HPMC-treated and HPC-treated hydrogel membranes possess physiochemical properties that make them effective and safe wound dressing materials. PMID

  16. Polymer-phyllosilicate nanocomposites and their preparation

    Science.gov (United States)

    Chaiko, David J.

    2007-01-09

    Polymer-phyllosilicate nanocomposites that exhibit superior properties compared to the polymer alone, and methods-for producing these polymer-phyllosilicate nanocomposites, are provided. Polymeric surfactant compatabilizers are adsorbed onto the surface of hydrophilic or natural phyllosilicates to facilitate the dispersal and exfoliation of the phyllosilicate in a polymer matrix. Utilizing polymeric glycol based surfactants, polymeric dicarboxylic acids, polymeric diammonium surfactants, and polymeric diamine surfactants as compatabilizers facilitates natural phyllosilicate and hydrophilic organoclay dispersal in a polymer matrix to produce nanocomposites.

  17. Preparation and characterization of organic polymer modified composite polyaluminum chloride

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Compared with traditional aluminum salts, polyaluminum chloride (PACl) has better coagulation-flocculation performance in turbidity removal. However, it is still inferior to organic polymers in terms of bridging function. In order to improve the aggregating property of PACl, different composite PACl flocculants were prepared with various organic polymers. The effect of organic polymer on the distribution of Al (Ⅲ) species in composite flocculants was studied using 27Al NMR and Al-ferron complexation methods. The charge neutralization and surface adsorption characteristics of composite flocculants were also investigated. Jar tests were conducted to evaluate the turbidity removal efficacy of organic polymer modified composite flocculants. The study shows that cationic polymer and anionic polymer have significant influences on the coagulation-flocculation behaviors of PACl. Both cationic and anionic polymers can improve the turbidity removal performance of PACl but the mechanisms are much different: cationic organic polymer mainly increases the charge neutralization ability, but anionic polymer mainly enhances the bridging function.

  18. Polymer blend compositions and methods of preparation

    Science.gov (United States)

    Naskar, Amit K.

    2016-09-27

    A polymer blend material comprising: (i) a first polymer containing hydrogen bond donating groups having at least one hydrogen atom bound to a heteroatom selected from oxygen, nitrogen, and sulfur, or an anionic version of said first polymer wherein at least a portion of hydrogen atoms bound to a heteroatom is absent and replaced with at least one electron pair; (ii) a second polymer containing hydrogen bond accepting groups selected from nitrile, halogen, and ether functional groups; and (iii) at least one modifying agent selected from carbon particles, ether-containing polymers, and Lewis acid compounds; wherein, if said second polymer contains ether functional groups, then said at least one modifying agent is selected from carbon particles and Lewis acid compounds. Methods for producing the polymer blend, molded forms thereof, and articles thereof, are also described.

  19. Electrocatalysts using porous polymers and method of preparation

    Science.gov (United States)

    Liu, Di-Jia; Yuan, Shengwen; Goenaga, Gabriel A.

    2016-08-02

    A method of producing an electrocatalyst article using porous polymers. The method creates a porous polymer designed to receive transition metal groups disposed at ligation sites and activating the transition metals to form an electrocatalyst which can be used in a fuel cell. Electrocatalysts prepared by this method are also provided. A fuel cell which includes the electrocatalyst is also provided.

  20. Preparation of conjugated polymer suspensions by using ultrasonic atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Kazuya, E-mail: tada@eng.u-hyogo.ac.jp; Onoda, Mitsuyoshi

    2010-11-30

    The electrophoretic deposition is a method useful to prepare conjugated polymer films for electronic devices. This method provides high material recovery rate on the substrate from the suspension, in contrast to the conventional spin-coating in which most of the material placed on the substrate is blown away. Although manual reprecipitation technique successfully yields suspensions of various conjugated polymers including polyfluorene derivatives, it is favorable to control the preparation process of suspensions. In this context, this paper reports preliminary results on the preparation of suspension of conjugated polymer by using an ultrasonic atomizer. While the resultant films do not show particular difference due to the preparation methods of the suspension, the electric current profiles during the electrophoretic deposition suggests that the ultrasonic atomization of polymer solution prior to be mixed with poor solvent results in smaller and less uniform colloidal particles than the conventional manual pouring method.

  1. Pharmaceutical properties of a low-substituted hydroxypropyl cellulose (L-HPC) hydrogel as a novel external dressing.

    Science.gov (United States)

    Ogawa, Atsushi; Nakayama, Sachie; Uehara, Mami; Mori, Yasuhiro; Takahashi, Mai; Aiba, Tetsuya; Kurosaki, Yuji

    2014-12-30

    Controlling the moisture balance between exudates and their transpiration from the surface of wounded skin is important for healing. Low-substituted hydroxypropyl cellulose (L-HPC) hydrogel sheets (HGSs) possessing high water retention and water vapor transmission properties were prepared by neutralizing the highly viscous alkaline liquid of 7-10% L-HPC. Glycerol-impregnated L-HPC hydrogel sheets (L-HPC G-HGSs) were obtained by exchanging aqueous liquid in L-HPC HGSs. The physical characteristics required for wound dressings, i.e., mechanical strength, adhesive strength, and water retention properties, as well as the water vapor transmission (WVT) properties of L-HPC HGSs and L-HPC G-HGSs were evaluated. The mechanical strengths of L-HPC HGSs were enhanced with increases in the L-HPC content. The impregnation of glycerol in L-HPC HGSs yielded a significantly elasticated sheet. The adhesive strengths of L-HPC HGSs were significantly lower than those of commercial medical dressings. Water retention in L-HPC HGSs after being stored for 2h at 37°C was approximately 50%. The WVT rate of 7% L-HPC HGS was approximately 40g/m(2)/h, which was markedly higher than that of silicone gel type medical dressings. In conclusion, L-HPC HGSs are promising dressings that maintain an adequate moisture balance by transpiring excessive wound exudates with less damage to the healing wound.

  2. Preparation and Storage of Silver Nanoparticles in Aqueons Polymers

    Institute of Scientific and Technical Information of China (English)

    SONG,Weihong; ZHANG,Xiaoxiao; YIN,Hongzong; SA,Panpan; LIU,Xiaoyan

    2009-01-01

    Silver nanoparticles were obtained by a chemical reduction method using aqueous polymers as dispersant and characterized by UV-Vis spectroscopy,transmission electron microscopy (TEM) and light-scattering spectroscopy.Solid polymer films containing the silver nanoparticles were also prepared after evaporating the solvent,and then dried with existing polymer.The stability of the silver nanoparticles was compared between primary fresh silver nanoparticle solution and redissolved solid polymer films by UV-Vis spectroscopy.The particle size ranged from 5 to l0 rim,and no obvious differences were found.Therefore,preparing solid nano-Ag/polymer was a novel and useful method in storage of silver nanoparticles.

  3. Programming Models in HPC

    Energy Technology Data Exchange (ETDEWEB)

    Shipman, Galen M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-13

    These are the slides for a presentation on programming models in HPC, at the Los Alamos National Laboratory's Parallel Computing Summer School. The following topics are covered: Flynn's Taxonomy of computer architectures; single instruction single data; single instruction multiple data; multiple instruction multiple data; address space organization; definition of Trinity (Intel Xeon-Phi is a MIMD architecture); single program multiple data; multiple program multiple data; ExMatEx workflow overview; definition of a programming model, programming languages, runtime systems; programming model and environments; MPI (Message Passing Interface); OpenMP; Kokkos (Performance Portable Thread-Parallel Programming Model); Kokkos abstractions, patterns, policies, and spaces; RAJA, a systematic approach to node-level portability and tuning; overview of the Legion Programming Model; mapping tasks and data to hardware resources; interoperability: supporting task-level models; Legion S3D execution and performance details; workflow, integration of external resources into the programming model.

  4. Preparation of Conducting Polymers by Electrochemical Methods and Demonstration of a Polymer Battery

    Science.gov (United States)

    Goto, Hiromasa; Yoneyama, Hiroyuki; Togashi, Fumihiro; Ohta, Reina; Tsujimoto, Akitsu; Kita, Eiji; Ohshima, Ken-ichi

    2008-01-01

    The electrochemical polymerization of aniline and pyrrole, and demonstrations of electrochromism and the polymer battery effect, are presented as demonstrations suitable for high school and introductory chemistry at the university level. These demonstrations promote student interest in the electrochemical preparation of conducting polymers, where…

  5. Preparation of Conducting Polymers by Electrochemical Methods and Demonstration of a Polymer Battery

    Science.gov (United States)

    Goto, Hiromasa; Yoneyama, Hiroyuki; Togashi, Fumihiro; Ohta, Reina; Tsujimoto, Akitsu; Kita, Eiji; Ohshima, Ken-ichi

    2008-01-01

    The electrochemical polymerization of aniline and pyrrole, and demonstrations of electrochromism and the polymer battery effect, are presented as demonstrations suitable for high school and introductory chemistry at the university level. These demonstrations promote student interest in the electrochemical preparation of conducting polymers, where…

  6. ATLAS computing on CSCS HPC

    CERN Document Server

    Filipcic, Andrej; The ATLAS collaboration; Weber, Michele; Walker, Rodney; Hostettler, Michael Artur

    2015-01-01

    The Piz Daint Cray XC30 HPC system at CSCS, the Swiss National Supercomputing centre, is in 2014 the highest ranked European system on TOP500, also featuring GPU accelerators. Event generation and detector simulation for the ATLAS experiment has been enabled for this machine. We report on the technical solutions, performance, HPC policy challenges and possible future opportunities for HEP on extreme HPC systems. In particular a custom made integration to the ATLAS job submission system has been developed via the Advanced Resource Connector (ARC) middleware. Further, some GPU acceleration of the Geant4 detector simulations were implemented to justify the allocation request for this machine.

  7. ATLAS computing on CSCS HPC

    CERN Document Server

    Hostettler, Michael Artur; The ATLAS collaboration; Haug, Sigve; Walker, Rodney; Weber, Michele

    2015-01-01

    The Piz Daint Cray XC30 HPC system at CSCS, the Swiss National Supercomputing centre, was in 2014 the highest ranked European system on TOP500, also featuring GPU accelerators. Event generation and detector simulation for the ATLAS experiment have been enabled for this machine. We report on the technical solutions, performance, HPC policy challenges and possible future opportunities for HEP on extreme HPC systems. In particular a custom made integration to the ATLAS job submission system has been developed via the Advanced Resource Connector (ARC) middleware. Furthermore, some GPU acceleration of the Geant4 detector simulations has been implemented to justify the allocation request for this machine.

  8. PREPARATION OF A POLYMER ARTICLE FOR SELECTIVE METALLIZATION

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention relates to the field of selective metallization, and in particular to preparing a polymer article for selective metallization by submerging the article in a first liquid, and while submergedirradiate the article by a laser beam the area of the article on which the metal...... is to be deposited. An activation step, prior to the selective metallization, comprises submerging the article in an activation liquid for depositing seedparticles in the selected area. The irradiation of the selected area is proportionate so as to cause a temporary meltingof the polymer in the surface...... of the selected area of the polymer article. The invention is advantageous in that the preparation may be performed with a relatively high scan rate across the polymer article, and in that a quite limited use of toxic chemicals....

  9. PREPARATION OF A POLYMER ARTICLE FOR SELECTIVE METALLIZATION

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention relates to the field of selective metallization, and in particular to preparing a polymer article for selective metallization by submerging the article in a first liquid, and while submergedirradiate the article by a laser beam the area of the article on which the metal...... is to be deposited. An activation step, prior to the selective metallization, comprises submerging the article in an activation liquid for depositing seedparticles in the selected area. The irradiation of the selected area is proportionate so as to cause a temporary meltingof the polymer in the surface...... of the selected area of the polymer article. The invention is advantageous in that the preparation may be performed with a relatively high scan rate across the polymer article, and in that a quite limited use of toxic chemicals....

  10. Controllable preparation of high-yield magnetic polymer latex.

    Science.gov (United States)

    Wu, Chun-Chao; Kong, Xiang-Ming; Yang, Hai-Long

    2011-09-01

    In order to overcome the low conversion and complex post-treatment, four different polymerization procedures were adopted to prepare the magnetic polymer latexes. The results clearly show that the strategy using magnetic emulsion template-dosage is the most effective and feasible. Based on the optimized procedure, various factors including the type of initiators such as oil soluble initiator, water soluble initiator, redox initiator system, crosslinking agent, functional monomers etc. were systematically studied. Magnetic polymer latex with high monomer conversion of 83% and high magnet content of 31.8% was successfully obtained. Besides, core-shell structured magnetic polymer latex with good film forming property was also prepared, which is promising for potential applications such as magnetic coatings and modification of cementitious materials with controlled polymer location.

  11. Scaling spark on HPC systems

    OpenAIRE

    Chaimov, N; Malony, A.; Canon, S.; C. Iancu; Ibrahim, KZ; Srinivasan, J.

    2016-01-01

    Copyright © 2016 by the Association for Computing Machinery, Inc. (ACM).We report our experiences porting Spark to large production HPC systems. While Spark performance in a data center installation (with local disks) is dominated by the network, our results show that file system metadata access latency can dominate in a HPC installation using Lustre: it determines single node performance up to 4× slower than a typical workstation. We evaluate a combination of software techniques and hardware...

  12. Emulsification-Induced Homohelicity in Racemic Helical Polymer for Preparing Optically Active Helical Polymer Nanoparticles.

    Science.gov (United States)

    Zhao, Biao; Deng, Jinrui; Deng, Jianping

    2016-04-01

    Optically active nano- and microparticles have constituted a significant category of advanced functional materials. However, constructing optically active particles derived from synthetic helical polymers still remains as a big challenge. In the present study, it is attempted to induce a racemic helical polymer (containing right- and left-handed helices in equal amount) to prefer one predominant helicity in aqueous media by using emulsifier in the presence of chiral additive (emulsification process). Excitingly, the emulsification process promotes the racemic helical polymer to unify the helicity and directly provides optically active nanoparticles constructed by chirally helical polymer. A possible mechanism is proposed to explain the emulsification-induced homohelicity effect. The present study establishes a novel strategy for preparing chirally helical polymer-derived optically active nanoparticles based on racemic helical polymers.

  13. Preparation of Aligned Polymer Micro/Nanofibres by Electrospinning

    Institute of Scientific and Technical Information of China (English)

    TAN Jin-Shan; LONG Yun-Ze; LI Meng-Meng

    2008-01-01

    @@ Polymer micro/nanofibres are prepared by typical and modified methods of electrospinning. The morphologies and microstructures of the electrospun micro/nanofibres are characterized by a scanning electron microscope (SEM). The micro/nanofibres prepared by the typical electrospinning are usually collected in the form of non-woven mats lacking of structural orientation. However, by modifying collector(s) of the electrospinning setup, the resulting polymer fibres show aligned structures to some extent. We analyse all the forces that the fibres experienced during electrospinning and find that the electrostatic force originating from the splitting electric field plays a key role in the alignment of the micro/nanofibres.

  14. Polymer ring resonator based devices prepared by DLW

    Science.gov (United States)

    Jandura, D.; Pudis, D.; Gaso, P.; Goraus, M.

    2017-05-01

    In this paper, the fabrication method of waveguide structures and devices as ring resonators for different waveguide applications based on polymer material is presented. The structures were designed in computer-aided design (CAD) software and two-photon polymerization lithography system was used for preparation of desired devices. Morphological properties of prepared devices were investigated using scanning electron microscope (SEM) and confocal microscope. Finally, we performed measurement of optical spectrum characteristics in telecommunication wavelengths range. The results corresponds to calculated parameters. Final polymer devices are promising for lab on a chip and sensing applications due to unique elastic and chemical properties.

  15. Preparing high-density polymer brushes by mechanically assisted polymer assembly (MAPA)

    Science.gov (United States)

    Wu, Tao; Efimenko, Kirill; Genzer, Jan

    2001-03-01

    We introduce a novel method of modifying the surface properties of materials. This technique, called MAPA (="mechanically assisted polymer assembly"), is based on: 1) chemically attaching polymerization initiators to the surface of an elastomeric network that has been previously stretched by a certain length, Δx, and 2) growing end-anchored macromolecules using surface initiated ("grafting from") atom transfer living radical polymerization. After the polymerization, the strain is removed from the substrate, which returns to its original size causing the grafted macromolecules to stretch away from the substrate and form a dense polymer brush. We demonstrate the feasibility of the MAPA method by preparing high-density polymer brushes of poly(acryl amide), PAAm. We show that, as expected, the grafting density of the PAAm brushes can be increased by increasing Δx. We demonstrate that polymer brushes with extremely high grafting densities can be successfully prepared by MAPA.

  16. Application of Hydrosoluble Polymers to Preparation of Nanoscale Calcium Hydroxide

    Institute of Scientific and Technical Information of China (English)

    XU Jing; CHEN Qing-hua; QIAN Qing-rong

    2004-01-01

    Calcium hydroxide with uniform diameters about 50-100 nm was firstly prepared under moderate condition by adding different kinds of hydrosoluble polymers. From the results of TEM and IR, the polymers were proved not only to improve the agglomeration of the nanoparticles but also to be used as a template to control the formation of the special structure and the needed size of Ca (OH)2 by changing the concentration of the polymers. The experimental results of TG-DTA indicate that the Ca(OH)2 can absorb most of the acid gases released during the decomposition of polymers. So this kind of nano-Ca(OH)2 can be used as a useful additive of environmental friendly plastics.

  17. In situ preparation of Nanoparticles/polymer composites

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Nanoparticle (NP) is the matter between molecule and bulk material. It has attracted much attention in catalysis, optoelectronics and biology due to its unique physical and chemical properties. Incorporation of these NPs into the polymer matrix is one of the best methods to display their special functions, which not only stabilize the NPs but also realize the functional assembly of NPs and polymers. However, reali- zation of this idea depends largely on the compatibility of NPs and polymers as well as the interaction between them. Therefore, many methods have been developed to prepare the composites of NPs and polymers in order to obtain the function ex- pected. In this review, we mainly focus on the combination of in situ method with other methods to synthesize different functional one-dimension, two-dimension as well as bulk composites, which has been recently developed by our group. The most striking character of our method is the excellent compatibility between NPs and polymers which ensures a homogeneous distribution of NPs in the polymer matrix. The existence of the polymer network makes the NPs more stable, and is significant for displaying their functions.

  18. In situ preparation of Nanoparticles/polymer composites

    Institute of Scientific and Technical Information of China (English)

    SUN HaiZhu; YANG Bai

    2008-01-01

    Nanoparticle (NP) is the matter between molecule and bulk material. It has attracted much attention in catalysis, optoelectronics and biology due to its unique physical and chemical properties. Incorporation of these NPs into the polymer matrix is one of the best methods to display their special functions, which not only stabilize the NPs but also realize the functional assembly of NPs and polymers. However, reali-zation of this idea depends largely on the compatibility of NPs and polymers as well as the interaction between them. Therefore, many methods have been developed to prepare the composites of NPs and polymers in order to obtain the function ex-pected. In this review, we mainly focus on the combination of in situ method with other methods to synthesize different functional one-dimension, two-dimension as well as bulk composites, which has been recently developed by our group. The most striking character of our method is the excellent compatibility between NPs and polymers which ensures a homogeneous distribution of NPs in the polymer matrix. The existence of the polymer network makes the NPs more stable, and is significant for displaying their functions.

  19. Preparation and properties of polymer and quantum dot composites

    Institute of Scientific and Technical Information of China (English)

    Tian Hongye; Shao Jun; He Rong; Gao Feng; Cui Daxiang; Gu Hongchen

    2006-01-01

    Quantum dots (QDs) were prepared in an organic system through a simple and low-cost wet chemistry method.Polymer beads with a diameter of 60-70 nm and specific functional groups were synthesized by a particular seeded emulsion polymerization technique.QDs were embedded in the polymer beads with the specific functional groups through dissolving and swelling method,which provided the condition for the conjunction of biomolecules and QDs as fluorescent probes.The prepared composites were characterized with UV-Vis,PL,TEM,FTIR,CLSM and conductance titration etc.The results show that QDs are successfully embedded in polymer beads,which breaks the limitation that the conjunction of biomolecules and QDs can be achieved only for those synthesized in aqueous system.

  20. PREPARATION OF POLYMER DISPERSED LIQUID CRYSTALS USING PHOTOPOLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    Xing-he Fan; Xiao-feng Xie; Yasuo Hatate

    2001-01-01

    2-Hydroxyethyl methacrylate (HEMA) and styrene copolymers are prepared by photopolymerization. The electrooptical behavior and microstructure of the polymer dispersed liquid crystal films are investigated by using He-Ne laser and scanning electron micro scopy, respectively. With increasing E7 content in the copolymer, droplet size increased, threshold voltage decreased.

  1. PREPARATION OF CARBON NANOFIBERS BY POLYMER BLEND TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The polymer blend technique is a novel method to produced carbon nanofibers. In this paper, we have prepared fine carbon fibers and porous carbon materials by this technique, and we will discuss the experiment results by means of SEM, TGA, Element Analysis, etc.

  2. Preparation of a novel biodegradable β-cyclodextrin-containing polymer

    Institute of Scientific and Technical Information of China (English)

    朱久进

    2009-01-01

    A novel cyclodextrin-containing polymer was prepared by graftingβ-cyclodextrin onto the backbone of poly(D,L-lactic acid)(PLA).First,mono(6-(2-aminoethyl)amino-6-deoxy)-β-cyclodextrin(β-CD-6-en)was prepared by sulfonylation and amination ofβ-cyclodextrin and modified poly(D,L-lactic acid)(MPLA)was prepared by free radical polymerization of maleic anhydride and PLA.Then,grafting ofβ-cyclodextrin derivative to MPLA backbone was carried out by N-acylation reaction of MPLA andβ-CD-6-en in dimethyl formamide.The...

  3. Preparation of soluble and insoluble polymer supported IBX reagents.

    Science.gov (United States)

    Reed, Neal N; Delgado, Mercedes; Hereford, Kristina; Clapham, Bruce; Janda, Kim D

    2002-08-05

    A series of soluble and insoluble polymer supported versions of the versatile oxidizing reagent IBX has been prepared. Each of the reagents were evaluated for their efficiency in the conversion of benzyl alcohol to benzaldehyde. Results from this study were that the soluble, non-crosslinked polystyrene supported IBX reagent gave the best rate of conversion to benzaldehyde, while the macroporous polymer supported IBX resin provided a superior rate of conversion to benzaldehyde when compared with a gel type resin. The macroporous IBX reagent was also shown to convert a series of alcohols to the corresponding aldehydes and ketones.

  4. Polymer/Carbon-Based Hybrid Aerogels: Preparation, Properties and Applications

    Directory of Open Access Journals (Sweden)

    Lizeng Zuo

    2015-10-01

    Full Text Available Aerogels are synthetic porous materials derived from sol-gel materials in which the liquid component has been replaced with gas to leave intact solid nanostructures without pore collapse. Recently, aerogels based on natural or synthetic polymers, called polymer or organic aerogels, have been widely explored due to their porous structures and unique properties, such as high specific surface area, low density, low thermal conductivity and dielectric constant. This paper gives a comprehensive review about the most recent progresses in preparation, structures and properties of polymer and their derived carbon-based aerogels, as well as their potential applications in various fields including energy storage, adsorption, thermal insulation and flame retardancy. To facilitate further research and development, the technical challenges are discussed, and several future research directions are also suggested in this review.

  5. Preparation and Characterization of Nateglinide Loaded Hydrophobic Biocompatible Polymer Nanoparticles

    Science.gov (United States)

    Naik, Jitendra; Lokhande, Amolkumar; Mishra, Satyendra; Kulkarni, Ravindra

    2016-09-01

    The aim of the present study was to develop sustained release Nateglinide loaded Ethylcellulose nanoparticles and characterize the properties of recovered nanoparticles. The sustained release nanoparticles were prepared by oil in water single emulsion solvent evaporation method. The developed nanoparticles were characterised for their particle size, morphology, encapsulation efficiency, drug polymer compatibility and in vitro drug release. The drug polymer compatibility was investigated by XRPD. Imaging of particles was performed by field emission scanning electron microscopy. The highest particle size and encapsulation efficiency of recovered nanoparticles were 248.37 nm and 91.16 % respectively. The recovered nanoparticles are spherical in nature and uniform in size. Developed nanoparticles have low crystallinity than the pure Nateglinide. The highest drug-polymer ratio formulation showed drug release 61.1 ± 1.76 % up to 24 h.

  6. Preparation and characterization of diltiazem nanocapsules: Influence of various polymers

    Directory of Open Access Journals (Sweden)

    Kumar G

    2010-01-01

    Full Text Available Nanocapsules are submicroscopic colloidal drug delivery system and are composed of an oily or an aqueous core surrounded by a thin polymeric membrane. Nanocapsules have recently generated lot of interest in the area of controlled release with availability of biocompatible and biodegradable polymers. Nanocapsules of diltiazem were prepared with an objective of achieving controlled release of the drug in order to reduce the frequency of administration of drug, to obtain more uniform plasma concentration, and to improve patient compliance. Diltiazem was chosen as the model drug, as it is widely used in the treatment of chronic conditions such as hypertension and angina which require prolonged therapy. Nanocapsules were prepared by the interfacial deposition technique by taking different concentrations of polymers and phospholipid mixture. Five best formulations were selected based on the encapsulation efficiency. The morphology of nanocapsules was assessed by scanning electron microscope and they were found to be smooth, spherical, and discrete. The particles followed normal size distribution with particle size in the range of 20 to 380 nm. In vitro release studies indicated prolonged release for all polymers for 48 hours, with polycaprolactone as the best polymer releasing about 95 to 98%. The formulations were stable at 4°C but unstable at 25°C, and hence recommended for storage in refrigeration. Thus, it can be concluded that nanocapsules are a useful technology for controlled release of diltiazem.

  7. Preparation and characterization of polymer-clay nanocomposite films

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Polymer/clay nanocomposite films were prepared by means of electrodeposition of aqueous suspension including cathodic electrophoretic acrylic resin (CEAR) and Na+-montmorillonite (NMMT). Studies of XRD,SEM and TEM indicated well-dispersed NMMT platelets in the films prepared. The ideal dispersity achieved was thought to be the result of aqueous compatibility between CEAR molecules and NMMT platelets and the result of the water-involved process as well. The modulus and strength of the polymer/clay nanocomposite coatings tested by tensile testing and nano-indentation were effectively improved compared to those of the virgin CEAR film. In addition,the adhesion strength,flexibility and water-resistance represented by Chinese national standard (GB) kept the best grades.

  8. Preparation of Lanthanide-Polymer Composite Material via Click Chemistry.

    Science.gov (United States)

    Chen, Bin; Wen, Guian; Wu, Jiajie; Feng, Jiachun

    2015-10-01

    Covalently attaching lanthanide complexes to the polymer backbone can effectively reduce the clustering of lanthanides and thus become an important strategy to fully unleash their potential. In this Communication, a metal-free click reaction is used for the first time to link a lanthanide complex to the polymer matrix. A diene-bearing copolymer with anthracenylmethyl methacrylate as a monomer and a dienophile-bearing lanthanide complex with 5-maleimido-1,10-phenanthroline as the second ligand are synthesized and coupled together through a Diels-Alder cycloaddition (DA). A comparative investigation demonstrates that the composite material prepared by DA click reaction shows the highest quantum yields in the same lanthanide concentration as compared to materials prepared by widely used "directly doping" and "in situ coordinating lanthanide ions with macromolecular ligand" approaches. This work suggests that the "metal-free" DA click reaction can be a promising tool in the synthesis of high efficient lanthanide functionalized polymeric materials.

  9. Preparation of hydrophilic molecularly imprinted polymers for tetracycline antibiotics recognition

    Institute of Scientific and Technical Information of China (English)

    Peng Wang; Xiao Fang Fu; Jing Li; Jing Luo; Xiao Ya Zhao; Ming Jun Sun; Yin Zhu Shang; Cheng Ye

    2011-01-01

    Hydrophilic molecularly imprinted polymers (MIPs) were prepared using tetracycline as template, methacrylic acid as monomer and glycidilmethacrylate as pro-hydrophilic co-monomer. Compared with common MIPs, the imprinting effect and adsorption amounts of hydrophilic MIPs for tetracycline (TC) were greatly improved in water media. Furthermore, the electrochemical sensor fabricated by modifying hydrophilic MIPs on glassy carbon electrode was developed for the determination of TC in foodstuff samples.

  10. Nano-structured polymer composites and process for preparing same

    Science.gov (United States)

    Hillmyer, Marc; Chen, Liang

    2013-04-16

    A process for preparing a polymer composite that includes reacting (a) a multi-functional monomer and (b) a block copolymer comprising (i) a first block and (ii) a second block that includes a functional group capable of reacting with the multi-functional monomer, to form a crosslinked, nano-structured, bi-continuous composite. The composite includes a continuous matrix phase and a second continuous phase comprising the first block of the block copolymer.

  11. Klucel™ EF and ELF polymers for immediate-release oral dosage forms prepared by melt extrusion technology.

    Science.gov (United States)

    Mohammed, Noorullah Naqvi; Majumdar, Soumyajit; Singh, Abhilasha; Deng, Weibin; Murthy, Narasimha S; Pinto, Elanor; Tewari, Divya; Durig, Thomas; Repka, Michael A

    2012-12-01

    The objective of this research work was to evaluate Klucel™ hydroxypropylcellulose (HPC) EF and ELF polymers, for solubility enhancement as well as to address some of the disadvantages associated with solid dispersions. Ketoprofen (KPR), a Biopharmaceutics Classification System class II drug with poor solubility, was utilized as a model compound. Preliminary thermal studies were performed to confirm formation of a solid solution/dispersion of KPR in HPC matrix and also to establish processing conditions for hot-melt extrusion. Extrudates pelletized and filled into capsules exhibited a carrier-dependent release with ELF polymer exhibiting a faster release. Tablets compressed from milled extrudates exhibited rapid release owing to the increased surface area of the milled extrudate. Addition of mannitol (MNT) further enhanced the release by forming micro-pores and increasing the porosity of the extrudates. An optimized tablet formulation constituting KPR, MNT, and ELF in a 1:1:1 ratio exhibited 90% release in 15 min similar to a commercial capsule formulation. HPC polymers are non-ionic hydrophilic polymers that undergo polymer-chain-length-dependent solubilization and can be used to enhance solubility or dissolution rate of poorly soluble drugs. Dissolution/release rate could be tailored for rapid-release applications by selecting a suitable HPC polymer and altering the final dosage form. The release obtained from pellets was carrier-dependent and not drug-dependent, and hence, such a system can be effectively utilized to address solubility or precipitation issues with poorly soluble drugs in the gastrointestinal environment.

  12. Studies on Novel Polymer Materials Prepared through Intermacromolecular Complexation

    Institute of Scientific and Technical Information of China (English)

    WANG Qi; GAO Jun; DAN Yi; CHEN Zhe

    2004-01-01

    The basic feature of polymers is their multi-order structure. Structure change at each level offers a possibility tomodify polymer properties and to develop new polymer materials. Therefore,novel polymer materials can be developed by tailoring their chain structure through chemical bonding among atoms, i.e., via the traditional molecular chemistry methods, e.g., polymerization of new monomer, controlling chain length (molecular weight and molecular weight distribution) and stereoregularity, copolymerization of different kinds of monomers, controlling sequence distribution,block of graft length of copolymer, etc., which have been the focus of polymer chemistry for several decades, as well as by tailoring specific supramolecular architecture using molecules as building block through intermolecular interactions, i.e., via supramolecular science methods, e.g., molecular self-assembly, intermacromolecular complexation, etc., which is a modern and fast-developing academic research field.This paper reports novel polymer materials prepared through intermacromolecular complexation,e.g., a new polymer solid electrolyte poly(metyl methacrylate-methacrylic acid)[P(MMA-MAA)]/poly(ethylene oxide) (PEO)/A2-LiClO4 developed by intermacromolecular complexation through hydrogen bonding, which has enhanced ambient ionic conductivity and fairly good mechanical and film-forming properties, a new polymer microcomposite poly(acrylonitrile-acrylamide-acrylic acid) [P(AN-AM-AA)]/poly(vinyl alcohol) (PVA) reinforced by the twin molecular chain microfibrils formed through intermacromolecular complexation of P(AN-AM-AA) with PVA through hydrogen bonding, which exhibits much better mechanical properties than its constituents and could be used to manufacture PVA based complexed fibers with higher modulus and better dyeability, a new polymer flooding agent poly(acrylamide-acrylic acid)[P(AM-AA)]/poly(acrylamide- dimethyldiallylammonium chloride) [P(AM-DMDAAC)] developed by intermacromolecular

  13. Preparation and Characterization of Lithium Ion Conducting Solid Polymer Electrolytes from Biodegradable Polymers Starch And PVA

    Directory of Open Access Journals (Sweden)

    B. Chatterjee,

    2015-06-01

    Full Text Available Solid Polymer electrolyte films have been prepared from Starch-Poly vinyl alcohol (PVA blend a well acknowledged biodegradable material. Solution cast technique was employed for the preparation of solid polymer electrolyte films added with Lithium Bromide (LiBr salt. X-ray diffraction (XRD studies of the prepared films portrayed the evolution of an amorphous structure with increasing content of salt which is an important factor that leads to the augmentation of conductivity. Electrochemical impedance spectroscopic analysis revealed noticeable ionic conductivity ~ 5x 10-3 S/cm for 20 wt% of salt at ambient conditions. Ionic conductivity showed an increasing trend with salt content at ambient conditions. Transference number measurements confirmed the ionic nature of the prepared solid polymer electrolyte films. Dielectric studies revealed a sharp increase in the number of charge carriers which contributed to enhancement in conductivity. Low values of activation energy extracted from temperature dependent conductivity measurements could be favorable for device applications. For the composition with highest conductivity a temperature independent relaxation mechanism was confirmed by electric modulus scaling.

  14. Computational/HPC Physics Education

    Science.gov (United States)

    Landau, Rubin H.

    1997-08-01

    The Physics group in NACSE (an NSF Metacenter Regional Alliance) has developed a variety of materials to be used in computational physics education and to assist working scientists and engineers. Our emphasis is to exploit Web technology to better teach about and improve the use of HPC resources in physics. We will demonstrate multimedia, interactive Web tutorials (http://nacphy.physics.orst.edu/ (Wiley, 1997). Also demonstrated will be tutorials to assist physicists with visualizations, HPC library use, PVM, and, in particular, Coping with Unix, an Interactive Survival Kit for Scientists. These latter tutorials use some special Web technology (Webterm) we developed which makes it possible to connect to a remote Unix machine and follow the lessons from any Web browser supporting Java --- even browsers on non-Unix computers such as PCs or Macs.

  15. Hydroxypropylcellulose controlled release tablet matrix prepared by wet granulation: effect of powder properties and polymer composition

    Directory of Open Access Journals (Sweden)

    Antonio Zenon Antunes Teixeira

    2009-02-01

    Full Text Available The aim of this study was to attain 100% drug release of caffeine after 24 h from hydroxypropylcellulose (HPC tablet matrices and to investigate the effect of co-excipient. Physical properties of the powders were evaluated and suggested for a wet granulation process. The tablet containing caffeine was formulated by different weight ratios of hydrophilic polymers. The results of polymer evaluation confirmed that the increase of HPC level with the same drug content significantly decreased the rate of drug release. The presence of co-polymer excipients carboxymethylcellulose (CMC and polyvinylpyrrolidone (PVP in the tablet matrix was also investigated. The release rate was also controlled by low levels of CMC (O objetivo deste estudo é desenvolver a liberação 100% da droga cafeína em 24 horas em comprimidos matrizes e investigar o uso de hidroxipropilcelulose (HPC mais os efeitos de co-excipiente. As propriedades físicas dos pós foram avaliadas assim como seu uso no processo de granulação úmida. O comprimido contendo a cafeína foi formulado por diferentes relações de peso dos polímeros hidrofílicos. Os resultados da avaliação do polímero confirmaram que o aumento do nível de HPC com o mesmo índice da droga diminuiu significativamente a taxa de liberação da droga. A presença do co-polímero excipiente carboximetilcelulose (CMC e do polivinilpirrolidona (PVP na matriz do comprimido foi também investigado. A taxa de liberação foi controlada principalmente por baixos níveis de CMC (< 10% enquanto PVP não mostrou efeito diferente considerável. A melhor taxa de liberação de cafeína 100% em 24 horas foi obtida quando 10% da lactose monoidrato foi adicionado na formulação.

  16. HPC s Pivot to Data

    Energy Technology Data Exchange (ETDEWEB)

    Parete-Koon, Suzanne [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Caldwell, Blake A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Canon, Richard Shane [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Dart, Eli [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Sciences Network (ESnet); Hick, Jason [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Hill, Jason J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Layton, Chris [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Pelfrey, Daniel S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Shipman, Galen M [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Skinner, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Nam, Hai Ah [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Wells, Jack C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Zurawski, Jason [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Sciences Network (ESnet)

    2014-05-03

    Computer centers such as NERSC and OLCF have traditionally focused on delivering computational capability that enables breakthrough innovation in a wide range of science domains. Accessing that computational power has required services and tools to move the data from input and output to computation and storage. A ''pivot to data'' is occurring in HPC. Data transfer tools and services that were previously peripheral are becoming integral to scientific workflows. Emerging requirements from high-bandwidth detectors, high-throughput screening techniques, highly concur- rent simulations, increased focus on uncertainty quantification, and an emerging open-data policy posture toward published research are among the data-drivers shaping the networks, file systems, databases, and overall compute and data environment. In this paper we explain the pivot to data in HPC through user requirements and the changing resources provided by HPC with particular focus on data movement. For WAN data transfers we present the results of a study of network performance between centers.

  17. Preparation of the Inclusion Complex-Type Nonlinear Optical Polymer

    Directory of Open Access Journals (Sweden)

    Li-Fen Wang

    2013-01-01

    Full Text Available This study uses the inclusion complex method to import nonlinear optical (NLO chromophores, disperse red1 (DR1, and spiropyran (SP, into the γ-CD cavity of the γ-cyclodextrin polymer (γ-CDP to prepare orderly aligned nonphotocontrollable and photocontrollable nonlinear optical polymers. Calculations support the ultraviolet/visible analyses and suggest the formation of the 1 : 2 DR1/γ-CDP and 1 : 2 SP/γ-CDP inclusion complexes. Upon complexation, the DR1 and SP molecules are free to align themselves along an applied electric field and show high order parameters of approximately 0.48 and 0.20, respectively. Reversible photochromic reactions exhibit that the SP/γ-CDP complex still retains the photochromic properties following corona poling.

  18. Design, preparation, and application of ordered porous polymer materials

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qingquan, E-mail: qqliu@hnust.edu.cn; Tang, Zhe; Ou, Baoli; Liu, Lihua; Zhou, Zhihua, E-mail: zhou7381@126.com; Shen, Shaohua; Duan, Yinxiang

    2014-04-01

    Ordered porous polymer (OPP) materials have extensively application prospects in the field of separation and purification, biomembrane, solid supports for sensors catalysts, scaffolds for tissue engineering, photonic band gap materials owing to ordered pore arrays, uniform and tunable pore size, high specific surface area, great adsorption capacity, and light weight. The present paper reviewed the preparation techniques of OPP materials like breath figures, hard template, and soft template. Finally, the applications of OPP materials in the field of separation, sensors, and biomedicine are introduced, respectively. - Highlights: • Breath figures involve polymer casting under moist ambience. • Hard template employs monodisperse colloidal spheres as a template. • Soft template utilizes the etched block in copolymers as template.

  19. Preparation and Cyclic Voltammetry Characterization Of Cu-dipyridyl Imprinted Polymer

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Polymer capable of specific binding to Cu-dipyridyl complex was prepared by molecular imprinting technology.The binding specificity of the polymer to the template (Cu-dipyridyl complex) was investigated by cyclic voltametric scanning using the carbon paste electrode modified by polymer particles in phosphate buffer solution.Factors that influence rebinding of the imprinted polymer were explored.The result demonstrated that the cyclic voltammetry was an efficient approach to explore interactions between template and imprinted polymers.

  20. Preparation of a deuterated polymer: Simulating to produce a solid tritium radioactive source

    Science.gov (United States)

    Hu, Rui; Kan, Wentao; Xiong, Xiaoling; Wei, Hongyuan

    2017-08-01

    The preparation of a deuterated polymer was performed in order to simulate the production of the corresponding tritiated polymer as a solid tritium radioactive source. Substitution and addition reaction were used to introduce deuterium into the polymer. Proton nuclear magnetic resonance and FT-IR spectroscopy were used to investigate the extent and location of deuterium in the polymer, indicating an effectively deuterated polymer was produced. The thermal analysis showed that the final polymer product could tolerate the environmental temperature below 125 °C in its application. This research provides a prosperous method to prepare solid tritium radioactive source.

  1. Reutilization of discarded biomass for preparing functional polymer materials.

    Science.gov (United States)

    Wang, Jianfeng; Qian, Wenzhen; He, Yufeng; Xiong, Yubing; Song, Pengfei; Wang, Rong-Min

    2017-07-01

    Biomass is abundant and recyclable on the earth, which has been assigned numerous roles to human beings. However, over the past decades, accompanying with the rapid expansion of man-made materials, such as alloy, plastic, synthetic rubber and fiber, a great number of natural materials had been neglected and abandoned, such as straw, which cause a waste of resource and environmental pollution. In this review, based on introducing sources of discarded biomass, the main composition and polymer chains in discarded biomass materials, the traditional treatment and novel approach for reutilization of discarded biomass were summarized. The discarded biomass mainly come from plant wastes generated in the process of agriculture and forestry production and manufacturing processes, animal wastes generated in the process of animal husbandry and fishery production as well as the residual wastes produced in the process of food processing and rural living garbage. Compared with the traditional treatment including burning, landfill, feeding and fertilizer, the novel approach for reutilization of discarded biomass principally allotted to energy, ecology and polymer materials. The prepared functional materials covered in composite materials, biopolymer based adsorbent and flocculant, carrier materials, energy materials, smart polymer materials for medical and other intelligent polymer materials, which can effectively serve the environmental management and human life, such as wastewater treatment, catalyst, new energy, tissue engineering, drug controlled release, and coating. To sum up, the renewable and biodegradable discarded biomass resources play a vital role in the sustainable development of human society, as well as will be put more emphases in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Preparing Methods and Its Influencing Factors about Nanoparticles Based on Dendritic Polymer

    Directory of Open Access Journals (Sweden)

    Zhang Jianwei

    2017-01-01

    Full Text Available Based on the properties, structure and application of dendritic polymer, this paper analysed the methods of the preparation of nanoparticles using dendritic polymer, detailed preparation process, technical parameters and application effect about a single metal nanoparticles, bimetallic nanoparticles, sulfide and halide nanoparticles. The influencing factors of the preparation about nanoparticles were discussed, including the molecular algebra, the molar ratio of the metal ions to the dendritic polymer, and so on.

  3. HPC Test Results Analysis with Splunk

    Energy Technology Data Exchange (ETDEWEB)

    Green, Jennifer Kathleen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-21

    This PowerPoint presentation details Los Alamos National Laboratory’s (LANL) outstanding computing division. LANL’s high performance computing (HPC) aims at having the first platform large and fast enough to accommodate resolved 3D calculations for full scale end-to-end calculations. Strategies for managing LANL’s HPC division are also discussed.

  4. Improved HPC method for nonlinear wave tank

    DEFF Research Database (Denmark)

    Zhu, Wenbo; Greco, Marilena; Shao, Yanlin

    2017-01-01

    The recently developed Harmonic Polynomial Cell (HPC) method has been proved to be a promising choice for solving potential-flow Boundary Value Problem (BVP). In this paper, a flux method is proposed to consistently deal with the Neumann boundary condition of the original HPC method and enhance...

  5. Preparation of high selective molecularly imprinted polymers for tetracycline by precipitation polymerization

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    High selective molecularly imprinted polymers (MIPs) for tetracycline have been prepared by precipitation polymerization.Effects of monomer and solvent, the ratio of monomer and template and the characterization of the polymer were investigated by frontal chromatography and selectivity experiment. The results clearly indicated that the polymer, which had the highest molecular recognition abilities for tetracycline antibiotics, had been received.

  6. Preparation and Property Recognition of Nimodipine Molecularly Imprinted Polymer

    Institute of Scientific and Technical Information of China (English)

    CHEN Fei-fei

    2015-01-01

    Objective:To explore the application of molecular imprinting technique in the separation and detection of nimodipine. Methods:Methacrylic acid as functional monomer, pentaerythritol triacrylate as cross-linking agent were used to prepare molecularly imprinted polymer (MIP) with the feature of specific recognition performance on imprinting molecule nimodipine under condition of template molecule nimodipine. The preparation conditions, recognition performance of MIP on nimodipine, different proportions of template molecule and functional monomer, the selectivity to other substrate, and the relationship between adsorption quantity (Q) and time were observed. Results: MIP was prepared successfully by nimodipine as template and pentaerythritol triacrylate as cross-linking agent, with the feature of speciifc recognition performance on nimodipine. The static adsorption distribution coefifcient (KD) was 0.2264. The equation of Q and the concentration of substrate of template MIP was y = -0.21x+0.2204. Combining capacity of template molecule at the same concentration enhanced with the increasing proportion of functional monomer. Conclusion:Nimodipine MIP based on molecular imprinting technique may become a new approach to chiral separation for nimodipine.

  7. Preparation and Property Recognition of Nimodipine Molecularly Imprinted Polymer

    Directory of Open Access Journals (Sweden)

    Fei-fei CHEN

    2015-09-01

    Full Text Available Objective: To explore the application of molecular imprinting technique in the separation and detection of nimodipine. Methods: Methacrylic acid as functional monomer, pentaerythritol triacrylate as cross-linking agent were used to prepare molecularly imprinted polymer (MIP with the feature of specific recognition performance on imprinting molecule nimodipine under condition of template molecule nimodipine. The preparation conditions, recognition performance of MIP on nimodipine, different proportions of template molecule and functional monomer, the selectivity to other substrate, and the relationship between adsorption quantity (Q and time were observed. Results: MIP was prepared successfully bynimodipine as template and pentaerythritol triacrylate as cross-linking agent, with the feature of specific recognition performance on nimodipine. The static adsorption distribution coefficient (KD was 0.2264. The equation of Q and the concentration of substrate of template MIP was y = -0.21x+0.2204. Combining capacity of template molecule at the same concentration enhanced with the increasing proportion of functional monomer.Conclusion: Nimodipine MIP based on molecular imprinting technique may become a new approach to chiral separation for nimodipine.

  8. Submicron magnetic core conducting polypyrrole polymer shell: Preparation and characterization.

    Science.gov (United States)

    Tenório-Neto, Ernandes Taveira; Baraket, Abdoullatif; Kabbaj, Dounia; Zine, Nadia; Errachid, Abdelhamid; Fessi, Hatem; Kunita, Marcos Hiroiuqui; Elaissari, Abdelhamid

    2016-04-01

    Magnetic particles are of great interest in various biomedical applications, such as, sample preparation, in vitro biomedical diagnosis, and both in vivo diagnosis and therapy. For in vitro applications and especially in labs-on-a-chip, microfluidics, microsystems, or biosensors, the needed magnetic dispersion should answer various criteria, for instance, submicron size in order to avoid a rapid sedimentation rate, fast separations under an applied magnetic field, and appreciable colloidal stability (stable dispersion under shearing process). Then, the aim of this work was to prepare highly magnetic particles with a magnetic core and conducting polymer shell particles in order to be used not only as a carrier, but also for the in vitro detection step. The prepared magnetic seed dispersions were functionalized using pyrrole and pyrrole-2-carboxylic acid. The obtained core-shell particles were characterized in terms of particle size, size distribution, magnetization properties, FTIR analysis, surface morphology, chemical composition, and finally, the conducting property of those particles were evaluated by cyclic voltammetry. The obtained functional submicron highly magnetic particles are found to be conducting material bearing function carboxylic group on the surface. These promising conducting magnetic particles can be used for both transport and lab-on-a-chip detection.

  9. Preparation of molecularly imprinted polymers simazine as material potentiometric sensor

    Directory of Open Access Journals (Sweden)

    Bow Yohandri

    2017-01-01

    Full Text Available Molecular imprinting technology is a promising technique for creating recognition elements for selected compounds and has been successfully applied for synthesis of environmental pollutants such as simazine. Simazine is a pesticide ingredient that is commonly used in agriculture, which has devastating effects on the environment if used excessively. Molecularly imprinted polymer (MIP provides cavities to form a particular space generated by removing the template when the polymer has formed. In this study, MIP using simazine as template had been made by the cooling-heating method and used as a material potentiometric sensor for detecting simazine. A template (simazine was incorporated into a pre-polymerization solution that contains a methacrylic acid as functional monomer, an ethylene glycol dimethacrylate as cross linker, and benzoyl peroxide as initiator. Characterization was performed by scanning electron microscope (SEM and fourier transforms infra-red (FTIR. The FTIR spectra of the MIP showed that the peaks of amine group decrease significantly, indicating that the simazine concentration decreases drastically. Characterization by SEM images showing the broadest pore size distribution with the highest number of pores in the MIP prepared under the heating time of 150 min. The MIPs therefore could be applied as a simazine sensor.

  10. Preparation and photoactivity of thermosensitive polymer supported metallophthalocyanine

    Institute of Scientific and Technical Information of China (English)

    CHEN WenXing; LIU Fan; LV WangYang; SHEN XiaoYuan; YAO YuYuan XU MinHong

    2008-01-01

    A novel reactive rnetallophthalocyanine derivative, zinc tetra(2,4-dichloro-1,3,5-triazine)arninophthalo-cyanine (Zn-TDTAPc), was prepared and immobilized on poly(N-isopropylacrylarnide) (PNIPAArn) by covalent bonding to obtain a therrnosensitive polymer (Zn-TDTAPc-g-PNIPAAm). Compared with zinc tetraaminophthalocyanine (Zn-TAPc), Zn-TDTAPc-g-PNIPAArn exhibits excellent solubility in water and in most organic solvents. Furthermore, it has a special therrnosensitive property in water and the lower critical solution temperature (LCST) is 34.1℃. It was found that both dissolved and precipitated Zn-TDTAPc-g-PNIPAArn present high photoactivity evidenced by the experiment of photocatalytic degra-dation of 1, 3-diphenylisobenzofuran (DPBF) in the presence of Zn-TDTAPc-g-PNIPAArn. These proper-ties suggest that it can be used potentially in photodynarnic therapy (PDT).

  11. Preparation and photoactivity of thermosensitive polymer supported metallophthalocyanine

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A novel reactive metallophthalocyanine derivative,zinc tetra(2,4-dichloro-1,3,5-triazine)aminophthalo-cyanine(Zn-TDTAPc),was prepared and immobilized on poly(N-isopropylacrylamide)(PNIPAAm) by covalent bonding to obtain a thermosensitive polymer(Zn-TDTAPc-g-PNIPAAm).Compared with zinc tetraaminophthalocyanine(Zn-TAPc),Zn-TDTAPc-g-PNIPAAm exhibits excellent solubility in water and in most organic solvents.Furthermore,it has a special thermosensitive property in water and the lower critical solution temperature(LCST) is 34.1℃.It was found that both dissolved and precipitated Zn-TDTAPc-g-PNIPAAm present high photoactivity evidenced by the experiment of photocatalytic degra-dation of 1,3-diphenylisobenzofuran(DPBF) in the presence of Zn-TDTAPc-g-PNIPAAm.These proper-ties suggest that it can be used potentially in photodynamic therapy(PDT).

  12. Perovskite/polymer solar cells prepared using solution process

    Science.gov (United States)

    Rosa, E. S.; Shobih; Nursam, N. M.; Saputri, D. G.

    2016-11-01

    We report a simple solution-based process to fabricate a perovskite/polymer tandem solar cell using inorganic CH3NH3PM3 as an absorber and organic PCBM (6,6 phenyl C61- butyric acid methyl ester) as an electron transport layer. The absorber solution was prepared by mixing the CH3NH3I (methyl ammonium iodide) with PbI2 (lead iodide) in DMF (N,N- dimethyl formamide) solvent. The absorber and electron transport layer were deposited by spin coating method. The electrical characteristics generated from the cell under 50 mW/cm2 at 25 °C comprised of an open circuit voltage of 0.31 V, a short circuit current density of 2.53 mA/cm2, and a power conversion efficiency of 0.42%.

  13. An Integrated Laboratory Approach toward the Preparation of Conductive Poly(phenylene vinylene) Polymers

    Science.gov (United States)

    Knoerzer, Timm A.; Balaich, Gary J.; Miller, Hannah A.; Iacono, Scott T.

    2014-01-01

    Poly(phenylene vinylene) (PPV) represents an important class of conjugated, conducting polymers that have been readily exploited in the preparation of organic electronic materials. In this experiment, students prepare a PPV polymer via a facile multistep synthetic sequence with robust spectroscopic evaluation of synthetic intermediates and the…

  14. The ATLAS ARC backend to HPC

    CERN Document Server

    Haug, Sigve; The ATLAS collaboration; Sciacca, Francesco Giovanni; Weber, Michele

    2015-01-01

    The current distributed computing resources used for simulating and processing collision data collected by the LHC experiments are largely based on dedicated x86 Linux clusters. Access to resources, job control and software provisioning mechanisms are quite different from the common concept of self-contained HPC applications run by particular users on specific HPC systems. We report on the development and the usage of a SSH back-end to the Advanced Resource Connector (ARC) middleware to enable HPC compliant access and on the corresponding software provisioning mechanisms.

  15. The ATLAS ARC backend to HPC

    CERN Document Server

    Haug, Sigve; The ATLAS collaboration; Sciacca, Francesco Giovanni; Weber, Michele

    2015-01-01

    The current distributed computing resources used for simulating and processing collision data collected by the LHC experiments are largely based on dedicated x86 Linux clusters. Access to resources, job control and software provisioning mechanisms are quite different from the common concept of self-contained HPC applications run by particular users on specific HPC systems. We report on the development and the usage of a ssh back-end to the Advanced Resource Connector (ARC) middleware to enable HPC compliant access and on the corresponding software provisioning mechanisms.

  16. The ATLAS ARC backend to HPC

    Science.gov (United States)

    Haug, S.; Hostettler, M.; Sciacca, F. G.; Weber, M.

    2015-12-01

    The current distributed computing resources used for simulating and processing collision data collected by ATLAS and the other LHC experiments are largely based on dedicated x86 Linux clusters. Access to resources, job control and software provisioning mechanisms are quite different from the common concept of self-contained HPC applications run by particular users on specific HPC systems. We report on the development and the usage in ATLAS of a SSH backend to the Advanced Resource Connector (ARC) middleware to enable HPC compliant access and on the corresponding software provisioning mechanisms.

  17. Hydroxypropyl Cellulose Based Non-Volatile Gel Polymer Electrolytes for Dye-Sensitized Solar Cell Applications using 1-methyl-3-propylimidazolium iodide ionic liquid

    Science.gov (United States)

    Khanmirzaei, Mohammad Hassan; Ramesh, S.; Ramesh, K.

    2015-12-01

    Gel polymer electrolytes using imidazolium based ionic liquids have attracted much attention in dye-sensitized solar cell applications. Hydroxypropyl cellulose (HPC), sodium iodide (NaI), 1-methyl-3-propylimidazolium iodide (MPII) as ionic liquid (IL), ethylene carbonate (EC) and propylene carbonate (PC) are used for preparation of non-volatile gel polymer electrolyte (GPE) system (HPC:EC:PC:NaI:MPII) for dye-sensitized solar cell (DSSC) applications. The highest ionic conductivity of 7.37 × 10-3 S cm-1 is achieved after introducing 100% of MPII with respect to the weight of HPC. Temperature-dependent ionic conductivity of gel polymer electrolytes is studied in this work. XRD patterns of gel polymer electrolytes are studied to confirm complexation between HPC polymer, NaI and MPII. Thermal behavior of the GPEs is studied using simultaneous thermal analyzer (STA) and differential scanning calorimetry (DSC). DSSCs are fabricated using gel polymer electrolytes and J-V centeracteristics of fabricated dye sensitized solar cells were analyzed. The gel polymer electrolyte with 100 wt.% of MPII ionic liquid shows the best performance and energy conversion efficiency of 5.79%, with short-circuit current density, open-circuit voltage and fill factor of 13.73 mA cm-2, 610 mV and 69.1%, respectively.

  18. Hydroxypropyl Cellulose Based Non-Volatile Gel Polymer Electrolytes for Dye-Sensitized Solar Cell Applications using 1-methyl-3-propylimidazolium iodide ionic liquid.

    Science.gov (United States)

    Khanmirzaei, Mohammad Hassan; Ramesh, S; Ramesh, K

    2015-12-11

    Gel polymer electrolytes using imidazolium based ionic liquids have attracted much attention in dye-sensitized solar cell applications. Hydroxypropyl cellulose (HPC), sodium iodide (NaI), 1-methyl-3-propylimidazolium iodide (MPII) as ionic liquid (IL), ethylene carbonate (EC) and propylene carbonate (PC) are used for preparation of non-volatile gel polymer electrolyte (GPE) system (HPC:EC:PC:NaI:MPII) for dye-sensitized solar cell (DSSC) applications. The highest ionic conductivity of 7.37 × 10(-3) S cm(-1) is achieved after introducing 100% of MPII with respect to the weight of HPC. Temperature-dependent ionic conductivity of gel polymer electrolytes is studied in this work. XRD patterns of gel polymer electrolytes are studied to confirm complexation between HPC polymer, NaI and MPII. Thermal behavior of the GPEs is studied using simultaneous thermal analyzer (STA) and differential scanning calorimetry (DSC). DSSCs are fabricated using gel polymer electrolytes and J-V centeracteristics of fabricated dye sensitized solar cells were analyzed. The gel polymer electrolyte with 100 wt.% of MPII ionic liquid shows the best performance and energy conversion efficiency of 5.79%, with short-circuit current density, open-circuit voltage and fill factor of 13.73 mA cm(-2), 610 mV and 69.1%, respectively.

  19. Preparation of new microgel polymers and their application as supports in organic synthesis.

    Science.gov (United States)

    Spanka, Carsten; Clapham, Bruce; Janda, Kim D

    2002-05-03

    A series of soluble microgel polymers have been synthesized using solution-phase polymerization reactions. In a systematic manner, several variables such as monomer concentration, cross-linker content, reaction solvent and reaction time were examined, and this provided an optimal polymer with both solubility and precipitation characteristics suitable for synthetic applications. Thus, a chemically functionalized microgel polymer was synthesized, and the utility of this polymer in the synthesis of a small array of oxazole compounds has been demonstrated. The advantage of the microgel polymers produced was that they exhibited solution viscosities lower than those of conventional linear polymers even at higher concentrations, and this was found to be beneficial for their precipitation properties. Compounds prepared using the described microgel polymer supports were obtained in similar yields and purity when compared with insoluble resins, and more importantly, the soluble polymer bound intermediates could be analyzed at each step using standard NMR techniques.

  20. Delivering HPC Systems to 132 Dock

    Energy Technology Data Exchange (ETDEWEB)

    Kettering, Brett Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-23

    The intention of this document is to provide the subcontractor with information to enable trucks delivering HPC (High Performance Computing) systems to the 03-0132, computer rooms with the information they need to do so successfully.

  1. Enantiomeric Resolution on L-Carnitine Selective Polymers Prepared by Molecular Imprinting

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    L-carnitine selective polymers were prepared by molecular imprinting using methacrylic acid as the functional monomer. The acid function of the monomer is expected to form hydrogen bond and ionic interactions with the amine function of the target molecule L-carnitine. The imprinted polymers were used as stationary phases in high-performance liquid chromatography (HPLC). It was shown that L-carnitine imprinted polymer exhibited a higher affinity to its template molecule, while the non-imprinted polymer had no affinity to the compounds tested. Racemic carnitine hydrochloride was efficiently resolved on the L-carnitine imprinted polymer, and the separation factor is 1.9.

  2. Enantiomeric Resolution on L—Carnitine Selective Polymers Prepared by Molecular Imprinting

    Institute of Scientific and Technical Information of China (English)

    XiaoTaoLI; GuangGuangJIANG; 等

    2002-01-01

    L-carnitine selective polymers were prepared by molecular imprinting using methacrylic acid as the functional monomer. The acid function of the monomer is expected to form hydrogen bond and ionic interactions with the amine function of the target molecule L-carnitine.The imprinted polymers were used as stationary phases in high-performance liquid chromatography (HPLC). It was shown that L-carnitine imprinted polymer exhibited a higher affinity to its template molecule,while the non-imprinted polymer had no affinity to the compounds tested. Racemic carnitine hydrochloride was efficiently resolved on the L-carnitine imprinted polymer, and the separation factor is 1.9.

  3. Preparation and clinical application of indomethacin gel for medical treatment of stomatitis.

    Science.gov (United States)

    Momo, Kenji; Shiratsuchi, Tatsuko; Taguchi, Hiroyuki; Hashizaki, Kaname; Saito, Yoshihiro; Makimura, Mizue; Ogawa, Naotake

    2005-05-01

    The preparation and clinical applications of indomethacin (IM) gel were investigated in the treatment of stomatitis resulting from chemotherapy and radiotherapy for cancer. IM gel was prepared by adding various water-soluble polymers [hydroxypropyl cellulose (HPC), etc.] to IM aqueous solution. The release rate of IM from IM gels was found to decrease with increasing polymer concentration and viscosity and to follow a first-order reaction rate equation. The release rate of IM from the IM gel with HPC was decreased gradually with increasing polymer concentration and to be easily controllable compared with gels with other polymers. The time before pain relief occurred after application of the IM gel was slightly shorter and the duration of pain relief was longer compared with the IM aqueous solution. It was confirmed that IM gel is useful in the treatment of stomatitis.

  4. PREPARATION AND SWELLING PROPERTIES OF SUPER-ABSORBENT POLYMER

    Institute of Scientific and Technical Information of China (English)

    LIU Mingzhu; CHENG Rongshi; WU Jingjia

    1996-01-01

    A super-absorbent polymer is prepared by graft polymerizing acrylamide (AM) onto potato starch using ceric ammonium nitrate (CAN) and N, N'-methylene-bis-acrylamide (bisAM) as an initiator and cross-linking agent respectively, and then subjecting the potato starch- poly(acrylamide)(PAM) graft copolymer (SPAM) to alkaline saponification. The water absorbency (WA) of the sample is nearly 5000 g H2O/g for dry sample in 24 h at room temperature and is far larger than that of reported in the literature[1]. The variables affecting the WA were investigated and optimized, they were: concentrations of potato starch, AM, CAN and bisAM were 26.3 g/L, 1.14 mol/L, 10.3 mmol/L and 0.53 mmol/L, respectively. The amount of sodium hydroxide was 15 g and the temperatures of graft copolymerization and saponification reactions were 60℃ and 95℃. The time of graft copolymerization and saponification reactions was 2 h, respectively.

  5. PREPARATION AND CHARACTERIZATION OF AMIDATED PECTIN BASED POLYMER ELECTROLYTE MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    R.K.Mishra; A.Anis; S.Mondal; M.Dutt; A.K.Banthia

    2009-01-01

    The work presents the synthesis and characterization of ami dated pectin(AP)based polymer electrolyte membranes(PEM)crosslinked with glutaraldehyde(GA).The prepared membranes are characterized by Fourier transform infrared spectroscopy(FTIR),organic elemental analysis,X-ray diffraction studies(XRD),thermogravimetric analysis (TGA)and impedance spectroscopy.Mechanical properties of the membranes are evaluated by tensile tests.The degree of amidation(DA),molar and mass reaction yields(YM and YN)are calculated based on the results of organic elemental analysis.FTIR spectroscopy indicated the presence of primary and secondary amide absorption bands.XRD pattern of membranes clearly indicates that there is a considerable increase in crystallinity as compared to parent pectin.TGA studies indicate that AP is less thermally stable than reference pectin.A maximum room temperature conductivity of 1.098×10-3 Scm-1 is obtained in the membrane,which is designated as AP-3.These properties make them good candidates for low cost biopolymer electrolyte membranes for fuel cell applications.

  6. Preparation and properties of the magnetic absorbent polymer via the chemical transformation process

    Science.gov (United States)

    Liu, Shengyu; Zhang, Suhong; Guo, Jianying; Wen, Jing; Qiao, Yan

    2017-01-01

    Magnetic polyacrylic acid sodium polymer (MPAAS) was prepared by chemical transformation method. Key parameters were investigated in the synthesis process of the magnetic polymer and an optimum preparation condition was gained. The structure of the magnetic polymer was characterized by X-ray diffraction (XRD), Fourier transform infrared spectrosocopy (FTIR) and scanning electron microscope (SEM). Magnetic property of the magnetic polymer was measured by the magnet and superconducting quantum interference device (SQUID). Both the swelling ratio and kinetics and the water retention ratio and kinetics were investigated. Based on the results, it can be gained that both swelling rate and equilibrium swelling rate were lowered after magnetization while the water retention ability of the magnetic polymer is stronger than that of the polymer.

  7. Preparation of carbon alloy catalysts for polymer electrolyte fuel cells from nitrogen-containing rigid-rod polymers

    Energy Technology Data Exchange (ETDEWEB)

    Chokai, Masayuki [Department of Organic and Polymeric Materials, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8552 (Japan); Integrative Technology Research Institute, Teijin Ltd., 4-3-2, Asahigaoka, Hino, Tokyo 191-8512 (Japan); Taniguchi, Masataka; Shinoda, Tsuyoshi; Nabae, Yuta; Kuroki, Shigeki; Hayakawa, Teruaki; Kakimoto, Masa-aki [Department of Organic and Polymeric Materials, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8552 (Japan); Moriya, Shogo; Matsubayashi, Katsuyuki [Department of Organic and Polymeric Materials, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8552 (Japan); Business Development Division, Nisshinbo Holdings, Inc., 1-2-3, Onodai, Midori-ku, Chiba 267-0056 (Japan); Ozaki, Jun-ichi [Department of Organic and Polymeric Materials, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8552 (Japan); Department of Nanomaterial Systems, Graduate School of Engineering, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); Miyata, Seizo [Department of Organic and Polymeric Materials, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8552 (Japan); New Energy and Industrial Technology Development Organization, 1310 Omiya-cho, Saiwai-ku, Kawasaki, Kanagawa 212-8554 (Japan)

    2010-09-15

    Carbon alloy catalysts (CAC), non-precious metal catalysts for the oxygen reduction reaction (ORR), were prepared from various kinds of nitrogen-containing rigid-rod aromatic polymers, polyimides, polyamides and azoles, by carbonization at 900 C under nitrogen flow. The catalytic activity for ORR was evaluated by the onset potential, which was taken at a current density of -2 {mu}A cm{sup -2}. Carbonized polymers having high nitrogen content showed higher onset potential. In particular, CACs derived from azole (Az5) had an onset potential of 0.8 V, despite being was prepared without any metals. (author)

  8. New polymer gel dosimeters consisting of less toxic monomers with radiation-crosslinked gel matrix

    Science.gov (United States)

    Hiroki, A.; Yamashita, S.; Sato, Y.; Nagasawa, N.; Taguchi, M.

    2013-06-01

    New polymer gel dosimeters consisting of less toxic methacrylate-type monomers such as 2-hydroxymethyl methacrylate (HEMA) and polyethylene glycol 400 dimethacrylate (9G) with hydroxypropyl cellulose (HPC) gel were prepared. The HPC gels were obtained by using a radiation-induced crosslinking technique to be applied in a matrix instead of a gelatin, which is conventionally used in earlier dosimeters, for the polymer gel dosimeters. The prepared polymer gel dosimeters showed cloudiness by exposing to 60Co γ-ray, in which the cloudiness increased with the dose up to 10 Gy. At the same dose, the increase in the cloudiness appeared with increasing concentration of 9G. As a result of the absorbance measurement, it was found that the dose response depended on the composition ratio between HEMA and 9G.

  9. Electroluminescence and photoluminescence of conjugated polymer films prepared by plasma enhanced chemical vapor deposition of naphthalene

    CERN Document Server

    Rajabi, Mojtaaba; Firouzjah, Marzieh Abbasi; Hosseini, Seyed Iman; Shokri, Babak

    2012-01-01

    Polymer light-emitting devices were fabricated utilizing plasma polymerized thin films as emissive layers. These conjugated polymer films were prepared by RF Plasma Enhanced Chemical Vapor Deposition (PECVD) using naphthalene as monomer. The effect of different applied powers on the chemical structure and optical properties of the conjugated polymers was investigated. The fabricated devices with structure of ITO/PEDOT:PSS/ plasma polymerized Naphthalene/Alq3/Al showed broadband Electroluminescence (EL) emission peaks with center at 535-550 nm. Using different structural and optical tests, connection between polymers chemical structure and optical properties under different plasma powers has been studied. Fourier transform infrared (FTIR) and Raman spectroscopies confirmed that a conjugated polymer film with a 3-D cross-linked network was developed. By increasing the power, products tended to form as highly cross-linked polymer films. Photoluminescence (PL) spectra of plasma polymers showed different excimerc ...

  10. HPC in a HEP lab: lessons learned from setting up cost-effective HPC clusters

    Science.gov (United States)

    Husejko, Michal; Agtzidis, Ioannis; Baehler, Pierre; Dul, Tadeusz; Evans, John; Himyr, Nils; Meinhard, Helge

    2015-12-01

    In this paper we present our findings gathered during the evaluation and testing of Windows Server High-Performance Computing (Windows HPC) in view of potentially using it as a production HPC system for engineering applications. The Windows HPC package, an extension of Microsofts Windows Server product, provides all essential interfaces, utilities and management functionality for creating, operating and monitoring a Windows-based HPC cluster infrastructure. The evaluation and test phase was focused on verifying the functionalities of Windows HPC, its performance, support of commercial tools and the integration with the users work environment. We describe constraints imposed by the way the CERN Data Centre is operated, licensing for engineering tools and scalability and behaviour of the HPC engineering applications used at CERN. We will present an initial set of requirements, which were created based on the above constraints and requests from the CERN engineering user community. We will explain how we have configured Windows HPC clusters to provide job scheduling functionalities required to support the CERN engineering user community, quality of service, user- and project-based priorities, and fair access to limited resources. Finally, we will present several performance tests we carried out to verify Windows HPC performance and scalability.

  11. Preparation of microencapsulated α-olefin drag reducing polymer used in oil pipeline transportation

    National Research Council Canada - National Science Library

    Li, Bing; Xing, Wenguo; Dong, Guilin; Chen, Xiangjun; Zhou, Ningning; Qin, Zhanbo; Zhang, Changqiao

    2011-01-01

    Microcapsules containing oil drag-reducing polymer particles were prepared by melting-scattering and condensing of polyethylene wax, in-situ polymerization of urea and formaldehyde, and interfacial...

  12. POLYSTYRYLSULFONYL CHLORIDE:A USEFUL,REACTIVE INTERMEDIATE FOR PREPARATION OF FUNCTIONALIZED POLYMERS

    Institute of Scientific and Technical Information of China (English)

    HUANGWenqiang; HEBinglin

    1992-01-01

    This paper describes the preparation of polystyrylsulfonyl chloride, a reactive intermediate,and its application in syntheses of functionalized polymers which can be used in organic chemistry as polymeric reagents, supports and in controlled release systems.

  13. Preparation and electrochemical properties of polymer Li-ion battery reinforced by non-woven fabric

    Institute of Scientific and Technical Information of China (English)

    HU Yong-jun; CHEN Bai-zhen; YUAN Yan

    2007-01-01

    A polymer electrolyte based on poly(vinylidene)fluoride-hexafluoropropylene was prepared by evaporating the solvent of dimethyl for mamide, and non-woven fabric was used to reinforce the mechanical strength of polymer electrolyte and maintain a good interfacial property between the polymer electrolyte and electrodes. Polymer lithium batteries were assembled by using LiCoO2 as cathode material and lithium foil as anode material. Scanning electron microscopy, alternating current impedance, linear sweep voltammetry and charge-discharge tests were used to study the properties of polymer membrane and polymer Li-ion batteries. The results show that the technics of preparing polymer electrolyte by directly evaporating solvent is simple.The polymer membrane has rich micro.porous structure on both sides and exhibits 280% uptake of electrolyte solution.The electrochemical stability window of this polymer electrolyte is about 5.5 V, and its ionic conductivity at room temperature reaches 0.151 S/m.The polymer lithium battery displays an initial discharge capacity of 138 mA·h/g and discharge plateau of about 3.9 V at 0.2 current rate.After 30 cycles, its loss of discharge capacity is only 2%. When the battery discharges at 0.5 current rate, the voltage plateau is still 3.7 V The discharge capacities of 0.5 and 1.0 current rates are 96%and 93% of mat of 0.1 current rate.respectively.

  14. A two-dimensional polymer prepared by organic synthesis.

    Science.gov (United States)

    Kissel, Patrick; Erni, Rolf; Schweizer, W Bernd; Rossell, Marta D; King, Benjamin T; Bauer, Thomas; Götzinger, Stephan; Schlüter, A Dieter; Sakamoto, Junji

    2012-02-05

    Synthetic polymers are widely used materials, as attested by a production of more than 200 millions of tons per year, and are typically composed of linear repeat units. They may also be branched or irregularly crosslinked. Here, we introduce a two-dimensional polymer with internal periodicity composed of areal repeat units. This is an extension of Staudinger's polymerization concept (to form macromolecules by covalently linking repeat units together), but in two dimensions. A well-known example of such a two-dimensional polymer is graphene, but its thermolytic synthesis precludes molecular design on demand. Here, we have rationally synthesized an ordered, non-equilibrium two-dimensional polymer far beyond molecular dimensions. The procedure includes the crystallization of a specifically designed photoreactive monomer into a layered structure, a photo-polymerization step within the crystal and a solvent-induced delamination step that isolates individual two-dimensional polymers as free-standing, monolayered molecular sheets.

  15. Preparation and Catalytic Properties of Polymer Supported Dendritic Metal Complex

    Institute of Scientific and Technical Information of China (English)

    LI Cui-ling; YANG Zhi-wang; KANG Qiao-xiang; MA Heng-chang; MA Xiao-peng; GAO Qi-kuan; GUO Zhen; LEI Zi-qiang

    2004-01-01

    Polymer supported materials are extensively used as oxidizing agent, reducing agent catalysts, photosensitizers ion exchange resins and agriculturally and pharmacologically active agents1. The application of polymer metal complexes has been widely investigated2. The polymer supported complex undergoes swelling in a suitable solvent medium and provides enough surface area in carrying out electron transfer reactions, which clearly emphasizes the influence of a polymer network in heterogeneous catalysis.In the present, we have succeeded in the grafting of "dendrimer-like" hyperbranched polymer onto the surface of chloromethyl polystyrene reactions.All the catalysts show promising catalytic activities for the oxidation of iso-propylbenzene in the mild reaction condition, in each case, hypnone 1, 2-phenyl-2-propanol 2 were obtained as the major products

  16. Proteomic analysis of cPKCβII-interacting proteins involved in HPC-induced neuroprotection against cerebral ischemia of mice.

    Science.gov (United States)

    Bu, Xiangning; Zhang, Nan; Yang, Xuan; Liu, Yanyan; Du, Jianli; Liang, Jing; Xu, Qunyuan; Li, Junfa

    2011-04-01

    Hypoxic preconditioning (HPC) initiates intracellular signaling pathway to provide protection against subsequent cerebral ischemic injuries, and its mechanism may provide molecular targets for therapy in stroke. According to our study of conventional protein kinase C βII (cPKCβII) activation in HPC, the role of cPKCβII in HPC-induced neuroprotection and its interacting proteins were determined in this study. The autohypoxia-induced HPC and middle cerebral artery occlusion (MCAO)-induced cerebral ischemia mouse models were prepared as reported. We found that HPC reduced 6 h MCAO-induced neurological deficits, infarct volume, edema ratio and cell apoptosis in peri-infarct region (penumbra), but cPKCβII inhibitors Go6983 and LY333531 blocked HPC-induced neuroprotection. Proteomic analysis revealed that the expression of four proteins in cytosol and eight proteins in particulate fraction changed significantly among 49 identified cPKCβII-interacting proteins in cortex of HPC mice. In addition, HPC could inhibit the decrease of phosphorylated collapsin response mediator protein-2 (CRMP-2) level and increase of CRMP-2 breakdown product. TAT-CRMP-2 peptide, which prevents the cleavage of endogenous CRMP-2, could inhibit CRMP-2 dephosphorylation and proteolysis as well as the infarct volume of 6 h MCAO mice. This study is the first to report multiple cPKCβII-interacting proteins in HPC mouse brain and the role of cPKCβII-CRMP-2 in HPC-induced neuroprotection against early stages of ischemic injuries in mice.

  17. A review of recent progress in preparation of hollow polymer microspheres

    Institute of Scientific and Technical Information of China (English)

    Wei Bin; Wang Shujun; Song Hongguang; Liu Hongyan; Li Jie; Liu Ning

    2009-01-01

    The preparation methods of hollow polymer microspheres both at home and abroad are summarized, and their preparation mechanisms and developmental states are presented. These methods include the liquid droplet method, dried-gel droplet method, self-assembly method, microencapsulation method, emulsion polymerization method and the template method. Hollow polystyrene microspheres are the most extensively studied in the research of hollow polymer microspheres. Through comparison of the advantages and disadvantages of different preparation methods, it is concluded that microencapsulation method is most suitable for preparing polystyrene hollow microspheres.

  18. Preparation of Composite Films of a Conjugated Polymer and C60NWs and Their Photovoltaic Application

    OpenAIRE

    Takatsugu Wakahara; Kun’ichi Miyazawa; Osamu Ito; Nobutaka Tanigaki

    2016-01-01

    Composite films of conjugated polymers, such as poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) and poly(3-hexylthiophene) (P3HT), with C60 nanowhiskers (C60NWs) were prepared. The photoluminescence originating from the conjugated MDMO-PPV polymers was effectively quenched in the composite film, indicating a strong interaction between the conjugated polymer and C60NWs. The photovoltaic devices were fabricated using C60NW (conjugated polymer) composite films, result...

  19. Preparation of Composite Films of a Conjugated Polymer and C60NWs and Their Photovoltaic Application

    OpenAIRE

    Takatsugu Wakahara; Kun’ichi Miyazawa; Osamu Ito; Nobutaka Tanigaki

    2016-01-01

    Composite films of conjugated polymers, such as poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) and poly(3-hexylthiophene) (P3HT), with C60 nanowhiskers (C60NWs) were prepared. The photoluminescence originating from the conjugated MDMO-PPV polymers was effectively quenched in the composite film, indicating a strong interaction between the conjugated polymer and C60NWs. The photovoltaic devices were fabricated using C60NW (conjugated polymer) composite films, result...

  20. Preparation of High Selective Molecularly Imprinted Polymers for (S)-4-Phenyl-2-oxazolidinone

    Institute of Scientific and Technical Information of China (English)

    Yong LUO; Lan LIU; Li Hong LI; Qin Ying DENG

    2006-01-01

    (S)-4-Phenyl-2-oxazolidinone imprinted polymers were prepared by using methacrylic acid (MAA) as the functional monomer, and divinylbenzene (DVB) as crosslinker. The factors,which influence the selectivity of the polymers were explored. Effective separation was observed for racemic 4-phenyl-2-oxazolidinone in mobile phase of acetonitrile. The investigation of mobile phase suggested that the hydrogen bonds between template and functional monomer was a primary factor in chiral recognition, while the preparation of polymers implied that the π-π stacking interaction between template and crosslinker played a role in imprinting procedure.

  1. Process to prepare stable trifluorostyrene containing compounds grafted to base polymers using a solvent/water mixture

    Science.gov (United States)

    Roelofs, Mark Gerrit; Yang, Zhen-Yu; Han, Amy Qi

    2010-06-15

    A fluorinated ion exchange polymer is prepared by grafting at least one grafting monomer derived from trifluorostyrene on to at least one base polymer in a organic solvent/water mixture. These ion exchange polymers are useful in preparing catalyst coated membranes and membrane electrode assemblies used in fuel cells.

  2. Custom synthesis of molecular imprinted polymers for biotechnological application: preparation of a polymer selective for tylosin

    OpenAIRE

    Piletsky, Sergey A.; Piletska, Elena V.; Karim, K.; Foster, G.; Legge, C.; Turner, Anthony P.F.

    2004-01-01

    A molecularly imprinted polymer (MIP) selective for tylosin was designed and synthesised using a computational method (MIP “dialling”). In re-binding experiments the MIP demonstrated high affinity for tylosin in aqueous solutions and in organic solvents. The synthesised polymer was tested for re-binding with the template and related metabolites such as tylactone, narbomycin and picromycin. The HPLC analysis showed that the computationally designed polymer is specific and cap...

  3. A foaming process to prepare porous polymer membrane for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.H. [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105 (China); New Energy and Materials Laboratory (NEML), Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China)], E-mail: lzh69@xtu.edu.cn; Cheng, C.; Zhan, X.Y. [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105 (China); Wu, Y.P. [New Energy and Materials Laboratory (NEML), Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China)], E-mail: wuyp@fudan.edu.cn; Zhou, X.D. [State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2009-07-15

    A foaming process was used to prepare porous polymer membranes (PPMs) based on poly(vinylidene diflouride-co-hexafluoropropylene) copolymer for lithium ion batteries. In this simple process, urea, the foaming agent, was decomposed into gases and was removed at an elevated temperature to get the porous structure within the polymer matrix. When the weight ratio of urea to P(VDF-HFP) is 5:6, the PPM presents the highest porosity, 70.2%, and the prepared gelled polymer electrolyte shows an ionic conductivity up to 1.43 x 10{sup -3} S cm{sup -1} at room temperature. This provides another way to prepare gelled polymer electrolytes easily for application in rechargeable lithium batteries.

  4. Big Data and HPC: A Happy Marriage

    KAUST Repository

    Mehmood, Rashid

    2016-01-25

    International Data Corporation (IDC) defines Big Data technologies as “a new generation of technologies and architectures, designed to economically extract value from very large volumes of a wide variety of data produced every day, by enabling high velocity capture, discovery, and/or analysis”. High Performance Computing (HPC) most generally refers to “the practice of aggregating computing power in a way that delivers much higher performance than one could get out of a typical desktop computer or workstation in order to solve large problems in science, engineering, or business”. Big data platforms are built primarily considering the economics and capacity of the system for dealing with the 4V characteristics of data. HPC traditionally has been more focussed on the speed of digesting (computing) the data. For these reasons, the two domains (HPC and Big Data) have developed their own paradigms and technologies. However, recently, these two have grown fond of each other. HPC technologies are needed by Big Data to deal with the ever increasing Vs of data in order to forecast and extract insights from existing and new domains, faster, and with greater accuracy. Increasingly more data is being produced by scientific experiments from areas such as bioscience, physics, and climate, and therefore, HPC needs to adopt data-driven paradigms. Moreover, there are synergies between them with unimaginable potential for developing new computing paradigms, solving long-standing grand challenges, and making new explorations and discoveries. Therefore, they must get married to each other. In this talk, we will trace the HPC and big data landscapes through time including their respective technologies, paradigms and major applications areas. Subsequently, we will present the factors that are driving the convergence of the two technologies, the synergies between them, as well as the benefits of their convergence to the biosciences field. The opportunities and challenges of the

  5. Polymer composites prepared from heat-treated starch and styrene-butadiene latex

    Science.gov (United States)

    Thermoplastic starch/latex polymer composites were prepared using styrene–butadiene (SB) latex and heat-treated cornstarch. The composites were prepared in a compression mold at 130 °C, with starch content 20%. An amylose-free cornstarch, waxy maize, was used for this research and the heat treatment...

  6. Massive preparation of pitch-based organic microporous polymers for gas storage.

    Science.gov (United States)

    Li, Wenqing; Zhang, Aijuan; Gao, Hui; Chen, Mingjie; Liu, Anhua; Bai, Hua; Li, Lei

    2016-02-14

    A general challenge for preparing organic microporous polymers (MOPs) is to use cheap and sustainable building blocks while retaining the advanced functions. We demonstrate a strategy to massively prepare pitch-based MOPs, which are thermally and chemically stable. A maximum BET surface area of 758 m(2) g(-1) and high gas storage capacity were achieved.

  7. Radiolytic preparation of PFA-g-PVBSA membranes as a polymer electrolyte membrane

    Energy Technology Data Exchange (ETDEWEB)

    Fei Geng [Department of Chemistry and Materials Engineering, Changshu Institute of Technology, Nansanhuan Road 99, Changshu, Jiangsu 215-500 (China); Hwang, Mi-Lim; Sohn, Joon-Yong; Nho, Young Chang [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Shin, Junhwa, E-mail: shinj@kaeri.re.kr [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of)

    2012-03-01

    In this study, a polymer electrolyte membrane, PFA-g-PVBSA was prepared through the radiation-induced graft copolymerization of vinylbenzyl chloride (VBC) monomer onto a poly(tetrafluoroethylene-co-perfluoropropylvinyl ether) (PFA) film and subsequent sulfonation processes. The IEC values and water uptakes of the prepared membranes increased when increasing the contents of the poly(vinylbenzyl sulfonic acid) (PVBSA) graft polymers in the membranes. Compared with Nafion 212, the degree of grafting (DOG) of membranes of 50% and 70% showed higher proton conductivity with significantly lower methanol permeability. The combination of these properties suggests that the prepared membranes are promising for future application in direct methanol fuel cells.

  8. RECENT ADVANCES IN THE PREPARATION OF MOLECULARLY IMPRINTED POLYMERS VIA CONTROLLED RADICAL POLYMERIZATION TECHNIQUES

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Molecular imprinting technique is a simple and efficient method for the preparation of polymer materials (i.e., molecularly imprinted polymers, MIPs) with tailor-made recognition sites for certain target molecules. The resulting MIPs have proven to be versatile synthetic receptors due to their high specific recognition ability, favorable mechanical, thermal and chemical stability, and ease of preparation. Recent years have witnessed significant progress in the synthesis and applications of MIPs. This review focus on the recent developments and advances in the preparation of MIPs via various controlled radical polymerization techniques.

  9. RECENT ADVANCES IN THE PREPARATION OF MOLECULARLY IMPRINTED POLYMERS VIA CONTROLLED RADICAL POLYMERIZATION TECHNIQUES

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ying; ZHANG Huiqi

    2008-01-01

    Molecular imprinting technique is a simple and efficient method for the preparation of polymer materials (i.e., molecularly imprinted polymers, MIPs) with tailor-made recognition sites for certain target molecules.The resulting MIPs have proven to be versatile synthetic receptors due to their high specific recognition ability, favorable mechanical, thermal and chemical stability, and ease of preparation.Recent years have witnessed signifwant progress in the synthesis and applications of MIPs.This review focus on the recent developments and advances in the preparation of MIPs via various controlled radical polymerization techniques.

  10. Preparation and adsorption behaviors of Cu(Ⅱ) ion-imprinted polymers

    Institute of Scientific and Technical Information of China (English)

    ZHONG Shi-an; YUAN Zhou-lv; QIAO Rong; LI Wei

    2008-01-01

    Imprinted polymers were prepared for selective removal of Cu(II) ions from metal solutions. Three ion-imprinted polymers were synthesized with methacrylic acid (MAA), acrylamide (AA) and N,N'-methylenebisacrylamide (MBAA) respectively as the functional monomers, ethleneglycoldimethacrylate (EGDMA) as the cross-linking agent, 2,2'-azobisisobutyronitrile (AIBN) as the initiator and Cu (II) ion as the imprint ion. The template Cu (II) ion was removed from the polymer by leaching with a liquid of a 1:1 volumetric ratio of HCl to ethylenediaminetetraacetic acid (EDTA). The capacity and selectivity of Cu(II) ion adsorption were investigated with the three imprinted polymers and their non-imprinted counterparts. The polymers have a maximum adsorption capacity at pH 7.0. The isotherm of their batch adsorption of Cu(II) ions shows a Langmuir adsorption pattern. Imprinted polymers all have a much higher capacity and higher selectivity of Cu(II) adsorption than non-imprinted ones. MAA polymer benefits the most from imprinting. Imprinted MAA polymer has the highest selectivity when used to rebind Cu (II) ion from an aqueous solution in the presence of other metal ions. Ion imprinting can be a promising technique of preparing selective adsorbents to separate and preconcentrate metal in a medium of multiple competitive metal ions through solid phase extraction (SPE).

  11. Preparation of monodisperse magnetic polymer microspheres by swelling and thermolysis technique.

    Science.gov (United States)

    Yang, Chengli; Shao, Qian; He, Jie; Jiang, Biwang

    2010-04-06

    A novel process for the preparation of monodisperse magnetic polymer microspheres by uniquely combining swelling and thermolysis technique was reported. The monodisperse polystyrene microspheres were first prepared by dispersion polymerization and swelled in chloroform. Then, ferric oleate was dispersed in chloroform as a precursor and impregnated into the swollen polymer microspheres. Subsequently, the iron oxide nanoparticles were formed within the polymer matrix by thermal decomposition of ferric oleate. The morphology, inner structure, and magnetic properties of the magnetic polymer microspheres were studied with a field emission scanning electron microscope (SEM), transmission electron microscope (TEM), and superconducting quantum interference device (SQUID) magnetometer. The results showed that the average diameter of the magnetic polymer microspheres was 5.1 microm with a standard deviation of 0.106, and the magnetic polymer microspheres with saturation magnetization of 12.6 emu/g exhibited distinct superparamagnetic characteristics at room temperature. More interestingly, the magnetite nanoparticles with a spinel structure are evenly distributed over the whole area of the polymer microspheres. These magnetic polymer microspheres have potential applications in biotechnology.

  12. Project Final Report: HPC-Colony II

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Terry R [ORNL; Kale, Laxmikant V [University of Illinois, Urbana-Champaign; Moreira, Jose [IBM T. J. Watson Research Center

    2013-11-01

    This report recounts the HPC Colony II Project which was a computer science effort funded by DOE's Advanced Scientific Computing Research office. The project included researchers from ORNL, IBM, and the University of Illinois at Urbana-Champaign. The topic of the effort was adaptive system software for extreme scale parallel machines. A description of findings is included.

  13. Cactus: HPC infrastructure and programming tools

    Science.gov (United States)

    Collaborative Effort

    2011-02-01

    Cactus provides computational scientists and engineers with a collaborative, modular and portable programming environment for parallel high performance computing. Cactus can make use of many other technologies for HPC, such as Samrai, HDF5, PETSc and PAPI, and several application domains such as numerical relativity, computational fluid dynamics and quantum gravity are developing open community toolkits for Cactus.

  14. Using IOR to analyze the I/O Performance for HPC Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Hongzhang; Shalf, John

    2007-06-08

    The HPC community is preparing to deploy petaflop-scale computing platforms that may include hundreds of thousands to millions of computational cores over the next 3 years. Such explosive growth in concurrency creates daunting challenges for the design and implementation of the I/O system. In this work, we first analyzed the I/O practices and requirements of current HPC applications and used them as criteria to select a subset of microbenchmarks that reflect the workload requirements. Our analysis led to selection of IOR, an I/O benchmark developed by LLNL for the ASCI Purple procurement, as our tool to study the I/O performance on two HPC platforms. We selected parameterizations for IOR that match the requirements of key I/O intensive applications to assess its fidelity in reproducing their performance characteristics.

  15. Nanoparticles containing ketoprofen and acrylic polymers prepared by an aerosol flow reactor method.

    Science.gov (United States)

    Eerikäinen, Hannele; Peltonen, Leena; Raula, Janne; Hirvonen, Jouni; Kauppinen, Esko I

    2004-09-23

    The purpose of this study was to outline the effects of interactions between a model drug and various acrylic polymers on the physical properties of nanoparticles prepared by an aerosol flow reactor method. The amount of model drug, ketoprofen, in the nanoparticles was varied, and the nanoparticles were analyzed for particle size distribution, particle morphology, thermal properties, IR spectroscopy, and drug release. The nanoparticles produced were spherical, amorphous, and had a matrix-type structure. Ketoprofen crystallization was observed when the amount of drug in Eudragit L nanoparticles was more than 33% (wt/wt). For Eudragit E and Eudragit RS nanoparticles, the drug acted as an effective plasticizer resulting in lowering of the glass transition of the polymer. Two factors affected the preparation of nanoparticles by the aerosol flow reactor method, namely, the solubility of the drug in the polymer matrix and the thermal properties of the resulting drug-polymer matrix.

  16. Preparation of Composite Films of a Conjugated Polymer and C60NWs and Their Photovoltaic Application

    Directory of Open Access Journals (Sweden)

    Takatsugu Wakahara

    2016-01-01

    Full Text Available Composite films of conjugated polymers, such as poly[2-methoxy-5-(3′,7′-dimethyloctyloxy-1,4-phenylenevinylene] (MDMO-PPV and poly(3-hexylthiophene (P3HT, with C60 nanowhiskers (C60NWs were prepared. The photoluminescence originating from the conjugated MDMO-PPV polymers was effectively quenched in the composite film, indicating a strong interaction between the conjugated polymer and C60NWs. The photovoltaic devices were fabricated using C60NW (conjugated polymer composite films, resulting in a power conversion efficiency of ~0.01% for P3HT with short length thin C60NWs, which is higher than that previously reported for thick C60 nanorods. The present study gives new guidance on the selection of the type of C60NWs and the appropriate polymer for new photovoltaic devices.

  17. PREPARATION OF PHOTOFUNCTIONAL POLYMER THIN FILMS BY LANGMUIR-BLODGETT TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    Tokuji Miyashita; Tatsuo Taniguchi; Yoshihito Fukasawa

    1999-01-01

    Polymer LB films containing photofuntional groups were prepared by the copolymerization of N-dodecylacrylamide (DDA), which has an excellent property to form a stable monolayer and LB multilayers with photofunctional monomers. Tris(2, 2'-bipyridine) ruthenium complex, Ru(bpy)32+, one of the most wellknown redox-active sensitizer, was incorporated into the DDA copolymer. The photogalvanic effect based on the photoinduced electron transfer using the ruthenium complex in the polymer LB monolayer was discussed.

  18. Preparation and properties of a POSS-containing organic-inorganic hybrid crosslinked polymer

    Institute of Scientific and Technical Information of China (English)

    Wang Yan Nie; Gang Li; Yang Li; Hong Yao Xu

    2009-01-01

    A novel POSS-containing organic-inorganic hybrid crosslinked polymer was prepared by hydrosilylation reaction of octahydridosilsesquioxane (T8H8) with 4,4'-bis(4-allyloxybenzoyloxy)phenyl (diene A). Its structure and property was character-ized by FTIR, 29Si NMR, TGA and ellipsometer, respectively. The results show that the hybrid polymer possesses high thermal stability and low dielectric constant of 1.97 at optical frequencies.

  19. Hemoglobin-imprinted polymer gel prepared using modified glucosamine as functional monomer

    Institute of Scientific and Technical Information of China (English)

    Hai Li Zhao; Tian Ying Guo; Yong Qing Xia; Mou Dao Song

    2008-01-01

    A new functional glycomonomer was obtained from modified glucosamine.Hemoglobin-imprinted polymer gel was prepared with allyl-bromide modified glucosamine as functional monomer,poly(ethylene-glycol)diaorylate(PEGDA)as cross-linker and ammonium persulfate[(NH4)2S2O8]/sodium hydrogen sulfite(NaHSO3)as initiators in a phosphate buffer.The adsorption capacity and selective adsorption of the molecular imprinting polymer(MIP)were also discussed.

  20. Recovery of Uranium from Seawater: Preparation and Development of Polymer-Supported Extractants

    Energy Technology Data Exchange (ETDEWEB)

    Spiro, Alexandratos [City Univ. (CUNY), NY (United States). Hunter College

    2013-12-01

    A new series of polymer-supported extractants is proposed for the removal and recovery of uranium from seawater. The objective is to produce polymers with improved stability, loading capacity, and sorption kinetics compared to what is found with amidoximes. The target ligands are diphosphonates and aminomethyldiphosphonates. Small molecule analogues, especially of aminomethyldiphos-phonates, have exceptionally high stability constants for the uranyl ion. The polymeric diphosphonates will have high affinities due to their ability to form six-membered rings with the uranyl ion while the aminomethyldiphosphonates may have yet higher affinities due to possible tridentate coordination and their greater acidity. A representative set of the polymers to be prepared are indicated.

  1. Double In Situ Approach for the Preparation of Polymer Nanocomposite with Multi-functionality

    Directory of Open Access Journals (Sweden)

    Stec Anna

    2009-01-01

    Full Text Available Abstract A novel one-step synthetic route, the double in situ approach, is used to produce both TiO2nanoparticles and polymer (PET, and simultaneously forming a nanocomposite with multi-functionality. The method uses the release of water during esterification to hydrolyze titanium (IV butoxide (Ti(OBu4 forming nano-TiO2in the polymerization vessel. This new approach is of general significance in the preparation of polymer nanocomposites, and will lead to a new route in the synthesis of multi-functional polymer nanocomposites.

  2. Preparation of CdTe nanocrystal-polymer composite microspheres in aqueous solution by dispersing method

    Institute of Scientific and Technical Information of China (English)

    LI Minjie; WANG Chunlei; HAN Kun; YANG Bai

    2005-01-01

    Highly fluorescent CdTe nanocrystals were synthesized in aqueous solution, and then processible CdTe nanocrystal-polymer composites were fabricated by coating the aqueous nanocrystals with copolymers of styrene and octadecyl-p-vinyl-benzyldimethylammonium chloride (SOV- DAC) directly. A dichloromethane solution of CdTe nano- crystal-polymer composites was dispersed in the aqueous solution of poly (vinyl alcohol) (PVA) generating highly fluorescent microspheres. Experimental parameters such as the concentration of nanocrystal-polymer composites, the concentration of PVA, and stirring speed which had important effect on the preparation of the microspheres were investigated in detail with fluorescent microscope characterization.

  3. Preparation of plasmonic vesicles from amphiphilic gold nanocrystals grafted with polymer brushes

    Science.gov (United States)

    Song, Jibin; Huang, Peng; Chen, Xiaoyuan

    2016-01-01

    Gold nanovesicles contain multiple nanocrystals within a polymeric coating. The strong plasmonic coupling between adjacent nanoparticles in their vesicular shell makes ultrasensitive biosensing and bioimaging possible. In our laboratory, multifunctional plasmonic vesicles are assembled from amphiphilic gold nanocrystals (such as gold nanoparticles and gold nanorods) coated with mixed hydrophilic and hydrophobic polymer brushes or amphiphilic diblock co-polymer brushes. To fulfill the different requirements of biomedical applications, different polymers that are either pH=responsive, photoactive or biodegradable can be used to form the hydrophobic brush, while the hydrophilicity is maintained by polyethylene glycol (PEG). This protocol covers the preparation, surface functionalization and self-assembly of amphiphilic gold nanocrystals grafted covalently with polymer brushes. The protocol can be completed within 2 d. The preparation of amphiphilic gold nanocrystals, coated with amphiphilic diblock polymer brushes using a ‘grafting to’ method or mixed hydrophilic and hydrophobic polymer brushes using tandem ‘grafting to’ and ‘grafting from’ methods, is described. We also provide detailed procedures for the preparation and characterization of pH-responsive plasmonic gold nanovesicles from amphiphilic gold nanocrystals using a film-rehydration method that can be completed within ~3 d. PMID:27763624

  4. Preparation of graphene/polymer composite photocathode for QDSSC

    Science.gov (United States)

    Wang, Qiandi; Shen, Yue; Tan, Jie; Xu, Kai; Shen, Tan; Cao, Meng; Gu, Feng; Wang, Linjun

    2013-12-01

    Graphene (rGO) was fabricated by modified Hummers method and a reducing process. Conductive polymer/graphene films were obtained by scalpel technology and used as photocathode in CdS quantum dot-sensitized solar cell (QDSSC). Polymers used in this paper were ethyl cellulose (EC), polyphenyl vinyl (PPV) and polyvinyl butyral (PVB), respectively. The obtained composite films were investigated by X-ray diffraction, Raman spectroscopy technology and scanning electron microscope (SEM). The photoelectric properties of QDSSCs were tested under AM 1.5 irradiation. Test results show that the film performance of the EC/rGO and PPV/rGO photocathode have been improved effectively. Power conversion efficiency (PCE) of the relative QDSSCs under AM 1.5 irradiation were 0.81% and 0.86%, respectively.

  5. Preparation and characterization of silver nanoparticles in natural polymers using laser ablation

    Indian Academy of Sciences (India)

    Reza Zamiri; B Z Azmi; Hossein Abbastabar Ahangar; Golnoosh Zamiri; M Shahril Husin; Z A Wahab

    2012-10-01

    In this paper we have done a comparative study on efficiency of natural polymers for stabilizing silver nanoparticles (Ag-NPs) prepared by laser ablation technique. The selected polymers are starch (St), gelatin (Gt) and chitosan (Ct). The fabrication process was carried out through ablation of a pure Ag plate by nanosecond Q-switched Nd–Yg pulsed laser ( = 532 nm, 360 mJ/pulse). The stability of the samples was studied by measuring UV-visible absorption spectra of the samples one month after preparation. The result showed that the formation efficiency of NPs in St were highest and also the prepared NPs in St solution were more stable than other polymers during one month storage.

  6. Preparation of a novel molecularly imprinted polymer for the highly selective extraction of baicalin.

    Science.gov (United States)

    Liu, Xiao; Zhang, Wenpeng; Chen, Zilin

    2015-12-01

    The selective extraction of baicalin is important to its quality control especially when the matrices are complicated. In this work, a novel molecularly imprinted polymer was prepared for the selective extraction of baicalin in herbs. The molecularly imprinted polymer was synthesized by the copolymerization of 4-vinyl pyridine and ethylene glycol dimethacrylate in the presence of baicalin by a precipitation polymerization method. After the optimization of parameters for molecularly imprinted polymer preparation, including the functional monomer, porogen, sampling solvent, and washing solvent, good selectivity was obtained, with an imprinting factor of about 4, which is much better than that achieved by the bulk-polymerization method. The performances of the prepared molecularly imprinted polymers were systematically investigated, including adsorption kinetics, isotherm experiment, and Scatchard analysis. On the basis of the good adsorptive capability of the prepared molecularly imprinted polymer, it was also applied for the pretreatment of baicalin in Scutellaria baicalensis Georgi. The result showed that most of the matrices were removed and baicalin was selectively enriched.

  7. A novel composite microporous polymer electrolyte prepared with molecule sieves for Li-ion batteries

    Science.gov (United States)

    Jiang, Yan-Xia; Chen, Zuo-Feng; Zhuang, Quan-Chao; Xu, Jin-Mei; Dong, Quan-Feng; Huang, Ling; Sun, Shi-Gang

    Molecular sieves of NaY, MCM-41, and SBA-15 were used as fillers in a poly(vinylidene fluoride- co-hexafluoropropylene) (PVdF-HFP) copolymer matrix to prepare microporous composite polymer electrolyte. The SBA-15-based composite polymer film was found to show rich pores that account for an ionic conductivity of 0.50 mS cm -1. However, the MCM-41 and NaY composite polymer films exhibited compact structure without any pores, and the addition of MCM-41 even resulted in aggregation of fillers in the polymer matrix. These differences were investigated and interpreted by their different compatibility with DMF solvent and PVdF-HFP matrix. Results of linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD) and differential scanning calorimetry (DSC) have revealed that the addition of SBA-15 has extended the electrochemical stability window of polymer electrolyte, enhanced the interfacial stability of polymer electrolyte with lithium electrode, and inhibited also the crystallization of PVdF-HFP matrix. Half-cell of Li/SBA-15-based polymer electrolyte/MCF was assembled and tested. The results have demonstrated that the coulombic efficiency of the first cycle was around 87.0% and the cell remains 94.0% of the initial capacity after 20 cycles, which showed the potential application of the composite polymer electrolyte in lithium ion batteries.

  8. A novel composite microporous polymer electrolyte prepared with molecule sieves for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yan-Xia; Chen, Zuo-Feng; Zhuang, Quan-Chao; Xu, Jin-Mei; Dong, Quan-Feng; Huang, Ling; Sun, Shi-Gang [State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 422, South Road of Siming, Xiamen 361005 (China)

    2006-10-06

    Molecular sieves of NaY, MCM-41, and SBA-15 were used as fillers in a poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) copolymer matrix to prepare microporous composite polymer electrolyte. The SBA-15-based composite polymer film was found to show rich pores that account for an ionic conductivity of 0.50mScm{sup -1}. However, the MCM-41 and NaY composite polymer films exhibited compact structure without any pores, and the addition of MCM-41 even resulted in aggregation of fillers in the polymer matrix. These differences were investigated and interpreted by their different compatibility with DMF solvent and PVdF-HFP matrix. Results of linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD) and differential scanning calorimetry (DSC) have revealed that the addition of SBA-15 has extended the electrochemical stability window of polymer electrolyte, enhanced the interfacial stability of polymer electrolyte with lithium electrode, and inhibited also the crystallization of PVdF-HFP matrix. Half-cell of Li/SBA-15-based polymer electrolyte/MCF was assembled and tested. The results have demonstrated that the coulombic efficiency of the first cycle was around 87.0% and the cell remains 94.0% of the initial capacity after 20 cycles, which showed the potential application of the composite polymer electrolyte in lithium ion batteries. (author)

  9. Ordered macroporous quercetin molecularly imprinted polymers: Preparation, characterization, and separation performance.

    Science.gov (United States)

    Feng, Yonggang; Liu, Qin; Ye, Lifang; Wu, Quanzhou; He, Jianfeng

    2017-02-01

    Ordered macroporous molecularly imprinted polymers were prepared by a combination of the colloidal crystal templating method and the molecular imprinting technique by using SiO2 colloidal crystal as the macroporogen, quercetin as the imprinting template, acrylamide as the functional monomer, ethylene glycol dimethacrylate as the cross-linker and tetrahydrofuran as the solvent. Scanning electron microscopy and Brunauer-Emmett-Teller measurements show that the ordered macroporous molecularly imprinted polymers have a more regular macroporous structure, a narrower pore distribution and a greater porosity compared with the traditional bulk molecularly imprinted polymers. The kinetic and isothermal adsorption behaviors of the polymers were investigated. The results indicate that the ordered macroporous molecularly imprinted polymers have a faster intraparticle mass transfer process and a higher adsorption capacity than the traditional bulk molecularly imprinted polymers. The ordered macroporous molecularly imprinted polymers were further employed as a sorbent for a solid-phase extraction. The results show that the ordered macroporous molecularly imprinted polymers can effectively separate quercetin from the Gingko hydrolysate.

  10. A simple nanostructured polymer/ZnO hybrid solar cell - preparation and operation in air

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Thomann, Yi; Thomann, Ralf

    2008-01-01

    without notable loss in efficiency. The devices do not require any form of encapsulation to gain stability, while a barrier for mechanical protection may be useful. The devices are based on soluble zinc oxide nanoparticles mixed with the thermocleavable conjugated polymer poly-(3-(2-methylhexan-2-yl......A detailed description is given of the preparation of a polymer solar cell and its characterization. The solar cell can be prepared entirely in the ambient atmosphere by solution processing without the use of vacuum coating steps, and it can be operated in the ambient atmosphere with good...

  11. Preparation of magnetic polymer particles with nanoparticles of Fe(0).

    Science.gov (United States)

    Buendía, S; Cabañas, G; Alvarez-Lucio, G; Montiel-Sánchez, H; Navarro-Clemente, M E; Corea, M

    2011-02-01

    Iron nanoparticles (Fe(0)), were encapsulated into polymethyl methacrylate (PMMA), by means of emulsion polymerization techniques in a semicontinuous process. The final average diameter of the composite particle was calculated until three times of average particle of iron particles and were stabilized with a non-ionic surfactant. They were then characterized by scanning electron microscopy and dynamic light scattering. Their magnetic properties were determined by parallel field vibrating-sample magnetometry method. The results indicated that the magnetic properties are a function of polymer concentration in the nanocomposite particle.

  12. Fingerprinting Communication and Computation on HPC Machines

    Energy Technology Data Exchange (ETDEWEB)

    Peisert, Sean

    2010-06-02

    How do we identify what is actually running on high-performance computing systems? Names of binaries, dynamic libraries loaded, or other elements in a submission to a batch queue can give clues, but binary names can be changed, and libraries provide limited insight and resolution on the code being run. In this paper, we present a method for"fingerprinting" code running on HPC machines using elements of communication and computation. We then discuss how that fingerprint can be used to determine if the code is consistent with certain other types of codes, what a user usually runs, or what the user requested an allocation to do. In some cases, our techniques enable us to fingerprint HPC codes using runtime MPI data with a high degree of accuracy.

  13. One-step preparation of antimicrobial silver nanoparticles in polymer matrix

    Energy Technology Data Exchange (ETDEWEB)

    Lyutakov, O., E-mail: lyutakoo@vscht.cz; Kalachyova, Y. [Institute of Chemical Technology, Department of Solid State Engineering (Czech Republic); Solovyev, A. [Institute of Chemical Process Fundamentals of the ASCR (Czech Republic); Vytykacova, S. [Institute of Chemical Technology, Department of Glass and Ceramics (Czech Republic); Svanda, J.; Siegel, J. [Institute of Chemical Technology, Department of Solid State Engineering (Czech Republic); Ulbrich, P. [Institute of Chemical Technology, Department of Biochemistry and Microbiology (Czech Republic); Svorcik, V. [Institute of Chemical Technology, Department of Solid State Engineering (Czech Republic)

    2015-03-15

    Simple one-step procedure for in situ preparation of silver nanoparticles (AgNPs) in the polymer thin films is described. Nanoparticles (NPs) were prepared by reaction of N-methyl pyrrolidone with silver salt in semi-dry polymer film and characterized by transmission electron microscopy, XPS, and UV–Vis spectroscopy techniques. Direct synthesis of NPs in polymer has several advantages; even though it avoids time-consuming NPs mixing with polymer matrix, uniform silver distribution in polymethylmethacrylate (PMMA) films is achieved without necessity of additional stabilization. The influence of the silver concentration, reaction temperature and time on reaction conversion rate, and the size and size-distribution of the AgNPs was investigated. Polymer films doped with AgNPs were tested for their antibacterial activity on Gram-negative bacteria. Antimicrobial properties of AgNPs/PMMA films were found to be depended on NPs concentration, their size and distribution. Proposed one-step synthesis of functional polymer containing AgNPs is environmentally friendly, experimentally simple and extremely quick. It opens up new possibilities in development of antimicrobial coatings with medical and sanitation applications.

  14. Thermosensitive Polymer Nanocontainers Prepared by Self-Assembly of Block Copolymers

    Institute of Scientific and Technical Information of China (English)

    Chen Xiangrong; Ding Xiaobing; Zheng Zhaohui; Peng Yuxing

    2004-01-01

    In recent years, considerable effort has been devoted to the preparation of polymer nanocontainers because of their unique advantages. Compared to polymer microspheres or micelles,polymer nanocontainers are hollow-sphere structures and can encapsulate large quantities of guest molecules or large-sized guests within the "empty" core domain. Compared to polymer vesicles,polymer nanocontainers have enough mechanical stability to prevent them from structure changes due to covalent or ionic interactions responsible for their formation. Therefore, polymer nanocontainers have many potential applications such as confined reaction vesicles, drug carriers,protective shells for cells or enzymes, artificial cells and so on. However, most of polymer nanocontainers reported by now, load and release guest molecules from their interior only through diffuse mechanism. It is rather difficult to control intelligently the process based on demands. In order to solve this problem, one promising strategy is to design intelligent polymer nanocontainers.They can undergo reversible structural transitions from a closed to an open state with the help of external stimuli.In this paper, we report on our preliminary study of the thermosensitive polymer nanocontainers formed by self-assembly of the block copolymers PCEMA-b-PNIPAM and sequent photo-crosslinking of PCEMA shells.Block copolymers PCEMA-b-PNIPAM were prepared by reacting PHEMA-b-PNIPAM with excess cinnamoyl chloride in pyridine at room temperature, where PHEMA-b-PNIPAM was prepared by reacting succinimidyl ester of PHEMA-COOH with PNIPAAm-NH2, similar to the method of the literature. The block copolymers were characterized by FTIR and 1H-NMR and GPC.To obtain polymer vesicles, deionized water, as a precipitant, was added at a rate of 0.3wt%/10s with vigorous stirring to the PCEMA-b-PNIPAM solution in THE After the formation of polymer vesicles, more water was added until the water content reached ca.50wt%. The hollow structure of the

  15. The Application of Template Selectophores for the Preparation of Molecularly Imprinted Polymers.

    Science.gov (United States)

    Danylec, Basil; Schwarz, Lachlan J; Harris, Simon J; Boysen, Reinhard I; Hearn, Milton T W

    2015-09-23

    Molecularly imprinted polymers are versatile materials with wide application scope for the detection, capture and separation of specific compounds present in complex feed stocks. A major challenge associated with their preparation has been the need to sacrifice one mole equivalent of the template molecule to generate the complementary polymer cavities that selectively bind the target molecule. Moreover, template molecules can often be difficult to synthesise, expensive or lack stability. In this study, we describe a new approach, directed at the use of synthetic selectophores, chosen as readily prepared and low cost structural analogues with recognition groups in similar three-dimensional arrangements as found in the target molecule. To validate the approach, a comparative study of selectophores related to the polyphenolic compound (E)-resveratrol has been undertaken using traditional and green chemical synthetic approaches. These molecular mimic compounds were employed as polymer templates and also as binding analytes to interrogate the recognition sites associated with the molecularly imprinted polymers. Importantly, the study confirms that the use of selectophores has the potential to confer practical advantages, including access to more efficient methods for selection and preparation of suitable template molecules with a broader range of molecular diversity, as well as delivering imprinted polymers capable of recognizing the target compound and structurally related products.

  16. The Application of Template Selectophores for the Preparation of Molecularly Imprinted Polymers

    Directory of Open Access Journals (Sweden)

    Basil Danylec

    2015-09-01

    Full Text Available Molecularly imprinted polymers are versatile materials with wide application scope for the detection, capture and separation of specific compounds present in complex feed stocks. A major challenge associated with their preparation has been the need to sacrifice one mole equivalent of the template molecule to generate the complementary polymer cavities that selectively bind the target molecule. Moreover, template molecules can often be difficult to synthesise, expensive or lack stability. In this study, we describe a new approach, directed at the use of synthetic selectophores, chosen as readily prepared and low cost structural analogues with recognition groups in similar three-dimensional arrangements as found in the target molecule. To validate the approach, a comparative study of selectophores related to the polyphenolic compound (E-resveratrol has been undertaken using traditional and green chemical synthetic approaches. These molecular mimic compounds were employed as polymer templates and also as binding analytes to interrogate the recognition sites associated with the molecularly imprinted polymers. Importantly, the study confirms that the use of selectophores has the potential to confer practical advantages, including access to more efficient methods for selection and preparation of suitable template molecules with a broader range of molecular diversity, as well as delivering imprinted polymers capable of recognizing the target compound and structurally related products.

  17. Novel Starch-PVA Polymer for Microparticle Preparation and Optimization Using Factorial Design Study.

    Science.gov (United States)

    Chattopadhyay, Helen; De, Amit Kumar; Datta, Sriparna

    2015-01-01

    The aim of our present work was to optimize the ratio of a very novel polymer, starch-polyvinyl alcohol (PVA), for controlled delivery of Ornidazole. Polymer-coated drug microparticles were prepared by emulsion method. Microscopic study, scanning electron microscopic study, and atomic force microscopic study revealed that the microparticles were within 10 micrometers of size with smooth spherical shape. The Fourier transform infrared spectroscopy showed absence of drug polymer interaction. A statistical 3(2) full factorial design was used to study the effect of different concentration of starch and PVA on the drug release profile. The three-dimensional plots gave us an idea about the contribution of each factor on the release kinetics. Hence this novel polymer of starch and polyvinyl alcohol can be utilized for control release of the drug from a targeted delivery device.

  18. Preparation,characterization and properties studies of quinine-imprinted polymer in the aqueous phase

    Institute of Scientific and Technical Information of China (English)

    He Jianfeng; Liu Lan; Yang Guilan; Deng Qinying

    2006-01-01

    The uniform-sized spherical molecularly imprinted polymers were successfully prepared through molecular imprinting technology by two-step seed swelling and mini-emulsion polymerization in the aqueous condition using quinine as template molecules and methacrylic acid (MAA)as functional monomer.The polymers were characterized by IR spectra,thermal-weight analysis,scanning electron microscope and laser particle size analysis.The properties of imprinted polymers were investigated in different organic phases and aqueous media.In the organic media,results suggested that polar interactions(hydrogen bonding,ionic interactions)between acidic monomer/polymer and template molecules are mainly responsible for the binding and recognition;whereas in the aqueous medium,a considerable recognition effect was also obtained where the ionic(electrostatic)interaction and hydrophobic interaction play an important role.The experiments of binding different substrates indicated that the MIPs possessed an excellent rebinding ability and inherent selectivity to quinine.

  19. Preparation and Characterization of Novel Polymer/Silicate Nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Harrup, Mason Kurt; Wertsching, Alan Kevin; Jones, Michael Glen

    2002-01-01

    Nanocomposite materials with an inorganic glass and an organic polymer constitute a relatively new and unique area in material science. The term “ormocers”, “ormosils” and “ceramers” are often utilized to describe this class of nanocomposite (1, 2). By combining at the molecular level inorganic and organic polymeric material a blending of unique physical properties can be achieved. The value in these materials is apparent, from fiber optics to paints these materials may provide the requisite physical properties to achieve the next technological advance. There are several different ways of synthesizing this class of nanocomposite; therefore a means of classification is necessary. Most developed nomenclature is based on synthetic techniques; Wilkes has a relatively recent and exhaustive categorization (3). However we chose to classify these materials upon a simpler system first suggested by Novak (4). Five categories cover the majority of composites synthesized with more recent techniques being modifications or combinations from this list.

  20. Recognizing Amino Acid Chirality with Surface-Imprinted Polymers Prepared in W/O Emulsions

    Directory of Open Access Journals (Sweden)

    Min Jae Shin

    2013-01-01

    Full Text Available A molecularly imprinted polymer was prepared by a surface molecular imprinting technique in water-in-oil (W/O emulsion. In this technique, the solid polymer, which is molecularly imprinted at the internal cavity surface, is prepared by polymerizing W/O emulsions consisting of a water-soluble imprinted molecule, a functional host molecule, an emulsion stabilizer, and a crosslinking agent. Dioleoyl phosphate was used as an emulsion stabilizer, and this compound also acted as a monomer and a host functional group in the imprinted cavity. Divinylbenzene was used as a crosslinker. Tryptophan methyl ester and phenylalanine methyl ester were used as the target template materials. These imprinted polymers exhibited enantiomeric selectivity in absorption experiments, and the maximum separation factor was 1.58. The enantiomeric selectivity with tryptophan methyl ester was higher than that with phenylalanine methyl ester.

  1. NATO Advanced Study Institute on Preparation and Properties of Stereoregular Polymers

    CERN Document Server

    Ciardelli, Francesco

    1980-01-01

    This book contains the texts of the main lectures presented at the NATO Advanced Studies Institute on "Advances in Preparation and Properties of Stereoregular Polymers" held at Tirrenia near Pisa, Italy, from October 3 to 14, 1978. A few contributed papers have also been included because they were concerned with topics not included in the main lectures. The primary objective of the Institute was to assist in the further development of stereoregular polymers because of the ever-increasing demand for new products with exceptional chemical and physical properties. This need has reawakened interest in the field. Indeed there is now a rapidly increasing activity in the study of stereoregular polymerization and the preparation of structurally-ordered polymers with the aim of achieving apprecia­ ble improvements in existing polymeric materials through new developments in synthesis and properties as well as in discovering new polymeric structures. In order to achieve these objectives, a broad interdiscipli­ nary co...

  2. Preparation of Porous Biodegradable Polymer and Its Nanocomposites by Supercritical CO2 Foaming for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Xia Liao

    2012-01-01

    Full Text Available Using supercritical carbon dioxide (scCO2 as an alternative to conventional methods in the preparation of porous biodegradable polymer and polymer/nanocomposites for tissue engineering has attracted increasing interest in recent years due to the absence of using organic solvents and the ability to incorporate thermosensitive biologicals without loss of bioactivity. Additionally, scCO2 can exert a high level of control over porosity and morphology of scaffolds by tuning the processing parameters. This paper describes the newly achievements on the preparation of porous polymer materials using scCO2 foaming technology with focus on the porous biodegradable materials and its nanocomposites relevant to tissue engineering.

  3. Preparation, Characterization and Application of Mg(OH)2-PAM Inorganic-Organic Composite Polymer in Removing Reactive Dye

    OpenAIRE

    Khai Ern Lee; Norhashimah Morad; Tjoon Tow Teng; Beng Teik Poh

    2012-01-01

    In this study, a series of inorganic-organic composite polymer was prepared. Magnesium hydroxide and polyacrylamide was composed in a composite matrix to prepare Mg(OH)2-PAM (MHPAM) inorganic-organic composite polymer. The characteristics of MHPAM inorganic-organic composite polymer was investigated in terms of chemical, physical, physical, thermal and morphological properties through FT-IR, conductivity, intrinsic viscosity, TGA and TEM, respectively. Results showed that the properties of MH...

  4. Molecularly Imprinted Polymers on Chloromethyl Polystyrene Resin Prepared via RAFT Polymerization

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Surface molecularly imprinted polymers (SMIP) was prepared via the reversible addition-fragmentation chain transfer (RAFT) polymerization on the chloromethyl polystyrene resin (CPR) in the presence of the template D-phenylalanine. The structure of SMIP was characterized by FTIR and SEM. The adsorption behavior of D-phenylalanine of SMIP was preliminarily investigated.

  5. Preparation and Characterization of Low Dispersity Anionic Multiresponsive Core-Shell Polymer Nanoparticles

    NARCIS (Netherlands)

    Pinheiro, J.P.; Moura, L.; Fokkink, R.G.; Farinha, J.P.S.

    2012-01-01

    We prepared anionic multistimuli responsive core-shell polymer nanoparticles with very low size dispersity. By using either acrylic acid (AA) or methacrylic acid (MA) as a comonomer in the poly(N-isopropyl acrylamide) (PNIPAM) shell, we are able to change the distribution of negative charges in the

  6. Hydrolysis of 4-Acetoxystyrene Polymers Prepared by Atom Transfer Radical Polymerization

    DEFF Research Database (Denmark)

    Chen, Xianyi; Jankova, Katja; Kops, Jørgen

    1999-01-01

    Hydrolysis of 4-acetoxystyrene polymers prepared by atom transfer radical polymerization was carried out under various reaction conditions. It was found that hydrazinolysis of 4-acetoxystyrene homopolymers, random and block copolymers with styrene in 1,4-dioxane, afforded the corresponding narrow...

  7. Preparation and Determination of Drug-Polymer Interaction and In-vitro Release of Didanosine Microspheres made of Cellulose Acetate Phthalate or Ethyl cellulose Polymers

    OpenAIRE

    Sethi R. K; Barik B. B.; Sahoo S. K.

    2013-01-01

    The objective of this study was to formulate and evaluate the drug-polymer interaction of Didanosine using two polymers with different characteristics as Ethyl cellulose or Cellulose acetate phthalate. Microspheres were prepared by the emulsion solvent evaporation. The effect of drug-polymer interaction was studied for each of microspheres. Important parameters in the evaluation of a microencapsulation technique are encapsulation efficiency, yield production, particle size, surface characteri...

  8. PREPARATION AND CHARACTERIZATION OF POLYMER-BASED SPHERICAL ACTIVATED CARBONS

    Institute of Scientific and Technical Information of China (English)

    Zhao-lian Zhu; Ai-min Li; Ming-fang Xia; Jin-nan Wan; Quan-xing Zhang

    2008-01-01

    A series of spherical activated carbons(SACs)with different pore structures were prepared from chloromethylated polydivinylbenzene by ZnCl2 activation.The effects of activation temperature and retention time on the yield and textural properties of the resulting SACs were studied.All the SACs are generated with high yield of above 65% and exhibit relatively high mesopore fraction(me%) of 35.7%-43.6% compared with conventional activated carbons.The sample zlc28 prepared at 800℃ for 2 h has the largest BET surface area of 891m2g-1 and pore volume of 0.489 cm3g-1,SEM and XRD analyses of zlc28 verify the presence of developed porous structure composed of disordered micrographite stacking with large amounts of interspaces in the order of nanometers.

  9. Fuel cell membrane preparation: effects of base polymer

    Energy Technology Data Exchange (ETDEWEB)

    Brack, H.P.; Scherer, G.G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Radiation grafted films and membranes prepared from the partially fluorinated base copolymer poly(ethylene-alt-tetrafluoroethylene) or ETFE have better mechanical properties than those prepared from poly(tetrafluoroethylene-co-hexafluoropropylene) or FEP. The influence of the base copolymer film type on the grafting rate and yields is reported in the present investigation. An understanding of the effects of these parameters is important so that the grafting process can be carried out reproducibly in as short a time as possible. The grafting rate and yield as a function of the irradiation dose has been found to be much higher for the partially fluorinated base copolymer ETFE. (author) 2 figs., 1 tab., 5 refs.

  10. Preparation of molecularly imprinted polymers using anacardic acid monomers derived from cashew nut shell liquid.

    Science.gov (United States)

    Philip, Joseph Y N; Buchweishaija, Joseph; Mkayula, Lupituko L; Ye, Lei

    2007-10-31

    The objective of this work was to use monomers from cashew ( Anacardium occidentale L.) nut shells to develop molecularly imprinted polymers. Cashew nut shell liquid (CNSL) is a cheap and renewable agro byproduct consisting of versatile monomers. Solvent-extracted CNSL contains over 80% anacardic acid (AnAc) with more than 90% degree of unsaturation in its C 15 side chain. From AnAc monomer, anacardanyl acrylate (AnAcr) and anacardanyl methacrylate (AnMcr) monomers were synthesized and their chemical structures were characterized by Fourier transform IR and NMR. Different imprinted bulk polymers based on AnAc, AnAcr, and AnMcr functional monomers have been prepared. In the present study, each functional monomer was separately copolymerized in toluene with ethylene glycol dimethacrylate and divinylbenzene as cross-linkers, using racemic propranolol as a model template. While the AnAc based polymer revealed a meager rebinding ability, the imprinted polymers made from AnAcr and AnMcr displayed highly specific propranolol binding. At a polymer concentration of 2 mg/mL, AnAcr and AnMcr based imprinted polymers were able to bind over 50% of trace propranolol (initial concentration 1.2 nM). Under the same condition propranolol uptake by the two nonimprinted control polymers was less than 20%. Chiral recognition properties of these polymers were further confirmed using tritium-labeled (S)-propranolol as a tracer in displacement experiments, suggesting that the apparent affinity of the imprinted chiral sites for the correct enantiomer is at least 10 times that of the mismatched (R)-propranolol. Moreover, cross reactivity studies of these polymers showed that the (S)-imprinted sites have higher cross-reactivity toward (R, S)-metoprolol than (R)-propranolol and (R)-timolol.

  11. Preparative characteristics of hydrophobic polymer catalyst for the tritium removal

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hee Suk; Choi, H. J.; Lee, H. S.; Ahn, D. H.; Kim, K. R.; Paek, S. W.; Kim, J. G.; Chung, H. S

    2001-05-01

    The optimum method for the fabrication of hydrophobic catalyst was selected and the apparatuses for the preparation of catalyst support with high yield was developed for the large scale production. Also, we summarized the method of improving the physical property of the catalyst support, the loading characteristics of Pt metal as a catalyst, and the characteristics of the apparatus for the fabrication of the catalysts on a large scale.

  12. [The modified process for preparing natural organic polymer flocculant chitosan].

    Science.gov (United States)

    Zeng, D; Yu, G; Zhang, P; Feng, Z

    2001-05-01

    The modified process for preparing chitosan from crab or lobster shells was developed. In the decalcification stage, 10% HCl was used as soaking solution with addition of a small quantity of A as a promoter, and the mass ratio of reactants was 10% HCl:A:crab or lobster shells = 3.5:0.5:1, continuously stirring the crab or lobster shells at 30 degrees C for 3 h in place of simply soaking the crab or lobster shells at room temperature for 16-24 h in the previous process. In the deacetylation stage, 40% NaOH solution was used with addition of a small quantity of B as a promoter, and the mass ratio of reactants was 40% NaOH:B:chitin = 4:0.2:1, keeping reaction at 105 degrees C for 2 h in place of at 115 degrees C for 6 h in the previous process. By this new process, the cost of the raw materials used for preparing chitosan was cut down 49%, the preparation time was shortened by one half, and the main properties of this chitosan such as viscosity, deacetylation and molecular weight all approached or exceeded those of the Sigma' commercial chitosan (Chitosan C-3646).

  13. [Hard dental tissue minimal-invasive preparation using contemporary polymer rotating instruments and laser].

    Science.gov (United States)

    Beloica, Milos; Vulićević, Zoran R; Mandinić, Zoran; Radović, Ivana; Jovicić, Olivera; Carević, Momir; Tekić, Jasmina

    2014-01-01

    Goal of contemporary dentistry is to decrease the patient's discomfort during treatment. Dentists aim to achieve maximum with the newly developed dental materials as well as with new cavity preparation techniques in the shortest time span. Since the development of the first constructed borer (drilling machine) for caries removal, the preparation techniques have considerably changed. The progress of dental materials as well as the cavity preparation techniques has led us to contemporary carbide tungsten and diamond borers that are used with obligatory water cooling. The innovation within this field represents newly developed polymer borers that can detect the difference between carious lesions and healthy tooth structure. In this way the cavity preparation may be performed without damaging dental healthy tissue. This is possible owing to their hardness which is lower than the hardness of intact dentin. Polymer borer preparation is painless with less vibration, while the increase in temperature is negligible. Lasers have been used in clinical dentistry since 1980s so it can be said that they represent a new technology. The function of lasers is based on ablation which requires water. Erbium lasers have shown the highest potential with their ability to produce effective ablation of hard dental tissues. Laser application in dentistry requires special training as well as some protective measures. Laser advantages, compared to traditional preparation techniques, involve the absence of vibration, painless preparation, possibility of preparation without anesthetic and easier patient's adjustment to dental intervention which is of importance, especially in pediatric dentistry.

  14. Polymer composites and porous materials prepared by thermally induced phase separation and polymer-metal hybrid methods

    Science.gov (United States)

    Yoon, Joonsung

    The primary objective of this research is to investigate the morphological and mechanical properties of composite materials and porous materials prepared by thermally induced phase separation. High melting crystallizable diluents were mixed with polymers so that the phase separation would be induced by the solidification of the diluents upon cooling. Theoretical phase diagrams were calculated using Flory-Huggins solution thermodynamics which show good agreement with the experimental results. Porous materials were prepared by the extraction of the crystallized diluents after cooling the mixtures (hexamethylbenzene/polyethylene and pyrene/polyethylene). Anisotropic structures show strong dependence on the identity of the diluents and the composition of the mixtures. Anisotropic crystal growth of the diluents was studied in terms of thermodynamics and kinetics using DSC, optical microscopy and SEM. Microstructures of the porous materials were explained in terms of supercooling and dendritic solidification. Dual functionality of the crystallizable diluents for composite materials was evaluated using isotactic polypropylene (iPP) and compatible diluents that crystallize upon cooling. The selected diluents form homogeneous mixtures with iPP at high temperature and lower the viscosity (improved processability), which undergo phase separation upon cooling to form solid particles that function as a toughening agent at room temperature. Tensile properties and morphology of the composites showed that organic crystalline particles have the similar effect as rigid particles to increase toughness; de-wetting between the particle and iPP matrix occurs at the early stage of deformation, followed by unhindered plastic flow that consumes significant amount of fracture energy. The effect of the diluents, however, strongly depends on the identity of the diluents that interact with the iPP during solidification step, which was demonstrated by comparing tetrabromobisphenol-A and

  15. Sector spin coating for fast preparation of polymer libraries.

    Science.gov (United States)

    de Gans, Berend-Jan; Wijnans, Sanne; Woutes, Daan; Schubert, Ulrich S

    2005-01-01

    The feasibility of sector spin coating (or combinatorial spin-coating) is demonstrated (i.e., spin coating of various samples onto one single substrate using a metal template to divide the substrate into sectors). Film thickness increases in an angular direction against the sense of rotation. In the radial direction, the film thickness is constant within 2%. A library of 8 poly(methyl methacrylate)/polystyrene-blends with varying composition was spin coated and subsequently analyzed using automated atomic force microscopy: 24 measurements could be performed within 72 min. The contact angles of a library of 16 polyoxazoline diblock copolymers were measured using one substrate with 16 spin-coated sectors. Forty-eight measurements could be performed within 50 min. On the basis of the surface energies calculated using the Owens-Wendt-Rath-Kaeble method, the library can be divided into three groups of polymers: those containing a dispersive nonyloxazoline block, those containing a polar phenyloxazoline block, and those containing neither.

  16. Preparation and characterization of erythromycin molecularly imprinted polymers based on distillation-precipitation polymerization.

    Science.gov (United States)

    Liu, Jiang; Li, Le; Tang, Hui; Zhao, Feilang; Ye, Bang-Ce; Li, Yingchun; Yao, Jun

    2015-09-01

    Erythromycin-imprinted polymers with excellent recognition properties were prepared by an innovative strategy called distillation-precipitation polymerization. The interaction between erythromycin and methacrylic acid was studied by ultraviolet absorption spectroscopy, and the as-prepared materials were characterized by Fourier-transform infrared spectroscopy and scanning electron microscopy. Moreover, their binding performances were evaluated in detail by static, kinetic and selective sorption tests. It was found that the molecularly imprinted polymers afforded good morphology, monodispersity, and high adsorption capacity when the fraction of the monomers was 7 vol% in the whole reaction system, and the adsorption data for imprinted polymers correlated well with the Langmuir model. The maximum capacity of the imprinted and the non-imprinted polymers for adsorbing erythromycin is 44.03 and 19.95 mg/g, respectively. The kinetic studies revealed that the adsorption process fitted a pseudo-second-order kinetic model. Furthermore, the imprinted polymers display higher affinity toward erythromycin, compared with its analogue roxithromycin.

  17. Preparation of bovine hemoglobin-imprinted polymer beads via the photografting surface-modified method

    Institute of Scientific and Technical Information of China (English)

    Qingqing GAI; Qiuye LIU; Wenyou LI; Xiwen HE; Langxing CHEN; Yukui ZHANG

    2008-01-01

    Molecularly imprinted polymers (MIPs), based on photografting surface-modified polystyrene beads as matrices, were prepared with acrylamide as the functional monomer, bovine hemoglobin as the template molecule and N, N'-methylene bisacrylamide as the crosslinker in a phosphate buffer. The results of IR, scanning electron microscope (SEM) and elemental analyses demonstrated the formation of a grafting polymer layer on the polysty-rene-bead surface. Subsequent removal of the template left behind cavities on the surface of the polymer matrix with a shape and an arrangement of functional groups having complementary binding sites with the original tem-plate molecule. The adsorption studies showed that the imprinted polymers have a good adsorption capacity and specific recognition for bovine hemoglobin as the template molecule. Our results demonstrated that the polymer prepared via the photografting surface-modified method exhibited better selectivity for the template. Attempts to employ the new method in molecular imprinting techniques may introduce new applications for MIPs and facilitate probable protein separation and purification.

  18. Preparation of Electrospun Polymer Fibers Using a Copper Wire Electrode in a Capillary Tube

    Science.gov (United States)

    Shinbo, Kazunari; Onozuka, Shintaro; Hoshino, Rikiya; Mizuno, Yoshinori; Ohdaira, Yasuo; Baba, Akira; Kato, Keizo; Kaneko, Futao

    2010-04-01

    Polymer fibers were prepared by an electrospinning method utilizing a copper wire electrode in a capillary tube. The morphology of electrospun poly(vinyl alcohol) (PVA) fibers was observed, and was found to be dependent on the wire electrode tip position in the capillary tube, the concentration of the polymer solution, the distance between the electrodes, and the applied voltage. By using the wire electrode, the experimental setup is simple and the distance between the electrodes and the applied voltage can be easily reduced. Furthermore, the preparation of poly(3-hexylthiophene) (P3HT) fibers was carried out. P3HT fibers were successfully prepared by mixing poly(ethylene oxide) (PEO) in P3HT solution. Orientation control was also carried out by depositing the fibers on a rotating collector electrode, and the alignment of the P3HT:PEO fibers was confirmed. Anisotropy of the optical absorption spectra was also observed for the aligned fibers.

  19. Polymer nanocomposite of laponite RD prepared by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Maria J.A.; Silva, Estefania O.; Lugao, Ademar Benevolo; Parra, Duclerc Fernandes, E-mail: mariajhho@yahoo.com.br, E-mail: dfparra@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Amato, Valdir S. [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Hospital de Clinicas. Divisao de Doencas Infecciosas e Parasitarias

    2012-07-01

    Nanocomposite hydrogels based on polyvinyl alcohol (PVAl) and polyvinylpyrrolidone (PVP) containing 0-5 wt % of the synthetic laponite RD clay were prepared by gamma irradiation process. The morphology of the nanocomposite hydrogel was observed by characterizations techniques using: scanning electron microscopy (SEM) and atomic force microscopy (AFM). The structural properties crosslinking was determined by measuring the crosslink gel content extraction on mesh 500 sizes and swelling kinetics at 22 °C. The results showed that crosslinks have inverse dependence on the clay level in the nanocomposite hydrogels, while swelling shows direct dependence. (author)

  20. Removal of cefalexin using yeast surface-imprinted polymer prepared by atom transfer radical polymerization.

    Science.gov (United States)

    Li, Xiuxiu; Pan, Jianming; Dai, Jiangdong; Dai, Xiaohui; Ou, Hongxiang; Xu, Longcheng; Li, Chunxiang; Zhang, Rongxian

    2012-10-01

    The first use of yeast as a support in the molecular imprinting field combined with atom transfer radical polymerization was described. Then, the as-prepared molecularly imprinted polymers were characterized by Fourier transmission infrared spectrometry, scanning electron microscope, thermogravimetric analysis, and elemental analysis. The obtained imprinted polymers demonstrated elliptical-shaped particles with the thickness of imprinting layer of 0.63 μm. The batch mode experiments were adopted to investigate the adsorption equilibrium, kinetics, and selectivity. The kinetic properties of imprinted polymers were well described by the pseudo-second-order kinetic equation, indicating the chemical process was the rate-limiting step for the adsorption of cefalexin (CFX). The equilibrium data were well fitted by the Freundlich isotherm, and the multimolecular layers adsorption capacity of imprinted polymers was 34.07 mg g(-1) at 298 K. The selectivity analysis suggested that the imprinted polymers exhibited excellent selective recognition for CFX in the presence of other compounds with related structure. Finally, the analytical method based on the imprinted polymers extraction coupled with high-performance liquid chromatograph was successfully used for CFX analysis in spiked pork and water samples.

  1. A modified coaxial electrospinning for preparing fibers from a high concentration polymer solution

    Directory of Open Access Journals (Sweden)

    2011-08-01

    Full Text Available A new process technology modified from conventional coaxial electrospinning process has been developed to prepare polymer fibers from a high concentration solution. This process involves a pure solvent concentrically surrounding polymer fluid in the spinneret. The concentric spinneret was constructed simply by inserting a metal needle through a high elastic silica gel tube. Two syringe pumps were used to drive the core polymer solution and the sheath solvent. Using polyvinylpyrrolidone (PVP as the polymer model, which normally has an electrospinnable concentration of 10% w/v in ethanol, it was possible to electrospin 35% w/v of PVP in the same solvent, when pure N, N-dimethylacetamide (DMAc was used as sheath fluid. The resultant fibers have a smooth surface morphology and good structural uniformity. The diameter of the fibers was 2.0±0.25 µm when the DMAc-to-polymer-solution flow rate ratio was set as 0.1. The process technology reported here opens a new window to tune the polymer fibers obtained by the electrospinning, and is useful for improving productivity of the electrospinning process.

  2. A novel approach in preparing polymer/nano-CaCO3 composites

    Institute of Scientific and Technical Information of China (English)

    Zhengying LIU; Runze YU; Mingbo YANG; Jianmin FENG; Wei YANG; Bo YIN

    2008-01-01

    An novel compounding process using nano-CaCO3 aqueous suspension for preparing polymer/ nano-CaCO3 composites with nanoparticles dispersed at the nanoscale is reported. The process is called the mild mixing method. In this method, the pre-dispersed nano-particle suspensions are blended with melting polymers in a weak shearing field using an extruder, followed by removing the water from the vent. The four typical poly-meric nanocomposites were prepared by mild mixing method. The dispersion of nano-CaCO3 in the matrix of the polymer at the nanoscale was confirmed by scanning electron microscopy (SEM). The molecular weights of polycarbonate (PC) and its nanocomposite showed that the degradation had not occurred during the mild mixing processing. The mechanical properties of the composite with 1.5 wt-% nano-CaCO3 improve slightly. It proved that this approach is suitable for the preparation of nano-composites based on both polar and non-polar polymers.

  3. PREPARATION OF MONODISPERSE CROSSLINKED POLYMER MICROSPHERES HAVING CHLOROMETHYL GROUP BY DISTILLATION-PRECIPITATION POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    Shu-Feng Li; Xin-Lin Yang; Wen-Qiang Huang

    2005-01-01

    Monodisperse crosslinked poly(chloromethylstyrene-co-divinylbenzene) (poly(CMSt-co-DVB)) microspheres were prepared by distillation-precipitation copolymerization of chloromethylstyrene (CMSt) and divinylbenzene (DVB) in neat acetonitrile. The polymer particles had clean surfaces due to the absence of any added stabilizer. The size of the particles ranges from 2.59 μm to 3.19 μm and with mono-dispersity around 1.002-1.014. The effects of monomer feed in copolymerization on the microsphere formation were described. The polymer microspheres were characterized by SEM and chlorinity elemental analysis.

  4. Preparation and evaluation of hollow molecular imprinted polymer for adsorption of dibenzothiophene

    Energy Technology Data Exchange (ETDEWEB)

    Yang Wenming [School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Liu Lukuan; Zhou Wei [School of the Environment, Jiangsu University, Zhenjiang 212013 (China); Xu Wanzhen, E-mail: xwz09@ujs.edu.cn [School of the Environment, Jiangsu University, Zhenjiang 212013 (China); Zhou Zhiping [School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Huang Weihong [School of the Environment, Jiangsu University, Zhenjiang 212013 (China)

    2012-06-15

    Hollow molecular imprinted polymer (H-MIP) was prepared using dibenzothiophene as template molecule, 4-vinylpyridine as functional monomer and K{sub 2}Ti{sub 4}O{sub 9} as carrier by surface imprinting technique combined with removing carrier process. The polymer was characterized by means of nitrogen adsorption, Fourier transform infrared spectrometry and scanning electron microscopy. H-MIP was provided with larger surface areas and pore features. The adsorption process was spontaneous by thermodynamic analysis. The adsorption process followed pseudo-second-order model by kinetics analysis and Freundlich equation by isotherm analysis. The selectivity performance of H-MIP was favorable.

  5. A novel method to prepare SPR sensor chips based on photografting molecularly imprinted polymer

    Institute of Scientific and Technical Information of China (English)

    Qing Quan Wei; Tian Xin Wei

    2011-01-01

    A novel method to prepare surface plasmon resonance (SPR) sensor chips based on grafted imprinted polymer is explored. Benzophenone photografting system is used to grow molecularly imprinted polymer (MIP) films from the modified surface of gold substrate. The surface morphology and thickness of MIP films were investigated by scanning electronic microscope (SEM). The adsorption properties of sensor chip were studied by SPR spectroscopy. The results demonstrate that nano-MIP films can be constructed on the surface of gold substrate with the good adsorption of template molecules.

  6. Macroporous Titania Monolith Prepared via Sol-gel Process with Polymer Foam as the Template

    Institute of Scientific and Technical Information of China (English)

    REN, Jian; DU, Zhong-Jie; ZHANG, Chen; LI, Hang-Quan

    2006-01-01

    Macroporous titania monoliths were prepared via sol-gel method using polymer foam as templates. The polymer foam polymerized via concentrated emulsion polymerization was immerged in a solution of titanium(Ⅳ) isopropoxide in 2-propanol, which underwent a sol-gel process. The organic components were subsequently removed by calcination. The effects of various parameters, including the nature of the monomer, the volume fraction of dispersed phase of the concentrated emulsion, and concentration of the sol-gel solution were investigated. The SEM micrographs of the macroporous titania monoliths thus obtained showed that the porous structure of the final material was effectively controllable.

  7. Hybrid Materials Prepared from Polymers and Self-assembled Systems by Physical Processes

    Institute of Scientific and Technical Information of China (English)

    Jean-Michel; Guenet

    2007-01-01

    1 Results A new type of hybrid materails prepared from ternary systems polymer/bicopper organic complex/solvent is presented.Each binary system displays differing types of behaviour: The polymer solutions produce thermoreversible gels while the bicopper organic complex (designated as CuS8) forms randomly-dispersed,self-assembling threads in organic solvents (See Fig.1(a),(b)).Fig.1 The CuS8 and ips thermoreversible gels Thermoreversible gels possess a fibrillar morphology with a typical mesh size ra...

  8. Preparation and properties of polymer foams for ICF targets

    Energy Technology Data Exchange (ETDEWEB)

    Letts, S.A.; Lucht, L.M.

    1986-09-01

    Low density small cell sized foams were developed to localize the liquid DT layer in a direct drive wetted foam laser fusion target. We have developed foams made from ultrahigh molecular weight polyethylene gels and polystyrene inverse emulsions. Materials in the density range of from 0.020 to 0.300 g/cc were prepared and characterized for cell size, mechanical properties, machinability, specific surface area, and wetting. Foams with a density of 0.05 g/cc were made with a cell size of less than 5 ..mu..m. A cell structure model was developed which relates the density and specific surface area to cell size and cell wall thickness. Wetting tests in organic solvents and in liquid hydrogen were used to characterize the capillary pressure, pore structure and uniformity of the foams. 13 refs., 9 figs., 2 tabs.

  9. Preparation and characterization of chitosan - polystyrene polymer blends

    Science.gov (United States)

    Mascarenhas, N. P.; Gonsalves, R. A.; Goveas, J. J.; Shetty, T. C. S.; Crasta, V.

    2016-05-01

    To enhance the physical and mechanical properties of Chitosan (CS) and to improve the functionality of CS towards some specific applications, we have blended CS with polystyrene (PS) to form blended films. The Fourier Transform Infrared Spectroscopy (FT-IR) has been performed on the prepared films to confirm functional groups and formation of the blends. Thermal analysis (TGA and DSC) is carried out to study thermal stability of the blended films. From X-ray diffraction (XRD) studies, the material reveals amorphous nature and hence it may be used for adsorption process. The versatility of the blends, such as film-forming ability, hydrophilicity, biodegradability and biocompatibility are comparable with the existing blends.

  10. Preparation and characterization of chitosan - polystyrene polymer blends

    Energy Technology Data Exchange (ETDEWEB)

    Mascarenhas, N. P., E-mail: naveenmascarenhas@gmail.com; Crasta, V. [Department of Physics, St Joseph Engineering College, Vamanjoor-575028 (India); Gonsalves, R. A.; Goveas, J. J. [Department of Chemistry, St Aloysius College (Autonomous), Mangalore 575003 (India); Shetty, T. C. S. [Department of Post Graduate Studies in Physics, St Aloysius College, (Autonomous), Mangalore 575003 (India)

    2016-05-23

    To enhance the physical and mechanical properties of Chitosan (CS) and to improve the functionality of CS towards some specific applications, we have blended CS with polystyrene (PS) to form blended films. The Fourier Transform Infrared Spectroscopy (FT-IR) has been performed on the prepared films to confirm functional groups and formation of the blends. Thermal analysis (TGA and DSC) is carried out to study thermal stability of the blended films. From X-ray diffraction (XRD) studies, the material reveals amorphous nature and hence it may be used for adsorption process. The versatility of the blends, such as film-forming ability, hydrophilicity, biodegradability and biocompatibility are comparable with the existing blends.

  11. Preparation of a zeolite-modified polymer monolith for identification of synthetic colorants in lipsticks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huiqi; Li, Zheng [College of Chemistry, Jilin University, Changchun 130012 (China); Niu, Qian [Jilin Entry-Exit Inspection and Quarantine Bureau, Changchun 130062 (China); Ma, Jiutong [College of Chemistry, Jilin University, Changchun 130012 (China); Jia, Qiong, E-mail: jiaqiong@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130012 (China)

    2015-10-30

    Graphical abstract: Poly(methacrylic acid-ethylene dimethacrylate) monolithic column embedded with zeolites was prepared and employed for the polymer monolith microextraction of colorants combined with HPLC. - Highlights: • Zeolite, as a kind of mesoporous material, was firstly combined with PMME. • Zeolite@poly(MAA-EDMA) monolith columns were prepared for the enrichment of colorants. • Zeolite@poly(MAA-EDMA) monolith columns demonstrated relatively high extraction capacity. - Abstract: A novel zeolite-modified poly(methacrylic acid-ethylenedimethacrylate) (zeolite@poly(MAA-EDMA)) monolithic column was prepared with the in situ polymerization method and employed in polymer monolith microextraction for the separation and preconcentration of synthetic colorants combined with high performance liquid chromatography. The polymer was characterized by scanning electronmicroscopy, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermo-gravimetric analysis. Various parameters affecting the extraction efficiency were investigated and optimized. Under the optimum experimental conditions, we obtained acceptable linearities, low limits of detection, and good intra-day/inter-day relative standard deviations. The method was applied to the determination of synthetic colorants in lipsticks with recoveries ranged from 70.7% to 109.7%. Compared with conventional methacrylic acid-based monoliths, the developed monolith exhibited high enrichment capacity because of the introduction of zeolites into the preparation process. The extraction efficiency followed the order: zeolite@poly(MAA-EDMA) > poly(MAA-EDMA) > direct HPLC analysis.

  12. Preparation of photoactive polymers and postmodification via nitroxide trapping under UV irradiation.

    Science.gov (United States)

    Mardyukov, Artur; Studer, Armido

    2013-01-11

    New types of photoactive homo and block copolymers bearing α-hydroxyalkylphenylketone (2-hydroxy-2-methyl-1-phenylpropan-1-one) moieties as backbone substituents are prepared using nitroxide-mediated radical polymerization (NMP). Such polymers can be readily activated via the Norrish-type I photoreaction to give polymeric acyl radicals. Photolysis in the presence of a persistent nitroxide, which serves as a C- radical trapping reagent, leads to chemically modified polymers conjugated with nitroxide moieties. The number-average molecular weight (M(n)) of the prepolymers and the chemically modified polymers was determined by gel permeation chromatography (GPC). Structures were further confirmed by NMR spectroscopy and by attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopy.

  13. Effects of preparation temperature on the conductivity of polypyrrole conducting polymer

    Indian Academy of Sciences (India)

    Anuar Kassim; Zarina Bte Basar; H N M Ekramul Mahmud

    2002-04-01

    An attempt has been made to investigate the effect of temperature on the conductivity of polypyrrole conducting polymer films prepared by an electrochemical method in an aqueous medium using camphor sulfonate as the dopant. The polymer was grown from aqueous solutions employing a range of temperatures (1-60°C). It was found that with increase in temperature the conductivity decreased and the optimum temperature was found to be between 10 and 30°C. The results show that the polymer formed at low temperature has higher conductivity and is stronger than that formed at higher temperatures. Characterization by X-ray scattering shows that interlayer distance, Bragg (Å), increases with increasing temperature. The morphology of the films formed was studied by using a scanning electron microscope (SEM). The changes in conductivity and physical appearance were interpreted as being due to compactness in the molecular packing and formation of linkages in the film.

  14. Preparation and Catalytic Properties of Polymer-Bound Schiff Base Ternary Complexes

    Institute of Scientific and Technical Information of China (English)

    HAO Cheng-jun; WANG Rong-min; HE Yu-feng; WANG Yun-pu; XIA Chun-gu

    2004-01-01

    The polymer-bound Schiff base ternary manganese complexes [PS-SalPhe-Mn-L (L = Phen, Bipy and 8HQ)-] have been prepared from the polymer-bound Schiff base ligand, a manganese salt and the second ligand, such as 1,10-phenanthroline(phen), 2,2′-bipyridyl(bipy) and 8-quinolinol(8HQ). The polymer-bound Schiff base ternary manganese complexes were characterized by means of infrared spectrometry and ICPAES. The catalytic activities of the complexes have been studied in the aerobic epoxidation of long-chain linear a[iphatic olefins. It is shown that 1-octene or 1-decene can be directly oxidized by molecular oxygen when catalyzed by PS-SalPhe-Mn-L(L=Phen, Bipy and 8HQ), and 1,2-epoxy alkane can be afforded in these reactions.

  15. A SURFACTANT-ASSISTED APPROACH FOR PREPARING COLLOIDAL AZO POLYMER SPHERES WITH NARROW SIZE DISTRIBUTION

    Institute of Scientific and Technical Information of China (English)

    Xiao-lan Tong; Yao-bang Li; Ya-ning He; Xiao-gong Wang

    2006-01-01

    A surfactant-assisted method for preparing colloidal spheres with narrow size distribution from a polydispersed azo polymer has been developed in this work. The colloidal spheres were formed through gradual hydrophobic aggregation of the polymeric chains in THF-H2O dispersion media, which was induced by a steady increase in the water content. Results showed that the addition of a small amount of surfactant (SDBS) could significantly narrow the size distribution of the colloidal spheres. The size distribution of the colloidal spheres was determined by the concentrations of azo polymer and the amount of surfactant in the systems. When the concentrations of polymer and surfactant amount were in a proper range,colloidal spheres with narrow size distribution could be obtained. The colloidal spheres formed by this method could be elongated along the polarization direction of the laser beams upon Ar+ laser irradiation. The colloidal spheres are considered to be a new type of the colloid-based functional materials.

  16. Electrically Conductive, Optically Transparent Polymer/Carbon Nanotube Composites and Process for Preparation Thereof

    Science.gov (United States)

    Connell, John W. (Inventor); Smith, Joseph G. (Inventor); Harrison, Joycelyn S. (Inventor); Park, Cheol (Inventor); Watson, Kent A. (Inventor); Ounaies, Zoubeida (Inventor)

    2011-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T.sub.g) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  17. Effect of Polymer Inclusion in Preparation of Thick LZO Buffer Layers for YBCO Coated Conductors

    Institute of Scientific and Technical Information of China (English)

    Vyshnavi Narayanan; Isabel Van Driessche

    2013-01-01

    In this work,water-based precursor solutions suitable for dip-coating of thick La2Zr2O7 (LZO) buffer layers for coated conductors on Ni-5%W substrates with an inclusion of polymeric polyvinyl pyrrolidone were developed.The effect of varying percentage of the polymer addition on the preparation of the deposited films with maximum crack-free thickness was investigated.This novel water-based chemical solution deposition method involving polymers in two different chelate-chemistry compositions revealed the possibility to grow single,crack-free layers with thicknesses ranging from 140 to 280 nm,with good crystallinity and epitaxial growth.The effect of increasing polymer concentrations on the morphology and the structure of the films was studied.The appropriate buffer layer action of the films in preventing Ni diffusion was studied by X-ray photoelectron spectroscopy.

  18. Preparation of hybrid scaffold from fibrin and biodegradable polymer fiber.

    Science.gov (United States)

    Hokugo, Akishige; Takamoto, Tomoaki; Tabata, Yasuhiko

    2006-01-01

    A biodegradable hybrid scaffold was prepared from fibrin and poly(glycolic acid) (PGA) fiber. Mixed fibrinogen and thrombin solution homogeneously dispersed in the presence of various amounts (0, 1.5, 3.0, and 6.0mg) of PGA fiber was freeze-dried to obtain fibrin sponges with or without PGA fiber incorporation. By scanning electron microscopy observation, the fibrin sponges had an interconnected pore structure, irrespective of the amount of PGA fiber incorporated. PGA fiber incorporation enabled the fibrin sponges to significantly enhance their compression strength. In vitro cell culture studies revealed that the number of L929 fibroblasts initially attached was significantly larger for any fibrin sponge with PGA fiber incorporation than for the fibrin sponge without PGA fiber. The shrinkage of sponges after cell seeding was suppressed by fiber incorporation. It is possible that the shrinkage suppression of sponges maintains their intraspace, resulting in the superior cell attachment of a sponge with PGA fiber incorporation. After subcutaneous implantation into the backs of mice, the residual volume of a fibrin sponge with PGA fiber incorporation was significant compared with that of a fibrin sponge without PGA fiber. Larger number of cells infiltrated deep inside the fibrin sponges with PGA fiber incorporation implanted subcutaneously. It is concluded that the fibrin sponge reinforced by fiber incorporation is a promising three-dimensional scaffold of cells for tissue engineering.

  19. [The development of polymer immunoglobulin preparations to identify different serovars legionella pneumophilia in reaction of slide-agglutination].

    Science.gov (United States)

    Karbyshev, G L; Narkevich, A N; Kochetkova, A P; Larionova, L V; Simakova, D I; Liukshina, E Iu; Lysova, L K; Terent'ev, A N; Shelokhovich, A I; Sokirkina, O G

    2013-03-01

    The article deals with the results of study targeted to develop polymer diagnostic preparation to identify epidemically significant serogroups Legionella pneumophilia. The preparation combines rate of record (1-5 min) of reaction of paragglutinining preparations with color visualization and demonstrative of reaction of volume agglomeration with polymer diagnosticums. The specially synthesized polymer microspheres were sensibilized with serums enriched with antibodies to lipopolysaccharide of corresponding serovar L. pneumophilia. The derived immunoglobulin diagnostic preparations detect agent of legionellesis in the reaction of slide-agglutination on glass during 1-5 min. The polymer diagnostic preparations provide positive reaction with culture of corresponding serovar and no reaction with other gomologic and geterologic agents of infectious diseases.

  20. Properties of Polymer Electrolyte Membranes Prepared by Blending of Sulfonated Polystyrene-Lignosulfonate

    Directory of Open Access Journals (Sweden)

    Siang Tandi Gonggo

    2012-11-01

    Full Text Available Electrolyte polymer membrane widely used in PEMFC and DMFC is a perfluorosulfonated membrane such as Nafion. This membrane material exhibits good chemical stability and proton conductivity, but it is very expensive and difficult to recycle. It has high cross-over methanol in DMFC that causes the decrease efficiency and performance of fuel cell, so that the electrolyte polymer membrane with low cross-over methanol has been needed to substitute Nafion membrane. One of the materials used as a polymer electrolyte membrane is polyblends of a sulfonated polystyrene-lignosulfonate (SPS-LS. These polyblends have been prepared by casting polymer solution and characterized as a polyelectrolyte membrane for DMFC. SPS was prepared by sulfonation of polystyrene with acetyl sulfate used as a sulfonating agent. The membranes of SPS-LS were characterized by analysis of functional groups, mechanical properties, and methanol permeability. The maximum mechanical properties of the SPS-LS membrane were observed in LS ratio of 7.5%. However, the methanol permeability of membrane increases as the increase of LS ratio in SPS-LS membranes. The properties of membranes, especially the mechanical property and methanol permeability close to that of Nafion® 117 membrane, so the SPS-LS membrane is highly potential used as the electrolyte membrane for direct methanol fuel cell.

  1. Conjugated polymers/semiconductor nanocrystals hybrid materials--preparation, electrical transport properties and applications.

    Science.gov (United States)

    Reiss, Peter; Couderc, Elsa; De Girolamo, Julia; Pron, Adam

    2011-02-01

    This critical review discusses specific preparation and characterization methods applied to hybrid materials consisting of π-conjugated polymers (or oligomers) and semiconductor nanocrystals. These materials are of great importance in the quickly growing field of hybrid organic/inorganic electronics since they can serve as active components of photovoltaic cells, light emitting diodes, photodetectors and other devices. The electronic energy levels of the organic and inorganic components of the hybrid can be tuned individually and thin hybrid films can be processed using low cost solution based techniques. However, the interface between the hybrid components and the morphology of the hybrid directly influences the generation, separation and transport of charge carriers and those parameters are not easy to control. Therefore a large variety of different approaches for assembling the building blocks--conjugated polymers and semiconductor nanocrystals--has been developed. They range from their simple blending through various grafting procedures to methods exploiting specific non-covalent interactions between both components, induced by their tailor-made functionalization. In the first part of this review, we discuss the preparation of the building blocks (nanocrystals and polymers) and the strategies for their assembly into hybrid materials' thin films. In the second part, we focus on the charge carriers' generation and their transport within the hybrids. Finally, we summarize the performances of solar cells using conjugated polymer/semiconductor nanocrystals hybrids and give perspectives for future developments.

  2. Preparation and characterization of polymer-derived amorphous silicon carbide with silicon-rich stoichiometry

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Takashi, E-mail: mtakashi@jaist.ac.jp [School of Material and Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Iwasaka, Akira [School of Material and Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Takagishi, Hideyuki [Faculty of Symbiotic System Science, Fukushima University, 1 Kanayagawa, Fukushima-shi, Fukushima 960-1296 (Japan); Shimoda, Tatsuya [School of Material and Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)

    2016-08-01

    Polydihydrosilane with pendant hexyl groups was synthesized to obtain silicon-rich amorphous silicon carbide (a-SiC) films via the solution route. Unlike conventional polymeric precursors, this polymer requires neither catalysts nor oxidation for its synthesis and cross-linkage. Therefore, the polymer provides sufficient purity for the fabrication of semiconducting a-SiC. Here, we investigated the correlation of Si/C stoichiometry between the polymer and the resultant a-SiC film. The structural, optical, and electrical properties of the films with various carbon contents were also explored. Experimental results suggested that the excess carbon that did not participate in Si−C configurations was decomposed and was evaporated during polymer-to-SiC conversion. Consequently, the upper limit of the carbon in resultant a-SiC film was < 50 at.%; namely, the polymer provided silicon-rich a-SiC, whereas the conventionally used polycarbosilane inevitably provides carbon-rich one. These features of this unusual polymer open up a frontier of polymer-derived SiC and solution-processed SiC electronics. - Highlights: • Polymeric precursor solution for silicon carbide (SiC) is synthesized. • Semiconducting amorphous SiC is prepared via solution route. • The excess carbon is decomposed during cross-linking resulting in Si-rich SiC films. • The grown SiC films contain substantial amount of hydrogen atoms as SiH{sub n}/CH{sub n} entities. • Presence of CH{sub n} entities induces dangling bonds, causing poor electrical properties.

  3. Preparation and characterization of plasticized high molecular weight PVC-based polymer electrolytes

    Indian Academy of Sciences (India)

    S Ramesh; Geok Bee Teh; Rong-Fuh Louh; Yong Kong Hou; Pung Yen Sin; Lim Jing Yi

    2010-02-01

    Poly(vinyl chloride) (PVC)-based polymer electrolytes films consisting of lithium trifluromethanesulfonate (LiCF3SO3)-ethylene carbonate (EC) were prepared by the solution-casting method. Ionic conductivities of the electrolytes have been determined by an impedance studies in the temperature range of 298–373 K. Complexation of the prepared electrolytes is studied by X-ray diffraction (XRD) analysis. Thermogravimetric analysis (TGA) was used to confirm the thermal stability of the polymer electrolytes. The conductivity–temperature plots were found to follow an Arrhenius nature. All these films are found to be thermally stable until 132–167°C.

  4. Crystal nuclei templated nanostructured membranes prepared by solvent crystallization and polymer migration

    Science.gov (United States)

    Wang, Bo; Ji, Jing; Li, Kang

    2016-09-01

    Currently, production of porous polymeric membranes for filtration is predominated by the phase-separation process. However, this method has reached its technological limit, and there have been no significant breakthrough over the last decade. Here we show, using polyvinylidene fluoride as a sample polymer, a new concept of membrane manufacturing by combining oriented green solvent crystallization and polymer migration is able to obtain high performance membranes with pure water permeation flux substantially higher than those with similar pore size prepared by conventional phase-separation processes. The new manufacturing procedure is governed by fewer operating parameters and is, thus, easier to control with reproducible results. Apart from the high water permeation flux, the prepared membranes also show excellent stable flux after fouling and superior mechanical properties of high pressure load and better abrasion resistance. These findings demonstrate the promise of a new concept for green manufacturing nanostructured polymeric membranes with high performances.

  5. Preparation and Performance Analysis of Inorganic Polymer Flocculant PZFSiC

    Institute of Scientific and Technical Information of China (English)

    GAN Li; MENG Zhao-ping; Pan Jie-nan

    2004-01-01

    A new inorganic polymer flocculant-PZFSiC (zinc-iron-silicate polymer composite) is prepared by adding acid into a high modulus solution of water glass and introducing appropriate metallic ions(M) including Zn and Fe. The influence on flocculability of factors such as the mole ratios of M to SiO2,stirring time and pH are discussed .And the optimal preparing technical parameters are obtained by orthogonal tests. The optimum technical conditions of flocculation are determined. The result shows that when less PZFSiC is added into troubled water or waste water, turbidity removal can hit 98%, COD removal can exceed 93%. The water sample treated is clear and of good quality. These results also indicate that PZFSiC is a highly effective, nontoxic and benign to the enviroment.

  6. Preparation and characterization of a novel composite microporous polymer electrolyte for Li-ion batteries

    Institute of Scientific and Technical Information of China (English)

    CHEN Zuofeng; JIANG Yanxia; ZHUANG Quanchao; DONG Quanfeng; WANG Ye; SUN Shigang

    2005-01-01

    A novel composite microporous polymer electrolyte composed of poly(vinylidene fluoride-co-hexafluorop- ropylene) (PVdF-HFP) and mesoporous SBA-15 was prepared. The composite solid polymer electrolyte (CSPE) exhibits ionic conductivity as high as 0.30 mS·cm-1 with a composition of SBA-15:PVdF-HFP=3:8 at room temperature. Infrared transmission spectroscopic results suggested that the mechanism of micropore formation is similar to that of the phase inversion. X-ray diffraction (XRD) results demonstrated that the addition of SBA-15 inhibits the crystallization of PVdF-HFP, while the SBA-15 preserves well its ordered mesoporous structure during the course of preparation. The Li/CSPE/MCF of half-cell was assembled, and it showed a good electrochemical and cyclability performance during charge-discharge cycles.

  7. Preparation and Characterization of a pH-Responsive Core Cross-linked Polymer Micelle

    Energy Technology Data Exchange (ETDEWEB)

    Kousaka, Shouta; Sugahara, Makoto; Endo, Tatsuya; Yusa, Shin-ichi, E-mail: yusa@eng.u-hyogo.ac.jp [Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan)

    2011-01-01

    Poly(ethylene glycol)-b-poly(2-(diethylamino) ethyl methacrylate-co-2-cinnamoyl-oxyethyl acrylate) (PEG-b-P(DEA/CEA)) was prepared by reversible addition-fragmentation chain transfer (RAFT) controlled radical polymerization. pH-responsive association behaviour of PEG-b-P(DEA/CEA) in 0.1 M NaCl was characterized by dynamic light scattering (DLS). As solution pH is increased from an acidic pH, the hydrodynamic radius (R{sub h}) increases, indicative of the polymer micelle formation. The formation of a micelle was also supported by static light scattering (SLS) data. The cinnamoyl groups in the core of the polymer micelle undergo photodimerization, yielding cross-links between polymer chains. The core of the polymer micelle was fixed, which was confirmed by DLS, SLS, and small angle X-ray scattering (SAXS) techniques. When pH is decreased to 3, R{sub h} of the core cross-linked (CCL) polymer micelle slightly increases due to the protonation of the DEA unit in the cross-linked core. The reversible pH-induced swelling and shrinking behaviour can be observed.

  8. [An investigation of HAP/organic polymer composite coatings prepared by electrochemical co-deposition technique].

    Science.gov (United States)

    Hu, Haobing; Lin, Changjian; Leng, Yang

    2003-03-01

    An electrochemical co-deposition technique has been developed to prepare a hydroxyapatite (HAP)/organic polymer composite coatings on Ti surface as new biomaterial of hard tissue. The composite coating of organic polymer and calcium phosphate is formed by adding a water soluble polymer of the ethylene series to NH4H2PO4-Ca (NO3)2 solution when conducting an appropriate electrochemical co-deposition experiment. The XRD, SEM, XPS, SIMS and nano indent measurements were performed to characterize the morphology, composition, structure and surface stiffness of the composite coating. It was found that the morphology and surface hardness of the coatings showed a remarkable modification when introducing a minor polymer to HAP coating, and the bonding force between the coating and metal substrate was distinctly increased. The incorporation of minor organic polymer into the HAP compound at molecular level will improve the mechanical properties and morphology of the composite coatings, and this may be helpful to raising its bio-activity.

  9. Preparation and characterization of grafted polyethylene based azo-polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Pilar Carreon-Castro, Maria del, E-mail: pilar@nucleares.unam.m [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Circuito Exterior Ciudad Universitaria C.P. 04510, Mexico D.F. (Mexico); Rivera, Ernesto [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior Ciudad Universitaria C.P. 04510, Mexico D.F. (Mexico); Jesus Cruz, Jose de; Zavaleta, Gerardo [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Circuito Exterior Ciudad Universitaria C.P. 04510, Mexico D.F. (Mexico); Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior Ciudad Universitaria C.P. 04510, Mexico D.F. (Mexico); Gutierrez-Nava, Manuel [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior Ciudad Universitaria C.P. 04510, Mexico D.F. (Mexico)

    2010-05-31

    A series of grafted azo-polymers was prepared from commercial low density polyethylene thin plates (PE). Polyethylene was reacted in the presence of acryloyl chloride using gamma irradiation to give precursor grafted polymers. These materials were esterified in the presence of six different commercial azo-dyes: (E)-2-(ethyl(4-((4-nitrophenyl)diazenyl)phenyl)amino)ethanol (Disperse Red-1, DR-1), (E)-2-((4-((2-chloro-4-nitrophenyl)diazenyl)phenyl)(ethyl)amino)ethanol (Disperse Red-13, DR-13), (E)-2,2'-(4-((4-nitrophenyl)diazenyl)phenylazanediyl)diethanol (Disperse Red-19, DR-19), (E)-4-((4-nitrophenyl)diazenyl)aniline (Disperse Orange-3, DO-3), 4-((E)-(4-((E)-phenyldiazenyl)naphthalen-1-yl)diazenyl)phenol (Disperse Orange-13, DO-13) and 2-methyl-4-((E)-(4-((E)-phenyldiazenyl)phenyl)diazenyl)phenol (Disperse Yellow-7, DY-7) to give the expected grafted azo-polymer films. The obtained polymers were fully characterized; their thermal, optical properties and morphology were studied. In particular, the influence of the irradiation conditions and the incorporated azo-dye on the polymer properties is discussed.

  10. PREPARATION OF STAR NETWORK PEG-BASED GEL POLYMER ELECTROLYTES FOR ELECTROCHROMIC DEVICES

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    An amorphous,colorless,and highly transparent star network polymer with a pentaerythritol core linking four PEG-block polymeric arms was synthesized from the poly(ethylene glycol)(PEG),pentaerythritol,and dichloromethane by Williamson reaction.FTIR and 1H-NMR measurement demonstrated that the polymer repeating units were C[CH2-OCH2O-(CH2CH2O)m-CH2O-(CH2CH2O)n-CH2O]4.The polymer host held well mechanical properties for pentaerythritol cross-linking.The gel polymer electrolytes based on Lithium perchlorate(LiClO4)and ethylene carbonate/propylene carbonate(EC/PC)were prepared and characterized by AC impedance spectroscopy and thermogravimetry(TG),the results showed thermal stability up to at least 150℃ and ionic conductivity reaching 8.83×fabricated by transparent PET-ITO and electrochromic active viologen derivative films,and its excellent performance promised the usage of the gel polymer electrolytes as ionic conductor material in ECD.

  11. PREPARATION OF BIODEGRADABLE FLAX SHIVE CELLULOSE-BASED SUPERABSORBENT POLYMER UNDER MICROWAVE IRRADIATION

    Directory of Open Access Journals (Sweden)

    Hao Feng

    2010-05-01

    Full Text Available Superabsorbent polymer was prepared by graft polymerization of acrylic acid onto the chain of cellulose from flax shive by using potassium persulfate (KPS as an initiator and N,N’-methylenebisacrylamide (MBA as a crosslinker under microwave irradiation. SEM photographs were also studied for more information about the shive, cellulose from shive, and the superabsorbent polymer. The structure of the graft copolymer was confirmed by FT-IR spectroscopy and thermogravimetric analysis (TGA. The biodegradability in soil was measured at 32 and 40 oC. The polymer was porous, and thermal stability of the polymer was observed up to approximately 200 oC. FT-IR analysis indicated that acrylic acid in polymer was successfully grafted onto the cellulose. The graft copolymer was found to be an effective superabsorbent resin, rapidly absorbing water to almost 1000 times its own dry weight at pH around 7.3. The water absorbency in 0.9% NaCl, KCl, FeCl3 solutions and urine were 56.47 g/g, 54.71g/g, 9.89g/g and 797.21g/g, respectively. The product biologically degraded up to 40% at 40 oC in 54 days, which shows good biodegradability.

  12. Preparation and application of hollow molecularly imprinted polymers with a super-high selectivity to the template protein.

    Science.gov (United States)

    Chen, Yang; He, Xi-Wen; Mao, Jie; Li, Wen-You; Zhang, Yu-Kui

    2013-10-01

    Protein-imprinted polymers with hollow cores that have a super-high imprinting factor were prepared by etching the core of the surface-imprinted polymers that used silica particles as the support. Lysozyme as template was modified onto the surface of silica particles by a covalent method, and after polymerization and the removal of template molecules, channels through the polymer layer were formed, which allowed a single-protein molecule to come into the hollow core and attach to the binding sites inside the polymer layer. The adsorption experiments demonstrated that the hollow imprinted polymers had an extremely high binding capacity and selectivity, and thus a super-high imprinting factor was obtained. The as-prepared imprinted polymers were used to separate the template lysozyme from egg white successfully, indicating its high selectivity and potential application in the field of separation of protein from real samples.

  13. Preparation of a Star Network PEG-based Gel Polymer Electrolyte and Its Application to Electrochromic Devices

    Institute of Scientific and Technical Information of China (English)

    GONG Yong-Feng; FU Xiang-Kai; ZHANG Shu-Peng; JIANG Qing-Long

    2007-01-01

    A star network polymer with a pentaerythritol core linking four PEG-block polymeric arms was synthesized,and its corresponding gel polymer electrolyte based on lithium perchlorate and plasticizers EC/PC with the character being colorless and highly transparent has been also prepared. The polymer host was characterized and confirmed to be of a star network and an amorphous structure by FTIR, 1H NMR and XRD studies. The polymer host hold good mechanical properties for pentaerythritol cross-linking. Maximum ionic conductivity of the prepared electrolyte showed that the thermal stability was up to at least 150 ℃. The gel polymer electrolyte was further evaluated in electrochromic devices fabricated by transparent PET-ITO and electrochromically active viologen derivative films, and its excellent performance promised the usage of the gel polymer electrolyte as ionic conductor material in electrochrornic devices.

  14. In situ preparation of powder and the sorption behaviors of molecularly imprinted polymers through the complexation between polymer ion of methyl methacrylate/acrylic acid and Ca++ ion.

    Science.gov (United States)

    Chough, Sung Hyo; Park, Kwang Ho; Cho, Seung Jin; Park, Hye Ryoung

    2014-09-02

    Molecularly imprinted polymer (MIP) powders were prepared using a simple complexation strategy between the polymer carboxylate groups and template molecule followed by metal cation cross-linking of residual polymer carboxylates. Polymer powders were formed in situ by templating carboxylic acid containing polymers with 4-ethylaniline (4-EA), followed by addition of an aqueous CaCl2 solution. The solution remained homogeneous. The powders were prepared by precipitation by slowly adding a non-solvent, H2O, to the mixture. The resulting particles were very porous with uptake capacity that approached the theoretical value. We suggest two types of complexes are formed between the template, 4-EA, and polymer. The isolated entry type forms well defined cavities for the template with high specific selectivity, while the adjacent entry type forms wider binding sites without specific sorption for isomeric molecules. To evaluate conditions for forming materials with high affinity and selectivity, three MIPs were prepared containing 0.5, 1.0, and 1.5 equivalents of template to the base polymer. The MIP containing 0.5 eq showed higher specific selectivity to 4-EA, but the MIP containing 1.5 eq had noticeably lower selectivity. The lower selectivity is attributed to poorly formed binding sites with little selective sorption to any isomer when the higher ratio of template was used. However at the lower ratio of template the isolated entry is preferably formed to produce well defined binding cavities with higher selectivity to template.

  15. Preparation and reactions of polymer-supported 1-Alkoxycarbony la kylidenear soranes

    Energy Technology Data Exchange (ETDEWEB)

    Castells, J.; Lopez-Calahorra, F.; Yu, Z. [Departamet de Quimica Organica, Universidad de Barcelona, Barcelona (Spain)

    1994-12-31

    Ethoxycarbonylalkyldiphenylpolystyrylarsonium triflates are easily prepared by reaction of diphenylpolystyrylarsine with ethyl 2-trifloxyalkanoates. ``One-pot`` Wittin reactions of these polymer-supported arsonium salts with aromatic aldehydes take place satisfactorily in all cases affording good yields of the corresponding (E)-2alkyl-3-arylpropenoates. Two steps reactions, with isolation of the corresponding 1-ethoxycarbonylalkylidenediphenylpolystyrylarsoranes work well except in the case of ethoxycarbonyl ethylidenediphenylpolystyrylarsorane. 11 refs.

  16. PREPARATION OF MICROGEL-EPOXY RESIN TWO-PHASE POLYMERS BY IN SITU POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    YU Yunzhao; WU Xianghong; SONG Aiteng

    1991-01-01

    Microgel-epoxy resin two-phase polymers were prepared by in situ copolymerization of ethylenic monomers with unsaturated polyesters. The choice of monomers and the effect of monomer concentration on microgel particle size were discussed. Agglomeration of particles played a significant role in the early stage of polymerization. The microgel dispersion in epoxy resin was stable after the finish of polymerization. Upon curing the particles remained well dispersed.

  17. Physical and Degradable Properties of Mulching Films Prepared from Natural Fibers and Biodegradable Polymers

    OpenAIRE

    Zhijian Tan; Yongjian Yi; Hongying Wang; Wanlai Zhou; Yuanru Yang; Chaoyun Wang

    2016-01-01

    The use of plastic film in agriculture has the serious drawback of producing vast quantities of waste. In this work, films were prepared from natural fibers and biodegradable polymers as potential substitutes for the conventional non-biodegradable plastic film used as mulching material in agricultural production. The physical properties (e.g., mechanical properties, heat preservation, water permeability, and photopermeability) and degradation characteristics (evaluated by micro-organic cultur...

  18. Molecularly imprinted polymers for sample preparation and biosensing in food analysis: Progress and perspectives

    DEFF Research Database (Denmark)

    Ashley, Jon; Shahbazi, Mohammad-Ali; Kant, Krishna

    2017-01-01

    Molecularly imprinted polymers (MIPs) are biomimetics which can selectively bind to analytes of interest. One of the most interesting areas where MIPs have shown the biggest potential is food analysis. MIPs have found use as sorbents in sample preparation attributed to the high selectivity and high...... the imprinting methods which are applicable for imprinting food templates, summarize the recent progress in using MIPs for preparing and analysing food samples, and discuss the current limitations in the commercialisation of MIPs technology. Finally, future perspectives will be given....

  19. Hard dental tissue minimal-invasive preparation using contemporary polymer rotating instruments and laser

    Directory of Open Access Journals (Sweden)

    Beloica Miloš

    2014-01-01

    Full Text Available Goal of contemporary dentistry is to decrease the patient’s discomfort during treatment. Dentists aim to achieve maximum with the newly developed dental materials as well as with new cavity preparation techniques in the shortest time span. Since the development of the first constructed borer (drilling machine for caries removal, the preparation techniques have considerably changed. The progress of dental materials as well as the cavity preparation techniques has led us to contemporary carbide tungsten and diamond borers that are used with obligatory water cooling. The innovation within this field represents newly developed polymer borers that can detect the difference between carious lesions and healthy tooth structure. In this way the cavity preparation may be performed without damaging dental healthy tissue. This is possible owing to their hardness which is lower than the hardness of intact dentin. Polymer borer preparation is painless with less vibration, while the increase in temperature is negligible. Lasers have been used in clinical dentistry since 1980s so it can be said that they represent a new technology. The function of lasers is based on ablation which requires water. Erbium lasers have shown the highest potential with their ability to produce effective ablation of hard dental tissues. Laser application in dentistry requires special training as well as some protective measures. Laser advantages, compared to traditional preparation techniques, involve the absence of vibration, painless preparation, possibility of preparation without anesthetic and easier patient’s adjustment to dental intervention which is of importance, especially in pediatric dentistry. [Projekat Ministarstva nauke Republike Srbije, br. 46009

  20. Poly(L-lactic acid)/poly(glycolic acid) microfibrillar polymer-polymer composites: Preparation and viscoelastic properties

    Science.gov (United States)

    Kimble, L. D.; Fakirov, S.; Bhattacharyya, D.

    2015-05-01

    Microfibrillar composites (MFCs) from petrochemical-derived polymers have been investigated for several years and the technique can result in significant improvements in mechanical properties when compared with the neat matrix material of the respective composite. The current work applies the technique to biodegradable, biocompatible polymers for potential applications in bioabsorbable medical devices. MFCs were prepared from melt blended poly(L-lactic acid) (PLLA) and poly(glycolic acid) (PGA) via cold drawing then compression molding of extruded yarn. These MFCs were shown to have higher Young's moduli than that of neat PLLA but for load-bearing applications the creep characteristics are of interest. The MFC sheets resulting from compression molding were subjected to tensile relaxation tests at 37°C in the fiber orientation direction. Specimens were also tested via dynamic mechanical thermal analysis (DMTA). Neat PLLA specimens were subjected to the same tests for comparison. Results indicate that at 37°C PLLA/PGA MFCs exhibit lower creep resistance than that of neat PLLA due to the more rapid relaxation of stress observed. DMTA results elucidate the loss modulus changes in PLLA/PGA MFCs which occur as the material approaches the glass transition temperature of PGA (˜45°C).

  1. PREPARATION OF SURFACE ION-IMPRINTED ATTAPULGITE-SUPPORTED POLYMER AND ITS ADSORPTION BEHAVIORS OF Sr(II)

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The surface ion-imprinting concept and chitosan incorporated sol-gel process were applied to the preparation of a new attapulgite-supported organic-inorganic hybrid polymer for selective separation of Sr(II) from aqueous solution. The prepared polymer was characterized with SEM, IR and XRD. The results showed that as a sorbent, it had good configuration and binding sites. Its adsorption behaviors for Sr(II) was investigated by FAAS and ICP-AES. The effects on adsorption capacities, including pH, quiescent time, and adsorbent amount were discussed, and the adsorption isothermal curve was obtained. Then the Kd a parameter estimating relative adsorbability, was conducted to study the selectivity towards Sr(II) of the prepared polymer. Under the optimum conditions, the ion-imprinted polymer offered a fast kinetics for the adsorption of Sr(II) and the maximum capacity was 12.9mg/g. The Kd and K parameters estimating relative adsorbability towards target ion, suggested that selective recognition of the ion-imprinted polymer towards Sr(II) was much higher than that of the non-imprinted polymer and attapulgite. Furthermore, the ion-imprinted polymer is of great regeneration capacity. The prepared functional polymer was shown to be promising for selective preseparation and enrichment of trace Sr(II) in environmental samples.

  2. PREPARATION OF SURFACE ION-IMPRINTED ATTAPULGITE-SUPPORTED POLYMER AND ITS ADSORPTION BEHAVIORS OF Sr(Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    PAN Jianming; YAN Yongsheng; LI Chunxiang

    2008-01-01

    The surface ion-imprinting concept and chitosan incorporated sol-gel process were applied to the preparation of a new attapulgite-supported organic-inorganic hybrid polymer for selective separation of Sr(Ⅱ) from aqueous solution.The prepared polymer was characterized with SEM, IR and XRD.The results showed that as a sorbent, it had good configuration and binding sites.Its adsorption behaviors for Sr(Ⅱ) was investigated by FAAS and ICP-AES.The effects on adsorption capacities, including pH, quiescent time, and adsorbent amount were discussed, and the adsorption isothermal curve was obtained.Then the Kd a parameter estimating relative adsorbability, was conducted to study the selectivity towards Sr(Ⅱ) of the prepared polymer.Under the optimum conditions, the ion-imprinted polymer offered a fast kinetics for the adsorption of Sr(Ⅱ) and the maximum capacity was 12.9mg/g.The Kd and K parameters estimating relative adsorbability towards target ion, suggested that selective recognition of the ion-imprinted polymer towards Sr(Ⅱ) was much higher than that of the non-imprinted polymer and attapulgite.Furthermore, the ion-imprinted polymer is of great regeneration capacity.The prepared functional polymer was shown to be promising for selective preseparation and enrichment of trace Sr(Ⅱ) in environmental samples.

  3. Preparation and characterization of polymer composites based on charge-transfer complex of phenothiazine–iodine in polystyrene

    Indian Academy of Sciences (India)

    R A Singh; R K Gupta; S K Singh

    2005-08-01

    Polymer composites based on charge-transfer complex of phenothiazine and iodine with polystyrene have been prepared in different weight ratios and characterized by FTIR, XRD, mechanical, microstructure and electrical properties (d.c. as well as a.c.). These composites show semiconducting behaviour as the conductivity increases with increasing temperature. Low percolation threshold (10% wt CTC) has been found indicating that processable conducting polymers with improved mechanical properties can be prepared by this method.

  4. Preparation and Characterization of a Hybrid Solid Polymer Electrolyte Consisting of Poly(Ethyleneoxide) and Poly(Acrylonitrile) for Polymer-Battery Application

    OpenAIRE

    Nookala, Munichandraiah; Scanlon, Lawrence G; Marsh, Richard A

    1997-01-01

    For application in an ambient temperature solid state lithium battery a highly dimensionally-stable polymer electrolyte based on polyethyleneoxide (PEO) suffers from low ionic conductivity, whereas a highly conducting gel electrolyte based on polyacrylonitrile (PAN) suffers from low dimensional stability. In order to overcome these problems, a hybrid solid polymer electrolyte (HSPE) was prepared using PEO, PAN, propylene carbonate (PC), ethylene carbonate (EC) and lithium perchlorate. The HSP...

  5. Microfluidic Preparation of Polymer-Nucleic Acid Nanocomplexes Improves Nonviral Gene Transfer

    Science.gov (United States)

    Grigsby, Christopher L.; Ho, Yi-Ping; Lin, Chao; Engbersen, Johan F. J.; Leong, Kam W.

    2013-11-01

    As the designs of polymer systems used to deliver nucleic acids continue to evolve, it is becoming increasingly apparent that the basic bulk manufacturing techniques of the past will be insufficient to produce polymer-nucleic acid nanocomplexes that possess the uniformity, stability, and potency required for their successful clinical translation and widespread commercialization. Traditional bulk-prepared products are often physicochemically heterogeneous and may vary significantly from one batch to the next. Here we show that preparation of bioreducible nanocomplexes with an emulsion-based droplet microfluidic system produces significantly improved nanoparticles that are up to fifty percent smaller, more uniform, and are less prone to aggregation. The intracellular integrity of nanocomplexes prepared with this microfluidic method is significantly prolonged, as detected using a high-throughput flow cytometric quantum dot Förster resonance energy transfer nanosensor system. These physical attributes conspire to consistently enhance the delivery of both plasmid DNA and messenger RNA payloads in stem cells, primary cells, and human cell lines. Innovation in processing is necessary to move the field toward the broader clinical implementation of safe and effective nonviral nucleic acid therapeutics, and preparation with droplet microfluidics represents a step forward in addressing the critical barrier of robust and reproducible nanocomplex production.

  6. Preparation of photoreactive phospholipid polymer nanoparticles to immobilize and release protein by photoirradiation.

    Science.gov (United States)

    Chen, Weixin; Inoue, Yuuki; Ishihara, Kazuhiko

    2015-11-01

    Photoreactive and cytocompatible polymer nanoparticles for immobilizing and releasing proteins were prepared. A water-soluble and amphiphilic phospholipid polymer, poly(2-methacryloyloxyethyl phosphorylcholine (MPC)-co-n-butyl methacrylate (BMA)-co-4-(4-(1-methacryloyloxyethyl)-2-methoxy-5-nitrophenoxy) butyric acid (PL)) (PMB-PL) was synthesized. The PMB-PL underwent a cleavage reaction at the PL unit with photoirradiation at a wavelength of 365 nm. Additionally, the PMB-PL took polymer aggregate in aqueous medium and was used to modify the surface of biodegradable poly(L-lactic acid) (PLA) nanoparticle as an emulsifier. The morphology of the PMB-PL/PLA nanoparticle was spherical and approximately 130 nm in diameter. The carboxylic acid group in the PL unit could immobilize proteins by covalent bonding. The bound proteins were released by a photoinduced cleavage reaction. Within 60s, up to 90% of the immobilized proteins was released by photoirradiation. From these results and with an understanding of the fundamental properties of MPC polymers, we concluded that PMB-PL/PLA nanoparticles have the potential to be used as smart carriers to deliver proteins to biological systems, such as the inside of living cells.

  7. Preparation of diclofenac-imprinted polymer beads for selective molecular separation in water.

    Science.gov (United States)

    Zhou, Tongchang; Kamra, Tripta; Ye, Lei

    2017-01-13

    Molecular imprinting technique is an attractive strategy to prepare materials for target recognition and rapid separation. In this work, a new type of diclofenac (DFC)-imprinted polymer beads was synthesized by Pickering emulsion polymerization using 2-(dimethylamino)ethyl methacrylate as the functional monomer. The selectivity and capacity of the molecularly imprinted polymers (MIPs) were investigated in aqueous solution. Equilibrium binding results show that the MIPs have a high selectivity to bind DFC in a wide range of pH values. Moreover, in liquid chromatography experiment, the imprinted polymer beads were packed into column to investigate the binding selectivity under nonequilibrium conditions. The retention time of DFC on the MIP column is significantly longer than its structural analogues. Also, retention of DFC on the MIP column was significantly longer than on the nonimprinted polymer column under aqueous condition. As the new MIP beads can be used to achieve direct separation of DFC from water, the synthetic method and the affinity beads developed in this work opened new possibilities for removing toxic chemicals from environmental and drinking water.

  8. Structural Characterization of Polymer-Clay Nanocomposites Prepared by Co-Precipitation Using EPR Techniques

    Directory of Open Access Journals (Sweden)

    Udo Kielmann

    2014-02-01

    Full Text Available Polymer-clay nanocomposites (PCNCs containing either a rubber or an acrylate polymer were prepared by drying or co-precipitating polymer latex and nanolayered clay (synthetic and natural suspensions. The interface between the polymer and the clay nanoparticles was studied by electron paramagnetic resonance (EPR techniques by selectively addressing spin probes either to the surfactant layer (labeled stearic acid or the clay surface (labeled catamine. Continuous-wave (CW EPR studies of the surfactant dynamics allow to define a transition temperature T* which was tentatively assigned to the order-disorder transition of the surfactant layer. CW EPR studies of PCNC showed that completely exfoliated nanoparticles coexist with agglomerates. HYSCORE spectroscopy in PCNCs showed couplings within the probe −assigned with DFT computations− and couplings with nuclei of the environment, 1H and 23Na for the surfactant layer probe, and 29Si, 7Li, 19F and 23Na for the clay surface probe. Analysis of these couplings indicates that the integrity of the surfactant layer is conserved and that there are sizeable ionic regions containing sodium ions directly beyond the surfactant layer. Simulations of the very weak couplings demonstrated that the HYSCORE spectra are sensitive to the composition of the clay and whether or not clay platelets stack.

  9. POLYMER/MONTMORILLONITE COMPLEXES:PREPARATION AND INTERACTIONS WITH ROSIN ACID

    Institute of Scientific and Technical Information of China (English)

    Lihong Zhao; Wenxia Liu

    2004-01-01

    Polymer/montmorillonite complexes were prepared via intercalating polymers of low molecular weight into layers of montmorillonite and evaluated for their interactions with rosin acid. Three polymers from various amines modified by epichlorohydrin and an acidified diethylenetriamine were separately intercalated into montmorillonite via direct solution intercalation. X-ray diffraction patterns are performed to obtain information about the intercalation of these agents. The examination revealed that it was feasible for the direct intercalation of polymers, while hard for the unmodified diethylenetriamine. Adsorption isotherm curves were established to assess the efficiency of the various montmorillonites including the intercalated montmorillonites, the simple mixtures of the corresponding intercalation agents and ordinary montmorillonite in removing pitch from water solution. From the adsorption behavior of various samples, it was found that the interaction of the montmorillonite with pitch was not only through van der Waals attraction, but also through electrostatic interactions. Both the organo-philic and the surface electrostatic properties of the montmorillonites are important for successful pitch control.

  10. Preparation of molecularly imprinted polymer nanoparticles for selective removal of fluoroquinolone antibiotics in aqueous solution.

    Science.gov (United States)

    Tan, Feng; Sun, Daming; Gao, Jinsuo; Zhao, Qian; Wang, Xiaochun; Teng, Fei; Quan, Xie; Chen, Jingwen

    2013-01-15

    In this study, novel molecularly imprinted polymer nanoparticles (nanoMCN@MIPs) were prepared by covalent grafting of ofloxacin-imprinted polymer onto the surface of mesoporous carbon nanoparticles (MCNs). SEM analyses indicated that the prepared nanoMCN@MIPs were almost uniform, and their geometrical mean diameter was about 230 nm. The sorption behaviors of the nanoMCN@MIPs including sorption kinetics and isotherms, effect of pH, ionic strength, and cross-reactivity were investigated in detail. The adsorption capacity of the nanoparticles for ofloxacin was 40.98 mg/g, with a selectivity factor of 2.6 compared to the nonimprinted polymer nanoparticles (nanoMCN@NIPs). The feasibility of removing fluoroquinolone antibiotics (FQs) from environmental waters with the nanoMCN@MIPs was demonstrated using sea water spiked with six typical FQs (ofloxacin, gatifloxacin, balofloxcacin, enrofloxacin, norfloxacin and sarafloxacin). The nanoMCN@MIPs could be reused at least five times with removal efficiency more than 90% except for norfloxacin. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Preparation of active layers in polymer solar cells by aerosol jet printing.

    Science.gov (United States)

    Yang, Chunhe; Zhou, Erjun; Miyanishi, Shoji; Hashimoto, Kazuhito; Tajima, Keisuke

    2011-10-01

    Active layers of polymer solar cells were prepared by aerosol jet printing of organic inks. Various solvents and additives with high boiling points were screened for the preparation of high-quality polymer films. The effects on device performance of treating the films by thermal and solvent vapor annealing were also investigated. The components of the solvent were important for controlling the drying rate of the liquid films, reducing the number of particle-like protrusions on the film surface, and realizing high molecular ordering in the polymer phases. The optimized solar cell device with poly(3-hexylthiophene) and a C(60) derivative showed a high fill factor of 67% and power conversion efficiency of 2.53% without thermal annealing. The combination of poly[N-9-heptadecanyl-2,7-carbazole-alt-3,6-bis(thiophen-5-yl)-2,5-diethylhexyl-2,5-dihydropyrrolo-[3,4-]pyrrole-1,4-dione] and a C(70) derivative led to power conversion efficiency of 3.92 and 3.14% for device areas of 0.03 and 1 cm(2), respectively.

  12. Preparation of carbon monoliths having tailored pore structure from porous polymer precursors

    Energy Technology Data Exchange (ETDEWEB)

    Lagasse, R.R.

    1993-04-01

    This work concerns preparing tailored porous carbon monoliths by pyrolyzing porous polymer precursors. Prior work in this laboratory (1) demonstrated that a low density (0.05 g/cm{sup 3}), high void fraction (97 vol%) carbon monolith could be prepared by pyrolyzing a porous poly(acrylonitrile) (PAN) precursor. A higher density, more robust carbon material is preferred for certain applications, such as electrodes for electrochemical devices. The present work demonstrates that porous carbon monoliths having mass density of 0.7 g/cm{sup 3} can be prepared from a porous PAN precursor if the pyrolysis is controlled carefully. The macropore structure of the carbon is adjusted by changing the pore structure of the PAN precursor, and the finer scale structure (such as the crystallite size L{sub c}) is adjusted by varying the pyrolysis or heat treatment temperature.

  13. Preparation of carbon monoliths having tailored pore structure from porous polymer precursors

    Energy Technology Data Exchange (ETDEWEB)

    Lagasse, R.R.

    1993-01-01

    This work concerns preparing tailored porous carbon monoliths by pyrolyzing porous polymer precursors. Prior work in this laboratory (1) demonstrated that a low density (0.05 g/cm[sup 3]), high void fraction (97 vol%) carbon monolith could be prepared by pyrolyzing a porous poly(acrylonitrile) (PAN) precursor. A higher density, more robust carbon material is preferred for certain applications, such as electrodes for electrochemical devices. The present work demonstrates that porous carbon monoliths having mass density of 0.7 g/cm[sup 3] can be prepared from a porous PAN precursor if the pyrolysis is controlled carefully. The macropore structure of the carbon is adjusted by changing the pore structure of the PAN precursor, and the finer scale structure (such as the crystallite size L[sub c]) is adjusted by varying the pyrolysis or heat treatment temperature.

  14. Radiation preparation of drug carriers based polyacrylic acid (PAAc) using poly(vinyl pyrrolidone) (PVP) as a template polymer

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-Rehim, H.A. [National Center for Radiation Research and Technology, Poymer, 3-Ahmed El-Zomor, P.O. Box 29, Cairo, Naser City (Egypt)]. E-mail: ha_rehim@hotmail.com; Hegazy, E.A. [National Center for Radiation Research and Technology, Poymer, 3-Ahmed El-Zomor, P.O. Box 29, Cairo, Naser City (Egypt); Khalil, F.H. [National Center for Radiation Research and Technology, Poymer, 3-Ahmed El-Zomor, P.O. Box 29, Cairo, Naser City (Egypt); Hamed, N.A. [National Center for Radiation Research and Technology, Poymer, 3-Ahmed El-Zomor, P.O. Box 29, Cairo, Naser City (Egypt)

    2007-01-15

    The present study deals with the radiation synthesis of stimuli response hydrophilic polymers from polyacrylic acid (PAAc). To maintain the property of PAAc and control the water swellibility for its application as a drug delivery system, radiation polymerization of AAc in the presence of poly(vinyl pyrrolidone) (PVP) as a template polymer was carried out. Characterization of the prepared PAA/PVP inter-polymer complex was investigated by determining gel content, swelling property, hydrogel microstructure and the release rate of caffeine as a model drug. The release rate of caffeine from the PAA/PVP inter-polymer complexes showed pH-dependency, and seemed to be mainly controlled by the dissolution rate of the complex above a pK {sub a} of PAAc. The prepared inter-polymer complex could be used for application as drug carriers.

  15. Preparation and characterization of high performance Schiff-base liquid crystal diepoxide polymer

    Energy Technology Data Exchange (ETDEWEB)

    Liu Huan; Fu Zien [Key Laboratory of Organic Polymer Material for Electronics, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, P.O. BOX 1122, Guangzhou 510650 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Xu Kai, E-mail: xk@gic.ac.cn [Key Laboratory of Organic Polymer Material for Electronics, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, P.O. BOX 1122, Guangzhou 510650 (China); Cai Hualun; Liu Xin [Key Laboratory of Organic Polymer Material for Electronics, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, P.O. BOX 1122, Guangzhou 510650 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Chen Mingcai [Key Laboratory of Organic Polymer Material for Electronics, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, P.O. BOX 1122, Guangzhou 510650 (China)

    2012-02-15

    Graphical abstract: The specific effects of highly conjugated Schiff-base moiety on thermal properties of the Schiff-base epoxy polymer were proposed first by us. From the point of view of structure-properties relationship, it can be considered that owing to the presence of the Schiff-base group, the high performance liquid crystal diepoxide polymer displayed improved thermal stability. Highlights: Black-Right-Pointing-Pointer In this work, we first proposed that specific effects of highly conjugated Schiff-base moiety on thermal properties of the Schiff-base epoxy polymer. Black-Right-Pointing-Pointer As one aim of this study, the thermal and thermal-oxidative stabilities of the thermosets were studied by TGA under nitrogen and under air. Black-Right-Pointing-Pointer The second aim of this study was to further understand the thermal degradation mechanism. Black-Right-Pointing-Pointer For thermal degradation mechanism of this polymer under nitrogen, TG-IR was used to investigate volatile components, and SEM/EDS was used to explore morphologies and chemical components of the residual char. Black-Right-Pointing-Pointer From the point of view of structure-properties relationship, it can be considered that owing to the presence of the Schiff-base group, the high performance liquid crystal diepoxide polymer displayed the improved thermal stability. - Abstract: A novel Schiff-base liquid crystal diepoxide polymer was prepared via a thermal copolymerization of a Schiff-base epoxy monomer (PBMBA) with a diamine co-monomer (MDA). We first proposed that specific effects of highly conjugated Schiff-base moiety on thermal properties of the Schiff-base epoxy polymer (PBMBA/MDA). Thermal degradation behavior of the polymer was characterized using thermogravimetric analysis (TGA) under nitrogen and under air, respectively. Thermogravimetric data obtained from TGA under nitrogen and under air reveal that PBMBA/MDA exhibits higher thermal stability compared with bisphenol-A type

  16. Preparation of polymer-coated separators using an electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Joon-Yong; Gwon, Sung-Jin; Choi, Jae-Hak; Shin, Junhwa [Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Nho, Young-Chang [Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of)], E-mail: ycnho@kaeri.re.kr

    2008-12-15

    A polymer-coated polyethylene (PE) separator was prepared by a dip-coating of PVDF-HFP/PEGDMA on both sides of a PE separator followed by an electron beam irradiation. The thermal and electrochemical properties of the polymer-coated PE separator were investigated by using FT-IR, SEM, DSC and an impedance analyzer. The results showed that the coated PVDF-HFP/PEGDMA layer was covalently bound to the PE separator and also crosslinked by an electron beam irradiation. Thermal shrinkage dramatically decreased with an increase in the absorption dose and the PEGDMA content due to the crosslinking of the coated PVDF-HFP/PEGDMA by an irradiation. The PE separator coated with the composition of PVDF-HFP/PEGDMA (9.5/0.5) and irradiated to 150 kGy showed the highest electrolyte uptake of 125% and ionic conductivity of 3.82 x 10{sup -4} S/cm at room temperature.

  17. Preparation of polymer-coated separators using an electron beam irradiation

    Science.gov (United States)

    Sohn, Joon-Yong; Gwon, Sung-Jin; Choi, Jae-Hak; Shin, Junhwa; Nho, Young-Chang

    2008-12-01

    A polymer-coated polyethylene (PE) separator was prepared by a dip-coating of PVDF-HFP/PEGDMA on both sides of a PE separator followed by an electron beam irradiation. The thermal and electrochemical properties of the polymer-coated PE separator were investigated by using FT-IR, SEM, DSC and an impedance analyzer. The results showed that the coated PVDF-HFP/PEGDMA layer was covalently bound to the PE separator and also crosslinked by an electron beam irradiation. Thermal shrinkage dramatically decreased with an increase in the absorption dose and the PEGDMA content due to the crosslinking of the coated PVDF-HFP/PEGDMA by an irradiation. The PE separator coated with the composition of PVDF-HFP/PEGDMA (9.5/0.5) and irradiated to 150 kGy showed the highest electrolyte uptake of 125% and ionic conductivity of 3.82 × 10 -4 S/cm at room temperature.

  18. Preparation of Laminin-apatite-polymer Composites Using Metastable Calcium Phosphate Solutions

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A synthetic polymer with a laminin-apatite composite layer on its surface would be useful as a percutaneous device. The preparation of such a composite was attempted in the present study using poly ( ethylene terephthalate ) (PET) and polyethylene ( PE ) as the synthetic polymer. PET and PE plates and those pretreated with an oxygen plasma were alternately dipped in calcium and phosphate ion solutions, and then immersed in a metastable ealcium phosphate solution supplemented with laminin ( LCP solution ). The PET and PE plates pretreated with an oxygen plasma formed a uniform and continuous layer of a laminin- apatite composite on their surfaces. In contrast, the PET and PE plates that had not been pretreated with an oxygen plasma did not form a continuous layer of a laminin-apatite composite on their surfaces. The hydrophilic functional groups on the PET and PE surfaces introduced by the plasma treatment were responsible for the successful laminin-apatite composite coating.

  19. Zirconium oxocluster/polymer hybrid nanoparticles prepared by photoactivated miniemulsion copolymerization

    Science.gov (United States)

    Benedetti, Cesare; Flouda, Paraskevi; Antonello, Alice; Rosenauer, Christine; Pérez-Pla, Francisco F.; Landfester, Katharina; Gross, Silvia; Muñoz-Espí, Rafael

    2017-09-01

    The photoactivated free radical miniemulsion copolymerization of methyl methacrylate (MMA) and the zirconium oxocluster Zr4O2(methacrylate)12 is used as an effective and fast preparation method for polymer/inorganic hybrid nanoparticles. The oxoclusters, covalently anchored to the polymer network, act as metal-organic cross-linkers, thus improving the thermomechanical properties of the resulting hybrid nanoparticles. Benzoin carbonyl organic compounds were used as photoinitiators. The obtained materials are compared in terms of cross-linking, effectiveness of cluster incorporation, and size distribution with the analogous nanoparticles produced by using conventional thermally induced free radical miniemulsion copolymerization. The kinetics of the polymerization process in the absence and in the presence of the oxocluster is also investigated.

  20. Preparation of conductive gold nanowires in confined environment of gold-filled polymer nanotubes.

    Science.gov (United States)

    Mitschang, Fabian; Langner, Markus; Vieker, Henning; Beyer, André; Greiner, Andreas

    2015-02-01

    Continuous conductive gold nanofibers are prepared via the "tubes by fiber templates" process. First, poly(l-lactide) (PLLA)-stabilized gold nanoparticles (AuNP) with over 60 wt% gold are synthesized and characterized, including gel permeation chromatography coupled with a diode array detector. Subsequent electrospinning of these AuNP with template PLLA results in composite nanofibers featuring a high gold content of 57 wt%. Highly homogeneous gold nanowires are obtained after chemical vapor deposition of 345 nm of poly(p-xylylene) (PPX) onto the composite fibers followed by pyrolysis of the polymers at 1050 °C. The corresponding heat-induced transition from continuous gold-loaded polymer tubes to smooth gold nanofibers is studied by transmission electron microscopy and helium ion microscopy using both secondary electrons and Rutherford backscattered ions.

  1. Preparation of hierarchically organized calcium phosphate–organic polymer composites by calcification of hydrogel

    Directory of Open Access Journals (Sweden)

    Kozue Furuichi, Yuya Oaki, Hirofumi Ichimiya, Jun Komotori and Hiroaki Imai

    2006-01-01

    Full Text Available A novel type of calcium phosphate–organic polymer composite having a hierarchical structure was prepared by calcification of a poly(acrylic acid hydrogel. Macroscopically, an organic gel containing phosphate ions was transformed into an opaque solid material by diffusion of calcium ions. We observed the formation of micrometer-scale layered structures consisting of nanoscale crystals of hydroxylapatite (HAp in the opaque products. The laminated architecture resulting from the periodic precipitation of calcium phosphate varied with the reaction conditions, such as the concentrations of the precursor ions and the density of the gel. The nanoscopic structure of HAp crystals was modified by the addition of gelatin to the polymer matrix.

  2. [Preparation and applications of 4-methyl imidazole magnetic surface molecularly imprinted polymers].

    Science.gov (United States)

    Qi, Yuxia; Zhao, Lijuan; Ma, Meihua; Wei, Chanling; Li, Ya; Li, Wenjing; Gong, Bolin

    2015-12-01

    The magnetic surface molecularly imprinted polymers (MIPs) with specific recognition of 4-methyl imidazole (4-MI) were prepared by using 4-MI as template molecule, methacrylic acid (MAA) as functional monomer and Fe3O4 as magnetic fluid. The polymers were characterized by of Fourier transform infrared spectrometer (FT-IR) analysis, X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The results demonstrated that an imprinted polymer layer was successfully coated onto the surface of modified Fe3O4 nanomaterials, resulting in a narrow diameter distribution and good magnetic responsibility. The ultraviolet (UV) spectrophotometry was used to demonstrate the interaction between 4-MI and MAA. It was found that one 4-MI molecule was entrapped by one MAA molecule, which was the main existing form of subject and object. By UV spectrophotometric method to study the adsorption performance of magnetic molecularly imprinted polymers, the specific adsorption equilibrium and selectivity were evaluated by batch rebinding studies. The Scatchard analysis showed that there were two kinds of binding sites in the Fe3O4 @ (4-MI-MIP). The corresponding maximum adsorption capacities of 4-MI onto Fe3O4 @ (4-MI-MIP) were 40.31 mg/g and 23.07 mg/g, and the dissociation constants were 64.85 mg/L and 30.41 mg/L, respectively. The kinetic experimental data were correlated with second-order kinetic model. The magnetic molecularly imprinted polymers were used for the adsorption of 4-methyl imidazole in environmental water samples, and good results were obtained.

  3. Polymer-virus core-shell structures prepared via co-assembly and template synthesis methods

    Institute of Scientific and Technical Information of China (English)

    SUTHIWANGCHAROEN; Nisaraporn; PREVELIGE; Peter; E.Jr

    2010-01-01

    Bionanoparticles(BNPs),consisting of virus and virus-like assemblies,have attracted much attention in the biomedical field for their applications such as imaging and targeted drug delivery,owing to their well-defined structures and well-controlled chemistries.BNPs-based core-shell structures provide a unique system for the investigation of biological interactions such as protein-protein and protein-carbohydrate interactions.However,it is still a challenge to prepare the BNPs-based core-shell structures.Herein,we describe(i) co-assembly method and(ii) template synthesis method in the development of polymer-BNPs core-shell structures.These two methods can be divided into three different systems.In system A,different polymers including poly(2-vinylpyridine)(P2VP),poly(4-vinylpyridine)(P4VP) and poly(ε-caprolactone)-block-poly(2-vinylpyridine)(PCL-b-P2VP) can form a raspberry-like structure with BNPs.In system B,polystyrene(PS) spheres end capped with free amine and BNPs can form a core-shell structure.In System C,layer-by-layer(LBL) method is used to prepare positive charged PS particles,which can be used as a template to form the core-shell structures with BNPs.These two methods may open a new way for preparing novel protein-based functional materials for potential applications in the biomedical field.

  4. Microporous Organic Polymers Based on Hyper-Crosslinked Coal Tar: Preparation and Application for Gas Adsorption.

    Science.gov (United States)

    Gao, Hui; Ding, Lei; Bai, Hua; Li, Lei

    2017-02-08

    Hyper-crosslinked polymers (HCPs) are promising materials for gas capture and storage, but high cost and complicated preparation limit their practical application. In this paper, a new type of HCPs (CTHPs) was synthesized through a one-step mild Friedel-Crafts reaction with low-cost coal tar as the starting material. Chloroform was utilized as both solvent and crosslinker to generate a three-dimensional crosslinked network with abundant micropores. The maximum BET surface area of the prepared CTHPs could reach up to 929 m(2)  g(-1) . Owing to the high affinity between the heteroatoms on the coal-tar building blocks and the CO2 molecules, the adsorption capacity of CTHPs towards CO2 reached up to 14.2 wt % (1.0 bar, 273 K) with a high selectivity (CO2 /N2 =32.3). Furthermore, the obtained CTHPs could adsorb 1.27 wt % H2 at 1.0 bar and 77.3 K, and also showed capacity for the capture of high organic vapors at room temperature. In comparison with other reported porous organic polymers, CTHPs have the advantages of low-cost, easy preparation, and high gas-adsorption performance, making them suitable for mass production and practical use in the future.

  5. Nanoparticles of conjugated polymers prepared from phase-separated films of phospholipids and polymers for biomedical applications.

    Science.gov (United States)

    Yoon, Jungju; Kwag, Jungheon; Shin, Tae Joo; Park, Joonhyuck; Lee, Yong Man; Lee, Yebin; Park, Jonghyup; Heo, Jung; Joo, Chulmin; Park, Tae Jung; Yoo, Pil J; Kim, Sungjee; Park, Juhyun

    2014-07-09

    Phase separation in films of phospholipids and conjugated polymers results in nanoassemblies because of a difference in the physicochemical properties between the hydrophobic polymers and the polar lipid heads, together with the comparable polymer side-chain lengths to lipid tail lengths, thus producing nanoparticles of conjugated polymers upon disassembly in aqueous media by the penetration of water into polar regions of the lipid heads.

  6. Polymer-grafted lignin surfactants prepared via reversible addition-fragmentation chain-transfer polymerization.

    Science.gov (United States)

    Gupta, Chetali; Washburn, Newell R

    2014-08-12

    Kraft lignin grafted with hydrophilic polymers has been prepared using reversible addition-fragmentation chain-transfer (RAFT) polymerization and investigated for use as a surfactant. In this preliminary study, polyacrylamide and poly(acrylic acid) were grafted from a lignin RAFT macroinitiator at average initiator site densities estimated to be 2 per particle and 17 per particle. The target degrees of polymerization were 50 and 100, but analysis of cleaved polyacrylamide was consistent with a higher average molecular weight, suggesting not all sites were able to participate in the polymerization. All materials were readily soluble in water, and dynamic light scattering data indicate polymer-grafted lignin coexisted in isolated and aggregated forms in aqueous media. The characteristic size was 15-20 nm at low concentrations, and aggregation appeared to be a stronger function of degree of polymerization than graft density. These species were surface active, reducing the surface tension to as low as 60 dyn/cm at 1 mg/mL, and a greater decrease was observed than for polymer-grafted silica nanoparticles, suggesting that the lignin core was also surface active. While these lignin surfactants were soluble in water, they were not soluble in hexanes. Thus, it was unexpected that water-in-oil emulsions formed in all surfactant compositions and solvent ratios tested, with average droplet sizes of 10-20 μm. However, although polymer-grafted lignin has structural features similar to nanoparticles used in Pickering emulsions, its interfacial behavior was qualitatively different. While at air-water interfaces, the hydrophilic grafts promote effective reductions in surface tension, we hypothesize that the low grafting density in these lignin surfactants favors partitioning into the hexanes side of the oil-water interface because collapsed conformations of the polymer grafts improve interfacial coverage and reduce water-hexanes interactions. We propose that polymer-grafted lignin

  7. In-situ preparation of polymer-coated alumina nanopowders by chemical vapor synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Schallehn, M.; Winterer, M.; Weirich, T.E.; Hahn, H. [Inst. of Materials Science, Darmstadt Univ. of Technology, Darmstadt (Germany); Keiderling, U. [Hahn-Meitner-Inst., Berlin (Germany)

    2003-01-01

    Nanocrystalline alumina particles coated with polyethylene have been prepared by a two-step chemical vapor synthesis (CVS) process using a hot-wall reactor to synthesize the nanocrystalline alumina core, and a RF plasma reactor for the subsequent polymer coating. The particle radius is about 4 nm, with the radius of the ceramic core being about 2.5 nm and the coating thickness about 1.5 nm. The powders have been characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), small-angle neutron scattering (SANS), and high-resolution transmission electron microscopy (HRTEM). (orig.)

  8. The preparation of the nonlinear optical quantum dots in organic polymer composite

    Science.gov (United States)

    Huang, Guochang; Yu, Dabin; Zhang, Jinhua; Zhao, Minghui; Zhao, Dapeng; Pan, Maosen

    2016-11-01

    Quantum dots (QDs) is some material which particle size is between 1 to 10 nanometers. Because of the unique nonlinear optical properties, QDs has been widely applied in optical, electrical, magnetic, biological fields etc. Though the size of the nanoscale is bringing the QDs a series of characteristic advantages, it has also brought some problems for further application, such as QDs are easily degenerative according to their small size. However, The preparation of quantum dots with special polymer composite film can avoid this phenomenon, This means that the composite is usually with inert matrix can be realized for further application.

  9. Preparation and characterization of MWCNT nanofiller incorporated polymer composite for lithium battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Pradeepa, P.; Raj, S. Edwin; Selvakumar, K.; Sowmya, G.; Prabhu, M. Ramesh, E-mail: mkram83@gmail.com [School of Physics, Alagappa University, Karaikudi-630 003, Tamil Nadu (India)

    2015-06-24

    Poly (ethyl methacrylate) based polymer electrolyte films were prepared by solution casting technique incorporating multi-walled carbon nanotube (MWCNT) as filler and characterized using XRD and Ac impedance analysis. The electrical conductivity is increased with increasing filler concentration (upto 6wt %), which is attributed to the formation of charge transfer complexes. The maximum ionic conductivity value is found to be 1.171×10{sup −3} Scm{sup −1} at 303K for PEMA (19wt %) -LiClO{sub 4} (8wt %) -MWCNT (6wt %) -PC (67wt %) electrolyte system. The temperature dependent ionic conductivity plot seems to obey Vogel -Tamman-Fulcher relation.

  10. Preparation of mixed molecularly imprinted polymer magnetic nanoparticles and its application in separation of Chinese traditional medicine

    Science.gov (United States)

    Xie, Yihui; Ma, Yajuan; Bai, Wenting; Zhu, Xiaofang; Liu, Min; Huang, Liping

    2017-08-01

    A mixed imprinted polymer which can rapidly adsorb all flavonoids from raspberry extract was prepared and recycled. The hybrid molecular surface imprinted polymers were prepared by using quercetin as the template molecule and Fe3O4 magnetic nanospheres as the carrier. The molecular imprinting polymer was prepared by using the "initial template molecule, molecularly imprinted polymer, mixed template molecule, molecularly imprint ted polymers (MIPS)". The adsorption performance and durability of the hybrid molecularly imprinted polymers were investigated by using the fingerprints of the ethyl acetate fraction of raspberry as an index. The adsorption of flavonoids from raspberry extract, lindenoside, cis-lindenin, quercetin, kaempferol and other flavonoids was completely adsorbed by mixed molecular-imprinted polymer, and the other components were basically adsorbed. When Mix-IMPs were repeatedly used 10 times, the fingerprints showed that the content and content of flavonoids were basically the same. The experimental results show that Mix-IMPs has good adsorption performance, can be recycled and used for rapid enrichment of flavonoids in raspberry.

  11. Tool Support for Inspecting the Code Quality of HPC Applications

    Energy Technology Data Exchange (ETDEWEB)

    Panas, T; Quinlan, D; Vuduc, R

    2007-03-16

    The nature of HPC application development encourages ad hoc design and implementation, rather than formal requirements analysis and design specification as is typical in software engineering. However, we cannot simply expect HPC developers to adopt formal software engineering processes wholesale, even while there is a need to improve software structure and quality to ensure future maintainability. Therefore, we propose tools that HPC developers can use at their discretion to obtain feedback on the structure and quality of their codes. This feedback would come in the form of code quality metrics and analyses, presented when necessary in intuitive and interactive visualizations. This paper summarizes our implementation of just such a tool, which we apply to a standard HPC benchmark as ''proof-of-concept.''

  12. Effect of Superfine Slag Powder on HPC Properties

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A superfine slag powder (SP) made from granulated blast furnace slag incorporating activators by using special millingtechnique, was used as supplementary cementitious material in high performance concrete (HPC), replacing part ofthe mass of normal Portland cement. The effects of the SP on the workability, mechanical and crack self-healingproperties of HPC were studied. The hydration process and microstructure characteristics were investigated by X-raydiffraction (XRD) and scanning electron microscopy (SEM) techniques, respectively. The crack self-healing capacitywas evaluated by Brazilian test. The test results indicate that the SP has especially supplementary effect on waterreducing and excellent property of better control of slump loss. The concrete flowability increases remarkably withthe increase of SP replacement level in the range of 20% to 50%. The compressive and splitting tensile strengthsof HPC containing SP are higher than the corresponding strength of the control concrete at all ages. The crackself-healing ability is highly dependent on SP content of HPC.

  13. Preparation of fluorescent hyperbranched polymer materials by end-capping approach

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Two kinds of novel fluorescent hyperbranched polymers were synthesized by the end-capping approach.The fluorescent hyperbranched polyether (FPEOTM) was obtained by end capping the hyperbranched poly(hydroxyl ether) (PEOTM) with guest molecules N,N- dimethylaminobenzaldehyde (DMABA).In addition,in the presence of triethylamine,the hyperbranched polysulfone-amine with terminal double bonds (HPSA) was synthesized by polyaddition of a new AB2 type monomer (SAP,sulfone amine piperazine) at 40℃ for 60 h in chloroform solution.Then the fluorescent hyperbranched polysulfone-amine (FHPSA) was prepared by addition of guest molecules N,N-dimethylaminoanilines (DMAA) with the terminal double bonds of HPSA.The two resulting polymers fluoresce yellow-green color in both solid and solution states.The maximum emission wavelength is (460±10) nm and (470±10) nm,respectively.A novel "complex quenching effect" for hyperbranched polymer was observed.The fluorescence can be quenched by transition metal cations such as Ag+,Cu2+ and Fe3+,while alkali and alkaline earth metal cations almost have no influence on the fluorescence intensity.

  14. Preparation of lysozyme molecularly imprinted polymers and purification of lysozyme from egg white.

    Science.gov (United States)

    Wang, Xuejiao; Dong, Shaohua; Bai, Quan

    2014-06-01

    Molecular imprinting as a promising and facile separation technique has received much attention because of its high selectivity for target molecules. In this study, lysozyme molecularly imprinted polymers (Lys-MIPs) were successfully prepared by the entrapment method with lysozyme as the template molecule, acrylamide as the functional monomer and N,N-methylenebisacrylamide as the cross-linker. The removal of the template lysozyme from the molecularly imprinted polymers was investigated in detail by two methods. The synthesized Lys-MIPs were characterized by scanning electron microscopy and Fourier transform-infrared, and the adsorption capacity, selectivity and reproducibility of the Lys-MIPs were also evaluated. The maximum adsorption capacity reached 94.8 mg/g, which is twice that of nonmolecularly imprinted polymers, and satisfactory selectivity and reproducibility were achieved. Using the Lys-MIP column, lysozyme could be separated completely from egg white, with purity close to 100% and mass recovery of 98.2%. This illustrated that the synthesized Lys-MIPs had high specific recognition and selectivity to the template lysozyme when they were applied to a mixture of protein standards and a real sample.

  15. Haloperidol imprinted polymer: preparation, evaluation, and application for drug assay in brain tissue.

    Science.gov (United States)

    Rahmani, Aboubakr; Mohammadpour, Amir Hooshang; Sahebnasagh, Adeleh; Mohajeri, Seyed Ahmad

    2014-11-01

    Several molecularly imprinted polymers (MIPs) were prepared in the present work, and their binding properties were evaluated in comparison with a nonimprinted polymer (NIP). An optimized MIP was selected and applied for selective extraction and analysis of haloperidol in rabbit brain tissue. A molecularly imprinted solid-phase extraction (MISPE) method was developed for cleanup and preconcentration of haloperidol in brain samples before HPLC-UV analysis. Selectivity of the MISPE procedure was investigated using haloperidol and some structurally different drugs with similar polarity that could exist simultaneously in brain tissue. The extraction and analytical process was calibrated in the range of 0.05-10 ppm. The recovery of haloperidol in this MISPE process was calculated between 79.9 and 90.4%. The limit of detection (LOD) and the limit of quantification (LOQ) of the assay were 0.008 and 0.05 ppm, respectively. Intraday precision and interday precision values for haloperidol analysis were less than 5.86 and 7.63%, respectively. The MISPE method could effectively extract and concentrate haloperidol from brain tissue in the presence of clozapine and imipramine. Finally, the imprinted polymer was successfully applied for the determination of haloperidol in a real rabbit brain sample after administration of a toxic dose. Therefore, the proposed MISPE method could be applied in the extraction and preconcentration before HPLC-UV analysis of haloperidol in rabbit brain tissue.

  16. PREPARATION AND CHARACTERIZATION OF PVA BASED SOLID POLYMER ELECTROLYTES FOR ELECTROCHEMICAL CELL APPLICATIONS

    Institute of Scientific and Technical Information of China (English)

    Anji Reddy Polu; Ranveer Kumar

    2013-01-01

    Solid polymer electrolyte films containing poly(vinyl alcohol) (PVA) and magnesium nitrate (Mg(NO3)2) were prepared by solution casting technique and characterized by using XRD,FT1R,DSC and AC impedance spectroscopic analysis.The amorphous nature of the polymer electrolyte films has been confirmed by XRD.The complex formation between PVA and Mg salt has been confirmed by FTIR.The glass transition temperature decreases with increasing the Mg salt concentration.The AC impedance studies are performed to evaluate the ionic conductivity of the polymer electrolyte films in the range of 303-383 K,and the temperature dependence seems to obey the Arrhenius behavior.Transport number measurements show that the charge transport is mainly due to ions.Electrochemical cell of configuration Mg/(PVA + Mg(NO3)2) (70:30)/(I2 + C + electrolyte) has been fabricated.The discharge characteristics of the cell were studied for a constant load of 100 kΩ.

  17. Intro - High Performance Computing for 2015 HPC Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Klitsner, Tom [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    The recent Executive Order creating the National Strategic Computing Initiative (NSCI) recognizes the value of high performance computing for economic competitiveness and scientific discovery and commits to accelerate delivery of exascale computing. The HPC programs at Sandia –the NNSA ASC program and Sandia’s Institutional HPC Program– are focused on ensuring that Sandia has the resources necessary to deliver computation in the national interest.

  18. PREPARATION OF POLYMER MICROSPHERES WITH PYRIDYL GROUP AND THEIR STABILIZED GOLD METALLIC COLLOIDS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Narrow disperse poly(ethyleneglycol dimethacrylate-co-4-vinylpyridine) (poly(EGDMA-co-4-VPy)) microspheres were prepared by distillation-precipitation copolymerization of ethyleneglycol dimethacrylate (EGDMA) and 4-vinylpyridine (4-VPy) with 2,2'-azobisisobutyronitrile (AIBN) as initiator in neat acetonitrile. The polymer microspheres containing pyridyl group were then utilized as stabilizer for gold metallic colloids with the diameter around 7 nm, which were prepared by the in situ reduction of gold chloride trihydrate with sodium borohydride through the coordination of the pyridyl group on the gel layer and surface of the microsphere with the gold metallic nano-particles. The catalytic properties of the pyridyl-functionalized microsphere-stabilized gold metallic colloids and the behavior of the stabilized-catalyst for the recycling were investigated with reduction of 4-nitrophenol to 4-aminophenol as a model reaction.

  19. Design, preparation, surface recognition properties, and characteristics of icariin molecularly imprinted polymers

    Directory of Open Access Journals (Sweden)

    Xiaohe Jia

    2015-12-01

    Full Text Available Icariin molecularly imprinted polymers (MIPs were prepared by precipitation polymerization. Prior to the polymerization, computer simulation was performed to sketchily choose the suitable functional monomer and the corresponding polymerization solvent. The optimized synthesis parameters, including the functional monomer acrylamide, the mixture of methanol and acetonitrile (V:V = 3:1 as the polymerization solvent, and the reaction molar ratio (1:6:80 of template molecule, functional monomer and cross-linker, were respectively obtained by single factor analysis and orthogonal design methods. The results of the adsorption experiments showed that the resultant MIPs exhibited good adsorption and recognition abilities to icariin. Scatchard analysis illustrated that the homogeneous binding sites only for icariin molecules were formed in the prepared MIPs.

  20. Preparation of Nanosized AlOOH and Its Application in Polymer-inorganic Nanocomposites

    Institute of Scientific and Technical Information of China (English)

    LIAO Haida; ZHANG Lianmeng; WU Bolin

    2008-01-01

    With industrial grade Al(OH)3 as raw materials, the self dispersion nanosized AIOOH crystal powder were prepared by the sol-hydrothermal method. The results of XRD and TEM show that the nanosized AIOOH could automatically disperse to a single-dispersing state in water without surface modification, dispersant, additive and accessional conditions (ultrasonic wave dispersing, ball-mill dispersing). The application results of the product indicate that the nanosized AIOOH can be composed into a toughened nanocomposites without surface modification. Accordingly, the self dispersion characteristic and mechanism of hydrothermal crystallization and charging composite dispersion of nanosized AIOOH are found, and a new technique of preparing polymer/inorganic nanocomposites is proposed, which is called blending compositing new techniques of sol even dispersing at quasi-homogeneous phase.

  1. Vinyl Ester Oligomer Crosslinked Porous Polymers Prepared via Surfactant-Free High Internal Phase Emulsions

    Directory of Open Access Journals (Sweden)

    Yun Zhu

    2012-01-01

    Full Text Available Using vinyl ester resin (VER containing styrene (or methyl methacrylate and vinyl ester oligomer (VEO as external phase, Pickering high internal phase emulsions (Pickering HIPEs having internal phase volume fraction of up to 95 vol% were prepared with copolymer particles as sole stabilizer. Polymerizing the external phase of these Pickering HIPEs led to porous polymers (poly-Pickering-HIPEs. Compared to the polystyrene- (PS- based poly-Pickering-HIPEs which were prepared with mixture of styrene and divinylbenzene (DVB as crosslinker, the poly-Pickering-HIPEs herein showed much higher elastic modulus and toughness. The elastic modulus of these poly-Pickering-HIPEs increased with increasing the VEO concentration in the external phase, while it decreased with increasing internal phase volume fraction. Increasing VEO concentration in the external phase also resulted in a decrease in the average void diameter as well as a narrow void diameter distribution of the resulting poly-Pickering-HIPEs. In addition, there were many small pores in the voids surface caused by the volume contraction of VER during the polymerization, which suggests a new method to fabricate porous polymers having a well-defined hierarchical pore structure.

  2. Nanocomposite metal/plasma polymer films prepared by means of gas aggregation cluster source

    Energy Technology Data Exchange (ETDEWEB)

    Polonskyi, O.; Solar, P.; Kylian, O.; Drabik, M.; Artemenko, A.; Kousal, J.; Hanus, J.; Pesicka, J.; Matolinova, I. [Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, 18000 Prague 8 (Czech Republic); Kolibalova, E. [Tescan, Libusina trida 21, 632 00 Brno (Czech Republic); Slavinska, D. [Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, 18000 Prague 8 (Czech Republic); Biederman, H., E-mail: bieder@kmf.troja.mff.cuni.cz [Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, 18000 Prague 8 (Czech Republic)

    2012-04-02

    Nanocomposite metal/plasma polymer films have been prepared by simultaneous plasma polymerization using a mixture of Ar/n-hexane and metal cluster beams. A simple compact cluster gas aggregation source is described and characterized with emphasis on the determination of the amount of charged clusters and their size distribution. It is shown that the fraction of neutral, positively and negatively charged nanoclusters leaving the gas aggregation source is largely influenced by used operational conditions. In addition, it is demonstrated that a large portion of Ag clusters is positively charged, especially when higher currents are used for their production. Deposition of nanocomposite Ag/C:H plasma polymer films is described in detail by means of cluster gas aggregation source. Basic characterization of the films is performed using transmission electron microscopy, ultraviolet-visible and Fourier-transform infrared spectroscopies. It is shown that the morphology, structure and optical properties of such prepared nanocomposites differ significantly from the ones fabricated by means of magnetron sputtering of Ag target in Ar/n-hexane mixture.

  3. Comparison of non-electrophoresis grade with electrophoresis grade BIS in NIPAM polymer gel preparation.

    Science.gov (United States)

    Khodadadi, Roghayeh; Khajeali, Azim; Farajollahi, Ali Reza; Hajalioghli, Parisa; Raeisi, Noorallah

    2015-01-01

    The main objective of this study was to investigate the possibility of replacing electrophoresis cross-linker with non-electrophoresis N, N'-methylenebisacrylamide (BIS) in N-isopropyl acrylamide (NIPAM) polymer gel and its possible effect on dose response. NIPAM polymer gel was prepared from non-electrophoresis grade BIS and the relaxation rate (R2) was measured by MR imaging after exposing the gel to gamma radiation from Co-60 source. To compare the response of this gel with the one that contains electrophoresis grade BIS, two sets of NIPAM gel were prepared using electrophoresis and non-electrophoresis BIS and irradiated to different gamma doses. It was found that the dose-response of NIPAM gel made from the non-electrophoresis grade BIS is coincident with that of electrophoresis grade BIS. Taken all, it can be concluded that the non-electrophoresis grade BIS not only is a suitable alternative for the electrophoresis grade BIS but also reduces the cost of gel due to its lower price.

  4. Modification of inkjet printer for polymer sensitive layer preparation on silicon-based gas sensors

    Directory of Open Access Journals (Sweden)

    Tianjian Li

    2015-04-01

    Full Text Available Inkjet printing is a versatile, low cost deposition technology with the capabilities for the localized deposition of high precision, patterned deposition in a programmable way, and the parallel deposition of a variety of materials. This paper demonstrates a new method of modifying the consumer inkjet printer to prepare polymer-sensitive layers on silicon wafer for gas sensor applications. A special printing tray for the modified inkjet printer to support a 4-inch silicon wafer is designed. The positioning accuracy of the deposition system is tested, based on the newly modified printer. The experimental data show that the positioning errors in the horizontal direction are negligibly small, while the positioning errors in the vertical direction rise with the increase of the printing distance of the wafer. The method for making suitable ink to be deposited to form the polymer-sensitive layer is also discussed. In the testing, a solution of 0.1 wt% polyvinyl alcohol (PVA was used as ink to prepare a sensitive layer with certain dimensions at a specific location on the surface of the silicon wafer, and the results prove the feasibility of the methods presented in this article.

  5. Preparation and Chemical Properties of π-Conjugated Polymers Containing Indigo Unit in the Main Chain

    Directory of Open Access Journals (Sweden)

    Hiroki Fukumoto

    2014-03-01

    Full Text Available π-Conjugated polymers based on indigo unit were prepared. Dehalogenative polycondensation of N-hexyl-6,6'-dibromoindigo with a zerovalent nickel complex gave a homopolymer, P(HexI, in 77% yield. Copolymer of N-hexyl-indigo and pyridine, P(HexI-Py, was also prepared in 50% yield. P(HexI showed good solubility in organic solvents, whereas P(HexI-Py was only soluble in acids such as HCOOH. The weight-average molecular weights (Mw of P(HexI and P(HexI-Py were determined to be 10,000 and 40,000, respectively, by a light scattering method. Pd-catalyzed polycondensation between 6,6'-dibromoindigo with N-BOC (BOC = t-butoxycarbonyl substituents and a diboronic compound of 9,9-dioctylfluorene afforded the corresponding alternating copolymer, P(BOCI-Flu, as a deep red solid in 98% yield. P(BOCI-Flu was soluble in N-methyl-2-pyrroridone and showed an Mw of 29,000 in GPC analysis. Treatment of P(BOCI-Flu with CF3COOH smoothly led to a BOC-deprotection reaction to give an insoluble deep green polymer, P(I-Flu, in a quantitative yield. Diffuse reflectance spectra of powdery P(BOCI-Flu and P(I-Flu showed peaks at about 580 nm and 630 nm, respectively, which are thought to originate from the indigo unit.

  6. Preparation, characterization and selective recognition for vanillic acid imprinted mesoporous silica polymers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui, E-mail: lihuijsdx@163.com [College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000 (China); Key laboratory of plant resource and utilization, Jishou University, Hunan Jishou 416000 (China); Xu, Miaomiao; Wang, Susu; Lu, Cuimei; Li, Zhiping [College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000 (China)

    2015-02-15

    Highlights: • Preparation of a vanillic acid imprinted mesoporous silica polymers. • Improved selectivity and adsorption capability of this MIPs. • Excellent mass transfer dynamics for the MIPs. • High solid phase extraction applicability toward real sample. - Abstract: A vanillic acid imprinted mesoporous silica polymer (MIPs) was prepared by copolymerizing a modified mesoporous silica molecular sieve with template molecule, functional monomer and cross-linker in present work. Interaction between the template and functional monomer was investigated by ultraviolet/visible spectrophotometry. These MIPs were characterized by Fourier transmission infrared spectrometry (FTIR) and scanning electron microscopy (SEM). Adsorption dynamics and thermodynamic behavior of MIPs was explored and the selective recognition capability evaluated. Also, the applicability for the MIPs as solid phase extraction media was tested. Results indicated the 1:1 (mole ratio) complex of vanillic acid-4-vinylpyridine might predominate in the pre-polymerization mixture and the MIPs obtained possessed rapid binding dynamics and higher affinity toward template molecules, reaching adsorption equilibrium within 230 min with the highest adsorption amount of 50.7 mg g{sup −1}. Freundlich model was shown best to describe isotherm adsorption for the MIPs. The MIPs could selectively bind template molecule with selectivity coefficients of 1.36–1.50. In addition, a higher enrichment capability when using it for gathering target compound from methanol extract of Artemisia stelleriana and a good reusability during adsorption–desorption recycling use could be observed.

  7. Hierarchical ZnO particles grafting by fluorocarbon polymer derivative: Preparation and superhydrophobic behavior

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Dahai; Jia, Mengqiu, E-mail: jiamq@mail.buct.edu.cn

    2015-07-15

    Graphical abstract: - Highlights: • The hierarchical particles were prepared by a simple, mild hydrothermal process. • The obtained “chestnut” ZnO particles show dual-scale morphology with high roughness. • FEVE derivative was creatively imported to graft onto hierarchical particles. • Superhydrophobic surfaces were obtained, on which the contact angles surpass 150°. • A special model was proposed to explain the wetting state in this work. - Abstract: Superhydrophobic surfaces on the basis of hierarchical ZnO particles grafted by fluoroethylene-vinylether (FEVE) polymer derivative were prepared using a facile, mild and low-cost method. X-ray diffraction (XRD) and scanning electron microscope (SEM) revealed that the resulting ZnO particles via hydrothermal process exhibit micro–nano dual-scale morphology with high purity under a suitable surfactant amount and alkali concentration. The grafting of FEVE derivative was confirmed by Fourier transform infrared spectroscopy (FTIR) and energy-dispersive X-ray spectrometer (EDS), suggesting that hierarchical surface of ZnO particles was an imported monomolecular layer of fluorocarbon polymer. The obtained surface fabricated by drop-casting shows considerably high contact angle and good resistance to water immersion. The wetting behavior in this work was furthermore analyzed by theoretical wetting model. This work demonstrates that the sufficient low-wettable surface and high roughness both take a vital role in the superhydrophobic behavior.

  8. Preparation and evaluation of molecularly imprinted polymer liquid chromatography column for the separation of ephedrine enantiomers

    Directory of Open Access Journals (Sweden)

    Krishnamoorthy balamurugan

    2016-09-01

    Full Text Available In this study molecular imprinting technology was employed to prepare a specific affinity sorbent for the resolution of Ephedrine, a chiral drug. The molecularly imprinted polymer (MIP was prepared by non-covalent molecular imprinting with either (+ or (--Ephedrine ((R∗,S∗-2-(methylamino-1-phenylpropan-1-ol as the template. Methacrylic acid and ethylene glycol di-methacrylate were copolymerized in the presence of the template molecule. The bulk polymerization was carried out in chloroform with 2,2′-azobisisobutyronitrile as the initiator, at 5°C and under UV radiation. The resulting MIP was ground into powders, which were slurry packed into analytical columns. After removal of template molecules, the MIP-packed columns were found to be effective for the resolution of (±-Ephedrine racemates. The separation factor for the enantiomers ranged between 1.3 and 2.1 when the column was packed with MIP prepared with (+-Ephedrine as the template. A separation factor ranging from 1.3 to 2.6 could be achieved from the column packed with MIP, prepared with (--Ephedrine as the template. Although the separation factor was higher with that previously obtained from reversed-phase column chromatography following derivatization with a chiral agent, elution peaks were broader due to the heterogeneity of binding sites on the MIP particles and the possible non-specific interaction.

  9. Preparation, Characterization and Application of Mg(OH2-PAM Inorganic-Organic Composite Polymer in Removing Reactive Dye

    Directory of Open Access Journals (Sweden)

    Khai Ern Lee

    2012-01-01

    Full Text Available In this study, a series of inorganic-organic composite polymer was prepared. Magnesium hydroxide and polyacrylamide was composed in a composite matrix to prepare Mg(OH2-PAM (MHPAM inorganic-organic composite polymer. The characteristics of MHPAM inorganic-organic composite polymer was investigated in terms of chemical, physical, physical, thermal and morphological properties through FT-IR, conductivity, intrinsic viscosity, TGA and TEM, respectively. Results showed that the properties of MHPAM composite polymers varied with the compositions in the composite polymers. Different compositions of MHPAM inorganic-organic composite polymers were applied in removing reactive dye from aqueous solution. MHPAM inorganic-organic composite polymer with Mg(OH2 : PAM ratio of 90 : 10 gave the best dye removal (% where it was able to remove 98% of reactive dye at pH 11.00 with a dosage of 500 mg/L. Kinetics study was carried out using different dye concentration and it was found that the experimental data fitted the pseudo-second-order model better compared to pseudo-first-order model.

  10. Preparation and Determination of Drug-Polymer Interaction and In-vitro Release of Mefenamic Acid Microspheres Made of CelluloseAcetate Phthalate and/or Ethylcellulose Polymers

    Science.gov (United States)

    Jelvehgari, Mitra; Hassanzadeh, Davoud; Kiafar, Farhad; Delf Loveym, Badir; Amiri, Sara

    2011-01-01

    The objective of this study was to formulate and evaluate the drug-polymer interaction of mefenamic acid (MA) using two polymers with different characteristics as ethylcellulose (EC) and/or cellulose acetate phthalate (CAP). Microspheres were prepared by the modified emulsion solvent evaporation (MESE). The effect of drug-polymer interaction was studied for each of microspheres. Important parameters in the evaluation of a microencapsulation technique are encapsulation efficiency, yield production, particle size, surface characteristics of microspheres, scanning electronic microscopy (SEM), powder X-ray diffraction analysis (XRD), and differential scanning calorimetry (DSC). The in-vitro release studies are performed in Tris buffer (pH 9) with Sodium lauryl sulfate (SLS). Microspheres containing CAP and EC showed 68-97% and 63-76% of entrapment efficiency, respectively. The thermogram X-ray and DSC showed stable character of MA in the microspheres and revealed an absence of drug polymer interaction. The prepared microspheres were spherical in shape and had a size range of 235-436 μm for CAP-microspheres and 358-442 μm for EC-microspheres. The results suggest that MA was successfully and efficiently encapsulated; the release rates of matrix microspheres are related to the type of polymer, only when polymers (EC and CAP combine with 1 : 1 ratio) were used to get prolonged drug release with reducing the polymers content in the microspheres. Data obtained from in-vitro release for microspheres and commercial capsule were fitted to various kinetic models and the high correlation was obtained in the peppas model. Mefenamic acid, Ethylcellulose, Cellulose acetate phthalate, Microparticles, Modified emulsion-solvent evaporation. PMID:24250377

  11. Controlled release of 5-fluorouracil or mitomycin-c from polymer matrix: Preparation by radiation polymerization and in vivo evaluation of the anticancer drug/polymer composites

    Science.gov (United States)

    Li, Ximing; Shen, Weiming; Liu, Chengjie; Nishimoto, Sei-Ichi; Kagiya, Tsutomu

    Polymer tablets containing anticancer drugs such as 5-fluorouracil (5-FU) and mitomycin-C (MMC) have been prepared to evaluate the drug-release characteristics in vitro and the effect on local control of mouse solid tumors in vivo. Radiation-induced polymerization of hydrophilic monomers (2-hydroxyethyl methacrylate and related monomers) at low temperature (-80°C) was performed to immobilize 5-FU or MMC in the polymer matrix. The drug was dispersed as microcrystallines within the polymer matrix. The rate of drug release in vitro in buffer solution (pH7.0, 37°C) increased with increase in hydrophilicity of polymer matrix. Appropriate amount of crosslinks within the polymer matrix, as formed by ethylene glycol dimethacrylate (2G) added in the polymerization system, was effective to control the rate of drug release. The drug release became faster upon the addition of increasing amount of water in the radiation-induced polymerization. The tablet consisting of drug/polymer was buried surgically near solid tumors of striate muscle sarcoma (S180) transplanted to Kunming mice and the therapeutic effect of slow releasing drugs was evaluated in vivo by reference to intraperitoneal (i.p.) injection of the corresponding drugs. The slow releasing drugs led to high chemotherapeutic gain for local control of solid tumors with remarkable reduction of toxic side effect of the drugs.

  12. Electrically Conducting Polymer-Copper Sulphide Composite Films, Preparation by Treatment of Polymer-Copper (2) Acetate Composites with Hydrogen Sulfide

    Science.gov (United States)

    Yamamoto, Takakazu; Kamigaki, Takahira; Kubota, Etsuo

    1988-01-01

    Polymer copper sulfide composite films were prepared by treatment of polymer poly(vinyl chloride), poly(acrylonitrile), copolymer of vinyl chloride and vinyl acetate (90:10), and ABS resin copper (2) acetate composites with hydrogen sulfide. The films showed electrical conductivity higher than 0.015 S/cm when they contained more than 20 wt percent of copper sulfide. A poly(acrylonitrile)-copper sulfide composite film containing 40 to 50 wt percent of copper sulfide showed electrical conductivity of 10 to 150.0 S/cm and had relatively high mechanical strength to be used in practical purposes.

  13. Reactive carbon microspheres prepared by surface-grafting 4-(chloromethyl)phenyltrimethoxysilane for preparing molecularly imprinted polymer

    Science.gov (United States)

    Liu, Weifeng; Zhao, Huijun; Yang, Yongzhen; Liu, Xuguang; Xu, Bingshe

    2013-07-01

    Carbon microspheres (CMSs) were oxidized by a mixture of concentrated sulfuric and nitric acids, and modified by 4-(chloromethyl)phenyltrimethoxysilane to give reactive surface. Then, by adopting the surface molecular imprinting technique, dibenzothiophene (DBT) molecule-imprinted material MIP-DBT/CMSs was prepared with methacrylic acid as functional monomer and ethylene glycol dimethacrylate as crosslinking agent. The binding character of MIP-DBT/CMSs toward DBT was investigated with static method by gas chromatography, using fluorene and biphenyl as the reference substances which are similar to DBT in chemical structure to a certain extent. The effects of reaction time, temperature, and coupling agent concentration during silanization were investigated. The results show that the optimized conditions of silanization were 0.3 g oxidized-CMSs, 5% of CMTMS, 80 °C and 4 h. On the basis of silanized-CMSs, MIP-DBT/CMSs was synthesized. The adsorption results show that MIP-DBT/CMSs possessed strong adsorption ability for DBT. The maximal adsorption amount reached up 88.83 mg/g, in comparison with 44.51 mg/g of the non-imprinted polymer. In addition, MIP-DBT/CMSs exhibited a good selective adsorption capacity for DBT than fluorene (19.86 mg/g) and biphenyl (15.33 mg/g). The adsorption behavior followed the pseudo second order kinetic model. And the Freundlich isotherm was found to describe well the equilibrium adsorption data.

  14. Molecularly imprinted polymers for sample preparation and biosensing in food analysis: Progress and perspectives.

    Science.gov (United States)

    Ashley, Jon; Shahbazi, Mohammad-Ali; Kant, Krishna; Chidambara, Vinayaka Aaydha; Wolff, Anders; Bang, Dang Duong; Sun, Yi

    2017-05-15

    Molecularly imprinted polymers (MIPs) are biomimetics which can selectively bind to analytes of interest. One of the most interesting areas where MIPs have shown the biggest potential is food analysis. MIPs have found use as sorbents in sample preparation attributed to the high selectivity and high loading capacity. MIPs have been intensively employed in classical solid-phase extraction and solid-phase microextraction. More recently, MIPs have been combined with magnetic bead extraction, which greatly simplifies sample handling procedures. Studies have consistently shown that MIPs can effectively minimize complex food matrix effects, and improve recoveries and detection limits. In addition to sample preparation, MIPs have also been viewed as promising alternatives to bio-receptors due to the inherent molecular recognition abilities and the high stability in harsh chemical and physical conditions. MIPs have been utilized as receptors in biosensing platforms such as electrochemical, optical and mass biosensors to detect various analytes in food. In this review, we will discuss the current state-of-the-art of MIP synthesis and applications in the context of food analysis. We will highlight the imprinting methods which are applicable for imprinting food templates, summarize the recent progress in using MIPs for preparing and analysing food samples, and discuss the current limitations in the commercialisation of MIPs technology. Finally, future perspectives will be given.

  15. STRUCTURAL STABILITY OF ALUMINOSILICATE INORGANIC POLYMERS: INFLUENCE OF THE PREPARATION PROCEDURE

    Directory of Open Access Journals (Sweden)

    Libor Kobera

    2011-12-01

    Full Text Available The stability of amorphous aluminosilicate inorganic polymer (AIP systems with regard to the structural role of water molecules incorporated in inorganic matrix is discussed. Innovative approach to preparation of amorphous AIP systems with identical chemical composition but differing in structural and mechanical behavior is introduced. It is shown that even small changes in the manufacture dramatically affect mechanical properties and the overall structural stability of AIP systems. If the required quantity of water is admixed to the reaction mixture during the initial step of AIPs synthesis the resulting amorphous aluminosilicate matrix undergoes extensive crystallization (zeolitization. On the other hand, if the amount of water is added to the reaction mixture during the last step of the preparation procedure, the inorganic matrix exhibits long-term stability without any structural defects. To find the structural reasons of the observed behavior a combination of traditional solid state NMR (1H and 29Si MAS NMR, 29Si CP/MAS NMR, 29Si inverse-T1-filtered NMR, XRPD and TGA measurements were used. The applied experiments revealed that the structural stability of AIPs can be attributed to the tight binding of water molecules into the inorganic matrix. The structural stability of the prepared amorphous AIP systems thus seems to be affected by the extent of hydration i.e. the strength of binding water into the inorganic framework.

  16. Controlled release metformin hydrochloride microspheres of ethyl cellulose prepared by different methods and study on the polymer affected parameters.

    Science.gov (United States)

    Choudhury, Pratim K; Kar, Mousumi

    2009-02-01

    The objectives of this investigation were to prepare microspheres of the anti-diabetic drug, metformin hydrochloride, using ethyl cellulose as the polymer and evaluate the encapsulation efficiency and release characteristics in vitro and in vivo; utilizing different microencapsulation techniques. Different proportions of polymer were used to obtain varying drug-polymer ratios. Physical properties, loading efficiency and dissolution rate were dependent on the method chosen for preparation and also on the drug-to-polymer ratio. The addition of surfactant during emulsification and petroleum ether in non-solvent addition process affected release of drug and also size distribution of microspheres. To investigate the type of mechanism that occurs, dissolution data were plotted according to different kinetic models. In vitro release studies show first order and Higuchi model release characteristics being exhibited. All the results were treated statistically to validate the findings. Significant differences in percentage yield, entrapment efficiency and sustaining capacity were seen with microspheres prepared by two different methods. In vivo studies in normal and hyperglycemic mice show faster glucose reduction with microspheres prepared by the evaporation method, whereas the release sustaining effect was more pronounced with microspheres prepared by the non-solvent addition method.

  17. Radiation-Induced Chemical Reactions in Hydrogel of Hydroxypropyl Cellulose (HPC): A Pulse Radiolysis Study.

    Science.gov (United States)

    Yamashita, Shinichi; Ma, Jun; Marignier, Jean-Louis; Hiroki, Akihiro; Taguchi, Mitsumasa; Mostafavi, Mehran; Katsumura, Yosuke

    2016-12-01

    We performed studies on pulse radiolysis of highly transparent and shape-stable hydrogels of hydroxypropyl cellulose (HPC) that were prepared using a radiation-crosslinking technique. Several fundamental aspects of radiation-induced chemical reactions in the hydrogels were investigated. With radiation doses less than 1 kGy, degradation of the HPC matrix was not observed. The rate constants of the HPC composing the matrix, with two water decomposition radicals [hydroxyl radical ((•)OH) and hydrated electron ([Formula: see text])] in the gels, were determined to be 4.5 × 10(9) and 1.8 × 10(7) M(-1) s(-1), respectively. Direct ionization of HPC in the matrix slightly increased the initial yield of [Formula: see text], but the additionally produced amount of [Formula: see text] disappeared immediately within 200 ps, indicating fast recombination of [Formula: see text] with hole radicals on HPC or on surrounding hydration water molecules. Reactions of [Formula: see text] with nitrous oxide (N2O) and nitromethane (CH3NO2) were also examined. Decay of [Formula: see text] due to scavenging by N2O and CH3NO2 were both slower in hydrogels than in aqueous solutions, showing slower diffusions of the reactants in the gel matrix. The degree of decrease in the decay rate was more effective for N2O than for CH3NO2, revealing lower solubility of N2O in gel than in water. It is known that in viscous solvents, such as ethylene glycol, CH3NO2 exhibits a transient effect, which is a fast reaction over the contact distance of reactants and occurs without diffusions of reactants. However, such an effect was not observed in the hydrogel used in the current study. In addition, the initial yield of [Formula: see text], which is affected by the amount of the scavenged precursor of [Formula: see text], in hydrogel containing N2O was slightly higher than that in water containing N2O, and the same tendency was found for CH3NO2.

  18. Preparation and characterization of high salts polymer electrolyte based on poly(lithium acrylate)

    Institute of Scientific and Technical Information of China (English)

    TANG Ai-dong; HUANG Ke-long; PAN Chun-yue; LU Cui-hong

    2005-01-01

    Novel polymer electrolytes were prepared by highly mixing poly(lithium acrylate)(PPALi) with eutectic lithium salts of lithium acetate and lithium nitrate.Poly(lithium acrylate) was preparaed by inverse emulsion polymerization from crylic acid and LiOH.Phase transition temperatures were measured for all the eutectic lithium of binary system samples as a function of the concentration of Li(CH3 COO),and the mixtures exhibit the lowest phase transition temperatures of (448±2) K at about 50% (mass fraction) Li(CH3 COO).Thermogravimetry(TG)and X-ray diffraction(XRD) analysis indicate the formation of a novel polymer-salt complex.The highest conductivity(approximately 4.97 ×10-5S·cm-1) is found at room temperature with the electrolyte composition of eutectic mixture of about 80% (mass fraction),poly(lithium acrylate) 20% under quickly cooling condition,which is 150%higher than that under natural cooling condition.

  19. Preparation of Magnetic Hollow Molecularly Imprinted Polymers for Detection of Triazines in Food Samples.

    Science.gov (United States)

    Wang, Aixiang; Lu, Hongzhi; Xu, Shoufang

    2016-06-22

    Novel magnetic hollow molecularly imprinted polymers (M-H-MIPs) were proposed for highly selective recognition and fast enrichment of triazines in food samples. M-H-MIPs were prepared on the basis of multi-step swelling polymerization, followed by in situ growth of magnetic Fe3O4 nanoparticles on the surface of hollow molecularly imprinted polymers (H-MIPs). Transmission electron microscopy and scanning electron microscopy confirmed the successful immobilization of Fe3O4 nanoparticles on the surface of H-MIPs. M-H-MIPs could be separated simply using an external magnet. The binding adsorption results indicated that M-H-MIPs displayed high binding capacity and fast mass transfer property and class selective property for triazines. Langmuir isotherm and pseudo-second-order kinetic models fitted the best adsorption models for M-H-MIPs. M-H-MIPs were used to analyze atrazine, simazine, propazine, and terbuthylazine in corn, wheat, and soybean samples. Satisfactory recoveries were in the range of 80.62-101.69%, and relative standard deviation was lower than 5.2%. Limits of detection from 0.16 to 0.39 μg L(-1) were obtained. When the method was applied to test positive samples that were contaminated with triazines, the results agree well with those obtained from an accredited method. Thus, the M-H-MIP-based dispersive solid-phase extraction method proved to be a convenient and practical platform for detection of triazines in food samples.

  20. Preparation of Photoirradiation Molecular Imprinting Polymer for Selective Separation of Branched Cyclodextrins

    Directory of Open Access Journals (Sweden)

    Haoran Fan

    2017-02-01

    Full Text Available In the present study, photoirradiation molecularly imprinted polymer (MIP with azobenzene was used as a functional monomer for the selective separation of the branched cyclodextrins. The functional monomer 4-methacryloyloxy azobenzene (MAA and the molecular template 6-O-α-d-maltosyl-β-cyclodextrin (G2-β-CD were implemented for the molecular imprinting. The core-shell structure of photoirradiation MIP was visualized by the transmission electron microscopy (TEM. With Fourier transform infrared spectroscopy (FTIR and thermogravimetric analysis (TGA, we identified that G2-β-CD was imprinted into the polymer and removed from the MIP. The binding association constant (Ka and the maximum number of the binding site (Nmax were 1.72 × 104 M−1 and 7.93 μmol·g−1 MIP, respectively. With alternate irradiation at 365 and 440 nm light, the prepared MIP reversibly released and rebound to the G2-β-CD, which resulted in the nearly zero amount of G2-β-CD in the solution. The HPLC results indicated that the purity of G2-β-CD could reach 90.8% after going through MIP. The main finding of our study was that the photoirradiation of MIP was an easy and effective method for the selective separation of the branched cyclodextrins.

  1. Physical and Degradable Properties of Mulching Films Prepared from Natural Fibers and Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Zhijian Tan

    2016-05-01

    Full Text Available The use of plastic film in agriculture has the serious drawback of producing vast quantities of waste. In this work, films were prepared from natural fibers and biodegradable polymers as potential substitutes for the conventional non-biodegradable plastic film used as mulching material in agricultural production. The physical properties (e.g., mechanical properties, heat preservation, water permeability, and photopermeability and degradation characteristics (evaluated by micro-organic culture testing and soil burial testing of the films were studied in both laboratory and field tests. The experimental results indicated that these fiber/polymer films exhibited favorable physical properties that were sufficient for use in mulching film applications. Moreover, the degradation degree of the three tested films decreased in the following order: fiber/starch (ST film > fiber/poly(vinyl alcohol (PVA film > fiber/polyacrylate (PA film. The fiber/starch and fiber/PVA films were made from completely biodegradable materials and demonstrated the potential to substitute non-biodegradable films.

  2. Preparation and photochromic behavior of crosslinked polymer thin films containing polyoxometalates

    Energy Technology Data Exchange (ETDEWEB)

    Chen Jie; Liu Yan; Xiong Deqi [College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026 (China); Feng Wei [College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026 (China)], E-mail: weifeng@newmail.dlmu.edu.cn; Cai Weimin [College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026 (China)

    2008-03-31

    A series of reversible photochromic nanocomposite films were prepared by entrapping phosphotungstic acid (PWA) and molybdenumphsophoric acid (PMoA) into P(VP-BVA), which was a crosslinked polymer based on N-vinylpyrrolidone (VP) and bisvinyl-A (BVA). The microstructure, photochromic behavior and mechanism of the films were studied with transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectra (UV-vis) and electron resonance spectra (ESR). The TEM image showed that the polyoxometalates particles had regular microstructure with narrow size distribution (average diameter of 30 nm) in hybrid films. FT-IR results showed that the Keggin geometry of polyoxometalates (POM) was still preserved inside the composites and strong coulombic interaction between POM and crosslinked polymer matrix was built. Irradiated with ultraviolet light, the transparent films changed from colorless to blue and showed reversible photochromism. Oxygen plays an important role during the bleaching process. PMoA/P(VP-BVA) film had higher photochromic efficiency and slower bleaching reaction than PWA/P(VP-BVA) film. The characteristic signals of W (V) or Mo (V) in ESR spectra indicated that electron transfer occurred between the organic substrates and heteropolyanions under UV irradiation, which induced heteropolyanions to heteropolybules with simultaneous oxidation of the organic substrates.

  3. Impact of electrode preparation on the bending of asymmetric planar electro-active polymer microstructures

    Science.gov (United States)

    Weiss, Florian M.; Töpper, Tino; Osmani, Bekim; Winterhalter, Carla; Müller, Bert

    2014-03-01

    Compliant electrodes of microstructures have been a research topic for many years because of the increasing interest in consumer electronics, robotics, and medical applications. This interest includes electrically activated polymers (EAP), mainly applied in robotics, lens systems, haptics and foreseen in a variety of medical devices. Here, the electrodes consist of metals such as gold, graphite, conductive polymers or certain composites. The common metal electrodes have been magnetron sputtered, thermally evaporated or prepared using ion implantation. In order to compare the functionality of planar metal electrodes in EAP microstructures, we have investigated the mechanical properties of magnetron sputtered and thermally evaporated electrodes taking advantage of cantilever bending of the asymmetric, rectangular microstructures. We demonstrate that the deflection of the sputtered electrodes is up to 39 % larger than that of thermally evaporated nanometer-thin film on a single silicone film. This difference has even more impact on nanometer-thin, multi-stack, low-voltage EAP actuators. The stiffening effect of many metallic electrode layers is expected to be one of the greatest drawbacks in the multi-stack approaches, which will be even more pronounced if the elastomer layer thickness will be in the sub-micrometer range. Additionally, an improvement in voltage and strain resolution is presented, which is as low as 2 V or 5 × 10-5 above 10 V applied.

  4. A micro-reactor for preparing uniform molecularly imprinted polymer beads.

    Science.gov (United States)

    Zourob, Mohammed; Mohr, Stephan; Mayes, Andrew G; Macaskill, Alexandra; Pérez-Moral, Natalia; Fielden, Peter R; Goddard, Nicholas J

    2006-02-01

    In this study, uniform spherical molecularly imprinted polymer beads were prepared via controlled suspension polymerization in a spiral-shaped microchannel using mineral oil and perfluorocarbon liquid as continuous phases. Monodisperse droplets containing the monomers, template, initiator, and porogenic solvent were introduced into the microchannel, and particles of uniform size were produced by subsequent UV polymerization, quickly and without wasting polymer materials. The droplet/particle size was varied by changing the flow conditions in the microfluidic device. The diameter of the resulting products typically had a coefficient of variation (CV) below 2%. The specific binding sites that were created during the imprinting process were analysed via radioligand binding analysis. The molecularly imprinted microspheres produced in the liquid perfluorocarbon continuous phase had a higher binding capacity compared with the particles produced in the mineral oil continuous phase, though it should be noted that the aim of this study was not to optimize or maximize imprinting performance, but rather to demonstrate broad applicability and compatibility with known MIP production methods. The successful imprinting against a model compound using two very different continuous phases (one requiring a surfactant to stabilize the droplets the other not) demonstrates the generality of this current simple approach.

  5. Morphology and Electrical Conductivity of Carbon Nanocoatings Prepared from Pyrolysed Polymers

    Directory of Open Access Journals (Sweden)

    Marcin Molenda

    2014-01-01

    Full Text Available Conductive carbon nanocoatings (conductive carbon layers—CCL were formed on α-Al2O3 model support using three different polymer precursors and deposition methods. This was done in an effort to improve electrical conductivity of the material through creating the appropriate morphology of the carbon layers. The best electrical properties were obtained with use of a precursor that consisted of poly-N-vinylformamide modified with pyromellitic acid (PMA. We demonstrate that these properties originate from a specific morphology of this layer that showed nanopores (3-4 nm capable of assuring easy pathways for ion transport in real electrode materials. The proposed, water mediated, method of carbon coating of powdered supports combines coating from solution and solid phase and is easy to scale up process. The optimal polymer carbon precursor composition was used to prepare conductive carbon nanocoatings on LiFePO4 cathode material. Charge-discharge tests clearly show that C/LiFePO4 composites obtained using poly-N-vinylformamide modified with pyromellitic acid exhibit higher rechargeable capacity and longer working time in a battery cell than standard carbon/lithium iron phosphate composites.

  6. Preparation of a thermoresponsive polymer grafted polystyrene monolithic capillary for the separation of bioactive compounds.

    Science.gov (United States)

    Koriyama, Takuya; Asoh, Taka-Aki; Kikuchi, Akihiko

    2016-11-01

    To develop aqueous microseparation columns for bioactive compounds, a thermoresponsive polymer grafted polymer monolith was prepared inside silica capillaries having an I.D. of 100μm by polymerization of styrene (St) with m/p-divinylbenzene (DVB) in the presence of polydimethylsiloxane as porogen, followed by surface-initiated atom transfer radical polymerization (SI-ATRP) of N-isopropylacrylamide (NIPAAm). SEM analysis indicated that the resulting poly(N-isopropylacrylamide) (PNIPAAm) grafted polystyrene monolith had a consecutive three-dimensionally interconnected structure and through-pores, similar to the base polystyrene (PSt) monolith. The elution behavior of steroids with different hydrophobicity was evaluated using micro-high-performance liquid chromatography in sole aqueous mobile phase. Temperature dependent interaction changes were observed between steroids and the PNIPAAm modified surfaces. Furthermore, the interaction between bioactive compounds and the PNIPAAm grafted PSt surfaces was controlled and eventually separate these molecules with different hydrophobicities by simple temperature modulation in aqueous environment. The PNIPAAm grafted PSt monolithic capillary showed improved separation properties of bioactive compounds, compared with a PNIPAAm grafted hollow capillary in aqueous environment.

  7. Preparation and characterization of plasticized palm-based polyurethane solid polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Daud, Farah Nadia; Ahmad, Azizan; Badri, Khairiah Haji [School of Chemical Science and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan (Malaysia)

    2013-11-27

    Palm-based polyurethane solid polymer electrolyte was prepared via prepolymerization method between palm kernel oil based polyols (PKO-p) and 2,4’-diphenylmethane diisocyanate (2,4’-MDI) in acetone at room temperature with the vary amount of lithium trifuoromethanesulfonate (LiCF{sub 3}SO{sub 3}) salt and polyethylene glycol (PEG). The film was analyzed using attenuated total reflection infrared (ATR-IR) spectroscopy, electrochemical impedance spectroscopy (EIS) and X-ray diffractometry (XRD). EIS result indicated ionic conductivity obtained with 30 wt% LiCF3SO3 increased to 6.55 × 10{sup −6} S cm{sup −1} when 10 wt.% of plasticizer was added into the system. FTIR analysis showed the interaction between lithium ions and amine (-N-H) at 3600–3100 cm{sup −1}, carbonyl (-C=O) at 1750–1650 cm{sup −1} and ether (-C-O-C-) at 1150–1000 cm{sup −1} of the polyurethane forming polymer-salt complexes. The XRD result confirmed that LiCF{sub 3}SO{sub 3} salt completely dissociated within the polyurethane film with the absence of crystalline peaks of LiCF{sub 3}SO{sub 3}.

  8. PREPARATION, CHARACTERIZATION AND IN VITRO EVALUATION OF REPAGLINIDE BINARY SOLID DISPERSIONS WITH HYDROPHILIC POLYMERS

    Directory of Open Access Journals (Sweden)

    Patel Manvi

    2010-09-01

    Full Text Available In the present study, the practically insoluble drug, repaglinide, employs formation of solid dispersions as a means to enhance the dissolution rate, thus enhancing bioavailability of repaglinide, typically employs hydrophilic polymer systems (Lutrol F127, PEG 6000 and Gelucire 44/14 with different ratios prepared using the melting, solvent and melting solvent methods. The formulations were evaluated for various in vitro parameters (Drug content, Drug release, FTIR, DSC, and XRD. Phase-solubility studies revealed AL type of curves for each carrier, indicating linear increase in drug solubility with carrier concentration. Good uniformity of drug content was observed with all formulations and ranged from 95.52 and 99.0%. All the solid dispersions showed dissolution improvement compare to pure drug. Solid state characterization of the drug?polymer binary systems using XRD, DSC and FTIR techniques revealed distinct loss of drug crystallinity in the formulation, ostensibly accounting for enhancement in dissolution rate. The stability studies indicated, the best formulation LMS17 was stable for period of 6 months. The solid dispersion techniques provide a promising way to increase the solubility and dissolution rate of poorly soluble drugs.

  9. Roles of ethylene glycol solvent and polymers in preparing uniformly distributed MgO nanoparticles

    Directory of Open Access Journals (Sweden)

    Chunxi Hai

    2017-06-01

    Full Text Available This study focus on specifying the roles of solvent ethylene glycol (EG and polymers for synthesis of uniformly distributed magnesium oxide (MgO nanoparticles with average crystallite size of around 50 nm through a modified polyol method. Based on different characterization results, it was concluded that, Mg2+ ions was precipitated by the −OH and CO32− ions decomposed from urea in ethylene glycol (EG medium (CO(NH22 → NH3 + HNCO, HNCO + H2O → NH3 + CO2, thus forming well crystallized Mg5(CO34(OH2 (H2O4 precursor which could be converted to MgO by calcination. Surface protectors PEG and PVP have no obvious influences on cyrtsal structure, morphology and size uniformity of as-prepared precursors and target MgO nanoparticles. In comparison with polymers PEG and PVP, solvent EG plays an important role in controlling the morphology and diameter uniformity of MgO nanoparticles.

  10. GraphMeta: Managing HPC Rich Metadata in Graphs

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Dong; Chen, Yong; Carns, Philip; Jenkins, John; Zhang, Wei; Ross, Robert

    2016-01-01

    High-performance computing (HPC) systems face increasingly critical metadata management challenges, especially in the approaching exascale era. These challenges arise not only from exploding metadata volumes, but also from increasingly diverse metadata, which contains data provenance and arbitrary user-defined attributes in addition to traditional POSIX metadata. This ‘rich’ metadata is becoming critical to supporting advanced data management functionality such as data auditing and validation. In our prior work, we identified a graph-based model as a promising solution to uniformly manage HPC rich metadata due to its flexibility and generality. However, at the same time, graph-based HPC rich metadata anagement also introduces significant challenges to the underlying infrastructure. In this study, we first identify the challenges on the underlying infrastructure to support scalable, high-performance rich metadata management. Based on that, we introduce GraphMeta, a graphbased engine designed for this use case. It achieves performance scalability by introducing a new graph partitioning algorithm and a write-optimal storage engine. We evaluate GraphMeta under both synthetic and real HPC metadata workloads, compare it with other approaches, and demonstrate its advantages in terms of efficiency and usability for rich metadata management in HPC systems.

  11. Coordination polymer core/shell structures: Preparation and up/down-conversion luminescence.

    Science.gov (United States)

    Li, Bingmei; Xu, Hualan; Xiao, Chen; Shuai, Min; Chen, Weimin; Zhong, Shengliang

    2016-10-01

    Coordination polymer (CP) core-shell nanoparticles with Gd-based CP (GdCP) as core and Eu-based CP (EuCP) as shell have been successfully prepared. Allantoin was employed as the organic building block without the assistance of any template. The composition, size and structure of the core-shell nanospheres were well characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX), powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), thermo-gravimetric analysis (TG). Results show that the resultant cores are uniform nanospheres with diameter of approximately 45nm, while the diameters of the core-shell nanospheres are increased to approximately 60nm. The core-shell products show enhanced luminescence efficiency than the core under 980nm laser excitation and decreased down-conversion luminescence when excited at 394nm.

  12. BIOMIMETIC SURFACE PREPARATION OF INERT POLYMER FILMS VIA GRAFTING LONG MONOALKYL CHAIN PHOSPHATIDYLCHOLINE

    Institute of Scientific and Technical Information of China (English)

    Peng-jun Wan; Dong-sheng Tan; Zheng-sheng Li; Xiao-qing Zhang; Jie-hua Li; Hong Tan

    2012-01-01

    To explore construction of novel mimicking biomembrane on biomaterials surfaces,a new polymerizable phosphatidylcholine containing a long monoalkyl chain ended with acryl group (AASOPC) was designed and synthesized,which was easily derived from the terminal amino group of 9-(2-amino-ethylcarbamoyl)-nonyl-l-phosphatidyl-choline (ASOPC) reacting with acryloyl chloride.The obtained AASOPC was grafted on poly(ethylene terephthalate) (PET) via surface-initiated atom-transfer radical polymerization (SI-ATRP) to form mimicking biomembrane.These modified surface structures of PET were investigated using water contact angle (WAC),X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM).The results indicated that the new mimicking phosphatidylcholine biomembrane could be prepared on inert polymer surfaces by using the acryloyl phosphatidylcholine (AASOPC) via surface-initiated atom transfer radical polymerization (SI-ATRP).

  13. Polymer nanofibers prepared by low-voltage near-field electrospinning

    Institute of Scientific and Technical Information of China (English)

    Zheng Jie; Long Yun-Ze; Sun Bin; Zhang Zhi-Hua; Shao Feng; Zhang Hong-Di; Zhang Zhi-Ming; Huang Jia-Yin

    2012-01-01

    Electrospinning is a straightforward method to produce micro/nanoscale fibers from polymer solutions typically using an operating voltage of 10 kV-30 kV and spinning distance of 10 cm-20 cm.In this paper,polyvinyl pyrrolidone (PVP) non-woven nanofibers with diameters of 200 nm-900 nm were prepared by low-voltage near-field electrospinning with a working voltage of less than 2.8 kV and a spinning distance of less than 10 mm.Besides the uniform fibers,beaded-fibers were also fabricated and the formation mechanism was discussed.Particularly,a series of experiments were carried out to explore the influence of processing variables on the formation of near-field electrospun PVP nanofibers,including concentration,humidity,collecting position,and spinning distance.

  14. Characterization of an atrazine molecularly imprinted polymer prepared by a cooling method

    Science.gov (United States)

    Royani, Idha; Widayani, Abdullah, Mikrajuddin; Khairurrijal

    2014-03-01

    A molecularly imprinted polymer (MIP) for atrazine was successfully prepared. Atrazine molecules as templates were incorporated into the pre-polymerization solution containing a functional monomer (methacrylic acid), a cross-linker (ethylene glycol dimethacrylate), and an initiator (benzoyl peroxide). The placement of a tube containing the pre-polymerization solution into a freezer was done to replace nitrogen pouring into the pre-polymerization solution. The sensing characteristic of the obtained MIP was examined and it was found that the amount of atrazine bound to the cavities in the MIP increases with increasing the initial concentration of atrazine. From Scatchard plots, it was found that the equilibrium dissociation constant KD and the apparent maximum number of binding sites Bmax, which are written as (KD, Bmax), are (6.4 μM, 13.41 mmol/g) and (6.5 μM, 4.55 mmol/g) for the 10 and 30 mg of MIP, respectively.

  15. Preparation of P(DVB-co-MPS) inorganic-organic hybrid polymer microspheres

    Science.gov (United States)

    Wu, Chunrong; Zhang, Jimei; Dai, Zhao; Chen, Xiaoyu

    2010-07-01

    A novel inorganic-organic hybrid polymer microspheres were facilely synthesised by distillation-precipitation polymerization in absence of any stabilizer or surfcant. The process were conducted with [3-(Methacryloyloxy) propyl] trimethoxysilan (MPS) as monomer, divinyl benzene (DVB) as cross linking agent and azobisisobutyronitrile (AIBN) as initator in acetonitrile. A series of silica nanoparticles were prepared in accordance with the volume ratio of MPS, which was varied in the range of 10% to 50%. However, there is no microspheres obtained while the ratio up to 50%. Products were charactered by transmission electron micrograph (TEM) and fourier transform infrared spectroscopy (FTIR). We may infer it from the constructional formular and FTIR graph that there were silicon hydroxyl remained in the microsphere surface.

  16. Preparation of Carbon Nanotubes by the Catalysis of Polymer Metal Complex on Porous Al203 Matrix

    Institute of Scientific and Technical Information of China (English)

    SHI YanLi; ZHANG XiaoGang; LI HuLin

    2001-01-01

    @@ At present, synthesis of carbon nanotubes (CNTs) is normally conducted on a vapor-to-solid interface at ca. 500-3500℃ via various vapor phase methods, such as are discharge, laser ablation, catalytic pyrolysis and chemical vapor deposition, etc.1-2 Recently, channel materials (such as channels of alumina and of AlPO4-5 zeolite) 3 have been utilized as solid-state templates to grow CNTs inside the channel. Here we described a novel method to prepare the carbon nanotubes based on the decomposition of C2H2 gas on the Co-Ni catalyst anchored by polymer complex on the porous A12O3 matrix. The degree of graphitization of synthesized CNTs and catalysts are of great interest.

  17. Preparation of Carbon Nanotubes by the Catalysis of Polymer Metal Complex on Porous Al203 Matrix

    Institute of Scientific and Technical Information of China (English)

    SHI; YanLi

    2001-01-01

    At present, synthesis of carbon nanotubes (CNTs) is normally conducted on a vapor-to-solid interface at ca. 500-3500℃ via various vapor phase methods, such as are discharge, laser ablation, catalytic pyrolysis and chemical vapor deposition, etc.1-2 Recently, channel materials (such as channels of alumina and of AlPO4-5 zeolite) 3 have been utilized as solid-state templates to grow CNTs inside the channel. Here we described a novel method to prepare the carbon nanotubes based on the decomposition of C2H2 gas on the Co-Ni catalyst anchored by polymer complex on the porous A12O3 matrix. The degree of graphitization of synthesized CNTs and catalysts are of great interest.  ……

  18. Preparation and Characterization of Polymer-Grafted Montmorillonite-Lignocellulose Nanocomposites by In Situ Intercalative Polymerization

    Directory of Open Access Journals (Sweden)

    Tavengwa Bunhu

    2016-01-01

    Full Text Available Lignocellulose-clay nanocomposites were synthesized using an in situ intercalative polymerization method at 60°C and a pressure of 1 atm. The ratio of the montmorillonite clay to the lignocellulose ranged from 1 : 9 to 1 : 1 (MMT clay to lignocelluloses, wt%. The adsorbent materials were characterized by Fourier transform infrared spectroscopy (FTIR, thermogravimetric analysis (TGA, transmission electron microscopy (TEM, and X-ray powder diffraction (XRD. FTIR results showed that the polymers were covalently attached to the nanoclay and the lignocellulose in the nanocomposites. Both TEM and XRD analysis showed that the morphology of the materials ranged from phase-separated to intercalated nanocomposite adsorbents. Improved thermal stability, attributable to the presence of nanoclay, was observed for all the nanocomposites. The nanocomposite materials prepared can potentially be used as adsorbents for the removal of pollutants in water treatment and purification.

  19. Preparation of a Selective L-Phenylalanine Imprinted Polymer Implicated in Patients with Phenylketonuria

    Directory of Open Access Journals (Sweden)

    Parvaneh Najafizadeh

    2014-11-01

    Full Text Available Background: Molecular imprinting is a method for synthesizing polymers with structure-selective adsorption properties with applications such as, selectivity binding, drug delivery systems and anti-bodies. The present study aims at optimizing the preparation of molecularly imprinted polymer (MIP against l-phenylalanine, in order to increase phenylalanine-binding in Enzymatic Intestinal Simulated Fluid (ESIF. Methods: The MIP for l-phenylalanine, as a water-soluble template, was successfully synthesized without derivatization. Synthesization was done by a UV polymerization method in which methacrylic acid (MAA, as a functional monomer, and ethylene glycol dimethacrylate (EGDMA, as a cross-linker, were used in the presence of five different porogenic solvents including; acetonitrile, tetrahydrofuran (THF, chloroform, toluene and dimethyl sulfoxide (DMSO. The selectivity of the MIP was examined using 19 different amino acids in human serum and was evaluated by HPLC. In addition, morphological studies were conducted using SEM. Results: The results showed that the obtained MIP with acetonitrile had the highest capacity and selectivity compared with other solvents. The data indicated that Phe-binding to MIP was significantly more than the former binding to NIP in EISF (P≤0.05. Moreover, in comparison with NIP and control group, MIP showed a better selectivity and binding for Phe. This could be used for the reduction of Phe in human serum samples of Phenylketonuria. Conclusion: Our findings suggest that the MIP against Phe prepared with acetonitrile, showed a good selectivity and binding, which caused a reduction of blood Phe concentration in enzymatic simulated intestinal fluid and human serum sample of Phenylketonuria.

  20. Preparation and Characterization of All-Biomass Soy Protein Isolate-Based Films Enhanced by Epoxy Castor Oil Acid Sodium and Hydroxypropyl Cellulose

    Directory of Open Access Journals (Sweden)

    La Wang

    2016-03-01

    Full Text Available All-biomass soy protein-based films were prepared using soy protein isolate (SPI, glycerol, hydroxypropyl cellulose (HPC and epoxy castor oil acid sodium (ECOS. The effect of the incorporated HPC and ECOS on the properties of the SPI film was investigated. The experimental results showed that the tensile strength of the resultant films increased from 2.84 MPa (control to 4.04 MPa and the elongation at break increased by 22.7% when the SPI was modified with 2% HPC and 10% ECOS. The increased tensile strength resulted from the reaction between the ECOS and SPI, which was confirmed by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR, scanning electron microscopy (SEM and X-ray diffraction analysis (XRD. It was found that ECOS and HPC effectively improved the performance of SPI-based films, which can provide a new method for preparing environmentally-friendly polymer films for a number of commercial applications.

  1. Preparation and Characterization of Biomimetic Hydroxyapatite-Resorbable Polymer Composites for Hard Tissue Repair

    Science.gov (United States)

    Hiebner, Kristopher Robert

    Autografts are the orthopedic "gold standard" for repairing bone voids. Autografts are osteoconductive and do not elicit an immune response, but they are in short supply and require a second surgery to harvest the bone graft. Allografts are currently the most common materials used for the repair of segmental defects in hard tissue. Unlike autografts, allografts can cause an undesirable immune response and the possibility of disease transmission is a major concern. As an alternative to the above approaches, recent research efforts have focused on the use of composite materials made from hydroxyapatite (HA) and bioresorbable polymers, such as poly-L-lactide (PLLA). Recent results have shown that the surface hydroxides on HA can initiate the ring opening polymerization (ROP) of L-lactide and other lactones creating a composite with superior interfacial strength. This thesis demonstrates that the surface of porous biologically derived HA substrates, such as coralline HA and trabecular bone, can be used to initiate the ROP of L-lactide and other lactones from the vapor phase. This process increases the strength of the porous scaffold through the deposition of a thin, uniform polymer coating, while maintaining the porous structure. The kinetics of the chemical vapor deposition polymerization (CVDP) are described using a quartz crystal microbalance (QCM). The reaction temperature and monomer vapor pressure are found to affect the rate of the polymerization. Also described in this thesis is the preparation of a porous polymer scaffold that mimics the structure of demineralized bone matrix (DBM). This demineralized bone matrix simulant (DBMS) is created using anorganic bovine bone as a template to initiate the polymerization of various lactones, followed by the removal of the HA scaffold. This material retained its shape and exhibits mechanical properties superior to DBM. Finally it is shown that HA can be used to initiate the ROP of a-caprolactam and the biocompatibility

  2. Characterisation and quality assessment of binding sites on a propazine-imprinted polymer prepared by precipitation polymerisation.

    Science.gov (United States)

    Cacho, C; Turiel, E; Martin-Esteban, A; Pérez-Conde, C; Cámara, C

    2004-04-01

    In this paper, the Langmuir-Freundlich isotherm (LF) is used to characterise a propazine-imprinted polymer obtained by precipitation polymerisation (MIP-P). Different rebinding studies were carried out allowing to explain the different interactions taking place between the molecularly imprinted polymer and six triazinic herbicides (desisopropylatrazine, desethylatrazine, simazine, atrazine, propazine and prometryn). The LF fitting parameters obtained (total number of binding sites, heterogeneity index and mean binding affinity) were compared to those obtained in a previous work for a propazine-imprinted polymer prepared by bulk polymerisation (MIP-B). From that study, it was concluded that precipitation polymerisation yielded polymers with a more homogeneous binding site distribution and higher affinity constants.

  3. Synthesis of an end-group functionalized polyethylene glycol-lipid conjugate for preparation of polymer-grafted liposomes.

    Science.gov (United States)

    Zalipsky, S

    1993-01-01

    Synthesis of a distearoylphosphatidylethanolamine-polyethylene glycol (DSPE-PEG) conjugate, bearing a hydrazide group at the unattached end of the polymer chain, was achieved using a new heterobifunctional polymeric reagent. The heterobifunctional PEG derivative carrying on one end a reactive succinimidyl carbonate (SC) group and at the other terminal a tert-butyloxycarbonyl (Boc) protected hydrazide group was prepared by an efficient four step process from readily available PEG-2000. The SC-end group of the polymer reacted readily with the amino group of DSPE forming a stable urethane attachment between lipid and PEG. Acidolytic removal of the Boc group yielded a hydrazide-PEG-lipid conjugate suitable for preparation of polymer-grafted liposomes. Taking advantage of the well-documented chemical versatility of hydrazide groups, various biologically relevant ligands can be linked to this type of functionalized liposomes.

  4. Modular HPC I/O characterization with Darshan

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Shane; Carns, Philip; Harms, Kevin; Ross, Robert; Lockwood, Glenn K.; Wright, Nicholas J.

    2016-11-13

    Contemporary high-performance computing (HPC) applications encompass a broad range of distinct I/O strategies and are often executed on a number of different compute platforms in their lifetime. These large-scale HPC platforms employ increasingly complex I/O subsystems to provide a suitable level of I/O performance to applications. Tuning I/O workloads for such a system is nontrivial, and the results generally are not portable to other HPC systems. I/O profiling tools can help to address this challenge, but most existing tools only instrument specific components within the I/O subsystem that provide a limited perspective on I/O performance. The increasing diversity of scientific applications and computing platforms calls for greater flexibililty and scope in I/O characterization.

  5. Preparation of organic/inorganic composite membranes using two types of polymer matrix via a sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung-Hee [School of Chemical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea); Polymer Electrolyte Fuel Cell Research Center, Hydrogen and Fuel Cell Department, Korea Institute of Energy Research (KIER), 71-2 Jang-dong, Yuseong-gu, Daejeon 305-343 (Korea); Park, Jin-Soo; Yim, Sung-Dae; Park, Seok-Hee; Kim, Chang-Soo [Polymer Electrolyte Fuel Cell Research Center, Hydrogen and Fuel Cell Department, Korea Institute of Energy Research (KIER), 71-2 Jang-dong, Yuseong-gu, Daejeon 305-343 (Korea); Lee, Young-Moo [School of Chemical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea)

    2008-07-01

    Organic/inorganic composite membranes were prepared using two different polymers. BPO{sub 4} particles were introduced into polymers via an in situ sol-gel process. Pre-/post-sulfonated polymers were used to prepare composite membranes as matrix. Pre-sulfonated poly(aryl ether ketone) (SPAEK-6F) copolymer was synthesized via nucleophilic aromatic substitution. Degree of sulfonation was adjusted by the percentage of sulfonated monomer. Post-sulfonated poly(ether ether ketone) (SPEEK) was prepared using concentrated sulfuric acid as sulfonation agent. The membranes were characterized in terms of the ion-exchange capacity (IEC), proton conductivity, water uptake, AFM, SEM and their thermal properties. The SPAEK-6F plain membranes showed higher proton conductivity than that of the SPEEK plain membranes at similar water uptake or IEC due to their structural difference. SEM images of the composite membranes showed that the BPO{sub 4} particles were homogenously dispersed in the polymer matrices and BPO{sub 4} particle size was greatly influenced by polymer matrix. The SPAEK-6F/BPO{sub 4} composite membranes had much smaller BPO{sub 4} particle size than the SPEEK/BPO{sub 4} composite membranes due to well dispersion of BPO{sub 4} sol-like particulates in SPAEK-6F polymer solutions forming more hydrophobic/hydrophilic nanophase than SPEEK polymer solutions. The latter containing a few micrometer-scale BPO{sub 4} particles showed higher proton conductivity than the former containing hundreds nanometer-scale BPO{sub 4} particles at similar water uptake due to the increase in freezable water and effect of particle size. (author)

  6. Preparation of organic/inorganic composite membranes using two types of polymer matrix via a sol-gel process

    Science.gov (United States)

    Park, Seung-Hee; Park, Jin-Soo; Yim, Sung-Dae; Park, Seok-Hee; Lee, Young-Moo; Kim, Chang-Soo

    Organic/inorganic composite membranes were prepared using two different polymers. BPO 4 particles were introduced into polymers via an in situ sol-gel process. Pre-/post-sulfonated polymers were used to prepare composite membranes as matrix. Pre-sulfonated poly(aryl ether ketone) (SPAEK-6F) copolymer was synthesized via nucleophilic aromatic substitution. Degree of sulfonation was adjusted by the percentage of sulfonated monomer. Post-sulfonated poly(ether ether ketone) (SPEEK) was prepared using concentrated sulfuric acid as sulfonation agent. The membranes were characterized in terms of the ion-exchange capacity (IEC), proton conductivity, water uptake, AFM, SEM and their thermal properties. The SPAEK-6F plain membranes showed higher proton conductivity than that of the SPEEK plain membranes at similar water uptake or IEC due to their structural difference. SEM images of the composite membranes showed that the BPO 4 particles were homogenously dispersed in the polymer matrices and BPO 4 particle size was greatly influenced by polymer matrix. The SPAEK-6F/BPO 4 composite membranes had much smaller BPO 4 particle size than the SPEEK/BPO 4 composite membranes due to well dispersion of BPO 4 sol-like particulates in SPAEK-6F polymer solutions forming more hydrophobic/hydrophilic nanophase than SPEEK polymer solutions. The latter containing a few micrometer-scale BPO 4 particles showed higher proton conductivity than the former containing hundreds nanometer-scale BPO 4 particles at similar water uptake due to the increase in freezable water and effect of particle size.

  7. Ion conducting solid polymer electrolytes based on polypentafluorostyrene-b-polyether-b-polypentafluorostyrene prepared by atom transfer radical polymerization

    DEFF Research Database (Denmark)

    Jankova, Katja; Jannasch, P.; Hvilsted, Søren

    2004-01-01

    .3. The bromoisobutyrate functionalized polyether macroinitiators with molecular masses (M-n) of approx. 10 000 enabled the addition of between 15 and 39 wt.% flanking PFS as found by H-1 NMR. In a similar fashion monomethoxy PEG ( MPEG, Mn 5 000) was added 50 wt.% PFS. Polymer electrolytes were prepared by complexing...

  8. Preparation of osthole-polymer solid dispersions by hot-melt extrusion for dissolution and bioavailability enhancement.

    Science.gov (United States)

    Yun, Fei; Kang, An; Shan, Jinjun; Zhao, Xiaoli; Bi, Xiaolin; Li, Junsong; Di, Liuqing

    2014-04-25

    The aim of this study was to investigate the potential of solid dispersion to improve the dissolution rate and bioavailability of osthole (Ost), a coumarin derivative with various pharmacological activities but with poor aqueous solubility. In present studies, the Ost solid dispersions were prepared with various polymers including Plasdone S-630, HPMC-E5, Eudragit EPO, and Soluplus by hot-melt extrusion method. In vitro characterizations were performed with differential scanning calorimetry (DSC), X-ray powder diffraction (XPRD), Fourier transform infrared (FT-IR) spectroscopy, and in vitro dissolution studies. In addition, in vivo pharmacokinetic studies of Ost solid dispersions were also conducted in rats after a single oral dose. In comparison to the untreated Ost coarse powder and the physical mixture with polymers, the solid dispersions prepared with Plasdone S-630 or HPMC-E5 (drug/polymer: 1:6) showed a significant enhancement of dissolution rate (∼3-fold higher D30). In addition, such preparations exhibited a significantly decreased Tmax, ∼5-fold higher Cmax and ∼1.4-fold higher AUC when comparing with Ost coarse powder. In conclusion, solid dispersion prepared with appropriate polymer could serve as a promising formulation approach to enhance the dissolution rate and hence oral bioavailability of Ost.

  9. Heavy-Ion Irradiation of Thulium(III) Oxide Targets Prepared by Polymer-Assisted Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Mitch A.; Ali, Mazhar N.; Chang, Noel N.; Parsons-Moss, Tashi; Ashby, Paul D.; Gates, Jacklyn M.; Stavsetra, Liv; Gregorich, Kenneth E.; Nitsche, Heino

    2008-09-15

    Thulium(III) oxide (Tm{sub 2}O{sub 3}) targets prepared by the polymer-assisted deposition (PAD) method were irradiated by heavy-ion beams to test the method's feasibility for nuclear science applications. Targets were prepared on silicon nitride backings (thickness of 1000 nm, 344 {micro}g/cm{sup 2}) and were irradiated with an {sup 40}Ar beam at laboratory frame energy of {approx}210 MeV (50 particle nA). The root mean squared (RMS) roughness prior to irradiation is 1.1 nm for a {approx}250 nm ({approx}220 {micro}g/cm{sup 2}) Tm{sub 2}O{sub 3} target, and an RMS roughness of 2.0 nm after irradiation was measured by atomic force microscopy (AFM). Scanning electron microscopy of the irradiated target reveals no significant differences in surface homogeneity when compared to imaging prior to irradiation. Target flaking was not observed from monitoring Rutherford scattered particles as a function of time.

  10. Preparation and characterization of polymer nanocomposites coated magnetic nanoparticles for drug delivery applications

    Science.gov (United States)

    Prabha, G.; Raj, V.

    2016-06-01

    In the present research work, the anticancer drug 'curcumin' is loaded with Chitosan (CS)-polyethylene glycol (PEG)-polyvinylpyrrolidone (PVP) (CS-PEG-PVP) polymer nanocomposites coated with superparamagnetic iron oxide (Fe3O4) nanoparticles. The system can be used for targeted and controlled drug delivery of anticancer drugs with reduced side effects and greater efficiency. The prepared nanoparticles were characterized by Fourier transmission infrared spectroscopy (FTIR), vibrating sample magnetometry (VSM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Curcumin drug loaded Fe3O4-CS, Fe3O4-CS-PEG and Fe3O4-CS-PEG-PVP nanoparticles exhibited the mean particle size in the range of 183-390 nm with a zeta potential value of 26-41 mV as measured using Malvern Zetasizer. The encapsulation efficiency, loading capacity and in-vitro drug release behavior of curcumin drug loaded Fe3O4-CS, Fe3O4-CS-PEG and Fe3O4-CS-PEG-PVP nanoparticles were studied using UV spectrophotometer. Besides, the cytotoxicity of the prepared nanoparticles using MTT assay was also studied. The curcumin drug release was examined at different pH medium and it was proved that the drug release depends upon the pH medium in addition to the nature of matrix.

  11. Preparation and study of conductivity in lithium salt complexes of mixed MEEP : PEO polymer electrolytes

    Indian Academy of Sciences (India)

    G Saibaba; D Srikanth; A Ramachandra Reddy

    2004-02-01

    Poly(ethylene oxide)–LiX complexes and poly[bis(methoxy ethoxy ethoxide) phosphazene]–LiX complexes of polymer thin films were prepared. Conductivity measurements were carried out and the values were found to lie between 10-8 and 1.7 × 10-5 (S/cm). MEEP : LiX salts showed higher conductivity than PEO–LiX salts despite lower dimensional stability. For enhancing stability and conductivity, MEEP–PEO : (LiX) systems were prepared and conductivity measurements carried out. Further the MEEP/PEO : (LiX) was doped with Al2O3 and TiO2 nanocomposite ceramic fillers and the conductivity was studied. The conductivity vs temperature plots showed the enhancement of conductivity with TiO2 added nanocomposite ceramic fillers. The enhanced conductivity is explained on the basis of the effect of local structural modification-promoting localized amorphous region-for enhancement of the Li+ ion transport.

  12. Preparation and characterization of nanocomposite polymer electrolytes poly(vinylidone fluoride)/nanoclay

    Energy Technology Data Exchange (ETDEWEB)

    Rahmawati, Suci A.; Sulistyaningsih,; Putro, Alviansyah Z. A.; Widyanto, Nugroho F.; Jumari, Arif; Purwanto, Agus; Dyartanti, Endah R., E-mail: endahrd@uns.ac.id [Research Group of Battery & Advanced Material, Department of Chemical Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A Kentingan, Surakarta Indonesia 57126 (Indonesia)

    2016-02-08

    Polymer electrolytes are defined as semi solid electrolytes used as separator in lithium ion battery. Separator used as medium for transfer ions and to prevent electrical short circuits in battery cells. To obtain the optimal battery performance, separator with high porosity and electrolyte uptake is required. This can reduce the resistance in the transfer of ions between cathode and anode. The main objective of this work is to investigate the impact of different solvent (Dimethyl acetamide (DMAc), N-methyl-2-pyrrolidone (NMP) and dimethyl formamide (DMF)), pore forming agent poly(vinylpyrolidone) (PVP) and nanoclay as filler in addition of membrane using phase inversion method on the morphology, porosity, electrolyte uptake and degree of crystallinity. The membrane was prepared by the phase inversion method by adding PVP and Nanoclay using different solvents. The phase inversion method was prepared by dissolving Nanoclay and PVP in solvent for 1-2 hours, and then add the PVDF with stirring for 4 hours at 60°C. The membranes were characterized by porosity test, electrolyte uptake test, scanning electron microscope (SEM), and X-ray diffraction (XRD). The results showed that DMAc as solvent gives the highest value of porosity and electrolyte uptake. The addition of nanoclay and PVP enlarge the size of the pores and reduce the degree of crystallinity. So, the usage of DMAc as solvent is better than NMP or DMF.

  13. Preparation, thermo-optic property and simulation of optical switch based on azo benzothiazole polymer

    Science.gov (United States)

    Cao, Zhijuan; Qiu, Fengxian; Wang, Qing; Cao, Guorong; Guan, Yijun; Zhuang, Lin; Xu, Xiaolong; Wang, Jie; Chen, Qian; Yang, Dongya

    2013-04-01

    An azo chromophore molecule 4-[(benzothiazole-2-yl)diazenyl]phenyl-1,3-diamine (BTPD) was prepared with 2-amino benzothiazole and m-phenylenediamine by diazo-coupling reaction. Then, the chromophore molecule BTPD was polymerized with NJ-210 and isophorone diisocyanate (IPDI) to obtain novel azo benzothiazole polymer (BTPU). The structures of BTPD and BTPU were characterized using the Fourier transform infrared, UV-visible spectroscopy, DSC and TGA. The physical properties of the obtained BTPU were investigated. The refractive index ( n) of BTPU was demonstrated at different temperature and wavelength (532, 650 and 850 nm) using attenuated total reflection technique. The transmission loss and dispersion characteristic of BTPU film were investigated using the CCD digital imaging devices and Sellmeyer equation. A Y-branch and 2 × 2 Mach-Zehnder interferometer (MZI) polymeric thermo-optic switches based on the thermo-optic effect of prepared BTPU were proposed and the performance of switches was simulated. The results indicated that the power consumption of the Y-branch thermo-optic switch could be only 0.6 mW. The Y-branch and MZI switching rising and falling times obtained were 8.0 and 1.8 ms.

  14. Synthesis of Iso-condensed Heteroaromatic Pyrroles and Their Application in the Preparation of Conducting Polymers

    Institute of Scientific and Technical Information of China (English)

    Chin-Kang Sha; Su-Ya Cheng; Yuan-Liang Kuo; Liu Chia-Lin; V. Raghukumar

    2004-01-01

    Iso-condensed heteroaromatic pyrroles 1 are 10 -electron aromatic compounds. They are of interest from both theoretical and synthetic points of view. They are the cyclic analogues of heteroaromatic ortho-quinodimethanes 2, and can react with dienophiles in a Diels-Alder reaction to give the synthetically useful cycloadducts 3. Many of them are also of potential pharmaceutical importance because they are isosteric with indoles. Iso-condensed heteroaromatic pyrroles 1 can be used also as the monomers for the synthesis of new conducting polymers 5 with special properties and characteristics. However, the methods for the efficient preparation of the iso-condensed heteroaromatic pyrroles are quite limited. Iso-condensed heteroaromatic pyrroles are generally unstable in acidic conditions and are easily oxidized by air. In our laboratories, we developed three methods for the preparation of this labile heterocyclic ring system under acidic, neutral, and basic conditions.1 Synthesis of the conjugated systems such as 6 for OLED applications will also be discussed.

  15. STUDY ON THE PREPARATION AND PERFORMANCES OF P(VAc-MMA) POLYMER ELECTROLYTES FOR LITHIUM ION BATTERY

    Institute of Scientific and Technical Information of China (English)

    Dao-jun Yang; Xiang-kai Fu; Yong-feng Gong

    2008-01-01

    A random copolymer P(VAc-MMA) was synthesized via seeded emulsion copolymerization with vinyl acetate (VAc) and methyl methacrylate (MMA) as monomers, and the polymer electrolytes comprising blend of corresponding copolymer P(VAc-MMA) as a host polymer and LiC104 as a dopant were prepared by solution casting technique. Performances of the synthesized copolymer and prepared polymer membrane and electrolyte were studied by FTIR, XRD, TG, DSC, mechanical testing and AC impedance. According to the study of FTIR and DSC, it was found that P(VAc-MMA) had been formed. XRD indicates that the amorphous nature in copolymer increased with increasing the ratio of VAc in monomers, resulting in expedite migration of ions. The polymer electrolytes based on P(VAc-MMA) possess excellent thermal stability, fine mechanical performance and high ionic conductivity. The maximum ionic conductivity value was found to reach 1.27 × 10-3S·cm-1 at 25℃. The temperature dependence of the polymer electrolyte complexes appeared to obey Arrhenius equation.

  16. Preparation of Magnesium Hydroxide and Nanofiber Polymer Composites to Reduce the Flammability and Melt Dripping Behaviour of Polymers

    Directory of Open Access Journals (Sweden)

    S. S. Raza

    2014-12-01

    Full Text Available Nanoscale alumina fibers reduce the flammability and melt dripping behaviour of polymers. Magnesium hydroxide breaks the agglomerates by generating shear and iterative forces. Mixing was done with Brabender Plasticoder. The temperature and time of mixing greatly affects the mixing behaviour. At higher temperatures blow holes were observed. By increasing the mixing time agglomerates were broken to a greater extent. Different concentrations of nanofibers, Magnesium hydroxide and surface treatments are used to investigate the properties of polymer. Thermogravimetric analysis (TGA, optical microscopy and flame test was done to see the effect of different parameters on mixing and flame retardancy behaviour.

  17. Ion implantation method for preparing polymers having oxygen erosion resistant surfaces

    Science.gov (United States)

    Lee, Eal H.; Mansur, Louis K.; Heatherly, Jr., Lee

    1995-01-01

    Hard surfaced polymers and the method for making them are generally described. Polymers are subjected to simultaneous multiple ion beam bombardment, that results in a hardening of the surface, improved wear resistance, and improved oxygen erosion resistance.

  18. Computational Fluid Dynamics in Solid Earth Sciences-a HPC challenge

    OpenAIRE

    Vlad Constantin Manea; Marina Manea; Mihai Pomeran; Lucian Besutiu; Luminita Zlagnean

    2012-01-01

    Presently, the Solid Earth Sciences started to move towards implementing High Performance Computational (HPC) research facilities. One of the key tenants of HPC is performance, which strongly depends on the interaction between software and hardware. In this paper, they are presented benchmark results from two HPC systems. Testing a Computational Fluid Dynamics (CFD) code specific for Solid Earth Sciences, the HPC system Horus, based on Gigabit Ethernet, performed reasonably well compared with...

  19. Design and preparation of plant oil-based polymers and their applications

    Science.gov (United States)

    Ahn, Byung-Jun Kollbe

    Renewable materials are desirable for many applications due to the finite fossil resources and environmental issues. Plant oil is one of the most promising renewable feedstocks. Plant oils and functionalized oleo-chemicals including functionalized soybean oils have become attractive sustainable chemicals for industrial applications. Especially, epoxidized oleo-chemicals such as epoxidized soybean oil (ESO) are one of the most well-known readily available inexpensive functionalized plant oils. In this study, novel polymers and nanocomposites for sustainable materials applications were designed and prepared via ring-opening of epoxide in plant oils, and their chemical and physical properties were characterized. The novel transparent elastomers derived from functionalized plant oils have a great potential as flexible electronic and biological applications with their inherent low toxicity. Especially, their rheological properties showed a potential for pressure sensitive adhesives (PSAs). The dominant thermal stability and transparency were obtained via green processing: one pot, single step, fast reactions in moderate conditions, or solvent-free UV curing conditions. These oleo-based elastomers presented excellent end-use properties for PSAs application comparable to commercial PSA tapes. Based on the principal chemical studies, the roles of the each component have been identified: polymer derived from the ring-opening of epoxides as an elastomer, and dihydroxylated triglycerides as a tackifier. Their interaction was also elucidated with an element label analysis. The mechanical and rheological properties of the oleo-polymer as PSAs were able to be improved with a rosin ester tackifier. In addition, biogreases and bio-thermoplastics were developed via the environmentally benign process, which will contribute to further application on the production of new bio-based materials. Further, this study essays a novel acid functionalized iron/iron oxide nanoparticles catalyst

  20. Investigation and correlation of drug polymer miscibility and molecular interactions by various approaches for the preparation of amorphous solid dispersions.

    Science.gov (United States)

    Meng, Fan; Trivino, Anne; Prasad, Dev; Chauhan, Harsh

    2015-04-25

    Curcumin (CUR) was used as a poorly soluble drug whereas polyvinyl pyrrolidone K90 (PVP), Eudragit EPO (EPO), hydroxypropyl methylcellulose E5 (HPMC) and polyethylene glycol 8000 (PEG) were used as hydrophilic polymers. CUR polymer miscibility was evaluated by solubility parameter, melting point depression and glass transition temperature (Tg) measurements. Molecular interactions between CUR and polymers were determined by Fourier-transform infrared spectroscopy (FTIR) and Raman. Amorphous solid dispersions were prepared with CUR-polymer ratio of 70:30 (w/w) by solvent evaporation technique and were evaluated for dissolution enhancement using USP II method. Physical states of solid dispersions were characterized by X-ray diffraction (XRD) whereas thermal behaviors were investigated using modulated differential scanning calorimetry (MDSC). CUR-EPO system showed good miscibility through all the approaches, whereas immiscibility was found in other CUR-polymer systems. CUR-EPO and CUR-HPMC systems showed significant molecular interactions whereas CUR-PVP and CUR-PEG showed no molecular interactions. All solid dispersions showed significant dissolution enhancement with CUR-EPO showing highest dissolution rate during first 1h whereas CUR-HPMC was effective in maintaining high CUR concentrations for 6h. The study highlights the importance of investigating and correlating drug polymer miscibility and molecular interactions by various approaches for successful formulation of amorphous solid dispersions.

  1. Preparation and drug-loading properties of Fe3O4/Poly(styrene-co-acrylic acid) magnetic polymer nanocomposites

    Science.gov (United States)

    Lu, Wensheng; Shen, Yuhua; Xie, Anjian; Zhang, Weiqiang

    2013-11-01

    Fe3O4/poly(styrene-co-acrylic acid) magnetic polymer nanocomposites were synthesized by the dispersion polymerization method using styrene as hard monomer, acrylic acid as functional monomer, Fe3O4 nanoparticles modified with oleic acid as core, and poly(styrene-co-acrylic acid) as shell. Drug-loading properties of magnetic polymer nanocomposites with curcumin as a model drug were also studied. The results indicated that magnetic polymer nanocomposites with monodisperse were obtained, the particle size distribution was 50-120 nm, and the average size was about 100 nm. The contents of poly(styrene-co-acrylic acid) and Fe3O4 nanoparticles in magnetic polymer nanocomposites were 74% and 24.7%, respectively. The drug-loading capacity and entrapment efficiency were 2.5% and 44.4%, respectively. The saturation magnetization of magnetic polymer nanocomposites at 300 K was 20.2 emu/g without coercivity and remanence. The as-prepared magnetic polymer nanocomposites have not only lots of functional carboxyl groups but also stronger magnetic response, which might have potential applications in drug carrier and targeted drug release.

  2. Formulation and Characterization of Solid Dispersion Prepared by Hot Melt Mixing: A Fast Screening Approach for Polymer Selection

    Directory of Open Access Journals (Sweden)

    Arno A. Enose

    2014-01-01

    Full Text Available Solid dispersion is molecular dispersion of drug in a polymer matrix which leads to improved solubility and hence better bioavailability. Solvent evaporation technique was employed to prepare films of different combinations of polymers, plasticizer, and a modal drug sulindac to narrow down on a few polymer-plasticizer-sulindac combinations. The sulindac-polymer-plasticizer combination that was stable with good film forming properties was processed by hot melt mixing, a technique close to hot melt extrusion, to predict its behavior in a hot melt extrusion process. Hot melt mixing is not a substitute to hot melt extrusion but is an aid in predicting the formation of molecularly dispersed form of a given set of drug-polymer-plasticizer combination in a hot melt extrusion process. The formulations were characterized by advanced techniques like optical microscopy, differential scanning calorimetry, hot stage microscopy, dynamic vapor sorption, and X-ray diffraction. Subsequently, the best drug-polymer-plasticizer combination obtained by hot melt mixing was subjected to hot melt extrusion process to validate the usefulness of hot melt mixing as a predictive tool in hot melt extrusion process.

  3. Fire performance of basalt FRP mesh reinforced HPC thin plates

    DEFF Research Database (Denmark)

    Hulin, Thomas; Hodicky, Kamil; Schmidt, Jacob Wittrup;

    2013-01-01

    An experimental program was carried out to investigate the influence of basalt FRP (BFRP) reinforcing mesh on the fire behaviour of thin high performance concrete (HPC) plates applied to sandwich elements. Samples with BFRP mesh were compared to samples with no mesh, samples with steel mesh...

  4. MARIANE: MApReduce Implementation Adapted for HPC Environments

    Energy Technology Data Exchange (ETDEWEB)

    Fadika, Zacharia; Dede, Elif; Govindaraju, Madhusudhan; Ramakrishnan, Lavanya

    2011-07-06

    MapReduce is increasingly becoming a popular framework, and a potent programming model. The most popular open source implementation of MapReduce, Hadoop, is based on the Hadoop Distributed File System (HDFS). However, as HDFS is not POSIX compliant, it cannot be fully leveraged by applications running on a majority of existing HPC environments such as Teragrid and NERSC. These HPC environments typicallysupport globally shared file systems such as NFS and GPFS. On such resourceful HPC infrastructures, the use of Hadoop not only creates compatibility issues, but also affects overall performance due to the added overhead of the HDFS. This paper not only presents a MapReduce implementation directly suitable for HPC environments, but also exposes the design choices for better performance gains in those settings. By leveraging inherent distributed file systems' functions, and abstracting them away from its MapReduce framework, MARIANE (MApReduce Implementation Adapted for HPC Environments) not only allows for the use of the model in an expanding number of HPCenvironments, but also allows for better performance in such settings. This paper shows the applicability and high performance of the MapReduce paradigm through MARIANE, an implementation designed for clustered and shared-disk file systems and as such not dedicated to a specific MapReduce solution. The paper identifies the components and trade-offs necessary for this model, and quantifies the performance gains exhibited by our approach in distributed environments over Apache Hadoop in a data intensive setting, on the Magellan testbed at the National Energy Research Scientific Computing Center (NERSC).

  5. Rational preparation of dibenzothiophene-imprinted polymers by surface imprinting technique combined with atom transfer radical polymerization

    Science.gov (United States)

    Yang, Wenming; Liu, Lukuan; Zhou, Zhiping; Liu, Hong; Xie, Binze; Xu, Wanzhen

    2013-10-01

    A computational simulation method is introduced to simulate the dibenzothiophene-monomer pre-assembly system of molecular imprinted polymers. The interaction type and intensity between dibenzothiophene and monomer are discussed from the binding energy and spatial position distribution. The simulation and analysis results indicate that the amount of the function monomer is not the more the better in preparing molecular imprinted polymers. Based on the above results, a novel dibenzothiophene-imprinted polymers with the favorable specific adsorption effect was prepared by surface imprinting technique combined with atom transfer radical polymerization. This combined technologies are used for preparing a desulfurization adsorbent for the first time. Various measures were selected to characterize the structure and morphology of the prepared adsorbent. The characterization results show that the adsorbent has suitable features for further adsorption process. A series of static adsorption experiments were conducted to analyze its adsorption performance. The adsorption process follows Elovich model by the kinetic analysis and Sips equation by the isothermal analysis. The approach we described will provide another opportunity in the deep desulfurization field.

  6. Examining Rhodium Catalyst complexes for Use with Conducting Polymers Designed for Fuel Cells in Preparing Biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Carpio, M.M.; Kerr, J.B.

    2005-01-01

    Biosensing devices are important because they can detect, record, and transmit information regarding the presence of, or physiological changes in, different chemical or biological materials in the environment. The goal of this research is to prepare a biosensing device that is effective, quick, and low cost. This is done by examining which chemicals will work best when placed in a biosensor. The first study involved experimenting on a rhodium catalyst complexed with ligands such as bipyridine and imidazole. The rhodium catalyst is important because it is reduced from RhIII to RhI, forms a hydride by reaction with water and releases the hydride to react with nicotinamide adenine dinucleotide (NAD+) to selectively produce 1,4-NADH, the reduced form of NAD+. The second study looked at different types of ketones and enzymes for the enzyme-substrate reaction converting a ketone into an alcohol. Preliminary results showed that the rhodium complexed with bipyridine was able to carry out all the reactions, while the rhodium complexed with imidazole was not able to produce and release hydrides. In addition, the most effective ketone to use is benzylacetone with the enzyme alcohol dehydrogenase from baker’s yeast. Future work includes experimenting with bis-imidazole, which mimics the structure of bipyridine to see if it has the capability to reduce and if the reduction rate is comparable to the bipyridine complex. Once all testing is completed, the fastest catalysts will be combined with polymer membranes designed for fuel cells to prepare biosensing devices that can be used in a variety of applications including ones in the medical and environmental fields.

  7. Polymer structure and antimicrobial activity of polyvinylpyrrolidone-based iodine nanofibers prepared with high-speed rotary spinning technique.

    Science.gov (United States)

    Sebe, István; Szabó, Barnabás; Nagy, Zsombor K; Szabó, Dóra; Zsidai, László; Kocsis, Béla; Zelkó, Romána

    2013-12-15

    Poly(vinylpyrrolidone)/poly(vinylpyrrolidone-vinylacetate)/iodine nanofibers of different polymer ratios were successfully prepared by a high-speed rotary spinning technique. The obtained fiber mats were subjected to detailed morphological analysis using an optical and scanning electron microscope (SEM), while the supramolecular structure of the samples was analyzed by positron annihilation lifetime spectroscopy (PALS). The maximum dissolved iodine of the fiber samples was determined, and microbiological assay was carried out to test their effect on the bacterial growth. SEM images showed that the polymer fibers were linear, homogenous, and contained no beads. The PALS results, both the o-positronium (o-Ps) lifetime values and distributions, revealed the changes of the free volume holes of fibers as a function of their composition and the presence of iodine. The micro- and macrostructural characterisation of polymer fiber mats enabled the selection of the required composition from the point of their applicability as a wound dressing.

  8. Preparation, characterization and selective recognition for vanillic acid imprinted mesoporous silica polymers

    Science.gov (United States)

    Li, Hui; Xu, Miaomiao; Wang, Susu; Lu, Cuimei; Li, Zhiping

    2015-02-01

    A vanillic acid imprinted mesoporous silica polymer (MIPs) was prepared by copolymerizing a modified mesoporous silica molecular sieve with template molecule, functional monomer and cross-linker in present work. Interaction between the template and functional monomer was investigated by ultraviolet/visible spectrophotometry. These MIPs were characterized by Fourier transmission infrared spectrometry (FTIR) and scanning electron microscopy (SEM). Adsorption dynamics and thermodynamic behavior of MIPs was explored and the selective recognition capability evaluated. Also, the applicability for the MIPs as solid phase extraction media was tested. Results indicated the 1:1 (mole ratio) complex of vanillic acid-4-vinylpyridine might predominate in the pre-polymerization mixture and the MIPs obtained possessed rapid binding dynamics and higher affinity toward template molecules, reaching adsorption equilibrium within 230 min with the highest adsorption amount of 50.7 mg g-1. Freundlich model was shown best to describe isotherm adsorption for the MIPs. The MIPs could selectively bind template molecule with selectivity coefficients of 1.36-1.50. In addition, a higher enrichment capability when using it for gathering target compound from methanol extract of Artemisia stelleriana and a good reusability during adsorption-desorption recycling use could be observed.

  9. Molecularly imprinted polymer for 2, 4-dichlorophenoxyacetic acid prepared by a sol-gel method

    Indian Academy of Sciences (India)

    Yanli Sun

    2014-07-01

    Based on a sol-gel procedure, a molecularly imprinted polymer (MIP) for 2, 4-dichlorophenoxyacetic acid (2, 4-D) was synthesized, using phenyltrimethoxysilane (PTMOS), aminopropyltriethoxysilane (APTES) as monomers and tetraethoxysilane (TEOS) as cross-linking agent. In addition to the amount of the template, some factors in the sol-gel process: TEOS/APTES/PTMOS molar ratio, H2O/Si molar ratio, CH3CH2OH/Si molar ratio, etc. were investigated in detail. Results show that the optimum conditions for the preparation of the MIPs were 20:1.5:1 (TEOS: APTES: PTMOS), ca. 4 (H2O/Si), ca. 4 (CH3CH2OH/Si), respectively. Effects of various parameters involved in the adsorption process of 2, 4-D on MIP such as incubation time, pH, etc. were also evaluated. It is found that the adsorption attained equilibrium within 3 h, the optimum pH for adsorption was about 7 and the adsorption obeyed Langmuir model. Test results also demonstrated that the present MIP for 2, 4-D had large adsorption capacity (the maximum adsorption concluded from Langmuir model reached 243.3 mg/g) and good selectivity.

  10. Preparation of porous polymer monoliths featuring enhanced surface coverage with gold nanoparticles

    KAUST Repository

    Lv, Yongqin

    2012-10-01

    A new approach to the preparation of porous polymer monoliths with enhanced coverage of pore surface with gold nanoparticles has been developed. First, a generic poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith was reacted with cystamine followed by the cleavage of its disulfide bonds with tris(2-carboxylethyl)phosphine, which liberated the desired thiol groups. Dispersions of gold nanoparticles with sizes varying from 5 to 40. nm were then pumped through the functionalized monoliths. The materials were then analyzed using both energy dispersive X-ray spectroscopy and thermogravimetric analysis. We found that the quantity of attached gold was dependent on the size of nanoparticles, with the maximum attachment of more than 60. wt% being achieved with 40. nm nanoparticles. Scanning electron micrographs of the cross sections of all the monoliths revealed the formation of a non-aggregated, homogenous monolayer of nanoparticles. The surface of the bound gold was functionalized with 1-octanethiol and 1-octadecanethiol, and these monolithic columns were used successfully for the separations of proteins in reversed phase mode. The best separations were obtained using monoliths modified with 15, 20, and 30. nm nanoparticles since these sizes produced the most dense coverage of pore surface with gold. © 2012 Elsevier B.V.

  11. Preparation of surface-tethered polymer layer on inorganic substrates by photoreactive self-assembled monolayer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong-Ho; Ohtsuka, Hanae [Tokyo University of Agriculture and Technology, Department of Organic and Polymer Materials Chemistry, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan); Tria, Maria Celeste R. [University of Houston, Department of Chemistry, 136 Fleming Building, Houston, TX 77204-5008 (United States); Tanaka, Kuniaki [Tokyo University of Agriculture and Technology, Department of Organic and Polymer Materials Chemistry, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan); Advincula, Rigoberto C. [Case Western Reserve University, Department of Macromolecular Science and Engineering, 2100 Adelbert Road, Cleveland, OH 44106 (United States); Usui, Hiroaki, E-mail: h_usui@cc.tuat.ac.jp [Tokyo University of Agriculture and Technology, Department of Organic and Polymer Materials Chemistry, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan)

    2014-03-03

    A self-assembled monolayer (SAM) that has benzophenone (BP) terminal group was prepared on Si and indium–tin oxide (ITO) substrates, on which poly(9-vinyl carbazol) (PVK) was spin-coated and then irradiated with ultraviolet (UV) light. Upon UV irradiation, the BP unit reacted with the PVK backbone, yielding a crosslinked PVK layer that was covalently tethered to the substrate surface. Using this procedure, a patterned thin film of PVK was obtained by irradiating UV light through a photomask and then rinsing in chloroform. When polystylene (PSt) was spin-coated on the BP-SAM, only a thin interfacial layer was tethered by UV irradiation because PSt does not crosslink upon UV irradiation. The BP-SAM improved the adhesion strength between the PVK layer and ITO substrate without reducing the carrier injection from ITO to PVK. The photoreactive BP-SAM appeared to be an effective method to improve the interface between an inorganic electrode and a polymer layer deposited on its surface. - Highlights: • Polyvinylcarbazole (PVK) was tethered to substrate by self-assembled monolayer (SAM). • The photoreactive SAM was effective in improving adhesion strength of the films. • This process was applied for photopatterning of PVK layer. • The photoreactive SAM did not impede carrier injection from electrode to PVK.

  12. Surface and Adsorption Properties of Activated Carbon Fabric Prepared from Cellulosic Polymer: Mixed Activation Method

    Energy Technology Data Exchange (ETDEWEB)

    Bhati, Surendra; Mahur, J. S.; Choubey, O. N. [Barkatullah Univ., Bhopal (India); Dixit, Mahur Savita [Maulana Azad National Institute of Technology, Bhopla (India)

    2013-02-15

    In this study, activated carbon fabric was prepared from a cellulose-based polymer (viscose rayon) via a combination of physical and chemical activation (mixed activation) processes by means of CO{sub 2} as a gasifying agent and surface and adsorption properties were evaluated. Experiments were performed to investigate the consequence of activation temperature (750, 800, 850 and 925 .deg. C), activation time (15, 30, 45 and 60 minutes) and CO{sub 2} flow rate (100, 200, 300 and 400 mL/min) on the surface and adsorption properties of ACF. The nitrogen adsorption isotherm at 77 K was measured and used for the determination of surface area, total pore volume, micropore volume, mesopore volume and pore size distribution using BET, t-plot, DR, BJH and DFT methods, respectively. It was observed that BET surface area and TPV increase with rising activation temperature and time due to the formation of new pores and the alteration of micropores into mesopores. It was also found that activation temperature dominantly affects the surface properties of ACF. The adsorption of iodine and CCl{sub 4} onto ACF was investigated and both were found to correlate with surface area.

  13. Preparation of conjugated polymer-based composite thin film for application in solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yang-Yen, E-mail: yyyu@mail.mcut.edu.tw [Department of Materials Engineering, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Battery Research Center of Green Energy, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Center for Thin Film Technologies and Applications, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Chien, Wen-Chen [Department of Chemical Engineering, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Battery Research Center of Green Energy, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Ko, Yu-Hsin [Department of Materials Engineering, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Chen, Chih-Ping [Department of Materials Engineering, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Battery Research Center of Green Energy, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Chang, Chao-Ching [Department of Chemical and Materials Engineering, Tamkang University, 151, Yingzhuan Rd., Tamsui Dist., New Taipei City 25137, Taiwan (China)

    2015-06-01

    This paper reports on the enhanced cell efficiency of structures and properties of regioregular poly(3-hexylthiophene) (P3HT)/multiwalled carbon nanotube (MWNT) hybrid materials. The prepared hybrid materials were characterized using ultraviolet–visible absorption spectroscopy, photoluminescence spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Different concentrations of these MWNTs were suspended in polymer solutions and spin-cast onto indium tin oxide (ITO) glass. Solar cells with a device structure of ITO/poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) /P3HT:MWNTs/aluminum were then produced using evaporated aluminum as the back contact. The results showed that the ratio of P3HT to MWNTs considerably influenced the performance of the fabricated solar cells. The efficiency of the solar cells increased with the ratio of carbon nanotubes. Monochromatic incident photon-to-electron conversion efficiency analysis was performed and the results indicated that at the optimal P3HT/MWNTs ratio (= 1/1), the solar cells demonstrated a high-quality conversion of 2.16% with a fill factor of 42.22%, an open circuit voltage of 0.56 V, and a short circuit current of 9.12 mA/cm{sup 2}. - Highlights: • Solar cells ITO/PEDOT:PSS(DMSO)/P3HT:MWNT/Al were fabricated. • Optimal ratio of P3HT to MWNT was investigated. • Solar cell with 2.16% efficiency was obtained.

  14. Preparation and characterization of polymer-stabilized metal nanoparticles for sensor applications

    Science.gov (United States)

    Macanás, J.; Farre, M.; Muñoz, M.; Alegret, S.; Muraviev, D. N.

    2006-05-01

    Nanomaterial-based sensing devices attract great attention of scientist and technologists due to the special properties of nano-objects, such as for example, Metal Nanoclusters (MNC), which differ from those of the bulk materials. The further development of these devices requires novel approaches to stabilize MNC and therefore, to save their unique properties. The Solid-Phase-Incorporated-Reagents (SPHINER) technique was used for in situ synthesis of Polymer-Stabilized Metal Nanoclusters (PSMNC), which were used in the construction of new composite electrodes. The size of Pt-PSMNC synthesized in polyvinyl chloride (PVC) and polysulfone stabilizing matrices was determined by Transmission Electron Microscopy (TEM) technique and appeared to be in majority of cases of 6-20 nm. The electrochemical characterization of PSMNC-based amperometric sensors has demonstrated that inclusion of Pt-MNC increases the electrical conductivity of the membrane and that the electrode performance strongly depends on both the type of polymeric matrix and the membrane preparation technique.

  15. Preparation of some thermal stable polymers based on diesters of polyethylene and polypropylene oxides macro monomers to use as surfactants at high temperature and pressure

    Directory of Open Access Journals (Sweden)

    A.M. Alsabagh

    2016-09-01

    Full Text Available Based on polyethylene (PE and polypropylene (PP oxides, six macromonomers were prepared through two steps. The first step was esterification of the PE and PP oxides, with oleic acid to give the corresponding monoesters. The second was the diesterfication of the prepared monoesters with methacrylic acid to give the corresponding diesters. The prepared macromonomers (diesters were polymerized to obtain six polymers. The chemical structure of the prepared mono- and diesters and polymers was justified by IR, NMR, GPC and TGA. The obtained results confirmed that the prepared polymers have a high thermal stability and can be used in high pressure and temperature during the drainage of the water from water-in-oil emulsions. The surface active and thermodynamics parameters of these polymers in non-aqueous solution were also investigated and it was found that, these materials have high thermal stability which leads to the possibility to be used under severe reservoir conditions as surfactants.

  16. Piezoelectric polymer foams: transducer mechanism and preparation as well as touch-sensor and ultrasonic-transducer properties

    Science.gov (United States)

    Wegener, M.

    2010-04-01

    Different materials provide a mechanical-electrical energy conversion and are thus interesting candidates for piezoelectric sensors and actuators. Beside ferroelectric ceramics and polymers, also polymer foams, so-called ferroelectrets, are developed as piezoelectric active materials. Their piezoelectricity originates from optimized structural and elastic-foam properties accompanied with an optimized charge trapping at the polymer layers within the foam structure. The piezoelectric activity arises if mechanical stimuli lead to a thickness variation of the electrically charged voids which results in an electrical signal between the connected electrodes on the film surfaces due to the change of internal electric fields. The concept of such a piezoelectric transducer was developed by investigating cellular polypropylene films with different foam structures and thus different elastic properties. Recently, ferroelectrets were prepared from other polymers following the same concept. Different kind of new foaming procedures are developed in order to broaden the range of usable materials as well as to optimize the adjustment of piezoelectric and ultrasonictransducer properties. The paper provides an overview about ferroelectrets, their underlying working mechanism as well as their preparation possibilities. In detail, piezoelectric properties of polypropylene ferroelectrets are described which are usable for pushbutton or touch-pad applications as well as in ultrasonic-transducer applications.

  17. Preparation and characterization of polymer nanocomposites coated magnetic nanoparticles for drug delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Prabha, G., E-mail: gprabhagovinn@gmail.com; Raj, V., E-mail: alaguraj2@rediffmail.com

    2016-06-15

    In the present research work, the anticancer drug ‘curcumin’ is loaded with Chitosan (CS)-polyethylene glycol (PEG)-polyvinylpyrrolidone (PVP) (CS-PEG-PVP) polymer nanocomposites coated with superparamagnetic iron oxide (Fe{sub 3}O{sub 4}) nanoparticles. The system can be used for targeted and controlled drug delivery of anticancer drugs with reduced side effects and greater efficiency. The prepared nanoparticles were characterized by Fourier transmission infrared spectroscopy (FTIR), vibrating sample magnetometry (VSM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Curcumin drug loaded Fe{sub 3}O{sub 4}-CS, Fe{sub 3}O{sub 4}-CS-PEG and Fe{sub 3}O{sub 4}-CS-PEG-PVP nanoparticles exhibited the mean particle size in the range of 183–390 nm with a zeta potential value of 26–41 mV as measured using Malvern Zetasizer. The encapsulation efficiency, loading capacity and in-vitro drug release behavior of curcumin drug loaded Fe{sub 3}O{sub 4}-CS, Fe{sub 3}O{sub 4}-CS-PEG and Fe{sub 3}O{sub 4}-CS-PEG-PVP nanoparticles were studied using UV spectrophotometer. Besides, the cytotoxicity of the prepared nanoparticles using MTT assay was also studied. The curcumin drug release was examined at different pH medium and it was proved that the drug release depends upon the pH medium in addition to the nature of matrix. - Highlights: • The considered drug carrier Fe{sub 3}O{sub 4}-CS-PEG-PVP nanoparticles were prepared and entrapping (Curcumin). • The amount of the drug had great effect on the drug LC and EE and zeta potential Nanocomposites. • The Curcumin- loaded Fe{sub 3}O{sub 4}-CS, Fe{sub 3}O{sub 4}-CS-PEG and Fe{sub 3}O{sub 4}-CS-PEG-PVP nanocomposites showed pH responsive drug release.

  18. Preparation of PbS and PbO nanopowders from new Pb(II)(saccharine) coordination polymers

    Energy Technology Data Exchange (ETDEWEB)

    Aslani, Alireza, E-mail: a.aslani110@yahoo.com [Nanobiotechnology Research Center, Baqiyatallah University Medical of Science, PO BOX 1994x81, Tehran (Iran, Islamic Republic of); Department of Chemistry, University of Lorestan, Lorestan-Khoramabad 68135-465 (Iran, Islamic Republic of); Musevi, Seyid Javad, E-mail: Erkin_musevi@hotmail.com [Department of Chemistry, Shahid Beheshti Technical and Vocational University, Urmia (Iran, Islamic Republic of); Şahin, Ertan, E-mail: Ertan@atauni.edu.tr [Department of Chemistry, Faculty of Science, Ataturk University, Erzurum 25240 (Turkey); Yilmaz, Veysel T., E-mail: vtyilmaz@uludag.edu.tr [Department of Chemistry, Faculty of Arts and Sciences, Uludag University, 16059 Bursa (Turkey)

    2014-11-01

    Highlights: • The complex of compounds “[Pb(H{sub 2}O)(μ-OAc)(μ-sac)]{sub n}” are synthesized at nano and bulk size structurally diverse and show interesting three-dimensional coordination polymers. • Reduction of the particle size of the coordination polymers to a few dozen nanometers results in lower thermal stability when compared to the single crystalline samples. • This study demonstrates that the metal–organic framework may be suitable precursors for the preparation of nanoscale materials with interesting morphologies. - Abstract: Nanopowders and single crystal of new Pb(II) three-dimensional coordination polymer, [Pb(H{sub 2}O)(μ-OAc)(μ-sac)]{sub n} “PASAC” were synthesized by a sonochemical and branched tube methods (Yılmaz et al., Z. Anorg. Allg. Chem. 629 (2003) 172). The new nano-structures of Pb(II) coordination polymer were characterized by X-ray crystallography analysis, scanning electron microscopy (SEM), X-ray powder diffraction (XRD), surface analysis (BET), and IR spectroscopy. The crystal structure of these compounds consists of three-dimensional polymeric units. The thermal stability of compounds was studied by thermal gravimetric analysis (TGA) and differential thermal analyses (DTA). PbS and PbO nano-structures were obtained by calcinations of the nano-structures of this coordination polymer at 600 °C.

  19. Nitrogen-containing microporous conjugated polymers via carbazole-based oxidative coupling polymerization: preparation, porosity, and gas uptake.

    Science.gov (United States)

    Chen, Qi; Liu, De-Peng; Luo, Min; Feng, Li-Juan; Zhao, Yan-Chao; Han, Bao-Hang

    2014-01-29

    Facile preparation of microporous conjugated polycarbazoles via carbazole-based oxidative coupling polymerization is reported. The process to form the polymer network has cost-effective advantages such as using a cheap catalyst, mild reaction conditions, and requiring a single monomer. Because no other functional groups such as halo groups, boric acid, and alkyne are required for coupling polymerization, properties derived from monomers are likely to be fully retained and structures of final polymers are easier to characterize. A series of microporous conjugated polycarbazoles (CPOP-2-7) with permanent porosity are synthesized using versatile carbazolyl-bearing 2D and 3D conjugated core structures with non-planar rigid conformation as building units. The Brunauer-Emmett-Teller specific surface area values for these porous materials vary between 510 and 1430 m(2) g(-1) . The dominant pore sizes of the polymers based on the different building blocks are located between 0.59 and 0.66 nm. Gas (H2 and CO2 ) adsorption isotherms show that CPOP-7 exhibits the best uptake capacity for hydrogen (1.51 wt% at 1.0 bar and 77 K) and carbon dioxide (13.2 wt% at 1.0 bar and 273 K) among the obtained polymers. Furthermore, its high CH4 /N2 and CO2 /N2 adsorption selectivity gives polymer CPOP-7 potential application in gas separation.

  20. Preparation and characterization of a mixing soft-segment waterborne polyurethane polymer electrolyte

    Institute of Scientific and Technical Information of China (English)

    Feng Wu; Yue JiaoLi; Ren Jie Chen; Shi Chen

    2009-01-01

    The mixing soft-segment WPU (waterborne polyurethane) polymer electrolytes were synthesized by using PEO (poly(ethylene oxide)) and PDMS (polydimethylsiloxane) as the soft segments. These polymer electrolytes exhibit good thermal and electro-chemical stability. The conductivity of the gel polymer electrolyte is 2.52×10-3 S/cm at 25 ℃ with the LiTFSI/(DMC + EC) content of 130%.

  1. Preparation of Semi-interpenetrating Polymer Network of Silicon Rubber and Poly(methyl methylacrylate) Using Supercritical CO2

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The heterogeneous free-radical polymerization of methyl methylacrylatc (MMA) and divinylbenzene (DVB) as cross-linker within supercritical carbon dioxide-swollen silicon rubber (SR) has been studied as an approach to preparing semi-interpenetrating polymer network (semi IPN) of SR and poly(methyl methylacrylate) (PMMA). The SR/PMMA semi-IPNs were characterized by scanning electron microscopy (SEM) and dynamic mechanical analyzer (DMA).

  2. Preparation of Semi—interpenetrating Polymer Network of Silicon Rubber and Poly (methyl methylacrylate) Using Supercritical CO2

    Institute of Scientific and Technical Information of China (English)

    ZhiMinLIU; JiaQiuWANG; 等

    2002-01-01

    The heterogeneous free-radical polymerization of methyl methylacrylate(MMA) and divinylbenzene (DVB) as cross-linker within supercritical carbon dioxide-swollen silicon rubber (SR) has been studied as an approach to preparing semi-interpenetrating polymer network (semi-IPN) of SR and poly(methyl methylacrylate)(PMMA). The SR/PMMA semi-IPNs were characterized by scanning electron microscopy(SEM) and dynamic mechanical analyzer (DMA).

  3. Cyclic Oligomers of Phenolphthalein Polyarylene Ether Sulfone (Ketone):Preparation Through Cyclo-depolymerisation of Corresponding Polymers

    Institute of Scientific and Technical Information of China (English)

    Hong Hua WANG; Jin Ying DING; Tian Lu CHEN

    2004-01-01

    Cyclic oligomers of phenolphthalein polyarylene ether sulfone(ketone) were prepared through cyclo-depolymerisation of corresponding polymers using CsF as the catalyst in dipolar aprotic solvent DMAc and DMF, and a family of macrocycles containing from dimer up to at least heptamer were confirmed by GPC, HPLC and MALDI-TOF-MS. The yields of cyclics get as high as 86.3% and 87.9% respectively.

  4. Preparation of Dis-Azo Dyes Derived from p-Aminophenol and Their Fastness Properties for Synthetic Polymer-Fibres

    Science.gov (United States)

    Otutu, J. O.; Okoro, D.; Ossai, E. K.

    The preparation and properties of a series of dis-azo dyes derived from p-aminophenol is described. The influence on colour, dyeing fastness properties of the dyes on synthetic polymer-fibres is reported. Most of the dyes synthesized afford better light fastness and better wet (wash, perspiration) fastness on PET than on nylon 6 fabric. The structure of each compound was confirmed by using infrared, UV-VIS and elemental analysis.

  5. PREPARATION OF SINGLE-HOLE HOLLOW POLYMER NANOSPHERES BY RASPBERRY-LIKE TEMPLATE METHOD

    Institute of Scientific and Technical Information of China (English)

    Yong Zhang; Jia-jia Chen; Geng-hui Zhang; Bai-zhu Chen; Hu-sheng Yan

    2013-01-01

    Single-hole hollow polymer nanospheres were fabricated by raspberry-like template method using "graft-from"strategy through atom transfer radical polymerization (ATRP).Nanometer-sized silica spheres were covalently attached onto the surfaces of micrometer-sized silica spheres.Crosslinked polymer shells on the nano-sized spheres outside the attached area were formed by "graft-from" strategy through ATRP.After removal of the silica cores,single-hole hollow crosslinked polymer nanospheres were obtained.In this strategy,most of ATRP monomers may be used and thus many functional groups can be easily incorporated into the single-hole hollow crosslinked polymer nanospheres.

  6. UV-Induced Radical Photo-Polymerization: A Smart Tool for Preparing Polymer Electrolyte Membranes for Energy Storage Devices

    Directory of Open Access Journals (Sweden)

    Claudio Gerbaldi

    2012-06-01

    Full Text Available In the present work, the preparation and characterization of quasi-solid polymer electrolyte membranes based on methacrylic monomers and oligomers, with the addition of organic plasticizers and lithium salt, are described. Noticeable improvements in the mechanical properties by reinforcement with natural cellulose hand-sheets or nanoscale microfibrillated cellulose fibers are also demonstrated. The ionic conductivity of the various prepared membranes is very high, with average values approaching 10-3 S cm-1 at ambient temperature. The electrochemical stability window is wide (anodic breakdown voltages > 4.5 V vs. Li in all the cases along with good cyclability in lithium cells at ambient temperature. The galvanostatic cycling tests are conducted by constructing laboratory-scale lithium cells using LiFePO4 as cathode and lithium metal as anode with the selected polymer electrolyte membrane as the electrolyte separator. The results obtained demonstrate that UV induced radical photo-polymerization is a well suited method for an easy and rapid preparation of easy tunable quasi-solid polymer electrolyte membranes for energy storage devices.

  7. UV-Induced Radical Photo-Polymerization: A Smart Tool for Preparing Polymer Electrolyte Membranes for Energy Storage Devices

    Directory of Open Access Journals (Sweden)

    Claudio Gerbaldi

    2012-10-01

    Full Text Available In the present work, the preparation and characterization of quasi-solid polymer electrolyte membranes based on methacrylic monomers and oligomers, with the addition of organic plasticizers and lithium salt, are described. Noticeable improvements in the mechanical properties by reinforcement with natural cellulose hand-sheets or nanoscale microfibrillated cellulose fibers are also demonstrated. The ionic conductivity of the various prepared membranes is very high, with average values approaching 10-3 S cm-1 at ambient temperature. The electrochemical stability window is wide (anodic breakdown voltages > 4.5 V vs. Li in all the cases along with good cyclability in lithium cells at ambient temperature. The galvanostatic cycling tests are conducted by constructing laboratory-scale lithium cells using LiFePO4 as cathode and lithium metal as anode with the selected polymer electrolyte membrane as the electrolyte separator. The results obtained demonstrate that UV induced radical photo-polymerization is a well suited method for an easy and rapid preparation of easy tunable quasi-solid polymer electrolyte membranes for energy storage devices.

  8. Clay-polymer Nanocomposites:Preparation, Properties, Future Applications and New Synthesis Approach of EPDM/clay Nanocomposites

    Institute of Scientific and Technical Information of China (English)

    S. J. AHMADI; HUANG Yu-dong黄玉东; LI Wei李伟

    2004-01-01

    The synthtic routes, materials properties and future applications of clay-polymer nanocomposites are reviewed. Nannocomposites are composite materials.that contain particles in the size rang 1-100 nm. The particles generally have a high aspect ratio and a layered structure that maximizes bonding between the polymer and particle. Adding a small quantity of these additives (0.5% ~ 5% ) can increase many of the properties of polymer materials, such as tensile characteristics, heat distortion temperature, scratch resistance, gas permeability resistance, and flame retardancy. This new type of materials may be prepared via various synthetic routes comprising exfoliation adsorption, in-situ intercalative polymerization and melt intercalation. In this paper we report the new method for preparation EPDM-clay nanocomposites. The EPDM-clay nanocomposites were prepared by using two different approaches (direct and indirect). It is found that there is no difference between both methods but the direct method is easier, its cost is lower and industrially more practical. X-ray diffraction (XRD)and transmission electron microscopy (TEM) results showed a exfoliation structure. The mechanical properties of these nanocomposites significantly improved.

  9. Targeted drug delivery potential of hydrogel biocomposites containing partially and thermally reduced graphene oxide and natural polymers prepared via green process

    CSIR Research Space (South Africa)

    Aderibigbe, BA

    2015-10-01

    Full Text Available Hydrogel biocomposites containing a combination of partially and thermally reduced graphene oxide (rGO) and natural polymer were prepared by free radical polymerization. The effect of rGO and the natural polymer on the morphology of the hydrogel...

  10. Method of solution preparation of polyolefin class polymers for electrospinning processing included

    Science.gov (United States)

    Rabolt, John F. (Inventor); Lee, Keun-Hyung (Inventor); Givens, Steven R. (Inventor)

    2011-01-01

    A process to make a polyolefin fiber which has the following steps: mixing at least one polyolefin into a solution at room temperature or a slightly elevated temperature to form a polymer solution and electrospinning at room temperature said polymer solution to form a fiber.

  11. Microfluidic Preparation of Polymer-Nucleic Acid Nanocomplexes Improves Nonviral Gene Transfer

    NARCIS (Netherlands)

    Grigsby, C.L.; Ho, Y.P.; Lin, C.; Engbersen, Johannes F.J.; Leong, K.W.

    2013-01-01

    As the designs of polymer systems used to deliver nucleic acids continue to evolve, it is becoming increasingly apparent that the basic bulk manufacturing techniques of the past will be insufficient to produce polymer-nucleic acid nanocomplexes that possess the uniformity, stability, and potency

  12. Continuous preparation of polymer coated drug crystals by solid hollow fiber membrane-based cooling crystallization.

    Science.gov (United States)

    Chen, Dengyue; Singh, Dhananjay; Sirkar, Kamalesh K; Pfeffer, Robert

    2016-02-29

    A facile way to continuously coat drug crystals with a polymer is needed in controlled drug release. Conventional polymer coating methods have disadvantages: high energy consumption, low productivity, batch processing. A novel method for continuous polymer coating of drug crystals based on solid hollow fiber cooling crystallization (SHFCC) is introduced here. The drug acting as the host particle and the polymer for coating are Griseofulvin (GF) and Eudragit RL100, respectively. The polymer's cloud point temperature in its acetone solution was determined by UV spectrophotometry. An acetone solution of the polymer containing the drug in solution as well as undissolved drug crystals in suspension were pumped through the tube side of the SHFCC device; a cold liquid was circulated in the shell side to rapidly cool down the feed solution-suspension in the hollow-fiber lumen. The polymer precipitated from the solution and coated the suspended crystals due to rapid temperature reduction and heterogeneous nucleation; crystals formed from the solution were also coated by the polymer. Characterizations by scanning electron microscopy, thermogravimetric analysis, laser diffraction spectroscopy, X-ray diffraction, Raman spectroscopy, and dissolution tests show that a uniformly coated, free-flowing drug/product can be obtained under appropriate operating conditions without losing the drug's pharmaceutical properties and controlled release characteristics.

  13. Easy Access to HPC Resources through the Application GUI

    KAUST Repository

    van Waveren, Matthijs

    2016-11-01

    The computing environment at the King Abdullah University of Science and Technology (KAUST) is growing in size and complexity. KAUST hosts the tenth fastest supercomputer in the world (Shaheen II) and several HPC clusters. Researchers can be inhibited by the complexity, as they need to learn new languages and execute many tasks in order to access the HPC clusters and the supercomputer. In order to simplify the access, we have developed an interface between the applications and the clusters and supercomputer that automates the transfer of input data and job submission and also the retrieval of results to the researcher’s local workstation. The innovation is that the user now submits his jobs from within the application GUI on his workstation, and does not have to directly log into the clusters or supercomputer anymore. This article details the solution and its benefits to the researchers.

  14. Preparation of conducting polymer patterns using photochemical reaction of oxidation polymerization agents; Sanka jugozai no hikarikagaku henka wo riyoshita dodensei kobunshi patan no seisaku hoho

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Yasushi; Naruse, Tsutomu; Yoshimoto, Shoji; Kimura, Kazuyuki [Aichi Prefectura Goverment, Aichi (Japan). Institute of Industrial Research; Natsume, Yukihiro [Aica Kogyo Corp., Aichi (Japan)

    1999-09-10

    Preparation of conducting polymer patterns using the photochemical oxidizing ability changes of an oxidation polymerization agent has been investigated. Photoreactive metal salts such as iron (3) chloride were used for oxidation polymerization of conducting polymers such as polymers such as polypyrrole. Metal salts were reduced by exposing to ultra-violet (UV) light and missed the ability of oxidation polymerization. Therefore, conducting polypyrrole patterns have been prepared on the unirradiated part by exposing films containing iron (3) chloride to UV light through the pattern mask and then contacting with pyrrole vapor or dipping in pyrrole solution. By this method, large and fine conducting polymer patterns can easily be prepared on plastics, ceramics, papers, clothes, woods, etc. In addition, it may be able to prepare patterns with partially different conductivity by controlling the irradiation time of UV light and/or shades of the pattern masks. (author)

  15. Highly efficient solid-state dye-sensitized solar cells based on hexylimidazolium iodide ionic polymer electrolyte prepared by in situ low-temperature polymerization

    Science.gov (United States)

    Wang, Guiqiang; Yan, Chao; Zhang, Juan; Hou, Shuo; Zhang, Wei

    2017-03-01

    Solid-state dye-sensitized solar cells (DSCs) are fabricated using a novel ionic polymer electrolyte containing hexylimidazolium iodide (HII) ionic polymer prepared by in situ polymerization of N,N‧-bis(imidazolyl) hexane and 1,6-diiodohexane without an initiator at low temperature (40 °C). The as-prepared HII ionic polymer has a similar structure to alkylimidazolium iodide ionic liquid, and the imidazolium cations are contained in the polymer main chain; so, it can act simultaneously as the redox mediator in the electrolyte. By incorporating an appropriate amount of 1,3-dimethylimidazolium iodide (DMII) in HII ionic polymer (DMII/HII ionic polymer = 0.7:1, weight ratio), the conductivity of the ionic polymer electrolyte is greatly improved due to the formation of Grotthuss bond exchange. In addition, in situ synthesis of ionic polymer electrolyte guarantees a good pore-filling of the electrolyte in the TiO2 photoanode. As a result, the solid-state DSC based on the ionic polymer electrolyte containing HII ionic polymer and DMII without iodine achieves a conversion efficiency of 6.55% under the illumination of 100 mW cm-2 (AM 1.5), which also exhibits a good at-rest stability at room temperature.

  16. Relationships between phase morphology and deformation mechanisms in polymer nanocomposite nanofibres prepared by an electrospinning process.

    Science.gov (United States)

    Kim, G M; Lach, R; Michler, G H; Pötschke, P; Albrecht, K

    2006-02-28

    Relationships between phase morphology and mechanical deformation processes in various electrospun polymer nanocomposite nanofibres (PNCNFs) containing different types of one-, two- and three-dimensional nanofiller have been investigated by transmission electron microscopy using in situ tensile techniques. From the study of the phase structure of electrospun PNCNFs, two morphological standard types are classified for the analysis of deformation mechanisms: the binary system (polymer matrix and nanofillers), and the ternary system (polymer matrix, nanofillers and nanopores on the fibres surface). According to these categories, deformation processes have been characterized, and different schematic models for these processes are proposed. The finding of importance in the present work is a brittle-to-ductile transition in polymer nanocomposite fibres during in situ tensile deformation processes. This unique feature in the deformation behaviour of electrospun PNCNFs provides an optimal balance of stiffness, strength and toughness for use as reinforcing elements in a polymer based composite of a new kind.

  17. Towards Cloud-based Asynchronous Elasticity for Iterative HPC Applications

    Science.gov (United States)

    da Rosa Righi, Rodrigo; Facco Rodrigues, Vinicius; André da Costa, Cristiano; Kreutz, Diego; Heiss, Hans-Ulrich

    2015-10-01

    Elasticity is one of the key features of cloud computing. It allows applications to dynamically scale computing and storage resources, avoiding over- and under-provisioning. In high performance computing (HPC), initiatives are normally modeled to handle bag-of-tasks or key-value applications through a load balancer and a loosely-coupled set of virtual machine (VM) instances. In the joint-field of Message Passing Interface (MPI) and tightly-coupled HPC applications, we observe the need of rewriting source codes, previous knowledge of the application and/or stop-reconfigure-and-go approaches to address cloud elasticity. Besides, there are problems related to how profit this new feature in the HPC scope, since in MPI 2.0 applications the programmers need to handle communicators by themselves, and a sudden consolidation of a VM, together with a process, can compromise the entire execution. To address these issues, we propose a PaaS-based elasticity model, named AutoElastic. It acts as a middleware that allows iterative HPC applications to take advantage of dynamic resource provisioning of cloud infrastructures without any major modification. AutoElastic provides a new concept denoted here as asynchronous elasticity, i.e., it provides a framework to allow applications to either increase or decrease their computing resources without blocking the current execution. The feasibility of AutoElastic is demonstrated through a prototype that runs a CPU-bound numerical integration application on top of the OpenNebula middleware. The results showed the saving of about 3 min at each scaling out operations, emphasizing the contribution of the new concept on contexts where seconds are precious.

  18. HPC enabled real-time remote processing of laparoscopic surgery

    Science.gov (United States)

    Ronaghi, Zahra; Sapra, Karan; Izard, Ryan; Duffy, Edward; Smith, Melissa C.; Wang, Kuang-Ching; Kwartowitz, David M.

    2016-03-01

    Laparoscopic surgery is a minimally invasive surgical technique. The benefit of small incisions has a disadvantage of limited visualization of subsurface tissues. Image-guided surgery (IGS) uses pre-operative and intra-operative images to map subsurface structures. One particular laparoscopic system is the daVinci-si robotic surgical system. The video streams generate approximately 360 megabytes of data per second. Real-time processing this large stream of data on a bedside PC, single or dual node setup, has become challenging and a high-performance computing (HPC) environment may not always be available at the point of care. To process this data on remote HPC clusters at the typical 30 frames per second rate, it is required that each 11.9 MB video frame be processed by a server and returned within 1/30th of a second. We have implement and compared performance of compression, segmentation and registration algorithms on Clemson's Palmetto supercomputer using dual NVIDIA K40 GPUs per node. Our computing framework will also enable reliability using replication of computation. We will securely transfer the files to remote HPC clusters utilizing an OpenFlow-based network service, Steroid OpenFlow Service (SOS) that can increase performance of large data transfers over long-distance and high bandwidth networks. As a result, utilizing high-speed OpenFlow- based network to access computing clusters with GPUs will improve surgical procedures by providing real-time medical image processing and laparoscopic data.

  19. Rapid cellular internalization of multifunctional star polymers prepared by atom transfer radical polymerization.

    Science.gov (United States)

    Cho, Hong Y; Gao, Haifeng; Srinivasan, Abiraman; Hong, Joanna; Bencherif, Sidi A; Siegwart, Daniel J; Paik, Hyun-Jong; Hollinger, Jeffrey O; Matyjaszewski, Krzysztof

    2010-09-13

    Poly(ethylene glycol) (PEG) star polymers containing GRGDS (Gly-Arg-Gly-Asp-Ser) peptide sequences on the star periphery were synthesized by atom transfer radical polymerization (ATRP) of poly(ethylene glycol) methyl ether methacrylate (PEGMA), GRGDS modified poly(ethylene glycol) acrylate (GRGDS-PEG-Acryl), fluorescein o-methacrylate (FMA), and ethylene glycol dimethacrylate (EGDMA) via an "arm-first" method. Star polymers were approximately 20 nm in diameter, as measured by dynamic light scattering and atomic force microscopy. Conjugation of FMA to the stars was confirmed by fluorescence microscopy, and successful attachment of GRGDS segments to the star periphery was confirmed by (1)H NMR spectroscopy. Both fluorescent PEG star polymers with and without peripheral GRGDS peptide segments were cultured with MC3T3-E1.4 cells. These star polymers were biocompatible with ≥ 90% cell viability after 24 h of incubation. Cellular uptake of PEG star polymers in MC3T3-E1.4 cells was observed by confocal microscopy. Rapid uptake of PEG star polymers with GRGDS peptides (∼ 100% of FITC-positive cells in 15 min measured by flow cytometry) was observed, suggesting enhanced delivery potential of these functional star polymers.

  20. Synthesis and characterization of biodegradable peptide-based polymers prepared by microwave-assisted click chemistry.

    Science.gov (United States)

    van Dijk, Maarten; Nollet, Maria L; Weijers, Pascal; Dechesne, Annemarie C; van Nostrum, Cornelus F; Hennink, Wim E; Rijkers, Dirk T S; Liskamp, Rob M J

    2008-10-01

    In this study, the microwave-assisted copper(I)-catalyzed 1,3-dipolar cycloaddition reaction was used to synthesize peptide triazole-based polymers from two novel peptide-based monomers: azido-phenylalanyl-alanyl-lysyl-propargyl amide (1) and azido-phenylalanyl-alanyl-glycolyl-lysyl-propargyl amide (2). The selected monomers have sites for enzymatic degradation as well as for chemical hydrolysis to render the resulting polymer biodegradable. Depending on the monomer concentration in DMF, the molecular mass of the polymers could be tailored between 4.5 and 13.9 kDa (corresponding with 33-100 amino acid residues per polymer chain). As anticipated, both polymers can be enzymatically degraded by trypsin and chymotrypsin, whereas the ester bond in the polymer of 2 undergoes chemical hydrolysis under physiological conditions, as was shown by a ninhydrin-based colorimetric assay and MALDI-TOF analysis. In conclusion, the microwave-assisted copper(I)-catalyzed 1,3-dipolar cycloaddition reaction is an effective tool for synthesizing biodegradable peptide polymers, and it opens up new approaches toward the synthesis of (novel) designed biomedical materials.

  1. STUDIES OF DRUG-POLYMER INTERACTIONS OF SIMVASTATIN WITH VARIOUS POLYMERS

    Directory of Open Access Journals (Sweden)

    Trishna Bal et al.

    2012-02-01

    Full Text Available The purpose of the present study is to prepare different combinations of drug Simvastatin (SV with different polymers like Sodium alginate (SA, Hydroxypropylmethylcellulose (HPMC, Pectin (P, Dillenia (D and Hydroxy propyl β- cyclodextrin. (HPC, thereby determine and report any possible interactions between the drug Simvastatin (SV and various polymers both from natural and synthetic sources. The natural plant fruit seed mucilage Dillenia(D was extracted from the plant Dillenia indica ,Family Dilleniaceae and was dried. Individual polymers and their combinations with drug SV were tested analytically and comparison of the results was done to find out any interactions. The analytical techniques used for the purpose are Fourier Transform Infrared Spectroscopy (FTIR and Thermogravimetric analysis (TGA. The techniques of FTIR and TGA serves as a good means for determination of any interactions as the change in characteristics of the drug peak and its melting point can be detected by the two techniques respectively. From the study it was Simvastatin when complexed with Hydroxy propyl beta cyclodextrin (HP showed some changes but these changes were not because of the other polymers used in the combination process.

  2. Preparation of porous, chemically cross-linked, PVdF-based gel polymer electrolytes for rechargeable lithium batteries

    Science.gov (United States)

    Cheng, C. L.; Wan, C. C.; Wang, Y. Y.

    This study reports the development of a new system of porous, chemically cross-linked, gel polymer electrolytes based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) copolymer as a polymer matrix, polyethylene glycol (PEG) as a plasticizer, and polyethylene glycol dimethacrylate (PEGDMA) as a chemical cross-linking oligomer. The electrolytes are prepared by a combination of controlled evaporation and thermal polymerization of PEGDMA. PVdF-HFP/PEG/PEGDMA gel polymer electrolytes with a composition of 5/3/2 exhibit both high ambient ionic conductivity, viz., >1 mS cm -1, and a high tensile modulus of 52 MPa, because of their porous and network structures. All the blends of electrolytes are electrochemically stable up to 5 V versus Li/Li + in the presence of 1 M LiPF 6/ethylene carbonate-diethyl carbonate (EC-DEC). With these polymer electrolytes, rechargeable lithium batteries composed of carbon anode and LiCoO 2 cathode have acceptable cycleability and a good rate capability.

  3. Effect of plasticizer on surface of free films prepared from aqueous solutions of salts of cationic polymers with different plasticizers

    Science.gov (United States)

    Bajdik, János; Fehér, Máté; Pintye-Hódi, Klára

    2007-06-01

    Acquisition of a more detailed understanding of all technological processes is currently a relevant tendency in pharmaceutical technology and hence in industry. A knowledge of film formation from dispersion of polymers is very important during the coating of solid dosage forms. This process and the structure of the film can be influenced by different additives. In the present study, taste-masking films were prepared from aqueous citric acid solutions of a cationic polymer (Eudragit ® E PO) with various hydrophilic plasticizers (glycerol, propylene glycol and different poly(ethylene glycols)). The mechanical properties, film thickness, wetting properties and surface free energy of the free films were studied. The aim was to evaluate the properties of surface of free films to predict the arrangement of macromolecules in films formed from aqueous solutions of salts of cationic polymers. A high molecular weight of the plasticizer decreased the work of deformation. The surface free energy and the polarity were highest for the film without plasticizer; the hydrophilic additives decreased these parameters. The direction of the change in polarity (a hydrophilic component caused a decrease in the polarity) was unexpected. It can be explained by the change in orientation of the macromolecules, a hydrophobic surface being formed. Examination of the mechanical properties and film thickness can furnish additional results towards a knowledge of film formation by this not frequently applied type of polymer from aqueous solution.

  4. A Study of Functional Polymer Colloids Prepared Using Thiol-Ene/Yne Click Chemistry

    Science.gov (United States)

    Durham, Olivia Z.

    This project demonstrates the first instance of thiol-ene chemistry as the polymerization method for the production of polymer colloids in two-phase heterogeneous suspensions, miniemulsions, and emulsions. This work was also expanded to thiol-yne chemistry for the production of polymer particles containing increased crosslinking density. The utility of thiol-ene and thiol-yne chemistries for polymerization and polymer modification is well established in bulk systems. These reactions are considered 'click' reactions, which can be defined as processes that are both facile and simple, offering high yields with nearly 100% conversion, no side products, easy product separation, compatibility with a diverse variety of commercially available starting materials, and orthogonality with other chemistries. In addition, thiol-ene and thiol-yne chemistry follow a step-growth mechanism for the development of highly uniform polymer networks, where polymer growth is dependent on the coupling of functional groups. These step-growth polymerization systems are in stark contrast to the chain-growth mechanisms of acrylic and styrenic monomers that have dominated the field of conventional heterogeneous polymerizations. Preliminary studies evaluated the mechanism of particle production in suspension and miniemulsion systems. Monomer droplets were compared to the final polymer particles to confirm that particle growth occurred through the polymerization of monomer droplets. Additional parameters examined include homogenization energy (mechanical mixing), diluent species and concentration, and monomer content. These reactions were conducted using photoinitiation to yield particles in a matter of minutes with diameters in the size range of several microns to hundreds of microns in suspensions or submicron particles in miniemulsions. Improved control over the particle size and size distribution was examined through variation of reaction parameters. In addition, a method of seeded suspension

  5. Protein Compatible Polymer Brushes on Polymeric Substrates Prepared by Surface-Initiated Transfer Radica Polymerization

    DEFF Research Database (Denmark)

    Fristrup, Charlotte Juel; Eskimergen, Rüya; Burkrinsky, J.T.

    2008-01-01

    limited. Therefore, a polymer coating containing some of the required properties may expand the use ofpolymers in medical devices. 'The approach was to graft polymer brushes from initiator-functionalized substrates using Surface-Initiated Atom TnlJlsfer Radical Polymerization (SI ATRP). Initial studies......Materials for insulin containers and delivery systems should comply with requirements like compatibility with proteins, sterilisability, 'good barrier properties towards preservatives, and no toxic leachables. The number of commercially available polymer materials which can be u sed is rather...

  6. Preparation of polymer-modified electrodes: A literature and experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Jayanta, P.S.; Ishida, Takanobu

    1991-05-01

    A literature review is presented on the field of polymer modified electrodes which can be electrochemically generated. It is suggested that a possible application of these polymer modified electrodes is as a regeneratable catalysis packing material for use in couter-current exchange columns. Secondly, there is a presentation of experimental results dealing with possible electrode modification using difluoro- and dimethyl- phenols and fluorinated derivatives of styrene, benzoquinone and hydroquinone. It appears that dimethylphenol shows the most potential of the monomers experimentally tested in providing a stable polymer modified electrode surface. 170 refs., 31 figs., 1 tab.

  7. Preparation of molecularly imprinted polymer with double templates for rapid simultaneous determination of melamine and dicyandiamide in dairy products.

    Science.gov (United States)

    Liu, Jiang; Song, Han; Liu, Jie; Liu, Yuan; Li, Le; Tang, Hui; Li, Yingchun

    2015-03-01

    In this study, a rapid and accurate determination strategy was established for simultaneous measurement of melamine (MLM) and dicyandiamide (DCD) directly in powdered milk by coupling molecularly imprinted solid-phase extraction (MISPE) with high performance liquid chromatography (HPLC). A novel double-template technique was adopted for preparing SPE packing agent and the obtained double-templated (MLM and DCD) molecularly imprinted polymers (MD-MIPs) was characterized by Fourier-transform infrared spectroscopy and scanning electron microscope (SEM). The molecular recognition ability and the binding capability of the as-prepared polymers towards MLM and DCD were evaluated via static and dynamic binding tests, and it was found that the MD-MIPs showed better affinity and selectivity for both templates compared with single-templated MIPs and non-imprinted polymers (NIPs). An approach based on MISPE and HPLC was then developed and optimized to detect MLM and DCD in powdered milk. The detection limit of the method (S/N=3) were 0.13 μg/g for MLM and 0.07 μg/g for DCD, and the relative standard deviation (RSD) of intra-day and inter-day determination for MLM was 3.3% and 4.7%, and 3.5% and 5.9% for DCD. The recoveries in MLM and DCD analysis at three spiked levels were 93.1-100.1% and 75.7-82.5%, respectively, with all RSD less than 5.2%.

  8. Preparation and optimization of CdWO4-polymer nano-composite film as an alpha particle counter

    Science.gov (United States)

    Ziluei, Hossein; Azimirad, Rouhollah; Mojtahedzadeh Larijani, Majid; Ziaie, Farhoud

    2017-04-01

    In this research work, CdWO4/polymer composite films with different thicknesses were prepared using Poly-methyl acrylate polymer and synthesized CdWO4 powder. The CdWO4 powder was synthesized by a simple co-precipitation method in the laboratory. X-ray diffraction, photoluminescence, Fourier transformed infrared spectroscopy and energy-dispersive X-ray spectroscopy proved that the CdWO4 powder was successfully prepared. Moreover, photoluminescence analysis showed that adding polymer does not change the emission peak of CdWO4. Also, the responses of all samples were measured using an 241Am alpha source with 1860 Bq activity. Results showed that the sample having thickness of 177 mg/cm2 has the best counting efficiency (over 2π geometry) among the others. The efficiency measurement was further evaluated using a 230Th source whose activity is 190.7 Bq. It revealed that the counting efficiency of this sample for both 241Am and 230Th was nearly equal.

  9. Preparation of mucosal nanoparticles and polymer-based inactivated vaccine for Newcastle disease and H9N2 AI viruses

    Directory of Open Access Journals (Sweden)

    Heba M. El Naggar

    2017-02-01

    Full Text Available Aim: To develop a mucosal inactivated vaccines for Newcastle disease (ND and H9N2 viruses to protect against these viruses at sites of infections through mucosal immunity. Materials and Methods: In this study, we prepared two new formulations for mucosal bivalent inactivated vaccine formulations for Newcastle and Avian Influenza (H9N2 based on the use of nanoparticles and polymer adjuvants. The prepared vaccines were delivered via intranasal and spray routes of administration in specific pathogen-free chickens. Cell-mediated and humoral immune response was measured as well as challenge trial was carried out. In addition, ISA71 water in oil was also evaluated. Results: Our results showed that the use of spray route as vaccination delivery method of polymer and nanoparticles MontanideTM adjuvants revealed that it enhanced the cell mediated immune response as indicated by phagocytic activity, gamma interferon and interleukin 6 responses and induced protection against challenge with Newcastle and Avian Influenza (H9N2 viruses. Conclusion: The results of this study demonstrate the potentiality of polymer compared to nanoparticles adjuvantes when used via spray route. Mass application of such vaccines will add value to improve the vaccination strategies against ND virus and Avian influenza viruses.

  10. Selective, ultrathin membrane skins prepared by deposition of novel polymer films on porous alumina supports

    Science.gov (United States)

    Balachandra, Anagi Manjula

    Membrane-based separations are attractive in industrial processes because of their low energy costs and simple operation. However, low permeabilities often make membrane processes uneconomical. Since flux is inversely proportional to membrane thickness, composite membranes consisting of ultrathin, selective skins on highly permeable supports are required to simultaneously achieve high throughput and high selectivity. However, the synthesis of defect-free skins with thicknesses less than 50 nm is difficult, and thus flux is often limited. Layer-by-layer deposition of oppositely charged polyelectrolytes on porous supports is an attractive method to synthesize ultrathin ion-separation membranes with high flux and high selectivity. The ion-transport selectivity of multilayer polyelectrolyte membranes (MPMs) is primarily due to Donnan exclusion; therefore increase in fixed charge density should yield high selectivity. However, control over charge density in MPMs is difficult because charges on polycations are electrostatically compensated by charges on polyanions, and the net charge in the bulk of these films is small. To overcome this problem, we introduced a templating method to create ion-exchange sites in the bulk of the membrane. This strategy involves alternating deposition of a Cu2+-poly(acrylic acid) complex and poly(allylamine hydrochloride) on a porous alumina support followed by removal of Cu2+ and deprotonation to yield free -COO- ion-exchange sites. Diffusion dialysis studies showed that the Cl-/SO42-. Selectivity of Cu2+-templated membranes is 4-fold higher than that of membranes prepared in the absence of Cu2+. Post-deposition cross-linking of these membranes by heat-induced amide bond formation further increased Cl-/SO42- selectivity to values as high as 600. Room-temperature, surface-initiated atom transfer radical polymerization (ATRP) provides another convenient method for formation of ultrathin polymer skins. This process involves attachment of

  11. Antimicrobial polymers prepared by ROMP with unprecedented selectivity: a molecular construction kit approach.

    Science.gov (United States)

    Lienkamp, Karen; Madkour, Ahmad E; Musante, Ashlan; Nelson, Christopher F; Nüsslein, Klaus; Tew, Gregory N

    2008-07-30

    Synthetic Mimics of Antimicrobial Peptides (SMAMPs) imitate natural host-defense peptides, a vital component of the body's immune system. This work presents a molecular construction kit that allows the easy and versatile synthesis of a broad variety of facially amphiphilic oxanorbornene-derived monomers. Their ring-opening metathesis polymerization (ROMP) and deprotection provide several series of SMAMPs. Using amphiphilicity, monomer feed ratio, and molecular weight as parameters, polymers with 533 times higher selectivitiy (selecitviy = hemolytic concentration/minimum inhibitory concentration) for bacteria over mammalian cells were discovered. Some of these polymers were 50 times more selective for Gram-positive over Gram-negative bacteria while other polymers surprisingly showed the opposite preference. This kind of "double selectivity" (bacteria over mammalian and one bacterial type over another) is unprecedented in other polymer systems and is attributed to the monomer's facial amphiphilicity.

  12. Studies on conducting polymer and conducting polymerinorganic composite electrodes prepared via a new cathodic polymerization method

    Science.gov (United States)

    Singh, Nikhilendra

    A novel approach for the electrodeposition of conducting polymers and conducting polymer-inorganic composite materials is presented. The approach shows that conducting polymers, such as polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT) can be electrodeposited by the application of a cathodic bias that generates an oxidizing agent, NO+, via the in-situ reduction of nitrate anions. This new cathodic polymerization method allows for the deposition of PPy and PEDOT as three dimensional, porous films composed of spherical polymer particles. The method is also suitable for the co-deposition of inorganic species producing conducting polymer-inorganic composite electrodes. Such composites are used as high surface area electrodes in Li-ion batteries, electrochemical hydrogen evolution and in the development of various other conducting polymer-inorganic composite electrodes. New Sn-PPy and Sb-PPy composite electrodes where Sn and Sb nanoparticles are well dispersed among the PPy framework are reported. These structures allow for decreased stress during expansion and contraction of the active material (Sn, Sb) during the alloying and de-alloying processes of a Li-ion battery anode, significantly alleviating the loss of active material due to pulverization processes. The new electrochemical synthesis mechanism allows for the fabrication of Sn-PPy and Sb-PPy composite electrodes directly from a conducting substrate and eliminates the use of binding materials and conducting carbon used in modern battery anodes, which significantly simplifies their fabrication procedures. Platinum (Pt) has long been identified as the most efficient catalyst for electrochemical water splitting, while nickel (Ni) is a cheaper, though less efficient alternative to Pt. A new morphology of PPy attained via the aforementioned cathodic deposition method allows for the use of minimal quantities of Pt and Ni dispersed over a very high surface area PPy substrate. These composite electrodes

  13. Ion imprinted polymers: fundamentals, preparation strategies and applications in analytical chemistry

    OpenAIRE

    Luiz Diego Marestoni; Maria Del Pilar Taboada Sotomayor; Mariana Gava Segatelli; Lucas Rossi Sartori; César Ricardo Teixeira Tarley

    2013-01-01

    Chemical imprinting technology has been widely used as a valuable tool in selective recognition of a given target analyte (molecule or metal ion), yielding a notable advance in the development of new analytical protocols. Since their discovery, molecularly imprinted polymers (MIPs) have been extensively studied with excellent reviews published. However, studies involving ion imprinted polymers (IIPs), in which metal ions are recognized in the presence of closely related inorganic ions, remain...

  14. Properties of Polymer Electrolyte Membranes Prepared by Blending of Sulfonated Polystyrene-Lignosulfonate

    OpenAIRE

    Siang Tandi Gonggo; Cynthia L. Radiman; Bunbun Bundjali; I Made Arcana

    2012-01-01

    Electrolyte polymer membrane widely used in PEMFC and DMFC is a perfluorosulfonated membrane such as Nafion. This membrane material exhibits good chemical stability and proton conductivity, but it is very expensive and difficult to recycle. It has high cross-over methanol in DMFC that causes the decrease efficiency and performance of fuel cell, so that the electrolyte polymer membrane with low cross-over methanol has been needed to substitute Nafion membrane. One of the materials used as a po...

  15. Kinetic Effects on Self-Assembly and Function of Protein-Polymer Bioconjugates in Thin Films Prepared by Flow Coating

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Dongsook [Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave Cambridge MA 02142 USA; Huang, Aaron [Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave Cambridge MA 02142 USA; Olsen, Bradley D. [Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave Cambridge MA 02142 USA

    2016-11-04

    The self-assembly of nanostructured globular protein arrays in thin films is demonstrated using protein–polymer block copolymers based on a model protein mCherry and the polymer poly(oligoethylene glycol acrylate) (POEGA). Conjugates are flow coated into thin films on a poly(ethylene oxide) grafted Si surface, forming self-assembled cylindrical nanostructures with POEGA domains selectively segregating to the air–film interface. Long-range order and preferential arrangement of parallel cylinders templated by selective surfaces are demonstrated by controlling relative humidity. Long-range order increases with coating speed when the film thicknesses are kept constant, due to reduced nucleation per unit area of drying film. Fluorescence emission spectra of mCherry in films prepared at <25% relative humidity shows a small shift suggesting that proteins are more perturbed at low humidity than high humidity or the solution state.

  16. Selective separation and enrichment of glibenclamide in health foods using surface molecularly imprinted polymers prepared via dendritic grafting of magnetic nanoparticles.

    Science.gov (United States)

    Wang, Ruoyu; Wang, Yang; Xue, Cheng; Wen, Tingting; Wu, Jinhua; Hong, Junli; Zhou, Xuemin

    2013-03-01

    In this paper, the novel surface molecularly imprinted polymers based on dendritic-grafting magnetic nanoparticles were developed to enrich and separate glibenclamide in health foods. The density functional theory method was used to give theoretical directions to the synthesis of molecularly imprinted polymers. The polymers were prepared by using magnetic nanoparticles as supporting materials, methacrylic acid as the functional monomer, and ethylene glycol dimethacrylate as the cross-linker. The characteristics of magnetic nanoparticles and polymers were measured by transmission electron microscope and SEM, respectively. The enriching ability of molecularly imprinted polymers was measured by Freundlich Isotherm. The molecularly imprinted polymers were used as dispersive SPE materials to enrich, separate, and detect glibenclamide in health foods by HPLC. The average recoveries of glibenclamide in spiked health foods were 81.46-93.53% with the RSD < 4.07%.

  17. Use of polymer combinations in the preparation of solid dispersions of a thermally unstable drug by hot-melt extrusion

    Directory of Open Access Journals (Sweden)

    Jia Liu

    2013-07-01

    Full Text Available The objective of the study was to prepare solid dispersions containing a thermally unstable drug by hot-melt extrusion (HME. Carbamazepine (CBZ was selected as model drug and combinations of Kollidon VA64 (VA64, Soluplus (SOL and Eudragit EPO (EPO were utilized as carriers. Preformulation was conducted to identify the suitability of polymer combinations based on solubility parameters, differential scanning calorimetry (DSC, hot stage microscopy and thermogravimetric analysis. Physicochemical properties of solid dispersions were determined by DSC, X-ray diffraction, fourier transform infrared spectroscopy, dissolution and accelerated stability testing. The results show that drug-polymer miscibility at temperatures below the melting point (Tm of CBZ was improved by combining EPO with VA64 or SOL. With 30% drug loading in a solid dispersion in SOL:EPO (1:1, w/w, CBZ was mainly present in an amorphous form accompanied by a small amount of a microcrystalline form. The dissolution rate of the solid dispersion was significantly increased (approximately 90% within 5 min compared to either the pure drug (approximately 85% within 60 min or the corresponding physical mixture (approximately 80% within 60 min before and after storage. The solid dispersion in SOL:EPO (1:1, w/w was relatively stable at 40 °C/75% RH under CBZ tablet packaging conditions for at least 3 months. In conclusion, polymer combinations that improve drug-polymer miscibility at an HME processing temperature below the Tm of a drug appear to be beneficial in the preparation of solid dispersions containing thermally unstable drugs.

  18. Health concerns of heterotrophic plate count (HPC) bacteria in dental equipment water lines.

    Science.gov (United States)

    Allen, Martin J; Edberg, Stephen C

    2016-06-01

    There is an unsubstantiated concern as to the health relevance of HPC (heterotrophic plate count) bacteria in dental equipment waterlines. The American Dental Association (ADA) web site includes guidelines for controlling HPC populations and implies that HPC populations >500 CFU/mL as a "health" benchmark. The world-wide published literature including the United Nations fully examined this situation and concluded that HPC bacteria are not a health risk, but merely a general water quality parameter for all waters including dental water lines. This review provides documentation that the standard measurement of HPC bacteria in waters alone do not pose a health risk and the ADA already provides appropriate practices to minimize HPC bacteria in dental equipment water.

  19. Multilayer systems of alternating chalcogenide As Se and polymer thin films prepared using thermal evaporation and spin-coating techniques

    Science.gov (United States)

    Kohoutek, T.; Wagner, T.; Orava, J.; Krbal, M.; Ilavsky, J.; Vesely, D.; Frumar, M.

    2007-05-01

    We describe preparation and characterization of multilayer planar systems based on alternating chalcogenide As Se and polymer polyamide-imide (PAI) or polyvinyl-butyral (PVB) thin films. We deposited films of thermally evaporated As33Se67 chalcogenide glass periodically alternating with PAI or PVB films. Fifteen layers of As Se+PAI system and 17 layers of As Se+PVB system were deposited. The film thicknesses were approximately 100 nm for all of the film types. Polymer film thicknesses were calculated from profilometric measurements performed by an atomic force microscopy. Optical properties of prepared multilayers and also As Se, PAI and PVB single layers were established using UV vis NIR and ellipsometric spectroscopies. Both, As Se+PAI and As Se+PVB multilayer systems, exhibited the reflection (stop) bands centered near 830 nm. The bandwidth of reflection band of As Se+PAI multilayer was 90 nm while bandwidth of As Se+PVB system increased to 150 nm because PVB films had about 0.2 lower refractive index. A new possibility for the application of chalcogenide thin films appeared as high refractive index materials suitable for fabrication of optical elements (reflectors) for near-infrared region. Changing the films composition and thickness, multilayer systems with tailored position of stop band could be designed and prepared.

  20. The Fifth Workshop on HPC Best Practices: File Systems and Archives

    Energy Technology Data Exchange (ETDEWEB)

    Hick, Jason; Hules, John; Uselton, Andrew

    2011-11-30

    The workshop on High Performance Computing (HPC) Best Practices on File Systems and Archives was the fifth in a series sponsored jointly by the Department Of Energy (DOE) Office of Science and DOE National Nuclear Security Administration. The workshop gathered technical and management experts for operations of HPC file systems and archives from around the world. Attendees identified and discussed best practices in use at their facilities, and documented findings for the DOE and HPC community in this report.

  1. Heat protective role and mechanism of heat shock protein Hpc60

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A cytosolic heat shock protein named Hpc60 has been purified by immunoaffinity chromatography from pea leaves and its function has been examined in vitro. Results show that Hpc60 may suppress the aggregation of luciferase (LUC), protect lactate dehydrogenase (LDH) and ascorbate peroxidase (APX) from thermal inactivation. It also shows that Mg2+, ATP and pH affect the protective function of Hpc60 in different manners.

  2. Effect of thiolated polymers to textural and mucoadhesive properties of vaginal gel formulations prepared with polycarbophil and chitosan.

    Science.gov (United States)

    Cevher, Erdal; Sensoy, Demet; Taha, Mohamed A M; Araman, Ahmet

    2008-01-01

    The aim of this study was to design and evaluate of mucoadhesive gel formulations for the vaginal application of clomiphene citrate (CLM) for local treatment of human papilloma virus (HPV) infections. Chitosan (CHI) and polycarbophil (PC) were covalently modified using the thioglycolic acid and L-cysteine, respectively. The formation of thiol conjugates of chitosan (CHI-TG) and polycarbophil (PC-CYS) were confirmed by FT-IR analysis and PC-CYS and CHI-TG were found to have 148.42 +/- 4.16 and 41.17 +/- 2.34 micromol of thiol groups per gram of polymer, respectively. One percent CLM gels were prepared by combination of various concentrations of PC and CHI with thiolated conjugates of these polymers. Hardness, compressibility, elasticity, adhesiveness and cohesiveness of the gels were measured by Texture profile analysis and the vaginal mucoadhesion was investigated by mucoadhesion test. The increasing in the amount of the thiol conjugates was found to enhance the elasticity, cohesiveness, adhesiveness and mucoadhesion of the gel formulations but not their hardness and compressibility when compared to gels prepared using their respective parent formulations. Slower release rate of CLM from gels was achieved when the polymer concentrations were increased in the gel formulations. PC and its thiol conjugate were found to prolong the release of CLM longer than 70 h unlike gel formulations prepared using CHI and its thiol conjugate which were able to release CLM up to 12 h. Stability of CLM was preserved during the 3 month stability analysis under controlled room temperature and accelerated conditions.

  3. EFFECT OF GAMMA RAYS IN THE PREPARATION OF POLYMER AND HYDROGEL FROM ACRYLAMIDE MONOMER

    Institute of Scientific and Technical Information of China (English)

    M. M. Alam; M. F. Mina; F. Akhtar

    2003-01-01

    The formation of polymer and hydrogel from aqueous solutions having 20, 30 and 40% concentrations of acrylamide monomer by γ-ray irradiation processing in the dose range 0.06-30 kGy using a Co-60 source and their characterization have been observed. Polymer conversion and gel fraction are found to depend on radiation doses. Polymer conversion increases with the increase of dose, depending on the solution concentration, where maximum conversion is achieved at 0.18, 0.16 and 0.10 kGy for 20%, 30% and 40% concentrations, respectively. On the other hand, gel fraction increases with dose from the gel point (0.12 kGy) for all concentrations, where 100% conversion of gel occurs at doses ≥ 5 kGy. Tensile strength, viscosity and molecular weight (Mw) of polymer samples increase with both the dose and the concentration, showing a high value of Mw up to ≈108. Swelling of hydrogels under water with respect to time varies due to the variation of cross-linking density formed in the gels and the maximum swelling mainly occurs within 24 h. A remarkable change of surface morphology reveals characteristic features of monomer, polymer and hydrogel films.

  4. Preparation and in-vitro Antibacterial Evaluation of Electroless Silver Coated Polymers.

    Science.gov (United States)

    Fazeli, Mohammad Reza; Hosseini, Vahid; Shamsa, Fazel; Jamalifar, Hossein

    2010-01-01

    Long-term use of indwelling medical catheters has often been hindered by catheter-associated nosocomial infections. In this study the effectiveness of silver coating of polystyrene and polyethylene polymers was investigated. Polymer pieces of 2 cm(2) each were coated with a thin layer of silver using electroless plating technique. Silver-coated polymers were challenged with cultures of four different microorganisms known for their involvement in nosocomial infections in both solid and broth media. The tested bacteria included Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Pseudomonas aeruginosa. Silver release from the coated polymers was 2-5 μg/cm(2) which was confirmed by chemical and biological methods. The silver coating thickness ranged between 20-450 nm. P. aeruginosa and S. aureus were the most adherent bacteria to polystyrene sheets while E. coli showed minimum adherence effect. The survival rate of different bacteria after 80 min in a time course experiment tended to dominate E. coli as the most sensitive bacteria to the effect of silver with zero survival rate while around 4% of P. aeruginosa were detected after same period. Silver coating of indwelling polymers by electroless technique seems promising in combating nosocomial infections due to long-term catheterization.

  5. Preparation of melamine molecularly imprinted polymer by computer-aided design.

    Science.gov (United States)

    Wang, Yan; Liu, Jun-Bo; Tang, Shan-Shan; Jin, Rui-Fa

    2015-08-01

    Melamine was chosen as template, methacrylic acid was chosen as functional monomer, and divinylbenzene, ethylene glycol dimethacrylate, trimethylolpropane trimethylacrylate were chosen as cross-linking agents, respectively. The WB97XD/6-31G(d, p) method was used to calculate the geometry optimization of the different imprinting ratios, the action sites, the bonding situation, and the optimization of the cross-linking agents. The nature of the imprinting effect was also studied by the atoms in molecules theory. The theoretical results showed that melamine interacts with methacrylic acid by hydrogen bonding, and the melamine molecularly imprinted polymers with a molar ratio of 1:6 have the most hydrogen bonds and the most stable structure. Divinylbenzene is the best cross-linking agent for the melamine molecularly imprinted polymers. The melamine molecularly imprinted polymers were synthesized by precipitation polymerization. The results showed that the maximum adsorption capacity for molecularly imprinted polymers towards melamine is 19.84 mg/g, and the adsorption quantity of the polymers to melamine is obviously higher than that of cyromazine, cyanuric acid, and trithiocyanuric in milk. This study could provide theoretical and experimental references for the screening of the imprinting ratio and the cross-linking agent for the given template and monomer system.

  6. Building up Graphene-Based Conductive Polymer Composite Thin Films Using Reduced Graphene Oxide Prepared by γ-Ray Irradiation

    Directory of Open Access Journals (Sweden)

    Siyuan Xie

    2013-01-01

    Full Text Available In this paper, reduced graphene oxide (RGO was prepared by means of γ-ray irradiation of graphene oxide (GO in a water/ethanol mix solution, and we investigated the influence of reaction parameters, including ethanol concentration, absorbed dose, and dose rate during the irradiation. Due to the good dispersibility of the RGO in the mix solution, we built up flexible and conductive composite films based on the RGO and polymeric matrix through facile vacuum filtration and polymer coating. The electrical and optical properties of the obtained composite films were tested, showing good electrical conductivity with visible transmittance but strong ultraviolet absorbance.

  7. Biocompatible, biodegradable polymer-based, lighter than or light as water scaffolds for tissue engineering and methods for preparation and use thereof

    Science.gov (United States)

    Laurencin, Cato T. (Inventor); Pollack, Solomon R. (Inventor); Levine, Elliot (Inventor); Botchwey, Edward (Inventor); Lu, Helen H. (Inventor); Khan, Mohammed Yusuf (Inventor)

    2012-01-01

    Scaffolds for tissue engineering prepared from biocompatible, biodegradable polymer-based, lighter than or light as water microcarriers and designed for cell culturing in vitro in a rotating bioreactor are provided. Methods for preparation and use of these scaffolds as tissue engineering devices are also provided.

  8. Evaluation of roll compaction as a preparation method for hydroxypropyl cellulose-based matrix tablets

    Directory of Open Access Journals (Sweden)

    Imjak Jeon

    2011-01-01

    Full Text Available Roll compaction was applied for the preparation of hydroxypropyl cellulose (HPC-based sustained-release matrix tablets. Matrix tablets made via roll compaction exhibited higher dosage uniformity and faster drug release than direct-compacted tablets. HPC viscosity grade, roll pressure, and milling speed affected tablet properties significantly. Roll compaction seems to be an adequate granulation method for the preparation of HPC-based matrix tablets due to the simplicity of the process, less handling difficulty from HPC tackiness as well as easier particle size targeting. Selecting the optimum ratio of plastic excipients and the particle size of starting materials can however be critical issues in this method.

  9. Micromold methods for fabricating perforated substrates and for preparing solid polymer electrolyte composite membranes

    Energy Technology Data Exchange (ETDEWEB)

    Mittelsteadt, Cortney; Argun, Avni; Laicer, Castro; Willey, Jason

    2017-08-08

    In polymer electrolyte membrane (PEM) fuel cells and electrolyzes, attaining and maintaining high membrane conductivity and durability is crucial for performance and efficiency. The use of low equivalent weight (EW) perfluorinated ionomers is one of the few options available to improve membrane conductivity. However, excessive dimensional changes of low EW ionomers upon application of wet/dry or freeze/thaw cycles yield catastrophic losses in membrane integrity. Incorporation of ionomers within porous, dimensionally-stable perforated polymer electrolyte membrane substrates provides improved PEM performance and longevity. The present invention provides novel methods using micromolds to fabricate the perforated polymer electrolyte membrane substrates. These novel methods using micromolds create uniform and well-defined pore structures. In addition, these novel methods using micromolds described herein may be used in batch or continuous processing.

  10. [Preparation and evaluation of novel mesoporous molecular sieve of baicalin surface molecularly imprinted polymers].

    Science.gov (United States)

    Gu, Xia-li; He, Hong-liang; Shi, Li-ying; Gao, Yan-kun; Chen, Li-na

    2015-05-01

    Taking mesoporous molecular sieve MCM-41 as a substrate, baicalin (BA) as template, acrylamide (AM) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as a cross-linking agent, ethanol as solvent, under thermal polymerization initiator of azobis isobutyronitrilo (AIBN) , a kind of selective recognition of baicalin surface molecularly imprinted polymer was synthesized. The surface morphologies and characteristics of the MIPs were characterized by infrared spectroscopy (IR) and transmission electron microscope (TEM). The adsorption properties of polymer microsphere for the template were tested by the dynamic adsorption equilibrium experiments and static adsorption equilibrium experiments. The experiment showed that the imprinting process was successfully and the well-ordered one-dimensional pore structure of MCM-41 was still preserved. Furthermore, molecularly imprinted polymers had higher selective ability for BA, then provided a new method for the efficient separation and enrichment of baicalin active ingredients from medicinal plants Scutellaria baicalensis.

  11. PREPARATION AND CHARACTERIZATION OF COMPOSITES COMPRISING MODIFIED HARDWOOD AND WOOD POLYMERS/POLY(VINYL CHLORIDE

    Directory of Open Access Journals (Sweden)

    Ruxanda Bodîrlău

    Full Text Available Chemical modification of hardwood sawdust from ash-tree species was carried out with a solution of maleic anhydride in acetone. Wood polymers, lignin, and cellulose were isolated from the wood sawdust and modified by the same method. Samples were characterized by Fourier transform infrared spectroscopy (FTIR, providing evidence that maleic anhydride esterifies the free hydroxyl groups of the wood polymer components. Composites comprising chemically modified wood sawdust and wood polymers (cellulose, lignin-as variable weight percentages-, and poly (vinyl chloride were obtained and further characterized by using FTIR spectroscopy and scanning electron microscopy (SEM. The thermal behavior of composites was investigated by using the thermogravimetric analysis (TGA. In all cases, thermal properties were affected by fillers addition.

  12. Preparation of transition metal nanoparticles and surfaces modified with (co)polymers synthesized by RAFT

    Science.gov (United States)

    McCormick, III, Charles L.; Lowe, Andrew B.; Sumerlin, Brent S.

    2011-12-27

    A new, facile, general one-phase method of generating thiol-functionalized transition metal nanoparticles and surfaces modified by (co)polymers synthesized by the RAFT method is described. The method includes the steps of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a colloidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as functionalization with a variety of different chemical groups, expanding their utility and application.

  13. Continuous Security and Configuration Monitoring of HPC Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Lomeli, H. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bertsch, A. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fox, D. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-05-08

    Continuous security and configuration monitoring of information systems has been a time consuming and laborious task for system administrators at the High Performance Computing (HPC) center. Prior to this project, system administrators had to manually check the settings of thousands of nodes, which required a significant number of hours rendering the old process ineffective and inefficient. This paper explains the application of Splunk Enterprise, a software agent, and a reporting tool in the development of a user application interface to track and report on critical system updates and security compliance status of HPC Clusters. In conjunction with other configuration management systems, the reporting tool is to provide continuous situational awareness to system administrators of the compliance state of information systems. Our approach consisted of the development, testing, and deployment of an agent to collect any arbitrary information across a massively distributed computing center, and organize that information into a human-readable format. Using Splunk Enterprise, this raw data was then gathered into a central repository and indexed for search, analysis, and correlation. Following acquisition and accumulation, the reporting tool generated and presented actionable information by filtering the data according to command line parameters passed at run time. Preliminary data showed results for over six thousand nodes. Further research and expansion of this tool could lead to the development of a series of agents to gather and report critical system parameters. However, in order to make use of the flexibility and resourcefulness of the reporting tool the agent must conform to specifications set forth in this paper. This project has simplified the way system administrators gather, analyze, and report on the configuration and security state of HPC clusters, maintaining ongoing situational awareness. Rather than querying each cluster independently, compliance checking

  14. Charge-discharge studies on a lithium cell composed of PVdF-HFP polymer membranes prepared by phase inversion technique with a nanocomposite cathode

    Science.gov (United States)

    Manuel Stephan, A.; Teeters, Dale

    A novel polymer membrane of poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) co-polymer was prepared by the phase inversion technique with two different non-solvents, 1-butanol or hexane. The prepared films were analyzed by scanning electron microscope (SEM) and nitrogen absorption/desorption techniques. The change in the morphology and pore diameter of the films prepared with different non-solvents correlates with the structure of the non-solvents used. This electrolyte membrane was coupled with a nanocomposite LiAl 0.01Co 0.99O 2 cathode which was prepared by a solid-state reaction method and subsequently by ball-milling. Lithium cells consisting of LiAl 0.01Co 0.99O 2/polymer electrolyte/Li were assembled and their charge-discharge studies were investigated.

  15. Application of microgels as polymer supports for organic synthesis: preparation of a small phthalide library, a scavenger, and a borohydride reagent.

    Science.gov (United States)

    Shimomura, Osamu; Clapham, Bruce; Spanka, Carsten; Mahajan, Suresh; Janda, Kim D

    2002-01-01

    Microgel polymers containing a series of functional groups have been prepared. These microgels were composed of cross-linked poly(styrene) and were prepared by radical polymerization in solution. The microgel polymers exhibit good solubility in an array of different organic solvents, and in addition, they can be efficiently precipitated by the addition of methanol and isolated by filtration. A nine-member phthalide library was synthesized using an aminomethyl-functionalized microgel 5. To further demonstrate the versatility of these microgel polymers, tris(2-aminoethyl)amino microgel 11 was examined as a scavenger reagent to remove unreacted isocyanate after a urea synthesis. Finally, a microgel-supported ammonium borohydride reagent 14 was successfully prepared and used as a reducing agent. Notable features of these microgels are that in all applications the progress of the reaction could be monitored by standard NMR techniques and their preparation is performed using common glassware and techniques found in all organic laboratories.

  16. Durable and rechargeable biocidal polypropylene polymers and fibers prepared by using reactive extrusion.

    Science.gov (United States)

    Badrossamay, Mohammad Reza; Sun, Gang

    2009-04-01

    Incorporation of N-halamine precursor onto polypropylene was explored by using a reactive extrusion process. Several cyclic and acyclic halamine precursors were grafted onto polypropylene backbone through a melt free radical graft copolymerization. The structures and morphology of the grafted polymer were characterized with FTIR, and scanning electron microscope. Thermal properties of the polymers were evaluated by differential scanning calorimetry. The halogenated products of the corresponding grafted samples exhibited potent antimicrobial properties against Escherichia coli, and the antimicrobial properties were durable and regenerable. The relationship between effective surface contact and biocidal efficacy are further discussed.

  17. Preparation and characterization of PAN–KI complexed gel polymer electrolytes for solid-state battery applications

    Indian Academy of Sciences (India)

    N KRISHNA JYOTHI; K K VENKATARATNAM; P NARAYANA MURTY; K VIJAYA KUMAR

    2016-08-01

    The free standing and dimensionally stable gel polymer electrolyte films of polyacrylonitrile (PAN): potassium iodide (KI) of different compositions, using ethylene carbonate as a plasticizer and dimethyl formamide as solvent, are prepared by adopting ‘solution casting technique’ and these films are examined for their conductivities. The structural, miscibility and the chemical rapport between PAN and KI are investigated using X-ray diffraction, Fourier transform infrared spectroscopy and differential scanning calorimetry methods. The conductivity is enhanced with the increase in KI concentration and temperature. The maximum conductivity at 30$^{\\circ}$C is found to be $2.089 \\times 10^{−5}$ S cm$^{−1}$ for PAN:KI (70:30) wt%, which is nine orders greater than that of pure PAN (${\\lt}10^{−14}$ S cm$^{−1}$). The conductivity-temperature dependence of these polymer electrolyte films obeys Arrhenius behaviour with activation energy ranging from 0.358 to 0.478 eV. The conducting carriers of charge transport in these polymer electrolyte films are identified by Wagner’s polarization technique and it is found that the charge transport is predominantlydue to ions. The better conducting sample is used to fabricate the battery with configuration K/PAN $+$ KI/I$_2$ $+$ C $+$ electrolyte and good discharge characteristics of battery are observed.

  18. NARROW-DISPERSED CROSSLINKED CORE-SHELL POLYMER MICROSPHERES PREPARED BY SURFACE-INITIATED ATOM TRANSFER RADICAL POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    Yu-zeng Zhao; Xin-lin Yang; Feng Bai; Wen-qiang Huang

    2005-01-01

    Grafting of polystyrene with narrowly dispersed polymer microspheres through surface-initiated atom transfer radical polymerization (ATRP) was investigated. Polydivinylbenzene (PDVB) microspheres were prepared by dispersion polymerization with poly(N-vinyl pyrrolidone) (PVP) as stabilizer. The surfaces of PDVB microspheres were chloromethylated by chloromethyl methyl ether in the presence of zinc chloride as catalyst to form chloromethylbenzene initiating core sites for subsequent ATRP grafting of styrene using CuC1/bpy as catalytic system. Polystyrene was found to be grafted not only from the particle surfaces but also from within a thin shell layer, resulting in the formation of particles size increased from 2.38-2.58 μm, which can further grow to 2.93 μm during secondary grafting polymerization of styrene. This demonstrates that grafting polymerization proceeds through a typical ATRP procedure with living nature. All of the prepared microspheres have narrow particle size distribution with coefficient of variation around 10%.

  19. Cefuroxime axetil loaded gastroretentive floating tabletsbased on hydrophilic polymers: preparation and in vitro evaluation

    Directory of Open Access Journals (Sweden)

    Snehamayee Mohapatra

    2012-04-01

    Full Text Available The aim of this work was to study the formulation and in vitro characterization of hydro dynamically balanced floating matrix tablets using Cefuroxime axetil (CA as model drug. Different excipients such as hydroxy propyl methyl cellulose (HPMC K15M, E5LV (gelling agent, sodium bicarbonate (gas generating agent and sodium lauryl sulfate (SLS (solubility enhancer were used in order to optimize the drug release profile as well as floating property. Decrease in release characteristics with high viscous polymer were observed due to increased gel strength, tortuosity and length of drug diffusion path. Significant difference (p<0.5 in release rate was found at different concentration of SLS. The release mechanisms were explored and explained with zero order, first order, Higuchi, Korsmeyer and Hixson-Crowell equations. The release rate, extent and mechanism were governed by the content of polymer. The polymer content and amount of floating agent significantly affected the time required for 50%of drug release (t50%, mean dissolution time (MDT, release rate constant, and diffusion exponent (n.Kinetic modeling of dissolution profile revealed that the drug release mechanism could range from diffusion controlled to case II transport, which was co-dominated by diffusion polymer erosion in the release mechanism.

  20. Preparation and Characterization of Oxidized Starch Polymer Microgels for Encapsulation and Controlled Release of Functional Ingredients

    NARCIS (Netherlands)

    Li, Yuan; de Vries, Renko; Slaghek, Ted; Timmermans, Johan; Stuart, Martien A. Cohen; Norde, Willem

    A novel biocompatible and biodegradable microgel system has been developed for controlled uptake and release of especially proteins. It contains TEMPO-oxidized potato starch polymers, which are chemically cross-linked by sodium trimetaphosphate (STMP). Physical chemical properties have been

  1. The Polishing of Cutting-Edge Polymer-on-Glass for Pigtailing Preparation

    Directory of Open Access Journals (Sweden)

    Mohammad S.A. Rahman

    2009-01-01

    Full Text Available Problem statement: The high quality of cutting-edge surface is important in optical waveguide's efficiency. The perfect polishing of end surface is significant to deliver the best quality of light waves and minimize the device losses such as insertion loss and return loss. Hence, this research is concern on the parameters in polishing SU-8 polymer to increase the efficiency of waveguide. The main research is to study on how polishing parameter affect the cut length of the end surface of SU-8 polymer on silicon and determining the best parameters for polishing SU-8 polymer. Approach: Seven sets of rotation velocities were chosen which were 50, 100, 150, 200, 250, 300 and 350 rpm for the first part. The graph of cut length versus velocity at different sand paper size was plotted based on the data obtained from this experiment. Equation for each graph was acquired to determine relationship between these two parameters. For the second part, four samples were used. Each sample was polished with same rotation time and sandpaper size prescribed but with different rotation speed. Rotation speed is selected between 200 to 350 rpm with rotation time of 15 min using sandpaper with size of 0.3µm. Results: We found that the cut percentage of each rotation velocity are as follows: 50 rpm: ≤0.5%, 100 rpm: 0.6-1.0%, 150 rpm: 3.8-4.8%, 200 rpm: 7.7-10.6%, 250 rpm: 15.7-18.3%, 300 rpm: 25.6-27.4%, 350 rpm: 40.0-43.7%. The rotation speed suitable for polishing SU-8 polymer is below 200 rpm and the rotation speed over the point (ex. 300 rpm will cause cracking to the polymer although the silicon based layer look smooth. Conclusion: In this experiment it was found that the cut length increases as the rotation rate and the size of sand paper increased. It can also be concluded that polishing the sample at the speed of 200 rpm is the best polishing method for polymer SU-8 waveguide, at 15 min rotation time with the used of 0.3µm Aluminium oxide sandpaper size

  2. Preparation and Performance of Plasma/Polymer Composite Coatings on Magnesium Alloy

    Science.gov (United States)

    Bakhsheshi-Rad, H. R.; Hamzah, E.; Bagheriyan, S.; Daroonparvar, M.; Kasiri-Asgarani, M.; Shah, A. M.; Medraj, M.

    2016-09-01

    A triplex plasma (NiCoCrAlHfYSi/Al2O3·13%TiO2)/polycaprolactone composite coating was successfully deposited on a Mg-1.2Ca alloy by a combination of atmospheric plasma spraying and dip-coating techniques. The NiCoCrAlHfYSi (MCrAlHYS) coating, as the first layer, contained a large number of voids, globular porosities, and micro-cracks with a thickness of 40-50 μm, while the Al2O3·13%TiO2 coating, as the second layer, presented a unique bimodal microstructure with a thickness of 70-80 μm. The top layer was a hydrophobic polymer, which effectively sealed the porosities of plasma layers. The results of micro-hardness and bonding strength tests showed that the plasma coating presented excellent hardness (870 HV) and good bonding strength (14.8 MPa). However, the plasma/polymer coatings interface exhibited low bonding strength (8.6 MPa). The polymer coating formed thick layer (100-110 μm) that homogeneously covered the surface of the plasma layers. Contact angle measurement showed that polymer coating over plasma layers significantly decreased surface wettability. The corrosion current density ( i corr) of an uncoated sample (262.7 µA/cm2) decreased to 76.9 µA/cm2 after plasma coatings were applied. However, it was found that the i corr decreased significantly to 0.002 µA/cm2 after polymer sealing of the porous plasma layers.

  3. Prediction of dexamethasone release from PLGA microspheres prepared with polymer blends using a design of experiment approach.

    Science.gov (United States)

    Gu, Bing; Burgess, Diane J

    2015-11-10

    Hydrophobic drug release from poly (lactic-co-glycolic acid) (PLGA) microspheres typically exhibits a tri-phasic profile with a burst release phase followed by a lag phase and a secondary release phase. High burst release can be associated with adverse effects and the efficacy of the formulation cannot be ensured during a long lag phase. Accordingly, the development of a long-acting microsphere product requires optimization of all drug release phases. The purpose of the current study was to investigate whether a blend of low and high molecular weight polymers can be used to reduce the burst release and eliminate/minimize the lag phase. A single emulsion solvent evaporation method was used to prepare microspheres using blends of two PLGA polymers (PLGA5050 (25 kDa) and PLGA9010 (113 kDa)). A central composite design approach was applied to investigate the effect of formulation composition on dexamethasone release from these microspheres. Mathematical models obtained from this design of experiments study were utilized to generate a design space with maximized microsphere drug loading and reduced burst release. Specifically, a drug loading close to 15% can be achieved and a burst release less than 10% when a composition of 80% PLGA9010 and 90 mg of dexamethasone is used. In order to better describe the lag phase, a heat map was generated based on dexamethasone release from the PLGA microsphere/PVA hydrogel composite coatings. Using the heat map an optimized formulation with minimum lag phase was selected. The microspheres were also characterized for particle size/size distribution, thermal properties and morphology. The particle size was demonstrated to be related to the polymer concentration and the ratio of the two polymers but not to the dexamethasone concentration.

  4. Preparation and evaluation of gastroretentive floating pellets of metronidazole using Na-alginate and hydroxyl propyl methyl cellulose polymers.

    Science.gov (United States)

    Biswas, S K; Paul, S; Chowdhury, A; Das, J

    2012-03-15

    Gastroretentive floating pellets of metronidazole were formulated to prolong the gastric residence time in order to obtain controlled release characteristics of the drug. Nine formulations of metronidazole floating pellets such as AX, BX, CX, AY, BY, CY, AZ, BZ and CZ were prepared by extrusion method using different quantities of hydroxyl propyl methyl cellulose (HPMC) polymers such as methocel K4M premium and methocel K100LV premium in the ratio of 2:1, 1:2 and 1.5:1.5 while the amount of Na-alginate used in the formulations was 3.50, 5.25 and 7.0 g, respectively. The in vitro dissolution studies were carried out in 900 mL of phosphate buffer (pH 1.2) at 37 +/- 0.5 degrees C and 50 rpm for 6 h using USP XXIV paddle method and the content of drug release was done by UV spectrophotometer at 277 nm. It was found that the percent release of metronidazole from different formulations was different with passing of time. The drug release profile of the formulation (AX) having Na-alginate 3.50 g methocel K4M premium and methocel K100LV premium in the ratio of 2:1 showed best fit to Higuchi release kinetics with R2 value of 0.994. Finally, it might be concluded that the polymers had significant effect on drug release kinetics of metronidazole from floating pellets. The selection and use of suitable polymers in appropriate ratio might be very important in designing floating pellets and using the capabilities of these polymers, suitable floating pellets of metronidazole with desirable release rate could be formulated. Thus, in vivo research studies by the future researchers will confirm the appropriateness of these formulated metronidazole floating pellets.

  5. Preparation and adsorption behavior of berberine hydrochloride imprinted polymers by using silica gel as sacrificed support material

    Science.gov (United States)

    Li, Hui; Li, Yuzhuo; Li, Zhiping; Peng, Xiyang; Li, Yanan; Li, Gui; Tan, Xianzhou; Chen, Gongxi

    2012-03-01

    Preparation of berberine hydrochloride (B-Cl) imprinted polymers (MIPs) based on surface imprinting technique with silica gel as sacrificial support material was performed successfully by using B-Cl as template, methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) as functional monomer and cross-linker, respectively. The prepared polymers were characterized by Fourier transmission infrared spectrometry (FTIR) and scanning electron microscopy (SEM). Adsorption behavior of the MIPs for the template and its structural analogues was investigated. Sites distribution on the surface of MIPs was explored by using different isotherm adsorption models and thermodynamic parameters for the adsorption of B-Cl on the MIPs determined. Sample application and reusability for the MIPs was also evaluated. Results indicated the strong adsorption and high selectivity of the MIPs for B-Cl. Saturated adsorption capacity reached 27.2 μmol g-1 and the selectivity coefficient of the MIPs for B-Cl relative to jatrorrhizine hydrochloride (J-Cl) and palmatine palmatus hydrochloride (P-Cl) are 3.70 and 6.03, respectively. In addition, the MIPs were shown with good reusability and selectively retention ability in sample application.

  6. Preparation and adsorption behavior of berberine hydrochloride imprinted polymers by using silica gel as sacrificed support material

    Energy Technology Data Exchange (ETDEWEB)

    Li Hui, E-mail: lihuijsdx@163.com [Key Laboratory of Plant Resource Conservation and Utilization, Jishou University, Hunan Jishou, 416000 (China); Li Yuzhuo [Key Laboratory of Plant Resource Conservation and Utilization, Jishou University, Hunan Jishou, 416000 (China); Li Zhiping [College of Chemistry and Chemical Engineering, Jishou University, Hunan Jishou, 416000 (China); Peng Xiyang; Li Yanan; Li Gui; Tan Xianzhou; Chen Gongxi [Key Laboratory of Plant Resource Conservation and Utilization, Jishou University, Hunan Jishou, 416000 (China)

    2012-03-01

    Preparation of berberine hydrochloride (B-Cl) imprinted polymers (MIPs) based on surface imprinting technique with silica gel as sacrificial support material was performed successfully by using B-Cl as template, methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) as functional monomer and cross-linker, respectively. The prepared polymers were characterized by Fourier transmission infrared spectrometry (FTIR) and scanning electron microscopy (SEM). Adsorption behavior of the MIPs for the template and its structural analogues was investigated. Sites distribution on the surface of MIPs was explored by using different isotherm adsorption models and thermodynamic parameters for the adsorption of B-Cl on the MIPs determined. Sample application and reusability for the MIPs was also evaluated. Results indicated the strong adsorption and high selectivity of the MIPs for B-Cl. Saturated adsorption capacity reached 27.2 {mu}mol g{sup -1} and the selectivity coefficient of the MIPs for B-Cl relative to jatrorrhizine hydrochloride (J-Cl) and palmatine palmatus hydrochloride (P-Cl) are 3.70 and 6.03, respectively. In addition, the MIPs were shown with good reusability and selectively retention ability in sample application.

  7. Preparation and evaluation of electrospun nanofibers containing pectin and time-dependent polymers aimed for colonic drug delivery of celecoxib

    Directory of Open Access Journals (Sweden)

    A. Akhgari

    2016-01-01

    Full Text Available Objective(s:The aim of this study was to prepare electrospun nanofibers of celecoxib using combination of time-dependent polymers with pectin to achieve a colon-specific drug delivery system for celecoxib. Materials and Methods:Formulations were produced based on two multilevel 22 full factorial designs. The independent variables were the ratio of drug:time-dependent polymer (X1 and the amount of pec­tin in formulations (X2. Electrospinning process was used for preparation of nanofibers. The spinning solutions were loaded in 5 mL syringes. The feeding rate was fixed by a syringe pump at 2.0 mL/h and a high voltage supply at range 10-18 kV was applied for electrospinning. Electrospun nanofibers were collected and evaluated by scanning electron microscopy and drug release in the acid and buffer with pH 6.8 with and without pectinase. Results:Electrospun nanofibers of celecoxib with appropriate morphological properties were produced via electrospinning process. Drug release from electrospun nanofibers was very low in the acidic media; while, drug release in the simulated colonic media was the highest from formulations containing pectin. Conclusion: Formulation F2 (containing drug:ERS with the ratio of 1:2 and 10% pectin exhibited acceptable morphological characteristics and protection of drug in the upper GI tract and could be a good candidate as a colonic drug delivery system for celecoxib.

  8. Preparation and controlled drug delivery applications of mesoporous silica polymer nanocomposites through the visible light induced surface-initiated ATRP

    Science.gov (United States)

    Huang, Long; Liu, Meiying; Mao, Liucheng; Xu, Dazhuang; Wan, Qing; Zeng, Guangjian; Shi, Yingge; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2017-08-01

    The mesoporous materials with large pore size, high specific surface area and high thermal stability have been widely utilized in a variety of fields ranging from environmental remediation to separation and biomedicine. However, surface modification of these silica nanomaterials is required to endow novel properties and achieve better performance for most of these applications. In this work, a new method has been established for surface modification of mesoporous silica nanoparticles (MSNs) that relied on the visible light induced atom transfer radical polymerization (ATRP). In the procedure, the copolymers composited with itaconic acid (IA) and poly(ethylene glycol)methyl acrylate (PEGMA) were grafted from MSNs using IA and PEGMA as the monomers and 10-Phenylphenothiazine(PTH) as the organic catalyst. The successful preparation of final polymer nanocomposites (named as MSNs-NH2-poly(IA-co-PEGMA)) were evidenced by a series of characterization techniques. More importantly, the anticancer agent cisplatin can be effectively loaded on MSNs-NH2-poly(IA-co-PEGMA) and controlled release it from the drug-loading composites with pH responsive behavior. As compared with conventional ATRP, the light induced surface-initiated ATRP could also be utilized for preparation of various silica polymer nanocomposites under rather benign conditions (e.g. absent of transition metal ions, low polymerization temperature and short polymerization time). Taken together, we have developed a rather promising strategy method for fabrication of multifunctional MSNs-NH2-poly(IA-co-PEGMA) with great potential for biomedical applications.

  9. Preparation and electrochemical behavior of water-soluble inclusion complex of ferrocene with {beta}-cyclodextrin polymer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Wang; Chen Ming [College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu (China); Diao Guowang, E-mail: gwdiao@yzu.edu.cn [College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu (China)

    2011-05-30

    Highlights: > Water-soluble Fc-{beta}-CD polymer inclusion complex is prepared with a supermolecular method. > Fc-{beta}-CDP shows better aqueous solubility remarkably than Fc and Fc-{beta}-CD. > It also reserves the electrochemical properties of Fc-{beta}-CDP in aqueous solution. > It is determined the electrochemical constants and dissociated constant. > The method opens up aqueous applications of insoluble organic compounds in electrochemistry. - Abstract: A new water-soluble inclusion complex of ferrocene (Fc) with {beta}-cyclodextrin polymer ({beta}-CDP) was prepared by a facile strategy and characterized by {sup 1}H NMR spectroscopy, elemental analysis, powder X-ray diffractometry, thermogravimetry, UV-vis spectroscopy and cyclic voltammetry. Compared with Fc and the inclusion complex of Fc with {beta}-cyclodextrin (Fc-{beta}-CD), the solubility of ferrocene-{beta}-cyclodextrin polymer (Fc-{beta}-CDP) was greatly enhanced due to the water-soluble {beta}-CDP host. The ratio of {beta}-cyclodextrin ({beta}-CD) unit in {beta}-CDP to Fc was determined as 1:1. At 25 deg. C, the dissociated constant of Fc-{beta}-CDP was measured as 3.65 mM by UV-vis spectroscopy and cyclic voltammetry. The electrochemical properties of Fc-{beta}-CDP in water were studied. The diffusion coefficients of oxidation state and reduction state were calculated as 3.52 x 10{sup -7} cm{sup 2} s{sup -1} and 3.93 x 10{sup -7} cm{sup 2} s{sup -1}. The resulting value of standard rate constant was measured as 1.95 x 10{sup -3} cm s{sup -1}. The diffusion activation energy was calculated as 21.8 kJ mol{sup -1}.

  10. Self-service for software development projects and HPC activities

    Science.gov (United States)

    Husejko, M.; Høimyr, N.; Gonzalez, A.; Koloventzos, G.; Asbury, D.; Trzcinska, A.; Agtzidis, I.; Botrel, G.; Otto, J.

    2014-05-01

    This contribution describes how CERN has implemented several essential tools for agile software development processes, ranging from version control (Git) to issue tracking (Jira) and documentation (Wikis). Running such services in a large organisation like CERN requires many administrative actions both by users and service providers, such as creating software projects, managing access rights, users and groups, and performing tool-specific customisation. Dealing with these requests manually would be a time-consuming task. Another area of our CERN computing services that has required dedicated manual support has been clusters for specific user communities with special needs. Our aim is to move all our services to a layered approach, with server infrastructure running on the internal cloud computing infrastructure at CERN. This contribution illustrates how we plan to optimise the management of our of services by means of an end-user facing platform acting as a portal into all the related services for software projects, inspired by popular portals for open-source developments such as Sourceforge, GitHub and others. Furthermore, the contribution will discuss recent activities with tests and evaluations of High Performance Computing (HPC) applications on different hardware and software stacks, and plans to offer a dynamically scalable HPC service at CERN, based on affordable hardware.

  11. Spectral-element seismic wave propagation on emerging HPC architectures

    Science.gov (United States)

    Peter, Daniel; Liu, Qiancheng; Komatitsch, Dimitri

    2017-04-01

    Seismic tomography is the most prominent approach to infer physical properties of Earth's internal structures such as compressional- and shear-wave speeds, anisotropy and attenuation. Using seismic signals from ground-motion records, recent advances in full-waveform inversions require increasingly accurate simulations of seismic wave propagation in complex 3D media to provide access to the complete 3D seismic wavefield. However, such numerical simulations are computationally expensive and need high-performance computing (HPC) facilities for further improving the current state of knowledge. During recent years, new multi- and many-core architectures such as graphics processing units (GPUs) have been added to available large HPC systems. GPU-accelerated computing together with advances in multi-core central processing units (CPUs) can greatly accelerate scientific applications. To employ a wide variety of hardware accelerators for seismic wave propagation simulations, we incorporated a code generation tool BOAST into an existing spectral-element code package SPECFEM3D_GLOBE. This allows us to use meta-programming of computational kernels and generate optimized source code for both CUDA and OpenCL languages, running simulations on either CUDA or OpenCL hardware accelerators. We show here benchmark applications of seismic wave propagation on GPUs and CPUs, comparing performances on emerging hardware architectures.

  12. Thermal properties of SFR-HPC exposed to high temperatures

    Science.gov (United States)

    Scheinherrová, Lenka; Pavlík, Zbyšek

    2017-07-01

    In this paper, a non-adiabatic method was used for the assessment of specific heat capacity of steel fibre reinforced high performance concrete in the temperature range 105-1000 °C. The tested SFR-HPC mix was produced from CEM II 42.5 R, ground granulated blast furnace slag, silica sand with maximum particle size of 2 mm, silica fume, brass-coated steel fibres, superplasticizer on polycarboxylate ether basis and batch water. For the studied material, properties after 2 hours thermal treatment at the temperatures of 105 °C, 200 °C, 400 °C, 600 °C, 800 °C, and 1000 °C respectively were tested. Among them, bulk density, matrix density, total open porosity and thermal parameters as thermal conductivity, thermal diffusivity and specific heat capacity were measured. The measured specific heat capacity exhibited high dependence on temperature and pointed to the structural changes that studied material underwent at high temperatures. Accordingly, the obtained residual parameters revealed the thermally induced damage of SFR-HPC and critical temperatures for its functionality.

  13. Performance Analysis, Modeling and Scaling of HPC Applications and Tools

    Energy Technology Data Exchange (ETDEWEB)

    Bhatele, Abhinav [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-01-13

    E cient use of supercomputers at DOE centers is vital for maximizing system throughput, mini- mizing energy costs and enabling science breakthroughs faster. This requires complementary e orts along several directions to optimize the performance of scienti c simulation codes and the under- lying runtimes and software stacks. This in turn requires providing scalable performance analysis tools and modeling techniques that can provide feedback to physicists and computer scientists developing the simulation codes and runtimes respectively. The PAMS project is using time allocations on supercomputers at ALCF, NERSC and OLCF to further the goals described above by performing research along the following fronts: 1. Scaling Study of HPC applications; 2. Evaluation of Programming Models; 3. Hardening of Performance Tools; 4. Performance Modeling of Irregular Codes; and 5. Statistical Analysis of Historical Performance Data. We are a team of computer and computational scientists funded by both DOE/NNSA and DOE/ ASCR programs such as ECRP, XStack (Traleika Glacier, PIPER), ExaOSR (ARGO), SDMAV II (MONA) and PSAAP II (XPACC). This allocation will enable us to study big data issues when analyzing performance on leadership computing class systems and to assist the HPC community in making the most e ective use of these resources.

  14. Climate simulations and services on HPC, Cloud and Grid infrastructures

    Science.gov (United States)

    Cofino, Antonio S.; Blanco, Carlos; Minondo Tshuma, Antonio

    2017-04-01

    Cloud, Grid and High Performance Computing have changed the accessibility and availability of computing resources for Earth Science research communities, specially for Climate community. These paradigms are modifying the way how climate applications are being executed. By using these technologies the number, variety and complexity of experiments and resources are increasing substantially. But, although computational capacity is increasing, traditional applications and tools used by the community are not good enough to manage this large volume and variety of experiments and computing resources. In this contribution, we evaluate the challenges to run climate simulations and services on Grid, Cloud and HPC infrestructures and how to tackle them. The Grid and Cloud infrastructures provided by EGI's VOs ( esr , earth.vo.ibergrid and fedcloud.egi.eu) will be evaluated, as well as HPC resources from PRACE infrastructure and institutional clusters. To solve those challenges, solutions using DRM4G framework will be shown. DRM4G provides a good framework to manage big volume and variety of computing resources for climate experiments. This work has been supported by the Spanish National R&D Plan under projects WRF4G (CGL2011-28864), INSIGNIA (CGL2016-79210-R) and MULTI-SDM (CGL2015-66583-R) ; the IS-ENES2 project from the 7FP of the European Commission (grant agreement no. 312979); the European Regional Development Fund—ERDF and the Programa de Personal Investigador en Formación Predoctoral from Universidad de Cantabria and Government of Cantabria.

  15. Simplifying the Development, Use and Sustainability of HPC Software

    Directory of Open Access Journals (Sweden)

    Jeremy Cohen

    2014-07-01

    Full Text Available Developing software to undertake complex, compute-intensive scientific processes requires a challenging combination of both specialist domain knowledge and software development skills to convert this knowledge into efficient code. As computational platforms become increasingly heterogeneous and newer types of platform such as Infrastructure-as-a-Service (IaaS cloud computing become more widely accepted for high-performance computing (HPC, scientists require more support from computer scientists and resource providers to develop efficient code that offers long-term sustainability and makes optimal use of the resources available to them. As part of the libhpc stage 1 and 2 projects we are developing a framework to provide a richer means of job specification and efficient execution of complex scientific software on heterogeneous infrastructure. In this updated version of our submission to the WSSSPE13 workshop at SuperComputing 2013 we set out our approach to simplifying access to HPC applications and resources for end-users through the use of flexible and interchangeable software components and associated high-level functional-style operations. We believe this approach can support sustainability of scientific software and help to widen access to it.

  16. Hard dental tissue minimal-invasive preparation using contemporary polymer rotating instruments and laser

    OpenAIRE

    Beloica Miloš; Vulićević Zoran R.; Mandinić Zoran; Radović Ivana; Jovičić Olivera; Carević Momir; Tekić Jasmina

    2014-01-01

    Goal of contemporary dentistry is to decrease the patient’s discomfort during treatment. Dentists aim to achieve maximum with the newly developed dental materials as well as with new cavity preparation techniques in the shortest time span. Since the development of the first constructed borer (drilling machine) for caries removal, the preparation techniques have considerably changed. The progress of dental materials as well as the cavity preparation techniqu...

  17. Chemical and radiation crosslinked polymer electrolyte membranes prepared from radiation-grafted ETFE films for DMFC applications

    Science.gov (United States)

    Chen, Jinhua; Asano, Masaharu; Yamaki, Tetsuya; Yoshida, Masaru

    To develop a highly chemically stable polymer electrolyte membrane for application in a direct methanol fuel cell (DMFC), doubly crosslinked membranes were prepared by chemical crosslinking using bifunctional monomers, such as divinylbenzene (DVB) and bis(p, p-vinyl phenyl) ethane (BVPE), and by radiation crosslinking. The membranes were prepared by grafting of m, p-methylstyrene (MeSt) and p-tert-butylstyrene (tBuSt) into poly(ethylene- co-tetrafluoroethylene) (ETFE) films and subsequent sulfonation. The effects of the DVB and BVPE crosslinkers on the grafting kinetics and the properties of the prepared membranes, such as water uptake, proton conductivity and chemical stability were investigated. Radiation crosslinking was introduced by irradiation of the ETFE base film, the grafted film or the sulfonated membrane. The membrane crosslinked by DVB and BVPE crosslinkers and post-crosslinked by γ-ray irradiation of the corresponding grafted film possessed the highest chemical stability among the prepared membranes, a significantly lower methanol permeability compared to Nafion ® membranes, and a better DMFC performance for high methanol feed concentration. Therefore, this doubly crosslinked membrane was promising for application in a DMFC where relatively high methanol concentration could be fed.

  18. Chemical and radiation crosslinked polymer electrolyte membranes prepared from radiation-grafted ETFE films for DMFC applications

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jinhua; Asano, Masaharu; Yamaki, Tetsuya; Yoshida, Masaru [Department of Material Development, Takasaki Radiation Chemistry Research Establishment, Japan Atomic Energy Research Institute, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2006-07-14

    To develop a highly chemically stable polymer electrolyte membrane for application in a direct methanol fuel cell (DMFC), doubly crosslinked membranes were prepared by chemical crosslinking using bifunctional monomers, such as divinylbenzene (DVB) and bis(p,p-vinyl phenyl) ethane (BVPE), and by radiation crosslinking. The membranes were prepared by grafting of m,p-methylstyrene (MeSt) and p-tert-butylstyrene (tBuSt) into poly(ethylene-co-tetrafluoroethylene) (ETFE) films and subsequent sulfonation. The effects of the DVB and BVPE crosslinkers on the grafting kinetics and the properties of the prepared membranes, such as water uptake, proton conductivity and chemical stability were investigated. Radiation crosslinking was introduced by irradiation of the ETFE base film, the grafted film or the sulfonated membrane. The membrane crosslinked by DVB and BVPE crosslinkers and post-crosslinked by {gamma}-ray irradiation of the corresponding grafted film possessed the highest chemical stability among the prepared membranes, a significantly lower methanol permeability compared to Nafion{sup R} membranes, and a better DMFC performance for high methanol feed concentration. Therefore, this doubly crosslinked membrane was promising for application in a DMFC where relatively high methanol concentration could be fed. (author)

  19. Preparation and Characterization in vitro of Sustained-release Captopril/Chitosan-gelatin Net-polymer Microspheres(Cap/CGNPMs)

    Institute of Scientific and Technical Information of China (English)

    SONG Yimin; CHEN Xiguang; TANG Xuexi; LIU Chengshen; MENG Xianghong; YU Luojun

    2006-01-01

    The captopril/Chitosan-gelatin net-polymer microspheres (Cap/CGNPMs) were prepared using Chitosan(CS) and gelatin(Gel) by the methods of emulsification. A cross linked reagent alone or in combination with microcrystalline cellulose(MCC) was added in the process of preparation of microspheres to eliminate dose dumping and burst phenomenon of microspheres for the improvement of the therapeutic efficiency and the decrease of the side effects of captopril(Cap). The results indicate that Cap/CGNPMs have a spherical shape , smooth surface morphology and integral inside structure and no adhesive phenomena and good mobility,and the size distribution is mainly from 220 to 280 μm. Researches on the Cap release test in vitro demonstrate that Cap/CGNPMs are of the role of retarding release of Cap compared with Cap ordinary tablets (COT), embedding ratio (ER) ,drug loading (DL), and swelling ratio (SR), and release behaviors of CGNPMS are influenced by process conditions of preparation such as experimental material ratio (EMR) , composition of cross linking reagents. Among these factors , the EMR(1/4),CLR (FOR+TPP) and 0.75% microcrystalline cellulose (MCC) added to the microspheres are the optimal scheme to the preparation of Cap/CGNPMs. The Cap/CGNPMs have a good characteristic of sustained release of drug, and the process of emulsification and cross-linking process is simple and stable. The CGNPMs is probable to be one of an ideal sustained release system for water-soluble drugs.

  20. Preparation and application of conducting polymer/Ag/clay composite nanoparticles formed by in situ UV-induced dispersion polymerization.

    Science.gov (United States)

    Zang, Limin; Qiu, Jianhui; Yang, Chao; Sakai, Eiichi

    2016-02-03

    In this work, composite nanoparticles containing polypyrrole, silver and attapulgite (PPy/Ag/ATP) were prepared via UV-induced dispersion polymerization of pyrrole using ATP clay as a templet and silver nitrate as photoinitiator. The effects of ATP concentration on morphology, structure and electrical conductivity were studied. The obtained composite nanoparticles with an interesting beads-on-a-string morphology can be obtained in a short time (10 min), which indicates the preparation method is facile and feasible. To explore the potential applications of the prepared PPy/Ag/ATP composite nanoparticles, they were served as multifunctional filler and blended with poly(butylene succinate) (PBS) matrix to prepare biodegradable composite material. The distribution of fillers in polymer matrix and the interfacial interaction between fillers and PBS were confirmed by scanning electron microscope, elemental mapping and dynamic mechanical analysis. The well dispersed fillers in PBS matrix impart outstanding antibacterial property to the biodegradable composite material as well as enhanced storage modulus due to Ag nanoparticles and ATP clay. The biodegradable composite material also possesses modest surface resistivity (10(6)~ 10(9) Ω/◻).

  1. Polymer Light-Emitting Diode Prepared by Floating-Off Film-Transfer Technique

    KAUST Repository

    Park, Jihoon

    2015-12-22

    © 2015 Copyright Taylor & Francis Group, LLC. Floating-off film-transfer technique was used for the formation of semiconducting polymer multi-layers and the effect on the performance of polymer light-emitting diode (PLED) was studied. This method made it possible to avoid the solvent compatibility problem that was typically encountered in successive coating of polymeric multilayer by solution processing. F8BT and MEH-PPV were used for electron transporting layer (ETL) and for emissive layer, respectively. Current-voltage-luminance characteristics and luminescence efficiency results showed that the insertion of ETL by floating-off film-transfer technique followed by proper heat treatment resulted in a significant improvement in PLED operation due to its electron-transporting and hole-blocking abilities.

  2. The Preparation and Properties of Polymer/Nanoparticle Blends Using POSS (TM)

    Science.gov (United States)

    2007-11-02

    commercially available epoxies (Epon 828). Ph Ph Ph \\ Si~ JSi PhSi~~S W t \\ / Toluene/Styrene -C2H4 / teSi -gh Lrse Ph uwte r h\\~~J/ \\\\-Ph Si.0 ..- Si...polymer. This material was tested for flame retardance, but was not effective because of the low percentage of silica in the POSSTM sample (20 wt

  3. Preparation and in vitro release performance of sustained-release captopril/Chitosan-gelatin net-polymer microspheres

    Science.gov (United States)

    Zhou, Li; Xu, Junming; Song, Yimin; Gao, Yuanyuan; Chen, Xiguang

    2007-07-01

    The captopril/Chitosan-gelatin net-polymer microspheres (CTP/CGNPMs) were prepared using Chitosan (CTS) and gelatin (GT) by the methods of emulsification, cross-linked reagent alone or in combination and microcrystalline cellulose (MCC) added in the process of preparation of microspheres, which aimed to eliminate dose dumping and burst phenomenon of microspheres for the improvement of the therapeutic efficiency and the decrease of the side effects of captopril (CTP). The results indicated that CTP/CGNPMs had a spherical shape, smooth surface and integral structure inside but no adhesive phenomena in the preparation. The size distribution ranged from 220 μm to 280 μm. The CTP release test in vitro demonstrated that CTP/CGNPMs played the role of retarding the release of CTP compared with ordinary CTP tablets. The release behaviors of CGNPMS were influenced by preparation conditions such as experimental material ratio (EMR) and composition of cross linking reagents. Among these factors, the EMR (1/4), CLR (FA+SPP) and 0.75% microcrystalline cellulose (MCC) added to the microspheres constituted the optimal scheme for the preparation of CTP/CGNPMs. The ER, DL and SR of CTP/CGNPMs prepared according to the optimal scheme were 46.23±4.51%, 9.95±0.77% and 261±42%, respectively. The CTP/CGNPMs had the good characteristics of sustained release of drug and the process of emulsification and cross-linking were simple and stable. The CGNPMs are likely to be an ideal sustained release formulation for water-soluble drugs.

  4. Preparation and in vitro Release Performance of Sustained-release Captopril/Chitosan-gelatin Net-polymer Microspheres

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The captopril/Chitosan-gelatin net-polymer microspheres (CTP/CGNPMs) were prepared using Chitosan (CTS) and gelatin (GT) by the methods of emulsification, cross-linked reagent alone or in combination and microcrystalline cellulose (MCC) added in the process of preparation of microspheres, which aimed to eliminate dose dumping and burst phenomenon of microspheres for the improvement of the therapeutic efficiency and the decrease of the side effects of captopril (CTP). The results indicated that CTP/CGNPMs had a spherical shape, smooth surface and integral structure inside but no adhesive phenomena in the preparation. The size distribution ranged from 220 μm to 280 μm. The CTP release test in vitro demonstrated that CTP/CGNPMs played the role of retarding the release of CTP compared with ordinary CTP tablets. The release behaviors of CGNPMS were influenced by preparation conditions such as experimental material ratio (EMR) and composition of cross linking reagents. Among these factors, the EMR (1/4), CLR (FA+SPP) and 0.75% microcrystalline cellulose (MCC) added to the microspheres constituted the optimal scheme for the preparation of CTP/CGNPMs. The ER, DL and SR of CTP/CGNPMs prepared according to the optimal scheme were 46.23±4.51%, 9.95±0.77% and 261±42%, respectively. The CTP/CGNPMs had the good characteristics of sustained release of drug and the process of emulsification and cross-linking were simple and stable. The CGNPMs are likely to be an ideal sustained release formulation for water-soluble drugs.

  5. Preparation and anti-cancer activity of polymer-encapsulated curcumin nanoparticles

    Science.gov (United States)

    Thu Ha, Phuong; Huong Le, Mai; Nhung Hoang, Thi My; Thu Huong Le, Thi; Quang Duong, Tuan; Tran, Thi Hong Ha; Tran, Dai Lam; Phuc Nguyen, Xuan

    2012-09-01

    Curcumin (Cur) is a yellow compound isolated from rhizome of the herb curcuma longa. Curcumin possesses antioxidant, anti-inflammatory, anti-carcinogenic and antimicrobial properties, and suppresses proliferation of many tumor cells. However, the clinical application of curcumin in cancer treatment is considerably limited due to its serious poor delivery characteristics. In order to increase the hydrophilicity and drug delivery capability, we encapsulated curcumin into copolymer PLA-TPGS, 1,3-beta-glucan (Glu), O-carboxymethyl chitosan (OCMCs) and folate-conjugated OCMCs (OCMCs-Fol). These polymer-encapsulated curcumin nanoparticles (Cur-PLA-TPGS, Cur-Glu, Cur-OCMCs and Cur-OCMCs-Fol) were characterized by infrared (IR), fluorescence (FL), photoluminescence (PL) spectra, field emission scanning electron microscopy (FE-SEM), and found to be spherical particles with an average size of 50-100 nm, being suitable for drug delivery applications. They were much more soluble in water than not only free curcumin but also other biodegradable polymer-encapsulated curcumin nanoparticles. The anti-tumor promoting assay was carried out, showing the positive effects of Cur-Glu and Cur-PLA-TPGS on tumor promotion of Hep-G2 cell line in vitro. Confocal microscopy revealed that the nano-sized curcumin encapsulated by polymers OCMCs and OCMCs-Fol significantly enhanced the cellular uptake (cancer cell HT29 and HeLa).

  6. Preparation, Characterization and Efficacy Evaluation of Synthetic Biocompatible Polymers Linking Natural Antioxidants

    Directory of Open Access Journals (Sweden)

    Nevio Picci

    2012-10-01

    Full Text Available The purpose of this work was the synthesis, characterization and efficacy evaluation of new biocompatible antioxidant polymers linking trans-ferulic acid or a-lipoic acid. In particular, ferulic or lipoic acid were introduced in the preformed polymeric backbone. The new antioxidant biopolymers were characterized by Fourier transform infrared spectroscopy and gel permeation chromatography. The degree of functionalization (moles of antioxidant per gram of polymer was determined by the Gaur-Gupta method for free amino group determination and by the Folin method for the phenolic groups. Their ability to inhibit lipid peroxidation were estimated in rat liver microsomal membranes induced in vitro by tert-BOOH (tert-butyl hydroperoxide, as a source of free radicals. The DPPH (1,1-diphenyl-2-picrylhydrazyl radical-scavenging effect was also evaluated. The obtained systems, with different solubility, showed strong antioxidant and antiradical activities, suggesting potential use as packaging materials for foods, cosmetics, pharmaceuticals and personal care products. Moreover, the cytotoxicity of the synthesized polymers was also evaluated on Caco-2 cell cultures in order to verify their biocompatibility when exposed to an absorptive epithelial cell line.

  7. Preparation and Performance of Plasma/Polymer Composite Coatings on Magnesium Alloy

    DEFF Research Database (Denmark)

    Bakhsheshi-Rad, H. R.; Hamzah, E.; Bagheriyan, S.

    2016-01-01

    , globular porosities, and micro-cracks with a thickness of 40-50 μm, while the Al2O3·13%TiO2 coating, as the second layer, presented a unique bimodal microstructure with a thickness of 70-80 μm. The top layer was a hydrophobic polymer, which effectively sealed the porosities of plasma layers. The results......A triplex plasma (NiCoCrAlHfYSi/Al2O3·13%TiO2)/polycaprolactone composite coating was successfully deposited on a Mg-1.2Ca alloy by a combination of atmospheric plasma spraying and dip-coating techniques. The NiCoCrAlHfYSi (MCrAlHYS) coating, as the first layer, contained a large number of voids...... of micro-hardness and bonding strength tests showed that the plasma coating presented excellent hardness (870 HV) and good bonding strength (14.8 MPa). However, the plasma/polymer coatings interface exhibited low bonding strength (8.6 MPa). The polymer coating formed thick layer (100-110 μm...

  8. Preparation of Cu(2+)-mediated magnetic imprinted polymers for the selective sorption of bovine hemoglobin.

    Science.gov (United States)

    Gao, Ruixia; Cui, Xihui; Hao, Yi; He, Gaiyan; Zhang, Min; Tang, Yuhai

    2016-04-01

    In this work, a novel Cu(2+)-mediated core-shell bovine hemoglobin imprinted superparamagnetic polymers were synthesized. First, carboxyl group directly-functionalized Fe3O4 nanoparticles were produced by a facile one-pot hydrothermal method. Next, copper ions were introduced to chelate with carboxyl groups and further bonded with template bovine hemoglobin as co-functional monomer. Then, functional monomers 3-aminopropyltriethoxylsilane and octyltrimethoxysilane were adopted to form the thin polymer layers. Finally, after removal of the templates, the imprinting shells with specific recognition cavities for bovine hemoglobin were obtained on Fe3O4 nanoparticles. The resultant molecularly imprinted polymers have high adsorption capacity and satisfactory selectivity for bovine hemoglobin with the help of copper ions. The obtained magnetic nanomaterials were characterized by transmission electron microscopy, Fourier-transform infrared spectra, X-ray diffraction, and vibrating sample magnetometer. The measurements demonstrated that the as-synthesized nanomaterials exhibited good dispersion, high crystallinity, and satisfactory superparamagnetic properties. The feasibility of this method was further confirmed by using the imprinted nanomaterials to specifically extract bovine hemoglobin from real bovine blood samples.

  9. PREPARATION AND ELECTROCHEMICAL CHARACTERISTICS OF POLYMER ELECTROLYTE MEMBRANES BASED ON SAN/PVDF-HFP BLENDS

    Institute of Scientific and Technical Information of China (English)

    Ding-guo Tang; Lu Qi; Yun-xiang Ci

    2006-01-01

    A copolymer of poly(acrylonitrile-co-styrene) (SAN) was synthesized via an emulsion polymerization method.Novel polymer electrolyte membranes cast from the blends of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), SAN and fumed silica (SiO2) are microporous and can be used in polymer lithium-ion batteries. The membrane shows excellent characteristics such as high ionic conductivity and good mechanical strength when the mass ratio between SAN and PVDF-HFP and SiO2 is 3.5/31.5/5. The ionic conductivity of the membrane soaked in a liquid electrolyte of 1 mol/L LiPF6/EC/DMC/DEC is 4.9 × 10-3 Scm-1 at 25℃. The membrane is electrochemical stable up to 5.5 V versus Li+/Li in the liquid electrolyte. The influences of SiO2 content on the porosity and mechanical strength of the membranes were studied.Polymer lithium-ion batteries based on the membranes were assembled and their performances were also studied.

  10. Preparation, characterization and efficacy evaluation of synthetic biocompatible polymers linking natural antioxidants.

    Science.gov (United States)

    Trombino, Sonia; Cassano, Roberta; Ferrarelli, Teresa; Leta, Sonia; Puoci, Francesco; Picci, Nevio

    2012-10-26

    The purpose of this work was the synthesis, characterization and efficacy evaluation of new biocompatible antioxidant polymers linking trans-ferulic acid or a-lipoic acid. In particular, ferulic or lipoic acid were introduced in the preformed polymeric backbone. The new antioxidant biopolymers were characterized by Fourier transform infrared spectroscopy and gel permeation chromatography. The degree of functionalization (moles of antioxidant per gram of polymer) was determined by the Gaur-Gupta method for free amino group determination and by the Folin method for the phenolic groups. Their ability to inhibit lipid peroxidation were estimated in rat liver microsomal membranes induced in vitro by tert-BOOH (tert-butyl hydroperoxide), as a source of free radicals. The DPPH (1,1-diphenyl-2-picrylhydrazyl) radical-scavenging effect was also evaluated. The obtained systems, with different solubility, showed strong antioxidant and antiradical activities, suggesting potential use as packaging materials for foods, cosmetics, pharmaceuticals and personal care products. Moreover, the cytotoxicity of the synthesized polymers was also evaluated on Caco-2 cell cultures in order to verify their biocompatibility when exposed to an absorptive epithelial cell line.

  11. PREPARATION AND CHARACTERIZATION OF SCHIFF BASE POLYMERS DERIVED FROM 4,4'-METHYLENEBIS(CINNAMALDEHYDE)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    New Schiff base polymers poly[4,4'-methylenebis(cinnamaldehyde)ethylenediimine] (PMBCen), poly[4,4'-methylenebis(cinnamaldehyde)1,2-propylenediimine] (PMBCPn), poly[4,4'-methylenebis(cinnamaldehyde)1,3-propylenediimine] (PMBCPR), poly[4,4'-methylenebis(cinnamaldehyde) 1,2-phenylenediimine] (PMBCPh), poly[4,4'-methylenebis(cinnamaldehyde)meso-stilbenediimine] (PMBCS), poly[4,4'-methylenebis(cinnamaldehyde)urea] (PMBCUR), poly[4,4'-methylenebis(cinnamaldehyde)semicarbazone] (PMBCSc), poly[4,4'-methylenebis(cinnamaldehyde)thiosemicarbazone](PMBCTSc) and poly[4,4'-methylenebis(cinnamaldehyde)hydrazone] (PMBCH) were formed by polycondensation of 4,4'-methylenebis(cinnamaldehyde) with ethylenediamine, 1,2-propylenediamine, 1,3-propylenediamine, 1,2-phenylenediamine, meso-stilbenediamine, urea, semicarbazide, thiosemicarbazide and hydrazine, respectively. The dialdehyde and polymers have been characterized through elemental micro-analysis, IR, UV-Vis and 1H-NMR spectroscopic techniques. Thermoanalytical studies and viscous flow of dilute solutions of dialdehyde and its polymers have been examined and compared.

  12. Computational Fluid Dynamics in Solid Earth Sciences–a HPC challenge

    Directory of Open Access Journals (Sweden)

    Luminita Zlagnean

    2012-11-01

    Full Text Available Presently, the Solid Earth Sciences started to move towards implementing High Performance Computational (HPC research facilities. One of the key tenants of HPC is performance, which strongly depends on the interaction between software and hardware. In this paper, they are presented benchmark results from two HPC systems. Testing a Computational Fluid Dynamics (CFD code specific for Solid Earth Sciences, the HPC system Horus, based on Gigabit Ethernet, performed reasonably well compared with its counterpart CyberDyn, based on Infiniband QDR fabric. However, the HPCC CyberDyn based on low-latency high-speed QDR network dedicated to MPI traffic outperformed the HPCC Horus. Due to the high-resolution simulations involved in geodynamic research studies, HPC facilities used in Earth Sciences should benefit from larger up-front investment in future systems that are based on high-speed interconnects.

  13. Preparation of Self-crosslinked Fluorocarbon Polymer Emulsion with Core-shell Structure by the Method of Soap-free Emulsion Polymerization

    Institute of Scientific and Technical Information of China (English)

    CHEN Lijun; SHI Hongxin; XIANG Juping; WU Hongke

    2009-01-01

    Using methyl methacrylate(MMA),butyl acrylate(BA)and hexafluorobutyl acry-late(HFBA)as main raw materials,we prepared self-crosslinked fluorocarbon polymer emulsion with core-shell structure via soap-free emulsion polymerization when the conception of particle design and polymer morphology was adopted.Moreover,the influence of mole ratio of BA to MAA,pH value on the oligomer was studied.And the effects of the added amount of oligomer,self-crosslinked monomer and HFBA,mass ratio of BA to MMA,reaction temperature and the initiator on the polymerization technology and the performance of the product,were investigated and optimized.The structure and performance of the fluorocarbon polymer emulsion were characterized and tested with FTIR,TEM, MFT and contact angle and water absorption of the latex film.The experimental results show that the optimal conditions for preparing fluorocarbon polymer emulsion are as follows:for preparing the oligomer,mol ratio of BA to MAA is equal to 1.0:1.60,and pH value is controlled within the range of 8.0 and 9.0;for preparing fluorocarbon polymer emulsion,the added amount of oligmer[P(BA/MANa)] is 6%;mass ratio of BA to MMA is 40:60;the added amount of self-crosslinked monomer is 2%,the added amount of HFBA is 15%;reaction temperature is 80℃;the mixture of potassium persulfate and sodium bisulfite is used as the initiator.The film-forming stability of the fluorocarbon polymer emul-sion and the performance of the latex film,which is prepared with the soap-free emulsion polymeri-zation,are better than that prepared with the conventional emulsion polymerization.

  14. Mussel inspired preparation of MoS{sub 2} based polymer nanocomposites: The case of polyPEGMA

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Guangjian; Liu, Meiying; Liu, Xinhua; Huang, Qiang; Xu, Dazhuang; Mao, Liucheng; Huang, Hongye; Deng, Fengjie [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China)

    2016-11-30

    Graphical abstract: A facile and universal strategy has been developed for surface modification of MoS{sub 2} nanosheets via combination of mussel inspired chemistry and chain transfer free radical polymerization. - Highlights: • Fabrication of MoS{sub 2}-PDA-PPEGMA polymer nanocomposites through mussel inspired chemistry. • MoS{sub 2}-PDA- PPEGMA polymer nanocomposites showed enhanced stability in water. • The experimental conditions are rather mild. • The strategy described in this work is also useful for fabrication of many other MoS{sub 2} based polymer nanocomposites. - Abstract: In this work, we report a facile strategy to prepare PEGylated MoS{sub 2} nanosheets through the combination of mussel inspired chemistry and Michael addition reaction. The MoS{sub 2} nanosheets were obtained from lithium intercalation and exfoliation method. Meanwhile, the amino-contained poly((polyethylene glycol) methyl ether methacrylate) (PPEGMA) were obtained via chain transfer free radical polymerization using cysteamine hydrochloride as the chain transfer agents and PEGMA as the monomer. To introduce PPEGMA on MoS{sub 2} nanosheets, polydopamine (PDA) thin films were first coated on the surface of MoS{sub 2} nanosheets through self polymerization of dopamine as the ad-layers, which can react with amino-terminated PPEGMA through Michael addition reaction. The structure, morphology and chemical compositions of MoS{sub 2} nanosheets and MoS{sub 2}-PDA-PPEGMA have been characterized by various characterization techniques. The results demonstrated that the amino-terminated PPEGMA can be successfully immobilized on MoS{sub 2} nanosheets via PDA thin films as the ad-layers. More importantly, the strategy described in this work could also be utilized for surface immobilization of various polymers on many other materials and surfaces because of the universal adhesion of PDA and the good monomer applicability of chain transfer free radical polymerization. Taken together, we

  15. Innovative HPC architectures for the study of planetary plasma environments

    Science.gov (United States)

    Amaya, Jorge; Wolf, Anna; Lembège, Bertrand; Zitz, Anke; Alvarez, Damian; Lapenta, Giovanni

    2016-04-01

    DEEP-ER is an European Commission founded project that develops a new type of High Performance Computer architecture. The revolutionary system is currently used by KU Leuven to study the effects of the solar wind on the global environments of the Earth and Mercury. The new architecture combines the versatility of Intel Xeon computing nodes with the power of the upcoming Intel Xeon Phi accelerators. Contrary to classical heterogeneous HPC architectures, where it is customary to find CPU and accelerators in the same computing nodes, in the DEEP-ER system CPU nodes are grouped together (Cluster) and independently from the accelerator nodes (Booster). The system is equipped with a state of the art interconnection network, a highly scalable and fast I/O and a fail recovery resiliency system. The final objective of the project is to introduce a scalable system that can be used to create the next generation of exascale supercomputers. The code iPic3D from KU Leuven is being adapted to this new architecture. This particle-in-cell code can now perform the computation of the electromagnetic fields in the Cluster while the particles are moved in the Booster side. Using fast and scalable Xeon Phi accelerators in the Booster we can introduce many more particles per cell in the simulation than what is possible in the current generation of HPC systems, allowing to calculate fully kinetic plasmas with very low interpolation noise. The system will be used to perform fully kinetic, low noise, 3D simulations of the interaction of the solar wind with the magnetosphere of the Earth and Mercury. Preliminary simulations have been performed in other HPC centers in order to compare the results in different systems. In this presentation we show the complexity of the plasma flow around the planets, including the development of hydrodynamic instabilities at the flanks, the presence of the collision-less shock, the magnetosheath, the magnetopause, reconnection zones, the formation of the

  16. Stabilization of polymer lipid complexes prepared with lipids of lactic acid bacteria upon preservation and internalization into eukaryotic cells.

    Science.gov (United States)

    Alves, P; Hugo, A A; Szymanowski, F; Tymczyszyn, E E; Pérez, P F; Coelho, J F J; Simões, P N; Gómez-Zavaglia, A

    2014-11-01

    The physicochemical characterization of polymer liposome complexes (PLCs) prepared with lipids of lactic acid bacteria and poly(N,N-dimethylaminoethyl methacrylate) covalently bound to cholesterol (CHO-PDMAEMA) was carried out in an integrated approach, including their stability upon preservation and incorporation into eukaryotic cells. PLCs were prepared with different polymer:lipid molar ratios (0, 0.05 and 0.10). Zeta potential, particle size distribution and polydispersity index were determined. The optimal polymer:lipid ratio and the stability of both bare liposomes and PLCs were evaluated at 37 °C and at different pHs, as well as after storage at 4 °C, -80 °C and freeze-drying in the presence or absence of trehalose 250 mM. Internalization of PLCs by eukaryotic cells was assessed to give a complete picture of the system. Incorporation of CHO-PDMAEMA onto bacterial lipids (ratio 0.05 and 0.10) led to stabilization at 37 °C and pH 7. A slight decrease of pH led to their strong destabilization. Bacteria PLCs showed to be more stable than lecithin (LEC) PLCs (used for comparison) upon preservation at 4 and -80 °C. The harmful nature of the preservation processes led to a strong decrease in the stability of PLCs, bacterial formulations being more stable than LEC PLCs. The addition of trehalose to the suspension of liposomes stabilized LEC PLC and did not have effect on bacterial PLCs. In vitro studies on Raw 264.7 and Caco-2/TC7 cells demonstrated an efficient incorporation of PLCs into the cells. Preparations with higher stability were the ones that showed a better cell-uptake. The nature of the lipid composition is determinant for the stability of PLCs. Lipids from lactic acid bacteria are composed of glycolipids and phospholipids like cardiolipin and phosphatidylglycerol. The presence of negatively charged lipids strongly improves the interaction with the positively charged CHO-PDMAEMA, thus stabilizing liposomes. In addition, glycolipids and

  17. Dosimetric properties of N-isopropylacrylamide polymer gel using nonelectrophoresis grade BIS in preparation

    Directory of Open Access Journals (Sweden)

    Roghayeh Khodadadi

    2015-01-01

    Conclusion: Substitution non-electrophoresis grade BIS not only reduces the cost of gel preparation without any adverse effect on its dose response, but also its lower background increases the dynamic range of dose linearity.

  18. Biofunctional polymers prepared by ionizing radiation; Polimeros biofuncionais preparados pela radiacao ionizante

    Energy Technology Data Exchange (ETDEWEB)

    Martellini, Flavia; Rodas, Andrea C.D.; Higa, Olga Z. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil); Queiroz, Alvaro A.A. de [Escola Federal de Engenharia de Itajuba, MG (Brazil)

    1995-12-31

    Polymeric systems with biomedical and biochemical properties can be obtained by radiation induced polymerization. Those systems exhibit a pharmaceutical or biocatalytic activity if drugs or enzymes are immobilized in the polymer matrices. This work deals with the synthesis by gamma radiation of acrylic monomers and paracetamol, a drug with analgesic and anti thermic action, which can be used as medication in drug delivery systems. Besides, polyethylene and polypropylene radiation grafted with a hydrogel containing carboxylic groups (acrylic acid), showed to be a suitable substrate for the enzyme coupling, such as urease and glucose oxidase. The grafted matrices allow the immobilization of any biocomponent with protein structure. (author). 8 refs., 4 figs.

  19. Hierarchical Porous Polymer Beads Prepared by Polymerization-induced Phase Separation and Emulsion-template in a Microfluidic Device

    Institute of Scientific and Technical Information of China (English)

    Wei-cai Wang; Yan-xiong Pan; Kai Shi; Chao Peng; Xiang-ling Ji

    2014-01-01

    Porous polymer beads (PPBs) containing hierarchical bimodal pore structure with gigapores and meso-macropores were prepared by polymerization-induced phase separation (PIPS) and emulsion-template technique in a glass capillary microfluidic device (GCMD).Fabrication procedure involved the preparation of water-in-oil emulsion by emulsifying aqueous solution into the monomer solution that contains porogen.The emulsion was added into the GCMD to fabricate the (water-in-oil)-in-water double emulsion droplets.The flow rate of the carrier continuous phase strongly influenced the formation mechanism and size of droplets.Formation mechanism transformed from dripping to jetting and size of droplets decreased from 550 μm to 250 μm with the increase in flow rate of the carrier continuous phase.The prepared droplets were initiated for polymerization by on-line UV-irradiation to form PPBs.The meso-macropores in these beads were generated by PIPS because of the presence ofporogen and gigapores obtained from the emulsion-template.The pore morphology and pore size distribution of the PPBs were investigated extensively by scanning electron microscopy and mercury intrusion porosimetry (MIP).New pore morphology was formed at the edge of the beads different from traditional theory because of different osmolarities between the water phase of the emulsion and the cartier continuous phase.The morphology and proportion of bimodal pore structure can be tuned by changing the kind and amount of porogen.

  20. Preparation and Coagulation Behavior of a Novel Multiple Flocculant Based on Cationic Polymer, Hydroxy Aluminum, and Clay Minerals

    Directory of Open Access Journals (Sweden)

    Feng-shan Zhou

    2015-01-01

    Full Text Available Cationic polymer, hydroxy aluminum, and clay minerals are three flocculants with different action mechanisms and a more cost-efficient multiple flocculant can be prepared by compositing them through appropriate technology. All of attapulgite (ATP, clay minerals containing magnesium, aluminum, and silicate, are porous environmental mineral material with good absorbability and have found wide applications in industrial sewage treatment. With polyaluminum chloride (PAC, poly(dimethyl diallyl ammonium chloride (PDMDAAC, and attapulgite (ATP clay being the main raw materials, multiple flocculant CMHa (liquid with good storage stability was prepared and its optimized blending mass percent was PDMDAAC of 2%-3%, ATP of 4%–6%, and PAC of 20%–30%. The liquid poly(dimethyl diallyl ammonium chloride (PDMDAAC was firstly loaded on solid material in kneader and then mixed in certain proportion with PAC and ATP to prepare solid CMHa convenient for storage and transportation. The optimized mass ratio is PAC : ATP : PDMDAAC = 80 : 10 : 2.4. When this multiple flocculant was used to treat domestic sewage, coal washing sewage, dyeing wastewater, and papermaking wastewater, its equivalent dosage was just 50% of PAC, while overall production cost has been reduced to about 40%, viewing showing broad application prospect.

  1. An Effective Storage Mechanism for High Performance Computing (HPC

    Directory of Open Access Journals (Sweden)

    Fatima El Jamiy

    2015-10-01

    Full Text Available All over the process of treating data on HPC Systems, parallel file systems play a significant role. With more and more applications, the need for high performance Input-Output is rising. Different possibilities exist: General Parallel File System, cluster file systems and virtual parallel file system (PVFS are the most important ones. However, these parallel file systems use pattern and model access less effective such as POSIX semantics (A family of technical standards emerged from a project to standardize programming interfaces software designed to operate on variant UNIX operating system., which forces the MPI-IO implementations to use inefficient techniques based on locks. To avoid this synchronization in these techniques, we ensure that the use of a versioning-based file system is much more effective.

  2. Utilizing HPC Network Technologies in High Energy Physics Experiments

    CERN Document Server

    AUTHOR|(CDS)2088631; The ATLAS collaboration

    2017-01-01

    Because of their performance characteristics high-performance fabrics like Infiniband or OmniPath are interesting technologies for many local area network applications, including data acquisition systems for high-energy physics experiments like the ATLAS experiment at CERN. This paper analyzes existing APIs for high-performance fabrics and evaluates their suitability for data acquisition systems in terms of performance and domain applicability. The study finds that existing software APIs for high-performance interconnects are focused on applications in high-performance computing with specific workloads and are not compatible with the requirements of data acquisition systems. To evaluate the use of high-performance interconnects in data acquisition systems a custom library, NetIO, is presented and compared against existing technologies. NetIO has a message queue-like interface which matches the ATLAS use case better than traditional HPC APIs like MPI. The architecture of NetIO is based on a interchangeable bac...

  3. COMPOSE-HPC: A Transformational Approach to Exascale

    Energy Technology Data Exchange (ETDEWEB)

    Bernholdt, David E [ORNL; Allan, Benjamin A. [Sandia National Laboratories (SNL); Armstrong, Robert C. [Sandia National Laboratories (SNL); Chavarria-Miranda, Daniel [Pacific Northwest National Laboratory (PNNL); Dahlgren, Tamara L. [Lawrence Livermore National Laboratory (LLNL); Elwasif, Wael R [ORNL; Epperly, Tom [Lawrence Livermore National Laboratory (LLNL); Foley, Samantha S [ORNL; Hulette, Geoffrey C. [Sandia National Laboratories (SNL); Krishnamoorthy, Sriram [Pacific Northwest National Laboratory (PNNL); Prantl, Adrian [Lawrence Livermore National Laboratory (LLNL); Panyala, Ajay [Louisiana State University; Sottile, Matthew [Galois, Inc.

    2012-04-01

    The goal of the COMPOSE-HPC project is to 'democratize' tools for automatic transformation of program source code so that it becomes tractable for the developers of scientific applications to create and use their own transformations reliably and safely. This paper describes our approach to this challenge, the creation of the KNOT tool chain, which includes tools for the creation of annotation languages to control the transformations (PAUL), to perform the transformations (ROTE), and optimization and code generation (BRAID), which can be used individually and in combination. We also provide examples of current and future uses of the KNOT tools, which include transforming code to use different programming models and environments, providing tests that can be used to detect errors in software or its execution, as well as composition of software written in different programming languages, or with different threading patterns.

  4. End-to-end experiment management in HPC

    Energy Technology Data Exchange (ETDEWEB)

    Bent, John M [Los Alamos National Laboratory; Kroiss, Ryan R [Los Alamos National Laboratory; Torrez, Alfred [Los Alamos National Laboratory; Wingate, Meghan [Los Alamos National Laboratory

    2010-01-01

    Experiment management in any domain is challenging. There is a perpetual feedback loop cycling through planning, execution, measurement, and analysis. The lifetime of a particular experiment can be limited to a single cycle although many require myriad more cycles before definite results can be obtained. Within each cycle, a large number of subexperiments may be executed in order to measure the effects of one or more independent variables. Experiment management in high performance computing (HPC) follows this general pattern but also has three unique characteristics. One, computational science applications running on large supercomputers must deal with frequent platform failures which can interrupt, perturb, or terminate running experiments. Two, these applications typically integrate in parallel using MPI as their communication medium. Three, there is typically a scheduling system (e.g. Condor, Moab, SGE, etc.) acting as a gate-keeper for the HPC resources. In this paper, we introduce LANL Experiment Management (LEM), an experimental management framework simplifying all four phases of experiment management. LEM simplifies experiment planning by allowing the user to describe their experimental goals without having to fully construct the individual parameters for each task. To simplify execution, LEM dispatches the subexperiments itself thereby freeing the user from remembering the often arcane methods for interacting with the various scheduling systems. LEM provides transducers for experiments that automatically measure and record important information about each subexperiment; these transducers can easily be extended to collect additional measurements specific to each experiment. Finally, experiment analysis is simplified by providing a general database visualization framework that allows users to quickly and easily interact with their measured data.

  5. Preparation and characterization, stable bismaleimide-triarylamine polymers with reversible electrochromic properties

    Science.gov (United States)

    Zhang, Haiyang; Niu, Haijun; Ji, Yan; Wu, Wenjun; Cai, Jiwei; Wang, Cheng; Lian, Yongfu; Bai, Xuduo; Wang, Wen

    2013-07-01

    A series of novel polyimides were synthesized from bismaleimide containing different diaminetriarylamines by Michael addition reaction. The prepolymer is readily soluble in many common organic solvents, such as CHCl3, Tetrahydrofuran (THF) and N, N-dimethyl formamide (DMF). Prepolymers can be solution-cast into transparent, tough, and flexible films. These aromatic polyimides display good thermal stabilities, i.e. 5% weight-loss temperatures in excess of 200 °C under nitrogen. All obtained polyimides revealed excellent stability of electrochromic characteristics, changing color from original yellowish to green. The energies of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels of the investigated the polymers were estimated by experimental method are in the range of -4.78 eV to -4.98 eV and -1.64 eV to -2.09 eV vs the vacuum level, respectively. All the polymer films reveal good electrochemical and electrochromic stability under repeatedly switching electrode voltages, with coloration change from the yellow neutral state to green oxidized state.

  6. Preparation of a magnetic molecularly imprinted polymer for selective recognition of rhodamine B

    Science.gov (United States)

    Liu, Xiuying; Yu, Dan; Yu, Yingchao; Ji, Shujuan

    2014-11-01

    A novel magnetic molecularly imprinted polymer (MMIP) was developed as an adsorbent to selectively remove rhodamine B from real samples. The polymer was characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, and thermo-gravimetric analysis. Static adsorption, kinetic adsorption, and selective recognition experiments were also performed to investigate the specific adsorption equilibrium, kinetics, and selective recognition ability of the MMIP. The MMIPs had outstanding thermal stability, large adsorption capacity, and high competitive selectivity. When they were used as dispersed solid-phase extraction adsorbents in real samples, rhodamine B recovery was 79.97-81.88% and 75.56-79.74% in intra-day and inter-day reproducibility experiments with relative standard deviations lower than 2.62% and 4.28%, respectively. Extraction was optimized for yield and efficiency. Precision, accuracy, and linear working range were determined under optimal experimental conditions. The limits of detection and quantification were 1.05 and 3.49 μg L-1, respectively. These results suggest MMIPs may be used for determination of rhodamine B in real samples.

  7. Preparation and selective adsorption of organic pollutants by an inorganic molecular imprinted polymer.

    Science.gov (United States)

    Shang, Jiaobo; Song, Yanqun; Rong, Chuan; Wang, Yinghui; Wang, Liwei; Zhang, Yuanyuan; Yu, Kefu

    A novel inorganic molecular imprinted polymer (MIP) was synthesized by adding Al(3+) to the Fe/SiO2 gel with Acid Orange II (AO II) as the template. The MIP was characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and nitrogen adsorption-desorption measurement. Compared with the non-imprinted polymer (NIP), the MIP enhanced the adsorption capacity of the target pollutants AO II. The selective adsorption capacity study indicated that the MIP adsorbed more AO II than the interferent Bisphenol A (BPA), which also has the structure of a benzene ring, thus proving the selective adsorption capacity of the MIP for template molecules AO II. In addition, the adsorption of AO II over MIP belonged to the Langmuir type and pseudo-second adsorption kinetics, and Dubinin-Radushkevich model indicates that the adsorption process of AO II over MIP and NIP are both given priority to chemical adsorption. The MIP reusability in performance was demonstrated in at least six repeated cycles.

  8. Preparation and characterization of branched polymers as postoperative anti-adhesion barriers

    Science.gov (United States)

    Way, Tzong-Der; Hsieh, Shih-Rong; Chang, Chi-Jung; Hung, Tsung-Wei; Chiu, Chun-Hwei

    2010-03-01

    Homopolymers and copolymers synthesized from biocompatible monomers with polyethylene glycol (PEG) and polycaprolactone side chains, were applied to separate healing tissues and prevent postsurgical adhesions. The results of the contact angle and the ESCA spectra reveal the presence of more PEG segments on the surface of the PEMC1 film than the P(EM) 3(EMC4) 1 film. The effects of the molecular structures on the surface properties, including the wetting properties and the anti-tissue adhesion behaviors, of the films were examined. Fluorescent polymer was fixed on the surface of the film to form the marking dot. The in vivo degradation behaviors of the surface-marked films were investigated non-invasively by monitoring the location of the fluorescent signal. The degradation behaviors of various films observed in the animal study were consistent with those observed by in vivo imaging. Proper arrangement of PEG segments on the polymer side chain helped to keep a large proportion of PEG segments close to the surface of the film. Such an arrangement represents an effective means of preventing postoperative tissue adhesion.

  9. Preparation and characterization of functional material based on hybrid polymer composites

    Science.gov (United States)

    Agusu, La; Amiruddin; Taswito, Chen Chen; Herdianto; Zamrun, Muh.

    2016-08-01

    The microstructures and properties of hybrid polymer composites based on polyaniline (PANi)/γ-Fe2O3 nanoparticles/TiO2/carbon have been investigated for multifunctional applications such as heavy metal removal and initial study for radar absorbing material application. γ-Fe2O3 nanoparticles with spherical shape were synthetized by a coprecipitation method from iron sand. By activating the polyethylene glycol (PEG-400) coated carbon of coconut shell, the homogenous shape and size of carbon was achieved. Then, γ- Fe2O3, TiO2, and carbon were mixed with PANi by an in situ polymerization method at low temperature 0-5 oC. Characterization process involved XRD, SEM, FTIR, VSM, and DC conductivity measurements. For radar absorber application, the functionalized polymer composites showed good electrical conductivity 0.45 S/cm to absorb the incoming electromagnetic energy. An efficient and effective reduction of Pb2+ ion from the water has been achieved by using this material.

  10. A UV-prepared linear polymer electrolyte membrane for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Imperiyka, M., E-mail: imperiyka@gmail.com [Faculty of Arts and Sciences, Kufra Campus, University of Benghazi, Al Kufrah (Libya); Ahmad, A.; Hanifah, S.A. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Polymer Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Bella, F. [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Department of Applied Science and Technology – DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2014-10-01

    The effects of LiClO{sub 4} and LiFS{sub 3}SO{sub 3} on poly(glycidyl methacrylate)-based solid polymer electrolyte and its photoelectrochemical performance in a dye sensitized solar cell consisting of FTO/TiO{sub 2}–dye/P(GMA)–LiClO{sub 4}–EC/Pt were investigated. The electrochemical stability of films was studied by cyclic voltammetry (CV). The highest ionic conductivities obtained were 4.2×10{sup −5} and 3.7×10{sup −6} S cm{sup −1} for the film containing 30 wt% LiClO{sub 4} and 25 wt% LiCF{sub 3}SO{sub 3}, respectively. The polymer electrolytes showed electrochemical stability windows up to 3 V and 2.8 V for LiClO{sub 4} and LiCF{sub 3}SO{sub 3}, respectively. The assembled dye-sensitized solar cell showed a sunlight conversion efficiency of 0.679% (J{sub sc}=3 mA cm{sup −2}, V{sub oc}=0.48 V and FF=0.47), under light intensity of 100 mW cm{sup −2}.

  11. Preparation and characterization of aqueous polyurethane oil/polyacrylate latex interpenetrating polymer network

    Science.gov (United States)

    Zhou, M. M.; Ma, L. L.; Du, J.; Cao, F.; Xiao, J. J.

    2015-07-01

    A series of aqueous polyurethane oil (network I)/polyacrylate (network II) latex interpenetrating polymer networks (LIPNs) were synthesized via the technology of latex interpenetrating polymer network combined seed emulsion polymerization process. Fourier transform infrared (FTIR) spectroscopy, laser particle size distributing analyzer and universal tension machine were utilized to characterize the bulk structures and mechanical properties of LIPNs. For used as damping material, the damping performance of LIPNs were analyzed by dynamic mechanical analysis (DMA). It was found that the damping temperature region of LIPN was wider than those of aqueous polyurethane oil, the temperature region with greater tanδ changed with the TPGDA content and hard-/soft-segment mass weight ratio (mMMA/mBA) and the glass transition temperature (Tg) of the network I and network II in LIPN occurred within shift each other, even overlap with increasing mMMA/mBA value. The results show that LIPNs synthesized through the combined process have greater tanδ and wider damping temperature region, which is suitable for the use of damping coatings.

  12. Preparation and Properties of Polymer/Vermiculite Hybrid Superabsorbent Reinforced by Fiber for Enhanced Oil Recovery

    Directory of Open Access Journals (Sweden)

    Fayang Jin

    2014-01-01

    Full Text Available A series of polymer/clay hybrid superabsorbent composites (SACFs comprising acrylamide, acrylic acid, sodium 2-acrylamido-tetradecyl sulfonate, fiber, and vermiculite by in situ intercalation and exfoliated method was successfully synthesized. The structure of SACFs was characterized by IR, SXRD, and SEM measurements. Much notable absorbency for SACF-2 was observed compared to that for SACF-1 in the absence of hydrophobic group in the high cationic solution due to the alkyl carbon chain and sulfonic acid group of hydrophobic moistures protecting the cations from attacking the carboxylate groups. What is more, high temperature fiber which acts as bridge connection for the polymeric network structure enhanced both toughness and strength for SACF-4 in the harsh conditions. At the total dissolved substance of 212000 mg/L for Tarim Basin injected water and the temperature of 120°C, desired absorbency as well as water retaining property for SACF-4 was observed during the long period of thermal ageing. Core flooding experiments demonstrated that SACFs could migrate as amoeba in the porous medium and accumulated in the narrow channel to adjust injection profile, promoting the subsequent water diverting into the unswept zones. Finally, characteristic parameters for SACFs calculated from flooding experiment further confirmed these polymer/clay hybrid composites reinforced by fiber would have robust application in the mature oilfield for profile control.

  13. Conjugated Polymer Chains Confined in Vertical Nanocylinders of a Block-Copolymer Film: Preparation, Characterization, and Optoelectronic Function

    KAUST Repository

    Dong, Ban Xuan

    2013-01-15

    Hybrid materials composed of phase-separated block copolymer films and conjugated polymers of the phenylenevinylene family (PPV) are prepared. The PPV chains are embedded in vertical cylinders of nanometer diameter in the block-copolymer films. The cylinders span continuously the whole film thickness of 70 nm. Incorporation of the PPV chains into the one-dimensional cylinders leads to modified photoluminescence spectra and to large absorption anisotropy. The hybrid films show electroluminescence from the PPV chains in a simple light-emitting device at minute doping concentrations, and also exhibit a factor of 19 increase in electron transport efficiency along the single PPV chains. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. SiC fibers with controllable thickness of carbon layer prepared directly by preceramic polymer pyrolysis routes

    Energy Technology Data Exchange (ETDEWEB)

    Hu Tianjiao, E-mail: tjhu617@gmail.com [College of Science, National University of Defense Technology, Changsha 410073 (China); Li Xiaodong; Li Gongyi [College of Science, National University of Defense Technology, Changsha 410073 (China); Wang Yingde; Wang Jun [State Key Laboratory of Advanced Ceramic Fibers and Composites, College of Aerospace and Materials Engineering, National University of Defense Technology, Changsha 410073 (China)

    2011-05-25

    Continuous SiC fibers with different thickness of carbon layer were prepared through three preceramic polymer pyrolysis routes. To make the carbon layer thickness controllable, a simple improvement by using a ceramic bushing was adopted to retard the deposition of the pyrolytic carbons. Auger electron spectroscopy (AES) analysis reveals that the carbon layer thickness varies from less than 5 nm to 40 nm. The specific resistivity of the fibers increases by 5 orders of magnitude as the carbon layer thickness decreases. All of the fibers exhibit a tensile strength of around 1.8 GPa which is independent of the carbon layer thickness. The formation process of the carbon layer is discussed in three steps: the decomposition, the carbonization and the deposition. The as-received fibers have a potential application as the reinforcement of functional materials.

  15. Preparation of magnetic dummy molecularly imprinted polymers for selective extraction and analysis of salicylic acid in Actinidia chinensis.

    Science.gov (United States)

    You, Qing-Ping; Peng, Mi-Jun; Zhang, Yu-Ping; Guo, Jun-Fang; Shi, Shu-Yun

    2014-01-01

    Compounds with strong intramolecular hydrogen bonds (e.g., salicylic acid) have weak intermolecular hydrogen bonding interactions between them and functional monomers in the imprinting process. Consequently, the corresponding molecularly imprinted polymers (MIPs) have no specific adsorption ability. Here, the first magnetic dummy MIPs (MDMIPs) based on benzonic acid as dummy template are successfully developed and evaluated with respect to the applications in selective enrichment and analysis of salicylic acid from complex mixtures. Various parameters affecting absorption/desorption were evaluated for achieving optimal recovery and reducing nonspecific interactions. The prepared MDMIPs showed high adsorption capacity, good selectivity, rapid kinetic binding (40 min) and magnetic separation (5 s), high reproducibility (RSDsalicylic acid was quantified (0.2 μg/g of fresh mass) in Actinidia chinensis by high-performance liquid chromatography.

  16. Preparation of polymer-supported hydrated ferric oxide based on Donnan membrane effect and its application for arsenic removal

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In the present study a novel technique was proposed to prepare a polymer-supported hydrated ferric oxide (D201-HFO) based on Donnan membrane effect by using a strongly basic anion exchanger D201 as the host material and FeCl3-HCl-NaCl solution as the reaction environment. D201-HFO was found to exhibit higher capacity for arsenic removal than a commercial sorbent Purolite ArsenX. Furthermore, it presents favorable adsorption selectivity for arsenic removal from aqueous solution, as well as satis- factory kinetics. Fixed-bed column experiments showed that arsenic sorption on D201-HFO could re- sult in concentration of this toxic metalloid element below 10 μg/L, which was the new maximum con- centration limit set recently by the European Commission and imposed by the US EPA and China. Also, the spent D201-HFO is amenable to efficient regeneration by NaOH-NaCl solution.

  17. Preparation of poly(ether ether ketone)-based polymer electrolytes for fuel cell membranes using grafting technique

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Shin; Suzuki, Yasuyuki [Conducting Polymer Materials Group, Environment and Industrial Materials Research Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), 1233 Watanuki, Takasaki, Gunma 370 1292 (Japan); Maekawa, Yasunari [Conducting Polymer Materials Group, Environment and Industrial Materials Research Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), 1233 Watanuki, Takasaki, Gunma 370 1292 (Japan)], E-mail: maekawa.yasunari@jaea.go.jp

    2008-05-15

    Poly(ether ether ketone) (PEEK)-based polymer electrolyte membranes (PEMs) was successfully prepared by radiation grafting of a styrene monomer into PEEK films and the consequent selective sulfonation of the grafting chains in the film state. Using milder sulfonation, the sulfonation reactions proceeded at the grafted chains in preference to the phenylene rings of PEEK main chains; as a result, the grafted films could successfully transform to a PEM with conductivity of more than 0.1 S/cm. The ion exchange capacity (IEC) and conductivity of the grafted PEEK electrolyte membranes were controlled to the ranges of 1.2-2.9 mmol/g and 0.03-0.18 S/cm by changing the grafting degree. It should be noted that this is the first example of directly transforming super-engineering plastic films into a PEM using radiation grafting.

  18. Preparation of hybrid thiol-acrylate emulsion-templated porous polymers by interfacial copolymerization of high internal phase emulsions.

    Science.gov (United States)

    Langford, Caitlin R; Johnson, David W; Cameron, Neil R

    2015-05-01

    Emulsion-templated highly porous polymers (polyHIPEs), containing distinct regions differing in composition, morphology, and/or properties, are prepared by the simultaneous polymerization of two high internal phase emulsions (HIPEs) contained within the same mould. The HIPEs are placed together in the mould and subjected to thiol-acrylate photopolymerization. The resulting polyHIPE material is found to contain two distinct semicircular regions, reflecting the composition of each HIPE. The original interface between the two emulsions becomes a copolymerized band between 100 and 300 μm wide, which is found to be mechanically robust. The separate polyHIPE layers are distinguished from one another by their differing average void diameter, chemical composition, and extent of contraction upon drying.

  19. Preparation and evaluation of biodegradable microspheres containing a new potent osteogenic compound and new synthetic polymers for sustained release.

    Science.gov (United States)

    Umeki, Nobuo; Sato, Takayuki; Harada, Masahiro; Takeda, Junko; Saito, Shuji; Iwao, Yasunori; Itai, Shigeru

    2010-06-15

    In order to achieve the sustained release of 3-ethyl-4-(4-methylisoxazol-5-yl)-5-(methylthio) thiophene-2-carboxamide (BFB0261), a new potent osteogenic compound for the treatment of bone disorders, we prepared microspheres containing BFB0261 and newly synthesized three poly (D, L-lactic acid) (PLA), four poly (D, L-lactic acid-co-glycolic acid) (PLGA), and eight poly (D, L-lactic acid)-block-poly(ethylene glycol) (PLA-PEG) biodegradable polymers or copolymers, and evaluated the release pattern of BFB0261 from the microspheres in vitro and in vivo. The mean particle size of the microspheres, except for the microspheres constructed from PLA-PEG with a greater than 20% PEG component, was in the range of approximately 10-50 microm, and the preparations showed a spherical shape with a smooth surface. In an in vitro release study, the release of BFB0261 from PLA-1 (Mw: 36 kDa), PLAPEG9604H (PLA/PEG ratio: 96:4, Mw: 181 kDa), or PLAPEG8317 (PLA/PEG ratio: 83:17, Mw: 106 kDa) microspheres occurred in a zero-order manner with a slow release, and more than 50% of BFB0261 remained in each type of microsphere at 12 weeks after incubation. When the BFB0261 microspheres constructed from various polymers were intramuscularly administered to the rat femur, the microspheres constructed from PLA-1 or PLAPEG9604H were able to achieve a sustained release of BFB0261 at the injection site for 6 weeks. The present information indicates that microspheres constructed from PLA-1 or PLAPEG9604H may be feasible for bone engineering. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Influencing Selectivity to Cancer Cells with Mixed Nanoparticles Prepared from Albumin-Polymer Conjugates and Block Copolymers.

    Science.gov (United States)

    Jiang, Yanyan; Wong, Sandy; Chen, Fan; Chang, Ted; Lu, Hongxu; Stenzel, Martina H

    2017-04-19

    Albumin-based nanoparticles are widely used to delivery anticancer drug because they promote the accumulation of drugs in tumor sites. Nanoparticles with surface immobilized albumin are widely described in literature, although mixed nanoparticles with systematically modified ratios between albumin and PEG-based material are less common. In this work, hybrid nanoparticles were prepared by coassembly of a PEG-based amphiphilic block copolymer together with a polymer-protein conjugate. Poly(oligo(ethylene glycol) methyl ether acrylate)-poly(ε-caprolactone) (POEGMEA-PCL) was prepared by a combination of ring-opening polymerization and reversible addition-fragmentation chain transfer (RAFT) polymerization, while the polymer-protein conjugate was obtained by reacting poly(ε-caprolactone) with bovine serum albumin (BSA-PCL). Co-assembly of both amphiphiles at different ratios, with and without curcumin as a drug, led to hybrid nanoparticles with various amount of albumin on the particle surface. The resulting hybrid nanoparticles were similar in size (100-120 nm), but increasing the amount of albumin on the surface led to a more-negative ζ potential. The cytotoxicity of the curcumin-loaded nanoparticles was examined on several cell lines. The curcumin-loaded nanoparticles with high amount of albumin led to high cytotoxicity against breast cancer cell lines (MDA-MB-231 and MCF-7), which coincided with high cellular uptake. However, the cytotoxicity of the curcumin-loaded nanoparticles against CHO cells and RAW264.7 cells was reduced, suggesting that albumin can facilitate selectivity toward cancer cells.

  1. Is the combination of cellulosic polymers and anionic surfactants a good strategy for ensuring physical stability of BCS Class II drug nanosuspensions?

    Science.gov (United States)

    Bilgili, Ecevit; Li, Meng; Afolabi, Afolawemi

    2016-01-01

    Ensuring the physical stability of drug nanosuspensions prepared via wet media milling has been a challenge for pharmaceutical scientists. The aim of this study is to assess the combined use of non-ionic cellulosic polymers and anionic surfactants in stabilizing multiple drug nanosuspensions. Particle size of five drugs, i.e. azodicarbonamide (AZD), fenofibrate (FNB), griseofulvin (GF), ibuprofen (IBU) and phenylbutazone (PB) was reduced separately in an aqueous solution of hydroxypropyl cellulose (HPC) with/without sodium dodecyl sulfate (SDS) via a stirred media mill. Laser diffraction, scanning electron microscopy, thermal analysis, rheometry and electrophoresis were used to evaluate the breakage kinetics, storage stability, electrostatic repulsion and stabilizer adsorption. Without SDS, drug particles exhibited aggregation to different extents; FNB and GF particles aggregated the most due to low zeta potential and insufficient steric stabilization. Although aggregation in all milled suspensions was reduced due to HPC-SDS combination, FNB and IBU showed notable growth during 7-day storage. It is concluded that the combination of non-ionic cellulosic polymers and anionic surfactants is generally viable for ensuring the physical stability of wet-milled drug nanosuspensions, provided that the surfactant concentration is optimized to mitigate the Ostwald ripening, whereas cellulosic polymers alone may provide stability for some drug suspensions.

  2. Metal-conductive polymer hybrid nanostructures: preparation and electrical properties of palladium-polyimidazole nanowires.

    Science.gov (United States)

    Al-Hinai, Mariam; Hassanien, Reda; Watson, Scott M D; Wright, Nicholas G; Houlton, Andrew; Horrocks, Benjamin R

    2016-03-04

    A simple, convenient method for the formation of hybrid metal/conductive polymer nanostructures is described. Polyimidazole (PIm) has been templated on λ-DNA via oxidative polymerisation of imidazole using FeCl3 to produce conductive PIm/DNA nanowires. The PIm/DNA nanowires were decorated with Pd (Pd/PIm/DNA) by electroless reduction of PdCl4(-2) with NaBH4 in the presence of PIm/DNA; the choice of imidazole was motivated by the potential Pd(II) binding site at the pyridinic N atom. The formation of PIm/DNA and the presence of metallic Pd on Pd/PIm/DNA nanowires were verified by FTIR, UV-vis and XPS spectroscopy techniques. AFM studies show that the nanowires have diameters in the range 5-45 nm with a slightly greater mean diameter (17.1 ± 0.75 nm) for the Pd-decorated nanowires than the PIm/DNA nanowires (14.5 ± 0.89 nm). After incubation for 24 h in the polymerisation solution, the PIm/DNA nanowires show a smooth, uniform morphology, which is retained after decoration with Pd. Using a combination of scanned conductance microscopy, conductive AFM and two-terminal measurements we show that both types of nanowire are conductive and that it is possible to discriminate different possible mechanisms of transport. The conductivity of the Pd/PIm/DNA nanowires, (0.1-1.4 S cm(-1)), is comparable to the PIm/DNA nanowires (0.37 ± 0.029 S cm(-1)). In addition, the conductance of Pd/PIm/DNA nanowires exhibits Arrhenius behaviour (E(a )= 0.43 ± 0.02 eV) as a function of temperature in contrast to simple Pd/DNA nanowires. These results indicate that although the Pd crystallites on Pd/PIm/DNA nanowires decorate the PIm polymer, the major current pathway is through the polymer rather than the Pd.

  3. Enhancement of Adhesive Strength of Ultrahigh Molecular Weight Polyethylene Fibers Prepared by Polar Polymer Implantation

    Institute of Scientific and Technical Information of China (English)

    YU Jun-rong; YANG Xin-ge; HU Zu-ming; LIU Zhao-feng

    2007-01-01

    A new technique was proposed to enhance the adhesive strength of ultrahigh molecular weight polyethylene (UHMWPE) fibers. Polar polymer was implanted into UHMWPE gel fibers during extracting process and can then be trapped en the surface of the fibers after subsequent ultra-drawing. The physical and chemical changes in the fiber structure were examined with scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The mechanical and interfacial adhesion properties of UHMWPE fibers were investigated with tensile testing. The results showed that there wee polar groups on the surface of pretreated UHMWPE fiber. The interracial shear strength of UHMWPE fibers with epoxy resin was greatly improved without socrificing the excellent mechanical properties of fibers. After pretreated with ethylene/vinyl acetate copolymer (EVA), the shear strength of the interface between fiber and epoxy resin increased from 1.06 to 2.49 MPa, while the integrated mechanical properties of the pretreated UHMWPE fibers ware still optimal.

  4. Preparation and Characterization of Nano-polymer Porous MgO

    Institute of Scientific and Technical Information of China (English)

    Xue Liang ZHAI; Ai Dong ZHAO; Mi Ying JIA

    2004-01-01

    Porous carrier MgO which was aggregated by nano-particles has been firstly prepared by using a normal technology route. The MgO was rod-shaped and had large surface area. The factors which affect grain size and microstructure of MgO were explored.

  5. Molecularly imprinted polymers prepared using protein-conjugated cleavable monomers followed by site-specific post-imprinting introduction of fluorescent reporter molecules.

    Science.gov (United States)

    Suga, Yusuke; Sunayama, Hirobumi; Ooya, Tooru; Takeuchi, Toshifumi

    2013-10-01

    Molecularly imprinted polymers were prepared using a protein-conjugated disulfide cleavable monomer. After removing the protein by disulfide reduction, a thiol-reactive fluorophore was introduced into the thiol residue located only inside the imprinted cavity, resulting in specific transduction of the binding events into fluorescence spectral change.

  6. Preparation of imprinted polymers at surface of magnetic nanoparticles for the selective extraction of tadalafil from medicines.

    Science.gov (United States)

    Li, Yun; Ding, Mei-Juan; Wang, Shu; Wang, Ruo-Yu; Wu, Xiao-Li; Wen, Ting-Ting; Yuan, Li-Hua; Dai, Peng; Lin, Yu-Hui; Zhou, Xue-Min

    2011-09-01

    In this paper, highly selective core-shell molecularly imprinted polymers (MIPs) of tadalafil on the surface of magnetic nanoparticles (MNPs) were prepared. Three widely used functional monomers 2-(trifluoromethyl) acrylic acid (TFMAA), acrylic acid (AA), and methacrylic acid (MAA) were compared theoretically as the candidates for MIP preparation. MIP-coated magnetic nanoparticles (MIP-coated MNPs) showed large adsorption capacity, high recognition ability, and fast binding kinetics for tadalafil. Furthermore, because of the good magnetic properties, MIP-coated MNPs can achieve rapid and efficient separation with an external magnetic field simply. The resulting MIP-coated MNPs were used as dispersive solid-phase extraction (DSPE) materials coupled with HPLC-UV for the selective extraction and detection of tadalafil from medicines (herbal sexual health products). Encouraging results were obtained. The amounts of tadalafil that were detected from the herbal sexual health product was 43.46 nmol g(-1), and the recoveries were in the range of 87.36-90.93% with the RSD < 6.55%.

  7. Tuning of electrical and structural properties of metal-polymer nanocomposite films prepared by co-evaporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Takele, H.; Strunskus, T.; Zaporojchenko, V.; Faupel, F. [Christian-Albrechts-University of Kiel, Institute for Materials Science, Faculty of Engineering, Kiel (Germany); Jebril, S.; Adelung, R. [Christian-Albrechts-University of Kiel, Functional Nanomaterials Institute for Materials Science, Kiel (Germany)

    2008-08-15

    Nanocomposites consisting of Au and Ag nanoparticles embedded in Teflon AF 1600 (Teflon) and Nylon 6 (Nylon) matrices were prepared by a simultaneous vapor phase deposition of both the polymer and the metal. The composite films were deposited between two Au-Pd alloy electrodes prepared by sputtering onto kapton foil substrates enabling further electrical measurements. The electrical properties of the composites are strongly influenced by the metal filling factor and changes in the microstructure. At first, the dependence of the resistivity of the composites consisting of various Ag and Au nanoparticle concentrations was investigated. The resistivity is characterized by a threshold region with a critical metal filling factor. Changes in the microstructure, in particular, can occur as a result of an induced electric field in between the metal nanoparticles and a heat treatment. The I-V characteristics of Teflon AF composites for different Au concentrations were studied thoroughly. An increase in the slope of the I-V curve up to a certain voltage (breakdown voltage) was observed. This phenomenon is accompanied by the field induced tunneling of the charge carriers which enhances the conductivity. The change in conductivity was also analyzed for Nylon nanocomposites with various Au concentrations in the temperature range 20-180 C. The observed temperature dependence is explained by activated electron tunneling between metal nanoparticles and by rearrangements in the microstructure (e.g. coalescence of metal nanoparticles). (orig.)

  8. Preparation of mesoporous Ag/AgBr/TiO2 nanocomposites with comb-type polymer as template

    Directory of Open Access Journals (Sweden)

    Li XU

    Full Text Available The mesoporous TiO2 nanocomposites were fabricated in a water bath at lower temperatures using the sol-gel method with a comb-type polymer as template and tetrabutyl titanate as Ti source. The Ag/AgBr/TiO2 nanocomposites with higher specific surface areas were obtained by the introduction of Ag/AgBr on the surface of the mesoporous TiO2 using a deposition-precipitation method. The as-prepared nanocomposites were characterized by X-ray diffraction (XRD, N2 sorption analysis, transmission electron microscope (TEM and UV-vis diffuse reflectance spectroscopy (UV-vis DRS. The results showed that both the as-prepared TiO2 and Ag/AgBr/TiO2 exhibited mesoporous structure. The introduction of Ag/AgBr not only decreased the specific surface area of the mesoporous TiO2 from 346 m2/g to 253 m2/g, but also significantly increased its visible light photocatalytic activity. The degradation rate of methyl orange under visible light irradiation over Ag/AgBr/TiO2 was 145 and 60 times of those over the commercial TiO2 P25 and the mesoporous TiO2, respectively.

  9. Preparation of polymer-rare earth complex using salicylic acid-containing polystyrene and its fluorescence emission property

    Energy Technology Data Exchange (ETDEWEB)

    Gao Baojiao, E-mail: gaobaojiao@126.com [Department of Chemical Engineering, North University of China, Taiyuan 030051 (China); Zhang Wei; Zhang Zhengguo; Lei Qingjuan [Department of Chemical Engineering, North University of China, Taiyuan 030051 (China)

    2012-08-15

    Salicylic acid (SA) was first bonded onto the side chains of polystyrene (PS), obtaining functional macromolecule SAPS. Using the salicylic acid-containing polystyrene as a macromolecular ligand, a polymer-rare earth complex, SAPS-Eu(III), was prepared. The structure of SAPS-Eu(III) was characterized, and the fluorescence properties of SAPS-Eu(III) were mainly investigated. The experimental results show that the complex SAPS-Eu(III) has fine chemical stability because of the bidentate chelating effect of salicylic acid ligand. More important, the ligand SA on the side chains of PS can strongly sensitize the fluorescence emission of the center ion, Eu{sup 3+} ion, and it enables the complex SAPS-Eu(III) to produce the apparent 'Antenna Effect'. In the diluted solution of the functional macromolecule SAPS, the formed complex SAPS-Eu(III) belongs to an intramolecular complex, or an intrachain complex. For the binary intramolecular complex SAPS-Eu(III), the apparent saturated coordination number of SA of SAPS towards Eu{sup 3+} ion is equal to 10, and here the binary intrachain complex SAPS-Eu(III) has the strongest fluorescence emission. On this basis, small-molecule 1,10-phenanthroline (Phen) acting as a co-ligand is added and the ternary complex SAPS-Eu(III)-Phen will be formed. As long as a small amount of Phen is added (in the molar ratio 1:1 (n(Phen):n(Eu))), the coordination of the two kinds of ligands, SA of SAPS and Phen, to Eu{sup 3+} ion will reach complete saturation, and here the fluorescence emission of the ternary complex will be further enhanced via the complementary coordination effect in comparison with that of the binary complex SAPS-Eu(III). - Highlights: Black-Right-Pointing-Pointer We prepared the functional polystyrene, SAPS, on whose side chain salicylic acid ligand was bonded. Black-Right-Pointing-Pointer The polymer-rare earth complex, SAPS-Eu(III), was prepared and a stronger 'antenna effect' was produced. Black

  10. Synthesis of vinyl polymer-silica colloidal nanocomposites prepared using commercial alcoholic silica sols.

    Science.gov (United States)

    Percy, M J; Amalvy, J I; Randall, D P; Armes, S P; Greaves, S J; Watts, J F

    2004-03-16

    The surfactant-free synthesis of vinyl polymer-silica nanocomposite particles has been achieved in aqueous alcoholic media at ambient temperature in the absence of auxiliary comonomers. Styrene, methyl methacrylate, methyl acrylate, n-butyl acrylate, and 2-hydroxypropyl methacrylate were homopolymerized in turn in the presence of three commercially available ultrafine alcoholic silica sols. Stable colloidal dispersions with reasonably narrow size distributions were obtained, with silica contents of up to 58% by mass indicated by thermogravimetric analysis. Particle size distributions were assessed using both dynamic light scattering and disk centrifuge photosedimentometry. The former technique indicated that the particle size increased for the first 1-2 h at 25 degrees C and thereafter remained constant. Particle morphologies were studied using electron microscopy. Most of the colloidal nanocomposites comprised approximately spherical particles with relatively narrow size distributions, but in some cases more polydisperse or nonspherical particles were obtained. Selected acrylate-based nanocomposites were examined in terms of their film formation behavior. Scanning electron microscopy studies indicated relatively smooth films were obtained on drying at 20 degrees C, with complete loss of the original particle morphology. The optical clarity of solution-cast 10 microm nanocomposite films was assessed using visible absorption spectrophotometry, with 93-98% transmission being obtained from 400 to 800 nm; the effect of long-term immersion of such films in aqueous solutions was also examined. X-ray photoelectron spectroscopy studies indicated that the surface compositions of these nanocomposite particles are invariably silica-rich, which is consistent with their long-term colloidal stability and also with aqueous electrophoresis measurements. FT-IR studies suggested that in the case of the poly(methyl methacrylate)-silica nanocomposite particles, the carbonyl ester

  11. Microspheres prepared with different co-polymers of poly(lactic-glycolic acid) (PLGA) or with chitosan cause distinct effects on macrophages.

    Science.gov (United States)

    Bitencourt, Claudia da Silva; Silva, Letícia Bueno da; Pereira, Priscilla Aparecida Tartari; Gelfuso, Guilherme Martins; Faccioli, Lúcia Helena

    2015-12-01

    Microencapsulation of bioactive molecules for modulating the immune response during infectious or inflammatory events is a promising approach, since microspheres (MS) protect these labile biomolecules against fast degradation, prolong the delivery over longer periods of time and, in many situations, target their delivery to site of action, avoiding toxic side effects. Little is known, however, about the influence of different polymers used to prepare MS on macrophages. This paper aims to address this issue by evaluating in vitro cytotoxicity, phagocytosis profile and cytokines release from alveolar macrophages (J-774.1) treated with MS prepared with chitosan, and four different co-polymers of PLGA [poly (lactic-co-glycolic acid)]. The five MS prepared presented similar diameter and zeta potential each other. Chitosan-MS showed to be cytotoxic to J-774.1 cells, in contrast to PLGA-MS, which were all innocuous to this cell linage. PLGA 5000-MS was more efficiently phagocytized by macrophages compared to the other MS tested. PLGA 5000-MS and 5002-MS induced significant production of TNF-α, while 5000-MS, 5004-MS and 7502-MS decreased spontaneous IL-6 release. Nevertheless, only PLGA 5002-MS induced significant NFkB/SEAP activation. These findings together show that MS prepared with distinct PLGA co-polymers are differently recognized by macrophages, depending on proportion of lactic and glycolic acid in polymeric chain, and on molecular weight of the co-polymer used. Selection of the most adequate polymer to prepare a microparticulate drug delivery system to modulate immunologic system may take into account, therefore, which kind of immunomodulatory response is more adequate for the required treatment.

  12. Use of surfactants as plasticizers in preparing solid dispersions of poorly soluble API: selection of polymer-surfactant combinations using solubility parameters and testing the processability.

    Science.gov (United States)

    Ghebremeskel, Alazar N; Vemavarapu, Chandra; Lodaya, Mayur

    2007-01-10

    Formation of solid dispersions as a means to enhance the dissolution rate of poorly soluble Active pharmaceutical ingredients (APIs) typically employs hydrophilic polymer systems and surfactants. While the utility of the surfactant systems in solubilization is well known, the secondary effects of the same on processing and subsequent physical stability of the solid dispersions needs to be studied further. Physical blends of the poorly soluble API and hydrophilic polymers such as PVP-K30, Plasdone-S630, HPMC-E5, HPMCAS, and Eudragit L100 with mass ratio 1:1 were prepared. The surfactants tested in this study included Tween-80, Docusate sodium, Myrj-52, Pluronic-F68 and SLS. Thermal analysis of the API-polymer-surfactant blends suggested that the surfactants caused solvation/plasticization, manifesting in reduction of (i) the melting (T(m)) of API (ii) T(g) of the polymers and (iii) the combined T(g) of the solid dispersion formed from quench cooling. Explanation of these effects of surfactants is attempted based on their physical state (at the temperature of interest), HLB values and similarity of their solubility parameter values with respect to drug-polymer systems. Furthermore, extruded matrices containing different API-polymer (PVP-K30, Plasdone-S630, and HPMC-E5) mixtures prepared with and without surfactants, were produced by feeding the powder blend through a hot-melt extruder. The melt viscosity of the polymer blends was assessed by torque rheometry using a Haake Rheomix. The physicochemical properties of the extruded API-polymer-surfactant were characterized by differential scanning calorimetry, X-ray diffraction, Raman spectroscopy, and polarized microscopy. The results demonstrated that the glass transition temperature of the carrier polymers decreased as direct result of the surfactants in the extrudate, due to an increase in the chain mobility of polymers. A decrease in the melt viscosity was seen due to a plasticization of the polymer. The drug release

  13. Preparation and Characterization of Potentially Antimicrobial Polymer Films Containing Starch Nano- and Microparticles

    Directory of Open Access Journals (Sweden)

    Paulius Pavelas DANILOVAS

    2014-09-01

    Full Text Available The forming conditions of biodegradable polymer films containing iodine-modified starch particles as well as the properties of the obtained films were investigated. Cationic cross-linked starch microparticles and cationic starch nanoparticles were dispersed in cellulose acetate and hydroxyethyl cellulose solution, respectively, and composite films were spin-casted. The obtained films were characterized and their mechanical properties were assessed. The cellulose acetate solution has been found to be an appropriate matrix for the dispersion of dry modified starch microparticles, but not in the case of nanoparticles. Starch nanoparticles were obtained in an aqueous medium, and the mechanical properties of the formed cellulose acetate films are significantly reduced by water present in the casting solution. It has been estimated that a fairly high amount of nanoparticles (18 wt% can be immobilized into films of water-soluble hydroxyethyl cellulose without markedly affecting the mechanical properties of the films. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.5426

  14. Preparation and Characterization of Nanocomposite Polymer Membranes Containing Functionalized SnO2 Additives

    Directory of Open Access Journals (Sweden)

    Roberto Scipioni

    2014-03-01

    Full Text Available In the research of new nanocomposite proton-conducting membranes, SnO2 ceramic powders with surface functionalization have been synthesized and adopted as additives in Nafion-based polymer systems. Different synthetic routes have been explored to obtain suitable, nanometer-sized sulphated tin oxide particles. Structural and morphological characteristics, as well as surface and bulk properties of the obtained oxide powders, have been determined by means of X-ray diffraction (XRD, scanning electron microscopy (SEM, Fourier Transform Infrared (FTIR and Raman spectroscopies, N2 adsorption, and thermal gravimetric analysis (TGA. In addition, dynamic mechanical analysis (DMA, atomic force microscopy (AFM, thermal investigations, water uptake (WU measurements, and ionic exchange capacity (IEC tests have been used as characterization tools for the nanocomposite membranes. The nature of the tin oxide precursor, as well as the synthesis procedure, were found to play an important role in determining the morphology and the particle size distribution of the ceramic powder, this affecting the effective functionalization of the oxides. The incorporation of such particles, having sulphate groups on their surface, altered some peculiar properties of the resulting composite membrane, such as water content, thermo-mechanical, and morphological characteristics.

  15. Preparation and characterisation of Isophthalic-Bi2O3 polymer composite gamma radiation shields

    Science.gov (United States)

    Ambika, M. R.; Nagaiah, N.; Harish, V.; Lokanath, N. K.; Sridhar, M. A.; Renukappa, N. M.; Suman, S. K.

    2017-01-01

    Bi2O3 filled Isophthalic resin based polymer composites of different weight % (0, 5, 10, 20, 30, 40, 50 & 60) were fabricated by open mould cast technique. Gamma attenuation study was carried out using NaI (Tl) gamma ray spectrometer for Cs-137. The shielding parameters such as attenuation coefficient, HVL & λ were investigated. The distribution of the filler within the matrix was studied using Scanning Electron Microscopy. X ray diffractometer and Fourier Transform Infrared Spectroscopy were employed to study the structural changes if any. The thermal stability and mechanical strength of the composites were investigated using TGA & UTM respectively. Dielectric properties and AC conductivity were also studied using LCR meter. The composites are found to be thermally stable upto 200 °C. There were no such structural changes observed and all the composites show very low conductivity. The mechanical strength of the composites was found to increase upon adding the bismuth oxide with a slight decrease when the concentration of the filler exceeds 40 wt%. Attenuation results reveal that, the shielding efficiency increases with the increase of the filler wt% and are comparable to those of the conventional shielding materials. Hence, Bi2O3 filled composites can be used for gamma shielding applications.

  16. Preparation and characterization of glass fibers - polymers (epoxy) bars (GFRP) reinforced concrete for structural applications

    Science.gov (United States)

    Alkjk, Saeed; Jabra, Rafee; Alkhater, Salem

    2016-06-01

    The paper presents some of the results from a large experimental program undertaken at the Department of Civil Engineering of Damascus University. The project aims to study the ability to reinforce and strengthen the concrete by bars from Epoxy polymer reinforced with glass fibers (GFRP) and compared with reinforce concrete by steel bars in terms of mechanical properties. Five diameters of GFRP bars, and steel bars (4mm, 6mm, 8mm, 10mm, 12mm) tested on tensile strength tests. The test shown that GFRP bars need tensile strength more than steel bars. The concrete beams measuring (15cm wide × 15cm deep × and 70cm long) reinforced by GFRP with 0.5 vol.% ratio, then the concrete beams reinforced by steel with 0.89 vol.% ratio. The concrete beams tested on deflection test. The test shown that beams which reinforced by GFRP has higher deflection resistance, than beams which reinforced by steel. Which give more advantage to reinforced concrete by GFRP.

  17. Preparation of hydrazine functionalized polymer brushes hybrid magnetic nanoparticles for highly specific enrichment of glycopeptides.

    Science.gov (United States)

    Huang, Guang; Sun, Zhen; Qin, Hongqiang; Zhao, Liang; Xiong, Zhichao; Peng, Xiaojun; Ou, Junjie; Zou, Hanfa

    2014-05-07

    Hydrazide chemistry is a powerful technique in glycopeptides enrichment. However, the low density of the monolayer hydrazine groups on the conventional hydrazine-functionalized magnetic nanoparticles limits the efficiency of glycopeptides enrichment. Herein, a novel magnetic nanoparticle grafted with poly(glycidyl methacrylate) (GMA) brushes was fabricated via reversible addition-fragmentation chain transfer (RAFT) polymerization, and a large amount of hydrazine groups were further introduced to the GMA brushes by ring-opening the epoxy groups with hydrazine hydrate. The resulting magnetic nanoparticles (denoted as Fe3O4@SiO2@GMA-NHNH2) demonstrated the high specificity of capturing glycopeptides from a tryptic digest of the sample comprising a standard non-glycosylated protein bovine serum albumin (BSA) and four standard glycoproteins with a weight ratio of 50 : 1, and the detection limit was as low as 130 fmol. In the analysis of a real complex biological sample, the tryptic digest of hepatocellular carcinoma, 179 glycosites were identified by the Fe3O4@SiO2@GMA-NHNH2 nanoparticles, surpassing that of 68 glycosites by Fe3O4@SiO2-single-NHNH2 (with monolayer hydrazine groups on the surface). It can be expected that the magnetic nanoparticles modified with hydrazine functionalized polymer brushes via RAFT technique will improve the specificity and the binding capacity of glycopeptides from complex samples, and show great potential in the analysis of protein glycosylation in biological samples.

  18. Preparation and toxicological assessment of functionalized carbon nanotube-polymer hybrids.

    Directory of Open Access Journals (Sweden)

    Nikos D Koromilas

    Full Text Available Novel Carbon Nanotube-Polymer Hybrids were synthesized as potential materials for the development of membranes for water treatment applications in the field of Membrane Bioreactors (MBRs. Due to the toxicological concerns regarding the use of nanomaterials in water treatment as well as the rising demand for safe drinking water to protect public health, we studied the functionalization of MWCNTs and Thin-MWCNTs as to control their properties and increase their ability of embedment into porous anisotropic polymeric membranes. Following the growth of the hydrophilic monomer on the surface of the properly functionalized CNTs, that act as initiator for the controlled radical polymerization (ATRP of sodium styrene sulfonate (SSNa, the antimicrobial quaternized phosphonium and ammonium salts were attached on CNTs-g-PSSNa through non-covalent bonding. In another approach the covalent attachment of quaternized ammonium polymeric moieties of acrylic acid-vinyl benzyl chloride copolymers with N,N-dimethylhexadecylamine (P(AA12-co-VBCHAM on functionalized CNTs has also been attempted. Finally, the toxicological assessment in terms of cell viability and cell morphological changes revealed that surface characteristics play a major role in the biological response of functionalized CNTs.

  19. Materials preparation and fabrication of pyroelectric polymer/silicon MOSFET detector arrays. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bloomfield, P. [Drexel Univ., Philadelphia, PA (United States). Dept. of Materials Engineering

    1992-03-27

    The authors have delivered several 64-element linear arrays of pyroelectric elements fully integrated on silicon wafers with MOS readout devices. They have delivered detailed drawings of the linear arrays to LANL. They have processed a series of two inch wafers per submitted design. Each two inch wafer contains two 64 element arrays. After spin-coating copolymer onto the arrays, vacuum depositing the top electrodes, and polarizing the copolymer films so as to make them pyroelectrically active, each wafer was split in half. The authors developed a thicker oxide coating separating the extended gate electrode (beneath the polymer detector) from the silicon. This should reduce its parasitic capacitance and hence improve the S/N. They provided LANL three processed 64 element sensor arrays. Each array was affixed to a connector panel and selected solder pads of the common ground, the common source voltage supply connections, the 64 individual drain connections, and the 64 drain connections (for direct pyroelectric sensing response rather than the MOSFET action) were wire bonded to the connector panel solder pads. This entails (64 + 64 + 1 + 1) = 130 possible bond connections per 64 element array. This report now details the processing steps and the progress of the individual wafers as they were carried through from beginning to end.

  20. Preparation and characterization of shape memory composite foams with interpenetrating polymer networks

    Science.gov (United States)

    Yao, Yongtao; Zhou, Tianyang; Yang, Cheng; Liu, Yanju; Leng, Jinsong

    2016-03-01

    The present study reports a feasible approach of fabricating shape memory composite foams with an interpenetrating polymer network (IPN) based on polyurethane (PU) and shape memory epoxy resin (SMER) via a simultaneous polymerization technique. The PU component is capable of constructing a foam structure and the SMER is grafted on the PU network to offer its shape memory property in the final IPN foams. A series of IPN foams without phase separation were produced due to good compatibility and a tight chemical interaction between PU and SMER components. The relationships of the geometry of the foam cell were investigated via varying compositions of PU and SMER. The physical property and shape memory property were also evaluated. The stimulus temperature of IPN shape memory composite foams, glass temperature (Tg), could be tunable by varying the constituents and Tg of PU and SMER. The mechanism of the shape memory effect of IPN foams has been proposed. The shape memory composite foam with IPN developed in this study has the potential to extend its application field.

  1. Preparation and investigation of cheap polymer electrolyte membranes for fuel cells

    DEFF Research Database (Denmark)

    Larsen, Mikkel Juul; Ma, Yue; Lund, Peter Brilner

    The electrolyte of choice for low temperature polymer electrolyte fuel cells (PEFCs) has tra­di­ti­o­nal­ly been DuPontTM Nafion® membranes or similar poly(perfluorosulfonic acid)s. The chemical struc­ture and morphology in the hydrated state of Nafion® is shown in figure 1 from which it is seen...... found that crosslinking by divinylbenzene clear­ly improves the chemical stability of both sulfonated styrene- and methylstyrene/t-butylstyrene-grafted ETFE membranes. How­ever, the crosslinking reduces the proton conductivity due to decreased water uptake, thus downgrading the membranes' elec­tro­ly­tic.......; Schuster, M.; Chemical Reviews 104 (2004) 4637-4678 [ii] Skou, E.; Kauranen, P.; Hentschel, J.; Solid State Ionics 97 (1997) 333-337 [iii] Fuel Cell Handbook; Seventh Edition; EG&G Technical Services, Inc.; 2004; p. 3.1-3.25 [iv] Doyle, M.; Rajendran, G. in Handbook of Fuel Cells - Fundamentals, Technology...

  2. Preparation and investigation of cheap polymer electrolyte membranes for fuel cells

    DEFF Research Database (Denmark)

    Larsen, Mikkel Juul; Ma, Yue; Lund, Peter Brilner

    The electrolyte of choice for low temperature polymer electrolyte fuel cells (PEFCs) has tra­di­ti­o­nal­ly been DuPontTM Nafion® membranes or similar poly(perfluorosulfonic acid)s. The chemical struc­ture and morphology in the hydrated state of Nafion® is shown in figure 1 from which it is seen...... crossover, and relatively poor thermal stability constitute seri­ous drawbacks with respect to their fuel cell use.[ii],[iii],[iv] These aspects propel the search for cheaper and better alternatives.           In this study membrane systems consisting of a hydrophobic poly...... found that crosslinking by divinylbenzene clear­ly improves the chemical stability of both sulfonated styrene- and methylstyrene/t-butylstyrene-grafted ETFE membranes. How­ever, the crosslinking reduces the proton conductivity due to decreased water uptake, thus downgrading the membranes' elec­tro­ly­tic...

  3. Preparation and characterization of glass fibers – polymers (epoxy bars (GFRP reinforced concrete for structural applications

    Directory of Open Access Journals (Sweden)

    Alkjk Saeed

    2016-06-01

    Full Text Available The paper presents some of the results from a large experimental program undertaken at the Department of Civil Engineering of Damascus University. The project aims to study the ability to reinforce and strengthen the concrete by bars from Epoxy polymer reinforced with glass fibers (GFRP and compared with reinforce concrete by steel bars in terms of mechanical properties. Five diameters of GFRP bars, and steel bars (4mm, 6mm, 8mm, 10mm, 12mm tested on tensile strength tests. The test shown that GFRP bars need tensile strength more than steel bars. The concrete beams measuring (15cm wide × 15cm deep × and 70cm long reinforced by GFRP with 0.5 vol.% ratio, then the concrete beams reinforced by steel with 0.89 vol.% ratio. The concrete beams tested on deflection test. The test shown that beams which reinforced by GFRP has higher deflection resistance, than beams which reinforced by steel. Which give more advantage to reinforced concrete by GFRP.

  4. Preparation and characterization of magnetic molecularly imprinted polymers for the extraction of hexamethylenetetramine in milk samples.

    Science.gov (United States)

    Xu, Xing; Duhoranimana, Emmanuel; Zhang, Xiaoming

    2017-01-15

    Magnetic molecularly imprinted polymers (M-MIPs) were synthesized as the sorbents for extracting hexamethylenetetramine (HMT) from milk samples. Molecular simulations were used to calculate the interaction energies of the template monomers. The physical properties of M-MIPs were characterized. The adsorption isotherms and kinetics were investigated. Gas chromatography coupled with tandem mass spectrometry (GC-MS/MS) was applied to determine the amount of HMT residue in milk samples. In the optimized method, a linear calibration curve was obtained using a matrix-matched standard in the range of 1.0-50.0μgL(-1). The limit of detection (LOD) and limit of quantification (LOQ) was 0.3μgkg(-1) and 1.0μgkg(-1), respectively. The relative standard deviation (RSD) of the intra-day assay ranged from 2.6% to 5.2%, while that of the inter-day assay ranged from 3.6% to 11.5%. The recovery of HMT in milk samples ranged from 88.7% to 111.4%.

  5. Mussel inspired preparation of MoS2 based polymer nanocomposites: The case of polyPEGMA

    Science.gov (United States)

    Zeng, Guangjian; Liu, Meiying; Liu, Xinhua; Huang, Qiang; Xu, Dazhuang; Mao, Liucheng; Huang, Hongye; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2016-11-01

    In this work, we report a facile strategy to prepare PEGylated MoS2 nanosheets through the combination of mussel inspired chemistry and Michael addition reaction. The MoS2 nanosheets were obtained from lithium intercalation and exfoliation method. Meanwhile, the amino-contained poly((polyethylene glycol) methyl ether methacrylate) (PPEGMA) were obtained via chain transfer free radical polymerization using cysteamine hydrochloride as the chain transfer agents and PEGMA as the monomer. To introduce PPEGMA on MoS2 nanosheets, polydopamine (PDA) thin films were first coated on the surface of MoS2 nanosheets through self polymerization of dopamine as the ad-layers, which can react with amino-terminated PPEGMA through Michael addition reaction. The structure, morphology and chemical compositions of MoS2 nanosheets and MoS2-PDA-PPEGMA have been characterized by various characterization techniques. The results demonstrated that the amino-terminated PPEGMA can be successfully immobilized on MoS2 nanosheets via PDA thin films as the ad-layers. More importantly, the strategy described in this work could also be utilized for surface immobilization of various polymers on many other materials and surfaces because of the universal adhesion of PDA and the good monomer applicability of chain transfer free radical polymerization. Taken together, we developed a facile and versatile method to fabricate multifunctional MoS2 based polymer nanocomposites with designable properties and applications via combination of mussel inspired and chain transfer free radical polymerization. The resultant composites are expected to be potentially used for drug delivery and photothermal cancer treatment.

  6. Preparation, characterization and usage of molecularly imprinted polymer for the isolation of quercetin from hydrolyzed nettle extract.

    Science.gov (United States)

    Karaman Ersoy, Şeyda; Tütem, Esma; Sözgen Başkan, Kevser; Apak, Reşat; Nergiz, Cevdet

    2016-04-01

    Quercetin (3,3',4',5,7-pentahydroxyflavone, QC) is a health-beneficial flavonoid, widely occurring in leaves, fruits, and flowers of various plants. In this work aiming isolation, purification and pre-concentration of QC, QC imprinted polymers (QC-MIPs) in different molar ratios {template:monomer:cross-linker (1:4:20, 1:5:30, 1:8:40, 1:10:50)} were prepared thermally through bulk polymerization by using QC as the template molecule, 4-vinylpyridine (4-VP), methacrylic acid (MAA), acrylamide (AA) as the functional monomers, ethylene glycol dimethacrylate (EDMA) as the cross-linker and 2,2'-azobisisobutyronitrile (AIBN) as initiator in the porogens of acetone and tetrahydrofuran. Their recognition and selectivity properties were investigated in solutions containing QC and other similar-structure phenolics by equilibrium binding experiments using different proportions of acetonitrile (ACN)-dimethylsulfoxide (DMSO) mixtures and methanol (MeOH) as solvents. The MIP with 1:4:20 molar ratio of QC:4-VP:EDMA was established as the most suitable for recognition of QC. Sorption parameters of the MIP and the NIP (non-imprinted polymer) were calculated by using Freundlich and Langmuir isotherms with QC solutions in ACN:DMSO (98:2, v/v). The mentioned MIP was found to be highly selective for quercetin over other phenolic compounds (rutin, catechin, etc.). Thus, molecularly imprinted solid-phase extraction (MISPE) procedures were applied for selective pre-concentration and purification of QC from synthetic mixtures of phenolic compounds and nettle extract, known as a source of official and folk medicine. The results demonstrated the possibility of direct extraction of certain pharmacophoric constituents such as QC and QC derivatives from nettle by MIP separation.

  7. Preparation and characterization of superparamagnetic molecularly imprinted polymers for selective adsorption and separation of vanillin in food samples.

    Science.gov (United States)

    Ning, Fangjian; Peng, Hailong; Dong, Liling; Zhang, Zhong; Li, Jinhua; Chen, Lingxin; Xiong, Hua

    2014-11-19

    Novel water-compatible superparamagnetic molecularly imprinted polymers (M-MIPs) were prepared by coating superparamagnetic Fe3O4 nanoparticles with MIPs in a methanol-water reaction system. The M-MIPs were used for the selective adsorption and separation of vanillin from aqueous solution. The M-MIPs were characterized by X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), and scanning electron microscopy (SEM). Results indicated that a core-shell structure of M-MIPs was obtained by coating a layer of silica and MIPs on the surface of the Fe3O4 nanoparticles. The obtained M-MIPs possess a loose and porous structure and can be rapidly separated from the solution using a magnet. The adsorption experiments showed that the binding capacity of the M-MIPs was significantly higher than that of the superparamagnetic non-molecularly imprinted polymers (M-NIPs). Meanwhile, the adsorption of M-MIPs reached equilibrium within 100 min, and the apparent maximum adsorption quantity (Qmax) and dissociation constant (Kd) were 64.12 μmol g(-1) and 58.82 μmol L(-1), respectively. The Scatchard analysis showed that homogeneous binding sites were formed on the M-MIP surface. The recoveries of 83.39-95.58% were achieved when M-MIPs were used for the pre-concentration and selective separation of vanillin in spiked food samples. These results provided the possibility for the separation and enrichment of vanillin from complicated food matrices by M-MIPs.

  8. PREPARATION AND CHARACTERIZATION OF AFFINITY POLYMER BASIC MICROSPHERES BY SOAP-FREE EMULSION POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    Jing-ning Lv; Shi-jiang Fang; Lei Chen

    2009-01-01

    Poly(styrene-co-glycidyl methacrylate) latex microspheres with uniform size and high-density epoxy groups on the surface were prepared by soap-free emulsion polymerization with batch wise operation mode in the presence of 2,2'azobis(2-methylpropionamidine) dihydrochloride as an initiator.The kinetics of soap-free emulsion polymerization and the effects of polymerization factors were examined.In addition,the optimum polymerization conditions of poly(styrene-coglycidyl methacrylate) latex microspheres for immobilization of biomolecules were obtained.

  9. Preparation and characterization of Ag nanoparticle-embedded polymer electrospun nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Dong Guoping, E-mail: guoping_dong@163.com; Xiao Xiudi; Liu, Xiaofeng; Qian Bin [Chinese Academy of Sciences, Shanghai Institute of Optics and Fine Mechanics (China); Ma Zhijun; Ye Song [Zhejiang University, State Key Laboratory of Silicon Materials (China); Chen Danping [Chinese Academy of Sciences, Shanghai Institute of Optics and Fine Mechanics (China); Qiu Jianrong, E-mail: jrqiu@zju.edu.c [Zhejiang University, State Key Laboratory of Silicon Materials (China)

    2010-05-15

    Poly (vinyl alcohol) (PVA) and poly (vinyl pyrrolidone) (PVP) nanofibers embedding Ag nanoparticles (5-18 nm) have been prepared successfully by electrospinning at room temperature. Scanning electron microscope (SEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), Fourier transform IR spectra (FTIR), and Raman scattering were used to characterize the structure and properties of Ag nanoparticle-embedded PVA and PVP nanofibers before and after heat treatment at different temperature. The antibacterial activity of Ag nanoparticle-embedded PVP nanofibers after heat treatment was also tested, which indicated that the biological activity of yeast cells was effectively inhibited by these Ag nanoparticle-embedded PVP nanofibers.

  10. Review of Preparation and Properties of Polymers from Copolymerization of Aprotic Acrylic Monomers with Protic Acrylic Monomers

    Science.gov (United States)

    1988-07-01

    STRATEGIES APPLICABLE TO POLYMER RESEARCH: DETERMINATION OF HOMOPOLYMER AND COPOLYMER CHEMICAL ABSTRACT SERVICE (CAS) NUMBERS THROUGH DIALOG...8217 APPENDIX A DATA BASE LITERATURE REVIEW STRATEGIES APPLICABLE TO POLYMER RESEARCH: DETERMINATION OF HOMOPOLYMER AND COPOLYMER CHEMICAL ABSTRACT SERVICE

  11. Molecularly imprinted polymer beads for nicotine recognition prepared by RAFT precipitation polymerization: a step forward towards multifunctionalities

    DEFF Research Database (Denmark)

    Zhou, Tongchang; Jørgensen, Lars; Mattebjerg, Maria Ahlm;

    2014-01-01

    A nicotine imprinted polymer was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization using methacrylic acid (MAA) as a functional monomer. The resulting molecularly imprinted polymers were monodispersed beads with an average diameter of 1.55 mm. The molecular...... modification of the imprinted polymer beads, we also show that the dithioester end groups on the surface of the polymer beads can be converted into new thiol groups without sacrificing the specific molecular recognition. Through the new terminal thiol groups, a fluorescent dye was conveniently conjugated...... selectivity of the imprinted polymer beads was evaluated by studying the uptake of nicotine and its structural analogs by the polymer beads. Equilibrium binding results indicate that the amount of nicotine bound to the imprinted polymer beads is significantly higher than that bound to the nonimprinted polymer...

  12. Preparation of Sheet-like Polymer-Encapsulated Composite Particles by Seeded Polymerization from Sub-micrometer Sheets.

    Science.gov (United States)

    Huang, Ting; Yao, Kuncheng; Wu, Teng; Qiu, Dong

    2015-07-01

    Seeded polymerization has been widely used to fabricate polymer-encapsulated inorganic particles (IPs). The most frequently used seeds are spherical, whereas nonspherical particles are not well documented. Recently, sheet-like IPs have attracted much attention in the context of polymer composites. This article is therefore dedicated to understanding seeded polymerization from submicron sheets and focuses on the control of the overall morphology of the composite particles obtained. However, it was found that the composite particles only maintained the sheet-like morphology of the seeds at a low polymer content, whereas they became hamburger-like at a high polymer content owing to minimization of the interfacial energy. Interestingly, when cross-linked, the sheet-like morphology could be well preserved, even at a rather high polymer content. With the encapsulating polymer layer, the obtained sheet-like composite particles showed improved compatibility with the polymer matrix and could be well dispersed in polymer matrix when simply blended.

  13. High Temperature Exposure of HPC – Experimental Analysis of Residual Properties and Thermal Response

    Directory of Open Access Journals (Sweden)

    Pavlík Zbyšek

    2016-01-01

    Full Text Available The effect of high temperature exposure on properties of a newly designed High Performance Concrete (HPC is studied in the paper. The HPC samples are exposed to the temperatures of 200, 400, 600, 800, and 1000°C respectively. Among the basic physical properties, bulk density, matrix density and total open porosity are measured. The mechanical resistivity against disruptive temperature action is characterised by compressive strength, flexural strength and dynamic modulus of elasticity. To study the chemical and physical processes in HPC during its high-temperature exposure, Simultaneous Thermal Analysis (STA is performed. Linear thermal expansion coefficient is determined as function of temperature using thermodilatometry (TDA. In order to describe the changes in microstructure of HPC induced by high temperature loading, MIP measurement of pore size distribution is done. Increase of the total open porosity and connected decrease of the mechanical parameters for temperatures higher than 200 °C were identified.

  14. Molecularly imprinted polymer beads for nicotine recognition prepared by RAFT precipitation polymerization: a step forward towards multifunctionalities

    OpenAIRE

    Zhou, Tongchang; Jørgensen, Lars; Mattebjerg, Maria Ahlm; Chronakis, Ioannis S; Ye, Lei

    2014-01-01

    A nicotine imprinted polymer was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization using methacrylic acid (MAA) as a functional monomer. The resulting molecularly imprinted polymers were monodispersed beads with an average diameter of 1.55 mm. The molecular selectivity of the imprinted polymer beads was evaluated by studying the uptake of nicotine and its structural analogs by the polymer beads. Equilibrium binding results indicate that the amount of nicoti...

  15. Preparation and drug-loading properties of Fe{sub 3}O{sub 4}/Poly(styrene-co-acrylic acid) magnetic polymer nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wensheng [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Coordination Chemistry Institute, School of Chemistry and Chemical Engineering and Life Science, Chaohu University, Chaohu 238000 (China); Shen, Yuhua, E-mail: s_yuhua@163.com [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Xie, Anjian [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Zhang, Weiqiang [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Coordination Chemistry Institute, School of Chemistry and Chemical Engineering and Life Science, Chaohu University, Chaohu 238000 (China)

    2013-11-15

    Fe{sub 3}O{sub 4}/poly(styrene-co-acrylic acid) magnetic polymer nanocomposites were synthesized by the dispersion polymerization method using styrene as hard monomer, acrylic acid as functional monomer, Fe{sub 3}O{sub 4} nanoparticles modified with oleic acid as core, and poly(styrene-co-acrylic acid) as shell. Drug-loading properties of magnetic polymer nanocomposites with curcumin as a model drug were also studied. The results indicated that magnetic polymer nanocomposites with monodisperse were obtained, the particle size distribution was 50–120 nm, and the average size was about 100 nm. The contents of poly(styrene-co-acrylic acid) and Fe{sub 3}O{sub 4} nanoparticles in magnetic polymer nanocomposites were 74% and 24.7%, respectively. The drug-loading capacity and entrapment efficiency were 2.5% and 44.4%, respectively. The saturation magnetization of magnetic polymer nanocomposites at 300 K was 20.2 emu/g without coercivity and remanence. The as-prepared magnetic polymer nanocomposites have not only lots of functional carboxyl groups but also stronger magnetic response, which might have potential applications in drug carrier and targeted drug release.

  16. Facile preparation of polydopamine-coated imprinted polymers on the surface of SiO2 for estrone capture in milk samples.

    Science.gov (United States)

    Zheng, Penglei; Zhang, Bilin; Luo, Zhimin; Du, Wei; Guo, Pengqi; Zhou, Yulan; Chang, Ruimiao; Chang, Chun; Fu, Qiang

    2016-10-05

    Estrone molecularly imprinted polymers were synthesized through the self-polymerization of dopamine on the surface of silica gels, which had the characteristics of mild polymerization conditions, simple reaction procedure and good specific recognition ability for estrone. The estrone molecularly imprinted polymers were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, elemental analysis and nitrogen adsorption-desorption tests. The characterization confirmed that the imprinted polymers were successfully grafted on the surface of silica gels. Through investigating the adsorption performance, the prepared estrone molecularly imprinted polymers exhibited high adsorption capacity, fast mass transfer, as well as excellent selectivity toward estrone. The estrone molecularly imprinted polymers as the solid-phase extraction adsorbent coupled with high-performance liquid chromatography was developed to determine estrone from the milk samples. The developed estrone molecularly imprinted polymer solid-phase extraction with high-performance liquid chromatography method exhibited satisfactory specificity, precision, accuracy and good linearity relationship in the range of 0.2-20 μg/mL. The developed method is simple, fast, effective and high specificity method and it provides a new method to detect the residues of estrone in animal foods. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Synthesis and Properties of Trehalose-Based Flexible Polymers Prepared from Difurfurylidene Trehalose and Maleimide- Terminated Oligo(dimethylsiloxane by Diels-Alder Reactions

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Shibata

    2010-01-01

    Full Text Available Difurfurylidene trehalose (DFTreh was synthesized from trehalose and furfural by an acetalization reaction. Maleimide-terminated dimethylsiloxane oligomers (DMS-BMI were synthesized from amine-terminated dimethylsiloxane oligomers by condensation with maleic anhydride. Three types of DMS-BMI with different length were prepared. Trehalose-based polymers were synthesized by Diels-Alder reaction of DFTreh and DMS-BMI. The reaction proceeded at 40~70 °C to produce a polymer with a maximum weight average molecular weight of ~19,000. The thermal degradation temperature increased with the increase of the length of the oligo(dimethylsiloxane units. The differential scanning calorimetry (DSC measurements revealed the glass transition temperature (Tg of the polymer at -130~-120 °C, and no distinct Tg not observed above room temperature in the DSC measurement. The polymer products are not liquid at room temperature, and solid films can be obtained by casting from solution, implying a phase-separated structure made up of soft and hard segments. The phase-separated structure was confirmed by transmission electron microscope (TEM study. The DSC curve of the polymer showed a broad endothermic peak at 110~160 °C, suggesting that a retro-Diels-Alder reaction occurred. When a N,N-dimethylformamide solution of the polymer was kept at 100 °C and the resulting solution was analyzed by gel permeation chromatography (GPC, the molecular weight decreased and monomers appeared.

  18. Preparation and chromatographic performance of polymer-based anion exchangers for ion chromatography: A review.

    Science.gov (United States)

    Zatirakha, A V; Smolenkov, A D; Shpigun, O A

    2016-01-21

    In the last decade the developments in the field of ion chromatography (IC) were aimed at increasing the efficiency, sensitivity and rapidity of analysis, as well as on improving separation selectivity. Since selectivity and efficiency to the large extent depend on the surface chemistry of the stationary phase, the development of novel anion exchangers remains one of the priority tasks in modern IC. The exact chemistry of commercially available resins is not known and not many literature data devoted to the procedures of preparing anion exchangers for IC have become available in the last 10-15 years. However, the knowledge about the surface chemistry of anion exchangers can provide understanding of the trends in selectivity and efficiency changes, as well as help with the choice of the stationary phase type suitable for solving a particular analytical task. The current review is devoted to the methods of preparing anion exchangers based on polystyrene-divinylbenzene (PS-DVB) and ethylvinylbenzene-divinylbenzene (EVB-DVB) for IC of inorganic and small organic anions and is aimed at demonstrating the improvement of their performance over the years, which was brought by the development of the new types of stationary phase architecture.

  19. HPC Colony II Consolidated Annual Report: July-2010 to June-2011

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Terry R [ORNL

    2011-06-01

    This report provides a brief progress synopsis of the HPC Colony II project for the period of July 2010 to June 2011. HPC Colony II is a 36-month project and this report covers project months 10 through 21. It includes a consolidated view of all partners (Oak Ridge National Laboratory, IBM, and the University of Illinois at Urbana-Champaign) as well as detail for Oak Ridge. Highlights are noted and fund status data (burn rates) are provided.

  20. Fast and Accurate CBR Defense for Homeland Security: Bringing HPC to the First Responder and Warfighter

    Science.gov (United States)

    2007-06-01

    Bringing HPC to the First Responder and Warfighter DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following...thru ADP023803 UNCLASSIFIED Fast and Accurate CBR Defense for Homeland Security: Bringing HPC to the First Responder and Warfighter Gopal Patnaik and...Urban AerodynamicsE1 3, these models are now the fidelity and accuracy of CFD to the first responder or commonly applied to predict contaminant

  1. Chemoenzymic preparation of a glycoconjugate polymer having a sialyloligosaccharide: Neu5Ac alpha (2-->3)Gal beta (1-->4)GlcNAc.

    Science.gov (United States)

    Nishimura, S; Lee, K B; Matsuoka, K; Lee, Y C

    1994-02-28

    Water-soluble polyacrylamide having 3'-sialyl N-acetyl-lactosamine [Neu5Ac alpha (2-->3)Gal beta (1-->4)GlcNAc] was enzymatically prepared by stepwise sugar-elongation on a water-soluble GlcNAc-bearing polyacrylamide. It was demonstrated that the flexible GlcNAc branches of the polymer chains allow quantitative galactosylation with bovine galactosyl transferase and partial sialylation by Trypanosoma cruzi trans-sialidase. Unsialylated N-acetyl-lactosamine side chains can be removed with beta-D-galactosidase and N-acetyl-beta-D-glucosaminidase to afford the targeted polymer containing 3'-sialyl N-acetyl-lactosamine.

  2. Spark and HPC for High Energy Physics Data Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Sehrish, Saba [Fermilab; Kowalkowski, Jim [Fermilab

    2017-01-01

    A full High Energy Physics (HEP) data analysis is divided into multiple data reduction phases. Processing within these phases is extremely time consuming, therefore intermediate results are stored in files held in mass storage systems and referenced as part of large datasets. This processing model limits what can be done with interactive data analytics. Growth in size and complexity of experimental datasets, along with emerging big data tools are beginning to cause changes to the traditional ways of doing data analyses. Use of big data tools for HEP analysis looks promising, mainly because extremely large HEP datasets can be represented and held in memory across a system, and accessed interactively by encoding an analysis using highlevel programming abstractions. The mainstream tools, however, are not designed for scientific computing or for exploiting the available HPC platform features. We use an example from the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) in Geneva, Switzerland. The LHC is the highest energy particle collider in the world. Our use case focuses on searching for new types of elementary particles explaining Dark Matter in the universe. We use HDF5 as our input data format, and Spark to implement the use case. We show the benefits and limitations of using Spark with HDF5 on Edison at NERSC.

  3. HPC-MAQ : A PARALLEL SHORT-READ REFERENCE ASSEMBLER

    Directory of Open Access Journals (Sweden)

    Veeram Venkata Siva Prasad

    2011-07-01

    Full Text Available Bioinformatics and computational biology are rooted in life sciences as well as computer and information sciences and technologies. Bioinformatics applies principles of information sciences and technologies to make the vast, diverse, and complex life sciences data more understandable and useful. Computational biology uses mathematical and computational approaches to address theoretical and experimental questions in biology. Short read sequence assembly is one of the most important steps in the analysis of biological data. There are many open source software’s available for short read sequence assembly where MAQ is one such popularly used software by the research community. In general, biological data sets generated by next generation sequencers are very huge and massive which requires tremendous amount of computational resources. The algorithm used for the short read sequence assembly is NP Hard which is computationally expensive and time consuming. Also MAQ is single threaded software which doesn't use the power of multi core and distributed computing and it doesn't scale. In this paper we report HPC-MAQ which addresses the NP-Hard related challenges of genome reference assembly and enables MAQ parallel and scalable through Hadoop which is a software framework for distributed computing.

  4. Modeling the Performance of Fast Mulipole Method on HPC platforms

    KAUST Repository

    Ibeid, Huda

    2012-04-06

    The current trend in high performance computing is pushing towards exascale computing. To achieve this exascale performance, future systems will have between 100 million and 1 billion cores assuming gigahertz cores. Currently, there are many efforts studying the hardware and software bottlenecks for building an exascale system. It is important to understand and meet these bottlenecks in order to attain 10 PFLOPS performance. On applications side, there is an urgent need to model application performance and to understand what changes need to be made to ensure continued scalability at this scale. Fast multipole methods (FMM) were originally developed for accelerating N-body problems for particle based methods. Nowadays, FMM is more than an N-body solver, recent trends in HPC have been to use FMMs in unconventional application areas. FMM is likely to be a main player in exascale due to its hierarchical nature and the techniques used to access the data via a tree structure which allow many operations to happen simultaneously at each level of the hierarchy. In this thesis , we discuss the challenges for FMM on current parallel computers and future exasclae architecture. Furthermore, we develop a novel performance model for FMM. Our ultimate aim of this thesis is to ensure the scalability of FMM on the future exascale machines.

  5. Optimization of Forward Wave Modeling on Contemporary HPC Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Micikevicius, Paulius [NVIDIA, Santa Clara, CA (United States); Williams, Samuel [Fraunhofer ITWM, Kaiserslautern (Germany)

    2012-07-20

    Reverse Time Migration (RTM) is one of the main approaches in the seismic processing industry for imaging the subsurface structure of the Earth. While RTM provides qualitative advantages over its predecessors, it has a high computational cost warranting implementation on HPC architectures. We focus on three progressively more complex kernels extracted from RTM: for isotropic (ISO), vertical transverse isotropic (VTI) and tilted transverse isotropic (TTI) media. In this work, we examine performance optimization of forward wave modeling, which describes the computational kernels used in RTM, on emerging multi- and manycore processors and introduce a novel common subexpression elimination optimization for TTI kernels. We compare attained performance and energy efficiency in both the single-node and distributed memory environments in order to satisfy industry’s demands for fidelity, performance, and energy efficiency. Moreover, we discuss the interplay between architecture (chip and system) and optimizations (both on-node computation) highlighting the importance of NUMA-aware approaches to MPI communication. Ultimately, our results show we can improve CPU energy efficiency by more than 10× on Magny Cours nodes while acceleration via multiple GPUs can surpass the energy-efficient Intel Sandy Bridge by as much as 3.6×.

  6. A Distributed Python HPC Framework: ODIN, PyTrilinos, & Seamless

    Energy Technology Data Exchange (ETDEWEB)

    Grant, Robert [Enthought, Inc., Austin, TX (United States)

    2015-11-23

    Under this grant, three significant software packages were developed or improved, all with the goal of improving the ease-of-use of HPC libraries. The first component is a Python package, named DistArray (originally named Odin), that provides a high-level interface to distributed array computing. This interface is based on the popular and widely used NumPy package and is integrated with the IPython project for enhanced interactive parallel distributed computing. The second Python package is the Distributed Array Protocol (DAP) that enables separate distributed array libraries to share arrays efficiently without copying or sending messages. If a distributed array library supports the DAP, it is then automatically able to communicate with any other library that also supports the protocol. This protocol allows DistArray to communicate with the Trilinos library via PyTrilinos, which was also enhanced during this project. A third package, PyTrilinos, was extended to support distributed structured arrays (in addition to the unstructured arrays of its original design), allow more flexible distributed arrays (i.e., the restriction to double precision data was lifted), and implement the DAP. DAP support includes both exporting the protocol so that external packages can use distributed Trilinos data structures, and importing the protocol so that PyTrilinos can work with distributed data from external packages.

  7. Preparation of nanocrystals and nanocomposites of nanocrystal-conjugated polymer, and their photophysical properties in confined geometries

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jun [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Semiconductors nanocrystals (NCs), also called quantum dots (QDs), have attracted tremendous interest over the past decade in the fields of physics, chemistry, and engineering. Due to the quantum-confined nature of QDs, the variation of particle size provides continuous and predictable changes in fluorescence emission. On the other hand, conjugated polymers (CPs) have been extensively studied for two decades due to their semiconductor-like optical and electronic properties. The electron and energy transfer between NCs and CPs occur in solar cells and light emitting diodes (LEDs), respectively. Placing CPs in direct contact with a NC (i.e., preparing NC-CP nanocomposites) carries advantage over cases where NC aggregation dominates. Such NC-CP nanocomposites possess a well-defined interface that significantly promotes the charge or energy transfer between these two components. However, very few studies have centered on such direct integration. We prepared NCs and NC-CP nanocomposites based on heck coupling and investigated the energy and charge transfer between semiconductor NCs (i.e., CdSe QDs), CPs (i.e., poly(3-hexyl thiophene) (P3HT)) in the nanocomposites in confined geometries. Two novel strategies were used to confine NC and/or NC-CP nanocomposites: (a) directly immobilizing nanohybrids, QDs and nanorods in nanoscopic porous alumina membrane (PAM) , and (b) confining the QDs and CPs in sphere-on-flat geometry to induce self-assembly. While investigating the confinement effect, gradient concentric ring patterns of high regularity form spontaneously simply by allowing a droplet of solution containing either conjugated polymer or semiconductor nanocrystal in a consecutive stick-slip mothion in a confined geometry. Such constrained evaporation can be utilized as a simple, cheap, and robust strategy for self-assembling various materials with easily tailored optical and electronic properties into spatially ordered, two-dimensional patterns. These self

  8. CATCH: A Cloud-based Adaptive Data Transfer Service for HPC

    Energy Technology Data Exchange (ETDEWEB)

    Monti, Henri [Virginia Polytechnic Institute and State University (Virginia Tech); Butt, Ali R [Virginia Polytechnic Institute and State University (Virginia Tech); Vazhkudai, Sudharshan S [ORNL

    2011-01-01

    Modern High Performance Computing (HPC) applications process very large amounts of data. A critical research challenge lies in transporting input data to the HPC center from a number of distributed sources, e.g., scientific experiments and web repositories, etc., and offloading the result data to geographically distributed, intermittently available end-users, often over under-provisioned connections. Such end-user data services are typically performed using point-to-point transfers that are designed for well-endowed sites and are unable to reconcile the center's resource usage and users delivery deadlines, unable to adapt to changing dynamics in the end-to-end data path and are not fault-tolerant. To overcome these inefficiencies, decentralized HPC data services are emerging as viable alternatives. In this paper, we develop and enhance such distributed data services by designing CATCH, a Cloud-based Adaptive data Transfer serviCe for HPC. CATCH leverages a bevy of cloud storage resources to orchestrate a decentralized data transport with fail-over capabilities. Our results demonstrate that CATCH is a feasible approach, and can help improve the data transfer times at the HPC center by as much as 81.1% for typical HPC workloads.

  9. PROPERTIES OF POLYMER SUPPORTED Ni-Cu BIMETALLIC CATALYSTS PREPARED BY SOLVATED METAL ATOM IMPREGNATION

    Institute of Scientific and Technical Information of China (English)

    WU Shihua; ZHU Changying; HUANG Wenqiang

    1996-01-01

    D-72 resin supported nickel-copper catalysts prepared by solvated metal atom impregnation (SMAI) were studied by magnetic measurements and X-ray photoelectron spectroscopy (XPS). The Ni particles on the catalysts are very highly dispersed and display superparamagnetic behaviour. Ni-Cu alloy clusters were found to be formed. The surface compositions are different from the bulk concentrations. In contrast with the surface enrichment in copper generally observed on conventional Ni-Cu catalysts, the surfaces of these catalysts are enriched in nickel. The nickel is in both zero and valent states, while copper is mainly in metallic state. Catalytic data show that the formation of Ni-Cu alloy clusters has a profound effect on the catalytic activities of the catalysts in the hydrogenation of furfural. The activity of the Ni:Cu ratio of one bimetallic catalysts is much higher than that of the Ni or Cu monometallic catalyst.

  10. Preparation of catalyst for a polymer electrolyte fuel cell using a novel spherical carbon support

    Energy Technology Data Exchange (ETDEWEB)

    Eguchi, Mika; Okubo, Atsuhiko; Kobayashi, Yoshio [Department of Biomolecular Functional Engineering, Faculty of Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511 (Japan); Yamamoto, Shun [Material and Biological Sciences, Graduate School of Science and Engineering, Faculty of Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511 (Japan); Kikuchi, Mayuko; Nishitani-Gamo, Mikka [Department of Applied Chemistry, Faculty of Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585 (Japan); Uno, Katsuhiro [Department of Media and Telecommunications Engineering, Faculty of Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511 (Japan); Ando, Toshihiro [National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2010-09-15

    In this study, the support Pt catalyst was supported by a novel spherical carbon using a convenient technique. Two different preparation methods utilizing a nanocolloidal solution method without heat treatment were developed (methods 1 and 2). The scanning electron microscope (SEM) and transmission electron microscope (TEM) observations showed that the Pt nanoparticles (particle size) were supported, with higher dispersion being achieved with method 2 than method 1. The peak of the Pt metal was confirmed from the X-ray diffraction (XRD) measurement. Based on the inductively coupled plasma mass spectrometry (ICP-MS) measurements, Pt loading was 19.5 wt.% in method 1 and approximately 50 wt.% in method 2. The Pt specific surface area of the Pt/novel spherical carbon catalyst calculated from the cyclic voltammetry (CV) measurement result was larger than that of the commercially available Pt/Ketjen catalyst. These results indicated that the Pt nanoparticles were supported in high dispersion without heat treatment using novel spherical carbon as a carbon support. (author)

  11. Microorganism Nutrition Processes as a General Route for the Preparation of Bionic Nanocomposites Based on Intractable Polymers.

    Science.gov (United States)

    Valentini, L; Bon, S Bittolo; Pugno, N M

    2016-08-31

    In this paper the fermentation process activated by living microorganisms of the baker's yeast is proposed as a facile assembly method of hybrid nanoparticles at liquid interface. Water dispersion of commercial baker's yeast extract used for bread production, graphene nanoplatelets (GNPs), and carbon nanotubes (CNTs) were added to oil/water interface; when the yeast is activated by adding sugar, the byproduct carbon dioxide bubbles migrate from the water phase to the oil/water interface generating a floating nanostructured film at liquid interface where it is trapped. Starting from this simple method, we propose a general approach for the stabilization of intractable poly(etheretherketone) polymeric particles with GNPs and CNTs at immiscible liquid interface. This process allowed the formation of sintered porous composites with improved mechanical properties. The porous structure of the composites gave rise to a low thermal conductivity making them good candidates for thermal insulating applications. Liquid absorption by these porous composites has been also reported. We believe that this new approach may have applications in the large scale fabrication of nanomaterials and is particularly suited for the preparation of nanocomposites starting from polymers that are intractable by solvent casting.

  12. HIRESSS: a physically based slope stability simulator for HPC applications

    Directory of Open Access Journals (Sweden)

    G. Rossi

    2013-01-01

    Full Text Available HIRESSS (HIgh REsolution Slope Stability Simulator is a physically based distributed slope stability simulator for analyzing shallow landslide triggering conditions in real time and on large areas using parallel computational techniques. The physical model proposed is composed of two parts: hydrological and geotechnical. The hydrological model receives the rainfall data as dynamical input and provides the pressure head as perturbation to the geotechnical stability model that computes the factor of safety (FS in probabilistic terms. The hydrological model is based on an analytical solution of an approximated form of the Richards equation under the wet condition hypothesis and it is introduced as a modeled form of hydraulic diffusivity to improve the hydrological response. The geotechnical stability model is based on an infinite slope model that takes into account the unsaturated soil condition. During the slope stability analysis the proposed model takes into account the increase in strength and cohesion due to matric suction in unsaturated soil, where the pressure head is negative. Moreover, the soil mass variation on partially saturated soil caused by water infiltration is modeled.

    The model is then inserted into a Monte Carlo simulation, to manage the typical uncertainty in the values of the input geotechnical and hydrological parameters, which is a common weak point of deterministic models. The Monte Carlo simulation manages a probability distribution of input parameters providing results in terms of slope failure probability. The developed software uses the computational power offered by multicore and multiprocessor hardware, from modern workstations to supercomputing facilities (HPC, to achieve the simulation in reasonable runtimes, compatible with civil protection real time monitoring.

    A first test of HIRESSS in three different areas is presented to evaluate the reliability of the results and the runtime performance on

  13. Well-defined functional mesoporous silica/polymer hybrids prepared by an ICAR ATRP technique integrated with bio-inspired polydopamine chemistry for lithium isotope separation.

    Science.gov (United States)

    Liu, Yuekun; Liu, Xuegang; Ye, Gang; Song, Yang; Liu, Fei; Huo, Xiaomei; Chen, Jing

    2017-05-09

    Mesoporous silica/polymer hybrids with well-preserved mesoporosity were prepared by integrating the initiators for continuous activator regeneration (ICAR) atom transfer radical polymerization (ATRP) technique with the bio-inspired polydopamine (PDA) chemistry. By manipulating the auto-oxidative polymerization of dopamine, uniform PDA layers were deposited on the surfaces and pore walls of ordered mesoporous silicas (OMSs), thereby promoting the immobilization of ATRP initiators. Poly(glycidyl methacrylate) (PGMA) brushes were then grown from the OMSs by using the ICAR ATRP technique. The evolution of the mesoporous silica/polymer hybrids during synthesis, in terms of morphology, structure, surface and porous properties, was detailed. And, parameters influencing the controlled growth of polymer chains in the ICAR ATRP system were studied. Taking advantage of the abundant epoxy groups in the PGMA platform, post-functionalization of the mesoporous silica/polymer hybrids by the covalent attachment of macrocyclic ligands for the adsorptive separation of lithium isotopes was realized. Adsorption behavior of the functionalized hybrids toward lithium ions was fully investigated, highlighting the good selectivity, and effects of temperature, solvent and counter ions. The ability for lithium isotope separation was evaluated. A higher separation factor could be obtained in systems with softer counter anions and lower polarity solvents. More importantly, due to the versatility of the ICAR ATRP technique, combined with the non-surface specific PDA chemistry, the methodology established in this work would provide new opportunities for the preparation of advanced organic-inorganic porous hybrids for broadened applications.

  14. Molecularly imprinted polymers with synthetic dummy templates for the preparation of capsaicin and dihydrocapsaicin from chili peppers.

    Science.gov (United States)

    Ma, Xiuli; Ji, Wenhua; Chen, Lingxiao; Wang, Xiao; Liu, Jianhua; Wang, Xueyong

    2015-01-01

    In this work, dummy molecularly imprinted polymers with high selectivity and affinity to capsaicin and dihydrocapsaicin are designed using N-vanillylnonanamide as a dummy template. The performance of dummy molecularly imprinted polymers and nonimprinted polymers was evaluated using adsorption isotherms, adsorption kinetics, and selective recognition capacity. Dummy molecularly imprinted polymers were found to exhibit good site accessibility, taking just 20 min to achieve adsorption equilibrium; they were also highly selective toward capsaicin and dihydrocapsaicin. We successfully used dummy molecularly imprinted polymers as a specific sorbent for selectively enriching capsaicin and dihydrocapsaicin from chili pepper samples. In a scaled-up experiment, the selective recovery of capsaicinoids was calculated to be 77.8% using solid-phase extraction. To the best of our knowledge, this is the first example of the use of N-vanillylnonanamide as a dummy template in molecularly imprinted polymers to simultaneously enrich capsaicin and dihydrocapsaicin.

  15. Preparation of molecularly imprinted polymers for strychnine by precipitation polymerization and multistep swelling and polymerization and their application for the selective extraction of strychnine from nux-vomica extract powder.

    Science.gov (United States)

    Nakamura, Yukari; Matsunaga, Hisami; Haginaka, Jun

    2016-04-01

    Monodisperse molecularly imprinted polymers for strychnine were prepared by precipitation polymerization and multistep swelling and polymerization, respectively. In precipitation polymerization, methacrylic acid and divinylbenzene were used as a functional monomer and crosslinker, respectively, while in multistep swelling and polymerization, methacrylic acid and ethylene glycol dimethacrylate were used as a functional monomer and crosslinker, respectively. The retention and molecular recognition properties of the molecularly imprinted polymers prepared by both methods for strychnine were evaluated using a mixture of sodium phosphate buffer and acetonitrile as a mobile phase by liquid chromatography. In addition to shape recognition, ionic and hydrophobic interactions could affect the retention of strychnine in low acetonitrile content. Furthermore, molecularly imprinted polymers prepared by both methods could selectively recognize strychnine among solutes tested. The retention factors and imprinting factors of strychnine on the molecularly imprinted polymer prepared by precipitation polymerization were 220 and 58, respectively, using 20 mM sodium phosphate buffer (pH 6.0)/acetonitrile (50:50, v/v) as a mobile phase, and those on the molecularly imprinted polymer prepared by multistep swelling and polymerization were 73 and 4.5. These results indicate that precipitation polymerization is suitable for the preparation of a molecularly imprinted polymer for strychnine. Furthermore, the molecularly imprinted polymer could be successfully applied for selective extraction of strychnine in nux-vomica extract powder.

  16. Adsorption characteristics, recognition properties, and preliminary application of nordihydroguaiaretic acid molecularly imprinted polymers prepared by sol–gel surface imprinting technology

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Sen; Zhang, Wen; Long, Wei; Hou, Dan; Yang, Xuechun; Tan, Ni, E-mail: tannii@21cn.com

    2016-02-28

    Graphical abstract: - Highlights: • Nordihydroguaiaretic acid imprinted polymer with imprinting factor 2.12 was prepared for the first time through hydrogen bonding and hydrophobic interaction between the template molecules and the bifunctional monomers. • The obtained surface molecularly imprinting polymers exhibited high affinity and selectivity to the template molecules. • The prepared surface molecularly imprinted polymers were used in separation the natural active component nordihydroguaiaretic acid from medicinal plants. - Abstract: In this paper, a new core-shell composite of nordihydroguaiaretic acid (NDGA) molecularly imprinted polymers layer-coated silica gel (MIP@SiO{sub 2}) was prepared through sol–gel technique and applied as a material for extraction of NDGA from Ephedra. It was synthesized using NDGA as the template molecule, γ-aminopropyltriethoxysilane (APTS) and methyltriethoxysilane (MTEOS) as the functional monomers, tetraethyl orthosilicate (TEOS) as the cross-linker and ethanol as the porogenic solvent in the surface of silica. The non-imprinted polymers layer-coated silica gel (NIP@SiO{sub 2}) were prepared with the same procedure, but with the absence of template molecule. In addition, the optimum adsorption affinity occurred when the molar ratio of NDGA:APTS:MTEOS:TEOS was 1:6:2:80. The prepared MIP@SiO{sub 2} and NIP@SiO{sub 2} were analyzed by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Fourier transform-infrared spectroscopy (FT-IR). Their affinity properties to NDGA were evaluated through dynamic adsorption, static adsorption, and selective recognition experiments, and the results showed the saturated adsorption capacity of MIP@SiO{sub 2} could reach to 5.90 mg g{sup −1}, which was two times more than that of NIP@SiO{sub 2}. High performance liquid chromatography (HPLC) was used to evaluate the extraction of NDGA from the medicinal plant ephedra by the above prepared materials, and the results

  17. Preparation and characterization of cross-linked β-cyclodextrin polymer/Fe3O4 composite nanoparticles with core-shell structures

    Institute of Scientific and Technical Information of China (English)

    Rui Xue Li; Shu Mei Liu; Jian Qing Zhao; Hideyuki Otsuka; Atsushi Takahara

    2011-01-01

    Cross-linked β-cyclodextrin polymer/Fe3O4 composite nanoparticles with core-shell structures were prepared via cross linking reaction on the surface of carboxymethyl β-cyclodextrin (CM-β-CD) modified Fe3O4 nanoparticles in β-cyclodextrin alkaline solution by using epichlorohydrin as crosslinking agent. The morphology, structure and magnetic properties of the prepared composite nanoparticles were investigated by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectrometry, X-ray diffraction (XRD) measurement, thermogravimetric analysis (TGA) and Vibrating sample magnetometry (VSM), respectively.

  18. Preparation and performance of lipophilic α-zirconium phosphate with high thermal stability and its application in thermal-plastic polymers

    Directory of Open Access Journals (Sweden)

    Ya Du

    2015-10-01

    Full Text Available To prepare lipophilic α-zirconium phosphate with high grafting ratio and thermal stability (OZrP-HT and explore its potential application in thermal-plastic polymers, a novel method was developed by surface lipophilicity enhancement strategy. The commercial α-zirconium phosphate (α-ZrP was pre-intercalated by n-propylamine (PA and grafted by silane coupling agents. Then the pre-intercalated PA was removed by heat-treatment, and the obtained OZrP-HT was utilized to fabricate the phosphorous-containing polyester (P-co-PET/OZrP-HT nanocomposites by melt-blending method. The prepared OZrP-HT and P-co-PET/OZrP-HT nanocomposites were characterized by Wide Angle X-ray Diffraction (WAXD, Fourier Transform Infrared Spectroscopy (FTIR, Thermogravimetric Analysis (TGA, Transmission Electron Microscope (TEM, etc. The results show that OZrP-HT with high grafting ratio (13.78 wt% and thermal stability (Tonset=368 °C was successfully prepared via this novel method and was uniformly intercalated by P-co-PET molecular chains. OZrP-HT had no significant effect on the fiber processability of P-co-PET polymer, and flame retardant properties of (P-co-PET/OZrP-HT nanocomposites were improved. This method may be suitable for organic modification of general inorganic layered compounds and could extend the potential applications in thermo-plastic polymers.

  19. Preparation

    Directory of Open Access Journals (Sweden)

    M.M. Dardir

    2014-03-01

    Full Text Available Some hexanamide-mono and di-linoleniate esters were prepared by the reaction of linolenic acid and hexanamide (derived from the reaction of hexanoic acid and diethanolamine. The chemical structure for the newly prepared hexanamide-mono and di-linoleniate esters were elucidated using elemental analysis, (FTIR, H 1NMR and chemical ionization mass spectra (CI/Ms spectroscopic techniques. The results of the spectroscopic analysis indicated that they were prepared through the right method and they have high purity. The new prepared esters have high biodegradability and lower toxicity (environmentally friendly so they were evaluated as a synthetic-based mud (ester-based mud for oil-well drilling fluids. The evaluation included study of the rheological properties, filtration and thermal properties of the ester based-muds formulated with the newly prepared esters compared to the reference commercial synthetic-based mud.

  20. Bringing ATLAS production to HPC resources. A case study with SuperMuc and Hydra

    Energy Technology Data Exchange (ETDEWEB)

    Duckeck, Guenter; Walker, Rodney [LMU Muenchen (Germany); Kennedy, John; Mazzaferro, Luca [RZG Garching (Germany); Kluth, Stefan [Max-Planck-Institut fuer Physik, Muenchen (Germany); Collaboration: ATLAS-Collaboration

    2015-07-01

    The possible usage of Supercomputer systems or HPC resources by ATLAS is now becoming viable due to the changing nature of these systems and it is also very attractive due to the need for increasing amounts of simulated data. The ATLAS experiment at CERN will begin a period of high luminosity data taking in 2015. The corresponding need for simulated data might potentially exceed the capabilities of the current Grid infrastructure. ATLAS aims to address this need by opportunistically accessing resources such as cloud and HPC systems. This contribution presents the results of two projects undertaken by LMU/LRZ and MPP/RZG to use the supercomputer facilities SuperMuc (LRZ) and Hydra (RZG). Both are Linux based supercomputers in the 100 k CPU-core category. The integration of such HPC resources into the ATLAS production system poses many challenges. Firstly, established techniques and features of standard WLCG operation are prohibited or much restricted on HPC systems, e.g. Grid middleware, software installation, outside connectivity, etc. Secondly, efficient use of available resources requires massive multi-core jobs, back-fill submission and check-pointing. We discuss the customization of these components and the strategies for HPC usage as well as possibilities for future directions.